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PRESENTATION 

In eukaryotes, L-carnitine is involved in energy metabolism, where it facilitates β-

oxidation of fatty acids. Carnitine acetyltransferases (CrAT) catalyze the reversible 

conversion of acetyl-CoA and carnitine to acetylcarnitine and free CoA. There are three 

carnitine acyltransferase families, which differ in their acyl-chain length selectivity: 

carnitine palmitoyltransferases (CPTs), CPT I and CPT II, catalyze long-chain fatty 

acids, carnitine octanoyltransferase (COT) prefers medium-chain fatty acids, and 

carnitine acetyltransferase (CrAT) uses short-chain acyl-CoAs. These enzymes contain 

about 600 amino acid residues and share 30% amino acid sequence identity. Little was 

known about the molecular basis for the different substrate preference in this family of 

proteins; only Cronin (1998) studied the molecular determinants of carnitine/choline 

discrimination in choline acetyltransferase (ChAT), the fourth member of the 

acyltransferase family. However, the recent report of the 3-D structures of CrAT and 

COT has provided valuable insights into the molecular basis of substrate specificity and 

catalytic activity in the acyltransferase family (Jogl 2003, Jogl 2005). 

In this study, we attempted to identify the amino acid residues responsible for 

acyl-CoA specificity in the acyltransferase family through structure-based mutagenesis 

studies on rat CrAT and COT proteins. As a result, we identified an amino acid residue 

(Met564 in rat CrAT) that is critical to fatty acyl chain-length specificity. A CrAT 

protein carrying the M564G mutation behaved as if its natural substrates were medium-

chain acyl-CoAs, similar to COT. The kinetic constants of the mutant CrAT were 

modified in favour of longer acyl-CoAs as substrates. In the reverse case, mutation of 

the orthologous glycine (Gly553) to methionine in COT decreased activity towards its 

natural substrates, medium-chain acyl-CoAs, and increased activity towards short-chain 

acyl-CoAs. A second putative amino acid involved in acyl-CoA specificity was 

identified (Asp356 in rat CrAT) and the double CrAT mutant D356A/M564G behaved as 

a pseudo-CPT in terms of substrate specificity. Three-dimensional models revealed a 

deeper hydrophobic cavity for the binding of acyl groups in both CrAT M564G and 

D356A/M564G mutants in the same position as the shallow cavity in the wt enzyme. 

This hydrophobic pocket is accessible to longer acyl groups; this is consistent with the 

preference of both mutants for medium and long-chain acyl-CoAs. Furthermore, we 



studied the effect of C75-CoA, a potent and competitive inhibitor of CPT I, on CrAT 

activity. It has been demonstrated that C75-CoA occupies the same pocket in CPT I as 

palmitoyl-CoA, suggesting an inhibitory mechanism based on mutual exclusion. To 

determine whether this inhibitor would fit in the open hydrophobic pocket formed in 

CrAT mutants M564G and D356A/M564G, we carried out competitive inhibition 

assays. Our experiments showed that while C75-CoA is a potent inhibitor of CrAT 

mutants M564G and D356A/M564G, it has no effect on wt CrAT.  

Choline acetyltransferase (ChAT) catalyzes a similar reaction to CrAT, with the 

difference that in ChAT the acetyl group from acetyl-CoA is transferred to choline 

instead of carnitine. Cronin (1998) successfully redesigned ChAT to use carnitine 

instead of its natural substrate choline. In the present study, our aim was to achieve the 

opposite, that is, to redesign rat CrAT specificity from carnitine to choline. We prepared 

a mutant CrAT that incorporates four amino acid substitutions 

(A106M/T465V/T467N/R518N), and the resulting mutant shifted the catalytic 

discrimination between L-carnitine and choline in favour of the latter substrate.   

The food industry is interested in the production of esters for use as flavouring 

compounds; for example, esters are responsible for the fruity character of fermented 

alcoholic beverages such as beer and wine. The ability to create large quantities of an 

ester or to genetically alter a host to produce a stronger or altered ester scent would have 

many industrial applications. Esters are produced in an enzyme-catalyzed reaction 

between a higher alcohol and an acyl-CoA molecule. Since CrAT is responsible for the 

modulation of the acyl-CoA/CoA ratio, we hypothesized that overexpression of this 

enzyme could modify ester production in yeast. Therefore, we overexpressed CrAT in 

yeast and analysed its effect on ester production during alcoholic fermentation. 

Compared with control cells, overexpression of CrAT caused a significant reduction in 

the production of some esters, including the important flavour components ethyl acetate 

and 3-methyl-butyl acetate (isoamyl acetate). 

In conclusion, the amino acid substitutions in rat CrAT and COT in this study 

reveal several residues that are involved in acyl-CoA and carnitine/choline substrate 

recognition and provide insight into the molecular requirements for their correct 



positioning in order to achieve efficient catalysis. These results not only help us to 

understand the structure-function relationship within the acyltransferase family, but may 

also facilitate studies on obesity, non-insulin dependent diabetes (NIDDM), and patients 

with defective β-oxidation. Moreover, our results open the possibility of 

biotechnological applications of the enzymes of the carnitine acyltransferase family in 

the wine industry. 
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