

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Programa de Doctorat:

AUTOMÀTICA, ROBÒTICA I VISIÓ

Tesi Doctoral

RESOURCE AND PERFORMANCE TRADE-OFFS
IN REAL-TIME EMBEDDED CONTROL SYSTEMS

Rafael Camilo Lozoya Gámez

Directors:
Pau Mart́ı Colom and Manel Velasco Garćıa

Abril de 2011

To Irlanda, Camilo and Betty

Abstract

The use of computer controlled systems has increased dramatically in our daily life. Microprocessors
are embedded in most of the daily-used devices, such as mobile phones, cars, dishwashers, etc.
Due to cost constraints, many of these devices that run control applications are designed under
processing power, space, weight, and energy constraints, i.e., with limited resources. Moreover, the
embedded control systems market demands new capabilities to these devices or improvements in
the existing ones without increasing the resource demands.

Enabling devices with real-time technology is a promising step toward achieving cost-effective
embedded control systems. Recent results of real-time systems theory provide methods and policies
for an efficient use of the computational resources. At the same time, control systems theory is
starting to offer controllers with varying computational load. By combining both disciplines, it is
theoretically feasible to design resource-constrained embedded control systems capable of trading-
off control performance and resource utilization.

This thesis focuses on the practical feasibility of this new generation of embedded control
systems. To this extend, two main issues are addressed: 1) the effective implementation of control
loops using real-time technology and 2) the evaluation of resource/performance-aware policies that
can be applied to a set of control loops that concurrently execute on a microprocessor.

A control task generally consists of three main activities: input data acquisition (sampling),
control algorithm computation, and output signal transmission (actuation). The timing of the
input and output actions is critical to the performance of the controller. The implementation of
these operations can be conducted within the real-time task body or using hardware functions (or
dedicated high priority tasks). The former introduces considerable amounts of jitters while the
latter forces delays. This thesis shows that, by combining both approaches, control loops can be
implemented in such a way that the problems caused by jitters and delays are removed.

The effective implementation of simple control algorithms does not guarantee the feasibility of
implementing resource/performance-aware policies. Conversely to the initial problem targeted by
these policies, that is, to minimize or keep resource requirements to meet the tight cost constraints
related with mass production and strong industrial competition, research advances seem to require
sophisticated procedures that may impair a cost-effective implementation. This thesis presents an
evaluation framework that permits to assess the potential benefits offered by the theory as well as
the pay-off in terms of complexity and overhead.

i

Acknowledgments

This thesis would not have been possible without the support of many people.

First I like to express my gratitude to my thesis supervisors, Pau Mart́ı and Manel Velasco.

Thanks Pau, your encouragement, guidance and patience have been greatly valuable for me, person-

ally and professionally. Thanks Manel, I deeply appreciate your support and knowledge that have

been abundantly helpful for my thesis research. Working with both of you has been a wonderful

experience.

I owe my deepest gratitude to Josep M. Fuertes for his leadership and guidance during my

research activities, also for letting me be part of the DCS research group. I would like to show my

gratitude to Vicenç Puig whose invaluable assistance help me to find a way in the Ph.D. program.

I would like to thanks my professors from the Automatic Control Department (ESAII) at the

UPC, for broadening my horizons. I also thanks my fellow colleagues that support me in so many

ways during the development of this work, specially to Antonio Camacho, Joseé Yépez and Julio

Romero. Also thanks to Mercè Cabané for her always helpful assistance.

I like to acknowledge the CONACyT, Funcación Carolina and ITESM for their financial support

during my Ph.D. studies. I would also convey my thanks to Gerardo Silveyra, Alberto Araujo,

Joaqúın Guerra and Rodolfo Castelló, for their trust in me and also for giving me the opportunity

to become a member of the ITESM faculty.

Not forgetting to my friends Rene Luna and Julia Jasso whose hospitality make those days in

Barcelona enjoyable. To Jorge Rodas who encourage me to continue studying.

Finally I wish to express my gratitude to my parents for their encourage and support. To my

wife, my son and my daughter for their understanding, caring and endless love during this journey.

iii

Contents

1 Introduction 1

1.1 Background . 1

1.2 State of the art . 3

1.3 Summary of contributions and thesis overview . 10

2 One-shot task model 13

2.1 Introduction . 13

2.2 Problem set-up . 13

2.3 One-shot task model . 14

2.4 Simulation and experiments . 20

3 One-shot task model extended to noisy measurements 31

3.1 Introduction . 31

3.2 Problem set-up . 31

3.3 One-shot and noisy measurements . 33

3.4 Simulation and experiments . 35

4 Taxonomy on resource/performance-aware policies 43

4.1 Introduction . 43

4.2 Problem set-up . 43

4.3 Taxonomy . 48

4.4 Selected methods for performance evaluation . 52

v

5 Performance evaluation framework 55

5.1 Introduction . 55

5.2 Problem set-up . 55

5.3 Evaluation framework . 59

5.4 Implementation and evaluation of selected methods 70

6 Performance evaluation: a detailed experience 83

6.1 Introduction . 83

6.2 Problem set-up . 83

6.3 A FBS and EDC implementation . 87

6.4 Results . 94

7 Conclusions 101

7.1 One-shot task model . 101

7.2 Performance evaluation framework . 102

7.3 Future work and open problems . 102

References 103

A Continuous and discrete cost function 111

B Framework simulation source code 113

B.1 Main program . 113

B.2 Initialization modules . 114

B.3 Controllers and optimization algorithms . 115

C Framework experiment source code 117

C.1 File: setup.c . 117

C.2 File: config.oil . 121

C.3 File: code.c . 122

vi

List of Figures

1.1 Control timing demands. 4

1.2 Hard real-time periodic task. 4

1.3 Embedded control systems executing multiple control loops. 10

2.1 Naif task model. 14

2.2 One-sample task model. 14

2.3 Timing analysis of controllers. 15

2.4 Controller pseudo-code. 17

2.5 One-shot task model. 18

2.6 One-shot task execution. 18

2.7 One-shot task vs. one-sample task. 19

2.8 Electronic double integrator circuit. 20

2.9 Simulation model. 21

2.10 EDF schedule timing. 22

2.11 Detailed view of the operation of several control strategies. 23

2.12 One-shot performance evaluation in front of existing solutions (simulation). 24

2.13 Naif task pseudo-code. 25

2.14 One-sample task pseudo-code. 26

2.15 One-shot task pseudo-code. 27

2.16 One-shot performance evaluation in front of existing solutions (experiment). 28

3.1 Kalman filter design approaches . 34

3.2 Simulation model. 36

vii

3.3 Simulation system response . 37

3.4 Kalman filter implementation using the standard controller 38

3.5 Kalman filter implementation using one-shot controller 39

3.6 Removing noise with the Kalman filter . 40

3.7 Controllers response with jitters. 40

3.8 Kalman gain evolution. 41

3.9 Accumulated execution time. 42

5.1 Full Flex board with a dsPIC33 microcontroller. 59

5.2 Framework functional modules. 60

5.3 Framework multitasking single processor configuration. 60

5.4 Framework resource manager module. 61

5.5 Framework task controller module. 61

5.6 Simulink/TrueTime model . 63

5.7 Processor kernel model . 64

5.8 Simulation framework flow diagram . 65

5.9 A microcontroller task controlling one double integrator plant. 66

5.10 Main program pseudo-code . 67

5.11 Periodic controller pseudo-code . 68

5.12 On-line optimization pseudo-code . 68

5.13 Event controller pseudo-code . 69

5.14 Electronic double integrator circuit . 69

5.15 Model validation. 71

5.16 Experimental setup . 72

5.17 Off-line FBS plant response and activation times. 75

5.18 On-line FBS-Inst. plant response and activation times. 76

5.19 On-line FBS-FH plant response and activation times. 77

5.20 Heuristic self-triggered plant response and activation times. 78

5.21 Self-triggered plant response and activation times. 79

5.22 Optimal self-triggered plant response and activation times. 80

viii

6.1 Pseudo-code for a standard periodic control task 88

6.2 Pseudo-code for the two tasks coordinated approach 89

6.3 Pseudo-code for the self-triggered approach . 89

6.4 Experimental data for observer design . 90

6.5 Cumulative cost for the three policies . 92

6.6 Cumulative control cost histogram for the three policies and for all the perturbation

intervals . 93

6.7 Processor usage histogram for the three policies and all the perturbation intervals . 94

6.8 Control performance and processor usage improvement as a percentage (%) of the

static policy . 95

6.9 Criticalness (K) study: control performance improvement and processor time savings

relative to the case K = 1 . 96

6.10 Jitter evaluation . 97

6.11 Deterioration of the cumulative control cost as a function of the period of the feed-

back scheduler task. 98

6.12 Statistical analysis of the linear performance benefit. 99

ix

List of Tables

2.1 Task set parameters in milliseconds. 21

3.1 Simulation control performance. 38

3.2 Experimental control performance. 41

4.1 Taxonomy of resource management approaches. 50

4.2 Selected methods of FBS and EDC showing key distinctive features. 52

5.1 FBS evaluation parameters and platform . 56

5.2 EDC evaluation parameters and platform . 57

5.3 Electronic components nominal values . 69

5.4 Simulation tasks sampling periods (seconds) . 72

5.5 Control performance and resource utilization simulation results 73

5.6 Experimental tasks sampling periods (seconds) . 74

5.7 Control performance and resource utilization experimental results 81

6.1 Worst case execution times . 91

6.2 Sampling periods in the experiments . 91

xi

Chapter 1

Introduction

1.1 Background

Embedded devices are being widely used in many areas, playing a key role in our society. An
embedded system is a special-purpose computer system designed to perform dedicated control
activities, interacting with the environment. Often the user of the device is not even aware that a
computer is present. Embedded control systems are found on portable devices (e.g. digital watches,
mobile phones, credit cards), daily-used machines (e.g. dishwashers, automobiles, domestic TV’s),
medical instruments (e.g. heart pacers, patient monitors), and large stationary installations (e.g.
traffic lights controllers, factory automation systems).

Currently 98% of computing devices in the world are embedded systems. Most of mobile phones
contains 5-10 processors and a typical car has 60 processors or more. Conservative estimations
indicate that a total of 16 billion of embedded systems will be available by the end of the year
2010, and a forecast of over 40 billion of available devices worldwide by 2020. In the next five
years, the share of the value of embedded electronics components in the value of the final product
is expected to reach significant percentages (more than 40% in average) [ART10].

Embedded systems market demands devices with more and better functionalities at lower prices.
In addition, embedded devices are designed under space, weight and energy constraints, imposed
by cost restrictions. As a consequence, embedded applications typically run on small processing
units with limited memory and computational power. This increases embedded control systems
complexity from both the control and computer science perspectives. As a consequence researchers
in the computer and control fields are becoming increasingly aware of the need for an integrated
scientific and technological perspective on the role that computers play in control systems and that
control can play in computer systems [SÅ03].

However, by tradition, the design of embedded control systems has been based on the separation-
of-concerns principle [ÅC05]. This principle is based on the fact that the most common analysis,
design and implementation approach for embedded control systems is the periodic execution of
control algorithms. This periodic data abstraction is advantageous from the design standpoint.
The control community has focused on the pure control design without having to worry about
which resource needs the controller is placing on the execution platform and how the control sys-
tem eventually is implemented. The computer science community has focused on development
of computational methods and models, without any need to understand what impact the final
implementation has on the stability and performance of the plants under control.

While this so-called separation-of-concerns has proven advantageous from a designer’s perspec-
tive, it does not necessarily lead to cost-effective implementations. By separating the concerns of

1

Chapter 1: Introduction 2

the control engineer from the computer science engineer, each designer is forced to adopt a con-
servative viewpoint that may lead to unnecessary over-provisioning in the system implementation
and hence to higher system costs and sub-optimal control performance.

To overcome this limitation, there has been a recent interest in developing co-design frameworks
where the concerns of computer science and control systems engineers are treated in a unified
manner. In particular, the real-time systems community and the control community have been
dealing with the co-design problem in the last years [SAÅ+04]. One of the first statements of the
co-design problem was given in [SLSS96]. Since that time, a number of other co-design approaches
have been suggested. A list of such methods can be found in the introduction to control and
scheduling co-design given in [ÅCES00].

Hence, enabling embedded devices with real-time technology is a promising step toward achiev-
ing cost-effective embedded control systems. In fact, nowadays simple embedded control systems
often contain a multi-tasking real-time kernel [CHL+03]. For example, controllers are often im-
plemented as one or several periodic tasks. Often the microprocessor also contains tasks for other
functions (e.g., communication and user interfaces). Therefore, the kernel uses multiprogramming
to multiplex the execution of the various tasks. In this case, the central process unit (CPU) time
can be viewed as shared resource for which the tasks compete.

However, the simple approach based on the assumption that controllers can be modelled and
implemented as periodic real-time tasks with fixed periods and scheduled with standard schedul-
ing policies such as fixed priority (FP) or earliest deadline first (EDF) [LL73] does not guarantee
efficient resource usage and outstanding control performance. First, the selection of fixed rates of
execution is not an easy task: low rates imply low resource utilization but also imply low control
performance (and viceversa). Second, embedded control systems usually operate in dynamic envi-
ronments where application demands, computational workload and resource availability experience
changes during execution time. Therefore, the enforcement of a fixed rate can be inappropriate.

Overcoming these limitations demands flexible and adaptable scheduling policies and controller
designs capable to make an efficient use of the computational resources [But06]. It is desirable to
achieve more dynamic system architectures where the control applications and the implementation
platform negotiate on-line for access to shared resources, such as CPU time. To this extend, two
new trends for the analysis and design of embedded control systems can be identified in the liter-
ature [LVM07]. The first one, often referred as “feedback scheduling” (FBS), is based on applying
efficient sampling period selection techniques that account for processor load and plants dynamics
in such a way that the aggregated control performance delivered by the set of control loops is im-
proved. The second trend is based on applying feedback “event-driven control” (EDC) techniques
in order to minimize controllers resource demands while still guaranteeing stability and acceptable
control performance.

These resource/performance-aware approaches focus on theory, whereas practical aspects are
often omitted. Moreover, these theoretical advances demand flexible real-time kernel support as
well as more complex controller mechanism and designs, thus requiring a priori more sophisticated
and expensive software/hardware solutions. However, as argued before, new trends for embedded
control systems demand low cost solutions.

This thesis provides insight into these conflicting demands which may impair the implementa-
tion feasibility of this new generation of embedded control systems. In particular, by focusing in
the evaluation of the diverse resource/performance-aware policies that can be applied to a set of
control loops that concurrently execute on a microprocessor, two main problems are identified:

• the effective implementation of control loops using real-time technology.

• the definition and development of an evaluation framework capable of including the wide
variety of resource/performance-aware policies.

3 1.2 State of the art

1.2 State of the art

The design of embedded control systems is essentially a co-design process, since decisions made
in the real-time design affect the control design and viceversa. Recent research on embedded con-
trol systems has focused on two main domains. The first one is related to effective implemen-
tation techniques of control algorithms on real-time platforms, and the second one refers to the
resource/performance-aware policies for multitasking control systems in order to maximize control
performance and/or minimize resource utilization. In this document both domains are discussed.
The state of the art presented below does not try to be an exhaustive one, but instead it pro-
vides representative tendencies on embedded control systems in order to raise important research
challenges.

1.2.1 Implementation of control algorithms

The common approach to computer controlled systems design has two steps. The first step is to
obtain a discrete-time model of the plant. The second step is to design a discrete-time control
law for the discrete-time plant model. The design approach mandates to periodically sample and
actuate.

The key aspect of the design procedure is that the discrete-time model of the plant describes
the behavior of the analog plant at the sampling instants. Moreover, the actuation instants are
defined in terms of the sampling instants. Therefore, the time reference and synchronism is given
by the sampling instants (as illustrated in Figure 1.1). Once a sample is taken, the control signal
is computed assuming that the next sample will occur after h time units (i.e., one sampling pe-
riod), and assuming that the actuation will occur after τ time units (i.e., one time delay). Both
assumptions refer to future known events: next sampling instant or subsequent actuation instant.

After the controller design stage, the control law is implemented by means of a control algorithm.
Although real-time computing is about meeting timing constraints [But97], it is not straightforward
to meet the periodic control demands with available real-time technology. The hard real-time
periodic task is the baseline computational abstraction for implementing control algorithms. In
a periodic task, shown in Figure 1.2, consecutive releases times mark the task period, and jobs
execute within each release time and relative deadline. The relative deadline can be assumed to be
less or equal than the period.

The control task model identified in [ÅCES00] as the common practice implementation of
control loops in real-time control systems is refereed as “naif” task model. The naif task model
assumes control algorithms implemented as hard real-time periodic tasks, with task period equal
to the sampling period. Sampling (input) and actuation (output) operations are specified to oc-
cur at the beginning and at the end of each job execution. The deadline specification is a key
aspect in the naif task model. For one task executing in isolation, the timing of the control task
execution corresponds to the expected timing (Figure 1.1) if the deadline is set equal to the time
delay. However, in a multitasking system, this tight specification of the deadline impairs task set
schedulability in the general case [MFVF01]. Relaxing this specification by setting the deadline
greater than the time delay introduces sampling and latency jitters in control job executions. From
a control-theoretic perspective, it is useful to distinguish between sampling jitter (variation in the
input instant or sampling) and input/output jitter (variation in the delay from input or sampling
to output or actuation). If jitters occur, the next sampling and/or actuation will be performed
at times different than the expected ones. The synchronism given by the sampling instants is
lost. Therefore, the introduced time uncertainty violates the mandated periodicity, and control
performance degradation occurs [WNT95].

Different solutions have been proposed to the jitter problem, these can be roughly divided into
control-based solutions and real-time based solutions.

Chapter 1: Introduction 4

�

�
Sampling

�

Actuation

��τ

�� h �
Sampling

�

Actuation

��τ

�� h �
Sampling

�

Actuation

��τ

�� h �

time
Figure 1.1: Control timing demands.

�
�

�Ck

Release Deadline

�
�Ck+1

Release Deadline

�

Release

time
Figure 1.2: Hard real-time periodic task.

1.2.1.1 Control-based solutions

The problem of dealing with scheduling-introduced jitters has been treated from a more pure
control perspective. In these approaches, the common trend is to accept the presence of the jitters
and modify control parameters in order to compensate the control actuation.

The jitter problem has been analyzed considering control systems with irregular sampling in-
tervals. An initial solution is proposed by [AS90], where each discrete control action is evaluated
according to the time interval since the last sample, allowing the controller parameters to be di-
rectly updated each time the sampling period changes. Later in [AC99], an advanced observer
(predictor) is proposed based on the intrinsic properties of sampled data systems to reduce the
effect of variable time-delays. However these control design techniques are not integrated within
existing scheduling theory, and implementation details are not considered.

Other solutions consider the use of time-stamps and linear compensators to reduce the degrading
effect of jitters. In [Lin02] a method to compensate for time-varying random delays in digital
control systems is presented. The idea is to add a time-delay aware compensator to the original
controller, to improve stability and performance of the control loop. In this model the actuator
sends time-stamps to the controller, in this way the controller may use knowledge of when former
control signals actually appeared at the plant. The compensator measures the difference between
the actual control signal and the desired control signal from the controller, to modify the data sent
to the actuator. In [Boj05] is shown that the effects of jitter can be modelled by approximations
for the plant dynamics, and additive noise constructed by the modulation of plant signals with the
jitter. These approximations give useful insights for digital controller design.

In [FSR04] a solution is proposed by solving the problem for a continuous-time system with
uncertain but bounded time-varying delay in the control input. Linear matrix inequalities (LMI)
conditions are derived for stabilization of systems, the derived conditions are conservative in order
to guarantee stabilization for all sampling intervals not greater than a maximum sampling period.
In a similar way, in [SB09] an approach to the analysis and synthesis of state-feedback controllers
with timing jitter is presented where LMI methods are used to derive a Lyapunov function that
establishes an upper bound on performance degradation due to the timing jitter. The LMI methods
can be used to synthesize a constant state-feedback controller that minimizes the performance
bound, for a given level of timing jitter. Other works have discussed the use of an input delay
approach for non-uniform sampling [Mir07], in which the sample-and-hold circuit is embedded into
an analog system with a time-varying input delay. However latency jitters are not covered by this
approach.

5 1.2 State of the art

1.2.1.2 Real-time based solutions

Alternatives solutions to minimize the likelihood of jitters can be found in the real-time systems
literature. A seminal work is presented by [LL73] where sampling and actuation are performed
periodically by hardware interrupts at the release time and deadline respectively, introducing one-
sample delay in all control loops closed over the computer. This type of task model is referred
as “one-sample” task model. By using this model, jitters are removed but the model imposes an
artificial long time delay in the closed-loop system, which introduces an unnecessary although
predictable control performance degradation.

In order to reduce the long latencies inherent to the one-sample task model, a scheduling algo-
rithm is proposed by [BBGL99] which reduces the latencies by assigning shorter relative deadlines.
In the same way a computational model based on Giotto [HHK01] is proposed by [CE03], where
the primary goal of the model is to facilitate co-design of real-time systems with control systems. In
particular the model reduces input-output latencies by dividing a task into a number of segments,
each segment is scheduled individually using dynamic periods which equals the current segment
length. A preliminary work based on this approach can be found in [Cer01].

A similar work can be found in the definition of a control task model formalized by [BRVC04]
based on the initial proposal by [ACR+00]. The objective of this approach is to reduce the delay
variance in the delivering of the control action computed by the different tasks. For that pur-
pose, each task is partitioned into an initial part (sensing or acquisition part), a mandatory part
(computing or control algorithm part) and a final part to deliver the control action (actuation or
delivering part). Each part is scheduled as independent, then by assigning different priorities levels
and deadlines to each task part, the delay variance can be reduced and an average delay value can
be incorporated into the controller design. This control task can be implemented using either FP
or EDF scheduling policy. These real-time based solutions suffer from three problems. First, the
occurrence of jitters is not completely eliminated. Second, artificial input/output (I/O) latencies
are still enforced. And when latencies are shortened by specifying shorter relative deadlines, the
third problem arises. System schedulability is reduced because jobs are forced to execute within
shorter time intervals. This solution [BRVC04] is refereed as “split” task model in the rest of this
document.

Finally, the model proposed by [MFRF01] is based on the notion of compensations wherein
controller parameters are adjusted at runtime for the presence of jitters. This model is identified
as the “switching” control task model. This approach uses control theory to calculate the adjusted
controller parameters to compensate for the timing variations. Therefore the control law used in
this task model requires to be calculated each time the task is executed since the sampling period
may be constantly varying due to jitters. This model differs from the split model because it accepts
the presence of jitter and compensate for it at runtime, instead of trying to reduce its variance. In
the switching task model, parameter adjustments are conducted on-line if run-time overheads are
acceptable, if not an alternative implementation is also proposed via table look-ups at runtime.
In any case, additional computation or additional memory are required for implementation. The
main drawback of this approach is the computation overhead or additional memory requirements
due the switching of the controller gains, as well as possible chattering problems that may occur.

1.2.1.3 Thesis approach

From a design point of view, there is a fundamental trade-off between delay and jitter. Performing
input and output action in the real-time task body produces jitter in the general case. Using
hardware functions or dedicated, high-priority input and output tasks, it is possible to exchange
jitter for delay. But both delay and jitter degrade the control performance, and it cannot be said
which is worse in general.

Chapter 1: Introduction 6

The approach considered in this thesis combines input performed in the control task body and
actuation performed with hardware functions. The control algorithm using this implementation
technique is based on prediction techniques [AC99]. Integrating both techniques, a novel control
task model named “one-shot” is developed. It is shown that it permits to remove the endemic
problems for embedded control systems that jitters and delays represent.

1.2.2 Feasibility of resource/performance-aware policies

The widespread use of embedded systems and their design challenges due to resource, cost and tim-
ing constraints has triggered novel research on control and real-time strategies in the analysis and
design of embedded control systems with constrained resources. Two emerging disciplines, identi-
fied as feedback scheduling and event-driven control systems are surveyed next. In addition, the
implementation feasibility study of these policies demands adequate simulation an experimentation
tools.

A brief review of some representative simulation tools and real-time platforms used for research
purposes in the embedded control systems area is also presented. In order to limit the scope of this
review, the focus has been placed on recent tools and platforms suitable for real-time and control
analysis and design.

1.2.2.1 Resource/performance-aware policies

Feedback scheduling refers to the problem of sampling period selection for real-time control tasks
that compete for limited computer resources such as processor time. Its goal is to optimize the
aggregated control performance achieved by all tasks by using efficiently the scarce resources. The
standard FBS architecture includes a resource manager element which dictates how task periods
are assigned to each control task in order to optimize the overall control performance. The al-
location of resources is commonly formulated as a constrained optimization problem where the
objective function relates control performance and resource utilization, the later usually in terms
of the sampling periods (task periods) or frequencies. The optimization variables usually are the set
of sampling periods to be assigned to all control tasks. The optimization problem is constrained by
two key aspects. The set of optimal sampling periods must guarantee closed loop stability and task
set schedulability. Stability is either guaranteed by the formulation of the optimization problem,
or it is not explicitly imposed in the formulation but analyzed after solving the optimization prob-
lem. Task set schedulability is often imposed by resource utilization tests. A few methods, instead
of providing optimal sampling periods, provide job sequences. That is, the outcome of the opti-
mization problem is an optimal sequence of jobs for each control task to be executed periodically.
Examples of feedback scheduling results found in the literature are [SLSS96], [SLS98], [ZZ99],
[EHÅ00], [RS00], [HCAÅ02], [PPSV+02], [CEBÅ02], [CLS03], [MLB+04], [PPBSV05], [HC05],
[CMV+06], [GCHI06], [MLB+09], [BC08], [SCEP09], [SEPC09], [GcH09], or [CVMC10]. The large
amount of contributions indicates that feedback scheduling is a theoretically mature discipline for
processor-based systems. The main drawback of these approaches, identified in several of the listed
papers, refers to whether the solution of the optimization problem is feasible at run-time, since
implementability is not demonstrated.

In event-driven control systems, event conditions determine the occurrence of discrete events
that trigger control updates. The event condition is often imposed in the problem formulation
to restrict the desired system dynamics, but it can also be intrinsic to the nature of the con-
trol setup, such as the measurement method. The execution of event-driven controllers aims at
minimizing resource utilization while ensuring stability or bounding the inter-sampling dynamics.
This is achieved by executing controllers without periodic requirements: controllers jobs are only
executed when needed. Event-driven controllers adapt the real-time system task period directly

7 1.2 State of the art

in response to the application performance [Årz99]. In this way the real-time system is only used
when it is essential for the system performance. Since the system state is always changing, this
approach generates an aperiodic sequence of control task invocations. In general, the hope is that
the average rate of this aperiodic tasks will be much lower than the rate of a comparable periodic
task. There is, in fact, ample experimental evidence to support the assertion that event-triggered
feedback improves overall control system performance while reducing the real-time system use of
computational resources [AB02] [HSB08]. Examples of results of event-driven control systems in
processor-based platforms are [Årz99], [HGvZ+99], [AB02], [VMF03], [TW06], [Mis06], [Tab07],
[LCH+07], [JHC07], [SNR07], [AT08a], [AT08b], [WL08a], [WL08b], [HSB08], [HJC08], [WL09a],
[WL09b], [MVB09], [MAT09], [MT09], [VMB09a], [AT09], [AT10], Unfortunately, although work
on event-driven control started to appear in the 50’s [Ell59], the discipline still lacks a mature
system theory. Moreover, rarely implementation issues are discussed.

1.2.2.2 Simulation tools

The real-time research community has developed a number of prototypical tools for schedule sim-
ulation, timing analysis and schedule generation, such as STRESS [ABRW94] and DRTSS [SL96].
Meanwhile, the control community have used mathematical software for simulations such as Mat-
lab/Simulink1 created by MathWorks since 1984 or Scilab/Scicos2 created by the INRIA (Institut
National de Recherche en Informatique et Automatique) and the ENPC (Ècole Nationale des Ponts
et Chaussées) since 1990.

Recently the following computation tools have been developed for research purposes for the
co-analysis and co-simulation of embedded control systems.

Ptolemy II [HLL+03] is the third generation of software produced within the Ptolemy project
at the University of California at Berkeley. Ptolemy II supports heterogeneous, hierarchical mod-
elling, simulation, and design of concurrent systems, especially embedded systems. The focus is
on complex systems mixing various technologies and operations. Ptolemy is component-based and
models are constructed by connecting a set of components and have them interact under the
model of computation. In Ptolemy the real-time control system simulation is just one part of a
larger framework.

The Aida toolset [REKT04] integrates the design and performance analysis of control systems
with embedded real-time system design. The toolset enables specification and analysis of real-
time implementations of control applications. Control system designs are imported to a real-time
system-modelling domain in which the functionality is distributed on a target computer system.
Once the real-time design is complete, the response times and release jitter of the processes and
their contained functions can be analyzed and the system information exported back to the control
domain. Matlab/Simulink can be used in the control domain, since Aida includes an interface with
Matlab/Simulink. Aida focuses more in the model-based design rather than in the co-simulation
analysis.

RTSIM [PLLA02] is a tool that is aimed at simulating realtime embedded control systems.
The main goal is to facilitate cosimulation of real-time controllers and controlled plants in order
to evaluate the timing properties of the architecture in terms of control performance. The tool
consists of a collection of libraries which allows the user to specify a set of plants, the functional
controller behavior, the implementation architecture, and a mapping of functional behavior onto the
architectural components. The simulation produces results related both to the realtime performance
and the control performance. This includes the generation of execution traces, realtime statistics
(delays and jitter), and control performance metrics such as time responses and quadratic costs.

1Mathlab/Simulink, http://www.mathworks.com/
2Scilab/Scicos, http://www.scilab.org/

Chapter 1: Introduction 8

Torsche [SKSH06] is a Matlab-based toolbox including scheduling algorithms, that are used for
various applications such as high level synthesis of parallel algorithms or response time analysis of
applications running under a fixed-priority operating system. Using the toolbox, one can obtain
an optimal code of computing intensive control applications running on specific hardware architec-
tures. The tool can also be used to investigate application performance prior to its implementation.
These values can be used in the control system design process performed in Matlab/Simulink.

TrueTime [HCÅ02] is a MATLAB/Simulink-based toolbox that facilitates simulation of the
temporal behavior of a multitasking realtime kernel executing control tasks. The tasks are control-
ling processes that are modelled as ordinary continuous time Simulink blocks. TrueTime also makes
it possible to simulate models of standard medium access control (MAC) layer network protocols,
and their influence on networked control loops. TrueTime allows the execution time of tasks and
the transmission times of messages to be modelled as constant, random, or datadependent. Fur-
thermore, TrueTime allows simulation of context switching and task synchronization using events
or monitors.

Recent surveys on simulation tools for real-time and control systems co-design can be found
in [Årz05] and [THÅ+06].

1.2.2.3 Real-time platforms

Many of the resource/performance-aware policies require that all of the controllers be capable of
running with different sampling frequencies given different resource allocations. Each controller can
be considered a flexible real-time process with flexible period choices. Dynamic resource allocation
for controllers can be achieved by any existing real-time operating system or kernel supporting
scheduling frameworks or scheduling algorithms which permits dynamic task period adjustment at
run time and guarantees that no deadline is missed during the adjustment.

Therefore, the required real-time system support for implementing these policies should en-
force timeliness with a certain degree of flexibility, trading off predictability in the performance
and efficiency in the resource utilization, as also demanded by other type of modern control appli-
cations [Sta96].

Nowadays, there are more than a hundred commercial products that can be categorized as
real-time operating systems, from very small kernels to large multipurpose systems for complex
real-time applications [But97]. The most important commercial products and suppliers for real-time
operating systems are: VxWorks (Wind River), OSE (OSE Systems), Windows CE (Microsoft),
QNX (Neutrino), Integrity (Green Hills), RTLinux (University of New Mexico) and Linux/RK
(TimeSys). However, these kernels are based on fixed priority scheduling, hence only rate monotonic
(RM) scheduling and its derivatives can easily be implemented.

The rest of this section only focuses on recent real-time kernels developed for research purposes,
since this generation of new operating systems include flexible features that allow the analysis
and implementation of novel FBS and EDC algorithms. These features include the ability to
treat tasks with explicit timing constraints, such periods and deadlines, and the possibility to
characterize tasks with additional parameters, which are used to analyze the dynamic performance
of the system. Moreover, they have to provide mechanism by which a program becomes self-aware,
checks its progress and can change itself or its behavior. This is achieved by allowing applications
to access kernel data structures using application program interfaces (APIs) to obtain and modify
information about the current system state. Alternatively, the flexibility can be achieved when
kernel structures contain application data, which can be then used by the kernel to alter the progress
of each task. Examples of kernels providing this services include the Shark kernel [GAGB01], Marte
OS [ARGH01], PaRTiKle [PMRC07] and Erika [Srl08a].

SHARK (Soft and Hard Real-time Kernel) [GAGB01] is a dynamic configurable research ker-
nel architecture designed for supporting a simple implementation, integration and comparison of

9 1.2 State of the art

scheduling algorithms. The kernel supports the development and testing of new scheduling al-
gorithms, aperiodic servers and resource management protocols. SHARK is based on a generic
kernel, which does not implement any particular scheduling algorithm neither a resource manager
policy; the generic kernel provides the primitives to allow external modules to implement specific
scheduling and resource manager algorithms. This kernel has been used for academic purposes and
it is compliant with the POSlX (Portable Operating System Interface) 1003.13 PSE52 specifica-
tions [ISIEIS96].

MARTE (Minimal Real-Time OS for Embedded Applications) [ARGH01] is a real-time kernel
for embedded applications that follows the Minimal Real-Time POSIX.13 subset [10096], providing
both C and Ada language POSIX interfaces. The kernel has a low-level abstract interface for
accessing the hardware that encapsulates operations for interrupt management, clock and timer
management, and thread context switches. The applications planned for this kernel are industrial
embedded systems, such as data acquisition systems and robot controllers, the targeted applications
are mostly static, with the number of threads and system resources well known at compile time.
This kernel has been mainly implemented on x86 platforms (Intel) and also on the MC68332
microcontroller (Freescale).

PaRTiKle [PMRC07] is a embedded real time aperating system designed to be POSIX compli-
ant. PaRTiKle has been designed to support applications with real-time requirements, providing
features such as full preemptability, minimal interrupt latencies, and all the necessary synchro-
nization primitives, scheduling policies, and interrupt handling mechanisms needed for this type
of applications. PaRTiKle supports Ada, C++ and Java applications. The PaRTiKle kernel has
been designed and implemented as a set of hardware-independent subsystems and a set of drivers.
So far, PaRTiKle supports execution environments based on the x86 platform, and it has recently
been ported to LPC2000 microcontrollers (NXP Semiconductors).

ERIKA [CMC+04] is a small size, but fully functional kernel distributed by Evidence s.r.l.3 and
supports many features from the OSEK/VDX (Open Systems and the Corresponding Interfaces
for Automotive Electronics / Vehicle Distributed eXecutive) standard [OSE]. ERIKA has been de-
signed to be an effective educational and research platform for real-time programming in embedded
systems. The kernel architecture consists of two main layers: the kernel layer and the hardware
abstraction layer. The first layer contains a set of modules that implement task management and
real-time scheduling policies. The hardware abstraction layer contains the hardware dependent
code that manages context switches and interrupt handling. ERIKA currently supports Microchip
dsPIC33 microcontrollers and Altera NIOS II processors.

Platforms and real-time kernels for testing embedded control systems can also be found in
educational papers such as [ÅBW05] and [MVF+10]

1.2.2.4 Thesis approach

Despite of the great variety of different resource/performance-aware policies that have recently
proposed in the literature, no unified framework exist to assess their pros and cons, as well as,
their implementation feasibility. Partial evaluations can be found in the literature. An evaluation
of a feedback scheduling policy using a real-time kernel can be found in [MLV+08]. A first attempt
to compare feedback scheduling methods can be found in [CA06], and a first attempt to analyze
resource demands of a class of event-driven control systems is found in [VML08] and [VMB09b].
Schedulability issues of event-driven controllers were initially analyzed in [VMB08]. The work
presented in [VMF+10] provides the first comparison between a feedback scheduling policy and an
event-driven multitasking control system. A common evaluation framework is required to provide
adequate services in order to fulfill the specifications obtained after the analysis of the different

3Evidence s.r.l., http://www.evidence.eu.com/

Chapter 1: Introduction 10

resources

control
task

plant

Figure 1.3: Embedded control systems executing multiple control loops.

existing methods. Furthermore the common framework must provide fair measurement metrics in
order to evaluate control performance, resource utilization, and computation overhead.

This thesis presents an evaluation framework that permits to assess the potential benefits
offered by each resource/performance-aware policy, as well as the pay-off in terms of complexity
and overhead. This is achieved by classifying these policies into a taxonomy and defining the
evaluation framework able to assess the diversity found in such policies. The framework includes
a simulation part and an experimentation part, the first one is based on TrueTime while the later
one is based on ERIKA.

1.3 Summary of contributions and thesis overview

The contribution of the thesis falls into the broad area of implementation and evaluation of embed-
ded control systems. The embedded control system considered in this thesis is a micro-processor
based system in which n-physical plants should be controlled by a computer with limited computa-
tional resources. The control is achieved by n-concurrent control tasks executing in the computer,
each task being responsible for the sampling, control computation, and actuation in one loop. Only
linear time-invariant systems are considered. The concurrency is facilitated by a real-time kernel
enabled with EDF and FP scheduling policies. The overall situation is depicted in Figure 1.3.

In this context, the two main contributions of this thesis are:

1. Development of a novel theory and practice for effective implementation of control tasks
running on top of a real-time kernel in such a way that endemic problems such as jitters and
delays are eliminated, while easy integration in current scheduling policies is guaranteed.

2. Development of a common evaluation framework capable to assess 1) the implementation fea-
sibility of key resource/performance-aware policies strategies for embedded control systems,
and 2) their advantages and disadvantages in terms of control performance and resource
utilization.

These contributions are described in this document as follows:

Chapter 2 reviews existing solutions for effective implementation of control tasks, in terms of
control tasks models. Then it presents the analysis, design and implementation of the one-
shot task model as a novel task model for real-time control tasks. It is shown the feasibility
and effectiveness of the proposed model compared with previous real-time and/or control
based solutions already discussed in this chapter. The one-shot task model has already been
introduced in the following papers:

11

[LMVF08] C. Lozoya, P. Mart́ı, M. Velasco, and Josep M. Fuertes. Analysis and design
of networked control loops with synchronization at the actuation instants. In
34th Annual Conference of the IEEE Industrial Electronics Society (IECON08),
Orlando, Florida, US, November 2008.

[LVM08] C. Lozoya, M. Velasco, and P. Mart́ı. The one-shot task model for robust real-
time embedded control systems. IEEE Transactions on Industrial Informatics,
4(3), August 2008.

[MVF+07] P. Mart́ı, M. Velasco, J.M. Fuertes, R. Villà, J. Yépez, and C. Lozoya. The one-
shot task model for implementing real-time control tasks. In II Congreso Español
de Informática (CEDI2007), Zaragoza, Spain, Sep. 2007.

Chapter 3 extends the one-shot task model to the case of noisy measurements. This is achieved by
using Kalman techniques, which must take into account the non-periodicity of the sampling
operations. Experimental results illustrate the effectiveness of the proposed solutions. Part
of the results from this chapter has been published on:

[LRM+10] C. Lozoya, J. Romero, P. Mart́ı, M. Velasco, and J. M. Fuertes. Embedding
Kalman techniques in the one-shot task model when non-uniform samples are
corrupted by noise. In 18th Mediterranean Conference on Control and Automation
(MED2010), Marrakech, Morocco, June 2010.

Although not used with the one-shot task model, Kalman filter has been applied to estimate
delays in a wireless network on:

[LMVF10] C. Lozoya, P. Mart́ı, M. Velasco, and J. M. Fuertes. Study of a remote wireless
path tracking control with delay estimation for an autonomous guided vehicle.
The International Journal of Advanced Manufacturing Technology, pages 1–11,
2010. 10.1007/s00170-010-2736-x.

Chapter 4 analyzes the characteristics of the resource/performance-aware polices used in the
implementation of embedded control systems. Based the analysis, main features and current
trends are identified, and a taxonomy is provided. Initial analysis on this topic have already
been presented:

[LVM07] C. Lozoya, M. Velasco, and P. Mart́ı. A 10-year taxonomy on prior work on sam-
pling period selection for resource-constrained real-time control systems. In Work
in Progress 19th Euromicro Conference on Real-Time Systems (ECRTS 07), Pisa,
Italy, July 2007.

[VML08] M. Velasco, P. Mart́ı, and C. Lozoya. On the timing of discrete events in event-
driven control systems. In 11th International Conference on Hybrid Systems: Com-
putation and Control (HSCC08), St. Louis, MO, USA, April 2008.

Chapter 5 analyzes how existing resource/performance-aware polices have been evaluated. It
then describes the characteristics of the proposed performance evaluation framework. It also
presents the application of the framework at evaluating different but representative resource
management strategies. Initial performance/resource evaluation on different optimization
policies were presented in the following publications:

12

[CMV+10] A. Camacho, P. Mart́ı, M. Velasco, C. Lozoya, R. Villà, J. M. Fuertes, and E. Gri-
ful. Self-triggered networked control systems: an experimental case study. In
IEEE 2010 International Conference on Industrial Technology (ICIT2010), Val-
paraiso, Chile, March 2010.

[LMF10] C. Lozoya, P. Mart́ı, and J. M. Fuertes. Minimizing control cost in resource-
constrained control systems: from feedback scheduling to event-driven control. In
18th Mediterranean Conference on Control and Automation (MED2010), Mar-
rakech, Morocco, June 2010.

[LMV06] C. Lozoya, P. Mart́ı, and M. Velasco. Control performance evaluation of feedback
scheduling of real-time control tasks. Technical Report ESAII-RR-07-16 Techni-
cal Report, Automatic Control Department, Technical University of Catalonia,
Barcelona, Spain, 2006.

[LMVF08] C. Lozoya, P. Mart́ı, M. Velasco, and J.M. Fuertes. Control performance eval-
uation of selected methods of feedback scheduling of real-time control tasks. In
17th World Congress of IFAC, Seoul, Korea, July 2008.

[LMVF09] C. Lozoya, P. Mart́ı, M. Velasco, and J.M. Fuertes. Simulation study on control
performance and resource utilization for resource-constrained control systems.
Technical Report ESAII-RR-09-01 Technical Report, Automatic Control Depart-
ment, Technical University of Catalonia, Barcelona, Spain, 2009.

[YLMF09] J. Yépez, C. Lozoya, P. Mart́ı, and J.M. Fuertes. Preliminary approach to Lya-
punov sampling in CAN-based networked control systems. In 35th Annual Con-
ference of the IEEE Industrial Electronics Society (IECON09), Porto, Portugal,
November 2009.

Chapter 6 presents a complete evaluation of two resource/performance-aware policies. The eval-
uation is carried out under the performance evaluation framework, but with a wider diversity
of scenarios, which permit to extract new hidden conclusions. The analysis and results from
this chapter have been published on:

[VMF+10] M. Velasco, P. Mart́ı, J. M. Fuertes, C. Lozoya, and S. Brandt. Experimental
evaluation of slack management in real-time control systems: Coordinated vs.
self-triggered approach. Journal of Systems Architecture, 56(1), January 2010.

Chapter 7 presents the conclusions of this thesis.

The research activities for this thesis are conducted as part of the research lines defined by the
Distributed Control Systems (DCS)4 group of the Automatic Control Department (ESAII)5 at the
Technical University of Catalonia (UPC)6. This thesis is built upon the results published in two
previous DCS group thesis: [Mar02] and [Vel06].

4DCS, http://dcs.upc.edu/
5ESAII, http://webesaii.upc.edu/
6UPC, http://www.upc.edu/

Chapter 2

One-shot task model

2.1 Introduction

In a context where embedded control systems implemented in small micro-processors enabled with
real-time technology, control laws are often designed according to discrete-time control systems
theory and implemented as hard real-time periodic tasks. Standard discrete-time control theory
mandates to periodically sample (input) and actuate (output). Depending on how input/output
(I/O) operations are performed within the hard real-time periodic task, different control task
models can be distinguished. However, existing task models present important drawbacks. They
generate task executions prone to violate the periodic control demands, problem known as sampling
and latency jitter. Or they impose synchronized I/O operations at each task job execution that
produce a constant but artificially long I/O latency.

To overcome these limitations, in this chapter the “one-shot” task model is presented. The
novel control task model is built upon control theoretical results that indicate that standard con-
trol laws can be implemented considering only periodic actuation. That is, the periodic sampling
requirement can be relaxed. Taking advantage of this property, the one-shot task model permits to
remove endemic problems for real-time control systems such as sampling and latency jitters while
to minimizing the harmful effects that artificially imposed longer I/O latencies have on control
performance. To corroborate its correctness and effectiveness, simulations and real experiments
have been carried out. They show the benefits that can be obtained by the application of the
one-shot task model in terms of operation and performance, compared to existing real-time and/or
control based methods and models currently used a) for implementation of control algorithms us-
ing real-time technology or b) for minimizing the degrading effects that jitters have on control
performance.

2.2 Problem set-up

The use of periodic task has been the common approach when control systems are implemented on a
computing platform. Within this approach, two periodic control task models have been traditionally
used in order to meet control timing demands with real-time technology:

• The first model, identified as the “naif” task model, represents the common practice imple-
mentation of control loops in real-time control systems [ÅCES00]. The naif model assumes
the standard hard real-time periodic task model for control tasks where sampling (input)

13

Chapter 2: One-shot task model 14

�

� �

Computation
�

�

Release Release

time

Input Output

Figure 2.1: Naif task model.

�

� �

Computation
�

�

Release Release

time

Input Output

Figure 2.2: One-sample task model.

and actuation (output) occurs at the beginning and at the end of each job execution, as
illustrated in Figure 2.1. This model assumes that deadline is equal to the period.

• In the second model, identified as the “one-sample” task model, input/output operations
are performed periodically by hardware functions [LL73] as illustrated in Figure 2.2. In this
model the deadline equals the sampling period and there is a constant input/output latency
of one sampling period.

Both task models present important drawbacks: the one-sample task model imposes an artificial
long time delay in the closed loop system of one-sample, which may introduce an unnecessary
although predictable control performance degradation. The naif task model introduces sampling
and input/output time variations known as jitters, which make the analysis and design of feedback
control loops extremely difficult.

2.3 One-shot task model

The key property that permits to develop the one-shot task model states that control algorithms
can be implemented considering only periodic actuation. One-shot task model has been proposed
initially by [MVF+07] and extended by [LVM08]. Figure 2.3 graphically illustrates the theoretical
approach. In the following subsections, this figure will be described in detail. The time reference
for the three subfigures is the same.

2.3.1 Timing analysis of standard controllers

Consider the mathematical description of a system given by the n-order state-space model of a
linear time-invariant discrete-time system with m inputs and p outputs and a sampling period of
h, [ÅW97]

xk+1 = Φ(h)xk + Γ(h)uk

yk = Cxk,
(2.1)

where xk ∈ R
n×1 is the plant state, uk ∈ R

m×1 and yk ∈ R
p×1 are the inputs and outputs of the

plant, matrix C ∈ R
p×n is the output matrix, and matrices Φ ∈ R

n×n and Γ ∈ R
n×m are obtained

using

Φ(t) = eAt, Γ(t) =
∫ t

0
eAsBds, (2.2)

with t = h, where A ∈ R
n×n, B ∈ R

n×m are the system and input matrices of the continuous-time
form

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t).

(2.3)

15 2.3 One-shot task model

�

�
xk−1

tk−1

�
uk−1

�� h �
xk

tk

�
uk

�� h �

tk+1

xk+1

(a) standard controller

�

�
xk−1

tk−1

�

uk−1

tk−1+τ

��τ

�� h�
���

�
xk

tk

�

uk

tk+τ

��τ

�� h�
���

�

tk+1

�
��� uk+1

τ

�
��

xk+1

tk+1+τ

(b) standard controller considering a time delay

�

�

tk−1

xk−1 xk−1+τ

�
tk−1+τ

uk−1

�� h

�

�
�

tk

xk xk+τ

�
tk+τ

uk

�� h

�

�
�

tk+1

xk+1 xk+1+τ

�
tk+1+τ

uk+1

�

�

(c) controller with updated control signal

Figure 2.3: Timing analysis of controllers.

If the inputs uk are given by a control algorithm implemented as a periodic task, k identifies
the job within a sequence of jobs. For standard closed-loop operation of (2.1), the control signal
uk is given by

uk = Lxk with L ∈ R
m×n, (2.4)

where L is the state feedback gain obtained using standard control design methods from matrices
Φ and Γ such as pole placement or optimal control.

The application of (2.4) to the plant mandates computing the control signal with zero time, as
illustrated in Subfigure 2.3(a) where the kth control signal uk is applied to the plant at the same
time instant tk that the kth sample xk is taken

1, sample that is required to compute the control
signal. This is physically impossible!, computing the control signal takes time. This theoretical
model (2.1) can be augmented to cope with a time delay modelling an I/O latency that appears
due to the computation of the control algorithm. The standard model that incorporates a time
delay τ , with τ ≤ h, is [ÅW97]

xk+1 = Φ(h)xk +Φ(h− τ)Γ(τ)uk−1 + Γ(h− τ)uk. (2.5)

Note that matrices Φ(·) and Γ(·) in equation (2.5) slightly differs from conventional notation. The

1Sample is used to refer to the full state vector, regardless of whether it has been sampled or observed.

Chapter 2: One-shot task model 16

purpose of this notation is to explicitly indicate dependencies on the sampling period and delay, h
and τ respectively.

Model (2.5) has been taken as the underlying control model for constructing real-time task
models for control algorithms. As illustrated in Subfigure 2.3(b), it is based on two synchronization
points, the sampling and actuation instants, on a time reference given by the sampling instants.
At time tk the kth sample (xk) is taken and the computation of the control signal (uk) can be
started. At time tk+τ the calculated control signal is applied to the plant. The sampling period h
is defined from tk to tk+1, and the time delay τ from tk to tk+τ . Note that the standard subscript
notation in the standard state-space model with time delay (2.5) may be misleading. In the model,
the k-subscript identifies the job within a sequence of jobs, not the time events occur. For example,
uk is the control signal of the k-job, although it is applied at time tk+τ .

For closed-loop operation of (2.5), the control signal will be

uk =
[
L1 L2

] [xk

uk−1

]
= L1xk + L2uk−1

with L1 ∈ R
m×n, L2 ∈ R

m×m, (2.6)

where [L1 L2] is the state feedback gain obtained using standard design procedures as before. With
this configuration, the control signal uk is held from tk+τ to tk+1+τ .

Remark 1. The standard controller designed to cope with a time delay (2.6) involves computing
the control signal (uk) to be applied to the plant at time tk+τ using a sample (xk) taken at tk, τ
time units before (represented by diagonal arrows in Subfigure 2.3(b)).

Remark 2. The closed-loop model given by (2.5) and (2.6) holds the control signal uk from tk+τ

to tk+1+τ .

2.3.2 Controller with updated control signal

Rather than applying standard controllers (2.4) or (2.6), the one-shot task model, as illustrated
in Subfigure 2.3(c), proposes to apply a controller with updated control signal to account for the
delay. Instead of computing the control signal with an state vector xk that becomes outdated at
the time the control signal is applied, it is proposed to use an updated (estimated) state vector.
Thus, the control signal uk is computed it terms of the estimated state at time tk+τ , labelled xk+τ .
Moreover, xk+τ can be computed using a sample xk taken at any time tk ∈ (tk−1+τ , tk+τ).

Therefore, the controller will first estimate the state

xk+τ = Φ(τk)xk + Γ(τk)uk−1, (2.7)

where matrices Φ(·) and Γ(·) are given by (2.2) for t = τk, with

τk = tk+τ − tk. (2.8)

And second, the controller will compute the control signal

uk = Lxk+τ with L ∈ R
1×n, (2.9)

where L is the original controller gain (2.4) obtained using standard control design methods from
matrices Φ(h) and Γ(h).

Remark 3. A controller using (2.7)-(2.9) relies on a the time reference given by the actuation
instants. The time elapsed between consecutive actuation instants tk+τ and tk+1+τ is the sampling

17 2.3 One-shot task model

Algorithm 1: Controller with updated control signal

begin1

xk = read input()2

tk = get time()3

tk+τ = tk+τ + h4

τk = tk+τ − tk5

xk+τ = Φ(τk)xk + Γ(τk)uk−16

uk = Lxk+τ7

uk−1 = uk8

end9

Figure 2.4: Controller pseudo-code.

period h. Moreover, no delay is present in the closed loop model. And samples are not required to
be periodic because τk in (2.8) can vary at each closed-loop operation.

The equivalence relations between the state space models in closed loop form when using
standard controllers as in (2.4) or (2.6), or when applying the controller using updated control
signals (2.7)-(2.9), are summarized next:

• For irregular sampling with tk ∈ (tk−1+τ tk+τ), standard controllers can not be applied.
However, the proposed controller given by (2.7)-(2.9) can be applied.

• The control law in (2.9) has the same dimension than the control law in (2.4). This keeps
the controller design problem simpler than the case of the standard model with time delay,
where the controller gain in (2.6) has to also consider the previous control signal.

• The application of controller (2.6) is more general than (2.7)-(2.9). That is, a more complete
set of dynamics can be achieved using standard controllers.

2.3.3 Controller design

The implementation of the proposed controller (2.7)-(2.9) requires executing a control algorithm
that slightly differs from conventional controllers.

The pseudo-code of the controller with updated control signal is given in Figure 2.4. The
controller first samples the plant and gets the current time, thus obtaining xk and tk (lines 2 and
3). Afterward, lines 4 and 5 are used to compute the time that will elapse from tk to the actuation
instant, thus implementing (2.8). Recall that actuation instants are given by h (remark 3). The
initial value of tk+τ is zero. Line 6 implements the state prediction at the actuation instant (2.7).
Therefore, the current value of τk, obtained in line 5, is used to compute the estimated vector using
the sampled state and the previous control signal. Then, in line 7 the control signal is computed
using the gain L that has been obtained at the design stage. The last line of the pseudo-code is
used to save the control signal value for the next execution.

The pseudo-code shown in Figure 2.4 should be executed periodically, meaning that it should
meet the timing imposed by (2.7)-(2.9) and illustrated in Subfigure 2.3(c). It is important to stress
that in the pseudo-code the control signal is not directly output to the plant because the real-time
kernel will be in charge of enforcing its application at the actuation instants.

Looking at computational overhead, the state vector estimation (line 6) is the most signifi-
cant modification compared to a standard control algorithm. However, it does not add significant
overhead because it implies the same operations than standard observer based control designs.

Chapter 2: One-shot task model 18

�

� �

Computation
�

� �

Release
Output

Release
Output

time

Input

Figure 2.5: One-shot task model.

�
�

xk−1

Release

C �

uk−1

�
�
xk

Release

C �

uk

�
�
xk+1

Release

C �

uk+1

�

time

Figure 2.6: One-shot task execution.

2.3.4 Task model analysis and properties

Remark 3 provides the semantics to build a new task model for control tasks, the one-shot task
model. The proposed controller (2.7)-(2.9) forces job executions to occur within two consecutive
actuation instants, separated by fixed h time units. Therefore, each job release takes place at each
actuation instant, that is rk = kh. And each job deadline is given by the next actuation instant,
that is dk = rk + h. With these timing constraints, the one-shot task model matches the standard
Liu and Layland [LL73] periodic task model with deadline equal to period, but with the following
requisites:

• Sampling is performed at each job execution start time.

• Actuation has to be carried out by a synchronized output operation performed by the kernel
at the release times.

• The control algorithm implements the pseudo-code of Figure 2.4.

Figure 2.5 illustrates the one-shot task model. Figure 2.6 shows the execution of a one-shot
task in the scenario illustrated in Subfigure 2.3(c).

The one-shot task model has several appealing properties for controllers. Although some of
them have been already stated, all of them are summarized next.

Property 1. Compatible with standard scheduling: the one-shot task model does not demand any
specific timing constraints other than the ones of the standard hard real-time periodic task model.
Therefore, it can be applied within existing scheduling algorithms for periodic tasks.

Property 2. Improves schedulability: the only synchronized operation required by each one-shot
task is the actuation. Therefore, the number of interrupts handlers for a real-time system executing
multiple control loops is cut by half compared to those models using also synchronization operations
for sampling. A simple consequence is that task set schedulability is improved (see [JS93] for an
example of analysis of hardware interrupts in dynamic priority task systems).

Property 3. Absorbs scheduling jitters: the a priori known time reference for the task model is
given by the actuation instants. Moreover, no delay is present in the model (remark 3). Therefore,
latency jitter is not a concern. Sampling jitter problems also disappear because equation (2.7)
absorbs the irregular sampling.

19 2.3 One-shot task model

�

tk−1 tk tk+1

�
�
�
�
�
�
�
�
�
�

Perturb.

one
shot

�uk−1

�
xk

k �uk

�
xk+1

k+1 �uk+1

�
one
sample

�uk−1

�
xk

k �uk

�
xk+1

k+1 �uk+1

�
xk+2

Figure 2.7: One-shot task vs. one-sample task.

Property 4. Does not require switching controllers: compared to other solutions [MFRF01] where
the gain is updated according to varying timing constraints, in the one-shot task model the gain is
constant because constraints do not vary: sampling period is constant and no delay is present.

Property 5. Does not force long I/O latencies: the one-shot task model performs sampling at the
beginning of each job execution, and actuation is performed at the next task release. Therefore, the
I/O latency goes from each job start time to the next release. In the general case, this time interval
will be less than one-sample which is the I/O latency forced by previous approaches [LL73].

As a final observation, note that Property 3 provides isolation between control tasks, like in
the approach presented by [CE03]. That is, although task instances may be subject to jitters, their
operation is not affected by them. Therefore, the performance that will be achieved by tasks using
the one-shot task model is similar to the performance that tasks will achieve if executing in isolated
processors.

The last property has an immediate benefit in terms of responsiveness of controllers based on
the one-shot task model. Short I/O latencies permit controllers to be more efficient when affected
by perturbations.

Let us compare a controller that is implemented with a task based on the one-sample model
(e.g., [LL73]) to one with a task based on the one-shot model. Both tasks have the same timing
constraints (same period and deadline). An arbitrary schedule gives the sequence of two jobs
executions (k and k+1 job execution), as shown in Figure 2.7. The top part shows the one-sample
task jobs and the bottom part shows the one-shot task jobs. Each k-job input and output operations
are labelled by xk and uk, and illustrated with upside and downside arrows, respectively. Times tk
mark jobs release times.

In Figure 2.7 a line of down arrows marks the arrival of a perturbation, which occurs before
the k-job execution. It is interesting to note that for each k-job, all perturbations arriving at times
t ∈ (tk−1, tk,s] will be detected and started to be corrected by the k-job in the one-shot task but not
in the one-sample task (tk,s denotes the k-job execution start time). In the one-sample task, these
perturbations will be detected and started to be corrected by the (k + 1)-job. That is, corrective
operations will be send out one sampling period later in the one-sample model.

This benefits the control performance achievable by the one-shot task because it reacts faster
to perturbations. If perturbations arrive at times t ∈ (tk,s, tk), both tasks will provide the same
responsiveness. As a consequence, scheduling policies that favor jobs executions near to their dead-
lines, e.g. [OY98], making longer the interval (tk−1, tk,s) will improve control performance if using
the one-shot task model for controllers.

Chapter 2: One-shot task model 20

V1

V2

Input

Output

Figure 2.8: Electronic double integrator circuit.

2.4 Simulation and experiments

In this section, a set of simulations and experiments show the operation and performance of the
“one-shot” task model compared with existing real-time and/or control based methods and mod-
els currently used in embedded control systems. This evaluation includes the “naif” task model
(already discussed) and the “one-sample” task model as example of the application of formal
methods to real-time implementation of control loops [HHK01]. In addition, the solution presented
by [MFRF01], named “switching” task model, as example of control-based solution, and the model
presented by [BRVC04], named “split” task model, as example of real-time based solution, are also
evaluated.

2.4.1 Plant description

A second-order plant is used for the simulation and the control experiments. The plant is an
electronic double integrator circuit illustrated in Figure 2.8 and it is defined by

ẋ(t) =

[
0 −1/(R1C1)
0 0

]
x(t) +

[
0

−1/(R2C2)

]
u(t), (2.10)

considering that R1 and R2 resistors have a value of 100KΩ, and C1 and C2 capacitors have a
value of 470nF, the plant can be numerically described as

ẋ(t) =

[
0 −21.2766
0 0

]
x(t) +

[
0

21.2766

]
u(t), (2.11)

As specified in (2.7), the state vector estimation requires to apply Φ(t) and Γ(t) for each t = τk.
Therefore, these matrices have to be pre-computed in terms of t as in

Φ(t) =

[
1 −h/21.2766
0 1

]
and Γ(t) =

[
h2/(2 ∗ 21.2766 ∗ 21.2766)

−h/21.2766

]
. (2.12)

2.4.2 Simulation

The simulation model was implemented on a platform based on Matlab/Simulink using the True-
Time toolbox, as shown on Figure 2.9. The processor is provided by the a TrueTime element which

21 2.4 Simulation and experiments

�
�

�������	�

���

�
������

���

�������

��	

��������
�������

���	�

�������	����	
�����
���	�

Figure 2.9: Simulation model.

Table 2.1: Task set parameters in milliseconds.

h D C
T1 30 30 10
T2 50 50 10

simulates a computer with a flexible real-time kernel executing user-defined tasks. The others ele-
ments are implemented by Matlab/Simulink blocks. The model of an electronic double integrator
circuit is used as the controlled plant. The cost function element makes direct measurement from
the plant. The plant control cost is obtained from the quadratic continuous function

J =

∫ tf

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (2.13)

where tf marks the final time of the evaluation period, and the Q and R represents the cost
weighting matrices with the following values:

Q =

[
1 0
0 1

]
, R = 1,

2.4.2.1 Simulation set-up

For the analysis, let us consider the task set given in Table 2.1, where h is the task period, D is
the relative deadline and C is the worst case execution time. Task T2 is a control task while task
T1 is a non-control real-time periodic task. Under earliest deadline first (EDF [LL73]) scheduling,
it is easy to observe that control task T2 suffers sampling and latency jitter.

Figure 2.10 shows the task set schedule over the task set hyper-period under EDF, assuming
that tasks execute on their worst case execution time. As it can be seen, the control task T2 suffers
sampling and latency jitters. For example, the first and fourth instances of T2 starting at times 0ms
and 150ms respectively, are preempted at times 5ms and 155ms by the first and the sixth instances
of T1, thus provoking latency jitters. In addition, the third instance of T2 starts executing later
than its expected release time (100ms), suffering a sampling jitter.

Within this scenario, the control task T2 will implement a standard pole placement control law
to track the square wave set-point. The state feedback controller places the continuous closed-loop
poles at −18.4261+10.6383i and −18.4261−10.6383i. The corresponding discrete closed-loop poles

Chapter 2: One-shot task model 22

0 20 40 60 80 100 120 140 160 180 200
time (ms)

T 2

 T

1

Figure 2.10: EDF schedule timing.

locations depend on the control task period (i.e., sampling period), that together with the task
latency (i.e., time delay), will then determine the controller gain. Since the delay modelling the
computation time has also been considered in some approaches, the third discrete-time closed-loop
pole is set to 0 whenever required. Therefore, the specific timing used to design the controller is
listed next, according to the six strategies under evaluation:

1. Naif task model: the sampling period and time delay for designing the control law are 50ms
and 10ms.

2. One-sample task model: the sampling period and time delay for designing the control law
are 50ms and 50ms. In addition, the control task will execute sampling and actuation at a
constant I/O latency of one period, 50ms.

3. One-shot task model: the sampling period and time delay for designing the control law are
50ms and 0ms. Recall remark 3 where it is noted that the sampling period is constant on the
basis of equidistant actuation instants, and the time delay is zero since the control signal is
computed using the updated state vector.

4. Switching controller gains: the control task will be applying one controller gain out of three
different gains depending on the real sampling periods and latencies that can be derived from
the EDF schedule, {(h, τ)} = {(50, 10), (55, 10), (45, 20)}ms, assuming that tasks execute on
their worst case execution time.

5. Split task model: the operation of the control algorithm is split into three sub-tasks, sampling,
control computation and actuation, that are scheduled separately. For this case, the sampling
period and time delay for designing the control law are 50ms and 10ms respectively.

6. Reference model: this model has been designed only for comparative purposes, is a pure
periodic controller, with period 50ms and no delay, thus the model is simulating an ideal
execution in isolation. In this case the control task is not subject to jitters.

23 2.4 Simulation and experiments

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time(s)

O
ut

pu
t(

v)

One-shot
Reference
One-sample
Naif

(a) plant outputs

0 0.05 0.2 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
time (s)

T
2

jo
b

se
q.

(b) sequence of jobs

-0.5

0

0.5

in
pu

t(
v)

-0.5

0

0.5

in
pu

t(
v)

-0.5

0

0.5

in
pu

t(
v)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.5

0

0.5

time(s)

in
pu

t(
v)

One-shot

Reference

One-sample

Naif

(c) control signals

Figure 2.11: Detailed view of the operation of several control strategies.

Chapter 2: One-shot task model 24

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

18

20

time(s)

J(
co

st
)

(6)

(5)

(4)
(3)
(2)
(1)

(6) Naif
(5) Split
(4) One−sample
(3) Switch
(2) Reference
(1) One−shot

Figure 2.12: One-shot performance evaluation in front of existing solutions (simulation).

2.4.2.2 Detailed performance analysis

This section gives simulation details of the operation of the one-shot task model in terms of plant
outputs and control signals compared to other strategies. The simulation involves evaluating the
tracking on a set-point change from −0.5V to +0.5V, occurring at time 100ms.

For the analyzed control strategies, Figure 2.11 shows the plant outputs (top) and the control
signals (bottom) over 500ms. The middle subfigure shows the sequence of jobs of the control task
T2, where high level line means job in execution, and middle level line means job preempted due
to the execution of jobs of T1, and low level lines mean no job execution.

Since the reference model simulates an ideal execution, the sequence of jobs shown in the middle
subfigure does not apply to this strategy. For the rest of strategies, the controller implemented in
task T2 uses the one-shot, the one-sample or the naif task model. Note that in this evaluation,
the switching and the split task models are not assessed in order to simplify this detailed analysis.
They are included in the summarized results given next.

As it can be seen in the top subfigure, the outputs of the reference controller and the controller
using the one-shot task model are equal in terms of dynamics, but shifted in time. Taking into
account that the set-point change occurs at time 100ms, the third job of the one-shot controller
executes at time 105ms, and therefore it sees the new set-point and starts immediately correcting
the tracking error. However, the third job of the reference controller does not see the new set-point
since it executes exactly at 100ms, this controller starts correcting the error until the fourth job,
i.e. at time 150ms.

Since the first tracking error is the same, both control signals are the same, but shifted in time,
as illustrated in the bottom subfigure. In this case the one-shot controller is more reactive to the
set-point change than the reference controller due to the specific phasing between samples and the
set-point change. The one-shot benefits regarding the responsiveness to perturbation was already
analyzed in Section 2.3.4.

The performance of the one-shot compared to the one-sample and naif task model is different
in terms of plant output due to the difference in the control signals. The plant output of the

25 2.4 Simulation and experiments

Algorithm 2: void task naif(void)

begin1

L: Controller gain2

observer: Observer matrices3

x observed, x observed old, u old : Intermediate variables4

task id=naif5

task initialization()6

while(1)7

begin8

input = readInputPort()9

observerComputation(x observed, observer, x observed old, u old, input)10

u = calculateControlSignal(x observed, reference, input, L)11

writeOutputPort(u)12

x observed old = x observed13

u old = u14

end cycle()15

end16

end17

Figure 2.13: Naif task pseudo-code.

one-sample gives different performance due to the introduced I/O latency of 50ms. As it can be
seen in the bottom subfigure, the first correcting action, applied at time 150ms, is of different
magnitude than the one-shot because it is based on an extended controller (2.6). In addition,
subsequent control actions do not incorporate the state estimation used in the one-shot. The naif
task model gives the worst dynamics because job executions are affected by jitters, which have not
been accounted for in the controller.

All these effects imply that the desired performance of the tracking achieved by the controller
using the one-sample and naif task model is not met. In addition, for all the evaluated task models,
each set-point change produces an increment of cost if the tracking is evaluated using a standard
quadratic cost function on the states and control inputs, as it is further analyzed next.

2.4.2.3 Simulation results

Figure 2.12 shows the control performance achieved by the six strategies. The y-axis shows the
cumulative error measured in terms of the quadratic cost function of the plant state and control
signal, as defined by (2.13). Therefore, the lower the curve, the better the performance. The plant
has been perturbed using the set-point changes from −0.5V to 0.5V and viceversa, occurring
periodically each 0.5s over a total simulation time of 70s.

As it can be seen in Figure 2.12, the one-shot task model achieves the best performance. As
expected, the naif task model achieves the worst performance because the I/O operations are
subject to jitters. The other approaches, that follow different strategies to overcome the jitter
problem, lie in the middle. The exact ordering in terms of performance will vary depending on
the number of tasks, plants under control, and scheduling policy. The split task model strategy,
although reducing the jitter variance, can not completely remove jitters. The one-sample task
model approach eliminates jitters by construction at the expenses of forcing a one-sample delay at
each job execution, which introduces performance degradation in the control loop operation. The
switching task model strategy, although applying different gains according to the run-time jitters,
also introduces some degradation due to the switching. Finally, looking at the one-shot task model,

Chapter 2: One-shot task model 26

Algorithm 3: void task onesample()

begin1

L: Controller gain2

observer: Observer matrices3

x observed, x observed old, u old : Intermediate variables4

task id=one sample5

task initialization()6

while(1)7

begin8

input = readKernel()9

observerComputation(x observed, observer, x observed old, u old, input)10

u = calculateControlSignal(x observed, reference, input, L)11

writeKernel(u)12

x observed old = x observed13

u old = u14

end cycle()15

end16

end17

Figure 2.14: One-sample task pseudo-code.

since it eliminates jitters by construction without introducing a one sample delay, it is capable of
achieving the best performance.

2.4.3 Control experiments

A control experiment involving the implementation of the one-shot task model in a real-time kernel
is presented. The experiment shows the feasibility of implementing an embedded control application
using the one-shot task model compared to existing approaches. The experimental platform consists
in a Microchip dsPIC33 microcontroller2 based system, running the Erika real-time kernel [Srl08a].

There are two tasks being executed in the dsPIC33 microcontroller. T1 a non control tasks
which executes every 5ms to obtain the updated state variables and sends the data to an external
PC via RS-232 communication to compute the control cost. T2 is a control task executed every
50ms which implements the different evaluated strategies. T1 includes a 2ms delay to cause jitters
on T2. The plant control cost is calculated by transforming the continuous cost function specified
by (2.13) into a discrete-time with an interval of 5ms. For further details on how to obtain the
discrete control cost function refers to Appendix A.

The six strategies have been implemented in the experimental platform and their control per-
formance are evaluated. However details for the switching task model and the split task model are
omitted because their performance lie in the middle and because they are not as common as the
others. The true comparison should be between the one-sample and the one-shot. In each model,
the control task implements the pseudo-code given in Figure 2.4 and follows the specifications
given in order to track the square wave. In addition to the controller gain, a deadbeat reduced ob-
server for estimating the second state variable has been designed. This differs from the simulation
described in Subsection 2.4.2 where it is assumed that all state variables are available for direct
measurement.

2Microchip, http://www.microchip.com/

27 2.4 Simulation and experiments

Algorithm 4: void task oneshot(void)

begin1

L: Controller gain2

observer: Observer matrices3

x observed, x observed old, u old : Intermediate variables4

task id=one shot5

task initialization()6

while(1)7

begin8

input = readInputPort()9

current time = get time()10

observerComputation(x observed, observer, x observed old, u old, input,11

current time, next job)

u = calculateControlSignal(x observed, reference, input, current time,12

next job, L)

writeKernel(u)13

x observed old = x observed14

u old = u15

end cycle()16

end17

end18

Figure 2.15: One-shot task pseudo-code.

2.4.3.1 Task code implementation details

The pseudo-code of the tasks implementing the controller when naif, one-sample and one-shot task
model are used, are described by Figures 2.13, 2.14 and 2.15 respectively. For all types of models,
the pseudo-code starts by defining the main variables. Only the most significants are shown: gain
(L) and observer matrices (observer), and the intermediate variables. In the start-up part the
control tasks have to identify themselves right before the task initialization. Then, an infinite loop
contains the main code, which slightly varies depending on the task model.

In the naif task model (Figure 2.13), which corresponds to the standard implementation, the
main property is that sampling and actuation are performed at the beginning and end of each task
job execution. First, the output variable is read from the input port and its value stored (input).
With the value, the appropriated control signal u is computed, taking into account the computation
of the second state variable that is observed. Then, u is written to the output port, state updates
are performed, and the system call end cycle() notifies the kernel the termination of the control
task execution. Writing the control signal before updating the state is a code optimization that
minimizes the I/O latency, as suggested by [Cer01]. The actual code of the task for all models also
prevents saturation on the control signal. Here it has been omitted for the sake of clarity.

The main code in the infinite loop for the one-sample and one-shot task models vary with
respect to the naif model. As it can be seen in Figure 2.14, the one-sample code does not access to
I/O ports for reading the sample or writing the control signal. It obtains the sample from the kernel
and it forwards the control signal to the kernel. The kernel is then in charge of reading samples and
writing control signals at each one-sample job release time. Finally, it has to be pointed out that
the observer computation and the control computation take into account the one sample delay of
one period that this model requires.

As it can be seen in Figure 2.15, the one-shot code mixes features of the naif model and the
one-sample model. The one-shot directly access the input port for reading the sample. However,

Chapter 2: One-shot task model 28

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

time(s)

J(
co

st
)

Task Models

(6)

(5)
(4)

(3)
(2)
(1)

(6) Naif
(5) Split
(4) One−sample
(3) Switch
(2) Reference
(1) One−shot

Figure 2.16: One-shot performance evaluation in front of existing solutions (experiment).

after computing the control signal, u is forwarded to the kernel. An the kernel will apply it at the
next job release time. For this model, the observer computation and the control signal computation
require knowing the time at which the sample was taken as well as the time of the next job release.
The former is read right after the task accesses the input port and stored in current time, and the
later belongs to the task control block structure, which is updated at the next job variable.

In summary, as it can be seen in the three figures illustrating the three models, the codes are
very similar. This confirms that implementing embedded control applications using the one-shot
task model does not require many changes.

2.4.3.2 Experimental results

The performance evaluation for the six strategies is measured in terms of the quadratic cumulative
error using a discrete cost function. Figure 2.16 shows the performance results for the different
strategies over a period of 25s. During this time the set-point is changing from −0.5V to 0.5V
every 0.5s.

First, it can be observed that similar control performance results are obtained during the control
experiments when compared with the simulation results. Also, it is interesting to note two other
important facts. First, the one-sample approach curve lies between the naif and the one-shot.
Therefore, this proves that the most current approach to avoid the jitter problem is outperformed
by the approach presented in this chapter. But even more interesting is to compare the one-shot
curve with respect the reference curve. The reference curve is the performance of the control task
when it is executed in isolation, that is, without jitters. As it can be seen in the figure, the one-shot
even outperforms this scenario. This is due to the fact that controllers implemented using the one-
shot task model are more responsiveness to perturbations. The reference curve corresponds to the
controller executing without jitters, that is, sampling at each release time and actuating right after
the control algorithm computation (which is less than the period). Therefore, all perturbations
affecting the circuit between the end of the control algorithm computation and the release time
are detected at the next release time. However, in the one-shot, since samples are taken later than

29 2.4 Simulation and experiments

the release time, more perturbations can be detected. Note that the real benefit of this property
depends on the perturbation arrival times as well as on the workload. This property has been also
observed during the simulation.

Chapter 3

One-shot task model extended to
noisy measurements

3.1 Introduction

In this chapter the one-shot task model is extended to the case of noisy measurements. It is well
known that systems are noise corrupted and that sensors in a control loop do not provide exact
readings of desired quantities [May79]. In these cases, filtering is desirable since it removes the noise
from signals while retaining the valuable information. The Kalman filter [Kal60] has been proved
to be a useful tool for inferring the missing information from indirect and noisy measurements.

The one-shot task model includes a predictor that estimates, during each sample, the state
variables values at the next actuation instance. If samples are noise-free and assuming that an
adequate plant model is used, then the state prediction will be accurate and thus the control signal
applied to the plant will be correct. However, if samples are corrupted by noise, then the prediction
will fail and an incorrect control signal will be sent to the plant. The solution proposed in this
work is to embed the Kalman filter into the one-shot task model when the system presents noisy
measurements.

The Kalman filter combines all available measurement data, plus prior knowledge about the
system and measuring devices, to produce an estimate of the desired variables in such a manner that
the error is minimized statistically. The standard approach for the implementation of a discrete-time
Kalman filter assumes strict periodic sampling and actuation. However, in the one-shot task model,
the available measurements are not periodic. This poses the problem of adapting the standard
Kalman filter to the case of irregular sampling, and decide when to apply the prediction and
the correction phase. Two different strategies are presented, and their control performance and
computation demand are analyzed through simulations and real experiments.

The application of Kalman techniques for systems with diverse type of non-periodic sampling
can be found in the literature, such as for multi-rate control systems, e.g. [LSX08, PSCC08], or
event-based control systems, e.g. [LM07, SNR07]. However, non of them applies to the problem
tackled in this chapter.

3.2 Problem set-up

The discrete-time Kalman filter addresses the general problem of trying to estimate the system state
of a discrete-time controlled plant with a sampling period h. Therefore, for the filter implementation

31

Chapter 3: One-shot task model extended to noisy measurements 32

the model (2.1) can be enhanced by adding process and measurement noise (wk and vk respectively)
as in

xk+1 = Φ(h)xk + Γ(h)uk + wk

yk = Cxk + vk.
(3.1)

The algorithm for implementing the Kalman filter is divided in two phases: time update (pre-
dictor) and measurement update (corrector). The predictor phase uses the previous estimation to
produce the a priori estimation of the system state (equations (3.2) and (3.3)). In the corrector
phase, measurement information from the system output is used to refine the prediction and obtain
the a posteriori estimation (equations (3.4), (3.5) and (3.6)). The a posteriori estimation is used
in the next predictor phase.

In the predictor phase, if it is considered that the estimation of the next system state is required
as in (3.1), then in the predictor phase, the a priori estimation of the system state is

x̂−(k+1) = Φ(h)x̂(k) + Γ(h)u(k) (3.2)

where Φ(h) and Γ(h) represent the system dynamics from (3.1), x̂(k) defines the current a posteriori
estimate of the process state, and u(k) represents the current input. The a priori estimation of the
covariance error is

P−(k+1) = Φ(h)P(k)Φ
T (h) +Q (3.3)

where P(k) is the current a posteriori estimate of the covariance error, and Q is the constant
covariance value of the process noise.

In the corrector phase, the next Kalman gain value

K(k+1) =
CP−(k+1)

CP−(k+1)C
T +R

(3.4)

is obtained prior to the calculation of the a posteriori estimation, where K(k+1) is the Kalman
gain, C defines the constant measurement gain as in (3.1), and R is the covariance value of the
measurement noise. Then a posteriori estimation of the next state is

x̂(k+1) = x̂−(k+1) +K(k+1)(y(k) − Cx̂−(k+1)) (3.5)

where y(k) is the measured output of the system as in (3.1). The a posteriori estimation of the
covariance error is

P(k+1) = (I − CK(k+1))P
−
(k+1) (3.6)

where I is the identity matrix. When using Kalman, the control signal for the closed loop operation
is now calculated based on the current state estimation, as follows

uk = Lx̂k. (3.7)

The implementation of a discrete-time Kalman filter is straightforward if strictly periodic sam-
pling is ensured, note the dependency of equations (3.1),(3.2) and (3.3) on the sampling period
h. However, integrating a Kalman filter with the one-shot task model raises some problems that
require a detailed analysis. The Kalman filter algorithm has two phases which are prediction and
correction. The correction must take place at the sampling instant, since it requires a process mea-
surement in order to execute the correction, as shown in equations (3.5). However the one-shot

33 3.3 One-shot and noisy measurements

task model makes the synchronization at the actuation instants and the sampling periods may be
irregular. Furthermore the one-shot task model uses a time difference (2.8) to estimate the state at
the actuation instant (2.7), in addition to the estimations and predictions required by the Kalman
filter algorithm.

3.3 One-shot and noisy measurements

By considering these aspects, two different approaches to embed a Kalman filter with the one-
shot task model were identified. The first approach implements the Kalman correction just from
sampling to actuation instants, while the second approach considers the complete sampling interval
to implement the Kalman correction. For the rest of the chapter, the first approach is identified as
the half Kalman filter and the second one as the complete Kalman filter.

3.3.1 Half Kalman filter

In this approach the Kalman filter is split into two parts. In the first one, from sampling (ts,k) to
actuation (tk), only the predictor phase is used. In the second one, from actuation (tk) to next sam-
pling (ts,k+1), the predictor and the corrector phases are executed, as illustrated in Figure 3.1(a).
It is important to highlight that, during the first part, the corrector phase cannot be used since
process measurements values, used for corrections, are only available at sampling instants and not
at actuation instants.

Hence, if only predictor applies from sampling (ts,k) to actuation (tk), equations (3.2) and (3.3)
transform to

x̂−k = Φ(τk)x̂s,k + Γ(τk)uk−1 (3.8)

P−k = Φ(τk)Ps,kΦ(τk)
T +Q. (3.9)

In the second part, from actuation (tk) to next sampling (ts,k+1), the Kalman predictor and
corrector apply. First, the predictor from (3.2) and (3.3) is redefined as

x̂−s,k+1 = Φ(h− τk+1)x̂
−
k + Γ(h− τk+1)uk (3.10)

P−s,k+1 = Φ(h− τk+1)P
−
k Φ(h− τk+1)

T +Q, (3.11)

and then from (3.4), (3.5) and (3.6), the corrector phase is formulated in this strategy as

Ks,k+1 =
CP−s,k+1

(CP−s,k+1C
T +R)

(3.12)

x̂s,k+1 = x̂−s,k+1 +Ks,k+1(ys,k+1 − Cx̂−s,k+1) (3.13)

Ps,k+1 = (I − CKs,k+1)P
−
s,k+1, (3.14)

Then, the one-shot task model (2.7) and (2.9) can be implemented. Notice that the estimation
of the state at the actuation instant has been already obtained in (3.8). Hence the control signal
is calculated by

uk = Lx̂−k . (3.15)

Chapter 3: One-shot task model extended to noisy measurements 34

��
xk−1

tk−1

uk−1

�� h− τk

�

ts,k

xs,k
half kalman

one-shot

�� τk

�
�

�
�

�
�

�
�

�
xk

tk

uk

��h− τk+1

�

ts,k+1

xs,k+1

(a) Half Kalman filter

��
xk−1

tk−1

uk−1

�� h− τk

�

ts,k

xs,k
complete kalman

one-shot

�� τk

�
�

�
�

�
�

�
�

�
xk

tk

uk

��h− τk+1

�

ts,k+1

xs,k+1

(b) Complete Kalman filter

Figure 3.1: Kalman filter design approaches

3.3.2 Complete Kalman filter

This approach uses a Kalman filter to predict and correct from current sampling (ts,k) to next
sampling (ts,k+1). In addition, the one-shot task model requires an estimation from sampling (ts,k)
to actuation (tk), as illustrated in Figure 3.1(b).

If the complete sampling interval is considered, the Kalman a priori estimation can be ob-
tained by substituting (3.8),(3.9) into (3.10),(3.11) respectively, then the following predictor phase
equations are obtained

x̂−s,k+1 = Φ(h− τk+1 + τk)x̂s,k

+Φ(h− τk+1)Γ(τk)uk−1

+Γ(h− τk+1)uk (3.16)

P−s,k+1 = Φ(h− τk+1 + τk)Ps,kΦ(h− τk+1 + τk)
T

+Φ(h− τk+1)QΦ(h− τk+1)
T +Q. (3.17)

Notice that u is not constant over the complete sampling period. Hence, equation (3.16) con-
siders uk−1 and uk. Also, the sampling period is not constant and it is equal to h− τk+1 + τk.

From (3.4), (3.5) and (3.6), the corrector phase is formulated in this approach

Ks,k+1 =
CP−s,k+1

(CP−s,k+1C
T +R)

(3.18)

x̂s,k+1 = x̂−s,k+1 +Ks,k+1(ys,k+1 − Cx̂−s,k+1) (3.19)

Ps,k+1 = (I − CKs,k+1)P
−
s,k+1. (3.20)

35 3.4 Simulation and experiments

According to the one-shot task model, the control signal is calculated from the estimation of
the state at the actuation instant, which is taken from the a posteriori state estimation at sampling
instance. Therefore, equations (2.7) and (2.9) of the task model are redefined as

x̂k = Φ(τk)x̂s,k + Γ(τk)uk−1 (3.21)

uk = Lx̂k. (3.22)

3.3.3 Discussion

At first sight both approaches are similar and it is expected that both will produce similar results.
However, in a deeper analysis, there are some differences that may affect the computational demand
of their implementation.

By using the half Kalman filter, the computation of the estimated state at the sampling in-
stance (x̂−s,k+1) becomes simpler compared with the complete Kalman approach, since the complete
approach requires two different control values uk−1 and uk. On the other hand, the half Kalman
filter requires to obtain x̂−k previous to x̂−s,k+1, which may imply an additional operation. However

x̂−k is required anyway by the one-shot model. In addition, the implementation of the complete
approach requires calculating three different Φ values, i.e. Φ(τk), Φ(h−τk+1) and Φ(h−τk+1+τk).
However, in the half approach only two Φ values are required, i.e. Φ(h− τk) and Φ(τk). Hence,the
half approach simplifies the implementation and it may reduce the computational demand.

3.4 Simulation and experiments

This section presents the simulation and experiments that shows the advantages and the feasibility
of implementing the Kalman filter using the one-shot controller. First, the simulations show that
Kalman filter and one-shot task model can work together and preserve their own benefits, i.e.,
remove noise and eliminate jitters degrading effects. Then, the experiments focus on demonstrating
that the Kalman filter and one-shot controller can be successfully embedded into a microcontroller.
Both simulations and experiments present detailed information regarding the control performance
of the different implementations approaches.

3.4.1 Implementation approaches

Five different approaches has been implemented for simulation and experiments, in every case noisy
measurements from the plant is considered. Two approaches implement the one-shot controller,
while the other three uses a standard controller also identified as naif, as described in Subsection 2.2.

1. Kalman with standard controller (no jitters): the control task is executed in stand alone, so
there is no jitters. This approach is used as a reference.

2. Half Kalman with one-shot controller: implements the half Kalman algorithm according
to (3.8)-(3.15), jitters affect the execution of the control task.

3. Complete Kalman with one-shot controller: implements the complete Kalman algorithm
based on (3.16)-(3.21), control task also suffers from jitters.

4. Kalman with standard controller: the standard discrete-time Kalman filter, which assumes
periodical sampling (3.2)-(3.7), is embedded into the naif task model. There are jitters during
the control task execution.

5. No Kalman with standard controller: in this approach there are jitters and the naif controller
does not implement the Kalman algorithm.

Chapter 3: One-shot task model extended to noisy measurements 36

�
�

�������	�

���

�
������

���

�������

��	

��������
�������

���	�

�������	����	
�����
���	�

���

����������

Figure 3.2: Simulation model.

3.4.2 Simulation

As in Subsection 2.4, simulation has been conducted using a Matlab/Simulink platform with the
TrueTime toolbox. Figure 3.2 shows the simulation model which includes a white noise element
to simulate noisy measurement from the plant, notice that cost function measurement are taken
directly from the plant, so control cost values are not affected by noise. An electronic double
integrator described in Subsection 2.4.1 is used as the controlled plant.

3.4.2.1 Simulation set-up

The controller gain L corresponds to the discrete linear quadratic regulator for (3.1), which mini-
mizes a discrete cost function equivalent to the continuous cost function

J =

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (3.23)

where the weighting matrices Q and R are the identity.

For simulation purposes a sampling period of h = 50ms is considered for the control task, with
a task latency of 10ms. In order to simulate jitters, the control task shares the processor with a
non-control task. Both tasks are scheduled using EDF policy. The non-control task has a sampling
period of 20ms and a task delay of 10ms.

Since the present analysis is focused in noisy measurements, the simulation model only includes
an element to simulate the measurement noise, but a plant noise element is not included. Therefore
the Kalman filter was designed considering a very small plant noise covariance Qn = E(w ·wT) =
1 · 10−12, meanwhile for the measurement covariance, configured in the white noise element, a
heuristical relatively large value was selected Rn = E(v · vT) = 1 · 10−3, where w and v are the
plant noise and the measurement noise, respectively.

3.4.2.2 Simulation results

Considering the standard naif task model, the system response is degraded considerably when noisy
measurements affects the controller activities. Subfigure 3.3(a) shows the plant response without

37 3.4 Simulation and experiments

0 0.2 0.4 0.6 0.8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time (s)

vo
lta

ge
 (V

)

reference
v2
v1

(a) Noise-free measurements

0 0.2 0.4 0.6 0.8
-1

-0.5

0

0.5

1

time (s)

vo
lta

ge
 (V

)

reference
v2
v1

(b) Noisy measurements

Figure 3.3: Simulation system response

noise and Subfigure 3.3(b) shows the response when there are noisy measurements, v1 and v2 for
both figures are obtained directly from the plant states.

To solve this problem Kalman filter can be implemented in the controller to remove the noise
from signals while retaining the valuable information. Subfigure 3.4(a) illustrates illustrates that
control performance can be improved when noisy signals are properly filtered, for the sake of clarity
only v1 is shown. However, if jitters are introduced due task scheduling, the system response is
again deteriorated, as illustrated in Subfigure 3.4(b).

It has been demonstrated that the one-shot task model is capable to remove the negative effects
caused by the scheduling jitters. Now, if Kalman filter is embedded into a one-shot task model, the
degrading effects of noise and jitters can be removed. Figure 3.5 shows the v1 transient response
for the half Kalman and complete Kalman implementation in the one-shot task model when noise
and jitters are introduced. Notice that no major difference is detected in the response of these
two implementation. In addition, it can be observed that control performance of half Kalman and
complete Kalman are considerably improved when compared with the standard controller with
jitters, from Subfigure 3.4(b), and their response is similar to the one provided by the standard
controller with no jitters, from Subfigure 3.4(a).

3.4.2.3 Simulation performance evaluation

The different implementation approaches specified in Subsection 3.4.1, were evaluated in terms
of control performance. For each approach, performance was measured with the continuous cost
defined in (3.23). Table 3.1 presents the control performance results for a 40s simulation period.
In general, these results indicate that half Kalman (B) and complete Kalman (C) implementation
have better performance compared with the standard controller (D) and (E). Also half Kalman
(B) and complete Kalman (C) performances are very close to the performance provided by the
Kalman implementation with no jitters (A). Further details on performance evaluation can be
found in the next subsection which includes a comparison between the simulation performance and
the experimental performance of the different approaches.

Chapter 3: One-shot task model extended to noisy measurements 38

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

time (s)

vo
lta

ge
 (V

1)

reference
noisy signal
filtered signal

(a) No jitters

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

time (s)

vo
lta

ge
 (V

1)

reference
noisy signal
filtered signal

(b) Jitters

Figure 3.4: Kalman filter implementation using the standard controller

Table 3.1: Simulation control performance.
Implementation Approach Control Performance

(A) Kalman with standard controller (no jitters) 3.7695
(B) Half Kalman with one-shot controller 3.9022
(C) Complete Kalman with one-shot controller 3.9224
(D) Kalman with standard controller 4.9786
(E) No Kalman with standard controller 5.0316

3.4.3 Control experiments

As in Subsection 2.4.3, control experiments have been conducted using a Microchip dsPIC33 mi-
crocontroller based system, running the Erika real-time kernel. An electronic double integrator
circuit is used as the controlled plant which is described in Subsection 2.4.1.

3.4.3.1 Experiment set-up

The controller gain L has been designed using optimal control technique based on discrete cost
function equivalent to the continuous cost function (3.23). Considering a sampling period of h =
50ms, the optimal controller gain is L =

[
0.4324 −1.0255

]
. Jitters are generated by scheduling

a non-control task in the dsPIC33 microcontroller. A non-control task executes every 5ms to obtain
the updated state variables and sends the data to an external PC via RS-232 communication to
compute the control cost. This task includes a 2ms delay in order to produce jitters on the control
task. The control task is executed every 50ms and implements each one of the evaluated approaches
specified in Subsection 3.4.1. Both tasks (non-control and control) are scheduled using EDF (earliest
deadline first) policy.The plant control cost is calculated by transforming the continuous cost
function (2.13) into a discrete-time with an interval of 5ms. For further details on how to obtain
the discrete control cost function refers to Appendix A.

The Kalman filter was designed taking into account the noise covariances Qn = E(w · wT) =
2 · 10−7 and Rn = E(v · vT) = 8 · 10−5 extracted from the electronic circuit of the experimental
setup, where w and v are the plant noise and the measurement noise, respectively. Off-line sample
measurements data, using the dsPIC33 and considering sampling periods of h = 50ms, were taken

39 3.4 Simulation and experiments

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

time (s)

vo
lta

ge
 (V

1)

reference
noisy signal
filtered signal

(a) Half Kalman approach

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.5

0

0.5

1

time (s)

vo
lta

ge
 (V

1)

reference
noisy signal
filtered signal

(b) Complete Kalman approach

Figure 3.5: Kalman filter implementation using one-shot controller

in order to determine the measurement noise covariance. Plant noise covariance was calculated
from data obtained from direct plant measurements with calibrated instruments. In both cases,
the data obtained corroborate the presence of white noise.

3.4.3.2 Kalman algorithm implementation

The implementation of the half Kalman algorithm and the complete Kalman algorithm into the
dsPIC33 processor, requires to calculate Φ(·) and Γ(·) as function of different time values according
to (3.16) for complete Kalman and according to (3.8), (3.10) for half Kalman. These calculations
represent the most time consuming operations for the processor, since equation (2.2) needs to be
implemented in the dsPIC33. Then to reduce processor time the pre-computed matrices defined
by (2.12) were implemented.

3.4.3.3 Experimental results

Control experiments were conducted to validate the feasibility of integrating the Kalman filter
with the one-shot task model and to evaluate the different implementation approaches. First, it
is shown that the Kalman filter and the one-shot task model preserve their benefits when both
are integrated in a control loop. Then, the five different implementation approaches, specified in
Subsection 3.4.1 are evaluated in terms of control performance. Finally, the resource demand of
the half and complete Kalman implementation are analyzed.

Experimental results shows that Kalman filter effectively removes the noise from the measured
signals. Figure 3.6 compares the noisy captured data from the plant (top) with the estimated
states obtained with the half Kalman filter (bottom). Similar results are found with the complete
Kalman. Note that reference changes use small values (−0.2V to 0.2V) to appreciate the noisy
signal.

Now, lets consider the case where the controller task has the presence of random timing varia-
tions in the form of scheduling jitters. Jitters produce irregular sampling periods ranging from 0 to
20ms. The system response of the half Kalman one-shot controller is compared with the standard
naif controller in order to assess whether embedding the Kalman filter jeopardizes the benefits of
the one-shot task model in removing the jitters effects. As it can be seen in Figure 3.7, the con-

Chapter 3: One-shot task model extended to noisy measurements 40

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (s)

vo
lta

g
e

 (
 V

)

reference
v1
v2

(a) Noisy signals from plant

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time (s)

vo
lta

g
e

 (
 V

)

reference
v1
v2

(b) Kalman estimated state values

Figure 3.6: Removing noise with the Kalman filter

trol performance of the standard controller is considerably degraded while the one-shot controller
achieves better performance.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

time (s)

vo
lta

g
e

 (
 V

)

reference
v1
v2

(a) One-shot controller

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1

time (s)

vo
lta

g
e

 (
 V

)

reference
v1
v2

(b) Standard controller

Figure 3.7: Controllers response with jitters.

The Kalman gain values during the previous experiment (with jitters) were obtained in order
to certificate the correct implementation of the Kalman filter. Figure (3.8) shows the evolution
of the first element of the Kalman gain for the half and complete approaches compared with the
Kalman filter’s gain using a standard controller with no jitters. It can be noticed that the values
are similar despite of small variations for the half and complete approaches.

3.4.3.4 Experimental performance evaluation

The different implementation approaches specified in Subsection 3.4.1, were evaluated in terms of
control performance. For each approach, performance was measured with a discrete-time control

41 3.4 Simulation and experiments

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

time(s)

K
al

m
an

 G
ai

n

Standard Kalman
Half Kalman
Complete Kalman

Figure 3.8: Kalman gain evolution.

Table 3.2: Experimental control performance.
Implementation Approach Control Performance

(A) Kalman with standard controller (no jitters) 4.4517
(B) Half Kalman with one-shot controller 4.4523
(C) Complete Kalman with one-shot controller 4.4542
(D) Kalman with standard controller 5.0645
(E) No Kalman with standard controller 7.5359

cost equivalent to the continuous cost defined in (3.23).
A set of ten different experimental scenarios were elaborated in order to cover a wide variety

of system conditions. Each scenario considers different jitters values, and different set-points (ref-
erence) amplitudes and frequencies. The same set of scenarios was applied to each approach, with
the exception of the first approach (A) where no jitters were applied, since this implementation
approach serves as a reference (ideal case) for the experimental evaluation. Average values of the
ten scenarios in terms of cost (smaller values means better performance) are presented on Table 3.2
for a 40s evaluation period.

The results shows that the half Kalman (B) and the complete Kalman (C) implementations
using the one-shot controller has no meaningful differences in their performance. And both ap-
proaches have practically the same performance as the ideal case (A), even when (B) and (C)
includes jitters. Now, the Kalman filter implementation in the standard controller (D) has a worse
performance compared with (B) and (C) as expected because jitters affects its performance. Fi-
nally, it is interesting to notice that if a standard controller is used without Kalman (E), the jitters
degrading effect is greater than the one obtained with the use of Kalman (D).

It is important to highlight that experimental results (Table 3.2) and simulation results (Ta-
ble 3.1) present the same trend regarding the control performance evaluation of the different ap-
proaches. However values in simulation are slightly but consistently lower than in experiments, even
when noise covariance is higher in simulation. This may be caused in part, by the fact that simu-
lation measurements for performance are obtained directly from the plant (noise-free) meanwhile
experiments measurements are affected by noise.

Finally, from the control performance perspective the half Kalman and the complete Kalman are
similar. Now, if the processor workload is taken in consideration, by measuring the task execution
time of each algorithm, then it is obtained that the complete Kalman algorithm requires more
time compared with the half approach. Figure 3.9 shows the accumulated execution time during a

Chapter 3: One-shot task model extended to noisy measurements 42

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

time (s)

ac
cu

m
ul

at
ed

 e
xe

cu
tio

n
tim

e
(m

s)

Complete Kalman
Half Kalman

Figure 3.9: Accumulated execution time.

period of 4s for the half and complete Kalman implementations. As it can be noticed half Kalman
spends less execution resulting in a simpler and less processor intensive implementation approach.

Chapter 4

Taxonomy on
resource/performance-aware
policies

4.1 Introduction

The execution rate of controllers determine control performance as well as resource utilization. Se-
lecting sampling periods is not an easy task when resources are limited. The real-time and control
communities have provided diverse theoretical results on both control and resource optimization
for resource limited computing systems concurrently executing several controllers. Loosely speak-
ing, most of these results suggest to efficiently select the controllers’ sampling periods, such that
controllers’ execution rates are different from those provided by the standard periodic sampling
approach [ÅW97].

As indicated in Chapter 1, within these results, two main disciplines can be identified: feedback
scheduling (FBS), and event-driven control systems (EDC). This chapter reviews these results. The
outcome is a taxonomy on resource/performance-aware policies for embedded control systems.

4.2 Problem set-up

This section reviews existing results for FBS and EDC, while identifying key features. The main
goal is to be able to construct a taxonomy, that will permit a better definition of the evaluation
framework presented in next chapter. For feedback scheduling approaches, the reviewed results
are [SLSS96], [SLS98], [EHÅ00], [RS00], [HCAÅ02], [PPSV+02], [CEBÅ02], [CLS03], [MLB+04],
[PPBSV05], [HC05], [CMV+06], [GCHI06], [MLB+09], [BC08], [SCEP09], [SEPC09], [GcH09], and
[CVMC10]. For event-driven control, the reviewed results are [Årz99], [HGvZ+99], [ZZ99], [AB02],
[VMF03], [TW06], [Mis06], [Tab07], [LCH+07], [JHC07], [SNR07], [AT08a], [AT08b], [WL08a],
[WL08b], [HSB08], [HJC08], [WL09a], [WL09b], [MVB09], [MAT09], [MT09], [VMB09a], [AT09],
and [AT10]. In addition, the survey also will focus on which type of evaluation was applied to each
method, information that will be also used in next chapter.

43

Chapter 4: Taxonomy on resource/performance-aware policies 44

4.2.1 Feedback scheduling

Initial research on feedback scheduling is found in Seto et al. [SLSS96], where an off-line algorithm
was proposed to select tasks sampling periods. The performance of each controller was captured
by a cost function that describes the relationship between the sampling rate and the quality of
control. Assuming that the cost vs rate for each controller can be approximated by an exponentially
decreasing function, the paper gives an optimization algorithm that assigns optimal sampling rates
to the controllers, subject to an EDF CPU utilization constraint. This concept was extended to
RM scheduling in [SLS98]. Although both approaches were described in detail, only simulations
were provided for validation purposes. A further extension of this off-line approach to redundant
controllers was presented in [CLS03], using the same simulated scenarios (temperature control,
bubble control, and inverted pendulum) over the Simplex [SKSC98] software platform. Bini et
al. [BC08] extended these type of off-line approaches considering also, apart from sampling peri-
ods, input-output delays. The approach was validated using simulated workloads and randomly
generated delays.

An off-line optimal period assignment method for a set of state feedback controllers using
the stability radius as a performance criterion was presented by Palopoli et al. in [PPSV+02]
and [PPBSV05]. Evaluation was performed on simulated inverted pendulums using the Erika kernel.

Rehbinder et al. [RS00] presented an off-line approach based on cyclic executives. Therefore
the solution to the optimization problem was expressed in terms of sequences of tasks instead of
the sampling periods’ values. The proposed approach uses the predicted error over a finite time
horizon as the information required to define the optimal sequences of tasks. The approach was
validated using simulations on inverted pendulums.

Recently, Samii et al. [SCEP09] [SEPC09] proposed an off-line approach to scheduling and
synthesis of control applications where the output of the algorithm is the schedule that minimizes
the cost for a given number of controllers. Simulations were used to validate the approach, and
measurements in a PC running Linux was used for complexity analysis.

An important change with respect to previous works has been the use of an on-line sched-
uler that uses feedback to dynamically adjust the control task attributes in order to optimize
the global control performance. This feedback scheduling concept was used initially in [EHÅ00]
and further developed in [CEBÅ02]. Eker et al. [EHÅ00] considered linear quadratic (LQ) state
feedback controllers and derived expressions relating the LQ-cost to the sampling interval. The
optimization process was based on the a priori relation between cost and the sampling periods. A
linear approximation was used to represent the cost-period relation. They also proposed an on-line
optimization algorithm for sampling period assignment, that iteratively adjusts the sampling rates
based on the CPU load. An extension to general linear dynamic controllers is found in [CEBÅ02].
In both approaches the scheduler attempts to keep the processor utilization as close as possible to a
utilization set-point by manipulating the sampling periods. The proposed optimization algorithms
were implemented in TrueTime. Four simulated inverted pendulum were used as the controlled
plants. The same idea but targeting model predictive controllers was presented by Henriksson et
al. [HCAÅ02], which was validated using TrueTime simulations on a quadruple-tank laboratory
process.

Mart́ı et al. [MLB+04] introduced feedback from the actual control performance. The scheduler
obtains feedback information from the controlled process. The sampling period reassignment is
based on the current instantaneous cost measurement from the controlled plant. This approach took
as the underlying idea the fact that a controlled plant in a transient phase, caused by an external
disturbance, may require more resources (that is shorter sampling periods), than a controlled
plant in a steady state free from disturbances. The algorithm was implemented in a Linux 2.4.20
kernel-based platform (named RBED [BBLB03]) and extensive experiments were performed on
simulated inverted pendulums. The same authors presented an extension [MLB+09] where the

45 4.2 Problem set-up

relation between its cost function and standard quadratic cost functions was established.
Henriksson et al. [HC05] further formalized this approach for linear quadratic controllers by

incorporating the current plant states into a finite-horizon quadratic cost function, which also took
the expected future plant noise into account. The extension to the general case of linear controllers
was given in [CMV+06]. Both feedback scheduling strategies were simulated with TrueTime using
three different second-order plants: ball and beam, DC motor, and harmonic oscillator. A further
improvement is offered by Cervin et al. [CVMC10] where the performance of each controller is cap-
tured in a finite horizon cost function, taking into account the sampling period, the computational
delay, and the amount of noise acting on the plant. In addition, the cost function was developed
for general linear dynamic controllers (and not only for state feedback controllers as in much of
previous work). A proof-of-concept implementation, where the feedback scheduling approach is put
to test in a real system, was presented based on the Erika real-time kernel and electronic double
integrator circuits as the controlled plants.

Ben Gaid et al. [GCHI06], [GcH09] presented a complementary approach for the optimal in-
tegrated control and real-time scheduling of control tasks. It combined non-preemptive optimal
cyclic schedules according to the H2 performance criterion, with an efficient on-line scheduling
heuristic in order to improve responsiveness to disturbances. The validation of these approaches
was performed using simulated inverted pendulums.

4.2.2 Event-driven control

Initial research on event-based scheduling is found in Arzen [Årz99] where the integration of an
analog event detector was proposed, in order to trigger a PID controller. Simulations were con-
ducted in order to compare the control performance and the processor load of the event-based
controller with a time-trigger controller. As a result the event-based controller achieved large re-
ductions in the processor load with minor performance degradation. Processor load was measured
as a percentage of utilization, and a simulated double-tank process was used as a plant.

In Heemels et al. [HGvZ+99], a control system to synchronize the position of two motors based
on asynchronous measurements was presented. In this approach an external interruption is received
by the controller in order to measure the error between the motors. The proposed design, for this
first order system, was implemented and tested with real inductor motors, using a Texas Instrument
digital signal processor (TMS-320C40).

In Zhao et al. [ZZ99], an event feedback strategy was suggested where the scheduling policy
chooses one and only one plant among N plants to be controlled at any time. Specific conditions
of asymptotical and exponential stability are then given and an exponential upper bound of states
norm is estimated for the event-based strategy. An algorithm based on event feedback was pre-
sented to determine the control laws of the plants in order to meet the performance specifications.
Simulation study showed that the proposed strategy has a better performance with a sequential
scheduling policy. The control performance was compared by analyzing the transient response.

Event-based control for a first-order stochastic system was studied in [AB02]. It was shown that
an event-based controller for an integrator plant disturbed by white noise requires on average, only
one fifth of the sampling rate of an ordinary, periodic controller to achieve the same output variance.
Simulations were carried out to validate the approach and control performance was measured in
terms of output variance.

Miskowicz [Mis06] proposed a data collection strategy where the sampling action is triggered
if the signal deviates by delta, defined as a significant change of its value in relation to the most
recent sample. This schema was targeted for wireless sensor networking due to the need of effective
energy consumption. Analytical solutions were presented for first and second order systems. A
similar approach was proposed by [SNR07], where a modified Kalman algorithm was implemented
to reduce sensor data traffic with relatively small estimation performance degradation. Experiments

Chapter 4: Taxonomy on resource/performance-aware policies 46

were conducted on sensor boards (Amtel AT90CAN128) connected through a CAN network, a third
order plant was simulated in a PC with Matlab real-time workshop. The performance was measured
by the number of data transmission by each sensor.

In Heemels et al. [HSB08] an event-driven control scheme was presented where the the control
update is only triggered when the tracking or stabilization error is large. In this manner, the average
processor and communication load can be reduced significantly.

An sporadic control schema consists in an aperiodic event-based control with a specified mini-
mum inter-event time. In Johannesson et al. [JHC07] proposed a scheduling schema that reduces
the average frequency of control events and also the variance of the system state. In this approach,
it is assumed that the process state is measured continuously and that a control action can be
taken at any point in time, but not more often than the minimum inter-arrival time. The perfor-
mance of the system was measured by a cost function with two terms: the state cost represents
the stationary process variance and the control cost represents the average number of events per
time unit. Simulations on this approach were conducted over first order systems. In Henningsson
et al. [HJC08] an sporadic controller was compared with a periodic controller in a first order lin-
eal system. The performance was measured by the stationary state cost (state error) and by the
number of control actions within an interval (control rate).

In self-triggered systems, the control task determines its next release time based on samples of
the state gathered at the current release time. Velasco et al. [VMF03] presented a self-triggered
task model that drives control task executions according to controlled system performance and
available processing capacity. The model, which extended the original state space representation of
a controlled plant with the control task period as an additional state variable, allowed control task
to adjust their execution rate acting as a co-scheduler. Simulations were conducted using two ball
and beam plants to analyze the system dynamics. Mart́ı et al. [MVB09] formulated the optimal
boundary and regulator design problem that minimizes the resource utilization of an event-driven
controller that achieved a cost equal to the case of periodic controllers. The standard quadratic
cost function was used to specify the optimization problem. Simulations were conducted using a
double integrator plant model.

Tabuada [Tab07] presented a self-triggered schema where the decision to execute the control
tasks was determined by a feedback mechanism based on the state of the plant. Simulation for this
approach were conducted to verify the system stability, where system error and system state values
were measured. A second-order plant was used during simulation. Although it was not addressed,
the paper mentioned that the proposed strategy requires special purpose hardware to trigger the
event. This approach was further analyzed by Anta et al. in [AT08a], [AT08b], [AT09], [AT10]
where the self-trigger model was extended for non-linear systems.

In Lemmon et el. [LCH+07], the self-triggered mechanism was implemented using the elas-
tic scheduling [BLA98]. In the elastic task model or elastic scheduling the deadline misses are
avoided by increasing tasks periods until some desirable utilization level is achieved. Simula-
tions were conducting over three inverted pendulums plants, mainly to compare the proposed
approach with a time-triggered approach with similar characteristics. Control performance was
evaluated by analyzing their respective transient response. This work was extended by Wang et
al. in [WL08b], [WL08a], [WL09a], [WL09b]. In [WL08b], [WL09a] where bounds were derived on
a task’s sampling period and deadline to quantify how robust the control system’s performance is
with respect to variations in these parameters. An inverted pendulum model was used to simulate
the system plant, and the normalized state error was used for performance measurement.

In Mazo et al. [MAT09] a general procedure leading to self-triggered implementations of feed-
back controllers was proposed. The approach was simulated with a fourth order batch reactor model
as the controlled plant, and the performance was measured by the size of the inter-execution times.
In [MT09] the proposed approach was analyzed to study its robustness with respect to disturbances.

47 4.2 Problem set-up

In Velasco et el. [VMB08] it was provided a general explicit approximated solutions to compute
activation times for event-driven control jobs, and extends both the FP and EDF schedulability
analysis to the control-driven tasks. For the analysis of activation patterns and the comparison of
the event-based control with the time-triggered control, simulations were conducted using a ball
and beam plant.

4.2.3 Common formulations for FBS and EDC

The considered scenario consists on n-control loops competing for processor time. Each control
loop contains the controller characterized by an state feedback gain Li and the controlled plant,
which can be modelled by the linear continuous time state-space representation

ẋi(t) = Ai xi(t) +Bi ui(t)
yi(t) = Ci xi(t)

(4.1)

with xi ∈ R
n×1, Ai ∈ R

n×n, Bi ∈ R
n×m, ui ∈ R

m×1, and Ci ∈ R
1×n. Let

ui(t) = ui
k = Li xi(aik) = Li xi

k ∀t ∈ [aik, a
i
k+1[(4.2)

be the control updates given by each linear feedback controller Li using only samples of the state at
discrete instants ai0, a

i
1, . . . , a

i
k. Between two consecutive control updates, u

i(t) is held constant. In
periodic sampling aik+1 = aik+ hi where hi is the period of the controller. The controller execution
time is given by ci.

In most of the FBS cases, the feedback gain Li is designed as mandated by each method in the
discrete time domain considering

xi
k+1 = Φi(hi)xi

k + Γi(hi)ui
k

yik = Ci xi
k

(4.3)

with Φi(t) = eA
it and Γi(t) =

∫ t

0
eA

isdsBi, and where hi may vary following different patterns. On
the contrary, for EDC methods, the feedback gain is often designed in the continuous time domain.

Regardless of the design procedure for the feedback gain, all the controllers are characterized by
the sampling interval hi that will vary according to the particular approach resource/performance-
aware policy. For the feedback scheduling approaches, in general, each task is associated a cost
function J i(hi), which gives the control cost (or benefit) as a function of the sampling interval.
Then, hi is the solution of solving

minimize

n∑
i=1

J i(hi) w.r.t. hi (4.4)

subject to

n∑
i=1

ci

hi
≤ Uref (4.5)

where Uref is the desired resource utilization level for the set of control loops. The optimization
problem is constrained by two key aspects: the set of optimal sampling periods must guarantee
closed loop stability and task set schedulability. Stability is either guaranteed by the formulation
of the optimization problem, or it is not explicitly imposed in the formulation but analyzed after
solving the optimization problem. Task set schedulability is often imposed by resource utilization
tests. A few methods, instead of providing optimal sampling periods, provide job sequences. That
is, the outcome of the optimization problem is an optimal sequence of jobs for each control task
to be executed periodically. In several approaches, the outcome of the optimization problem also

Chapter 4: Taxonomy on resource/performance-aware policies 48

includes the gains Li.
In EDC, the controller is activated upon some condition on the system status and not periodi-

cally. The condition called even-condition or execution rule, mandates to take a new control action
when the system state variables (or measured signals) have deviated sufficiently from the set-point.
A common formulation is as follows. For the EDC approaches, the variation on the sampling in-
terval is given by hi = Λi(xi

k,Υ
i, ηi), where Λ(·) is the time spent by each closed loop trajectory

from the sampled state xi
k = x(aik) to reach the given boundary. Boundaries can be described by

f i(eik(t), x
i
k,Υ

i) ≤ ηi (4.6)

where Υi is a set of free parameters of f i, ηi is the error tolerance, and eik(t) = xi(t) − xi
k is the

error evolution between consecutive samples with t ∈ [aik, a
i
k+1[. Therefore, the complete dynamics

of the each event-driven system is given by

aik+1 = aik + Λi(xi
k,Υ

i, ηi)
xi
k+1 = (Φi(Λi(xi

k,Υ
i, ηi))+

Γi(Λi(xi
k,Υ

i, ηi))Li)xi
k.

(4.7)

Velasco et el. [VML08] remarks that to find an expression for Λi(xi
k,Υ

i, ηi) is sometimes feasible by
approximating Φ and Γ by Taylor expansion. An alternative technique for finding Λi under several
assumptions is given by [WL09a]. Otherwise, Λi can only be computed numerically, according to the
particular formulation given in each approach, or approximated. Whenever finding Λi is feasible,
the event-driven control scheme can be implemented as a self-triggered approach: each controller
execution computes when the next execution should occur in time. Otherwise, the event-driven
control scheme must be implemented using dedicated hardware for detecting the event condition.

4.3 Taxonomy

This section presents a taxonomy on the resource/performance-aware policies from the approaches
presented in the previous section. The taxonomy reveals key characteristics and tendencies on
embedded control systems which support the definition of the performance evaluation framework
specifications. A preliminary taxonomy can be found in [LVM07].

4.3.1 Methods

Many of the novel methods go beyond than just finding the best values for control task periods. They
provide complete real-time frameworks tailored to effective concurrent execution of control tasks.
They can be characterized by which criterion is used to select sampling periods, thus establishing
what real-time paradigm is demanded in the underlying executing platform, who should decide
which task to execute, when the decision is taken, where the dynamics accounted for are located,
and how the decision is enforced. By reviewing the surveyed resource/performance-aware policies,
a taxonomy analysis is summarized in Table 4.1.

49 4.3 Taxonomy

4.3.2 Criterion

A key aspect of these policies is the theoretical criterion used to obtain the set of sampling peri-
ods (or sequences or schedules). Two main criterion can be identified: optimization approach or
bounding the inter-sampling dynamics.

In the optimization approaches sampling periods are selected to solve an optimization problem.
They assume that there is a cost function parameterized in terms of control performance and sam-
pling periods that has to be minimized or maximized depending on whether it denotes penalty or
benefit. The optimization problem domain is restricted by closed loop stability and task set schedu-
lability constraints. For example, in Seto et al. [SLSS96] sampling periods are statically assigned
to each control loop in order to obtain the best overall performance. In Mart́ı et al. [MLB+04]
shorter sampling periods are dynamically assigned to the plant with the current largest error (cost
function).

In the approaches based on bounding the inter-sampling dynamics, sampling periods are se-
lected to keep each closed loop dynamics within predefined thresholds. Thresholds, which are
derived from pure control theoretical approaches or hardware set-up (measurements methods), are
used to bound changes in the dynamics or to ensure closed loop stability in different forms. For
example, in Arzen [Årz99] an external hardware interruption triggers the task jobs, meanwhile in
Lemmon et el. [LCH+07] the task thresholds definitions are specified in order to ensure system
stability.

Usually, many of the feedback scheduling approaches use the optimization criteria while the
event-driven control systems approaches use the bounding in the inter-sampling dynamics criteria.

4.3.3 Triggering paradigm and entity

These two categories influence whether the period selection solution requires a real-time architec-
ture that follows a time-triggered (TT) or an event-triggered (ET) paradigm. All the solutions to
the optimization approaches require a time-triggered architecture while all the solutions based on
bounding closed-loop dynamics require an event-triggered architecture.

The classification considers who is in charge of selecting sampling periods (triggering entity).
All solutions requiring a TT architecture are based on a global coordinator that decides the best
periods for the set of control tasks. This can be in the form of a special purpose task acting as a
feedback scheduler (e.g. [MLB+04], [HC05]) or it can be implemented directly into the real-time
kernel (e.g. [EHÅ00]). On the contrary, in the solutions requiring an ET architecture, two options
can be identified: control tasks are in charge of deciding their periods (self-triggered approaches
e.g. [VMF03], [LCH+07]) or specific purpose hardware must be used to detect the event condition
that will trigger each control task (e.g. [Årz99], [HGvZ+99]).

4.3.4 Solving the problem

The previous classification (TT vs. ET) relates to whether the period selection is performed
off-line or on-line. In all ET approaches periods are derived on-line. However, in the TT ap-
proaches, some solutions have to be computed off-line (e.g. [SLSS96]) while others are on-line (e.g.
[MLB+04], [HC05])

It is important to identify when the sampling periods are selected for two main reasons: over-
head and adaptability. On-line algorithms introduce computational overhead which may be con-
sidered a disadvantage, some approaches propose the use of look-up tables to reduce the overhead,
e.g. [CMV+06]. On the other hand, on-line algorithms have the ability to adapt to workload changes
by either varying the available resources [EHÅ00] or varying demands from the control applica-
tions [MLB+04], this adaptability feature can be considered an advantage for on-line approaches.

Chapter 4: Taxonomy on resource/performance-aware policies 50

Table 4.1: Taxonomy of resource management approaches.
Which What Who When Where How

Criterion Triggering Triggering Solving Dynamics Solution
Paradigm Entity the problem

Set96 [SLSS96] Optimizat. TT Coord. Off-line None Static periods
Set98 [SLS98] Optimizat. TT Coord. Off-line None Static periods
Arz99 [Årz99] Bound dyn. ET Task On-line Event detector Ext. interrupt
Hee99 [HGvZ+99] Bound dyn. ET Task On-line Event detector Ext. interrupt
Zha99 [ZZ99] Bound dyn. ET Coord. On-line Plant state Sequences
Eke00 [EHÅ00] Optimizat. TT Coord. On-line Kernel Varying periods
Reh00 [RS00] Optimizat. TT Coord. Off-line None Sequences
Ast02 [AB02] Bound dyn. ET Task On-line Plant state Time intervals
Vel03 [VMF03] Bound dyn. ET Task On-line Plant meas. state Time intervals
Hen02 [HCAÅ02] Optimizat. TT Coord. On-line Kernel Varying periods
Cer02 [CEBÅ02] Optimizat. TT Coord. On-line Kernel Varying periods
Pal02 [PPSV+02] Optimizat. TT Coord. Off-line Plant stability Static periods
Cha03 [CLS03] Optimizat. TT Coord. Off-line None Static periods
Mar04 [MLB+04] Optimizat. TT Coord. On-line Plant (instant.) Varying periods
Hen05 [HC05] Optimizat. TT Coord. On-line Plant (finite hor.) Varying periods
Pal05 [PPBSV05] Optimizat. TT Coord. Off-line Plant stability Static periods
Ben06 [GCHI06] Optimizat. TT Coord. On-line Plant (finite hor.) Sequences
Cas06 [CMV+06] Optimizat. TT Coord. On-line Plant (finite hor.) Varying periods
Mis06 [Mis06] Bound dyn. ET Task On-line Event detector Ext. interrupt
Tab07 [Tab07] Bound dyn. ET Task On-line Plant state Time intervals
Lem07 [LCH+07] Bound dyn. ET Task On-line Plant meas. state Time intervals
Joh07 [JHC07] Bound dyn. ET Task On-line Plant state Sporadic
Suh07 [SNR07] Bound dyn. ET Task On-line Event detector Ext. interrupt
Hen08 [HJC08] Bound dyn. ET Task On-line Plant state Sporadic
Ant08 [AT08a] Bound dyn. ET Task On-line Plant state Time intervals
Ant08a [AT08b] Bound dyn. ET Task On-line Plant state Time intervals
Bini08 [BC08] Optimizat. TT Coord. Off-line None Periods-delays
Hee08 [HSB08] Bound dyn. ET Task On-line Plant meas. state Time intervals
Wan08 [WL08b] Bound dyn. ET Task On-line Plant meas. state Time intervals
Wan08a [WL08a] Bound dyn. ET Task On-line Plant stability Time intervals
Ant09 [AT09] Bound dyn. ET Task On-line Plant state Time intervals
Ben09 [GcH09] Optimizat. TT Coord. On-line Plant (finite hor.) Sequences
Mar09 [MVB09] Bound dyn. ET Task On-line Plant meas. state Time intervals
Mar09a [MLB+09] Optimizat. TT Coord. On-line Plant (instant.) Varying periods
Maz09 [MAT09] Bound dyn. ET Task On-line Plant state Time intervals
Maz09a [MT09] Bound dyn. ET Task On-line Plant state Time intervals
Sam09 [SCEP09] Optimizat. TT Coord. Off-line Schedule Periods/sequences
Sam09a [SEPC09] Optimizat. TT Coord. Off-line Schedule Periods/sequences
Vel09 [VMB09a] Bound dyn. ET Task On-line Plant meas. state Time intervals
Wan09 [WL09a] Bound dyn. ET Task On-line Plant meas. state Time intervals
Wan09a [WL09b] Bound dyn. ET Task On-line Plant meas. state Time intervals
Ant10 [AT10] Bound dyn. ET Task On-line Plant state Time intervals
Cer10 [CVMC10] Optimizat. TT Coord. On-line Plant (finite hor.) Varying periods

51 4.3 Taxonomy

4.3.5 Dynamics

It refers to where the dynamics that are accounted for in the optimization problem are located:
kernel (resource) and/or plant. Pure kernel dynamics are considered only in few approaches (
[EHÅ00], [HCAÅ02], [CEBÅ02]). In the case where the plant defines the optimization process, there
are different considerations: [MLB+04] considers the plant instantaneous error, [HC05] considers
the plant finite horizon dynamics, the event-based methods require an event-condition that can
be defined in terms of the plant state [TW06], the measured state [LCH+07], or implemented
via an external hardware interrupt [Årz99]. Other optimization approaches focuses primarily in
improving the robustness of the controlled system [PPSV+02], or selecting adequate schedules
that exploit the available computation resources to optimize the control performance in the running
mode [SEPC09].

4.3.6 Solution

Once periods are selected based on a specific dynamics, they must be enforced by the under-
lying real-time architecture. Therefore, it is important to examine how the solutions are en-
forced. Although the taxonomy reviews methods for sampling period selection, some methods
([RS00], [GCHI06], [GcH09]) do not establish sampling periods, rather they provide periodic se-
quences of ordered control task instances. All the others provide periods in different forms, i.e.
static periods ([SLS98]), varying periods ([EHÅ00], [MLB+04], [HC05]), self-triggered aperiodic
time intervals ([TW06], [LCH+07]), and aperiodic time intervals caused by external interruptions
([Årz99], [HGvZ+99]).

All solutions demanding a time-triggered architecture can enforce the derived timing constraints
for control tasks using well known scheduling strategies such as earliest deadline first (EDF) and
fixed priority (FP). For the solutions demanding an event-based architecture, the scheduling policy,
that can enforce the presented solution, is lacking in the general case. Only the result provided
in [LCH+07] integrates the presented even-triggered control with existing scheduling theory. At
each job execution the deadline for the following job is predicted and the elastic scheduling is
invoked to accommodate the new timing demands, considering the whole task set. However, if the
elastic scheduling can not meet them, problems may occur.

4.3.7 Discussion

By analyzing the presented taxonomy, the following considerations need to be included in the
specifications of any real-time control systems evaluation framework:

• According with the optimization criterion, control performance and resource utilization rep-
resent the two most important evaluation parameters. Hence, the performance evaluation
framework must be able to measure both parameters.

• The triggering paradigm indicates that both event-based and time-trigger architectures must
be supported by the evaluation framework.

• There is a clear tendency to implement on-line optimization algorithms. This tendency reflects
and aims at meeting the demands of modern embedded systems that are required to work in
dynamic environments, being adaptive to the available resources that can change abruptly, or
to the resource demands of control applications that can be considered as varying depending
on the state of the controlled plants. Therefore, the evaluation framework must provide proper
services to allow the execution of on-line optimization algorithms according to either kernel
and/or plant dynamics. Also workload changes must be allowed and computation overhead
should be included as a measurement parameter.

Chapter 4: Taxonomy on resource/performance-aware policies 52

Approach Trigger When Dynamics Exec. Rule

Static approach [ÅW97] TT
Off-line FBS [SLSS96] TT Off
On-line FBS-Inst. [MLB+04] TT On kernel/plant
On-line FBS-FH [HC05] TT On kernel/plant
Heuristic Self-triggered [VMF03] ET On kernel/plant state/utilization
Self-triggered [LCH+07] ET On kernel/plant meas. state
Optimal self-triggered [MVB09] ET On kernel/plant meas. state

Table 4.2: Selected methods of FBS and EDC showing key distinctive features.

• In order to cover a wide variety of approaches, static and varying periods, as well as sequences
and aperiodic time intervals must be supported by the evaluation framework.

• Scheduling policies such as EDF and FP must be part of the services provided by the frame-
work.

4.4 Selected methods for performance evaluation

Considering the previous taxonomy, this section presents which subset of the resource/performance-
aware policies will be evaluated. The subset of selected methods represent major tendencies iden-
tified in the taxonomy. They are summarized in Table 4.2 and characterized by the following
parameters:

• Triggering paradigm: time-triggered (TT) for feedback scheduling or event-triggered (ET)
for event-based scheduling.

• When to solve the optimization problem: off-line or on-line.

• Which kind of dynamics are accounted for in the optimization problem: resource (kernel)
and/or plant.

• Execution rule: event condition can be defined as a function of the system state or the
measured state (applies only for EDC methods).

4.4.1 Static Approach

This is the only approach that does not belong to the class of feedback scheduling nor event based
scheduling methods but it is here included for comparative purposes. It implements the traditional
approach to real-time implementation of computer controlled systems. That is, each control task is
assigned off-line an arbitrary sampling period (time-triggered) selected according to well established
procedures [ÅW97], taking also into account task set utilization.

4.4.2 Off-line FBS (feedback scheduling)

The off-line FBS is represented by the work by [SLSS96] which can be considered one of the semi-
nal papers on sampling period selection subject to control performance optimization for real-time

53 4.4 Selected methods for performance evaluation

control systems. An off-line optimization is performed in order to reduce control cost, once the opti-
mal periods are calculated, the control tasks are scheduled under EDF. Although different on their
formulations of the optimization problem in terms of objective functions and restrictions, existing
results such as [SLS98], [RS00], [PPSV+02], [CLS03], [PPBSV05], [BC08], [SCEP09], [SEPC09] can
be included in a subset of works that share in common that they are off-line feedback scheduling
methods. That is, sampling periods are derived before run-time and kept constant during execution.

4.4.3 On-line FBS (feedback scheduling)

The method presented by [EHÅ00], further developed in [HCAÅ02] and [CEBÅ02], is the first
one that uses the term feedback scheduler. The key aspect presented in [EHÅ00] is to on-line
adjust sampling periods considering the dynamics of the processor load. Looking at the outer
loop of the resource manager is the feedback scheduler that, having available the system workload
from the real-time kernel, i.e. resource aware (RA) and given a utilization set-point, keeps the
desired utilization by modifying workload via on-line sampling period selection, while optimizing
the total control performance. A step further is also to optimize control performance by on-line
adjusting sampling periods according to both kernel workload and plant dynamics, idea introduced
by [MLB+04]. The intuitive idea behind this kind of approaches is to provide more processing
capacity to control tasks whose plants are experiencing severe transients due to e.g. perturbations
or noise.

Within the existing work that consider on-line period adjustment that accounts for plant dy-
namics and kernel workload, two main flavors can be distinguished depending on whether decisions
are taken looking an instantaneous plant states or looking at predictions of the plant dynamics
using for example a finite horizon cost function. The work by [MLB+04] will be taken in the perfor-
mance evaluation as example policy whose decisions rely on an instantaneous metric. This work was
further refined in [MLB+09]. The work by [HC05] will be taken in the performance evaluation as
example of policy whose decisions rely on a finite horizon metric. This work was further developed
in [CMV+06] and [CVMC10]. This type of approach was also adopted in [GCHI06] and [GcH09].

4.4.4 Heuristic self-triggered

This method is based on event-driven control and it is represented by the work by [VMF03], where
a self-triggered control approach is implemented to heuristically optimize control performance and
resource utilization. The key idea is that at each job activation, the software tasks select themselves
the next job release time according to a specific execution rule. Discrete-time controller gains are
adapted to each new sampling interval. In this approach the event condition or execution rule is
defined as a function of the system state and processor utilization.

4.4.5 Self-triggered

This method is based on event-driven control and it represented by the work by [LCH+07], where a
self-triggered scheme is presented based on a robust control formulation. In this approach the event
condition or execution rule is defined only as a function of the system state and the controller state
is invariant, and designed in the continuous time domain. This approach was further developed
in [WL08a], [WL08b], [WL09a], and [WL09b]. Similar event-driven control approaches that can
be represented under this category are [TW06], [Tab07], [AT08a], [AT08b], [MAT09], [MT09],
[VMB09a], [AT09] and [AT10]. Note that some of them do not present the event-driven approach
formulated as a self-triggered method. But the key aspect is that they can be transformed to
self-triggered, and more important, that sampling intervals are defined as a function of the system

Chapter 4: Taxonomy on resource/performance-aware policies 54

state. However, it is also clear that each method will provide different performance numbers in
case of being evaluated.

4.4.6 Optimal self-triggered

This method is based on event-driven control, and is an enhancement of [LCH+07] that was
presented by [MVB09]. The key aspect is that the different controller settings such as next sampling
interval and controller gains are a result of an optimization algorithm that is executed at each
controller execution. In any case, optimal parameters are selected according to the plant dynamics
and a standard quadratic cost function.

4.4.7 Other EDC approaches

Apart from the previous selected methods for evaluation, there are still different event-driven
approaches such as [Årz99], [HGvZ+99], [ZZ99], [AB02], , [Mis06], [JHC07], [SNR07], [HSB08],
and [HJC08] that could be implemented. However, many of them rely on specific hardware to
detect event conditions and their transformation to a self-triggered approach should be carefully
analyzed. In addition, many of them trigger the event condition based on a function of a subset of
the state variables, rather than the full set, as the selected methods. Therefore, by observing this
difference, it is not clear whether fair comparisons can be made.

Chapter 5

Performance evaluation framework

5.1 Introduction

Usually feedback scheduling (FBS) and event-driven control (EDC) advances are evaluated and
compared with the performance achieved by the traditional static approach considering similar
circumstances. Therefore the benefits of each novel approach are measured taking the static ap-
proach as a reference. However the performance evaluation does not consider any other similar
resource/performance-aware policy. Hence, it becomes very difficult to analyze and evaluate the
real benefits of each new approach compared to the state-of-the-art results. Moreover, rarely im-
plementation issues are reported.

In order to analyze the implementation feasibility of these methods and evaluate state-of-the-
art under fair conditions, it is required to define and implement a common framework capable
to offer basic services which allow the implementation and the performance evaluation of a wide-
variety of methods (FBS and EDC included). This framework must allow evaluating whether
theoretical approaches can be implemented in practice, and how different strategies impact on
control performance, resource utilization and computational overhead. This will provide an insight
on the benefits and drawbacks of each algorithm. Apart from permitting evaluation of feedback
scheduling methods and event-driven methods, it must also allow the implementation of different
control task models.

The design of the performance evaluation framework is the result of the analysis performed in
the taxonomy (Chapter 4). Among other specifications, the framework must support different trig-
gering paradigms (event-driven, time-trigger), different optimization algorithms (on-line, off-line),
different evaluation parameters (control performance, resource utilization), and different sampling
periodicity (static periods, varying periods, aperiodic intervals, sequences).

The framework is composed by a simulation platform and by an experimental platform. Each
platform has been designed considering different functional modules. To validate the correct opera-
tion of the framework, the group of feedback scheduling and event-driven control methods selected
in Section 4.4 have been implemented.

5.2 Problem set-up

This section presents how state-of-the-art FBS and EDC approaches were evaluated in terms of
control performance and/or resource efficiency. The analysis of these methods focuses also in the
characteristics of the different evaluation platforms used for each case.

55

Chapter 5: Performance evaluation framework 56

Table 5.1: FBS evaluation parameters and platform
Evaluation Parameters Platform
Control Processor

Method Plant Performance Load Simulation Experimental

Set96 [SLSS96] bubble control Quadratic % Yes No
Set98 [SLS98] temperature control, Quadratic No No No

bubble control
Eke00 [EHÅ00] inverted pendulum Quadratic No Yes No
Reh00 [RS00] inverted pendulum Quadratic No Yes No
Hen02 [HCAÅ02] quadruple tank process Error No Yes No
Cer02 [CEBÅ02] inverted pendulum Quadratic No Yes No
Pal02 [PPSV+02] scalar system Robustness No Yes No
Cha03 [CLS03] temperature control, Quadratic No Yes Yes

bubble control,
inverted pendulum

Mar04 [MLB+04] inverted pendulum Error % Yes Yes
Hen05 [HC05] integrator Quadratic No Yes No
Pal05 [PPBSV05] inverted pendulum Robustness No No Yes
Ben06 [GCHI06] (NET) unknown Error No Yes No
Cas06 [CMV+06] ball and beam, Quadratic No Yes No

dc motor,
harmonic oscillator

Bini08 [BC08] scalar plants Quadratic No Yes No
Ben09 [GcH09] inverted pendulum, Error Rate Yes Yes

dc motor
Mar09a [MLB+09] inverted pendulum, Quadratic % Yes No

ball and beam
Sam09a [SEPC09] inverted pendulum, Quadratic Runtime No Yes

ball and beam,
dc servos,
harmonic oscillator

Cer10 [CVMC10] double integrator Quadratic Overhead No Yes

Table 5.1 shows a summary of the evaluation parameters and the platform characteristics for
existing FBS methods obtained from Table 4.1. It also includes the targeted plants used during the
method evaluation. For the evaluation parameters the table indicates how performance is measured
and if processor load is considered. For the platform characteristics, it identifies if simulation and/or
real experiments were conducted.

Similarly, Table 5.2 shows a summary of the evaluation parameters and the platform character-
istics for the reviewed EDC methods obtained from Table 4.1. It also includes the targeted plants
used during the method evaluation.

By analyzing both tables, it can be noticed that in most of the cases the proposed algorithms
were only simulated using a computational tool, and only in few cases real experiments were
developed in order to validate the proposed approach.

Another important aspect is the selection of the evaluation metrics. In practically all the FBS
approaches the main parameter to be measured is control performance and in most of the cases
it is measured by using a quadratic cost function. Processor load for FBS is calculated only in
few cases, where it is measured in terms of percentage of use, and in general the computational
overhead caused by the implementation of the algorithm is not taken into consideration. For the
EDC approaches the main parameter to be measured is processor load, in most of the cases it

57 5.2 Problem set-up

Table 5.2: EDC evaluation parameters and platform
Evaluation Parameters Platform
Control Processor

Method Plant Performance Load Simulation Experimental

Arz99 [Årz99] double tank process No % Yes No
Hee99 [HGvZ+99] electrical motor Error No No Yes
Zha99 [ZZ99] second-order plant Transient No Yes No

response
Ast02 [AB02] integrator Variance No Yes No
Vel03 [VMF03] ball and beam Transient % Yes No

response
Tab07 [Tab07] second-order plan Error No Yes No
Lem07 [LCH+07] inverted pendulum Transient No Yes No

response
Joh07 [JHC07] first-order plant Quadratic Jobs Yes No
Hen08 [HJC08] first-order plant Quadratic Jobs Yes No
Ant08 [AT08a] non-linear plant Error Jobs Yes No
Ant08a [AT08b] jet engine compressor Error Jobs Yes No
Hee08 [HSB08]
Wan08 [WL08b] inverted pendulum Error Jobs Yes No
Wan08a [WL08a] inverted pendulum Error Jobs Yes No
Ant09 [AT09] non-linear plant No Runtime Yes No
Mar09 [MVB09] double integrator Transient Jobs Yes No

response
Maz09 [MAT09] batch reactor model Stability Jobs Yes No
Maz09a [MT09] batch reactor model Stability Jobs Yes No
Vel09 [VMB09a] double integrator Quadratic % No Yes
Wan09 [WL09a] inverted pendulum Error Jobs Yes No
Wan09a [WL09b] inverted pendulum No Jobs Yes No
Ant10 [AT10] jet engine compressor Error Jobs Yes No

is measured by counting the number of jobs executed during a specific period, and just in few
cases the load is measured in terms of percentage of processor utilization or total runtime. The
control performance for EDC approaches is just analyzed by observing the transient response and
sometimes by measuring the deviation from the desired set-point, i.e. transient error.

Given the great diversity of approaches, the framework must be generic enough to accommodate
the different policies, but it also must be flexible and accurate enough to facilitate the implementa-
tion of these policies while permitting to assess their exact operation in fair/comparable scenarios.

Regarding the simulation tools and experimental platform for the evaluation framework, the
following requirements have been placed. The simulation platform must allow co-simulation of 1)
real-time control tasks executing on top of a real-time kernel and 2) plant’s dynamics. It must
permit conducting extensive evaluation of different policies, considering a wide variety of scenar-
ios. The experimental platform has as a main goal to permit proving that each method can be
implemented in a real physical system.

The simulation tool chosen as a basis of the simulation part of the evaluation framework is the
TrueTime toolbox [LU10] integrated with Matlan/Simulink [Mat10]. TrueTime has been shown to
be a well accepted simulation tool among the real-time and control community as demonstrated by
the large number of publications presenting the simulator and its modifications 1, as well as for the

1See, http://www.control.lth.se/truetime/

Chapter 5: Performance evaluation framework 58

large number of publications where TrueTime has been the tool for validating diverse theoretical
results on control and real-time systems co-design. Matlab/Simulink with the TrueTime toolbox
offers a computer block that simulates a computer with a flexible real-time kernel executing user-
defined threads and interrupt handlers. Threads may be periodic or aperiodic and are used to
simulate controller tasks, communication tasks etc. Interrupt handlers are used to serve internal
and external interrupts. The kernel maintains a number of data structures commonly found in real-
time kernels, including a ready queue, a time queue, and records for threads, interrupt handlers,
events, monitors etc. It interfaces with other Simulink blocks. The input signals are assumed to
be discrete, except the signals connected to the A/D port which may be continuous. All output
signals are discrete. The Schedule and Monitors ports provide plots of the allocation of common
resources (processor) during the simulation.

For the experimental part of the evaluation framework, the Erika real-time kernel [Srl08a]
running on top of a Full Flex board [Srl08b] equipped with a Microchip dsPIC33 microcon-
troller [Mic05] has been chosen. Although being a relatively new kernel (released in its first form in
2003), it has an active development and support, and it has been shown to be a good platform for
testing state-of-the-art research and educational results on embedded control systems [MVF+10].
The Erika Enterprise kernel has been developed with the idea of providing the minimal set of
primitives which can be used to implement a multitasking environment. Erika kernel is a real-time
operating system for small microcontrollers based on an API similar to those proposed by the
OSEK/VDX Consortium [OSE]. The Erika kernel implements scheduling algorithms such as Fixed
Priority (FP) with preemption thresholds, and Earliest Deadline First (EDF) which can be used
to schedule periodic tasks with real-time requirements (time-triggered schedule). In addition, it
can handle the interrupts that are raised by the I/O interfaces, internal events and timers which
allows linking a handler written by the user into an interrupt vector in order to schedule aperi-
odic tasks (event-driven scheduling). Erika kernel consist of two layers: the Kernel Layer and the
Hardware Abstraction Layer (HAL). The Kernel Layer contains a set of modules that implement
task management and real-time scheduling policies. The Hardware Abstraction Layer contains the
hardware dependent code that handles context switches and interrupt handling. The Microchip
dsPIC33 microcontroller family is supported by the Erika kernel HAL. The Microchip dsPIC33
microcontroller is a high-performance 16-bit digital signal controller (DSC) designed for embedded
systems solutions. Specifically an embedded board for dsPIC33 named Full Flex has been used
as the hardware experimental platform, see Figure 5.1. The Full Flex board mounts a Microchip
dsPIC33 microcontroller, and exports almost all the pins of the microcontroller. The Full Flex
board, integrates an extra-robust power supply circuitry, which allows the usage of a wide range of
power suppliers. It accepts voltage ranges between 9-36V. The power supply signal is filtered and
adapted to the internal levels.

Finally, it is important to stress that the surveyed results in Tables 5.1 and 5.2 also showed
the diversity of controlled plants that have been used. For the selection of the plant, a few factors
were considered. First, many standard basic and advanced controller design methods rely on the
accuracy of the plant mathematical model. The more accurate the model, the more realistic the
simulations, and the better the observation of the effects of the controller on the plant. Hence,
the plant was selected among those for which an accurate mathematical model could easily be
derived. Plants such as an inverted pendulum or a direct current motor are the defacto plants
for benchmark problems in control engineering. However, their modelling is not trivial and the
resulting model is often not accurate. Second, it was desired to have a plant that could directly
be plugged into a microcontroller without using intermediate electronic components. That is, the
transistor-transistor logic (TTL) level signals provided by the microcontroller should be enough to
carry out the control. Note that this is not the case, for example, for many mechanical systems.
Such a simplification in terms of hardware reduces the modelling effort to study the plant and no

59 5.3 Evaluation framework

Figure 5.1: Full Flex board with a dsPIC33 microcontroller.

models for actuators or sensors are required. Third, it was also desired to have a plant that can
be easily reproduced, that is, it is easy and cheap to built. Regarding all this requirements, the
election was an electronic circuit in the form of a double integrator. Further details will be given
in Subsection 5.3.4.

5.3 Evaluation framework

This section describes the characteristics of the proposed performance evaluation framework. First,
the general services provided by the framework are presented and then the evaluation parameters
used in the framework for performance comparison purposes are introduced. Afterward, the design
and implementation of the performance evaluation framework is presented.

5.3.1 Framework services

This section describes the common characteristics that both, the simulation part and the experi-
mental part have to fulfill. To this extend, several services have been identified. Framework services
refer to the functional modules that constitute the performance evaluation framework. Each func-
tional module performs specific activities that constitute each service. They have been conceptually
defined for providing a flexible and scalable evaluation platform. Framework services are baseline
configuration, resource manager, task controller, optimization method and performance measure-
ment (see Figure 5.2).

5.3.1.1 Baseline configuration

The baseline configuration module is responsible for providing an interface between the plants and
the other functional models. The proposed framework considers the case of a single processor with
multitasking capabilities controlling several continuous plants, as showed in Figure 5.3 for the case
of three plants. This configuration is defined in this module. However, other cases can be supported
if a new configuration is defined within this module, e.g. multiple-processors controlling one plant

Chapter 5: Performance evaluation framework 60

Task
Controller

Optimization
Algorithms

Resource
Manager

Performance Measurement

Baseline Configuration

Figure 5.2: Framework functional modules.

Plant 1 Plant 2 Plant 3

Processor

Task 1 Task 2 Task3

Baseline Configuration

Plant 1 Plant 2 Plant 3

Figure 5.3: Framework multitasking single processor configuration.

each, or multiple-processors operating as network nodes. The module defines the connectivity
between the processor and the plants, this includes analog lines, analog to digital converters, and
digital to analog converters.

5.3.1.2 Resource manager and optimization method

The resource manager module obtains the system dynamics information in the form of kernel
workload, plant error (instantaneous or finite horizon), plant measurement state or any system
feedback information used to re-allocate resources. Using this information, the resource manager
executes the previously selected optimization algorithm (see Figure 5.4). The optimization method
module is conformed by a repository of algorithm routines. In particular, the algorithms shown
in Table 4.2 have been implemented. Each algorithm represent a specific FBS or EDC approach.
Off-line optimization algorithms are executed just once during the system initialization process,
meanwhile on-line optimization algorithms are executed periodically (mainly for FBS approaches)
or aperiodically (for EDC approaches). The optimization module receives the system dynamics
information from the resource manager, then the optimization procedure results are sent to the
task controller to indicate new settings such as new values for task periods or new controller gains.

61 5.3 Evaluation framework

Resource
Manager

Selected
Algorithm

Algorithms

Baseline Configuration

Figure 5.4: Framework resource manager module.

Task
Controller

Task
instance 1

Task Model

Task
instances

Task
instances

Baseline Configuration

Figure 5.5: Framework task controller module.

5.3.1.3 Task controller

The task controller module is the responsible to create task instances according to a specific task
model (see Figure 5.5). A set of control task models definitions are available in this module, such as
naif, one-sample, split, switching and one-shot task models. Task instances support both periodic
and aperiodic interruptions. Timing parameters for the task instances can also be modified on-line
by the optimization method module. This module indicates to the baseline configuration module
when the different activities within each closed loop operation must be executed, that is, when
sampling, control and actuation actions must take place.

5.3.1.4 Performance measurement

The performance measurement module is able to obtain information from any of the other modules.
Raw information such as algorithm execution time, plants’ errors and plants’ states are processed
by this module in order to perform a complete assessment using proper metrics to evaluate control
performance, resource utilization and computational overhead. This module allows performance
evaluation of any resource/performance-aware policy under similar circumstances, providing a fair
comparison among them. It can be tuned to process different system (computer and/or plant)
data, and to evaluate using alternative metrics.

For simulations, control performance is measured using a continuous standard quadratic cost

Chapter 5: Performance evaluation framework 62

function

Jcontrol =

∫ teval

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt. (5.1)

where the Q and R represents the cost weighting matrices and teval the simulation period. For
experiments, control performance is obtained from a discrete-time quadratic cost function

Jd
control =

teval∑
k=0

[
xT (k)Qdx(k) + 2xT (k)Ndu(k) + uT (k)Rdu(k)

]
, (5.2)

where the Qd,Nd and Rd represent the discrete cost weighting matrices. Appendix A, details on
how to obtain (5.2) from (5.1). Since the experimental platform uses the microcontroller to measure
periodically the plant states, then a discrete cost function is required. Meanwhile the simulation
platform is capable of obtaining continuous measurements directly from the plant.

Resource utilization is measured as a percentage of use of the processor during each evaluation
period (teval). So the resource utilization is defined as

Jresource =

(
1

teval

n∑
i=1

Ei

)
∗ 100, (5.3)

where n is the number of tasks sharing the same processor, and E corresponds to either the total
processor time assigned to a specific control task during the simulation period or the total processor
time measured for a specific control task during the experimentation period. Therefore, for each
specific control task, the total processor time (assigned or measured) is

E =

m∑
j=1

Cj (5.4)

where m is the number of times that a specific control task is invoked during the simulation/exe-
cution period, and C corresponds to the task execution time. Computational overhead is included
in this parameter.

A performance index is defined in order to incorporate control performance and the resource
utilization in one metric. Therefore performance index for simulation is defined by

PI = Jcontrol ∗ Jresource, (5.5)

and performance index for experiments is defined by

PId = Jd
control ∗ Jresource. (5.6)

5.3.2 Framework design and implementation: simulation part

The simulation platform implementing the required services can be described from two main views.
The structural view defines the static elements that integrate the platform, meanwhile the execution
view defines the sequence of events or steps conducted during the simulation process. The software
for the simulation platform can be found at http://dcs.upc.es/.

From a structural view the simulation platform has two levels. Matlab programs running in
the Matlab is the first level. Simulink blocks and the TrueTime elements running in the Simulink
environment represent the second level.

63 5.3 Evaluation framework

CPUTime

TotalCost
Feedback Signal 1

Feedback Signal 2

Feedback Signal 3

Control Output 1

Control Output 2

Control Output 3

CPU Load Output

Processor Kernel

Measurement In 1

Measurement In 2

Measurement In 3

Load Measurement

Total Cost Out

CPU Time Out

Measurement System

Control Signal 1

Control Signal 2

Control Signal 3

Sy stem Output 1

Sy stem Output 2

Sy stem Output 3

Controlled Plant

Figure 5.6: Simulink/TrueTime model

Matlab programs are physically and logically grouped in five main folders. The root folder con-
tains the main program which represents the simulation starting point and it contains configuration
files for timing and disturbance data, and plant model definition. The resource manager folder and
task controller folder contains programs which are triggered by Simulink/TrueTime blocks. The
optimization algorithms and the task models folders represents a repository of programs that im-
plement different EDC and FBS strategies. Partial Matlab source code for main modules can be
found at Appendix B.

The Simulink/TrueTime model is composed by three elements: processor kernel, controlled
plant and measurement system (see Figure 5.6 for the model in the case of three control tasks).
The processor kernel sends control signals to the plants, plants send feedback information to the
processor, and the measurement system is capable of obtaining metrics from the other two main
blocks.

The processor kernel simulates a multitasking processor with a real-time operating system (see
Figure 5.7 for details of this block in the scenario of three control loops). Internally this block
is composed by a task controller and a resource manager. The task controller is in charge of the
creation of task instances based on a specific control task model. Resource manager obtains feedback
information and executes a specific resource optimization algorithm and modifies tasks’s controllers
timing parameters if required by the algorithm. The controlled plants group contains a Simulink
space-state block for each plant being under control. Each plant can be affected by disturbance data
which is feed during run-time. For the current implementation, it is assumed that plant states are
available and therefore there is no need for observers. However if required, observers and estimators
can be incorporated in this block. The measurement system block contains two elements, one to
measure control performance and the other to measure processor load. Basically each element
integrates the individual measurements using the defined cost functions and stores the results in a
data structure. If there is a need for additional metrics, this module can be enhanced to support
them.

From an execution point of view, the simulation platform can be described with the flow diagram
showed in Figure 5.8. Each element in the diagram has the following description:

• System configuration. During this step the main configuration parameters are selected, in-
cluding the control task model (naif, one-shot, one-sample, etc.), the resource optimization
algorithm (static, optimal, event-driven) and the plant model. This configuration section
contains the definition of the system model, the configuration is modified each time a new
model is simulated.

• Valid configuration. Once the parameters are selected a validation process is executed in
order to verify that the selected parameters are correct, e.g. whether the selected task model
supports the selected resource optimization algorithm. If the configuration is not valid the

Chapter 5: Performance evaluation framework 64

4

CPU L d O t t

3

Control Output 3

2

Control Output 2

1

Control Output 1

A/D

Interrupts

Rcv

D/A

Snd

Schedule

Monitors

P

Task Controller

Schedule

A/D D/A

S d

em

1

Feedback Signal 1
CPU Load Output

Interrupts

Rcv

Snd

Schedule

Monitors

P

Resource Manager

RM View em3

Feedback Signal 3

2

Feedback Signal 2

Figure 5.7: Processor kernel model

system execution ends.

• Load data. Before the simulation execution, the timing and disturbance data must be loaded
into the system. This data indicates how many execution runs will be conducted, how long
each simulation will last, when and how many set-point changes or disturbances will appear
during the execution time, or what the magnitude of each disturbance or new set point is. All
this information should be previously generated, usually in a random procedure, and stored
in a specific file.

• Execute simulation. Once configuration and data is ready, the simulation is executed. The
simulation consists in the upload and execution of the Simulink/TrueTime model. This model
is generic for all simulations. What it makes the difference is the parameters received from
the system configuration and load data blocks.

• Generate partial results. When a simulation run is completed partial results are stored in
a data structure. This partial results include information such as tasks execution time and
control performance.

• More data. The system verifies if there is more data available for a next simulation. If all
data loaded has been already used, then the system proceeds to summarize the results (using
the plot block). If there is data available, another simulation run is executed. In this way,
different simulation scenarios can be executed for the same system model, and also the same
scenarios can be used later on for other models.

• Summarize results and plot. Finally, the accumulated data is processed and summarized in
order to provide results and plots which represents the performance of the specific system
model.

65 5.3 Evaluation framework

Start

System
Configuration

Execute
Simulation

valid
conf ?

Load
Data

NO YES

Generate
Partial Results

Summarize
results and plot

more
data?

End

NO YES

Figure 5.8: Simulation framework flow diagram

5.3.3 Framework design and implementation: experimental part

The experimental platform environment can be divided into two main configurations: run-time and
programming, as it allows easy and scalable implementation of different resource aware policies.
The software for the experimental platform can be found in http://dcs.upc.es. The run-time
configuration defines the elements used during the microcontroller execution time. This configu-
ration provides an adequate connectivity among the hardware elements in order to execute the
control tasks and extract the evaluation data from the plants through the microcontroller. The
programming configuration refers to the microcontroller code generation process, it provides an
adequate environment to program, compile and download the software that will run in the dsPIC33
microcontroller for the different policies.

5.3.3.1 Run-time configuration

In the run-time configuration the Matlab IDE (Integrated Development Environment) is used as an
interactive environment that enables the user to perform computationally intensive tasks. Matlab
provides key parameters and receives on-line information from the microcontroller. A Matlab pro-
gram (m-file) is executed in order to trigger the execution of the microcontroller program. During
the microcontroller execution, Matlab is receiving raw data about control performance and proces-
sor load. This data is then processed in order to generate plots and obtain summarized information
regarding the behavior of the embedded control system which is conformed by the microcontroller
and the controlled plants. In the dsPIC33 microcontroller several task instances area created, each
one controlling one plant. The case of one task controlling an electronic double integrator systems

Chapter 5: Performance evaluation framework 66

dsPIC33

Plant

Sample

Control

Actuate PWM

ADC

Task

Figure 5.9: A microcontroller task controlling one double integrator plant.

is illustrated in Figure 5.9. Each task is configured in order to be scheduled by the kernel. When
a task job is executed, three activities are performed. First, the controlled plant is sampled by
reading a value from the microcontroller ADC (Analog-to-Digital Converter) which is connected
to the plant output, then it calculates the control signal value according to a specific algorithm,
and finally it sends the control action through the microcontroller PWM (Pulse-Width-Modulator)
that is connected to the plant input. The hardware for the controlled plants is implemented in the
daughter board. According with the performance evaluation framework design, the performance
measurement module is constituted by the Matlab IDE, the m-file, and the plots and results. Mean-
while the disPIC33 microcontroller constitutes the implementation of the baseline configuration,
resource manager, task controller and optimization algorithms modules.

5.3.3.2 Programming configuration

The programming configuration is composed by the following elements: Erika kernel, source code,
Eclipse/RT Druid, MPLAB IDE (Integrated Development Environment) and ICD2 (In-Circuit
Debugger), and the Full Flex board. Erika and the Full Flex board equipped with the dsPIC33
Microcontroller were described in Section 5.2. The source code is the main part of the programming
configuration and it is composed by three files embedded in a project: 1)conf.oil that contains
the system configuration and the tasks, counters and alarm definition using OIL (OSEK Implemen-
tation Language); 2)code.c that represents the source code main program, contains the controller
specific activities using C language; 3)setup.c contains a group of common-used functions for the
Full Flex board. Main source code functions and definitions can be found at Appendix C. Addi-
tional sources files may be added to enhance system functionalities. Besides, MPLAB IDE [Mic10],
that is an integrated tool-set for the development of embedded applications employing Microchip’s
microcontrollers, is used to import the object file produced by the compilation of the source code
in the Eclipse/RT-Druid [Fou10] environment, and to download the program to the dsPIC33 mi-
crocontroller trough the MPLAB In-Circuit Debbuger (ICD2) interface [Mic09].

67 5.3 Evaluation framework

Algorithm 5: int main(void)

begin
Clock setup()

Timer1 program()

Full Flex setup()

SetRelAlarm(AlarmReferenceChange, 1000, 1000)

SetRelAlarm(AlarmPeriodicController, 1000, 50)

SetRelAlarm(AlarmOnlineOptimization, 1000, 10)

SetRelAlarm(AlarmEventController, 1000, 0)

SetRelAlarm(AlarmSend, 1000, 5)

while(1)

begin
background activities (if any) should go here

end

end

Figure 5.10: Main program pseudo-code

5.3.3.3 Code details

The main services implemented in the experimental platform inside of the code.c source file are
described next.

The generation of time in Erika is based on the Timer1 register, which is programmed to rise
an interruption every tick (1ms). The interrupt handler is the CounterTick function that shoots
the diverse programmed alarms. Each alarm has an associated task, which is then activated for
execution. The task can be programmed to be executed just once (aperiodic task) or repeatedly
(periodic task). The overall code has been divided into 5 tasks:

TaskReferenceChange: periodic task that generates the reference signal by modifying the plant
set-point.

TaskPeriodicController: periodic task that implements a time-triggered controller. This task is
used when implementing any FBS approach.

TaskOnlineOptimization: periodic task that executes on-line optimization activities used for
some FBS approaches.

TaskEventController: aperiodic task that implements a event-driven controller. This task is
used when implementing any EDC approach.

TaskSend: periodic task that sends plant state information from the dsPIC33 to the PC using
RS232 serial communication.

The main code initializes software and hardware components (such as clock, timer, ADC),
configures alarms and activate tasks, as shown in the pseudo-code of Figure 5.10. The SetRelAlarm
primitive is used to fire an alarm which activates a task with an specific offset and periodicity value,
if periodicity is zero the task is executed just once. For example the alarm AlarmEventController
activates the task TaskEventController after an offset of 1000ms and it is executed once, meanwhile
the alarm AlarmPeriodicController activates the task TaskPeriodicController that is periodically
executed every 50ms after an offset of of 1000ms.

The TaskPeriodicController implements the controller code for a periodic task (Figure 5.11).
First, it reads the reference signal value (set-point), then it reads the plant state variables through

Chapter 5: Performance evaluation framework 68

Algorithm 6: TASK(TaskPeriodicController)

begin
Read reference()

Read state()

Obtain tracking error()

u=Calculate control signal()

Apply control signal(u)

end

Figure 5.11: Periodic controller pseudo-code

Algorithm 7: TASK(TaskOnlineOptimzation)

begin
status=Obtain plant or processor status()

new period=Optimzation process(status)

if (new period <> current period) begin
Update controller gain()

CancelAlarm(AlarmPeriodicController)

SetRelAlarm(AlarmPeriodicController, new period, new period);

ActivateTask(TaskPeriodicController);
end

old period=current period

end

Figure 5.12: On-line optimization pseudo-code

the dsPIC33 ADC. The tracking error is calculated using the state variables and the set-point.
Later, it calculates the control signal u using the controller gain L, and finally it sets the PWM
duty cycle according with the control signal.

The TaskOnlineOptimization executes on-line optimization activities according to the specifi-
cations given by a particular FBS approach. If required, this task is capable to modify the task
periodicity by cancelling the current alarm and releasing the alarm with a new task activation
period. The pseudo-code in Figure 5.12, shows a generic optimization tasks which first obtains the
plant state or the processor status in order to conduct the optimization process; then if a new task
period is obtained, the controller gain L is updated and a new task period is set.

The TaskEventController implements the controller code for an aperiodic task (Figure 5.13).
Notice that according to the code shown in Figure 5.10, the alarm that activates the task has been
configured to be executed once. The code is similar to the TaskPeriodicController, however, at the
end, it computes its next activation time via Calculate next activation time function, and it uses
this value to set the associated alarm. This code correspond to a self-triggered approach, but it can
also support event-triggered approaches by attaching this task to an external interrupt handler.

5.3.4 Plant details

For both simulation and experimental parts, an electronic circuit in the form of a double integrator
has been used as a controlled plant. Figure 5.14 shows the physical implementation of the double
integrator. Note that in the integrator configuration, the operational amplifiers require positive
and negative input voltages. Otherwise, they will quickly saturate. However, since the circuit is
powered by the dsPIC33, and thus no negative voltages are available, the 0V voltage (Vss) in the

69 5.3 Evaluation framework

Algorithm 8: TASK(TaskEventController)

begin
Read reference()

Read state()

Obtain tracking error()

u=Calculate control signal()

Apply control signal(u)

Event time = Calculate next activation time()

SetRelAlarm(AlarmEventController, Event time, 0)
end

Figure 5.13: Event controller pseudo-code

Figure 5.14: Electronic double integrator circuit

non-inverting input has been shifted from GND to half of the value of Vcc (3.3V) by using a voltage
divider R1/2. Therefore, the operational amplifier differential input voltage can take positives or
negatives values. The nominal electronic components values are shown in Table 5.3.

The operational amplifier in integration configuration can be modelled by

Vout =

∫ t

0

−
Vin

RC
dt+ Vinitial (5.7)

where Vinitial is the output voltage of the integrator at time t = 0, and ideally Vinitial = 0, and Vin

and Vout are the input and output voltages of the integrator, respectively.

Taking into account (5.7), and the scheme shown in Figure 5.14, the double integrator plant

Component Nominal value
R1/2 1kΩ
R1 100kΩ
R2 100kΩ
C1 470nF
C2 470nF

Table 5.3: Electronic components nominal values

Chapter 5: Performance evaluation framework 70

dynamics can be modelled by

dv2
dt

=
−1

R2C2
u

dv1
dt

=
−1

R1C1
v2

In state space form, the model is[
v̇1
v̇2

]
=

[
0 −1

R1C1

0 0

] [
v1
v2

]
+

[
0
−1

R2C2

]
u

y =
[
1 0

] [v1
v2

]

The model validation has been performed by applying a standard control algorithm with a
sampling period of h = 50ms, with reference changes, and comparing the theoretical results ob-
tained from a Simulink model with those obtained from the plant. With the validated values for
the components, the model used for controller design is given by

ẋ =

[
0 −21.2766
0 0

]
x+

[
0

−21.2766

]
u (5.8)

y =
[
1 0

]
x

where the state vector is x = [v1 v2]
T .

Figure 5.15 shows the results of this validation. In particular, the controller gain L is obtained
using linear quadratic (LQ) optimal design which minimizes a discrete cost function equivalent to
the continuous cost function

J =

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (5.9)

with Q being the identity and R = 1, for the different sampling period choices. Since the voltage
input of the operational amplifier is 1.6V (which is half Vcc: the measured Vcc is 3.2V although it is
powered by 3.3V), the tracked reference signal has been established to be from 1.1V to 2.1V (±0.5V
around 1.6V). For the tracking, the feed-forward matrix Nu is zero and Nx =

[
1 0

]
[ÅW97].

The goal of the controller is to make the circuit output voltage (v1 in Figure 5.14) to track a
reference signal by giving the appropriate voltage levels (control signals) u. Both states v1 and v2
can be read via the ADC port of the microcontroller and u is applied to the plant through the
PWM output.

As a prototype and performance demonstrator, three plants in the form of double integrator
electronic circuits that are controlled by three control tasks concurrently executing in Erika and
scheduled under the EDF scheduling algorithm have been implemented in the daughter board, as
shown in Figure 5.16. The three plants can be easily interfaced to the Full Flex base board.

5.4 Implementation and evaluation of selected methods

This section describes the implementation and evaluation of selected FBS and EDC methods using
the performance evaluation framework. The methods have been selected due their representative
characteristics within these two tendencies, as discussed in Chapter 4. The objective is to provide
valuable elements of analysis, through the results obtained from the evaluation, in order to discuss

71 5.4 Implementation and evaluation of selected methods

1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1

t(s)

vo
lta

ge
 (

V
)

reference
v1
v2
u

(a) Theoretical simulated plant response

1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1

t(s)

vo
lta

ge
 (

V
)

reference
v1
v2
u

(b) Experimental plant response

Figure 5.15: Model validation.

Chapter 5: Performance evaluation framework 72

Figure 5.16: Experimental setup

Approach Type Task 1 Task 2 Task 3

Static [ÅW97] 0.0300 0.0900 0.0900
Off-line FBS [SLSS96] FBS 0.0500 0.0500 0.0500
On-line FBS-Inst. [MLB+04] FBS 0.0300 0.0900 0.0900
On-line FBS-FH [HC05] FBS 0.0300 0.0900 0.0900
Heuristic self-triggered [VMF03] EDC 0.0812 0.0812 0.0812
Self-triggered [LCH+07] EDC 0.0555 0.0555 0.0555
Optimal Self-triggered [MVB09] EDC 0.0576 0.0576 0.0576

Table 5.4: Simulation tasks sampling periods (seconds)

the key elements of each method. Both control experiments and simulations are reported.

5.4.1 Simulation

The simulation environment correspond to the one specified in the performance evaluation frame-
work, considering that the model is integrated by three control loops: three plants are being con-
trolled by three control tasks, which are executed on the real-time kernel processor. Control tasks
can be executed either on a time-triggered basis or on an event-triggered basis, depending on the
resource/performance-aware policy under evaluation. The total simulation time is 25s and each
control loop has a set-point change every 3s.

5.4.1.1 Tasks settings for each method

In order to have a fair control performance evaluation, the task periods for FBS methods and the
average task periods for the EDC methods, were selected in order to provide similar CPU load (5%
approximately), as shown in Table 5.4. For simulation purposes, the execution time of any task is
always 10ms, regardless the computation complexity in the task, this consideration was taken for
the sake of simplification, however in the control experiments real execution times are measured.

A detailed description of the settings applied to each method, including algorithm details or
gain details, is presented next:

• Static approach: periods for each task are heuristically selected and the corresponding discrete-
time controllers designed before run-time using LQ optimal controller design using the cost

73 5.4 Implementation and evaluation of selected methods

Approach Control Resource Performance
Performance Utilization Index

Jcontrol Jresource PI

Static [ÅW97] 1.9905 4.3720 8.7026
Off-line FBS [SLSS96] 1.4644 4.6720 6.8415
On-line FBS-Inst. [MLB+04] 1.3286 4.5320 6.0211
On-line FBS-FH [HC05] 1.3288 4.5680 6.0700
Heuristic self-triggered [VMF03] 1.3636 2.9560 4.0309
Self-triggered [LCH+07] 1.3469 4.3240 5.8238
Optimal Self-triggered [MVB09] 1.3498 4.0840 5.5127

Table 5.5: Control performance and resource utilization simulation results

function specified in the framework.

• Off-line FBS [SLSS96]: since the three plants are equal, the off-line optimization procedure
mandates to execute each task with the same period. The a priori relation between a control
performance index expressed in terms of cost and a range of sampling frequencies is defined.
This relation is approximated by a decreasing exponential function. After guaranteeing a
maximum feasible period to each control task, an off-line optimization procedure re-scales
periods until the task set is feasible under EDF while minimizing the cost, considering a
desired resource utilization level Uref = 0.05. Once periods are set, control tasks are scheduled
under EDF.

• On-line FBS - Inst. [MLB+04]: the final outcome of the method mandates to consider at
run-time only two periods. Tasks (and controller’ gains) switch between these two periods
whenever the plant with highest error changes. Table 5.4 shows the sampling period values
considering that task 1 has the largest instantaneous error. Each task can apply two discrete-
time controller gains designed using optimal control considering the cost function specified
in the framework for the two possible periods.

• On-line FBS - FH [HC05]: this method mandates to switch periods at run-time continuously
within the specified range according to the optimization procedure. Switches of tasks periods
(and controllers’ gains) occur at a given periodicity, called the period of the feedback scheduler
Tfbs = 500ms. Table 5.4 show the sampling period values considering that task 1 has the
largest finite-horizon error. Controller gains are an output of the optimization procedure,
which give LQ optimal controllers considering the cost function specified in the framework.

• Heuristic self-triggered [VMF03]: in this event-driven method the desired sampling period
hk+1 for the next task instance execution is heuristically specified as

hk+1 = (hmax − hmin) e
−K|xl| + hmin (5.10)

where |xk| is the norm of the state variables,K determines how abrupt are the changes in the
sampling period (for this implementation K = 4), and hmax and hmin defines the sampling
period range. With this specification small errors (low |xk| values) produce large sampling
periods and viceversa. The sampling period range is hmin = 0.030s and hmax = 0.090s,
Table 5.4 shows the expected average sampling period. The controller gain L is calculated
on-line (each sampling period) using LQ optimal controller design using the cost function
specified in the framework.

Chapter 5: Performance evaluation framework 74

Approach Type Task 1 Task 2 Task 3 η

Static [ÅW97] 0.0300 0.0900 0.0900
Off-line FBS [SLSS96] FBS 0.0500 0.0500 0.0500
On-line FBS-Inst. [MLB+04] FBS 0.0300 0.0900 0.0900
On-line FBS-FH [HC05] FBS 0.0300 0.0900 0.0900
Heuristic self-triggered [VMF03] EDC 0.0840 0.0840 0.0840
Self-triggered [LCH+07] EDC 0.0589 0.0589 0.0589 0.45
Optimal Self-triggered [MVB09] EDC 0.0591 0.0591 0.0591 0.50

Table 5.6: Experimental tasks sampling periods (seconds)

• Self-triggered [LCH+07]: in this event-driven method, the execution rule, that triggers a
control task, has been defined as a function of the measured state,

ek(t)
TMek(t) = ηxT

k Mxk, (5.11)

where 0 < η ≤ 1 specify the relative size of the boundaries, and M defines the shape of
the boundaries. Robust control techniques are used to defined the boundary thresholds to
ensure stability. Table 5.4 shows the expected average sampling period. In an event-based
system η can be used to adjust the processor load. In this case η = 0.6, and it was selected
to provide a similar processor load as the FBS approaches. Event-driven control methods
cannot use the same LQ optimal techniques because no periodic sampling occurs. Hence, in
order to provide a fair performance evaluation, L was designed using an iterative optimization
algorithm. Given a specific η, and according to the plant dynamics, the cost function and the
boundary shapeM , the implemented algorithm searches for an optimal L value that provides
the minimum control cost.

• Optimal self-triggered [MVB09]: in this event-based method, the execution rule is also defined
as a function of the measured state as specified by (5.11). However, in this method the
boundary M is considered as an optimization variable, therefore the optimal control gain L
and the optimal boundaryM are obtained from an iterative algorithm given a specific η, and
according to the plant dynamics and the cost function. Table 5.4 shows the expected average
sampling period. For this approach it was set η = 0.65 in order to provide a similar processor
load than the case of the FBS approaches.

5.4.1.2 Simulation Results

This section summarized the results obtained from the simulation of the different methods. Ta-
ble 5.5 present the control performance and the resource utilization results for each FBS and EDC
method.

During the simulation it is assumed that there are not timing variations caused by the task
scheduling, i.e. jitters. As demonstrated by [LMVF08], the jitters degrade control performance
and may hide the true performance that can be achieved by the different FBS and EDC meth-
ods. Therefore for simulation purposes, the degrading effects caused by the jitters were removed
completely.

Analyzing the control performance method by method, it is observed that the static method
provides the worst performance, as expected. Then considering only the FBS methods, the on-
line algorithms provide better control performance. The three EDC methods have a similar control
performance, however the heuristic approach has the best resource utilization efficiency. Comparing

75 5.4 Implementation and evaluation of selected methods

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1
Plant Response

time(s)

vo
lta

ge
(V

)

reference
v1
v2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.02

0.04

0.06

0.08

0.1

Activation times

time(s)

ta
sk

 p
er

io
d(

s)

Figure 5.17: Off-line FBS plant response and activation times.

on-line FBS versus EDC methods, it can be noticed that FBS approaches have better control
performance, but the EDC methods have better results in terms of resource utilization. Specifically
the heuristic self-triggered approach has the best overall control performance.

Notice that computation overhead cannot be derived from the resource utilization performance
since it was assumed that the execution time for every task is always 10ms, so the calculation
complexity is not taken into account. Computation overhead will be analyzed later when the
experimental results are presented.

It is important to highlight that these results are not intended to be definitive in the sense that
always one method will perform better than other, even though similar results were obtained in
the experimental platform. But instead, these results can be taken as an indicator of the potential
of some approaches and to provide valid information to discuss the benefits and drawbacks of each
tendency under specific circumstances.

5.4.2 Experiments

The experimental platform corresponds to the one specified in the performance evaluation frame-
work. Three double-integrator circuits are used as the plants that are being controlled by the three
control tasks, running in the dsPIC33 microcontroller on the Erika real-time kernel. The control
tasks can be executed either on a time-triggered basis or on a event-triggered basis, depending on
the resource/performance-aware policy under evaluation. The total simulation time is 25s and each
control loop has a set-point change every 3s.

Chapter 5: Performance evaluation framework 76

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1
Plant Response

time(s)

vo
lta

ge
(V

)

reference
v1
v2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.02

0.04

0.06

0.08

0.1

Activation times

time(s)

ta
sk

 p
er

io
d(

s)

Figure 5.18: On-line FBS-Inst. plant response and activation times.

5.4.2.1 Tasks settings for each method

The task periods for FBS methods are the same as the one used during simulations. However the
η values for the EDC methods are different compared with the simulation values. The η values
selected in the experiments were chosen in order to obtain similar control performance compared
with the FBS on-line methods. The EDC off-line optimization process was conducted over the real
plant dynamics. This is summarized in Table 5.6.

A detailed description of how the different approaches were implemented in the experimental
platform is presented next:

• Static approach: tasks’ periods are heuristically selected. No optimization process, either
on-line or off-line, is executed. The real execution time of each control job is 0.214ms.

• Off-line FBS [SLSS96]: tasks’ periods with their corresponding controller gain L are obtained
from an off-line optimization process. These values remain constant during the complete
experiment. The time spent by the microcontroller for each control job is also 0.214ms.
Figure 5.17 shows the plant transient response and activation times for one control loop.
Notice that task’s activation periods are always fixed.

• On-line FBS - Inst. [MLB+04]: two available task periods (hmax,hmin) are defined with
their corresponding controller gain (Lmax,Lmin), then hmin is assigned to the task with the
plant highest error, and hmax to the other to tasks. An on-line optimization task is executed
every 500ms to obtain the current error from the three plants and reassign task periods and
controller gains if necessary. The execution time for each control job is 0.214ms and for each
optimization job is 0.039ms. Figure 5.18 shows the plant transient response and activation

77 5.4 Implementation and evaluation of selected methods

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1
Plant Response

time(s)

vo
lta

ge
(V

)

reference
v1
v2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.02

0.04

0.06

0.08

0.1

Activation times

time(s)

ta
sk

 p
er

io
d(

s)

Figure 5.19: On-line FBS-FH plant response and activation times.

times for one control loop. Notice that task periods are smaller when a set-point changes
occur, since the plant presents the highest error.

• On-line FBS - FH [HC05]: in this method the on-line optimization task is also executed pe-
riodically every 500ms. This task obtains the finite-horizon error from the three plants and
then selects appropriate periods for each task according to the optimization procedure. The
execution time for each control job is 0.214ms, meanwhile the time spent by the microcon-
troller in each optimization job is 1.459ms. This time can be reduced to 0.097ms when look-up
tables are used to simplify the calculation complexity in the optimization task. This requires
storing in a table task periods and controller gain values. As illustrated in Figure 5.19, task
periods are smaller when there is a change in the set-point, then the periods change to higher
values once the plant reaches the set-point.

• Heuristic self-triggered [VMF03]: the three control task are configured as aperiodic. Each task
defines its own next activation time by using the heuristic equation (5.10). Once the hn+1 is
defined, its corresponding controller gain L is selected. The execution time of each control job
is 0.256ms which is a few milliseconds higher than in the FBS methods. Figure 5.20 shows
the plant transient response and activation times for one control loop. Since hn+1 depends
on the norm of the state variables, for large errors small task periods are obtained. A value
of 4 is assigned to K in order to have a fast response when set-point changes occur. The
sampling period range is given by hmin = 0.030s and hmax = 0.090s.

• Self-triggered [LCH+07]: an iterative optimization algorithm is executed off-line in order to
obtain an optimal boundaryM and an optimal controller gain L. In this approach L remains

Chapter 5: Performance evaluation framework 78

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1
Plant Response

time(s)

vo
lta

ge
(V

)

reference
v1
v2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.02

0.04

0.06

0.08

0.1

Activation times

time(s)

ta
sk

 p
er

io
d(

s)

Figure 5.20: Heuristic self-triggered plant response and activation times.

fixed during the complete experiment and η is selected to obtain a similar control performance
as the FBS on-line methods. Each one of the three non-periodic tasks calculates its next
activation time from the measured state using the event condition defined by equation (5.11).
The next activation time routine can be implemented by using pre-computed values of the
explicit solution given by [VMB08], or by obtaining the smallest positive root from this second
order approximation equation provided by [VMF+10],

t =

√
−4[Aclxk]TM [Aclxk](−η)xT

k Mxk

2[Aclxk]TM [Aclxk]
(5.12)

whereAcl = (A−BL). The pre-computed values solution spends less processor time (0.225ms)
in comparison with the second order approximation solution (0.419ms). However the pre-
computed solution is less flexible since it only supports fixed magnitude set-point changes.
As illustrated in Figure 5.21, the activation times pattern of this self-triggered approach has
an oscillating behavior, as already indicated by [VML08]

• Optimal self-triggered [MVB09]: an iterative optimization algorithm is executed off-line to
obtain an optimal L regardless the boundary shape M . Also here L remains fixed during
the complete experiment and η is selected to obtain a similar control performance than the
on-line FBS methods. As in the Self-triggered approach, the next activation time routine can
be implemented by using pre-computed values or by solving equation (5.12). The first one
has an execution time of 0.225ms for each job while the second spends 0.419ms. Figure 5.22
shows an activation times pattern that starts with small periods when a set-point change

79 5.4 Implementation and evaluation of selected methods

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1
Plant Response

time(s)

vo
lta

ge
(V

)

reference
v1
v2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.02

0.04

0.06

0.08

0.1

Activation times

time(s)

ta
sk

 p
er

io
d(

s)

Figure 5.21: Self-triggered plant response and activation times.

occurs. Then one large period is introduced, and later on the periods are lineally increasing.
This pattern differs from the Self-triggered approach since the boundary shapes are different.

5.4.2.2 Experimental Results

This section summarizes the experimental results obtained from the evaluation of the different
methods. Table 5.7 presents the control performance and the resource utilization results for each
FBS and EDC method.

By comparing simulation results (Table 5.5) with the experiment results (Table 5.7), it can
be notice that control performance results are similar. However resource utilization for simulation
is higher compared with the experiment results. This is because in simulation a high execution
time value was assumed (10ms) meanwhile for experiments the actual execution time spent by the
microcontroller is measured. Therefore, resource utilization results for the experiments reflects the
real load in the microcontroller.

Analyzing the control performance method by method, it is observed that the static method
again provides the worst control performance. The on-line FBS methods provides the best control
performance, while the EDC methods lie in the middle between the on-line FBS and the off-line
FBS performances. The best overall control performance results is obtained when On-line FBS-Inst.
approach is executed.

Now lets analyze the resource utilization results. By considering the Static approach as a
reference (1.1888), it can be noticed that the On-line FBS-Inst. has a similar resource utilization
(1.1951), meaning that the execution of the on-line optimization algorithm is efficient in terms
of processor time, however in the On-line FBS-FH the on-line algorithm increases the utilization

Chapter 5: Performance evaluation framework 80

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1
Plant Response

time(s)

vo
lta

ge
(V

)

reference
v1
v2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.02

0.04

0.06

0.08

0.1

Activation times

time(s)

ta
sk

 p
er

io
d(

s)

Figure 5.22: Optimal self-triggered plant response and activation times.

considerably due the complexity of the algorithm (1.6254). To solve this problem a look-up table
can be used to reduce the processor load (1.2168). The Heuristic self-triggered approach has the
best overall resource utilization (0.9153) since less task jobs are triggered compared with the FBS
approaches, and because the computation of the next activation time is relatively simple. The
Self-triggered and the Optimal Self-triggered have higher processor load if the next activation time
value is computed on-line (2.1858, 2.1772 respectively). Therefore pre-computed values have to be
used in order to improve the processor load (1.1464, 1.1419 respectively) obtaining better results
compared to the Static approach.

5.4.3 Discussion

This section has presented simulation and experimental results of selected methods for embedded
control systems, by evaluating the control performance and the resource utilization. The evaluation
of the different methods, reveals the following key aspects.

• FBS and EDC have the ability to improve control performance with respect to the standard
approach for real-time implementation of control loops.

• On-line FBS methods outperform the off-line FBS one if the task in charge of solving the
optimization procedure (the feedback scheduler task) has a lower processor demand.

• Among the FBS methods, the On-line FBS-Inst. approach has the best results considering
both control performance and resource utilization.

81 5.4 Implementation and evaluation of selected methods

Approach Calculation Control Resource Performance
Performance Utilization Index

Jd
control Jresource PId

Static [ÅW97] 2.3090 1.1888 2.7449
Off-line FBS [SLSS96] 1.8331 1.2840 2.3537
On-line FBS-Inst. [MLB+04] On-line 1.4699 1.1951 1.7567
On-line FBS-FH [HC05] On-line 1.4919 1.6254 2.4249
On-line FBS-FH [HC05] Look-up table 1.4919 1.2168 1.8153
Heuristic self-triggered [VMF03] On-line 1.5931 0.9153 1.4583
Self-triggered [LCH+07] On-line 1.6271 2.1858 3.5563
Self-triggered [LCH+07] Pre-computed 1.6271 1.1464 1.8652
Optimal Self-triggered [MVB09] On-line 1.5558 2.1772 3.3872
Optimal Self-triggered [MVB09] Pre-computed 1.5558 1.1419 1.7765

Table 5.7: Control performance and resource utilization experimental results

• In general, on-line FBS methods are capable of providing better control performance com-
pared with the EDC approaches.

• In general, EDC methods have a lower processor load compared to FBS approaches if look-
up table strategies are adopted. In other words, the number of executed control job in EDC
approaches is lower than in the FBS cases.

• A drawback for EDC in self-triggered form is that the computation of the next activation
time at each job execution can be too expensive in terms of resource utilization. Hence simple
triggering conditions should be adopted.

• Among the EDC methods, the Heuristic self-triggered approach has the best results consid-
ering both control performance and resource utilization.

• EDC methods are a promising approach for networked control systems where the resource
limitation is the communication bandwidth. In the networked scenario, bandwidth consump-
tion only maps to the number of executed jobs and it is not affected by the computation of
the next activation time (which is the critical point in processor-based control systems).

Also it is important to stress that this evaluation has proven that the theoretical approaches can
be implemented in practice. In particular on-line FBS methods and self-triggered EDC methods
are capable to provide similar performance. In addition EDC methods can provide a more efficient
resource utilization, while the FBS methods provide better control performance. However a deeper
performance evaluation and analysis is required in order to understand the benefits of FBS and
EDC methods. Specifically the two methods with the best performance/resource utilization (On-
line FBS-Inst. and Heuristic self-triggered) have been selected for a detailed evaluation that is
presented in the next chapter.

Chapter 6

Performance evaluation: a detailed
experience

6.1 Introduction

This chapter presents an experimental evaluation of two representative resource/performance-
aware policies for multitasking real-time control systems. The first one, presented by Mart́ı et
al. [MLB+04], belongs to the class of FBS policies, where a resource manager is responsible for
modifying each control task progress. The second policy, presented by Velasco et al. [VMF03],
belongs to the class EDC policies, where each control task decides its progress.

In the previous chapter, these two approaches were assessed under the evaluation framework,
together with other policies. In this chapter, the evaluation of these two approaches considers a
richer set of scenarios, which permits to elaborate on more implementation details, as well as on
providing new conclusions that did not arise in the previous analysis.

6.2 Problem set-up

Effective slack management, i.e. management of unused computing resources, for real-time control
tasks mandates to redistribute the available resources between controllers as a function of the
state of the controlled plants. Slack can be allocated to control tasks to alter their rate of progress
via e.g., the controllers period, in order to adapt their behavior to changes in the computing
platform and in the environment. This section discusses the theoretical aspects of two different
resource/performance-aware policies for multitasking real-time control systems. Then, the demands
that each policy poses to the computing platform are analyzed

6.2.1 Theoretical aspects

Consider the embedded control system with n control tasks, each one controlling a plant, to be
executed on a single processor. Each plant i can be described by the linear continuous-time state-
space form1

ẋi(t) = Aixi(t) + Biui(t)
yi(t) = Cixi(t),

(6.1)

1Henceforth, within this chapter, the superscript i will specify a control loop, identifying either the controller or
the controlled plant.

83

Chapter 6: Performance evaluation: a detailed experience 84

where the state variables xi(t) = [xi
1(t), . . . , x

i
n(t)] denote the system state at time t. For each

plant, the norm of its state variables is defined as the plant error

ei(t) = |xi(t)|. (6.2)

In terms of timing constraints, each control task is characterized by its period hi (corresponding
to the sampling period2) and its worst-case execution time ci, which corresponds to the sequen-
tial execution of sampling, control algorithm computation, and actuation. Each task deadline is
assumed to be equal to the task period. However, having deadlines different than the task period
would not alter the approach and results here reported.

For the set of n tasks, if deadlines are equal to periods, the task set processor utilization factor
is

U =

n∑
i=1

ci

hi
, (6.3)

which is the fraction of processor time spent in the execution of the task set [But05]. Note that
U ≥ 0, and that U = 1 denotes that the processor is fully utilized. Therefore, U provides a measure
of computational load.

The rate or partial utilization factor of each task

ri =
ci

hi
, (6.4)

is the processor share (resource requirement) that each control task requires for a given period.
Since the worst-case execution time of each control task is constant, any variation in task rate
implies a corresponding variation in task period (and vice-versa). The two resource/performance-
aware policies consider that a minimum rate rimin is guaranteed to each control task, which is given
by the longest task period hi

max and causes the lowest processing demand. The static allocation
permits guaranteeing that control performance specifications are fulfilled.

Given the static allocation and given that controllers will provide better control performance
when allocated more processor time, if slack is available Us, the problem solved by the FBS (also
named “coordinated”) approach and the EDC (also named “self-triggered”) approach is to decide
for each control task how the rate should be increased (i.e., how the period should be shortened),

ri = rimin +Δri (6.5)

such that the overall control performance is improved subject to

n∑
i=1

Δri ≤ Us. (6.6)

Constraint (6.6) specifies that the additional resources Δri that will be given to each control
task must be less or equal than the available slack Us, which is considered to be the amount of
unreserved processor time.

Summarizing, the resource management, either coordinated or self-triggered, has to obey the
following specifications:

• For each control task, the bigger the error (6.2), the higher the rate ri (or the shorter the

2Note that in real-time systems notation, task period is usually denoted by P or T . Here the control systems
notation for period is used.

85 6.2 Problem set-up

sampling period hi) to be allocated.

• For the set of control tasks, a given constraint on the utilization factor must be kept (6.6).

Note that these two specifications may conflict because the first attempts to have locally higher
resource allocations while the second restricts the overall (global) resource utilization.

6.2.1.1 FBS approach

In the FBS approach [MLB+04], each control task τ i is characterized by its rate ri, its linear
benefit function pi(ri) = αiri + βi that reflects the assumption that controllers will provide better
control performance when given more resources, and its controlled system error ei.

Linear benefit functions are common in feedback scheduling approaches, e.g. [CEBÅ02]. As
explained in [MLB+04] other type of benefit functions different than linear can be easily incorpo-
rated into the problem formulation without compromising the feasibility of the solution. In this
case however, the solution to slack redistribution would be different than the one explained next.
Note also that for feedback scheduling approaches, in [MVB09] it was shown that these type of ben-
efit functions together with the formulation of the slack redistribution problem as a performance
maximization optimal problem would provide similar processor allocations than those achieved by
cost minimization optimal problems formulated using quadratic cost functions.

In addition, it has been shown for example in [CMV+06] that using quadratic cost functions in
feedback scheduling approaches leads to optimization problems that do not have explicit analytical
solutions, and therefore, their implementation needs to be done using approximated solutions. In
summary, although having linear benefit functions can be a simplifying assumption, if the plant
under control increases performance linearly with the rate, the application of the policy presented
in [MLB+04] is a good choice.

For a given set of n control tasks, τ1, . . . , τn, the FBS approach was formulated as a constrained
optimization problem

maximize
∑n

i=1 w
ieipi(ri) (6.7)

subject to
∑n

i=1Δri ≤ Us (6.8)

Δri ≥ 0

where the solution are the rate increments Δri, i = 1, . . . , n, and weights wi in (6.7) can be used
to permit appropriate comparisons between control loops.

The solution to (6.7)-(6.8) states that all the available slack Us must be assigned to the control
task with maximum wieiαi. If all of the functions pi and all the weights wi are the same (i.e. the
controlled plants are equal and of equal importance), all of the available slack must be assigned to
the control task with the largest error ei.

The FBS approach tackles the slack redistribution problem considering that a coordinator, i.e.
resource manager or feedback scheduler, knows the state of all controlled plants and the available
slack, and then it implements the optimal solution. In addition, the application of the optimal policy
requires the implementation of controllers capable of running with different sampling frequencies
given different resource allocations. To do so, controllers are designed for the class of linear systems
(6.1) using classic design procedures. In particular, let

xk+1 = Φ(h)xk + Γ(h)uk (6.9)

be the discretization of the system equation in(6.1) [ÅW97]. The input is given by

uk = −L(h)xk (6.10)

Chapter 6: Performance evaluation: a detailed experience 86

where L(h) is a parametric standard state feedback control gain on the sampling period, that is, the
control law depends on h. For each controller, a range of sampling periods h = [hmin, . . . , hmax]

3

is specified for which the closed loop requirements are met. The controller, implemented within a
task, is allowed to execute with a run-time period that belongs to the specified range, adapting
the gain accordingly. See [MLB+04] and its extension [MVB09], and references therein for further
details on the optimization, controller design and stability analysis.

6.2.1.2 EDC approach

The self-triggered approach tackles the problem considering that no central entity coordinating
the resource allocation exists. With this assumption, the problem to be solved was treated as a
decentralized management of the available slack among all control tasks [VMF03]. Although the
analysis in this thesis focuses on uniprocessor systems, the self-triggered approach gains interest
on multiprocessor systems, e.g., multi-core platforms, and more important, in networked control
systems.

A control approach to resource allocation at the task level capable of ensuring global resource
utilization for all participating tasks was the basis for the solution in [VMF03]. To do so, the
available slack Us was assumed to be known for each control task.

The key idea of this approach was to extend the discrete state space form of each plant (6.9)
by imposing the desired slack management dynamics

[
xk+1

hk+1

]
=

[
Φ(h) · xk

Υ(xk, Us)

]
+

[
Γ(h)
0

]
uk,

in terms of a new state variable: the desired sampling period hk+1 for the next task instance
execution. In general, the desired dynamics are a function of the plant state and the available
slack. The dynamics for hk+1 in [VMF03] were heuristically specified as

hk+1 = (hmax − hmin) e
−K|xk| + hmin (6.11)

in such a way that it mathematically behaves as required by the problem specifications. If there is
no error (|xk| = 0), then hk+1 = hmax. And if the error increases, the sampling period decreases
(and vice versa). By being a function of the exponential of the norm of the original state variables
xk, (6.11) ensures positive values for the sampling period as well as smooth transitions between
successive values. It also takes into account the available slack Us. This is achieved by defining the
shortest possible sampling period hmin that can be assigned to a control loop as

hmin =
c

Us + r
(6.12)

where r is the current task rate as defined in (6.4). Finally, hmax and K are the longest possible
period given by the static allocation, and the criticalness, both to be assigned for each control task.
The criticalness determines how quick a control loop will increase or decrease its period according
to its error. Higher values for K will imply more abrupt changes in the sampling periods.

The model (6.11) is nonlinear. Note that this type of non-linear models is common for self-
triggered control approaches [AT08a], [WL09a]. Although being non-linear, these type of models
present the advantage that the plant dynamics and the period dynamics can be treated separately
(note also that the input un does not directly affect the second state variable). Therefore, since the
plant dynamics were defined as linear, the control input can be given by a parameterized standard
linear controller (6.10), equal to the case of the coordinated approach (the same type of control

3Note that the i-superscript is omitted to simplify the notation.

87 6.3 A FBS and EDC implementation

design and stability analysis would apply). Having similar controllers for both approaches allows
easier control performance evaluations as well as more fair resource utilization analysis.

6.3 A FBS and EDC implementation

The implementation of the FBS and EDC approaches has to take into account that the main
variables that have to be considered for solving the slack redistribution problem, specified either
in (6.7)-(6.8) or in (6.11) respectively, originate from two different domains. Slack has to be redis-
tributed according to the plant state. The state is an information that belongs to the application
or user-level domain. However, the available slack is an information that belongs to the operating
system domain. Hence, both approaches to resource/performance-aware management demand a
reflective architecture capable of 1) providing the required flexibility in terms of accommodating
task rate changes, and 2) facilitating communication mechanisms between kernel and applications’
spaces for passing the required information to accomplish slack management.

6.3.1 Implementation strategy

The slack redistribution in the self-triggered approach is done, by definition at the user level,
because each task rate of progress is decided by the task itself. To do so, each task needs to know
the available slack Us, which must be made accessible by the underlying real-time system, as well
as, each plant state vector, xi. With both information, the new rate of progress, in the form of the
next sampling period hi, is calculated using (6.11). Each newly calculated hi is passed into the
real-time system, which sets the new rate for each task.

The slack redistribution in the coordinated approach can be implemented using to complemen-
tary strategies: at the kernel level or at the user level. The first strategy, which was already used
in [MLB+04], is to specify that each task rate of progress is decided by the real-time system. To
do so, the kernel needs to know all plants states xi and the available slack, Us. Therefore, control
tasks need to pass the plants states into the kernel. With this information, the kernel calculates
the slack redistribution Δri, which corresponds to the solution (6.7)-(6.8). Having all Δri, the new
tasks rates can be computed and set in the real-time system. In addition, each new task rate ri

is passed back to each task, in order to allow each control task to correctly calculate control ac-
tions. The second strategy, used in several feedback scheduling approaches, e.g. [CEBÅ02], [HC05]
or [CMV+06], is to use a high priority periodic task, namely feedback scheduler, to perform the
slack redistribution. To do so, this task needs to know all plants states xi and the available slack
Us, that must be made accessible by the real-time system. With this information, it calculates the
slack redistribution as before, and sets the new periods in the real-time system.

For comparative purposes in the performance evaluation, the second strategy for the implemen-
tation of the coordinated approach is chosen. Therefore, both policies will be implemented in the
user level space. This will facilitate the overhead analysis, and it will remove possible misleading
interpretations of the presented performance results that may arise if one strategy was implemented
at the user level and the other at the kernel level.

6.3.2 Code implementation details

The performance evaluation framework, described in Subsection 5.3.3, was used to conduct the
experiments. The framework was configured with three double integrator circuits controlled by
three control tasks executing on top of the Erika kernel using the Full Flex board hardware with
a dsPIC33 microcontroller. For the implementation of both policies, the exchange of information

Chapter 6: Performance evaluation: a detailed experience 88

Algorithm 9: void Periodic controller task(void)

begin

x
i
1=read input()

x̂
i=observer(xi

1,t
i
a)

u
i=calculate output(x̂i,hi)

end

Figure 6.1: Pseudo-code for a standard periodic control task

between kernel and control tasks is achieved by means of a system call and by accessing shared
memory.

6.3.2.1 Standard controller

The task model for implementing control tasks is the one-shot task model (see Chapter 2). As a
reference Figure 6.1 shows the pseudo-code for a standard real-time periodic controller, which is
activated at each sampling period hi. It samples the first state variable xi

1, observes the state (which
is the implementation of the one shot task model) x̂i at the actuation instant tia, and computes
the control input ui. The application of the ui to the plant (actuation) is performed by the kernel
in the interrupt handling routine at each tia relative to the job release time. In particular, in the
implementation, tia = hi, that is, actuation occurs at the next job release time. The actuation could
have been also implemented in a separated periodic task or using a separate hardware interrupt.

6.3.2.2 FBS implementation

The implementation of the FBS approach uses a periodic task for each controller and the feedback
scheduling task for the computing the slack redistribution.

Figure 6.2 shows the pseudo-codes for a control task and for the feedback scheduler. The only
difference between the code of the control task in the coordinated approach with respect to the
standard one (Figure 6.1) is the accesses to shared memory for obtaining the sampling period that
applies, or for writing the state. The main job of the feedback scheduler is to compute the sampling
period for each control task according to the optimal policy and resetting the control tasks periods
using the system call set rel alarm. Accesses to shared memory are also required for obtaining the
available slack, the plants states and for writing the computed sampling periods. It is out of the
scope of this work to derive methods for slack computation at the kernel level (see [LB05] and
references therein for further information).

For achieving an efficient implementation of the optimal policy in terms of processor utilization,
when all the controlled plants are in equilibrium, i.e., |xk| = 0, the three control tasks are set to
execute with their longest period. In terms of implementation, and considering the process and
measurement noise, this has been achieved by specifying the following threshold: if the controlled
plant state fulfils that |xk| < 0.05V , then the plant is considered to be in the equilibrium.

6.3.2.3 Self-triggered implementation

The implementation of the self-triggered approach only requires coding the control tasks because
they are in charge of performing the slack redistribution. Figure 6.3 illustrates the pseudo-code
for a self-triggered control task. Apart from accessing shared memory, the main differences with
respect to the code of a control task of the standard approach (or the coordinated approach) is the
computation of the next sampling period, and the reconfiguration of its period using the system

89 6.3 A FBS and EDC implementation

Algorithm 10: void Coordinated controller task(void)

begin

h
i,next=read shared memory()

x
i
1=read input()

x̂
i=observer(xi

1,t
i
a)

u
i=calculate output(x̂i,hi,next)

write shared memory(x̂i)

end

Algorithm 11: void Feedback scheduler task(void)

begin
Us=read shared memory()

for (each control task)

begin

x
i=read shared memory()

if (wi
e
i
α
i is maximum) Δr

i = Us

else Δr
i := 0

h
i,next= ci

ri
min

+Δri

write shared memory(hi,next)

set rel alarm(hi,next)
end

end

Figure 6.2: Pseudo-code for the two tasks coordinated approach

call set rel alarm. Note that these two operations are similar to the main operations performed by
the feedback scheduler. However, the feedback scheduler, at each job execution, performs them as
many times as control tasks are in the system. As in the coordinated policy, for implementation
effectiveness and due to the noise, the computation of the next sampling period is only performed
when |xk| ≥ 0.05V . Otherwise, the period is set to the maximum. Therefore, the same threshold
has been specified for detecting the plant in equilibrium and forcing then the lower execution rate
for the control task.

Algorithm 12: void Selftriggered controller task(void)

begin
Us=read shared memory()

x
i
1=read input()

x̂
i=observer(xi

1,t
i
a)

h
i,next=Υ(x̂i,Us)

u
i=calculate output(x̂i,hi,next)

set rel alarm(hi,next)
end

Figure 6.3: Pseudo-code for the self-triggered approach

Chapter 6: Performance evaluation: a detailed experience 90

9 9.5 10 10.5 11

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t(s)

vo
lta

ge
(V

)
reference
x1
x2

(a) Captured data

9 9.5 10 10.5 11

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t(s)

vo
lta

ge
(V

)

reference
x1
x2
u

(b) Kalman filter estimates

Figure 6.4: Experimental data for observer design

6.3.3 Controller design

Each controller implements the same parametric control law obtained by optimal control tech-
niques, but parameterized on the sampling period.

The controller gain L corresponds to the discrete linear quadratic regulator for (5.8) with the
validated components’ values, which minimizes a discrete cost function equivalent to the continuous
cost function

J =

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt (6.13)

with Q being the identity and R = 10, for the different sampling period choices. The equivalent
continuous closed loop poles are p1,2 = −10.1885 ± 8.6869i, which determine that the feasible
sampling periods should be less than h = 70ms [ÅW97].

For the observer design, a Kalman filter was designed taking into account the following noise
covariances Qk = E(w · wT) = 1 · 10−10BBT and Rk = E(v · vT) = 5 · 10−5, extracted from the
electronic circuit, where w and v are the plant noise and the measurement noise, respectively.

In particular, for a sampling period h = 25ms, Figure 6.4 shows the response of a single double
integrator circuit controlled by a real-time task using the standard implementation strategy with
the Kalman observer. The top subfigure shows the plant response by plotting the reference signal
and the two state variables. The bottom subfigure shows the corresponding Kalman filter state
variable estimates given by the observer, as well as the control signal u. It can be concluded that
the Kalman filter has the ability of removing the inherent noise.

6.3.4 Workload generation

In the following experiments, the three control tasks controlling each double integrator circuit
implemented the same optimal controller described in Section 6.3.3 parameterized on the sampling
period choices. A uniform workload was used to simplify the performance analysis and comparison.
For the same reason, a constant slack availability (Us) is considered in the kernel. This permits to
fairly evaluate the dynamic slack policies. To provide a direct comparison with traditional control

91 6.3 A FBS and EDC implementation

Table 6.1: Worst case execution times
Operations Static Coord. Self

1 Controller read input 28μs 28μs 28μs
observer 116μs 116μs 116μs
calculate output 48μs 48μs 48μs
compute ei 3μs
compute Υ() 61μs
set rel alarm 5μs
other 5μs 5μs 5μs

Total 197μs 197μs 266μs

Feedback scheduler compute max ei 14μs
3 set ref alarm 15μs

Total 29μs

Table 6.2: Sampling periods in the experiments
Sampling period Value

static hi,static 35ms

coordinated hi,coord
max 50ms

hi,coord
min 25ms
hfs 25ms

self-triggered hi,self
max 63ms

hi,self
min 31ms

system implementations, a baseline policy “static”, was also implemented. In the static policy all
controllers always share the available resources equally and no dynamic redistribution is used. The
static policy implements the “standard” controller (described in Subsection 6.3.2.1) and is used to
examine the overall performance benefit of adaptive slack redistribution allocation.

6.3.4.1 Perturbations

For each of the policies, static, coordinated and self-triggered, the three controllers track randomly
generated perturbations in the form of 1V set-point changes. They are generated with different
average intervals in order to capture all the possible scenarios. Specifically, the average intervals
are 0.75s, 1s, 1.5s, 3s, and 6s, and during each interval three set-point changes occur. This means
that within each perturbation interval, the three control tasks are subject to a set-point change
that occurs at random time instants but shifted one third in average.

For example, looking at the perturbation interval of 1s, during the first interval, the first control
task receives a set-point change around 0.3s, the second task receives the set-point change around
0.6s, and the third around 0.9s. Therefore, having a short perturbation interval means that the
set-point changes affecting the three plants, although shifted, are close enough that all the plants
are in transient during the interval. And having a long perturbation interval means that only one
plant is in transient at a time because each plant settles before any other plant receives a set-point
change. In summary, the three plants can be continuously perturbed or almost never perturbed.

Chapter 6: Performance evaluation: a detailed experience 92

0 30 60 90 120 150
0

2

4

6

8

10

12
Perturbation interval of 1.5s

t(s)

C
um

ul
at

iv
e

C
on

tro
l C

os
t x

10
 3

Static
Coordinated
Self−triggered

Figure 6.5: Cumulative cost for the three policies

6.3.4.2 Period choices

The choice of allowed sampling periods for each slack redistribution method is a key point for
providing a fair comparison between them. They have been designed taking into account that in
the worst case scenario, at the perturbation arrival, the processor utilization should be the same.
This demands knowing worst case execution times. Table 6.1 shows the main time consuming
operations for each method, which have been measured using an oscilloscope plugged to the board.

For each control task of the coordinated policy, the shortest and longest sampling periods are
hi,coord
min = 25ms and hi,coord

max = 50ms respectively. In this case, the worst scenario during 50ms
demands executing each control task one time, plus another execution of the control task with
highest error, plus two executions of the feedback scheduler task. Note that the period of the
feedback scheduler should be equal to the shortest period of any of the control tasks running in the
system, which in this case is hfs = 25ms. Therefore, using the numbers of Table 6.1, the utilization
of the coordinated policy during 50ms and considering the worst case scenario is

Ucoord =
4control + 2feed.sch.

50ms
=
846μs

50ms
≈ 1.7%.

Note that Ucoord denotes processor usage for those tasks involved in the coordinated policy. But
in the implementation other tasks for extracting data were also executing during the experiments
for the coordinated policy, as well as for the static and self-triggered.

For the static method, periods are computed considering that during 50ms the utilization
should be equal to the one of the coordinated, that is

hi,static =
3control

Ucent
=
591μs

0.017
≈ 35ms.

Finally, for the self-triggered approach, the maximum sampling period is obtained by consid-
ering that in the worst scenario four controllers execute, which should also have the same resource

93 6.4 Results

0.75 1 1.5 3 6
0

5

10

15

20

25

Perturbation interval (s)

C
um

ul
at

iv
e

C
on

tro
l C

os
t x

10
 3

Coordinated
Static
Self−triggered

Figure 6.6: Cumulative control cost histogram for the three policies and for all the perturbation
intervals

usage than the coordinated policy, that is

hi,self
max =

4control

Ucent
=
1064μs

0.017
≈ 63ms.

And the minimum period is set to be half of the maximum, as in the coordinated.

As a summary, Table 6.2 shows the sampling periods used in the experiments. The choice
of periods for the coordinated and the self-triggered policies are not the same. The difference in
periods is due to the high computational cost of the computation of the next sampling instant in
each job of a self-triggered controller.

6.3.5 Performance analysis

The metrics that are evaluated are aggregated control performance of the three control loops and
processor utilization. Specifically, for each control loop, control performance is evaluated using the
discrete cost function

Jd
control =

teval∑
n=0

[
xT (n)Qdx(n) + 2xT (n)Ndu(n) + uT (n)Rdu(n)

]
, (6.14)

where the Qd,Nd and Rd represent the discrete cost weighting matrices (Appendix A describes
how to obtain these matrices from Q and R of equation (6.13)). Each n-state and n−control signal
is extracted from the board every 5ms. The n-subscript rather than the k-subscript is adopted
to note that this data was periodically extracted. Then, for each policy, control performance is
evaluated by looking at the total cumulative cost of the three loops.

Chapter 6: Performance evaluation: a detailed experience 94

0.75 1 1.5 3 6
0

0.5

1

1.5

2

Perturbation interval (s)

P
ro

ce
ss

or
 U

til
iz

at
io

n
(%

)

Coordinated
Static
Self−triggered

Figure 6.7: Processor usage histogram for the three policies and all the perturbation intervals

6.4 Results

Results of this evaluation are presented as follows. Subsection 6.4.1 compares the coordinated
and self-triggered approaches versus the static approach in terms of control performance, and
Subsection 6.4.2 focuses on processor utilization. Subsection 6.4.3 summarizes the experimental
results and Subsection 6.4.4 discusses the overhead analysis. In the following, the self-triggered
slack redistribution policy, the criticalness parameter has been set to K = 4. This choice is further
explained in Subsection 6.4.5.

6.4.1 Control performance analysis

Figure 6.5 shows the control performance in terms of cumulative cost of the three control tasks,
running for 150s with perturbation interval of 1.5s. The lower the curve, the better the performance.
The figure shows that the coordinated slack redistribution policy improves overall control systems
performance compared to the static and self-triggered policies. However, the self-triggered slack
redistribution is not able to improve control performance with respect to the static.

Figure 6.6 gives a complementary view of the control performance analysis. It shows the cumu-
lative control cost of the coordinated, self-triggered and static policies, for different perturbation
intervals, during execution runs of 150s. For each perturbation interval, the lower the bar, the better
the policy in terms for control performance, i.e., the lower the control cost. For the three policies,
longer perturbation intervals derive in lower costs because less set-point changes are applied.

In Figure 6.6 it can be seen that the coordinated policy always achieves better control perfor-
mance than the other two policies regardless of the perturbation interval. However, by looking at
the self-triggered policy, it can be seen that it always perform worse than the static policy.

As outlined in Subsection 6.3.4, the self-triggered policy applies in general longer sampling
periods than the coordinated, and therefore, its performance can not outperform the one achieved
by the coordinated policy. And the self-triggered policy can not outperform the the static policy
due to a similar reason. In most of the job executions of self-triggered controllers, the sampling
period that applies is longer than the period of the static controllers.

95 6.4 Results

0.75 1 1.5 3 6
−10

0

10

20

30

40
Control Cost and Processor Utilization

Perturbation interval (s)

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t a

s
a

pe
rc

en
ta

ge
(%

) o
f t

he
 s

ta
tic

 p
ol

ic
y

Cost coordinated
Cost self−triggered
CPU coordinated
CPU self−triggered

Figure 6.8: Control performance and processor usage improvement as a percentage (%) of the static
policy

6.4.2 Resource utilization analysis

Figure 6.7 shows the measured total processor usage of all tasks for the coordinated, self-triggered
and static policies, for different perturbation intervals, during execution runs of 150s. The first
conclusion that can be extracted is that both the coordinated and the self-triggered slack redistri-
bution approaches always require less resources than the static policy. As the perturbation intervals
increase, both policies consume less processor time. This is due to the fact that during more time
intervals all the controlled plants are in equilibrium, and therefore the execution frequency of the
controllers is set to the maximum period which is longer than the one used by the static controllers.

6.4.3 Summary of the experimental results

Figure 6.8 gives a complementary view of the experimental results. It shows the previous control
performance and processor usage analysis for the coordinated and self-triggered policies with re-
spect to the static, for different perturbation intervals, during execution runs of 150s. In terms
of control performance, bars above zero mean that the control performance has been improved
while bars below zero means that control performance degradation occurs, always with respect to
the static policy. In terms of processor usage, bars above zero mean that processor time has been
saved.

Looking at the relative improvements (or degradations), the first conclusion that can be drawn
is that for this experiment, the processor usage improvements are more noticeable than the control
performance improvements.

Second, the coordinated slack redistribution policy is able to improve both control performance
and consumed processor time. Although difficult to appreciate, as the perturbation interval in-
creases, the relative control performance improvement increases. This is because the perturbations
are less overlapped, and the coordinated slack redistribution policy can perform its job more effec-
tively.

Third, although the self-triggered slack redistribution policy always performs worse than the
static in terms of control performance, it is the best for reducing processor usage. In addition, as

Chapter 6: Performance evaluation: a detailed experience 96

K=2 K=3 K=4 K=6

Criticalness study

t(s)

R
el

at
iv

e
(%

) c
on

tro
l p

er
fo

rm
an

ce
 im

pr
ov

em
en

t x
 1

0
an

d
pr

oc
es

so
r u

sa
ge

 im
pr

ov
em

en
t

Control performance
Processor usage

Figure 6.9: Criticalness (K) study: control performance improvement and processor time savings
relative to the case K = 1

the perturbation interval increases, the self-triggered reduces the control performance degradation,
but more important, it is able to save, in percentage, more resources than the optimal, about two
times more.

6.4.4 Overhead analysis

The processor utilization analysis presented in Subsection 6.4.2 implicitly incorporate the overhead
analysis introduced by each slack redistribution policy. That is, in Figure 6.7, the processor time
spent in the the coordinated policy includes the execution of the three control tasks as well as
the execution of the feedback scheduler task. The later is the one in charge of performing the
slack redistribution. Similarly, the processor time spent for the self triggered policy only includes
the execution of the three control tasks. But they are the ones in charge of performing the slack
redistribution.

For the execution of the three policies, at the kernel level, no specific tasks have to be performed
apart from the standard dispatching of tasks according to EDF. It is worth noting than since for
long perturbation intervals the two slack redistribution policies execute in average controllers with
longer periods than the static, fewer context switches will occur. However, for short perturbation
intervals, this property does not hold.

In addition, the sampling period settings shown in Table 6.2 and the time measures shown in
Table 6.1 also provide some measures of overhead and determine control performance. First of all,
the overhead of the coordinated policy is lower than the overhead of the self-triggered approach.
Looking at Table 6.1, in the worst case scenario, during 50ms, the coordinated policy uses 58μs for
the slack redistribution (two executions of the feedback scheduling task) while the self-triggered
uses 276μs (time spent for the four controllers in slack redistribution operations).

Second, the overhead has a direct influence on control performance. For example, if the code of
the feedback scheduler task would have been more complex, for a given hi,coord

max , the coordinated
utilization would have been higher, and then the hi,static would have been shorter. In other words,
the control performance improvement of the coordinated with respect the static would have been

97 6.4 Results

0 30 60 90 120 150
0

2

4

6

8

10

12

14
Perturbation interval of 3s

t(s)

C
um

ul
at

iv
e

C
on

tro
l C

os
t x

10
 3

Static One−shot
Coordinated One−shot
Self−triggered One−shot
Static w/o One−shot
Coordinated w/o One−shot
Self−triggered w/o One−shot

Figure 6.10: Jitter evaluation

lower. Alternatively, by looking at the self-triggered policy, if the computation of the next sam-
pling period, Υ(·), would have used a simpler expression different than the exponential operation
(remember (6.11)), the resulting periods for the self-triggered controllers, taking into account the
static one, would have been shorter. In other words, the self-triggered policy could have achieved
better control performance numbers.

6.4.5 Key points

In all the previous results, the criticalness parameter in the self-triggered policy was K = 4.
Figure 6.9 shows for different values of K the relative control performance improvement as well as
the processor time savings relative to the case of K = 1. Note that in the figure, due to different
orders of magnitude, the control cost bars has been multiplied by 10. This means that in percentage,
the processor time savings are much more important than the cost improvements when K varies.

The set of evaluated values for K depend on the transient dynamics of the plant response.
Small values of K produce slow changes in the sampling periods, that is, non-aggressive slack
redistribution. If the sampling period changes take more time than the plant transient, they will
not affect on control performance. On the contrary, higher values ofK specify faster period changes.
If the plant transient is short, higher values for K will provide in general better results. At it can
be observed in the figure, more aggressive slack redistribution leads to better control performance
(higher bars) but greater processor consumption (higher bars). That is, shorter periods during more
time will provide better control performance but also increase the processor utilization. At some
point, from K = 6, the performance achieved does not improve enough compare to the increase in
processor time.

Theoretically, for higher values of K, the self-triggered approach tends to behave like the coor-
dinated policy. The coordinated allocates the available slack in one execution (aggressively), while
the self-triggered allocates the same available slack in few job executions. As a consequence, the
higher the criticalness parameter, the faster will be the allocation of slack in the self-triggered.
This also explains why the previous performance analysis has been performed with a high value
for the criticalness parameter for the self-triggered policy. Since the coordinated is aggressive, the

Chapter 6: Performance evaluation: a detailed experience 98

50 100 150 200 250 300 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Feedback scheduler periodicity (ms)

C
os

t d
et

er
io

ra
tio

n
as

 a
 p

er
ce

nt
ag

e
(%

) o
f t

he
 c

as
e

h=
25

m
s

Control cost deterioration

Figure 6.11: Deterioration of the cumulative control cost as a function of the period of the feedback
scheduler task.

self-triggered has been also set to be aggressive.

In all the previous experiments, all the control tasks were implementing the one shot task model
for avoiding the degradation problems caused by scheduling jitters. Figure 6.10 shows, for a given
perturbation interval of 3s, the cumulative cost of the three policies when control tasks execute
implementing or not the one-shot task model. For a controlled jitter of 5ms, the one-shot reduces
the control cost for about 15% for all policies. The application of the one-shot task model ensures
that the achieved control performance will be the same regardless of the tasks’ deadlines.

The self-triggered policy is able to save more resources than the coordinated. An strategy for
saving more resources in the coordinated policy is to execute the feedback scheduling task less
frequently. This will influence control performance. The effect of the periodicity of the feedback
scheduler with respect to control performance is shown in Figure 6.11, per control performance
degradation is with respect to the case of a feedback scheduler with a period of 25ms. As it can be
seen, as the period of the feedback scheduler increases, the control performance degradation also
increases, conclusion that was already drawn in a simulation study of other feedback scheduling
approach [HC05].

Finally, it is important to note that for the presented evaluation, the assumption of linear benefit
functions pi for the coordinated approach is correct and no significant differences in performance
would have been obtained by using for example quadratic benefit functions. This conclusion can
be drawn from the following data fitting analysis. Figure 6.12 shows in the top subfigure the
experimental numbers of control performance measured using (6.14) of a standard controller as a
function of some of the sampling period choices (from h = 25ms to 70ms in steps of 5ms) considered
in all the policies (represented by small circles). These numbers have been fit by a linear and a
quadratic polynomial. The resulting fitting curves have been also plotted in the top subfigure. Note
that both curves overlap, meaning that both fittings are good choices. In fact, in the fit equation for
the quadratic approximation, the second order term can be considered negligible. For completeness
of the analysis, the bottom subfigure shows the residuals analysis as a bar plot. Obviously, they are
almost equal. Therefore, for the range of sampling periods and considering the controlled plants,
the use of linear benefit function is appropriated.

99 6.4 Results

25 30 35 40 45 50 55 60 65 70

10

12

14

16

18
Cumulative cost vs sampling period

C
um

ul
at

iv
e

C
on

tro
l C

os
t

data
linear y=0.097x+6.9
quadratic y=6.9e−006x2+0.097x+6.9

25 30 35 40 45 50 55 60 65 70
−0.2

0

0.2

Sampling time h(ms)

R
es

id
ua

ls

Figure 6.12: Statistical analysis of the linear performance benefit.

6.4.6 Discussion

The lesson learned from the experimental evaluation of the coordinated and self-triggered approach
to slack redistribution in real-time embedded control systems can be summarized as follows:

• Both approaches require a tight collaboration between control tasks and real-time kernel.
Slack redistribution is always based on two decision variables, controlled plant states and
available slack. Since the first variable belongs to the applications space, and the second
variable belongs to the kernel space, passing mechanisms have to be provided, such as spe-
cific system calls or shared memory. This demands a flexible real-time system: a reflective
architecture has been shown to be the key for successfully implementing both approaches.

• The implementation details of both approaches show that the coordinated approach could
demand more modifications in the kernel if the calculations of the slack redistribution were
implemented in the kernel. However, this is not the case when the computations are performed
at the user level by a feedback scheduler task. In this case, the coordinated and the self-
triggered approach perform the slack redistribution at the task level, thus demanding small
support at the kernel.

• In terms of control performance, the coordinated gives better results. This was already ex-
pected in the sense that it implements an optimal policy to slack redistribution while the
self-triggered implements an heuristic policy. However, the theory could have failed in the
implementation due to the overhead of the slack redistribution. But the paper has shown
that even taking into account this overhead, the coordinated still performs the best.

• In terms of resource utilization, both approaches are capable of saving processor time, savings
that increase when perturbations occur infrequently. Therefore, compared to the traditional
approach to real-time control systems implementation, resources are not wasted, they are
reclaimed and used when they are needed. In addition, the self-triggered has the potential
of saving more processor time. Therefore, for highly resource-constrained systems, the self-
triggered approach can be tailored so that resource utilization is minimized while control

Chapter 6: Performance evaluation: a detailed experience 100

performance is still acceptable, fulfilling less strict control specifications. Hence, the self-
triggered approach appears to be a good candidate for slack redistribution in networked
control systems.

• In terms of overhead, it has been shown from the implementation that the introduced over-
head of the slack redistribution computations does not impair achieving good control per-
formance and/or minimizing processor time. However, the overhead introduced by the self-
triggered policy is higher than the one introduced by the coordinated. And this overhead
prevents the self-triggered policy to achieve better control performance numbers. Therefore,
lighter methods for computing the next sampling interval are required.

Chapter 7

Conclusions

This thesis provides two major contributions in the area of real-time embedded control systems:
1) presents the analysis, design and implementation of a novel control task model, named one-
shot, capable of accommodating diverse timing requirements while improving control performance;
2) introduces the development of a performance evaluation framework for resource-constrained
real-time embedded control systems that allows the evaluation of different control and resource
management strategies. The conclusions are divided into two main categories.

7.1 One-shot task model

Sampling and latency jitters represent a well-known problem for the real-time computing of control
systems. Jitters degrade control performance and although different solutions have been proposed
from the control perspective and from the real-time perspective, few solutions have considered both
aspects.

A novel task model for real-time control systems has been presented that combines both aspects.
This task model is synchronized at the actuation instants rather than at the sampling instants. This
has been shown to provide interesting properties. From the scheduling point of view, the new task
model can be seamlessly integrated into existing scheduling theory and practice, while minimizing
the hardware interrupts required by previous solutions, which in turn improves task set schedulabil-
ity. From a control perspective, the one-shot task model absorbs jitters because it allows irregular
sampling, and improves reactiveness in front of perturbations, which even permits to achieve bet-
ter performance than the case where controllers would be executed in isolated processors. When
compared with other task models, the one-shot obtains the best overall control performance. In
general, simulations and control experiments have reported results which corroborate the promised
benefits and show the implementation feasibility of the one-shot task model.

The application of the one-shot task model has been extended to the case of noisy measurement.
In this situation two problems can deteriorate the control performance: jitters and noise. The
proposed solution is to embed the Kalman filter into the one-shot task model. Simulation and
experimental results over a control loop with a noisy plant and scheduling jitters have demonstrated
that their integration preserves their own benefits: noise removal and jitters’ effects elimination.

Since the Kalman filter was adapted to the case of irregular sampling, two different Kalman
implementation approaches were presented. The first approach considers the complete sampling
period to implement the Kalman algorithm, and the second approach implement the Kalman cor-
rection just from sampling to actuation instants. Similar control performance results were obtained
from both approaches, however the first one demands slightly more resources than the second one.

101

Chapter 7: Conclusions 102

7.2 Performance evaluation framework

Feedback scheduling (FBS) and event-driven control (EDC) represent the main tendencies on
resource/performance-aware policies for embedded control systems. Although most of the exist-
ing research has focused on proposing new methods to improve control performance or resource
utilization, only few works have considered the practical implementation aspects.

A performance evaluation framework has been implemented to allow the deployment and eval-
uation of different resource/performance-aware policies under similar circumstances. The frame-
work design is the result of the taxonomical analysis of different resource management and control
optimization strategies. Among other specifications, the framework supports different triggering
paradigms (event-based, time-trigger), different optimization algorithms (on-line, off-line), different
evaluation parameters (control performance, resource utilization), and different sampling period-
icity (static periods, varying periods, aperiodic intervals, sequences).

The performance evaluation framework is composed by a simulation platform and by an ex-
perimental platform. Each platform has been designed considering five functional modules (base-
line configuration, resource manager, optimization algorithms, task controller and performance
measurement). To validate the correct operation of the framework, a group of four representa-
tive feedback scheduling methods and three event-driven control methods were evaluated using
the framework. The results indicate that on-line FBS and EDC methods have the ability to im-
prove control performance with respect to the standard approach. The best control performance is
achieved by the on-line FBS methods while EDC approaches are more efficient in terms of resource
utilization.

Based on these initial results, two representative resource/performance-aware approaches (the
FBS with the best performance and the EDC with the best resource utilization) were selected for
a detailed experimental evaluation using the performance evaluation framework.

The selected approaches represent two alternative policies for multitasking real-time control
systems: “coordinated” (FBS) vs. “self-triggered” (EDC). In the coordinated policy a resource
manager is responsible for modifying each control task progress. On the contrary, in the self-
triggered policy, each control task decides its progress. In terms of performance, the coordinated
approach provided higher benefits, as expected. And in terms of resource utilization, both policies
showed to be capable of saving resources. Specifically, the self-triggered approach can be tuned to
save more resources if the computing platform is severely resource-constrained. This suggests that
for such systems, event-based executions can be a solid approach to minimize resource consumption.

7.3 Future work and open problems

Future works will focus in the following aspects:

• Extend the use of the one-shot task model in the context of networked control systems.
Specifically the one-shot integrated with the Kalman filter can be an interesting solution for
control systems with network delays.

• Enhance the performance evaluation framework services to support network communication.
Then evaluate and compare the performance of different implementation approaches for net-
worked control systems.

• Event-driven control systems present interesting research challenges mainly due the lack
of a mature system theory and the promise to optimize resource consumption. Therefore
topics such as event-driven scheduling policies, optimal event-boundaries formulations and
computational load regulation constitute significant open problems in the field of resource-
constrained real-time embedded control systems.

References

[10096] POSIX.13 (1998). IEEE Std. 1003.13-1998. Information technology -standardized ap-
plication environment profile- posix realtime application support (aep), 1996.

[AB02] K. J. Astrom and B. M. Bernhardsson. Comparison of riemann and lebesgue sampling
for first order stochastic systems. Proceedings of the 41st IEEE Conference on Decision
and Control, Dec. 2002.

[ABRW94] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. STRESS: A simulator
for hard real-time systems. SoftwarePractice and Experience, 24:543–564, 1994.

[ÅBW05] Karl-Erik Årzén, Anders Blomdell, and Björn Wittenmark. Laboratories and real-time
computing. IEEE Control Systems Magazine, 25(1):30–34, February 2005.

[AC99] P. Albertos and A. Crespo. Real-time control of non-uniformly sampled systems.
Control Engineering Practice, 7(4):445–458, 1999.

[ÅC05] Karl-Erik Årzén and Anton Cervin. Control and embedded computing: Survey of
research directions. In Proc. 16th IFAC World Congress, Prague, Czech Republic,
July 2005.

[ÅCES00] K. E. Årzen, A. Cervin, J. Eker, and L. Sha. An introduction to control and scheduling
co-design. 39th IEEE Conference on Decision and Control, 5:4865–4870, 2000.

[ACR+00] P. Albertos, A. Crespo, I. Ripoll, M. Vallés, and P. Balbastre. RT control scheduling
to reduce control performance degradation. 39th IEEE Conference on Decision and
Control, 2000.

[ARGH01] M. Aldea-Rivas and M. González-Harbour. Marte OS: an Ada kernel for real-time em-
bedded applications. Proceesings of the International Conference on Reliable Software
Technology, Ada-Europe-2001, May 2001.

[ART10] ARTEMIS. Advanced Research and Technology for EMbedded Intelligence and Sys-
tems. http://www.artemis.eu, 2006-2010.

[Årz99] K. E. Årzén. A simple event-based PID controller. In 14th World Congress of IFAC,
Beijin, China, Jan. 1999.

[Årz05] Karl-Erik Årzén. Timing analysis and simulation tools for real-time control. In Paul
Pettersson and Wang Yi, editors, Formal Modeling and Analysis of Timed Systems,
volume 3829 of LNCS. Springer, September 2005. Extended astract in the Proceedings
of FORMATS 2005, Uppsala. Invited Talk.

103

REFERENCES 104

[AS90] P. Albertos and J. Salt. Digital regulators redesign with irregular sampling. IFAC
World Congress, 1990.

[AT08a] A. Anta and P. Tabuada. Self-triggered stabilization of homogeneous control systems.
In American Control Conference, 2008.

[AT08b] A. Anta and P. Tabuada. Space-time scaling laws for self-triggered control. In Decision
and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 4420 –4425, Dec. 2008.

[AT09] A. Anta and P. Tabuada. Isochronous manifolds in self-triggered control. In Deci-
sion and Control, 2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, 2009.

[AT10] A Anta and P Tabuada. To sample or not to sample: Self-triggered control for nonlinear
systems. Automatic Control, IEEE Transactions on, 2010.

[ÅW97] K. J. Åström and B. Wittenmark. Computer-Controlled Systems: Theory and Design.
Prentice Hall, New Jersey, USA, third edition, 1997.

[BBGL99] S. Baruah, G. Buttazzo, S. Gorinsky, and G. Lipari. Scheduling periodic task systems
to minimize output jitter. 6th International Conference on Real Time Computing
Systems and Applications, pages 62–69, Nov. 1999.

[BBLB03] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic integrated scheduling
of hard real-time, soft real-time and non-real-time processes. 24th IEEE Real-Time
Systems Symposium (RTSS 2003), pages 396–407, Dec. 2003.

[BC08] Enrico Bini and Anton Cervin. Delay-aware period assignment in control systems. In
Proc. 29th IEEE Real-Time Systems Symposium, Barcelona, Spain, December 2008.

[BLA98] G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive rate control.
IEEE Real-Time Systems Symposium, 1998.

[Boj05] Edward Boje. Approximate models for continuous-time linear systems with sampling
jitter. Automatica, 41(12):2091 – 2098, 2005.

[BRVC04] P. Balbastre, I. Ripoll, G. Vidal, and A. Crespo. A task model to reduce control delays.
Journal of Real-Time Systems, 27(3), 2004.

[But97] G. Buttazzo. Hard real time computing systems. predictable scheduling algorithms
and applications. Springer, 1997.

[But05] G. Buttazzo. Hard Real-Time Coimputing Systems: Predictable Scheduling Algorithms
and Applications. Springer, second edition, 2005.

[But06] G. Buttazzo. Research trends in real-time computing for embedded systems. ACM
SIGBED Review, 3(3):1–10, July 2006.

[CA06] A. Cervin and P. Alriksson. Optimal on-line scheduling of multiple control tasks:
A case study. Proceedings of the 18th Euromicro Conference on Real-Time Systems,
2006.

[CE03] A. Cervin and J. Eker. The control server: a computational model for real-time control
tasks. 15th Euromicro Conference on Real Time Systems, page 113, 2003.

105 REFERENCES

[CEBÅ02] A. Cervin, J. Eker, B. Bernhardsson, and K. E. Årzen. Feedback-feedforward schedul-
ing of control tasks. Real Time Systems, 23(1-2):25–53, Nov. 2002.

[Cer01] A. Cervin. Improved scheduling of control tasks. 11th Euromicro Conference on Real
Time Systems, pages 4–10, June 2001.

[CHL+03] Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and Karl-Erik Årzén. How
does control timing affect performance? Analysis and simulation of timing using Jit-
terbug and TrueTime. IEEE Control Systems Magazine, 23(3):16–30, June 2003.

[CLS03] R. Chandra, X. Liu, and L. Sha. On the scheduling of flexible and reliable real-time
control systems. Real Time Systems, 24(2):153–169, March 2003.

[CMC+04] M. Cirinei, A. Mancina, D. Cantini, P. Gai, and L. Palopoli1. An educational open
source real-time kernel for small embedded control systems. Computer and Information
Sciences - ISCIS 2004, pages 866–875, 2004.

[CMV+06] R. Castané, P. Mart́, M. Velasco, A. Cervin, and D. Henriksson. Resource management
for control tasks based on the transient dynamics of closed-loop systems. Proceedings
of the 18th Euromicro Conference on Real-Time Systems, 2006.

[CVMC10] Anton Cervin, Manel Velasco, Pau Mart́ı, and Antonio Camacho. Optimal on-line
sampling period assignment: Theory and experiments. IEEE Transactions on Control
Systems Technology, Accepted for publication, June 2010.

[EHÅ00] J. Eker, P. Hagander, and K. E. Årzen. A feedback scheduler for real-time controller
tasks. Control Engineering Practice, 2000.

[Ell59] P. Ellis. Extension of phase plane analysis to quantized systems. Automatic Control,
IRE Transactions on, 4(2):43–54, 1959.

[Fou10] The Eclipse Foundation. Eclipse foundation homepage. http://www.eclipse.org,
2010.

[FSR04] E. Fridman, A. Seuret, and J.-P. Richard. Robust sampled-data stabilization of linear
systems: an input delay approach. Automatica, 40(8):1441–1446, 2004.

[GAGB01] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new kernel approach for modular
real-time systems development. Proceedings of the 13th IEEE Euromicro Conference
on Real-Time Systems, June 2001.

[GcH09] M.E.-M. Ben Gaid, A.S. Çela, and Y. Hamam. Optimal real-time scheduling of control
tasks with state feedback resource allocation. IEEE Transactions on Control Systems
Technology, 17(2):309 – 326, mar 2009.

[GCHI06] M. M. Ben Gaid, A. Cela, Y. Hamam, and C. Ionete. Optimal scheduling of control
tasks with state feedback resource allocation. American Control Conference, 2006.

[HC05] D. Henriksson and A. Cervin. Optimal on-line sampling period assignment for real-
time control tasks based on plant state information. 44th IEEE Conference on Decision
and Control and European Control Conference, pages 4469–4474, Dec. 2005.

[HCÅ02] D. Henriksson, A. Cervin, and K.-E. Årzén. TrueTime: Simulation of control loops
under shared computer resources. 15th IFAC World Congress, 2002.

REFERENCES 106

[HCAÅ02] D. Henriksson, A. Cervin, J. Akesson, and K. E. Årzen. Feedback scheduling of model
predictive controllers. Proceedings of the Eighth IEEE Real-Time and Embedded Tech-
nology and Application Symposium, 2002.

[HGvZ+99] W. P. M. H. Heemels, R. J. A. Gorter, A. van Zijl, P. P. J. van den Bosch, S. Weiland,
W. H. A. Hendrix, and M. R. Vonder. Asynchronous measurement and control: a case
study on motor synchronization. Control Engineering Practice, 7(12):1467 – 1482,
1999.

[HHK01] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: a time-triggered language for
embedded programming. First International Workshop on Embedded Software, pages
116–184, 2001.

[HJC08] Toivo Henningsson, Erik Johannesson, and Anton Cervin. Sporadic event-based con-
trol of first-order linear stochastic systems. Automatica, 44(11):2890–2895, November
2008.

[HLL+03] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao, and H. Zheng.
Overview of the Ptolemy project. Technical Report UCB/ERL M03/25, Department
of Electrical Engineering and Computer Science, University of California Berkeley,
USA, 2003.

[HSB08] W. P. M. H. Heemels, J. H. Sandee, and P. Bosch. Analysis of event-driven controllers
for linear systems. International Journal of Control, 81(4), 2008.

[ISIEIS96] 1996 International Standard ISO/IEC 9945-1: 1996 (E) IEEE Std 1003.1. Portable
operaring system interface (posix) standard, 1996.

[JHC07] E. Johannesson, T. Henningsson, and A. Cervin. Sporadic control of first-order linear
stochastic systems. Hybrid Systems: Computation and Control, 2007.

[JS93] K. Jeffay and D.L. Stone. Accounting for interrupt handling costs in dynamic priority
tasks systems. Proc. 14th IEEE Real-Time System Symposium, 1993.

[Kal60] R.E. Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME - Journal of Basic Engineering, 82:35–45, 1960.

[LB05] C. Lin and S.A. Brandt. Improving soft real-time performance through better slack
reclaiming. In 26th IEEE Real-Time Systems Symposium, December 2005.

[LCH+07] M. Lemmon, T. Chantem, X. Hu, , and M. Zyskowski. On self-triggered full informa-
tion H-infinity controllers. Hybrid Systems: Computation and Control, April 2007.

[Lin02] B. Lincoln. Jitter compensation in digital systems. American Control Conference,
2002.

[LL73] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard
real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[LM07] A. Lem and R. McCann. Event-based measurement updating Kalman filter in network
control systems. IEEE Region 5 Technical Conference, April 2007.

[LMVF08] C. Lozoya, P. Mart́ı, M. Velasco, and J.M. Fuertes. Control performance evaluation
of selected methods of feedback scheduling of real-time control tasks. In 17th World
Congress of IFAC, Seoul, Korea, July 2008.

107 REFERENCES

[LSX08] W. Lia, S.L. Shaha, and D. Xiao. Kalman filters in non-uniformly sampled multirate
systems: For fdi and beyond. Automatica, 44:199–208, January 2008.

[LU10] Department of Automatic Control Lund University. Truetime: Simulation of networked
and embedded control systems. http://www.control.lth.se/truetime/, 2010.

[LVM07] C. Lozoya, M. Velasco, and P. Mart́ı. A 10-year taxonomy on prior work on sam-
pling period selection for resource-constrained real-time control systems. In Work in
Progress 19th Euromicro Conference on Real-Time Systems (ECRTS 07), Pisa, Italy,
July 2007.

[LVM08] C. Lozoya, M. Velasco, and P. Mart́ı. The one-shot task model for robust real-time
embedded control systems. IEEE Transactions on Industrial Informatics, 4(3), August
2008.

[Mar02] P. Mart́ı. Analysis and Design of Real-Time Control Systems with Varying Control
Timing Constraints. PhD thesis, Technical University of Catalonia, Pau Gargallo 5,
08028 Barcelona, Spain, June 2002.

[MAT09] Manuel Mazo, Adolfo Anta, and Paulo Tabuada. On self-triggered control for linear
systems: Guarantees and complexity. In 10th European Control Conference, 2009.

[Mat10] MathWorks. Matlab and Simulink for technical computing. http://www.mathworks.
com, 2010.

[May79] P.S. Maybeck. Stochastic models, estimation, and control. Academic Press, 1979.

[MFRF01] P. Mart́ı, G. Fohler, K. Ramamritham, and J. M. Fuertes. Jitter compensation for
real-time control systems. 22nd IEEE Real-Time Systems Symposium, pages 39–48,
Dec. 2001.

[MFVF01] P. Mart́ı, J. M. Fuertes, R. Villà, and G. Fohler. On real-time control tasks schedula-
bility. In European Control Conference, pages 2227–2232, Porto, Portugal, Sep. 2001.

[Mic05] Microchip. dsPIC30F/33F Programmer’s Reference Manual. http://www.microchip.
com, 2005.

[Mic09] Microchip. MPLAB ICD2. http://www.microchip.com, 2009.

[Mic10] Microchip. MPLAB IDE. http://www.microchip.com, 2010.

[Mir07] L. Mirkin. Some remarks on the use of time-varying delay to model sample-and-hold
circuits. IEEE Trans. Automat. Control, 52(6):1109–1112, 2007.

[Mis06] Marek Miskowicz. Send-on-delta concept: An event-based data reporting strategy.
Sensors, 6(1):49–63, 2006.

[MLB+04] P. Mart́ı, C. Lin, S. Brandt, M. Velasco, and J.M. Fuertes. Optimal state feedback
based resource allocation for resource-constrained control tasks. 25th IEEE Real-Time
Systems Symposium, pages 161–172, 2004.

[MLB+09] Pau Mart́ı, Caixue Lin, Scott A. Brandt, Manel Velasco, and Josep M.Fuertes. Draco:
Efficient resource management for resource-constrained control tasks. IEEE Transac-
tions on Computers, 58(1):90–105, January 2009.

REFERENCES 108

[MLV+08] R. Marau, P. Leite, M. Velasco, P. Marti, L. Almeida, P. Pedreiras, and J.M. Fuertes.
Performing flexible control on low-cost microcontrollers using a minimal real-time
kernel. Industrial Informatics, IEEE Transactions on, 4(2):125 –133, may 2008.

[MT09] M. Mazo and P. Tabuada. Input-to-state stability of self-triggered control systems. In
Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Confer-
ence. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, 2009.

[MVB09] P. Mart́ı, M. Velasco, , and E. Bini. The optimal boundary and regulator design prob-
lem for event-driven controllers. 12th International Conference on Hybrid Systems:
Computation and Control, April 2009.

[MVF+07] P. Mart́ı, M. Velasco, J. M. Fuertes, R. Villà, J. Yépez, and C. Lozoya. The one-
shot task model for implementing real-time control tasks. II Congreso Español de
Informática (CEDI2007), Sep. 2007.

[MVF+10] P Marti, M Velasco, J Fuertes, A Camcho, and G Buttazzo. Design of an embedded
control systems laboratory experiment. Industrial Electronics, IEEE Transactions on,
2010.

[OSE] OSEK. Osek/vdx: Open systems and the corresponding interfaces for automotive
electronics. http://www.osek-vdx.org/mirror/os21.pdf.

[OY98] S.H. Oh and S.M. Yang. A modified least-laxity-first scheduling algorithm for real-time
tasks. 5th International Conference Real-Time Computing Systems and Applications,
1998.

[PLLA02] L. Palopoli, G. Lipari, G. Lamastra, and L. Abeni. An objectoriented tool for simu-
lating distributed realtime control systems. Software-Practice and Experience, pages
907–932, 2002.

[PMRC07] S. Peiro, M. Masmano, I. Ripoll, and A. Crespo. PaRTiKle OS, a replacement for the
core of RTLinux-GPL. 9th Real Time Linux Workshop, 2007.

[PPBSV05] L. Palopoli, C. Pinello, A. Bicchi, and A. Sangiovanni-Vincentelli. Maximizing the
stability radius of a set of systems under real-time scheduling constraints. Automatic
Control, IEEE Transactions on, 50(11):1790–1795, Nov. 2005.

[PPSV+02] L. Palopoli, C. Pinello, A. L. Sangiovanni-Vincentelli, L. Elghaoui, and A. Bicchi.
Synthesis of robust control systems under resource constraints. Hybrid Systems: Com-
putation and Control, pages 337–350, 2002.

[PSCC08] R. Piza, J. Salt, A. Cuenca, and V. Casanova. Kalman filtering applied to profibus-dp
systems. multirate control systems with delayed signals. 34th Annual Conference of
IEEE Industrial Electronics Society, Nov. 2008.

[REKT04] O. Redell, J. El-Khoury, and M. Torngren. The AIDA toolset for design and imple-
mentation analysis of distributed realtime control systems. Journal of Microprocessors
and Microsystems, pages 163–182, 2004.

[RS00] H. Rehbinder and M. Sanfridson. Integration of off-line scheduling and optimal control.
12th Euromicro Conference on Real-Time Systems, page 137, 2000.

[SÅ03] Ricardo Sanz and Karl-Erik Årzén. Trends in software and control. IEEE Control
Systems Magazine, 23(3):12–15, June 2003.

109 REFERENCES

[SAÅ+04] Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore Baker, Alan
Burns, Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K. Mok. Real-
time scheduling theory: A historical perspective. Real-Time Systems, 28(2–3):101–155,
November 2004.

[SB09] J. Skaf and S. Boyd. Analysis and synthesis of state-feedback controllers with timing
jitter. Automatic Control, IEEE Transactions on, 54(3):652 –657, march 2009.

[SCEP09] Soheil Samii, Anton Cervin, Petru Eles, and Zebo Peng. Integrated scheduling and
synthesis of control applications on distributed embedded systems. In Proc. Design,
Automation & Test in Europe (DATE’09), April 2009.

[SEPC09] Soheil Samii, Petru Eles, Zebo Peng, and Anton Cervin. Quality-driven synthesis of
embedded multi-mode control systems. In Proc. 46th Design Automation Conference
(DAC), San Francisco, CA, July 2009.

[SKSC98] D. Seto, B. Krogh, L. Sha, and A. Chutinan. Dynamic control systems upgrade using
Simplex architecture. IEEE Control, August 1998.

[SKSH06] P. Sucha, M. Kutil, M. Sojka, and Z. Hanzalek. TORSCHE scheduling toolbox for
Matlab. IEEE International Symposium on Computer-Aided Control Systems Design,
2006.

[SL96] M.F. Storch and J.W.S. Liu. A simulation framework for complex realtime systems.
Proceedings of the 2nd IEEE RealTime Technology and Applications Symposium, pages
160–169, 1996.

[SLS98] D. Seto, J. P. Lehoczky, and L. Sha. Task period selection and schedulability in
real-time systems. IEEE Real-Time Systems Symposium, pages 188–198, Dec. 1998.

[SLSS96] D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin. On task schedulability in real-time
control systems. IEEE Real-Time Systems Symposium, 1996.

[SNR07] Y.S. Suh, V.H. Nguyena, , and Y. S. Roa. Modified Kalman filter for networked
monitoring systems employing a send-on-delta. Automatica, 43:332–338, Feb. 2007.

[Srl08a] Evidence Srl. ERIKA Enterprise basic manual. http://www.evidence.eu.com, 2008.

[Srl08b] Evidence Srl. FLEX Modular solution for embedded applications. http://www.

evidence.eu.com, 2008.

[Sta96] J. A. Stankovic. Strategic directions in real-time and embedded systems. ACM Com-
put. Surv., 28(4), dec 1996.

[Tab07] P. Tabuada. Event-triggered real-time scheduling of stabilizing control tasks. Auto-
matic Control, IEEE Transactions on, 52(9):1680 –1685, sept. 2007.

[THÅ+06] Martin Törngren, Dan Henriksson, Karl-Erik Årzén, Anton Cervin, and Zdenek Han-
zalek. Tools supporting the co-design of control systems and their real-time implemen-
tation; current status and future directions. In 2006 IEEE International Symposium
on Computer-Aided Control Systems Design, Munich, Germany, October 2006.

[TW06] P. Tabuada and X. Wang. Preliminary results on state-triggered scheduling of stabi-
lizing control tasks. 45th IEEE Conference on Decision and Control, Dec. 2006.

REFERENCES 110

[Vel06] M. Velasco. Sistemas de Control con Recursos Restringidos. PhD thesis, Technical
University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain, July 2006.

[VMB08] M. Velasco, P. Mart́ı, and E. Bini. Control driven tasks: modeling and analysis. 29th
IEEE Real-Time Systems Symposium (RTSS08), Dec. 2008.

[VMB09a] M. Velasco, P. Mart́ı, and E. Bini. On lyapunov sampling for event-driven controllers.
In Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Con-
ference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, Dec. 2009.

[VMB09b] Manel Velasco, Pau Mart́ı, and Enrico Bini. Equilibrium sampling interval sequences
for event-driven controllers. In In European Control Conference 2009, Budapest, Hun-
gary, 2009.

[VMF03] M. Velasco, P. Mart́ı, and J.M. Fuertes. The self triggered task model for real-time
control systems. Work-in-progress session of the 24th IEEE Real-Time Systems Sym-
posium, Dec. 2003.

[VMF+10] M. Velasco, P. Mart́ı, J. M. Fuertes, C. Lozoya, and S. Brandt. Experimental evalua-
tion of slack management in real-time control systems: Coordinated vs. self-triggered
approach. Journal of Systems Architecture, 56(1), January 2010.

[VML08] M. Velasco, P. Mart́ı, and C. Lozoya. On the timing of discrete events in event-driven
control systems. 11th International Conference on Hybrid Systems: Computation and
Control (HSCC08), April 2008.

[WL08a] Xiaofeng Wang and Michael Lemmon. Event design in event-triggered feedback control
systems. In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, Dec.
2008.

[WL08b] Xiaofeng Wang and Michael Lemmon. State based self-triggered feedback control
systems with l2 stability. In 17th IFAC World Congress, jul. 2008.

[WL09a] X. Wang and M. Lemmon. Self-triggered feedback control systems with finite-gain l2
stability. IEEE Transactions on Automatic Control, 2009.

[WL09b] Xiaofeng Wang and Michael D. Lemmon. Self-triggered feedback systems with state-
independent disturbances. In ACC’09: Proceedings of the 2009 conference on American
Control Conference, pages 3842–3847, 2009.

[WNT95] B. Wittenmark, J. Nilsson, and M. Torngren. Timing problems in real-time control
systems. Proceedings of American Control Conference, 1995.

[ZZ99] Q. C. Zhao and D. Z. Zheng. Stable and real-time scheduling of a class of hybrid
dynamic systems. Discrete Event Dynamic Systems, 1999.

Appendix A

Continuous and discrete cost
function

This appendix describes how to obtain a discrete-time cost function equivalent to the continuous
standard quadratic cost function defined by

Jcontrol =

∫ teval

0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt, (A.1)

now lets identify the continuous cost weighting matrices Q and R as Qc and Rc.

Consider that the plant to be controlled is described by the continuous-time model

dx(t)

dt
= Ax(t) +Bu(t), (A.2)

where A and B are the system and input matrices. If this model is sampled considering sampling
periods of lengths h then equation A.2 can be written as

x(t) = Φ(t, kh)x(kh) + Γ(t, kh)u(kh), (A.3)

where Φ and Γ are obtained

Φ = eAh, Γ =

∫ h

0

eAsBds, (A.4)

The continuous cost function (A.1) is transformed into a discrete-time by integrating over
intervals of lengths h,

J(k) =

∫ kh+h

kh

[
xT (t)Qcx(t) + uT (t)Rcu(t)

]
dt. (A.5)

Using (A.3) into (A.5) and the fact that u(t) is constant over the sampling period gives

J(k) = xT (kh)Qdx(kh) + 2xT (kh)Ndu(kh) + uT (kh)Rdu(kh) (A.6)

where

Qd =

∫ kh+h

kh

[
ΦT (s, kh)QcΦ(s, kh)

]
ds, (A.7)

111

Chapter A: Continuous and discrete cost function 112

Nd =

∫ kh+h

kh

[
ΦT (s, kh)QcΓ(s, kh)

]
ds, (A.8)

Rd =

∫ kh+h

kh

[
ΓT (s, kh)QcΓ(s, kh) +Rc

]
ds. (A.9)

Minimizing the continuous cost function (A.1) when u(t) is constant over the sampling period
is thus the same as minimizing the discrete-cost function,

Jd
control =

teval∑
k=0

[
xT (k)Qdx(k) + 2xT (k)Ndu(k) + uT (k)Rdu(k)

]
, (A.10)

to facilitate the writing, it is assumed in the previous equation that the sampling period is used as
time unit, that is, h = 1.

Appendix B

Framework simulation source code

This appendix presents partial source code for the main files that conforms the simulation part of
the performance evaluation framework.

B.1 Main program

B.1.1 Function: main.m

Function : main
Desc r ipt i on : Evaluate d i f f e r e n t FBS and DCS methods

%−−−
% Val idate models
%−−−
va l i da t e mode l s ;

%−−−
% Load dis trubance data
%−−−
l o ad d i s tu rbanc e da ta ; ampl i tude va lue s = load (amp l i t u d e f i l e) ;
d e l ay va lu e s = load (d e l a y f i l e) ;

%−−−
% Create p lant and
% execute of f−l i n e opt imizat ion i f app l i e s
%−−−
swi tch p lant used

case {’ rc_circuit ’}
plant RC ;

case {’ ball_beam ’}
plant BB ;

case {’ double_integrator ’}
p lant DI ;

othe rwi se
disp (’ Select a valid process plant !!!! ’) ;
pause ;

end

%−−−
% Display i n i t i a l va lues
%−−−
i f debug mode == 1

disp (sprintf (’TASK MODEL SELECTED : %s ’ , task model)) ;
disp (sprintf (’ SCHEDULING APPROACH : %s ’ , fb s approach)) ;
disp (sprintf (’ INITIAL PERIODS: [%8.6 f %8.6 f %8.6 f] ’ ,h (1) , h (2) ,h (3))) ;
pause ;

end

113

Chapter B: Framework simulation source code 114

for i e x e c =1:1: length (ampl i tude va lue s)

%−−−
% Se l e c t d is turbance amplitud and de lay
%−−−
d i sturbance ampl i tude=ampl i tude va lue s (i e x e c , :) ;
d i s tu rbanc e de l ay=de l ay va lu e s (i e x e c , :) ;
c pu e n t r i e s =0;
swi tch p lant used

case {’ rc_circuit ’}
d i s tu rbanc e t r a ck =0;

case {’ ball_beam ’}
d i s tu rbanc e t r a ck =1;

case {’ double_integrtaor ’}
d i s tu rbanc e t r a ck =1;

othe rwi se
disp (’ Select a valid process plant !!!! ’) ;
pause ;

end
i f d i s tu rbanc e type == 1

t a s k o f f s e t = d i s tu rbanc e de l ay ;
end

%−−−
% Execute Simulation
%−−−
sim (’ fbs_system ’ , [i n i t t im e end time]) ;
s im r e su l t s =[s im r e su l t s , TotalCost (length (TotalCost))] ;
c p u r e s u l t s =[cpu r e su l t s , CPUTime(length (CPUTime))] ;
c p u t o t a l e n t r i e s =[c p u t o t a l e n t r i e s , c pu e n t r i e s] ;
i f debug mode == 1

disp (sprintf (’Cost Function ’)) ;
disp (sprintf (’%8.6 f ’ ,mean(s im r e s u l t s))) ;
disp (sprintf (’CPU Load ’)) ;
disp (sprintf (’%8.6 f ’ ,mean(c pu r e s u l t s))) ;
pause ;

end
end

%−−−
% Display f i n a l r e s u l t s
%−−−
disp (sprintf (’ -------------------------------’)) ;
disp (sprintf (’ Cost Function ’)) ; disp (sprintf (’ Mean Value ’)) ;
disp (sprintf (’ %8.6 f ’ ,mean(s im r e su l t s))) ;

disp (sprintf (’ CPU Load ’)) ; disp (sprintf (’ Mean Value ’)) ;
disp (sprintf (’ %6.2 f ’ ,mean(c p u r e s u l t s))) ;

B.2 Initialization modules

B.2.1 Function: task controller init.m

Function : t a s k c o n t r o l l e r i n i t
Des cr ipt i on : I n i t i a l i z e s the Simulink task c on t r o l l e r module

function t a s k c o n t r o l l e r i n i t

% I n i t i a l i z e TrueTime kerne l
t t I n i tKe r ne l (6 , 3 , t c s ch ed d fn) ;

% Create Tasks
swi tch task model

case {’ fbs ’}
t tCreatePer iod icTask (’task1 ’ , 0 . 0 , h (1) ,1 , ’ fbs_controller_code ’ , data1) ;
t tCreatePer iod icTask (’task2 ’ , 0 . 0 , h (2) ,1 , ’ fbs_controller_code ’ , data2) ;
t tCreatePer iod icTask (’task3 ’ , 0 . 0 , h (3) ,1 , ’ fbs_controller_code ’ , data3) ;

115 B.3 Controllers and optimization algorithms

case {’event ’}
t tCreatePer iod icTask (’ task1 ’ , 0 . 0 , h (1) ,1 , ’ event_controller_code ’ , data1) ;
t tCreatePer iod icTask (’ task2 ’ , 0 . 0 , h (2) ,1 , ’ event_controller_code ’ , data2) ;
t tCreatePer iod icTask (’ task3 ’ , 0 . 0 , h (3) ,1 , ’ event_controller_code ’ , data3) ;

othe rwi se
disp (’ Select a valid task model !!!! ’) ;
pause ;

end

B.2.2 Function: resource manager init.m

Function : t a s k c o n t r o l l e r i n i t
Desc r ipt i on : I n i t i a l i z e s the Simulink re source management module

function r e sou r c e manage r i n i t

% Create Tasks
swi tch opt imizat ion approach

case {’ static ’ , ’ seto_edf ’}
t tCreatePer iod icTask (’ task0_int ’ , 0 . 0 , nu l l Tfbs , 1 , ’ period_allocate ’ , data0) ;

case {’ marti_optimal ’}
t tCreatePer iod icTask (’ task0_int ’ , 0 . 0 , mart i Tfbs , 1 , ’ period_allocate ’ , data0) ;

case {’ henrikson_finite ’}
t tCreatePer iod icTask (’ task0_int ’ , 0 . 0 , henr Tfbs , 1 , ’ period_allocate ’ , data0) ;

case {’ edc_velasco ’ , ’ edc_lemmon ’ , ’ edc_marti ’}
t tCreatePer iod icTask (’ task0_int ’ , 0 . 0 , nu l l Tfbs , 1 , ’ period_allocate ’ , data0) ;

othe rwi se
disp (’ Select a valid scheduling approach !!!! ’) ;
pause ;

end

B.3 Controllers and optimization algorithms

B.3.1 Function: fbs controller code.m

Function : f b s c on t r o l l e r c o d e
Desc r ipt i on : Control ta sk f o r FBS approaches

function [exect ime , data] = na i f c o n t r o l l e r c o d e (seg , data)

swi tch seg ,
case 1 ,

y1 = ttAnalogIn (data . y1Chan) ; % Read process output
y2 = ttAnalogIn (data . y2Chan) ; % Read process output
data . u=−Kd(data . task number , :) ∗ [y1 ; y2 ; data . y3] ;
data . y3=data . u ;
exect ime = data . exec t ime ;

case 2 ,
ttAnalogOut(data . uChan , data . u) ; % Output contro l s i gna l
t tS e tPe r i od (h(data . task number) , data . task name) ;
cp u en t r i e s=cpu e n t r i e s +1;
exect ime = −1;

end

B.3.2 File: event controller code.m

Function : e ve n t c on t r o l l e r c od e
Desc r ipt i on : Control ta sk f o r EDC approaches

Chapter B: Framework simulation source code 116

function [exect ime , data] = e v en t c on t r o l l e r c od e (seg , data)

swi tch seg ,
case 1 ,

y1 = ttAnalogIn (data . y1Chan) ; % Read process output
y2 = ttAnalogIn (data . y2Chan) ; % Read process output
data . u=−Kd(data . task number , :) ∗ [y1 ; y2] ;
h (data . task number)=next event(−Kd(data . task number , :) , event parameters , [y1 ;

y2]) ;
exect ime = data . exec t ime ;

case 2 ,
ttAnalogOut(data . uChan , data . u) ; % Output contro l s i gna l
t tS e tPe r i od (h(data . task number) , data . task name) ;
c pu e n t r i e s=cpu en t r i e s +1;
exect ime = −1;

end

B.3.3 Function: period allocate.m

Function : p e r i o d a l l o c a t e
Des cr ipt i on : Executed to c a l l on− l i n e opt im izat i on r ou t i ne s

function [exect ime , data] = p e r i o d a l l o c a t e (seg , data)

swi tch seg ,
case 1 ,

swi tch fbs approach
case {’ static ’ , ’ seto_edf ’}

data=n u l l a l l o c a t e (data) ;
case {’ edc_velasco ’ , ’ edc_lemmon ’ , ’ edc_marti ’}

data=ev e n t a l l o c a t e (data) ;
case {’ marti_optimal ’}

data=op t ima l a l l o c a t e (data) ;
case {’ henrikson_finite ’}

data=f i n i t e h o r i z o n a l l o c a t e (data) ;
othe rwi se

disp (’ Select a valid scheduling approach !!!! ’) ;
pause ;

end
exect ime = data . exec t ime ;

case 2 ,
exect ime = −1;

end

Appendix C

Framework experiment source
code

This appendix presents partial source code for the main files that conforms the experimental part
of the performance evaluation framework. The code include functions provided by the Erika kernel.

C.1 File: setup.c

C.1.1 Function: EE Flex setup()

Function : EE Flex setup ()
Desc r ipt i on : Conf igures system c lock and i n i t i a l i z e dev i ce s

void EE Flex setup (void) {
// Configure the PWM 1
PWM init () ;

// Configure the orange l ed of the FLEX FULL and custom leds
Led i n i t () ;

// Configure d i g i t a l pins to be used with the o s c i l l o s c op e
D i g i t a l o u t p u t i n i t () ;

// I n i t i a l i z e the UART Port 1 to communicate with the PC via RS232
UART1 DMA init () ;

// I n i t i a l i z e the Analog to D i g i t a l Converter 1
ADC1 init () ;

}

C.1.2 Function: PWM init()

Function : PWM config ()
Desc r ipt i on : Conf igures PWM actuator

void PWM init (void) {
OVDCON = 0x0000 ; // PWM outputs d i sab l ed
PTCONbits .PTEN = 1 ; //PTEN: PWM Time Base Timer Enable b i t

//1 = PWM time base i s on
//0 = PWM time base i s o f f

PTCONbits .PTMOD=2; //PTMOD<1:0>: PWM Time Base Mode Se l e c t b i t s

117

Chapter C: Framework experiment source code 118

//11 =PWM time base operates in a Continuous Up/Down
//Count mode with in t e r rup t s for double PWM updates
//10 =PWM time base operates in a Continuous Up/Down
//01 =PWM time base operates in Sing le Pulse mode
//00 =PWM time base operates in a Free−Running mode

PTPER = 0x3FFF ; //PTPER<14:0>: PWM Time Base Period Value b i t s
// Se l e c t PWM period : Se t t ing PDCx=0 means 0% Duty cyc l e
// PDCx=PTPER means 50%
// PDCx=2∗PTPER means 100%

PWMCON1bits .PMOD1=1;//PWM I/O Pair Mode b i t s
//1 = PWM I/O pin pair i s in the Independent PWM Output mode
//0 = PWM I/O pin pair i s in the Complementary Output mode

PWMCON1bits .PMOD2=1;
PWMCON1bits .PMOD3=1;
PWMCON1bits .PMOD4=1;
PWMCON1bits .PEN4H=1;//PWMxH I/O Enable b i t s

//1 = PWMxH pin i s enabled for PWM output
//0 = PWMxH pin disab led , I/O pin becomes genera l purpose I/O

PWMCON1bits .PEN3H=1;
PWMCON1bits .PEN2H=1;
PWMCON1bits .PEN1H=1;
PWMCON1bits .PEN4L=1;//PWMxL I/O Enable b i t s

//1 = PWMxL pin i s enabled for PWM output
//0 = PWMxL pin disab led , I/O pin becomes genera l purpose I/O

PWMCON1bits .PEN3L=1;
PWMCON1bits .PEN2L=1;
PWMCON1bits .PEN1L=1;
PWMCON2bits . IUE = 0 ; //Immediate Update Enable b i t

//1 = Updates to the ac t i v e PDC r e g i s t e r s are immediate
//0 = Updates to the ac t i v e PDC r e g i s t e r s are synchronized
// to the PWM time base

PWMCON2bits .UDIS= 0 ; //PWM Update Disab le b i t
//1 = Updates from Duty Cycle and Period Buffer
// r e g i s t e r s are d i sab l ed
//0 = Updates from Duty Cycle and Period Buffer
// r e g i s t e r s are enabled

OVDCON = 0 x f f 00 ; //OVERRIDE CONTROL REGISTER
// b i t 15−8 POVDxH<4:1>:POVDxL<4:1>: PWM Output
//Override b i t s
//1 = Output on PWMx I/O pin i s cont ro l l e d by the
//PWM generator
//0 = Output on PWMx I/O pin i s cont ro l l e d by the
// va lue in the corresponding POUTxH:POUTxL b i t
// b i t 7−0 POUTxH<4:1>:POUTxL<4:1>: PWM Manual Output b i t s
//1 = PWMx I/O pin i s driven ac t i v e when the
// corresponding POVDxH:POVDxL b i t i s c leared
//0 = PWMx I/O pin i s driven inac t i v e when the
// corresponding POVDxH:POVDxL b i t i s c leared ∗/

PDC1 = 0x0000 ; // I n i t i a l duty cyc l e PWM1
PDC2 = 0x0000 ; // I n i t i a l duty cyc l e PWM2
PDC3 = 0x0000 ; // I n i t i a l duty cyc l e PWM3
PDC4 = 0x0000 ; // I n i t i a l duty cyc l e PWM4
PTCONbits .PTEN = 1 ; // Enable PWM.

}

C.1.3 Function: Led init()

Function : L ed i n i t ()
Des cr ipt i on : Conf igures FLEX FULL orange l ed (Jumper 4 must be c l o s ed)

void Led i n i t (void) {
LATBbits .LATB14 = 0 ; // se t orange LED (LEDSYS/RB14) dr ive s t a t e low
TRISBbits . TRISB14 = 0 ; // se t LED pin (LEDSYS/RB14) as output

LATDbits .LATD8=0; // se t pin (IC1/RD8)−>(CON5/Pin7) dr ive s t a t e low
TRISDbits .TRISD8=0; // se t pin (IC1/RD8)−>(CON5/Pin7) as output

LATDbits .LATD9=0; // se t pin (IC2/RD9)−>(CON5/Pin10) dr ive s t a t e low
TRISDbits .TRISD9=0; // se t pin (IC2/RD9)−>(CON5/Pin10) as output

119 C.1 File: setup.c

LATDbits .LATD10=0; // se t pin (IC3/RD10)−>(CON5/Pin9) dr ive s t a t e low
TRISDbits . TRISD10=0; // se t pin (IC3/RD10)−>(CON5/Pin9)as output

LATDbits .LATD11=0; // se t pin (IC4/RD11)−>(CON5/Pin12) dr ive s t a t e low
TRISDbits . TRISD11=0; // se t pin (IC4/RD11)−>(CON5/Pin12) as output

LATDbits .LATD12=0; // se t pin (IC5/RD12)−>(CON5/Pin15) dr ive s t a t e low
TRISDbits . TRISD12=0; // se t pin (IC5/RD12)−>(CON5/Pin15) as output

LATDbits .LATD13=0; // se t pin (IC6/CN19/RD13)−>(CON5/Pin18) dr ive s t a t e low
TRISDbits . TRISD13=0; // se t pin (IC6/CN19/RD13)−>(CON5/Pin18) as output

}

C.1.4 Function: Digital output init()

Function : D i g i t a l o u t p u t i n i t ()
Desc r ipt i on : Conf igures pin (AN10/RB10)−−>(CON6/Pin28) from the

FLEX FULL to get execut ion times with o s c i l l o s c o p e

void Di g i t a l o u t pu t i n i t (void) {
// se t pin (AN10/RB10)−−>(CON6/Pin28) dr ive s t a t e low
LATBbits .LATB10 = 0 ;
// se t pin (AN10/RB10)−−>(CON6/Pin28) as output
TRISBbits . TRISB10 = 0 ;

}

C.1.5 Function: UART1 DMA init()

Function : UART1 DMA init ()
Desc r ipt i on : I n i t i a l i z e the UART Port 1 to communicate with the

PC v ia RS232

void UART1 DMA init () {
cfgDma4UartTx () ; // This rout ine Configures DMAchannel 4 for transmission .
cfgDma5UartRx () ; // This rout ine Configures DMAchannel 5 for recept ion .

U1MODEbits . STSEL = 0 ; // 1−stop b i t
U1MODEbits .PDSEL = 0 ; // No Parity , 8−data b i t s
U1MODEbits .ABAUD = 0; // Autobaud Disabled
U1MODEbits .BRGH=1;// 1 = BRG generates 4 c l oc k s per b i t period (4 x baud clock ,

// High−Speed mode)
// 0 = BRG generates 16 c loc k s per b i t period (16 x baud clock ,
// Standard mode)

U1BRG = BRGVAL; // See #i f d e f BITRATE1 above for d e t a i l s
// Configure UART for DMA trans fe r s
U1STAbits .UTXISEL0 = 1 ; // UTXISEL<1:0>: Transmission Interrupt Mode Se l e c t ion

b i t s
// 11 =Reserved ; do not use
// 10 =Interrupt when a charac ter i s t rans fe r red to the
// Transmit S h i f t Register , and as a re su l t , the transmit
// bu f f e r becomes empty
// 01 =Interrupt when the l a s t charac ter i s s h i f t e d out
// of the Transmit S h i f t Reg is ter ; a l l transmit

operat ions
// are completed
// 00 =Interrupt when a charac ter i s t rans fe r red to the
// Transmit S h i f t Reg is ter (t h i s impl ies there i s at l e a s t
// one charac ter open in the transmit bu f f e r)∗/

U1STAbits .URXISEL = 1 ; // 11 =Interrupt i s se t on UxRSR trans fe r making the
// rece iv e bu f f e r f u l l (i . e . , has 4 data charac ters)
// 10 =Interrupt i s se t on UxRSR trans fe r making the
// rece iv e bu f f e r 3/4 f u l l (i . e . , has 3 data charac ters)
// 0x =Interrupt i s se t when any charac ter i s rece ived
// and t rans fe r red from the UxRSR to the rece iv e bu f f e r .

Chapter C: Framework experiment source code 120

// Receive bu f f e r has one or more charac ters .∗/
// Enable UART Rx and Tx
U1MODEbits .UARTEN = 1; // Enable UART
U1STAbits .UTXEN = 1; // Enable UART Tx
IEC4bits . U1EIE = 0 ; // UART1 Error Interrupt Enable b i t

// 1 = Interrupt request has occurred
// 0 = Interrupt request has not occurred ∗/

}

C.1.6 Function: ADC1 init()

Function : ADC1 init ()
Des cr ipt i on : Conf igures ADC1

void ADC1 init (void) {

AD1CON1bits .ADON = 0; // ADC Operating Mode b i t . Turn o f f the A/D converter
AD1PCFGL = 0xFFFF; //ADC1 Port Configuration Reg is ter Low
AD1PCFGH = 0xFFFF; //ADC1 Port Configuration Reg is ter High
AD1PCFGLbits .PCFG11=0; //Plant B (Double in t e g ra tor B) , x1
AD1PCFGLbits .PCFG12=0; //Plant B (Double in t e g ra tor B) , x2
AD1PCFGLbits .PCFG13=0; //Plant A (Double in t e g ra tor A) , x1
AD1PCFGLbits .PCFG15=0; //Plant A (Double in t e g ra tor A) , x2
AD1PCFGHbits .PCFG17=0; //Plant D (RC−RC D) , x2
AD1PCFGHbits .PCFG18=0; //Plant D (RC−RC D) , x1
AD1PCFGHbits .PCFG20=0; //Plant C (Double in t e g ra tor C) , x1
AD1PCFGHbits .PCFG21=0; //Plant C (Double in t e g ra tor C) , x2

AD1CON2bits .VCFG = 0; //Converter Voltage Reference Configuration b i t s
// (ADRef+=AVdd, ADRef−=AVss)

AD1CON3bits .ADCS = 63 ; // ADC Conversion Clock Se l e c t b i t s
//(Tad = Tcy∗(ADCS+1) = (1/40000000) ∗64 = 1.6 us)
//Tcy=Ins t ruc t ion Cycle Time=40MIPS ∗/

AD1CON2bits .CHPS = 0 ; // Se l e c t s Channels U t i l i z e d b i t s , When AD12B = 1 ,
// CHPS<1:0> i s : U−0, Unimplemented , Read as 0

AD1CON1bits .SSRC = 7 ; //Sample Clock Source Se l e c t b i t s :
// 111 = Inte rna l counter ends sampling and s t a r t s
// conversion (auto−convert)
// 110 = Reserved
// 101 = Reserved
// 100 = Reserved
// 011 = MPWM in t e r va l ends sampling and s t a r t s
// conversion
// 010 = GP timer (Timer3 for ADC1, Timer5 for ADC2)
// compare ends sampling and s t a r t s conversion
// 001 = Active t rans i t ion on INTx pin ends sampling
// and s t a r t s conversion
// 000 = Clearing sample b i t ends sampling and s t a r t s
// conversion

AD1CON3bits .SAMC = 31 ; // Auto Sample Time b i t s . (31∗Tad = 49.6 us)
AD1CON1bits .FORM = 0; // Data Output Format b i t s . Integer

// For 12− b i t operation :
// 11 = Signed f r a c t i ona l
// (DOUT = sddd dddd dddd 0000 , where s = .NOT. d<11>)
// 10 = Fract iona l
// (DOUT = dddd dddd dddd 0000)
// 01 = Signed Integer
// (DOUT = ssss sddd dddd dddd , where s = .NOT. d<11>)
// 00 = Integer
// (DOUT = 0000 dddd dddd dddd)

AD1CON1bits .AD12B = 1 ; // Operation Mode b i t :
// 0 = 10 b i t
// 1 = 12 b i t

AD1CON1bits .ASAM = 0; // ADC Sample Auto−Start b i t :
// 1 = Sampling beg ins immediately a f t e r l a s t
// conversion . SAMP b i t i s auto−se t .
// 0 = Sampling beg ins when SAMP b i t i s se t

AD1CHS0bits .CH0NA = 0; // MUXA −Ve input s e l e c t i on (Vref−) for CH0.
AD1CON1bits .ADON = 1; // ADC Operating Mode b i t . Turn on A/D converter

}

121 C.2 File: config.oil

C.2 File: config.oil

C.2.1 Function: CPU Configuration

Conf igurat ion : CPU s p e c i f i c a t i o n

CPU mySystem {
OS myOs {

EE OPT = " DEBUG " ;
CPU DATA = PIC30 {

APP SRC = " code .c" ;
MULTI STACK = FALSE;
ICD2 = TRUE;

} ;
MCUDATA = PIC30 {

MODEL = PIC33FJ256MC710 ;
} ;
BOARDDATA = EE FLEX {

USELEDS = TRUE;
} ;
KERNELTYPE = EDF { NESTED IRQ = TRUE; TICK TIME = " 25 ns" ; } ;

} ;

C.2.2 Function: Task definitions

Conf igurat ion : Task d e f i n i t i o n s

TASK TaskReferenceChangeA {
REL DEADLINE = " 0.005 s" ;
PRIORITY = 4 ;
STACK = SHARED;
SCHEDULE = FULL;

} ;
TASK TaskPer iod icContro l l e rA {

REL DEADLINE = " 0.05 s" ;
PRIORITY = 2 ;
STACK = SHARED;
SCHEDULE = FULL;

} ;
TASK TaskEventControllerA {

REL DEADLINE = " 0.05 s" ;
PRIORITY = 2 ;
STACK = SHARED;
SCHEDULE = FULL;

} ;
TASK TaskOnl ineOptimization {

REL DEADLINE = " 0.1s" ;
PRIORITY = 6 ;
STACK = SHARED;
SCHEDULE = FULL;

} ;
TASK TaskSend {

REL DEADLINE = " 0.1s" ;
PRIORITY = 1 ;
STACK = SHARED;
SCHEDULE = FULL;

} ;

C.2.3 Function: Alarm definitions

Conf igurat ion : Alarm d e f i n i t i o n s

Chapter C: Framework experiment source code 122

ALARM AlarmReferenceChangeA {
COUNTER = " myCounter " ;
ACTION = ACTIVATETASK { TASK = " TaskReferenceChangeA " ; } ;

} ;
ALARM AlarmPer iodicContro l l erA {

COUNTER = " myCounter " ;
ACTION = ACTIVATETASK { TASK = " TaskPeriodicControllerA " ; } ;

} ;
ALARM AlarmEventControllerA {

COUNTER = " myCounter " ;
ACTION = ACTIVATETASK { TASK = " TaskEventControllerA " ; } ;

} ;
ALARM AlarmSend {

COUNTER = " myCounter " ;
ACTION = ACTIVATETASK { TASK = " TaskSend " ; } ;

} ;
ALARM AlarmOnlineOptimization {

COUNTER = " myCounter " ;
ACTION = ACTIVATETASK { TASK = " TaskOnlineOptimization " ; } ;

} ;

C.3 File: code.c

C.3.1 Function: main()

Function : main ()
Des cr ipt i on : main funct ion , only to i n i t i a l i z e so f tware and hardware ,

f i r e alarms , and implement background a c t i v i t i e s

int main (void) {
// Clock setup for 40MIPS
CLKDIVbits .DOZEN = 0;
CLKDIVbits .PLLPRE = 0 ;
CLKDIVbits .PLLPOST = 0 ;
PLLFBDbits .PLLDIV = 78 ;

T1 program () ; // Program Timer 1 to ra i s e in t e r rup t s
EE t ime in i t () ; //EDF time i n i t
EE Flex setup () ; // I n i t i a l i z e c lock and dev ices

// Program cy c l i c alarms
SetRelAlarm(AlarmReferenceChangeA , 1500 , 3000) ; //Reference change Task
SetRelAlarm(AlarmReferenceChangeB , 2000 , 3000) ;
SetRelAlarm(AlarmReferenceChangeC , 2500 , 3000) ;

i f (approach type=EDC){
SetRelAlarm(AlarmEventControllerA , 1000 , 0) ; //EDC Contro l le r Tasks
SetRelAlarm(AlarmEventControllerB , 1000 , 0) ;
SetRelAlarm(AlarmEventControllerC , 1000 , 0) ;

}
else {

SetRelAlarm(AlarmPeriodicControl lerA , 1000 , hA) ; //FBS Contro l l e r Task
SetRelAlarm(AlarmPeriodicControl lerB , 1000 , hB) ;
SetRelAlarm(AlarmPeriodicControl lerC , 1000 , hC) ;
SetRelAlarm(AlarmOnlineOptimization , 1250 , 500) ; //FBS opt imizat ion every 500

ms
}
SetRelAlarm(AlarmSend , 1000 , 5) ; //Data i s sent to the PC every 5ms

// Forever loop : background a c t i v i t i e s (i f any) should go here
for (; ;) ;

return 0 ;
}

123 C.3 File: code.c

C.3.2 Function: Read StateA()

Function : Read StateA ()
Desc r ipt i on : Read Plant A in t e g r a t o r s output v o l t a ge s

void Read StateA (void) {
AD1CHS0 = 13 ;
AD1CON1bits .SAMP = 1; // Start conversion
while (! IFS0b i t s .AD1IF) ; // Wait t i l l the EOC
IFS0b i t s .AD1IF = 0 ; // re se t ADC inte r rup t f l a g
xA[0]=(ADC1BUF0/4096 .0) ∗v max−(v max/2) ; // sca l e to r e l a t i v e vo l t ag e

AD1CHS0 = 15 ;
AD1CON1bits .SAMP = 1;
while (! IFS0b i t s .AD1IF) ;
IFS0b i t s .AD1IF = 0 ;
xA[1]=(ADC1BUF0/4096 .0) ∗v max−(v max/2) ;

}

C.3.3 Function: TASK(TaskReferenceChangeA)

Function : TASK(TaskReferenceChangeA)
Desc r ipt i on : Changes Plant A r e f e r enc e va lue

TASK(TaskReferenceChangeA) {
i f (re f e renceA == −0.5)
{

re f e renceA =0.5;
LATDbits .LATD8 = 1 ;

} else {
re f e renceA=−0.5;
LATDbits .LATD8 = 0 ;

}
i ndex event t imeA=0;

}

C.3.4 Function: TASK(TaskEventControllerA)

Function : TASK(TaskEventControllerA)
Desc r ipt i on : Event c o n t r o l l e r code f o r p lant A

TASK(TaskControl lerA) {

//To avoid two d i f f e r e n t alarms at the same time
CancelAlarm (AlarmEventControllerA) ;

//Read plant current s t a t e
rA=re f e renceA ;
Read StateA () ;
xA hat [0]=xA[0]−rA∗Nx DI [0] ;
xA hat [1]=xA[1]−rA∗Nx DI [1] ;
uA ss=rA∗Nu DI ;

//Calcu late contro l s i gna l
uA=−K1∗xA hat [0]−K2∗xA hat [1]+ uA ss ;
i f (uA>v max/2) uA=v max /2 ;
i f (uA<−v max/2) uA=−v max /2 ;

//PDC1 i s the r e g i s t e r witch s e t s the PWM duty cyc l e for the 1 s t DI
PDC1=(uA/v max) ∗32768+16384;

//Estimate next event time
event t imeA=Calcu late Next Act ivat ion Time (’A ’) ;

Chapter C: Framework experiment source code 124

//Set next event time to f i r e alarm ,
SetRelAlarm(AlarmEventControllerA , event timeA , 0) ;

}

C.3.5 Function: TASK(TaskPeriodicControllerA)

Function : TASK(TaskPer iod icContro l l erA)
Descr ipt i on : Per i od i c c on t r o l l e r code f o r p lant A

TASK(TaskPer iod icContro l l e rA) {

//Read plant current s t a t e
rA=re f e renceA ;
Read StateA () ;
xA hat [0]=xA[0]− rA∗Nx DI [0] ;
xA hat [1]=xA[1]− rA∗Nx DI [1] ;
uA ss=rA∗Nu DI ;

//Calcu late contro l s i gna l
uA=−kA[0] ∗ xA hat [0]−kA[1] ∗ xA hat [1]+ uA ss ;
i f (uA>v max/2) uA=v max/2 ;
i f (uA<−v max/2) uA=−v max /2 ;

//PDC1 i s the r e g i s t e r witch s e t s the PWM duty cyc l e for the 1 s t DI
PDC1=(uA/v max) ∗32768+16384;

}

C.3.6 Function: TASK(TaskOnlineOptimization)

Function : TASK(TaskOnlineOptimization)
Des cr ipt i on : On− l i n e op t imiz at i on funct i on f o r r e source a l l o c a t i o n

TASK(TaskOnl ineOptimization) {

//Read p lant s current s t a t e
Read StateA () ;
Read StateB () ;
Read StateC () ;

//Execute opt imizat ion
n ew a l l o c a t i on r equ i r e d=Opt im i z a t i on p roc e s s () ;
i f (n ew a l l o c a t i o n r equ i r ed){

Cance lContro l l erAlarms () ;
Se tContro l l e rAlarms () ;
Act ivateContro l l e rAlarms () ;

}
}

C.3.7 Function: TASK(TaskSend)

Function : TASK(TaskSend)
Descr ipt i on : Send data us ing the UART port 1 v i a RS232 to the PC

TASK(TaskSend) {

//Read p lant s current s t a t e
Read StateA () ;
Read StateB () ;
Read StateC () ;

125 C.3 File: code.c

//Send data
Send data to PC () ;
DMA4CONbits .CHEN = 1; // Re−enable DMA4 Channel
DMA4REQbits .FORCE = 1 ; // Manual mode : Kick−s t a r t the f i r s t t rans fe r
}

}

