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Abstract

The present PhD thesis analyzes the modelling and control of the two main
topologies of large scale variable speed wind turbines, the doubly fed in-
duction generator and the permanent magnet synchronous generator wind
turbines, to operate under different types of voltage sags. The first part
of the thesis deals with the modelling of the wind turbine from the me-
chanics to the different types of generators and the power converter. The
second part deals with the control of the wind turbine. First, three different
control schemes of the doubly fed induction machine are analyzed, starting
with the most basic one, the conventional vector control meant for balanced
operation which is simulated and compared to experimental measurements
from a voltage sag test, and then moving to the dual synchronous reference
frame and the stationary reference frame control, two different schemes that
allow the operation of the machine under unbalanced voltage sags. Then,
different reference calculation methods for the operation of grid connected
voltage source converters under grid unbalances are analyzed and tested on a
experimental platform. Finally, the vector control scheme of the permanent
magnet synchronous generator and a ride-through strategy for this type of
turbine for balanced voltage sags is presented and tested on a small scale
experimental platform.
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Resum

Aquesta tesi analitza la modelització i el control per a l’operació sota difer-
ents tipus de sots de tensió de les dues topologies més comunes d’aerogenera-
dors de velocitat variable de gran escala, la basada en generador d’inducció do-
blement alimentat i la de màquina śıncrona d’imants permanents. La primera
part de la tesi tracta el modelat de la turbina eòlica des de la mecànica
fins als diferents tipus de generadors i el convertidor. La segona part tracta
el control de l’aerogenerador. Primer, s’analitzen tres esquemes de control
diferents de la màquina d’inducció doblement alimentada, començant pel
tipus més bàsic, el control vectorial convencional, pensat per l’operació en
equilibri, que és simulat i comparat amb mesures experimentals d’un as-
saig de sot de tensió, i tractant a continuació l’anomenat control vectorial
amb doble referència de sincronisme i el control en referència estacionària,
dos esquemes de control diferents que permeten l’operació de la màquina
sota sots de tensió desequilibrats. A continuació s’analitzen i comproven
experimentalment diferents mètodes de càlcul de referències pel control de
convertidors amb font de tensió sota desequilibris de xarxa. Finalment, es
presenta l’esquema de control vectorial de màquina śıncrona d’imants per-
manents i una estratègia de ride-through per a aquest tipus d’aerogenerador
que és avaluada en una plataforma experimental.
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Thesis outline

The present PhD thesis is divided in two parts plus an introductory chapter
and a conclusion chapter: Part I is centered in the modelling and analysis
of the characteristics of the different subsystems of a variable speed wind
turbine and contains the Chapters 2, 3, 4 and 5. Part II deals with the
control of the wind turbines for the operation under grid disturbances and
contains Chapters 6, 7, 8, 9, 10 and 11.

Chapter 2 deals with the modelling of the mechanical subsystem of a
variable speed wind turbine, the aerodynamic behaviour of the turbine, the
drivetrain dynamics and a simplified speed control to optimize the energy
extracted by the turbine.

Chapter 3 discusses the modelling of a doubly fed induction machine. First
the dynamic equations of the machine are obtained and then steady state
equations are obtained for balanced and unbalanced operating conditions.

Chapter 4 analyzes the modelling of a permanent magnet synchronous
machine. First the dynamic equations of the machine are obtained and the
the steady state equations are derived from the dynamic ones.

Chapter 5 deals with the modelling of the back-to-back converter used
in the topologies of doubly fed induction machine and permanent magnet
synchronous machine variable speed wind turbines.

Chapter 6 describes and analyzes a conventional vector controller for the
DFIG and the grid side of the converter and presents a model validation
using existing measurement data from a real test performed on a large scale
wind turbine.

Chapter 7 presents an extension of the conventional vector control for
the DFIG and the grid side of the converter to operate under unbalanced
conditions called the dual synchronous reference frame vector control.

Chapter 8 analyzes the use of the synchronous reference frame for the
control of the DFIG and the grid side of the converter to operate under
unbalanced conditions while solving some of the drawbacks of the dyal syn-
chronous reference frame vector control.

Chapter 9 presents different important problems of the existing current
calcultion methods for unbalanced operation of grid connected voltage source
converters and possible work arounds for them while providing experimental

vii
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evaluation of the proposed solutions.
Chapter 10 describes the vector control of a permanent magnet syn-

chronous generator-based wind turbine.
Chapter 11 presents a ride-through strategy for permanent magnet syn-

chronous generator-based wind turbine which allows independent control of
both sides of the converter while providing experimental verification of the
proposed algorithm.

Finally the Chapter 12 summarizes the conclusions of the present thesis.

viii
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Chapter 1

Introduction

Wind energy is considered nowadays to be one of the most promising renew-
able energy sources. The historical data on installed wind power capacity
show that it has been growing at an increasing rate for the last 20 years [2].
The growing penetration of wind farms in the grid has arisen a number of
issues for the proper operation of the grid. Namely, wind farms are known to
be less robust to voltage sags than conventional energy generation plants. In
the former days, when a deep voltage sag occurred due to a fault in the grid,
wind farms would disconnect from the grid to avoid damaging the turbines.
This sudden disconnection of power input to the grid would cause an im-
balance which in some situations could lead to network instability. In order
to avoid that, modern wind farms are required to be able to ride through
voltage sags, that is, to remain connected while the fault is cleared.

Voltage sags are usually classified in two types: balanced and unbalanced.
Balanced voltage sags are caused by three phase faults and starting tran-
sients of large machines, they are characterized by a symmetrical sudden
drop of the voltage of the grid voltages. Unbalanced voltage sags are caused
by non symmetrical faults, they are more common than the balanced sags
and cause an asymmetrical drop in voltage of each phase.

The first wind farms to be installed were based on fixed speed squirrel
cage induction generators. During the last decade of the 20th century, the
need to optimize the energy extraction to increase the power rating of the
wind turbines and the need to provide reactive power support to the grid
led to gradually replace this topology by the so called doubly fed induction
generators (DFIG).

The variable speed wind turbines with DFIG are the most common type of
wind turbine generation systems (WTGS) installed nowadays. This topology
uses a gearbox to adapt the low speed of the turbine to the operating speed of
a wound rotor induction generator controlled through a small rated back-to-
back voltage source converter (VSC) connected to the rotor of the machine.

The main benefits of this topology compared to the previous squirrel cage

1
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wind turbines without power converter are the ability to operate at a wider
range of speeds, thus to optimize the energy extraction from the wind, and
the ability to precisely control the active and reactive power injected to the
grid.

The most common control scheme for the DFIG-based WTGS, the con-
ventional vector control design [3], have been proven to provide good perfor-
mance under balanced conditions. The ride-through capabilities of the DFIG
for symmetrical voltage sags using this control method plus rotor connected
resistors in case of an excess of power flowing through the rotor windings
were analyzed in detail in [4]. The performance obtained by this method was
also later discussed for a number of different scenarios in [5]. This method
can be arguably considered to be the base of the more advanced methods for
unbalance operation and will be extensively analyzed in the present thesis.

Unbalanced conditions caused by non symmetrical faults require different
approaches as the conventional vector control scheme exhibits poor perfor-
mance under such conditions. One possible solution was presented in [6],
where this problem is solved by using the so called double synchronous refer-
ence frame vector control which separately controls the positive and negative
sequence of the current by using band-stop filters to separate the positive
and the negative sequence of the magnitudes. This approach was later used
in [7] where a new current reference calculation method was suggested to
coordinate the control of the machine side and the AC grid side of the con-
verter to minimize the DC bus voltage ripple due to the oscillations of active
power coming from the machine.

Although this current control scheme has been proven to enable the oper-
ation under grid unbalances, its main disadvantage is the need to process the
Fortescue decomposition of the measured signals by the use of filters which
have a limited frequency operating range and decrease the performance that
can be obtained from the system. Different possible alternate designs exist
in the literature: first order all-pass filters are used in [8] and the so called
generalized second order integrator is used in [9]. Although each of these
filters have their own advantages, all of them have a limited bandwidth and
add phase lag to the open loop current transfer functions and thus degrade
the system performance.

A different approach to avoid the use of these filters was suggested in [10]
where unbalanced operation capability is obtained by extending the vec-
tor control scheme by adding high gain to the current controllers around
the double frequency of the grid thus making the controller suitable to fol-
low current reference signals which also contain negative sequence. This
approach has been shown to work well but implies the need of current con-
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trollers designed to follow reference signals around two different frequency
ranges.
Another different approach is the use of stationary frame current con-

trollers which are designed to have a high gain around the grid frequency
to be able to track sinusoidal reference signals. This approach has the same
basic advantages of the scheme proposed in [10] and the only main difference
is that the resulting controllers have a high gain around a single frequency
range, thus they are slightly simpler. Here both the dual synchronous ref-
erence frame and a stationary reference frame design will be extensively
analyzed and discussed.
Regarding, the reference calculation, several options exist in case of un-

balanced voltage sags. The previously mentioned works on control under
unbalanced conditions use the reference calculation scheme from [11]. This
scheme uses negative sequence current to compensate for the oscillation of
the power injected to the grid that appears due to the presence of negative
sequence in the grid voltage. Here a critic analysis of the application of
this method to the calculation of the current references for the control of
a voltage source converter is presented along with remarks on several weak
points of this procedure and possible solutions for them.
Recently, the need to reduce the maintenance costs of the wind turbines

for offshore wind farms have risen the interest in replacing the DFIG by
permanent magnet synchronous generators (PMSG) with full rated power
converter in the new wind turbines. The reason to do that is that even
though this new topology requires a new type of electrical machine with
higher manufacturing costs and a power converter with a higher rating, there
are a number of interesting benefits of this configuration. The first feature of
the PMSG that caught the attention of the wind turbine manufacturers was
the possibility to create PMSGs with a large number of pair poles, rendering
the machine able to operate at very low speeds compatible with the operating
speeds of the wind turbines [12]. This way a direct drive design of the wind
turbine without gearbox could be manufactured to suppress one important
source of maintenance costs and failures.
Another important feature of the PMSG topology is that the machine is

completely isolated from the grid through the converter unlike the DFIG
which has the stator of the machine connected to the grid. This makes the
machine less sensible to grid disturbances, suppressing a number of design
challenges regarding the need to improve the control methods to reduce the
stress over the generator and the mechanical system of the wind turbine in
case of need to operate during grid faults.
Finally, another interesting feature of the PMSG topology is that the

3
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higher rating of the converter and the complete decoupling between the gen-
erator and the grid connection make it possible to implement with ease new
strategies and special behaviours to operate under different grid conditions.

Vector control of PMSG has been proved to provide good performance
characteristics. The principles behind this method originate in [13] and its
use to control the PMSG is extensively documented in the literature [14, 15].
Here, the basic vector control scheme will be described and a ride-through
strategy which enables independent control of the AC grid side connection
of the converter and the machine rectifier will be analyzed.

4
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Chapter 2

Wind turbine mechanical system

modelling

2.1 Introduction

This chapter analyzes the modelling of the dynamics of the mechanical sys-
tem of a variable speed wind turbine. First, in Section 2.2, a simple aero-
dynamic model based on [16] is described. This model relates the power
extracted from the wind passing through the surface swept by the turbine
to the wind speed and the rotating speed of the turbine. A linearized ver-
sion of this model is also obtained here to later simplify the analysis of the
performance requirements of the wind turbine generator torque control. In
Section 2.3, a model of the wind speed originating from [17] is presented.
Section 2.4 analyzes the modelling of the wind turbine drivetrain dynamics.
A so called two-mass model is presented and briefly compared to a more
simple one-mass model. Finally, a basic wind turbine speed control called
constant tip speed ratio control is presented and discussed in Section 2.5.
The stability and the dynamic behaviour of the system are analyzed and the
basic performance requirements of the torque control of the generator are
obtained.

2.2 Modeling of the wind turbine aerodynamics

According to [18], wind turbine generation is based on the extraction of
power from the kinetic energy of the wind. Hence, the power extracted by
the turbine Pt can be expressed as the kinetic power available in the stream
of air across the area swept by its blades Pw multiplied by an dimensionless
coefficient CP called power coefficient. The CP can be thought as a measure
of the aerodynamic efficiency of the turbine and depends on the relation
between the average speed of the air across the area covered by the wind
wheel and its angular speed and the geometry of the turbine (which also
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depends on the pitch angle of the blades). The power extracted by the wind
turbine has the following expression:

Pt = cPPw = cP
1

2
ρAv3w (2.1)

where ρ is the air density assumed to be constant,
A is the surface covered by the wind wheel,
vw is the average wind speed.

There have been different approaches to model the power coefficient rang-
ing from considering it to be constant for steady state and small signal re-
sponse simulations to using look-up tables with measured data. A common
approach is to use an analytic expression suggested in [16] of the form:

cP (Λ, β) = c1

(

c2
1

Λ
− c3β − c4β

c5 − c6

)

e−c7
1

Λ (2.2)

where [c1 . . . c9] are characteristic parameters of the wind turbine which can
be obtained by statistical analysis of measured data from a real turbine and
finite element method simulations, β is the blade pitch angle and Λ is defined
as:

1

Λ
,

1

λ+ c8β
−

c9

1 + β3
(2.3)

where λ is the so called tip speed ratio and it is defined as:

λ ,
ωtR

vw
(2.4)

where ωt is the turbine speed and R is the turbine radius.

To simulate the response of the turbine, the power extracted by the turbine
for a given wind speed, angular speed of the turbine and the blade pitch
angle, can be easily computed by using (2.1). Dividing the extracted power
by the angular speed, the turbine torque, which is needed for the simulation
of the mechanical dynamics, is obtained as:

Γt = CP
1

2
ρAv3w

1

ωt
(2.5)

The characteristic parameters for a turbine case that will be used along
this document can be found in Table 2.1. Figure 2.1 shows a plot of the
power coefficient as a function of the tip speed ratio for a constant pitch
angle for this turbine. According to [18], this is the usual shape of the CP

8
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curve for a three blade wind turbine and it usually has a maximum that can
be obtained by for λ ≈ 8. In this case, the maximum corresponds to the 48%
of the available power. The theoretical limit for the aerodynamic efficiency
for any possible wind turbine corresponds to approximately 59%[16].

Parameter Value Units Description

R 33 m Turbine radius
vNw 9 m/s Nominal wind speedt
ρ 1,225 Kg/m3 Air density

c1 1 1

CP function parameters

c2 39,52 1
c3 0 1
c4 0 1
c5 0 1
c6 2,04 1
c7 14,47 1
c8 0 1
c9 0 1

λopt 8,28 1 Optimal tip speed ratio

C
opt
P 0,476 1 Optimal power coefficient

ωN
t 21,57 min−1 Wind turbine nominal speed

ΓN
t 0,322e6 Nm Wind turbine nominal torque

PN
t 727,3 kW Wind turbine nominal power

Table 2.1: Wind turbine characteristic parameters

The maximum efficiency for a given turbine, can be calculated by differ-
entiating (2.2) as a function of λ and solving for the roots of this equation.
For the sake of simplicity here the pitch angle is taken as zero as an increase
on the pitch angle always leads to a reduction on the force that the wind
applies on the blades. The maximum efficiency C

opt
P becomes:

C
opt
P =

c1c2

c7
e
−

c2+c6c7
c2 (2.6)

also, the so called optimal tip speed ratio to obtain this efficiency is:

λopt =
1

c9 +
c6
c2

+ 1
c7

(2.7)

Thus, considering the wind speed to be known, the power extracted by
the turbine can be maximized by simply driving the turbine to match the

9
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2.3 Wind speed modelling

One possible approach to generate the wind speed signal on simulations
may be to use logs of real measurements of the speed on the real location of
the WTGS. This approach has some evident limitations because it requires
a measurement to be done on each place to be simulated. Another choice,
proposed by [17] is to use a mathematical model which takes some landscape
parameters to generate a wind speed sequence for any location. This wind
speed expression has the form:

vw(t) = vwa(t) + vwr(t) + vwg(t) + vwt(t) (2.12)

where vwa(t) is a constant component,
vwr(t) is a common ramp component,
vwg is a gust component,
vwt is a turbulence component.

The vwa(t) component is a constant value used to set a constant wind
speed. The vwr component is a limited ramp function used to simulate a
increase in the wind speed and it can be written as a function of time as:

vwr(t) =







0, per t < Tsr

Âr
(t−Tsr)

(Ter−Tsr)
, per Tsr ≤ t ≤ Ter

Âr, per Ter < t

(2.13)

where Âr is the amplitude of the ramp and Tsr and Ter are the start and
the end time of the ramp.
The gust component may be useful to simulate an abnormal temporary

increase of the speed of the wind and its expression is:

vwg(t) =







0, for t < Tsg

Âg

(

1− cos
[

2π
(

t−Tsg

Teg−Tsg

)])

, for Tsg ≤ t ≤ Teg

0, for Teg < t

(2.14)

where Âg is the amplitude of the gust and Tsg and Teg are the start and the
end time of the gust.
Finally, as discussed in [19], the turbulence component vwt is a signal

which has a power spectral density of the form:

PDt(f) =
lv̂w

[

ln
(

h
z0

)]
−2

[

1 + 1.5 fl
v̂w

]5/3
(2.15)
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where v̂w is the average wind speed, h is the height of interest (the wind
wheel height), l is the turbulence scale which is twenty times h and has a
maximum of 300 m and z0 is a roughness length parameter which depends
on the landscape type as shown in Table 2.2.

Landscape type Range of z0 (m)

Open sea or sand 0,0001-0,001
Snow surface 0,001-0,005
Mown grass or steppe 0,001-0,01
Long grass or rocky ground 0,04-0,1
Forests, cities and hilly areas 1-5

Table 2.2: Values of the z0 for different types of landscapes. Sources: Panof-
sky and Dutton, 1984; Simiu and Scanlan, 1986

The parameters of the power spectral density function of the wind speed
turbulence can be computed from the height of the wind turbine, the average
wind speed and the kind of landscape where the WTGS is located. The next
step to simulate the evolution of the wind speed is to generate a signal which
has the desired power spectral density. There are many ways of doing this,
as for example by summing a large number of sines with random phases and
amplitudes according to the PDt function as suggested in [20] or by designing
a shaping filter and applying it to a flat spectrum noise signal.

Finally, note that although it is important to be able to perform long
simulations with a realistic model for the whole WTGS, as most simulations
for power quality studies are very short in time, sometimes a very simplified
model including only the step component or even a constant wind speed will
be used. The reason for this is that sometimes it is wanted to be able to easily
isolate the changes in the system variables induced by grid disturbances from
the distortions produced by the random nature of the wind.

2.4 Drivetrain modelling

The drivetrain of a WTGS comprises the wind turbine, the turbine shaft,
the gearbox and the generator’s rotor shaft. The ν multiplication ratio of
the gearbox is usually comprised between 50 and 150 and the wind turbine
inertia is usually about the 90% of the inertia of the whole system according
to [1].

The turbine blades are usually made of composite materials which are
light enough to make it feasible to build very large turbines. Due to the

12
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heavy forces applied by the wind on the blades, they tend to deform thus
introducing some dynamic effects on the transmission of the power between
the wind kinetic energy and the mechanical power transmitted to the elec-
trical generator. A common way to model this phenomenon is by the use
of partial differential equations which can be solved by the finite element
method [21]. As solving this equations is computational intensive task, usu-
ally lumped parameter system approximations are used for the simulation of
these systems if only a rough approximation of the behaviour of the mechan-
ical system is needed. A common approximation is to treat the mechanical
system as a series of masses connected through elastic couplings with linear
stiffness, a damping ratio and a multiplication ratio between them [1]. Here a
model of two masses, graphically presented in Figure 2.2 is used. The model
consists of one inertia Jt corresponding to the turbine inertia connected to
another inertia Jm corresponding to the motor and the gearbox through an
elastic shaft with a k angular stiffness coefficient and a c angular damping
coefficient. By applying the Newton’s laws to such system, the dynamical
equations for it are obtained as:







ω̇m

ω̇t

ωm

ωt






=







−c
ν2Jm

c
νJm

− k
ν2Jm

k
νJm

c
νJt

− c
Jt

k
νJt

− k
Jt

1 0 0 0
0 1 0 0













ωm

ωt

θm
θt






+







1
Jm

0

0 1
Jt

0 0
0 0







[
Γm

Γt

]

(2.16)

where θt is the turbine angle,
θm is the generator shaft angle,
ωt is the turbine speed,
ωm is the generator speed,
τt is the torque applied to the turbine by the wind,
τm is the generator torque.

This equations can be thought as the state space representation of a sys-
tem which has the turbine and generator torque as inputs which need to
be calculated from the wind turbine aerodynamic model and the generator
model to simulate the evolution of the system.

To study the dynamical characteristics of the drivetrain, it is useful to
apply the Laplace transform to its equations. Here the Laplace transform
of the turbine speed ωt(s) as a function of the generator and the turbine
torque is obtained as:

13
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2.5 Wind turbine speed control

Parameter Value Units Description

ν 90 1 Gearbox transform ratio
I1t 4e6 Kg m2 One-mass wind turbine aggregated

inertia
I2t 3,6e6 Kg m2 Two-mass wind turbine aggregated

inertia
Im 49,38 Kg m2 Two-mass generator aggregated in-

ertia
c 106 Nm rad−1 Two-mass damping ratio
k 6e7 Nm s rad−1 Two-mass stiffness coefficient

ωN
m 1,941 min−1 Generator nominal speed

ΓN
m 3,58e3 Nm Generator nominal torque

Table 2.3: Drivetrain characteristic parameters
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Figure 2.3: Bode plot of the transfer function between the generator torque
and the turbine speed
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Figure 2.4: Bode plot of the transfer function between the turbine torque
and the turbine speed

the surface swept by its blades. Also, to have the maximum possible power
extraction from the wind, it was shown that the speed of the turbine must
match a certain value that depends on the speed of the wind.

The precise measurement of the wind speed is a hard task due to the local
variations of the speed and the distortions introduced by the operation of
the wind turbine. For this reason, a number of different control strategies to
maximize the energy extraction by doing the so called maximum power point
tracking (MPPT) without the need of a wind speed measurement have been
suggested in tha past. The most basic and well known of these techniques
is the so called constant tip speed ratio control, which has been extensively
documented in the literature [22, 3, 23] and is usally used for the modelling
of the speed control behavior for power quality simulations of wind turbines.
Here only a some details on this technique which are useful to know for the
proper design of the generator current control will be presented.

The control action for the constant tip speed ratio control can be calcu-
lated as:

Γ∗

m =
1

ν
KCP

ω2
t (2.19)

where Γ∗

m is the generator torque reference value and

KCP
=

1

2
ρAR3 c1 (c2 + c6c7)

3 e
−

c2+c6c7
c2

c22c
4
7

(2.20)
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In order to study the resulting dynamics, as the speed control law and
the turbine aerodynamic curve are nonlinear, a small signal linearization of
the equations around the nominal operating point can be performed. Con-
sidering the generator control to be perfect so that Γm = Γ∗

m, the following
relation is obtained by linearization:

Γm ≈ ΓN
m +

2ΓN
m

ωN
t

δωt = −
ΓN
t

ν
−

2ΓN
t

νωN
t

δωt

︸ ︷︷ ︸

δΓm

(2.21)

where ΓN
m and ωN

t are the nominal values for the generator torque and the
turbine speed and the small signal variable δΓm is defined as:

δΓm , Γm − ΓN
m (2.22)

By combining the Laplace transform of the turbine speed as a function
of the turbine and generator torque (2.17) or (2.18), the linealized turbine
torque equation (2.8) and the linealized generator torque (2.21) the transfer
function between the wind speed and the turbine speed can be obtained.
For the sake of simplicity, here only the equation for the one mass model is
presented:

δωt

δvw
(s) =

3ΓN
t

JgvNw

s+
3ΓN

t

JgωN
t

(2.23)

From this equation, several conclusions can be drawn. The first to note is

that the system will be stable as the term
3ΓN

t

JgωN
t

is always positive. On the

other hand, the system response will be that of a first order system with a

time constant of τ =
3ΓN

t

JgωN
t

which depends on the system characteristics and

can not be adjusted.
In order to properly design the generator current control, it is also useful

to obtain the transfer function that relates the generator torque, which is
the reference input to this control loop, to the wind speed variations. By
introducing (2.23) into (2.21) the following is obtained:

δΓm

δvw
(s) =

−6(ΓN
t )

2

νJgvNw ωN
t

s+
3ΓN

t

JgωN
t

(2.24)

Next the response of the system to a step increase of the wind speed is
simulated and its evolution is compared between the linearized model and

17
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the nonlinear model. The evolution of the turbine speed and the generator
torque is presented in Figure 2.5, the evolution of the power coefficient is
presented on Figure 2.6.
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Figure 2.5: Simulated evolution of the turbine speed and the torque applied
by the generator during a step increase of the wind speed when
controlling the generator using the constant tip speed ratio con-
trol technique.
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Figure 2.6: Simulated evolution of the power coefficient of the turbine dur-
ing the transient produced by a step increase of the wind speed
when controlling the generator using the constant tip speed ratio
control technique.

It can be seen that there are only slight differences between the predicted
evolution on both models thus confirming the usefulness of the linearization.
It can also be seen that the transient response is very slow with a time
constant of approximatelly 11 seconds, and that during this transient the
power extraction is not optimal.
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Figure 2.7 shows the bode plot of (2.24). This graph provides useful
information about the use that the speed control does of the torque control
action, this way it is possible to decide the performance needed from the
generator current controller.
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Figure 2.7: Bode plot of the transfer function that relates the generator
torque to the wind speed variations. Note the graph is nor-
malized to the nominal generator torque.

Note that for a step increase of the wind speed by 1m/s, the system needs
to increase the applied torque by approximatelly 22% (-13 dB) of the nominal
torque in steady state while for frequencies above 20 Hz, the gain becomes
lower than 1% of this value (-53 dB). This frequency can be thought as a
lower bound for the bandwidth of the generator current controller and it is
very low because of the very slow dynamics of the mechanical system.
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Chapter 3

Induction machine modelling

3.1 Introduction

This chapter discusses the modelling of an induction machine. The induction
machine is nowadays the most common type of electrical machine used for
wind generation.
The chapter is organized as follows: first, a dynamic model of the induc-

tion machine based on [24] is presented in Section 3.2. The equations of the
machine are first presented in their abc variable form and later the variables
are transformed to the so called Park variables by introducing the Park vari-
able transformation matrix which will be useful for the study of the machine
and the design of the controllers in later chapters. The steady state opera-
tion equations of the machine, which make it easy to calculate the relations
between the current flowing through the machine windings and the voltage
applied to the machine, are obtained from the dynamic equations. First the
equations for a balanced case are presented in Section 3.3 and later a more
general unbalanced case is analyzed in Section 3.4.
The methods to calculate the current reference values needed to obtain the

desired torque and reactive power output of the machine are also analyzed.
First, the calculation method used in the conventional vector control which
considers the grid voltages to be balanced is analyzed and later a generalized
calculation method for unbalanced operation, which allows to suppress the
machine torque oscillations in case of an asymmetric voltage sag, is analyzed.

3.2 Induction machine dynamic equations

Figure 3.1 shows the connection schematics for the DFIG machine.
We define the machine stator and rotor voltage vectors vabcs and vabcr as

the vectors of voltages applied to each of their windings. Thus, they can be
written as a function of the transformer secondary windings voltages and
the machine side inverter voltages as:
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sai

sbi

sci

snza
v

snzb
v

snzc
v

nsz

Stator grid connection

transformer

Induction machine

Machine side inverter

nr

DC bus

rna
v

rnb
v

rnc
v

rai

rbi

rci

nws

nwr

Figure 3.1: Detail of the DFIG connection for a Y-Y configuration without
neutral conductor.
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3.2 Induction machine dynamic equations

vabcs = vabcsnz + (vnsz − vnws)





1
1
1



 (3.1)

and

vabcr = vabcrn + (vnr − vnwr)





1
1
1



 (3.2)

Also as no neutral conductor is present it can be stated that:

{
isa + isb + isc = 0
ira + irb + irc = 0

(3.3)

According to [24] the relation between the current and the applied voltage
on the windings of a symmetrical induction can be written as:

vabcs = rsi
abc
s +

d

dt
λabc
s (3.4)

vabcr = rri
abc
r +

d

dt
λabc
r (3.5)

where vabcs and vabcr are the stator and rotor voltage vectors,
iabcs and iabcr are the stator and rotor current vectors,
λabc
s and λabc

s are the stator and rotor flux linkage vectors,
rs is the resistance of a single phase of the stator,
rr is the resistance of a single phase of the rotor.

Considering an ideal linear magnetic behaviour, the flux linkage vectors
can be written as a function of the current vectors as:

[
λabc
s

λabc
r

]

=

[
Labc
ss Labc

sr

Labc
rs Labc

rr

] [
iabcs

iabcr

]

(3.6)

where Labc
ss , Labc

sr , Labc
rs and Labc

rr are the coupling matrices which can be
written as:

Labc
ss =





Lls + Lms −1

2
Lms −1

2
Lms

−1

2
Lms Lls + Lms −1

2
Lms

−1

2
Lms −1

2
Lms Lls + Lms



 , (3.7)
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Labc
rr =





Llr + Lmr −1

2
Lmr −1

2
Lmr

−1

2
Lmr −Llr + Lmr −1

2
Lmr

−1

2
Lmr −1

2
Lmr Llr + Lmr



 , (3.8)

Labc
sr =

{

Labc
rs

}t
= Lsr





cos(θr) cos(θr +
2π
3
) cos(θr −

2π
3
)

cos(θr −
2π
3
) cos(θr) cos(θr +

2π
3
)

cos(θr +
2π
3
) cos(θr −

2π
3
) cos(θr)



 (3.9)

where Lls and Llr are the stator and rotor leakage self-inductances,
Lms and Lmr are the stator and rotor core self-inductances,
Lsr is the maximum value of the coupling inductance

between the rotor and the stator,
θr is the rotor angle multiplied by the number of pair

poles of the machine.

On the other hand, the equation for the torque of the machine can be
obtained by evaluating the power balance on the machine by identifying
the terms that correspond to the mechanical power output. The obtained
expression is:

Γm =
P

2

[
iabcs

iabcr

]t [
0 Nabc

sr

Nabc
rs 0

] [
iabcs

iabcr

]

(3.10)

where P is the number of pair poles of the machine, and

Nabc
sr =

{

Nabc
rs

}t
= −Lsr





sin(θr) sin(θr +
2π
3
) sin(θr −

2π
3
)

sin(θr −
2π
3
) sin(θr) sin(θr +

2π
3
)

sin(θr +
2π
3
) sin(θr −

2π
3
) sin(θr)





(3.11)
The former equations contain a number of time-varying sinusoidal terms

that make them nonlinear and hard to operate. To make the study of the
machine dynamics easier, the so called Park variable transformation matrix
is usually applied to them to eliminate the dependence on the rotor position
and also, as it will be shown, to eliminate one of the equations for every
winding group in absence of neutral conductor.

The Park variable transformation matrix for a Park reference frame (also
referred as qd0 frame) is defined as:

T (θ) =
2

3





cos(θ) cos(θ − 2π
3
) cos(θ + 2π

3
)

sin(θ) sin(θ − 2π
3
) sin(θ + 2π

3
)

1

2

1

2

1

2



 (3.12)
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and its inverse is

T−1(θ) =





cos(θ) sin(θ) 1
cos(θ − 2π

3
) sin(θ − 2π

3
) 1

cos(θ + 2π
3

sin(θ + 2π
3
) 1



 (3.13)

The transformation of the xabc vector to a qd0 frame with angle θ is then
defined as:

xqd0 , T (θ)xabc (3.14)

Next we define the Park-transformed variables for the DFIG as:







v
qd0
s , T (θ)vabcs

i
qd0
s , T (θ)iabcs

v
qd0
r , T (θ − θr)v

abc
r

i
qd0
r , T (θ − θr)i

abc
r

(3.15)

By introducing the transformed variables to the machine equations, the
following equations in the qd0 frame are obtained:
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[

v
q
d

s

v
q
d

r

]

=

   

3 2
L
m
s
+
L
ls

0
3 2
L
sr

0
0

3 2
L
m
s
+
L
ls

0
3 2
L
sr

3 2
L
sr

0
3 2
L
m
r
+
L
lr

0
0

3 2
L
sr

0
3 2
L
m
r
+
L
lr

   

d d
t

[

iq
d

s iq
d

r

]

+

     

r s
(
3 2
L
m
s
+
L
ls

)
θ̇

0
3 2
L
sr
θ̇

−
(
3 2
L
m
s
+

L
ls

)
θ̇

r s
−

3 2
L
sr
θ̇

0

0
3 2
L
sr

(

θ̇
−
ω
r

)

r r
(
3 2
L
m
s
+
L
ls

)
(

θ̇
−
ω
r

)

−
3 2
L
sr

(

θ̇
−

ω
r

)

0
−
(
3 2
L
m
s
+
L
ls

)
(

θ̇
−
ω
r

)

r r

     

[

iq
d

s iq
d

r

]

(3
.1
6
)
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and

vs0 = Lls
dis0

dt
+ rsis0 (3.17)

vr0 = Llr
dir0

dt
+ rrir0 (3.18)

On the other hand, the torque can be written as a function of the current
in the qd0 frame as:

Γm =
9

4
PLsr (isqird − isdirq) (3.19)

To further simplify these equations, we define the following machine pa-
rameters:







Ls , 3

2
Lms + Lls

Lr , 3

2
Lmr + Llr

M , 3

2
Lsr

(3.20)

thus we obtain:

[

v
qd
s

v
qd
r

]

=







Ls 0 M 0
0 Ls 0 M

M 0 Lr 0
0 M 0 Lr







d

dt

[

i
qd
s

i
qd
r

]

+









rs Lsθ̇ 0 Mθ̇

−Lsθ̇ rs −Mθ̇ 0

0 M
(

θ̇ − ωr

)

rr Lr

(

θ̇ − ωr

)

−M
(

θ̇ − ωr

)

0 −Lr

(

θ̇ − ωr

)

rr









[

i
qd
s

i
qd
r

]

,

(3.21)

{
vs0 = Lls

dis0
dt + rsis0

vr0 = Llr
dir0
dt + rrir0

, (3.22)

Γm =
3

2
PM (isqird − isdirq) (3.23)

It is also interesting to obtain the expression for the stator, rotor and
mechanical power exchange. According to [25], they can be written as:
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Pm = Γmωm (3.24)

Ps =
3

2
(vsqisq + vsdisd) (3.25)

Pr =
3

2
(vrqirq + vrdird) (3.26)

Qs =
3

2
(vsqisd − vsdisq) (3.27)

Qr =
3

2
(vrqird − vrdirq) (3.28)

where Pm is the mechanical power,
Ps is the stator active power,
Pr is the rotor active power,
Qs is the stator reactive power,
Qr is the rotor reactive power.

The first important result, from (3.22), is that the presence of 0 component
on the voltage would imply a 0 sequence current, and the sum of the current
of the three phases would not be zero. Thus:

{
vsnza + vsnzb + vsnzc + 3 (vnsz − vnws) = 0
vrna + vrnb + vrnc + 3 (vnr − vnwr) = 0

(3.29)

and the following relations are obtained:

vabcs =
2

3





1 −1

2
−1

2

−1

2
1 −1

2

−1

2
−1

2
1



 vabcsnz (3.30)

vabcr =
2

3





1 −1

2
−1

2

−1

2
1 −1

2

−1

2
−1

2
1



 vabcrn (3.31)

3.3 Steady state analysis for balanced operation

Next the equations for the steady state will be derived from the system
equations considering first the case where the voltages applied to the machine
have no negative nor zero sequence components.

A three phase sinusoidal signal xabc(t) is said to be balanced and contain
only positive sequence when it is of the form [26]:
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xabc(t) =
√
2X





cos(ωet+ ϕx)
cos(ωet+ ϕx −

2π
3
)

cos(ωet+ ϕx +
2π
3
)



 (3.32)

where X is the root mean square (rms) of any of the phases,
ωe is the grid frequency,
ϕx is the a phase angle for t = 0.

If the Park transformation matrix T (θ) is applied to this vector by choos-
ing the reference angle to match the angle of the a phase as θ = ωet+ϕ, the
obtained voltage vector is constant of the form:

xqd(t) = T (ωet+ ϕ)xabc =
√
2X

[
cos(ϕx − ϕ)
− sin(ϕx − ϕ)

]

,

[
xssq
xssd

]

(3.33)

where xssq and xssd are the steady state values for the q and d components of

xqd(t).

Particularizing the machine equations (3.21) for θ = ωet+ ϕ and consid-

ering the machine rotational speed ωr to be constant and v
qd
s and v

qd
r to be

balanced, it can be seen that the obtained system dynamics are linear. If
the system is stable, then in steady state the current will be constant as
the input voltages are constant. Thus in steady state the derivative of the
current will be zero and the following relations are obtained:







vsssq = rsi
ss
sq + ωeLsi

ss
sd + ωeMissrd

0 = rsi
ss
sd − ωeLsi

ss
sq − ωeMissrq

vssrq = rri
ss
rq + sωeLri

ss
rd + sωeMisssd

vssrd = rri
ss
rd − sωeLri

ss
rq − sωeMisssq

(3.34)

where s = ωe−ωr

ωe

is the so known slip of the machine.

Note that ϕ was chosen to match the angle of the stator voltage at the
time t = 0 so that vsssd became 0.

These relations are usually rewritten in a more compact form called phasor
form. We define the phasor form X of the vector xqd(t) in steady state as:

X =
1
√
2

(
xssq − jxssd

)
(3.35)

Thus, to obtain the phasor form of the steady state equations (3.34),
the equations for each d component are multiplied by the j and subtracted
from the corresponding q component and both are divided by

√
2 to put
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everything as a function of the rms values of the corresponding sinusoidal
variables:

Vs = (rs + jωeLs) Is + jωeMIr (3.36)

V r = (rr + jsωeLr) Ir + jsωeMIs (3.37)

Also as having a different number of turns on the stator and the rotor will
give a transformation ratio between both windings, usually the rotor vari-
ables may be referred to the stator side as it is usually done with transformers
and squirrel cage induction machines. To the reduce the rotor variables to
the rotor side, they are be divided by the ratio between the stator turns Ns

and the rotor turns Nr. The following new reduced variables and parameters
are defined:

V ′

r ,
Ns

Nr
V r (3.38)

I ′r ,
Nr

Ns
Ir (3.39)

r′r ,

(
Ns

Nr

)2

rr (3.40)

L′

r ,

(
Ns

Nr

)2

Lr (3.41)

M̂ ,
Ns

Nr
M (3.42)

Then, the steady state phasor equations can be rewritten as:

Vs = (rs + jωeLs) Is + jωeM̂I ′r (3.43)

V ′

r =
(
r′r + jsωeL

′

r

)
I ′r + jsωeM̂Is (3.44)

Finally as the slip of the machine also changes the rotor impedance, it
is also usual to divide the rotor equation by the slip to obtain the former
equation in the following form:

Vs =
(

rs + jωe

(

Ls − M̂
))

Is + jωeM̂
(
Is + I ′r

)
(3.45)

V ′

r

s
=

(
r′r
s

+ jωe

(

L′

r − M̂
))

I ′r + jωeM̂
(
Is + I ′r

)
(3.46)
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Parameter Value Units Comments

V N
s 690 V Phase to phase rms
Ns

Nr

2,5 1

P 2 1 Number of pole pairs
rs 3e-3 Ω
r′r 3e-3 Ω

ωe

(

Ls − M̂
)

20e-3 Ω For 50 Hz

ωe

(

L′

r − M̂
)

40e-3 Ω For 50 Hz

ωeM̂ 1 Ω Calculated for 50 Hz

rr 4,8e-4 Ω
ωeLs 1,02 Ω Calculated for 50 Hz
ωeLr 0,166 Ω Calculated for 50 Hz
ωeM 0,4 Ω Calculated for 50 Hz

sN -0.2942 1 Nominal slip.
PN
s 562 kW (gen.) Nominal stator active power

PN
r 165 kW (gen.) Nominal rotor active power

PN
e 727 kW (gen.) Nominal total power

Table 3.1: Induction generator parameters from [1]
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are easy to measure and have approximately linear dynamics, the genera-
tor is controlled through a feedback current control loop and the reference
values for the machine torque or the output power are used to calculate the
current reference values using a machine model.

The steady state equations presented in the previous section can be used
to calculate the reference values for the current from the desired machine
torque Γ∗

m and the stator reactive powerQ∗

s. To obtain the current references
i∗sq and i∗sd, the following system of equations must be solved:







vsssq = rsi
∗

sq + ωeLsi
∗

sd + ωeMi∗rd
0 = rsi

∗

sd − ωeLsi
∗

sq − ωeMi∗rq
Γ∗

m = 3

2
PM

(
i∗sqi

∗

rd − i∗sdi
∗

rq

)

Q∗

s = 3

2
vsssqi

∗

sd

(3.50)

This system of equations is nonlinear and leads to multiple solutions which
are hard to compute. A usual approach is to neglect the machine windings’
resistance, which is usually very small in comparison to the other impedances
of the machine. Doing this assumption, the equations to solve become:







vsssq = ωeLsi
∗

sd + ωeMi∗rd
0 = −ωeLsi

∗

sq − ωeMi∗rq
Γ∗

m = 3

2
PM

(
i∗sqi

∗

rd − i∗sdi
∗

rq

)

Q∗

s = 3

2
vsssqi

∗

sd

(3.51)

This equations are linear and the following solution for the current refer-
ence values is obtained:

{
i∗rq = − 2Ls

3PMvss
sq

Γ∗

m

i∗rd = − 2Ls

3Mvss
sq

Q∗

s +
vss
sq

ωeM

(3.52)

Notice that this reference calculation depends on the knowledge of the
machine parameters and also needs the grid voltage to be measured.

3.4 Steady state analysis for unbalanced operation

Next it will be considered a more general operation condition where the
grid voltage is no longer balanced and the voltages seen by the stator of
the machine have both positive and negative sequence voltages. According
to [26], a three phase sinusoidal signal is said to contain both positive and
negative sequence when it is of the form:
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xabc(t) = xabc+ (t) + xabc
−

(t) =
√
2X+





cos(ωet+ ϕ+
x )

cos(ωet+ ϕ+
x − 2π

3
)

cos(ωet+ ϕ+
x + 2π

3
)





+
√
2X−





cos(ωet+ ϕ−

x )
cos(ωet+ ϕ−

x + 2π
3
)

cos(ωet+ ϕ−

x − 2π
3
)



 (3.53)

where xabc+ (t) and xabc
−

(t) are the positive and negative sequence vectors,
X+ and X− are the root mean square (rms) of any of the

phases for the positive and negative sequences,
ϕ+
x and ϕ−

x are the a phase angles for t = 0 for the positive
and negative sequences.

Unlike in the balanced case, here it is no longer possible to find a Park ref-
erence frame where the transformed signals become constant. Fortunately,
as it was shown before, considering a constant rotational speed ωr and a
constant reference frame angle, the dynamic equations of the machine (3.21)
become linear. Thus the properties of the linear systems apply to the ma-
chine and in particular if the inputs to the machine (that is the voltages)
can be decomposed as the sum of two terms, the resulting outputs (that is
the currents) will be equal to the outputs that would be obtained for each
of the input terms alone. Thus the study of the unbalanced case for the
machine can be dealt as two separate balanced problems.

By applying the Park transformation to the positive sequence xabc+ (t) with

θ = ωet+ ϕ+ the positive sequence in the positive reference frame x
qd
+ (t) is

obtained as:

x
qd
+ (t) = T (ωet+ ϕ+)xabc+ (t) =

√
2X+

[
cos(ϕ+

x − ϕ+)
− sin(ϕ+

x − ϕ+)

]

(3.54)

Doing the same for the negative sequence component xabc
−

(t) and taking
θ = −ωet− ϕ− for the negative sequence reference frame, we obtain:

x
qd
−
(t) = T (−ωet− ϕ−)xabc

−
(t) =

√
2X−

[
cos(ϕ−

x − ϕ−)
sin(ϕ−

x − ϕ−)

]

(3.55)

Separating the machine equations for the positive and the negative se-
quence and applying the corresponding transformation in each of them con-
sidering as in the balanced case that for a constant input the output of the
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system will be constant, the equations for the positive sequence are obtained
as:







v+sq = rsi
+
sq + ωeLsi

+

sd + ωeMi+rd
0 = rsi

+

sd − ωeLsi
+
sq − ωeMi+rq

v+rq = rri
+
rq + sωeLri

+

rd + sωeMi+sd
v+rd = rri

+

rd − sωeLri
+
rq − sωeMi+sq

(3.56)

while for the negative sequence:







v−sq = rsi
−

sq − ωeLsi
−

sd − ωeMi−rd
0 = rsi

−

sd + ωeLsi
−

sq + ωeMi−rq
v−rq = rri

−

rq − (s− 2)ωeLri
−

rd − (s− 2)ωeMi−sd
v−rd = rri

−

rd + (s− 2)ωeLri
−

rq + (s− 2)ωeMi−sq

(3.57)

Note that again, ϕ+ and ϕ− were chosen to match the stator voltage
angles for both sequences so that v+sd and v+sd became 0.

As in the balanced case, these equations are usually rewritten in the more
compact phasor form. A phasor for a positive sequence three phase magni-
tude is defined as:

X+ ,
1
√
2

(
x+q − jx+d

)
= X+

(
cos(ϕ+

x ) + j sin(ϕ+
x )

)
(3.58)

while for a negative sequence signal, the corresponding phasor is defined as:

X
−
,

1
√
2

(
x−q + jx−d

)
= X−

(
cos(ϕ−

x ) + j sin(ϕ−

x )
)

(3.59)

Substituting in the previous steady state equations and reducing the rotor
variables to the stator side using the machine transforming ratio as in the
balanced case, the following phasor relations are obtained for the positive
sequence:

Vs+ =
(

rs + jωe

(

Ls − M̂
))

Is+ + jωeM̂
(
Is+ + I ′r+

)
(3.60)

V ′

r+

s
=

(
r′r
s

+ jωe

(

L′

r − M̂
))

I ′r+ + jωeM̂
(
Is+ + I ′r+

)
(3.61)

while for the negative sequence:
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Vs− =
(

rs + jωe

(

Ls − M̂
))

Is− + jωeM̂
(
Is− + I ′r−

)
(3.62)

V −

r−

s− 2
=

(
r′r

s− 2
+ jωe

(

L′

r − M̂
))

I ′r− + jωeM̂
(
Is− + I ′r−

)
(3.63)

Again, as in the balanced case, this equations make it easy to obtain the
equivalent circuit for the machine as depicted on Figure 3.3.

V s+
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s L

s

M
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r
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Figure 3.3: DFIG machine equivalent circuit for the unbalanced case.

Also from the equivalent circuit we see that as resistance of the windings
and the leakage inductance can be considered to be small, and the magne-
tizing inductance to be very large, there are the following relations between
the currents and the voltages:

{
I ′r+ ≈ −Is+
I ′r− ≈ −Is−

(3.64)

and

{
V ′

r+ ≈ sV s+

V ′

r− ≈ (s− 2)V s−
(3.65)

Note that unlike in the balanced case, where having a small slip smade the
voltages to apply on the rotor of the machine to be small, in the unbalanced
case this is no longer true as the negative sequence voltage to be applied to
compensate the negative sequence voltage of the grid will be multiplied by
s− 2 instead of s.
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3.4.1 Steady state current reference calculation

As mentioned before, it will be desired for the current control reference cal-
culation to obtain the relation between the output variables and the current
and voltage on the machine. To obtain these relations, both positive and
negative variables which were defined on the positive and negative reference
frames, must be transformed to a common reference frame.
It can be easily proven that the Park transformation matrix T (θ) can be

decomposed as the product between a conventional rotation matrix and the
Park transformation matrix for a different reference angle θ0 as:

T (θ) ≡ R(θ − θ0)T (θ0) (3.66)

where

R(θ) =





cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



 (3.67)

The natural choice as a common reference frame is the stationary reference
frame, which is obtained by using the Clarke transformation matrix. Thus
the angle for R(θ) to transform the positive sequence variables will be θ =
−ωet − ϕ+ while for the negative sequence it will be θ = ωet + ϕ−. By
introducing these equivalences to the torque equation (3.23) and the stator
reactive power equation (3.28), the following equivalences are obtained:

Γm =
3

2
PM{iαβs }T

[
0 1
−1 0

]

iαβr =
3

2
PM{R(−ωet−ϕ+)iqds++R(ωet+ϕ−)iqds−}

T

·

[
0 1
−1 0

](

R(−ωet− ϕ+)iqdr+ +R(ωet+ ϕ−)iqdr−

)

(3.68)

and

Qs =
3

2
{vαβs }T

[
0 1
−1 0

]

iαβs =
3

2
{R(−ωet− ϕ+)vqds+ +R(ωet+ ϕ−)vqds−}

T

·

[
0 1
−1 0

](

R(−ωet− ϕ+)iqds+ +R(ωet+ ϕ−)iqds−

)

(3.69)

Substituting the rotation matrix on the previous expressions, the following
relations are obtained:
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Γm = Γ0 + Γcos + Γsin (3.70)

Qs = Qs0 +Qs cos +Qs sin (3.71)

where

Γ0 =
3

2
PM

(
i+sqi

+

rd − i+sdi
+
rq + i−sqi

−

rd − i−sdi
−

rq

)
(3.72)

Γcos =
3

2
PM

(
i+sqi

−

rd − i+sdi
−

rq + i−sqi
+

rd − i−sdi
+
rq

)
cos(2ωet+ ϕV +

s

+ ϕV −

s

)

(3.73)

Γsin =
3

2
PM

(
i+sqi

−

rq + i+sdi
−

rd − i−sqi
+
rq − i−sdi

+

rd

)
sin(2ωet+ ϕV +

s

+ ϕV −

s

)

(3.74)

and

Qs0 = v+sqi
+

sd + v−sqi
−

sd (3.75)

Qs cos =
(
v+sqi

−

sd + v−sqi
+

sd

)
cos(2ωet+ ϕV +

s

+ ϕV −

s

) (3.76)

Qs sin =
(
v+sqi

−

sq − v−sqi
+
sq

)
sin(2ωet+ ϕV +

s

+ ϕV −

s

) (3.77)

Thus unlike in the balanced three phase case, both the torque of the
machine and the stator reactive power can contain sinusoidal time vary-
ing terms in steady state. Also, it can be seen that there are four control
variables

{
i+sq, i

+

sd, i
−

sq, i
−

sd

}
while there are six independent outputs terms

{Γ0,Γcos,Γsin, Qs0, Qs cos, Qs sin}. Thus it is not possible in general to force
the value for each of the six output terms but only four of them.

Usually the control of the torque will be prioritized in front to the reactive
power, as it is critical for the physical integrity of the wind turbine. Thus
it will be chosen to force the value of {Γ0,Γcos,Γsin, Qs0} while the output
variables {Qs cos, Qs sin} will depend on the choice of the previous ones. As
the choice of the generator torque will depend on the speed control of the
turbine, and it is expected to be much slower than the dynamics of the
electrical system, the sinusoidal terms Γsin and Γcos will be chosen to be
zero.

To obtain the current needed to obtain the desired outputs, the following
system of equations must be solved:
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





v+sq = rsi
+
sq + ωeLsi

+

sd + ωeMi+rd
0 = rsi

+

sd − ωeLsi
+
sq − ωeMi+rq

v−sq = rsi
−

sq − ωeLsi
−

sd − ωeMi−rd
0 = rsi

−

sd + ωeLsi
−

sq + ωeMi−rq
Γ∗

m = 3

2
PM

(
i+sqi

+

rd − i+sdi
+
rq + i−sqi

−

rd − i−sdi
−

rq

)

0 = 3

2
PM

(
i+sqi

−

rd − i+sdi
−

rq + i−sqi
+

rd − i−sdi
+
rq

)

0 = 3

2
PM

(
i+sqi

−

rq + i+sdi
−

rd − i−sqi
+
rq − i−sdi

+

rd

)

Q∗

s = v+sqi
+

sd + v−sqi
−

sd

(3.78)

As in the balanced case, this system of equations is bilinear. To obtain an
approximate solution, a common approach is to neglect the resistance of the
generator windings. Doing this assumption, the system to solve becomes:







v+sq = ωeLsi
+

sd + ωeMi+rd
0 = −ωeLsi

+
sq − ωeMi+rq

v−sq = −ωeLsi
−

sd − ωeMi−rd
0 = ωeLsi

−

sq + ωeMi−rq
Γ∗

m = 3

2
PM

(
i+sqi

+

rd − i+sdi
+
rq + i−sqi

−

rd − i−sdi
−

rq

)

0 = 3

2
PM

(
i+sqi

−

rd − i+sdi
−

rq + i−sqi
+

rd − i−sdi
+
rq

)

0 = 3

2
PM

(
i+sqi

−

rq + i+sdi
−

rd − i−sqi
+
rq − i−sdi

+

rd

)

Q∗

s = v+sqi
+

sd + v−sqi
−

sd

(3.79)

This system of equations is linear and leads to the following solution:

i+rq = −
2Ls

3PM

ωev
+
sq

(
v+sq

)2
−
(
v−sq

)2
Γ∗

m (3.80)

i+rd = −
2Ls

3M

v+sq
(
v+sq

)2
−
(
v−sq

)2
Q∗

s +

(
v+sq

)3
−
(
v−sq

)2
v+sq

ωeM
((

v+sq
)2

−
(
v−sq

)2
) (3.81)

i−rq =
2Ls

3PM

ωev
−

sq
(
v+sq

)2
−
(
v−sq

)2
Γ∗

m (3.82)

i−rd =
2Ls

3M

v−sq
(
v+sq

)2
−
(
v−sq

)2
Q∗

s +

(
v−sq

)3
−
(
v+sp

)2
v−sq

ωeM
((

v+sq
)2

−
(
v−sq

)2
) (3.83)

Thus it is possible to obtain a constant torque and the desired mean value
for the reactive except in the case that the amplitude of the positive sequence
is close to the amplitude of the negative sequence, which would require a
current with infinite modulus. Next this condition will be further analyzed.
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According to (3.53) the stator voltage signal is of the form:

vabcs (t) =
√
2Vs+





cos(ωet+ ϕ+
x )

cos(ωet+ ϕ+
x − 2π

3
)

cos(ωet+ ϕ+
x + 2π

3
)



+
√
2Vs−





cos(ωet+ ϕ−

x )
cos(ωet+ ϕ−

x + 2π
3
)

cos(ωet+ ϕ−

x − 2π
3
)





(3.84)
By introducing the condition to have the same amplitude for the positive

and negative sequence, that is Vs+ = Vs− = V , into the stator voltage
function, the time signal for this particular condition is obtained:

vabcs (t) = 2
√
2V






cos(ϕ
+
−ϕ−

2
) cos(ωet+

ϕ++ϕ−

2
)

cos(ϕ
+
−ϕ−

2
− 2π

3
) cos(ωet+

ϕ++ϕ−

2
)

cos(ϕ
+
−ϕ−

2
+ 2π

3
) cos(ωet+

ϕ++ϕ−

2
)




 (3.85)

Note that the expression of the voltage for each phase is composed by the
product of the cosine of a constant by a cosine which depends on the time
which is the same for each phase. Thus, the voltage of the three phases
becomes zero at the same time two times each cycle and it is impossible to
have a constant power output.
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4.1 Introduction

This chapter presents a model of a permanent magnet synchronous gener-
ator (PMSG) based on the work by [24] and [27]. The PMSG is a type of
synchronous generator that uses permanent magnets in the rotor instead of
excitation coils to create the excitation field of the machine. This type of
machine is very common for small sized machines due to its compact size,
high efficiency and ease to control by a VSC. However, the high price of
the magnets and the mechanical difficulty of handling large magnets, make
these machines less common than ones with rotor excitation coils for high
power applications. Recently, the need to improve the reliability of the wind
turbines to reduce the high costs of maintenance of the offshore wind farms
have risen the interest in using this topology of machine and it is expected
to replace the common DFIG topology in the following years. The main ad-
vantage of the PMSG is that it allows to build machines with a large number
of pair poles, thus making the machine capable to work at very low speeds
such as the operating speeds of the wind turbines. This way, the gearbox,
which is known to be one of the most common sources of failures of the wind
turbines, can be suppressed. Also, unlike the DFIG, this machine doesn’t
have slipping rings in the rotor, thus reducing the need of maintenance of
the system. On the other hand, one important drawback to note from this
machine is that unlike the DFIG it requires a full power-rated converter,
thus for the same wind turbine rating the power converter of a PMSG-based
WTGS will always be more expensive than that of a DFIG.

The equations of the PMSG are described and analyzed in Section 4.2.
These equations are first presented in its abc variable form and then the Park
transformation is introduced to transform the variables into the qd0 frame
which simplifies the understanding of the machine dynamics and becomes
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vabcs = rsi
abc
s +

d

dt
λabc
s (4.3)

where vabcs is the stator voltage vector,
iabcs is the stator current vector,
λabc
s is the stator flux linkage vector,

rs is the resistance of a single phase of the stator wind-
ings.

Here the saturation nonlinearities will be neglected for the modelling of
the magnetic circuit. On the other hand, although the inductances can also
be considered not to depend on the rotor position for machines with sur-
face mounted magnets, a more general case must be considered to properly
model the behavior of a machine with buried magnets. In such model, the
inductances are considered as a function of the projection of the rotor angle
as:

λabc
s = ([L1] + [L2(θr)]) i

abc
s + λm





sin(θr)
sin(θr −

2π
3
)

sin(θr +
2π
3
)



 (4.4)

with

[L1] =





Lls + LA −1

2
LA −1

2
LA

−1

2
LA Lls + LA −1

2
LA

−1

2
LA −1

2
LA Lls + LA



 (4.5)

and

[L2(θr)] = −LB





cos 2(θr) cos 2(θr −
π
3
) cos 2(θr +

π
3
)

cos 2(θr −
π
3
) cos 2(θr +

π
3
) cos 2(θr)

cos 2(θr +
π
3
) cos 2(θr) cos 2(θr −

π
3
)



 (4.6)

where λm is the flux linkage per rotating speed unit due to the rotor magnets,
LA is a inductance term which does not depend on the rotor position and
LB is the maximum inductance value for a term that depends on the rotor
position. Note that for surface mounted magnets, LB ≈ 0.
Differentiating the flux by the time, the following is obtained:

d

dt
λabc
s = ([L1] + [L2(θr)])

d

dt
iabcs +ωr

d

dθr
[L2(θr)] i

abc
s +λmωr





cos(θr)
cos(θr −

2π
3
)

cos(θr +
2π
3
)





(4.7)
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By substituting this in equation (4.3), the relation between the machine
voltages and currents is obtained:

vabcs =

(

rs [I3] + ωr
d

dθr
[L2(θr)]

)

iabcs + ([L1] + [L2(θr)])
d

dt
iabcs

+ λmωr





cos(θr)
cos(θr −

2π
3
)

cos(θr +
2π
3
)



 (4.8)

This equation is hard to analyze as it contains a series of elements which
vary with time. In order to solve this problem, usually the Park variable
transformation matrix (3.12) is applied to this equation [24]. The new trans-
formed variables are defined as:

{

v
qd0
s , T (θ)vabcs

i
qd0
s , T (θ)iabcs

(4.9)

By multiplying (4.8) by T (θ) the following is obtained:

vqd0s = [Tqd0(θ)]

(

rs [I3] + ωr
d

dθr
[L2(θr)]

)[

T−1

qd0(θ)
]

iqd0s

+ [Tqd0(θ)] ([L1] + [L2(θr)])
[

T−1

qd0(θ)
] d

dt
iqd0s

+ ω [Tqd0(θ)] ([L1] + [L2(θr)])

[
d

dθ
T−1

qd0(θ)

]

iqd0s

+ λmωr [Tqd0(θ)]





cos(θr)
cos(θr −

2π
3
)

cos(θr +
2π
3
)



 (4.10)

By manipulating this expression the following is obtained:

44



“PhD” — 2011/6/8 — 12:01 — page 45 — #75

4.2 Permanent magnet synchronous machine dynamic equations

v
q
d
0

s
=

 

r s
+

1 2
L
B
(6
ω
r
−
3
ω
)
co
s
2
(θ

r
−
θ
−

π 4
)

ω
(
L
ls
+

3 2
L
A

)
+

1 2
L
B
(6
ω
r
−
3ω

)
co
s
2
(θ

r
−
θ
)

0
−
ω
(
L
ls
+

3 2
L
A

)
+

1 2
L
B
(6
ω
r
−
3
ω
)
co
s
2
(θ

r
−
θ
)

r s
−

1 2
L
B
(6
ω
r
−
3
ω
)
co
s
2
(θ

r
−
θ
−

π 4
)

0
0

r s

 
iq
d
0

s

+

 

L
ls
+

3 2
L
A
−

3 2
L
B
co
s
2
(θ

r
−

θ
)

3 2
L
B
co
s
2
(θ

r
−
θ
−

π 4
)

0
3 2
L
B
co
s
2
(θ

r
−
θ
−

π 4
)

L
ls
+

3 2
L
A
+

3 2
L
B
co
s
2
(θ

r
−
θ
)

0
0

0
L
ls

 
d d
t
iq
d
0

s
+
λ
m
ω
r

 

co
s(
θ
r
−
θ
)

−
si
n
(θ

r
−
θ
)

0

 
(4
.1
1
)
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On the other hand, a much simpler equation can be obtained by using the
rotor position as the transformation angle, that is θ , θr:

vqd0s =





rs ωr

(
Lls +

3

2
(LA + LB)

)
0

−ωr

(
Lls +

3

2
(LA − LB)

)
rs 0

0 0 rs



 iqd0s

+





Lls +
3

2
(LA − LB) 0 0
0 Lls +

3

2
(LA + LB) 0

0 0 Lls




d

dt
iqd0s + λmωr





1
0
0





(4.12)

Note that the zero sequence component 0 is decoupled from the qd com-
ponents, thus this equation can be split as:

vqds =

[
rs ωr

(
Lls +

3

2
(LA + LB)

)

−ωr

(
Lls +

3

2
(LA − LB)

)
rs

]

iqds

+

[
Lls +

3

2
(LA − LB) 0
0 Lls +

3

2
(LA + LB)

]
d

dt
iqds + λmωr

[
1
0

]

(4.13)

and

v0s = rsi
0

s + Lls
d

dt
i0s (4.14)

This equations can also be manipulated to obtain an explicit equation for
the current derivatives:

d

dt
iqds =






−rs
Lls+

3

2
(LA−LB)

−ωr(Lls+
3

2
(LA+LB))

Lls+
3

2
(LA−LB)

ωr(Lls+
3

2
(LA−LB))

Lls+
3

2
(LA+LB)

−rs
Lls+

3

2
(LA+LB)




 iqds −λmωr

[
1

Lls+
3

2
(LA−LB)

0

]

+

[
1

Lls+
3

2
(LA−LB)

0

0 1

Lls+
3

2
(LA+LB)

]

vqds (4.15)

and

d

dt
i0s = −

rs

Ls
i0s +

1

Lls
v0s (4.16)
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Here no neutral conductor will be considered, in this case the sum of the
abc currents will be zero thus the will be no zero sequence current and only
the qd subsystem equations will need to be taken into account.

On the other hand, the equation for the torque of the generator can be
obtained by calculating the mechanical power of the generator, PM and
dividing it by the mechanical speed. To obtain the mechanical power, the
stator voltage (4.8) is multiplied by the rotor voltage and the terms which
do not correspond to the losses due to the joule effect and the power stored
in the inductances are identified as:

PM = ωr

{

iabcs

}T d

dθr
[L2(θr)] i

abc
s + λmωr

{

iabcs

}T





cos(θr)
cos(θr −

2π
3
)

cos(θr +
2π
3
)



 (4.17)

By applying the Park transformation to this equation, it can be put as a
function of the qd0 variables as:

PM = ωr

{

iqd0s

}T [

T−1

qd0(θ)
]T d

dθr
[L2(θr)]

[

T−1

qd0(θ)
]

iqd0s

+ λmωr

{

iqd0s

}T [

T−1

qd0(θ)
]T





cos(θr)
cos(θr −

2π
3
)

cos(θr +
2π
3
)





= ωr

{

iqd0s

}T





3

2
3LB cos 2(θr − θ − π

2
) 3

2
3LB cos 2(θr − θ) 0

3

2
3LB cos 2(θr − θ) −3

2
3LB cos 2(θr − θ − π

2
) 0

0 0 0



 iqd0s

+
3

2
λmωr

{

iqd0s

}T





cos(θr − θ)
− sin(θr − θ)

0



 (4.18)

This can be further simplified by identifying the stator flux as:

PM =
3

2
ωr (λsdisq − λsqisd) (4.19)

where
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λqd0
s =





Lls +
3

2
LA − 3

2
LB cos 2(θr − θ) 3

2
LB cos 2(θr − θ − π

4
) 0

3

2
LB cos 2(θr − θ − π

4
) Lls +

3

2
LA + 3

2
LB cos 2(θr − θ) 0

0 0 Lls



 iqd0s

+ λm





sin(θr − θ)
cos(θr − θ)

0



 (4.20)

By dividing this equation by the mechanical speed, the torque equation
is obtained as:

Γm =
3

2
P (λsdisq − λsqisd) (4.21)

Also, by using the rotor position as the Park reference angle, a further
simplified equation is obtained:

Γm =
3

2
P





{

iqd0s

}T





0 3LB 0
3LB 0 0
0 0 0



 iqd0s + λm

{

iqd0s

}T





1
0
0









=
3

2
P (λmisq + 3LBisqisd) (4.22)

Note that for a machine with surface mounted magnets, where LB ≈ 0,
the torque of the machine only depends on the q component of the stator
current, while for a machine with buried magnets, the torque also depends
on the product of the q and d components. Thus for a surface mounted
machine, there is only one possible value of the q current to obtain the
desired torque on the machine while the d component can be adjusted for
other purposes while for a machine with buried magnets, it becomes harder
to decide the proper value for the current for a desired torque.
Finally, to write the equations in a more compact form in the qd base,

usually the following new parameters are defined:

Lq , Lls+
3

2
(LA − LB) (4.23)

Ld , Lls+
3

2
(LA + LB) (4.24)

Then, the equations of the machine become:
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Chapter 5

Power converter and grid-side system

modelling

5.1 Introduction

This chapter analyzes the modelling of the voltage source converter and the
dynamics of the AC grid connection of the converter. The voltage source
back-to-back converter is an “AC to DC to AC“ converter with two three-
phase inverters with IGBT switching devices connected trough a DC bus
with large capacitors in parallel, hence the name of voltage source in contrast
to the so called current source converters with large inductors in series.

The high frequency switching capabilities of the IGBTs make it possi-
ble to use high frequency pulse-width modulation (PWM) techniques which
allow high performance control of the current while minimizing the low fre-
quency current harmonics without the need of large passive filters. The high
frequency modulation also makes it possible to use a low frequency model
of the converter and to approximate the behaviour of the inverters as ideal
controllable voltage sources. This is possible thanks to the low pass nature
of the physical systems connected to the inverters, which have the ability
to filter the high frequency content of the voltage applied by the inverters.
This allows to apply the well known linear system analysis tools to study
the system and design its controllers.

When studying the dynamics and the design of the control of the con-
verter, a common approach is to divide the design problem into a series of
small problems. Namely, as the capacity of the DC bus is large, its dynam-
ics are usually slower than the dynamics of the current of the generator and
the current on the AC grid side. Thus, usually the design of the generator
current controllers, the AC grid side current and the DC bus voltage is dealt
separately.

This chapter is organized as follows: first in Section 5.2, the equations of
the dynamics of the DC bus, which later will be used to design the regulator
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5.3 Grid side system dynamic equations

where VDC is the DC bus voltage,
C is the DC bus capacity,
rDC is the so called DC bus discharge resistor,
iDC is the current flowing through the DC bus capaci-

tors,
iDCr is the current flowing through the DC bus discharge

resistor,
iDCl is the current flowing through the DC side of the

grid side inverter,
iDCm is the current coming from the the DC side of the

machine side inverter.

Solving the previous equations, the derivative of the DC bus voltage can be
put as a function of the DC bus voltage and the current from both inverters
as:

d

dt
VDC =

1

C

(

−
1

rDC
VDC + iDCm − iDCl

)

(5.2)

Here the inverters are considered to have an ideal behavior with no losses.
Thus, the current on the DC side of each inverter is related to the power
flowing through the AC side of the inverter. For the grid side of the converter
the following relation is obtained:

{

vabcl

}T
iabcl = VDCiDCl (5.3)

On the other hand, the machine side equations depending on which wind-
ing set is connected to the converter. In the case of a DFIG the following
relation is obtained:

{

vabcr

}T
iabcr = −VDCiDCm (5.4)

while for a PMSG:

{

vabcs

}T
iabcs = −VDCiDCm (5.5)

5.3 Grid side system dynamic equations

Figure 5.2 depicts the connection of a three phase voltage source converter
to the grid.

53



“PhD” — 2011/6/8 — 12:01 — page 54 — #84

Chapter 5 Power converter and grid-side system modelling

Grid side

inverter

lai

lbi

lci
nl

zna
v

znb
v

znc
v

DC bus
Converter

inductances

lna
v

lnb
v

nc
v

nz

Grid connection

transformer

Figure 5.2: Grid side converter connection

Here the grid at the point of connection of the wind turbine will be consid-
ered to have an infinite short-circuit power. Thus, the voltage at the point
of connection of the converter inductances vabcz will be assumed to not de-
pend on the current injected to the grid iabcl . This hypothesis can arguably
be made when designing the current control loops and the current reference
calculation procedure as the controller will measure vabcz and will be able to
adapt to the changes in vabcz due to the injected current. Also, the hypothesis
can be relaxed when simulating the system behaviour by modelling the grid
connection transformer. A model of transformer with two secondary wind-
ings will be presented later. This type of transformer is common in DFIG
wind turbines where the stator and the converter of the rotor are connected
to different secondary windings of the grid connection transformer.

By applying the Kirchoff laws to the grid side circuit, we obtain the fol-
lowing relations:

vabcln + (vnl − vnz)





1
1
1



 = rli
abc
l + Ll

d

dt
iabcl + vabczn (5.6)

where vabcln is the voltage between the inverter terminals and
the DC bus neutral,

vabczn is the voltage between the transformer terminals
and its neutral,

vnz is the voltage of the neutral point of the secondary
windings of the grid connection transformer,

vnl is the voltage of the neutral point of the DC bus,
rl is the resistance of the grid connection impedance,
Ll is the inductance of the grid connection impedance.
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Also if no neutral conductor is considered, it can be stated that:

ila + ilb + ilc = 0 (5.7)

By summing the a, b and c equations in (5.6) and introducing (5.7), the
following relation between the voltages is obtained:

vnl − vnz =
1

3



vzna + vznb + vznc
︸ ︷︷ ︸

3vz0

−vlna − vlnb − vlnc
︸ ︷︷ ︸

3vl0



 = vz0 − vl0 (5.8)

where vl0 is the so called homopolar sequence of vabcln ,
vz0 is the homopolar sequence of vabczn .

We define:

vabcl ≡





vla
vlb
vlc



 ,





vlna −
1

3
vl0

vlnb −
1

3
vl0

vlnc −
1

3
vl0



 (5.9)

and

vabcz ≡





vza
vzb
vzc



 ,





vzna −
1

3
vz0

vznb −
1

3
vz0

vznc −
1

3
vz0



 (5.10)

thus obtaining:

vabcl = rli
abc
l + Ll

d

dt
iabcl + vabcz (5.11)

Next, in order to simplify as much as possible the study of these equations,
usually the Park transformation matrix is applied to the variables, allowing
to suppress one of the equations when there is no neutral conductor and also
transforming the time varying sinusoidal signals in steady state in constants
if the right parameters of the transformation are chosen.

The Park variable transformation matrix can be defined as:

T (θ) =
2

3





cos(θ) cos(θ − 2π
3
) cos(θ + 2π

3
)

sin(θ) sin(θ − 2π
3
) sin(θ + 2π

3
)

1

2

1

2

1

2



 (5.12)

which has an inverse of the form:
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T−1(θ) =





cos(θ) sin(θ) 1
cos(θ − 2π

3
) sin(θ − 2π

3
) 1

cos(θ + 2π
3

sin(θ + 2π
3
) 1



 (5.13)

we define the Park transformed variable xqd0 of a three phase abc signal
xabc as:

xqd0 , T (θ)xabc (5.14)

We introduce the Park transformation matrix to the circuit equations by
multiplying equation (5.11) by T (θ), obtaining:

T (θ)vabcl = rlT (θ)i
abc
l + LlT (θ)

d

dt
iabcl + T (θ)vabcz (5.15)

By operating with this expression and introducing (5.14) we obtain:

v
qd0
l =





rl Llθ̇ 0

−Llθ̇ rl 0
0 0 rl



 i
qd0
l + Ll

d

dt
i
qd0
l + vqd0z (5.16)

From (5.9) and (5.10), we know that both vabcl and vabcz don’t have 0
component. Thus from (5.16) we know that il0 will be 0 and the equation
for the 0 component can be suppressed:

v
qd
l =

[
rl Llθ̇

−Llθ̇ rl

]

i
qd
l + Ll

d

dt
i
qd
l + vqdz (5.17)

this equation can be put in the conventional linear system state space
representation as:

d

dt
i
qd
l =

[

− rl
Ll

−θ̇

θ̇ − rl
Ll

]

i
qd
l +

1

Ll
v
qd
l −

1

Ll
vqdz (5.18)

one particular interesting choice for θ is θ ≡ 0, the so know stationary
reference frame, in this reference frame usually qd is replaced by αβ and the
following equation is obtained:

v
αβ
l = rli

αβ
l + Ll

d

dt
i
αβ
l + vαβz (5.19)
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5.4 Steady state analysis for balanced operation

A xabc(t) sinusoidal three phase positive sequence signal can be defined as
[26]:

xabc(t) =
√
2X





cos(ωet+ ϕx)
cos(ωet+ ϕx −

2π
3
)

cos(ωet+ ϕx +
2π
3
)



 (5.20)

From equation (5.18) we see that the dynamics of the grid-side system are
linear. If we assume that they are also stable, we know that for a sinusoidal
input, in steady state the system output will be also sinusoidal of the same
frequency. Also, from (5.18) we see that the a, b and c components are
decoupled from each other, thus for a positive sequence grid voltage vabcz

and a positive sequence converter voltage vabcl , the current will also become
a positive sequence signal in steady state.
By applying the Park transformation matrix T (θ) to a generic positive

sequence signal xabc(t) with θ , ωet+ ϕ we obtain:

xqd0(t) = T (ωet+ ϕ)xabc =
√
2X





cos(ϕx − ϕ)
− sin(ϕx − ϕ)

0



 (5.21)

Thus if all the voltage inputs are positive sequence signals, by using this
reference frame all steady state signals become constants and in steady state
the following simplified relations are obtained:

{
vsslq − vsszq = rli

ss
lq + Llωei

ss
ld

vssld − vsszd = rli
ss
ld − Llωei

ss
lq

(5.22)

As this equation is linear and invertible it becomes easy to solve the steady
state voltage for a given steady state current and vice versa.
These equations are also often written in the more conventional phasor

form. We define the phasor X as:

X ,
1
√
2

(
xssq − jxssd

)
(5.23)

by combining both expressions in (5.22) we obtain:

Vl −Vz = (rl + jωeLl) Il (5.24)

Usually it is interesting to solve for the steady state variables for a given
power output instead of a given current. To do that, two power equations
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must be added to the system to be solved. These equations usually will
come from the power balance on the converter or the power balance at the
grid connection point of the converter inductances.

According to the instantaneous power theory [25], the instantaneous active
and reactive power can be written as a function of the instantaneous voltage
and current as:

P =
3

2
(vqiq + vdid) (5.25)

Q =
3

2
(vqid − vdiq) (5.26)

Considering the power balance on the AC side of the converter we have:







Pl =
3

2

(

vsslq i
ss
lq + vssld i

ss
ld

)

≡ 3Re {VlI
∗

l }

Ql =
3

2

(

vsslq i
ss
ld − vssld i

ss
lq

)

≡ 3Im {VlI
∗

l }
(5.27)

whilst for the grid connection point of the converter inductances we have:







Pz =
3

2

(

vsszqi
ss
lq + vsszdi

ss
ld

)

≡ 3Re {VzI
∗

l }

Qz =
3

2

(

vsszqi
ss
ld − vsszdi

ss
lq

)

≡ 3Im {VzI
∗

l }
(5.28)

5.5 Steady state analysis for unbalanced operation

A xabc(t) sinusoidal three phase signal with positive and negative sequence
components can be defined as sum of a positive sequence signal plus a nega-
tive sequence signal, which in turn is equivalent to a positive sequence signal
with two of the three phases permuted [26]:

xabc(t) =
√
2X+





cos(ωet+ ϕ+
x )

cos(ωet+ ϕ+
x − 2π

3
)

cos(ωet+ ϕ+
x + 2π

3
)



+
√
2X−





cos(ωet+ ϕ−

x )
cos(ωet+ ϕ−

x + 2π
3
)

cos(ωet+ ϕ−

x − 2π
3
)





(5.29)
Unlike in the positive sequence case, here it is no longer possible to apply

the Park transformation to obtain a steady state constant value for the
system variables.

To overcome this problem, the additivity property of the linear systems
can be taken into account as the obtained current output for a combination
of positive and negative voltage inputs is equal to the sum of the current
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output that would be obtained for both the positive and negative sequence
alone. Thus solving the steady state problem for the relation between the
voltage and the current can be dealt by solving two independent balanced
problems.
If we apply the Park transformation matrix with θ , ωet + ϕ+ to the

positive sequence we obtain:

x
qd
+ (t) = T (ωet+ ϕ+)xabc+ (t) =

√
2X+

[
cos(ϕ+

x − ϕ+)
− sin(ϕ+

x − ϕ+)

]

(5.30)

Whilst if we apply the Park transformation matrix with θ , −ωet − ϕ−

to the negative sequence we obtain:

x
qd
−
(t) = T (−ωet− ϕ−)xabc

−
(t) =

√
2X−

[
cos(ϕ−

x − ϕ−)
sin(ϕ−

x − ϕ−)

]

(5.31)

As in the balanced case, the simplified steady state equations can be
obtained for both positive and negative sequences:

{

v+lq − v+zq = rli
+

lq + Llωei
+

ld

v+ld − v+zd = rli
+

ld − Llωei
+

lq

(5.32)

and

{

v−lq − v−zq = rli
−

lq − Llωei
−

ld

v−ld − v−zd = rli
−

ld + Llωei
−

lq

(5.33)

These expressions, can also be rewritten in a more compact notation by
using phasors. Here we define a phasor for the positive sequence as:

X+ ,
1
√
2

(
x+q − jx+d

)
(5.34)

whilst for the negative sequence we define:

X
−
,

1
√
2

(
x−q + jx−d

)
(5.35)

Thus the steady state equations can be rewritten as:

{
Vl+ −Vz+ = (r + jωe) Il+
Vl− −Vz− = (r + jωe) Il−

(5.36)

As in the positive sequence case, usually it will be desired to solve for
the current values as a function of the desired power balance. To compute
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the power, both positive and negative sequence must be put on the same
reference frame as:

P =
3

2
{vαβ}T

[
1 0
0 1

]

iαβ =
3

2
{R(−ωet− ϕ+)vqd+ +R(ωet+ ϕ−)vqd

−
}T

·

[
1 0
0 1

](

R(−ωet− ϕ+)iqd+ +R(ωet+ ϕ−)iqd
−

)

(5.37)

Q =
3

2
{vαβ}T

[
0 1
−1 0

]

iαβ =
3

2
{R(−ωet− ϕ+)vqd+ +R(ωet+ ϕ−)vqd

−
}T

·

[
0 1
−1 0

](

R(−ωet− ϕ+)iqd+ +R(ωet+ ϕ−)iqd
−

)

(5.38)

where R(θ) is a rotation matrix defined as:

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]

(5.39)

it can be easily proven that:

T (θ) ≡

[
R(θ) 0
0 1

]

T (0) (5.40)

In the three phase positive sequence case, the sum of the power of the
three phases is constant in steady state as a result of the symmetrical angle
difference between the variables of each phase. In the unbalanced case,
with both positive and negative sequence components, this is no longer true
and both active and reactive power may contain time-varying sinusoidal
components.

If the active power is put as a function of the steady state voltage and
current, the following expression is obtained:

P = P0 + Pcos + Psin (5.41)

where

P0 =
3

2

(
v+q i

+
q + v+d i

+

d + v−q i
−

q + v−d i
−

d

)
(5.42)

Pcos =
3

2

(
v+q i

−

q + v+d i
−

d + v−q i
+
q + v−d i

+

d

)
cos(2ωet+ ϕ+ + ϕ−) (5.43)

Psin =
3

2

(
−v+q i

−

d + v+d i
−

q + v−q i
+

d − v−d i
+
q

)
sin(2ωet+ ϕ+ + ϕ−) (5.44)

60



“PhD” — 2011/6/8 — 12:01 — page 61 — #91

5.6 Three phase transformer with two sets of secondary windings

whilst for the reactive power:

Q = Q0 +Qcos +Qsin (5.45)

where

Q0 =
3

2

(
v+q i

+

d − v+d i
+

d + v−q i
+

d − v−d i
−

d

)
(5.46)

Qcos =
3

2

(
v+q i

−

d − v+d i
−

q + v−q i
+

d − v−d i
+
q

)
cos(2ωet+ ϕ+ + ϕ−) (5.47)

Qsin =
3

2

(
v+q i

−

q + v+d i
−

d − v−q i
−

q − v−d i
+

d

)
sin(2ωet+ ϕ+ + ϕ−) (5.48)

The use of this equations to obtain the current reference value for a given
desired active and reactive power will be discussed in Chapter 9.

5.6 Three phase transformer with two sets of

secondary windings

The basic scheme of a three phase transformer with two secondary winding
sets can be seen in Figure 5.3, where the subindex 1,2’ and 2” represents the
primary and the first and the second secondary.

The equivalent electric circuit of the transfomer can be seen in Figure 5.4.
By applying the Kirchoff laws to this circuit, the following equations can be
obtained:

u1k = r1i1k + Ll1
di1k

dt
+ e1k for k = a, b, c (5.49)

u2′k = r2′i2′k + Ll2′
di2′k

dt
+ e2′k for k = a, b, c (5.50)

u2′′k = r2′′i2′′k + Ll2′′
di2′′k

dt
+ e2′′k for k = a, b, c (5.51)

i1ek = i1k −
1

rFe
e1k for k = a, b, c (5.52)

and
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fk = R(fk)φk per k = a, b, c (5.56)

and

fk = N1i1ek +N2′i2′k +N2′′i2′′k −R0

∑

i=a,b,c

φi for k = a, b, c (5.57)

where fk is the magnetomotive force of the k-th leg,
Nj is the number of coil turns around the core of the j-th

winding set,
R(fk) is the reluctance of the flux path through the k-th leg,
R0 is the reluctance corresponding the homopolar path.

In order to take into account the non-linear magnetic properties of the
core, the following equation equation is used to describe the relation between
the reluctance and the magnetomotive force [28]:

R(f)−1 =
K1

(

1 +
(

|f |
fsat

)p) 1

p

+K2 (5.58)

Notice that for f ≈ 0, this function becomes:

lim
f→0

R(f)−1 = K1 +K2 (5.59)

whereas for f → ∞, it becomes:

lim
f→∞

R(f)−1 = K2 (5.60)

Thus, K1 and K2 are two characteristic parameters that can be used to
adjust the limit values of the inverse of the reluctance, while fsat and p can
be used to adjust the transition betweeen both values. Insights on how to
adjust this parameters for an existing transformer can be found in [28].
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Chapter 6

Conventional DFIG vector control

6.1 Introduction

This chapter analyzes a conventional vector control approach for the control
of the current of the DFIG and the AC grid side connection of the converter.

The basic idea behind the conventional vector control approach is that
by applying the Park transformation matrix to the system variables and
chosing the derivative of the Park reference angle to match the angle of the
time-varying sinusoidal magnitudes of the system, most system variables
become constant in steady state. Thus, it is possible to use the proportional-
integrator (PI) and other well known low pass controllers, meant to track
step-wise reference signals and reject step-wise disturbances, to control the
current.

The chapter is organized as follows: first, the design of the current control
for the DFIG is analyzed in Section 6.2 using the DFIG model obtained in
Chapter 3.

Next, Section 6.3 is divided in two parts: first, in the Section 6.3.1 the
design of the DC bus voltage regulator using the equations obtained in Sec-
tion 5.2 is described. This regulator will also be used in Chapter 7 and 8
where the vector current controllers for the generator and the AC grid side
will be replaced by designs meant for unbalanced operation.

Later, Section 6.3.2 analyses the design of the current controllers for the
AC grid side of the converter using the model obtained in Section 5.3.

Finally, Section 6.4 presents a validation study of a simulation model
for a DFIG-based WTGS controlled using conventional vector control using
existing experimental measurements from a voltage sag test performed on a
real large scale wind turbine.
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6.2 Machine side control

It was shown in Chapter 3 that assuming a balanced state, by using a Park
reference with the same angular speed as the grid frequency, all the Park-
transformed magnitudes of the DFIG become constant in steady state. This
way, it is possible to design the current controllers using the well known con-
troller design tools meant for regulation problems instead of having to design
more complex controllers to track general time-varying reference signals.

By chosing θ̇ to match the grid frequency ωe, the DFIG machine equations
(3.21) become:







vsq
vsd
vrq
vrd






=







Ls 0 M 0
0 Ls 0 M

M 0 Lr 0
0 M 0 Lr







d

dt







isq
isd
irq
ird







+







rs Lsωe 0 Mωe

−Lsωe rs −Mωe 0
0 M (ωe − ωr) rr Lr (ωe − ωr)

−M (ωe − ωr) 0 −Lr (ωe − ωr) rr













isq
isd
irq
ird







(6.1)

and also

{
Γm = 3

2
PM (isqird − isdirq)

Qs =
3

2
(vsqisd − vsdisq)

(6.2)

It was shown in Section 3.3.1 that it is possible to calculate the rotor
current that allows to obtain the desired machine torque and stator reactive
power for a given grid voltage. As the torque is rarely measured due to the
complexity and the cost of this type of sensor, usually a current reference
will be calculated from the torque and reactive power refence signals as:

{
i∗rq = − 2Ls

3PMvss
sq

Γ∗

m

i∗rd = − 2Ls

3Mvss
sq

Q∗

s +
vss
sq

ωeM

(6.3)

where vsssq is the measured grid voltage.

This reference will then be fed to a feedback current controller which will
compare the desired current with the measured one and will calculate the
voltage to be aplied to the machine through PWM modulation of the DC
bus voltage.
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According to the machine equations in (6.1), there exist an important
coupling between the stator and rotor magnitudes and also between q and
d, thus this coupling may interfere the performance of the control loops if
decoupled controllers are to be used. To cope with this problem, it has been
suggested to use the following decoupling feedback loop [3]:

[
vrq
vrd

]

=

[
v̂rq + (ωe − ωr)Misd + (ωe − ωr)Lrird
v̂rd − (ωe − ωr)Misq − (ωe − ωr)Lrird

]

=

[
v̂rq + (ωe − ωr)λrd

v̂rd − (ωe − ωr)λrq

]

(6.4)

where v̂rq and v̂rd are the outputs of two single input single output (SISO)
controllers fed with the error for the q and the d current errors.

To test the effectiveness of this decoupling loop, a simulation of the current
response under different conditions is performed. A voltage step on v̂rq
is applied while maintaining v̂rd equal to zero (see Figure 6.1) for 1.000
and 1.900 min−1 machine speeds. The simulations are performed in two
different models, one that uses an averaged converter model and another
which simulates the PWM for a switching frequency of 3 kHz. In both
simulations the controllers are implemented in discrete time with a sampling
frequency matching the switching frequency of the converter.
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Figure 6.1: Simulated voltage step to test the decoupling feedback loop used
by the conventional vector controller of the DFIG

The resulting simulated rotor voltages, which contain v̂
qd
r plus the decou-

pling terms can be seen in Figure 6.2, the rotor current is shown in Figure
6.3. Note that for all the cases, vrq ≈ v̂rq, thus the decoupling loop does
not change significantly the q component of the current as ird remains small
compared to irq, which is a good result. On the other hand, notice that the
decoupling voltage vrd needed to keep ird small is very large even compared
to vrq.

Thus, even though the decoupling loop works, it becomes apparent that
care must be taken when designing the current feedback controllers as for
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Figure 6.2: Rotor voltage applied to test the decoupling feedback loop used
by the conventional vector controller of the DFIG
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Figure 6.3: Evolution of the rotor current for the test of the decoupling feed-
back loop used by the conventional vector controller of the DFIG
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instance, the decoupling loop may easily interfere with the proper operation
of them and significantly reduce their performance.
Assuming the decoupling feedback loop to completely decouple the mag-

nitudes, the rotor current dynamics become:

[
v̂rq
v̂rd

]

=

[
Lr 0
0 Lr

]
d

dt

[
irq
ird

]

+

[
rr 0
0 rr

] [
irq
ird

]

(6.5)

By applying the Laplace transformation to this equation, the following
transfer function between the voltage and the current is obtained. As both
q and d have the same transfer function, here for the sake of simplicity only
the q component equations will be displayed:

G(s) =
irq(s)

v̂rq(s)
=

1

Lrs+ rr
(6.6)

Then a PI controller can be used to control this system. One common way
to adjust the parameters of this controller is based in the so called Internal
Model Control (IMC) [29]. This method consists in designing the current
controller transfer function K(s) by multiplying the open loop transfer func-
tion that allows to obtain the desired closed loop transfer function by the
inverse of the system transfer function (when possible). Here, the desired
closed loop transfer function T (s)∗ is taken as:

T (s)∗ =
irq(s)

i∗rq(s)
=

1

τs+ 1
(6.7)

where i∗rq(s) is the rotor current reference signal and τ is the desired closed
loop time constant of the system.
Then, the open loop transfer function that allows to obtain this is:

L(s)∗ =
v̂rq(s)

erq(s)
=

1

τs
(6.8)

where erq(s) is the rotor current error signal.
Thus, the controller can be obtained as:

K(s) = G−1(s)L(s)∗ =
Lrs+ rr

1

1

τs
=

Lr

τ s+ rr
τ

s
(6.9)

Note that this corresponds to the transfer function of a proportional-
integrator (PI) controller:

K(s) =
KP s+KI

s
(6.10)
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where KP and KI are the so called proportional and integral gains:

{
KP = Lr

τ
KI = rr

τ

(6.11)

A simulation is performed on the system to test the performance obtained
using the designed controllers. Time constant for the design of the PI con-
trollers is chosen so that the steady state is reached in 6 ms. A step change
of the i∗rq reference is simulated from 0 to the value needed to have the nom-
inal torque. The operating point before the reference change corresponds
to the machine spinning at the 1.900 min−1 and the nominal grid voltage
applied to the stator. The current response is shown in Figure 6.4 for the
averaged and the switching simulation models. Notice the rise time of the
current response corresponds to the design parameter. On the other hand,
note also that the 0 steady state error is not reached in that time as there
exists a small error which vanishes at a slow rate because of the dynamics
introduced by the decoupling loop.
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Figure 6.4: Evolution of the rotor current of the DFIG to a step reference
change when using conventional vector control

A diagram representation for this control scheme can be found in Figure
6.5. Note that for the sake of completeness the PLL used to synchronize the
reference frame to the grid magnitudes has been included in the lower-right
side.
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In order to simplify the design of the voltage controller, a model reduction
will be applied by considering the current control loops will to have an ideal
instantaneous response (iDCl = i∗DCl). Thus, the current control loops will
be designed to have a faster response than the voltage control loop.

Considering a generic controller DC bus voltage controllerK(s), the closed
loop transfer function between the DC bus reference signal and its actual
value, T (s), and the closed transfer function between the machine side cur-
rent and the DC bus voltage are:

T (s) =
VDC(s)

V ∗

DC(s)
=

−K(s)

Cs−K(s) + 1

rDC

(6.13)

and

S(s) =
VDC(s)

iDCm(s)
=

1

Cs−K(s) + 1

rDC

(6.14)

From the equation of T (s) it can be seen that if rDC ≈ ∞, a simple
proportional K(s) will make the transfer function be approximately equal
to one at zero frequency (for s = jω|ω=0

) and thus the system will have a
nearly zero steady state error for constant reference values. On the other
hand, from S(s) it can be seen that with such controller, iDCm 6= 0 will lead
to a DC bus voltage error as S(0) 6= 0. To avoid this drawback, a controller
with a integrator, such as a PI controller, can be used:

K(s) =
Kps+Ki

s
(6.15)

this leads to:







T (s) =
−

Kp

C
s−

K
i

C

D(s)

S(s) =
1

C
s

D(x)

(6.16)

where

D(s) = s2 +
1

C

(
1

rDC
−Kp

)

s−
Ki

C
(6.17)

Then, the parameters of the PI controller can be adjusted to tune the
system response. Both T (s) and S(s) two poles which are the same, the
damping ζ and the natural frequency ωn of such poles can be related to the
PI controller gains as:

74



“PhD” — 2011/6/8 — 12:01 — page 75 — #105

6.3 Grid-side control

{
Kp = −2Cζωn + 1

rDC

Ki = −Cω2
n

(6.18)

where

D(s) = s2 + 2ζωns+ ω2

n

=
(

s+ ωn

(

ζ −
√

ζ2 − 1
))(

s+ ωn

(

ζ +
√

ζ2 − 1
))

(6.19)

To test the performance of this controller, a simulation of the response is
performed using a simplified model of the DC bus fed by two ideal current
sources corresponding to the machine and the grid side inverters. The DC
bus voltage reference value is changed stepwise from 900 V to the nominal
value of 1.338 V at t = 0,04 s and the power injected by the machine side
inverter to the DC bus is also changed from 0 to 300 kW at t = 0,5 s. The
simulated evolution of the DC bus magnitudes is shown in Figure 6.6. The
voltage regulator PI controller parameters are adjusted to have ζ = 1 and
ωn = 32 rad/s. Using this parameters, the poles of the system have a settling
time of approximately 0,1 s. Notice, though, that the obtained settling time
for both simulated changes is slightly slower due to the zeros of the closed
loop transfer function.

6.3.2 AC side current control

It was shown in Chapter 5 that assuming a balanced state, the AC side
magnitudes of the grid side inverter become constants in steady state by
matching the Park reference angle to the grid frequency. Under such condi-
tion, the equations of the grid side of the inverter (5.17) become:

v
qd
l =

[
rl Llωe

−Llωe rl

]

i
qd
l + Ll

d

dt
i
qd
l + vqdz (6.20)

Also, in Section 5.4 it was shown that if the grid side voltages are con-
sidered to be independent from the inverter output current, it is possible
to calculate a reference current that leads to the desired active and reactive
power output using (9.7). This way a current reference is calculated from
the power reference and the current is controlled by a feedback loop which
compares the reference with the actual current and decides the voltage to
be applied by the inverter using PWM modulation of the DC bus voltage.
The current reference values are calculated as:
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Figure 6.6: Evolution DC bus voltage and the current on the DC side of the
machine and the grid side inverter for a change in the DC bus
voltage reference value and a change in the power injected to the
DC bus by the machine inverter.
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{
i∗lq =

2

3

P ∗

z

vss
zq

i∗le =
2

3

Q∗

z

vss
zq

(6.21)

From (6.20) we see that there is a coupling between the q and d variables
which may have an adverse effect on the performance of the current control
loops if two SISO controllers are used and the coupling is neglected. To
avoid this adverse effect, a feedback decoupling loop have been suggested to
be used [3]. This can also be combined with a feed-forward to compensate
for the grid voltage as:

[
vlq
vld

]

=

[
v̂lq + ωeLlild + vzq

v̂ld − ωeLlilq

]

(6.22)

where v̂
qd
l is the output of a pair of SISO controllers fed with the error

between the reference current and its actual value.

To test the proper operation of the decoupling feedback loop, the evolution
of the current to a step voltage input applied in v̂lq is simulated using an
averaged model of the converter and a discrete time implementation of the
controller with a sampling frequency of 3 kHz. The voltage step can be seen
in Figure 6.7 and the evolution of the current is shown in Figure 6.8. The
evolution of the current shows that the decoupling is not perfect during the
transient, however the maximum value reached by ild is approximately 500
times lower than the DC gain of ilq, thus it is arguable to assume q and
d to be successfully decoupled using the decoupling feedback and use SISO
current controllers for each component of iqdl . On the other hand, notice
from Figure 6.7 that although the voltage step is applied on v̂lq, the actual
applied voltage vlq is much smaller than vld, which means that the choice to
control ilq through vlq might not be the best possible choice.

Assuming the decoupling and the feed-forward to completely compensate
for the grid voltage and the coupling between q and d, the dynamics of the
system become:

v̂
qd
l = rli

qd
l + Ll

d

dt
i
qd
l (6.23)

Then, two independent SISO controllers can be designed to control the
q and d components of the current through the corresponding components
of the voltage. By transforming the previous equation through Laplace, the
following transfer function between the grid side current and the inverter
voltage is obtained:
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Figure 6.7: Simulated voltage step to test the decoupling feedback loop used
by the conventional vector controller of the AC side current con-
trol. Upper graph: evolution of v̂

qd
l . Lower graph: evolution

of vqdl including the voltage applied by the decoupling feedback
loop.
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Figure 6.8: Evolution of the AC side current for the test of the decoupling
feedback loop used by the conventional vector controller of the
AC side current control.
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G(s) =
ilq(s)

vlq(s)
=

1

Lls+ rr
(6.24)

As in the case of the DFIG current controllers described in the previous
section, the IMC technique can be used to tune the parameters of two PI
controllers for the current [29]. The transfer function for such controllers is:

K(s) =
KP s+KI

s
(6.25)

with:

{
KP = Lr

τ
KI = rr

τ

(6.26)

where τ is the time constant of the expected closed loop transfer function
of the system, that is:

T (s) =
ilq(s)

i∗lq(s)
=

1

τs+ 1
(6.27)

To test the performance of the current loops, a simulation of the response
of the system to a step change in the reference value of ilq. The current
loops are adjusted to have a settling time of 6 ms, that is τ =2 ms and the
amplitude of the reference step is 350 A, which approximately corresponds
to the current needed to have the nominal output power from the converter.
The evolution of iqdl can be seen in Figure 6.9 and iabcl is also shown in Figure
6.10. Notice that the performance specification is met as the resulting time
constant of the response is approximately 6 ms. The evolution of the applied
voltage compared to the grid voltage is also shown in Figure 6.11. Notice
that the vld is very small in comparison to vlq due to the need to compensate
the grid voltage.
The complete scheme for the grid side controller can be seen in Figure

6.12.

6.4 Validation of the simulation model using

experimental results

In order to test the matching between the model of the WTGS with conven-
tional vector control and the behaviour of a real wind turbine, the response
of the system to a symmetrical voltage sag is simulated and the results are
compared to experimental measurements from a test performed on a real
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Figure 6.9: Evolution of the AC side current of the grid side inverter in
the qd reference frame to a step reference change when using
conventional vector control
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Figure 6.10: Evolution of the AC side current of the grid side inverter in
the abc reference frame to a step reference change when using
conventional vector control
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side inverter due to a step change in the current reference when
using conventional vector control
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to the medium voltage side of the wind turbine transformer. Table 6.2 shows
the parameters of the sag and Figure 6.15 shows the root mean square (rms)
graph of the measured MV side voltages from the experimental test which
are used as the input to the simulation model.

Parameter Value Units

Duration 540 ms
Voltage amplitude during the dip 0,215 pu
Drop start ramp length 15 ms
Drop end ramp length 30 ms

Table 6.2: Voltage dip parameters
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Figure 6.15: Rms value of the abc voltages on the MV side of the wind
turbine transformer during the voltage sag test.

During a voltage sag, the current needed to inject to the grid to keep the
same active power output rises due to the drop in the grid voltage. If the
WTGS is working on a operation point close to the limits of the converter,
the converter may be unable to output the desired amount of power to the
grid, thus producing a power imbalance in the DC bus of the converter
which will make the DC bus voltage to rise. Different strategies exist to
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deal with voltage sags doing the so called ride-through and avoiding to have
to stop and disconnect the WTGS from the grid. Here, the same strategy
implemented on the real WTGS is used in the simulation to ensure the
correlation between the simulation and the real test.

The strategy used here is split in two different procedures: the first one is
the replacement of the torque and the stator reactive power control current
reference signals computed from (6.3) during the sag by two constant values
from tabulated data as soon as the voltage sag is detected. The second
procedure is the use of the so called crowbar protection which is a resistor
that is connected to the machine rotor terminals to absorb part of the current
flowing through the machine rotor windings during transients when the DC
bus voltages reaches a threshold value of 1.140 V.

According to the quasi-decoupled active and reactive power control, giving
a 0 as the ird reference value during the sag, suppresses the generator’s torque
and the active power flowing through the rotor windings thus minimizing the
power through the rotor-side converter and the rise of the DC bus voltage.
Also, giving a non-zero value as the irq reference signal allows providing
reactive power to the grid which may be a requirement during voltage sags.
As the grid voltage reaches its nominal value, the constant current reference
signals are replaced again by the ones computed from (6.3). The torque
reference is kept constant for a few seconds and then switched back to the
output of the speed control torque reference signal.

6.4.1 Controller response

In this section a series of graphs of the evolution of some relevant internal
variables of the model are presented which show the proper behavior of the
different WTGS control loops. Note that this variables were not measured on
the real test thus no comparison with the actual system evolution is shown,
proper comparison between simulation and experimental measurements will
be presented for the MV variables later.

Figure 6.16 shows the evolution of the rotor current and its reference
value. ird current reference value is kept constant for one second after the
rise of the voltage. The rotor voltage applied by the converter can be seen
in Figure 6.17. It be seen that the d component does not remain constant
despite the constant value of the torque reference due to the linearization
state feedback which depends on the mechanical speed. Figure 6.18 shows
the stator reactive power and the generator torque and its reference values.
Notice that according to the ride-through strategy, the torque reference from
the speed control is ignored during the voltage dip. The evolution of the
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angular speed of the generator can be seen in Figure 6.19, it can be seen
that the speed of the machine increases during the voltage sag due to the
reduction of the generator torque.
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Figure 6.16: DFIG rotor current. The continuous black line corresponds
to the reference value, the continuous grey line corresponds to
the actual value and the grey dashed line corresponds to the
crowbar connection state.

The grid-side converter control DC-bus voltage and reactive power refer-
ence inputs are kept constant despite the voltage dip. The currents through
the converter and its reference values can be seen in Figure 6.20. The volt-
ages applied by the converter on the AC side can be seen in Figure 6.21.
The evolution of the DC bus voltage can be seen in Figure 6.22.

6.4.2 Comparison with experimental results

In this section a comparison between the simulation results and the mea-
surements available from the real test is presented.
Figure 6.23 shows the evolution of the active and reactive power output

of the MV transformer on the MV side. The comparison of the evolution of
the RMS values of the currents on the MV side of the transformer can also
be seen on Figure 6.24.
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Figure 6.17: Machine-side inverter voltages voltage during the voltage sag.

The comparison shows that the evolution obtained from the simulated
model and the measured data are very close despite the reactive power in
the real system shows a slightly slower evolution at the end of the sag. As
the measurements were made on the MV side of the transformer, the close
resemblance of the active power evolution suggests that the neglection of the
transformer magnetizing transients may be the cause of these differences.
Dynamic models of transformers can be found in the literature which can
be adapted from experimental data from transformer tests [30] and could
be added to the model to improve its accuracy. Unfortunately, to adapt the
model and confirm these hypothesis, measurements from both sides of the
transformer which are not available would be necessary.
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Figure 6.18: Stator reactive power and generator torque during the voltage
sag. The continuous grey line corresponds to the output value,
the continuous black line corresponds to the reference value
and the grey dashed line corresponds to the crowbar connection
state.
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Figure 6.19: Generator torque and angular speed during the voltage sag.
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Figure 6.20: Grid-side inverter output current during the voltage sag.
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Figure 6.21: Grid-side inverter output voltages during the voltage sag.

0 1 2 3 4 5 6 7 8
1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

Time [s]

D
C

 b
us

 v
ol

ta
ge

 [p
u]

 

 
Crow bar
VDC

VDC*

Figure 6.22: DC bus voltage during the voltage sag.
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Figure 6.23: Active and reactive power output of the WTGS measured on
the MV-side of the transformer
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Figure 6.24: RMS value of the abc currents of the MV-side of the transformer
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Dual synchronous reference frame

DFIG vector control

7.1 Introduction

This chapter analyzes the use of a dual synchronous vector control design
for the control of a DFIG-based WTGS to make the system able to operate
under grid voltage unbalances due to unbalanced voltage sags.

As mentioned in the previous chapter, the conventional vector control is
meant for the operation under balanced conditions. This restriction is usu-
ally not an important issue as in most common vector control applications
with squirrel cage induction motors or synchronous permanent magnet mo-
tors, the machine is isolated from the grid by the converter. In the case of
the DFIG, though, the stator is connected to the grid, thus the voltages seen
by the machine can no longer be assumed to be balanced.

The former DFIG wind turbines which used conventional vector control,
usually assumed the network unbalances to be small. In such case, when an
unbalanced voltage sag occurred, if the negative sequence grid voltage was
small compared to the positive sequence, the effect on the performance of
the current control would be small and the system would be able to remain
connected during the fault. However, if the voltages are very unbalanced,
the current control was likely to be unable to properly control the machine
and it the would be needed to disconnect the machine from the grid.

The dual synchronous reference frame is an extension of the conventional
vector control which solves the restriction imposed by the conventional vec-
tor control to operate under balanced conditions. To do so, it uses the
Fortescue transformation to split the system in two decoupled systems cor-
responding to the positive and negative sequence, which are both balanced,
and controlling them separately by using two independent vector controllers.

The chapter is organized as follows: first the design of a dual synchronous
reference frame vector controller for the DFIG is analyzed in Section 7.2.
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Later, in Section 7.3, the same design principle is used to extend the vector
controller of the AC grid side of the converter.

7.2 Machine side control

As it was shown in Section 3.4, considering a general unbalanced condition,
the Park transformation is no longer capable of transforming the time vary-
ing steady state system magnitudes into constant vectors because of the loss
of symmetry between the three phases. However due to the linear nature of
the system, the analysis tools for balanced systems can be extended to the
unbalanced systems by decomposing the system as a sum of the so called
positive, negative and zero sequences. To do so, the so called Fortescue vari-
able complex transformation matrix, introduced in [26], must be applied to
the variables. This transformation is defined as1:





X+

X̄
−

X0



 ,
1

3





1 a a2

1 a2 a

1 1 1









Xa

Xb

Xc



 (7.1)

where a , ej
2π

3 and Xa,Xb,Xc are the phasors associated to the magnitudes
of each phase and can be related to the abc time signal as:

xabc(t) =





√
2Xa cos(ωet+ ϕxa)√
2Xb cos(ωet+ ϕxb)√
2Xc cos(ωet+ ϕxc)



 =





Re
{√

2Xae
−jωete−jϕxa

}

Re
{√

2Xbe
−jωete−jϕxb

}

Re
{√

2Xce
−jωete−jϕxc

}





=





Re
{√

2Xae
−jωet

}

Re
{√

2Xbe
−jωet

}

Re
{√

2Xce
−jωet

}



 (7.2)

and thus







Xae
−jωet = Xa (cos(ϕxa) + j sin(ϕxa)) e

−jωet

Xbe
−jωet = Xb (cos(ϕxb) + j sin(ϕxb)) e

−jωet

Xce
−jωet = Xc (cos(ϕxc) + j sin(ϕxc)) e

−jωet
(7.3)

Note that these signals are complex and only the real part correspond to
a physical magnitude which can be measured in the real system. However,

1Note that to be consistent with the definition of the positive and negative sequence
phasors introduced in (3.58) and (3.59), X− appears in (7.1) as a complex conjugate.
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the signal is a so called analytical signal as the imaginary part is equal to
the real part with a phase shift of 90 degrees. Thus, the imaginary part can
be obtained from the real part by using a Hilbert transform filter, which is
a filter with a unit gain and a phase of 90 degrees for all the frequencies of
the spectrum:







Xae
−jωet = 1

√

2
(xa(t)− j (H(t) ∗ xa(t)))

Xbe
−jωet = 1

√

2
(xb(t)− j (H(t) ∗ xb(t)))

Xce
−jωet = 1

√

2
(xc(t)− j (H(t) ∗ xc(t)))

(7.4)

where H(t) is the impulse response of the Hilbert transform filter and ∗ is
the convolution operator.

This suggests that the Fortescue transformation can be used in conjunc-
tion with a series of Hilbert transform filters to decompose the measured
signal into positive and negative sequence and apply a synchronous refer-
ence frame controller to control the variables of each sequence.

Considering the case of a three wire system where the 0 sequence can be
eliminated from the equations, (7.1) can also be combined with the Clarke
transformation matrix T (0) to put the variables as a function of the αβ

components suppressing the 0 sequence:

[
X+e−jωet

X̄
−

e−jωet

]

=
1

3

[
1 a a2

1 a2 a

]

T−1(0)

[
Xαe

−jωet

Xβe
−jωet

]

=
1

3

[
1 a a2

1 a2 a

]

T−1(0)

[
1 −j 0 0
0 0 1 −j

]







xα(t)
H(t) ∗ xα(t)

xβ(t)
H(t) ∗ xβ(t)







(7.5)

Then, the αβ components of the positive and negative sequence can be
obtained as:







x+α (t) = Re
{
X+e−jωet

}

x+β (t) = −Im
{
X+e−jωet

}

x−α (t) = Re
{
X−ejωet

}

x−β (t) = Im
{
X−ejωet

}

(7.6)

Finally, as the former transformations are linear, an equivalent multivari-
able transformation filter transfer function can be obtained by combining its
equations:
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[
xαβ+(s)
xαβ−(s)

]

=
1

2







1 −H(s)
H(s) 1
1 H(s)

−H(s) 1







︸ ︷︷ ︸

J(s)

xαβ(s) (7.7)

Note that, as the number of degrees of freedom remains two, there exist
the following equivalences:

{

x+β (s) = H(s)x+α (s)

x−β (s) = −H(s)x−α (s)
(7.8)

As J(s) is not square, it is not possible to invert it. However, a 1-inverse
matrix can be found for it. As J(s) is full column rank, its Moore-Penrose
pseudoinverse J(s)† can be found as:

J(s)† =
(
J(s)TJ(s)

)−1
(7.9)

This matrix is the so called left inverse of J(s), thus:

J(s)†J(s) = I4 (7.10)

where I4 is a 4x4 identity matrix.
Taking the DFIG machine equations in (3.21) for θ ≡ 0, the following

equations are obtained:

[

v
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s

v
αβ
r

]

=
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Ls 0 M 0
0 Ls 0 M
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0 M 0 Lr


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


d
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i
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s

i
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r
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ωrM 0 ωrLr rr
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[

i
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s

i
αβ
r

]

(7.11)

Transforming this equation by Laplace, we obtain:

[

v
αβ
s (s)

v
αβ
r (s)

]

=







Lss+ rs 0 Ms 0
0 Lss+ rs 0 Ms

Ms −ωrM Lrs+ rr −ωrLr

ωrM Ms ωrLr Lrs+ rr







[

i
αβ
s (s)

i
αβ
r (s)

]

(7.12)
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The variable transformation is then introduced to the stator and rotor
variables using the following 8x4 variable change matrix:

N(s) ,

[
J(s) 04,2
04,2 J(s)

]

(7.13)

which has the following 4x8 pseudoinverse:

N(s)† =

[
J†(s) 02,4
02,4 J†(s)

]

(7.14)

Multiplying (7.12), we obtain:

N(s)

[

v
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αβ
r (s)

]

= N(s)


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]

(7.15)

Replacing the machine magnitudes by their transformations the following
is then transformed into:
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

(7.16)

Substituting N(s) and N †(s) in this equation and applying the equiva-
lences shown in (7.8), the following equations are obtained:
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The split positive and negative sequence vectors can then be transformed
to a synchronous reference frame by using a rotation matrix R(θ) as:

{
xqd+ = R(ωet+ ϕ+)xαβ+

xqd− = R(−ωet− ϕ−)xαβ−
(7.20)

The equation for the positive sequence becomes:

[

v
qd+
s

v
qd+
r

]

=







Ls 0 M 0
0 Ls 0 M

M 0 Lr 0
0 M 0 Lr







d

dt

[

i
qd+
s

i
qd+
r

]

+







rs Lsωe 0 Mωe

−Lsωe rs −Mωe 0
0 M (ωe − ωr) rr Lr (ωe − ωr)

−M (ωe − ωr) 0 −Lr (ωe − ωr) rr







[

i
qd+
s

i
qd+
r

]

(7.21)

while the negative sequence equation becomes:

[

v
qd−
s

v
qd−
r

]

=







Ls 0 M 0
0 Ls 0 M

M 0 Lr 0
0 M 0 Lr







d

dt

[

i
qd−
s

i
qd−
r

]

+







rs −Lsωe 0 −Mωe

Lsωe rs Mωe 0
0 −M (ωe + ωr) rr −Lr (ωe + ωr)

M (ωe + ωr) 0 Lr (ωe + ωr) rr







[

i
qd−
s

i
qd−
r

]

(7.22)

The structure of the current controller for each sequence is based on the
same principle as in the conventional vector control. It combines a decou-
pling feedback loop which also eliminates the dependency of the dynamics
on the machine speed and a feedback controller fed with the error between
the measured current and the reference value. The equation for the positive
sequence voltage applied to control the positive sequence current is:

[
vrq+
vrd+

]

=

[
v̂rq+ + (ωe − ωr)Misd+ + (ωe − ωr)Lrird+
v̂rd+ − (ωe − ωr)Misq+ − (ωe − ωr)Lrird+

]

(7.23)
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where v̂rq+ and v̂rd+ are the outputs for the q+ and d+ positive sequence
current controllers. Also, for the negative sequence the voltage equation is:

[
vrq−
vrd−

]

=

[
v̂rq− − (ωe + ωr)Misd− − (ωe + ωr)Lrird−
v̂rd− + (ωe + ωr)Misq− + (ωe + ωr)Lrird−

]

(7.24)

where v̂rq− and v̂rd− are the outputs for the q− and d− positive sequence
current controllers.

To test the performance of the decoupling loops, a simulation of the re-
sponse to a step change of 50 V in the v̂rq+ control action is applied for two
different machine speeds (1.000 and 1.900 min−1) the same way it was done
for the conventional vector control in the previous chapter (see Figure 6.1).
Figure 7.1 shows the evolution of the applied rotor voltage, which contains
the controller output v̂r plus the decoupling terms for both the positive and
negative sequence synchronous reference frames. Notice that although the
negative sequence voltage is not zero, it is smaller than the positive sequence
voltage, thus proving the proper decoupling between both sequences. This
is further confirmed by the evolution of the rotor current which is shown in
Figure 7.2.
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Figure 7.1: Rotor voltage applied to test the decoupling feedback loop used
by the double synchronous reference frame vector controller of
the DFIG

From the evolution of the current (Figure 7.2), it can also be seen that the
dependence on the rotor speed is suppressed. On the other hand, comparing
the evolution of the current to that obtained for the same test with the
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Figure 7.2: Evolution of the rotor current for the test of the decoupling feed-
back loop used by the double synchronous reference frame vector
controller of the DFIG

conventional vector control (Figure 6.3), it can be seen that the decoupling
between q and d is bad during the transients although it works well in steady
state. This is due to the use of Hilbert transform filters with a limited
bandwidth which only provide the proper phase delay for frequencies close
to the nominal grid frequency as will be explained later. This suggests that
the performance obtained from this system will be worse than that of the
original conventional vector control for a balanced operating point.

As in the conventional vector controller, a PI controller can be used in
the current control loop and its parameters can be tuned the same way as
in the conventional vector control case using (6.11).

The output voltage of the controller to be applied on the machine, which is
usually fed to a PWM scheme to generate the switching signal for the semi-
conductors, is obtained by transforming the positive and negative sequence
voltages to a common reference frame. This is accomplished by inverting
the rotation matrices as:

xαβ = R(−ωet− ϕ+)xqd+ +R(ωet+ ϕ−)xqd− (7.25)

In order to test the performance of the controller, a simulation of the
response of the current control is performed for a constant grid voltage equal
to the nominal voltage and a step from 0 to the nominal torque for the same
two operating points tested for the conventional vector control (1.000 and
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1.900 min−1). The evolution of the current is shown in Figure 7.3, notice
that the response is similar to that of the conventional vector controller
(Figure 6.4) although the effect on the d component of the current is greater
as the performance of the decoupling loop is worse. Figure 7.4 shows the
response of torque of the machine, notice that although there exists a small
ripple in the torque, it reaches the final value in almost the same time as
the rotor current.
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Figure 7.3: Evolution of the rotor current of the DFIG to a step reference
change when using dual vector control

Finally, the design of the Hilbert transform filter H(s) must be discussed.
Several options exist, here a first order allpass filter is used. This filter has
the following transfer function:

H(s) =
s− ωe

s+ ωe
(7.26)

Although the ideal Hilbert transformation filter should have a unitary
gain and a phase delay of -90o for all the frequencies, the first order all-pass
filter has a phase delay that goes from -180o at the DC frequency to 0o at
infinite frequency and it only has the correct delay of -90o for a frequency
of 50 Hz. Thus, in steady state the electrical magnitudes may be properly
transformed using this filter if the frequency of the grid magnitudes is exactly
the same as the frequency for which the filter is designed. However, if the
distortion caused on the signals by a wrong delay of the filter may cause
the overall performance of the system to be worse in comparison to the
performance obtained under balanced conditions using a conventional vector
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Figure 7.4: Evolution of the DFIG torque to a step reference change when
using dual vector control
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Figure 7.5: Bode plot of the first order allpass Hilbert transformation filter.
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control scheme. This may force to reduce the performance specifications for
the current controllers as the current measure used to calculate the error
fed to the controller may have a small bandwidth around the grid nominal
frequency.

7.3 Grid-side current control

7.3.1 AC side current control

According to Chapter 5, the equations that describe the AC side current
dynamics of the converter (5.17), can be written for the stationary reference
frame with θ ≡ 0 as:

v
αβ
l =

[
rl 0
0 rl

]

i
αβ
l + Ll

d

dt
i
αβ
l + vαβz (7.27)

By applying the Laplace transformation to these equations, the following
is obtained:

v
αβ
l (s) =

[
Lls+ rl 0

0 Lls+ rl

]

i
αβ
l (s) + vαβz (s) (7.28)

Then, as in the previous section, the equation is multiplied by J(s) to
obtain the equations for the positive and negative sequence:

J(s)vαβl (s) = J(s)

[
Lls+ rl 0

0 Lls+ rl

]

J(s)†J(s)iαβl (s)+J(s)vαβz (s) (7.29)

This can be easily proven to be equivalent to the following if and only if
the constraints in (7.8) are met:

[

v
αβ+
l

v
αβ−
l

]

=







Lls+ rl 0 0 0
0 Lls+ rl 0 0
0 0 Lls+ rl 0
0 0 0 Lls+ rl







[

i
αβ+
l

i
αβ−
l

]

+

[

v
αβ+
z

v
αβ−
z

]

(7.30)

These equations are decoupled between the positive and the negative se-
quence, thus they can be controlled separately. the equations for each se-
quence can be obtained by splitting the previous equations as two different
systems as:
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v
αβ+
l (s) =

[
Lls+ rl 0

0 Lls+ rl

]

i
αβ+
l (s) + vαβ+z (s) (7.31)

v
αβ−
l (s) =

[
Lls+ rl 0

0 Lls+ rl

]

i
αβ−
l (s) + vαβ−z (s) (7.32)

By applying the inverse Laplace transform to these equations, the corre-
sponding differential equations are obtained:

v
αβ+
l =

[
rl 0
0 rl

]

i
αβ+
l + Ll

d

dt
i
αβ+
l + vαβ+z (7.33)

v
αβ−
l =

[
rl 0
0 rl

]

i
αβ−
l + Ll

d

dt
i
αβ−
l + vαβ−z (7.34)

As in the previous section, the equations for the positive and negative
sequence can be transformed using a conventional rotation to synchronous
reference frame by defining the new transformed variables as:

{
xqd+ = R(ωet+ ϕ+)xαβ+

xqd− = R(−ωet− ϕ−)xαβ−
(7.35)

By applying this transformation to the split stationary frame equations
the following is obtained:

v
qd+
l =

[
rl ωeLl

−ωeLl rl

]

i
qd+
l + Ll

d

dt
i
qd+
l + vqd+z (7.36)

and

v
qd−
l =

[
rl −ωeLl

ωeLl rl

]

i
qd−
l + Ll

d

dt
i
qd−
l + vqd−z (7.37)

As these equations are coupled between q and d and depend on the grid
frequency and the grid voltage, as in the conventional vector control, a
decoupling feedback loop plus a feed-forward is added by defining the voltage
applied by the converter as:

v
qd+
l =

[
v̂lq+ + ωeLlild+ + vzq+

v̂ld+ − ωeLlilq+

]

(7.38)

whilst for the negative sequence:
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v
qd−
l =

[
v̂lq− − ωeLlild− + vzq−

v̂ld− + ωeLlilq−

]

(7.39)

To test the proper operation of the decoupling loop, the step response of
the system is simulated. In this simulation, a step of 50 V is applied on the
control action for the q component of the positive sequence current v̂+lq while
keeping the control action for the other loops equal to zero. The evolution of
the voltage vector applied by the decoupling loop plus the control action is
shown in Figure 7.6 and the response of the current is shown in Figure 7.7.
From the evolution of the current, it can be seen that although the step is
applied to the q component of the positive sequence, neither the decoupling
between both sequences nor the decoupling between the q and d components
are perfect. Also, comparing this simulation to the one performed to test the
decoupling loop of the conventional vector control of the grid side converter
(Figure 6.8), the decoupling between q and d is worse. Thus, the performance
that can be obtained from this system can be expected to be worse than that
of the conventional vector control for balanced operation.
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Figure 7.6: Simulated voltage step to test the decoupling feedback loop used
by the dual synchronous reference frame vector controller of the
AC side current control. Upper graph: evolution of v̂qdl . Lower

graph: evolution of vqdl including the voltage applied by the de-
coupling feedback loop.

Then, assuming the compensation to be perfect, the equations of the
decoupled system become:
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Figure 7.7: Evolution of the AC side current for the test of the decoupling
feedback loop used by the dual synchronous reference frame vec-
tor controller of the AC side current control.

v̂
qd+
l =

[
rl 0
0 rl

]

i
qd+
l + Ll

d

dt
i
qd+
l (7.40)

and

v̂
qd−
l =

[
rl 0
0 rl

]

i
qd−
l + Ll

d

dt
i
qd−
l (7.41)

where v̂
qd+
l and v̂

qd−
l are the control action output of the current feedback

controllers for the positive and negative sequences.

A pair of PI current controller can then be used to control the current
for each component of each sequence. The parameters for these controllers
can be adjusted following the same procedure developed for the conventional
vector control from (6.24).

To test the performance of this controllers, a simulation of the response
to a reference step change is performed. In this simulation, a step in the q

component of the positive sequence current is performed while keeping the
other components zero. Figure 7.8 shows the evolution of the current com-
pared to the reference value. Note that the performance can be considered
as acceptable although it is worse than that obtained from the conventional
vector control for the same situation (Figure 6.9). However, by plotting
the evolution of the current in the natural abc variables, Figure 7.9, it can
be seen that the evolution doesn’t differ a lot from that obtained from the
conventional controller, Figure 6.10. Finally, the evolution of the applied
voltage by the qd components of both positive and negative sequences is
shown in Figure 6.11. Note that the evolution of the control action does
not exceed the acceptable limits of the applied voltage and the negative se-
quence voltage is 60 times smaller than that of the positive sequence during
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the transient, thus confirming that the decoupling between both sequences
is good.
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Figure 7.8: Evolution of the AC side current of the grid side inverter in the
qd reference frame to a step reference change when using dual
synchronous reference frame vector control
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Figure 7.9: Evolution of the AC side current of the grid side inverter in the
abc reference frame to a step reference change when using dual
synchronous reference frame vector control
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Figure 7.10: Evolution of the voltage applied on the AC side of the grid
side inverter due to a step change in the current reference when
using dual synchronous reference frame vector control
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Chapter 8

Stationary reference frame DFIG

control

8.1 Introduction

This chapter presents a stationary reference frame current control design for
a DFIG-based WTGS which allows the machine to operate under unbalanced
conditions.

As mentioned in the previous chapter, the dual synchronous reference
frame vector control allows to extend the principles of the conventional vec-
tor control to the more general unbalanced case by using two vector con-
trollers plus a filter which separates the positive from the negative sequence.
The drawback of this design, as mentioned in the previous chapter, is that
the complexity of the resulting controller is increased while the robustness
and the performance obtained from the control is decreased in comparison
to a conventional vector control design under balanced conditions.

The idea behind the stationary reference frame control is that by using the
stationary reference frame, taking the derivative of the Park reference angle
used by the controller as constant, the advantage of transforming the sys-
tem magnitudes into constant values in steady state is lost but the design
of controllers to operate under both balanced and unbalanced conditions
is simplified and the resulting scheme can be compared in complexity and
performance to those of the conventional vector control under balanced con-
ditions.

The chapter is organized as follows: first the design of a stationary refer-
ence frame controller for the DFIG is analyzed in Section 8.2, then the same
design procedure is used in Section 8.3 to control the AC grid side.
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8.2 Machine side control

To obtain the stationary reference frame equations of the DFIG, θ̇ is chosen
as θ̇ ≡ 0 in (3.21). This way, the Park transformation matrix T (θ) becomes
a constant matrix which corresponds to the so called Clarke transformation
matrix. Here, the qd notation will be replaced by αβ, which is a common
way to tell the Clarke transformed variables from the synchronous reference
frame Park transformed variables.
The machine equations become:

[

v
αβ
s

v
αβ
r

]

=







Ls 0 M 0
0 Ls 0 M

M 0 Lr 0
0 M 0 Lr







d

dt

[

i
αβ
s

i
αβ
r

]

+







rs 0 0 0
0 rs 0 0
0 −ωrM rr −ωrLr

ωrM 0 ωrLr rr







[

i
αβ
s

i
αβ
r

]

(8.1)

From this equation, it can be seen that there exist a coupling between the
electrical and mechanical variables because some terms in the equation de-
pend on the mechanical speed of the machine. Also this dependance makes
the system be nonlinear as there are products between state variables. For-
tunately, as it was previously shown in Chapter 2, the mechanical dynamics
are very slow, thus the generator speed can arguably be considered constant
when studying the generator equations to design its current controllers.

Assuming the mechanical speed to have very slow dynamics compared
to the electrical variables, there exist different possible ways to design the
controller. Here, a decoupling feedback will be introduced in the control
action which ideally will suppress the dependance of the electrical dynamics
in the mechanical speed while also suppressing the existing coupling between
the α and β variables. To do this, the voltage applied to the rotor windings
will be computed as:

vαβr = v̂αβr +

[
0 −ωrM 0 −ωrLr

ωrM 0 ωrLr 0

] [

i
αβ
s

i
αβ
r

]

(8.2)

where v̂
αβ
r is the output of a current controller fed with the current error.

To verify the proper compensation of the terms which depend on ωr and
decouple α and β a simulation of the rotor current response when voltage
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is applied to the stator windings of the machine in the direction of vsα.
The simulation is performed in an averaged model of the system and the
controllers are implemented as discrete time controllers with a sampling
time of 3 kHz. The stator voltage input vαβs can be seen in Figure 8.1, the
evolution of the rotor current and the voltage applied by the decoupling
feedback are shown in Figure 8.2 and 8.3. The simulation is also performed
for a range of generator speeds.
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Figure 8.1: Stator voltage applied to test the decoupling feedback loop

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−5

0

5

Time [s]

i rα
 [

A
]

 

 

0 min
−1

1.000 min
−1

1.500 min
−1

1.900 min
−1

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

−0.02

0

0.02

Time [s]

i rβ
 [

A
]

 

 

0 min
−1

1.000 min
−1

1.500 min
−1

1.900 min
−1

Figure 8.2: Rotor current evolution during the simulated test of the decou-
pling feedback loop

The simulation results show that although the compensation of the cou-
pling terms is not perfect and certain dependance on the machine speed still
exists which increases with the machine speed, the gain between vsα and
irβ is 50 dB lower than the gain between vsα and irα in all cases. Thus the
α and β components can arguably be considered to be decoupled when the
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Figure 8.3: Rotor voltage applied by the decoupling feedback loop during its
test simulation

decoupling loop is present and decoupled SISO controllers may be used to
control them independently.

Doing the assumption that the compensation completely suppresses the
coupling between α and δ, the machine equations (8.1) can be rewritten as:

[

v
αβ
s

v̂
αβ
r

]

=







Ls 0 M 0
0 Ls 0 M

M 0 Lr 0
0 M 0 Lr







d

dt

[

i
αβ
s

i
αβ
r

]

+







rs 0 0 0
0 rs 0 0
0 0 rr 0
0 0 0 rr







[

i
αβ
s

i
αβ
r

]

(8.3)

The derivatives of the current can be put as a explicit function of the
current and the voltage applied to the machine thus obtaining the usual
state space representation of the equations:

d

dt

[

i
αβ
s

i
αβ
r

]

=
1

LsLr −M2







rslr 0 −rrM 0
0 rsLr 0 −rrM

−rsM 0 rrLs 0
0 −rsM 0 rrLs







[

i
αβ
s

i
αβ
r

]

+
1

LsLr −M2







Lr 0 −M 0
0 Lr 0 −M

−M 0 Ls 0
0 −M 0 Ls







[

v
αβ
s

v̂
αβ
r

]

(8.4)
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Transforming by Laplace the equations and solving for the current, the
transfer function between the current and the voltage is obtained:

[

i
αβ
s (s)

i
αβ
r (s)

]

=
1

D(s)







Lrs+ rr 0 −Ms 0
0 Lrs+ rr 0 −Ms

−Ms 0 Lss+ rs 0
0 −Ms 0 Lss+ rs







[

v
αβ
s (s)

v̂
αβ
r (s)

]

(8.5)

with

D(s) =
(
LsLr −M2

)
s2 + (Lsrr + Lrrs) s+ rrrs (8.6)

Note that although α and β are decoupled, there exists a coupling between
the stator and rotor variables.

The Laplace transform of the rotor current is:

iαβr (s) =
1

D(s)

[
Lss+ rs 0

0 Lss+ rs

]

v̂αβr (s) +
1

D(s)

[
−Ms 0
0 −Ms

]

vαβs (s)

(8.7)

Note that as α and β are decoupled and symmetrical, they can be con-
trolled independently and the same controller can be used for both, thus
from now on only the α equations will be displayed for the sake of simplic-
ity.

The Laplace transform of irα is:

irα(s) =
Lss+ rs

(LsLr −M2) s2 + (Lsrr + Lrrs) s+ rrrs
︸ ︷︷ ︸

G(s)

v̂rα(s)

−
M

(LsLr −M2) s2 + (Lsrr + Lrrs) s+ rrrs
︸ ︷︷ ︸

Gd(s)

v̂sα(s) (8.8)

where G(s) is the transfer function between v̂rα and irα,
Gd(s) is the transfer function between vsα and irα.

As vsα is a exogenous signal that does not depend on the state of the
system, it can be thought as an external disturbance when designing the
current controller.
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8.2.1 Kd feed-forward compensation design

When designing a feed-forward compensation to minimize the effect of the
stator voltage disturbances on the current control of the machine, a common
approach is to assume the stator resistance rs to be small and the stator cur-
rent to not have any influence in the rotor current. Then, from the equations
of the generator (8.4) it is found that in order to completely suppress the
effect of vs on ir, a very simple Kd, which will be referred as Kd0, can be
used:

Kd0 = −
M

Ls
(8.9)

In order to verify the effectiveness of this compensator, a simulation of
the response of the system to a change in the stator voltage is performed.
Figure 8.6 shows the applied voltage disturbance and the effect that it has
on the rotor current when no compensator is used. Figure 8.7 shows the
evolution of the current when Kd0 is used. Note that this simulations are
performed using a controller which besides the feed-forward compensator,
only contains the decoupling feedback loop previously designed. From the
simulation results, it can be seen that the compensator greatly diminishes
the effect of the stator voltage by reducing the gain of the stator voltage
to the rotor current to one tenth. On the other hand, it gives a very slow
transient.
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Figure 8.6: Simulated stator voltage disturbance to test the feed-forward
compensator used by the stationary frame controller of the DFIG
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Figure 8.7: Simulated evolution of the rotor current under a stator voltage
disturbance using the Kd0 feed-forward controller

In order to improve the performance of the system,the effect of the stator
current must be taken into account to properly compensate it. Considering
a general feed-forward compensatorKd(s) fed with the measured stator volt-
age, the transfer function between the current error and the stator voltage
can be written as:

e(s)

d(s)
= 1−G(s)e−

T

2
sKd(s)G

−1

d (s) (8.10)

From this equation it can be seen that in order to completely compensate
the effect of d(s), the desired feed-forward compensator transfer function
Kd(s)

∗ is:

Kd(s)
∗ = Gd(s)G

−1(s)e
T

2
s (8.11)

Note that this controller is acausal hence it is impossible to realize. Thus
it can be stated that the effect of the stator voltage disturbances can not
be completely suppressed by using a feed-forward controller. On the other
hand, this function can be approximated using realizable transfer functions
and a better approximation of this function will lead to better rejection of
the disturbance.

The first possible approximation of (8.11) is obtained by suppressing its
time delay:

Kd1(s) = Gd(s)G
−1(s) =

−Ms

Lss+ rs
(8.12)

This controller can be transformed into a difference equation using the
Tustin bilinear transformation. This transformation maps the s plane of the
Laplace transformation into the z plane of the Z transformation by using
the following approximation:
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z ≈
1− Ts

2
s

1 + Ts

2
s

(8.13)

Substituting the numerical values of the parameters of the system, the
following transfer function in z is obtained:

Kd1(z) =
-0,3921 + 0,3921z−1

1− 0,9997z−1
(8.14)

In order to test the performance of this controller, a simulation is per-
formed under the same conditions that were used to test Kd0. The resulting
evolution of the current can be seen in Figure 8.8. It can be seen that Kd1

improves the transient response of Kd0 although in steady state the gain of
the stator voltage over the rotor current is the same for both compensators.
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Figure 8.8: Current response for the stator voltage disturbance test of the
feed-forward controllers Kd1 and Kd2.

To explain this phenomenon a frequency analysis is performed on the
transfer function of the ideal feed-forward compensator and its approxima-
tion. The bode plot ofK∗

d(s), Kd0(s) andKd1(s) is shown in Figure 8.9 (note
that the inverse of these functions is represented instead as the Matlab tools
used to draw the bode plots require the transfer functions to be causal).
From the bode plot of these functions, it can be seen that both Kd0 and

Kd1 provide the same degree of approximation of K∗

d around the grid fre-
quency (50 Hz) whilst Kd1 approximation is better for for low frequencies,
which explains why Kd1 gives provides a better transient response.
One thing to note from the graph is that because of the phase delay caused

by the zero order hold, the phase of Kd0 and Kd1 differs from K∗

d at the grid
frequency, thus making the steady state response worse. In order to improve
that, a phase advance controller can be put in series with the feed-forward in
order to compensate the phase delay of the zero order hold. A new transfer
function Kd2 is then obtained:
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Figure 8.9: Bode plot of the inverse of the transfer function between the
stator voltage and the rotor current along with the proposed
feed-forward compensators.

Kd2(s) =
2,7e-4s+ 1

1e-4s+ 1
Kd1(s) (8.15)

The bode plot of Kd2 is shown in Figure 8.9. Notice that although the
adjustment of the gain curve of Kd2 becomes worse than Kd1 due to the
distortion caused by the phase advance controller, the adjustment of the
phase is greatly improved.

In order to test the adequacy of the new controller, a simulation is per-
formed under the same conditions as in the previous tests of Kd0 and Kd1.
As in the previous cases, the transfer function in the z domain of Kd2 is
obtained using the bilinear transformation:

Kd2(z) =
-0,6421 + 0,794z−1 − 0,1519z−2

1− 0,7497z−1 − 0,2499z−2
(8.16)

The controller response can be seen in Figure 8.8. The simulation results
suggest that the addition of the phase advance controller greatly improves
the performance of the compensator. Notice that as Kd(s) is a feed-forward
controller and it works in open loop, its performance is related to the ad-
justment of the model of the system used to design the controller to the
actual dynamics of the system. The fact that the phase advance improves
the response that much suggests that the adjustment of the phase in Kd(s)
is critical. Hence in order for Kd(s) to be useful in a real implementation of
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the controller, the different phase delays in the real system due to sensing
of the system magnitudes, the communications and the modulation used to
control the switching devices should be carefully measured and considered
in the design of this controller.

8.2.2 K feedback controller design

The design of the feedback controller K(s) will done using a inverse-based
loop shaping approach. This method is closely related to the so called Inter-
nal Model Control (IMC) [29]. The idea behind this method is that as the
controller is connected in series with the system, the dynamics of the plant
can be suppressed by including the inverse of the plant in the controller.
Then, the controller transfer function can be obtained in a systematic way
by multiplying the inverse of the plant transfer function by the desired open
loop transfer function. On the other hand, care must be taken when the
system transfer function contains non-invertible elements as unstable poles
and zeros and time delays.

Considering the dynamics of the DFIG described by (8.8), neglecting the
time delay due to the time discretization, the transfer function between the
controller output voltage v̂rα and the rotor current irα is stable with no zeros
with positive real part. Then, the controller can be obtained as:

K(s) = G−1(s)L∗(s) (8.17)

where G−1(s) is the inverse of the plant transfer function,
L∗(s) is the desired open loop transfer function.

The choice of L∗(s) depends on the desired system performance and must
be chosen so that the K(s) is causal, that is, the degree of the denominator
of K(s) must be greater or equal to that of the numerator.

As an example of choice for L∗(s), in case of need to have a good tracking
of constant reference values, a common choice would be [32]:

L∗

1(s) =
ωc

s
(8.18)

This open loop transfer function has a crossing frequency of ωc, an infinite
gain at 0 frequency, a gain tending to 0 as the frequency tends to infinite
and a phase going from 0 degrees at zero frequency to 90 degrees for infinite
frequency. The corresponding closed loop transfer function would be:

T ∗

1 (s) =
irα(s)

i∗rα(s)
=

1
1

ωc

s+ 1
(8.19)
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That would mean that for a constant reference value, the steady state
error would be 0 and the close loop bandwidth would be approximately ωc.

One drawback of this controller is that it would have an infinite gain at
zero frequency and thus would require an anti-windup loop to avoid limit
cycles and unwanted hard to predict nonlinear behavior due to the saturation
of the control action. A possible solution for that is to limit the gain at zero
frequency by replacing the integrator of L∗

1
(s) by a pole:

L∗

2(s) =
ωc

s+ a
(8.20)

In that case, if ωc >> a, the crossing frequency would be approximately
ωc and the gain at 0 frequency would be:

‖L∗

2(0)‖ ≈
ωc

a
(8.21)

As the current reference signals in the stationary reference frame are sinu-
soidal time-varying of 50 Hz, it is wanted to have a high gain around 50 Hz
instead of 0 [33]. To obtain a suitable transfer function a low-pass to band-
pass frequency transformation, which is commonly used for filter design, can
be applied to the previous equation, obtaining:

L∗(s) =L∗

2(s)
∣
∣
∣
s=

s2+w
2
0

2s

=

2ωc

ω2

0

s

1

ω2

0

s2 + 2a
ω2

0

s+ 1
=

2ωc

ω2

0

s

1

ω2

0

s2 + 2ζ
ω0
s+ 1

(8.22)

where ω0 is the transformation frequency (here it is 2π50 rad
s−1),

ωc is the approximate equivalent low pass crossing fre-
quency of L∗(s),

ζ is the damping of the poles of L∗(s) which allows to
tune the gain at ω0 frequency (ζ = a

ω0
).

Here, the bandwidth is chosen to approximately match the bandwidth
needed for the torque actuator considered when designing the speed control,
which is 20 Hz. The gain at ω0 is chosen to give a steady state error of 0,1%,
by taking ζ = 4e-4. The resulting controller is:

K(s) =
0,2846s3 + 9,088s2 + 4,158s

s3 + 1,173s2 + 9,87e4s+ 9,119e4
(8.23)

This transfer function is then transformed to z using the Tustin bilinear
transformation for a sampling frequency of 3 kHz:
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K(z) =
0,2853− 0,8528z−1 + 0,8498z−2 − 0,2823z−3

1− 2,989z−1 + 2,988z−2 − 0,9996z−3
(8.24)

The Bode plot of K(z) is shown in Figure 8.10 and the resulting closed
loop transfer function T (s) can be seen in Figure 8.11. Notice that the
gain of the closed loop transfer function is approximately 0 dB around 50
Hz, which means that the controller provides a good tracking of the current
reference signals. Also, the gain of T (s) is always less than 0 dB, which is
also desirable as it is a measure of robustness of the system [32]. Finally,
note that the gain of T (s) drops below -25 dB at frequencies above 200 Hz,
which is also required in order to avoid amplifying possible additive high
frequency noise from the current measures.
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Figure 8.10: Bode plot of the DFIG feedback controller transfer function.

In order to test the performance of this controller, a simulation of the
response of the system to a change in the reference current is performed.
The evolution of the current compared to its reference value is shown in
Figure 8.12. Notice that the system exhibits a damped response close to
that of a first order system with a settling time which is approximately that
of the specification.

8.3 Grid-side current control

In Chapter 5, the dynamical equations for the grid side system were ob-
tained. From equation (5.19) we have that the relation between the grid
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Figure 8.11: Bode plot of the closed loop transfer function of the current
controller of the DFIG.
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Figure 8.12: Simulated evolution of the DFIG rotor current for a current
reference change.
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side voltage and the current in the stationary reference frame can be writ-
ten as:

v
αβ
l = ri

αβ
l + L

d

dt
i
αβ
l + vαβz (8.25)

This equation can be put in the conventional explicit state space repre-
sentation as:

d

dt
i
αβ
l = −

r

L
i
αβ
l +

1

L
v
αβ
l −

1

L
vαβz (8.26)

It can be seen that the dynamical equations are linear and decoupled
between α and β, thus the controller design can be carried using single
input single output (SISO) system design techniques. Also as the dynamics
for both α and β are the same, for the sake of simplicity, from now on only
α will be considered in the discussion as all the reasonings done for α can
be directly transferred to β.

For the control design, the considered output variable will be the converter
current il, the control variable will be the converter voltage vl and the grid
voltage vz will be considered an exogenous disturbance signal which can be
measured.

In Section 5.4 and 5.5 it was shown that in the stationary reference frame
in both balanced and unbalanced conditions, the steady state magnitudes be-
come time-varying sinusoidal signals. Thus for the controller design, unlike
in the conventional regulation control design problems, here the frequency
band of interest is located around the grid frequency instead of 0 frequency
as both reference values and disturbances can no longer be considered con-
stant values.

To design the controller, first the transfer functions in the Laplace domain
for the system are obtained. By applying the Laplace Transformation to the
α equation in (8.25) we obtain:

ilα(s) =
1

Ls+ r
︸ ︷︷ ︸

G(s)

vlα(s)−
1

Ls+ r
︸ ︷︷ ︸

Gd(s)

vzα(s) (8.27)

where s is the Laplace variable,
G(s) is the plant transfer function,
Gd(s) is the disturbance transfer function.

The proposed control scheme is a two degrees of freedom controller con-
sisting on a feed-forward disturbance rejection controller Kd(s) fed with the
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grid voltage measurement plus a feedback controller K(s) fed with the cur-
rent error e. The proposed scheme is depicted on Figure 8.13. In order to use
the conventional control theory signal notation, the current will be referred
as the output variable y, whereas the current reference will be referred as
r, the applied voltage will be referred as the control action u and the grid
voltage will be referred as the disturbance d.
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Figure 8.13: General current control system structure

In order to be able to use the continuous time linear systems analysis tools
while taking into account the effect of discrete time nature of the digital im-
plementation, there are a number of different possible well known strategies.
The simplest approach is neglecting the effect of the time discretization,
which is usually valid when the sampling frequency is reasonably high and
the design bandwidth of the controller is low. A more accurate approach is
the use of the so called Tustin bilinear transformation to map the z plane
to the w plane in the discrete time system transfer function obtained by
considering the zero order hold in series with the plant. Another common
approach, which will be used here, is to approximate the effect of the zero
order hold as a time delay of half the sampling period [31] as depicted on
Figure 8.14.
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Figure 8.14: Simplified current control structure
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8.3.1 Kd feed-forward compensation design

A feed-forward compensator is designed prior to the feedback controller to
minimize the effect of the grid voltage disturbances to the current control.
To design the feed-forward controller, first the transfer function between the
system error and the disturbance is deduced from the simplified diagram
(Figure 8.14) by suppressing the feedback controller:

e(s)

d(s)
= −Gd(s)−G(s)e−

T

2
sKd(s) (8.28)

For a good compensation the Kd(s) is desired to be:

Kd(s) ≈ −e
T

2
sG(s)−1Gd(s) (8.29)

As in this system G(s) = −Gd(s) according to (8.27), this can further be
simplified to:

Kd(s) ≈ e
T

2
s (8.30)

As e
T

2 is not causal and thus it is not a realizable transfer function, the
first obvious choice is to ignore the time delay due to the zero order hold
and choose Kd to be 1. Thus the first compensator option to be evaluated
will be Kd0 = 1.

To be able to evaluate the performance of the feed-forward controller, the
response of the grid current to a 50% grid voltage sag is simulated. The
parameters for the simulation are shown on Table 8.1. The grid voltage is
considered to not depend on the grid voltage and its forced evolution can
be seen on Figure 8.15. The simulation is carried in two different models:
the first model uses an averaged converter model by considering the voltage
applied to be continuously varying according to the controller command,
the second simulation is carried using a switching model where the voltage
is applied by the converter by PWM.
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Figure 8.15: Grid voltage evolution for the Kd feed-forward controller
simulation.
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Figure 8.16: Current response to a voltage disturbance comparing Kd0 and
Kd1.
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Symbol Value Units Description

r 0,01 Ω Grid connection inductance resistance
L 0,0069 Ω Grid connection inductance
ωN
e 50 s−1 Grid nominal frequency

V N
z 690 V Nominal phase to phase rms grid voltage

α 50 % Voltage sag amplitude
Tc 0,34 ms Converter switching period (3 kHz)
Ts Tc 1 Controller sampling period

Table 8.1: Grid connection converter parameters.

The obtained current evolution for the Kd0 compensator can be seen on
Figure 8.16 for both models.
Unlike in regulation problems with constant disturbances, here it is seen

that the time delay produces a phase difference between the grid voltage and
the applied compensation voltage which makes the feed-forward compensa-
tion less effective, even in steady state. As mentioned before, to obtain a
better compensation, one should invert the time delay in the feed-forward
controller, which would mean making a non-causal controller. This option
is sometimes valid when the feed-forward input comes from the reference
instead of the disturbance measurement as sometimes it is possible to have
a prediction of the future value of the reference, thus this option is some-
times used in robot manipulator control loops [32]. Here, this option is not
valid and the inverse of the time delay must be approximated by means
of causal controllers. One possible way to do that is to use the transfer
function of a phase-advance controller, which is well known from the classic
linear control theory based on the frequency domain. The transfer function
for a phase-advance controller can be written as:

Kd1 = K
s+ 1

T

s+ 1

aT

(8.31)

where K is a design parameter used to adjust the desired gain,
a is a design parameter used to adjust the desired phase

increase,
T is a design parameter used to adjust the frequency for

the phase increase.
If Φ is the desired phase increase, a can be calculated as:

a =
1− sinΦ

1 + sinΦ
(8.32)
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If ω0 is the central frequency for the phase increase, it can be chosen as:

T =
1

ω0

√
a

(8.33)

Finally if it is wanted to have a unitary gain on Kd1 for ω0, K can be
adjusted as:

K =
1
√
a

(8.34)

To properly compensate the delay due to the zero order hold at the nomi-
nal grid voltage frequency, the phase increase at the nominal grid frequency
should be:

Φ(ωN
e ) = ωN

e

Ts

2
(8.35)

Choosing ω0 and Φ to obtain the best approximation of e
T

2
s is a diffi-

cult task which can only be solved by using numerical optimization. One
suboptimal choice which warrants the correct phase delay at the nominal
frequency would be to choose ω0 ≡ ωN

e . In this case, the obtained controller
is:

Kd1(s) =
1,054s+ 314,2

s+ 331,1
(8.36)

To obtain the discrete time transfer function to be implemented in the dig-
ital controller, the Tustin bilinear transformation is applied to this transfer
function as:

z ≈
1− Ts

2
s

1 + Ts

2
s

(8.37)

Thus obtaining:

Kd1(z) =
1,048− 0,9491z−1

1− 0,8954z−1
(8.38)

The bode plots for both Kd0, Kd1 and the desired ideal feed-forward com-
pensator are plotted on Figure 8.17. Notice that Kd1 gives a better ap-
proximation than Kd0 which matches the gain and the phase of the desired
compensator at the nominal grid frequency, which means that in steady
state the compensator will provide a nearly perfect compensation of the
disturbance whilst during the transients the small disadjustments between
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the ideal compensator and Kd1 will make the compensation less effective.
Notice also that as mentioned before, one way to improve the compensation
obtained with Kd1 could be to make ω0 slightly higher than ωN

e in order
to improve the adjustment of the phase around the nominal frequency thus
improving the transient response of the compensator. As the adjustment of
the gain would also change, numerical methods should be used to design the
transfer function parameters.
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Figure 8.17: Bode plot comparing Kd0, Kd1 and the ideal feed-forward
compensator.

As with Kd0, the current response to a voltage variation is simulated
in both averaged and switched models to test both the obtained steady
and transient response. The obtained results can be seen on Figure 8.16
compared to the Kd0 response. It is seen that Kd1 provides a better com-
pensation than Kd0 although in the switching model the difference is less
noticeable due to the presence of the switching noise which at low power
levels become important due to the low mean value of the current.

8.3.2 K feedback controller design

For the feedback controller design an inverse based controller scheme will be
used. The main idea of this approach is that for a system with invertible
dynamics, it is possible to systematically design a controller K(s) for it by
choosing a desired L(s)∗ open loop transfer function and multiplying it by
the inverse of the plant dynamics.
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One common problem of this approach is that when the system has un-
stable poles or non minimum phase zeros, the plant dynamics can no longer
be inverted in order to avoid internal instability of the system. In this case,
as mentioned in the previous section, a time delay has been used to approxi-
mate the effect of the time discretization of the controllers thus the dynamics
of the plant cannot be inverted because of the non-causality of the resulting
controller.

The effect of having a time delay in the control loop is that the phase
of the open loop transfer function becomes worse and the system becomes
less robust. Also depending on the amount of delay, the desired system
performance may become impossible to obtain. In this case the time delay
depends on the sampling period of the controller, which in turn depends on
the switching frequency of the converter which is a design parameter of the
converter which should be chosen according the expected performance of the
converter among other things.

The first approach will be to ignore the time delay and expect the high
gain of the controller to be able to compensate for it in closed loop on the
band of interest. Thus K(s) will be chosen as:

K(s) ≈ G−1(s)L∗(s) (8.39)

Choosing L∗(s) is complex task which depends on the desired system
closed loop performance and the limitations of the actual system. Here the
prototype function will be obtained by applying the filter design techniques
to transform a regulation problem prototype function to the band of interest.

For regulation problems, where proportional integral (PI) controllers come
in use, usually it is wanted to have a zero steady state error for constant
references and a desired ωc crossover frequency which is related to the band-
width of the closed loop system. Both objectives can be obtained by having
a open loop transfer function of the form:

L∗

1(s) =
ωc

s
(8.40)

One disadvantage of this choice is that usually for systems of type 0, the
controller must have an integrator and in some situations this might lead
to control action saturation and windup effects. To avoid this problem,
usually anti-windup modifications are used to limit the integrator values.
One different choice is to limit the gain at 0 frequency of the controller by
substituting the integrator by a non-zero stable pole of the form:

L∗

2(s) =
ωc

s+ a
(8.41)
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as ωc >> a, usually this maintains approximately the same crossover
frequency.
In this case, it is wanted to follow sinusoidal time varying references in-

stead of constant values, thus the aforementioned function prototypes are
not valid. To obtain a valid prototype function, a low pass to band pass
transfer function transformation from the well known classic linear filter
design techniques will be applied to L∗

2
(s), obtaining:

L∗(s) =L∗

2(s)
∣
∣
∣
s=

s2+w
2
0

2s

=

2ωc

ω2

0

s

1

ω2

0

s2 + 2a
ω2

0

s+ 1
=

2ωc

ω2

0

s

1

ω2

0

s2 + 2ζ
ω0
s+ 1

(8.42)

where ω0 is the nominal frequency of the current references to
be followed,

ωc is the equivalent low-pass approximate crossover fre-
quency of L∗(s),

ζ is the damping ratio of the poles of L∗(s) which can
be used to adjust the gain at the nominal frequency.

For the controller design, the controller parameters are chosen as ω0 =
ωN
e = 2π 50 rad s−1, ωc = 20 Hz and ζ = 4e-4. In order to obtain a 0,1%

of error and an approximate 50 ms settling time for 50 Hz current reference
signals. The obtained transfer function is:

K(s) =
1,398e-06s2 + 6,366e-05s

1,013e-05s2 + 2,546e-06s+ 1
(8.43)

The bode plot of the obtained controller transfer function can be seen
on Figure 8.18. Also the resulting open loop and the closed loop transfer
functions can be seen on Figure 8.19. From the open loop bode plot it is
found that the closed loop system has a gain margin of GM = 20 dB, which
is very good considering that usually it is recommended to be higher than
6 dB, and a phase margin of PM = 83◦ which is also good as usually it
is recommended to be higher than 40◦, thus according to this performance
measures, the system is expected to be robust Notice also that the closed
loop transfer function doesn’t have any peak over 0 dB, that is MT ≤ 0 dB
which is also a measure of robustness closely related to the GM and PM

and it is recommended to be less than 2 dB [32].
Transforming this equation using the Tustin transformation the discrete

time transfer function is obtained as:

K(z) =
0,1387− 0,2752z−1 + 0,1366z−2

1− 1,989z−1 + 0,9999z−2
(8.44)
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Figure 8.18: Bode plot of the controller transfer function K(s).

To evaluate the performance obtained with this controller a simulation of
the response of the system to a change in the reference current is carried
on both the averaged and the switching models. The parameters of the
simulation are shown on Table 8.2.

Symbol Value Units Description

Vz 690 V Phase to phase rms grid voltage
Ilα(t0) 0 A Rms of ilα before the reference change
Ilα(tf ) 420 A Rms of ilα after the reference change
Ilβ 0 A Rms of ilβ for the whole the simulation

Table 8.2: Parameters for the simulation of the current reference value.

The simulated evolution of the grid currents is shown on Figure 8.20.
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(a) Open loop transfer function
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(b) Closed loop transfer function

Figure 8.19: Bode plots of the open loop and closed loop transfer functions.
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Figure 8.20: Current response to a current reference change comparing the
averaged and the switching model evolution. The light grey
line on the graph corresponds to the actual current, the dark
gray line corresponds to the current measurement sampled by
the controller and the black line corresponds to the current
reference value.
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Chapter 9

VSC reference calculation issues for

unbalanced operation

9.1 Introduction

VSCs are used in a number of applications ranging from low voltage mi-
crogrid applications [34] to large high voltage DC VSC for offshore wind
generation [35]. VSC has been successfully used as a grid connection inter-
face for most renewable energy sources as DFIG and PMSG wind turbines
and photovoltaic panels.

The increasing penetration of renewable energy in the grid, has brought a
need to develop new methodologies of control for this devices to allow them
to remain connected to the grid during different types of grid disturbances
and avoid having to disconnect, a feature which is commonly known as ride-
through.

Voltage sags are the most frequent type of grid disturbances. They are
reductions of the voltage amplitude and are usually classified between bal-
anced, when the reduction of the voltage is the same for each phase, and
unbalanced otherwise. Balanced voltage sags are usually caused by the start-
ing transients of large machines and three phase short circuits. Unbalanced
voltage sags are caused by single phase or two phase short-circuits and are
the most common type of sags [36].

Ride-through capabilities for unbalanced voltage sags present a number
of challenges. The existence of negative sequence components in the voltage
causes a ripple in the power injected to the AC grid. This causes the DC bus
voltage to also have a ripple which in some cases may be critical. Also, the
existence of negative sequence voltage causes negative sequence current to
appear which needs to be controlled. Conventional vector control is designed
to control positive sequence currents and it exhibits poor performance when
controlling negative sequence. Different choices for alternative designs of the
current controllers exist such as the double synchronous reference frame vec-

137



“PhD” — 2011/6/8 — 12:01 — page 138 — #168

Chapter 9 VSC reference calculation issues for unbalanced operation

tor control and the stationary frame current control described in the previous
chapters. A number of different control methods can also be found in the
literature: in [11] a current reference calculation scheme was proposed that
enables suppressing the active power oscillations during unbalanced volt-
age sags using conventional SRFVC with enhanced current controllers able
to track a reference current signals containing both positive and negative
sequence. In [37] a different current control design with a double SRFVC
and independent controllers for positive and negative components was intro-
duced. In [38] and [7] this current control is used for a coordinated control
of the back-to-back converter of a DFIG turbine to enable the suppression of
the machine torque and the ripple of the DC bus voltage caused by the net-
work unbalances. In [39] a double SRFVC using linear quadratic regulators
(LQR) current controllers is proposed for the operation of a PMSG wind
turbine under unbalanced voltage sags. In [40] and [41], coordinated control
of the back-to-back converter of the DFIG using stationary frame current
control with proportional-resonant controllers is proposed. Stationary frame
control has also been proved to provide good performance under unbalance
operation of VSC while simplifying the structure of the current controller
[42].

The previously mentioned works use current reference calculation methods
deriving from the one introduced in [11] which uses negative sequence current
to compensate for the oscillation of the power due to the presence of negative
sequence in the grid voltage. The present chapter analyzes this method and
provides a critic analysis and some remarks on its limitations and some
important weak points which to the best of the knowledge of the author
have not been addressed in the past. Also, modifications of the method to
solve for this problems are proposed.

This chapter is organized as follows: the equations of a VSC from Chapter
5 are used in Section 9.2 to analyze the steady state for balanced operation
and to obtain the current reference calculation equations of the conventional
vector control. In Section 9.3 the steady state equations for unbalanced
operation are obtained and the current reference calculation formulas to
control the power output of the converter are derived and discussed. Finally
the conclusions drawn in the previous section are tested on a simulation
model in Section 9.4 and on an experimental platform in Section 9.5.
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9.2 Analysis of the current reference calculation for

balanced operation

According to [26], a generic xabc(t) three phase positive sequence signal is a
function of time that can be described as:

xabc(t) =
√
2X





cos(ωet+ ϕx)
cos(ωet+ ϕx −

2π
3
)

cos(ωet+ ϕx +
2π
3
)



 (9.1)

By choosing the d
dtθ = ωe for the Park reference angle, the transformed

signal becomes a vector of constants:

xqd0(t) = T (ωet+ ϕ)xabc =
√
2X





cos(ϕx − ϕ)
− sin(ϕx − ϕ)

0



 (9.2)

We define: [
xssq
xssd

]

,

[ √
2X cos(ϕx − ϕ)

−
√
2X sin(ϕx − ϕ)

]

(9.3)

Considering a balanced case where both the inverter voltage vabcl and the
grid voltage vabcz are positive sequence signals, choosing θ to match the angle
of vza and assuming the derivatives of the current to become zero in steady
state, the following relations can be obtained from (5.16):

{
vsslq − vsszq = rli

ss
lq + Llωei

ss
ld

vssld = rli
ss
ld − Llωei

ss
lq

(9.4)

These equations can be used to solve for the current needed to have a
certain steady state power. According to [43], active and reactive power can
be calculated using the voltage and current in the qd form as:







P = 3

2
(vqiq + vdid) =

3

2
{vqd}T

[
1 0
0 1

]

iqd

Q = 3

2
(vqid − vdiq) =

3

2
{vqd}T

[
0 1
−1 0

]

iqd
(9.5)

Substituting for the grid connection point:

{
Pz = 3

2
vzqilq

Qz = 3

2
vzqild

(9.6)
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Assuming vzd to be zero, which can be ensured by an adequate tracking
of the grid voltage measure using a phase locked loop (PLL), (9.6) implies
that active and reactive power are proportional to the ilq and ild respec-
tively. This is commonly used to calculate a current reference value for the
current control from a power reference signal usually generated by the DC
bus voltage regulator and a reactive power command:

{

i∗lq =
2

3

P ∗

z

vzq

i∗ld = 2

3

Q∗

z

vzq

(9.7)

One drawback of this reference calculation method is that it ignores the
power loss due to the resistance of the converter filter and its dynamic behav-
ior. Thus even having a perfect current control, the active power output of
the converter Pl will not be equal to the power on the grid connection point
Pz and the DC bus voltage regulator will need to be able to compensate for
that difference. Usually this is not a important issue as the filter resistance
is small and the regulators used to control the DC bus are designed for dis-
turbance rejection. On the other hand, one possible workaround to match
the DC bus voltage regulator power command to the actual power output
by the inverter in steady state is to subtract the losses due to the filter to
the active power reference value:

P ∗

z = P ∗

l − rl

((
i∗lq

)2
+ (i∗ld)

2
)

(9.8)

Note that i∗lq and i∗ld depend on the choice of P ∗

z . As the losses due to filter
resistance will be very small in comparison with P ∗

l , the actual solution may
be close to the initial guess P ∗

l , thus one possible approach is to iteratively
solve for the current as:







(

i∗lq

)

n+1
= 2

3

(P ∗

z
)
n

vzq
(

i∗ld

)

n+1
= 2

3

(Q∗

z
)
n

vzq

(9.9)

with
(P ∗

z )n = P ∗

l − rl

((
i∗lq

)2

n
+ (i∗ld)

2

n

)

(9.10)

9.3 Analysis of the current reference calculation for

unbalanced operation

According to [26] a three phase signal with positive and negative sequence
components can be described as:

xabc(t) = xabc+ (t) + xabc
−

(t) (9.11)
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where

xabc+ (t) =
√
2X+





cos(ωet+ ϕ+
x )

cos(ωet+ ϕ+
x − 2π

3
)

cos(ωet+ ϕ+
x + 2π

3
)



 (9.12)

xabc
−

(t) =
√
2X−





cos(ωet+ ϕ−

x )
cos(ωet+ ϕ−

x + 2π
3
)

cos(ωet+ ϕ−

x − 2π
3
)



 (9.13)

Unlike in the balanced case, here it is not possible to transform the time
varying signal xabc(t) into a constant signal by using the Park variable change
matrix. On the other hand it is possible to decompose the system in two
decoupled systems corresponding to the positive and the negative sequence
which can be analyzed using the same procedure as in the balanced case due
to the linear properties of the dynamics of the system and the symmetrical
nature of its impedances [26].
The positive sequence magnitudes can be transformed into constant sig-

nals by choosing a Park reference angle matching the angle of the a phase
of the original signal:

x
qd
+ (t) = T (ωet+ ϕ+)xabc+ (t) =

√
2X+

[
cos(ϕ+

x − ϕ+)
− sin(ϕ+

x − ϕ+)

]

(9.14)

while the negative sequence magnitudes can be transformed into constants
by choosing θ to be equal to the angle of the a phase multiplied by -1:

x
qd
−
(t) = T (−ωet− ϕ−)xabc

−
(t) =

√
2X−

[
cos(ϕ−

x − ϕ−)
sin(ϕ−

x − ϕ−)

]

(9.15)

As in the balanced case we define the steady state components in the
synchronous reference frame as:

[
x+q
x+d

]

,

[ √
2X+ cos(ϕ+

x − ϕ+)

−
√
2X+ sin(ϕ+

x − ϕ+)

]

(9.16)

and [
x−q
x−d

]

,

[√
2X− cos(ϕ−

x − ϕ−)√
2X− sin(ϕ−

x − ϕ−)

]

(9.17)

Also, as in the balanced case, the steady state equations can be obtained
from (5.16) by assuming the derivatives of the current to be zero:

{

v+lq − v+zq = rli
+

lq + Llωei
+

ld

v+ld = rli
+

ld − Llωei
+

lq

(9.18)
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and {

v−lq − v−zq = rli
−

lq − Llωei
−

ld

v−ld = rli
−

ld + Llωei
−

lq

(9.19)

As of the power equations (9.5), they include multiplications between
voltage and current, thus they are not linear and it is no longer possible to
separate positive and negative sequence, as there will be crossed products
of terms from both. To calculate the power, the steady state positive and
negative sequence magnitudes are transformed to a common reference frame
with θ = 0 as:

P =
3

2
{R(−ωet− ϕ+)vqd+ +R(ωet+ ϕ−)vqd

−
}T

·

[
1 0
0 1

](

R(−ωet− ϕ+)iqd+ +R(ωet+ ϕ−)iqd
−

)

(9.20)

and

Q =
3

2
{R(−ωet− ϕ+)vqd+ +R(ωet+ ϕ−)vqd

−
}T

·

[
0 1
−1 0

](

R(−ωet− ϕ+)iqd+ +R(ωet+ ϕ−)iqd
−

)

(9.21)

where R(θ) is a rotation matrix defined as:

R(θ) =
[
cos(θ) − sin(θ) sin(θ) cos(θ)

]
(9.22)

Note that it can easily be proven that the following relation exists between
T (θ) and R(θ):

T (θ) ≡

[
R(θ) 0
0 1

]

T (0) (9.23)

The resulting equation of the active power can be written as:

P = P0 + Pcos cos(2ωet + ϕ+ + ϕ−) + Psin sin(2ωet + ϕ+ + ϕ−) (9.24)

where 





P0 =
3

2

(
v+q i

+
q + v+d i

+

d + v−q i
−

q + v−d i
−

d

)

Pcos =
3

2

(
v+q i

−

q + v+d i
−

d + v−q i
+
q + v−d i

+

d

)

Psin = 3

2

(
−v+q i

−

d + v+d i
−

q + v−q i
+

d − v−d i
+
q

)
(9.25)

The reactive power expression can be written as:

Q = Q0 + Qcos cos(2ωet + ϕ+ + ϕ−) + Qsin sin(2ωet + ϕ+ + ϕ−) (9.26)
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where 





Q0 =
3

2

(
v+q i

+

d − v+d i
+

d + v−q i
+

d − v−d i
−

d

)

Qcos =
3

2

(
v+q i

−

d − v+d i
−

q + v−q i
+

d − v−d i
+
q

)

Qsin = 3

2

(
v+q i

−

q + v+d i
−

d − v−q i
−

q − v−d i
+

d

)
(9.27)

Unlike the balanced case, the steady state active and reactive power con-
tains a constant component plus time-varying sine components with a fre-
quency of twice the grid frequency. Also, although six power magnitudes
were defined, there only exist four independent currents. Thus it is only
possible to decide the value of four of the six power terms while the rest
depend on the choice of the previous ones. In this situation it is common to
choose to constraint the value of the three components of the active power,
which have a direct effect in the evolution of the DC bus voltage, and the
mean value of the reactive power. Usually the reference value for the sine
components of the active power is set to be zero to avoid the ripple in the
DC bus voltage. However, it can also be set to match another time-varying
power input as described in [7]. The equations to solve for the power on the
grid connection point of the converter are:







Pz0 = 3

2

(

v+zqi
+

lq + v−zqi
−

lq

)

Pz cos = 3

2

(

v+zqi
−

lq + v−zqi
+

lq

)

Pz sin = 3

2

(

−v+zqi
−

ld + v−zqi
+

ld

)

Qz0 = 3

2

(

v+zqi
+

ld + v−zqi
−

ld

)

(9.28)

Solving to obtain the reference current for a given active and reactive
power reference, the following relation is obtained:







i+lq =
2

3

(

v+zq

(v+zq)
2
−(v−zq)

2P
∗

z0 −
v−zq

(v+zq)
2
−(v−zq)

2Pz cos

)

i+ld = 2

3

(

v+zq

(v+zq)
2
+(v−zq)

2Q
∗

z0 +
v−zq

(v+zq)
2
+(v−zq)

2Pz sin

)

i−lq =
2

3

(

−
v−zq

(v+zq)
2
−(v−zq)

2P
∗

z0 +
v+zq

(v+zq)
2
−(v−zq)

2Pz cos

)

i−ld = 2

3

(

v−zq

(v+zq)
2
+(v−zq)

2Q
∗

z0 −
v+zq

(v+zq)
2
+(v−zq)

2Pz sin

)

(9.29)

As in the balanced case, this calculation neglects the difference between
the active power in the grid connection point of the converter and the ac-
tual active power output of the inverter. The active power on the inverter
terminals can be written as a function of the active power output to the grid
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as:
Pl0 = Pz0 + rl

((
i+lq

)2
+
(
i+ld

)2
+
(
i−lq

)2
+
(
i−ld

)2
)

(9.30)

Pl cos = Pz cos + 3rl

(

i+lqi
−

lq + i+ldi
−

ld

)

+ 3ωeLl

(

−i+lqi
−

ld + i+ldi
−

lq

)

(9.31)

Pl sin = Pz sin − 3rl

(

i+lqi
−

ld − i+ldi
−

lq

)

− 3ωeLl

(

i+lqi
−

lq + i+ldi
−

ld

)

(9.32)

Note that unlike the balanced case, the voltage drop in the inductor not
only affects the mean value of the active power, which can be properly
compensated by the DC bus voltage controller, but also affects the time-
varying terms of the active power, which sometimes are controlled in a open
loop way by setting them to be zero.
As it was suggested in the balanced case, one workaround for this problem

is to iteratively solve for the current reference by correcting the active power
reference value:

(
i+lq

)

n+1
=

2

3

v+zq
(
v+zq

)2
−
(
v−zq

)2
(P ∗

z0)n −
2

3

v−zq
(
v+zq

)2
−
(
v−zq

)2
(P ∗

z cos)n (9.33)

(
i+ld

)

n+1
=

2

3

v+zq
(
v+zq

)2
+
(
v−zq

)2
Q∗

z0 +
2

3

v−zq
(
v+zq

)2
+
(
v−zq

)2
(P ∗

z sin)n (9.34)

(
i−lq

)

n+1
= −

2

3

v−zq
(
v+zq

)2
−
(
v−zq

)2
(P ∗

z0)n +
2

3

v+zq
(
v+zq

)2
−
(
v−zq

)2
(P ∗

z cos)n (9.35)

(
i−ld

)

n+1
=

2

3

v−zq
(
v+zq

)2
+
(
v−zq

)2
Q∗

z0 −
2

3

v+zq
(
v+zq

)2
+
(
v−zq

)2
(P ∗

z sin)n (9.36)

where
(P ∗

z0)n = P ∗

l0 − rl

((
i+lq

)2

n
+
(
i+ld

)2

n
+
(
i−lq

)2

n
+
(
i−ld

)2

n

)

(9.37)

(P ∗

z cos)n = P ∗

l cos − 3rl

((
i+lq

)

n

(
i−lq

)

n
+
(
i+ld

)

n

(
i−ld

)

n

)

− 3ωeLl

(

−
(
i+lq

)

n

(
i−ld

)

n
+

(
i+ld

)

n

(
i−lq

)

n

)

(9.38)
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(P ∗

z sin)n = P ∗

l sin + 3rl

((
i+lq

)

n

(
i−ld

)

n
−

(
i+ld

)

n

(
i−lq

)

n

)

+ 3ωeLl

((
i+lq

)

n

(
i−lq

)

n
+
(
i+ld

)

n

(
i−ld

)

n

)

(9.39)

Finally, one important result from (9.29), whose implications have not
been addressed in previous works is that there exists a discontinuity that
causes the reference current to become infinite when v+zq = v−zq i.e. when
the magnitude of the positive sequence of the voltage is equal to that of the
negative sequence (there is no dominant voltage component). To analyze
this particular situation, this condition is introduced in the equation of a
unbalanced three phase signal (9.13) yelding:

vabcz (t) = 2A






cos(ϕ
+
−ϕ−

2
) cos(ωet+

ϕ++ϕ−

2
)

cos(ϕ
+
−ϕ−

2
− 2π

3
) cos(ωet+

ϕ++ϕ−

2
)

cos(ϕ
+
−ϕ−

2
+ 2π

3
) cos(ωet+

ϕ++ϕ−

2
)




 (9.40)

where A ,
√
2V +

z =
√
2V −

z .

From this equation it can be seen that under such condition, each phase
of vabcz become zero at the same time and it is not possible to get a constant
power output from the converter without the need of an infinite current.

One possible solution to this problem would be to limit the result of (9.29)
to a certain value by modulus. One important drawback of this solution is
that in that case, it is not possible to assure that the resulting current
reference will lead to the desired mean value of the active power, which is
critical to maintain the desired mean value of the DC bus voltage.

A different approach based on combining two different reference calcula-
tion formulas is possible. The reference calculation expression (9.29) can be
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rewritten as:






i+lq =
2

3

1

v+zq




P ∗

z0 + α

(

v
−

zq

v
+
zq

)2

P ∗

z0
−

v
−

zq

v
+
zq

P ∗

z cos

1−

(

v
−

zq

v
+
zq

)2






i+ld = 2

3

1

v+zq




Q∗

z0 + α
−

(

v
−

zq

v
+
zq

)2

Q∗

z0
+

v
−

zq

v
+
zq

P ∗

z sin

1+

(

v
−

zq

v
+
zq

)2






i−lq =
2

3

α
v+zq




P ∗

z cos +

(

v
−

zq

v
+
zq

)2

P ∗

z cos−
v
−

zq

v
+
zq

P ∗

z0

1−

(

v
−

zq

v
+
zq

)2






i−ld = 2

3

α
v+zq




−P ∗

z sin +

(

v
−

zq

v
+
zq

)2

P ∗

z sin
+

v
−

zq

v
+
zq

Q∗

z0

1+

(

v
+
zq

v
−

zq

)2






(9.41)

where α is a parameter that allows switching between two different reference
calculation methods. For α = 1, (9.41) becomes equivalent to (9.29) whereas
for α = 0 the reference calculation formula becomes:







i+lq =
2

3

1

v+zq
Pz0∗

i+ld = 2

3

1

v+zq
Qz0∗

i−lq = 0

i−ld = 0

(9.42)

This equation is equivalent to the one used for the conventional vector
control meant for balanced operation, thus the references for the negative
sequence current are zero. From (9.28) it can be seen that this produces the
desired mean value for the active and the reactive power but does not allow
to control the sine time-varying terms of the active power.

One important remark that can be made by comparing (9.42) and (9.29)
is that in general in the case of existence of negative sequence voltages in
the grid, the suppression of the active power oscillation by injecting negative
current leads to a reduction of the mean value of the active power. This in
turn leads to the need of a higher positive sequence current to maintain the
mean value of the active power. Thus, in case of a voltage sag, where usually
the maximum allowed current becomes an issue, (9.29) is more likely to have
problem to extract the needed active power to maintain the desired DC bus
voltage. On the other hand, as the effect of the power oscillation on the DC
bus voltage is directly related to the capacitance of the DC-side capacitor
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filter, this suggests that systems which use a DC-side capacitor filter with
a small value of capacitance, which may be the standard practice in HVDC
link systems, it may be necessary to overrate the current capability of the
inverter to be able to compensate for the oscillations in case of a network
unbalance.

9.4 Simulation testing of the proposed reference

calculation scheme

In order to test the performance of the proposed control methods, a simula-
tion of the response of the system to an unbalanced voltage sag is performed.
The characteristic parameters of the simulated converter and the operation
point for the simulation can be found in Table 9.1. The rating of the con-
verter and its switching frequency the same as the grid-side inverter of the
rotor converter of the 1 MW DFIG wind turbine in [44]. The machine-side
inverter has been modeled as a constant power input of 300 kW with no
ripple. Thus the power references for Plsin and Plcos will be set to zero to
avoid a ripple in the DC bus voltage.

Parameter Units Value Description

V N
z 690 V Grid nominal voltage

PN
l 300 kW Nominal active power

QN
z 100 kVAr Nominal reactive power

V N
DC 1338 V DC bus nominal voltage
rl 0.05 Ω Grid connection filter resistance
Ll 27 mH Grid connection filter inductance

fs 3 kHz Inverter switching frequency
Ti 50 ms Current control settling time

TPLL 20 ms Grid voltage PLL settling time

Table 9.1: Characteristic parameters of the simulated scenario.

The response of the system to a unbalanced voltage sag is simulated using
three different calculation methods (see Figure 9.1). The first one, referred
as I, uses the formula presented in (9.41) for α = 0, the second one, referred
as II, uses the presented formula in (9.41) for α = 1 plus the iterative
compensation of the filter impedance and the third one, referred as III, uses
the same formula as II but without compensating the filter impedance.

The simulated voltage sag corresponds to a two phase to ground sag which
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Figure 9.3: Amplitude of the positive and negative sequence of the voltage
at the PCC measured by the PLL.

further be confirmed by plotting Pl and Pz (Figure 9.5). Notice that method
III allows to suppress the ripple in Pz but causes an important ripple in Pl

which makes the DC bus voltage to have a larger oscillation than method I.
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Figure 9.4: Comparison of the evolution of the DC bus voltage using I (a),
II (b) and III (c) current reference calculation methods.

The evolution of the current is shown in Figure 9.6. Note that all methods
require an increase of the current due to the reduction of the voltage and
as noted before methods II and III require more current than I even though
the oscillation in III is larger than in I.

9.5 Experimental testing of the proposed reference

calculation scheme

In order to further verify the theoretical results, a test of the analyzed current
reference calculation schemes is performed on an experimental platform. The
test platform consists of two CDM2480 [46] low power voltage source three
phase inverters fed by two independent 24V DC buses and connected by the
AC side through a three phase inductor (r = 0.1 Ω, L = 4.9 mH). One of
the inverters, referred as the generator grid side inverter, is used to emulate
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Figure 9.5: Comparison of the evolution of the converter output power mea-
sured on the inverter versus the power measured on the PCC
using I (a,d), II (b,e) and III (c,f) current reference calculation
methods.
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Figure 9.6: Comparison of the output current of the converter using I (a),
II (b) and III (c) current reference calculation methods.
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Chapter 10

PMSG vector control

10.1 Introduction

This chapter analyzes the use of a vector control design for the current
control of PMSG-based WTGS.
As the PMSG is isolated from the grid by the converter and the machine

impedances can arguably be considered to be balanced, here there is no need
to use the extensions of the vector control for unbalanced operation.
The control of the AC grid side of the converter of the PMSG is not

presented in this chapter because the topology of the converter for this type
of WTGS is equivalent to that of a DFIG wind turbine and can be controller
using the same the current control designs described in the previous chapters.
Section 10.2 describes the design of a vector current control of the PMSG.

This control scheme will be used later in Chapter 11 in the simulation models
and in the controller of the experimental system used to study a ride-through
strategy for this type of WTGS.

10.2 Machine side control

From Chapter 4, we know that the relation between the voltage and the
current in a permanent magnet synchronous machine can be written as:

vqds =

[
rs ωr

(
Lls +

3

2
(LA + LB)

)

−ωr

(
Lls +

3

2
(LA − LB)

)
rs

]

iqds

+

[
Lls +

3

2
(LA − LB) 0
0 Lls +

3

2
(LA + LB)

]
d

dt
iqds + λmωr

[
1
0

]

(10.1)

From these equations, it can be seen that the q and d variables are coupled
and the dynamic behavior of the current depends on the mechanical speed
of the machine. In order to simplify the design of the current controller, a
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decoupling feedback is used which both decouples the q and d component
and eliminates the dependency on the mechanical speed of the machine, thus
eliminating a non-linearity of the dynamics [47]. To do that, a voltage is
applied on the stator of the machine which compensates the coupling terms.
This voltage can be writen as:

{
vsq
vsd

}

=

{
v̂sq + ωrLdisd + λmωr

v̂sd − ωrLqisq

}

(10.2)

where v̂sq and v̂sd are the control outputs of a linear current controller.
Assuming the compensation to be perfect, the dynamics become:

v̂qds =

[
rs 0
0 rs

]

iqds +

[
Lq 0
0 Ld

]
d

dt
iqds (10.3)

Note that these equations no longer depend on the mechanical speed and
are decoupled. Thus, they can be split as two different systems for q and
d. Applying the Laplace transform to these, the following transfer functions
can be obtained:

isq

v̂sq
(s) =

1

Lqs+ rs
(10.4)

and

isd

v̂sd
(s) =

1

Lds+ rs
(10.5)

One possible way of designing the current controllers which has been suc-
cesfully used in the past is the so called IMC [29], where the controller
transfer function is contain the inverse of the plant dynamics plus the de-
sired open loop transfer function to obtain the desired closed loop dynamics.

Here, the pole of the system is suppressed by putting a matching zero in
the controller transfer function plus an integrator so that the steady state
error for step reference inputs is zero and the controller is causal. The closed
loop transfer function becomes:

{
isq(s)
isd(s)

}

=

[
1

1

α
s+1

0

0 1
1

α
s+1

]{
i∗sq(s)

i∗sd(s)

}

(10.6)

The controller transfer function corresponds to that of a PI controller with
the transfer function:

K(s) =
Kps+Ki

s
(10.7)
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where

Kp = αLq

Ki = αrs

}

(10.8)

and α is a design parameter which is proportional to the bandwidth of the
system.
A wide bandwidth will result in a fast response, which is a desirable fea-

ture, but in turns makes the system more sensible to feedback measurement
noise and will require a higher bandwidth of the control action. Note that
when studying the system, an averaged model was used for the converter
by neglecting its switching nature due to the use of a high frequency pulse
width modulation and the assumption that the controller output was a low
pass signal. A high bandwidth of the control action make these assump-
tions to be false, thus a balance between a fast controller response and a
low bandwidth of the control action is needed for a proper design of the
controller.

10.2.1 Discrete time implementation of the controller

For the sake of simplicity, the previous section describes a continuous time
design of the system controller even though the real implementation of the
controller must be done in a digital discrete time system. An approximation
of the effect of the time discretization can be taken into account in the design
of the controller by the addition of non minimum phase zeros to the open
loop transfer function. Such approximation will be used here by using the so
called bilinear transform to obtain a continuous time transfer function of the
plant. To avoid the redundancy, as the q and d variables exhibit equivalent
dynamics, only the results for q are shown.
A discrete time controller with a T sampling time and a zero order hold

will be considered. In this case, the transfer function in z can be obtained
for isq as a function of vsq from the continuous time transfer function of the
system (10.4)) as:

isq

v̂sq
(z) =

1

rs

(

1− e
−

rs

Lq
T
)

z − e
−

rs

Lq
T

(10.9)

The bilinear transformation maps the z plane to the so called w plane, it
is defined as:

w ,
2

T

z − 1

z + 1
(10.10)
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By introducing the bilinear transformation to the previous transfer func-
tion, we obtain:

isq

v̂sq
(w) =

1

rs

(
−T

2
w + 1

)

T
2

(

1+e
−

rs
Lq

T

1−e
−

rs
Lq

T

)

w + 1

(10.11)

By comparing this transfer function to the transfer function of the plant
without the zero order hold, it can be seen that a non minimum phase zero
has been added at 2/T due to the time discretization. The existence of this
zero puts an approximate upper bound to the bandwidth of the system at
1/T [32]. As the sampling frequency is usually chosen to match the frequency
of the pulse width modulation used to trigger the switching devices of the
converter and it is usually technology limitation, this sets an upper bount
to the performance that can be obtained from the system.
On the other hand, the existence of a non minimum phase zero, also

called unstable zero, makes it impossible to invert the plant dynamics in the
controller in order to keep the system internally stable. Thus, the zero must
be either kept or approximatelly compensated. Here, the zero is kept and
the pole of the system is suppressed the same way as in the continuous time
design by using a PI controller defined in w using the following parameters:

Kp = αT
2

(

1+e
−

rs
Lq

T

1−e
−

rs
Lq

T

)

rs

Ki = αrs






(10.12)

Note that for small sampling times, as T → 0, Kp tends to αLq which is
the Kp parameter of the continuous time design in (10.8)).
The transfer function of the PI in w is:

Gc(s) =
Kpw +Ki

w
(10.13)

By inverting the bilinear transformation, the corresponding transfer func-
tion in z is obtained:

Gc(z) =

(
Kp +

T
2
Ki

)
(

z +
−Kp+

T

2
Ki

Kp+
T

2
Ki

)

z − 1
(10.14)
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Chapter 11

Voltage sag ride-through of PMSG

wind turbines using droop control

11.1 Introduction

Voltage sags are reductions of the voltage amplitude. These are the most
common type of grid disturbances and they can be caused by short-circuits,
overloads and starting transients of large machines [36]. WTGS are known
to be very sensible to voltage sags as wind farms are usually installed on
far locations leading to high network impedance and thus weak network
connections. In the last decade the need for the WTGS to stay connected
during this type of faults using the so called ride-through strategies have
increased due to the rising penetration of wind farms on the network [4, 48].
Here a new strategy based on droop control is introduced which makes it

possible to ride through voltage sags without the use of the so called DC
bus chopper resistor by reducing the power extracted from the wind by the
generator in case of a grid fault. This strategy also enables the independent
control of the grid connection inverter and the generator rectifier and in-
creases the robustness in case of communication failure between the control
system of both sides of the back-to-back converter allowing to place both
sides in different locations far from each other. Also, even though here a
PMSM wind turbine with full power converter will be considered, the same
procedure can be easily extended to other topologies of wind generators
connected to the grid through full power converters.

11.2 Problem formulation

The power injected to the grid by the grid side inverter of a wind turbine,
Pz, depends on the grid phase-to-neutral voltage Vz and the inverter output
current Il as: Pz = 3VzIl cos(φ), where φ is the angle between the voltage
and the current. Assuming a the efficiency of the inverter to be constant, Pz
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11.3 Generator control strategy formulation

state error:

Γt =
1

τes+ 1
Γ∗

t (11.3)

Fast changes in the torque of the generator are possible due to the fast
dynamics of the generator current control loops, while the turbine speed ωt

varies slowly due to the high inertia and the slow mechanical dynamics of
the turbine. Thus, for short duration faults, the machine speed can arguably
be considered to be constant and it is possible to rapidly reduce the power
injected to the DC bus by the rectifier using this procedure.
In case the converter is split and the sides of the back-to-back are far from

each other, it might not be possible or not desirable to reduce the torque
reference signal from the grid side inverter control. In such case, a different
strategy avoiding the need to communicate the controllers from both sides
is preferred. This can be achieved by using the DC bus voltage value to
trigger a power reduction in the machine side control.

11.3 Generator control strategy formulation

According to [22], optimal power extraction from the wind is achieved by
using the so called constant tip-speed ratio control, which is a open loop
speed control strategy which applies a generator torque Γt proportional to
the square of the turbine speed ωt as:

Γ∗

t = KCP
ω2

t (11.4)

whereKCP
is a parameter which depends on the geometry of the wind wheel.

The reference torque Γ∗

t must be modified by the generator control in order
to reduce the power extraction in case of need to limit the power input from
the generator to the DC bus. This can be achieved by using the so called
droop control which commands a power reduction proportional to the error
of a measured variable which is inversely proportional to the power input.
This technique has been successfully applied for the power regulation of AC
grids using the frequency as the measured variable, as an small decrease in
the load consumption diminishes the torque of the synchronous generators
and makes them accelerate. In the case of the DC bus of the power converter
of a grid connected power source, the DC bus voltage can be used as the
trigger variable as a decrease in the power injected to the AC grid produces
a power imbalance which makes the DC bus voltage to rise.
The equation of the torque reference becomes:

Γ∗

t = KCP
ω2

t −Kdroop (VDC − V ∗

DC) (11.5)
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linearized system:

∆VDC(s) = −
3Il cos(φ)

ηl

τes+ 1

τeVDCCs2 + VDCCs+ ηmKdroopωt
∆Vz(s) (11.7)

From this transfer function, the steady state increase of the DC bus voltage
for a given grid voltage drop can be easily obtained by applying the final
value theorem:

lim
t→∞

∆VDC(t) = lim
s→0

∆VDC(s) =
3Il cos(φ)

ηl

1

ηmKdroopωt

(

V N
z − V fault

z

)

(11.8)

where V
fault
z is the phase-to-neutral voltage during the fault and V N

z is its
rated value. Note that the steady state error of the voltage is proportional
to the voltage drop and inversely proportional to the droop constant.

As the maximum allowed voltage of the DC bus is a technology limita-
tion due to the maximum allowed voltage of the switching devices and the
capacitor of the DC bus, one possible design criterion would be to choose
Kdroop to have a given voltage error for a given voltage sag depth and an
operating speed:

Kdroop =
3Il cos(φ)

ηlηmωt

V N
z − V

fault
z

∆VDC
(11.9)

Regarding the dynamical behavior of VDC , notice that (11.7) is a second
order system with a stable zero and two poles which depend on the system
parameters. As τe is likely to be small, it can be arguably approximated as
τe ≈ 0 to simplify the understanding of the dynamics:

∆VDC(s) ≈ −
3Il cos(φ)

ηl

1

ηmKdroopωt

VDCC
ηmKdroopωt

s+ 1
∆Vz(s) (11.10)

By considering the generator current control loops to be very fast com-
pared to the dynamics of the DC bus, the dynamics of the voltage become
those of a first order system with a time constant τDC which can be calcu-
lated as:

τDC =
VDCC

ηmKdroopωt
(11.11)

Thus, the droop constant could also be set to have a desired settlement
time (tset = 3τDC):

Kdroop =
3VDCC

ηmtsetωt
(11.12)
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11.5 Simulation testing of the proposed scheme

Two possible design criteria to choose Kdroop have already been shown,
the one based in a specification of the maximum allowed increase in the
DC bus voltage being the preferred one, as it is more likely to be a critical
limitation of the system. It has also been shown that both criteria are not
contradictory. Indeed, a high droop constant will produce a small steady
state error and also a fast response, which are both desired features of the
control.

11.5 Simulation testing of the proposed scheme

In order to test the performance of the proposed control scheme, two sim-
ulations of the system behaviour under different conditions are performed.
The characteristic parameters of the system can be found in Table 11.1,
note that they have been chosen to match those of the scale experimental
platform which will be used in the next section to test a real implementation
of the proposed control scheme.

The first simulated scenario is a symmetrical sudden 50% drop of the
grid voltage (see Figure 11.4). The droop controller constant Kdroop = 0.21
Nm/V is calculated from (11.9) so that for a voltage drop of 50% while
extracting 1 kW at 2.000 min−1, the voltage error is approximatelly 10 V.
According to (11.11), this in turn would imply that the time constant of
the voltage dynamics would be τDC =26 ms. As this value is very close to
the current dynamics time constant (τe =20 ms), it is clear that the current
control dynamics can not be neglected. Taking the non simplified second
order system in (11.7), it can be seen that the poles of the system have a
natural frequency ω0 =43.24 rad/s and a damping coefficient ζ = 0.58, which
corresponds to an underdamped response with a settling time of tset = 120
ms. The response of the system can be seen in Figure 11.4, notice that the
transient response of the DC bus voltage corresponds to the predicted one
and the system is able to adapt the power extracted from the mechanical
system to match the power injected to the grid by the grid side inverter
while keeping the DC bus voltage in the specified range.

The second simulated scenario corresponds to a dampened 50% voltage
sag with a settling time of tsag = 500 ms applied to the same system used in
the first simulation scenario. The purpose of this simulation is to simulate
the response of the system to the type of voltage sag that can be applied in
the experimental setup. The response of the system is shown in Figure 11.5.
Notice that as the evolution of the grid voltage is slow compared to the DC
bus voltage dynamics, they can arguably be neglected, thus the transient
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Parameter description Symbol Value Units

Nominal grid voltage UN
z 230 V rms ph-ph

Nominal power factor cos(φ) 1 1
Nominal active power PN

z 1 kW
Current control time constant τe 20 ms

Power during the sag P
fault
z 500 W

Nominal DC voltage V N
DC 490 V

Table 11.1: Simulated scenario parameters
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Figure 11.4: Simulation results for a sudden drop of the grid voltage.
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11.6 Experimental results

evolution of the DC bus voltage matches the evolution of the grid voltage.
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Figure 11.5: Simulation results for a dampened drop in the grid voltage.

11.6 Experimental results

To further test the performance of the proposed control law, a voltage sag
test on a real platform controlled by an implementation of the proposed
scheme has been performed. The platform setup is depicted in Figure 11.6.
The setup consists of a back-to-back VSC converter connected to a PMSM
used as the WTGS generator connected by the shaft to an identical PMSM
machine which is used to emulate the wind turbine. A motor drive converter
fed by a diode rectifier is used to power the turbine emulator machine. A
three phase autotransformer is used to connect the back-to-back converter in
order to be able to decrease the voltage seen by the converter to simulate a
voltage sag[49]. A picture of the whole setup can be seen in Figure 11.7. The
parameters of the system were used in the simulation model of the previous
section and can be found in Table 11.1. The droop controller constant
Kdroop used in the real implementation is identical to the one designed for
the simulation model.

A 50% voltage sag is applied to the converter while working on its nominal
operating point. An oscilloscope capture of the most significant magnitudes
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11.7 Conclusions

A control strategy to allow to keep the wind turbine connected to the grid
during voltage sags without the need of comunication between the controller
of the grid side inverter and the machine rectifier has been presented. Design
rules for different design criteria have been proposed and the performance
of the control scheme has been successfully tested in both simulation and in
an implementation of the controller in a small scale experimental platform.

170



“PhD” — 2011/6/8 — 12:01 — page 171 — #201

Chapter 12

Conclusions

12.1 Contributions

The operation of DFIG and VSC under unbalanced voltage sags have been
extensively analyzed. Under such condition, the existence of negative se-
quence grid voltage has been shown to require the current control loops to
be able to control at will the negative sequence current. The conventional
vector control is not capable to control negative sequence current. Two
different alternative control schemes which allow to control the negative se-
quence current have been analyzed, being the stationary reference frame
current control the preferred one as several drawbacks of the dual reference
frame vector control have been found.

Regarding the VSC operation under unbalanced voltage sags, several op-
tions have been shown to exist when calculating the reference current. One
possible method is to inject only positive sequence current, which has been
shown to allow to inject the desired power to the grid to keep the DC bus
voltage from becoming unstable but implies a ripple in the power output.
Another option, which can be found in the literature, is to compensate the
oscillation of the power injected to the grid by using negative sequence cur-
rent. This has been shown to require a higher current which in turn will
produce a higher ripple in the power output of the converter. Also, a special
situation has been found where this method can not be used as it would
require an infinite current. In order to deal with these limitations, two
modifications of this method have been presented which allow to avoid this
special situation and to compensate the effect of the converter output filter
impedance so that the ripple of the power output of the converter is sup-
pressed. However, this method has been shown to require a larger current
than the method which only injects positive sequence current. Therefore,
either method should be chosen depending on the need to suppress the ripple
in the power or to minimize the required current.

Finally, a ride-through strategy for power reduction during voltage sags
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has been presented for PMSG-based wind turbines. This strategy has the
advantage that it can be implemented without the need of communication
between the generator control and the AC grid connection control, rendering
the system more robust to communication failures and enabling the use of
new configurations of wind turbines where the machine rectifier and the grid
side inverter are located far from each other.

12.2 Future work

The present work have arisen a number of interesting topics for further
research:

• Application of the proposed control schemes for VSC to High Voltage
Direct Current (HVDC) inverters.

• Extension of the proposed current control designs for islanded and
weak grid operation.

• Study of new topologies of inverters for high power applications.
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Through Control of a Doubly Fed Induction Generator Under Unbalanced
Voltage Sags”, IEEE Trans. Energy Conversion, vol. 23, No.4, December
2008.

Submitted and under revision
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