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A mis padres.





Agradecimientos

En primer lugar quiero expresar mi profunda gratitud a Juanma por haberme
dado la oportunidad de realizar este trabajo. Además de su valiosa dirección
cient́ıfica, siempre me ha brindado su ayuda y constantes ánimos.
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Chapter 1
Motivations and Outline

Understanding how materials deform and break is a subject of critical impor-
tance in industry. At the same time, it requires from the knowledge of the
basic processes governing the phenomenon and hence, fundamental physics
research is a must. From the very beginning, there was the need of having
quantitative rules for the resistance of materials. The first attempts to quan-
tify these phenomena date back to the early experimental works of Leonardo
Da Vinci in the fifteenth century with wires of different lengths (collected
in [da Vinci 1940]) and the subsequent works of Galileo Galilei who sum-
marized the new science of mechanics in his work [Galilei 1638], along with
the studies of elastic bodies by Robert Hooke [Hooke 1678]. Modern fracture
mechanics is considered to begin with the efforts of Griffith to establish an
energetic criterion for the propagation of brittle failure [Griffith 1921] and the
extension of Irwin for ductile materials [Irwin 1948]. Nowadays, in spite of
the technological development of the field, many questions remain open after
years of intensive research. Moreover, several experiments in the last decades
have revealed features that cannot be accounted for within the framework of
continuum mechanics [Alava et al. 2006, Zaiser 2006].

Many subjects get straightforward benefits from the advances in fracture
and deformation mechanics. For instance, nanomaterials are of crucial impor-
tance for new developing technologies and hence the knowledge of how size
affects their behavior is essential for the good performance at those scales. It
has been observed in many materials and experimental setups that small size
samples exhibit surprisingly higher strengths than macroscopic samples of the
same material.
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CHAPTER 1. MOTIVATIONS AND OUTLINE

The design of new materials à la carte relies on the knowledge of how
temperature, chemical composition, microstructure, etc., affect the mechani-
cal response of the material. A trendy example is the production of metallic
glasses. These alloys usually display high yield stress and macroscopic brit-
tleness at room temperature. However, with the adequate composition, pro-
duction technique and treatments, ductile metallic glasses that exhibit perfect
plasticity or strain hardening over a wide range of strain can be obtained and
are employed in many interesting applications like micro-electro-mechanical
systems [Greer 2009, Schuh et al. 2007].

Also interestingly, the mechanical properties of biological materials are now
starting to be investigated and the understanding of their complex hierarchical
nature is still a challenge. It seems that this hierarchical structure plays a
decisive role in the tolerance of these kind of materials to microcracks and a
good knowledge of the mechanisms that rule them may open the door to the
construction of biomaterials and bio-inspired materials [Buehler and Keten
2010]. Many applications can be envisaged as the detection of diseases by
changes in the material properties, prediction of the fracture of bones, or
tissue regeneration, just to name a few.

The presence of power law distributions in both temporal and spatial prop-
erties and the universality of the behavior seem to suggest that fracture and
plasticity could be explained as some type of critical phenomena [Alava et al.
2006, Zaiser 2006]. This means that there should be some general principles
that rule the process and that are more important than a detailed description
of the interactions and atomic structure of the media. Hence, simplified the-
oretical approaches based on fundamental concepts can help to capture the
essential ingredients in the system. In this sense, tools coming from statistical
mechanics can help to deal with disorder, long range interactions and scaling
laws. In the last decade several steps have been given in this direction and, to
this aim, some simplified models have been developed and studied. This The-
sis is devoted to the study of the deformation and failure of materials in the
presence of disorder with the help of statistical mechanics tools and models.
The outline of this Thesis is as follows:

Chapter 2 (page 5) serves as a brief review of solid mechanics and the
different approaches to modeling the response of materials. We focus on the
statistical physics approach to the problem, describing the models and the
insight gained from this perspective. We give special attention to the Random
Fuse Model (RFM) [de Arcangelis et al. 1985], a simple scalar model based
on the formal analogy of electrical and mechanical equations that has become

2



CHAPTER 1. MOTIVATIONS AND OUTLINE

the cornerstone of lattice models for fracture and will be used throughout this
Thesis.

In Chapter 3 (page 23) we numerically study the brittle fracture of ma-
terials by means of the acoustic emission produced during the load of an
amorphous medium simulated with the RFM. Acoustic emission is a typical
experimental tool for monitoring damage in materials. After introducing the
subject of crackling noise in section 3.1, in section 3.2 we study the differences
between several energy estimators and derive scaling relations that account for
their statistical behavior. We also study the temporal evolution of the energy
dissipation in the search for traces of the proximity of final failure. Finally, the
consequences of relaxing the quasistatic loading condition to mimic dynamic
fracture are also studied. These results were published in [Picallo and López
2008].

Chapter 4 (page 45) deals with elastic-perfectly plastic behavior. A brief
introduction to the basic concepts is found in 4.1 where the elastic-perfectly
plastic version of the RFM is presented as well as the conjectured equivalence
of this problem to the classic topic of directed polymers and minimum energy
surfaces. In section 4.2 we numerically and theoretically revise the relation
between minimum energy surfaces and the yield surfaces produced with an
elastic perfectly plastic RFM. These results were published in [Picallo et al.
2009].

Chapter 5 (page 65) begins with a description of the experimental findings
and existing numerical models of plasticity in section 5.1. In section 5.2 we
introduce a lattice model for ductile fracture based on the RFM but able to
account for both brittle and ductile behavior. In section 5.3 we study the tran-
sition from brittleness to ductility as plastic deformation is accumulated prior
to fracture. Ductile fracture surfaces are compared to minimum energy sur-
faces and crack surfaces resulting from brittle fracture. The burst avalanches
are also studied and compared with the current theoretical and experimental
understanding. These results correspond to [Picallo et al. 2010a;b].

3





Chapter 2
Introduction

Deformation and fracture events are commonly observed around us and our
experience has taught us how differently materials like crystal and plasticine
behave. Everyone has an intuitive notion of the strength of some materials
and how deformable or on the contrary fragile materials are and how different
are the fracture patterns that arise when breaking one or the other.

The present chapter will formalize these intuitive concepts and establish
the basic working framework in solid mechanics (see, for instance [Lai et al.
1999, Lubliner 2008, Rice 1999]). We will also discuss the key ingredients
that one must take into account to build a fracture model and some of the
possible approaches to the problem. We will focus on the statistical physics
point of view giving a brief description of the kind of models proposed by this
community and some of the insights gained during the past few years. We
will finish describing the model that will be used throughout this Thesis.

2.1 Solid mechanics in brief

If we follow what happens to one of the material points of a continuous body
subject to deformation, it will move from its reference configuration r0 to a
different spatial position r(r0, t). The difference between these two positions
defines the displacement vector u = r(r0, t) − r0.

When deformations are small (u → 0,∇u → 0), it is enough to characterize
the changes in shape with the so called infinitesimal strain tensor ε, a second-
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CHAPTER 2. INTRODUCTION

order tensor corresponding to the symmetric part of ∇u:

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (2.1)

where i, j = 1, 2, 3 are the 3D spatial components [Lai et al. 1999]. Note that
the strain ε is a dimensionless variable while the displacement u has units of
[Length].

The range of deformations in which this approximation is valid can be
studied within the infinitesimal strain theory, in contrast with the finite strain
theory that will not be addressed here.

To obtain the equations of motion of a continuum we must apply Newton’s
Second Law

∑
F = ma to the solid. To this aim, we need to take into

account all the forces that play a role in the material. We can distinguish
between short-range and long-range forces. Long ranged forces are considered
to be body forces that act throughout the volume of a body (e.g. gravity or
magnetism) whereas short-range forces are surface forces that act only on a
real or imaginary surface in the material and are due to the internal forces
among its particles. Therefore, Newton’s Second Law in the continuum can
be written as: ∫

V
bdV +

∫
S
t(n)dS =

∫
V

ρadV, (2.2)

where b represents the body forces and t(n) the surface forces that depend not
only on the position but also on the local orientation of the surface element
on which they are acting.

The nature of the t(n) dependence was stated by Cauchy in the Cauchy’s
Stress Principle and can be deduced with the help of the Cauchy tetrahedron
shown in figure 2.1. Applying Newton’s Second Law to this infinitesimal
tetrahedron we obtain

t(−1)∆S1 + t(−2)∆S2 + t(−3)∆S3 + t(n)(∆Sn) = ρ(∆V )a. (2.3)

Shrinking the volume of the tetrahedron to zero and applying the action-
reaction principle t(−i) = −t(i), equation 2.3 results in

t(n)∆Sn = t(1)∆S1 + t(2)∆S2 + t(3)∆S3. (2.4)

Expressing the outward normal to the inclined face in terms of the unit vectors
we have n = n1e1 + n2e2 + n3e3. Besides, since ∆Si, i = 1, 2, 3 are the
projections of ∆Sn on the Cartesian coordinate planes, they are related by
∆Si = ni∆Sn. Putting all this together, equation 2.4 becomes

t(n) = n1t(1) + n2t(2) + n3t(3). (2.5)

6



2.1. SOLID MECHANICS IN BRIEF

Figure 2.1: Cauchy tetrahedron showing the surface forces t(−i) acting on each of
its faces with outward normal −ei. The outward normal to the inclined face is given
by n.

Therefore, t(n) is a linear transformation of its argument n. This leads us
to the definition of the second-order stress tensor σ such that t(n) = σn and
whose components can be derived from equation 2.5 to be σij = ei · t(j). So,
the component i of the stress vector t(n) is given by

ti(n) =
∑

j

σijnj . (2.6)

Note that the column i of σ represents the stress vector on the plane whose
outward normal is ei. A representation of all the components of the stress
tensor and its meaning is depicted in figure 2.2.

The component σij of the stress tensor represents normal stress if i = j and
shear stress if i 6= j. The stress tensor is easily shown to be symmetric [Rice
1999]. The stress, as it was defined, has dimensions of ([Force]/[Length]2),
i.e., it is measured in units of pressure.

Introducing equation 2.6 into equation 2.2 we obtain:∫
S

∑
j

σijnjdS +
∫

V
bidV =

∫
V

ρaidV, (2.7)

for each component i = 1, 2, 3.

7



CHAPTER 2. INTRODUCTION

Making use of the Divergence Theorem (
∫
S σndS =

∫
V ∇σdV ) we arrive

to the (Cauchy’s) equations of motion in local form for a solid body:∑
j

∂σij

∂xj
+ bi = ρai. (2.8)

Figure 2.2: Stress components acting over an infinitesimal volume element.

2.1.1 Linear isotropic elastic solids

An extended representation of the material response to loading, independent
of the specimen size and loading conditions, is the stress-strain curve. An
example is shown in figure 2.3. In the limit of small deformations, it has been
widely observed in experiments that there exists a linear relation between the
applied load or stress and the deformation or strain in the material. In this
regime, all deformations vanish as soon as the load is removed. This is known
as elastic regime. Fracture occurring in this region is called brittle fracture
and some of its characteristics will be studied in Chapter 3. However, some
materials can exhibit a different behavior after the elastic regime and enter
what is called a plastic regime. The fingerprint of plastic response is that
deformations are permanent, as it can be observed in the unloading curves
in figure 2.3. Depending on the material and experimental conditions, it is

8



2.1. SOLID MECHANICS IN BRIEF

usually characterized by either a strain increase with no more stress increments
(perfect plasticity) or either a stress dependence on the strain (hardening) with
a new slope determined by the hardening coefficient θ. Plastic response and
the resultant ductile fracture surfaces will be addressed in Chapters 4 and 5.

strain (ε)

st
re

ss
 (

σ)

θ Perfect
Plasticity

Hardening

Brittle
Fracture

Ductile
Fracture

Figure 2.3: Stress-strain curve. Brittle behavior, perfectly plastic behavior, and
hardening with its corresponding hardening coefficient θ are shown. Dashed lines
indicate the unloading curves that will lead to strain accumulation with no stress
imposed.

The first linear elastic regime of materials is called Hooke’s Law. As the
deformations are small, the infinitesimal strain theory is still valid. In order
to have a linear dependence between the infinitesimal strain tensor and the
Cauchy stress tensor, they must necessarily be related through a fourth-order
tensor.

σij =
∑

k

∑
l

Cijklεkl. (2.9)

The tensor C is the Elasticity Tensor. The symmetry of the strain tensor
imposes

Cijkl = Cijlk, (2.10)

then reducing the number of independent coefficients to 54. The symmetry of
the stress tensor requires

Cijkl = Cjikl, (2.11)

thus reducing the tensor to 36 independent components.

If the medium is isotropic, i.e., its properties do not depend on the di-
rection, the elasticity tensor must be isotropic too, i.e., its components must
be the same in all rotated coordinate systems. Any fourth order isotropic

9



CHAPTER 2. INTRODUCTION

tensor can be written as a linear superposition of the independent tensors
Aijkl = δijδkl, Bijkl = δikδjl, Hijkl = δilδjk:

Cijkl = λAijkl + µBijkl + νHijkl. (2.12)

To preserve the symmetries of equations 2.10 and 2.11, we must have ν = µ.
Therefore,

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (2.13)

Plugging this into equation 2.9 leads us to the stress-strain relation for a linear
isotropic elastic solid:

σij = λδij

∑
k

εkk + 2µεij , (2.14)

where λ and µ are known as the Lamé Constants. Hence, the elastic proper-
ties of homogeneous and isotropic materials are fully described by these two
constants or elastic moduli. Besides Lamé Constants, other elastic moduli are
usually defined and employed, like the Young’s modulus E that describes ten-
sile elasticity, the shear modulus G defined as shear stress over shear strain,
or the Poisson Ratio ν, the ratio of the transverse strain, perpendicular to the
applied load, to the axial strain, in the direction of the applied load.

Now, going back to the Cauchy’s equations of motion 2.8, we can obtain
the Navier-Cauchy equations of motion for a linear isotropic elastic solid by
directly substituting equation 2.14 along with 2.1 in equation 2.8:

(λ + µ)
∂

∂xi

∑
j

∂uj

∂xj
+ µ

∑
j

∂2ui

∂x2
j

+ bi = ρ
∂2ui

∂t2
. (2.15)

Or in vectorial form:

(λ + µ)∇(∇·u) + µ∇2u + b = ρ
∂2u
∂t2

. (2.16)

Therefore, the equilibrium equation
∑

F = 0 for a linear isotropic elastic solid
is:

(λ + µ)∇(∇·u) + µ∇2u + b = 0. (2.17)

2.2 Modeling materials: the statistical mechanics
approach

Fracture mechanics is a topic that lies on the boundary among different fields.
Materials scientists, mechanical engineers, and more recently, statistical physi-

10



2.2. MODELING MATERIALS: THE STATISTICAL MECHANICS APPROACH

cists have approached the problem from different standpoints, emphasizing
and drawing attention to different questions and using different techniques.

An usual approach followed in engineering is the discretization of the con-
tinuum equations 2.16 with finite element methods. Disorder has been also
included in a suitable way in these schemes [O. C. Zienkiewicz 2006].

A completely different approach to this continuum description consists in
describing the material at an atomistic level. This is the aim of molecular
dynamics simulations [Buehler 2008]. In this context, the Newton’s Laws
give the behavior of a set of atoms in an ordered or disordered structure in
which the interatomic potentials are usually simplified, like for instance by
using the Lennard-Jones potential. Elasticity, plasticity and fracture then
arise naturally from the response at an atomic level. The main drawback
is the huge computational cost that limits the number of atoms used in the
simulations and the available time scales. However, this technique is useful
to model nanosamples [Bitzek et al. 2008, Munilla et al. 2009] that are now
under intense experimental study.

In heterogeneous materials, the final crack is the result of a complex in-
terplay between the initial quenched disorder of the material and the het-
erogeneities created by the fracture as it evolves. Disorder is then a crucial
ingredient in the development of cracks since defects or voids are usually pre-
cursors of fracture and have a large impact on the strength of the samples.

The perspective of applying to fracture the well-known toolbox of statis-
tical physics for disordered systems seems promising. The irreversibility of
fracture, the presence of long-range interactions, the experimental evidence of
the self-affine rough nature of the fracture surfaces [Bonamy 2009] as well as
the presence of long-tailed distributions in some of the variables involved -with
exponents that might be universal- [Garcimart́ın et al. 1997, Guarino et al.
2002; 1998, Maes et al. 1998, Salminen et al. 2006; 2002], have put fracture
into the critical phenomena jumble. The big question is whether fracture can
be explained as a phase transition or not. Some approaches have tried to link
it to other well-established theories like line deppining [Bonamy 2009], perco-
lation (see [Alava et al. 2006] and references therein) or nucleation [Griffith
1921, Rundle and Klein 1989, Selinger et al. 1991, Wang et al. 1991] but the
question still remains open.

In general, the aim of the statistical mechanics approach to fracture or
plasticity is to find the universal laws behind the problem, exploring tractable
models that can capture the basic features of the phenomenon. Due to the

11



CHAPTER 2. INTRODUCTION

relevant role of the heterogeneity, a desirable characteristic for these models
is that disorder could be introduced and varied in a straightforward way.

One of the usual simplifications is to discretize the medium at a level where
one can get rid of the atomic interaction and make use of the elastic equations
2.17 on elements that represent a coarse-graining of the smaller length scales.
This coarse-grained description ignores irrelevant microscopic details and fo-
cuses on capturing the scaling laws of the system on large length scales. It
is not a discretization of the equations like the finite elements methods but a
discretization of the medium itself into discrete physical entities. In the last
twenty five years several models of this kind have been introduced and much
insight has been gained. Next, common characteristics of these models and
the most extended variants will be described.

2.2.1 Discrete models

Lattice models describe solids at a mesoscopic level, with elements that rep-
resent the average behavior at that scale. These mesoscopic elements are
connected to other similar neighboring elements forming a lattice. This ap-
proach transforms the partial differential equations 2.17 in a system of coupled
linear equations. Since the equilibrium equations 2.17 are local, the physics at
the mesoscale may be modeled by a lattice of elements that interact with their
neighbors in the lattice. Each element displays very simple elastic and break-
ing characteristics (usually a linear constitutive law up to a failure threshold)
and the system has a few control parameters. A certain rule for breakdown or
plastic behavior must also be included in the model. The loading is imposed
in a very simple way on the boundary of the lattice. Vectorial models allow
for the imposition of different loading conditions. The three basic modes of
fracture in which any load can be decomposed are shown in figure 2.4.

The aim is to study the emergence of macroscopic collective behavior in
the presence of disorder which is introduced by imposing different constitu-
tive laws on the elements. Disorder can be either quenched, i.e., static and
time-independent, or annealed, i.e., the heterogeneities caused by the evolu-
tion of the system affect the disorder, that evolves too. Quenched disorder is
usually introduced distributing the failure thresholds according to a certain
probability distribution, simulating fluctuations in the material strength. Di-
lution, which can model the porosity of the material or the number of previous
defects present, has been extensively used to study fracture in the context of
percolation. The effect of disorder in the elastic modulus has also been studied
and can be viewed as a study of heterogeneous materials [Alava et al. 2006].
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2.2. MODELING MATERIALS: THE STATISTICAL MECHANICS APPROACH

Figure 2.4: The three modes of loading. On the left, mode I (opening mode) where
only tensile stress is present. Mode II (sliding mode) in the center corresponds to in-
plane shear (a shear stress acting parallel to the plane of the crack and perpendicular
to the crack front) and on the right, mode III (tearing mode) or out-of-plane shear
loading (a shear stress acting parallel to the plane of the crack and parallel to the
crack front).

An early attempt for a lattice model is the Fiber Bundle Model introduced
in [Daniels 1945]. It consists of a set of fibers arranged in parallel with thresh-
olds distributed according to a probability distribution and subject to tensile
load. Once a fiber reaches its threshold, it irreversibly fails. The load can
be redistributed locally among its neighbors (local load sharing) or equally
among all the fibers in the system (equal load sharing), giving rise to a mean
field (MF) model.

Most of the vectorial lattice models consist of a network of springs that
connect nearest neighbors. Depending on the model, these springs are only
allowed to stretch (central forces) or both stretch and bend (bond-bending
forces). These two forces are present in the Bond-Bending Model [Sahimi and
Arbabi 1993a;b] described by the Hamiltonian:

H =
α

2

∑
ij

Kij [(ui − uj)eij ]2 +
β

2

∑
jik

KijKik(δθjik)2. (2.18)

The first term is the central force term that governs the stretching and com-
pressing of a spring, ui is the displacement of node i, Kij is the elastic constant
of the bond between i and j, and eij is a unit vector in the direction i − j.
If this were the only term present, we would have the Random Spring Model
[Arbabi and Sahimi 1993, Nukala et al. 2005b].
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The second term represents the changes in the angles between the springs
due to the bond-bending forces, δθjik is the angle between two bonds ij and
ik whose common vertex is i. The Bond-Bending Model is a rotationally
invariant correction to the old Born Model [Kantor and Webman 1984].

Close to the Bond-Bending Model falls the Beam Model [Roux and Guyon
1985]. Between every two neighboring nodes, one places a beam characterized
by an area, a moment of inertia and a certain Young and shear modulus. This
allows to calculate the longitudinal and shear forces and the torque on the
beam. The yield criterion takes into account both elongation and flexion since
a beam can break by either of the two mechanisms and has different breaking
thresholds in each case, assigned from a certain probability distribution.

So far we have discussed vectorial lattice models. In the following section
we will introduce one further simplification, reducing our problem to a scalar
lattice model.

2.2.2 A scalar analogue to elasticity

The equation of equilibrium of a body 2.17 resembles the Laplace’s Equation,
one of the possible expressions of charge conservation:

∇2V = 0. (2.19)

The role of the vectorial displacement u in equation 2.17 is played here by
the voltage V , a scalar variable. Besides, in the same way that Hooke’s Law
models the ideal linear elastic behavior of solids, Ohm’s Law is the equivalent
linear relationship for electric conductors:

i = kv. (2.20)

The role of the elastic modulus is played here by the conductivity k, the
voltage v is, as we said, equivalent to the displacement, and hence the current
i is equivalent to the force in the elastic problem. The Ohm’s law can also be
expressed in terms of scalar stress and strain variables, equivalent to equation
2.9:

J = kE, (2.21)

where the current density J and the electric field E are respectively equivalent
to mechanical stress and strain.

Therefore, equation 2.19 is a partial differential equation that corresponds
to a particular case of the vectorial Lamé Equation 2.17 where only the scalar
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component is taken into account, thus representing scalar elasticity and re-
ducing the complexity of the original equation.

One of the drawbacks of this simplified version with respect to the vectorial
models is that, while in the former a wide variety of boundary conditions can
be imposed and therefore many different loading conditions can be modeled,
this scalar analogue can only mimic antiplane shear.

The discrete formulation of charge conservation turns equation 2.19 into
the Kirchhoff Current Law (KCL). This discretized version of the electric
problem in a lattice is the basis of the well-known Random Fuse Model (RFM)
[de Arcangelis et al. 1985], corresponding to a scalar field in the Hamiltonian
of the Random Spring Model seen in the previous section. The RFM will be
described in detail in the following section.

2.3 The Random Fuse Model

This model was first introduced in [de Arcangelis et al. 1985] with the idea
of having a simple model, easy to simulate yet including the basic ingredients
of fracture. It consists of a network of fuses like the one shown in figure 2.5
subject to an external voltage difference between two horizontal bus bars.

Figure 2.5: Random fuse network on a diamond lattice of lateral size L = 9, i.e.,
2L(L + 1) = 60 fuses. A voltage source V is imposed between top and bottom bus
bars and periodic boundary conditions are set in the transverse direction.

We can obtain the equivalent stress σ and strain ε variables in this 2D
discrete scalar scenario simply recalling the definition given in the previous
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section:

σ = I/Lx

ε = V/Ly, (2.22)

where Lx (Ly) is the system size in the horizontal (vertical) direction that in
the diamond lattice case is Lx = 2L (Ly = L + 1).

Every fuse ij –attached to nodes i and j– in the system obeys Ohm’s
law given by equation 2.20 with a certain conductivity k up to a character-
istic threshold current ithij as it is shown in figure 2.6. Once this threshold is
reached, the fuse can behave either brittle (left panel) or ductile (right panel).
The ductile case was studied for the first time in [Hansen et al. 1991] and
will be addressed in detail in Chapter 4. In the classic brittle case, ohmic
(elastic) fuses are burnt (broken) as soon as its local threshold is reached and
irreversibly become insulators (k = 0) from then on.
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Figure 2.6: Current-voltage characteristics of a fuse. On the left, brittle behavior.
On the right, ductile behavior.

The external voltage is slowly increased and therefore the local voltages
increase proportionally. At some point, one fuse reaches its threshold and
becomes an insulator. The currents are then redistributed according to the
KCL to equilibrate the lattice again, so the entire system needs to be updated
every time a fuse is burnt. This model assumes that the dynamics of the
rupture of bonds is much slower than the dynamics of the currents in the
network to relax to their new equilibrium state so that we can suppose that
it happens instantaneously.

When a sufficiently large number of bonds have been broken, a continuous
interface of insulators will appear from left to right, preventing the flux of
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current from top to bottom and hence disconnecting the system into two
independent parts. This is obviously characterized by a total conductance
K = 0 and equivalent to a macroscopic fracture in an elasticity framework.

First developed as a conducting-insulator network with an evolving density
of fuses p, the RFM took its actual form as a fully-occupied network with dis-
order in thresholds in [Kahng et al. 1988]. This kind of disorder is introduced
by picking the threshold currents from a certain probability distribution. As
said above, one of the advantages of lattice models is that introducing disorder
is relatively easy. This has made possible a number of studies on the influence
of disorder in the RFM [Alava et al. 2006] depending on how it is introduced
(dilution, disordered thresholds or conductivities) and the effect that the form
of the probability distribution has on the fracture process. Annealed disorder,
describing a changing medium as fracture develops, has also been treated in
[Sornette and Vanneste 1992].

The influence of lattice geometry (square, triangular and diamond lattices)
has also been studied and no significant changes have been found [Alava et al.
2006]. Diamond lattices (square lattice with a tilt of 45 degrees) are used all
through this thesis because we like the fact that this setup does not introduce
any initial bias, i.e., all the fuses carry the same current when the lattice is
intact.

The RFM has been used to study strength, damage localization, ava-
lanches, and almost all the relevant issues regarding fracture, becoming the
paradigm of minimal fracture models [Alava et al. 2006]. Some of these prop-
erties have been tested against more complicated vectorial models [Nukala
et al. 2005b] finding similar results and no significant differences. In the fol-
lowing section we will discuss in detail the implementation of the RFM for
brittle fracture while the elastic-perfectly plastic version of the RFM will be
described in Chapter 4.

2.3.1 Kirchhoff equations and iteration process

Our basic setup is shown in figure 2.5. It consists of a diamond network of
fuses, each of them behaving brittle (see left panel of figure 2.6). All the
fuses have the same conductivity k = 1 and the disorder is introduced in the
thresholds, which are obtained from a uniform distribution ith ∈ (0, 1).

The horizontal top and bottom borders of the network are busbars where
a voltage difference V is imposed by applying a voltage source to the top bar
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and connecting the bottom to ground. Vertical borders are constrained by
periodic boundary conditions.

We can write the KCL along with the Ohm’s Law for each node in the
network. The solution of this system of linear equations will give us the local
voltages at each node. It must be taken into account that there are two types
of nodes: bulk nodes, connected to other four neighboring nodes and boundary
nodes, attached to busbars as it is sketched in figure 2.7.

The KCL, expressing the conservation of charge, states that the sum of
the currents flowing into a node is equal to the sum of the currents flowing
out of that node. Adopting the convention that currents flowing into the node
are taken to be positive, and currents flowing out of the node are negative,
this principle can be enunciated as

∑n
m=1 im = 0, n being the total number

of branches that converge into the node.

Therefore, given the current flows depicted with grey arrows in figure 2.7,
we have equations 2.23 a,c for boundary nodes (figure 2.7 a,c) while for bulk
nodes (figure 2.7 b) we obtain equation 2.23 b.

Figure 2.7: a) Node kl attached to top busbar. b) Node kl surrounded by other
four neighboring nodes. c) Node kl attached to bottom busbar.

a) 4kVk,l − kVk+1,l−1 − kVk+1,l+1 = 2kVt

b) 4kVk,l − kVk−1,l−1 − kVk−1,l+1 − kVk+1,l−1 − kVk+1,l+1 = 0 (2.23)
c) 4kVk,l − kVk−1,l−1 − kVk−1,l+1 = 2kVb.

In our case, the top busbar potential is Vt = V = 1 and Vb = 0 for the
bottom busbar. For a lattice with L×L nodes, applying the KCL to each node
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we will obtain a system of L2 equations and L2 unknowns (local voltages) that
can be expressed as a matrix equation:

Kv = b, (2.24)

where v is the solution vector with the L2 local node voltages, b is the ap-
plied voltage source vector and K is the conductivity matrix. The resulting
K matrix is symmetric and positive definite. It is known that this kind of
matrices can be decomposed into a lower triangular matrix L and its trans-
pose LT (Cholesky decomposition). Besides, it happens to be a very sparse
matrix, having at most four nonzero non-diagonal elements. When a given
fuse burns, the conductivity of that fuse changes from k = 1 to k = 0. This
only affects the two nodes it is attached to or, in case it is a boundary fuse, to
one node and one entry of the voltage source vector. This means that every
burning only affects a few entries of the K matrix and with a very specified
pattern that does not affect the symmetry of the matrix and makes it even
more sparse.

Due to the fact that the equations are linear, it is easy to see that the
simulation algorithm can be sped up between two burning events since the
only effect of any increment of the external voltage is to scale the local voltages
by the same factor. We call the initial external voltage V0. The fuses carry
initial currents i0ij and the thresholds are set to ithij . Any external increment
λV0 will translate into λkiij . Hence we can calculate the factor λ needed to
burn the fuse closest to its threshold:

λ−1 = max
ij

(
iij

ithij

)
, (2.25)

and the external voltage can be set constant to V = 1, taking into account
that the burning events actually occur at an external voltage V = λ.

Therefore, the update scheme is the following: solve the KCL system to
calculate the local currents, apply equation 2.25 to determine the next fuse to
blow. Then, update the system turning the chosen fuse to insulator and go
back to the first step, recalculating the currents.

Although the linearity of the system saves us a huge amount of recalcu-
lations between two consecutive voltage increments, applying standard relax-
ation methods to solve the linear system only each time a fuse burns is not
efficient due to their high computational cost. Furthermore, these techniques
suffer from a kind of critical slowing down since the number of iterations
needed for the system to relax to the solution grows faster than the volume
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as the system approaches breakdown. In the past, Fourier-accelerated Con-
jugate Gradient Methods [Batrouni and Hansen 1988] with preconditioning
were the best option for this kind of problem involving a vast number of linear
equations. However, a new method was recently introduced in [Nukala and
Simunovic 2003, Nukala et al. 2005a] that takes advantage of the sparsity and
the peculiar structure of the conductivity matrix. A brief description of this
method will be outlined in section 2.3.2.

2.3.2 Rank-one sparse Cholesky downdate

As we have seen in the previous section, the conductivity matrix K is sym-
metric and positive definite. This means that a Cholesky factorization may
be performed:

K = LLT (2.26)

or
K = LDLT , (2.27)

where L is a lower triangular matrix, and a forward substitution followed by
a back-substitution will give us the solution vector v of equation 2.24.

Following a näıve approach, this process should be repeated till breakdown,
recalculating the Cholesky factors each time a fuse is burnt and therefore the
conductivity matrix changes. For large system sizes, this would need a huge
number of refactorizations and, even taking advantage of the sparsity of the
matrix, it would be computationally expensive. However, as said before, these
burnings imply a small and well-known change in the matrix. In fact, burning
the (n + 1)th fuse ij attached to nodes i and j involves a modification of Kn

(corresponding to n missing fuses) that can be expressed in the form:

Kn+1 = Kn − kijwij ·wT
ij , (2.28)

with
wT

ij = (0 . . . 0 1
i

0 . . . 0 − 1
j

0 . . . 0). (2.29)

If one of the nodes, say i, is prescribed, as it is the case when the fuse is
attached to the busbars, the load vector b is also affected and the update of
the system can be expressed as:

wT
j = (0 . . . 0 − 1

j
0 . . . 0) (2.30)

bn+1 = bn − wT
j . (2.31)
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In any of the two cases, the conductivity matrix is modified only by a rank-one
matrix. Given the sparsity of the matrix, it is much more efficient to apply
the corresponding rank-one downdate to the Cholesky factor instead of recal-
culating it completely. This can be done thanks to the [Davis and Hager 1999]
algorithm that takes into account the change in the sparsity pattern of the
matrix and the Cholesky factor. It is based on the analysis and manipulation
of the underlying graph structure and it is computationally optimal since it
depends only on the nonzero entries that change in each update/downdate.
An implementation of this algorithm can be found in [Chen et al. 2008].

Once we have the new factor, the solution vector can be obtained by a
simple backsolve. This scheme surpasses in more than two orders of magnitude
in computational time the preconditioned conjugate gradient methods with
Fourier acceleration [Nukala and Simunovic 2003].

Instead of updating the Cholesky factors after each fuse breaking, we could
use the [Davis and Hager 2001] algorithm for multiple-rank updates to modify
the Cholesky factor only after a certain number of burnings. In the mean-
time, the solution vector is obtained making use of the Sherman-Morrison-
Woodbury formula [Nukala and Simunovic 2003]. Although a multiple-rank
update is more efficient than several consecutive rank-one updates [Davis and
Hager 2001], it turns out that the complete process of updating the solution
by making use of the previous solution vector is less efficient than consecu-
tive rank-one updates [Nukala and Simunovic 2003]. Therefore, the rank-one
scheme has been used throughout this Thesis.
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Chapter 3
Energy Dissipation in Brittle
Fracture

When a system breaks, the accumulated elastic energy is released through
several dissipative mechanisms as heat, stress waves and acoustic emission
(AE). The latter, besides being a very useful tool to extract information of
the microcracking process in materials, is very interesting itself since it is
a an example of a broader phenomenon known as crackling noise [Sethna
et al. 2001] that reveals similarities in the behavior of, a priori, very different
systems.

Here we will focus on brittle or quasi-brittle materials. There are many
materials of technological interest that behave brittle at least in a certain
range of temperatures. Finding reliable indicators of an upcoming failure or
how the presence of disorder in the material affects its response to loading
are relevant issues from both the theoretical and the technological points of
view. The mixture of fundamental open questions and its direct impact on
applications makes this subject very appealing.

In this chapter we will begin with an introduction to crackling phenomena
and a description of the experimental facts of AE and the insight gained
with models. We will finish describing our contributions to the field [Picallo
and López 2008]. We have compared different energy estimators and derived
scaling relations that account for their statistical behavior. We have also been
interested in the temporal evolution of the energy distribution to elucidate
whether there are any indicators that could be used to predict the proximity
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of final failure. Finally, we have relaxed the quasistatic loading condition to
mimic dynamic fracture.

3.1 Introduction

A system crackles in response to an external driving, leading to energy dis-
sipation in the form of avalanches of events with no characteristic size. A
typical example is the Barkhausen effect in ferromagnets [Durin and Zapperi
2005]. At microscopic scale a magnet is composed of domains of spins with
the same orientation. When an external magnetic field is applied, the domains
reorganize and tend to orientate parallel to the field. It is observed that, when
imposing a slowly changing external field, the net magnetization does not vary
smoothly with the field but in irregular steps associated with fluctuations in
the movements of the domain walls, mainly due to the disorder in the mate-
rial. The resulting avalanches are self-similar and its duration and size follow
scale-free distributions

P(t) ∼ t−αg(t/t0)
P(s) ∼ s−τg(s/s0), (3.1)

where α and τ are critical exponents that take values α ' 1.5 − 2 and τ '
1.3 − 1.5 for different materials.

The scale-free behavior suggests that this phenomenon should depend nei-
ther on the microscopic nor on the macroscopic structure of the system, since
the same kind of behavior is observed at very different scales. Moreover, sig-
natures of this sort of crackling noise appear in completely different systems.

A macroscopic example of crackling noise is found in the slow friction of the
tectonic plates which suddenly produces abrupt releases of energy in the form
of earthquakes. The absence of a characteristic size in earthquakes was ex-
pressed in the Gutenberg-Richter frequency-magnitude relationship that mea-
sures how often earthquakes of a given size occur. This scale-free behavior is
reflected in the probability distribution of the seismic energy1 released in the
earthquake that follows a power law

P(E) ∼ E−β (3.2)

1The original formulation of the law by Gutenberg and Richter used by the geophysics
community states that P(M) ∼ e−bM where the magnitude M is related to the seismic
energy by log10E = 1.5M + 11.8 and hence the exponents β and b are related by the
expression b = 1.5(β − 1).
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with an exponent β = 1.7 [Utsu 1999]. The universality of this value is still
controversial [Godano and Pingue 2000, Pacheco et al. 1992, Utsu 1999]. As
occurs with the Barkhausen noise (equations 3.1), earthquakes also exhibit
self-similarity in time and there is a power law relating the time intervals
between the main shock and the subsequent aftershocks. This is known as the
Omori Law.

P(t) ∼ t−α (3.3)

with α ' 1.0. We will see in the next subsection that similar laws appear in
the AE from brittle fracture.

We could add examples coming from physics at very different length scales:
crumpling paper [Houle and Sethna 1996], martensitic transitions [Bonnot
et al. 2008], vortices in type II superconductors [Field et al. 1995], plastic
deformation of materials [Miguel et al. 2001], etc. All these systems share
in common that they have many degrees of freedom and respond to a slow
external driving with a jerky succession of discrete events in space and time
without any characteristic scale. This scale invariant behavior and its univer-
sality makes it appealing to search for the minimal ingredients that give rise
to this behavior, since it seems that only symmetries and conservation laws
should be involved in the phenomenon.

3.1.1 Experimental measures of acoustic emission in fracture

The sound produced when tearing a sheet of paper is an everyday verification
of the existence of AE in fracture. The AE signal is comprised of a series of
discrete events of a certain duration separated by intervals of silence, which
are called waiting times. This is yet another example of crackling noise and
its statistics is again nontrivial. It was first suggested in [Scholz 1968] that a
small-scale analog of the earthquakes statistics should be found in the time
series of AE from materials under stress as they are slowly driven towards
catastrophic failure. Indeed, equations 3.2 and 3.3 for earthquakes have their
counterpart in the context of fracture in the distribution of energy of the
acoustic events and the distribution of waiting times, respectively.

AE is produced by a sudden release of elastic energy in the form of acoustic
waves when a material is subjected to an external stress. The release of
acoustic energy is related to microcracking (or plastic deformation, as will be
addressed in the following chapters) and hence a most interesting feature of
AE is that it gives an indirect measure of the microscopic damage accumulated
in the material. This is why it has long been used as a non-destructive test

25



CHAPTER 3. ENERGY DISSIPATION IN BRITTLE FRACTURE

to scan materials in real time with industrial purposes (pipelines and vessels
inspection, automatic crack detection during manufacturing processes, etc.).

The classical setup in an AE experiment (see for instance [Garcimart́ın
et al. 1997]) makes use of piezoelectric crystal sensors attached to the specimen
to detect the acoustic waves and transform them into an electrical signal. The
energy of the acoustic events is calculated by summing the square of the
amplitude of the received electrical signal and integrating it over the duration
of an event. There exists a lower cutoff in the range of detectable events since
a detection threshold must be imposed with a certain criterion to filtrate off
the signal and avoid spurious events due to the noise present in the setup.

The sound attenuation in its way from the AE source to the transducers
must also be taken into account since only if there is no attenuation in the
material the output of the electronic device is proportional to the energy of
the AE. This means that either the material employed has a small attenuation
coefficient or either the position of the microfractures must be taken into
account to calculate their energy. The transfer time of the acquisition system
must also be shorter than the usual inter-event times to avoid losing events
during this dead time.

With similar setups, tensile tests performed in a variety of materials (gran-
ite [Lockner et al. 1991], wood and fiberglass [Guarino et al. 1998], sandstone
[Davidsen et al. 2007], plaster [Petri et al. 1994], (fiber-reinforced) concrete
[Niccolini et al. 2009], paper [Salminen et al. 2002], etc.) found β ∼ 1 − 2
and α ∼ 1− 1.5. Neither the energy exponent β nor the temporal exponent α
seem to be universal, exhibiting a considerable spread in the values depending
on the material and the experimental conditions. The influence of loading the
sample with a stress or a strain driving was studied in [Guarino et al. 1998].
The main difference between the two is that a strain driving allows stable crack
growth after the critical stress while stress driving produces catastrophic fail-
ure. However, no differences were found in the statistics prior and post peak
load in [Salminen et al. 2002] and no differences were found in [Guarino et al.
1998] between the two types of driving. The strain rate did not seem to affect
the results either [Kuksenko et al. 2005, Salminen et al. 2002].

Placing several sensors on the sample, one can measure the differences in
the arrival times of the signals and triangulate to detect the source of the noise
where the microcrack was produced and, hence, determine the localization of
the damage in the sample. The main source of error of this technique comes
from the uncertainties in the determination of the arrival times. This method
allowed to explore the localization of brittle fracture in granite [Lockner et al.
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1991] and in plaster and wood [Garcimart́ın et al. 1997, Guarino et al. 1998].
Acoustic events were shown to be diffuse and damage uniform at the beginning
of the process while the sample was being loaded up to the peak stress and then
nucleate into a growing fault. In [Garcimart́ın et al. 1997] this was quantified
through a measure of the Shannon entropy at different stages of loading.

In typical experiments, the crack is difficult to control once it is initiated
and the failure happens in a catastrophic sudden way. That is why several
setups, in which the crack propagates in a quasistatic fashion, have been de-
veloped2. In [Lockner et al. 1991] they adjusted the load applied to the sample
to keep the acoustic emission rate constant and hence the crack growth af-
ter the critical stress could be observed under quasistatic conditions. Stable
crack growth was also studied for paper in [Salminen et al. 2006] in a tensile
peeling in nip setup. There, the post-failure stress curve could be followed
quasistatically instead of occurring violently and the crack can be observed
under quasistatic conditions. They obtained complex correlations in the wait-
ing time distributions and an energy exponent β = 1.8 higher than the usual
values for paper [Salminen et al. 2002]. Relating AE energy to local crack
dynamics or the mechanical energy released is a difficult issue [Rosti et al.
2009]. To this aim, AE in simpler setups has been studied. In [Måløy et al.
2006] the propagation of a planar crack in a 2D sheet between two sealed
Plexiglas plates was followed with the help of a CCD camera. Image analysis
was performed to extract the length of the crack and quakes were defined as
connected zones with a velocity above a certain threshold. With this setup,
regardless of the threshold selected, both α and β took universal values similar
to the exponents observed in real earthquakes.

Another relevant issue that inspired part of our work (to be described in
section 3.2) is the fact that the acoustic signal is not stationary: acoustic
events at the final stages of fracture are much more energetic than the initial
events. Due to the non-stationary nature of the fracture process, the internal
state of the material is constantly evolving till the final breakdown. This time
evolution is not captured by the energy and waiting time distributions since
they are typically measured integrating during the whole process. Indeed, in
[Guarino et al. 1998] it was found that the energy exponent was not constant
during a run of the experiment. They observed that the exponent of the
events corresponding to the early stages of the process was slightly bigger than
the exponent corresponding to the final events of the same run. Previously,
[Lockner et al. 1991] had observed a minimum in the β value during the

2Out of the scope of this chapter are creep experiments [Koivisto et al. 2007, Santucci
et al. 2004] in which a constant load is imposed.
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nucleation of the crack. A systematic decrease in the β exponent to the value
β = 1 has been found in [Carpinteri et al. 2009] as the failure was approached
and a remarkable decrease in the β exponent was also observed in [Kuksenko
et al. 2005]. These facts call for a deeper analysis that reflects the evolution
of the system as it approaches breakdown.

A different analysis was carried out in [Rosti et al. 2010] discussing in
detail the possible criticality signatures in tensile paper tests with and without
a previous notch. They studied how the statistical distributions of energy and
waiting times change in relation to the critical time at which the energy release
rate reaches its maximum value. The energy distribution changes slightly
around the critical time. However, these changes in the distribution are not
as remarkable as the complex variations changes observed in the waiting time
distribution.

A good knowledge of the temporal behavior of the relevant quantities
in fracture could have failure forecasting prospects. More experiments are
currently needed to extract reliable conclusions and to understand the puzzling
differences in the experimental observations.

3.1.2 Numerical and theoretical approaches

Lattice models qualitatively reproduce the avalanches of activity observed in
real experiments. As the external load is slowly increased, weak elements fail
to hold the imposed local stress and break. Some internal load redistribution
mechanism, whose details depend on the particular model, increases the local
stress on the remaining elements and may cause further simultaneous local
failures. As a result, the material may respond in avalanches of failure events
whose size distribution is often very broad.

The size of the avalanche s is defined as the number of bonds involved in
the avalanche. As it happens in the experiments, either a stress or a strain
driving can be imposed but no significant differences are found. The avalanche
signal is jerky and events of all sizes appear till the final avalanche, an enor-
mous catastrophic event that corresponds to the formation of the macroscopic
fracture. This is usually studied separately and it is known to follow a Gaus-
sian distribution [Zapperi et al. 2005b].

There exist mean field predictions obtained with the Fiber Bundle Model
[Hansen and Hemmer 1994, Hemmer and Hansen 1992] that indicate that
the avalanche size distribution P (s) is power-law shaped with an exponent
τ = 5/2. Restricting ourselves to loads smaller than the critical load the dis-
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tribution of avalanche sizes exhibits an exponent τ = 3/2 with an exponential
cutoff dependent on the imposed load. It is only when the critical load is
reached that the distribution exponent takes the value τ = 5/2. However, the
diverging cutoff may obscure this sharp transition and it can be interpreted
as a smooth crossover [Pradhan et al. 2005; 2006]. This will be discussed in
detail in the next section.

In the RFM, simulations suggest an avalanche distribution of the form

P(s, L) ∼ s−τg(s/LD), (3.4)

with values for the avalanche exponent bigger than the MF predictions. More-
over, these values do not seem to be universal. In particular, for diamond lat-
tices τ = 2.75 while for triangular lattices τ = 3.05 [Zapperi et al. 2005b]. In
contrast, simulations in three dimensions suggest universality and exponents
closer to the mean field values [Zapperi et al. 2005a], possibly indicating that,
as it happens in critical phenomena, the results are closer to MF in higher
dimensions.

Several studies have focused on the statistics of avalanches of failure events
in lattice models [Hansen and Hemmer 1994, Pradhan et al. 2006, Zapperi
et al. 1997; 1999] and improved simulation algorithms have recently allowed
to study larger systems with much better statistics [Zapperi and Nukala 2006,
Zapperi et al. 2005a;b]. In general, lattice models typically predict larger
energy exponents β than those obtained in experiments. These numerical
results evaluate the avalanches of events, each event being a microfracture.
In contrast, experiments measure energy distributions through the AE signal.
Direct estimations of the energy distributions in models are scarce and its
connection with the quantities measured experimentally is not clear yet. A
relationship between the distribution of events and the energy distribution was
studied in [Minozzi et al. 2003] in a scalar model for dynamic fracture. Very
recently, several tests for criticality under uniaxial compression were performed
finding an energy exponent τ = 2.75 in agreement with the results that will be
shown in the next section where several definitions of energy will be discussed
within the framework of the RFM, as well as their possible universality, the
absence of time scale separation and the signatures of imminent failure.

3.2 Results

In the following sections we explain in detail our research work in the problem
of AE in fracture published in [Picallo and López 2008].
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Energy dissipation in the RFM occurs in bursts of breaking events which
can be compared with the AE observed in experiments. In doing so, one is
assuming that the main contribution to AE is given by the dissipated elastic
energy. Also, it is worth to keep in mind that in real systems one expects
that only a fraction of this dissipated energy leads to the AE observed, while
the remaining losses are due to other dissipative mechanisms which are not
described by purely elastic models like the RFM. Several ways to define the
dissipated energy can be envisaged as we discuss below.

◦ Global Energy: A global definition assumes that the whole volume of the
system contributes to the dissipated energy. The electric power dissipation
in the fuse model is the product of the voltage drop across the network
and the total current that flows through it. The power dissipation in the
electrical model can be seen as an equivalent to the stored elastic energy in
a mechanical system. In [Pradhan et al. 2006] they found that β = 2.7 for
the RFM on diamond lattices under stress loading conditions and a similar
energy definition.

◦ Macroscopic Energy: Alternatively, we can define the energy lost during
a given avalanche event n as

En ∼ V 2
n ∆Gn ∼ V 2

n sn, (3.5)

where ∆Gn is the change in the elastic modulus due to the failure avalanche,
sn is the number of broken bonds (avalanche size) of the nth event, and Vn

is the corresponding potential drop between the bus bars (strain imposed
in the sample) [Salminen et al. 2002]. This definition makes use of the
global strain imposed on the system and can be seen as a coarse-grained or
macroscopic measure of the dissipated energy.

Note that both global and macroscopic definitions of the dissipated en-
ergy take into account the whole volume of the system. However, there
is strong experimental evidence indicating that AE is actually a localized
phenomenon in space and time so that energy release actually occurs at
microfractures [Garcimart́ın et al. 1997, Guarino et al. 1998], and it is not
therefore spread across the system. This suggests one should consider other
ways to define the dissipated energy in the model, in particular, it may be
interesting to study measures of released energy that are directly linked to
the bonds involved in avalanches of local breaking events. In this spirit, we
introduce the next definition of dissipated energy.
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◦ Microscopic Energy: It is defined as the sum of the energy losses at every
element of the system involved in the nth failure avalanche. This can be
calculated by adding up the energy dissipated by each individual broken
bond, εij = i2ij/kij = kijv

2
ij , where vij is the local potential drop at bond

ij, iij is the current through it and kij is its conductivity. Since fuses break
right at the threshold we can define the microscopic dissipated energy due
to the nth failure avalanche as

En =
sn∑
ij

(ithij )2, (3.6)

where the sum runs over each broken bond within the nth avalanche and
kij = 1.

We devote the rest of the chapter to analyze the dissipated energy statistics
in the fuse model for the case of infinitesimal strain (quasistatic model) and
also under different finite strain rates (non quasistatic model). We shall be
comparing the numerical results for the different measures of the dissipated
energy discussed above for triangular and diamond lattices. One would expect
that the three definitions give similar temporal behavior for the dissipated
energy statistics, apart from constant factors. We will see that, although this
is actually the case in the low energy range, dissipation statistics differs at
high energies for different estimators.

3.2.1 Quasistatic case: infinitesimal strain rate

Let us first focus on infinitesimal driving. After each burning, the new current
configuration is calculated according to Kirchhoff equations. This rearrange-
ment can cause other fuses to overpass their thresholds without further volt-
age increase. All the fuses burnt at the same external voltage constitute an
avalanche. This process is repeated until the network becomes disconnected
and a macroscopic fracture like the one shown in figure 3.1 is observed.

Quasistatic dynamics results in two very well separated time scales, i.e., a
fast relaxation process and a slow external driving. As occurs in other systems
exhibiting a well defined time scale separation (as for instance in self-organized
criticality), the natural time scale is given by the slow time scale. Therefore,
in the following, time refers to the number of avalanches occurred.
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Figure 3.1: Final crack and damage in a single realization of a L=256 diamond
lattice.

In figure 3.2 we show a typical realization of the temporal evolution for the
dissipated energy according to equation 3.6 for different system sizes. One can
see that for each realization the released energy grows in time as a power-law
E(t) ∼ t2. At later times, fluctuations around the trend increase (the larger
the bigger the system size) as the system approaches the final breakdown
point. This dynamic behavior is very robust and independent of the system
size or lattice type. Identical temporal behavior is found for the macroscopic
dissipated energy, equation 3.5, and for the global dissipated electric energy
for both diamond and triangular lattices.

In figure 3.3 we compare the temporal evolution of the ensemble average
dissipated energy on the diamond lattice according to the three definitions.
Notably, this behavior is also in agreement with that reported in [Minozzi
et al. 2003] for a very different dynamical spring model that included acoustic
waves. The origin of the robust t2 growth law is perhaps more transparent in
equation 3.5, where the driving potential is increasing linearly with time (as
we are imposing a quasistatic dynamics).

The temporal power-law trend gives significant information about the func-
tional form of the dissipated energy statistics in the RFM. The probability
density function (PDF) of the dissipated energy at time τ in a system of
lateral size L is given by

Pτ (E, L) = (1/τ)
∫ τ

0
dt δ[E(t, L) − E], (3.7)
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where δ(u) is the Dirac delta distribution. This corresponds to the energy
distribution to be observed after the first τ avalanche events. Note that the
probability distribution Pτ (E, L) is expected to be non-stationary, so it should
depend explicitly on the observation time τ .
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Figure 3.2: Temporal evolution of microscopic energy (equation 3.6) until break-
down for a typical realization of the disorder on diamond lattices ranging from L = 16
(top curve) to L = 512 (bottom curve). A first region with slope α = 2 is followed
by a second region dominated by fluctuations.

Let us now consider that the dissipated energy grows in time as a power-
law with some exponent α,

E(t, L) ∼ L−σ tα + η(t), (3.8)

where σ captures the scaling with system size observed in figure 3.2 and η(t)
is a noise term representing the random fluctuations around the trend.

The details of the noise term η(t) are not known, but one can argue they
may depend non-trivially on the interplay between the evolving currents and
the disordered thresholds. Actually, as can be readily seen in figure 3.2, fluctu-
ations are strongly asymmetric around the average, which immediately implies
a non-Gaussian distribution of η, possibly including non-trivial correlations.
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Figure 3.3: Temporal evolution of energy dissipation averaged over 104 realizations
in a L = 128 diamond lattice. All the three energies, global, macroscopic and mi-
croscopic, exhibit the same t2 trend. The three curves have been rescaled by its
maximum for clarity.

Despite these difficulties one can perform the integral in equation 3.7 in
certain limit, up to certain energy cut-off E× below which fluctuations of the
energy are negligible. Thus we have

Pτ (E, L) = τ−1

∫ τ

0
dt δ[L−σ tα + η(t) − E] =

= τ−1Lσ/α E−1+1/α
∫ τ/(LσE)1/α

0 ds δ[sα + η(Lσ/αE1/αs)/E − 1], (3.9)

where we made use of the change of variable s = t(LσE)−1/α. Keeping only
the lowest-order term in equation 3.9 we arrive at

Pτ (E, L) ∼ τ−1Lσ/αE−1+1/α (3.10)

for τ/(LσE)1/α � 1. This immediately leads to the existence of a character-
istic energy scale E× ∼ L−στα above which energy fluctuations dominate the
statistics. It is clear that the details of the noise statistics (including the dis-
tribution and temporal correlations) would be required to obtain the specific
mathematical form of the dissipated energy distribution above the character-
istic energy E×. For the RFM we have an algebraic growth with exponent
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α ≈ 2 (see figure 3.2), so from equation 3.10 we expect to have an energy
distribution decaying as ∼ E−1/2 for energies E < E×.

We are interested here in the distribution statistics after complete break-
down is attained. The characteristic time to total failure is expected to scale
with system size as Tbreak ∼ Lz, where z is the dynamic exponent. From
equation 3.10 the energy statistics after failure, P(E,L) ≡ Pτ=Tbreak

(E, L),
reads

P(E, L) ∼ L−z+σ/αE−1+1/α, (3.11)

for energies below a crossover energy E× ∼ Lα z−σ.
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Figure 3.4: Probability distribution of the global dissipated energy for different
system sizes. The low energy region decays as a power-law with exponent β = 1/2
and shows a crossover at E×. The inset shows data collapse according to equation
3.12. The values of κ and D are in good agreement with the expected relation D = ακ.
Logarithmic binning has been employed.

Figure 3.4 shows the probability distribution, P(E, L), with statistics col-
lected up to total failure for the above introduced global dissipated energy.
Two regions can be readily distinguished. The low energy statistics is in ex-
cellent agreement with a power-law decay ∼ E−1/2 over several decades in
energy.

Similar behavior is observed in figure 3.5 for the macroscopic energy mea-
sure defined in equation 3.5. The dependence with system size of the numerical

35



CHAPTER 3. ENERGY DISSIPATION IN BRITTLE FRACTURE

data observed in figures 3.4 and 3.5 can be better characterized by means of
a finite-size scaling analysis.
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Figure 3.5: Probability distribution of macroscopic dissipated energy, equation 3.5,
for different system sizes and the corresponding data collapse (inset). The same
behavior and exponents as in the global definition are found.

The behavior of the energy distribution suggests the scaling ansatz

P(E, L) ∼ E−βbL−κG(E/E×), (3.12)

where the scaling function G(u) ∼ const for u � 1 and becomes G(u) ∼ uβb−βa

for u � 1. βa and βb are the scaling exponents of the distribution above and
below the crossover, respectively. The crossover energy scales with system size
as E× ∼ LD with some critical exponent D. We can now make use of the
theoretical relation we derived in equation 3.11 to prove that the two scaling
exponents κ and D are not independent. Comparing equations 3.12 and 3.11
one obtains that the following scaling relations must be fulfilled:

D = αz − σ

κ = z − σ/α,

βb = 1 − 1/α (3.13)

which immediately imply that D = ακ. Also, according to our estimate
α = 2 from figure 3.2 we should have βb = 1/2. This reduces the number of
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free exponents to achieve a good data collapse. We can also determine the
dynamic exponent z = 1.75 by counting the average number of avalanches
taking place before total failure in a system of lateral size L which should
scale as Tbreak ∼ Lz. It is interesting to note that the specific value of z is not
required to produce the data collapse in equation 3.12.

The insets of figures 3.4 and 3.5 show a data collapse according to equation
3.12 with exponents κ = 0.75, D = 1.55 and κ = 0.75, D = 1.50, respectively,
and the energy exponent below the crossover βb = 1/2. The fit of the scaling
function for u � 1 corresponds to the difference βb −βa = −2.25, and implies
that the scaling exponent of the energy distribution above the crossover is
βa = 2.75, identical within error bars for both energy measures. This exponent
is to be compared with the one calculated by Pradham et. al. for the electric
power dissipation in the high energy region for the diamond lattice in reference
[Pradhan et al. 2006], where they report β = 2.7 over two decades of energy.
The macroscopic energy defined in equation 3.5 not only exhibits the same
behavior but the same exponents in the two regions indicating that both
definitions are completely equivalent.

However, as we show below this is not the case for the microscopic energy
statistics. Figure 3.6 shows the behavior of the microscopic energy defined
in equation 3.6. Recall that this measure is intended to collect only those
contributions to the released energy coming from sites participating in the
failure avalanche.

We find that in the low-energy region the distribution also decays as
P(E, L) ∼ E−1/2. However, in this case we observe that the probability does
not seem to depend significatively on system size, κ ≈ 0. Correspondingly,
D = ακ ≈ 0 and the crossover energy E× does not vary with system size. The
lack of system size dependence of the microscopic energy may be related to
the fact that the macroscopic and global estimators are sensible to the whole
volume of the system, while the microscopic energy is not. The inset of figure
3.6 shows a zoom of the high energy region, where strong finite-size effects are
demonstrated by the variation of the exponent βa with system size. Data in
figure 3.6 obviously fail to exhibit finite-size scaling.

It is worth to stress here that the PDF for all the three energy definitions
exhibits identical scaling behavior at low energies, ∼ E−1/2, and is robust
to changes in system size and lattice type. This universality arises from the
t2 growth law of the dissipated energy which is a feature shared by all the
three definitions for any system size and lattice geometry. However, the lack
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of scaling behavior with system size of the microscopic energy has a direct
impact on the high energy regime of its probability distribution.
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Figure 3.6: Probability distribution of microscopic dissipated energy, equation 3.6,
for different system sizes. The inset shows a zoom of the high-energy region which
decays with an exponent around β = 2.5 over two decades for the largest system.

3.2.2 Nonstationarity and signatures of imminent failure

The temporal series of the dissipated energy in the RFM are highly non sta-
tionary as can be easily noticed in figure 3.2, and hence the probability density
Pτ (E,L) depends explicitly on the observation time τ . This has been claimed
to be useful to signal the onset of catastrophic failure [Pradhan et al. 2005;
2006], with evident practical applications for diagnosing damage in loaded
materials. In [Pradhan et al. 2006] the power dissipation avalanche distribu-
tion for the entire breakdown process was compared with that obtained only
in a very narrow window around breakdown. In order to do this, those au-
thors first computed the average over disorder samples of the number of fuses
〈Nbreak〉 blown before catastrophic failure and, for every realization, collected
statistics from events after almost 〈Nbreak〉 fuses have blown. A drawback of
that procedure is that, since the time required to reach total failure largely
varies among different disorder samples, one is mixing realizations that are
very close to complete failure with others that are, say, half way into it, which
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obey a different statistics. Our procedure to obtain the statistics differs sig-
nificantly from that used in references [Pradhan et al. 2005; 2006] and has the
advantage that it is not affected by this undesired effect. Moreover, in contrast
to [Pradhan et al. 2005; 2006], we want to compare here the distribution of
released energy until breakdown with that obtained when the system is at the
very beginning of its evolution and how it changes as we approach failure.

For each disorder realization we let the system evolve up to total break-
down, which gives the corresponding Tbreak for that particular disorder real-
ization. We then compare the collected statistics with that observed for that
particular disorder realization up to two intermediate times, τ = Tbreak/8 and
Tbreak/2, that is, with the probability density when only the first one eighth
and half of the failure avalanches are counted, respectively. In this way we
collect statistics from realizations at the same evolution stage.

For each observation time, the probability density Pτ (E, L) decays as ∼
E−1/2 until the crossover energy E×(τ, L). In figure 3.7 we plot the behavior of
the distribution for the macroscopic energy, equation 3.5, for different system
sizes and different observation times, rescaled according to equation 3.12.
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Figure 3.7: Macroscopic energy distribution for different final observation times.
The inset shows the slope change at breakdown for more intermediate observation
times for L = 256.
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It can be observed that, while the crossover shifts to larger energy values as
we approach complete breakdown, the scaling exponent in the second region is
conserved as we increase the observation times. However, an abrupt change of
exponent is observed only at the breakdown time Tbreak. This effect is perhaps
better visualized in the inset of figure 3.7 where we plot the unscaled distri-
bution data for the largest system L = 256 and different observation times.
Despite we used a different measure of the dissipated energy and a different
way to collect events these results are in agreement with the crossover pic-
ture between the two limiting behaviors reported in references [Pradhan et al.
2005; 2006]. This indicates that non-stationary effects of the dissipated en-
ergy temporal signal may actually be useful to characterize damage in stressed
materials.

3.2.3 Finite driving rate

The lack of time scale separation in real experiments has been suggested as
a possible reason for the discrepancy with the typical exponents found in
numerical simulations of quasistatic models and real experiments [Alava et al.
2006]. In order to investigate this point we have studied the RFM under finite
driving rates, so that the model evolution is no longer quasistatic. We have
analyzed both stress and strain loading conditions and our results were not
affected by the loading mode we used.

Strain is applied on the system by imposing a small potential drop between
the bus bars in such a way that all the fuses are initially below threshold.
The voltage is then increased at a fixed rate dV/V letting all the fuses over
threshold burn, instead of the slow driving setup studied above. As usual,
an avalanche is defined as all the fuses burnt between two consecutive voltage
increments. In this setup, we can still observe an effective time scale separa-
tion at the early stages of the evolution, while potential increments are small.
Figure 3.8 summarizes our numerical results for the time evolution of the mi-
croscopic dissipated energy, equation 3.6, at different strain rates in diamond
lattices of linear size L = 128.

We observe that a power-law trend E ∼ tα is satisfied with a larger expo-
nent α as the strain rate increases. If the strain rate is large enough (about
dV/V = 0.01%) the evolution is no longer described by a power-law, but it
becomes exponential in time. The same behavior is also observed if either the
macroscopic or global energy are used instead.
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Figure 3.8: Temporal evolution of microscopic energy in an L = 128 diamond
lattice for several finite driving rates. On the left panel, it can be observed how, as
the driving is increased, the energy starts to deviate from t2 growth. On the right
panels one can see that, for large enough driving, the energy grows exponentially in
time. Note the linear-log scale in the latter.

According to our simple calculation in equation 3.10, we expect that, in
the limit of exponential growth, i.e., α � 1, the PDF of the dissipated energy
becomes Pτ (E) ∼ E−1 for E � E×. We observe that the crossover energy
E× diverges as the strain rate is increased. In figure 3.8 one can clearly see
that when we increase the strain rate the energy fluctuations become much
smaller. In fact, fluctuations are negligible for the whole temporal (energy)
range for large enough driving rates, when the exponential growth sets in (see
figure 3.8). This means that the fall-off tail of the distribution corresponding
to energies E � E× is completely washed out in the case of large enough
strain rates. Therefore, for large driving rates, if we let the system evolve
up to complete breakdown, τ = Tbreak, as well as for any other intermediate
times, we expect the dissipated energy probability to be

P(E) ∼ E−1fcutoff (E/E×) , (3.14)
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where the cut-off function is fcutoff(u) ∼ const. for u � 1 and exponentially
decreasing fcutoff(u) → 0 for u � 1. E× ∼ LD is the maximum avalanche size
possible for a finite-size system with fractal avalanche dimension D.

In Figure 3.9 we show the PDF of the macroscopic dissipated energy under
a strain loading rate dV/V = 0.1% measured for all events up to total failure
in the diamond lattice for different system sizes. Our numerical results are
in excellent agreement with the prediction for finite loading rates in equation
3.14. The probability distribution for the microscopic energy also scales as
E−1 for the whole range of energies in the case of finite-driving (not shown),
but in this case the crossover energy shows no dependence with system size,
in agreement with our above discussed results D ≈ 0.
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Figure 3.9: Macroscopic energy distribution for L = 16, 32, 64 and 128 diamond
lattices under finite strain increments dV/V = 10−1%. A single power-law regime
with the predicted exponent β = 1 is observed over the whole range of energies up to
a finite-size cutoff.

The lack of time scale separation leads to a significant change in the dis-
tribution of the dissipated energy in the fuse model, as it should be expected.
From a physical point of view there are strong differences in the system dy-
namics in the case of infinitesimal driving as compared with finite driving. If
the system is driven at finite rates, relaxation to one of the infinitely many
metastable configurations is not reached before a new perturbation acts on
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the system. This gives rise to a highly nonlinear superposition of cascades of
released energy instead of individual well-defined avalanche events. A finite
driving rate generically leads to a growth of the dissipated energy at a much
faster rate than the usual quasistatic dynamics, possibly exponential for any
finite driving rate in large enough systems. In turn, this fast growth takes the
crossover energy E× to exponentially large values. The result is that the range
of energies in which the PDF of the dissipated energy is described by equation
3.14 becomes very large, actually covering the whole range of energies.

3.3 Discussion

We have studied the dissipated energy in the RFM in order to compare with
the AE statistics observed in real experiments in loaded materials. Different
ways to define the released energy have been discussed, including a micro-
scopic quantity that takes into account just the energy losses at each broken
bond during an avalanche. Our results indicate that, for quasistatic dynamics,
the dissipated energy statistics exhibits two very different regions depending
on the energy scale one is looking at. These two scaling regions are sepa-
rated by a typical energy E× ∼ Lα z−σ and obey finite-size critical behavior.
The low-energy region, for E < E×, is well described by a power-law decay
P(E) ∼ E−1/2, which is robust and independent of lattice geometry. We gave
a simple scaling argument showing that this robustness is linked to the generic
t2 growth law of the dissipated energy; a feature shared by all the energy es-
timators we studied on any system size and lattice type and that it is directly
linked to the quasistatic nature of the model. The statistics above the typical
energy E > E× crosses over to P(E) ∼ E−2.75 and ranges several decades in
energy.

Apart from scaling factors, the three energy definitions used here were ex-
pected to show similar statistics. However, while the behavior of macroscopic
and global energies can be captured by the same scaling exponents and the
high-energy region exponent is well defined, this is not the case for the micro-
scopic energy that, although it obeys the same scaling form, shows no system
size dependence and a different size-dependent exponent for the high energy
region is obtained. Regarding the microscopic energy we introduced here, not
only the numerical value of the exponent depends on the lattice size and fails
to exhibit finite-size scaling, but also the scaling region covers a very narrow
energy range. This should be particularly relevant when comparing with real
fracture experiments that have shown that dissipated energy participating in
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AE is not released all across the sample, but, quite the opposite, localized at
microfractures [Garcimart́ın et al. 1997, Guarino et al. 1998].

Finally, we also studied the fuse model at finite driving rates. It is an
often expressed belief that relaxing the quasistatic condition might lead to
β exponents that compare better with experiments. We showed that under
finite driving the cut-off energy diverges exponentially, so that the scaling
P(E) ∼ E−1 dominates all the energy range at any given time for large
enough driving rates, possibly for any finite driving rate in large enough sys-
tems. The conclusion is that relaxing the quasistatic condition cannot give
account of experiments, where β typically ranges between 1.2 – 2.0 depending
on the material. The evidence we have up to now about the RFM indicates
that it might well be the case that other essential aspects to quantitatively ac-
count for AE energy exponents in real materials are missing in the admittedly
oversimplified fuse model.
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Chapter 4
Perfect Plasticity and
Optimization

This chapter deals with the irreversible deformations that materials exhibit
when subject to large loads. We will focus on the so-called perfect plasticity
(PP) limit using a perfectly plastic version of the random fuse model (PPRFM)
introduced in [Hansen et al. 1991]. This problem has long been believed to
belong to the universality class of directed polymers (DP). In particular it has
been identified with a minimum energy (ME) surface. We will begin with the
presentation of the model, an introduction to the topic of DP and the algo-
rithms used in this chapter, and finish with a description of our contributions
to the field [Picallo et al. 2009] in section 4.2. We will argue that the relation
between PP and ME should be revised. The yield surfaces are shown to be
different from the so-called ME surfaces. As a result, the global yield stress is
lower than that expected from näıve optimization and the difference persists
as the sample size increases. At variance with ME surfaces, height-height fluc-
tuations of yield surfaces will be shown to exhibit multi-scaling. A theoretical
argument will be provided to explain how this behavior arises due to the very
different nature of the optimization problem in both cases.

4.1 Introduction

As we introduced in Chapter 2, perfect plasticity is a regime that can be
characterized by an increase of the strain without any further increase of the
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stress in the material, producing a stress-strain curve similar to figure 2.3.
This is not just an idealized situation since this extreme behavior is found in
experiments both in crystals [Champion et al. 2003] and amorphous materials
[Gu et al. 2008, Schroers and Johnson 2004, Wang et al. 2007] as it can be
observed in figure 4.1.

Figure 4.1: From left to right: Near-perfect elastoplasticity in tensile tests performed
on pure bulk copper cylindrical specimens with nanometer grain size [Champion
et al. 2003]. Tensile true stress–strain curves of Cu/Zr nanocrystalline–amorphous
nanolaminates in comparison with those of Cu/304 stainless steel crystalline multi-
layer with an individual layer thickness of 25 nm and pure nanocrystalline Cu with
an average grain size of ≈ 30nm [Wang et al. 2007]. Stress-strain curve of of a
3mm×3mm×6mm bar shaped sample of amorphous monolithic Pt57.5Cu14.7Ni5.3P22.5

under quasistatic compression [Schroers and Johnson 2004].

Macroscopically, plasticity seemed to correspond to an steady flow of the
material under applied stress that could be described by the continuum theory
of plasticity [Lubliner 2008]. However, early works pointed out the existence
of fluctuations [Becker and Orowan 1932] and, thanks to recent experiments of
AE in ice and intense subsequent research activity in this direction [Dimiduk
et al. 2006, Miguel et al. 2001, Richeton et al. 2006, Schwerdtfeger et al. 2007,
Wang et al. 2009, Weiss et al. 2007, Zaiser et al. 2008], we now know that
at the microscale the dynamics in plastic materials is in fact governed by
intermittent spatiotemporal avalanches of activity through the material. This
will be discussed in detail in Chapter 5.

Just as the RFM emerged as a simple stochastic model of BF, able to cap-
ture some of the main ingredients of the problem and well suited for the ex-
ploration of the possible critical nature of the phenomenon, early attempts to
develop a statistical mechanics treatment of plasticity lead to the development
of the simplest scalar model for elastic-perfectly plastic behavior, the so called
perfectly plastic random fuse model (PPRFM) [Hansen et al. 1991, Roux and
Hansen 1992], in which every individual unit behaves elastic-perfectly plastic
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as shown in the right panel of figure 2.6. However, that model lacks a very im-
portant ingredient in plasticity: avalanches. This is due to the fact that in the
PPRFM there is no current (stress) enhancement after a yield event and thus
stress is not redistributed, in contrast with the brittle RFM and other models
with avalanches [Alava et al. 2006]. Hence, the PPRFM as it stands has a
clear drawback, intermittency cannot be studied since the coarse-graining is
done well above the microscopic plasticity limit where we can get rid of the
jumps that are now known to occur at smaller scales.

The PPRFM was proposed as the electrical analog of an elastic-perfectly
plastic amorphous medium, the plastic counterpart of the brittle RFM. Both
brittle and perfectly plastic RFMs had since long been identified to belong
to the directed polymer universality class [Roux and Hansen 1992]. However,
the brittle RFM was numerically shown to behave far from what is expected
for DP [Zapperi et al. 2005b]. In this chapter, the relationship of the RFM
plastic version to DP will also be revised.

4.1.1 The elastic-perfectly plastic Random Fuse Model

To mimic the mechanical plastic response, each fuse ij in the PPRFM behaves
ohmic up to its threshold current and, from then on, the local current remains
constant and equal to the yield current,

iij =

{
kvij , for vij < vth

ij

±ithij , for vij ≥ vth
ij .

(4.1)

despite the local voltage keeps increasing due to the external voltage increase.
This can be done using the tangent algorithm introduced in [Roux and Hansen
1992] that can be derived as follows.

Let us consider a perfectly plastic lattice and a brittle one (the tangent
lattice). Let us call v the the local voltage solution we are seeking in the
perfectly plastic lattice while u is the solution in the brittle lattice. As usual,
we will call K and b the stiffness matrix and the source vector, respectively,
and Vi the imposed external voltage (V0 = 1) corresponding to the source
vector bi = Vib0. When the lattice is still intact we have

K0u0 = b0, (4.2)

and u0 = v0 since in the plastic lattice there is no plastic damage accumulated
yet and, hence, both brittle and plastic lattices are still identical. For the same
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reason, the system is still linear and we can increase the voltage of the weakest
fuse up to exactly its threshold by just increasing the external voltage,

K0uth = V1b, (4.3)

and therefore,

V1 = V0min
ij

(
uth

ij

u0
ij

)
. (4.4)

Once V1 is known, we can determine v1 = uth = V1u0. Right at threshold in
the plastic lattice, we will have

K0v1 = V1b, (4.5)

that can be equivalently written as

K1v1 = V1b + ith, (4.6)

where K1 corresponds to a lattice with the plastic fuse missing and its thresh-
old current included in ith. In order to bring the next fuse to threshold by
increasing the external voltage, we should take into account that in equation
4.6 only the elastic part will be affected by the voltage increase, i.e.,

K1vth = V2b + ith. (4.7)

From equation 4.6 we have v1 = V1K−1
1 b + K−1

1 ith and from (4.7) we obtain
vth = V2K−1

1 b + K−1
1 ith. With these two expressions we arrive to vth − v1 =

(V2 − V1)u1 and hence we can obtain V2 with

V2 = V1 + min
ij

(
vth
ij − v1

ij

u1
ij

)
. (4.8)

Once we know V2 we can obtain the voltage vector v2 as

v2 = v1 + (V2 − V1)u1. (4.9)

If we repeat this scheme till the tangent lattice u gets disconnected, i.e., a
continuous path of insulator fuses traverses the network, in the plastic lattice
there will be a continuous path of fuses at threshold. Since there is a continu-
ous path of fuses at its yield point, any increment of the external voltage will
have no effect on the currents and thus we have found the PP yield surface of
the system which is univocally determined for each disorder realization.
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Hence, in summary, the simulation of the plastic process consists of yield
iterations: at each update, the Kirchhoff equations are solved to determine
the local currents flowing through the lattice. We then calculate the external
voltage needed in order to make the most unstable fuse yield. After each
yield event, the new currents are computed with the tangent algorithm and
the process is iterated. After a large number of iterations, a yield surface is
eventually formed across the sample.

4.1.2 Polymers in random media

The problem of finding the yield surface in a disordered material can be re-
garded in a more general context as connected with the problem of a directed
polymer or manifold in a random medium. The study of directed polymers
in random media (DPRM) has attracted a lot of attention during the last
twenty-five years and a great number of interesting analytical and numerical
results exist [Halpin-Healy and Zhang 1995]. This term comes originally from
the studies of polymers stretched in a gel matrix and it is applied in a broad
sense to any linear elastic object in a disordered environment like domain
walls in ferromagnets [Huse and Henley 1985] or flux lines in superconductors
[Nattermann and Lipowsky 1988, Nelson 1988].

A discrete coarse-grained description of such object can be formulated on a
lattice in which each bond i has been assigned a random energy ei picked from
a certain probability distribution. A polymer grows along the t direction as
it is shown in figure 4.2. Each step has an energetic cost equal to the random
energy of the lattice bond and this produces a path P whose energy is given
by the sum of the energies of the steps taken along the trajectory,

EP =
∑
i∈P

ei, (4.10)

and the partition function of the system at temperature T is then given by

Z(x, t) =
∑
{P}

exp
(
− EP

kBT

)
, (4.11)

where {P} is the ensemble of all the possible univaluated paths starting at
the origin (0, 0) and ending at (x, t).

For a given disordered lattice not all of the paths are equally likely, its
probability being proportional to the Boltzmann factor exp(−EP/kBT ), where
EP is the energy of the path. For a given temperature T , more energetic
configurations are exponentially less probable.
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Figure 4.2: A typical configuration of a polymer growing in a discrete lattice from
a fixed origin with (orange) and without (magenta) overhangs. The strictly directed
polymers develop no overhangs since backward steps are not allowed.

The transverse growth is limited by the fact that each forward step implies
only one transverse step. However, the impurities (random energy distribu-
tion) present in the medium induce the polymer to wander as much as possible
in the search for energetically advantageous bonds. If there were no disorder,
all paths would be equally probable and hence, in average, the final x coor-
dinate would be zero with gaussian fluctuations as in the well-known random
walk problem. Since we are mostly interested in the effect of the medium,
there are two magnitudes useful to describe the configurations of the polymer:
the wandering ∆x ≡ 〈(x − 〈x〉)2〉1/2 of the paths and the fluctuations of their
free energy ∆E ≡ 〈(E − 〈E〉)2〉1/2. Both quantities exhibit power law scaling
with exponents that characterize the universality class of DP:

∆ x ∼ tζDP , ζDP = 2/3 (4.12)

∆ E ∼ tθDP , θDP = 1/3. (4.13)

These exponents were calculated numerically for 1+1 dimensions via transfer
matrix studies [Derrida and Vannimenus 1983] at zero temperature in the
context of the random bond Ising model [Huse and Henley 1985] and later
for finite temperature in [Kardar 1985]. They were shown to be temperature-
independent and exact values that can be calculated analytically with dynamic
renormalization group techniques [Forster et al. 1977, Huse et al. 1985] and
satisfy the relation θDP = 2ζDP − 1 [Huse and Henley 1985]. Several other
results regarding the full probability distributions have been obtained [Halpin-
Healy and Zhang 1995]. For our purpose here, it is of particular interest the
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free energy distribution whose finite size correction is known to obey the law:

〈E〉
t

= E∞ + At−2/3, (4.14)

with A > 0 and hence the free energy approaches its thermodynamic limit
from above [Krug et al. 1992].

The DP problem can also be formulated in the continuum. In this case,
the partition function 4.11 for a path from the origin to (x, t) takes the form

Z(x, t) =
∫ (x,t)

(0,0)
Dx exp

(
−
∫ t

0
ds

[
1
4Γ

(
dx(s)

ds

)2

− V(x, s)

])
, (4.15)

or in differential form

Ż(x, t) =
(
Γ∇2 + V

)
Z(x, t), (4.16)

where Γ is the inverse line tension and V describes the disorder in the medium.
An interesting point is that under a simple Hopf transformation the latter
equation can be mapped to the KPZ equation [Kardar et al. 1986] for kinetic
roughening phenomena where the free energy of the polymer plays the role
of the height of the interface with ζDP = 1/zKPZ and θDP = βKPZ [Barabási
and Stanley 1995]. This equivalence thus also gives us the exact values of
the DP exponents in 1+1 dimensions since the exponents zKPZ = 3/2 and
βKPZ = 1/3 are exact for KPZ in 1+1 dimensions [Kardar et al. 1986]. Also
the scaling relation θDP = 2ζDP − 1 corresponds to the Galilean invariance
βKPZ = 2/zKPZ − 1 in KPZ, valid in any dimension.

As the temperature decreases, the configurations with lower energies will
dominate in the partition function 4.11. At zero temperature only the lowest
energy path survives. This means that at T = 0, the DPRM problem is just a
global optimization problem in which, for a given quenched energy landscape,
the path of overall ME is searched. The same exponents as in the finite tem-
perature case hold (ζME = 2/3, θME = 1/3). The problem of finding the zero
temperature solution is also called the optimal path problem and has been
also extensively studied [Buldyrev et al. 2006, Cieplak et al. 1994, Hansen and
Kertész 2004, Porto et al. 1997; 1999, Schwartz et al. 1998]. Results with dif-
ferent configurations and searching techniques have shown that optimal paths
in 1+1 and 2+1 dimensions in the presence of weak disorder [Cieplak et al.
1994, Hansen and Kertész 2004] exhibit the same scaling properties with and
without overhangs, with the same values of the scaling exponents [Schwartz
et al. 1998]. This means that in this problem overhangs are irrelevant at
long length scales since they do not grow with the system volume but have a
characteristic size.
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4.1.3 Finding the minimum energy surface

Although the transfer matrix methods are well-suited for directed configura-
tions, the study of the ME surface in certain contexts [Alava and Duxbury
1996, Middleton 1995] posed new questions like the influence of the overhangs
in the surface or the determination of the optimal paths in a lattice with no
origin restrictions. Algorithms from graph theory resulted computationally
more efficient than transfer matrix ones and very easy to implement. It was
first noticed in [Ogielski 1986] and later in [Middleton 1995] that the search of
the T = 0 ground state in the context of the random field and random bond
Ising model could be reformulated as a problem of finding the minimum cut
in a graph and solved thanks to the so called max-flow min-cut algorithms
[Cormen et al. 2001].

Consider a network composed of a set of nodes and weighted links between
them. The links can be viewed as pipes with a certain capacity (i.e., the flow
the pipe can carry) given by the weight of the link. One of the nodes is the
source from which flow is injected in the network and another one is the sink
of the system to which the flow must be pumped. The question is, what is
the maximum flow the network can carry? And consequently, what path from
source to sink should one take to achieve this optimum flow? The max-flow
min-cut theorem states that in any network, the maximum flow equals the
minimum capacity of a cut. A cut consists of a set of links such that if they
are removed, the source and sink are disconnected and there is no path from
the source to the sink as shown in figure 4.3. Hence, to obtain either the
minimum cut of a network we can obtain the maximum flow or the other
way round. The only restrictions to the problem are that pipes cannot carry
negative flows or flows above its capacity and the conservation of mass must
be fulfilled, i.e., the flow into a vertex must be equal to the flow out of the
vertex except for the source and sink nodes.

To find the maximum flow we will use the Ford-Fulkerson method that
involves finding augmenting paths, that is, paths that allow us to increase the
flow in the network. The flow that can be pumped through this path is given
by the minimum of the capacities of the bonds along the path. Subtracting this
flow to the capacities of the path we find the residual network. We continue
looking for new augmenting paths in the subsequent residual networks until
this task becomes impossible. When no more paths can be found, we know
that we have obtained the maximum flow. The minimum cut is then formed
by the bonds in the last residual network whose starting node can be reached
from the source but whose ending node cannot.
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Figure 4.3: Source and sink nodes and an example of a cut in the network and the
resulting interface.

The Ford-Fulkerson algorithm does not indicate how the paths must be
found. The particular case of the Ford-Fulkerson algorithm in which the paths
are shortest paths selected through a breadth-first search strategy (with equal
weights in the bonds) [Cormen et al. 2001] is called Edmonds-Karp algorithm.
In short this is a search algorithm that beginning at the source node, it first
explores the neighboring nodes and for those nearest nodes, their unexplored
neighbors and so on until it finds the searched node. The Edmonds-Karp
variant has the advantage that its computational cost is O(NE2), (N=nodes,
E=edges) independent of the maximum flow of the network, and the ter-
mination is guaranteed. Although here we will focus in an Edmonds-Karp
algorithm that will be employed later in this Thesis [Middleton 1995], there
exist faster approaches like the push-relabel algorithms [Cormen et al. 2001]
that run in O(N3) (N =number of nodes). However, note that for sparse
graphs like ours, the Edmonds-Karp algorithm can be even faster than the
push-relabel techniques.

In our case, the ME surface can be seen as the minimum-cut of the lattice
taking the energy of the bonds as the capacities of pipes. Once we obtain
the maximum flow, we are sure that we have obtained the value of the ME
for a given disorder realization. Finding the links belonging to the minimum
cut we will hence find the ME surface. Two imaginary nodes must be added
to the lattice to act as source and sink nodes (see figure 4.3) that are linked
to the lattice through high capacity links so we make sure that they are not
going to be included in the search. Both directed and undirected ME surfaces
can be found with this implementation. A directed ME surface is found if the
links between the nodes are set unidirectional and, in contrast, overhangs are
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allowed if flow can be pumped backwards taking the bonds as bidirectional
pipes. ME surfaces with fixed origin(end) can be obtained by simply imposing
high capacities in the bonds belonging to the column corresponding to the
origin(end) except for the selected node [Middleton 1995].

4.1.4 Analogies between yield and minimum energy surfaces

In our problem, the energy landscape is given by the random yield thresholds
in the lattice. The ME surface in this context is the surface whose sum of
yield thresholds is minimum. And hence, we will call energy to the sum of
yield thresholds of any path in the network.

It was generally believed that strain localization in the PP limit could
be related to the problem of finding the ME surface in a disordered medium
[Hansen et al. 1991, Roux and Hansen 1992]. The conjectured equivalence
between PP and ME comes from the observation that, at the yield point, it
is not possible to find an elastic path along which the stress could increase
spanning the sample from end to end [Hansen et al. 1991, Roux and Hansen
1992] since at the yield point there is a continuous band of bonds across the
network in which all the bonds have reached their threshold and hence the
stress cannot be further increased.

In a disordered medium, the local yield stress σi of a given cross-section
is in general a quenched random quantity. Therefore, according to refer-
ences [Hansen et al. 1991, Roux and Hansen 1992], the global yield stress σc

could be obtained by finding the surface S where the sum of the local yield
stresses (the energy) is minimized, i.e., σc = minS [

∑
i∈S σi]. When this value

of the stress is reached, the system would be divided into two disconnected
elastic parts and would thus behave as perfectly plastic.

Following [Hansen et al. 1991, Roux and Hansen 1992], this maximal stress
must be equal to the sum of the threshold stresses of each bond belonging to
the path, as each threshold is equal to the maximum current the bond can
carry. Hence, the band that is first to appear is the one where this sum
is minimum and the problem is identical to the random directed polymer
problem with the exception that there is no a priori directness imposed on the
minimum current path. However, flowing through the network would actually
impose a directness on the paths.

Thus, all the scaling laws for ME surfaces should be obeyed but here the
role of the energy in the surfaces is played by the stress and hence one would
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expect the following scaling relationships to ve valid:

∆ y ∼ Lx
ζDP , ζDP = 2/3

∆ σ ∼ Lx
θDP , θDP = 1/3 (4.17)

σc = σ∞ + ALθDP−1, A > 0.

A critical revision of the analogies presented above will be the goal of next
section.

4.2 Results

In the left panel of figure 4.4 it can be observed that a lattice of PP individual
fuses subject to an external voltage is able to produce macroscopic perfectly
plastic behavior. On the right panel, different colors indicate the fuses that
yield during the corresponding region of the stress-strain curve. At the be-
ginning the fuses that reach its yield point are randomly spread throughout
the network. As the voltage increases, more and more yielding areas form up
to the appearance of a yield surface by nucleation, as can be observed in the
temporal sequence.
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Figure 4.4: Left: Simulation of the PPRFM. Stress-strain curve in an L = 64
diamond lattice. Different colors indicate the maximum stress reached respect to the
yield stress. Right: Plastically deforming sites up to the corresponding stresses in the
left panel. The final yield surface is highlighted in yellow.

Trying to reveal the similarities between the PP and ME problems, we
compared the resulting ME and PP yield surfaces for the very same disorder
configuration. In figure 4.5 a typical realization with the PP surface obtained
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with the PPRFM (section 4.1.1) and the ME surface with the Edmonds-Karp
algorithm (section 4.1.3) is shown.

One can clearly see that the resulting interfaces may partially overlap
but are clearly different. In particular, the PP surface presents very visible
overhangs. As a consequence, the energy of the PP surface which corresponds
to the sum of thresholds over the yield path is indeed higher than that for the
ME surface which, although overhanging is allowed, takes a pretty directed
path as it is expected for this type of disorder [Schwartz et al. 1998]. However,
we find that the actual yield stress or the current through the PP surface is
lower than its energy, and also lower than that for the ME surface. We will
try to explain these facts in the next section.
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Figure 4.5: Typical ME and PP yield surfaces for the same disorder realization
in a L = 64 diamond lattice. A region of the PP surface exhibiting overhangs is
highlighted within the black circle.

4.2.1 A theoretical argument against the equivalence
between perfect plasticity and minimum energy

The difference between PP and ME surfaces for the same disorder realization
can be explained by the following theoretical argument. The equivalent yield
stress for the ME problem in a system of lateral size Ly is given by

σc,ME =
∑
i∈S

ithi /Ly, (4.18)

where i runs over all the bonds in the yield surface S that minimizes (4.18).
In contrast, the PP surface S ′ would be the surface that requires a lowest
external stress to appear and, therefore, the one that minimizes

σc,PP =
∑
i∈S′

(ni · ji) ithi /Ly, (4.19)
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where ni is the unit vector locally normal to the surface at i, and ji = Ji/|Ji| is
the local current flow direction as corresponds to the definition of the current
flowing through an arbitrary surface.

Figure 4.6: Grey arrows indicate the normal to the surface in each region. Thick
arrows indicate how the current traverses the surface. In the overhang the current
(magenta arrow) and the normal vector are opposed while in the rest of the surface
both of them point in the same direction.

If the surface had no overhangs we would have ni · ji = 1 for all i and the
same surface S = S ′ would minimize both equation 4.18 and equation 4.19.
However, in the presence of overhangs, it could happen that locally ni ·ji = −1
so that the surfaces S and S ′ are no longer the same. This is illustrated in
figure 4.6. Indeed, we find that

σc,PP < σc,ME , (4.20)

although the sum of thresholds along the PP path is naturally higher than
σc,ME . Therefore, the mapping between ME and yield stress exists only for
fully directed surfaces (ni · ji = 1 for all i), where the total yield stress can be
calculated as the sum of local yield stresses. Physically, this means that PP
and ME actually correspond to two different optimization problems. A PP
path may find it very advantageous to develop overhangs in order to minimize
equation 4.19 due to the negative contributions coming from the ni · ji < 0
terms. On the contrary, for the ME surface one has to minimize equation
4.18 and overhangs generally increase the global energy and are thus normally
avoided, unless disorder has a very broad distribution [Buldyrev et al. 2006].
The yield surface would in fact be the result of a ME problem in which, unlike
in the simple ME, only bonds of the path in the direction of the flow increase
the global energy by a quantity equal to the energy cost of the bond, while
bonds passed by opposing to the flow (i.e., overhangs), decrease the global
energy of the path by a quantity equal to the energy cost of that bond
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4.2.2 Energy and yield stress scaling

The difference between the ME and PP yield stresses can be observed in figure
4.7. Two different boundary conditions have been studied: the two ends of
the path are either left free or pinned at mid-system y(0) = y(Lx) = Ly/2.
These two situations correspond to finding either a global or a local minimal
surface, respectively. Left panel shows the yield stress scaling with system size
for fixed boundary conditions while right panel shows the free ends case. In
both cases the existence of a finite size correction becomes apparent, as well
as the fact that σc,PP (L) < σc,ME(L) is always satisfied.
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Figure 4.7: Scaling of critical stress with system size in ME and PP for both fixed
and free ends

For fixed boundary conditions we find σc = σ∞ + AL−2/3 leading to θ =
1/3, which is the expected result for the ME universality class and likewise so
for the PP problem. It is interesting to note that the same scaling relation for
σc was deduced for the growth of a slip line in a crystal with also a positive A
constant but larger scaling exponent [Leoni and Zapperi 2009]. This kind of
dependence of the yield strength with system size is also usually observed in
microscopic to nanoscopic plasticity experiments [Lee et al. 2007, Uchic et al.
2004].

As can be observed in the previous figure, for free boundary conditions this
scaling holds only for small system sizes. This can be understood as follows.
As we saw in section 4.1.2, a ME surface in a system of length Lx develops
height fluctuations of width ∼ L

2/3
x . Thus in a system of height Ly there is

room for (Ly/L
2/3
x ) ∼ L1/3 independent valleys of energy as it is sketched in

figure 4.8. Hence, letting the starting point free, for each disorder realization
we are effectively averaging over L1/3 fixed starting point independent sur-
faces and picking the minimum of them. This means that we are affecting
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the finite size scaling mixing two different scales: the energy scaling related to
the length of the ME surface and the extremal statistics related to the trans-
verse optimization. This explains the fact that large system sizes deviates
from the expected scaling (equation 4.14) since only for small system sizes
(Ly/L

2/3
x ) ∼ 1 and thus the transverse scale does not enter the scaling.

Figure 4.8: Independent energy valleys in a system of size (Lx, Ly).

We can also study the average yield strength difference 〈σc,ME−σc,PP 〉. In
figure 4.9 it is observed that it systematically increases with L for free bound-
ary conditions or remains constant in the case of fixed boundary conditions
but the difference never vanishes as we increase the system size indicating
that the difference between the two problems is not a finite-size effect but will
remain in the thermodynamic limit.
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Figure 4.9: The difference between the critical stress for ME and PP grows slowly
but systematically or remains approximately constant with system size for free or
pinned ends, respectively.
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4.2.3 Yield stress distribution

The scaling of the yield stress is reminiscent of size effects traditionally stud-
ied in brittle fracture problems where one expects extreme value statistics to
apply [Alava et al. 2009, Weibull 1951]. Although size effects and stress fluc-
tuations have been recorded in micro-plasticity [Lee et al. 2007, Uchic et al.
2004], it is not clear if they have the same origin as in fracture. In particu-
lar, it has been observed both in crystals [Uchic et al. 2004] and amorphous
materials [Lee et al. 2007] that strong size effects appear when decreasing the
sample sizes to micron scales and below. This manifests itself in way higher
strengths than the observed values for bulk samples of the same materials.
This size-dependence vanishes with sample diameters only tens of microns
larger whose properties again resemble the bulk behavior. Although some
experiments claim for size-independent properties at micron scales [Dubach
et al. 2009, Schuster et al. 2008], the dependence of the strength on system
size seems to be a fact. A good knowledge of the behavior of samples of such
small sizes is obviously an important issue from a technological point of view.

We have explored the behavior of the yield stress distribution for the PP
and ME models. Figure 4.10 shows the rescaled yield stress cumulative dis-
tributions for both ME and PP problems with free and pinned boundary
conditions. The latter corresponds to the usual ME problem studied in the
literature while the free case is closer to experimental reality.
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Figure 4.10: Cumulative distributions of yield stress for free and pinned boundary
conditions for ME and PP. The distributions can all be collapsed with the same
exponent, related to θ = 1/3.
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We see that for both boundary conditions the distributions for PP and
ME collapse with the same exponent into a very similar scaling function.
Since for the ME problem with pinned boundary conditions we know that
asymptotically the scaling function should converge to the Tracy-Widom dis-
tribution [Monthus and Garel 2006], we can speculate that this is also true for
PP. Weibull and other extremal distributions are not appropriate to fit the
data.

4.2.4 Geometrical properties

We will now analyze the spatial properties of the yield surfaces. This study
again shows that PP and ME surfaces are different objects with distinct scal-
ing properties. Measuring only the height fluctuations 〈∆y〉 ∼ tζDP both PP
and ME surfaces yield values very close to ζDP = 2/3 and are hence indistin-
guishable. However, one can test the multi-affinity of the surfaces by studying
the qth order correlation functions,

Cq(`) = 〈|y(x + `) − y(x)|q〉 ∼ ` q ζq . (4.21)

If all the exponents result ζq = ζ independent of the order q, it means
that the surface is self-affine and it is completely characterized by one single
roughness exponent ζ. In contrast, if different q give different ζq exponents,
the surface is said to be multi-affine and the roughness exponent alone is
not enough to characterize the surface since the roughness changes from one
region of the surface to another. The calculation of the correlation functions
4.21 needs a univaluated height function. In order to eliminate the overhangs
we carried out a solid-on-solid transformation in which for each site x we take
the maximum value of the height y(x).

In the case of ME surfaces, they are expected to exhibit simple self-affine
scaling with the same roughness exponent ζME

q = ζME = 2/3 for all q. This
is observed in figure 4.11 and is in agreement with previous studies show-
ing that overhangs are irrelevant in ME surfaces below the strong disorder
limit [Buldyrev et al. 2006, Schwartz et al. 1998].

In contrast, PP surfaces show strong deviations from simple self-affinity
and the existence of multi-scaling becomes readily evident in figure 4.12 where
at small length scales it is clearly observed that different order correlation
functions scale with different exponents. Self-affinity is recovered above a
certain length scale that increases with system size indicating that overhangs
are indeed relevant in PP surfaces.
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Figure 4.11: Height-height correlation function of order q = 1 to q = 5 for ME in
a system of size L = 200.
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Figure 4.12: Height-height correlation function of order q = 1 to q = 5 for the
PP problem in a system of size L = 200. Multi-scaling of the surface fluctuations is
clearly observed.

To obtain further insight on the role of overhangs we can study the distri-
bution of height differences at different length scales,

P (|∆`y|) with ∆`y ≡ y (x + `) − y (x) . (4.22)

For a self-affine interface, this distribution is expected to scale as

P (|∆`y|) ∼ `−αf
(
|∆`y|/`−α

)
. (4.23)

In figure 4.13 it is shown that for ME surfaces P (|∆8y|) is narrow and indepen-
dent of L, whereas for the PP surfaces the tail grows with L and approaches
asymptotically a power-law shape, P (|∆8y|) ∼ |∆8y|−2. However, as shown
in the center and right panels of figure 4.13 for ` = L/4 and ` = L/2 respec-
tively, if we study the height differences at intermediate length scales ` � L,
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both distributions get more and more similar up to the point they become
almost indistinguishable at the macroscopic scale.
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Figure 4.13: Distribution of height differences at distances, from left to right, ` = 8,
` = L/4, and ` = L/2 in PP and ME for different system sizes. For PP the tail of
the distribution grows with system size, while it remains constant for ME surfaces.

4.3 Discussion

We have studied the plastic yielding of disordered media using the perfectly
plastic random fuse model. By numerical simulations and theoretical argu-
ments we have shown that, in contrast with a generally accepted conjecture,
PP and ME actually correspond to two different optimization problems in
disordered media. This ends with the long-standing assumed equivalence be-
tween PP and DP problems. In the past, DP had been also claimed to be
equivalent to BF [Hansen et al. 1991] and was recently refuted [Zapperi et al.
2005b]. The reason for the non-equivalence between ME and PP surfaces
arises from the fact that an actual yield surface –with signed currents– is
created in a yielding material at lower critical stress than the ME surface.
This is intimately related to the peculiar properties of PP surfaces such as the
existence of relevant overhangs, large height-height fluctuations, and lack of
simple self-affinity. In addition, the yield stress displays a finite-size scaling
form with corrections due to the boundary conditions.

The yield stress for PP is indeed smaller than the one observed for the
equivalent ME problem, while the critical exponents of the surface and energy
fluctuations appear to be the same. The yield surfaces have a roughness
exponent of approximately ζ = 2/3 and the yield stress fluctuations scale with
an exponent close to θ = 1/3, that coincide with those of the ME universality
class. However, the specific surfaces are different in the two cases. Indeed, the
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geometry of the surface in the PP problem shows the presence of overhangs
and large steps that lead to multi-scaling, a dependence of the q-th order
roughness exponent on the order of the correlation function. The presence
of overhangs has a significant effect on the global yield stress. Contrary to
what happens in the common ME problems, overhangs lower the global yield
stress so that a trivial minimization of the sum of local yield stresses is not
accomplished.

Despite the attractive simplicity of this scalar model for PP, we cannot
forget that it has an unavoidable drawback since it lacks the intermittent
behavior widely observed in experiments and hence the properties of burst
avalanches cannot be studied in this context. It would then be interesting to
study numerically more realistic albeit simple models of plasticity and for this
purpose in the next chapter we will introduce a scalar model of fuses that,
while preserving the simplicity of the RFM, is able to correctly capture the
mesoscopic behavior of amorphous plastic solids.
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Chapter 5
From Brittle to Ductile
Fracture

In this chapter we will focus on plastic deformation in amorphous media. To
this aim we introduce a model that tries to combine the simplicity of the scalar
models based on fuse networks but at the same time incorporates the observed
phenomenology arising at the microscale that has strong influence on the final
behavior of materials. We will begin with a brief review of the experimental
findings, then describe the different approaches to plasticity, and we will finish
with the description of our ductile random fuse model (DRFM) in section 5.2
and our contribution [Picallo et al. 2010a;b] in section 5.3. The lattice model
introduced here is able to describe damage and yielding in heterogeneous ma-
terials ranging from brittle to ductile ones. The model exhibits a smooth
transition from brittleness to ductility, depending on how much plastic de-
formation is accumulated prior to fracture. Very ductile fracture surfaces,
obtained when the system breaks once the strain is completely localized, are
shown to correspond to ME surfaces. The similarity of the resulting fracture
paths to the limits of brittle fracture or minimum energy surfaces is quantified.
The dynamics of yielding exhibits avalanches with a power-law distribution in
agreement with mean field calculations and experimental findings.
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5.1 Introduction

5.1.1 Macro and micro-plasticity

In crystalline materials plasticity is explained by the motion of defects or dis-
locations in the crystalline lattice that act as carriers of slip in response to
the applied stress [Zaiser 2006]. This implies that plasticity at the scale of
dislocations has a discrete nature both in space and time which, at least at
that scale, is in conflict with the paradigm of continuous flow. The hypoth-
esis was that dislocation movements at the microscale could average out to
give the appearance of a smooth and steady flow. This is in fact observed
in experiments with bulk samples due to the incoherent superposition of de-
formation events from different parts of the specimen producing stress-strain
curves that resemble figure 2.3. However, as one goes down to the micrometer
scales the intermittent nature of the phenomenon is clearly revealed. Acoustic
emission measurements performed in compression tests of millimeter ice sin-
gle crystal samples showed that the dynamics is in fact intermittent and gives
rise to power law distributed events [Miguel et al. 2001, Weiss and Grasso
1997] that suggested an interpretation in terms of critical phenomena. Hence,
the smooth appearance of the ductile stress-strain curve in figure 2.3 hides in
reality a much more complex behavior. The superposition of motions is not in-
coherent but produces scale-free bursts of activity with long-range correlations
both in space and time that leads to the characteristic stress-strain curves in
steps shown in left panel of figure 5.1 corresponding to direct measures of
deformation events in metallic microcrystals [Dimiduk et al. 2006, Uchic et al.
2004]. The stress-strain curve is formed by small jumps and plateaus that
cannot be accounted for within the framework of continuous theories and the
whole process is governed by the intermittent avalanches of activity in the
material.

In analogy with brittle fracture, general scaling laws like acoustic emis-
sion and strain avalanche distributions [Dimiduk et al. 2006, Schwerdtfeger
et al. 2007, Uchic et al. 2004, Zaiser et al. 2008] are also observed in plastic
deformation. Both indirect evidence by means of acoustic emission experi-
ments [Miguel et al. 2001, Richeton et al. 2006], and direct micro-compression
measurements [Dimiduk et al. 2006, Schwerdtfeger et al. 2007, Zaiser et al.
2008] have shown that the distribution of strain bursts sizes decays as a power-
law with an exponent that lies within the range τ = 1.4 − 1.6.
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Figure 5.1: Experiments revealing the jerky nature of the plastic flow and the
impact of sample size on the yield strength. Left: Shear stress versus shear strain
curve in a 20 mm diameter sample of pure crystalline Ni [Dimiduk et al. 2006]. Right:
Compressive engineering stress-strain curves of Zr65Cu17.5Ni10Al7.5 alloy specimens
with different casting diameters [Han et al. 2009].

But here we are interested in amorphous materials that do not have an
underlying ordered structure as crystals do. In the absence of internal struc-
ture or long range order, plasticity is believed to be due to irreversible atomic
rearrangements. These rearrangements are highly localized in certain regions
composed of a few atoms where shear transformations happen more likely
and seem to be related to enhanced structural disorder regions [Christopher
A. Schuh 2003]. These are called shear transformation zones (STZs) [Argon
1979, Falk and Langer 1998] and only recently have been observed in colloidal
glasses [Schall et al. 2007] following the microscopic strain distribution. These
regions were shown to be irreversible. Moreover, the existing zones induced
the appearance of new zones in their vicinity as more strain is accumulated.

The fingerprint of the stress-strain curves of plastic deformation in amor-
phous materials is the serrated flow that can be observed in the right panel
of figure 5.1. This has been hypothesized to be related to the formation of
shear bands where strain localizes [Dubach et al. 2009, Schuh and Nieh 2003]
and can then induce final failure [Li and Li 2005; 2007, Schall et al. 2007,
Yao et al. 2008]. As happens in crystalline materials, amorphous plasticity is
characterized by power law distributed avalanches with an exponent around
τ = 1.4 [Wang et al. 2009].

Metallic glasses (MG) are an example of amorphous alloys that offer good
prospectives for technological purposes and are currently a fertile ground for
research [Guo et al. 2007, Lee et al. 2007, Schuster et al. 2008, Shan et al. 2008].
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In macroscopic samples, the strain is very inhomogeneous and localizes into
a few shear bands leading to cracking and catastrophic failure (top panel in
figure 5.2). As size is decreased to submicron samples, the flow becomes more
homogeneous, more bands appear (bottom panel in figure 5.2), and ductility
increases [Shan et al. 2008].

Figure 5.2: SEM images showing the side views of Zr65Cu17.5Ni10Al7.5 BMG sam-
ples –2mm (left) and 3 mm diameter (right)– after compression tests. In the 3mm
case few shear bands are found and hence the behavior is quasi-brittle. Taken from
[Han et al. 2009]

MGs usually show little ductility at room temperature and behave quasi-
brittle but with the appropriate composition and treatment they can be tuned
and MG ranging from brittle to very ductile and with very different harden-
ing coefficients can be obtained [Schuh et al. 2007]. Hence, since amorphous
materials form a motley group with very diverse behaviors, it is appealing to
propose models that can account in a simple way for brittleness and ductility
allowing to study both limits tuning a small set of parameters. This will be
the goal of section 5.3.

5.1.2 Numerical and theoretical approaches

In crystalline systems the theoretical framework seems to be well established
and yielding can be described as a non-equilibrium phase transition at the
yield stress point. The onset of plasticity in this context seems to correspond
to a transition from a jammed phase, in which dislocations are immobile, to
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the phase of flow with sustained motion of dislocations [Laurson et al. 2010,
Leoni and Zapperi 2009, Miguel et al. 2002, Zaiser and Moretti 2005]. The
theoretically predicted value for the exponent of the avalanche distribution
τ = 3/2 agrees with numerical simulations [Zaiser and Moretti 2005] and is
close to experimental observations.

In amorphous materials, modeling appears to be a more complex task
since there is no underlying structure for defects. However, the similarities of
behavior that appear in very different materials call for an explanation that
does not require a detailed description of the material-dependent microscopic
processes. In fact both crystalline and amorphous materials exhibit similar
phenomena, which makes it appealing to find a description independent of the
existence of a subyacent crystal lattice.

Thanks to molecular dynamics simulations with molecules interacting via
Lennard-Jones potentials, the existence of STZs involving tens of molecules
was proved [Falk and Langer 1998] and mean field theories based on the role
of the localized events in the STZs were developed (see [Langer 2008] and
references therein). STZs are created and annihilated during the irreversible
deformations of a material and localization in the form of shear banding also
appears. However, plastic events are not random but occur as correlated cas-
cades of events [Maloney and Lemâıtre 2006], whose size seems to depend on
the strain rate [Lemâıtre and Caroli 2009], indicating that mean-field theories
based on independent events would not be an accurate description of the phe-
nomenon. In [Bailey et al. 2007] an exponent close to τ = 3/2 was measured
for a 3D Mg-Cu system, in agreement with experiments in both amorphous
and crystalline materials.

The development of an adequate numerical and theoretical framework of
amorphous plasticity to understand deformation and failure mechanisms is
a challenge since many applications of technological relevance can be envis-
aged and new materials could be developed under the guidelines provided by
theoretical understanding. The drawback of atomic-level simulations for this
purpose is that the system sizes and computing times available are very lim-
ited. Besides, bridging gap between the length scales of microscopic models
and continuum theories is yet one of the most exciting problems in materi-
als science. To go beyond the atomic scale in plasticity, efforts have been
made to study plastic deformations at mesoscopic scales [Baret et al. 2002,
Cowie et al. 1993, Lee et al. 1999, Miltenberger et al. 1993, Picard et al. 2004,
Roux and Hansen 1992]. Very recently, a stick-slip model was successfully
applied to reproduce experimental observations of intermittent behavior of
metallic glasses [Sun et al. 2010]. In general, these models explicitly include
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the long-range elastic interactions and disorder. If a local threshold is reached
a rearrangement occurs that produces a plastic event. The local stress thus re-
laxes and the elastic redistribution of stresses in the medium can induce other
local events, giving rise to a complex macroscopic spatiotemporal behavior
with intermittency and bursts of correlated events. In the following section
our goal is to introduce a mesoscopic model that, unlike the oversimplified
model [Roux and Hansen 1992] used in the previous chapter, is able to ac-
count for the typical phenomena present in amorphous materials like serrated
flow, shear banding, and spatiotemporal intermittency, while preserving the
simplicity of the scalar RFM model.

5.2 A tunable ductile Random Fuse Model

In our DRFM, whenever a fuse ij reaches its threshold ithij , a permanent de-
formation is imposed to the element and becomes elastic again as it is shown
in figure 5.3. This defines a healing cycle of the individual element.

0.00 1.00 2.00 3.00 4.00
ε

ij

0.00

0.50

1.00

1.50

σ ij

Figure 5.3: A typical stress-strain response curve for a single element of the DRFM
in a diamond lattice of size L = 75 with disordered thresholds uniformly distributed
in the interval [0.5, 1.5] for β = 0.1.

In our electrical analogue this healing is done by adding a voltage source
(i.e. an electric battery) in series with the fuse in the adequate polarization
to generate an opposite current through it, so that elastic deformation (due
to the ohmic behavior of the fuse) is relaxed below threshold while permanent
deformation (the voltage fixed by the added voltage source) accumulates in the
element. In figure 5.3, each of the current drops corresponds to a healing cycle
during which the fuse reached its threshold, accumulated plastic deformation
by the addition of a voltage source and became elastic again.
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The addition of a voltage source between two nodes of the network modifies
the voltage equations of the system in a very simple way. Let us consider a
fuse with a battery in series like shown in the next figure.

Figure 5.4: A fuse in series with a voltage source.

Then the KCLs of two nodes (k − 1, l − 1) and (k, l) are modified from

4kVk−1,l−1 − kVk−2,l−2 − kVk−2,l − kVk,l−2 − kVk,l = 0
4kVk,l − kVk−1,l−1 − kVk−1,l+1 − kVk+1,l−1 − kVk+1,l+1 = 0, (5.1)

for a single fuse between them to

4kVk−1,l−1 − kVk−2,l−2 − kVk−2,l − kVk,l−2 − kVk,l = VS

4kVk,l − kVk−1,l−1 − kVk−1,l+1 − kVk+1,l−1 − kVk+1,l+1 = −VS , (5.2)

for the fuse in series with the battery. In our model we choose the magnitude
of the voltage source used to heal a fuse ij to be linearly related to its threshold
current,

∆ = β ithij /kij , (5.3)

where β is a control parameter that tunes how much deformation is allowed
to be accumulated at each healing cycle and the local conductivity is fixed to
kij = 1 without loss of generality. In the double limit NHC → ∞ and β → 0,
one would obtain an elastic-perfectly plastic response.

At each step of the simulation both the fuse closest to threshold and the
external voltage required to reach it can be exactly calculated. Therefore, in
order to save computational time, the external voltage is increased exactly
up to the point where the next fuse in the network reaches its threshold. To
do this one just needs to take into account that only the elastic part of the
network will be affected by an increase of the external voltage while the plastic
part remains constant. The next fuse ij to burn will be the one that fulfills:

min
ij

(
ithij /kij − vp

ij +
∑

∆
ve
ij

)
, (5.4)
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where vp
ij is the the plastic part of the voltage solution, i.e., the corresponding

to the permanent currents, ve
ij is the elastic part corresponding to the ohmic

behavior, and
∑

∆ is the sum of all the voltage sources imposed along the
history of the fuse at consideration.

We repeat the healing cycle a fixed number of times NHC for each fuse
going above threshold until it definitely breaks. The number of healing cycles
NHC that each individual element can go through before failure is fixed for
all the fuses and parametrizes in a simple and convenient manner the yielding
characteristics (ductility) of the material. At any given time in the simulation,
different sites of the network have gone through a different number of healing
cycles, reflecting the spatially varying distribution of strain in the system. A
fuse is forced to burn (or break) after having gone through its fixed number of
healing cycles NHC . The fuse then irreversibly becomes an insulator following
the usual rules for the RFM (see section 2.3.1) and all the voltage sources that
were imposed as plastic deformation are removed hence affecting the equations
of the neighboring fuses. The current redistribution after the healing of a fuse
can cause other fuses to also reach their thresholds. Therefore, avalanches
of plastic events are observed similar to the strain bursts observed in experi-
ments. When a continuous path of insulating bonds is formed, the system is
disconnected and fails completely producing an observable macroscopic frac-
ture.

5.3 Results

Depending on the material properties the DRFM is able to exhibit fracture in
situations that range from brittle to ductile behavior. Figure 5.5 (left panel)
shows the global stress-strain curves for β = 0.1 for different realizations and
increasing mean value of the disorder distribution, as the number of healing
cycles NHC before breakdown is increased, allowing to accumulate more plas-
tic strain in the material until fracture. For comparison, right panel shows a
replot of stress-strain curves obtained in recent experiments [Gu et al. 2008]
with amorphous steel alloys of Fe–Cr–Mo–P–C–B with different ductility pro-
duced by changing the metal-metalloid composition. This illustrates how the
index NHC in our model can parametrize in a simple manner the ductility
of the experimental samples. The maximum number of healing cycles NHC

describes the ability of the system to sustain local deformation and different
values of NHC allow us to study systems ranging from quasi-brittle materials
(NHC → 1) to very ductile ones (NHC → ∞). Our results are also in excellent
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agreement with very recent experiments [Sun et al. 2010] on ductile metallic
glasses showing the cycles of sudden stress drops followed by elastic reloading
associated with shear-band motions.
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Figure 5.5: Left: DRFM in an L = 75 diamond lattice of size with increasing mean
threshold value and different disorder realizations. Right: experimental data from [Gu
et al. 2008] for BMGs with increasing ductility from a to d. (a) Fe63Cr3Mo12P10C7B5,
(b) Fe64Cr3Mo10P10C10B3, (c) Fe63Cr3Mo10P12C10B2 and (d) Fe71Mo5P12C10B2.

The parameter β mimics the characteristic serrated flow present in amor-
phous materials (see for instance [Schuh and Nieh 2003]). The effect of β can
be better observed in the figure below.
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Figure 5.6: Global stress-strain curves for different typical disorder realizations and
different number of healing cycles for β = 0.1 and β = 0.5. The ME yield stress is
also shown.

Figure 5.6 shows that the data corresponding to NHC = 10 and NHC = 102

are much closer to the final expected ME steady-state (horizontal solid line)
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in the case β = 0.5 than those in the case β = 0.1. This is caused by the fact
that the stress relief is proportional to β. Therefore, while a lower β tends
to quench the activity in some areas of the system for long periods of time, a
higher β allows the system to explore much faster different regions of the phase
space of configurations. This is also the reason for the noisier nature of the
stress-strain curve for higher β; since ∆ij = β ithij /kij , the amplitude of these
fluctuations is proportional to β. Interestingly, the strain rate only affects the
dynamics but not the final state of the system. Hence, in our simulations we
used β = 0.1 unless stated otherwise.

5.3.1 Brittleness to ductility transition

Figure 5.7 shows the resulting fracture paths in the DRFM for the same con-
ditions and disorder configuration as in the simulations shown in figure 5.6.
One immediately notices that the final fracture surface configuration depends
on the number of healing cycles NHC and therefore on the accumulated plastic
strain. These surfaces are to be compared with the ones emerging from the
perfect plasticity limit (NHC → ∞) that was discussed in Chapter 4 [Picallo
et al. 2009]. As a reference, we plot the ME surface [Middleton 1995] and
the PP path found with the algorithm of Roux and Hansen [Picallo et al.
2009, Roux and Hansen 1992] for exactly the same disorder configuration. As
we showed in section 4.2 of this Thesis, these two surfaces minimize the sum
of the local yield stresses and the stress flowing through the surface, respec-
tively [Picallo et al. 2009]. It becomes apparent that the deeper the system
is allowed into the plastic steady-state (NHC � 1), the closer the resulting
fracture surface is to the ME path for the same disorder configuration. In
contrast, the PP path [Picallo et al. 2009, Roux and Hansen 1992], seems to
play no obvious role in the space of configurations. This can be observed in
figure 5.7, where the fracture surface almost overlaps with the ME surface
already for NHC = 103. To quantify how similar the fracture surface is to
the brittle fracture and ME limits as ductility, NHC , increases, we define the
overlap between two given paths {xi} and {yi} as

O = (1/Z)
∑

i

δ(xi − yi), (5.5)

where Z is a normalization constant so that the overlap becomes unity for two
identical surfaces.
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Figure 5.7: ME, PP and DRFM surfaces in a realization of a L = 75 system for
β = 0.1 (left) and β = 0.5 (right).

In figure 5.8 we plot the overlap between the plastic fracture surface and
the directed ME surface for the same disorder realization. For the sake of
comparison we also compute the overlap with the corresponding purely brittle
fracture surface [de Arcangelis et al. 1985] for the same disorder realization
(i.e., setting NHC = 0).
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Figure 5.8: Average over 103 disorder realizations of the total spatial overlap of the
DRFM final crack with both the corresponding ME and brittle fracture (NHC = 0)
surfaces for β = 0.1.

The PP surface resulting from the PPRFM seems to be irrelevant for this
problem and, consequently, the overlap is negligible for all NHC . Figure 5.8
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demonstrates that the system is quasi-brittle for low values of NHC where
the fracture surface largely overlaps with the purely brittle fracture surface.
In contrast, if the material is allowed to accumulate locally more strain (i.e.
for larger NHC) then the overlap with the brittle fracture rapidly decreases,
while the path becomes progressively closer to the directed ME path. This
requires a large value of the NHC index so that the system is able to explore
adequately the space of optimum configurations before complete failure. The
latter results are in agreement with the results reported in more complex
models [Miltenberger et al. 1993].

It can be observed in figure 5.9 the finite-L behavior of the overlap which
decays as ∼ log(1/L) with system size. This is true in both NHC → ∞ (ME)
and NHC = 1 (quasi-brittle) limits.
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Figure 5.9: Average overlap between NHC = 1 fracture surfaces and the corre-
sponding ME surfaces for the same disorder realization. Note the semi-logarithmic
scale.

5.3.2 Roughness of brittle and ductile surfaces

The brittle fracture and ME surfaces are both self-affine fractals but the cor-
responding (local) roughness exponents are quite close: ζBF ≈ 0.7 [Alava
et al. 2006] for the brittle RFM, while the exact roughness exponent is ζME =
2/3 [Halpin-Healy and Zhang 1995] for the ME surface. The dependence of
the roughness exponent with the number of healing cycles is studied in fig-
ure 5.10 where it is shown the structure factor S(k) = 〈ŷ(k)ŷ(−k)〉, where
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ŷ(k) is the Fourier transform of the interface, as a function of the number of
healings. This quantity gives the roughness exponent of the interface since
it scales as S(k) ∼ k−(2ζ+1) in two dimensions [Barabási and Stanley 1995].
For comparison, ME and brittle fracture roughness exponents for the same
disorder realizations are also shown. Although the roughness exponents of
both problems are very close and hence are difficult to distinguish, a smooth
transition from one exponent to the other is clearly observed as we increase
the ductility.
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Figure 5.10: Structure factor for increasing number of healing cycles in a L = 128
system. ME and brittle fracture data are also shown for comparison.

5.3.3 Damage accumulation and localization

When only a small number of healing cycles is allowed prior to fracture, the
system still behaves quasi-brittle and the fracture path and damage resemble
the usual brittle fracture in the RFM. In figure 5.11, the consequences of
breaking the system during the early stages of evolution are evidenced.

We impose fracture after only one healing cycle, NHC = 1, so the damage
is still randomly spread in the system and fuses burn throughout the entire
lattice, giving rise to a fracture path far from the ME surface. In fact, the
system is behaving quasi-brittle since almost no deformation is allowed to
accumulate before breakdown. The damage in the form of broken bonds is
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spatially distributed throughout the sample in a randomly uniform fashion,
in analogy to the brittle RFM.
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Figure 5.11: Realization of a L = 75 system for NHC = 1. Left: Fracture (black)
and ME (orange) surface. Notice that the damage is diffuse all across the system.
Right: fuse (running from 1 to the total number of fuses) that is healed/burnt each
time step.

In contrast, figure 5.12 shows the effect of breaking the system after dam-
age has accumulated onto certain shear bands. If we start burning fuses after
NHC = 103 healing cycles, which corresponds to an average accumulated plas-
tic strain of order 103βithij /(kijLy) per site, this surface is so weak due to the
accumulation of deformation that is burnt very fast, with no trace of damage
away from the fracture surface. In the steady-state, the strain would be com-
pletely localized and the ductile surface would be exactly the ME surface for
a finite but large NHC in a finite sample. The small differences that persist in
figure 5.12 between the ductile fracture surface after NHC = 103 and ME are
due to the yet incomplete localization of the system that was broken before it
reached the plastic steady-state.

In the DRFM the yield localization behaves randomly for small NHC as we
saw in the right panel of figure 5.11, except that, due to stress enhancements,
a degree of local “clustering” exists, and it increases slowly along the stress-
strain curve until the final localization of damage and yielding as the fracture
surface starts to be formed, as it is depicted in the right panel of figure 5.12.
Such a trend is analogous to what is seen in the brittle RFM for damage
accumulation [Alava et al. 2006]. This is interesting since such local plastic
strains can be measured in experiments.
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Figure 5.12: Realization of a L = 75 system for NHC = 103. Left: Fracture and
ME surface. Notice that, in contrast with figure 5.11, there are no broken bonds away
from the main fracture path. Right: fuse (running from 1 to the total number of fuses)
that is healed/burnt each time step showing the strong and progressive localization
of damage in time.

In figure 5.13, we study the damage localization degree by calculating the
average ratio between the number of fuses needed to be burnt in order to
disconnect the system, nD, and the number of fuses of the corresponding ME
surface, nME.
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Figure 5.13: Average localization curves for different system sizes showing the
transition from randomly spread damage to localization onto a line.
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In the plastic steady-state (NHC → ∞), the strain is completely localized
and nD = nME, as shown in figure 5.13. This quantifies how, as we increase the
number of healing cycles, the fracture occurs only in the previously damaged
surface, that progressively tends to the ME path for the corresponding disorder
realization.

In figure 5.14 we depict the spatial distributions of damage. The average
damage profile p(y) is calculated from the fraction of broken bonds nb(y) along
the y direction and is computed as p(y) = 〈nb(y)〉/Lx, where the averaging is
obtained by first shifting the damage profiles by the center of mass and then
averaging over different samples [Nukala et al. 2004].
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Figure 5.14: Average damage profiles for the DRFM in a system of size L = 128
for different values of NHC .

Strong localization of damage is demonstrated by the distribution p(y)
becoming narrower for larger NHC , as the material is allowed to accumulate
more local irreversible strain. Prior to the growth of the final crack, there
appears to be only local correlations in the damage similarly to what happens
for the brittle RFM [Nukala et al. 2004, Reurings and Alava 2005], and the
maxima in the profiles arise from the crack path. This demonstrates again
how, with an increased number of healing cycles, fractures tend to only occur
in the final crack surface, which progressively tends to the ME path as the
material is made more ductile.

Figure 5.15 shows the excellent finite-size data collapse with the functional
form

p(y) = p(L/2)f [(y − L/2)/LζME ], (5.6)
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for the average profiles of accumulated damage for very ductile samples (NHC =
5 × 103) with the local roughness exponent ζME = 2/3 corresponding to ME.
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Figure 5.15: The corresponding data collapse for different system sizes in the case
of large ductility NHC = 5 × 103.

We also observe in figure 5.16 that, in the quasi-brittle limit, damage is
volume-like, as expected for RFM [Nukala et al. 2004], while in the extremely
ductile case damage scales as ∼ L, as the failing elements concentrate at the
one-dimensional crack.
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Figure 5.16: Scaling of the total number of broken fuses with system size. As the
number of healing cycles increases, there is a transition from damage spread across
the whole system, as expected for the brittle RFM, to damage localized onto a line.
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5.3.4 Avalanche distribution

We measure strain avalanches as the total strain accumulated in the system
between two external stress increments. In the DRFM the avalanche size is
given by

s =
n∑

i=1

∆i/Ly, (5.7)

which corresponds to the sum of the voltage sources ∆i added to the fuses
between two external voltage increments and n is the number of fuses involved
in the avalanche.

Figure 5.17 shows how the distribution of strain bursts for a sample of
size L = 128 evolves towards the yielding point. It can be observed that
the cutoff increases as the stress reaches the critical point, with an exponent
that approaches τ = 3/2. This is in agreement with theoretical predictions
[Zaiser and Moretti 2005] and experiments [Dimiduk et al. 2006, Miguel et al.
2001, Richeton et al. 2006, Schwerdtfeger et al. 2007, Wang et al. 2009, Zaiser
et al. 2008]. In particular, recent measurements of the distribution of shear
avalanches in ductile metallic glasses [Sun et al. 2010] have reported very
similar values of the avalanche exponent.
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Figure 5.17: Statistics of strain avalanches in the DRFM for β = 0.1 in a very
ductile sample. Avalanche distribution for a single realization in a system of size
L = 128 collected up to different times in the evolution as marked in the inset.

On the other hand, well above the yielding point the material response
is fully plastic and we measure a different strain avalanche distribution in
this plastic steady-state, i.e. when the strain has already become completely
localized and the average response in the global stress-strain curve in figure
5.5 is constant. To do this we start to record statistics of strain avalanches
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well above the yielding point and obtain P(s) = L−D(s/LD)−τf(s/LD) with
τ = 1.1 ± 0.01 and D = 0.2 ± 0.01, where f is a finite-size scaling function
obtained by a data collapse for different system sizes. τ → 1 corresponds to
the plastic flow regime where the path of yielding sites effectively separates
the system into two parts.
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Figure 5.18: Avalanche distribution for the DRFM in the plastic steady-state, well
above the yielding point. Inset shows the corresponding data collapse.

5.4 Discussion

We have discussed a scalar lattice model for plastic deformation and fracture
in elasto-plastic heterogeneous materials from brittle to ductile behavior that
was developed as part of this Thesis. The model is a generalization of the
well-known random fuse model [de Arcangelis et al. 1985] for brittle fracture
but it could readily be extended to tensorial models with more degrees of free-
dom such as beam models [Alava et al. 2006]. Our ductile random fuse model
is able to accumulate plastic deformation before complete failure. Depending
on a model parameter, the model can interpolate between brittle failure or
perfect plasticity depending on how ductile the system is, or how much it can
yield. Due to the two intertwined dynamics of fracture and yielding the DRFM
presents a very rich behavior. In analogy to dislocation dynamics and other
scenarios of plastic deformation, for ductile systems the dynamics of yield-
ing is characterized by strain bursts [Dimiduk et al. 2006, Miguel et al. 2001,
Richeton et al. 2006, Schwerdtfeger et al. 2007, Wang et al. 2009, Zaiser et al.
2008] that are found to be power-law distributed with an exponent τ ≈ 1.5,
which is to be compared with experiments reporting τ = 1.4 − 1.6 [Dimiduk
et al. 2006, Miguel et al. 2001, Richeton et al. 2006, Schwerdtfeger et al. 2007,
Wang et al. 2009, Zaiser et al. 2008] and close to an earlier theoretical pre-
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diction, τ = 3/2 [Zaiser and Moretti 2005]. Plastic deformation localizes into
shear bands until a crack develops. The model exhibits a transition from
purely brittle to fully ductile fracture, and includes both limits. A small ac-
cumulation of yield strain corresponds to quasi-brittle behavior. In contrast,
as ductility is increased the resulting fracture paths gradually approach ME
surfaces, and the damage spread decreases. Future directions from here in-
clude studying the DRFM in three dimensions, exploring the effect of adding
hardening to the non-elastic part of the element response, and studying the
correlations between serrated flow and shear banding.
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List of Abbreviations

AE Acoustic Emission

(B)MG (Bulk) Metallic Glass

DP(RM) Directed Polymer (in Random Media)

DRFM Ductile Random Fuse Model

KCL Kirchhoff Current Law

ME Minimum Energy

MF Mean Field

PDF Probability Density Function

PP Perfect Plasticity

PPRFM Perfectly Plastic Random Fuse Model

RFM Random Fuse Model

STZ Shear Transformation Zone
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Picallo, C. B., López, J. M., Zapperi, S., and Alava, M. J. In preparation
(2010).

B.2 Other publications

Picallo, C. B. and Riecke, H. Adaptive oscillator networks with conserved
overall coupling: sequential firing and synchronized states. Submitted to
Phys. Rev. E (2010).
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Appendix C

Resumen en Castellano

La dinámica de fractura y el origen de la plasticidad en medios amorfos, es
decir, aquellos que no cuentan con una estructura cristalina subyacente, es de
gran interés tanto desde el punto de vista fundamental como desde la pers-
pectiva del interés tecnológico en diversos frentes. El desarrollo de nuevos
materiales se nutre del conocimiento en profundidad de los procesos que do-
minan la deformación en los materiales. Es especialmente importante conocer
los efectos de tamaño sobre las leyes de comportamiento de los materiales
para el desarrollo de tecnoloǵıas a la nanoescala. Asimismo, las estructuras
jerárquicas presentes en los tejidos biolólogicos constituyen un campo que
comienza a ser explorado actualmente y que abre la puerta a numerosas apli-
caciones en el ámbito de los biomateriales [Buehler and Keten 2010]. Es por
ello que el conocimiento de las propiedades que rigen la deformación y frac-
tura de los materiales a nivel fundamental es de gran importancia. En este
sentido son de gran interés los llamados modelos mesoscópicos [Alava et al.
2006] que abogan por describir el material a un nivel en el que las interacciones
atómicas dejan de ser esenciales y el sistema se puede tratar como un conjunto
de elementos interactuantes, cada uno de ellos con una determinada ley consti-
tutiva. Estos modelos simplificados se inspiran en el hecho de que los mismos
fenómenos de deformación y fractura pueden observarse a todas las escalas,
desde en los terremotos en la corteza terrestre hasta en muestras de materiales
de tamaño nanométrico y, además, exhiben el mismo tipo de comportamiento
intermitente, con presencia de distribuciones de ley de potencias tanto en el
espacio como en el tiempo. Esta universalidad sugiere que los mecanismos
esenciales del fenómeno no deben encontrarse ni en la estructura microscópica
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ni en la macroscópica del sistema sino que responden a leyes más elementales
como simetŕıas y leyes de invarianza del problema. Estas propiedades colocan
a la fractura y la plasticidad en la cercańıa de los fenómenos cŕıticos y su
posible explicación como una transición de fase es aún controvertida [Alava
et al. 2006, Zaiser 2006].

El objetivo de esta tesis es el estudio de la deformación y fractura de
materiales amorfos. Para ello, describiremos el medio de manera discreta
mediante elementos que pueden comportarse de manera frágil o dúctil. Los
materiales frágiles se comportan de manera elástica –es decir, la deformación
desaparece una vez que la fuerza que la causa es retirada– hasta que fallan de
manera definitiva produciéndose una fractura macroscópica. Por contra, los
materiales dúctiles comienzan a acumular deformaciones de tipo plástico tras
una primera fase elástica. Las deformaciones plásticas son irreversibles, de
carácter permanente y la fractura en este régimen es diferente, incluso a veces
a simple vista, de las fracturas en materiales frágiles. El ĺımite de plasticidad
perfecta se alcanza cuando, en el régimen plástico, la deformación aumenta
de manera indefinida sin incremento de la tensión mecánica en el medio, de
manera similar a lo que ocurre en un fluido.

Dado que no estamos interesados en una descripción fenomenológica de los
materiales sino más bien en los mecanismos fundamentales responsables de los
procesos de deformación y fractura, usaremos un sencillo modelo escalar, el
Random Fuse Model (RFM) [de Arcangelis et al. 1985], en el que se estudian
las propiedades mecánicas del medio a través de un análogo eléctrico, donde
cada elemento de la rejilla es un fusible que se comporta de manera óhmica –
elástica– hasta un cierto umbral a partir del cual se puede convertir en aislante
–fractura frágil– o mantener su corriente constante –plasticidad perfecta–. El
desorden en el material se puede introducir de manera muy sencilla asignando
valores a los umbrales de los fusibles de acuerdo a una cierta distribución de
probabilidad.

Cuando un material se rompe, la enerǵıa acumulada se disipa a través
de varios procesos. Entre ellos destaca la emisión acústica por su utilidad
para extraer información del proceso de fractura a nivel microscópico. Este
fenómeno presenta una estructura espacio-temporal definida que se caracteriza
por la presencia de distribuciones de actividad que obedecen leyes de escala en
forma de ley de potencias con exponentes caracteŕısticos. Este tipo de com-
portamiento parece ser de carácter universal y está presente en otros muchos
sistemas a diversas escalas, desde terremotos en la corteza terrestre al ruido
de Barkhausen en materiales ferromagnéticos [Sethna et al. 2001]. Todos ellos
se distinguen porque la dinámica se produce en forma de avalanchas carac-
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terizadas por una distribución de tamaños y tiempos de espera en forma de
ley de potencias, similares a las observadas en las inmediaciones de un punto
cŕıtico.

En el Caṕıtulo 3 hemos estudiado la enerǵıa disipada en el RFM con el
objetivo de comparar su estad́ıstica con la de la emisión acústica en experi-
mentos de fractura frágil. Hemos estudiado la distribución de probabilidad de
diferentes estimadores de la enerǵıa liberada. Nuestros resultados indican que
existen dos regiones muy diferentes dependiendo de la escala de enerǵıas en
que centremos nuestra atención, separados por una enerǵıa t́ıpica. La región
de enerǵıas bajas se caracteriza por un decaimiento en ley de potencias de
la forma P(E) ∼ E−1/2 que es robusta e independiente del tipo de rejilla
utilizado y su aparición está ligada a la naturaleza cuasi-estática del modelo,
tal y como se demuestra en la sección 3.2 por medio de relaciones de escal-
ado. La estad́ıstica por encima de la enerǵıa t́ıpica E× presenta un escalado
P(E) ∼ E−2.75 que se extiende a lo largo de varias décadas en enerǵıa. Este
régimen de enerǵıas altas resulta ser de gran interés debido a su papel como
indicador de la proximidad de la fractura en el material ya que, mientras que
el exponente de las enerǵıas bajas es constante a lo largo de todo el proceso
de carga del material, el exponente de enerǵıas altas está en evolución cons-
tante. La influencia de relajar la dinámica cuasi-estática del medio también
es analizada. De esta manera, aparece un único régimen P(E) ∼ E−1 que
domina toda la distribución. Estos resultados fueron publicados en [Picallo
and López 2008].

En el Caṕıtulo 4 nos hemos centrado en materiales que se comportan de
manera elástica-perfectamente plástica utilizando una versión elasto-plástica
del RFM. Mediante simulaciones numéricas y argumentos teóricos hemos de-
mostrado que las superficies de fluencia y las superficies de mı́nima enerǵıa
en el medio corresponden a problemas de optimización diferentes y, de he-
cho, el ĺımite de fluencia es menor en el caso perfectamente plástico. Se han
estudiado además las propiedades de rugosidad, distribuciones de enerǵıa y
distribuciones de tensión de fluencia demostrando que la superficie de fluen-
cia perfectamente plástica no es univaluada y es esto lo que le proporciona
unas caracteŕısticas de multiafinidad que evidencian las diferencias con las
superficies de mı́nima enerǵıa, de carácter autoaf́ın. Estos resultados fueron
publicados en [Picallo et al. 2009].

En el clásico RFM elástico-perfectamente plástico no existen avalanchas
de deformación, al contrario de lo que se observa experimentalmente en los
medios que exhiben deformaciones plásticas. Es por ello que en el Caṕıtulo 5
introducimos un modelo que, preservando la atractiva simplicidad del RFM,
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es capaz de reproducir avalanchas de deformación. De hecho, mostramos
que su distribución escala con el mismo exponente encontrado usualmente en
experimentos y predicho también por teoŕıas de campo medio. Este modelo
puede describir materiales tanto frágiles como dúctiles –tanto perfectamente
plásticos como con endurecimiento– ajustando un único parámetro que mide
la ductilidad del material. La deformación se localiza en bandas hasta que
el material supera su umbral de ruptura y se desarrolla la fractura final. Se
estudian propiedades de localizacion, distribución del daño en el material y
la transición del ĺımite frágil al perfectamente plástico. El modelo exhibe un
comportamiento muy rico y que proporciona gran cantidad de posibilidades
por explorar. Estos resultados se encuentran en [Picallo et al. 2010a;b].
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