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The wonderful noonday silence of a tropical forest is, after all,

due only to the dulness of our hearing; and could our ears catch

the murmur of these tiny maelstroms, as they whirl in the in-

numerable myriads of living cells which constitute each tree, we

should be stunned, as with the roar of a great city.

Thomas Huxley (1868)
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1
Introduction

1.1. The physical cell

The definition of Physics given by the Oxford English Dictionary is the branch

of science concerned with the nature and properties of matter and energy. Such

a definition is quite extensive, everything is made of matter. Therefore, how

is Physics distinguished from other branches of science? Similar questions arise

when looking for the definition of other areas of scientific knowledge, being im-

possible to isolate them from the rest of branches of knowledge. Despite this

evident connection between scientific branches, each one has taken a different

path along history studying different problems, developing its own jargon and its

own set of techniques that usually hide its connection with the rest.

For instance, a biologist would define the cell as the minimal unit of life that

holds some characteristic functions, such as feeding itself, moving or reproducing.

Whenever a deeper description is requested, a traditional biologist will recall the

constituents of the cell describing its organelles and how they are related to the

different functions of the cell. An even more detailed portrait will lead to descrip-
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CHAPTER 1. INTRODUCTION

tions of the biochemical structures of the organelles or the biochemical reaction

networks that drive all the chemical processes regulating the cell inner working.

On the other hand, a classical physicist observing a cell will describe it as a

complex system out of equilibrium where matter aggregated at different scales

is continuously transducing between energy, matter and information. These two

parallel descriptions, the one from the biologist and the one from the physicist,

are in fact the same. A cell feeding itself is nothing else than the cell getting

matter from the exterior and processing it to get useful energy.

As a matter of fact, biology and engineering are two sides of the same coin.

Engineering is regarded as the human skill to build structures and machines able

to have a certain function, whereas, biology studies the structures that nature,

through natural selection, has developed. Those natural structures become the

tools that allow living systems to perform their different functions. It is, thus, not

casual that nature and engineering have converged many times to similar solu-

tions to akin problems. Sometimes, the convergence has occurred independently.

This situation, regarded in evolutionary biology as convergent evolution, is the

case, for instance, of the use of Earth’s magnetic field as an orientation mech-

anism. Even though human being uses compasses since Ancient China, many

biological systems had already expertised the orientation through Earth’s mag-

netic field. This is the case of Magnetospirillum gryphiswaldense, a bacterium

that can contain magnetite (Fe3O4) crystals that orientate the bacterium with

Earth’s magnetic field [73] (Fig. 1.1). Other times, the convergence between en-

gineering and nature results from the human observation of nature as it happens

with the human devising of planes, inspired by birds.

Accordingly, the benefits of this coupling between engineering and life sci-

ences is mutual. Not only the insight into biological systems requires the phys-
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1.1. THE PHYSICAL CELL

Figure 1.1: Example of convergent evolution in design between mankind and nature.

Left: The compass’ magnetic pointer orientates with Earth’s magnetic field. Right:

A Magnetospirillum gryphiswaldense containing a chain of magnetosomes enclosing

magnetite particles. The magnetic chain helps the bacterium to get oriented. Image

extracted from [73].

ical knowledge to understand the mechanisms by which living systems manage

energy and matter, but also the study of biological systems reveals new optimi-

sation ideas [18].

This discussion on the intersection between biological and physical sciences

can also be applied to nanometric scales, describing the working of a cell as a

set of enclosed natural machines and structures that constitute the minimal unit

of life. This alternate definition of a cell is again compatible with the one given

by biologists and physicists and reveals again how diffuse are the limits between

different scientific areas and how gathering the available scientific knowledge is

mandatory to get a full insight of nature.

The picture of a cell composed by machines has had a long trail along history

[11, 17], little by little converging to the actual concept of molecular machines that

began in the XXth century with their first experimental observations. Actually,

the current picture of molecular machines was finally drawn with Alberts famous
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CHAPTER 1. INTRODUCTION

paper [3] pointing out the physical relevance on the study of subcellular processes

and the importance of interdisciplinarity in this quest.

1.2. Molecular Machines

The molecular machines referred in the previous section are not any abstract

construction. Molecular machines are real macromolecules, mainly proteins, that

continuously transduce between different kinds of energy. The output of the en-

ergetic transduction can be a mechanical work i.e. to attain a net displacement

against a hindering force. In this case, molecular machines are also referred as

molecular motors or motor proteins. However, both terms, machine and motor,

are usually regarded as synonyms in the literature.

For molecular motors, the interrelation between structure and function is even

closer than in other machines. Molecular proteins are nothing else than a poly-

meric chain built out of hundreds or even thousands of amino acids. Nonetheless,

only 20 different natural amino acids are necessary for the construction of the

machinery of life. The difference between amino acids in size, polarity, charge

or hydrophobicity gives place to different interactions of the proteinic chain with

itself and with the surrounding molecules of the environment, folding the protein

(Fig. 1.2) [83]. Thus, the specific composition of the protein gives place to its

actual biochemical tridimensional structure and, more than that, to its function.

Furthermore, the structure of an individual molecular machine is not unique, but

several marginally stable configurations are compatible with the primary struc-

ture of the protein. This pliancy gives the motor its mechanical abilities. It is

the product of this complex coupling between chemical and spatial properties

what gives molecular machines their ability to transduce between different kinds

of energy [4, 83].

4



1.2. MOLECULAR MACHINES

Figure 1.2: . Proteins are chains of amino acids. Top left: Glicine, The smallest

amino acid. Top right: Triptophan, the largest amino acid. Bottom: Scheme of a

protein backbone formed by only 7 amino acids. Only the functional groups amine

(−NH2) and carboxyl (−COOH) are shown. The position of the lateral chain that will

identify each amino acid is marked with a black circle. Additionally, one amino acid

is highlighted (orange box) where the rotational angles of the chain are specified. The

rotation of the protein backbone allows its folding that will be set by the actual amino

acids conforming the chain. Colour code: Hydrogen (white), Carbon (grey), Oxygen

(magenta) and Nitrogen (blue). The schemes are based on those of [83].
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CHAPTER 1. INTRODUCTION

The functions that molecular machines can accomplish are multiple. Here a

brief tour among different motors and their function is provided. In this tour,

molecular motors are separated in three groups regarding their function, namely,

cytoskeletal machines, machines manipulating the structure of other molecules

and transmembranal translocators. Such classification should only serve as a

guide to review the high diversity of molecular motors in a more ordered way.

However, some motors could lay in different of the categories introduced. Fur-

thermore, only some of the existing motors and their function are presented in

order to show the high variety of subcellular processes driven by molecular mo-

tors. A more thorough review on the topic can be found in [11, 72].

Probably the most famous molecular motors are those interacting with cell cy-

toskeleton. Such motors comprise kinesins, myosins and dyneins, and are able to

attach and detach actively to actin and microtubule filaments. Those polymeric

filaments act as tracks for the cytoskeletal molecular motors. The operation of

cytoskeletal motors is devised to generate a force on the track that can attain

many different purposes. Usually, the force entails an active transport. This di-

rectional transport along the cytoskeleton is useful to transport big cargoes such

as vesicles [86] (Fig. 1.3). In other cases, cytoskeletal motors can act collectively

such as in the formation of membrane nanotubes [9, 35], the dynein coordination

in motile flagella able to propel a cell [66, 77] or the billion of myosins that work-

ing in coordination contract muscles [23].

Additionally, cytoskeletal tracks, namely, microtubules and actin can act as

motor themselves by generating a force through its active polymerisation and de-

polimerisation. This force has also many functions as its the case of cell motility

by lamellipodia [78].
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1.2. MOLECULAR MACHINES

Figure 1.3: Examples of cytoskeletal motors. Top: Kinesin transporting a cargo

along a microtubule. Kinesin surface reconstructed from 1N6M file from PDB. Bottom

left: Confocal image of a membrane nanotubule extracted by cooperation of several

kinesins from a vesicle located in a microtubule network. Image extracted from [9].

Bottom right: Transmission Electron Microscopy of the cross section of a flagellum

from Trimastix pyriformis. The radial structure of the flagellum comprises a ring of

9 microtubule pairs and a two central microtubules. The different microtubules are

actively linked by dyneins that produce a coordinated shear between microtubules

generating the oscillations of the flagellum. Image extracted from [48].
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CHAPTER 1. INTRODUCTION

A second large group of molecular motors contains those manipulating molecules.

In general this manipulation consists in the catalysis of the synthesis or degra-

dation of molecular complexes. In this case, the input and the output energy

is, usually, chemical energy. However, in order to perform its function there is

always an active mechanical deformation of the structure of the motor. This

group contains all the machines in charge of the DNA translation process: the

chromatin remodellers unwrap the DNA that is unzipped by the helicase. Follow-

ing it, the single stranded DNA is transcribed into RNA by the DNA-dependent

polymerase. Finally, the translation process is driven by the ribosome that syn-

thesises the protein.

Other motors in the same group are in charge of manipulating smaller molecules.

This is the case of the ATP-synthase that energises the cell by resynthetisising

ATP molecules in the cell. This motor will be one of the main aims of study of

the current work and its description is retaken in more detail in Sec. 1.3.1.

Finally, the last group of machines is located at biological membranes. Mem-

branes are natural walls dividing the cell and can control the molecular transport

across them. This last group contains the transmembranal machines that act as

an active translocator for different molecules across the membrane. Each translo-

cation machine is devoted to transport a specific molecule ranging from ions to

DNA. The role of the translocators is not only to act as a passive channel but

also to provide very large forces as it is the case of the DNA-packaging motor

found in many viruses [39].

The motor classification chosen takes into account the final output of the mo-

tor disregarding the necessary energetic input. A classification according to the

8



1.2. MOLECULAR MACHINES

input would reveal three different energetic natural inputs in the cell. The main

energetic source is the hydrolysis of ATP or other nucleotide derivatives. Such

molecules are found in an unstable energetic state that require a long time to be

hydrolysed. This time is long enough to diffuse around the cell and arrive at a

molecular machine. Molecular machines act as catalysers of its hydrolysis reac-

tion taking the most of the released energy. A second source of energy is found in

membranes. Membranes can maintain different ionic concentration at each side.

Hence, keeping at both sides a difference in electrostatical and chemical energy.

Thus, in the presence of an ionic channel across the membrane, a directional flux

of ions can take place. Some transmembranal machines can use this flux of ions

to extract energy from it. Finally, a third natural source of energy is presented

directly in the form of mechanical work. Even though, the initial source of en-

ergy is usually chemical energy, intermediate processes, often between coupled

motors, transmit their energy through mechanical work. The two main sources

of chemical energy, ATP hydrolysis and ionic gradients are discussed in detail in

Chapters 3 and 4, each section devoted to a certain energy input.

Despite the initial discussion about the relation of physics and biology, the

high interest that physicists had in molecular motors arrived as a result of one

important fact. Molecular motors are systems operating at a nanometric scale

that could answer to old questions in physics. Specially those related with the

energy management at the nanoscale, where the averages provided by thermo-

dynamics or classical statistical mechanics must be revised. This, together with

the advance in the last years on the manipulation of single molecules, has lead

to several physical works on the topic [52, 64, 85]. Indeed, the physics leading

subcellular processes is very different to the physics governing macroscopic ma-

chines, thus behaving counterintuitively. For instance, the importance of dissipa-

tive forces over inertial effects result in a low Reynolds number world completely
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CHAPTER 1. INTRODUCTION

different to the one of macroscopic machines [61]. The lack of inertia in the sub-

cellular world provides a scenario in which every movement of a body between

two points requires to be assisted along the whole trajectory. At the very moment

the driving input stops, the body will cease its directional advance. Additionally,

the relevance of dissipative forces results in a high heat dissipation that must be

managed wisely. It is also very significant the effect of thermal fluctuations in the

motion of any body at the subcellular scale. The magnitude of thermal energy,

of the order of pN nm, is comparable to other energetic scales of the system. The

hydrolysis energy of ATP is 20 times the thermal energy and the usual energy of

an ion crossing a membrane around 5 times [4]. Thus thermal fluctuations com-

ing from the thermalisation of the particles conforming the surrounding media

of any motor will always be relevant giving place to noisy trajectories where the

instantaneous velocity of the motor will be larger than its average velocity. All

this issues are thoroughly addressed and quantified in Chapter 2 where a theo-

retical framework for studying molecular motors is proposed making emphasis in

the general aspects that differentiate the working machines at both scales.

Following nature, the human knowledge of nanoscience has allowed also the

design of artificial molecular motors. So far, molecular motors created are much

smaller than natural molecular machines but suggest an appealing future in the

control of the nanoscopic world. Examples include nanocars driven by light or

electrical impulses (Fig. 1.4), nanoswitches, or even nanomuscles [30, 33, 43]. Ac-

tually, experimental advances not only include the generation of artificial molecu-

lar motor from scratch but have also achieved the artificial modification of natural

molecular motors. This is the case of the modified dynein created in Zev Bryant’s

group [10]. After the observation that the directionality of dyneins depended in

the length of its neck, a dynein was devised with a contractile neck driven by

external controllable inputs. Such inputs can be chemical such as the introduc-

10



1.2. MOLECULAR MACHINES

Figure 1.4: Examples of artificial molecular motors. Left: An organic nanocar devel-

oped experimentally by [33]. The nanocar consists on a rigid carbon chassis provided

with two planar molecules at each side that can rotate. The directional rotation results

from a chemical reaction driven by an electrical impulse supplied by an AFM micro-

scope. Image extracted from [33]. Right: Modified dynein. The length of the neck can

be provided with a light sensitive molecule, thus having a light controlled length of the

neck. Since the length of the neck determines the directionality of the dynein along

the actin filament, the motor results in a bidirectional controllable artificial molecular

motor. Image extracted from [10].

11



CHAPTER 1. INTRODUCTION

tion of a certain substance in the sample, or physical, such as the control of the

contraction of the neck with light. Thus, in this last case, the direction of advance

of the dynein can be controlled simply by illuminating the sample (Fig. 1.4).

1.3. Rotatory Molecular Machines

This work is mainly devoted to the analysis of rotatory molecular motors

i.e. molecular machines that involve a rotatory motion in its operation. Actu-

ally, the best known examples are ATP synthases and the Bacterial Flagellar

Motors. Also motors working with double-stranded DNA such as helicases or

DNA-translocators can be considered rotatory motors since they work on the

twisted DNA helix. However, the current work will only focus in the two former

cases, studying more exhaustively the ATP synthase.

1.3.1. F0F1–ATP synthase

ATP, often called the energy currency of the cell, arrives at the catalytic sites

of different motors through diffusion along the cell. Altogether, so many sub-

cellular processes extract energy from ATP hydrolysis that the ingest of each

necessary ATP molecule is unfeasible for any living system. Actually, an human

being uses each day an amount of ATP comparable to its own weight [8]. Nev-

ertheless, cells have a solution for this problem: the recycling of the hydrolysis

of ATP waste products. This process occurs in the F0F1–ATP synthase which is

able to take the hydrolysis products of ATP, namely, ADP and phosphate (Pi),

and join them back generating a new active ATP molecule. Clearly, the energy

necessary for the ATP synthesis is not free. F0F1–ATPsynthase is located at a

membrane obtaining its energy from the Proton Motive Force of ions crossing

12



1.3. ROTATORY MOLECULAR MACHINES

this membrane. In eukaryotic cells, the F0F1–ATP synthase is found in the in-

ner membrane of the mitochondria, it can also be found in cloroplasts of plants

and algae, while in prokaryotic cells is found in the plasma membrane. Here a

new question arises, where does this membrane proton potential comes from? In

this case, the membrane potential is the outcome of a set of complex electron

transport chains resulting from processes such as the oxidation of food or light

absorption i.e. from the processing of cell’s external energetic input [4]. Thus

the role of F0F1–ATP synthase is not that of generating energy but transducing

the local energy of a membrane potential into an energy carrier in the form of

ATP able to travel along the cell.

Another particular characteristic of F0F1–ATP synthase is the way energy is

transferred from the ionic potential to the ATP molecule. The energetic trans-

duction takes place following two coupled mechanisms that take place at different

parts of the motor. These parts are the transmembranal subunit F0 and the glob-

ular hydrophilic subunit F1 (Fig. 1.5). The hydrophobic part F0 consists of a

channel that spans all the membrane and a rotor (c-ring). Both parts, chan-

nel and rotor are coupled transforming the spontaneous flux of ions across the

channel into a directional rotation of the rotor. Thus, the F0 subunit works as a

turbine transducing a flux into a rotatory motion. The F0 subunit is attached to

a central asymmetric shaft (γ shaft) that transmits the rotation along the motor

to the F1 subunit. The F1 globular subunit, unable to rotate, surrounds the

asymmetric shaft. This way, the rotation of the F0 subunit is transmitted to the

F1 subunit as an internal mechanical deformation of the F1 subunit through the

shaft. This internal mechanical deformation is the input energy that the F1 sub-

unit, that is affine to ADP and Pi, uses to synthesise ATP.

Thus, F0F1 is a molecular machine composed itself by two well differentiated
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CHAPTER 1. INTRODUCTION

Figure 1.5: F0F1–ATP synthase molecular motor. F0 subunit works as a turbine with

a flux of ions H+ ions through the stator (stator) inducing a rotation in the c-ring rotor

(blue). The rotation is transmitted through the γ shaft (yellow) interacting with the

F1 subunit (orange and red) where the ATP synthesis takes place out of its hydrolysis

products ADP and phosphate. Surface plot of protein based on structures 1Q01 and

1C17 from PDB.
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1.3. ROTATORY MOLECULAR MACHINES

machines, the F0 and the F1. This classification is not only an artifact. Both

motors can be isolated in the lab where they can operate separately. Thus, the

subunit portion F0 could be employed in the lab to attain a usable rotational

motion, or one can synthesise ATP by rotating the γ shaft of F1 motor with

magnetic tweezers. Additionally both motors are also reversible in the sense that

they can transduct energy in opposition to their natural direction. F0 can pump

ions when a strong enough torque is applied on it and F1 can act as a motor

hydrolysing ATP to rotate the γ shaft. The direction of the transduction will

depend on the energetic balance between the driving forces [29]. Among both

motors, F1 in its hydrolysis regime has been the more studied one since it is

hydrophilic and its operation does not require the application of any external

torque [96]. For this reason, when the F1 motor is isolated, it is often referred as

F1–ATPase. The operation of F1–ATPase is analysed in depth in Chapter 3.

1.3.2. Bacterial Flagellar Motor (BFM)

Often, bacteria need to propel around the media in order to look for more

suitable conditions. Nature has found different solutions to this problem being

one of them the propelling through flagella. Bacterial flagella are very different

to eukaryotic ones. Eukaryotic flagella consist on soft long tails that oscillate

through the active action of coordinated dyneins[66]. In contrast, bacterial flag-

ella are rigid helical structures that are rotated by a molecular motor located at

the joint between the flagellum and the bacteria, the Bacterial Flagellar Motor.

BFM is one of the largest molecular motors in the cell consisting on a rotor

of ∼ 50 nm diameter crossing the inner and outer membranes of the bacteria

where different stators can attach. As it happens with the F0 motor, the stators
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CHAPTER 1. INTRODUCTION

(Mot A/B or Pom A/B) consist on transmembrane channels coupling a electro-

chemically ion driven gradient with the rotation of the motor. Thus, with the

force supplied by the different stators, the BFM can achieve angular velocities of

100.000 rpm, which is faster than the engine of a Formula 1 car [7]. However,

the rotation of the BFM is not continuous. Instead, bacteria of different strains

have developed different strategies such as changes in the velocity, stopping or

even changing the rotation direction of the rotor. This, together with thermal

fluctuations, allows bacteria to explore the extracelullar medium in the research

for food. This mechanism is known as chemotaxis [4].

In contrast to the F0 motor the stators of the BFM are not fixed to the mo-

tor. Instead, the bacterium contains a pool of stators that attach and detach

continuously from the rotor with an average attached time of ∼ 1 minute. This

mechanism can help bacteria to control the velocity and the energy transmitted

to the rotor depending on the requirements of the bacteria [63].

As it happens with the ATP-synthase, BFM also shows a certain degree of

modularity. In this case, different components of the BFM motor original from

different bacterial strains can be mixed together generating different functionally

BFM chimeras. For instance the stators of the BFM of the V. alginolyticus strain

(proteins PomA and PomB) that work with a flux of Na+ can be replaced by

the stators of E. coli (proteins MotA and MotB) that work with a flux of H+,

resulting in a functional rotation chimeric motor [79]. This picture of different

attaching/detaching motors that can act on the same track (in this case the ro-

tor) is not specific of BFM but have several similarities to the kinesin and dynein

motors walking along the microtubule filaments, which, in many scenarios, can

also act cooperatively.
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1.3. ROTATORY MOLECULAR MACHINES

Figure 1.6: Bacterial Flagellar motor. The motor is composed by a rotor (orange)

spanning the membrane of the bacterium and a set of stators (green) that only span

the inner membrane. The stators are not fixed to the membrane. Instead, stators from

a pool attach and detach continuously. In the figure, two stators are attached. The

stators obtain energy from the flux of ions (not in scale) across the inner membrane.

The energy is transferred to the rotor that transmits the rotation to the flagellum

(blue) that is elongated outside the bacterium. Scheme inspired in [7].
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CHAPTER 1. INTRODUCTION

To sum up, this introduction section points out the correspondence of phys-

ical and biological sciences. This becomes evident for the study of biological

molecular machines. Additionally, this coupling reveals multiple outlooks in the

study of molecular motors. Therefore, next chapter is dedicated to describe the

methodological approach used along this work. Following on, Chapters 3 and 4

will be devoted to apply this methodology to the analysis of particular molec-

ular motors and particular issues of cellular energy transduction. Finally some

conclusions and perspectives are provided.
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2
Biophysical methodology for

rotatory molecular motors

Even though there is a high variety of molecular motors, all of them share

common basic principles set by the physico–chemical environment in which they

work. These shared properties allow to formalise a common theoretical frame-

work that allows to tackle the comprehension of molecular motors. Hence, this

chapter is devoted to set the theoretical framework used along the rest of the

manuscript. Establishing a description formalism is important since alternative

theoretical approaches available in the literature are multiple [12, 88]. Every

theoretical approach designed to tackle a certain kind of molecular motor from a

different description level. Particularly, this work is devoted to rotatory molecu-

lar motors, therefore, the current framework will lay a especial emphasis on this

kind of motors. Actually, the physical magnitudes measured will be rotatory,

such as angles and torques. Once the theoretical description of molecular motors

is developed, it will settle the basis for the study of specific rotatory molecular

motors in Chapters 3 and 4.
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CHAPTER 2. METHODOLOGY FOR ROTATORY MOTORS

2.1. Stepping and cycles

The most usual experimental approach to study molecular motors consists in

tracking the spatial advance θ(t) of the molecular machine. Such experiments

reveal that the operation of molecular motors is based in the same principle as

their macroscopic counterpart. Both operate through closed energy transduction

cycles. During each cycle the motor transduces a certain amount of energy and

advances a fixed spatial length θ0. Even though the task of the machine is not

to achieve a net movement, there is always a motion of the motor associated

with the transduction process. This is the case of the full complex F0F1–ATP

synthase, which requires a rotation of the F0–γ subunit in order to attain the

transduction of an ionic gradient into the catalysis of the ATP synthesis reaction.

The spatial periodicity θ0 of the cycle comes fixed by the biomolecular struc-

ture of the motor. For linear motors, the structure is usually constrained by

the track of the motor e.g. the 8 nm symmetry of the tubulin, usually, track

of kinesins and some myosins. Rotatory motors are a different case since the

track is the motor itself and therefore the distance (actually an angle) θ0 comes

determined by the quaternary structure of the protein. For rotatory motors this

structure is accomplished through the circular aggregation of equivalent domains

that not only give the motor its rotational symmetry but also a functional track.

Thus, this symmetry is the one that selects the angle θ0. For instance, in the

case of the F1, constituted by three αβ subunits, the symmetry is a third of a

turn. This is shown in Fig. 2.1 together with other rotatory molecular motor

examples.

Out of this classification fall other molecular machines, not motors, that op-

erate in close structural configuration cycles. Such machines do not produce a

net displacement once the cycle is closed. An example of such machines is the

Na+/K+–ATPase which through a cyclic movement translocates actively sodium
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2.1. STEPPING AND CYCLES

and potassium ions across the plasma membrane. Even in this case, the evolu-

tion of an associated configuration coordinate θ(t) can be defined, and with it a

a cycle length θ0.

The identification of θ0 is not always straightforward. This is the case of mo-

tors with multiple stators where several cycles can happen at once, as it happens

with the BFM [79] or simply motors for which the experimental observations are

still incapable of resolving the different cycles of the motor. In these cases, the

distance θ0 is hidden from the observation of the motor trajectory θ(t).

On the other hand, besides θ0, the time necessary to complete the cycle de-

pends on the whole set of physicochemical processes occurring during the cycle.

Hence, each cycle of length θ0 and average duration T can be divided in sub-

processes, each i-th subprocess of length θi and duration ti. Again, the spatial

length of each subprocess is determined by the different structural configurations

of the motor at each stage,

θ0 =
∑
i

θi. (2.1)

On the contrary, the duration of each subprocess results from the chemical and

physical reactions defining the process. Thus, in contrast to the lengths θi, the

duration of the processes ti does not require to be deterministic and are usually

stochastic conditioned to the actual nature of the process as is showed later on

along this work. However, since each subprocess composes an independent part

of the cycle, the average duration of the cycle can be expressed as the sum of the

average times of each individual process,

T =

〈∑
i

ti

〉
=
∑
i

〈ti〉. (2.2)

Even though all the processes take a finite time, not all of them involve a net

spatial advance of the motor. Such processes are related with catalytic events

during which caption or release of molecules occurs, or chemical reactions un-
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CHAPTER 2. METHODOLOGY FOR ROTATORY MOTORS

Figure 2.1: Examples of cycle angular lengths coinciding with the symmetry of the mo-

tor. Top left: F1 subunit of yeast. Top right: F0 subunit of E.Coli. Bottom: Bacterial

Flagellar Motor of Treponema primitia. ATP–synthase surface structure reconstructed

from information of PDB structures 1QO1 and 1C17. BFM figure extracted from [45]
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2.1. STEPPING AND CYCLES

coupled to the motion coordinate take place. Hence, during these processes with

no change in the configuration of the motor relative to the spatial coordinate,

the motor “waits” for this process to finish in order to continue the transduction.

Since such processes do not entail any net movement, they are referred as dwells

and their duration as dwell times. They can also be referred as chemical pro-

cesses due to its catalytic nature. Both nomenclatures are used along the text.

In comparison, processes that do involve a net displacement are referred as me-

chanical processes since a net force is acting on the motor generating an advance.

The alternation of mechanical processes and dwell processes procure the typical

stepping trajectories observed in molecular motors (Fig. 2.2). Indeed, each mo-

tor cycle can be composed by several steps corresponding to different mechanical

and chemical processes. In practice, each step is considered only as such when

there is enough experimental precision to observe it. A long mechanical process

may divided in smaller mechanical processes separated by short dwell processes

not resolved experimentally. As a particular case, the F1–ATPase was initially

observed to operate with steps of a third of a turn while the increasing in the

temporal recording precision to the millisecond scale showed that each step is

divided in two substeps of ∼ 800 − 400, each one consisting in one dwell and one

mechanical process (Sec. 3.1).

Due to the catalytic nature of dwell times, they appear naturally as the inverse

of chemical rates and can be studied through the well known reaction kinetics

theory. However, this must be done carefully since classical reaction kinetics has

been developed during most part of twentieth century as the result of an average

over large amount of molecules conforming the studied sample. Nevertheless,

during the current century, the later advances in single–molecule techniques have

provided a new insight into the nature of the kinetic reactions studying the mech-

anisms by which two individual diffusing molecules find each other and how the
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CHAPTER 2. METHODOLOGY FOR ROTATORY MOTORS

Figure 2.2: Scheme of a trajectory of a molecular motor. Each cycle of length θ0

spanning a different random time (discontinuous vertical lines). In this case, each

cycle is composed by two subprocesses, one dwell and one mechanical stroke producing

the step–like trajectory.

intermediate reaction products take place until the reaction is complete. All this

information was not fully accessible through the study of an ensemble of unsyn-

chronised molecules. This new insight provides additional statistical information

of the reaction times which are naturally stochastic. This stochasticity affects

directly to the transduction cycle duration and may also affect to the actual

performance of the motor. Therefore, understanding the dwell times of molec-

ular motors requires not only the average value of the dwell times but also the

knowledge of their statistical properties [41].

The simplest reaction mechanism corresponds to the situation in which the

motor (M) must react with a certain substrate that is diffusing in the media (S)

such as ATP in the process of ATP caption.

M+ S
k−→ MS. (2.3)
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2.1. STEPPING AND CYCLES

In this situation the probability of an ATP diffusing into the motor is constant

in time and proportional to the concentration of substrate k[S] and therefore the

reaction can be described as an exponential process,

P (tdwell) =
e−k[S]tdwell

k[S]
, (2.4)

with a mean dwell time,

〈tdwell〉 =
1

k[S]
. (2.5)

This result is equivalent to the ensemble counterpart i.e. a first–order reaction

describing the decay of concentration of the substrate. However, both processes,

the substrate caption and the first–order reaction are different. The first–order

reaction describes how an amount of substrate (several molecules) react continu-

ously in the excess of a certain reactive, while the current case describes a single

reaction of a molecule from an ensemble with a single motor.

Once, the molecule caption occurs, different internal reactions may take place

in the ligand–protein complex (MS) before the motor is ready to begin the me-

chanical stroke (MS’),

M+ S −⇀↽− MS −→ MS′. (2.6)

This set of reactions depends on the actual nature of the processes necessary to

prepare the motor and may have different distributions that in average result in

a dwell time,

〈tdwell〉 =
1

k[S]
+ t0. (2.7)

Where t0 is a constant time independent of the substrate concentration. This

description states that the total dwell time is the result of two contributions:

the time that takes the substrate caption and the time spanned by a set of

internal reactions that do not depend on the concentration of the substrate of

average duration t0. The average dwell time expression (2.7) coincides with

the inverse of the reaction velocity of the Michaelis–Menten enzymatic reaction
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CHAPTER 2. METHODOLOGY FOR ROTATORY MOTORS

scheme. Actually, Michaelis–Menten kinetics result from a particular case of the

reaction kinetics of (2.6). However, in the current case the result is more general,

expressing the average dwell time as the addition of two processes, one depending

on the substrate concentration and another that doe not depends on it. As stated

before, equation (2.7) contains only a partial information about the dwell times,

and for each particular case, the different processes composing the dwell time

must be analysed leading to different time probability distributions.

The kinetic description could also be extended to the description of mechani-

cal times through a set of reactions describing the conformational changes taking

place during the transduction [5, 12, 88]. Actually, some molecular motor models

deal with all the dynamics through a set of reactions between a set of different

conformational states. This simple approach returns easy analytical and numer-

ical solutions and describe well the motor when the mechanical times are short

compared with the dwell times. However, this approach fails to introduce in the

description of the motor, dynamical magnitudes such as external torques applied

on the machine. On the other hand, in contrast to the pure kinetic model, the

motor can be described through and all atom molecular simulation in which ev-

ery atom composing the protein together with the ligands and the surrounding

molecules are taken into account. This description requires an exhaustive cal-

culation over all the forces that take place between the different constituents of

the motor every integration step with an accurate time resolution. Although

this is the most realistic description, actual computation facilities are unable to

reproduce the behaviour of the motor during a long enough time to reproduce

several transduction cycles [62]. Even more important, the all atom simulation

does not allow to find analytic results that help to understand the fundamental

mechanisms that drive the motor. The models proposed in this work take into

account an intermediate scenario in which all the forces are averaged to the effect

over a single spatial coordinate θ directly related with the motion observed exper-
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2.2. FORCES AND VELOCITIES

imentally [13, 88]. This dynamics is developed in the next section. In this level of

modelling, also kinetic reactions will be taking into account in the description of

the dwells. Despite all the different models available, there is no optimum model,

all of them leading to different insights of the motor, every model drawing a bit

of the complete whole picture of the working of these complex machines.

2.2. Forces and Velocities

Molecular Motors are subject to a very different scale than their macroscopic

equivalents. This change in scale not only sets the units in which the magnitudes

are described, but also the nature of the different relevant forces/torques that

drive their dynamics. Particularly, the small size of molecular motors increase the

relevance of the surface interaction of the motor with the surrounding molecules.

As it happens with a macroscopic body, a motor advancing through the medium

collides continuously with the surrounding molecules composing the medium. The

average reaction torque produced by the molecules always opposes the motion

and can be assumed to be proportional to the velocity τdrag = −γθ̇, where γ is the
proportionality coefficient called rotational friction coefficient. A body of inertia

moment I rotating under a constant torque τ0 and the corresponding drag force

presents a exponential velocity profile solution for the corresponding Newton’s

second law

Iθ̈ = τ0 − γθ̇ → θ̇ =
τ0
γ

(
1− e−t/tγ

)
, (2.8)

where the timescale tγ ≡ I/γ states two different behaviours for the particle. For

times lower than tγ , the particle follows the well known linear angular velocity

of an uniformly accelerated motion ω = τ0
I t. In contrast, for times above tγ the

body is found in an overdamped regime in which velocity saturates exponentially

to a steady state value ω = τ0
γ known as the limit velocity. This limit velocity is

27



CHAPTER 2. METHODOLOGY FOR ROTATORY MOTORS

independent of the inertia moment I and therefore is independent of the mass of

the body. Because of this, the time scale tγ is known as the time scale of inertia.

A similar result can be found for the linear motion case in which tγ = m
γx
, being

m and γx the mass of the body and the linear friction coefficient respectively. To

understand the relevance of tγ in molecular motors dynamics, it can be estimated

for a sphere of radius r advancing straight through aqueous medium,

tγ =
m

γ
=

4
3πρr

3

6πηr
=

2ρ

9η
r2, (2.9)

where the volume of a sphere of density ρ and the Stoke’s linear friction coef-

ficient of a sphere surrounded by a medium of dynamical viscosity η is used.

Thus, for a body of a typical size of r=100 nm, a density comparable to wa-

ter density ρ = 1000 kg/m3 = 10−15pNms2/nm4 and the viscosity of water

η = 1cP = 10−6pNnm−2ms results in a time scale of inertia of tγ = 0.2μs.

This value for the time scale of inertia is far smaller than the typical processes

occurring in molecular motors, usually in the millisecond scale. Therefore, the

relaxation to the limit velocity can be considered instantaneous. This fact results

in a velocity profile that at all times is proportional to the exerted force.

The drag force is not the only way in which the fluid particles interact with

the motor. Since the fluid molecules surrounding the motor are thermalised, they

are in motion continuously, colliding with the motor even when no driving force

is present (τ0 = 0). This results in a stochastic force ξ(t) of zero mean 〈ξ(t)〉 = 0

acting constantly on the motor. This force, known as Brownian force, can be de-

scribed through a delta–correlated Gaussian process [21] with an autocorrelation

(noise intensity) obtained from the equipartition theorem,

〈ξ(t)ξ(t′)〉 = 2γkBTδ(t− t′). (2.10)

Hence, the intensity of the Brownian force is proportional to the friction coef-
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2.2. FORCES AND VELOCITIES

ficient γ, which is a measure of the interaction of the body with the fluid, and

kBT , the thermal energy, which is a measure of the kinetic energy of the particles

composing the fluid.

The Brownian force can be introduced in Newton’s Second Law in the over-

damped regime t� tγ resulting in the overdamped Langevin equation

γθ̇ =
∑
i

τi(t) + ξ(t), (2.11)

where the constant torque τ0 has been substituted by the sum of all the torques

acting on the motor at a certain time t. Note that derivation of equation (2.11)

is not straightforward since the thermal force changes rapidly in time and cannot

be considered slower than tγ . A more rigorous derivation of (2.11), also known

as Einstein–Smoluchousky limit, can be found in [67, 88].

The term in (2.11) describing all the remaining torques
∑

i τi can be further

divided in two different sources. The torques generated by the motor in its natural

working τin, and the torques applied by an external agent τex, which is the case

of the experimental forces applied to study the motor. The torque generated by

the motor τin contains the mechano–chemistry of the motor and understanding

the response of τin to the different set of experimental parameters is one of the

main objectives of this theoretical approach,

γθ̇ = τin + τex + ξ(t). (2.12)

The torques applied by an external agent can be classified, in turn, in two different

kind of torques. Conservative torques τc that can be used to extract or introduce

mechanical work from the motor, and dissipative torques, such as the dragging

of an attached load, that are immediately dissipated to the bath. Usually, the

attached load link is strong enough to consider the load–motor a rigid entity. In

this case, the resulting drag force is the corresponding to a new larger effective
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CHAPTER 2. METHODOLOGY FOR ROTATORY MOTORS

friction coefficient,

γeff θ̇ = γ0θ̇ + γLθ̇. (2.13)

Where the subindexes label the natural internal friction of the motor γ0 and the

friction coefficient of the load γL, resulting in a new Langevin equation,

γeff θ̇ = τin + τc + ξ(t). (2.14)

The load link stiffness may not be rigid, in this case two spatial variables, one

for the motor and one for the load becomes necessary. This situation is fur-

ther analysed in Chapter 3. Despite the considerations on the nature of τex,

mathematical expressions (2.12) and (2.14) are identical. Therefore, the analysis

is continued directly with (2.14) without losing generality. However, the more

general expression (2.12) will be invoked when necessary.

Langevin equation (2.14) will be the starting point in the stochastic descrip-

tion of the trajectories of molecular motors in this manuscript. This equation

is not only useful because it contains all the dynamics of the motor allowing to

describe the performance and the energetics of the motor, but also because of the

simplicity to solve it numerically reproducing stochastic trajectories.

The first observable that can be extracted from (2.14) is the average angular

velocity of the motor over time,

ω ≡
〈
θ̇
〉
=
〈τin + τc〉

γeff
, (2.15)

where the Brownian force is cancelled in average. Nevertheless, effects due to

the Brownian force are still present through the value of τin that will generally

depend on the trajectory τin(θ, t).

On the other hand, the average velocity can be related to the purely kinetic

observables as the average displacement per unit of time,

ω = lim
t→∞

θ(t)

t
=

θ0
T =

∑
θi∑〈ti〉 . (2.16)
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2.3. ENERGY AND RATCHETS

The average velocity can be thus constructed from the information of the

step length θ0 and the average duration of the different processes composing a

full cycle T [14]. In (2.16), also the relation of the mean velocity with the subpro-

cesses composing each cycle is explicited using relations (2.1) and (2.2). Hence,

from expressions (2.15) and (2.16), arises a relation between the experimental

observables θ0 and T with the still unknown internal dynamics of the motor,

〈τin〉 =
γeffθ0
T − 〈τc〉. (2.17)

This expression is also valid to describe different subprocesses of the full trans-

duction cycle, by changing the kinetic observables θ0 and T by its corresponding

subparts θi and 〈ti〉. Explicitly, this returns a formal relation for the mechanical

times with the different torques

〈tmechi〉 =
γeffθ0

〈τin〉+ 〈τc〉
, (2.18)

where the average for τin and τc spans the duration of the mechanical subprocess.

2.3. Energy and Ratchets

Up to this point, all the dynamics of the motor has been studied from its

trajectory. However, a formal description of a molecular motor can also be tackled

from its energetic task. This is, to transduce a certain amount of supplied energy

from a source into an energy of different nature. An appropriate starting point

for such a description is the energy balance of the motor (Fig. 2.3). The reference

framework is the the first principle of thermodynamics, which can be written for

any motor trajectory as [52, 74],

ΔV = W +ΔG−Q. (2.19)

HereΔV is the internal change of energy of the motor, Q is the heat interchanged
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CHAPTER 2. METHODOLOGY FOR ROTATORY MOTORS

Figure 2.3: Energetic balance for a Molecular motor. The three energies W , ΔG, and

Q are transduced through the motor potential V .

with a thermal bath at fixed temperature T and W +ΔG the thermodynamical

work, i.e. all the energy supplied to or extracted from the system different from

the heat. Here, the thermodynamical work is separated in two different contribu-

tions. On the one hand, W , the mechanical work, which is the performed work

through an external force and the associated net motion of the motor. This is the

energy supplied or extracted by an external agent such as the action of optical

tweezers in the experimental setup. On the other hand, ΔG is the chemical free

energy product of the chemical reactions of molecules different from the motor

taking place in the transduction such as the ATP hydrolysis.

The sign convention chosen states that the thermodynamical work is positive

(W,ΔG > 0) when energy is introduced in the system while in contrast, Q is the

energy that leaves the motor in form of heat and therefore Q > 0 means that

heat is leaving the motor.

Therefore, for molecular motors, the internal energy V is the energy accu-

mulated in the motor during a transduction cycle. Thus, for instance, an ATP

hydrolysis process starts with a sudden increment of the internal energy of the
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2.3. ENERGY AND RATCHETS

motor which afterwards is transduced into useful energy and heat. The spa-

tiotemporal description of the internal energy V (θ, t) will describe how the motor

administrates the energy describing the dynamics of the motor as a minimisation

of the internal energy along space and time. Thus, the internal energy will be

referred hereon as motor potential, and the associated force will be the motive

torque related through,

τin = −∂V (θ, t)

∂θ
, (2.20)

where τin is the internal motive torque previously introduced in (2.12). There-

fore, V (θ, t) contains all the information of the behaviour of the motor. Finding

the shape and dependence of V (θ, t) is, thus, one of the main objectives in un-

derstanding the working of a molecular motor.

The exploration for a possible expression for the motor potential reveals,

before long, that multiple possible definitions for V (θ, t) arise, and will depend

on the degree of abstraction of the model. A reasonable approach, followed in the

current manuscript, is to minimise the invocation of artificial structures looking

for the minimum model able to describe the experimental information available

taking as variables the angular coordinate, the time and the chemical state of the

motor.

Some of the properties of molecular motors discussed in the previous sections

come in handy to solve this issue. This set of physical and chemical conditions

common to rotatory molecular motors can be used to fix some properties of the

shape of the motor potential and gives a starting framework for the research

for a motor potential. One ubiquitous property is the spatial periodicity of the

generated motive torque with a period of the length of the step

∂V (θ, t)

∂θ

∣∣∣∣
(θ,t)

=
∂V (θ, t)

∂θ

∣∣∣∣
(θ+θ0,t′)

. (2.21)
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As stated in Sec. 2.1 the periodicity is not always fully achieved. In these cases,

the periodicity of the motive torque relaxes and can be substituted by a an average

torque for the case of an irregular track or by a potential of higher periodicity

which in the case of rotatory molecular motors will not be larger than 2π. The

periodicity of the motive force entails a periodicity of the spatial probability

distribution of the motor in the stationary state which will be discussed later in

Sec. 2.4.

Expression (2.20) relates the internal energy with the motor torque. Equiva-

lently, the rest of the forces describing the dynamics (2.14) can be related with

the energetics of the system (2.19) (Fig. 2.3) by integration along the spatial

coordinate for a trajectory [74]. Thus, the external work supplied or extracted

through the external torque τc is

W =

∫ tf

ti

τc(θ, t)dθ(t). (2.22)

The spatial integral covers the path of the full trajectory, which is stochastic and

therefore will change in every realisation. This dependence in the trajectory is

stated explicitly writing down the dependence of the position with the time in

the angle differential dθ(t) and integrating between the start and end times of

the trajectory, ti and tf respectively.

Accordingly, the heat will be the resulting energy from the integration of all

the forces that the motor exerts on the bath

Q =

∫ tf

ti

(γθ̇(t)− ξ(t))dθ(t). (2.23)

The relation of the integral expression of Q with the other forces of the system

is available introducing (2.14) in (2.23) and using the previous equalities (2.20)

and (2.22)
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Q =

∫ tf

ti

∂V (θ, t)

∂θ
dθ(t)−W. (2.24)

On the other hand, the increment of motor potential in (2.19) can be explicitly

expanded as

ΔV =

∫ tf

ti

dV =

∫ tf

ti

∂V (θ, t)

∂θ
dθ(t) +

∫ tf

ti

∂V (θ, t)

∂t
dt. (2.25)

Here the integral along the spatial coordinate is the energy that the motor is

transducing through the motive torque and the second integral can be identified

introducing (2.23) and (2.25) in (2.19) obtaining,

ΔG =

∫ tf

ti

∂V (θ, t)

∂t
dt. (2.26)

This equality is interesting since it points out explicitly that the chemical en-

ergy is introduced/extracted in the system by a variation of the potential in time.

By contrast, the energy is transduced into/from other kinds of energy (either ex-

ternal work or heat) through a spatial motion of the motor along the potential.

Therefore, when modelling the energy source in the description of the potential

it is essential to control which is the temporal behaviour of the motor potential.

Traditionally, the two most studied frameworks for time dependent potentials

for theoretical molecular motors are rocking potentials and flashing potentials

[16, 64]. While in the first case the potential changes smoothly in time through

a periodic function, for the flashing potential the change of potential occurs sud-

denly. This last case is of especial interest for molecular motors where changes

in the structure of the motor, such as conformation changes due to ATP caption,

occur in a much faster scale than the actual dynamics and kinetics of the motor.

For flashing potentials, the spatial and temporal description are separated

allowing to describe the motor potential as a set of static potentials that are
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interchanged in time,

V (θ, t) =
∑
i

Vi(θ)δi,η(t), (2.27)

where the subindex i runs over all the different static potentials composing the

flashing mechanism, η(t) is a stochastic function of time that returns the potential

state of the motor at a given time t and δ is Kronecker’s delta. This separation

allows to compute the chemical energy directly from (2.26). For the sake of

simplicity lets consider a trajectory that only presents a single flash at a time

tflash,

ΔG =

∫ tf

ti

∂

∂t

∑
i

Vi(θ)δi,η(t) =

∫ tf

ti

∑
i

Vi(θ)
dδi,η(t)

dt
dt = Vη(t+flash)

− Vη(t−flash)
,

(2.28)

where it is used the fact that the time variation of Kronecker’s delta only occurs

during the flashing of the potential. As stated before, equation (2.28) reflects

that the chemical energy reacts with the system only during the flashing of the

mechanism and the amount of energy is equal to the variation of the motor

potential during the jump. Expression (2.28) can be easily extended to a full

trajectory with several jumps,

ΔG =
∑
flash

ΔVflash. (2.29)

Being ΔVflash the motor potential increment during each jump.

For instance, an ATP molecule arriving at an ATP hydrolysis motor, increases

instantly the motor potential of the system ΔV = ΔG. If the transduction takes

place, the increment in motor potential will be transduced into W and Q. It

can also occur that the ATP molecule leaves the motor before any energetic re-

action takes place. This results in a flashing to the initial motor potential state

ΔV = −ΔG. In this example ΔG is the source of energy and W the useful
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output. In other situations such as the F1 motor in the synthesis regime, the

input energy wold be the external work W and the useful energy would be accu-

mulated in form of chemical energy ΔG of the ATP synthesis. Other situations

such as machines exchanging between different sources of chemical energies are

also possible within this scenario.

For the former case of a motor fuelled through chemical energy, the consumed

energy can be measured directly from the output energy consisting on the output

mechanical work plus the dissipated heat,

Econsumed = Q−W = −ΔV +
∑
flash

ΔVflash. (2.30)

This is, that the consumed energy can be measured as all the variations that

occur in the potential except the ones corresponding to the flashes. Numeri-

cally, consumed work defined this way is an easy measure since the problem is

reduced to compute the increments in potential energy after each spatial step

takes place. A similar formula is obtained to measure the consumed energy for

a motor working with mechanical work as energy source, where the consumed

energy will be

Econsumed = −ΔV +W. (2.31)

In order to study the performance of molecular motors, as it happens in their

macroscopic counterpart, it is not only necessary to understand the energies

involved in each step but also how these energies are managed in time. For each

one of the energetic magnitudes abovementioned, an associated power can can be

defined as the amount of that energy used per unit of time. Since motors operate

in closed cycles, each power can be computed from the average energy used per
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cycle. For instance, the output power can be calculated as,

Pout =
〈Eout〉cycle

T . (2.32)

The efficiency of the motor can also be computed from the energetic framework

developed as the ratio between the useful output energy and the total input energy

for a long enough trajectory giving a measure of the amount of energy that is

being transduced to the desirable amount of energy. This calculation is equivalent

to consider the ratio between the output power and the input power,

η =
Ein

Eout
=

Pin

Pout
. (2.33)

Efficiencies of different forces can also be computed independently measuring the

ratio of the input energy that is transduced in a certain output. A particular case

is the Stoke’s efficiency, that measures the fraction of energy that is dissipated

through the dragging of the load. The energy output of such a conversion is

immediately dissipated to the bath, however it is useful to measure how effectively

the input energy is devoted to the drag of the load [89].

2.4. Probability distributions and the Fokker–Planck

Equation

Up to this point, all the mechano–chemistry of molecular motors is described

through the theoretical reproduction of the observed trajectories by means of a

Langevin equation. This description returns a set of stochastic magnitudes which

usually are not easily handled. An alternative approach is to work directly with

the evolution of the spatio–temporal probability profile P (θ, t) of the motor. Such

a mathematical formulation for P (θ, t) allows an easier analysis in some important

situations.
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An equation describing the evolution of the probability density P (θ, t) can

be derived directly for a Langevin dynamics [21, 22]. This is the Fokker–Planck

(F–P) equation, which for the Langevin equation (2.14) with (2.20) reads,

∂P (θ, t)

∂t
=

∂

∂θ

V ′(θ, t)− τc
γeff

P (θ, t) +
kBT

γeff

∂2

∂θ2
P (θ, t). (2.34)

This equation states that the evolution of the probability in time is the addition

of two terms: a drift term that depends on the force τc − V ′(θ, t) and a diffusive

term resulting from the Brownian motion, proportional to the diffusion coefficient

kBT/γeff .

In F–P equation (2.34) the cycle of the motor occurs through the change of

the motor potential in time. However, for the flashing potential dynamics, the

potential changes can also be addressed through a set of F–P equations for the

probability density of each occupational state Pi(θ, t) inside each potential Vi(θ)

composing the flashing potential. In this description, the flashing is introduced

through a set of jump rates between the different states [22, 88]. Altogether, in

this work, the F–P approach will be studied through the total spatial probability

density evolution of (2.34) leaving the configurational changes directly in the

temporal evolution of the potential.

F–P equation is a second order partial differential equation. Thus, in order

to solve it, initial and boundary conditions are required. Altogether, even for

a given set of conditions, an analytical solution is generally not available. The

rest of the chapter is devoted to the study of some cases with analytical solution

that are of special interest to study molecular motors where properties of the

probability flux are known and used through Chapter 3. The analysis of the F–P

equation is taken up again in Chapter 4 for the description of ionic turbines, to

solve Mean First Passage Time problems.
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2.4.1. Stationary probability

An alternative description of the F–P equation can be written through the

probability flux J(θ, t), this is, the rate of variation of the probability density

across a point θ at a certain time t. Since probability must be conserved through

space and time, it follows the local conservation equation,

∂P (θ, t)

∂t
= −∂J(θ, t)

∂t
. (2.35)

Introducing (2.35) in (2.34) the F–P equation is reduced to,

−J(θ, t) = V ′(θ, t)− τc
γeff

P (θ, t) +
kBT

γeff

∂

∂θ
P (θ, t). (2.36)

The evolution of a diffusive a particle inside a well much higher than the

thermal energy leads to an equilibrium distribution Peq(θ) of the particle confined

inside this well. This is usually the case of the motor along a dwell time, where

the potential confines the motion of the motor in a energy minimum leading to

the stall of the motor. Thus, during dwell times the probability flux must cancel.

The F–P equation (2.36) corresponding to the case J = 0 is,

kBT
d

dθ
Peq(θ) = (τc − V ′(θ))Peq(θ), (2.37)

which leads to the known equilibrium probability equilibrium distribution pro-

portional to the Boltzmann factor,

Peq(θ) = N e
−V (θ)−τcθ

kBT , (2.38)

where N is a constant determined by the probability normalisation,

1 =

∫ ∞

−∞
Peq(θ)dθ = N

∫ ∞

−∞
e
−V (θ)−τcθ

kBT dθ. (2.39)
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Figure 2.4: Equilibrium distribution (grey area) of a Brownian particle inside a piece-

wise linear minimum and an external conservative torque. The resulting effective po-

tential V (θ)− τcθ (solid line) is also plotted.

This result is used in several points along the text where the usual potential is a

piece–wise symmetric linear well (Fig. 2.4),

V (θ) ≡ τV |θ| . (2.40)

In this case, the solution of (2.38) is a piece–wise exponential distribution (Fig.

2.4),

Peq(θ) =

⎧⎪⎪⎨
⎪⎪⎩

1

kBT

(
1

τc + τV
− 1

τc − τV

)
e

(τc+τV )θ

kBT , θ < 0,

1

kBT

(
1

τc + τV
− 1

τc − τV

)
e

(τc−τV )θ

kBT , θ > 0.
(2.41)

2.4.2. White noise limit

The equilibrium probability only describes the statistical properties of the

motor during a dwell time. Once the full dynamics of the flashing is introduced,

the solution is only available under certain assumptions on the dynamics of the

potential. To study this scenario, it is useful to consider the simplest case in which
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only two chemical states occur and no external force is taken into account. This is

the typical kinetic solution of a motor with a cycle composed by two subprocesses:

one chemical and one mechanical. This would be a possible modelling of an ATP

hydrolysing motor composed by an ATP waiting time and a mechanical hydrolysis

stroke.

The dynamics of such a process can be described by introducing the flashing

potential dynamics (2.27) in the general Langevin equation (2.12),

γθ̇ = V ′
R(θ) + (V ′

E(θ)− V ′
R(θ))η(t) + ξ(t), (2.42)

where VR(θ) and VE(θ) are the two states of the potential and η(t), already

introduced in (2.27), governs the flashing dynamics and will be considered to

be a dichotomous noise with two possible states η(t) = {ηE = 1, ηR = 0} and
transition rates between them ωE (ηE → ηR) and ωR (ηR → ηE). The average

value of the dichotomous noise can be expressed in terms of these transition rates

[22],

〈η(t)〉 = ωR

ωE + ωR
≡ η̄. (2.43)

The mathematical problem defined by expression (2.42) involves cumbersome

analytical calculations. However, in this case, the F–P approach may allow to

extract useful information of the system. Nevertheless, F–P receipt (2.34) can

not be directly applied because of the dichotomous noise η(t). Therefore, in order

to find the corresponding F–P equation, expression (2.42) must be rewritten as

a white noise Langevin equation.

The first step to do so is to arrange equation (2.42) in terms of a new dichoto-

mous noise z(t) of zero mean,

γθ̇ = V ′
eff − (V ′

R − V ′
E)z(t) + ξ(t), (2.44)
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where V ′
eff(θ) is an effective torque defined as,

Veff(θ) ≡ VR(θ) + (VE(θ)− VR(θ)) η̄. (2.45)

The two states of the new noise are,

zE =
ωE

ωE + ωR
, zR = − ωR

ωE + ωR
, (2.46)

which imply a zero mean value 〈z(t)〉 = zEωE + zRωR = 0, and a correlation [22]

〈z(t) z(0)〉 = ωEωR

(ωE + ωR)2
e−(ωE+ωR)t. (2.47)

Finally, the new dichotomous noise can be approximated by a white noise of

zero mean and equivalent intensity σW given by [27],

σW =

∫ ∞

0

〈z(t)z(0)〉dt = ωR ωE

(ωE + ωR)3
. (2.48)

This white noise limit approximation will work as long as the memory expo-

nential term of the correlation (2.47) can be approximated by a delta function.

This means that the correlation time tcorr = (ωE +ωR)
−1 has to be smaller than

or comparable with any other characteristic time of the system. For convenience,

this characteristic time can be chosen to be ω−1
E as a typical time of the cycle

that will reveal itself to be useful for nucleotide hydrolysis motors in Chapter

3. Nevertheless, other choices for the comparison time may be useful for other

systems. With the present criterion, the validity of the approximation can be

analysed in terms of a magnitude ε comparing both times,

ε =
ωE + ωR

ωE
. (2.49)

In general, a threshold value ε0 can be defined such as the white noise approxi-

mation can be used for large enough values of ε such that ε ≥ ε0.

Introducing the noise information (2.48) in (2.44) a new Langevin equation in

the Stratonovich interpretation can be written with a multiplicative white noise

term including both noise contributions,
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γθ̇ = −V ′
eff + g(θ)χ(t), (2.50)

being g(θ) the multiplicative noise function

g2(θ) = (V ′
E − V ′

R)
2 ωR ωE

(ωE + ωR)3
+ γkBT. (2.51)

The function χ(t) in (2.50) is a white noise with zero mean and autocorrelation

〈χ(t)χ(0)〉 = 2δ(t). With the current Langevin equation (2.50), an associated

F–P equation can be written,

∂P (θ, t)

∂t
=

∂

∂θ

(
V ′
eff

γ
+

g(θ)

γ2

∂

∂θ
g(θ)

)
P (θ, t), (2.52)

where the Stratonovich interpretation is chosen since it is the natural interpre-

tation when the white noise comes from an approximation of a coloured noise

[27].

The symmetry properties of the potential discussed in previous sections is

extended to the effective potential Veff since it is a lineal combination of the

different potentials composing the flashing potential. Therefore, the F–P equation

solution can be reduced to a finite length θ0 with periodic boundary conditions.

In this case, a constant flux J is reached for which the probability is stationary

in time [22], and the equation (2.36) takes the form

−J =
V ′
eff

γ
P (θ) +

g

γ2

d

dθ
(gP (θ)) . (2.53)

Since J states the rate of advance for the probability of finding the motor in a

certain position, it can be directly related with the actual average velocity of the

motor [64],

ω = θ0 J. (2.54)

Defining the function R(θ) ≡
(

g(θ)
γ

)2
P (θ), the steady–state F–P equation (2.53)

can be written as a first order lineal differential equation,

44



2.4. PROBABILITY DISTRIBUTIONS AND THE F–P EQUATION

dR(θ)

dθ
= −

(
γV ′

eff

g2
− g′

g

)
R− J, (2.55)

with the periodic boundary condition R(0+) = R(θ+0 ), being R(0+) the value of

R(θ) at θ → 0+. The problem is closed imposing the normalisation condition∫ θ0
0

P (θ)dθ = 1, obtaining the expression for the flux

J = −

⎛
⎜⎝∫ θ0

0

γ2
A(θ) + A(θ+

0 )

A′(θ+
0 )−1

g2(θ)A′(θ)
dθ

⎞
⎟⎠

−1

, (2.56)

where

A(θ) =
∫ θ

0

g(0+)

g(y)
e
∫ y
0

γV ′eff (x)/g
2(x)dxdy. (2.57)

These two expressions return an analytical result for the velocity through

(2.54) that contains the chemical and physical information of the potential and

its flashing through the quantitates V ′
eff and g(θ). The F–P white noise approxi-

mation is further addressed in the description of F1–ATPase in section 3.2.3.
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3
ATP driven motors

Among the several sources of energy that fuel different molecular motors, the

greatest part of them are those obtaining energy from the hydrolysis of nucleotide

derivatives such as ATP (Adenosine Triphosphate). Such energy is stored in

the molecule through high–energy phosphate bonds and released through the

hydrolysis reaction resulting in their respective diphosphates. For instance, the

ATP hydrolysis reaction, which is the most common energy source in the cell,

decomposes the ATP in ADP (Adenosine diphosphate) and Pi (Phosphate),

ATP→ ADP+ Pi. (3.1)

Molecular motors act as catalysts of this hydrolysis reaction. The reaction starts

with the ATP diffusing molecule intake at the ATP affine catalytic site of the mo-

tor. There, the substrate binding reaction takes place progressively. This process

results from a set of energetically favourable reactions involving different inter-

mediate structural configurations. The final step of the reaction is the cleavage

of the molecule and its subsequent release of the reaction products. This gradual

mechanism for the nucleotide hydrolysis is called binding–zipper [5, 15, 49]. The

binding–zipper explains the mechano–chemical coupling that gives place to the
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mechanical processes observed in the motor stepping trajectories. On the other

hand, the ATP absorption or the ADP and Pi release gives place to typical dwell

processes.

A full fauna of motors work through ATP hydrolysis with different hydrolysis

mechanisms and tasks. From linear walking motors such as the conventional

kinesin, in charge of delivering cargoes along the cell; to translocases, in charge

of the active transport of certain molecules across membranes. This continuous

hydrolysis of ATP makes necessary an extra machinery in charge of recharging the

cell by synthesising ATP from its hydrolysis products, the F0F1–ATP synthase

already described in Section 1.3.1. A special feature of F0F1–ATP synthase is

its modularity allowing to study F0 and F1 subunits separately. Specifically, the

F1 portion can act itself as an ATP consuming motor, the F1–ATPase, that uses

the hydrolysis energy to rotate the central γ shaft (Fig. 3.1). Comprehending

the working of this motor is essential to understand the working of the whole

F0F1 complex. Hence, the rest of the chapter is devoted mainly to apply the

different aspects developed in Chapter 2 to unravel the transduction mechanisms

of F1 motor.

3.1. F1–ATPase is a rotatory motor

In order to comprehend the mechanical mechanism of the F1 motor is es-

sential to understand its morphology. The first solved structure [1] revealed the

globular shape of F1 composed by the circular arrangement of three alternative

α and β domains. This structure pointed out the rotatory mechanism of the

enzyme. However, The actual rotation of the central γ shaft was not observed

until 4 years later, with a rotational assay attaching actin filaments to the γ shaft

[47]. The use of smaller loads and the increasing in the precision of experimental

techniques allowed to resolve the stepping dynamics of the motor [94]. These
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Figure 3.1: F1–ATPase is a molecular motor that generates a rotation of the γ shaft

out of the hydrolysis of ATP. The work of the motor can also be reversed to synthesise

ATP by exerting an external torque to the γ shaft. Surface plot reconstructed from

the PDB structure 1QO1.
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Figure 3.2: Angular trajectory for the F1–ATPase showing a stepping behaviour of a

third of a turn. Inset: Spatial distribution in the cartesian plane of the load, in this

case an actin filament [94].

assays revealed that the motor rotation occurred in discrete 120◦ steps following

the structural symmetry of the motor (Fig. 3.2).

Succeeding experimental assays with smaller cargoes not only allowed a more

precise observation of the rotation but also the study of the working of the motor

under different dissipative drag forces. Actual techniques allow to observe cargoes

down to frictions of ∼ 10−4 pN nm s for gold nano–metric beads [95]. Also the

use of different materials for the cargoes provide the possibility to apply a con-

servative torque on the load with different techniques such as electrorotation [90]

or through a magnetic field [50]. The different trajectories resulting from these

assays will be the dynamical information available used in this work to decipher

the internal mechanism of the F1–ATPase.

The description developed in this work is valid for a generic F1 motor. How-
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ever, different organisms exhibit differences in the working of the motor [25, 81].

Therefore, in order to obtain a soundness quantitative test on the model is neces-

sary to choose a specific organism of study. Thus, henceforth, all the experimental

information corresponds to the thermophilic Bacillus PS3. This bacterium is of

special interest due to the extensive amount of experiments performed with it.

Despite choosing a specific strain, the model can incorporate easily the parame-

ters of other strains following the same methodology described hereon. For this

reason, it is necessary to split the parameters into three groups. On one hand the

experimental external controllable parameters such as the ATP concentration or

the different external torques applied on the motor. This first group will be re-

ferred as Control Parameters. A second group comprises those parameters that

are specific to the Bacillus PS3 F1 motor. The values of these parameters do

not have significant variations with experimental conditions e.g. internal torques

generated by the motor. The parameters of this group are referred as Motor

Intrinsic Parameters. Finally, a third group contains those parameters that de-

pend on the experimental set up. These parameters are, in general, those related

to the chemical kinetics of the motor i.e reaction rates. This variation with the

experimental set up is a signature of a lack of information from the experimental

conditions such as the concentrations of ADP, phosphate or other ions changing

the ionic strength. Parameters composing this group will be referred hereon as

Experimental Setup Parameters. In the course of the chapter different parameters

will arise, all of them are gathered in Tables 3.1–3.4. Some of them, specially

the Experimental Setup Parameters, may change among different experimental

works. In these cases, the variations will be addressed specifically.
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3.2. F1–ATPase under dissipative forces

As is stated in Section 2.2, forces of different nature i.e. dissipative and con-

servative, have very different implications in the motion of a molecular motor.

While dissipative act passively through the drag force, conservative torques are

able to produce a more active action on the protein changing the mechanical and

chemical properties of the motor. Therefore, a set up under purely dissipative

forces is a good starting point to unravel the underlying mechanism driving the

F1 motor. The procedure employed to study the purely dissipative scenario is

the following: First an average velocity is studied to determine the leading mech-

anisms of the motor dynamics, then a motor potential is presented to explain

the stepping dynamics, after that, the stochastic elements of the motor are intro-

duced (thermal fluctuations and chemical kinetics) and studied through computer

simulations.

3.2.1. Deterministic Analysis

The stepping behaviour of the F1 motor follows the biomolecular symmetry of

the motor fixing the cycle length θ0 = 2π/3 (Figs. 2.1 and 3.2) implying at least

two different leading processes at each cycle, one dwell and one mechanical stroke.

The characterisation of these processes through its mean duration is enough to

obtain a first guess to the average velocity of the motor through expression (2.16).

Assays with variation of [ATP] reveal a high dependence of the dwell duration

with the nucleotide concentration, pointing out that the dwell time is the chemical

time necessary for the motor to wait for the motor and start the hydrolysis. This

process can be described using the corresponding reaction kinetics scheme (2.6)
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resulting in the average reaction time (2.7) that can be written as

〈tdwell〉 = t0

(
k0

[ATP ]
+ 1

)
. (3.2)

The values of the two parameters describing the dwell time, namely, t0 and k0,

can be extracted from the intensive exploration of the dwell times using [ATP ]

as Control Parameter [95] and are gathered in Table 3.1.

On the other hand, the average time for the mechanical stroke can be de-

scribed through the average overdamped time required to advance the whole

motor step θ0 with a certain energy ΔGATP (2.18)

〈tmech〉 = θ20
γ0 + γL
ΔGATP

, (3.3)

where the total energy is supposed to be released homogeneously along the stroke

ΔGATP = τinθ0. In addition, the effective total friction for the tight coupling

(2.13) γeff = γ0 + γL is used. It comes in handy to keep both friction coefficients

separated in the description of the motor since γL is a Control Parameter. The

tight coupling approximation is fully addressed later on through stochastic sim-

ulations in Section 3.2.2 attesting the validity of the approximation.

The internal friction γ0 can be estimated from experiments where the veloc-

ity of the motor is studied for different load sizes. These experiments show two

different behaviours: For low enough values of the friction of the load, γL is not

rate limiting i.e. the velocity is independent of γL. This is the situation in which

the internal friction of the motor is higher than the friction of the load (γ0 > γL).

On the other hand, for large values of the load, there is a dependence of the

velocity of the motor with γL slowing the motor. This is the situation in which

the friction of the load is larger than the internal friction of the motor (γ0 < γL).

The intermediate value of γL for which the behaviour changes, will correspond

with the point at which the friction of the load is comparable with the internal
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friction of the motor (γ0 	 γL) (Table 3.1).

The energy resulting from the hydrolysis of the ATP molecule may not be

fully used in the transduction cycle. As a result, the energy obtained from the

hydrolysis reaction ATP is actually an upper boundary to the energy used by

the motor. However, since the transduction is expected to be quite efficient,

both quantities should be close to each other. For this reason, both energies are

referred hereon ΔGATP for the sake of simplicity if not stated otherwise. In the

current work, typical values of the hydrolysis energy in the cytoplasm is used [2]

(Table 3.1).

The description of the total average cycle time of the motor 〈T 〉 = 〈tdwell〉+
〈tmech〉 implies a deterministic average velocity

ω =
θ0
〈T 〉 =

θ0

t0

(
k0

[ATP] + 1
)
+ θ20

γ0+γL

ΔGATP

, (3.4)

which returns a prediction for the average velocity of the motor under the varia-

tion of the two main Control Parameters: ATP concentration and the friction of

the load γL. The resulting velocity can be contrasted with experimental results

obtaining a very good match between experimental information and the main

velocity prediction (Fig. 3.3). In order to extend the validity of the model, the

experimental information used for the parameter extraction is different from the

one used for the average velocity testing, i.e. there is no parameter fitting in the

velocity prediction of Fig. 3.3.

So far, the analysis carried out only takes into account the average veloc-

ity of the motor without considering the specific dynamics composing each step

(Section 2.3). This information can be obtained from submillisecond precision

trajectories involving a better analysis of chemical processes [81]. Additionally,
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Figure 3.3: Analytical prediction (solid line) for the average angular velocity (3.4)

compared with experimental data (triangles) [95] Top: Velocity vs. load friction. Bot-

tom: Velocity vs. [ATP]. Parameters used are those of Table 3.1.
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Parameter Value

Motor Intrinsic Parameters
γ0 5 pN nm ms

ΔGATP 90 pN nm

Experimental Setup Parameters
kM 18 μM

t0 2.3 ms

Table 3.1: Parameters used in the description of F1 motor for Bacilus PS3.

a submillisecond analysis shows that the cycle is not divided in a single step but

in two substeps of different length and duration. The first substep is the largest

spanning ∼ 80◦–90◦ while the second one is shorter and spans the remaining

∼ 30◦–40◦ (Fig. 3.4). The nature of each substep was revealed with experiments

where the hydrolysis of ATP and product release is decelerated. This involves

experiments with mutants [26, 75, 90]; assays with ATPγS, a slow hydrolisable

ATP analog [75] or ATP–Mg analysis [26]. These experiments show that the

two substeps are the result of the different stages of the ATP hydrolysis. In first

place, the empty motor waits a dwell time ts for an ATP to arrive at the catalytic

site. Then, the hydrolysis reaction starts producing the first mechanical substep

of θ1 ∼ 85◦. After that, the system waits for a catalytic time tc for the reaction

products (ADP and Pi) to leave the motor. Finally, the θ2 ∼ 35◦ substep occurs

through the release of the elastic energy stored by the structural deformation of

the catalytic site once the hydrolysis products leave the motor. Once the sec-

ond stroke ends, the motor returns to the starting configuration closing thus the

mechano–chemical cycle (Fig. 3.4 Bottom). In order to describe the angular

advance of the steps, it comes in handy to describe each substep as a fraction of

the total angular length of the cycle as,

θ1 = αθ0, θ2 = (1− α)θ0. (3.5)
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Allocating two different mechanical strokes of a torque τ1 and τ2 each one con-

suming a energy E1,2 as

τ1 =
E1

θ1
=

E1

αθ0
, τ2 =

E2

θ2
=

ΔGATP − E1

(1− α)θ0
. (3.6)

Where the energy conservation is used so the hydrolysis energy is distributed

among the two substeps

ΔGATP = E1 + E2. (3.7)

Motive torques τ1 and τ2 give some information of the motor potential (2.20).

However, they do not describe the whole motor potential since there is still a lack

of information on the structure of the potential during the dwells.

In the search for a suitable motor potential, is mandatory to find the essen-

tial different conformational states composing the transduction cycle (Sec. 2.3).

In the present case there are two well differentiated states. On the one hand,

the state in which the active catalytic site of the motor is empty. This state

will be called hereon relaxed state. On the other hand, the state in which the

active catalytic site is occupied either by an ATP molecule or by its hydroly-

sis products. This state will be referred hereon as excited state. The simplest

way to describe both states comes through linear piecewise potentials following

the angular symmetry of the motor together with the rest of mechano–chemical

constrains (3.5) and (3.6). From the flashing between both states the substep

dynamics will emerge naturally. The concrete description of each potential is

constructed as follows.

During the ATP dwell times when the catalytic site is waiting for an ATP, the

active potential is the relaxed one VR(θ, n). Therefore, this potential must have

three minima following the three–fold symmetry of the motor coinciding with

the three angular dwell positions (Fig. 3.5 A.1). For the n-th step, the potential
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Figure 3.4: Top: Experimental trajectory of the F1–ATPase showing the substep

dynamics. Different lines correspond to the same trajectory but are compacted

for the sake of visualisation. Inset: Spatial density in the cartesian plane of the

load residence time revealing the substeps [95]. Bottom: Scheme of a full step of

a trajectory pointing out the chemical occupation at each stage.
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reads

VR(θ, n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
−V0

(
3θ

π
− 2n

)
,

2π

3

(
n− 1

2

)
≤ θ ≤ 2π

3
n,

V0

(
3θ

π
− 2n

)
,

2π

3
n ≤ θ ≤ 2π

3

(
n+

1

2

)
.

(3.8)

Being V0 the energetic height of the potential. On the other hand, the excited

potential in charge of driving the shaft during the hydrolysis will be a local

potential with its minimum shifted an angular distance αθ0 from the relaxed

potential minimum (Fig. 3.5 A.2). The analytical form of the excited potential

for the n− th step is

VE(θ, n) =

⎧⎪⎪⎨
⎪⎪⎩

−V1

α+ 1/2

(
3θ

2π
− α− n

)
, θ ≤ 2π

3
(n+ α),

V1

α+ 1/2

(
3θ

2π
− α− n

)
, θ ≥ 2π

3
(n+ α),

(3.9)

where V1 is the height of the excited potential and is directly related with the

torque of the first substep.

The flashing mechanism along the n-th cycle works as follows. Initially, the

motor is found in the ATP waiting dwell confined by the potential VR(θ, n) (Fig.

3.5 A.1). When an ATP molecule arrives at the empty catalytic site, the allo-

cation of the ATP molecule changes the energetic configuration of the motor to

the excited state VE(θ, n) starting the n-th step. The stroke generated by the

excited potential τ1 is in charge of the first substep (Fig. 3.5 A.2). Once the

shaft arrives at the minimum of the excited state VE(θn), the potential does not

change until the hydrolysis products ADP and Pi are released to the medium,

giving place to the catalytic dwell. Once the products are released, the energetic

landscape returns to its original relaxed state VR(θ, n + 1). However, since the

shaft is not located in the minimum of the relaxed state, there is a net torque

τ2 which produces the second substep (Fig. 3.5 A.3). Once the shaft reaches
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the minimum of the potential, the transduction cycle is closed and the n-th step

finishes.

Even though the whole potential landscape cannot be obtained from the

available experimental measures, they provide enough information to have the

evidence of the flashing mechanism and the value of the torques that involve

each potential. They also provide information about the height of the potentials,

which are unknown parameters related directly with the substep torques through

the slope of the potentials (3.8) and (3.9),

V0 = τ2
θ0
2
, V1 = τ1θ0(α+ 1/2), (3.10)

which are expected to be comparable (V0 ∼ V1). For the sake of simplicity the

analysis will continue with the assumption V0 = V1. Later on the text, the more

general case V0 �= V1 will be addressed showing analog results. In this scenario,

the energies consumed in each substep can be expressed in terms of the potential

height V0 introducing (3.10) in (3.6).

E1 = V0
2α

1 + 2α
, E2 = 2V0(1− α). (3.11)

Inserting these equations in the identity (3.7) , the relation V0(ΔGATP ) becomes

available

V0 =
ΔGATP

2− 4α2

1+2α

. (3.12)

The fact that all the energetic parameters can be described in terms of the energy

consumed from the hydrolysis of ATP leaves α as the only unknown parameter.

Parameter α determines the length of the substep. The case α = 1 would re-

turn a one–step average model equivalent to the initial average guess (3.4), while

experimental observations show that the substep length spans 800–900. How-

ever, instead of fixing this angular distance it is interesting to leave it as a free

60



3.2. F1–ATPASE UNDER DISSIPATIVE FORCES

Figure 3.5: Flashing mechanism describing the dynamics of the n−th step. The

different phases composing the step A.1-3 are summed up in the final scheme

B. The flashing of the potential (dashed arrows) induce the mechanical strokes

(solid arrows) in charge of the motion o the shaft (circle).
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parameter and study how the working of the motor changes with it. From a evo-

lutionary point of view, it is expected that the motor has evolved to operate in an

optimum regime. For instance, a motor such as the kinesin may have evolved to

travel through the actin tracks as fast as possible. However, F0F1–ATP synthase,

which is an energy transducer, is expected to transduce the energy available in

the most effective manner. In this case the opposite to the kinesin is true, a

slow transduction time (mechanical time) not only allows for other different in-

ternal catalytic processes to take place but also returns a more reliable energy

transduction. For the flashing mechanism, the total mechanical time is,

tmech = tmech 1 + tmech 2 = (γ0 + γL)

(
θ1
τ1

+
θ2
τ2

)
(3.13)

=

(
2π

3

)2
γ0 + γL
ΔGATP

(
2− 4α2

1 + 2α

)(
α2 +

1

2

)
. (3.14)

which can be optimized as a function of α,

dtmech

dα

∣∣∣∣
αM

= 0 ⇒ 1− 2α2
M = 0. (3.15)

Giving an universal value of α that maximises the mechanical time (see Fig. 3.6)

and is independent of any other parameter of the system

αM = 1/
√
2. (3.16)

The resulting value coincides with the experimentally observed substep angles

θ1 = 2πα/3 = 85o and θ2 = 35o. This result not only enhances the validity of

the model but also points out that the angle obtained does not depend on any

magnitude or any fitting but is an universal value resulting from the optimisation

of the flashing mechanism in which two different strokes corresponding to two

different occupation states are considered i.e. the substep angle does not depend

in any parameter of the model. For this optimum value for α, the torque observed

values are τ1 = 27pN nm and τ2 = 65pN nm.
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Figure 3.6: Mechanical time versus the substep angle parameter α. There is a max-

imum of the mechanical time for a value αM = 1/
√
2. A dimensionless value of the

mechanical value is used t̄ =
(

3
2π

)2 ΔGATP
γ0+γL

tmech.

The experimental values of each torque separately are difficult to measure

experimentally due to the speed and fluctuations of each trajectory. The difficulty

lies in the determination from the trajectory of the beginning of each substep.

Measures from the average torque for a whole step report torques around 40 pN,

which is in agreement with the average angular torque predicted for αM ,

〈τ〉 = τ1θ1 + τ1θ2
Δθ0

= τ1α+ τ2(1− α) 	 38 pN nm. (3.17)

So far, the condition V0 = V1 has been used along eqs. (3.11–3.17). However,

this condition can be loosened introducing the dimensionless parameter ε ≡ V0

V1
.

Actually, the hydrolysis energy can be changed experimentally [44]. If this change

in ΔGATP has a mechanical effect it would be reflected in the model as a variation

of the height of the excited potential V1.

A variation of ε will also change the torques and the substep angles changing
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the energetic relations (3.11) obtaining a new energy balance

ΔGATP = E1 + E2 =
2α

1 + 2α
V1 + 2(1− α)V0 (3.18)

=

(
2αε

1 + 2α
+ 2(1− α)

)
V0, (3.19)

which can be rewritten to obtain a relation for ε,

ε(α,ΔGATP/V0) =

(
1 +

1

2α

)(
ΔGATP

V0
− 2(1− α)

)
. (3.20)

Proceeding as previously (3.14), the energetic relation (3.19) sets a new me-

chanical time

tmech =

(
2π

3

)2
(γ + γL
ΔGATP

(
αε

1 + 2α
+ 1− α

)(
α(1 + 2α)

ε
+ 1− α

)
(3.21)

which returns a maximum time for a new optimum value α = αM that follows

the relation

ε = −5 + 6αM +
−6 + 12αM

−1 + 2αM (1 + αM )
. (3.22)

From conditions (3.20) and (3.22) results the maximum value αM that cor-

responds to a certain ratio ΔGATP/V0 (Fig. 3.7). This analysis predicts that

for biological parameters, the variation produced for different hydrolysis energies

is minimum compared with the obtained for ε = 1. Therefore, in general, the

values and expressions (3.11–3.16) are good approximations for the real motor.

In general, the concrete values used for the model will change for motors of differ-

ent strains which will present different energetic parameters. Thus, this analysis

guarantee a comparable quantitative analysis between them.

Experiments performed on and ADP–inhibited conformation of F1 where the

release of products to the media is slowed [26], allows to observe the behaviour of
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Figure 3.7: The corresponding value of αM can be found as the intersection between

the αM relation (Eq. 3.22) (dashed line) and the energy conservation relation (Eq.

3.20) (solid lines). V0 = 70 pN nm.

the shaft during the substep dwell. Therefore, this information permits to explore

the energetic landscape corresponding to the minimum of the excited potential.

These measures confirm that the excited potential can be treated as a lineal

piece–wise potential for a large part of its path in harmony with the potential

description (Fig. 3.8). From a linear fitting to the potential, the experimental

torque can be calculated obtaining a consistent value of τ1 = 35 pN nm, which

corresponds to a value of ε = 1.25, a little larger than the unity, and a value

of α = 0.74 corresponding to an angle of 88◦. These values return a better

approximation to the experimental average torque 〈τ〉 = 40.5 pN nm. Therefore,

despite the approximation ε = 1 is good, the value of τ1 = 35 pN nm will be used

for the rest of the work.
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Figure 3.8: Experimental measures of the energetic landscape of the excited potential

[26]. The torque associated associated is obtained by fitting a linear regression on the

linear part of the potential.

3.2.2. Stochastic analysis

The potential described so far, only takes into account the spatial dependence

of the potential. However, for a full description of the dynamics, the temporal de-

scription of the potential, laying emphasis in its stochastic nature, is necessary as

well. In the current case, the temporal description of the four different processes

composing the cycle must be studied: The first stroke (tmech1) and the catalytic

dwell (ts), corresponding to the excited potential; and the second stroke (tmech2)

and the ATP dwell corresponding to the relaxed potential (t0). In contrast to the

deterministic average case, now, a full probabilistic description of each process is

analysed.

The ATP dwell time ts is the kinetic time to absorb an ATP and start the

stroke. Experimentally, it has been identified as a two–step rate–limiting reaction
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Figure 3.9: Scheme showing the shaft-load system where there are two different free

coordinates θ and ϕ describing the position of the shaft and the load respectively. Both

entities are joined by a harmonic torsional spring of stiffness κ
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that can be well approximated by a single–step first–order reaction [75] (2.4),

P (ts) =
exp−tskATP [ATP ]

kATP[ATP ]
, (3.23)

entailing an average reaction time 〈ts〉 = kATP[ATP], coinciding with the [ATP]

addend part of the dwell time used in the initial average description (3.2), thus,

having the relation kATP = (t0k0)
−1. On the other hand, the catalytic products

release time can be related to the lapse of the dwell time without dependence on

[ATP] i.e. t0. In contrast to ts, the catalytic time t0 and the mechanical times

have not been seen to have a relevant variation over different cycles compared

with their average value and therefore will be considered constant for the rest

of the study. The low variation coefficient for the mechanical times can be at-

tributed to the high number of chemical reactions taking place during the stroke

making up the binding zipper [5, 40]. This choice for the temporal distribution

specifies that once the motor flashes to the excited state, it remains in it a de-

terministic time tE = tmech1 + t0, then it flashes back to the relaxed state for a

stochastic lapse tR = tmech2+ts closing the motor cycle and closing the definition

of V (θ, t) (Fig. 3.10 Bottom).

Additionally, a more realistic generic scenario than the one studied in previous

sections, can be studied in which the bulge joining the load and the shaft is not

completely rigid as described in expression (2.13)[19, 51, 76]. This situation can

be described with two coupled Langevin equations (2.12), one describing the

angular coordinate of the shaft (θ), and one for the angular position of the load

(ϕ), which is the experimental observable. Therefore, the different dynamical

output magnitudes such as the average velocity of the motor ω will be measured

in terms of the measurable variable ϕ. In the same way, the different external

forces applied on the motor will be applied directly in the load. On the other
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hand, the internal torque of the motor is directly applied to the spatial coordinate

of the shaft θ,

γ0θ̇ = −V ′(θ, t) + κ(ϕ− θ) + ξ0(t),

γLϕ̇ = −κ(ϕ− θ) + ξL(t), (3.24)

where the term κ(ϕ − θ) is the binding force between the load and the shaft

described through an harmonic potential of stiffness κ,

VK(ϕ, θ) =
1

2
κ(ϕ− θ)2. (3.25)

The thermal force acting on each coordinate ξ0(t) and ξL(t) depends on the

specific friction coefficient of each entity obtaining two uncorrelated white Gaus-

sian noises following the fluctuation–dissipation relation (2.10),

〈ξ0(t)ξ0(t′)〉 = 2γ0kBTδ(t− t′),

〈ξL(t)ξL(t′)〉 = 2γLkBTδ(t− t′). (3.26)

A high enough value of the stiffness drives the motion to the adiabatic case

in which the velocities of both coordinates is the same (2.13), thus adding both

equations in (3.24), the problem would be reduced to the single Langevin equation

(2.14)

(γ0 + γL)θ̇ = −V ′(θ, t) + ξ(t), (3.27)

where the effective noise ξ(t) = ξ0(t) + ξL(t) is the addition of two Gaussian

noises and therefore is a Gaussian noise itself with zero mean and a correlation,

〈ξ(t)ξ(t′)〉 = 2(γ0 + γL)kBTδ(t− t′). (3.28)

Which is the white noise corresponding to the effective friction γeff = γ0 + γL.
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Parameter Value

Stiffness of the shaft κ 750 pN nm

Excited state torque τ1 35 pN nm

Table 3.2: Motor Intrinsic Parameters used in the stochastic simulations for the

F1 motor for Bacilus PS3 extracted from [26] and [76].

In contrast, a low enough value of κ could hinder the motion of the load or

conceal the stepping trajectories from the experimental observations. For the

current study, biological values of the stiffness are used [76] (Table 3.2).

Langevin equations (3.24) can be solved numerically using parameters gath-

ered in Tables 3.1 and 3.2 obtaining trajectories for different values of the Con-

trol Parameters (Fig. 3.10). Again, there are no fittable parameters, since all

the parameters have been extracted from experimental information. The result-

ing trajectories exhibit the same performance reported experimentally displaying

the substepping behaviour, the stochastic dwell times, and angular fluctuations.

From the trajectories, average values of the velocity can be compared with ex-

perimental average velocities obtaining a very good fit (Fig. 3.11).

Actually, a detailed comparison of the stochastic and the average deterministic

prediction (3.4) reveals some discrepancies. Simulations drop out a lower value

of the average velocity than the deterministic description. These smaller values

of the velocity turn to be a better prediction to experimental data. This effect

becomes clearer for high values of the friction of the load (Fig. 3.12). A parameter

exploration reveals that the performance of the motor is not affected by the

flexibility of the shaft for biological values of κ (Fig. 3.13) observing that in

this working regime, the model coincides with the simulations resulting from the

adiabatic approximation (3.27). Therefore, the reduction in the velocity is not
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Figure 3.10: Results of the dynamics simulation of the Langevin equations (3.24)

using parameters of Tables 3.1 and 3.2. Top: Computational trajectory of the

load marking the substepping angles (dashed lines). Inset: Spatial occupation

density of the load in the cartesian plane. Bottom: Fragment of a trajectory

along one full cycle pointing out the different temporal lapses. The excited state

(shadowed zones) takes a time tE = tmech1 + t0 whilst the relaxed state (non–

shadowed zones) takes a stochastic time tR = tmech2 + ts.
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Figure 3.11: Average velocity resulting from stochastic simulations (circles joined by

dashed lines) compared with experimental data (triangles) [95]. Top: velocity vs. ATP

concentration. Bottom: velocity vs. friction of the load.
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Figure 3.12: Magnified views of Figs. 3.3 and 3.11 showing the discrepancies between

the stochastic and the deterministic average predictions.

caused by the elastic load–shaft coupling.

A careful analysis on the resulting stochastic trajectories reveals the existence

of missing steps, this is, complete motor cycles that do not produce a successful

step (Fig. 3.14) i.e. after the full flashing cycle, the dwell position of the shaft

corresponds to the initial dwell position. Missing steps occur on account of the

stochastic nature of the trajectory that competes with the dynamics imposed

by the potential. This effect is difficult to measure experimentally since the

occupation of the motor is unavailable and therefore it is complicate to discern

between a missing step from a mere fluctuation. Even though missing steps are

not producing a successful advance, the ATP hydrolysis necessary to complete

the cycle takes place and the energy is wasted (Fig. 3.14). This can be measured

in the simulations by measuring the amount of energy consumed by the motor

directly available from the evolution of the motor potential (2.30).
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Figure 3.13: Comparison of the resulting average velocity of the stochastic model with

the stiffness of the joint κ. Dashed lines are the computational resulting velocities for

the adiabatic model. Biological stiffness κ ∼ 750 pN nm falls in a region where the

velocity coincides with the adiabatic prediction.
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Figure 3.14: Evolution of the motor along two cycles. The first cycle does not produce

a successful step while the second one is sucessful. Relaxed (non–shadowed zones) and

excited (shadowed zones) states of the motor are also indicated. Top: Spatial trajectory

of the load. After the first cycle, the motor falls back to the initial dwell position. On

the contrary, the second one produces a successful step. The substep angle (dashed

line) and the maximum of the relaxed potential (dot–dashed line) are shown. Bottom:

Energy consumed by the motor, both cycles consume energy independently of their

success.
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Figure 3.15: Scheme for the evolution of the probability distribution function of the

load along the first substep (thick curves). When the potential flashes back from the

excited potential (solid straight lines) to the relaxed state (dashed lines). There is a

portion of the probability density that does not surpass the maximum of the relaxed

state and falls back to the original state (shaded area).

Missing steps occurs mainly before the second substep. Just when the poten-

tial flashes to the relaxed state the stochastic position of the shaft in the potential

determines the success of the cycle. If the shaft has not surpassed the maximum

of the relaxed potential, the shaft will be driven back again to the initial dwell

position by the relaxed potential (Fig. 3.14). This phenomenon can be studied

through the probability distribution of the shaft during the excited state PE(θ, t)

(Fig. 3.15) by means of the Fokker–Planck equation (2.34), which for the case

being reads,

∂PE(θ, t)

∂t
=

1

γ0 + γL

∂

∂θ

(
V ′
E(θ) + kBT

∂

∂θ

)
PE(θ, t). (3.29)

The spatiotemporal probability solution of this equation is complex due to

the non–linearity of the potential. Since the interest in the problem is at the left

tail of the distribution, the problem can be simplified by replacing the excited
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potential in a first approximation by a linear potential i.e. the problem can

be tackled by considering an initial probability distribution at a time t=0 that

advances under a constant torque τ1 during a time tE . The initial distribution at

the beginning of the cycle is the equilibrium probability distribution in the relaxed

potential minimum prior to the excitation which for a linear well is composed by

two exponentials (2.41),

PR(θ) =

⎧⎨
⎩

1
2

τ2
kBT e

τ2
kBT θ

, θ < 0,

1
2

τ2
kBT e

− τ2
kBT θ

, θ > 0.
(3.30)

For the sake of simplicity, this distribution can be approximated by a Gaussian

distribution of the same mean 〈θ〉 = 0 and the same variance 〈(θ − 〈θ〉)2〉 =

2
(

kBT
τ2

)2
,

PE(θ, 0) 	
1√
4π

τ2
kBT

e

(
τ2

2kBT θ
)2

. (3.31)

The evolution of this Gaussian profile under a constant torque will remain

Gaussian, therefore, the temporal evolution of the mean and the variance are

enough to describe the distribution PE(x, t). These both quantities can be ob-

tained directly from the formal solution of the Langevin equation of the shaft

(3.27)

θ(t) = θ(0) +
1

γ0 + γL

∫ t

(τ1 + ξ)dt. (3.32)

Averaging the stochastic angle θ(t) over different realisations, the mean and

the variance at a time t are

〈θ〉 = τ1t

γ0 + γL
, 〈Δθ2〉 = 2

(
kBT

τ2

)2

+
2kBT

γ0 + γL
t. (3.33)

The coupling ratio is a measure of transduction effectiveness of the motor,

measuring the fraction of ATP hydrolised molecules that produce a successful

step. In this case, the coupling ratio corresponds to the fraction of the distribution
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that falls at the right of the next maximum located at θ0/2 of the excited potential

at a time tE (Fig. 3.15)

cr(γL) =

∫ ∞

θ0/2

PE(θ, tE)dθ =
1 + fer(μc)

2
, (3.34)

with,

μc =
〈θ〉 − θ0/2√
〈(Δθ2)〉

∣∣∣∣∣
tE

. (3.35)

At this point it is worth to evaluate carefully the dependence of the coupling

ratio with the friction of the load along the excitation time tE . Since the me-

chanical time tmech 1 is proportional to the effective friction coefficient (γ0 + γL)

(3.13), the resulting probability density function after tmech 1 does not depend on

the friction of the load during this first evolution period,

〈Δθ2〉
∣∣
tmech1

= 2

(
kBT

τ2

)2

+
2kBTαθ0

τ1
. (3.36)

On the contrary, the dependence of the distribution with the load firction ap-

pears in the waiting step of duration t0. Since t0 is independent of the friction

of the load and the dynamics of the system with a lower friction are quicker to

that of a system with a bigger load, the shrink of the left tail of the probability

distribution function will be greater the smaller is the friction, increasing thus

the coupling ratio of the motor.

So far, the current expression for the coupling ratio (3.34) does not take into

account the reflecting part of the excited potential beyond its minimum. This

force hinders the advance of the probability distribution increasing the area of

the probability distribution that falls back to the initial state. This forbids a

coupling ratio equal to 1 even in the best scenario case in which the stationary

distribution around the minimum of the excited potential is reached. This is the

situation in which the dynamics of the load is much faster than t0 (γL → 0). The
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stationary distribution around the minimum of the excited potential is given by

expression (2.41),

P∞
E (θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ3τ2
τ2 + τ3

e
τ2

kBT θ

τ3τ2
τ2 + τ3

e
− τ3

kBT θ

(3.37)

Being τ3 the reflecting torque given by the slope of the excited potential (3.9).

The corresponding coupling ratio for this probability profile is,

cr0 =

∫ ∞

θc

P∞
E (θ)dθ =

τ3τ2
τ2 + τ3

e
τ2

kBT θc , (3.38)

For the working parameters, this corresponds to a maximum coupling ratio of

cr0 	 0.96 which is in agreement with the computational results for trajectories

with a small load. This result can be used in order to obtain a better approxi-

mation cr∗(γL) that can be written in a compact analytical way by interpolating

the coupling ratio in (3.34) with the maximum value cr0 (3.38),

cr∗(γL) =
cr(∞)(cr(0)− cr0)

cr(0)− cr(∞)
+

cr0 − cr(∞)

cr(0)− cr(∞)
cr(γL), (3.39)

returning a better prediction for the coupling ratio of the motor (Fig. 3.16).

This coupling ratio explains thus the difference between the deterministic average

approach and the stochastic simulations. Actually the coupling ratio can be used

to obtain a better analytical description for the velocity,

ω∗ = ω cr∗, (3.40)

since the advanced distance along a trajectory used in the average velocity de-

terministic approach is reduced a fraction equal to the coupling ratio.
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Figure 3.16: Results for the theoretical predicted coupling ration (thick line) versus

the viscous friction of the load. This is contrasted with the numerical coupling ratio

obtained for different ATP concentrations (triangles joined by lines).
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3.2. F1–ATPASE UNDER DISSIPATIVE FORCES

3.2.3. F1–ATPse white noise limit

In the previous section, the dynamics of the motor are treated analytically

for the deterministic case, solving the noisy dynamics only by numerical means.

However, the problem following the white noise Fokker–Planck methodology de-

scribed in Sec. 2.4.2 can also be applied to study the system analytically from its

noisy nature. For this purpose, the motor potential of the F1 motor is introduced

in the white noise limit Langevin equation (2.50). This results in an analytical

expression for the probability flux of the shaft and thus the velocity of the motor

(2.56).

For the sake of simplicity, a reduced potential description is chosen in which

the relaxed state keeps its original form but the excited potential is substituted by

the one corresponding to a constant torque V ′
E = τ1 = ΔGATP/θ0. Therefore, in

this case, the substeps are not taken into account focusing the study on a flashing

potential with a complete symmetry of a third of a turn for both potentials (Fig.

3.17). For the F1 motor, the rates of excitation and relaxation correspond with

the inverse of the occupation times at each process of the cycle i.e. the inverse of

the catalytic and the mechanical times (Eqs. (3.2) and (3.3)) respectively,

ωR = t−1
dwell =

(
t0

(
1 +

k0
[ATP ]

))−1

, ωE = t−1
mech =

ΔGATP

γθ20
. (3.41)

With this description, the resulting Langevin equation (2.50) describes the

behaviour of the shaft advancing along a tilted sawtooth potential (Fig. 3.18)

and a white Gaussian noise with a spatial dependent intensity. The advance of

the motor is not guided anymore by a flashing potential but through the jumping

across the barriers of the potential. Introducing the actual expressions for the

rates (3.41) into the general expression of the mean value of the potential noise

η̄ (2.43), the mean value of the dichotomous noise is
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Figure 3.17: Scheme of the simplified flashing potential used for the Fokker–Planck

analysis. The relaxed potential (solid line) and the excited potential (dashed lines)

drive the dynamics of the motor. The scheme shows the advance of the shaft (solid

arrows) along the full first step (n = 0), subsequent steps (dotted arrow) are equivalent.
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Figure 3.18: Effective potential for different values of the mean value of the dichoto-

mous noise η̄ and an ATP hydrolysis of 80 pN nm.
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η̄ =

(
1 +

γθ20tM
ΔGATP

(
1 +

kM
[ATP ]

))−1

. (3.42)

This value is important because it is directly related to the effective torque

averaged along a step θ0

〈V ′
eff〉θ0 =

1

θ0

∫ θ0(n+1)

θ0n

V ′
effdθ = − 1

θ0

∫ θ0(n+1)

θ0n

η̄τEdθ = − η̄ΔGATP

θ0
, (3.43)

where it has been used the symmetry of the relaxed potential and (2.45). The

average −〈V ′
eff〉θ0 coincides with the value of a constant torque that acting on

the particle for a whole period entails the same potential increment that the

effective potential, i.e. 〈V ′
eff〉θ0 , and consequently η̄, returns the tilting of the

effective potential (Fig. 3.18). This effective torque must not be confused with

the average torque the motor exerts in time, which needs the dynamics of the

shaft along the potential and can be extracted directly from Eq. (2.56).

The parameter η̄ also controls the height of the effective potential barriers

through Eq. (2.45) as a factor of VR. There is a maximum of height for a mini-

mum value of η̄ (η̄ = 0), while the barriers disappear for a maximum value of the

η̄ (η̄ = 1) (Fig. 3.18). Thus the parameter η̄ is acting as the driving element of

the motor.

In addition the effective diffusion coefficient is not constant but can take two

values as a function of the angular position: in the left zone of the rest state (+)

of the effective potential it is found diffusion coefficient greater than the one in

the right side of the rest state (−). This variability of the diffusion coefficient also
assists the forward motion of the particle. The balance of these contributions is

g2+ − g2− =
6

π2
ΔGATP

ωEωR

(ωE + ωR)3
, (3.44)

being g+ and g− the fluctuation weight in the reflecting and advancing zone of
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the effective potential.

The velocity predicted by the model through the flux has been computed for

the parameters values of Table 3.3. The values chosen are based in the same

experimental information used in previous sections. The resulting average veloc-

ity compares very well with experimental data specially for large values of the

friction and large values of the ATP concentration (Fig. 3.19). Simulations of the

dichotomous model without approximations can also be computed to compare ex-

actly the differences obtained through the Fokker-Planck approach, obtaining a

good match between them. The effective Langevin equation used (2.50) can also

be solved numerically to reproduce motor trajectories, however, the numerical

integration must be taken carefully since the multiplicative noise is discontinuous

in space and therefore the standard stochastic integration methods fail to con-

verge to the correct solution. A special algorithm solving this issue is covered at

Appendix A.

Parameter Fit Value

t0 2.5 ms

k0 18 μM

ΔGATP 70 pN nm

γ0 10 pN nm ms

V0 12 pN nm

Table 3.3: Parameter values of the model.

The white noise limit theory also provides the parameter ε that evaluates

the goodness of the approximation (2.49). Here, through the comparison of the

theory with exact results, the role of ε can be analysed clarifying analytically the
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Figure 3.19: Angular velocity vs. load friction (Top) and ATP concentration (Bottom)

where experimental data (symbols) from [94] and the Fokker–Planck prediction (2.56)

(solid lines) are compared. Simulation results for the model with the dichotomous

noise are also shown (dashed lines). Double slashes mark the position with ε0 = 1.2

for each curve. ε is greater than ε0 to the right of the double slash. For [ATP]=2 mM,

ε > ε0 for the whole curve.
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domains of this agreement. Fig. 3.19 shows that ε proves to be a good parameter

to evaluate the accuracy of the theoretical prediction. For this motor it is found

that the theory and experiments match well for ε > ε0 = 1.2. Furthermore, the

greater the parameter ε is, the better is the approximation. This property is

quantified in Fig. 3.20 for different parameter values.

Also the power consumed (energy consumed per unit time) can be computed

to compare the differences between the white noise limit and see if the predictions

are also valid to measure the energetic performance of the motor. In this case,

in order to compute the energy consumed for the white noise limit, the potential

used for the energy consumption calculation (2.30) is

V (θ, t) = VR(θ) + (VE(θ)− VR(θ))π(t), (3.45)

where π(t) is a white gaussian noise with the corresponding intensity of the mo-

tor flashing (2.48) i.e. the component of χ(t) different from ξ(t). The resulting

consumed power compares with the dichotomous case in a similar way than the

average velocity in the expected variable domains (Fig. 3.21). For values of

ε < ε0 the power supplied prediction of the white–noise approximation decays

much faster than the computational results.

The energetic analysis together with the results for the average velocity shows

that the white noise limit proves to be a good analytical tool to describe the

operation of biological molecular motors working in biological regimes. Actually,

the goodness of the analysis is determined by the working regime of the motor

increasing its validity for large values of [ATP] and the friction of the load. This

corresponds to the situation where the relative duration of dwell times inside

the cycle is shorter than the mechanical times and are well characterised by the

control parameter ε. Thus, the white noise limit is a good analytical approach
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Figure 3.20: Results for the predictor ε for the same parameters value as in Fig. 3.19.

Top: predictor vs. load friction. Bottom: predictor vs. ATP concentration. In both

graphics the horizontal dotted line indicates ε0 = 1.2.
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Figure 3.21: Comparison of the power consumed between the Fokker–Planck

approximation (symbols) and the dichotomous model (dots). Double slashes mark

the point in which ε = ε0 getting ε > ε0 to the right of the double slashes.

and can be used to analyse the operation of other molecular motors from its noisy

nature following the same methodology described in this section.

3.3. F1–ATPase under conservative torques

Thus far, the analysis of the behavior of F1–ATPase is made from experimen-

tal observations where the only external force applied is that of the dissipative

torque generated by the dragging of the attached load. However, the response

of the motor under conservative forces can also be studied experimentally ob-

taining a different output from its dissipative counterpart. The performance of

F1 under assisting and hindering conservative torques and the corresponding in-

put of energy and output of useful mechanical work are of special interest since
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Figure 3.22: An external constant conservative torque is equivalent to consider a

tilting of the motor potential.

F1 motor works in the cell together with the F0 transducing energy between them.

3.3.1. Effects of the conservative torque

The trivial consequence of a conservative force is the one reported in (2.14),

where an additional torque τc is introduced directly in the Langevin equation of

motion. This is equivalent to a tilting of the potential where the value of all the

torques are increased by a quantity τc. (Fig. 3.22). Thus, the mechanical times

required will change accordingly with the external torque applied (2.18)

tmechi
= θi

γ0 + γL
τi + τc

. (3.46)

In contrast to the dissipative torque, the conservative torque acts at every
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moment of the trajectory, even during the motor dwells. Actually, since the

effective relaxed potential is tilted, the probability distribution of the shaft around

the potential minimum is shifted (Fig. 3.23). Thus, the average starting point

after a dwell changes. Consequently, there is also a change in the effective distance

to cover during the next mechanical step once the flashing occurs. An assisting

torque will reduce the distance to cover while a hindering torque increases it. The

new average starting position for the next step can be analytically estimated from

the equilibrium distribution P (θ) around the minimum of the relaxed potential,

which can be approximated locally as an infinite linear piecewise well (2.41)

P−(θ) =
1

kBT

(
1

τc + τ2
− 1

τc − τ2

)−1

e(τc+τ2)θ/kBT , θ < 0,

P+(θ) =
1

kBT

(
1

τc + τ2
− 1

τc − τ2

)−1

e(τc−τ2)θ/kBT . θ > 0. (3.47)

The value of the shift δθ(τc) is

δθ(τc) = 〈θ〉 =
∫ ∞

−∞
θP (θ)dθ = kBT

2τc
τ22 − τ2c

, (3.48)

which increases linearly with the temperature. The dependence on the tempera-

ture points out that the shift is a result of thermal fluctuations. Without thermal

fluctuations, the average relaxed position would always coincide with the mini-

mum of the relaxed potential giving a null shift δθ(τc, T → 0) = 0.

Equation (3.48) will be valid only if the dwell time is long enough to allow

the shaft to reach the equilibrium probability distribution. The shift (3.48) oc-

curring during the ATP binding dwell changes the distance to cover during the

first substep θ1 → θ1 − δθ entailing a variation in the mechanical time (3.46). In

the case of the second substep, the catalytic dwell time prior to the second stroke

is not long enough to reach the equilibrium distribution [95]. Hence, the shift for
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θ

θ

〈θ〉 = 0

0

0 〈θ〉
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τc = 0

τc > 0

τi −τi

τi + τc
−τi + τc

Figure 3.23: Effect of a conservative torque in the equilibrium probability distribution

of the shaft (grey shade) during dwells around the minimum of a linear piecewise dwell

(solid line). When no external torque is considered (Top) the profile is symmetric and

centred in the minimum of the potential, while an external applied force (Bottom)

shifts the profile changing the average position of the shaft from the minimum of the

potential.
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Parameter Value

k00 9.164 μM−1s−1

k10 0.183 pN−1nm−1μM−1s−1

t0 0.6 ms

Table 3.4: Experimental Setup Parameters used in the analysis of F1 motor under

conservative torques.

θ2 will not be taken into account.

The phenomena introduced in expressions (3.46) and (3.48) through the effec-

tive torque and the distribution shifting have both a mechanical origin. However,

chemical reactions are also affected by conservative torques. Experimentally, it

has been observed that an assisting conservative torque reduces the dwell times

while a hindering torque increases them [90]. Similar results have been observed

for other molecular motors [39, 87]. An accepted theory to explain this phe-

nomenon is that the catalytic site is deformed due to the external force [46]. Thus,

the active conservative force modifies the biological structure of the machine and

therefore changes the affinity of the catalytic site to ATP. This phenomenon is

equivalent to consider the external torque as an external catalyst or inhibitor of

the reaction [13]. However, due to the limited experimental information for the

F1, the relation of the reaction rate with the external torque is considered linear

kATP = k00 + k01τc. (3.49)

The values for k00 and k01 are obtained from the linear fitting of (3.49) to ex-

perimental observations [90] (Fig. 3.24) and gathered in table 3.4.

Thus, gathering the described dependences of the dynamics of the motor
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Figure 3.24: Experimental results for the ATP binding constant (circles). The

linear fit returns the parameters used in (3.49) (Table 3.4). Data obtained from

[90]

((3.46), (3.48) and (3.49)), the average change in the duration of the different

processes composing the cycle can be used to write the average velocity as in

(3.4)

〈ω〉 = θ0

[θ1 − δθ(τc)]
γ0+γL

τc+τ1
+ θ2

γ0+γL

τc+τ2
+ t0

(
1 + kM (τc)

[ATP ]

) , (3.50)

where, the dependence in τc has been stated explicitly. As in the purely dissipa-

tive case, expression (3.50) gives the velocity for a cycle with a full coupling ratio

where all the reactions take place ideally. This preliminary expression for the

velocity in the wide domain (-40,80) pN nm, returns a good prediction for the

experimental values without fitting any new parameter from the velocity–torque

experimental data (Fig. 3.25). This confirms that the effects of the conservative

torque are well controlled by the model for the current precision of the experi-

ments.
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Figure 3.25: Comparison between the angular mean velocity predicted analytically

(3.50) (solid lines) with experimental data (symbols) extracted from [90] with a corre-

sponding friction of the load of γL = 0.14 pN nm s.

At this stage, it is interesting to note how torques of different nature (dissipa-

tive and conservative) makes the motor to respond differently even with torques

of the same magnitude, providing different velocity–torque curves (Fig. 3.26).

One particular feature of these differences is the stall force of the motor. For a

conservative hindering torque, the motor stalls when the torque applied counters

the lowest of the motive torques, τc(stall) = −τ1. In contrast, one could guess

that a dissipative torque will never be able to stop the motor. Nevertheless, for

large enough values of the friction of the load, the motor velocity decreases so

dramatically that the dissipative torque tends to a constant value, which can be

calculated from (3.50),

τdiss(stall) = γLω|γL→∞ =
θ0

θ1−δθ
τ1

+ θ2
τ2

. (3.51)

This result also shows that the average stall dissipative torque can be larger
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Figure 3.26: Comparison of the resulting torque-velocity curve (3.50) for hindering

conservative torques (solid line) and dissipative torques in the same range of values

(dashed line). The dissipative torque is obtained through the variation of γL. Param-

eters used are γL = 0.14 pN nm s for the conservative torque and buffer conditions of

[ATP]=50 μM.

than the internal torques of the motors, which is not true for the conservative

case. Therefore, this result reveals the complexity of evaluating the performance

of the motor, highlighting the importance of considering the nature of the torque

together with the actual motor potential.

3.3.2. Numerical analysis

Following the same methodology as in the purely dissipative case, the stochas-

ticity of the system can be studied through stochastic simulations. While the

tilting effect is introduced directly from the Langevin equation, the shift change

in mechanical times and the ATP binding rate are introduced by changing ac-

cordingly the flashing dynamics. The simulation results are quantitatively similar

to those of the deterministic theoretical prediction (Fig. 3.27). However, simu-
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Figure 3.27: Angular mean velocity versus conservative torque for three ATP concen-

trations. Analytical prediction (3.50) (solid lines) and numerical simulations (dashed

lines) are compared with experimental data (symbols) extracted from [90] with a cor-

responding friction of the load od γL = 0.14pN nm s.

lations show again a better prediction that, in contrast to the pure dissipative

case, returns faster velocities than the deterministic prediction for large values of

the external torque and slower velocities lower values of the torque. Differences

between the average analytical prediction and the simulations become larger for

high assisting or hindering torques where not only the coupling ratio is more im-

portant but also the approximation (3.47) is no longer valid. For larger torques,

the motor potential is not able to arrest the motor in one minimum obtaining a

motion of the motor out of the motor cycle.

Is of special interest the behaviour of the motor for high hindering conserva-

tive torques. The time distribution proposed for the mechanical times is based

on the strict motor cycle coupled with the potential timing. This is valid as long
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as the external conservative torques are smaller than the internal motive torques

of the motor. Once the internal torques are exceeded, the motor is not able

to retain the shaft and the stepping is not driven by flashing assisting torques

but by jumps through a set of potential barriers. In this regime, experimental

information is very poor and no conclusive statements can be formulated. Two

different behaviours have been observed: The motor either stalls and stays fixed

for large values of the torques or breaks and rotates backwards [50, 90], this event

is known as slippage. The stalling regime suggests that the excited state is not

stable when the motor goes backward flashing to the relaxed state, which is able

to retain the motor. This can reflect that the relation (3.49) is not linear anymore

and there is a chemical stalling of the motor. Therefore, in general the motor is

able to retain the shaft for hindering torques larger than the excited advancing

torque (Fig. 3.28).

In contrast, the slippage effect shows that the stalling mechanism does not al-

ways work. In terms of the current model, this would mean that the motor is

not able to flash to the relaxed state. It remains in the excited state and hence

a high enough hindering torque may cause backward steps. This is equivalent

to the case of a particle falling along a tilted sawtooth potential. Experiments

show that the slippage effect is not permanent, but lasts only a few steps. There-

fore, the experimentally observed backward velocity will have a maximum value

corresponding with the situation in which the particle is trapped all the time

in the excited state i.e. in the slippage regime. However, since motor present

both behaviours, slippage and stall behaviour, the velocity measured must take

an intermediate value. (Fig. 3.28).
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Figure 3.28: Average F1 angular velocity for high values of the hindering torques.

Experimental observations (crosses) show that usually the motor stays still around

ω = 0; however, some measures contain slippage events (crosses inside circles) that

allow backward rotation. The velocity during the slippage is the one fixed by the

excited potential (dashed line), while the measured velocity must be a result of a

mixture of both behaviours, fixed and slippage (shaded area). Experimental data are

extracted from [90].
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3.4. Energetics of F1–ATPase

Considering that the role of the F0F1 complex is the transduction of energy,

the understanding of F1–ATPase energetics is essential to comprehend this motor.

It is expected for the components of ATP synthases to have evolved to transduce

energy in the most effective way. Unfortunately, energetic magnitudes are not di-

rect observables from experimental results. In particular, the occupational state

of the motor or the ATP hydrolysis are not available experimentally. Neverthe-

less, the motor potential developed in previous sections have proved to gather

the physics of the motor and can be used to predict the energetic performance

of the motor. Again, the study can be made from the analytical deterministic

prediction or from the stochastic simulations, which give a more realistic infor-

mation. In this section, the analytical expressions for the deterministic analysis

are stated explicitly, while the methods for extracting the information on the

energetics from stochastic simulations are those described in Section 2.3.

The first energetic discrepancy between both predictions is the actual energy

input. While in the deterministic approximation the input energy of the system

is always that of the energy hydrolysis of ATP, in the stochastic model not all the

flashings take place exactly in the potential minimum and the energy will be dif-

ferent for different cycles (Fig. 3.14). In fact, due to the geometry of the motor,

the energy introduced per cycle in the system is always lower than the energy of

the hydrolysis of the ATP and will depend on the experimental conditions (Fig.

3.29) never exceeding 1-2 kBT . This loss of energy will be considered an intrinsic

loss of the motor and not a variation in the hydrolysis input energy.

Since the input energy in the ideal case is that of the hydrolysis of ATP per
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Figure 3.29: Ratio between the input energy of the motor per cycle and the hydrolysis

energy of the ATP for different experimental conditions.

cycle, the input power that can be obtained proceeding as in (2.32),

Pin =
ΔGATP

T , (3.52)

being, T the average time that takes a full cycle of the motor (2.2). On the

other hand, the input energy can be transduced in useful energy Wout through a

hindering force τc or dissipated as heat Q through the load and the shaft. The

output useful power obtained through τc, corresponds in the ideal deterministic

case with,

Pout = τc〈ω〉, (3.53)

which returns the classical parabolic relation with τc (Fig. 3.30). The output

power is null at τc = 0 and at the stall torque τc 	 35 pN nm, achieving a

maximum power value for an intermediate value of the hindering torque. The

power is also very sensitive to ATP concentration. Low concentrations of ATP

result in longer dwell times reducing the velocity of the motor and with it the

100



3.4. ENERGETICS OF F1–ATPASE

output power. In simulations, a much lower value of the useful power is obtained

(Fig. 3.30). This difference comes mainly from missing steps which do not provide

useful work even consuming energy (Sec. 3.2). Not only the magnitude of the

power is decreased but also the value of the conservative torque that maximizes

the power is shifted. Again, this shift is a signature of the noisy nature of the

leading mechanism of the motor. Hence, this shift is of special interest if the

motor is expected to have evolved to work in an optimum value of the power.

With the output power information, the efficiency of the motor can also be

obtained (2.33). For the deterministic case, the efficiency is linear with the con-

servative torque (Fig. 3.30),

η =
Pin

Pout
=

τcθ0
ΔGATP

, (3.54)

This returns a maximum of efficiency for a maximum value of the torque i.e. for

the stall torque. In this situation the motor would work infinitely slow but with

a minimum dissipation.

On the other hand, the stochastic simulations diverge completely with the de-

terministic prediction for high values of the hindering torque (Fig. 3.30). While

the deterministic case predicts an efficiency maximum at maximum torque, the

missing steps, that increase with the hindering torque, produce a decay in the

velocity. This results in a dramatical decay of the efficiency near the stall torque

when thermal fluctuations are considered. In opposition to the power, the effi-

ciency does not generally depend on the dwell times. During the dwell times,

there is no input of energy neither energy output. Therefore, there is no depen-

dence of the efficiency with [ATP]. On the other hand, due to the dependence

of the coupling ratio with the friction of the load (Fig. 3.16), the efficiency is

sensitive to γL. The maximum efficiency for the stochastic case (around 40 %) is

obtained at an average value of τc 	 20pN nm which is again of special interest

in studying the optimisation properties of the motor.
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Figure 3.30: Useful output of the motor under a constant conservative torque τc.

The Stoke’s prediction (lines) and the stochastic analysis (circles) are compared. Top:

Useful power (γL = 0.14 pN nm s). Bottom: Efficiency ([ATP]=50 μM).
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The same analysis of power and efficiency can be applied to the dissipative

torque. However, this energy is not used but is dissipated to the thermal bath

(it cannot be stored). This energy is employed partially in dragging the load

across the medium. Since the drag of the load is not conservative, the fraction

of energy dissipated through the load depends on the trajectory of the motor.

Therefore, the average velocity is not enough information when computing the

average dissipated energy. However, as in the case of the conservative scenario,

the average ideal velocity gives an approximation and an upper boundary to the

real expected value.

Since the coupling between the shaft and the load is stiff, the dissipation is

proportional to the friction of the shaft–load and, therefore, the energy dissipated

through the load per unit time is,

Q̇L =
γL

γ0 + γL

ΔGATP

T , (3.55)

for the case in which no conservative torque is present and all the energy intro-

duced is dissipated. Again, there is a maximum power at an intermediate value

of the torque (Fig. 3.31). Low values of the dissipative torque, correspond to low

values of the load friction, where the internal friction of the motor dissipates all

the energy returning Q̇L = 0. In contrast, large values of the dissipative torque

correspond to large values of the load, which slow down the motor and therefore

the transduction rate, obtaining again a null value of the dissipative power. From

simulation results, the same behaviour is obtained but with a lower dissipation

through the load.

Also the ratio between the energy dissipated by the shaft and the input energy

(Stoke’s efficiency) (Sec. 2.3) can be studied,

ηL =
Q̇L

Pin
=

γL
γ0 + γL

, (3.56)
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Figure 3.31: Dissipation through the load for different values of [ATP]. The Stoke’s

prediction (lines) and the stochastic analysis (circles) are compared. Top: Dissipated

power through the load. Bottom: Ratio between the energy dissipated by the load and

the energy dissipated through the shaft.
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so the fraction of energy dissipated by the load increases with the load friction.

Since all the energy must be distributed between the load and the shaft, for large

values of the friction of the load, almost all the energy is dissipated via the load

(Fig. 3.31). In simulations, a similar behaviour is obtained. The dissipative

efficiency is larger than the conservative counterpart but this only means that

energy is more easily dissipated than stored in a conservative potential.

Thus, all the energetic results gathered in this section points out two impor-

tant ideas. First, the resulting energy outputs and efficiencies decrease once all

the noisy dynamics of the motor are taken into account. The second remark

is that there is a change in the value of the torque that optimises the different

energetic magnitudes. This result can not be obtained directly from the initial

observations of the trajectory and makes necessary the proposal of a specific

motor potential developed in the previous sections from different experimental

observations and the correct analysis through its noisy dynamics.
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4
Ion flux driven motors

In the previous chapter, motors operating with ATP hydrolysis were studied.

In contrast, there is a second primary source of energy in the cell driving molecular

motors: electrochemical potential across membranes.

Energy from ionic gradients can be managed in a similar way to macroscopic

batteries. In this case, the energy is generated and preserved through the ionic

concentration across biological membranes. An ion crossing a membrane has

an associated energy due to electrostatic and entropic contributions. For this

reason the electrochemical energy associated to ionic gradients is also referred as

membrane potential. In contrast to nucleotide driven motors, where the energetic

carrier diffuses through the aqueous cytoplasm, the energy of the ionic gradient is

stored locally, through the membrane. For this reason, a motor using its energy

must be placed across the membrane allowing an ionic flux across the machine.

This flux will be finally transduced by the machine. Actually, transmembrane

motors not only uses the ionic flux but can also store energy in it by pumping

ions reversing the direction of the spontaneous flux determined by the membrane

potential.

Ionic channels are the passive counterpart of ion driven molecular motors
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where no energy is transduced in the translocation. Both biological structures,

channels and machines, work with a very high specificity for a certain ionic species

i.e. they only allow the translocation of one specific ionic species despite the

similarity between different ions. Ionic rotatory molecular motors mainly operate

with protons (H+) or with sodium ions (Na+) for the case of the BFM of some

bacterial species.

In order to study the membrane potential, it is interesting to measure which

is the energy variation of the ion of the corresponding species crossing the mem-

brane. This energetic difference has two components, namely, an electrostatic

and an entropic component (Fig. 4.1). On the one hand the electrostatic compo-

nent ΔV originates with the difference in charge of the cytoplasm at both sides of

the membrane. This difference creates an electric field inside the membrane that

drives any ion crossing the membrane. On the other hand there is an entropic

component of the membrane potential driven by the diffusion of ions across the

membrane when there is a difference in concentration at both sides. Thus, even

in the situation where the ions were not charged particles, a difference in con-

centration at each side of the motor would generate a directional net flux driving

the system to the homogeneous state. This flux can also be transduced by the

molecular motor. With both components, the membrane potential reads,

Δφ = ΔV + kBT ln
ρ1
ρ2

, (4.1)

where ρ1 and ρ2 are the ionic concentration at each side of the membrane. From

this energy, an associated force can be derived known as Ionic Motive force (IMF)

or Proton Motive Force (PMF) for the case of H+ ions. This ionic force corre-

sponds to a homogeneous force acting on the ion along the membrane width D,

IMF = −φ/D.

Experimentally, the study of rotatory molecular motors presents similar chal-

lenges than the nucleotide ones, such as the lack of observation of the energetic
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Figure 4.1: Membrane potential generating the Ionic Motive Force can be used by

transmembrane proteins that operate with the directional flux of particles. Top: The

electrostatic component of the membrane potential is generated by a difference in elec-

tric charge at each side of the membrane. In this case, the density of the translocable

ionic species (−) is the same at both sides but another ionic species (+) generates

the charge difference. Bottom: The entropic component of the membrane potential is

driven by diffusion and appears from a concentration difference across the membrane.
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transduction, in this case the measure of the ionic flux. Furthermore, trans-

membranal motors have an additional difficulty: they must be placed across a

membrane with well controlled conditions at each side. This problem has been

tackled experimentally in two different ways. On the one hand the use of lipo-

somes, spherical lipidic vesicles, prepared with the desired conditions and con-

taining the desired motor in its surface. This method has been applied in the

study of the F0 motor [91, 92]. Such a set up allows to measure directly the

actual ionic density inside the liposome, and therefore gives and indirect measure

of the flux. However, it makes difficult to track the rotation of the motor. On

the other hand, rotational assays can be performed using the biological native

membranes. This can be done in BFM assays where flagella can be detached

from the motor and replaced by a load [28, 80]. This set up allows longer and

more precise trajectories than the obtained with the liposome but does not allow

the tracking of the flux.

4.1. Minimal transduction cycle

Again, the average velocity of the motor is available from the knowledge of the

duration and length of each transduction cycle. In this case, the mechanical time

(2.18) will be determined by the membrane potential energy, and the chemical

time (2.7) by the ionic concentration of the driving side, obtaining

ω =
θ0

t0

(
1 + k0

ρ1

)
+ θ20

γ0+γL

Δφ

. (4.2)

In this description the possibility of an ion crossing the motor opposing the gra-

dient and reversing the flux is neglected. The average velocity obtained can be

compared with experimental assays on the BFM [36] obtaining a good match (Fig.

4.2). These experiments studied Vibrio alginolyticus where the motor works with
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4.1. MINIMAL TRANSDUCTION CYCLE

Parameter Value

[Na+]in 5 mM

θ0 2π/26

t0 4 ms

k0 5 μMs

γ0 26 meV s

Table 4.1: Parameters of the model used in Fig. 4.2. Biochemical values extracted

from [36].

sodium ions crossing the peptidoglycan membrane. Hence, in this description,

ρ1 ≡ [Na+]ex and ρ2 ≡ [Na+]in. It is interesting to note that the effect of both

components of the membrane potential do not affect in an equivalent way to the

measured velocity. While a change in ΔV only modifies the actual value of Δφ,

a change in the ionic concentration ρ1 not only modifies Δφ but also affects to

the waiting chemical time. This effect, experimentally reported [36], is showed in

Fig. 4.2.

This preliminary result does not take into account the complex stechiometry

of ion driven molecular motors absent in nucleotide hydrolysis motors i.e. which

is the number of ions needed to perform each rotor step. Actually, a measure

of the energetics of rotatory motors shows that usually a fractional number of

ions is necessary to perform one motor step [60]. This problem is stressed when

several stators can be attached to the same rotor, as it happens with the BFM.

All these issues are translated in a loss of the picture of a single transduction cycle

tightly coupled with the motive coordinate. In order to tackle this problem, more

complex models following the average Stoke’s description can be tested (Chap. 6).

Nevertheless, such approaches are unable to account naturally for the mechanistic

interaction of the transduction process and its relation with the flux. For this

111



CHAPTER 4. ION FLUX DRIVEN MOTORS

Figure 4.2: Average velocity of the motor vs. Ionic Motive Force for Bacterial Flagellar

Motor for different values of [Na+] and load size. Experimental results (symbols) [36]

show a nonlinear dependence with the IMF predicted by (4.2) (lines). Top: Assays with

a large spherical load of 1μm radius (γL = 520meV s). Bottom: 0.35μm radius (γL =

31.2meV s). [Na+]ex=85mM (squares), [Na+]ex=10mM (triangles) and [Na+]ex=1 mM

(circles). The rest of parameters are gathered in Table 4.1.
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purpose a different model focused in the mechanical transmission between motor

and particles is developed in the following section.

4.2. Ionic turbines

The coupling between flux and mechanical work is well known in the macro-

scopic world. Such machines include the windmill or the Archimede’s screw, and

can be referred in a general way as turbines. The basic principle for these devices

is that of a certain fluid colliding with the vanes of the turbine that generates

the rotation of the motor. Such motors can also reverse their work regime by

forcing externally the rotation of the motor in a direction opposite to the flux

and being able to invert the natural direction of the flux i.e. turbines can also

work as pumps.

Actually, this general description can be applied to ion motive rotatory devices

in which the flux of ions is coupled to the rotation of the motor. Note that

following this description where different forces act on a vane on a continuous way

does not need of the transduction cycle timing described previously. Furthermore,

it also gathers the basic features of ionic turbines. For instance, one of the main

differences between hydrolysis motors and ion motive motors is the possibility to

reverse the rotation direction directly from the chemical energy source. In the

F1–ATPase motor, the hydrolysis of ATP produces a directional rotation that can

only be reversed through an external conservative force opposing the rotation of

the motor and promoting the ATP synthesis. Nevertheless, ionic turbines can

change its directionality due to a change in the direction of the Ionic Motive

Force.
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4.2.1. The simplest mechanistic case

One simple model to start the study of such systems is that of a purely mech-

anistic device where a piston of section A and length D separates two particle

reservoirs (Fig. 4.3). Following the symmetry of the rotor, when the piston

reaches one of its ends another piston enters again from the other end. Accord-

ingly, in each step of length D a volume V0 = DA of particles is translocated

between both reservoirs. The dynamics equation for the rotation will follow again

the reported Brownian overdamped dynamics, in opposition to macroscopic tur-

bines (2.11),

γẋ = F + ξ(t). (4.3)

Here, the spatial coordinate of the turbine is the linear position normal to the

membrane width and is labelled x to differentiate it from the angular coordinate

of the motor θ. Despite this change in the reference system, spatial and rotatory

coordinates are directly related and can be easily transformed between them. The

rest of elements of elements in (4.3) are equivalent to those described in (2.11)

where the sum of forces F ≡ ∑i Fi has two main components F ≡ Fp − Fc.

The force Fp is the average force that the particles exert on the piston, while

the external force Fc extracts or introduces work into the system. For the sake

of simplicity, the particles can be considered to behave as an ideal gas so their

contribution corresponding to the balance between the pressure (Pi) of both

reservoirs can expressed as

Fp = (P2 − P1)A = kBTA(ρ2 − ρ1), (4.4)

obtaining a linear dependence on the concentrations. This relation for the force

has been tested numerically to be the force that two non–interacting Brownian

gases apply on the piston for biological parameters (Table 4.2)(Sec. 4.2.3). More

complex dependences for Fp can be considered taking into account individual ions
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4.2. IONIC TURBINES

Parameter Value Description

kT 4.1 pN nm Biological Temperature

γ 10 pN nm μs Stokes friction for a sphere of radius 	 8 nm

A 150 nm2 Section of a channel of 7 nm radius

D 4 nm Width of F0 motor

ρ2 20 mM Biological concentration

Table 4.2: Biological parameters used for testing the molecular turbines.

and membrane potential. However, they will still contain the physical phenomena

described hereon that will only depend on the generic net force F . Without loss

of generality, ρ1 > ρ2 will be fixed. This way, when no external force is applied

the velocity and the flux are defined positive. Also Fc has been considered to be

positive when it hinders the movement i.e., Fc > 0 is a force used to extract work

from the turbine or to pump particles against the gradient (Fig. 4.3).

The mean velocity v = 〈ẋ〉 can be obtained by averaging eq. (4.3) coinciding

with the steady state Stoke’s velocity (Fig. 4.4),

v =
F

γ
=

(ρ1 − ρ2)AkBT − Fc

γ
. (4.5)

This simple result returns a linear decreasing function of the the velocity with

external force Fc. The external force that stalls the motor is,

Fc(v = 0) ≡ FM
stall = (ρ1 − ρ2)AkBT. (4.6)

For larger values of Fc than the stall force, the velocity of the motor will be

reversed forcing the piston to advance against the particle gradient. Equivalently,

for a fixed value of the external force, a motor stall gradient appears (Fig. 4.4),

ΔρMstall =
Fc

AkBT
, (4.7)
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Figure 4.3: Scheme indicating the working of the piston turbine. The black piston

has periodic boundary conditions between both motor ends. The position x, the force

of the particles Fp and the external force Fc are considered positive in the direction of

each respective arrow.

for which the velocity of the motor is reversed.

The particle flux that crosses the turbine is quantified as the average number

of ions that are transported across the membrane per unit of time. Therefore,

the flux is related with the velocity of the motor and the ionic density at each

side of the turbine. For a turbine that advances with a constant velocity, the flux

in the deterministic approximation (without considering thermal fluctuations)

can be calculated as the number of particles (V0ρi) that are transported in each

complete cycle of the piston.

J→ =
V0ρ1
Tv

= vAρ1, Fc < FM
stall,

J← =
V0ρ2
Tv

= vAρ2, Fc > FM
stall, (4.8)

being J→ and J← the forward and backward flux of the turbine when the constant
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Figure 4.4: Velocity of the turbine. Top: Velocity versus external force opposing the

natural motion for different values of ρ1. The stall force necessary to stop the motion

of the motor Fc = F stall
M is indicated for ρ1 = 40mM. Bottom: Velocity versus the

density difference Δρ. The stall gradient ΔρMstall is indicated for the case Fc = 10 pN.

Parameters used are those of Table 4.2.
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velocity v is positive or negative and Tv = D/v the Stoke’s (deterministic) average

duration of the cycle. However, due to the non–equivalence between backward

and forward flux, the deterministic prediction (4.8) is not valid at the molecular

scale where the introduction of the thermal fluctuations is mandatory. This

becomes clear at the motor stall force FM
stall situation where the average velocity

is null (v = 0). In this situation, due to thermal noise, the piston is constantly

fluctuating producing an equal number of complete cycles in the forward and

the backward direction maintaing v = 0. Nevertheless, steps in the gradient

direction transport more particles (V0ρ1) than steps in the opposite direction

(V0ρ2) resulting in a net flux J �= 0 in opposition to the deterministic prediction

(4.8).

Thermal fluctuations can be introduced in the flux definition by taking into

account that the average duration of each cycle T does not coincide with the

deterministic description Tv = D/v but with the time that takes a stochastic

trajectory of the motor to complete one step in either the gradient direction or

in the opposite direction,

J =
〈ΔN〉
T = AD

P→ρ1 − P←ρ2
T , (4.9)

where P→ and P← are the probabilities of a successful step in the gradient direc-

tion or against it. For the transducing mechanism described, a step translocating

particles requires the piston to advance a net distance |Δx| = D (Fig. 4.5). If this

distance is advanced in the forward direction Δx = D, an amount V0ρ1 particles

will be translocated. However, if the distance is covered backwards Δx = −D
an amount of V0ρ2 particles will be translocated. This description is equivalent

to a mean first passage time (MFPT) problem in which the piston starting at a

position x0 = 0 under a stochastic force F + ξ ends its trajectory when it reaches

a position x = ±D (Fig. 4.5). The MFPT T (x0) with x0 as the starting position
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of the piston follows the equation,

F

γ

d

dx0
T (x0) +

kBT

γ

d2

dx2
0

T (x0) = −1, (4.10)

which can be derived from the Focker–Planck equation with absorbing boundary

conditions at x = ±D corresponding to the Langevin equation describing the

dynamics of the motor (4.3) [22]. The absorbing boundary conditions necessary

to solve (4.10) can be written in terms of T (x0) indicating that the mean step

time for a cycle starting at a turbine end is zero,

T (D) = 0, T (−D) = 0. (4.11)

The solution of (4.10) evaluated in the starting point of a cycle (x0 = 0) returns

the average cycle time

T ≡ T (0) = γD

F

(
cosh FD

kBT − 1

sinh FD
kBT

)
. (4.12)

Equivalently, from the Fokker–Planck equation corresponding to (4.3) the prob-

ability of ending the step in the gradient direction P→(x0) starting the step at a

position x0 can be obtained,

F

γ

d

dx0
P→(x0) +

kBT

γ

d2

dx2
0

P→(x0) = 0. (4.13)

With boundary conditions,

P→(−D) = 0, P→(D) = 1. (4.14)

Boundaries (4.14) state that the probability of a successful step in the gradient

direction starting at the gradient end of the turbine x0 = D is one, and the

probability of ending the step in the gradient direction starting the cycle in the

end of the turbine opposite to the gradient direction x0 = −D is null. The

solution for P→ starting at point x0 = 0 returns the probabilities needed in eq.
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Figure 4.5: Scheme indicating one complete step of the piston. It starts at x0 = 0

(0) and follows a stochastic trajectory that can achieve intermediate positions (1,1’)

but does not end until a net advance Δx = D or Δx = −D is achieved (2,2’). The

probabilities probabilities P→ and P← to finish the step in each direction are different

and will depend on the net force and the diffusion of the piston. Additionally, the

step in each direction carries a different quantity of particles ΔN . The initial position

x0 = 0 corresponds with the situation in which the piston exits one side of the machine

and another piston enters from the opposite side. Each piston from the initial position

(0) is marked with a circle (white or black) to facilitate its tracking along the scheme.
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(4.9),

P→ ≡ P→(x0 = 0) =
e

FD
kBT − 1

2 sinh FD
kBT

, P← =
1− e

−FD
kBT

2 sinh FD
kBT

. (4.15)

Where the probability P← is obtained following the same prescription or using

the normalization property P→ +P← = 1. Introducing (4.15) and (4.12) in (4.9)

an explicit expression for the flux is procured,

J =
FA

2γ

ρ1

(
eFD/kBT − 1

)
− ρ2

(
1− e−FD/kBT

)
cosh(FD/kBT )− 1

, (4.16)

able to reproduce the flux of particles in a thermal bath (Fig. 4.6). The further

the external force is from the net stall force, the better is the match between the

deterministic prediction of the flux (4.9) and the stochastic one (4.16). This is so,

because for a large driving force the relative number of cycles against the motion

direction is reduced. This leakage of ions at the motor stall force situation implies

that a greater force than the stall force is needed to reverse the flux of ions. This

force will be referred hereon as the pump stall force. This new stall force can be

obtained from (4.16) at J = 0,

FP
stall ≡ FE(J = 0) = FM

stall +
kBT

D
ln

ρ1
ρ2

, (4.17)

which fulfills the relation FP
stall > FM

stall. The new term coincides with the force

required to move a particle a distance D doing a work equivalent to the chemical

free energy of the particle crossing the membrane Δg = kBT ln ρ1

ρ2
.

Since the effect is thermal, expression (4.16) coincides with (4.9) in the low

temperature limit (T → 0) where thermal fluctuations disappear. The same

occurs, for expression (4.17) where for T → 0 the motor stall force and the pump

stall force converge.

The same argumentation holds fixing Fc and varying the particle gradient to

stall the flux. In this case, the pump stall gradient ΔρPstall obtained from (4.16)
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has not a simple expression and has to be calculated numerically (Fig. 4.6).

The appearance of two different stall forces for the flux and the velocity entail

three different energetic regimes of the transducer (Fig. 4.7). For external forces

under FM
stall (v > 0 and J > 0) the transducer works as a motor in which the

force Fc opposes the motion of piston extracting work from it. In this situation

the energy source is the depletion of particles in the gradient direction. On the

other hand, for forces greater than the stall force of the pump FP
stall (v < 0 and

J < 0) the force is used to pump particles against the gradient. Here the energy

source is the external force.

Finally, a third regime occurs where no useful energy can be obtained. This

regime occurs between the two stall forces (FP
stall < Fc < FM

stall). In this regime,

there is not useful output energy neither as work, since the v and Fc have the

same direction; nor as a chemical potential through particle pumping, since the

flux follows the direction of the gradient (Fig. 4.7). In this regime not only

there is no energy output but also there is a constant loss of energy through

the non–zero flux. For this reason, this region is referred hereon as the leakage

regime. The width of the leakage zone for biological parameters is large enough

(∼ 1 pN) to be of relevance in the performance of molecular motors. In fact, the

width of the leakage regime depends on the free energy of a particle crossing the

membrane (4.17), revealing again the thermal nature of the process that would

disappear in the limit T → 0.

During the motor regime, the energy extracted through the force Fc entails a

power

PM = Fcv =
(ρ1 − ρ2)AkBT − Fc

γ
Fc, Fc < FM

stall, (4.18)

which exhibits the well known parabola with a maximum power at Fc(max) =

FM
stall/2 as it is seen in Fig. 4.8.
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Figure 4.6: Flux of particles of the piston turbine against a conservative external force

(Top) and the particle concentration difference (Bottom). The stochastic results (solid

line) differ from the deterministic prediction (dashed line) near the motor stall force

FM
stall. Parameters used are those of Table 4.2.
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Figure 4.7: The turbine has three different regimes depending on the external force

applied. In the motor regime the energy is extracted in form of work (W > 0) while in

the pump regime, the energy is stored as an increment in the particle density difference

(ΔG > 0). In the leakage zone (gray zone), no useful energy can be obtained.

On the contrary, the pump power is the variation per unit of time of the

gain in free energy in the reservoirs. This is the free energy of a particle passing

between both reservoirs times the flux of particles,

PJ = |J |Δg = −JkBT ln
ρ1
ρ2

, Fc > FP
stall. (4.19)

The relation of the power with the external force is obtained introducing (4.16)

into (4.19) procuring an increasing function of the power with Fc. This is so

because the greater is the external force the greater is the flux of particles (Fig.

4.8).

While the motor power depends on the average velocity (4.18), the pump

power depends on the particle flux (4.19). These dependences make the deter-

ministic prediction correct when describing the motor power but not for the pump

power that requires the understanding of the effect of thermal fluctuations. Ad-
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ditionally, since no useful energy can be obtained in the leakage zone, no output

power can be defined in this zone.

The leakage of ions is even more important for the efficiency. For the motor

regime, the efficiency is

ηM =
PM

PJ
=

vFc

JΔg
, Fc < FM

stall. (4.20)

In the Stoke’s prediction, the efficiency reaches its maximum at the stall force. In

this situation the motor achieves the transduction with a minimum dissipation.

However, the results of the stochastic analysis returns a completely different

scenario. For forces near the leakage zone, ηM presents a complete deviation

from the deterministic prediction (4.8) decaying dramatically to zero (Fig. 4.8).

Near the stall force, the output efficiency is low because the low velocity of the

motor is decompensated by the continuous wasting of energy through the leakage.

This decaying entails the arising of a new efficiency maximum for intermediate

values of the external force. Nevertheless, the position of the maximum efficiency

does not coincide with the point of maximum power which have implications in

the effective energy transduction of these kind of motors since there is not an

optimum regime with a maximum efficiency and maximum power.

Moreover, the deterministic efficiency is always greater than the stochastic

one. However, the deterministic efficiency itself never achieves a maximum effi-

ciency of η = 1 at the stall force FM
stall because the finite difference in concentra-

tions keeps this state far from thermodynamic equilibrium.

Similar results are obtained for the pump regime where the role of the powers

is reverted. The input power will be the mechanical power and the output power

is the chemical one,

ηP =
PJ

PM
=

JΔg

vFc
, Fc > FP

stall. (4.21)

Again, the resulting efficiency is null at the stall force and reaches a maximum
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Figure 4.8: Turbine power and efficiency versus external force. Motor regime is at

the left side and pump regime at the right one. The shaded zone corresponds with the

force gap where power and efficiency are null. The deterministic power and efficiency

(dashed line) is always greater than the stochastic one (solid line) specially near the

leakage zone. Concentration ρ1 = 40mM, other parameters used are those of Table

4.2.
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for an average force far from the stall force. For larger forces, the deterministic

result is recovered saturating at ηP (Fc →∞) ∼ Aρ2/Fc (Fig. 4.8). Thus, in the

whole working scheme of the turbine the single efficiency optimum point at the

stall force is replaced by two new efficiency maxima, one for the motor regime and

another one for the pump regime. This result is of special interest for biological

motors that have evolved along time to perform optimally taking into account

the stochastic dynamics inherent to the biomolecular scale.

The same description is obtained studying the dependence of the power and

the efficiency with the particle gradient Δρ (Fig. 4.9). In this description the

roles are exchanged, having the power parabola for the pump regime and the

increasing power for the motor regime. This is only a signature of the opposition

of the particle force Fp increasing with Δρ and the external force Fc.

This description of a turbine is ideal in the sense that is not treating properly

the stochastic dynamics of individual particles. In addition, it does not consider

other relevant effects in real turbines such as a membrane potential, the internal

structure of the channel or the interaction between particles. In the following sec-

tion, the ionic turbine model is improved to deal more realistically with diffusive

particles. Finally, in the last section, a theoretical framework taking into account

the individual particles is developed with the corresponding numeric modelling.

4.2.2. Turbine with multiple vanes

The turbine described with one piston results in interesting results but fails to

take into account correctly the diffusive nature of the particles. While the model

requires a full advance Δx = ±D to produce a complete step, this assumption

does not take into account that fluctuations of the piston around one of the ends
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Figure 4.9: Turbine power (top) and efficiency (bottom) versus particle gradient. The

behavior is equivalent to the energetic performance agains Fc but with the behavior of

Motor and Pump exchanged. Concentration ρ1 = 40mM, other parameters used are

those of Table 4.2.
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Figure 4.10: Comparison of the performance of the one–piston turbine (left) and the

multiple-vane turbine (right) when a vane arrives at one end of the channel (dashed

vane). In the one–piston turbine, fluctuations of the piston around one end can translo-

cate particles. On the contrary, for the multiple-vane turbine there is always an active

piston inside the turbine hindering the free flux of particles.

of the turbine would lead to a particle leakage i.e. the translocaction of particles

does not require a full step of a determined length to translocate particles. This

problem is easily avoidable by introducing more pistons in the turbine. With a

set of equidistant pistons, the volume of particles requires to be enclosed by the

pistons to be translocated (Fig. 4.11) and therefore a minimum finite advance

of the turbine is necessary to produce a translocation (Fig. 4.10). Actually,

this solution is not used only by microscopic motors but also by its macroscopic

counterpart which translocate a certain fluid with several vanes. For this reason

the pistons will be referred hereon as vanes to differentiate this turbine from the

one–piston case.

The intervane distance d < D determines the number of vanes inside the

channel and interacting with the particles at the same time. In order to avoid

the additional leakage aforementioned is enough to consider a minimum of two

vanes acting at the same time D
2 < d < D. In this case, the cycle is completed

when the turbine covers a distance equal to the intervane distance Δx = ±d (Fig.
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Figure 4.11: Turbine with two vanes along one full cycle advancing in the gradient

direction (Δx = d). The particles are shut in the turbine when the second vane (marked

with a black ball) enters the turbine (I) and are released to the other reservoir when

the initial vane (marked with a white ball) leaves the turbine (II). Vanes entering and

leaving the system are depicted as dashed vanes.

4.11). Thus, the turbine with multiple vanes translocates each step a volume of

particles proportional to the inter–vane distance V0 = Ad.

The net force F is not affected by the increase in the number of vanes and

therefore the average velocity (4.5) is not affected by this change. Nonetheless,

the translocation of particles does change with the number of vanes. Conse-

quently, the particle flux must be reformulated. The multiple vane description

introduces two relevant configurations of the turbine to describe the flux of par-

ticles. These are the configurations in which a vane is situated at either end of

the turbine and will be labelled hereon as I and II (Fig. 4.11). At these con-

figurations a vane can enter the turbine enclosing a certain volume of particles,

or can disappear releasing a certain amount of particles. In configuration I, the

turbine exchanges freely particles with the reservoir of concentration ρ1, while

configuration II exchanges particles with the reservoir of concentration ρ2.

Taking I as the starting configuration, it can achieve configuration II by two

different ways: forwards or backwards (Fig. 4.12). While in the forward direction
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there is a net translocation of particles, in the backward direction no particle is

translocated. These two transitions are labelled as
−→
I II and

−→
II I. Taking II as

the starting configuration, the behaviour is similar, having a net translocation of

particles when the turbine goes to I backwards
−→

I II and no net flux of particles

when advancing
−→
II I. The four possible transitions are summarised in Figure

4.12 with the corresponding displacement of the turbine, and the corresponding

particle exchange.

A cycle starting in position I will not translocate any particle until it arrives,

at least, at a configuration II. Once in II, again no translocation will take place,

at least, until it arrives again at I, closing the motor cycle. Thus a cycle is

composed by the succession I − II − I. After the cycle is completed, the turbine

may have advanced a distance d (
−→
I II+

−→
II I), a distance −d ( −→

II I+
−→

I II) or no net

advance (
−→
I II +

−→
I II or

−→
II I +

−→
II I), entailing also different amounts of particles

translocated ΔN . Once the cycle finishes in the I configuration, the system

retains no information on the previous trajectory, i.e. the cycle is Markovian and

therefore the average temporal evolution through a long trajectory can be studied

through the average of the possible ways to perform a single cycle I − II − I.

The average number of particle translocated in the process I− II will depend

on the probability to produce the transition forwards or backwards,

〈ΔNI−II〉 = P−→
I II

ΔN−→
I II

+ P −→
II I

ΔN −→
II I

= P−→
I II

ρ1V0. (4.22)

Where the relation ΔN −→
II I

= 0 has been used leaving only one unknown quantity,

the probability of starting at position I advance forward to position II (P−→
I II
)

instead of going backwards. This problem is equivalent to the MFPT problem

solved in the previous section but in an asymmetric fashion. In this case, the ab-

sorbing barriers are placed at a different distance from the starting position. For

instance, the case of the first transition starting at a configuration I is equivalent

to have a particle under a Brownian force F + ξ that ends its trajectory when it
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Figure 4.12: There are four possible transitions between states I and II. Each tran-

sition entails a different advance Δx and different average amounts of translocated

particles ΔN . Starting at each state, there are two transitions possible with different

probabilities for each direction P→ and P←. The active vane in state I is marked with

a white ball for the sake of clarity along the different transitions. Vanes entering and

leaving the channel are marked as a discontinuous vane.
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reaches the boundaries set by state II, Δx = −(2d −D) or Δx = D − d. Thus,

the resulting MFPT and exit probability follow equations (4.10) and (4.13) with

boundary conditions,

TI−II(D − d) = 0, TI−II(D − 2d) = 0, (4.23)

p−→
I II

(D − d) = 1, p−→
I II

(D − 2d) = 0. (4.24)

returning,

P−→
I II

≡ p−→
I II

(0) =
eν1 − e−ν2

2 sh ν1
, (4.25)

TI−II ≡ TI−II(0) =
γd

2F̄

(
ch ν1 − eν2

sh ν1
− 3

2
− D

d

)
, (4.26)

with,

ν1 =
Fd

2kT
, ν2 =

F

kT

(
3d

2
−D

)
. (4.27)

Proceeding in the same way for the second transition (from II to I), the

average number of particles, the direction probability and the time of the process

follow the relations,

〈ΔNII−I〉 = P−→
II I

ΔN−→
II I

+ P −→
I II

ΔN −→
I II

= −P −→
I II

ρ2V0, (4.28)

P −→
I II

=
−e−ν1 + eν2

2 sh ν1
, (4.29)

〈TII−I〉 =
γd

2F̄

(
ch ν1 − e−ν2

sh ν1
+

3

2
+

D

d

)
. (4.30)

Finally, the average flux can be computed using this information to evaluate

the average flux of a cycle, this is, the average number of particles translocated

in a cycle 〈ΔN〉T over the average time that takes a full cycle T ,

J =
〈ΔN〉T
T =

〈ΔNI−II〉+ 〈ΔNII−I〉
〈TI−II〉+ 〈TII−I〉

=

=
FA

2γ

ρ1 (e
ν1 − e−ν2) + ρ2 (e

−ν1 − eν2)

ch ν1 − ch ν2
. (4.31)
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Which returns a behaviour similar to the one–piston turbine. Again, the flux

is inverted at a pump stall force value FP
stall larger than FM

stall (Fig. 4.13) giving

place to the leakage zone,

Fc(J = 0) ≡ FP
stall = FM

stall +
kBT

D − d
ln

ρ1
ρ2

. (4.32)

In this case the difference between both stall forces is greater than the predicted

for the one–piston case (4.17) (Fig. 4.13). Here, the size for he leakage zone

coincides with the free energy of a particle crossing the membrane used along a

distance D − d. Additionally, expressions (4.31) and (4.32) point out the failure

of the one–piston turbine. Note that the one–piston scenario is not recovered

in the limit d = D. The one–piston turbine analysis is an idealization in which

always a full step of length D is required to obtain particle transduction. Instead,

the flux diverges in this situation (Fig. 4.14).

Since the flux has the same characteristics as the one–piston case, the result-

ing profiles for the power and the efficiency show the same properties, namely,

the decay to zero of the efficiency near the leakage zone and the appearance of

new efficiency maxima (Fig. 4.13). The resulting efficiency is lower than the one

predicted by the one–piston model. This does not imply that the multiple–vane

model has a worse performance, but a more realistic one. In fact, when the limit

d = D is performed properly, it leads to an infinite flux of particles (Fig. 4.14)

with a continuous loss of energy in the system i.e. null power and null efficiency.

4.2.3. Particle dynamics

So far, the particles have been considered as a continuous bulk with instan-

taneous diffusion. However, in real systems particles are discrete entities each

one with its own dynamic. Therefore, it is essential to study the problem with a
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Figure 4.13: Comparison between the performance against an external force for the

two–vane turbine (solid line) (4.31), the one–piston turbine (dashed line) (4.16) and

the deterministic Stoke’s analysis (dotted line) (4.8). Top: Particle flux of each model.

Bottom: Efficiency of each model. The leakage zone of the two–vane turbine (shaded

zone) is larger than the expected for the one–piston turbine. An intervane distance

d = 3 nm is used, the rest of the parameters are those of Table 4.2.
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Figure 4.14: Dependence of the flux of two–vane turbine with the intervane distance

d. The flux is constant for low values of d but diverges near the limit d = D. The three

diagrams show the vane configuration when a vane is entering/leaving the channel for

three different situations: The one–piston limit d = D, the shortest d compatible with

the two–vane turbine d = D/2, and an intermediate d as the one used in Fig. 4.13.

An external force Fc = 5pN is used, the rest of the parameters are those of Table 4.2.
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finite number of particles to confirm the validity of the results obtained in pre-

vious sections. In addition, new phenomenology that was not taken into account

previously will arise from this analysis. For instance, a large driving external

force acting on the turbine, may achieve a great velocity but without producing

any flux since the particles have no time to enter the turbine. This situation

introduces a new limit, the volume of particles translocated per cycle is not any-

more V0 = Ad but a lower value. For the sake of fluency, computational details

are gathered in Appendix B leaving here the setting out of the problem and the

main resulting observables.

In order to describe the dynamics of the ions, they must be considered sepa-

rately from the thermalised cytosol and studied as thermalised particles by their

own. Hence, the description of the dynamics of the turbine with N particles takes

N + 1 coupled Langevin equations,

γẊ = −∑i V
′
p(xi −X) + V ′

T (X)− Fc + ξ ,

γpẋi =
∑

i V
′
p(xi −X) + V ′

φ(xi) + ξp i = 1 · · ·N.

⎫⎬
⎭ (4.33)

Where X is the position of the piston and xi is the position of each particle.

The piston follows the same Brownian dynamics described in (4.3), whereas each

particle follows also overdamped dynamics with friction coefficient γp and a white

noise thermal force with correlation 〈ξi(t)ξj(t′)〉 = 2γpkTδijδ(t− t′).

Additionally, a full mechano–chemical description requires to take into account

all the rest of interactions present in a real molecular motor. Considering this,

three potentials have been added in the system description (4.33). On one hand

the interaction potential Vp that controls the collisions between the particles and

the piston producing the particle force Fp = 〈V ′
p(xi −X)〉 already introduced in

its average ideal form. This potential can be described through a hardcore poten-
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Parameter Value Source

γp 2·10−3 pN nm μs Stokes friction for a sphere of radius 	 8 nm

d 3 nm Chosen to have 1-2 active vanes

β 0.7 Intervane useful volume fraction

Table 4.3: Biophysical parameters used in the simulation with the corresponding

source of the value. The rest of the parameters used in the simulations are gathered

in Table 4.2 and Appendix B.

tial (Fig. 4.15). On the other hand, the potential VT (X) describes the internal

interaction of the turbine. This potential may have many biological functions

such as the control of the leakage by fixing the piston at the central part of the

turbine not allowing the movement of the piston for low forces i.e. near the stall

force. Finally, Vφ(xi) is the membrane potential produced by an electrical po-

tential difference at both sides of the membrane and generating a net force in

the charged ions inside the turbine. If not stated otherwise, potentials VT and

Vφ will not be considered in the current work, having thus, the same mechanistic

situation described in (4.3). Other terms can also be added to the equations such

as particle–particle interaction. However, ionic density in biological systems is

low enough to consider, in a first approximation, that there is no interaction be-

tween particles. Additionally, this is the case of the BFM where particles pushing

the rotor can be found in different stators. The relevant biophysical parameters

chosen for the current analysis are again based in biological information. Thus,

for this analysis, the parameters of Table 4.2 are kept while the new parameters

are gathered in Table 4.3. Additionally, the rest of parameters necessary for the

computational analysis can be found in Table B.1.

Langevin equations describing the particle–turbine dynamics (4.33) can be
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Figure 4.15: Example of interaction potential between the particles and the turbine

Vp. The effective volume between vanes is reduced because of the potential width by

a factor β.

integrated numerically obtaining trajectories for the turbine and the particles

from which information about the velocity, flux and energetics of the motor is

available (Appendix B). The average resulting velocity shows a behaviour com-

parable with the analytical results (Fig. 4.16). In fact, the dynamics equations

(4.33) coincide with the simplified Langevin equation (4.3) when the particles

diffuse faster than the advance of the turbine, which is a good approximation to

the biological scenario. Actually, even for large values of the velocities, with an

external assisting force (Fc < 0), the motor returns values only slightly slower

than the prediction.

The resulting values of the flux also match the values predicted analytically

in the muliple–vane scenario but contemplating that the volume of particles that

fit inside the two vanes depends on the actual expression for Vp. The interaction

potential for each vane has a certain width, as it happens in real turbines, that

139



CHAPTER 4. ION FLUX DRIVEN MOTORS

Figure 4.16: Results of the turbine simulations for different values of Fc (symbols)

compared with analytical results (solid line) (eq. (4.31)) and Stoke’s prediction (dashed

line) (eqs. (4.5) and (4.8)). Top: Velocity of the turbine vs. lineal concentration of

particles difference. Bottom: Flux of particles vs. lineal concentration of particles.

The values used for Fc are -16 pN,-8 pN, 0 pN, 8 pN, 16 pN.
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reduces the available volume translocated. The new volume will be V0 = βdA

with β < 1 the available inter–vane volume fraction (Fig. 4.15). This fraction

can be estimated for each potential and situation, which for the current case

is β = 0.7 (Appendix B). The flux predicted this way fits very well with the

stochastic simulations having some little discrepancies near the stall forces, where

the diffusion velocity of the particles becomes more important (Fig. 4.16). This

is so, since in the leakage zone, fluctuation of the turbine around state I and II

is more frequent and the dynamics of charging and discharging of the turbine

becomes more relevant.

The efficiency of the motor can also be computed showing a good match with

the analytic model (Fig. 4.17). The computed efficiency recovers the decay of

the efficiency near the stall forces of the device. This result entails that the

analytic description is able to capture the energetic performance of the particle

transduction device even near the leakage zone where discrepancies from the

solution of the velocity and the flux can imply a large deviations.

To sum up, the computational results of the turbine not only allow to tackle

the problems more realistically but do also confirm that the phenomenology

described analytically from the initial one–piston turbine model is intrinsic to

molecular turbines and can not be disregarded. The differences from the Stoke’s

analysis introducing thermal fluctuations is essential to study the energetic per-

formance of the motor which is usually the experimental unavailable information

of molecular machines.
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Figure 4.17: Efficiency of the turbine vs. de particle gradient for different values of

Fc. The result from the simulations (symbols) match the efficiency resulting from the

flux of the two–vane turbine (4.31). Fc = 4pN, 8 pN, 16 pN.
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5
Conclusions

The current work has been devoted to the analysis of operation of rotatory

molecular motors dealing with theoretical aspects of their energetic transduction.

The analysis included both, more general approaches and more specific ones ap-

plied to particular motors. Here, a conclusion section is procured summarising

the most relevant results and aspects of the work, with the corresponding publi-

cations.

Theoretical framework [57, 56, 70]

Molecular motors are macromolecules, which operate transforming between

different kinds of energy. Such transduction results from the multiple complex

interactions between the atoms composing each motor and its environment. The

complexity of this picture is an obstacle in understanding the transduction pro-

cess. Thus, in order to delve into the operation of molecular machines a more

generic scenario is needed. However, possible theoretical descriptions of molecular

motors are multiple. Each one corresponding with a different level of abstrac-
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tion and contributing to the understanding of the machine operation. In the

current work, the analysis developed takes as starting point the main observable

of molecular machines, their trajectory under different experimental conditions.

The analysis of the trajectory allows to identify the main processes composing

each individual transduction cycle, characterising the length and duration of each

process. This analysis separates, from the observed step-like trajectories, two well

differentiated processes. On the one hand the mechanical times, during which the

motor exerts a net force and produces a spatial advance; on the other hand, the

dwell times, when the motor waits for different catalytic reactions and does not

advance. In order to quantify these processes, the overdamped dynamics char-

acteristic of the molecular working scale plus the kinetic of the reactions taking

place are necessary. Thus, the analytic characterisation of the mechanical and

chemical processes allowed to predict the dependence of the average velocity of

the motor with the different experimental control parameters.

Additionally, a more detailed analysis of the motor was proposed through the

explicit treatment of the dynamics of the machine. In this case an overdamped

Langevin equation that takes into account the thermal stochastic forces acting

continuously on the motor. The only ingredient missing in this analysis is the

actual expression of the force that the motor is exerting, that can be written in

the form of a motive potential. Thus, the problem is reduced to the search of

this potential that contains all the mechano–chemistry of the motor.

F1 motor under dissipative forces [56]

The theoretical framework proposed was applied for the F1–ATPase motor.

To start with, the analysis was based in a purely dissipative set up of the motor

with two control parameters, the size of the dragging cargo and the ATP con-

centration. A deterministic analysis was carried out quantifying the mechano–
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chemical processes relevant in the observed trajectory of the motor. This study

gave place to a prediction of the velocity without any free parameter. The deter-

ministic velocity profile calculated compared well with experimental observations

of the rotation of the motor grasping the dependence of the velocity with the

control parameters.

The appealing results suggested a detailed stochastic analysis of the motor.

The motive potential derived from experimental observations consisted on a flash-

ing mechanism between two sawtooth potentials. Each potential describing a

chemical occupation state of the catalytic site of the motor, namely, occupied

or free. Hence, the flashing between potentials corresponds with the caption

of ATP and release of its hydrolysis products. Thus, the flashing times, that

will be in general stochastic, will be driven by the chemical reactions and me-

chanical processes already described in the deterministic analysis. Hence, such a

description, relates all the parameters of the flashing mechanism with real mea-

surable quantities allowing to test the validity of the motive potential without

any free parameter. In fact, the value of the substep angle α, which has been

measured experimentally, can be extracted directly from the model from optimi-

sation arguments of the motor operation. The resulting velocity profile from the

corresponding Langevin equation returned a good match with the experimental

data. In fact, it gave place to a better approximation than the one obtained

from the deterministic analysis. Actually, the stochastic simulations predict a

lower value than the deterministic results. An analysis revealed how the discrep-

ancies are related with the stochasticity of the system i.e. flashing mechanism

and thermal fluctuations. The differences come from the appearance of missing

steps. Missing steps are ATP hydrolysis events that do not produce a successful

step but waste the energy of the hydrolyzed ATP. The fraction of missing steps

was also quantified analytically using the Fokker–Planck equation corresponding

to the Langevin dynamics of the motor. The result is an explicit relation of the
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fraction of missing events with the size of the load attached to the motor.

F1 motor under conservative forces [57, 70]

The dependence of the F1 motor with an external conservative torque was also

studied. In this case, the analysis is more complex since a conservative torque

affects the transduction cycle in both, chemical and mechanical processes. Specif-

ically, the dependence of the duration of mechanical processes with the external

force was found to have a contribution from thermal fluctuations. Again, this

issue was tackled from the Fokker–Planck equation describing the spatial prob-

ability profile of the motor. Finally, with all the dependences with the external

torque successfully quantified, the resulting velocity description was compared

successfully with the velocity profile. As in previous analysis, the velocity predic-

tion was performed without any free parameter giving soundness to the proposed

potential.

Finding a potential compatible with available experimental information, not

only gives an insight into the main mechanisms driving the operation of the mo-

tor but also allows to formulate predictions on the energetics of the motor, which

can not be usually observed experimentally. This analysis was based in predic-

tions of the power and the efficiency of the motor and compare them with the

deterministic results. The study revealed dramatic differences between stochastic

and deterministic results. While for the deterministic analysis, the maximum of

efficiency is reached at the stall force of the motor, this is not longer true when

thermal fluctuations are included. Thermal fluctuations lead the movement of the

motor near the stall regime and the spatial advance, fixed by the motive poten-

tial, is erased. This way, the maximum of efficiency is obtained for intermediates
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value of the external torque where the useful power of the motor is also large.

This result is of special relevance for biological molecular motors, since they are

expected to work in an optimum regime. In this case, this optimal behaviour can

not be predicted by a pure deterministic analysis where thermal fluctuations are

mandatory. Hence, this result does not only introduce a prediction for the effi-

ciency but a proof that thermal fluctuations can not be neglected when dealing

with the energetic transduction of molecular motors.

Fokker–Planck approximation to molecular motors

[54, 55]

Due to the non–linearity of the flashing potential mechanism, the solution

of the the Langevin equation is not analytically available. Therefore, the anal-

ysis of thermal fluctuations must be performed, in general, through computer

simulations. This fact inspired an analytical procedure to analyse this kind of

systems. The formulation consisted in an approximation of the Langevin equation

through the Fokker–Planck description. This approximation takes into account

the flashing mechanism as a dichotomous noise that can be approximated with

a white noise. The resulting equation is a F–P equation with a diffusion coeffi-

cient dependent on the position. For sawtooth potentials, an exact solution of

the resulting F–P equation is determined from which the velocity of the motor

is available. This theoretical approximation was tested with experimental results

of the F1 motor. The match between theory and model was good for regimes

of high ATP concentration and large loads. In order to evaluate the goodness

of the approximation, a predictor was developed which is able to give the ex-

perimental conditions threshold beyond which the approximation holds. As a by
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product, the analysis of this problem revealed that the traditional algorithms for

the integration of Langevin equations in the Stratonovich interpretation failed to

converge to the correct solution when the diffusion coefficient is not continuous

in space. In order to solve this problem, a new algorithm based in the meaning

of the Stratonovich interpretation was developed able to converge to the correct

solution even in this case.

Molecular Machines driven by an ionic flux [58]

Finally, the developed theoretical framework was applied to molecular motors

driven by a flux of ions. These motors presented new challenges originated in the

change of the transduction mechanism. Now a flux of ions is coupled with the

mechanical motion of an tansmembrane rotor. In order to understand the main

features of such coupling, the most simple mechanistic device is proposed. An

ionic turbine devised as a mobile piston inside a channel with periodic boundary

conditions. The turbine is situated between two particle reservoirs of different

concentration that interact with the piston generating the directional motion of

the piston. The energy transduction of the motor is studied by applying a force

against the natural motion of the motor. This force can hinder the spontaneous

motion of the motor extracting mechanical work from it. Additionally, for a large

enough external force, the ionic flux can be reverted. In this regime, the turbine

acts as a pump in which the external force is used to increase the membrane

energy by translocating particles against the Ionic Motive Force. An analysis of

the motor including thermal fluctuation revealed that the flux of particles and

the velocity of the motor are not proportional. In fact, the necessary force to

inverse the velocity, the stall force of the motor; is smaller than the external force

required to reverse the flux of the motor, the pump stall force. For intermediate
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forces between both stall forces, a new regime appears in which the turbine does

not extract useful energy. The external forces reverses the motor velocity and

can not extract energy from it. In addition, the external force neither pumps

particles that still are translocated in the gradient direction. In this new regime,

named the leakage regime, the turbine is not only able to transduce energy but

is continuously losing energy through the ion flux. For biological parameters, the

width of the leakage zone is of the order of the pN, becoming of high significance

in real biological turbines. Additionally, the energetic behaviour for this turbine

is similar to the one observed in the F1 motor in which the efficiency becomes null

at the stall force of the motor. Again, this behaviour rises from thermal fluctua-

tions that lead the dynamics of the machine near the machine stall. Hence, the

efficiency obtained reaches new maxima for intermediate values of the external

force. Actually, two new maxima appears, one for the pump regime and one for

the motor regime. Following the same arguments as in the F1 motor, the rele-

vance of these energetic issues is high, since it implies that considering thermal

fluctuations is essential in an optimisation process of the energy management of

the motor.

The ideal model presented with the one–piston turbine lags a proper de-

scription of the diffusive nature of the particles. Therefore, a second model was

proposed containing multiple vanes inside the channel. The velocity–flux relation

was also analysed analytically for this model obtaining expressions for the veloc-

ity, the flux, the power and the efficiency in a more realistic scenario. This model

presented the same features than the ones observed in the one–piston model.

Actually, the flux of particles was larger resulting in a lower efficiency than the

one predicted by the one–piston turbine. The changes in the flux also resulted in

a larger leakage zone. Therefore, the introduction of more realistic elements in

the turbine do not erase the effects of thermal fluctuations but enhance them.
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This scenario was tested numerically to prove that the assumptions taken

were valid at the biological scale. These simulations not only corroborates the

analytical predictions but also sets a good tool to analyse a more realistic biolog-

ical scenario in which other interactions, such as membrane voltage or particle–

particle interaction, can be considered.
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6
Future Perspectives

Even though different results have been attained in the current work, delving

into these topics have raised more questions that failed to get a mention. For

this reason, it is worth to account for some ideas inspired by this work that could

be studied following the same methodology developed. Nevertheless, the topics

collected here are only a taste of the possible applications. There are not only

multiple directions of proceeding but also new problems will appear along with

the new experimental observations that will take place in the following years.

Mechano–chemical analysis of ϕ29 packaging motor

The applied analysis to the mechano–chemical transduction to the F1 motor

can inspire the analysis of other ATP rotatory hydrolysis motors. Nonetheless,

the current model can only serve as a guide and must be reformulated to ac-

commodate the properties of these other motors. One possible application is

the analysis of the operation of the ATPase homomeric ring that works as a

double–stranded DNA packaging motor in the ϕ29 bacteriophage.

Again, the ATP hydrolysis cycle is tightly related with the trajectory of the
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motor, in this case the DNA translocated distance in time. This motor also

presents the step–like trajectories described in the current work (Fig. 6.1). How-

ever, this motor has the peculiarity that each transduction process does not need

of one ATP molecule but four ATP molecules that attach to four of the homo-

meric ring binding sites. Once the four ATP molecules are attached, the motor

hydrolyses the ATP molecules one at a time producing four mechanical substeps

of 2.5 basepairs releasing a force able to overcome the high pressure to which this

motor is exposed [41, 65]. As it happened with the F1 motor, the dwell times

between mechanical substeps depend with the applied external force. Interesting

questions arise from these observations such as the performance advantages of this

4–ATP mechanism or how a fractional ADN base pair advance takes place. These

questions can be understood in terms of the same energetic analysis developed

in this work that must start with the finding of a suitable motive potential able

to reproduce the substepping trajectories and its dependence with experimental

control parameters. This work is currently in progress [53].

Non–equilibrium thermodynamics of transduction

process

The mechano–chemical transduction through the flashing mechanism pre-

sented in Sec. 2.3 uses an out of equilibrium protocol where the potential flashings

are triggered by the time duration of the different processes composing the cycle.

However, alternative mechanisms can be proposed where the flashing mechanism

is driven by the position of the motor along the motive potential. For instance,

considering that mechanical steps end when the motor reaches the minimum of

the driving potential. This possible mechanism corresponds to a protocol that

requires information of the position of the motor in order to extract energy from
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Figure 6.1: Experimental observations of the ϕ29 operation. Left: Trajectory of the

motor presenting steps. Right: Spatial autocorrelation function of the motor trajectory

showing that the 10 basepair steps are composed by four 2.5 basepair substeps. Figure

extracted from [39].

it. The energetic description of this protocol requires a correct analysis of the

corresponding non–equilibrium thermodynamics that lead to relations between

energy and information. Such relations have been already described theoretically

and experimentally for similar systems to the ones proposed [68, 85]. In the

framework developed in the current work, the information term could be com-

puted from the known probability distributions of the motor along its trajectory.

This extra energy would be an added term to the energy balance coming from

the chemical reaction and subtracted to the actual chemical free energy ΔG. The

study of these mechanisms could give a better insight into the mechano–chemical

transduction processes in molecular motors and its optimisation.
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Bacterial Flagellar Motor analytic models

The Stoke’s minimal model proposed for the analysis of ionic rotatory mo-

tors in Section 4.1 does well in gathering the duration of the main processes

composing the different transduction stages of each stator. However, it fails in

reproducing the velocity–torque curves. One of the problems, already mentioned

in Section 4.1, is the multiplicity of transduction processes when multiple stators

act simultaneously on the rotor [7]. Thus, the tight coupling between the rotation

coordinate and the actual state of one stator is lost. This problem was tackled

introducing the ionic turbine. However, amends to the initial Stoke’s equations

(4.2) can be made to handle the torque–velocity profile. Actually, a set of studies

using similar procedures exist producing successful appealing results [6, 42]. A

possible alternative description should start with the Langevin equation for the

motor relative to one stator,

τIMF = γ0ωmech + γLω, (6.1)

where τIMF is the internal torque supplied by the stator corresponding to the IMF,

and ω and ωmech are the average velocity of the motor and the average velocity

during a mechanical process. This description splits the actual force balance in

two components, the first term in the right hand side of (6.1) is the actual drag

force of the stator applied during its mechanical time, while the second term

of the right hand side of (6.1) is the global friction of the motor, which in this

description is considered to be transmitted directly to the load drag which is the

result of the average contribution of all the stators independent of their current

state. Such description is equivalent to consider a soft link between the torque

generating unit and the load that receives and average torque homogeneous in

time. From expression (6.1) a new expression for the mechanical time is obtained,

tmech =
γ0θ0

τin − τ
(6.2)
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Being τ the experimental reported torque of the motor computed as the drag

friction force τ ≡ γLω. This results in an explicit relation of the velocity with

the experimental control parameters τIMF and ρ1,

τ = τIMF −
γ0

1
ω −

t0+k0ρ
−1
1

θ0

. (6.3)

This relation matches the dependence observed experimentally observed torque-

velocity curves. For low values of the velocity saturates to the IMF τ(ω →
0) = τIMF and decreases for larger velocities, whereas the maximum velocity

corresponds to the case of zero measured torque, when no load is present in the

system. Again, this model can be a good starting point to a motive potential

analysis that leads to an energetic analysis of the Bacterial Flagellar Motor shed-

ding light on its performance.

Complete Ionic Turbines

The current computational analysis of the Ionic Turbine presented in Sec-

tion 4.2.3 was mainly applied to test the validity of the theory developed in

Sections 4.2.1 and 4.2.2. Nevertheless, the study can be extended by includ-

ing other features of real biological motors. Actually, expression (4.33), already

contains possible interactions that must be included in a full description of an

ionic turbine. One of these interactions include the electrostatic component of

the IMF Vφ. This interaction will apply on any ion crossing the channel. Other

possible interactions affecting the ion dynamics include ion–ion interactions and

a position dependent diffusion coefficient of an ion inside a channel γp(x) [59, 84].

Additionally, interaction terms affecting directly the interaction of the rotor

with the stator can be introduced. This interaction can be expressed as a poten-
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tial VT (X) of the turbine depending on the turbine position (4.33). The relevance

of this potential lays in the possibility of altering the energy management of the

turbine described in the current work. For instance, the introduction of a fixing

potential that retains the turbine in a prefered position inside the channel. Such

a potential can give place to a more stable turbine under low fluctuating forces

dealing in a better way with the particle leakage. Thus, VT presents a mechanism

by which the operation of the motor can be optimized.
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A
Algorithm for discontinuous multiplicative noise

Langevin equations (or their Fokker–Planck counterpart) turn to be a useful

tool for describing biophysical systems. However, for the most interesting cases,

these equations cannot be solved analytically, and explicit solutions must be ob-

tained numerically through stochastic simulations [21, 22, 27, 32]. This appendix

deals with general Langevin equations as the ones described along the text,

ẋ = f(x) + g(x)ξ(t), (A.1)

where ξ(t) is a Gaussian white noise with zero mean and covariation

〈ξ(t) ξ(t′)〉 = 2δ(t− t′). (A.2)

In order to obtain numerically a trajectory from (A.1) a mathematical ap-

proximation for the increment x(t+Δt)−x(t) is necessary. A formal integration

of (A.1) is,

x(t+Δt) = x(t) +

∫ t+Δt

t

f(x(t′))dt′ +

∫ t+Δt

t

g(x(t′))ξ(t′)dt′. (A.3)

Taylor expanding each one of the integrands f(x(t′)) and g(x(t′)) allows to

solve numerically (A.3) with the desired accuracy. The first integral is determin-

157



APPENDIX A. ALGORITHM FOR DISCONTINUOUS NOISE

istic and can be computed using the classical calculus rules,∫ t+Δt

t

f(x(t′))dt′ = f(x(t))Δt+O(Δt2). (A.4)

This integration corresponds to the first order expansion in f(x(t)) and can be

used numerically by neglecting the terms of order O(Δt2). This integration

method is known as the Euler algorithm. More sophisticated algorithms exist

that improve the numeric implementation of this integral.

On the other hand, due to its stochastic nature, the second integral in (A.3)

cannot be univocally defined and additional assumptions are required. The prob-

lem lies in the evaluation of g(x(t)) along the integration interval. The evaluation

point returns different solutions for the integral even in the limit Δt→ 0 resulting

in different Fokker–Planck equations. Two interpretations are extensively stud-

ied: Itô and Stratonovich [22, 24, 82]. In the Itô interpretation, the stochastic

integration is considered non–anticipating and therefore g(x(t)) is evaluated at

the beginning of the integration interval,∫ t+Δt

t

g(x(t′)) ξ(t′)dt′ = g(x(t))WΔt(t) +O(Δt3/2), (A.5)

being WΔt(t) the Wiener increment,

WΔt(t) =

∫ t+Δt

t

ξ(t′)dt′, (A.6)

which is a Gaussian process of zero mean and second moment

〈χ(t)2〉 = 2Δt. (A.7)

On the other hand, the Stratonovich interpretation evaluates the multiplica-

tive term g(x) in the intermediate position of the interval [22, 82]

∫ t+Δt

t

g(x(t′)) ξ(t′)dt′ = g

(
x(t) + x(t+Δt)

2

)
WΔt(t) +O(Δt3/2). (A.8)
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Here, a natural question arises: under which circumstances is correct either

interpretation for a problem defined by (A.1)) and (A.2))? To answer this ques-

tion is necessary to understand the nature of the process being described and,

consequently, the specific derivation of the the Langevin equation. If they were

obtained from a master equation a good choice is the Itô interpretation making it

very popular among mathematicians. Nevertheless if the noise ξ(t) represents an

approximation of a realistic process (non–white or coloured), then Stratonovich is

the answer. This is the case of the white noise approximation used to describe the

dynamics of a particle under thermal fluctuations. More elaborated arguments

can be found in Ref. [34].

The full expression for the integration of (A.3) up to first order for the Itô

interpretation is obtained introducing (A.4) and (A.5) in (A.3),

x(t+Δt) = x(t) + f(x(t))Δt+ g(x(t))WΔt(t) +O(Δt3/2), (A.9)

which is known as the Euler–Maruyama algorithm [32]. The stochastic generation

of the increments of the Wiener process WΔt is easily implemented through the

generation of Gaussian random numbers N(0, 1) [21],

WΔt =
√
2Δt N(0, 1). (A.10)

On the other hand, the full first order algorithm for the integration of (A.3)

for the Stratonovich interpretation, introducing (A.4) and (A.8) in (A.3) can not

be obtained directly, since expression (A.8) introduces an implicit dependence

with x(t + Δt) that can not be isolated. An standard and simple procedure

used to avoid the implicit term, is based in the assumption of continuity for the

multiplicative function g(x(t)), and the use of Eq. (A.9),

g

(
x(t) + x(t+Δt)

2

)
∼ g(x(t)) +

g′(x(t))g(x(t))

2
WΔt(t), (A.11)
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which returns the lowest order Stratonovich algorithm,

x(t+Δt) = x(t) + f(x(t))Δt+ g(x(t))WΔt(t) +
g′(x(t))g(x(t))

2
W 2

Δt +O(Δt3/2),

(A.12)

known as the Milstein algorithm [38, 71]. Alternative algorithms to overcome the

numerical integration in the Stratonovich interpretation use the analytical known

relation between the Itô and the Stratonovich calculus. With these relations, the

Stratonovich Langevin equation can be written as a new Itô Langevin equation

that can be integrated using the Euler–Maruyama algorithm (A.9). Addition-

ally, more algorithms can be derived by introducing different expansions and

predictor–correctors [31, 37]. However, problems arise when the multiplicative

function g(x) is not continuous. In this situations none of the above mentioned

solutions work, since all of them use the derivative of the multiplicative function

g′(x) to predict its spatial configuration. This discontinuity can be found in dif-

ferent ideal situations such as the Fokker–Planck white noise approximation (Sec.

2.4.2).

Different algorithms can be devised in order to avoid the spatial derivative

based on the predictor–corrector scheme [69]. For instance, one possibility is to

predict the forward position through an Itô step,

xI(t+Δt) = x(t) + f(x(t))Δt+ g(x(t))WΔt(t), (A.13)

x(t+Δt) = x(t) + f(x(t))Δt+ g

(
x(t) + xI(t+Δt)

2

)
WΔt(t) +O(Δt3/2).

This algorithm will be referred hereon as the predictor–corrector algorithm.

The predictor–corrector algorithm is closely related with the Heun algorithm

[21, 69] which is compatible with the Milstein algorithm (A.12) for a continuous

g(x) and also avoids the derivative problem,
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x(t+Δt) = x(t)+f(x(t))Δt+
g(x(t)) + g(xI(t+Δt))

2
WΔt(t)+O(Δt3/2). (A.14)

The predictor–corrector algorithm and the Heun algorithms prove to be good

algorithms when g(x) is continuous. Nevertheless, as will be shown bellow, both

algorithms do not converge to the correct solution for discontinuous multiplicative

noise. Both algorithms fail to predict with enough accuracy the implicit term in

the stochastic integral and an alternative solution for the stochastic integration is

still required. Fortunately, this problem can be tackled by resorting to the nature

of the stochastic integral. In the Stratonovich interpretation, the white noise is

the resulting noise a non–white (coloured) noise in which its covariation time goes

to zero [27, 93]. In order to implement this, the coloured noise have been chosen

to be an Orstein–Ulenbeck process ξOU(t) which follows the Langevin equation

τ ξ̇OU(t) = −ξOU(t) + ξ(t). (A.15)

The white noise limit ξOU(t) → ξ(t) is achieved for a correlation time τ → 0.

The OU process can be simulated through standard integration [21],

ξOU(t+Δt) = ξOU(t)

(
1− Δt

τ

)
+

WΔt(t)

τ
+O(Δt3/2). (A.16)

Once the noise values are obtained, they can be introduced in the integration

of the Langevin equation directly

x(t+Δt) = x(t) + f(x(t))Δt+ g(x(t)) ξOU(t)Δt+O(Δt3/2). (A.17)

The correlation time τ is a free parameter that must be chosen smaller than

any characteristic time of the simulated system in order to avoid introducing

any new phenomenology in the equations. On the other hand the correlation

time τ must be larger than the integration step time Δt to observe its effect.
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Additionally, other algorithms with a greater accuracy and efficiency [20, 37] for

the OU process generation can be used. This algorithm will be referred heron as

Orstein–Ulenbeck algorithm.

In order to test the different algorithms proposed for the discontinuous multi-

plicative noise, is necessary to work in a benchmark where the analytical solution

is available. The easiest scenario is that of a Brownian particle located inside a

one–dimensional box of length L without drift f(x) = 0 and a a discontinuous

multiplicative function that follows a step distribution in space.

ẋ = g(x)ξ(t) ,
g(x < L/2) =

√
Ta

g(x > L/2) =
√
Tb

⎫⎬
⎭ . (A.18)

This scenario is equivalent to consider a different temperature at each half side

of the box. The corresponding Fokker–Planck equations for each interpretation

are,

∂P (x, t)

∂t
=

∂2

∂x2
g2(x)P (x, t), (Itô), (A.19)

∂P (x, t)

∂t
=

∂

∂x
g(x)

∂

∂x
g(x)P (x, t), (Stratonovich) (A.20)

which have the trivial steady state solution,

PItô(x) ∼
1

g2(x)
, PStrat.(x) ∼

1

g(x)
, (A.21)

which for the current case is a step–like probability profile. The ratio between

the probability at each side R = P (x > L/2)/P (x < L/2) is a measure of the

resulting distribution,

RItô =
Ta

Tb
, RStrat. =

√
Ta

Tb
. (A.22)

For this elemental scenario, different algorithms have been tested generating

large time and ensemble averages to reduce the statistical errors. The results

show that Euler–Maruyama works perfectly to describe the Itô solution. On the
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Figure A.1: Theoretical predictions (lines) and numerical simulation results (symbols)

for different algorithms and stochastic interpretations of Langevin equation (A.21).

Euler-Maruyama (A.9) (squares), predictor–corrector (A.14) (full circles), Heun (A.14)

(empty circles) and Orstein–Ulenbeck algorithm (A.17) (crosses). Parameters used are

L = 1, Δt = 10−5, n > 107 time-steps and N = 100 trajectories. τ = 10−3 for the OU

algorithm.

other hand, for the Stratonovich interpretation, neither the predictor–corrector

algorithm nor the Heun algorithm work for the the discontinuous g(x) converg-

ing to a wrong value independently of the time step chosen. However, the OU

algorithm predicts perfectly the resulting probability profile (Figs. A.1 and A.2).

Moreover for OU algorithm, the use of a coloured noise whose time increments

are correlated needs a careful attention if a reflecting boundary is present. When

a particle is reflected at the boundary, the sign of the coloured noise (velocity)

must be changed in the next integration step ξOU(t+Δt) (Fig. A.2), otherwise an

anomalous density of particles is accumulated near the reflecting walls. Similar

tests can be done with the OU algorithm for more complex Langevin equations

as the ones used in the Fokker-Planck white noise approach (Sec. 2.4.2) leading

always to correct predictions.
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Stratonovich

Itô

P
(x
)

x
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10−1

100

101

Figure A.2: Steady probability densities. Euler-Maruyama algorithm (squares), OU

algorithm without noise inversion (circles) and OU algorithm with noise inversion at

the walls (crosses). The probability is normalised to the centre of the box so the

accumulation of density in the walls do not conceal the probability match near the

centre of the box. Parameters used are the same as in Fig. (Fig. A.1) with Ta/Tb = 9.
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B
Numerical analysis of the ionic turbine

Even though the aim of the analytic study of the turbine is to give a global

framework to find essential mechanisms in the translocation of ions in molecular

turbines, the contrast of the theory with simulations requires to chose a specific

set of potentials and calculations for the simulations. This appendix summarises

which parameters and algorithms have been used and the reasons for the choice.

The different parameters described hereon are summarised in Table B.1

Numeric Integration

The numeric analysis has been developed using a Graphics Processing Unit

(GPU) using Computing Unified Device Architecture (CUDA) which works using

massive parallelisation allowing to compute several independent processes at the

same time. This is of importance because, despite the native algorithms already

optimised for GPU computing, the global structure of the program is chosen to

take the most of the massive parallelisation. For instance, the rarified particle

cytosol described, is most suitable to GPU computing since each particle can

be assigned to an individual thread of the process, parallelising completely the
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Parameter Value Description

H 10 kBT Height of the interaction potential

a 0.7 Width of the interaction potential

Δt 10−5μ s Time step for the particle integration

ΔT 10−3μ s Time step for the vanes integration

N 1024 Number of particles

L 48 nm Length of the simulated box

LE 20 nm Length of each exchange zone

Table B.1: Parameters used along the turbine simulation

dynamics of the turbine–particle system. This can be done because the memory

that particles need to share is minimal. On the other hand, since the friction

coefficient of the particles is order of magnitudes smaller than the friction coef-

ficient of the turbine the dynamics of both elements occur in different temporal

scales. Hence, in order to reproduce the motion of the vanes is only necessary

to update its position after several integrations of the particle dynamics. This

also enhances the parallel computing allowing several integration steps per thread

without modifying the shared memory.

Since the potentials that appear in the simulation are smooth and there is no

memory in the equations, a simple Euler–Maruyama algorithm (A.9) is enough

to reproduce the dynamics proposed in (4.33). For each particle it reads,

xi ((n+ 1)Δt) = xi (nΔt) +
Fi(nΔt)

γp
Δt+

√
2kBTΔt

γp
Ni(0, 1). (B.1)

The index i covers all the particles in the system, Fi is the sum of all the forces

acting on the particle, and N(0, 1) is a Gaussian random number of zero mean

and unity variance. Fi contains all the forces acting on each particle, however

for the case being only the vane–particle force is considered. On the other hand,
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the dynamics of the vanes is evaluated after every lapse of time ΔT � Δt. This

include the evaluation of the average interaction force that the particles exert on

the vanes along all the particle integration steps between vane position updates.

X ((n+ 1)ΔT ) = −〈
∑

i Fi〉ΔT

γ
ΔT +

√
2kBTΔT

γ
N(0, 1). (B.2)

The initial configuration of the particles xi(0) is taken to be random and out

of the turbine having a starting transitory in the trajectory that is not taken into

account in the trajectory analysis, the duration of this transitory is comparable

with the characteristic time of the dynamics of the vanes.

Interaction Potential

The particles and the vanes interact through the short range repulsive poten-

tial Vp(X − xi). The requirements for such a potential are two: a hardcore part

(or at least high enough) that retains the particles at the corresponding side of

the vane, and a quick decaying to zero for longer distances (Fig. 4.15). Many po-

tentials can be chosen with these characteristics, and the final behaviour should

not strongly depend on the potential chosen. For the case being, a Gaussian

profile is used,

Vp(xi −X) = He((xi−X)/a)2 . (B.3)

Parameters H and a describe the height and width of the potential which must

be chosen carefully to avoid as much as possible particle overcoming the potential

and also to keep a force profile that remains in the working scale. A Brownian par-

ticle has a typical displacement during an integration step Δx =
√

2kBTΔt/γp.

This displacement must be smaller than the width of the potential since an inte-

gration step must not introduce a particle very far inside the potential p ≡ Δx
a <

1. This returns a suitable integration time step for the particles,
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Δt =
p2a2γp
2kBT

. (B.4)

On the other hand, it is necessary that the largest force introduced by the

potential expels de particle from the potential at a physical reasonable distance.

The maximum reaction force of the potential is V ′
p(MAX) = 2He−1

a ∝ H
a , which

displaces a particle a distance δ = Hp2a
2kBT in a lapse Δt. Making this distance

comparable to the width of the vane a = δ, results in a direct relation between

the the height H and the fraction p,

H =
2kBT

p2
. (B.5)

Thus a penetration p = 0.3 results in a height of H ∝ 10kBT and for a

width of the vane of the order of the nanometer, an integration time step of

Δt ∝ 10−5μs.

Available volume between vanes

Because of the width of the interaction potential, the volume of particles

translocated is not the volume corresponding to the intervane distance, but is

reduced by a fraction β, V0 = dAβ. Considering that a translocation carries a

density ρ0 of particles coming from the either side of the turbine, the number

of particles translocated in each cycle is ΔN = V0ρ0 which can be written as a

definition for β as,

β ≡ ΔN

ρ0dA
. (B.6)

This equivalence can also be interpreted as well in terms of particles translocated.

Hence, β is the fraction of the particles translocated over the ideal translocation

of a volume of particles dA. Therefore, in order to compute β is necessary to
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know which is the particle density profile near the vane. This spatial density (or

probability) in equilibrium is proportional to the Boltzmann factor,

ρ(x) = ρ0e
−Ṽp(x)/kBT . (B.7)

The tilde in Ṽp(x) states for the contribution of the different vanes in the turbine,

Ṽp(x) =
∑
j

Vp(x−Xj). (B.8)

Actually, the value of β depends not only on the geometry of the interaction

potential but also on the dynamics of the vane entering the turbine and trapping

the particles. For instance, if the vane enters the turbine, in the best case scenario,

it will be able to translocate every particle located between the edge of the turbine

and the next vane (Fig. B.1) obtaining a translocated average amount of particles

ΔN =

∫ d

0

Aρ(x)dx = Aρ0

∫ d

0

e−Vp(x−d)/kBTdx, (B.9)

which compared with the definition of β (B.6) results in the explicit relation,

β1 =
1

d

∫ d

0

e−Vp(x−d)/kBTdx. (B.10)

This value will depend on the actual form of the interaction potential and for

the Gaussian current case gives β1 	 0.75. On the other hand, if the potential is

considered to enter slowly in the turbine through several fluctuations across the

turbine edge, the enclosed volume of particles is expected to equilibrate with the

donor reservoir (Fig. B.1) trapping a lower number of particles,

ΔN =

∫ d

0

Aρ(x)dx = Aρ0

∫ d

0

e−(Vp(x)+Vp(x−d))/kBTdx, (B.11)
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Figure B.1: Different configurations indicating the two boundaries for β. Left: Scheme

showing the density of particles inside the turbine (grey shade) prior to the entering of

a vane. Once the vane enters it is capable to enclose ΔN = V0ρ0β1 particles. Right:

If the vane is not able to retain all the particles inside the space between vanes, the

maximum density inside the turbine is equal to the density of the reservoir. In this

limit, the amount of particles translocated is ΔN = V0ρ0β2.

Again, it can be compared with (B.6) obtaining the relation,

β2 =
1

d

∫ d

0

e−(Vp(x)+Vp(x−d))/kBTdx (B.12)

=
1

d

∫ d

0

/2e−(Vp(x)/kBTdx+

∫
d

/2de−(Vp(x−d)/kBTdx

=
2

d

∫
d

/2de−(Vp(x−d)/kBTdx =
2

d

(∫ d

0

e−(Vp(x−d)/kBTdx− d

2

)

= 2β1 − 1. (B.13)

Where the short–range property of the potential (V (d) 	 0) and its symmetry

(V (x) = V (−x)) have been used. For the current case, relation (B.13) returns a

value β2 	 0.5. Both values β1 and β2 give an upper and a lower boundary to

the actual value of β. Numerically, for the Gaussian potential described under

biological values of the parameters, it is obtained a value of β 	 0.7
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Reservoirs

So far, only the interaction of the particles inside the turbine is considered.

However, the dynamics of the particles outside the turbine is also necessary. For

the sake of computing efficiency, the particles are confined in a one–dimensional

box of length L. The turbine of length D � L is located at the centre of the

box, generating two particle reservoirs at each side of the turbine (Fig. B.2).

All the particles are free to diffuse along each reservoir with reflective boundary

conditions. The number of particles and the length L are chosen to fulfil the re-

quired particle densities in each reservoir with the desired precision being usually

enough with 1024 particles and L=48 nm.

Since the biological conditions require a constant concentration of particles

at each side of the turbine without the depletion of a reservoir, a mechanism

to maintain the concentrations is needed. In addition, optimisation of parallel

computation requires that all the particles are treated equally without a minimum

information exchange between them. This can be achieved introducing a balance

mechanism in which each particle has a probability per unit of time (rate) of

changing from one reservoir to the other. Choosing this rate to be inversely

proportional to the desired concentration of its actual reservoir k12 = C
ρ1

and

k21 = C
ρ2

, the density evolution of reservoir 1 will be,

ρ̇1 = −k12ρ1 + k21ρ2 = C

(
ρ2
ρ2
− ρ1

ρ1

)
, (B.14)

which evolves to the situation in which ρ1 = ρ1. This condition, however, cannot

be applied along all the reservoir since it can destroy any spatial density profile

near the turbine. For this reason, the exchange is only applied in a zone far

enough of the turbine (Fig. B.2) occupying a distance LE of each reservoir.

Once a particle is selected for reallocation it is dropped randomly inside the
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Figure B.2: Computational box used during the simulations. The exchange zones of

the reservoir (dashed gray zones) of length LE are used for density conservation in each

reservoir.

exchange zone of the other reservoir. The value of C is chosen to balance the

concentrations of each exchange zone faster than the turbine translocation.
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R
Resumen (Spanish Summary)

Introducción

Las célula es la mínima unidad de vida. Tanto en el sentido de que consti-

tuye la unidad funcional de cualquier ser vivo como que es la mínima entidad

a la que se puede considerar viva. Asimismo, comparten propiedades comunes

entre ellas. Las células nacen, se alimentan, se pueden reproducir, pueden tener

la capacidad de moverse y finalmente mueren. Todos estos procesos se pueden

observar bajo la lupa de la Física obteniendo una descripción equivalente pe-

ro con una terminología completamente distinta. Una célula, bajo esta visión,

es un sistema complejo, fuera del equilibrio, que está constantemente intercam-

biando materia, energía e información. De esta forma, una célula alimentándose

es un sistema obteniendo materia del exterior para extraer energía, y una célula

moviéndose está transformando la energía química interna del sistema en trabajo.

A summary in Spanish is included following the current legislation of the University of

Barcelona
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Para realizar esta manipulación de energía y materia, las células tienen una

maquinaria interna, un conjunto de macromoléculas conocida comomáquinas mo-

leculares. Las funciones que tienen estas máquinas en una célula son numerosas:

transportar macromoléculas, transcribir el ADN, contraer músculos... Concreta-

mente, cuando el objetivo de la máquina es realizar un trabajo mecánico, se puede

denominar también motor molecular. No obstante, ambos nombres, máquina mo-

lecular o motor molecular, así como máquina proteica, son usados indistintamente

en la literatura.

Un ejemplo de motor molecular que realiza un trabajo mecánico es la kinesina.

Las kinesinas son motores moleculares que trabajan junto a los microtúbulos, uno

de los tipos filamentos que conforman el citoesqueleto celular. Los microtúbulos

funcionan como vías para el desplazamiento de la kinesina. Así, ésta es capaz

de interactuar con los microtúbulos generando una fuerza tangencial a éste que

aprovecha para diversas funciones, como por ejemplo el transporte direccional de

macromoléculas o vesículas a lo largo de la célula (Fig. R.1). La energía necesaria

para realizar este trabajo se extrae de la hidrólisis de moléculas de adenosín trifos-

fato (ATP). No sólo la kinesina funciona con ATP, siendo éste una de las fuentes

más importantes de energía a nivel subcelular. El ATP se encuentra difundiendo

de forma natural en la célula. Así, cuando una molécula de ATP llega al bolsillo

catalítico de la kinesina, ésta es capaz de catalizar su hidrólisis aprovechando la

energía liberada en la reacción.

El reciclaje de los productos de la hidrólisis del ATP, a saber, adenosín di-

fosfato (ADP) y fosfato, tiene lugar dentro de la célula. De nuevo, una máquina

molecular se encarga de este proceso, la F0F1–ATP sintasa (Fig. R.1). Este motor,

ubicuo en todos los sistemas vivos, sintetiza ATP a partir de ADP y fosfato. La

energía necesaria para realizar esta síntesis la extrae de la energía electroquímica
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Figura R.1: Ejemplos de máquinas moleculares. Arriba: Kinesina transportando una

carga a lo largo de un microtúbulo. Representación superficial de la proteína basada en

la estructura 1N6M del PDB. Abajo: Ejemplos de motores moleculares rotatorios. La

F0F1–ATP sintasa (izquierda) y el Motor Flagelar de las Bacterias (MFB) (derecha).

Representación superficial de la ATP–sintasa extraida de las estructuras 1Q01 y 1C17

del PDB. Dibujo del MFB basado en [7].
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resultante de una diferencia de concentración iónica a través de una membrana.

Para ello, la F0F1-ATP sintasa se encuentra en la membrana interna de las mito-

condrias en células eucariotas. En células vegetales también se puede encontrar

en los cloroplastos, mientras que en procariotas se encuentra en la membrana

plasmática de la célula. Esta energía electroquímica es el resultado del procesa-

miento del alimento de la célula. Así la F0F1–ATP sintasa es una máquina fijada

a una membrana que se encarga de transformar una energía local en forma de

un gradiente iónico en una energía que puede difundir a lo largo de la célula, el

ATP.

La F0F1–ATP sintasa tiene tres partes bien diferenciadas: La subunidad trans-

membranal F0, la parte globular F1 y el eje γ (Fig. R.1). La transducción ener-

gética comienza en la subunidad F0. Esta subunidad funciona como una turbina

molecular permitiendo un flujo de iones a través de ella y acoplándolo al giro de

su rotor. Este giro es transmitido a lo largo del motor a través del eje asimétrico

γ. El eje γ, que se prolonga dentro de la subunidad F1, gira dentro de F1 gene-

rando una deformación estructural en ésta. Esta deformación es utilizada por la

subunidad F1 para unir el ADP y el fosfato, localizados en el centro activo de F1,

formando así una nueva molécula de ATP.

Las dos subunidades F0 y F1 se pueden aislar experimentalmente dando lu-

gar a dos máquinas moleculares independientes. Por un lado el motor F0 que

funciona como una turbina iónica generando un movimiento rotatorio. Por otro

lado el motor F1 se puede utilizar para sintetizar ATP en el laboratorio, median-

te la rotación artificial del eje γ. Aún más interesante resulta la posibilidad que

presentan ambas máquinas de revertir su régimen de trabajo. De esta forma el

motor F1 en presencia de un exceso de ATP puede hidrolizar moléculas de ATP

generando una rotación activa del eje γ. El motor F1 en este régimen recibe el
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nombre, F1–ATPasa. La F1–ATPasa es uno de los motores moleculares rotato-

rios más estudiados a nivel experimental, y es uno de los principales objetivos de

estudio de este trabajo.

Los gradientes iónicos no sólo son usados por la F0F1–ATP sintasa, sino por

muchas otras máquinas transmembranales como las usadas por las bacterias para

hacer girar sus flagelos. El Motor Flagelar de las Bacterias (MFB) es uno de los

motores moleculares biológicos más grandes y consiste en un turbina molecular

semejante al F0 (Fig. R.1). Este motor junto al F1 serán los dos motores rotato-

rios en que se basa el actual trabajo.

Metodología para el estudio de máquinas molecu-

lares

La transformación energética que llevan a cabo los motores moleculares es

el resultado del conjunto de interacciones que tiene lugar entre los átomos que

componen el motor y su entorno. Este escenario presenta una alta complejidad.

Es por eso que un enfoque más general es necesario para entender los mecanis-

mos básicos que utilizan los motores moleculares. Diferentes enfoques y modelos

teóricos son posibles correspondiendo a diferentes niveles de abstracción. Cada

perspectiva contribuyendo de forma diferente a la comprensión de los motores.

De esta forma, un estudio detallado atomista puede permitir entender que papel

juega cada aminoácido en en el ciclo energético del motor. Sin embargo, la capa-

cidad computacional actual no permitirá reproducir más de un ciclo del motor.

Por otro lado, un acercamiento cineticoquímico más general consistiría en redu-

cir toda la dinámica del motor a un número discreto reducido de conformaciones
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del motor con una dinámica de evolución entre ellas. Este acercamiento puede

dar una idea de cuales son las configuraciones básicas que describen el funciona-

miento del motor pero no permitiría recoger detalles de la dinámica del motor

como fuerzas o energías. El trabajo actual sigue un acercamiento intermedio que

utiliza como punto de partida el principal observable de la dinámica del motor,

su trayectoria. La mayoría de experimentos con motores moleculares consisten

en observar su movimiento anexando una carga visible bajo el microscopio para

poder recoger la trayectoria del motor. Este montaje experimental permite mo-

dificar las condiciones experimentales para observar como varían las propiedades

de la trayectoria del motor. Así, este enfoque intenta relacionar la coordenada

espacial observable del motor con su configuración química interna a la vez que

permite estudiar la dinámica asociada.

A pesar de las similitudes que hay entre los motores macroscópicos y los

motores nanoscópicos, ambos trabajan bajo condiciones físicas y químicas muy

diferentes que hay que tener en cuenta a la hora de plantear la dinámica de estos

motores. Una de las diferencias más importantes es la relevancia de las fuerzas

viscosas frente a las fuerzas inerciales. Los motores moleculares trabajan a nú-

meros de Reynolds muy bajos en que la velocidad del motor es proporcional a

la fuerza neta que actúa sobre el motor. Por otro lado, en la escala biológica ce-

lular, el efecto de las fluctuaciones térmicas sobre el motor es importante. Estas

fluctuaciones vienen dadas por las colisiones aleatorias de las moléculas que lo en-

vuelven por el hecho de estar termalizadas. La energía asociada a estas colisiones

es comparable al resto de energías que rigen los procesos subcelulares. Teniendo

en cuenta estos dos efectos: fricción y fluctuaciones, la dinámica del motor puede

describirse mediante una ecuación de Langevin sobreamortiguada para la coor-

denada de avance θ del motor. Para un motor rotatorio, la ecuación de Langevin

asociada es,
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γθ̇ = −V ′(θ, t) + τc + ξ(t). (R.1)

Donde γ es la fricción del sistema motor–carga, τc es el torque ejercido por

efectos externos al motor, ξ(t) es el ruido térmico descrito por una función alea-

toria y V (θ, t) es el potencial interno del motor del cual resulta la fuerza ejercida

por el motor para realizar su función. Así, V (θ, t) contiene la información sobre el

funcionamiento del motor. Por eso, el objetivo de estudiar la máquina mediante

(R.1) es obtener una expresión para el potencial motor que en general depen-

derá de forma no lineal con la posición y el tiempo con los diferentes procesos

físico–químicos que tienen lugar en la transducción.

F1 bajo fuerzas disipativas

La observación de las trayectorias de los motores moleculares revela que el

avance del motor no es continuo en el tiempo sino que muestra pasos discretos.

Esto permite distinguir dos tipos de procesos. Por un lado, los procesos durante

los cuales el motor ejerce una fuerza neta, desplazándose. Estos procesos reciben el

nombre de procesos mecánicos. Por otra parte, los procesos químicos durante los

cuales el motor no realiza ningún desplazamiento activo. Los procesos químicos

coinciden con los procesos catalíticos del motor. Para motores que trabajan con

hidrólisis de ATP, en general la trayectoria presenta un proceso químico por ciclo

que resulta de la espera de ATP y la expulsión de los productos de la hidrólisis y,

por otro lado, un proceso mecánico resultante de la transformación energética de

la hidrólisis de ATP. Así, de forma genérica, se obtiene una fórmula para el valor

medio de la velocidad, describiendo los tiempos químicos mediante la cinética de

Michaelis–Menten típica de procesos catalíticos y por otro lado describiendo los

tiempos mecánicos a través de la dinámica sobreamortiguada del motor [56].
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ω =
θ0∑
ti

=
θ0

t0

(
k0

[ATP] + 1
)
+ θ20

γ
ΔGATP

, (R.2)

Donde θ0 es la distancia angular de un ciclo del motor que viene fijada por

la estructura bioquímica del motor y ti la duración de cada uno de los procesos,

tanto químicos como mecánicos, que conforman un ciclo del motor. k0 y t0 son

parámetros cinéticos que describen los tiempos químicos del motor y ΔGATP la

energía útil de la hidrólisis de ATP. Aplicando la expresión (R.2) a la F1–ATPasa

se puede obtener una relación para la velocidad angular del motor con la fricción

de la carga y la concentración de ATP donde todos los parámetros se pueden

extraer de medidas experimentales [56]. El resultado se puede comparar con ob-

servaciones experimentales de la velocidad media del motor obteniendo un buen

resultado (Fig. R.2).

La validez de este resultado sugiere la propuesta de un potencial motor V (θ, t)

que describa la dinámica del motor con más detalle como los subpasos del motor

observados experimentalmente. Esto se puede conseguir mediante dos potenciales

de dientes de sierra con la periodicidad biomolecular del motor que se alternan de

forma intermitente, cada potencial describiendo un estado del centro activo del

motor: vacío u ocupado. De nuevo, la información experimental disponible per-

mite describir este tipo de potencial sin ningún parámetro ajustable. De hecho,

el modelo es capaz de predecir la longitud del subpaso directamente mediante

argumentos de optimización de la transducción del motor [56]. Debido a la no

linearidad de las ecuaciones, la trayectoria del motor tiene que obtenerse compu-

tacionalmente, integrando la ecuación estocástica (R.1) numéricamente para el

potencial propuesto. El valor medio de la velocidad resultante es más peque-

ño que el de la predicción teórica (R.2) que se corresponde a un mejor ajuste

los datos experimentales (Fig. R.2). Analizando las diferencias entre el resultado
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Figura R.2: Comparativa de los resultados experimentales de la velocidad (triángulos)

con las predicciones (líneas). Arriba: Comparación con el resultado teórico determinis-

ta (R.2). Abajo: Comparación con el resultado de las simulaciones estocásticas de la

ecuación de Langevin (R.1).
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determinista y el resultado aleatorio se observa que las discrepancias se deben

principalmente a las fluctuaciones térmicas que producen eventos fallidos. Estos

eventos corresponden a hidrólisis de ATP que no producen un avance exitoso

del motor a pesar de consumir la energía de hidrólisis. Este fenómeno se pue-

de aproximar analíticamente mediante la ecuación de Fokker–Planck asociada a

(R.1) estudiando la evolución de las colas de la distribución de probabilidad de la

carga en el espacio [56]. De esta forma se muestra que los eventos fallidos tienen

una dependencia importante con la fricción de la carga fallando más eventos de

hidrólisis mientras más grande es la carga.

F1 bajo fuerzas conservativas

El análisis desarrollado en la sección anterior no tiene en cuenta la presencia

de torques conservativos sobre el motor F1 ya que se basa en experimentos pu-

ramente disipativos (τc = 0). No obstante, experimentalmente también se puede

inducir un torque externo sobre la carga mediante diferentes técnicas como pin-

zas ópticas, pinzas magnéticas o electrorotación. En este caso, el análisis es más

complejo ya que un torque conservativo afecta al ciclo de transducción tanto en

los procesos químicos como en los procesos mecánicos. Esto se puede cuantificar

teniendo en cuenta los efectos que tiene el torque conservativo sobre los diferentes

procesos mecánicos y químicos [57],

〈ω〉 = θ0

[θ1 − δθ(τc)]
γ

τc+τ1
+ θ2

γ
τc+τ2

+ t0

(
1 + kM (τc)

[ATP ]

) . (R.3)

Esta expresión contiene cuatro nuevos elementos con respecto a (R.2). Por un

lado tiene en cuenta los subpasos de la trayectoria θ1 y θ2 y sus respectivos tor-

ques asociados τ1 y τ2. Por otro lado, el torque efectivo en el proceso mecánico de
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casas subpaso se ve incrementado por el torque conservativo τc. En tercer lugar la

distancia a recorrer por el motor durante el tiempo mecánico se ve reducida una

cantidad δθ. Este efecto es puramente térmico. Debido a la asimetría del poten-

cial inducida por el torque conservativo, la posición media de equilibrio dentro del

potencial varía. Este fenómeno se puede cuantificar analíticamente resolviendo la

distribución de probabilidad de equilibrio de la carga en el pozo de potencial me-

diante la ecuación de Fokker–Planck obteniendo una relación de δθ con τc y con la

temperatura. Finalmente hay una cuarta dependencia del potencial con el torque

externo en los tiempos catalíticos del motor. Este fenómeno esta relacionado con

el hecho de que un torque externo deforma el motor modificando su estructura

bioquímica y con ello su cinética de reacción. Este fenómeno se puede describir

mediante una relación lineal kM (τc).

No sólo la dependencia de la duración de los diferentes procesos se puede cuan-

tificar analíticamente sino que de nuevo todos los parámetros se pueden extraer

directamente de información experimental. De esta forma la velocidad resultante

de (R.3) se puede comparar con resultados experimentales de la velocidad sin la

necesidad de ningún tipo de ajuste. El resultado, como en el caso disipativo, es un

buen ajuste del modelo a los experimentos (Fig. R.3) [57]. También para este caso

se puede estudiar el papel de los efectos estocásticos mediante la simulación de la

ecuación de Langevin obteniendo de nuevo una buen acuerdo con los resultados

experimentales.

Encontrar un potencial compatible con la información experimental disponi-

ble, no solo permite una comprensión de los mecanismos básicos del funciona-

miento del motor sino que también permite formular predicciones de la gestión

energética del motor. Esta información, normalmente no es accesible experimen-

talmente. No obstante, el marco teórico desarrollado permite calcular todas las

energía de entrada y salida del motor y por lo tanto calcular potencias y eficien-

cias. El resultado más relevante de este análisis es la diferencia entre el modelo
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Figura R.3: Funcionamiento del F1 bajo una torque conservativo. Izquierda: velocidad

angular media del motor. Los resultados experimentales (símbolos) conmparan bien

con los resultados analíticos deterministas (R.3) (linea continua) y con las simulacio-

nes estocástica (línea discontinua). Derecha: Eficiencia del motor determinista (linea)

comparada con los resultados estocásticos (símbolos) para dos casos diferentes de la

fricción de la carga.

determinista y las simulaciones estocásticas. En el análisis determinista de un

motor, el máximo de eficiencia se encuentra cerca de la fuerza de calado del mo-

tor para la cual el motor se para. Esto deja de ser cierto cuando las fluctuaciones

se tienen en cuenta. Cerca de la fuerza de calado, la dinámica del motor viene

regida por las fluctuaciones térmicas que borran el avance del motor y por lo

tanto el trabajo que realiza éste [70]. De esta forma, la fluctuaciones térmicas

reducen a cero la eficiencia cerca de la fuerza de calado y un nuevo valor óptimo

de la eficiencia aparece para valores intermedios del torque externo (Fig. R.3).

Este resultado es de especial relevancia para motores moleculares biológicos ya

que se espera que hayan evolucionado para funcionar en un régimen de trabajo

óptimo. En este caso, el régimen óptimo no se puede predecir por un análisis

puramente determinista siendo necesario el análisis estocástico del sistema. Por

lo tanto, este resultado no sólo introduce un predicción para la eficiencia sino

que pone en evidencia que las fluctuaciones térmicas no pueden ser despreciadas
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cuando se quiere estudiar las transformación energética en motores moleculares.

Aproximación de Fokker–Planck para el estudio de

motores moleculares

Debido a la no linearidad del mecanismo de potenciales intermitentes, la solu-

ción de la ecuación de Langevin no se puede resolver analíticamente. Por lo tanto,

el análisis de las fluctuaciones térmicas se tiene que hacer mediante simulaciones

o resolviendo la ecuación de Fokker–Planck para el potencial estático en uno de

sus múltiples estados. Esto inspiró el desarrollo de un procedimiento analítico

para analizar este tipo de sistemas aproximando la ecuación de Langevin por

una ecuación de Fokker–Planck que contenga la dinámica del potencial [54]. Esta

aproximación considera la intermitencia del potencial con un ruido dicotómico

que se puede aproximar a su vez como un ruido blanco. La ecuación resultante es

una ecuación de F–P con un coeficiente de difusión dependiente de la posición.

Esta ecuación se puede resolver analíticamente obteniendo predicciones para la

velocidad del motor.

Los resultados del esta aproximación se han comparado exitosamente con los

resultado experimentales del motor F1 [54]. El acuerdo entre la teoría y el modelo

es bueno para regímenes de alta concentración de ATP o cargas grandes. Para

evaluar la validez de la aproximación, se puede obtener una expresión analítica

de un predictor. Este predictor ofrece un valor umbral a partir del cual la apro-

ximación funciona.

El estudio de este problema también reveló que los algoritmos tradicionales
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de integración de ecuaciones de Langevin en la interpretación de Stratonovich

fallaban en converger a la solución correcta cuando el coeficiente de difusión no

es continuo en el espacio. Este problema se puede resolver mediante el uso de un

nuevo algoritmo basado en el significado de la interpretación de Stratonovich [55].

Motores que trabajan con un flujo de iones

Finalmente, el marco teórico desarrollado se puede aplicar al estudio de mo-

tores moleculares que trabajan con un flujo de iones. Estos motores presentan

nuevas cuestiones que se originan en el cambio de mecanismo de transducción.

Ahora un flujo de iones se acopla con el movimiento de un rotor transmembranal.

Con el objetivo de entender los características básicas de este acoplamiento, se

ha estudiado un modelo sencillo. Este modelo consiste en un pistón móvil que

separa dos gases de partículas que interaccionan con el pistón. El pistón tiene

condiciones de contorno periódicas en sus fronteras simulando el comportamien-

to de una turbina. Así la diferencia de presiones a ambos lados del pistón se

traduce en un movimiento direccional del pistón (Fig. R.4) [58]. Para estudiar la

transducción energética de esta turbina molecular se aplica una fuerza externa en

el pistón. Esta fuerza puede tener sentido contrario al movimiento espontáneo de

la turbina extrayendo trabajo mecánico de ella. Adicionalmente, para una fuerza

externa suficientemente grande, la velocidad de la turbina y el flujo de iones se

puede revertir. En este régimen la turbina funciona como una bomba en la que

la fuerza externa se usa para incrementar la energía de membrana. El análisis del

funcionamiento de la turbina, incluyendo las fluctuaciones térmicas correspon-

dientes, revela que el flujo de partículas a través del motor y la velocidad de éste

no son proporcionales (Fig. R.4). De hecho, la fuerza necesaria para invertir la

velocidad del motor es diferente a la fuerza necesaria para invertir el flujo del mo-
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Figura R.4: Arriba izquierda: Esquema de la turbina de un pistón. Arriba derecha:

Potencia y eficiencia de la turbina con respecto a la fuerza externa, comparando los

resultados deterministas sin ruido térmico (línea discontinua) con los estocásticos (línea

continua). Se muestran los tres regímenes: motor (M), bomba (P ) y zona de pérdidas

(sombreado gris). Abajo: Dependencia del flujo de partículas de la turbina con la fuerza

externa para el caso determinista (línea discontinua) y para el caso estocástico (linea

continua) para diferentes valores de la densidad de partículas ρ1.
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tor. Esto crea un régimen de pérdidas para valores intermedios de la fuerza para

el cual el motor retrocede en el mismo sentido que la fuerza externa, impidien-

do la extracción de trabajo mecánico, sin llegar a invertir el flujo de partículas,

perdiendo energía de membrana continuamente. La zona de pérdidas se debe a

efectos térmicos, debido a que fluctuaciones simétricas en el pistón dan lugar a

un traspaso de iones asimétrico a través de la turbina. Para este modelo se puede

también estudiar su gestión energética obteniendo un desacuerdo completo entre

el caso determinista (sin ruido térmico) y el estocástico (con ruido térmico) cerca

de la zona de pérdidas (Fig. R.4). El modelo determinista no es capaz de predecir

la zona de pérdidas del modelo estocástico para el cual la eficiencia cae a cero

cerca de la fuerza de calado del motor. La situación es similar a la obtenida para

la eficiencia del motor F1. Cerca de la fuerza de calado las fluctuaciones lideran

la dinámica del motor impidiendo la transducción energética. En el caso de la

turbina, este fenómeno da lugar a dos nuevos máximos de eficiencia para valores

intermedios de la fuerza tanto en el régimen de bomba como en el régimen de

turbina (Fig. R.4) [58]. Siguiendo los mismos argumentos que en el caso del motor

F1, la relevancia de este decaimiento debido a fluctuaciones térmicas es alta ya

que implica que no se pueden obviar las fluctuaciones térmicas en el estudio de

las máquinas moleculares.

El modelo ideal presentado con la turbina de un pistón carece de una descrip-

ción rigurosa de la difusión de las partículas. Por lo tanto, un segundo modelo ha

sido propuesto conteniendo múltiples álabes equidistantes dentro de la turbina.

Este segundo modelo presenta relaciones similares a las de la turbina formada

por un solo pistón. La velocidad y el flujo siguen teniendo valores diferentes de

inversión dando lugar a la zona de pérdidas. En este caso más realista la zona

de pérdidas es incluso más grande que la descrita en el caso anterior y resulta

también en un valor más pequeño de la eficiencia. Por lo tanto la introducción de
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elementos más realistas en la turbina no elimina los efectos de las fluctuaciones

térmicas sino que los incrementan.

Para acabar, este escenario fue analizado numéricamente para comprobar que

las suposiciones tomadas en el diseño del modelo eran válidas en la escala bioló-

gica. Estas simulaciones no sólo corroboran las predicciones analíticas sino que

también se convierten en una buena herramienta para analizar un escenario bio-

lógico más realista en el cual otras interacciones, como pueden ser el voltaje de

la membrana o la interacción entre partículas se pueden considerar.

Todos los resultados que se exponen en este resumen están explícitamente

documentados a lo largo de la tesis y en las publicaciones que se citan en el

resumen. Asimismo, las referencias de estas publicaciones, que han dado lugar a

esta tesis, están también recogidas de forma separada en la sección “Publications

of this thesis”.
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Symbol Glossary

A Piston Area

cr, cr0, cr∗ Coupling ratio

d Intervane distance

D Membrane/Turbine width

F Force

F Net average force

FM
stall, F

P
stall Stall forces for motor and pump regimes

Ei, E1, E2 Energy supplied in different substeps

g Noise intensity component

k Reaction rate

kATP ATP caption rate

k0 ATP dwell time rate component dependent of [ATP]

k00, k
1
0 Components of the linear relation k0(τc)

kBT Thermal energy

J Probability flux. Particle flux

N Number of particles

P Probability distribution
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Pi, PE , PR Probability distribution corresponding to a certain potential

P→, P← Probablity of finishing a cycle in a particular direction

Pin, Pout Input power, output power

PM , PP Power of motor, Power of pump

Q Heat

t Time variable

ti Duration of a subprocess

tchem, tmech Duration of chemical and mechanical processes

ts Catalytic dwell duration

t0 Catalytic time

tE , tR Duration of a certain potential state

tγ Inertial time

(ti, tf ) Initial and final times of a process

T Average duration of a motor cycle

Tv Stoke’s average duration of a motor cycle

v Linear velocity

V Motor Potential. Electrostatic component of the membrane potential

Vi, VE , VR Static potentials components of the potential V

V0, V1 Motor potential heights

V0 Volume of particles translocated per step

W Mechanical work

WΔt Wiener increment

x,X Spatial linear coordinate

z Motor potential state function

α Substep fraction

αM Optimum value for the substep fraction

β Intervane fraction of available volume
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γ Friction coefficient

γ0 Internal friction coefficient of a motor

γL Friction coefficient of the cargo

γeff Effective friction of the motor including external drag

δθ Thermal variaton of the substep length

ΔG Useful chemical free energy related to an external entity

ΔGATP Useful hydrolysis energy of ATP

Δg Single particle free energy

ε Dimensionless parameter controlling motor potential height

ε Predictor parameter for the goodness of the White Noise Limit

η Motor potential state function. Efficiency

η̄ Average value of the dichotomous noise

ηL Stoke’s efficiency

θ Angular/Spatial coordinate

θ0 Step length of a motor cycle

θi, θ1, θ2 Substep length

κ Load-Shaft Stiffness

λ Linear density of particles

ξ Thermal force

ξOU Ornstein–Uhlenbeck process

ρ, ρ1, ρ2 Particle density

σW Noise intensity

τ Torque

τin, τi, τ1τ2 Motive torque

τc Conservative torque

τex External torque

ϕ Angular coordinate of the load
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φ Membrane potential

χ White noise

ω Average angular velocity

ωE , ωR Jump rates of a dichotomous noise
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