UNIVERSIDAD DE BARCELONA

Facultad de Farmacia Departamento de Bioquímica y Biología Molecular

REDESIGN OF CARNITINE ACETYLTRANSFERASE SPECIFICITY BY PROTEIN ENGINEERING

ANTONIO FELIPE GARCIA CORDENTE

2006

UNIVERSIDAD DE BARCELONA FACULTAD DE FARMACIA DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR PROGRAMA DE DOCTORADO: BIOMEDICINA BIENIO 2001-2003

REDESIGN OF CARNITINE ACETYLTRANSFERASE SPECIFICITY BY PROTEIN ENGINEERING

Memoria presentada por Antonio Felipe García Cordente, Licenciado en Química y Bioquímica por la Universidad de Barcelona, para optar al grado de Doctor por la Universidad de Barcelona.

Esta tesis ha sido realizada bajo la dirección de la Dra. Dolors Serra y el Dr. Fausto García Hegardt.

Dra. Dolors Serra

Dr. Fausto G. Hegardt

Antonio Felipe García Cordente

ANTONIO FELIPE GARCÍA CORDENTE 2006

PRESENTATION

In eukaryotes, L-carnitine is involved in energy metabolism, where it facilitates β -oxidation of fatty acids. Carnitine acetyltransferases (CrAT) catalyze the reversible conversion of acetyl-CoA and carnitine to acetylcarnitine and free CoA. There are three carnitine acyltransferase families, which differ in their acyl-chain length selectivity: carnitine palmitoyltransferases (CPTs), CPT I and CPT II, catalyze long-chain fatty acids, carnitine octanoyltransferase (COT) prefers medium-chain fatty acids, and carnitine acetyltransferase (CrAT) uses short-chain acyl-CoAs. These enzymes contain about 600 amino acid residues and share 30% amino acid sequence identity. Little was known about the molecular basis for the different substrate preference in this family of proteins; only Cronin (1998) studied the molecular determinants of carnitine/choline discrimination in choline acetyltransferase (ChAT), the fourth member of the acyltransferase family. However, the recent report of the 3-D structures of CrAT and COT has provided valuable insights into the molecular basis of substrate specificity and catalytic activity in the acyltransferase family (Jogl 2003, Jogl 2005).

In this study, we attempted to identify the amino acid residues responsible for acyl-CoA specificity in the acyltransferase family through structure-based mutagenesis studies on rat CrAT and COT proteins. As a result, we identified an amino acid residue (Met⁵⁶⁴ in rat CrAT) that is critical to fatty acyl chain-length specificity. A CrAT protein carrying the M564G mutation behaved as if its natural substrates were mediumchain acyl-CoAs, similar to COT. The kinetic constants of the mutant CrAT were modified in favour of longer acyl-CoAs as substrates. In the reverse case, mutation of the orthologous glycine (Gly⁵⁵³) to methionine in COT decreased activity towards its natural substrates, medium-chain acyl-CoAs, and increased activity towards short-chain acyl-CoAs. A second putative amino acid involved in acyl-CoA specificity was identified (Asp³⁵⁶ in rat CrAT) and the double CrAT mutant D356A/M564G behaved as a pseudo-CPT in terms of substrate specificity. Three-dimensional models revealed a deeper hydrophobic cavity for the binding of acyl groups in both CrAT M564G and D356A/M564G mutants in the same position as the shallow cavity in the wt enzyme. This hydrophobic pocket is accessible to longer acyl groups; this is consistent with the preference of both mutants for medium and long-chain acyl-CoAs. Furthermore, we

studied the effect of C75-CoA, a potent and competitive inhibitor of CPT I, on CrAT activity. It has been demonstrated that C75-CoA occupies the same pocket in CPT I as palmitoyl-CoA, suggesting an inhibitory mechanism based on mutual exclusion. To determine whether this inhibitor would fit in the open hydrophobic pocket formed in CrAT mutants M564G and D356A/M564G, we carried out competitive inhibition assays. Our experiments showed that while C75-CoA is a potent inhibitor of CrAT mutants M564G and D356A/M564G, it has no effect on wt CrAT.

Choline acetyltransferase (ChAT) catalyzes a similar reaction to CrAT, with the difference that in ChAT the acetyl group from acetyl-CoA is transferred to choline instead of carnitine. Cronin (1998) successfully redesigned ChAT to use carnitine instead of its natural substrate choline. In the present study, our aim was to achieve the opposite, that is, to redesign rat CrAT specificity from carnitine to choline. We prepared mutant CrAT that incorporates four amino acid substitutions a (A106M/T465V/T467N/R518N), and the resulting mutant shifted the catalytic discrimination between L-carnitine and choline in favour of the latter substrate.

The food industry is interested in the production of esters for use as flavouring compounds; for example, esters are responsible for the fruity character of fermented alcoholic beverages such as beer and wine. The ability to create large quantities of an ester or to genetically alter a host to produce a stronger or altered ester scent would have many industrial applications. Esters are produced in an enzyme-catalyzed reaction between a higher alcohol and an acyl-CoA molecule. Since CrAT is responsible for the modulation of the acyl-CoA/CoA ratio, we hypothesized that overexpression of this enzyme could modify ester production in yeast. Therefore, we overexpressed CrAT in yeast and analysed its effect on ester production during alcoholic fermentation. Compared with control cells, overexpression of CrAT caused a significant reduction in the production of some esters, including the important flavour components ethyl acetate and 3-methyl-butyl acetate (isoamyl acetate).

In conclusion, the amino acid substitutions in rat CrAT and COT in this study reveal several residues that are involved in acyl-CoA and carnitine/choline substrate recognition and provide insight into the molecular requirements for their correct positioning in order to achieve efficient catalysis. These results not only help us to understand the structure-function relationship within the acyltransferase family, but may also facilitate studies on obesity, non-insulin dependent diabetes (NIDDM), and patients with defective β -oxidation. Moreover, our results open the possibility of biotechnological applications of the enzymes of the carnitine acyltransferase family in the wine industry.

AGRADECIMIENTOS

GRACIAS, GRÀCIES, THANKS, BAIE DANKIE

En primer lugar, quiero mostrar mi agradecimiento a mis dos directores de tesis. Al Prof. Fausto García Hegardt por permitirme realizar la tesis en su grupo y por su entusiasmo por la ciencia. Y a Dolors Serra, por su apoyo en todo momento y por sus consejos científicos.

Especialmente quiero dar la gracias a todos los compañeros del grupo con los que he convivido durante estos años. Gracias a Guillermina Asins por su buen humor, simpatía y amabilidad. Gracias a Montse y a Irene por su ayuda al comienzo de mi tesis, y también a David, Laura, Guillem, Assia, Sara, Judith, Chandru, Caroline, y Yolanda.

I'm very grateful to Prof. Carling for accepting me during my three months stay in his lab in the MRC Clinical Sciences Centre in London. Many thanks to the other members of Carling's lab: Jo Davies, Nicola, Matt, Kris, Richard, Bronwyn, Amanda, Claire, Lee, and Angela.

También quiero agradecer a todos los grupos del Departamento por su ayuda en un algún momento de la tesis. Y como no agradecer a Tina, Mari Carmen, Jordi, Brugués, y África por su ayuda con los papeles, y también a Silvia. Gracias a Paulino Gómez-Puertas y Eduardo por su ayuda con los métodos bioinformáticos.

I would like to express my thanks to Prof. Sakkie Pretorius for giving me the opportunity to stay in his lab in the Australian Wine Research Institute in Adelaide. I'm also very grateful to Hentie Swiegers for his help in the writing up of the thesis, and for the yeast strains. Many thanks also to Danie, Vincent, Alana, Jenny, Maurizio, Eveline, Paul, Jane, Cristian, Robyn, Chris, George, Tracey, and Katryna.

Y sobre todo quiero agradecer a mi familia por todo el apoyo y comprensión que he recibido por su parte durante todos estos años. Gracias al bicho de mi hermana Vane, a mi madre por su paciencia, y a mis abuelas Boni y María, que aunque no entienden muy bien que es esto del "doctorado", están muy orgullosas de su nieto. Y finalmente a ti Sandra, por tu cariño y comprensión.

Este trabajo ha sido realizado con la ayuda de la beca de Formación de Personal Universitario del Ministerio de Educación y Ciencia. I'm also very grateful to Robin Rycroft of the Language Service for his valuable assistance in the preparation of the English manuscript.

Toni

A mi padre

ABBREVIATIONS

ABBREVIATIONS

3-D	three-dimensional
AATase	Alcohol acetyltransferase
ABD-F	7-fluoro-2,1,3-benzoxadiazole-4-sulfonamide
ACC	Acetyl-CoA carboxylase
ACh	acetylcholine
ACS	Acyl-CoA synthetase
AGP2	yeast plasmalemmal carnitine transporter
amp ^r	ampicillin-resistance
Atf	Alcohol acetyltransferase
ATP	adenosine 5´-triphosphate
bd.	bidistilled water
BLAST	basic local alignment search tool
bp	base pair
BSA	bovine serum albumin
CACT	Carnitine:acylcarnitine translocase
CAT	Chloramphenicol acetyltransferase
CAT2	yeast peroxisomal/mitochondrial carnitine acetyltransferase
cDNA	complementary DNA
ChAT	Choline acetyltransferase
CIT2	Citrate synthase
СМ	complete minimal
Cn	carnitine
CoA	Coenzyme A
СОТ	Carnitine octanoyltransferase
cpm	counts per minute
CrAT	Carnitine acetyltransferase
CRC1	yeast carnitine acetylcarnitine translocase
СРТ	Carnitine palmitoyltransferase
DEPC	diethylpyrocarbonate
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid

DNase	deoxyribonuclease
dNTPs	2'-deoxynucleosides 5'-triphosphate
dsDNA	double-stranded DNA
DTT	dithiothreitol
E2pCD	catalytic domain of dihydrolipoyl transacetylase
ECF	enhanced chemifluorescence
EDTA	ethylenediamine-tetraacetic acid
Eht	Ethanol hexanoyl transferase
ER	endoplasmic reticulum
FA-CoA	fatty acyl-CoA
FAS	Fatty acid synthase
F.I.	fluorescence intensity
for	forward
GAL1	galactose inducible promoter
GC/MS	gas chromatography/mass spectrometry
GlmU	N-acetylglucosamine-1-phosphate uridyltransferase
GSH	glutathione (reduced form)
GST	glutathione S-transferase
h	hour
HEPES	N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid
HS	headspace solid
Ι	inhibitor
IC ₅₀	concentration of drug needed to inhibit 50%
IPTG	isopropyl β-D-thiogalactoside
K _{cat}	catalytic rate constant
K_i	inhibition constant
Kinact	inactivation constant
K_m	Michaelis constant
K_s	dissociation constant
kDa	kiloDalton
LCAS	long-chain acyl-CoA synthetase
LCFA	long-chain fatty acid
LCFA-CoA	long-chain acyl-CoA
mA	milliamps

MCFA-CoA	medium-chain acyl-CoA
MIM	mitochondrial inner membrane
min	minute
mit	mitochondrial
MOM	mitochondrial outer membrane
MOPS	3-[N-morpholino] propane sulfonic acid
MTS	mitochondrial targeting signal
MW	molecular weight
NIDDM	non-insulin dependent diabetes mellitus
nm	nanometers
nt	nucleotides
NZW	New Zealand White
OCTN2	plasmalemmal carnitine transporter
OD	optical density
o/n	overnight
ORF	open reading frame
р	protein
PAGE	polyacrylamide gel electrophoresis
panK	Pantothenate kinase
PBS	phosphate-buffered saline
PBS-T	phosphate-buffered saline tween
PCR	polymerase chain reaction
PDB	Protein Data Bank
PDH	Pyruvate dehydrogenase
PEG	polyethylene glycol
per	peroxisomal
PGK	Phosphoglycerate kinase
PMSF	phenylmethylsulfonyl fluoride
PTS	peroxisomal targeting signal
QM	quadruple mutant
rev	reverse
RNA	ribonucleic acid
RNase	ribonuclease
rpm	revolutions per minute

r.t.	room temperature
RT-PCR	reverse transcriptase-polymerase chain reaction
S.A.	specific activity
S.C.	subcutaneous
SCFA-CoA	short-chain acyl-CoA
S.D.	standard deviation
SDS	sodium dodecyl sulphate
sec.	seconds
SIDA	stable isotope dilution analysis
sp.	species
SPME	solid phase microextraction
S.R.	specific radioactivity
TAE	Tris-acetate-EDTA
TE	Tris-EDTA
TEMED	N,N,N'N'-tetramethyl-ethylenediamine
tm	transmembrane
T _m	melting temperature
ТМ	triple mutant
Tris	tris(hydroxymethyl) aminomethane
U	Units
URA	uracil
UV	ultraviolet
V	volts
V _{max}	maximum enzyme velocity
wt	wild-type
w/v	weight/volume
YAT1	yeast outer mitochondrial membrane carnitine acetyltransferase
YAT2	yeast cytosolic carnitine acetyltransferase
YNB	yeast nitrogen base
YPD	yeast peptone dextrose medium

INDEX

INDEX

INTRODUCTION	
1. MODULATION OF COENZYME A POOLS IN THE CELL	1
2. THE CARNITINE SYSTEM	2
2.1. Carnitine	2
2.2. Carnitine uptake and transport	3
2.3. Classification of carnitine acyltransferases	3
3. CARNITINE PALMITOYLTRANSFERASE	6
3.1. The carnitine palmitoyltransferase system	6
3.2. CPT I isoforms and distribution	7
3.3. Pharmacological regulation of CPT I	7
4. CARNITINE OCTANOYLTRANSFERASE	10
4.1. Role of carnitine octanoyltransferase in the peroxisomal β -oxidation	10
5. CARNITINE ACETYLTRANSFERASE	11
5.1. Tissue and subcellular location	11
5.2. Molecular genetics of carnitine acetyltransferase	12
5.3. Carntine acetyltransferase function	12
5.4. Role of carnitine and carnitine acetyltransferase in human health	14
5.4.1. Carnitine acetyltransferase deficiencies	14
5.4.2. Therapeutic use of carnitine and short-chain	
acyl-carnitine esters	14
6. ENZYMOLOGY OF CARNITINE ACETYLTRANSFERASE	16
6.1. Acyl-group selectivity	17
6.2. Effect of chain length on CrAT kinetic constants	17
7. STRUCTURE AND FUNCTION OF CARNITINE ACYL	
TRANSFERASES	19
7.1. The active site tunnel and the catalytic histidine	20
7.2. The carnitine binding site	22
7.3. The fatty acid binding site	24
7.3.1. The binding site for short-chain acyl groups	24
7.3.2. The binding site for medium-chain acyl groups	25
7.4. The catalytic mechanism of carnitine acyltransferases	27

7.4.1. The catalytic mechanism: substrate-assisted catalysis	27
7.4.2. A catalytic dyad?	28
8. STRUCTURE OF CHOLINE ACETYLTRANSFERASE	31
8.1. Model for choline binding and substrate discrimination	32
9. BIOTECHNOLOGICAL APPLICATIONS OF CARNITINE	
ACETYLTRANSFERASE IN YEAST	34
9.1. Role of carnitine and carnitine acetyltransferase in yeast	34
9.2. Molecular genetics of yeast carnitine acetyltransferase	35
9.2.1. Phenotypes of CRAT deleted strains	36
9.3. Modulation of wine flavour, a possible biotechnological	
application of CrAT in yeast	37
9.3.1. Volatile esters and wine flavour	37
9.3.2. Effect of gene technology on ester production	38

OBJECTIVES

43

MATERIALS AND METHODS

1. MATERIALS	
1.1. Animals	47
1.2. Bacterial strains	47
1.3. Yeast strains	47
1.4. Plasmid vectors	48
1.5. Oligonucleotides	50
2. DNA AND RNA BASIC TECHNIQUES	
2.1. Bacterial culture	50
2.2. Plasmid DNA preparation	50
2.3. DNA enzymatic modifications	51
2.3.1. DNA digestion with restriction enzymes	51
2.3.2. Blunt ends	52
2.4. DNA resolution and purification	53
2.4.1. DNA resolution in agarose gels	53
2.4.2. DNA purification	54

2.5. DNA and RNA quantification	54
2.6. DNA ligation	55
2.7. Preparation and transformation of competent E. coli	55
2.7.1. Obtaining of competent E. coli	55
2.7.2. Transformation of competent E. coli	56
2.7.3. Recombinant plasmid selection	57
2.8. DNA subcloning	57
2.9. Isolation of yeast chromosomal DNA	57
2.10. RNA isolation from tissues	58
2.11. PCR DNA amplification	59
2.11.1. PCR working conditions	60
2.11.2. Primer design	60
2.11.3. PCR-Preps	61
2.12. DNA sequencing	61
2.13. RT-PCR	62
2.13.1. Elimination of contaminating DNA	62
2.13.2. Reverse transcription	63
2.14. PCR-based mutagenesis method	64
3. EXPRESSION AND PURIFICATION OF PROTEINS IN E. COLI	66
4. EXPRESSION OF PROTEINS IN YEAST	68
4.1. Growth of Saccharomyces cerevisiae strains	68
4.2. Transformation of yeast cells	68
4.3. Selection and growth of the transformants	69
4.4. Preparation of protein extracts from yeast	70
4.4.1. Crude extracts	70
4.4.2. Mitochondrial fraction	71
5. FERMENTATION TRIALS WITH YEAST	72
5.1. Fermentation conditions	72
5.2. Analysis of fermentation products	72
6. PROTEIN ANALYSIS	75
6.1. Bradford protein quantification	75
6.2. Western-blot	75
6.2.1. Electrophoresis	75
	77

6.2.3. Antibody incubation	78
6.2.4. Detection	79
7. DETERMINATION OF ENZYMATIC ACTIVITY	80
7.1. Fluorometric assay	80
7.2. Radiometric assay	82
7.2.1. Malonyl-CoA inhibition assay	84
7.2.2. Effect of C75-CoA on carnitine acyltransferase activity	84
7.2.2.1. Activation of C75 to C75-CoA	84
7.2.2.2. C75-CoA inhibition assay	85
7.3. Determination of choline acetyltransferase activity	85
7.4. Kinetic parameters	86
8. BIOINFORMATIC METHODS	87
8.1. Basic bioinformatic tools and databases	87
8.2. Sequences alignments and comparisons	88
8.3. Subfamily conserved residues analysis	88
8.4. Construction of CrAT, COT and CPT I models	88
8.5. Molecular docking	89
9. STATISTICAL ANALYSIS	90

RESULTS

1.	ISOLATION AND CLONING OF RAT CARNITINE	
	ACETYLTRANSFERASE	93
	1.1. Isolation of rat carnitine acetyltransferase	93
	1.2. Generation of expression constructs	95
	1.2.1. Construction of plasmids for expression in yeast	95
	1.2.2. Construction of plasmids for expression in E. coli	96
2.	2. GENERATION OF ANTI-RAT CARNITINE ACETYLTRANSFERA	
	ANTIBODIES	97
	2.1. Expression and purification of CrAT in E. Coli	97
	2.2. Generation of antibodies	97
3.	EXPRESSION OF RAT CARNITINE ACETYLTRANSFERASE IN	ſ
	SA CCHAROMY CES CEREVISIA E	99
	3.1. Use of Saccharomyces cerevisiae as an expression system	99

3.2. Expression of rat carnitine acetyltransferase in yeast	99
3.3. Acyl-group selectivity of rat carnitine acetyltransferase expressed	
in yeast	100
3.4. Kinetic properties of rat carnitine acetyltransferase expressed in yeast	101
4. EXPRESSION OF RAT CARNITINE OCTANOYLTRANSFERASE	
IN YEAST	103
4.1. Acyl-group selectivity of rat carnitine octanoyltransferase expressed	
in yeast	104
4.2. Kinetic properties of carnitine octanoyltransferase expressed in yeast	105
5. FUNCTIONAL ANALYSIS OF CARNITINE ACETYL	
TRANSFERASE USING BIOINFORMATIC METHODS	107
5.1. Subfamily conserved residue analysis (tree determinants)	107
5.2. Site-directed mutagenesis studies in rat CrAT expressed in yeast	108
6. STRUCTURE-BASED FUNCTIONAL ANALYSIS OF CrAT	112
6.1. Amino acid residues involved in catalysis	112
6.2. Amino acid residues involved in acyl-CoA specificity	114
6.2.1. The M564G mutation causes conversion of CrAT into COT	114
6.2.2. Kinetic characteristics of CrAT mutant M564G	117
6.2.3. The M564A mutation also broadens the specificity of CrAT	118
6.2.4. Role of the cluster ⁵⁶³ VMS ⁵⁶⁵ in acyl-CoA specificity	119
6.2.5. Re-engineering COT acyl-CoA specificity	122
7. MODELS FOR THE POSITIONING OF FATTY ACIDS BASED ON	
THE CrAT CRYSTAL	125
7.1. Construction of the rat CrAT and COT models	125
7.2. Positioning of the acyl-CoA molecule in the models	125
7.3. Identification of a new amino acid involved in acyl-CoA specificity	
in CrAT from the models	129
7.3.1. The D356A/M564G mutation converts CrAT into CPT	129
7.3.2. Kinetic characteristics of CrAT mutant D356A/M564G	132
7.3.3. Positioning of long-chain acyl-CoAs in the CrAT	
mutant D356A/M564G	133
8. EFFECT OF CPT I INHIBITORS MALONYL-CoA AND C75-CoA	
ON THE ACTIVITY OF CRAT EXPRESSED IN YEAST	135
8.1. Efffect of malonyl-CoA on CrAT activity	135

136
139
139
142
142
145
147
147
147
151
152
155

DISCUSSION

1.	ANALYSIS OF RAT CrAT EXPRESSION IN YEAST	161
2.	ANALYSIS OF THE FOUR AMINO ACIDS IDENTIFIED BY	
	BIOINFORMATIC METHODS IN CRAT	162
3.	ROLE OF CrAT His ³⁴³ AND Glu ³⁴⁷ IN CATALYSIS	164
4.	CrAT Met ⁵⁶⁴ AND COT Gly ⁵⁵³ DETERMINE THE ACYL-CoA	
	SPECIFICITY OF BOTH ENZYMES	165
5.	RE-ENGINEERING CRAT AND COT INTO A PSEUDO-CPT	168
6.	MODEL FOR ACYL-CoA CHAIN-LENGTH DISCRIMINATION IN	
	THE CARNITINE ACYLTRANSFERASE FAMILY	169
7.	EFFECT OF C75-CoA ON CrAT ACTIVITY	170
8.	MODEL FOR CARNITINE/CHOLINE DISCRIMINATION IN CRAT	172
9.	CrAT OVEREXPRESSION AND ESTER FORMATION IN YEAST	173
10.	FUTURE: FURTHER INVESTIGATION	175

CONCLUSIONS	179
REFERENCES	183
APPENDIX	
1. PRIMER SEQUENCES	197
2. SEQUENCE OF THE RAT CARNITINE OCTANOYLTRANSFERASE	199
3. ALIGNMENT OF REPRESENTATIVE SEQUENCES OF	
CARNITINE/CHOLINE ACYLTRANSFERASES	201

PUBLICATIONS

RESUM DE LA TESI