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Abstract 

To recognise objects is perhaps the most important task an autonomous system, either biological or 

artificial needs to perform. In the context of human vision, this is partly achieved by recognizing the 

colour of surfaces despite changes in the wavelength distribution of the illumination, a property called 

colour constancy. Correct surface colour recognition may be adequately accomplished by colour 

category matching without the need to match colours precisely, therefore categorical colour constancy 

is likely to play an important role for object identification to be successful. 

The main aim of this work is to study the relationship between colour constancy and categorical colour 

perception. Previous studies of colour constancy have shown the influence of factors such the spatio-

chromatic properties of the background, individual observer's performance, semantics, etc. However 

there is very little systematic study of these influences. To this end, we developed a new approach to 

colour constancy which includes both individual observers' categorical perception, the categorical 

structure of the background, and their interrelations resulting in a more comprehensive 

characterization of the phenomenon. 

In our study, we first developed a new method to analyse the categorical structure of 3D colour space, 

which allowed us to characterize individual categorical colour perception as well as quantify inter-

individual variations in terms of shape and centroid location of 3D categorical regions. Second, we 

developed a new colour constancy paradigm, termed chromatic setting, which allows measuring the 

precise location of nine categorically-relevant points in colour space under immersive illumination. 

Additionally, we derived from these measurements a new colour constancy index which takes into 

account the magnitude and orientation of the chromatic shift, memory effects and the interrelations 

among colours and a model of colour naming tuned to each observer/adaptation state. 

Our results lead to the following conclusions: (1) There exists large inter-individual variations in the 

categorical structure of colour space, and thus colour naming ability varies significantly but this is not 

well predicted by low-level chromatic discrimination ability; (2) Analysis of the average colour 

naming space suggested the need for an additional three basic colour terms (turquoise, lilac and lime) 

for optimal colour communication; (3) Chromatic setting improved the precision of more complex 

linear colour constancy models and suggested that mechanisms other than cone gain might be best 

suited to explain colour constancy; (4) The categorical structure of colour space is broadly stable 

under illuminant changes for categorically balanced backgrounds; (5) Categorical inconstancy exists 

for categorically unbalanced backgrounds thus indicating that categorical information perceived in the 

initial stages of adaptation may constrain further categorical perception. 
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Resum 

El reconeixement d'objectes és potser la tasca més important que un sistema autònom, ja sigui biològic 

o artificial, necessita realitzar. En el context de la visió humana, això s'aconsegueix parcialment a 

través del reconeixement del color de les superfícies malgrat els canvis en la distribució espectral de la 

llum, propietat anomenada constància de color. El reconeixement correcte del color de les superfícies 

és pot realitzar adequadament mitjançant la correspondència entre categories de color sense la 

necessitat d'ajustar exactament els mateixos colors, aleshores la constància de color categòrica juga 

probablement un paper important per tal d'aconseguir amb èxit el reconeixement d'objectes. 

El principal objectiu d'aquest treball és estudiar la relació entre la constància de color i la percepció 

categòrica del color. Estudis anteriors de constància de color han mostrat la influència de factors tals 

com les propietats espai-cromàtiques de l'entorn, particularitats individuals dels observadors, 

semàntica, etc... Malgrat tot, aquestes influències només s'han estudiat breument de forma sistemàtica. 

Per solucionar-ho, hem desenvolupat una nova aproximació a la constància de color, la qual inclou la 

percepció categòrica dels individus, l'estructura categòrica de l'entorn, i les seves interrelacions, 

resultant en una caracterització més comprensiva del fenomen. 

En el nostre estudi, primer hem desenvolupat un nou mètode per tal d'analitzar l'estructura categòrica 

3D de l'espai de color, la qual ens ha permès caracteritzar la percepció categòrica de cada individu i 

també quantificar les variacions entre individus en termes de la forma i la localització dels centroides 

de les regions 3D categòriques. Seguidament, hem desenvolupat un nou paradigma de constància de 

color, anomenat "chromatic setting", el qual permet mesurar de forma precisa la localització de nou 

punts categòricament rellevants en l'espai de color sota una ill.luminació envolvent. Adicionalment, 

hem derivat a partir d'aquestes mesures un nou índex de constància de color, el qual té en compte la 

magnitud i la orientació cromàtica de l'il.lumiant, influències de la memòria i les interrelacions entre 

colors, i també un model d'assignació de noms de color ajustat a l'estat d'adaptació de cada observador. 

A partir dels nostres resultats concloem: (1) Existeixen àmplies variacions entre individus respecte 

l'estructura categòrica de l'espai de color, i pertant l'abilitat d'assignar noms de color varia 

significativament però aquesta no està ben predita per les abilitats discriminatives de baix nivell; (2) 

L'anàlisi de l'espai mitjà d'assignació de noms de color suggereix la necessitat d'afegir tres nous "basic 

colour terms" ("turquoise", "lilac" i "lime" ) per tal d'optimitzar la comunicació de color; (3) El 

"chromatic setting" ha millorat la precisió dels models lineals més complexos de constància de color, 

així suggerint que altres mecanismes que no pas els d'adaptació al guany dels cons poden ser més 

adequats per tal d'explicar el fenomen de la constància de color; (4) L'estructura categòrica de l'espai 
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de color és en general estable sota canvis d'il.luminant quan s'usen entorns categòricament balancejats; 

(5) Existeix inconstància de color per entorns categòricament no balancejats i pertant indicant que la 

informació categòrica percebuda en les etapes inicials de l'adaptació pot condicionar la percepció 

categòrica posterior. 
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Chapter 1 Introduction 

This first chapter begins with the introduction to the main framework of the thesis, the human visual 

system, and in particular with a broad description of the basic concepts of human vision, colour vision, 

colour constancy and categorical colour perception. Next we motivate and introduce the main goal of 

the thesis; the study of human categorical colour perception under illumination changes. The 

secondary goal of this work is to contextualize its contributions in the computer vision field, 

something that keeps on the long tradition of knowledge flow between the fields of biological and 

artificial vision. This point will be stressed in the last chapter where the thesis conclusions will suggest 

new approaches to solve the colour constancy problem in computer vision. 

1.1 Background 

Vision 

The first and primary component for human vision to take place is the existence of light, without light 

there is no vision. The back layer of the human eye, called retina, has several types of photosensitive 

cells with a specific sensitivity range to the spectral properties of light; it responds to wavelengths 

from about 400 to 750 nm. Thus, light is only processed when its spectral wavelength is in that 

particular range, light with such properties is called visible light. The capacity to interpret the 

surrounding environment from the information contained in visible light is called Vision or Visual 

Perception. Such definition frames the process of vision as an information-processing task (Marr 

1982). The physiological components involved in supporting human vision are complex and extensive, 

and they are collectively referred as the Human Visual System (HVS). Due to its high complexity, the 
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process of Vision is necessarily studied from several scientific fields such as philosophy, psychology, 

cognitive science, neuroscience, molecular biology, neurophysiology, physics and psychophysics. 

Seeing starts when visible light is focused by the lens into the retinal surface, a photosensitive 

membrane at the back of the eye that converts patterns of light into neural signals. The only purpose of 

all eye components is to support the function of the retina, which is actually a part of the brain (Hubel 

1988). The photoreceptive cells of the retina, the cones and rods, detect the photons of light and 

produce neural impulses which are processed in the retina itself by several layers of interconnected 

neurons. Rods are active in dim light and provide black-and-white vision while cones are mainly 

active in daylight and support the perception of colour. Several important features of visual perception 

can be traced back to this stage. Retinal signals output from the retina through the optic nerve to the 

Lateral Geniculate Nucleus (LGN) located in the thalamus prior to reaching the Visual Cortex (VC) 

located in the occipital brain lobe, in the back of the brain. At the same time the LGN receives 

feedback connections from the VC. Also, signals from the retina travel directly to other parts of the 

brain and they are processed in a hierarchical fashion (Hubel 1988). The function of the LGN is 

mostly unknown but it is likely to help the HVS to focus its attention on the most important 

information. The VC is the primary location for processing visual signals in the brain and it contains a 

large number of functional units that are interconnected through both feed-forward and feedback 

connections. These cortical areas included: V1 which receives inputs from the LGN; V2 which 

received inputs from different V1 areas; V3 which integrates signals of different pathways and V4 

which is thought to play an important role in processing colour information.  
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Figure 1.1 The Human Visual System (HVS).Panel a: it contains a schematic description of the main components of 

the eye. Panel b: it visually describes the location of the visual pathway in the brain. Panel c: FMRI brain scan of the 

author (JR) done when he participated as a subject in a colour perception experiment at the Institute of Neuroscience 

(UK). Images courtesy by Anya Hurlbert Professor of Visual Neuroscience (Newcastle University, UK). Panel d: 

Normalized brain with JR V4 area highlighted in red. 

Colour Vision 

The existence of three physiologically different cones in the retina makes possible the perception of 

colour. These cones are distinguished by the type of photo pigment molecules they contain and they 

are called L, M and S which are selective for long, middle and short wavelengths respectively. This is 

called the trichromacy principle and in practical terms implies that any visible light can be described 

by three numbers. Once a photon is absorbed by a cone its reaction will be the same regarding the 

photon's wavelength, this fact is known as the principle of univariance (Rushton 1972) and in practical 

terms; an increase in photon count can be due to an increase in light intensity, a change to a more 

favourable wavelength, or both. The cones spectral sensitivity are not limited to reduced intervals of 

wavelength but are broad and overlapping, i.e., what varies with wavelength is the probability that a 

photon is absorbed. This two principles allow the existence of the phenomenon of metamerism, i.e., 

any two different lights that produce the same triplet of cone responses under the same illuminant will 

be perceived as identical. 



4 

 

 

Figure 1.2 Spectral absorption functions of the three different types of cone photoreceptors. 

After this first stage the output signals of each cone type are compared and transformed into action 

potentials by a complex network of cells in the retina itself. Next the information is sent to the visual 

cortex via the LGN in at least three separate colour-opponent channels, which existence has been 

characterized psychophysically, physiologically and computationally (Gegenfurtner and Kiper 2003). 

These three colour opponent channels are: a luminance opponent axis where the L and M cone signals 

are added; a red-green opponent axis where the difference of L and M cones is taken; and a blue-

yellow opponent axis where the S cone signal is differenced with the sum of L and M cone signals. 

Notice that despite the colour term nomenclature used to define these colour opponent axis, its 

directions do not align with the axis predicted by traditional colour appearance theories of unique hues 

(Those four primary hues that do not contain perceptual components of other hues, e.g., a unique red 

hue is neither yellowish nor bluish (Kuehni 2001)) (Hurlbert 1997; Gegenfurtner and Kiper 2003). 

Despite this simple explanation on physiological basis of colour vision, the existence of trichromatic 

sensitivity and of the three colour-opponent channels, the complete explanation of colour perception is 

far from solved and higher order chromatic mechanisms are required to account for colour perception 

(Hurlbert 1997; Gegenfurtner and Kiper 2003). For instance, recent studies has shown that colour is 

not analysed separately from object motion and that neurons in certain visual areas simultaneously 

encode colour and form (Gegenfurtner and Kiper 2003).  

The perception of colour in the objects of the visual scene serves several functionalities; coloured 

objects are more easily detected, more easily identified, more easily grouped, and more easily 

remembered than black-and-white objects (Shevell and Kingdom 2008). Therefore, colour is deeply 

integral to vision, resulting from the combined activity of neurons in many different visual areas. 

(Hurlbert 1996; Gegenfurtner 2003; Gegenfurtner and Kiper 2003).  

Classical theories of colour vision used psychophysical experiments with stimuli focused on isolated 

patches of light but the colour appearance of objects/surfaces depends strongly on the light from other 
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objects/surfaces in the visual scene (Shevell and Kingdom 2008). In natural viewing, variegation in the 

retinal image is abundant over space and time and such complex visual stimuli excite neural 

mechanisms that are not revealed by an isolated patch of light. The simplest context used in laboratory 

conditions is an uniform background field, which has been used extensively over the last century. 

However, has been demonstrated that this simple stimuli cannot account for appearance shifts caused 

specifically by chromatic variegation within the scene (Shevell and Kingdom 2008). 

Colour constancy 

A green apple looks green to us at midday, when the main illumination is white sunlight and also at 

sunset, when the main illumination is red, this property helps us to identify objects. In general the 

colour of perceived objects and surfaces tends to stay the same over changes in illumination, this 

phenomenon is known as colour constancy (Land 1964; Smithson 2005; Foster 2011). It is a 

fundamental property of visual perception and it is achieved by multiple mechanisms located at 

several locations in the HVS (Hurlbert and Wolf 2004). The simultaneous activation or inhibition of 

such mechanisms depends on the visual cues present in the visual environment. Figure 1.2 shows a 

schematic example of colour constancy; panel a contains a coloured cube under an "achromatic" 

illuminant and panel b contains the same cube under a "greenish" illuminant. If the visual scene 

corresponding to the panel b was seen in isolation then colour constancy mechanisms would tend to 

compensate the greenish illumination to recover somehow a "normalized" perception, similar to the 

one of panel a. Since humans are not perfectly colour constant, a natural goal for experimentation is to 

explore up to what extent humans are colour constant. Furthermore, to find principles and to develop 

models that allow us to predict colour appearance in complex scenes (Brainard, Brunt et al. 1997). 

Colour constancy is not a property of objects; it is a perceptual phenomenon resulting from 

mechanisms in the eye and brain (Hurlbert 1996). 
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Figure 1.3 Schematic example of colour constancy. Panel a and b corresponds to the same object illuminated under 

different illuminations, an "achromatic" and "greenish" illumination respectively. 

The physics of the retinal image formation rely on two factors: the illuminant's spectral power 

distribution, E(), which specifies the amount of power in the illuminant at each wavelength; and the 

surface spectral reflectance function, S(), which specifies the fraction of incident power reflected at 

each wavelength. The colour signal, C(), is defined as the spectral power distribution of the light 

reaching the observers eye, C()=E()S(). The colour signal confounds the illuminant's spectral 

power distribution and the surface's reflectance function, then a full recovery of the spectral properties 

of either the illumination or objects surface reflectance by the trichromatic eye does not have a unique 

solution. Several possible strategies have been proposed to make colour constancy possible. These 

include restrictions on the number and dimensionality of the spectral reflectances and illuminants 

available (Maloney and Wandell 1986), normalizations with respect to the illumination (Brainard and 

Wandell 1986), assumptions about the brightest visible object (Land and McCann 1971) or the 

average colour of the world (Buchsbaum 1980), higher order statistical properties of the environment 

and other regularities (Golz and MacLeod 2002; Hordley 2006), or a combination of these. However, 

none of the explanations proposed so far provides a complete representation of how a visual scene is 

perceived under an illumination shift in naturalistic, complex, unconstrained conditions. For instance, 

the degree of colour constancy may depend on internal criteria derived from different judgments of the 

scene, as demonstrated by the hue-saturation vs. paper-matches of Arend and Reeves (Arend and 

Reeves 1986). Other confounds may depend on the ability of subjects to attribute changes in the scene 

to either changes in the spectral composition of the illuminant or the reflecting properties of objects in 

that scene (Foster and Nascimento 1994). High level visual memory may also play an important role 

in judgments of surface colour, as demonstrated by Hansen et al (Hansen, Olkkonen et al. 2006). 

 

Categorical colour perception 
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Categorization is a fundamental human attribute and humans tend to classify colours into several 

categories. An important method of categorization is colour naming, which may assign the same 

colour term to two coloured samples with different LMS responses. Names of some commonly used 

colour categories include the unique hues: red, green, blue and yellow. This categorization divides the 

3D colour space into several regions each linked to a different colour name. The main functionality of 

colour perception seems to be colour communication, but also to facilitate colour memory due to the 

large number of colours perceived by the HVS. 

There are two main proposals to explain our ability to categorize colour perception. First, the Sapir-

Whorf hypothesis, which states that colours are perceived categorically only because they happen to 

be named categorically and vary across cultures and languages (Roberson, Davies et al. 2000). 

Second, Berlin and Kay showed that most cultures and languages subdivide and name the colour 

spectrum in the same way (Berlin and Kay 1969), and so colour names are coded in some innate 

human feature. The eleven colour categories proposed by Berlin and Kay, shared by most evolved 

languages, are: red, green, blue, yellow, purple, brown, orange, pink, white, black and grey (Berlin and 

Kay 1969). 

Thus, the explanation of colour categorization is framed in terms of the old nature-nurture debates 

(Hardin 2005), i.e., if colour categorization reside on childhood learned patterns or it is physiologically 

based. There is solid evidence of the physiologically based explanation (Kay and Regier 2003; 

Lindsey and Brown 2006), however one of the main functionalities of colour categorization is colour 

communication and thus, language provides an essential feedback role in ensuring the universality of 

colour categories when the only constraints in their formation are fundamental sensory discrimination 

abilities (Belpaeme and Bleys 2005; Baronchelli, Gong et al. 2010). Thus, a combination of these two 

factors seems to be the most plausible answer. 

1.2 Motivation 

The main aim of this work is to study the relationship between colour constancy and categorical colour 

perception. In practical terms, the perceptual phenomenon studied can be grasp from the example of 

Figure 1.2. Suppose that you are immersed in a visual scene equivalent to the one in panel a, i.e., you 

are perceiving a single object with multiple patches of colours in its surface and it is diffusely 

illuminated with an "achromatic" illuminant. Next, the chromaticity of this overall illumination is 

changed to be highly chromatic, for instance greenish, as shown in panel b. Immediately after this 

illumination change, the colour adaptation processes in the HVS will be activated and the colour 
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perception of the patches in the object surface will change and it will become stable after a while, 

probably several minutes (usually a minimum of 5 minutes). Some interesting questions arise from 

this situation. Are the colours perceived in both scenes the same? If it is so, we will say that colour 

adaptation mechanisms achieved colour constancy. If not, and this is most probable since colour 

constancy is not perfect and specially for high chromatic illuminants, which are the differences? 

Quantitative differences according to the number of perceived colours are most likely to appear since 

adaptation moves toward the centre of colour space. Also, qualitative differences could appear, i.e., are 

perceived colours more categorical? Even we can study if their distribution in colour space has been 

altered. Interestingly, we can also modify the initial stimuli in terms of the same variables; number of 

colours, spatio-chromatic distribution of colours; and categorical quality of colours. For instance, if all 

the colour patches of the object belongs to a colour category, or any of them, would make a difference 

in the adaptation? A particular case of the previous example is when all coloured patches are different 

achromatic samples, then according to the Helson-Judd effect, after adaptation the lighter ones are 

perceived towards the illumination chromaticity, the mid ones as greyish and the dimmer ones as the 

chromaticity opposed to the illumination one. Thus, the Helson-Judd effect reveals how in the simplest 

case of using only achromatic colours the quantity and quality of perceived colours is altered by 

illumination changes. 

Now we state the previous discussion in formal terms; to study if exist, or not, any influence of 

categorical colour perception in the processes of colour adaptation. In order to answer this question we 

structured our approach around the study of the next two points: 

 Categorical colour perception is maintained. Categorical colours just perceived after the 

illumination change and over the first stages of adaptation, while adapting to the global 

contrast, constraint the adaptation process and the final categorical colour perception. 

 Categorical colour perception is seek. The probability of categorical recovery under a 

canonical illumination is what constraints the adaptation process.  

The first question to answer is if any relation exists and if it so how it is articulated. We started our 

approach by measuring the categorical colour perception of individuals in detail, specially at inter 

categorical regions. Next we used a psychophysical paradigm that provided precise measures in colour 

space as well as categorical information about them. This allowed to study with precision how 

categorical colour information present in the stimuli influenced colour perception, i.e., characterizing 

the whole categorical structure of colour space. In order to isolate this property we performed the 

experiments in laboratory conditions with two dimensional simple images, i.e., a collage of coloured 

rectangles whose surfaces followed a Lambertian model (uniformly illuminated and without 
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specularities and/or multiple reflectances). Then we varied the number of colours and its categorical 

quality while each stimuli was particularly tuned to each observer in order to keep assure a high 

degree of precision in the stimuli design when selecting categorical colours. 

A further understanding of this relations could lead to understand better the HVS and in particular 

colour adaptation processes and the colour constancy phenomenon, thus making available accurate 

models to predict colour appearance. 

1.3 Colour constancy in Computer Vision 

Computer Vision is the scientific field that is concerned with the acquisition, processing, analyzing 

and ultimately understanding of images. A principal line of research within this field has been to 

replicate the abilities of human vision, this propitiated a flow of inspirational ideas from theories of 

visual perception. Also, from the other way round, methods and algorithms developed in the Computer 

Vision field have been a source of debate in visual perception. There is a flow of knowledge between 

both scientific fields, especially since Marr contributed to this schema in his influential book Vision 

(Marr 1982; Brainard 2003). This thesis is deeply framed in this dialog. 

Colour constancy is a particular relevant example of this interaction. Images acquired with cameras by 

computer vision systems face the same challenge as the human visual system, i.e., in a highly variable 

environment where spectral information changes frequently they need to provide a constant output 

which can be interpreted as stable colours. Computer vision algorithms has a long tradition of dealing 

with the colour constancy phenomenon, however the aims of this algorithms do not necessarily 

coincide with the same. For instance, the output of a commercial camera needs to be highly similar to 

the human colour perception while the output for a industrial camera in a quality control process may 

only require some stability.  

Computational colour constancy seems to be a relevant example to illustrate a major approach of 

Computer Vision to solve the colour constancy problem. According to Hurlbert the computational 

colour constancy problem is stated as: "to recover the invariant spectral reflectance properties of 

object surfaces from the image irradiance, in which reflectance is entangled with surface 

illumination" (Hurlbert 1998). However, Jameson and Hurvich state that this approach could be an 

oversimplification of the phenomenon since the HVS may not need to estimate the spectral properties 

of the illuminant nor the objects' surface reflectance (Jameson and Hurvich 1989). A large body of 

research in Computer Vision is grounded on the theoretical framework of computational colour 

constancy and its algorithms strive to find an estimation of the chromatic coordinates of the illuminant 
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in some colour space, prior to the normalization of the image. However computer vision researches 

should keep in mind the final aim of their algorithms, and if it is to mimic the HVS, and in particular 

colour adaptation processes, they should evaluate their algorithms according to perceptual and not 

physical properties (Vazquez-Corral, Parraga et al. 2009). 

Finlayson et al present a correlation framework within which to consider illuminant estimation 

algorithms (Finlayson, Hordley et al. 2001). As in other studies (Forsyth 1990; Brainard and Freeman 

1997), they state that the problem of illuminant estimation does not have a unique solution and that a 

practical solution is to select a set of candidate illuminants and to look for the best one. They recover a 

measure of the likelihood that each of a set of possible illuminants was the scene illuminant, i.e., 

likelihood is assigned according to the correlation between the colours in an image and prior 

knowledge about the probability with which different colours are observed under different lights. 

Finally, a threshold procedure can return the most likely illuminant or set of illuminants. A notable 

feature of Finlayson approach is that it incorporates several previous colour constancy algorithms in its 

theoretical framework. 

Following this approach a new study has focused on the selection of illuminants according to the 

effects they produce on the final categorical properties of colours, i.e., to include perceptual 

constraints that are computed on the corrected images. In detail, it weights a large set of candidate 

illuminants according to their ability to map the corrected image onto specific colours regions in RGB 

colour space. These colours regions are chosen as the basic colour categories which have been 

psychophysically measured (Vazquez-Corral, Vanrell et al. 2011). 

The research line of this thesis is closely linked to the previous described approach in Computer 

Vision, i.e., it aims to answer if the HVS may also use this categorical information to achieve colour 

constancy. 

1.4 Thesis outline 

This thesis is conformed of seven chapters. In Chapter 1 we have described the main framework where 

the thesis develops and introduced its principal aim. Each of Chapters 3,4,5 and 6 reports a new 

psychophysical experiment, and they are labelled as Experiment I, II, III and IV respectively. 

Chapter 2 contains a bibliographical review of the two main topics involved in this thesis. First, the 

topics of categorical colour perception and colour naming are introduced. Second, and more 
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extensively, the topic of colour constancy is introduced and special attention is devoted to previous 

studies which tackled both issues at the same time. 

Chapter 3 studies the structure of individual categorical colour space through an extensive colour 

naming experiment, Experiment I. The results from this experiment on the structure of categorical 

colour space set the constraints for the newly developed paradigm to measure colour constancy 

introduced in the following chapter. 

Chapter 4 introduces a new paradigm, termed chromatic setting, to measure colour constancy. It also 

contains a new experiment, Experiment II, with several different simple stimuli in order to test the new 

paradigm. The results demonstrate that the chromatic setting paradigm is a reliable method to study 

colour constancy. 

Chapter 5 applies the chromatic setting paradigm in a new experiment, Experiment III, to study the 

stability of the categorical colour space structure. The experiment used Mondrians with a reduced 

number of categorically balanced colours under five different illuminations. The results suggest that 

most of the categorical structure is preserved. 

Chapter 6 studies categorical colour changes in colour constancy through Experiment IV which is 

conformed of the chromatic setting paradigm and a constrained colour naming task. In order weaken 

colour constancy, i.e. to maximize possible categorical changes, the number of colours in the stimuli 

was reduced to only three. In order to quantify categorical changes, it also introduces a new 

categorical colour prediction model which uses the categorical information contained in chromatic 

settings as well as its precise location. 

Finally, Chapter 7 contains a summary from the results of the previous chapters. A general discussion 

states the main contributions of the thesis and future lines of research are proposed, and its conclusions 

linked to the Computer Vision field. 
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Chapter 2 Review of related research  

This chapter contains a bibliographical review of the two main topics involved in this work; 

categorical colour perception and colour constancy. First, categorical colour perception is introduced; 

its main definitions and features. Second, the colour constancy topic is introduced and described 

common definitions and its main features, also how its measured, quantified and modelled. 

2.1 Categorical colour perception 

The colour experience can be accessed at two levels: discriminative and categorical. Humans have the 

ability to assign categories to many concepts, the same is true for the perception of colour. Colours are 

communicated through words which clearly indicate the candidate categories in which to divide the 

colour experience. 

2.1.1 Colour naming  

Colour naming is a common element of everyday social communication as well as vital to diverse 

behavioural tasks, including visual search (Dzmura 1991) (Yokoi and Uchikawa 2005) (Amano, 

Foster et al. 2012) and object identification (Zaidi and Bostic 2008), which in turn are critical for a 

number of jobs, for example, fire-fighting (Margrain, Birch et al. 1996), police (Birch and Chisholm 

2008), transport, and medical diagnostics (Spalding 1999).  

Previous studies, based on colour naming usage patterns, have focussed on the universality of some 

colour terms which allow a partitioning of colour experience into eleven basic colour categories 
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(Berlin and Kay 1969; Heider 1972; Hardin 2005; Lindsey and Brown 2006). The structure of colour 

space has then typically been described using this reduced set of basic categories, supplemented by 

some much smaller “hard to name” regions (Boynton and Olson 1987; Sturges and Whitfield 1995; 

Chichilnisky and Wandell 1999; Guest and Van Laar 2000; Paggetti, Bartoli et al. 2011). 

Two concepts typically have been used to characterize colour naming behaviour (Boynton and Olson 

1987; Sturges and Whitfield 1995; Paggetti, Bartoli et al. 2011): consistency, which is defined as the 

giving of the same name to a particular sample on repeated presentations by one observer; and 

consensus, which is defined as the commonality of a particular colour categorisation across all 

observers. The categorical colour space structure is summarized by the focal locations, which are 

defined as the fastest to name samples in the consensus set for each category, and the centroid 

locations, defined as the average locations of classified samples for each category (Boynton and Olson 

1987). For example, focal locations of  the 11 basic colour categories have been defined in several 

colour spaces: the OSA (Sturges and Whitfield 1995; Paggetti, Bartoli et al. 2011), Munsell (Berlin 

and Kay 1969; Boynton and Olson 1987) and 1976 UCS (Guest and Van Laar 2000). Despite the 

demonstrated universality of basic colour terms, successful colour communication is threatened by 

large variations in colour perception across individuals. For example, Kuehni (Kuehni 2004) 

concludes from a study of unique hues: “...Comparison of spectral light data indicates that one 

observer's unique blue can be another's unique green and vice versa, and the same for yellow and 

green,” a finding supported by Webster et al (Webster, Miyahara et al. 2000). Possible sources of 

inter-individual variability range from individual physiological and cognitive factors such as 

differences in the macular pigment density or cone spectral sensitivity peaks (Webster and Macleod 

1988) to cultural factors such as language and professional activity (Webster, Webster et al. 2002). Yet 

evidence suggests that higher-level perceptual or cognitive factors may compensate for sensory 

variations; for example, although the physiological equipment of the human visual system changes 

throughout lifespan, the perception of unique hues remains essentially constant (Kuehni 2004) 

(Raskin, Maital et al. 1983). Furthermore, observers with reduced visual acuity and altered colour 

vision show consistency in naming colours and its characteristic shifts and confusions (Nolan, Riley et 

al. 2008) (Uchikawa 2008). Recent results also demonstrate that, on the one hand,  the sharing of a 

common language  is not sufficient to prevent inter-individual variations in usage patterns of basic 

terms (Lindsey and Brown 2009), but, on the other, language provides an essential feedback role in 

ensuring the universality of colour categories when the only constraints on their formation are 

fundamental sensory discrimination abilities (although, note that the latter finding assumes that the 

measured discrimination ability itself has not been influenced by language) (Belpaeme and Bleys 

2005) (Baronchelli, Gong et al. 2010). 
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2.1.2 Basic Colour Terms 

Here we state in detail the work of Berlin and Kay and its main conclusions (Berlin and Kay 1969). 

Berlin and Kay observed that colour words translated easily between different languages and studied 

systematically the colour terms usage in several languages. Their approach consisted in a simple 

unconstrained colour naming task where observers assigned a colour word to a coloured surfaces 

extracted from a subset of the Munsell colour space (Fairchild 1998). Observers were also asked to 

specify the best example of the colour category, and the region of chips on the array that would assign 

the same colour name. Basic colour terms were defined as colour names with the following properties: 

1. It is monolexemic, a single lexical term. 

2. They refer to the colour of objects. 

3. Colours are applicable to a wide range of objects. 

4. Colours are in frequent use. 

The experiment used 20 subjects and was completed with information from published works of other 

78 languages. They reach the main conclusions: First, there are only eleven basic colour terms and in 

the case of English they are: white, black, grey, red, yellow, green, blue, purple, orange, brown and 

pink; Second, colour terms are acquired by languages in an evolutionary order and this means that 

although languages can have a different number of colour terms the way the incorporate new colour 

terms follow a fixed order. 

Furthermore, in their research they also studied which basic colour terms describes best any particular 

colour. They obtain information about the boundary of colour terms by showing observers various 

colours and asking them to point out which colours lie in on the boundary of specified colour term, or 

ask to identify the colours that best describe a particular colour term. Participants gives best and faster 

answers to the second task and this implies that colour categories are structured around focal colours, 

rather than around colours at the boundaries of colour terms (Heider 1972). 

These and other results are a considerable evidence that focal colour play a crucial role in our internal 

representation of colour categories. 

2.2 Colour constancy 

The colour constancy phenomenon has been acknowledged explicitly at least for the last two centuries 

but it has not been until the last decades that has been studied systematically under controlled stimuli 

conditions (Foster 2011). Since the literature related to colour constancy is relatively extensive there 

are several comprehensive reviews on the topic which summarize the current and past approaches 
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dealing with the phenomenon. Previous reviews start with colour constancy definitions, follow with 

measuring methods and quantifications about the extension of the phenomenon and detail methods on 

how to predict colour constancy behaviour and indicate possible explanations to the phenomenon 

(Jameson and Hurvich 1989; Smithson 2005; Hurlbert 2007; Foster 2011). 

2.2.1 Definitions and main features 

Perceptual constancy is a functional feature of the HVS which aims to keep the perception of objects 

stable (size, shape, colour and location) regardless of changes in the viewing angle, distance or 

illumination (Brainard,1993 CC: From physics to appearance) (Smithson 2005). This feature takes part 

in the general process of mental reconstitution of the real image from retinal images. However, 

according to Jameson and Hurvich (Jameson and Hurvich 1989) the HVS is likely to have evolved a 

design that provides perceptual information about constancy as well as change (about light, weather or 

time of the day) (Jameson and Hurvich 1989). Colour constancy is a major example of perceptual 

constancy and has been typically studied only when the illumination variable is changed (ref). 

In order to keep the colour perception of objects stable the HVS has two main challenges. First, the 

information from the object spectral reflectance function is mixed with the spectral composition of the 

illumination and thus the spectral information reaching the cones in the retina confounds both sources 

of information. Second, the colour signal reaching the retina is further simplified to only three 

different signals produced by the L, M and S cones. Colour constancy mechanisms deal with several 

physical and physiological constraints. Thus colour constancy has not a unique solution and then 

restrictions on the surface spectral reflectance and spectral properties of illuminants are needed to 

achieve successful colour constancy (Maloney and Wandell 1986). 

The most common definition of colour constancy states the problem as the ability of the HVS to keep 

a stable colour perception of objects and surfaces despite changes in the illumination (Foster and 

Nascimento 1994; Smithson 2005). However, the richness of situations in the real world allows to 

more concise definitions of colour constancy according to how light can vary or more specific 

conditions. Successive colour constancy refer to illumination changes that occur over time, e.g., the 

light spectrum at dawn differs from that at noon. Another possibility is light changes across space, for 

example when the same scene is illuminated by two different lights, it is called simultaneous colour 

constancy (Brainard, Brunt et al. 1997; Ling and Hurlbert 2008). However, both types of colour 

constancy are interrelated since simultaneous thorough time becomes successive. The key differences 

lies in the temporal scale, simultaneous much shorter than successive. Atmospheric colour constancy 

refers to the change of the viewing medium, nor the light source or the object's surface properties, for 
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example fog, mist or smoke (Foster 2011). A different approach is relational colour constancy which 

stands only for keeping correspondences with object surfaces despite losing the perception of colour, 

something that follows from the property of cone ratio invariance (Foster and Nascimento 1994). This 

property states that the ratios of cone excitations generated from pairs of surfaces or several surfaces, 

adjacent or not, are nearly invariant under illumination changes. 

Main empirical features 

Previous literature studied the extent and quality of the colour constancy phenomenon according to 

features of the visual scene and derived conclusions about the HVS (Smithson 2005; Foster 2011). The 

following points summarize the main empirical features of successive colour constancy: 

 It is not perfect, i.e., adaptation mechanisms in the HVS compensate for illuminations changes 

up to certain degree according to visual cues (Brainard, Brunt et al. 1997; Hurlbert 2007). 

 It is a contextual phenomenon, i.e., there is no colour constancy without a context (Hurlbert 

2007). The phenomenon can be studied according to the number of visual cues present in the 

visual scene. In general, an increasing number of consistent visual cues implies a higher 

degree of achieved colour constancy (Kraft and Brainard 1999). 

 The resultant adaptation state is always shifted towards the illumination chromaticity and 

close to the line joining the reference and illuminat coordinates in an appropriate colour space. 

Common colour constancy indices are based on this property. 

2.2.2 Measuring the phenomenon 

The degree and quality of colour constancy experienced by observers is usually measured by a variety 

of psychophysical techniques. A typical experiment compares the colours an observer perceives under 

a given state of illuminant adaptation to the colours perceived under another state and the differences 

are then interpreted using models and indices (Brainard, Brunt et al. 1997; Foster 2011). The most 

popular colour constancy paradigms are achromatic setting, asymmetric colour matching and colour 

naming (Smithson 2005; Foster 2011). 

Asymmetric matching. Asymmetric colour matching (Wyszecki and Stiles 1982; Arend and Reeves 

1986) compares binocular or dichoptical stimuli under different illuminants, presented either 

simultaneously or successively. Subjects adjust a patch under one illumination to match another under 

a different illumination. This method requires that the state of adaptation follows closely the change of 

illumination, a strong assumption especially in the case of alternate viewing paradigms (Foster 2011). 
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Simultaneous matching has the drawback that adaptation to the two scenes will be determined by the 

pattern of the eye movements across the two halves of the scene. Successive matching allows 

experimental control of adaptation to the two illuminants, but performance will additionally depend on 

the observer's ability to remember colours. Dichoptical matching allows separate adaptation states in 

the two eyes, but removes binocular cues to the scene geometry (Smithson 2005). 

Achromatic setting. Under different contextual conditions of scene configuration and illumination the 

subject is asked to adjust a particular part of the scene to appear achromatic. Achromatic setting 

measures the perceptual stability of the achromatic locus under a change of adaptation by asking 

subjects to modify a stimulus until it appears “achromatic”. It has been pointed out that this is a local 

measurement that may or may not be influenced by manipulations of other regions of the scene and 

also, that one measure may not be enough to estimate the stability of perceived colours away from the 

neutral point (Foster 2003; Delahunt and Brainard 2004; Schultz, Doerschner et al. 2006; Foster 

2011). 

Colour naming. The observer is asked to assign a colour term to a particular part of the screen. It can 

be done using a restricted set of colours, usually the 11 focals of Berlin and Kay or can be done 

without restrictions, a free-naming task. Colour naming paradigms rely on the subjects’ internal colour 

categories by asking them to classify samples under different illuminants. It has been argued that 

colour naming provides a more direct method for measuring colour constancy (Foster 2011) on the 

grounds that it is less sensitive to the instructions given to subjects (Arend and Reeves 1986; Troost 

and de Weert 1991). The main setback of the last method is the large number of discernible colours ( 

>2 million), much larger than the number of possible names (Pointer and Attridge 1998; Linhares, 

Pinto et al. 2008), resulting in limited accuracy (Foster 2011). Variants include determining unique 

hues and estimating the degree of colour constancy from the response categories of large numbers of 

samples and the position of colour boundaries (Chichilnisky and Wandell 1999; Smithson and Zaidi 

2004) under different states of adaptation (Kulikowski and Vaitkevicius 1997; Hansen, Walter et al. 

2007; Olkkonen, Hansen et al. 2009; Olkkonen, Witzel et al. 2010). 

There are several common methodological factors that can influence the outcome of the previous 

paradigm measurements: 

 Nature of the stimuli, if using laboratory or real conditions. Most of the traditional studies 

used simplified stimuli (e.g. Mondrians in Figure 2.1) which allowed to discriminate among 

several properties that in natural images are entangled (Kraft and Brainard 1999). This leads to 

the question: which cues present in the natural world are exploded by colour constancy 

mechanisms?  
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 Question to ask the observer (Troost and de Weert 1991). 

 Effects of familiarity and memory (Hansen, Olkkonen et al. 2006; Ling and Hurlbert 2008). 

 The number of surfaces in the visual scene (Linnell and Foster 2002) . 

Figure 2.1 Mondrian images used as stimuli. The image on the left contains eight different colours under D65 
illumination and the following images from left to right correspond to three different simulated illuminations on the 
left image. 

2.2.3 Composing mechanisms and visual cues 

Colour constancy is composed by multiple mechanisms that span multiple levels in the HVS. This 

mechanisms are activated simultaneously or exclusively according to the visual cues elicited (Hurlbert 

and Wolf 2004; Smithson 2005; Foster 2011). According to Hurlbert et al (Hurlbert and Wolf 2004),

this mechanisms can be grouped according to the type of computational mechanism and neural level 

into sensory, perceptual and cognitive. Each one responsible to a certain extent of the phenomenon. 

Sensory mechanisms are represented by linear transformations of the photoreceptor responses. 

Traditional Von kries adaptation is based on that approach when normalizing each photoreceptor 

signal by its average cone type over the image (Von Kries 1905). However, current approaches do not 

support Von Kries adaptation, take for instance inter connections among cone types as early as in the 

outer retina between the different cone types through the horizontal cells (Vanleeuwen, Joselevitch et 

al. 2007). 

Perceptual mechanisms require a first step on scene processing in order to segment reflection and 

surface components. From a computational standpoint, mutual reflections and specular highlights are 

the visual cues from which estimate the illuminant of the scene corresponding to that neural level.  

Cognitive mechanisms require the complete segmentation of the scene into objects and their 

recognition, examples are familiar objects, memory colours, etc (Hansen, Olkkonen et al. 2006). 
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 Sensory Perceptual Cognitive 

Computational 

mechanism 
Chromatic adaptation   

    

Neural level Retina, LGN Cortex VI and V2 Brain, Cortex V4 

    

Requirements Light Scene segmentation Object identification 

    

Visual cues 

Chromatic adapt. to the 

mean (1) 

Chromatic adapt. to the 

variance (2) 

Colour contrast (3) 

3D information 

Mutual reflectance 

Chroma variance 

Specularities 

Scene movement 

Memory colours 

Consciousness of 

illumination change 

Familiar objects 

    

Temporal  

scale 

(1) 60 sec 

(2) minutes 

(3) milliseconds 

Several minutes Days, years 

Table 2.1 Visual cues in colour constancy. 

According to Webster (Webster 1996), human colour adaptation has two main processes: (i) retinal 

mechanisms of light adaptation adjust for changes in the average colour across scenes and (ii) cortical 

mechanisms of contrast adaptation adjust for changes in the distribution of colours. These two 

processes are in accordance to the previous division into sensorial, perceptual and cognitive factors of 

colour constancy. 

2.2.4 Quantifying colour constancy 

The extent of colour constancy achieved by observers is traditionally measured through a one 

dimensional index, i.e., a normalized measure which compares measurements done under the 

reference and test illuminations (Smithson 2005; Ling and Hurlbert 2008; Foster 2011). Values of 

colour constancy indices ideally range between 0 and 1; values lower than one indicate a colour 

constancy failure and values over one indicate an overcompensation. However, colour constancy 

indices are a simplification of the phenomenon and must be interpreted according to its particular 

experimental context. 

Obtained measurements under the reference and test illumination are interpreted in some colour space, 

and computations are applied on their colour space coordinates. Each colour space has its own 

characteristics and its selection must be in accordance to the particular features to be extracted from 

data. Two dimensional colour spaces as CIE1931 xy and CIE1976 uv are widely used and one of its 

advantages is the lack of a reference white point specification and thus not incorporating any further 

chromatic transform of data. CIE1976 uv also has the advantage of being perceptually uniform, 
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meaning that distances are more meaningful than in CIE1931 xy (Brainard, Brunt et al. 1997; Ling and 

Hurlbert 2008). Also three dimensional colour spaces are used, for instance CIELab and CIELuv, or 

its projections in their chromaticity planes (Foster 2011). 

Equations 2.1 and 2.2 details the computation of the most common and simple colour constancy 

indices, the Colour Constancy (CI) index (Arend, Reeves et al. 1991) and the Brunswich Ratio (BR) 

index (Troost and de Weert 1991). These formulas are based on Euclidean distances among the test 

patch the ideal match and the observer match. The test patch corresponds to the coordinates of the 

patch to study its constancy, the ideal match corresponds to the coordinates of the test patch under the 

illuminant and the observer match correspond to the coordinates of the resulting experimental 

measurement.  

 

     
                             

                         
 (2.1) 

  

   
                            
                         

 (2.2) 

 

The implicit idea behind CI and CR assume that observer adaptation lies somewhere in the joining line 

between the test and reference illuminant coordinates. Something that is not always the case as shown 

by Figure 2.2 where the BR takes the same value for different observer match locations. Subsection 

4.5.3 follows the discussion on colour constancy indices while introducing a new index. 

When using achromatic setting to perform the experimental measurements the test and ideal match 

corresponds to the coordinates of the respective test and reference illuminants. 
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Figure 2.2 Accuracy deviation of traditional colour constancy indices. The Figure illustrates how several different 

measurements from the observer match (Si) derive in the same value of the Brunswich Ratio index. 

2.2.5 Predicting colour constancy 

A general goal of colour constancy studies is to develop principles and models that allow the 

prediction of colour appearance under complex scenes (Burnham, Evans et al. 1957; Jameson and 

Hurvich 1964; Brainard, Brunt et al. 1997), and in extension to our everyday environments. In 

particular, to predict the colours seen under a particular state of adaptation, that were not directly 

measured under a test illumination. Notice that some colour appearance spaces incorporate versions of 

these colour constancy models (Fairchild 1998). Three are two main common approaches to predict 

colour constancy effects: (i) Colour conversions expressed in terms of a limited set of linear basis 

functions, (ii) Illuminant estimations from the computational approach and (iii) Modelling in the LMS 

colour space. 

As previously exposed colour constancy is a contextual property and some studies linked this context 

to the statistics existing in the natural world. From this standpoint the idea has been to restrict the 

number of possible illuminations and surface reflectance's as the combinations of limited set of basis 

function in a Banach space. This is a set of functions with embedded in the structure of a vector space. 

Then, once the whole problem is reduced to find the components of the vector that represents the 

illumination or the surfaces spectral reflectance. The second method is to model via an affine matrix 

changes in the LMS cones. Typical Von Kries adaptation is a simple diagonal matrix. 
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Chapter 3 Quantifying individual variations in 

categorical colour perception 

Previous studies reported large variations in the categorical colour perception according to different 

individuals. So our first step is to describe the individual categorical colour structure in an adequate 

colour space and quantify its inter-individual variability. This chapter quantifies this variability 

through the colour naming ability of individuals. We performed a psychophysical experiment 

(Experiment I) which used normal trichromat observers and a series of custom colour naming tasks 

under D65 illumination and achromatic uniform backgrounds. The study of the colour naming abilities 

of our observers allowed a direct link to the categorical colour structure of their internal colour spaces. 

Six indices are developed to compactly measure their colour naming abilities, and from its values 

conclusions are derived. Results indicate that the categorical structure of colour space is broadly 

uniform across observers: similar when close to the basic categorical centroid regions but quite 

different close to its border regions. Also using only the eleven basic terms may not be enough to 

achieve a successful colour communication in some regions of colour space, in other words, that this 

vocabulary needs to be expanded into a few more several terms at least. Finally the suggestion that the 

inner part of the colour space are the most susceptible to deviations from colour constancy. These 

findings sets the constraints for the new paradigm and experimental design that will be developed in 

the following chapter. 

Some of the work described in this chapter has been published in a paper (currently submitted) to 

which other co-authors contributed. The original contribution of the author consisted into the analysis 
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of the experimental data, the development of new methods, the computational analysis and its 

discussion. 

3.1 Introduction: Categorical colour perception from colour 

naming ability 

Colour naming ability is an individual’s capacity to communicate comprehensively the perception of 

surface and light colours using comprehensible colour terms. 

The purpose of this chapter is to describe compactly the colour naming abilities of individuals and to 

quantify their inter-individual variations. We did so by deriving a quantitative description of the 

normal colour space, in terms of the centroid locations, volumes and shapes of distinct regions 

corresponding to the basic mono-lexemic colour categories as well as to significant multi-lexemic 

non-basic categories. Using a convex hull approach, we constructed a convex 3D region from 

punctuate naming data for each basic colour category. Then, using these 3D regions, we quantified the 

range of naming inconsistency from the overlap between category regions and the disagreement 

between surface-based and light-based categorisations. Naming consensus was derived from the 

intersection of all observers’ same-category convex regions, which also informed calculations of the 

deviation in category shape from the region of maximal-agreement across normal observers. By 

defining the normal inter-individual variations in this quantitative description, we derived quantitative 

descriptors of naming ability, which may be used to assess individual performance on tasks where 

communication of colour terms is potentially critical, as well as differences in naming ability across 

age, sex, culture and colour vision type. We compare these quantitative indices with the results of 

standardised tests of colour discrimination. According to previous studies of colour vision 

deficiencies, there is a lack of tests to measure colour perception beyond low-level sensory abilities 

(Cole and Maddocks 1998) (Nolan, Riley et al. 2008) (Uchikawa 2008). The current results provide 

indices which compactly describe colour naming abilities in terms of individual deformations of the 

categorical perceptual space. These results suggest that colour naming ability is not predicted solely by 

low-level chromatic discrimination ability.  

Furthermore, we derive an average normal colour space which may be compared with models 

designed to predict the colour name of a given point in colour space (through assigning probabilities of 

belonging to a particular category (Lammens 1995; Benavente, Vanrell et al. 2008)). Our aim here, 

thus, is primarily to define variations in individual performance and individual colour spaces, and 

secondarily to characterise the categorical structure of average normal colour space.  
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3.2 Methods 

Observers underwent a series of custom-made colour naming tasks using a total set of 439 distinct 

colour samples, either CRT stimuli (light-based) or Munsell chips (surface-based), with both forced- 

and free-choice colour naming paradigms. For each observer, we then defined his/her colour solid as 

the set of three-dimensional (3D) convex hulls computed for each basic colour category from the 

relevant collection of categorized points in CIELab colour space. From the parameters of the convex 

hulls, we then derived several indices to characterize the 3D structure of the colour solid and its inter-

individual variations. 

3.2.1 Observers 

23 normal trichromatic observers (14 females and 9 males) participated, of mean age 27 years (range 

17-50). All observers undertook and scored in the normal range on three standardized colour vision 

tests, the Neitz paper-based test (Neitz and Neitz 2001), Ishihara plates (Ishihara 1917) and 

Farnsworth-Munsell 100-Hue test (Farnsworth 1957) (mean score 13.22;  = 13.24; range 4-64) 

performed under D65-metameric illumination (Verivide daylight simulation bulb) in a viewing 

cabinet. All observers were unpaid volunteers, naïve to the experiment's purpose. All had excellent 

English language skills; all but two were native English-speaking. All procedures were approved by 

the Newcastle University Psychology Ethics Committee (REF 060041). 

3.2.2 Experimental setup and procedure 

The colour naming tests (four in total) consisted of two types using different sample types and carried 

out in two different environments: the first used surface-based samples viewed under natural light (the 

free naming test), and the second used light-based samples displayed on a CRT monitor (the forced-

choice naming, pick-best and pick-all tests).  

Surface-based test: free naming 

The free-naming surface-based test was performed using a standard colour chart (Gretag MacBeth 

Digital ColourChecker SG; (C. S. McCamy 1976)) consisting of 140 matte painted chips arrayed in a 

10x14 grid, of which 99 chips are unique. At the viewing distance used here (80 cm), each chip 

subtended one square degree of visual angle, and the black border outlining each chip subtended 0.3 

degrees. Observers viewed the chart illuminated by natural diffuse daylight through a large glass 

window, sitting at a bare grey table. 
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Observers were asked to name each chip using the most appropriate term, without any constraint of 

time or language, working row by row across the chart from top to bottom. Colour names were 

recorded by hand immediately and exactly as the observer said them, and subsequently coded for 

further analysis as described below. 

Light-based tests: forced-choice naming, pick-best, pick-all 

Each of the three light-based experiments began with a 60-second adaptation phase in which the 

observer viewed a uniform neutral colour (the “neutral background”; CIE Yxy coordinates [22.15 

0.310 0.326]) filling the CRT display ( 41 x 35  degrees of visual angle). 

Forced-choice naming. On each trial, the observer viewed a centrally placed single patch of uniform 

colour (5 degrees square) against the neutral background, appearing 2 degrees above the 11 basic 

colour terms (Berlin and Kay 1969) arranged in a 5 x 16 degree block of black text (BLACK WHITE 

RED GREEN / YELLOW BLUE BROWN ORANGE / PINK PURPLE GRAY). The observer’s task 

was to move the mouse to select, as quickly as possible, the colour term that best named the displayed 

colour. Immediately after the selection, the colour patch was replaced with a multi-coloured mask of 

the same size, held for 200msec, after which the next trial began. The core test consisted of 340 trials, 

each presenting a different standard Munsell colour, as described below. (For each observer, an 

additional 4-13 “confusion” colour patches corresponding to particular colour vision deficiencies were 

included). 

Forced-choice ‘best exemplar’ (pick-best). On each trial, the observer viewed an array of 141 

uniformly-coloured patches, a subset of the forced-choice naming set, arranged in a 11 x 12 (+ 1 x 9) 

grid against the neutral background, each subtending 1.5 x 1 degrees with inter-patch spacing of 

approximately 0.5 degrees (total array size approximately 24 x 18 degrees). A block of black text 

appeared 1 degree below the array, containing the instruction: ‘Select the best [colour]’, where 

‘[colour]’ was one of the 11 basic colour names. The observer’s task was to select the best example of 

the specified colour from the array, as quickly as possible. Immediately following the selection, the 

next trial began. There were five trials per colour name, the order of the 55 trials was randomised for 

each session, and the spatial configuration of patches in the array was re-randomised on each trial.  

Forced-choice ‘all exemplars’ (pick-all). The stimuli and procedure for the pick-all test were exactly 

the same as for the pick-best test, except that the instructions read: ‘Select all the [colour]’ and the 

observer’s task was to select all of the patches of the specified colour. There were two trials per colour 

name.  
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3.2.3 Stimuli 

The 340 colours used in the light-based experiments (now called “light” samples) were selected by 

sampling 40 hues around the Munsell hue circle at each of three values (4,6,8), including all 

displayable chroma values from the set (4,6,10,12,14). CIE tristimulus coordinates were computed for 

each of the sampled Munsell colours, using the published Munsell paper spectral reflectance functions 

(Munsell Colour Company, 1929) and assuming D65 illumination, then converted to RGB coordinates 

for display using the calibration method described above. A subset of 140 colours from this set were 

selected to include at least one mid-chroma sample at each value, and one maximum-chroma sample at 

each of two values, per hue. The CIE tristimulus coordinates of the 140 patches in the surface-based 

test (now called “surface” samples), under diffuse daylight, were measured using a spectroradiometer 

(SpectraScan PR-650).  

All tristimulus coordinates of the surface- and light-based samples were converted to the coordinates 

in the perceptually uniform CIELab space (Wyszecki and Stiles 1982), using the appropriate neutral 

point as anchor (CIE Yxy [22.15 0.310 0.326] for light samples, corresponding to the colour of the 

neutral grey background, and  [57.70 0.314 0.343] for surface samples, corresponding to the mid-grey 

Digital ColourChecker chart patch under natural daylight). Colour space conversions and calibration 

routines relied partly on customised software (kccv; (Wolf 2011)) . Figure 3.1 illustrates the full set of 

samples in CIELab space; the values are also tabulated in Appendix A. It is evident that the two sets of 

samples are complementary in spanning colour space, with the surface-based samples tending to be 

more saturated, and the light-based samples providing denser coverage. Overall, the surface samples 

expand the volume of the light-based tested region in CIELab space by 50%.  
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Figure 3.1 Tested coloured samples in CIELab colour coordinates. Panel a: Red dots and grey squares correspond to 
light and surface tested samples. Panel b: Volumetric contribution of each experimental set. 

3.3 Data analysis 

3.3.1 Classification of colour names 

For the forced-choice, pick-best and pick-all tasks, each sample was classified by a single colour name 

from the dictated set of 11 basic colour names. For the free-naming task, we used the following two 

methods to assign a colour name to a given sample based on the observer’s response. (i) For the 

analysis of the number and frequency of colour terms used (see subsection 3.3.2), all colour names 

that were used as single names were counted individually, whether or not these were basic colour 

terms (e.g. red, teal), while for compound or qualified colour names (e.g. greeny-white or pale pink)

only the base colour name was counted (white and pink, respectively). (ii) For the analyses of colour 

space, each colour name was assigned to one or more of the eleven basic colour categories following 

these rules: single basic colour terms were assigned to their corresponding category; compound or 

qualified colour names where the base name was a basic colour term (e.g. creamy yellow) were 

assigned to the base name category; and single colour terms that were not basic colour terms were 

assigned proportionately to the colour categories they straddled (e.g. turquoise was assigned 50% 

membership of the blue category and 50% membership of the green category).  
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Colour name Codification Colour name Codification 

Turquoise Green Blue Coffee Brown - 

Terracotta Brown Orange Coral Pink - 

Sand Yellow Brown Emerald Green - 

Cream Yellow White Flesh Yellow Pink 

Fawn Yellow Brown Fuchsia Pink - 

Burgundy Purple Red Lavender Blue Purple 

Mint White Green Lemon Yellow - 

Lilac Purple White Magenta Red - 

Charcoal Grey - Mushroom Grey Brown 

Beige Yellow White Mustard Yellow Brown 

Violet Purple - Ochre Yellow Brown 

Salmon Pink Orange Scarlet Red - 

Cyan Blue Green Stone Grey - 

Mauve Purple - Tan Brown - 

Navy Blue - Wine Red Purple 

Light White - Lime Green - 

Peach Orange Pink Khaki Green Brown 

Maroon Brown Red Slate Grey - 

Magnolia Yellow White Gold Yellow - 

Skin Pink Brown Aquamarine Blue - 

Indigo Blue - Praline Yellow Brown 

Teal Green Blue Taupe Brown Grey 

Aqua Blue - Amethyst Purple - 

Aubergine Purple - Tangerine Orange - 

Olive Green - Amber Yellow Orange 

Sandstone Yellow Brown Cerise Red - 

Table 3.1 Codification of non basic colour terms in the free-naming experiment. Each non basic colour term is 

codified into basic colour categories for the analysis of colour space. 

3.3.2 Definition of the individual colour solid 

Our main analysis gathered all surface and light data together. Thus for each individual, for each 

colour category, we obtained a set of points in CIELab space that were classified by that category’s 

name. Equation (3.1) defines this collection of points,   
 
 where    is the total number of observers, and 

  
 
 is the number of points      in CIELab space classified by observer j as belonging to category i. 

We also define   
 
as the corresponding set of response times, where each    is the time spent 

classifying    in seconds.  

 

  
 
          

 
 
 
                   

 
                             (3.1) 

  
 
          

 
 
 
                  

 
                             (3.2) 
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The bounding region of the set of points   
 
 is a three-dimensional solid, which we modelled as its 

convex hull. The convex hull of a set of points X is defined as the intersection of all convex sets 

containing X. A set X in     is convex if, and only if, the line segment joining any pair of points of X 

lies entirely in X (Berg 2008). In our context, this means that if two samples are categorized by the 

same name then all points lying on their joining segment will also be assigned to the same colour 

category. Equation (3.3) gives its algebraic definition: 

 

                          

 

   

                   

 

   

     (3.3) 

 

From now on, we refer to the convex hulls defined by   
 
 as 

 

   
 
              

 
  (3.4) 

 

We then define the individual colour solid for each observer i as the collection of the eleven convex 

hulls    
 
 corresponding to the basic colour categories. Figure 3.2 illustrates the computed colour 

solids computation for three different observers. Notice the inter-individual differences in category 

volumes, shapes and intersections. For example, blue is relatively expanded for observer VV, while 

green is relatively expanded for observer IO. Also for observer IO, the green and blue categories 

overlap relatively little compared to the other two observers. The white category disappears for 

observer YL. Our following aim is to quantify the characteristics of the individual colour solids in a 

concise and precise way so that such inter-individual differences may also be quantitatively defined 

and used to describe individual colour naming abilities.  
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Figure 3.2 Computed colour solids for three normal trichromatic observers(YL, VV and IO). Each colour solid (set 

of 11 convex hulls corresponding to the basic colour categories), constructed from light and surface naming tasks as 

described in the text, is shown projected onto the chromaticity plane in CIELab colour space. Colour categories are 

labelled and colour-coded with their representative colours (R-red; G-green; B-blue; Y-yellow; N-grey; W-white; K-

black; P-pink; O-orange; Pr-purple; Br-Brown). 

3.3.3 Quantifying the individual colour solid 

We developed a set of six indices that compactly describe the geometrical features of the three-

dimensional colour solid and its inter-individual variations, and which may be directly related to 

features of naming behaviour described by other researchers, e.g. naming consistency and consensus 

(Boynton and Olson 1987; Sturges and Whitfield 1995). These indices are of two types: absolute 

indices that quantify the internal features of the colour solid (volume, time, category inconsistency and 

surface-light inconsistency), and relative indices (structure deviation and centroid deviation) that 

quantify the deviations of the categories from a predefined average “normal” colour solid. Each index 

is defined for each observer j and each category i. 

Volume (V). The Volume index is calculated straightforwardly from the convex hull and expressed in 

CIELab cubic units. The index indicates how large the colour category is and its range therefore goes 

from zero to the volume of the convex hull generated from all tested points. 

 

  
 
           

 
  (3.5) 

 

Time (T). In the forced-choice naming task the response time for each trial was recorded, thus 

enabling us to calculate the average classification time (in seconds) for each colour category, the Time 

index. Its expected values range from milliseconds up to two or three seconds. 
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 (3.6) 

 

Category Inconsistency (CI). As Figure 3.2 clearly illustrates, categorical regions often overlap in 

individual colour solids. This overlapping will necessarily arise when the observer uses different basic 

colour terms to classify the same colour sample on different occasions, a phenomenon that has been 

identified and quantified as naming “inconsistency” in previous studies ((Berlin and Kay 1969; 

Sturges and Whitfield 1995; Guest and Van Laar 2000)). In our analysis, the overlap may also arise 

when nearby samples are classified differently and thus fall into distinct convex hulls; in that sense, 

our analysis is able to include inconsistencies that are directly predicted by the convexity of categories 

even if not explicitly tested. We therefore define Category Inconsistency as an extension of direct 

naming inconsistency: the total volume of overlap between the given category’s convex hull and all 

other categories, as a proportion of the given category’s convex hull volume. The index therefore 

ranges from 0 (no intersection with any other regions) to 1 (all points in the category also fall in at 

least one other category).  

 

   
 
            

 

  

   
   

    
 
   

 
  (3.7) 

 

Surface-Light Inconsistency (SLI). The Surface-light Inconsistency index was designed to measure 

categorization differences between data from the surface and light colour naming experiments. We 

therefore defined   
 
 , the surface set, in the same way as   

 
 but without the points from the light 

experiments, and        
 
, the light convex hull, in the same way as    

 
 but without the surface points. 

For each surface point we found the nearest convex hull in         
 
. We counted the number of surface 

points whose surface categorisation was coincident with the category of the nearest light category. 

Where no points are coincident, the index is one; where all points are coincident, the index is 0, as 

below: 
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 (3.8) 

    
 
    

      
 
         

    
 
 

  , where                           (3.9) 

 

Structure Deviation (SD). This index quantifies the regularity of category shape according to a 

predefined normal shape. The normal shape for a particular category is defined for a specified group 

of N normal observers as a layered category (Equation 3.10). Each successive layer includes votes 

from successively more observers. The Nth, innermost, layer for, say, the “green” category, is 

supported by all N observers; it is the intersection of all N convex hulls for green. The (N-1)th layer is 

supported by N-1 observers, and so on down to the 1
st
, outermost, layer. The Structure Deviation 

index for a given individual category is then calculated from a weighted sum of the intersections 

between the normal layers and the given category, normalised by the volume of the latter (Equation 

3.11). For any given category, the maximum regularity possible is when it coincides perfectly with the 

innermost layer, agreeing with all N observers. The index value is then zero, indicating null shape 

deviation. If the intersection with all normal layers is empty, then the index value is one, indicating 

total shape deviation. 

 

                                 
                                          

 
(3.10) 

   
 
     

 

 
  

                            
 
 

  
 

 

 

   
 

(3.11) 
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Figure 3.3 Purple layered category from 23 NT in CIELab. It was used in the computation of the Structure Deviation 

index. 

Centroid Deviation (CD). This index quantifies the normality of the positions of the categories in 

colour space relative to each other. Following standard practice (Boynton and Olson 1987), we define 

the centroid of each category as the mean location of all its points,   
 
(Equation 3.12). We then 

calculate the normal category focal difference between two categories as the mean difference in the 

centroids of the two categories, averaged over all N observers in the specified normal set: this is T(i,c) 

for colours i and c (Equation 3.13). For each observer j, and each colour i, the Centroid Deviation 

index is then the maximum of the absolute difference between one and the ratio of the observer’s 

category focal distance to the normal category focal distance, taken over all other colours in the basic 

set. The index therefore indicates, for a given observer, which colour categories are most displaced 

relative to all other categories; e.g., a high index for green indicates that there is at least one category 

from which green is displaced, relative to the normal distance between green and that category.  
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(3.13) 
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 Notation 
Computational 

description 

Colour naming 

framework 

Range of  

values/units 

General 

Descriptors 

V Volume 
3D volume of category 

convex hull 

Number of usages of a 

given colour name 

0 to total volume/  

CIELab cubic 

units 

T Time 

Average time to name a 

sample (forced-choice 

naming) 

Naming time Unlimited/seconds 

Naming 

behaviour 

CI 
Category 

Inconsistency 

Overlap between given 

category and all other 

categories, as proportion 

of total volume  

Inconsistency in 

classification of given 

sample 

0 to 1 

SLI 

Surface-

Light 

Inconsistency 

Proportion of surface 

sample names in 

disagreement with light 

categories  

Inconsistency in 

classification of given 

sample when 

presented as light vs 

surface 

0 to 1 

Category 

Geometry 

SD 
Structure 

Deviation 

Deviation in category 

shape from region of 

maximal-agreement across 

normal observers 

Deviation from 

typicality of given 

colour name usage 

0 to 1 

CD 
Centroid 

Deviation 

Deviation from normal 

distance between given 

category centroid and 

other category centroids 

Deviation of selected 

focal colour relative 

to normal  

0 to T <    

(positive number) 

Table 3.2 The introduced indices, their notation, computational description and corresponding feature in colour 

naming studies. 

3.4 Results 

3.4.1 Overall colour category locations 

Each observer performed 760 (on average) classifications in total (340 in forced-choice naming, 55 in 

pick-best, 225 in pick-all, on average, and 140 in free naming). Of the samples classified, 439 were 

unique (340 light samples; 99 surface samples). To obtain an overall picture of the classification data, 

we pooled data from all observers across all tasks into the eleven basic colour categories (using the 

second method to classify each response in the free-naming task, as described in subsection 3.2.1). 
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Figure 3.4 illustrates the resulting mean and range of the lightness, hue and saturation values for each 

basic colour category. Figure 3.4 reveals some notable features. First, the overlapping between shaded 

regions (indicating one standard deviation) is nearly nonexistent; combining the CIE L* information 

from panel a with the hue and saturation information from panel b, we see that there is minimal 

overlap only between brown and orange, and red and purple regions, suggesting stable classification 

naming behaviour for samples around the mean position in terms of inter-individual variability. 

Second, for three categories (yellow, red and purple), the full-range sectors (indicated by dotted lines 

in panel b, and by filled squares in panel a) are relatively little expanded compared to the shaded 

regions, whereas for others (green, blue, orange and pink) they are greatly expanded. Third, the 

overlapping between the full-range sectors is much greater on the right-hand side of the chromaticity 

plane (regions corresponding to yellow, orange, red, brown and pink) than the other (regions 

corresponding to green, blue and purple). These observations indicate that, despite the core stability, 

there will be large variability in naming in some regions of colour space. 

The indices we report below quantify these observations and the underlying naming patterns in terms 

of intra- and inter-individual variations in naming ability.  

 

 

Figure 3.4 CIELab coordinate locations of mean and range of categorized samples in each basic colour category, 

calculated from all naming data (light and surface sets) across all observers. Panel a: Mean (open circle), standard 

deviation (coloured bar), and maximum and minimum values of L* (open squares) of all colours classified with the 

indicated colour term. Panel b: Mean chromaticity coordinates in the a*b* plane of chromatic colours classified with 

the indicated colour term. Shaded areas indicate the standard deviation in hue and saturation of all colours classified 

with the indicated colour term, calculated in LHS space. Dotted lines indicate the maximum and minimum hue and 

saturation range. Achromatic categories are omitted for clarity. 
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3.4.2 Basic and non basic colour terms usage 

The free naming test provided a total of 3220 named samples (140 samples for each of 23 observers). 

A total of 46 distinct colour terms were used. The 11 basic terms were used for 90.5% of distinct 

samples, and non-basic terms for the remaining 9.5%. Only the basic terms were used by all observers. 

Amongst the 35 non-basic terms used, the highest-usage terms were turquoise, used by 15 observers, 

peach (12), lilac (9) and beige (8). Results are summarized in Figure 3.5; its horizontal axis lists all 

terms that were used at least twice and bar height indicates the number of observers using the term. 

74% of observers used 7 or fewer non-basic terms and only two observers used more than 11 non-

basic terms, as shown in the inset histogram. The overall set of non-basic terms (turquoise, peach, 

lilac, beige, salmon, terracotta, violet, maroon, mauve, tan ...), and their usage frequency are similar to 

previous reports (Boynton and Olson 1987; Sturges and Whitfield 1995) despite differences in the 

number of tested samples; turquoise, in particular, is in the top three most-used non-basic terms for all 

studies. There is a trend for females to use more non-basic terms than males (15.8 vs 9.4) and to use a 

larger number of distinct non-basic terms (7.1 vs 5.4).  

 

 

Figure 3.5 Free naming test results. The main histogram indicates the number of observers (total of 23) that used 

each particular term given on the horizontal axis. The inset histogram indicates the number of non-basic terms used 

(omitting one observer who used 21 different terms). 

3.4.3 Naming indices results 

Unless otherwise stated, each index is computed for each category from the results of all tasks, and 

averaged over all observers. 

Volume (Figure 3.6a). We normalize the volume index by the sum of all category volumes, for each 

observer separately, before averaging across observers, in order to allow comparison with naming 



38 

 

frequencies reported in previous studies (Boynton and Olson 1987; Sturges and Whitfield 1995; 

Paggetti, Bartoli et al. 2011) (illustrated with squares [Boynton and Olson 1987] and circles [Sturges 

and Whitfield 1995] in Figure 3.6a) and with the naming frequencies calculated from our forced-

choice naming task (triangles in Figure 3.6a). (Reported rates from earlier studies combine consistent 

and inconsistent results for a fair comparison with our data, which at this stage does not differentiate 

between overlapping and non-overlapping regions). Green is the largest category, occupying nearly a 

third of the total volume, followed by blue and several other midsized categories (pink, orange, yellow 

and purple). The smallest categories are brown, red and white. The forced choice naming frequencies 

are significantly correlated with the normalised volume index values across categories (r=0.9312; 

p<0.01), and follow the same trend as the naming frequencies from previous studies. 

(Because the black and grey volume indices are close to zero, due to possible under-sampling of the 

achromatic region of colour space and/or augmented chromatic sensitivity near the achromatic axis 

(Sturges and Whitfield 1995), we are forced to discard their corresponding category inconsistency and 

structure deviation indices, due to their usage of the convex hull element.)  

 

 

Figure 3.6 Volume and Category Inconsistency indices (coloured bars) compared to previous literature results 

(triangles correspond to the forced-choice naming test, squares to B&O1987 and circles to S&W1995). Black lines 

indicate the standard error. Panel a: Bars indicate the Volume index values normalized by overall volume and 

markers indicate the naming frequencies of the corresponding basic terms (see text for details). Panel b: Bars indicate 

the Category Inconsistency index values and markers correspond to the ratio of inconsistent to 

(consistent+inconsistent) frequencies reported by B&O and S&W. Values corresponding to K and N are not 

reported/analysed due to their small or non-existent volume. 

Time. The Time index was calculated for data from forced choice naming tests. The mean T was 1.85 

seconds (σ = 0.45s) per classification, with only small differences between colour categories. On 

average, samples farthest from the category centroid required 30% more time per classification than 
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samples close to the centroid. These results are in broad agreement with earlier studies, which reported 

values between 1.46s and 2.55s (Boynton and Olson 1987), and 1.31s and 2.34s (Sturges and 

Whitfield 1995) depending on whether samples were consistent/ consensus  or inconsistent types, 

respectively. 

Category Inconsistency (Figure 3.6b). The mean CI value varies significantly across colour 

(F(10,220)=12.528, p<.001) from 0.1 to 0.35, with a mean of 0.23 (σ=0.13), equating to roughly one-

quarter of the category volume. Green and blue have the lowest CI values (mean=0.13; σ= 0.05), 

significantly lower than brown and pink (mean=0.27; σ= 0.16) (t(22)=-4.371, p<0.001; two-tailed). 

Note also that CI values for green and brown are significantly correlated (r=.624, p=0.001). The CI 

values follow the same pattern across categories as the normalised naming inconsistency values from 

previous studies (calculated as the ratio of reported inconsistent to the sum of consistent and 

inconsistent classifications; shown as squares (Boynton and Olson 1987) and circles (Sturges and 

Whitfield 1995)). 

Surface-Light Inconsistency (Figure 3.7a). The mean SLI index value for chromatic categories is 

0.39 (σ=0.19), indicating roughly 60% coincidence between names in the surface and light 

presentations. For the achromatic categories, the mean SLI value is much lower at 0.08 (σ =0.07). Of 

the chromatic colours, blue has the lowest SLI, in keeping with the fact that its category volume spans 

almost the whole of the lightness dimension. The difference between the achromatic and chromatic 

categories may be partly explained by the achromatic categories having relatively smaller volumes and 

larger numbers of surface samples. In general, these results are confounded by the negative correlation 

between the average number of surface samples classified and SLI index per category (r=-0.64; 

p=0.0319). 

Structure Deviation (Figure 3.7b). The mean SD index value over all colour categories (excluding 

black) is 0.25 (σ=0.09), indicating significant deviations in category shapes between observers. The 

index varies significantly across colours (F(9,135)=71.088, p<0.001). Green and blue categories have 

the lowest values (close to 0.1); yellow, brown, purple, orange and pink have mid values (close to 

0.25); and white and red have the largest values (0.6 and 0.37, respectively). 

Centroid Deviation (Figure 3.7c). The CD index varies significantly across colours (F(10, 

220)=5.231, p<0.001), being lowest for green (0.08) and highest for red (0.16) with a mean value of 

0.13 (σ =0.05). The low values overall (around 10% maximum deviation from normal focal distances) 

suggests relative stability in centroid locations across observers. 
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Figure 3.7 The Surface-Light Inconsistency, Structure Deviation and Centroid Deviation index values(panel a, b and 

c respectively). For each panel coloured bars and black lines indicate observer averaged values and the standard error, 

respectively. As before, the K and N structure deviation indices are not reported because of their near-zero volume 

indices. Note that panel c uses a different scale. 

 

3.4.4 Inter-individual variations: the coefficient of variation 

Comparison between the three colour solids displayed in Figure 3.2 suggests notable differences in 

their inner configurations. To capture this inter-individual variation, we introduce the coefficient of 

variation (CV) for each index, defined as the quotient between the standard deviation and the mean of 

the given index (i.e., a normalized measure of dispersion). Table 3.3 summarises the coefficients of 

variation, per index and per colour category. The average value of 0.42 indicates substantial inter-

individual differences in colour naming abilities and categorical colour spaces. From now on, in 

extracting features of colour naming behaviour, we will classify CV values as low (less than 0.25), 

medium (between 0.25 and 0.5) and high (greater than 0.5).  

In detail, for a particular colour category, the volume index CV indicates the variability between 

observers in the number of times that the particular colour term is used. Volume CV values are high 

for red and white, low for green and medium for the rest. For example, the green CV value is 0.07, 

indicating that the green convex hull volume, and therefore the frequency of usage of the term green, 

was nearly the same over all observers. The time index CV, on the other hand, varies little across 

colour categories, with a low mean value of 0.24, indicating that observers spend similar amounts of 

time in classifying colours on the forced-choice naming task. Inter-individual variability in naming 

inconsistency is assessed by the category inconsistency index CV, which is high for white and red, and 

medium for the rest. Therefore, despite the relatively low absolute value of CI for red, its high CV 

suggests that some observers highly confound red terms with others (see Geography of the average 

colour naming space subsection for details on which sets of basic terms are confounded). In general, 

though, colour categories with lower CI values tend to have lower CV values, especially for green and 
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blue which have the lowest CI values. The surface-light inconsistency CV index (SLI) varies 

significantly across colours (F(10,220)=18.279, p<0.001), with high CV values for black, white, 

yellow and orange, low CV values for brown and medium CV values for the remaining categories. 

Lastly, the CV values for the structure deviation and centroid deviation indices follow similar 

patterns, both varying little across categories, with medium average values of 0.39 and 0.37, 

respectively. The two together suggest that observers vary moderately regarding where in colour space 

they assign a particular colour term. 

 

 V T CI SLI SD  CD Mean 

Black - 0.31 - 0.93 - 0.27 0.50 

White 1.07 0.33 0.87 1.37 0.29 0.37 0.72 

Red 0.61 0.24 0.92 0.52 0.47 0.35 0.52 

Green 0.07 0.18 0.43 0.34 0.34 0.35 0.28 

Yellow 0.22 0.23 0.37 0.86 0.37 0.42 0.41 

Blue 0.16 0.19 0.38 0.46 0.49 0.30 0.33 

Brown 0.45 0.28 0.40 0.18 0.46 0.39 0.36 

Orange 0.22 0.23 0.46 0.78 0.32 0.45 0.41 

Pink 0.22 0.25 0.48 0.49 0.37 0.33 0.36 

Purple 0.28 0.17 0.50 0.52 0.44 0.40 0.38 

Grey - 0.28 - 0.53 - 0.39 0.40 

Mean 0.37 0.24 0.53 0.63 0.39 0.37 0.42 

Table 3.3 Coefficient of variability according to colour categories and indices. Note that values for black and grey 

categories on the V, CI, and SD indices have been disabled due to their convex hull existence restrictions. 
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Figure 3.8 Colour category regions location in the a*b* chromaticity plane. Panel a: focal colour locations for 

forced-choice naming data (pentagon), pick-best data (rotated triangle), B&O (triangles) and S&W (squares). Panel b: 

centroid locations for all our categorized samples (rhomboids), B&O (triangles), S&W (squares) and the inner layer 

of each layered category (circles). Panel c: Each coloured region represents the inner layer of each corresponding 

layered category (see Structure Deviation index definition in Methods section). 

3.4.5 Geography of the average colour naming space 

From the full set of data over all tasks (approximately 17480 classifications from 23 observers and 760 

samples each) we constructed an average colour naming space (ACNS) which preserves information 

about both the commonality and variability of the individual colour solids. This construction may be 

compared with previous attempts to build universal colour spaces (Lammens 1995; Guest and Van 

Laar 2000; Menegaz, Troter et al. 2007; Benavente, Vanrell et al. 2008) . 

To describe the space systematically and comprehensively, we gathered all data into a single 

multidimensional variable. First, we sampled the three-dimensional region spanned by the union of all 

colour solids in CIELab space, in steps of one unit. Second, each point in the resulting three-

dimensional matrix was expanded into an eleven-dimensional nameability vector, in which each 

coefficient corresponded to one particular colour category. Each coefficient was computed from 

counting the number of times that the given CIELab point fell inside one of the coefficient’s 

category’s convex hulls. Because there are as many convex hulls as observers per category, the 

nameabilty vector coefficient values range between zero and the total number of observers (23). Last, 

the matrix was smoothed by applying a low-pass Gaussian filter and normalizing each nameablity 

vector by the sum of its coefficients. This final step abstracts the number of observers used in the 

experiment, gives the same information consistency to all CIELab points and allows further 

comparisons with fuzzy sets approaches (Lammens 1995; Benavente, Vanrell et al. 2008). 
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Using the information in this multidimensional matrix, we then classified the category belongingness 

of each point in the CIELab region using two descriptors: Point Type, and basic/border. The point’s 

Point Type is the number of non-zero coefficient values of its nameablity vector, i.e. the number of 

different categories to which it belongs. The point is further labelled as basic to category i if the 

absolute distances between the ith coefficient and other coefficients in the nameability vector are all 

larger than a specified threshold parameter, or as border to categories j if all of its related non-zero 

coefficients are below this threshold. For example, a Type II point will have only two non-zero 

coefficients in its nameability vector, say at positions k and l. If 0.5 is the threshold, and its values are 

0.4 and 0.6, then their absolute difference is 0.2 and being lower than 0.5 dictates that the point will be 

labelled as border to both categories. If the values are 0.2 and 0.8, respectively, their absolute distance 

is 0.6 and the point will be labelled as basic to category l. Note that the basic labelling is exclusive; a 

given point may be basic to only one category and cannot simultaneously be border to others. Varying 

the threshold parameter from 0.3 to 0.7 (see Figure 3.9) made no qualitative difference to ACNS, so 

for this analysis we set it to 0.5. 
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Figure 3.9 Influence of threshold parameter in ACNS regions volume. 

Our single variable multidimensional approach allowed easily to get 3D reconstructions and 

visualizations of all regions. This can be achieved following the same approach as Menegaz et al 

(Menegaz, Troter et al. 2007) where each region surface was effectively rendered by means of the 

marching cubes algorithm (Lorensen and Cline 1987). 

As Figure 3.10a illustrates, the proportion (and volume) of points decreases exponentially as Point 

Type rank increases, with point types I to III taking up nearly 92% of the ACNS volume. Basic points 

(light grey) constitute overall 67% of the volume, and border points (dark grey) the remaining 33%. 

Table 3 and Figure 3.10b report the CIELab centroid coordinates, and proportional and cumulative 

volumes for the 35 largest regions (basic or border), respectively. The proportional volumes for basic 

categories follow roughly the same order as their mean volume indices, with green and blue the largest 

and red, brown and achromatic categories the smallest. The largest 11 regions, though, include 3 

border regions of Point Type II: green-blue, green-yellow, and blue-purple. The largest Type III 



45 

 

border region is the red-orange-pink region; the largest Type IV border region is white-blue-pink-

purple; and the largest Type V border region is white-yellow-brown-orange-pink. 

 

 

Figure 3.10 Composition of the Average Colour Naming Space. Panel a: Point type histogram. Light and dark grey 

bars indicate basic and border regions respectively as described in the text. Panel b: Cumulative proportion of total 

volume of the average colour naming space spanned by basic and border category regions, sorted, from left to right, 

by size of contributing region. Each region is represented by one or multiple markers according to whether it 

corresponds to a basic region (circle) or a border region (multiple inline squares) from 2-,3-,4- or 5- colours. The red 

dotted line delimits the first 11 regions, which contribute 69.5% of total volume. 

The total cumulative volume reaches approximately 90%. The remaining 10% consists of regions 

smaller than those reported in Table 3 as well as non-analysed parts of point type IV and higher, 

whose inclusion in the analysis does not alter the overall picture. 
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Region Centroid coordinates 
Volume 

proportion 

1 2 3 4 5 a* b* L*  

Green     -36.4 57.8 112.1 23.99 

Blue     -9.58 -38.66 103.3 9.21 

Orange     63.5 86.8 119.6 5.91 

Yellow     -7.1 80.9 134.6 5.35 

Green Blue    -34.1 -14.7 114.7 4.81 

Pink     71.5 5.9 120.1 4.67 

Green Yellow    -15.5 75.06 129 4.18 

Purple     52.5 -27.8 90.7 3.25 

Red     67 38.2 86.8 3.02 

Blue Purple    23 -34.2 101.6 2.74 

Brown     21.5 29.2 77.5 2.33 

Red Pink    70.6 18.08 104.6 2.18 

White     5.4 4 156 1.75 

Yellow Orange    27.4 86.2 136.4 1.71 

Yellow Brown    7.1 55.4 109.8 1.59 

Red Orange Pink   66.5 29.8 115.3 1.55 

Pink Purple    51.4 -13.6 108.5 1.38 

Red Orange    73.3 42.4 101.4 1.31 

Green Yellow Brown   2.5 46.5 106.9 1.27 

Yellow Brown Orange   26.5 80.4 126.81 0.98 

White Pink Purple   43.8 -14.5 124.3 0.77 

Orange Pink    56.9 27.5 121.8 0.72 

White Blue Pink Purple  24.8 -20.9 117.6 0.67 

White Red Pink Purple  43.5 -6.6 107 0.66 

Red Brown Orange Pink  43 28.8 103.6 0.62 

Yellow Brown Orange Pink  26.3 45.6 122.4 0.60 

White Blue Purple   20.5 -36.6 115.46 0.59 

Brown Orange    34 70.2 145.7 0.51 

White Green Yellow   -11.5 27.6 145.7 0.48 

White Yellow    -0.5 29.8 149.4 0.45 

White Blue    5.3 -17.11 150.43 0.44 

Green Brown    3.5 32.4 77.7 0.38 

White Yellow Brown Orange Pink 21.5 31.2 135.2 0.34 

White Green    -16 21.8 146.8 0.33 

Red Purple    54.9 -4.6 73.8 0.33 

Table 3.4 The 35 largest regions of the average colour naming space (basic in bold) and their centroid CIELab 

coordinates, sorted by volume proportion (rightmost column). First row indicates the number of categories in each 

Figure 3.11a shows the proportional volume occupied by each basic and Type II border colour 

category as a function of hue angle in CIELab space; the integral of the green line corresponds to the 

reported volume for the green category in Table 3.4. Note that each curve has the same fundamental 

shape, i.e., continuous with only one clear maximum. The same analysis for luminance and saturation 

revealed similarly shaped curves (see Appendix B), thus indicating that each region of the ACNS is 

fully connected as confirmed by luminance plane sections (see Figure 3.11b for the L*=93 section). 

The centroid locations of the 35 largest regions (both basic and border) are shown in Figure 3.11c. 

Here it is clear that the higher the point type rank (the more categories contribute to the region), the 

closer the region’s centroid is to the origin. This is expected as the centroid values signal the central 
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tendency of the samples that they encapsulate, but also suggests that the richest part of colour space is 

the innermost one, in terms of colour naming singularities. 

We studied systematically the locations of centroids of border regions of two relative to their 

constituent basic categories. For example, the green-blue region centroid was projected onto the line 

that joins the blue and green region centroids and proximity proportions were computed (see Figure 

3.11). Over all such regions, only three border regions fall exactly in the mid-position: purple-blue, 

orange-yellow and brown-yellow. Two additional significant features emerged: (1) when the border 

region involves the green category then the centroid is always displaced towards the opposing 

category and; (2) conversely, when the border region involves grey, its centroid is always displaced 

towards grey.  

 

 

Figure 3.11 Relative distance location between ACNS region centroids of two colours and their constituent basic 

colour categories. Light grey markers indicate computations using only a* and b*, and dark grey markers indicate 

using all three dimension of CIELab space. See text for further computation details. 

Additionally, we compared the locations of the border regions with the locations of the centroids of 

the most-used non-BCT categories (turquoise, peach, lilac and beige). To do so, we removed the non-

BCT naming data from the results and re-computed the ACNS (the BCT ACNS), then computed the 

mean locations of all free-naming terms used more than four times. Of all the identified regions, the 

centroid location of turquoise is closest to the centroid of the blue-green border region (distance 17.5 

E in Lab units in the BCT ACNS; 13.6 E in the full ACNS), which suggests that this non-BCT 

arose from the need to resolve uncertainty at the borders of the two categories. Similarly, the centroid 

location of the non-BCT lilac corresponds well to the 3
rd

 largest border region: blue-purple. Its 
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centroid is closest to the white-blue-purple centroid in the full ACNS (18.2 E ) and second closest to 

the blue-purple centroid (20.7 E). The centroids of peach and beige are themselves nearly 

overlapping (12.9 E), and also very close to the centroids of the less-commonly used terms skin and 

fawn. The centroid location of peach is closest to the centroid of the five-border region of white-

yellow-brown-orange-pink in the full ACNS. We suggest that these very similar terms arose not out of 

uncertainty over naming in a border region but instead out of the need for finer delineation of the sub-

region of colour space corresponding to skin colours. 

Conversely, the green-yellow border region, the second largest border regions, does not appear to have 

given rise to a common-use non-BCT. The term lime is the nearest non-BCT (distance 25.4 E) but in 

our population was used fewer than 4 times. 
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Figure 3.12 Structure of the average colour naming space (ACNS). Panel a: Volume proportion histogram of basic 

(coloured lines) and borders of two (grey dotted lines) regions according to their hue. The same analysis was 

performed for Saturation and Luminance and similar shapes were obtained. Panel b: Luminance section of the ACNS 

at L* = 93. Darker greys indicate higher-order border regions (see text for details). Panel c: Centroid locations in the 

a*b* chromaticity plane for the 35 largest regions listed in Table 3. Circles indicate basic regions; squares indicate 

border regions, nested according to number of categories. 

3.4.6 Influence of coding method for non basic colour terms 

We examined the effects of the way we coded single non-basic colour terms on our results by 

performing the same analyses on the data set excluding all non-basic terms. We find minimal effects 

of the coding method. For example, the volume index ranks for the basic categories from the two 

methods (see Figure 3.12a) are highly correlated (r=0.99, p<0.01). Also, the intersections between 

region pairs are nearly the same for the two methods (see Figure 3.12b), yielding similar values for the 

category inconsistency index across categories. Finally, the ACNS volume ranks for the 20 largest 
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regions (see Figure 3.12c) are highly correlated in both methods (r=0.98, p<0.01), with the order of the 

largest three and smallest three preserved in both.  

 

 

Figure 3.13 Influence of the coding of non basic terms in our main results. 

3.5 Discussion 

3.5.1 Features of our model 

Previous colour naming studies used naming frequencies to assess the reliability and the commonality 

of individual responses using surface or light samples (Boynton and Olson 1987; Sturges and 

Whitfield 1995; Paggetti, Bartoli et al. 2011). Our approach has similar aims but differs in its methods 

and samples and thereby enables a richer examination of both universal features and individual 

variations in colour naming. We used a combined set of light and surface samples. Instead of 

analysing naming frequencies we modelled individual responses as a collection of 3D regions and 

quantified their interrelations. The model assumes that regions are convex and connected in CIELab 
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colour space, a feature that follows from its construction as an opponent colour space (Fairchild 1998). 

Other studies have implicitly made the same assumption without explicit use of convex hulls (e.g. 

when computing centroids by averaging named locations); the assumption is also supported by 

extensive empirical categorizations (Boynton and Olson 1987; Olkkonen, Hansen et al. 2009). A 

recurrent conclusion of previous studies is that the number of tested samples and their distribution in 

colour space influence the resulting categorisations (Boynton and Olson 1987; Sturges and Whitfield 

1995; Paggetti, Bartoli et al. 2011). In our study, the tested samples were not equally distributed but 

biased to the positive-positive quadrant in the CIELab chromaticity plane (see Table 3.5), enabling the 

densest sampling where the greatest number of category centroids are located (see Table 3.6 and 

Figure 3.8). 

 

Quadrant ++ -+ -- +- 

Light 0.33 0.30 0.15 0.22 

Surface 0.45 0.24 0.13 0.18 

Light+Surface 0.35 0.28 0.15 0.21 

Table 3.5 Fraction proportion of test samples in each quadrant of the a*b* plane, for the light-based samples (top 

row), surface-based samples (middle row) and all samples (bottom row). Each quadrant is labelled by the signs of the 

a* and b* axes. 

Despite differences in number and distribution of samples, our results are consistent with previous 

studies, as indicated by the high correlation between our Volume index and others’ naming frequencies 

(Figure 3.6a), by the agreement between our Category Inconsistency index and others’ inconsistent 

naming frequencies (Figure 3.6b), and by the agreement in focal and centroid locations (Figure 3.8a; 

the only significant difference lies in the yellow focal location, because our tested samples were not as 

saturated as those used for other studies). The convex hull approach thus enables a consistent 

expansion of information from a small set of categorized samples to large regions of non-tested 

samples, i.e., all points contained in the convex hulls. In turn, the indices report information not only 

on the tested samples but the whole of colour space (up to the sampling borders). 

 

Quadrant/Category Red Green Yellow Blue Brown Orange Pink Purple 

++ 0.99 0.01 0.26 0 0.97 1.00 0.65 0.02 

-+ 0 0.92 0.74 0.04 0.03 0 0 0 

-- 0 0.07 0 0.86 0 0 0 0 

+- 0.01 0 0 0.10 0 0 0.35 0.98 

Table 3.6 Fraction proportion of tested samples according to basic colour categories and a*b* plane quadrants. In 

bold the quadrant with highest proportion for each colour category. 
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3.5.2 Colour naming ability 

We derived quantitative indicators of colour naming ability from two main analyses: the compact 

descriptions of individual colour solids in terms of indices; and the region-based analysis of the 

ACNS. The usage patterns of basic and non-basic colour terms in the free-naming test also provided 

quantitative information about naming behaviour, on both the individual and group level. 

Results from the free-naming test revealed an extensive usage of the 11 basic colour terms (BCTs) by 

our observers – 90.5% of samples were named with BCTs, and all observers used all of the 11 BCTs – 

thus vitiating the use of only the 11 BCTs in the other forced-choice naming tests. Nonetheless, nearly 

10% of samples elicited non-basic colour terms (non-BCTs), and all observers used at least one non-

BCT, despite not being restricted to use monolexemic terms and therefore allowed to qualify BCTs. 

This pattern supports the notion of “hard-to-name” regions (Boynton and Olson 1987; Sturges and 

Whitfield 1995) and, given that BCTs should span the whole of colour space, might suggest a need for 

more BCTs, a point to which we return when considering the ACNS analysis. 

Analyses of the index values revealed significant differences in naming behaviour between colour 

categories. Volume and Category Inconsistency indices confirmed green and blue categories to be the 

largest (Figure 5a) and the most stable (Figure 5b) of all categories, in accordance with previous 

studies (Boynton and Olson 1987; Sturges and Whitfield 1995; Paggetti, Bartoli et al. 2011). This 

result implies that the usage of the terms green and blue in colour communication is both more 

extensive and more reliable than other terms. Furthermore, differences in the Structure Deviation 

index between colour categories indicate that observers are more likely to concur when naming green 

or blue samples and disagree when naming white and red. The low value of the Centroid Deviation 

index across all colour categories indicates that the categorical perceptual structure of colour space is 

similar for all our observers. The close concordance of our calculated centroids with those previously 

reported (see Figure 7b) also suggests similarity across tested populations. Communication of colours 

close to the centroids should therefore be highly successful in comparison to those further away, a 

conclusion reinforced by the fact that samples close to the centroid are categorized 30% faster. Lastly, 

our approach allows us to make comprehensive characterisations of colour naming ability by 

combining several indices. For example, we are able to conclude that the green category is the most 

stable when it has to be named (CI) and the most-often named (V), and that the most agreement is 

reached (SD and CD) in where to name it. 

Analysis of the ACNS, which summarized all the colour naming information provided by our 

observers, provided the description of colour space in terms of basic and border regions, of which we 

reported the largest 35. As expected from the forced-choice naming tasks and previous studies 
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(Menegaz, Troter et al. 2007), most of the space is spanned by regions corresponding to the basic 

terms. Yet there are also large regions corresponding to intermediate border areas, in particular green-

blue, green-yellow and blue-purple border regions, which together constitute nearly 12% of the total 

volume. This fact, together with the moderate usage of some non-BCTs in the free-naming test (e.g. 

turquoise), suggests that additional BCTs in the experimental vocabulary are necessary to reduce the 

size of the border regions. We also suggest that it is critical to successful colour communication to 

maximise the volume covered by basic terms and minimise the size of intermediate regions because 

these are where observers vary most in their naming behaviour. Our results indicate that adding just 

three basic terms, corresponding to the three largest border regions, would make a significant 

difference in their coverage of colour space (from 59.5% to 71.2% coverage) and a corresponding 

improvement in colour communication. Analysis of the locations of monolexemic non-BCT centroids 

suggests that the two commonly-used terms turquoise and lilac may already act to cover the first and 

third largest of these border regions. These three border regions also behave differently from other 

border regions, in that their constituent terms do not form the stems for higher-order concatenations. 

The latter, formed by incrementally adding colour terms, as in yellow-brown, yellow-brown-orange, 

yellow-brown-orange-pink, and yellow-brown-orange-pink-white, generally support the existence of 

“hard to name” regions  described by Boynton and Olson 1987. The latter five-colour region may also 

correspond to the commonly-used non-BCT peach. 

Analysis of the ACNS also provides centroid locations for the border categories, an addition to 

previous reports of basic category centroids (Boynton and Olson 1987; Sturges and Whitfield 1995; 

Paggetti, Bartoli et al. 2011). Most locations are biased towards one category, rather than located at 

mid-point between the constituent BCT categories. The dominance of green is also reflected in the 

displacement of border regions to green away from the green centroid. The heavy density of border 

regions around grey, and the displacement of border centroids towards grey, fits with the observation 

that discrimination is increased around neutral points (von der Twer and MacLeod 2001) and also 

suggests that the inner regions of colour space will be most susceptible to deviations from colour 

constancy. 

In general, the complexity of the 3D category shapes revealed by the ACNS analysis, especially of the 

border categories, indicates that it is not appropriate to generalise from linear borders in the 2D plane 

(as in Hansen et al. (Hansen, Walter et al. 2007)) to planar borders in 3D space. Modelling of colour 

categories as fuzzy sets in which smooth functions mediate between basic regions (Lammens 1995; 

Benavente, Vanrell et al. 2008) may also be an oversimplification.  
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3.5.3 The relationship of naming indices to FMHT performance 

Standardised tests of colour vision examine chromatic discrimination at the sensory level. Although 

the ability to distinguish between two colours must logically be a prerequisite to giving them different 

names, chromatic differences are clearly not sufficient to ensure categorical differences. Many 

discriminable greens still fall in the same green category, while two barely discriminable colours may 

fall either side of a categorical divide. Perceptual categorisation and linguistic labelling, and any 

interaction between these (Gilbert, Regier et al. 2006; Brown, Lindsey et al. 2011), are thus likely to 

involve perceptual and/or cognitive processes well beyond the sensory level, unexamined by 

standardised discrimination tests. Thus, we expect that the naming indices introduced here will 

provide a complementary tool to sensory discrimination tests in assessing colour perception. 

To evaluate the complementary information conveyed by the indices, we first examined potential 

redundancies between the indices themselves, and then examined their relationship with the 

Farnsworth-Munsell 100-hue test (FMHT) scores. For the former, we performed Pearson correlation 

on all possible pairs of the mean indices, averaged over all colour categories (excluding white and 

black) for each observer, across the 23 observers (see Table 3.7). Because the total volume overall is 

limited by the maximal volume of the tested set (Figure 3.1b), increases in the mean category volume 

tend to correlate with increasing overlap of individual categories. We therefore expect, and find, a 

significant correlation between the mean Volume (non-normalised) and Category Inconsistency (CI) 

indices (r = .858; p < 0.01). But this correlation does not hold for the individual colours green, brown, 

orange, pink, and purple, indicating that the two indices provide independent information on the 

individual category level. In the case of green, it is clear from the coefficients of variation and indices 

value that the green category is large and relatively stable in size across all observers, and that 

therefore its variation in naming inconsistency is due to other factors. Similarly, although the 

correlation between the mean Surface Light Inconsistency (SLI) and V is significant (r = 0.478, p < 

0.05), the correlation is insignificant at the individual category level, except for orange (r = 0.591; p < 

0.01) and pink (r = -0.542; p < 0.01).  The lack of significant correlation of SLI and CI for 5 of the 9 

colour categories (excluding white and black) confirms that the two indices measure different types of 

inconsistency. 

The lack of correlation between Centroid Deviation (CD) and Structure Deviation (SD) both at the 

mean level and for all individual colour categories (except red; r = 0.506, p < 0.05) indicates that the 

two measure different structural features. Mean SD correlates with mean V (r = 0.465, p < 0.05), 

whereas CD does not, on either level. The correlation between mean V and SD arises because the 

larger volume categories are comprised of a greater number of outer regions receiving a fewer number 
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of votes, i.e. a larger number of layers that do not perfectly intersect with individual convex hulls. The 

correlation between V and SD is significant within each colour category alone, indicating that SD is 

largely determined by the presence of outer layers. 

 

 Score/Index FMHT V CI SLI CD SD 

General 

Descriptors 

Farnsworth-Munsell 

100-Hue Test (FMHT) 
1 -.104 -.207 -.191 -.217 -.116 

Volume (V) -.104 1 .858** .478* .399 .465* 

        

Naming 

Behaviour 

Category 

Inconsistency (CI) 
-.207 .858** 1 .436* .423* .360 

Surface-Light 

Inconsistency (SLI) 
-.191 .478* .436* 1 .174 .321 

        

Category 

Geometry 

Centroid Deviation 

(CD) 
-.217 .339 .423* .174 1 .191 

Structure Deviation 

(SD) 
-.116 .465* .360 .321 .191 1 

Table 3.7 Correlations between indices values and Farnsworth-Munsell 100-hue test scores. Each value in the table 

indicates the Pearson Correlation coefficient for the corresponding row and column indices or test scores. **. 

Correlation is significant at the 0.01 level (1-tailed). *. Correlation is significant at the 0.05 level (1-tailed). 

Second, we examined the correlations between the FMHT scores and mean indices across observers. 

There are no significant correlations (Table 3.7). The lack of correlation between FMHH and indices 

is further illustrated by factor analysis on the correlation matrix of the mean index and test scores. 

Principal component analysis (PCA) with varimax rotation reveals two components that together 

explain 61.4% of the variance across observers. The V, CI, SLI and SD indices load highly and 

positively on the first component; the FMHH score loads negatively and the CD index positively on 

the second component. This result supports the hypothesis that low-level chromatic discrimination 

ability does not perfectly predict naming behaviour, in accordance with previous studies which suggest 

the contribution of higher-level factors (Webster, Webster et al. 2002). It is important to note, though, 

that these results hold only for the population of normal trichromats tested here. We expect the 

descriptors to vary differently for populations of colour-anomalous observers. 
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Chapter 4  The chromatic setting paradigm 

Chapter 3 conclusions stated large individual variations in the categorical colour structure of colour 

space. Also, that colour samples in colour space were mostly represented by the eleven basic colour 

terms and despite the categorical structure of centroid regions was mostly stable, in between regions 

had a higher potential to fail in colour communication and thus to not coincide in categorical colour 

perception. Then, if we are interested into measure categorical properties of colours under illumination 

changes we should restrict to study the changes among the basic categories and also tune our 

measuring paradigm and stimuli to each particular observer. The current chapter introduces a newly 

developed psychophysical paradigm and experiment to measure colour appearance under long periods 

of immersive adaptation to several illuminations. Finally, as usual in colour constancy studies, the 

measurements under two different illuminations are compared and conclusions derived. The new 

paradigm can be readily explained as an extension of the chromatic setting paradigm where instead of 

adjusting the internal "grey" observers are asked to adjust close versions of the nine chromatic basic 

colour terms. So the new paradigm is called chromatic setting and was applied to a new experiment, 

Experiment II, which tested simple stimuli under three different illuminations. Also, Experiment II 

included a methodology to validate the new paradigm. Experimental results indicated that the 

paradigm was feasible. Since our paradigm relies strongly on colour memory ability, we studied its 

validity by testing the stability of these internal references along the experiment. To test whether our 

paradigm provides a more comprehensive measure of the colour constancy phenomenon, we have 

applied linear models to study its behaviour, e.g. to what extent these models are capable of absorbing 

the growing data complexity that results from the addition of extra measurements. Finally, we 

developed a new colour constancy index that arguably captures the intrinsic complexity of the 

phenomenon in a single value, while still in agreement with the previous colour constancy literature. 
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Chapter 5 and 6 exploded the chromatic setting paradigm to an extended set of stimuli and 

demonstrate its usefulness when studying categorical changes due to illumination changes. 

4.1 Introduction: towards a new paradigm 

4.1.1 Constraints on the experimental design 

The design of the experiment (laboratory conditions, stimuli selection, number of observers and 

selection,...) is as important as the selection of the measuring paradigm. Some constraints follow from 

Chapter 3 observations on the categorical structure of individual colour space. 

Because we are only interested into study the influence of categorical colour perception in adaptation 

we should restrict to simple flat stimuli without any high level information as tridimensional shape, 

specular highlights, shadows, known objects, etc. So our stimuli will be simple Monrians, i.e., a 

geometrical composition of squares following a Lambertian shcema which also facilitates a feasible 

simulation of illumination on it. 

Since we are interested into categorical colour perception and it has large individual variations, our 

stimuli must be tuned to each particular observer. Otherwise, a common stimuli for all observers could 

not awake, if any, effects on the categorical colour perception through adaptation. Then our stimuli 

will be different for each observer and its colours will be based in categorical perception of each 

observer. 

The colours present in the stimuli also have some constraints: number, categorical quality and location 

in colour space. The number of scene colours has been proved (ref) to provide qualitative information 

to colour constancy mechanisms, it ranges from a small number of colours (ref) to large distributions 

of colours changing gradually in a surface (ref anya). In our case we will test small sets of colours 

from on to eight. However, the categorical distribution of this colours influences the quality of the 

information provided to the observer about the illumination, it is not the same using say eleven colours 

categorized as green than eleven colours where each one belongs to a different basic colour category. 

the latter case provides much more information about the illumination. Also from Chapter 3 we have 

seen that the colour space is mostly categorized into the eleven basic colour categories and also that 

the inner part of the colour space (near the achromatic locus but not so close) is the one that is more 

interesting in terms of possible categorical changes when the illumination changes, this is due to the 

increasing proportion of border points compared to inner points as we go to the centre of colour space. 



59 

 

So the colours present in our stimuli will be based on the location of the centroids of the basic colour 

categories for each observer and will be close to the inner part of the colour space. 

Colour contrast effect has been divided into two main effects: simultaneous colour contrast which is 

unavoidable and global colour contrast which depends on the geometrical statistical properties of the 

visual scene. Despite that both effects has been linked to colour constancy, in this study we are not 

interested into study them so we will rule out of our analysis using several techniques embedded in our 

experimental analysis. Global contrast was avoided by using the traditional geometrical 

randomizations of Mondrians squares composition for each session trial, and a large number of trials 

ensured cancelled influences. Also, the Mondrians were chromatically centred to D65, this means that 

the average chromaticity of its pixels was of D65. A new feature was included in the experimental 

design which consisted into changing the single test patch by a multiple test patch version where all of 

its patches changed simultaneously and their location in the Mondrian was randomized each trial. The 

proportion of the patches in the multiple test patch regarding the overall number of Mondrian patches 

was kept low. Also the average size of Mondrian patches was kept large enough to avoid contrast 

effects. 

In order to understand possible categorical colour influences we need to measure multiple points in 

colour space which reflect the categorical structure for each particular observer. In addition to using 

internal grey as a reference, some researchers have included multiple colour references to study colour 

constancy (Kulikowski and Vaitkevicius 1997; Hansen, Walter et al. 2007; Olkkonen, Hansen et al. 

2009; Olkkonen, Witzel et al. 2010) and to determine properties such as the boundaries between 

colour categories (Smithson and Zaidi 2004; Benavente, Parraga et al. 2009). Some of these studies 

have measured directly the colour appearance of several coloured patches under different illuminants 

(Kulikowski and Vaitkevicius 1997; Speigle and Brainard 1997) while others have used colour 

naming to derive a conclusion about the categorical structure of colour space (Troost and de Weert 

1991; Hansen, Walter et al. 2007; Olkkonen, Hansen et al. 2009; Olkkonen, Witzel et al. 2010). In the 

direct measures, immediate colour constancy seems to hold best for hues corresponding to ‘typical’ 

colours as compared with the adjacent hues, however this effect may be residual (Kulikowski and 

Vaitkevicius 1997). Through the use of colour naming techniques and a large set of coloured samples, 

Hansen (Hansen, Walter et al. 2007) and Olkkonen (Olkkonen, Hansen et al. 2009; Olkkonen, Witzel 

et al. 2010) achieved different levels of colour constancy according to the degree of information 

provided. They modelled the transformations of the perceptual colour space under different 

illuminations by computing the boundaries of the colour categories (Hansen, Walter et al. 2007) and 

computing the colour constancy indices of the categorical prototypes (Olkkonen, Hansen et al. 2009; 

Olkkonen, Witzel et al. 2010). Their conclusions were that the categorical structure of colour space 
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has a high degree of robustness under changes of illumination which could be explained by linear 

models. However Hansen (Hansen, Walter et al. 2007) reported small rotations away from the 

illumination colour. 

4.1.2 Discarding traditional paradigms 

As reviewed in Chapter 2 there are several paradigms to measure colour constancy. However when 

testing a particular hypothesis the selection of the paradigm and the stimuli becomes critical. Here we 

review the most commonly used paradigms under the light of our needs. 

The main handicap in colour naming paradigms is that tested coloured samples are assigned to only 

one colour term from a small set of terms. In practical terms this means that observers has to perform 

an initial categorizing step from the "real" colour perception and this difference remains embedded in 

the measurements. In Chapter 3 we have seen how our observers used a small set of colour terms to 

perform the free naming task and all of them used mostly only the eleven basic terms. Then the 

method's precision can be quite low unless using large amounts of testing samples, and then focusing 

on studying the overall features of the categorical classifications instead of the isolated categorizes 

samples itself. Take for instance the work of Hansen et al where they modelled the boundaries of 

colour categories and studied the transformations of this boundaries in an equiluminant plane. Also, 

the work of Olkkonen et al used overall features, concisely the displacement of the centroid location 

for each categorical region. Thus, colour naming is a too coarse method to study categorical colour 

changes around the categorical border locations of basic colour terms. 

The main challenge when using asymmetric matching to measure colour constancy is that the method 

switches the adaptation state from one illumination to the other and thus not enabling immersive states 

of adaptation. However we could solve this issue by performing different adaptation to each eye but in 

this case the categorical information will be confounded by the different information provided by each 

eye. Furthermore, matching between arbitrary test samples do not inform us about the categorical 

perception of the observer and so any information is provided in the location of the basic regions in 

colour space. 

The achromatic setting paradigm has a high degree of precision and also provides categorical 

information on their measurements, however only one point in colour space is measured.  
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4.2 The Chromatic Setting paradigm 

With this in mind, we have developed a colour constancy paradigm that tries to minimize the 

weaknesses while keeping the strongest points of previous paradigms. In our method, the 

measurements are done under a permanent state of adaptation due to a long period of illumination, 

thus avoiding potential illuminant-switching issues. Our new paradigm can be seen as an extension of 

the achromatic setting paradigm which, instead of using only the internal “grey” reference, uses 

several categorical colours, exploiting the ability of subjects to consistently replicate focal colours 

over time. Focal colours (Berlin and Kay 1969; Boynton and Olson 1987) are by definition the most 

representative colours of each naming category and there is strong evidence of the effect of language 

(Heider 1972; Kay, Siok et al. 2009) and memory (Hansen, Olkkonen et al. 2006; Ling and Hurlbert 

2008; Nemes, McKeefry et al. 2010) on their perceptual categorization. Although the ability of 

subjects to match a memorized colour decreases in general with increasing inter-stimulus intervals 

(Nemes, McKeefry et al. 2010), there is some evidence that focal colours can be remembered more 

accurately than other colours (Heider 1972). 

In summary, we present a new psychophysical paradigm to determine colour constancy under 

immersive illumination which measures the perception of nine colours under different states of 

adaptation by using CRT-based stimuli. The stimuli were combinations of three different two-

dimensional Mondrians and three different illuminants. The subject’s task was to select and then 

reproduce a particular colour from memory. In order to rule out memory failings the experimental 

procedure included a series of repeatability tests. 

4.2.1 Workings of the new paradigm 

Our paradigm consists of two steps as illustrated by Figure 4.1. In the first step, subjects were asked to 

select colours that best represented basic colour terms within a limited region of the colour space 

(Bounding Cylinder, represented by a red circle). These were grey, green, blue, purple, pink, red, 

brown, orange and yellow (Berlin and Kay 1969). The squares within the red circle in Figure 4.1 

symbolize the colours selected during this first step which we called reference session. We termed 

these colours Selected Representatives (SRs). In the second step which we called regular session, the 

same subjects were asked to reproduce these SRs under different conditions of background and 

illumination. The squares outside the red circle in Figure 4.1 correspond to these colours, and the 

arrow represents the change in adaptation state. Since the new paradigm can be seen as an extension of 

the achromatic setting paradigm to multiple colours, we named it Chromatic Setting. 
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Figure 4.1 Schematics of the chromatic setting paradigm in the a*b* plane of CIELab colour space. The black 

broken lines represent the boundary of the CRT gamut. The squares inside the red circle represent the colours 

selected in the reference session. The squares outside the red circle represent the colours reproduced once adapted to 

the new illuminant in a regular session. The arrow represents the chromatic shift induced by the illumination. 

The red circle in Figure 4.1 corresponds to the projection of a cylinder in the a*b* plane. This cylinder 

was introduced to limit subjects choices, thus avoiding highly saturated colours that fall outside the 

CRT gamut when “illuminated”. Details on the Bounding Cylinder implementation can be found 

below. 

4.2.2 The Bounding Cylinder 

In the reference sessions, the palette of possible colours was limited in saturation and lightness by a 

cylinder whose main axis was the lightness dimension of CIELab (L* between 30 and 70 and radius 

equal to 22 E*). The purpose of the cylinder was strictly technical as illustrated in Figure 4.1: we 

wanted subjects to find reasonably representative samples while still allowing these colours to be 

“illuminated” later without exceeding the CRT-monitor gamut. This limitation and the shape of the 

monitor’s gamut in CIELab also determined our choice of illuminants. The value of 22 E* for the 

radius was chosen after our own (unpublished) measurements indicated that colours closer than 12 

E* to the achromatic locus were usually categorized as “grey”. Subjects naturally tended towards 

choosing saturated colours, and to stop them from using the borders of the cylinder as a reference, i.e. 

to increase saturation until hitting the cylinder limit, the experimental program “bounced back” the 
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stimulus inside the cylinder by a small random amount once the boundary was reached. The Bounding 

Cylinder was not present in regular sessions. 

4.3 Methods 

4.3.1 Observers 

Ten subjects, six male and four female took part in our experiments. They were between 20 and 44 

years old and their colour vision was normal as tested by the Ishihara colour vision test (Ishihara 1972) 

and the Farnsworth-Munsell D15 hue test (Farnsworth 1957). All had self-reported normal or 

corrected to normal visual acuity. Three of the subjects were the authors. The rest were naïve to the 

purposes of the experiment and of these, three were paid. 

4.3.2 Experimental setup  

All sessions were conducted inside a dark room, with all walls lined in black. The experiment was 

programmed in Matlab and the stimuli were displayed on a CRT Mitsubishi Diamond Pro 2045SU 

monitor at 100Hz, driven by a ViSaGe graphics card from Cambridge Research Systems Ltd. (CRS -

www.crsldt.com) with 12 bits colour resolution per channel. The CRT screen measured 389 mm in 

height by 292 mm in width subtending approximately 22x17 deg and was the only light source in the 

room. Its resolution was 1024x768 pixels. Viewing was binocular and unrestrained. The monitor was 

calibrated regularly using a Minolta ColourCal colourimeter and CRS software. We used the 

COLOURLAB (Malo and Luque 2002) toolbox to get the colour space conversions needed. Subjects 

modified the test stimuli by navigating the CIELab colour space using six different buttons, two for 

each colour space dimension on a commercial gamepad. The reference white point was D65, Lum = 

100 Cd/m
2
. 

4.3.3 Stimuli 

Our basic stimulus consisted of a Mondrian background pattern, i.e. a set of randomly overlaid 

coloured rectangles, distributed across the screen. The average rectangle size was 50x50 pixels. There 

were three types of backgrounds:  

Type 0. It was built from 7 intensity levels of the same D65 chromaticity. They were equally spaced 

between 40 and 70 Lab lightness units and their luminances in Cd/m
2
 were: 11.25, 14.54, 18.42, 22.93, 

28.12, 34.05 and 40.75. Its mean was 22.66 Cd/m
2
.  

http://www.crsldt.com/
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Type I. It was built from the SRs chosen by each subject in reference sessions (see details below). 

There were 8 colours in total: green, blue, purple, pink, red, brown, orange and yellow. Their averaged 

luminance range was between 12.77 and 39.29 Cd/m
2
, mean = 25.11 Cd/m

2
. 

Type II. It was built from 8 hues halfway between those of type I, with similar saturation and 

lightness: blue-purple, purple-pink, purple-red, red-orange, orange-yellow, orange-brown, yellow-

green and green-blue. Their averaged luminance range was between 16.87 and 35.54 Cd/m
2
, mean = 

24.35 Cd/m
2
. 

The number and sizes of rectangles were manipulated so that the pixel average chromaticity of all 

background types prior to illumination was that of D65. Backgrounds Type I and II did not contain 

achromatic D65 rectangles to avoid giving the observer cues about the illuminant (Foster 2011). 

Unique randomized Mondrians were created for each experimental trial: no observer saw the same 

Mondrian twice. To illuminate the Mondrian pattern, we first assigned to each rectangle a spectral 

reflectance function, interpolated from the set of Munsell chips assuming a Lambertian reflectance 

model -see COLOURLAB (Malo and Luque 2002) for implementation details. Illumination was 

simulated by performing the spectral product of each rectangle’s reflectance by one of three 

illuminants (D65, greenish and yellowish), whose CIE xy chromaticities are shown in Table 4.1. The 

luminance range in Cd/m
2
 for the illuminated stimuli was between 11.25 and 40.74 for the D65 

illuminant; between 11.24 and 40.73 for the greenish illuminant and between 11.20 and 40.56 for the 

yellowish illuminant. The mean values in Cd/m
2
 were 24.04, 23.7 and 24.37 respectively. 

 

Illuminant x y 

D65 0.312 0.329 

Greenish 0.296 0.453 

Yellowish 0.453 0.434 

Table 4.1 CIE xy chromaticity of the illuminants used in Experiment II. 

4.3.4 Procedure 

The experiment consisted of sixteen sessions divided in three groups: reference, regular and 

repeatability tests. Figure 4.2 shows the time sequence of the experiment. First there was a training 

period followed by the reference session, after which the main body of the experiment started. It 

consisted of nine regular sessions and three interleaved repeatability tests (occurring at the beginning, 

halfway and at the end of the regular sessions) whose aim was to track variations in subject’s 
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responses. Subjects completed all experiments in less than three weeks and no more than two sessions 

per day were allowed. Details of the different sessions were as follows: 

Reference session. It consisted of a single session with Type 0 background and D65 illumination and 

it started just after the training was completed. Subjects were instructed to select the most 

representative colours for each of the eight basic chromatic categories. The choice of available colours 

was constrained by the Bounding Cylinder (see squares within the red circle in Figure 4.1). 

Regular sessions. They consisted of nine sessions combining the three illuminants and three 

background Types described before. Each regular session followed a similar protocol as the reference 

session, except that subjects were instructed to reproduce the same SRs they had selected in the 

reference session without any constraints (no Bounding Cylinder). 

Repeatability test. It consisted of three groups of two sessions each. In the first session, subjects were 

asked to reproduce the SR chosen before, this time under Type 0 background, D65 illuminant and 

within the Bounding Cylinder. This is equivalent to a Reference session where subjects reproduce 

instead of selecting the colours. The second session was a regular session with Type II background 

and greenish illumination. 

Training. It was done at the very beginning and consisted of repeating two consecutive sessions: a 

reference session followed by a regular session both with Type 0 background and D65 illuminant (i.e. 

in the second session there was no Bounding Cylinder). The objective of this was for subjects to 

understand the different instructions in both cases. Pilot sessions with the authors as subjects, showed 

that in regular sessions it was possible to reach a precision of 5 E* at reproducing the same colours 

after about two sessions and this did not improve significantly afterwards. We used this value as a 

criterion to determine the end of training (see Appendix C for detailed values). 
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Figure 4.2 Temporal sequence of the chromatic setting paradigm .Panel a shows the common schematics for a 

reference or regular session. Panel b illustrates the setup of the whole experiment. Start-up sessions consisted in both 

training and reference sessions. In a reference session, subjects selected their most representative colour for each 

category. Regular sessions were similar, except that subjects had to reproduce the same colours they had chosen in 

the reference session. Repeatability Tests were designed to assess subject ability to reproduce the colours selected in 

the reference session. 

Panel a of Figure 4.2 shows the common schematics of the reference and regular experimental 

sessions. Each session started with 120 seconds adaptation to a uniform D65 screen (luminance equal 

to 30 Cd/m
2
) followed by 180 seconds of adaptation to a Mondrian under the same simulated 

illumination to be used later in session. After that, subjects were prompted auditorily and visually (by 

a word written in black at the bottom of the screen) to the colour category requested and manipulated 

the gamepad to either select or reproduce the colours according to their instructions. Each trial ended 

by pressing a “next trial” button on the gamepad which followed re-adaptation to a geometrically 

randomized version of the original Mondrian and illuminant for 10 seconds before proceeding to the 

next trial. There were 44 trials: in the first four subjects were asked to produce “grey” and in the 

following, they were asked to produce the other eight colours 5 times each in random order. Test 

patches occurred simultaneously at multiple random locations in the Mondrian and were adjusted by 

the observer with no time constraints. They were spatially distributed in a random manner in every 

trial with the aim of forcing subjects to average test locations thus reducing local chromatic induction 

effects (Shevell and Wei 2000; Otazu, Parraga et al. 2010). The average number of test patches was 

randomly determined following a normal distribution around 25 (2.4 StDev) for the Type I 

backgrounds and 4.1 (0.75 StDev) for the Type I and II backgrounds and occupied between 4 and 7 

percent of the total display area respectively. In the cases where “grey” was requested, we randomized 
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the chromaticity of the initial test patches around the expected value to avoid influencing the subject’s 

response -see Brainard’s basic starting rule (Brainard 1998). In all other cases, the starting value of 

the test patches was randomly distributed around each subject’s selected “grey”. To obtain a single 

measure of a SR colour we averaged its individual trials adjustments. Each trial lasted approximately 

30 seconds and each session approximately 25 minutes. 

4.4 Results 

4.4.1 Selected representatives and their repeatability 

Figure 4.3 shows the CIELab location of selected representatives chosen by all subjects (D65 was used 

as a reference white point). Panel a shows the data projection into the lateral surface of the Bounding 

Cylinder and panel b shows their projection into the a*b* plane. The limits of the Bounding Cylinder 

are shown as a red circle in panel b. The coloured areas highlight the inter-subject variability, which is 

largest in the lightness dimension (Webster and Kay 2007; Foster 2011), particularly for green, blue 

and purple. From the two panels it can be inferred that there is no volumetric overlap among the 

different coloured areas, i.e. subjects were consistent in selecting colours within categories. The figure 

also shows good agreement between the hue locations of our categories and the hues of Boynton and 

Olson’s focals (Boynton and Olson 1987), plotted beyond the cylinder boundaries in panel b. 
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Figure 4.3 CIELab locations of the selected representatives adjusted in the reference sessions by all 10 subjects. 

Square markers in both panels indicate the average location (5 trials) of each colour category and subject. Colour 

categories are labeled and colour-coded with their representative colours (R-red; G-green; B-blue; Y-yellow; N-grey; 

W-white; K-black; P-pink; O-orange; Pr-purple; Br-Brown). Panel a shows the projection of the data in hue and 

lightness. Panel b shows the same data projected on the a*b* plane. The red circle shows the boundary constraints 

imposed by the method in the reference sessions. 

Along the experiment we kept track of the accuracy of responses over time by means of the 

repeatability tests as detailed in the Methods section and Figure 4.2b. These were conducted regularly 

at approximately three days’ intervals and included a reference session where observers were asked to 

reproduce the original SR colours. Plots in Figure 4.4 were arranged in rows and columns. Columns 

correspond to two typical subjects (XO and AB) and the most inconsistent subject (LC) over time. 

Rows correspond to measurements taken over three days’ intervals. The first row corresponds to the 

chromatic settings of the reference sessions and the others (rows b, c and d) correspond to the 

repeatability tests in temporal sequence. We looked for inconsistencies in the repeatability data by 

applying a Student's t-test (p<0.05) to the same categories across different rows in each CIELab 

dimension. Our results show that the means of the results populations considering all subjects were 

equal in 95% of the cases. Some subjects complained that red and/or orange selections were not 

saturated enough to be called “representatives”. Crucially, this did not seem to impair their capacity to 

remember the same colour throughout the rest of the experiment even for close categories such as 

brown and pink. 
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Figure 4.4 Chromatic settings from the reference session and the repeatability sessions. Row a shows the selected 

representatives chosen by three subjects in the reference session. Rows b, c and d show the corresponding settings for 

the three subsequent repeatability tests. Square markers represent the average of individual trials (small dots joined by 

lines) and the large red circle corresponds to the Bounding Cylinder in a*b* chromaticity plane. 

Repeatability tests also contained a regular session with Type II background and greenish illuminant. 

Figure 4.5 shows a summary of these results. Each panel corresponds to the same observer as before 

(XO, AB and LC) and each square marker corresponds to a measurement taken over three days’ 
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intervals. Notice the data shift corresponding to the change of illuminant. We applied the same 

approach as before and found that the means of the results populations were equal in 73% of the cases 

(t-test, p<0.05). This difference is likely to be due to the absence of the Boundary Cylinder which 

increased uncertainty in the saturation dimension. 

 

 

Figure 4.5 Chromatic settings for repeatability sessions. Results include settings for three subjects, Type II 

background, greenish illuminant and no Bounding Cylinder. Each point represents the average of 5 trials (4 for grey) 

and it was produced in different days over the experiment lifespan. Error bars show the StDev. Panels a and b 

correspond to typical subjects and c shows the subject with the largest variability. Notice the shift of all points 

towards green, corresponding to the greenish illuminant. We chose D65 as a reference white point to highlight the 

effects of the illuminant for illustrative purposes. Again, for clarity's sake lightness information is not shown. 

Although the repeatability tests show that subjects can reproduce the same SR colours, we conducted 

another experiment to test longer term colour memory. These results which are consistent with Figure 

4.5 are detailed in the Appendix D. 

4.4.2 Chromatic settings under different illuminants 

Figure 4.6 shows the averaged chromatic settings in CIELab obtained during regular sessions for all 

subjects, discriminated by backgrounds and separated in panels according to the illuminant. Over the 

regular sessions, our 10 subjects adjusted 5 times (4 for grey) each of the 9 basic colours for each of 

the 9 different stimuli, totaling 3960 adjustments. Only 1.4% of these adjustments were closer than 5 

CIELab E* units from the CRT monitor gamut boundary, thus indicating that subjects did not use 

this boundary as a cue to find their SR colours. 

As before, we plotted these results from different illuminations under the same D65 reference white 

point in order to highlight the amount of illumination shift, hence the displacement of the data in the 
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plots. Figure 4.6 shows a tendency for subjects to choose more saturated colours in the presence of 

coloured backgrounds than in the presence of achromatic backgrounds, i.e. squares are closer to the 

achromatic locus. This is true for all colours studied except for green, yellow and orange. A similar 

outcome was reported by Brown and McLeod (Brown and MacLeod 1997) in their comparison 

between the effects of low-contrast and high-contrast multicoloured surrounds. From the same figure 

we conclude that the type of background did not have a strong influence in the chromatic settings. 

However, since Type I and II backgrounds were customized for each subject according to their SR, the 

generalization may be masking individual effects. 

 

 

Figure 4.6 Chromatic settings of the selected representatives in regular sessions. The symbols show the chromatic 

settings for each background type: squares for Type 0, circles for Type I and triangles for Type II. Points were 

computed by averaging the corresponding SR for all subjects, for each particular background and illuminant. Panel a 

corresponds to D65, b to greenish and c to yellowish illumination. 

Figure 4.7 shows a set of typical result plots, arranged in columns and rows. Each of the columns 

corresponds to a different illuminant and the rows to four exemplary subjects, all measured using Type 

II backgrounds. Inside the plots, each coloured square correspond to the average of 5 trials (4 for 

grey), which are shown as smaller points joined by lines. To quantify the amount of variability () 

within each group of five trials we computed the average CIELab E* distance between each SR trial 

and the mean SR. As a white point for our calculations we used the corresponding chromaticity of 

each illuminant (see Table 1) at 100 Cd/m
2
. Since there were differences in the dispersion of data 

around the mean depending on each subject and colour category, we summarized  in Table 4.2 where 

each value corresponds to the average variability over illuminant-background combinations. The 

average  value was 2.09 E* (1 StDev) for the reference sessions and 4.60 E* (2.06 StDev) for 

regular sessions. The difference between these values is likely to result from the Bounding Cylinder. 
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According to our estimations, the precision of our method is consistent with that of achromatic setting 

studies (Brainard 1998), where accuracies between 4 and 5 E* are common. 
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Figure 4.7 Typical chromatic settings from four different subjects for regular sessions. Column a: under D65 

illuminant; column b: under greenish illuminant; and column c: under yellowish illuminant. The background was 

Type II in all cases. Individual trials are represented by small dots joined by lines and their average is represented by 

a colour-coded square. 
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A balanced one way ANOVA F-test was performed to test for variability differences among colour 

categories. The results show that mean variability for colour categories is significantly different, 

F(8,801)=3.54 and p<0.01. Post hoc analysis using multiple comparison procedures determined which 

categories differ: red (mean=4.03, 1.25 StDev) and grey (mean=4.05, 1.49 StDev) have significantly 

lower variability than purple (mean=5.29, 1.15 StDev) and orange (mean=5.02, 1.22 StDev). The same 

analysis was performed to test for variability differences among background types and there were no 

significant effects, F(2,807)=2.98 and p>0.05. The different illuminants significantly affected 

F(2,807)=32.52, p<0.01, the variability of our measures: D65 illuminant has the lowest variability 

(mean=3.83, 1.52 StDev), followed by greenish (mean=4.81, 2.08 StDev), and yellowish (mean=5.16, 

2.27 StDev) illuminants. 

 

 R G B Y N Pr P O Br Mean 

JRV 2.14 3.82 3.44 3.42 2.35 3.87 3.26 3.42 2.60 3.18 

CAP 4.40 3.56 3.53 3.45 3.81 5.96 4.66 5.75 4.96 4.45 

MV 3.51 4.31 5.60 5.10 2.91 6.62 4.66 5.25 4.34 4.70 

MS 2.44 4.05 5.82 4.65 3.39 3.78 5.43 3.37 2.78 3.97 

XO 2.98 3.87 3.33 3.28 3.00 4.38 3.27 4.02 3.22 3.48 

RB 3.65 3.51 3.61 3.42 7.39 4.44 3.62 4.71 6.70 4.56 

LC 5.94 6.55 5.06 7.61 4.71 5.76 5.87 4.85 7.11 5.94 

AB 4.29 5.66 5.23 4.34 5.09 6.55 5.55 5.21 4.47 5.15 

RBV 5.17 5.20 4.93 5.06 3.08 4.87 4.94 6.71 5.14 5.01 

JC 5.54 4.45 5.67 4.94 4.81 6.63 6.19 6.92 4.79 5.55 

Mean 4.03 4.50 4.62 4.53 4.05 5.29 4.74 5.02 4.61 4.60 

Table 4.2 Variability () of mean chromatic settings in ΔE* units, averaged over illuminants and backgrounds. The 

columns show values according to colour category and the rows according to subject. The last column/row shows the 

means of the rows/columns. The value in bold corresponds to the overall mean. 

We recorded the time subjects took to complete each trial. The average was 19.5 (5.7 StDev) sec for 

the reference sessions and 20.7 (6.2 StDev) sec for the regular sessions. Also, there were no significant 

time differences in the regular sessions according to illuminants F(2,807)>0.05, p>0.05 and 

backgrounds F(2,807)=0.17, p>0.05, but there were significant differences according to colour 

categories, F(8,801)=13.4 and p<0.01. Multiple comparison procedures revealed that grey was the 

longest to adjust (mean=25.1, 7.6 StDev), followed by brown (mean=22.1, 5.6 StDev) which took 

significantly longer than blue (mean=18.6, 5.7 StDev), purple (mean=18.7, 4.5 StDev) and pink 



75 

 

(mean=17.9, 4.7 StDev). Red (mean=21.1, 7.1 StDev) and yellow (mean=20.7, 6.2 StDev) took longer 

time than pink which was the fastest to adjust. 

4.4.3 Colour constancy indices 

We quantified the extent of colour constancy achieved by our subjects through three colour constancy 

indices: the Constancy Index CI (Arend, Reeves et al. 1991), the Colour Constancy Index CCI (Ling 

and Hurlbert 2008) and the Brunswick ratio BR (Yang and Shevell 2002; Smithson and Zaidi 2004; 

Hansen, Walter et al. 2007), which takes into account the adaptation under the reference illumination. 

Equation 4.1 shows an example of how this was implemented for the case of BR. 

When considering a particular subject’s data, we noted   
  as the chromaticity coordinates of his/her 

selected representative c under illumination i (1 corresponds to D65; 2 to greenish and 3 to yellowish). 

Also,   
  are the chromaticity coordinates of the corresponding   

  when the illuminant i was applied. 

The numerator computes the perceptual shift, i.e. the difference between SRs chosen under D65 

illuminant and greenish/yellowish illuminants. The denominator computes physical shift, i.e. the 

difference between SRs chosen under D65 and their chromatic coordinates when illuminated by 

greenish/yellowish illuminants. Following this arrangement, a value of 1 indicates perfect colour 

constancy and 0 no colour constancy. 

 

       
   

   
    

  
 

   
    

  
 

                         (4.1) 

 

Although there is no assumption of any specific colour space in the index formulae, we choose 

CIE1976 uv, a perceptually uniform space which does not incorporate any white point normalization 

as CIELab does (Wyszecki and Stiles 1982; Brainard 1998). The values in Table 4.3 are the subject-

averaged indices considering each colour category and illumination. 

In order to find significant differences in the mean values of the indices, we grouped our data 

according to colour categories before applying statistical tests. All index values had significant 

differences when grouped according to colour categories and illuminants: CI greenish with 

F(8,261)=3.49 and p<0.01, CI with yellowish F(8,261)=3.78 and p<0.01,        with greenish 

F(8,261)=10.88 and p<0.01,        with yellowish F(8,261)=12.18 and p<0.01, CCI with greenish 

F(8,261)=11.22 and p<0.01, and CCI with yellowish F(8,261)=4.83 and p<0.01. Table 4.3 shows the 
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differences in the indices according to colour categories and illuminants. We highlighted these 

differences by showing the maximum and minimum values within each column in bold. We looked for 

correlations between the different indices when applied to data under the same illuminant and did not 

find any. In other words, the results obtained by colour categories are heavily dependent on the 

selected colour constancy index. 

 

Cat/Ind

ex 
CI        CCI 

Mean 
Cat/Ill G Y G Y G Y 

Red 0.37 0.63 0.69 0.65 0.82 0.76 0.65 

Green 0.73 0.68 0.61 0.58 0.89 0.88 0.73 

Blue 0.53 0.55 0.64 0.65 0.68 0.68 0.62 

Yellow 0.71 0.76 0.51 0.49 0.72 0.75 0.66 

Grey 0.55 0.56 0.62 0.63 0.61 0.62 0.60 

Purple 0.49 0.58 0.72 0.78 0.77 0.79 0.69 

Pink 0.55 0.64 0.54 0.58 0.64 0.68 0.60 

Orange 0.62 0.75 0.53 0.51 0.73 0.76 0.65 

Brown 0.50 0.70 0.75 0.57 0.96 0.82 0.72 

Mean 0.56 0.65 0.62 0.60 0.76 0.75 0.66 

Table 4.3 Three colour constancy indices applied to our measures and split by colour categories and illuminant type. 

All indices were computed in the CIE1976 UCS uv uniform colour space and averaged for all subjects and 

backgrounds. We highlighted in bold the maximum and minimum values in each column, which reveal considerable 

differences within colour categories. 

4.4.4 Linear colour constancy models  

As Table 4.3 indicates, the chromatic settings of our subjects were different for different illuminants. 

We modeled the effects of the illuminant change using linear models of colour constancy, i.e. a linear 

transformation matrix that relates two chromatic settings of the same colour under different 

illuminants. To be able to relate the parameters of our models to properties of the human visual 

system, we chose to operate in LMS cone excitation coordinates (Burnham, Evans et al. 1957; 

Jameson and Hurvich 1964; Brainard, Brunt et al. 1997), calculated from the Smith and Pokorny cone 

sensitivity functions (Smith and Pokorny 1975). Equation 4.2 formalizes the previous approach where 

x and y are the LMS cone excitations produced by the light reaching the observer from the CRT 

monitor: x corresponds to the reference illuminant (D65) and y corresponds to the test illuminant 

(greenish or yellowish). 
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       (4.2) 

 

The model is represented by the matrix M which can take one of several possible forms according to 

its non zero coefficients. These can also be understood in terms of models of visual mechanisms: 

Diagonal (D). The diagonal model (mi,j=0 if i j) has only 3 free parameters. This model only allows 

for multiplicative gain changes that are specific to each one of the three cone classes. It is often 

referred as Von Kries adaptation (Von Kries 1905; Brainard and Wandell 1992). 

Linear (L). The linear model (mi,j=0 if j=4) has 9 free parameters. This model allows signals from 

each cone type to be modulated independently and can describe multiplicative gain changes both at the 

receptor level and after an opponent transformation (Brainard and Wandell 1992). 

Affine (A). The affine model does not set any initial coefficient to zero and it has 12 free parameters. It 

contains nested versions of the previous two models. The first three columns of M include the linear 

model and the fourth column represents an additive process. This model can be thought as an instance 

of the two-process model proposed by Jameson and Hurvich (Jameson and Hurvich 1964; Brainard 

and Wandell 1992). 

Diagonal plus Translation (DT). The diagonal plus translation model (mi,j=0 if i j and j 4), has 6 free 

parameters and can be seen as a simplification of the affine model. The first three columns allow only 

for multiplicative gains for each cone class and the last column allows a further additive process. 

We studied the predictive power of each model when multiple chromatic settings were used as data 

points. Equation 4.3 generalizes Equation 4.2 into a single system of linear equations when using more 

than one data point. This formulation allows using standard multiple linear regression methods to fit 

the model parameters, i.e., to minimize the mean-square difference between the measured and the 

predicted points. In Equation 4.3, the matrix X contains the LMS coordinates of n colours xi under 

reference illuminant and matrix Y contains the settings of those same colours, yi, under test illuminant. 

 

                                                                
         (4.3) 
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Equation 4.4 describes  , which contains all possible subsets of nine colours and their combinations 

according to their indices (1 for green, 2 for blue, 3 for yellow, etc.). Once a particular element of 

  was selected we could fit the model parameters to this element as described in Equation 4.5, 

substitute their LMS coordinates and solve the linear system using least squares. However, since LMS 

is not perceptually uniform, we chose to follow the approach described by Brainard et al (Brainard and 

Wandell 1992; Brainard, Brunt et al. 1997). They solved the linear system through a minimization 

process which determined the model parameters according to the mean CIELab E* colour difference 

between the N predictions and the data points. The function to minimize is described by Equation 4.6, 

where   is an operator that translates from LMS to CIELab coordinates.    was minimized using the 

Matlab Optimization Toolbox. Model precision was evaluated by computing the average E* 

difference between the whole set of nine chromatic settings and their predictions computed from the 

matrix M. 

 

                                                             (4.4) 

 

                                                              (4.5) 

 

                
 

 
                        

         

 

   

              (4.6) 

 

We considered all possible combinations of SRs, within the limits imposed by each model. For 

example, when fitting the linear system in Equation 4.5, the minimum number of points that the model 

can fit is determined by the number of free parameters contained in the model. This terminology is 

equivalent to a system of linear equations where there are larger, fewer or equal number of equations 

than unknowns. The underdetermined case occurs when the number of unknowns is larger than the 

number of the equations (the system is underconstrained). From this follows that the diagonal model 

admits any number of data points    , diagonal plus translation admits      data points, linear 

admits     data points, and affine     data points. This is also valid for Equation 4.6. 

Figure 4.8 summarizes our modeling results as described above. Panel a corresponds to greenish 

illuminant and panel b to yellowish. The y-axis shows the prediction error (in E* units) associated 

with each model as a function of the number of chromatic settings used to fit it. Following the 

approach of Brainard (Brainard, Brunt et al. 1997) we used the chromaticity coordinates of the 
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corresponding illuminant as a reference white point in each case. The function specified in Equation 

4.6 was minimized to fit chromatic settings x (corresponding to D65) and y (corresponding to greenish 

or yellowish illuminants) keeping the same background type. Take for instance panel a in Figure 4.8, 

where each point is the average model prediction error from all possible combinations of elements of 

  that contain the number of colours specified in the x-axis, across backgrounds and subjects. 

Consider the case when the nine SRs were measured both under D65 and greenish illumination using 

the same background type. We fitted the diagonal model to only one correspondence pair from the 

nine chromatic settings available, and used the same parameters to predict the positions of all nine 

corresponding pairs. We repeated this for all the other pairs and calculated the average CIELab E* 

distance between predicted and measured points for the nine chromatic settings pairs. We extended 

this to all subjects and backgrounds. The result of these calculations (average from 270 model 

predictions) is shown in panel a as the leftmost filled circle in the plot. To calculate the second 

leftmost circle in the plot, we fitted the diagonal model to two correspondence pairs from the nine 

chromatic settings available and predicted the positions of all nine pairs (36 possible combinations). 

This point represents the average across subjects and backgrounds (1080 model predictions). The other 

circles were calculated similarly, by fitting the diagonal model to increasingly more data points. The 

same reasoning was applied to the other models, shown as triangles and squares in Figure 4.8. Since 

the results of the minimization process in Equation 4.6 depend on the initial seed, we used 100 random 

seeds (for larger values results tend to stabilize) and the solution to the linear system specified by 

Equation 4.5 (Brainard and Wandell 1992) as a complementary seed. We selected the minimum 

optimization value all seeds. 
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Figure 4.8 Model prediction error according to the number of colours used to estimate their parameters. Panel a 

corresponds to greenish test illuminant and panel b to yellowish. Each point corresponds to a particular model (circles 

for the Diagonal, squares for the Diagonal plus Translation, right-pointing triangles for the Linear and left-pointing 

triangles for the Affine), computed from all background types and subjects. For comparison we show the prediction 

error of Von Kries transformation applied to the achromatic locus as a horizontal red broken line. The values were 

calculated using the corresponding reference white point for each illuminant (greenish and yellowish -see Table 1). 

Predictably, Figure 4.8 shows that adding more data points and increasing the number of free 

parameters lowers the model prediction error exponentially: the more free parameters a model has, the 

more accentuated the decay is. For instance, the Diagonal model (circle symbols) improves less, from 

10.9 to 7.1 E* for the greenish and from 13.3 to 9.1 E* for the yellowish as we add more fitting 

points. When the maximum number of fitting points (9) are used, the errors in E* are: 7.09 (D), 5.33 

(DT), 5.35 (L) and 4.19 (A) for the greenish illuminant and 9.13 (D), 7.55 (DT), 6.76 (L) and 5.79 (A) 

for the yellowish illuminant (see Figure 4.9). In general, model errors under greenish illuminant are 

lower than model errors under yellowish illuminant. Simpler models tend to perform better with a 

small number of fitting points whereas more complex models tend to perform better with larger 

numbers of fitting points. For instance the Linear and Affine models start to perform better than the 

simpler Diagonal when more than 5 points are considered. There are also quantitative differences 

regarding the illuminant: for up to five fitting points, error values are between 4 and 7.5 E* for 

greenish and between 6 and 9.6 E* for the yellowish. 
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Figure 4.9 Models’ prediction error when all nine SRs points were included. The first column (V) contains the 

subject average variability in the trials (see Table 2) and the last column (No Effect – NE) is a quantitative measure of 

the illuminant shift computed without any predictive model. The groups of bars labeled as D, DT, L and A 

correspond each to the Diagonal, Diagonal plus Translation, Linear and Affine models respectively. 

4.5 Discussion 

Our previous results show the feasibility of using several colours rather than a single colour as a 

metric for assessing the stability of colour appearance under a change of illumination. In the following 

session we discuss the usefulness of this new metric, showing that linear colour constancy models 

satisfactorily explain the transformations with a larger number of colours. At the end of the section we 

introduce a new colour constancy index that takes into account several aspects of colour constancy not 

considered before. 

4.5.1 Does include more colours increase the precision of models? 

Both graphs in Figure 4.8 illustrate clearly how the predictive power of all models is increased by 

adding more fitting points, something that is in agreement with previous studies (Hansen, Walter et al. 

2007; Olkkonen, Hansen et al. 2009; Olkkonen, Witzel et al. 2010). However, the error curves tend to 

a constant value after eight SRs and this suggests that measuring more points would lead to minimal 

improvements. In this context, it is worth noticing that our current fitting points were not determined 

randomly but had a particularly even distribution over the colour space, thus our conclusions become 

more relevant when all nine fitting points are used. This highlights the advantage of measuring several 

colours instead of just grey and although it disagrees with previous results (Speigle and Brainard 

1999), we believe it is unlikely to be the product of experimental artefacts. Figure 4.9 shows the 

portion of the phenomenon that is captured by the models. The large differences in height between the 
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bar labelled as “No-Effect” (which summarizes the effects of the illumination) and the other bars 

suggest that all linear models succeed in modelling the phenomenon (Brainard, Brunt et al. 1997; 

Brainard 1998). However there is still a small part which is not captured by the models.  

We tested the parsimony of the models to see whether they include more parameters than it is 

necessary by applying the Akaike Information Criterion (Burnham and Anderson 2002). This criterion 

measures the relative goodness of fit of a model in terms of the information lost when it is used to 

describe data (see Appendix E). The results show that the best models in Figure 4.8 are the simplest: 

Diagonal and Diagonal plus Translation, implying that the Linear and the Affine models are possibly 

over-fitting the data. The results also show a clear tendency for the Diagonal plus Translation to 

become the best in terms of number of free parameters and prediction error as we add more data 

points. 

If we ignore the Linear and Affine models, in Figure 4.8 there are some common qualitative features 

for both illuminants that are worth mentioning: 

Stability point at 5 SRs. All models approximately have the same precision when five SRs are used for 

the fit, i.e. three free parameters achieve similar results as twelve. This might reflect the fact that 

considering less than five points in our calculations allows for distributions of colours that are not 

symmetric with respect to the centre, something that is less likely when more colours are considered. 

Furthermore, models with more free parameters are more sensitive to these asymmetries. 

Diagonal outperforms the Diagonal plus Translation before the stability point. This suggests a link 

between the number of colours available and the complexity of the colour constancy mechanism 

needed: in a simpler environment, a cone gain-based transformation outperforms the others. 

Diagonal plus Translation outperforms the Diagonal after the stability point. This represents an 

improvement from the Diagonal model, and suggests the involvement of the additive process in a two-

stage mechanism as proposed by Jameson and Hurvich (Jameson and Hurvich 1955). 

Interestingly, the modelling of the chromatic settings performed under the greenish illuminant is better 

than under the yellowish one, and this effect is general to all models and fitting point numbers. This 

fact suggests a higher degree of dispersion in the chromatic settings which may result from the split of 

the resulting colours into several categories when illuminated by the yellowish illuminant, something 

that did not occur under the greenish illuminant (see further discussion below). 
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4.5.2 Further insights into the role of colour categories 

The overall pattern of results shown in the previous sections is broadly uniform across colour 

categories, but some particularities exist. For example, we expected the behaviour of grey (the colour 

measured in achromatic settings) to be outstanding in terms of variability (), adjustment time and 

constancy index values and to summarize the behaviour of the whole set of chromatic settings. 

Interestingly, we have found that subject’s ability to adjust grey and red are similar, closely followed 

by many other categories. Also, grey is the colour that takes longer time to adjust, may be because 

subjects can discriminate more finely near the achromatic locus (Boynton and Olson 1987). 

Furthermore, we expected colour constancy indices values for grey to be near the average and Table 

4.3 shows that they are generally low and in the case of the CCI index, the lowest. Previous work 

found higher colour constancy for grey than for chromatic stimuli (Speigle and Brainard 1999; 

Olkkonen, Witzel et al. 2010) which is perhaps due to the fact that we used simulated surfaces and 

illuminants instead of real surfaces. We also found high colour constancy index values (0.66 in 

average), which is in accordance to similar studies (Murray, Daugirdiene et al. 2006; Hansen, Walter 

et al. 2007; Ling and Hurlbert 2008; Olkkonen, Hansen et al. 2009; Olkkonen, Witzel et al. 2010; 

Foster 2011), a fact that is supported by visual inspection of the plots in Figure 4.6, where inter-

distances among measured colours are largely preserved. This supports the finding that the categorical 

structure of colour space is largely preserved under illuminant changes (Hansen, Walter et al. 2007; 

Olkkonen, Hansen et al. 2009; Olkkonen, Witzel et al. 2010). 

The differences in colour constancy values found for different categories suggest different properties 

for different categorical colours. These properties could be determined by experimenting with other 

stimulus configurations or subjects’ tasks. However, no significant differences were found for 

background types, a result which is similar to others (Brainard 1998). 

4.5.3 SCI: a new Structural Colour Constancy Index 

Colour constancy indices attempt to capture the extent of the phenomenon’s effect in a single number. 

They relate perceptual data measured under a state of adaptation to the corresponding data predicted 

for “perfect” adaptation (i.e. physical colour shift). The simplest indices quantify Euclidean distances 

(magnitude) among the colours of the test surface, the ideal match and the observer match. Examples 

of these are the Constancy Index (CI) (Arend, Reeves et al. 1991), the Brunswik Ratio (BR) (Troost 

and de Weert 1991) and the BR which incorporates the direction (orientation) between the perceptual 

and physical colour shifts (Foster 2011). Several improvements have been suggested. For instance, 

Ling and Hurlbert (Ling and Hurlbert 2008) proposed a new index CCI that incorporates the matching 
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error in the absence of illumination change (memory shift) and Brainard (Brainard 1998) proposed to 

use the Equivalent Illuminant (EI) instead of the measured adaptation point, which is calculated from 

different measured points and thus captures the inter-distances among the colours considered under a 

given adaptation state (structural). 

 

Property/Index CI,BR,       EI CCI SCI 

Magnitude Yes Yes Yes Yes 

Orientation No No Yes Yes 

Memory No Yes Yes Yes 

Structure No Yes No Yes 

Table 4.4 Summary of some properties of colour constancy incorporated into each index. 

Following the previous discussion, we introduced a new colour constancy index, termed Structural 

Constancy Index (SCI) which captures all the features stated in Table 4.4. The new index is defined in 

terms of matrix norms, which are extensions of the notion of vector norms applied to matrices. As 

Equation 4.7 shows, the norm of a matrix A is obtained from the norm of vectors x and Ax and 

describes the maximum relative vector magnitude change under the linear transformation A. 

 

        
   

     
    

    
      

      (4.7) 

 

In our context, the matrix A models the effects of the illuminant change, i.e., given the coordinates x 

of a colour sample under the reference illuminant, it returns the coordinates Ax of the same sample 

under the test illuminant in a given colour space. We define SCI as: 

 

                   
          
        

                 
          
        

 
  

        
 (4.8) 

 

In Equation 4.8 SCI is defined as the product of two factors. The first factor is the quotient of two 

matrix norms, and computes the relative magnitudes of the perceptual and physical effects of the 

illuminant, as is commonly the case with constancy indices (Arend, Reeves et al. 1991; Yang and 
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Shevell 2002; Smithson and Zaidi 2004; Hansen, Walter et al. 2007; Ling and Hurlbert 2008; Foster 

2011). The second factor estimates how much the direction of the adaptation coincides with the 

direction of the actual illuminant change in the colour space considered. To compute this we need 

Apercep and Aphys to be affine matrices, i.e. to include vectors r and s in the last columns specifying a 

translation each. 

The coefficients of Apercep are determined from pairs of corresponding chromatic settings under 

reference and test illuminants and can be obtained following the approach described in the modeling 

subsection above (Equation 4.3). Likewise, the coefficients of Aphys are determined from 

correspondences between the chromatic settings made under the reference illuminant and simulations 

of the same colours under a test illuminant. In this formulation, if matrices Apercep and Aphys are equal, 

then colour constancy is perfect. Finally, memory effects like those discussed by Ling and Hurlbert 

(Ling and Hurlbert 2008) are neutralized since our measurements were obtained from direct 

comparisons under reference and test illuminants. 

Figure 4.10 illustrates the behavior of Equation 4.8 for several hypothetical cases. Panel a describes 

how the magnitude size of each transformation contributes to the value of the SCI. This contribution is 

always positive and can be smaller or larger than one according to the ratio between the norms of the 

Apercep and Aphys. The latter case happens when observers correct for the illuminant more than they 

should. Panel b describes the contribution of the second term of Equation 4.8, i.e. a weighting factor to 

penalize for angular deviations from the direction of the simulated illuminant shift. As r and s become 

more perpendicular, their product rs becomes closer to zero. Although negative values are possible in 

theory, in practice this weighting factor should be positive assuming that r and s are far from 

perpendicular. Structural information of the colour constancy phenomenon is implicitly embedded in 

the affine matrix. Panels c and d illustrate how this information is summarized into a single positive 

number. Panel c illustrates the case when there is no translation (i.e. the last column of the affine 

matrix is null) and the matrix can be interpreted in terms of expansion (      ), retraction (   2 1) 

or rotation (      ). Panel d illustrates the case when only the translation part is operative and the 

value of the norm reflects this translation. In theory, the SCI can assume values that are larger than 1 

or negative, representing overcompensation or failures of colour constancy that may happen under 

certain illumination conditions such as multiple illuminants, non Lambertian surfaces, self-luminous 

or fluorescent materials, etc., that imply a violation of the initial conditions of this analysis. 
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Figure 4.10 Hypothetical cases of chromatic settings and their contribution to SCI values in the CIE1976 uv colour 

space. Each panel illustrates the contribution of a particular feature of our index. Dark squares correspond to 

chromatic settings made under the reference illuminant, light squares correspond to hypothetical chromatic settings 

made under test illuminant and circles correspond to a simulated illumination of the chromatic settings made under 

the reference illuminant (dark squares). Panel a: effects of a shift in magnitude only with respect of a simulated 

illumination. Panel b effects of a change in the orientation from the simulated illuminant shift. Panels c and d effects 

of an expansion/contraction and a translation are captured and converted into a single number by the affine matrix 

norm. 

Table 4.5 shows the average values obtained from applying four colour constancy indices (      , EI, 

CCI and SCI) to all subjects and background types, discriminated according to illumination. All 

indices were computed in the CIE1976 uv colour space. There was no effect of background types in 

the calculations. Interestingly not all indices gave the same values; EI and        were generally lower 

and SCI was the highest. The differences between popular indices such as        and CCI were reported 
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by Ling and Hurlbert and attributed to the incorporation of memory shift into the index formula (Ling 

and Hurlbert 2008). SCI values are slightly higher than CCI values, and in the case of greenish 

illuminant larger than one. This fact is due to the incorporation of “structural” components, i.e. 

measures of the inter-distances among data points into the index calculation (see panel c in Figure 10), 

which can increase the total index value in some cases. We calculated the contribution of the different 

components in Figure 10 to the SCI values in Table 5 and found that, for greenish illuminant, the norm 

of Apercep is slightly larger than the norm of Aphys making the first term of Equation 8 slightly larger 

than one. The previous analysis implies that perfect colour constancy is achieved when SCI is equal to 

one and different values indicate either lack of constancy (SCI < 1) or overcompensation (SCI > 1). In 

our case, we expected indices values close to one due to the large adaptation period of immersive 

illumination. 

 

Index/Illum Greenish Yellowish 

       0.62 0.61 

EI 0.58 0.59 

CCI 0.76 0.75 

SCI 1.03 0.85 

Table 4.5 The Structural Constancy Index (SCI) and other typical colour constancy indices computed in the CIE1976 

uv. Each value corresponds to the average over subjects and background types, also for the CCI and EI averaged over 

colour categories. 

We tested whether the high indices values we found in Table 4.5 were due to the fact that observers 

had the chance to see the Type I background colours (i.e., the colours to be adjusted) often; and hence 

subjects performed matches to the displayed colours instead of reproducing them from their memory. 

This was done by repeating the experiment with two new subjects using only Type II background, i.e. 

they had not seen the Type I backgrounds colours before. Their results were in agreement with those 

of the rest of the subjects and indeed their colour constancy indices were not lower than those of Table 

4.5. 

Table 4.5 reveals that only SCI differentiates between the greenish and the yellowish illuminants. 

Further inspection of the magnitude and orientation contributions revealed that these differences 

originated in the norm of the perceptual matrix. In the previous modeling subsection, we found lower 

prediction errors for the greenish illuminant (see Figure 4.8), indicating that such data is better 

captured by the fitting of linear models, a process similar to the computation of SCI values. This 

explains why chromatic settings under yellowish illuminant have a higher degree of dispersion when 
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compared to chromatic settings under D65 than in the greenish case. These differences manifest in 

Figure 4.6 as subtle variations in the location of the yellow, orange, brown, red and pink data points, 

which may account for the 18% difference between both illuminants in Table 4.5. We could 

hypothesize about the origin of this dispersion and say that greenish-illuminated colours fall inside the 

broad green category, whereas yellowish-illuminated colours fall into several categories and this initial 

(first milliseconds) categorical perception may influence the subject’s adaptation and subsequent 

chromatic settings. However, this need to be settled by doing more experiments in the future. 

4.5.4 Comparison to previous paradigms 

Our contribution is complementary to the work of others who also studied successive colour constancy 

(Foster 2011) under large periods of immersive illumination and using simulated (Hansen, Walter et 

al. 2007; Olkkonen, Hansen et al. 2009) or real (Olkkonen, Witzel et al. 2010) surfaces. These studies 

categorized a large number of coloured samples with higher results variance, while we measured only 

nine relevant points with relatively higher precision. Hansen et al (Hansen, Walter et al. 2007) 

measured changes in the categorical boundaries of the colour space while Olkkonen et al (Olkkonen, 

Hansen et al. 2009; Olkkonen, Witzel et al. 2010) used a conventional constancy index (including shift 

magnitude and orientation) applied to the categorical prototypes. Our results qualitatively agree with 

their findings regarding the stability of the categorical structure of colour space under illuminant 

changes (Hansen, Walter et al. 2007; Olkkonen, Hansen et al. 2009; Olkkonen, Witzel et al. 2010). 

The chromatic setting paradigm was primarily designed to deal with two main issues: (i) the state of 

adaptation closely following the change of illuminant (Foster 2011) and (ii) the effects of instructions 

regarding the nature of the stimuli (surface-match or colour-match criteria) (Troost and de Weert 

1991). For this reason, it makes use of subject’s colour naming abilities, asking them to select their 

own colours instead of reproducing arbitrary ones, thus improving on the chromatic resolution limits 

of standard colour naming techniques (Foster 2011). The main disadvantage of the method is arguably 

the saturation restriction to the colours that subjects can initially select imposed by the CRT monitor 

gamut limitations. However low-saturation SRs were not particularly difficult to reproduce in regular 

sessions. 

Possible chromatic induction (Shevell and Wei 2000) effects resulting from the local influence of 

neighboring patches were avoided by embedding the multiple test patch within the Mondrian, 

randomizing its spatial and chromatic structure from trial to trial (while keeping its global statistics 

constant prior to illumination). In this manner, subjects have to look at several places and average the 

test patch colour before making a decision. Also, general memory effects (Ling and Hurlbert 2008) 



89 

 

were isolated from constancy effects by analyzing memory matches with and without the illuminant 

change. 

4.5.5 Are some subsets of colours more informative? 

The results shown in Figure 4.8 pose another interesting question: is there a subset of selected 

representatives (red, pink, purple, blue, green, yellow, orange, brown and grey) that conveys more 

information about the colour constancy phenomena than the rest? Figure 4.11 shows the average error 

(over all subjects, illuminants and backgrounds) derived from adjusting the simplest model (diagonal) 

to each of the measured colours and testing with the rest. To construct the Figure 4.12 we analyzed all 

possible combinations among the SR. This approach discarded quantitative information in favour of 

qualitative information, i.e., we ranked the colours according to their contribution to the model's error. 

Panel a of Figure 4.12 shows this performance ranking (larger contribution to error to the right) for the 

diagonal model under greenish illumination. The bottom row illustrates the ranking of the colour 

points shown in Figure 4.11 when sorted according to the model's error. To obtain the row 

corresponding to 2 colours (second from the bottom) we considered all possible combinations pairs 

and their corresponding errors, and calculated the average error from all pairs in which a given colour 

was present. Performance order was obtained from ranking all errors. This was replicated in all other 

rows to obtain all other combinations (three colours, four colours and so on). The bottom row in Panel 

b of Figure 4.12 summarizes the information contained in Panel a. Subsequent rows summarize similar 

analyses for other combinations of model and illuminant. Notice that as we increase the number of 

data points (and the number of free parameters) vertically upwards, quantitative differences become 

less significant. 

 

 

Figure 4.11 The Diagonal model’s error for each selected representative used to set model’s parameters. Results are 

clustered around two groups, the red-brown with higher error values and the rest. 
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From the previous approach we can extract some qualitative conclusions in regard of the number of 

points, model or illumination studied. From Panel a of Figure 4.12 it is possible to see that the 

performance rank of some colours remains stable when the number of data points grows. This is true 

for brown, red, purple and green. And the best colours (in the sense of introducing less error to the 

models) in most cases are yellow, orange and grey. Panel b shows some general trends such as the 

improvement or decline of performance of a given colour when more free parameters are added to the 

model. For example, green jumps from middle to first position and red from the last position to mid-

rank as we increase the number of parameters. Purple, blue, pink, orange and yellow keep in roughly 

the same position (regardless of the model used) and grey clearly declines as we climb from the 

diagonal towards the affine model, possibly due to geometrical rotation and scaling. Brown is a special 

case, as it moves from the worst position in the diagonal and linear models to the best position in the 

diagonal plus translation and affine models. When we look at differences between illumination 

conditions, changes in ranking position become more frequent as we increase the model complexity.  

Figure 4.12 Selected representative ranking. The horizontal axis shows a ranking of the colours according to their 
contribution to the total error (largest contribution to the right). Panel a shows results under greenish illumination (all 
other variables were averaged). Panel b shows the results for all models combined discriminated by the type of 
illumination (greenish (G) or yellowish (Y)) and averaged in terms of subject and background. The bottom line in 
panel b corresponds to the model detailed in panel a (Diagonal model). 

From this we can conclude that grey is not necessary the most informative colour (for example, yellow 

could be used equally well as a predictor given that its ranking is quite stable across all conditions). 

For the same reasons purple should be avoided. A second conclusion is that performance rankings 

vary according to the model but keeps roughly stable across illuminant conditions. Regarding the 
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inter-distance of the data points in colour space, model precision increases for colours that are further 

apart among themselves in CIELab (as expected). 
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Chapter 5 Inter-relations among chromatic 

settings when illumination is changed 

Chapter 6 introduced a new psychophysical paradigm and demonstrated its feasibility to measure 

multiple points in colour space under long periods of immersive adaptation. The measured points 

correspond to relevant categorical samples for each of the chromatic basic colour categories, 

especially in terms of hue. In this chapter we performed a new psychophysical experiment similar to 

Experiment II which expanded the number of illuminations tested. As in Experiment II the stimuli 

colours were specially tuned to each observer due to the large variations found in the categorical 

perception in Chapter 3. The new experiment used the chromatic setting paradigm and the results were 

studied in terms of the interrelations among the nine chromatic settings when illuminations were 

changed, particularly if they remain stable. The chromatic setting paradigm allows us to make use of 

more sophisticated techniques for describing successive colour constancy. From our measures we 

defined a perceptual structure descriptor that is up to 87% stable over all conditions, suggesting that 

categorical colour features could be used to predict the overall behaviour of the colour constancy 

phenomenon. Interrelations among chromatic settings were modelled as a graph, which allowed to 

measure with precision their changes when illumination was changed and to state conclusions about 

the stability of the categorical colour perception. Our conclusions are in agreement with previous 

studies on the stability of the categorical colour space (Hansen, Walter et al. 2007; Olkkonen, Hansen 

et al. 2009) and also formalized the observations done in Chapter 4. Despite the structural colour 

constancy index had high values there was still a remaining 13% of inconstancy which may allow 

remarkable categorical changes when illumination is changes specially for those samples near the 
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borders of basic colour categories. This fact will be explored in detail in Chapter 6 where categorical 

changes between basic colour terms has been studied systematically for different adaptation states. 

5.1 Introduction: Structural colour constancy 

When studying colour constancy, few studies have measured more than one point under immersive 

illuminant adaptation (Mccann, Mckee et al. 1976; Brainard, Brunt et al. 1997; Kulikowski and 

Vaitkevicius 1997; Amano and Foster 2008) and fewer have measured enough points to address the 

question of whether the subject’s categorical perceptual structure (i.e. the interrelations among 

perceived colours) is kept constant under illuminant changes. The exceptions to this are colour naming 

paradigms, where subjects are asked to name several colours under different adaptation conditions. In 

this case, one of the main limitations is the restriction of choices presented to the observer (for 

example, in two recent experiments (Hansen, Walter et al. 2007; Olkkonen, Hansen et al. 2009), one 

restricted its measurements to an equiluminant plane with 417 testing samples and the other to a set of 

469 tridimensional Munsell samples), which constraints the method’s precision. Also colour naming 

approaches rely in the categorical structure defined by the measurements, i.e., on the boundaries of the 

categorical regions or on the centroid locations of tested samples according to each colour category. 

Here we used the chromatic setting paradigm, which instead of measuring category borders or 

category centroids as before (Hansen, Walter et al. 2007; Olkkonen, Hansen et al. 2009), allows 

subjects to select their own memorable colours from a set close enough to the focal colours so as to 

make them easy to memorize and reproduce. The memorable colours were selected from a choice of 

52.000 different (volume of the Bounding Cylinder expressed in JND spaced units) CIELab samples 

which look continuous to the subjects. This paradigm allows us to investigate changes in the 

perceptual categorical “structure” of colours after adaptation to illumination changes by 

simultaneously measuring several “key” points in colour space. We study the structure of colour space 

through its categorical distribution in basic colour categories as described in Chapter 3 and the 

chromatic setting paradigm allows to set correspondences between nine points in colour space under 

two different illuminations.  

5.2 Methods 

Here we introduce a new psychophysical experiment (Experiment III) were observers performed 

chromatic settings under backgrounds Type I and II, and six different illuminations. In more detail: 

observers were presented on the screen with the written name of a focal colour and asked to match it 
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to their own internal representations by manipulating the colour of a patch by means of a gamepad. 

After that, they were required to reproduce the very same colours on different days under different 

conditions of background and illumination. 

5.2.1 Observers 

Four subjects took part in our experiment. They were between 31 and 44 years old and their colour 

vision was normal (or corrected to normal) as tested by the Ishihara coloured plates and the 

Farnsworth-Munsell D15 Hue Test. Of these, two were volunteers and naïve to the experiment’s 

purpose, and the other two were JRV and CAP. 

5.2.2 Experimental setup and procedure 

Because the chromatic setting paradigm was applied to measure the state of adaptation of our 

observers we used the same experimental procedure as described in subsection 4.3.4. Also the 

experimental setup was the same as described in subsection 4.3.2. 

5.2.3 Stimuli 

The stimuli were the same as used in Experiment II which are described in subsection 4.3.3. However 

now we used only Type I and II backgrounds and three different illuminations were added. Follows a 

brief reminder: 

The spatial structure of our stimuli was a “Mondrian” pattern and consisted of a set of overlaid 

coloured rectangles randomly distributed across the image (i.e. flat, without highlights or mutual 

reflections) similar to others (Arend and Reeves 1986; Arend 1993). The rectangle size frequency 

distribution was similar for all stimuli (mean square size was 50x50 pixels) and its geometrical 

distribution was uniform across the digital image. We defined three types of Mondrian stimulus:  

Type I was constructed from the colours selected to be the best representative available of each 

category. 

Type II was constructed by selecting hues in-between selected representatives but similarly saturated.  

Type I and Type II were different for each subject and did not contain grey patches to avoid cueing the 

observer on the illuminant (Foster 2011). All Mondrians were in turn “illuminated” by performing the 

spectral product of each patch’s reflectance times one of five simulated illuminations assuming a 

Lambertian reflectance model (Walsh and Kulikowski 1998). The illuminants were chosen so that the 
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final product (the illuminated Mondrian chromaticities) was as saturated as possible while still inside 

the CRT monitor’s gamut. There was no “central patch” to look at, but a set of randomly distributed 

patches that were simultaneously adjusted in colour by manipulating the gamepad. These constituted 

up to 10% of the all patches and their positions were randomly selected in each trial. The object of this 

was to force the subject to average among patches that had different local surroundings, thus avoiding 

local chromatic induction effects. Each Mondrian was unique. 

 

Illum x y 

D65 0.312 0.329 

Purple 0.316 0.228 

Green 0.296 0.453 

Yellow 0.453 0.434 

Orange 0.437 0.343 

Table 5.1 CIExy chromaticity for the illuminants used in Experiment II. 

5.3 Data analysis: graph definition from chromatic settings 

The chromatic setting paradigm provided us with a set of nine measured points for each adaptation 

state. Notice how this measures were not random in colour space but had a relevant categorically 

location, especially in terms of hue. To formally describe the overall interrelations among sets of 

measures we modelled the CIELab coordinates from each set of measured data. Each set of nine 

chromatic settings is modelled as a graph (Equations 5.1 to 5.3), where each node is represented by 

the CIELab coordinates of one chromatic setting and edges were defined for all possible node 

combinations. Figure 5.1 illustrates schematically the approach. 

 

                                where i=1,...,9 (5.1) 

  

                      (5.2) 

  

                           (5.3) 

 

And when all edges were considered, a graph distance matrix was defined. In order to extract inter-

subject comparisons we normalized this distance matrix by the mean distance from all nodes to the 
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node corresponding to grey. This allowed us to produce a distance matrix (Equation 5.4 and 5.5) 

which enclosed the distance proportions to each node in terms of the distance to the central node. 
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 (5.5) 

 

In summary, each session produced nine SRs which were modelled as a graph, whose nodes were the 

corresponding measured CIELab coordinates and its distance matrix was build from the Euclidean 

distances among these CIELab coordinates. In this way the perceptual categorical structure of our 

subjects was captured by a graph allowing us to get a reliable comparison among adaptation 

conditions, i.e., we defined the distance between two graphs (see Equation 5.6) by the mean absolute 

difference between the corresponding graph distance matrices: 
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Figure 5.1 Shcema of the graph definition for two sets of chromatic settings. 

5.4 Results 

Data presented in this section comes from Experiment II and III. The first one was done six months 

before and used 10 subjects, three illuminations (D65, yellowish and greenish) and three backgrounds 

(Type 0, I and II). The second one used 4 subjects, two backgrounds (Type I and II) and two different 

illuminations added (purplish and orange). Our results reveal the invariance of perceived colour 

interrelations under different illuminations. 

5.4.1 Chromatic settings under six different illuminations 

Subsection 4.4.1 demonstrated that subjects are able to remember the selected representatives over the 

experimental period of several weeks. Figure 5.2 shows all gathered data alongside the CRT gamut 

(all subjects, illuminants and backgrounds: 999 colour measurements obtained from adjusting 4880 

settings over 111 regular sessions). Each point in Figure 5.2 is the average of 5 different trials. The 

experimental error was computed as the standard deviation from the mean for each colour category, 

averaged over subjects and sessions. The overall standard deviation in Experiment III was 4E* units. 

In order to ensure that subjects did not use the CRT gamut as a reference when doing the adjustments 

requested, we computed for each of the 999 colour samples the distance to the CRT gamut boundary 

and averaged this information at the top of each histogram bar in Figure 5.2. Our results show that 

only 1.4% of the 999 points were closer than 5E* units from the CRT gamut boundary (only 16.3% 

were between 5 and 10E* units).  
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Figure 5.2 Chromatic settings and the CRT gamut in Experiment II and III.Left: CIELab chromaticity plane where 

the CRT convex hull gamut is projected and 999 coloured dots where each one corresponds to one different colour 

measurement under different conditions. Each dot was computed as the average of 5 settings and its colour indicates 

the perceived colour by the subject when adjusted. Right: Histogram where the number of measured colours is 

divided according to their distance to the convex hull CRT gamut boundary. 

Figure 5.3 illustrates the selected representatives chosen by three different subjects on the reference 

session. Each coloured circle shows the SR for the corresponding category and the joining lines help 

to illustrate their geometrical interrelations (Euclidean distances). Notice how this interrelations are 

different for each subject, for instance, subject JRV SR blue has high luminance while the other two 

subjects selected colours with low luminance values. Also, when comparing subject CAP and XO, 

notice how the selection of orange and red differs also in luminance level: subject CAP selected higher 

luminance than XO. Finally, notice how the red and pink SRs of CAP were different in hue and 

luminance from those of XO. Following this, we conclude that each subject had his/her particular 

choice of selected representatives, which is expected from previous studies (Berlin and Kay 1969; 

Boynton and Olson 1987; Sturges and Whitfield 1995) and Figure 4.3, but at the same time the pattern 

conformed by those remained approximately invariant. In the following sections we studied whether 

this pattern was also invariant under different illuminant adaptations (over different stimuli, 

background and illuminant conditions) occurred. 
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Figure 5.3 Selected representatives for three subjects.  

Each column corresponds to one subject and it contains two views of the selected representatives in the reference 

session. Results are plotted in CIELab colour space: the first row contains the isometric view and the second row the 

projection in the a*b* chromaticity plane. Key: G=green, B=blue, Pr=purple, P=pink, R=red, Br= brown, O=orange, 

Y=yellow, N= neutral (grey). 

5.4.2 Interrelations among chromatic settings quantified 

The psychophysical paradigm provided us with a set of 9 measures for each adaptation state. The first 

row of Figure 5.4 illustrates these measures for two subjects over the five illuminants tested. When 

considering a particular subject, notice how the same groups of measures (linked by coloured lines) 

seem to keep their structures stable over illuminants changes. To formally describe the overall 

interrelations among sets of measures we modeled the CIELab coordinates for each set of chromatic 

settings obtained from each observer and adaptation state. The top plots of Figure 5.4 show the graphs 

corresponding to the colours perceived by two subjects after a change of illumination. The bottom 

plots represent the calculated CIELab coordinates of the same stimuli after illumination (the physical 

colours). Looking at Figure 5.4 and comparing the top and bottom plots we can identify two trends: 

first, the perceptual representations of the top plots seem to have maintained the same proportions 

showing higher stability in terms of their interrelations, while their counterparts at the bottom plots 

have been slightly warped by the illumination. Second, the region spanned by the perceptual measures 

is more compact than the region spanned by the physical ones. The latter observation is wholly 
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captured by standard colour indexes (which measure distances between perceptual and physical grey) 

(Foster 2011) while the former observation can only be captured by the graph representation approach.  

 

 

Figure 5.4 Selected representatives obtained for two subjects and five illuminants.  
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Each plot shows the measures obtained for 5 illuminants (each line colour corresponds to one illuminant). The top 

row shows the colours (SR) selected by two observers and the bottom row shows the corresponding projections of the 

original colours after illumination. Left plots correspond to subject JRV with type I background and right plots to 

subject XO with the type II background. All measures are shown as projections on the CIELab ab-chromaticity plane. 

 

Figure 5.5 contains four sets of bars, each corresponding to one comparison between conditions under 

illuminant D65 and other illuminants indicated by the x axis label. They were produced averaging the 

results for all subjects. For instance, looking back at the top left plot of Figure 5.4, each of its five sets 

of measured data were modeled as graphs, and graph distances were computed from the graph 

centered at the achromatic locus (D65 illumination). When grouping over subjects and averaging 

graph distances we obtain the bar height and StDev shown in Figure 5.5. Notice how the values 

corresponding to the physical graph distances are significantly higher than the perceptual ones: 

approximately 23% for the physical distances versus 13% for the perceptual distances in average. 

 

 

Figure 5.5 Structural deformation of chromatic settings.  

Each group bar indicate the average distance, with D65 and the indicated illuminant, of the graphs used to assess the 

interrelations of measured data under each condition. Data is averaged over subjects and compared according to 

backgrounds and perceptual/physical. 
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5.5 Discussion 

5.5.1 Issues related to the structural constancy of chromatic settings 

Here we discuss briefly if the previous results on the structural constancy of chromatic settings could 

have been  influenced by (i) the chromatic adaptation included in the CIELab formulae and (ii) the 

chromatic setting method error. 

We know that perceptual distances are wrapped in CIELab colour space as we go away from the 

origin. So we could expect that if we plot all results (obtained under six different illuminations) using 

only D65 as a reference white point, then their CILab coordinates will have some degree of distortion 

since they will be in locations far away from the CIELab origin. However, our analysis is not using 

absolute distances but relative distances, all distances are normalized in the graph approach. So it is 

reasonable to expect that distances will be deformed equally at least for some group of points close 

enough which we thing that it is our case. This uniformity in the deformation will cancel the possible 

wrapping effects in the relative distances represented by the edge weights. 

 

 

Figure 5.6 Deformation in CIELab colour space according to the greenish and yellowish illuminations. 

The chromatic setting experimental error, which was mostly the product of the subjects’ variability at 

producing SRs, was estimated to be about 4E* in Experiment III. We propagated this error to our 

structural deformation index and obtained an averaged value of about 5.2%. The low magnitude of 

that value allows to discard this effect from our conclusions on the stability of chromatic settings 

interrelations under illuminations changes. 

These results indicate that subjects tend to maintain the same perceptual interrelations between 

chromatic settings and thus categorical colours despite variations in the structure of physical colours 

under an illuminant change. 
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5.5.2 Comparison to previous work 

Previous work has also focused on the colour appearance of multiple points under illumination 

changes. Some used real surfaces and a matching technique (Mccann, Mckee et al. 1976; Brainard, 

Brunt et al. 1997; Kulikowski and Vaitkevicius 1997; Amano and Foster 2008) or CRT-simulated 

scenes (Brainard, Brunt et al. 1997; Amano and Foster 2008). Others, (Hansen, Walter et al. 2007; 

Olkkonen, Hansen et al. 2009) measured the colour appearance of multiple points indirectly by means 

of the deformation of categorical boundaries in colour space, concluding that the categorical structure 

of colour space remains roughly stable, which is in agreement with our results. 

In order to further compare our results to others in the literature, we have considered pioneering work 

by McCann et al (Mccann, Mckee et al. 1976). They reported the Munsell coordinates of 17 matches 

between 5 different illuminants. Figure 6 shows CIELab colour space plots of MacCann et al results. 

Each colour indicates the illuminant under which the matching was done. Notice how each grey dot is 

linked by means of a black line to its corresponding illumination matching. We applied our structural 

approach, comparing their 'grey' set of points to the other four coloured sets and obtained a structural 

stability of 85% (2%StDev) which is similar to our results and suggests a high degree of colour 

constancy (but not perfect colour constancy). 
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Figure 5.7 CIELab a*b* plane projection of MacCann et al reported results. 

Each coloured circle corresponds to the CIELab coordinates of surface matches under a five different illuminants, 

which are linked by black lines. D65 was used as a reference white point. 
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Chapter 6 Categorical colour perception in 

colour constancy 

This chapter studies the main topic of this thesis, the possible influence of the categorical colour 

perception to the colour constancy or the adaptation processes. A new experiment is introduced which 

uses similar stimuli but with a reduced number of colours to propitiate further deviations of expected 

adaptation. In order to measure the categorical colour perception changes under the six illuminations 

tested we used the chromatic setting paradigm which allowed to define a model of categorical colour 

perception and also a constrained naming task. Results are reported and interpreted in terms of 

categorical colour changes when the illumination changes. Two main hypothesis are considered in 

order to explain the possible changes of categorical colour: (i) influence of initial colours and (ii) 

influence of expected colours.  

6.1 Introduction 

Colour constancy is a perceptual phenomenon that seeks to keep stable the perception of objects 

colour under changing viewing conditions. Example of what we are trying to measure. Think of a case 

in successive colour constancy. If we take several points nearly grey or non saturated colours after 

illuminating them for a saturated illuminant we will perceive them at the first seconds much more 

uniform than if we allow the adaptation go on several minutes when some new colours will appear. 

We developed an experimental procedure that is based in the categorical perception of each particular 

subject, thus tuning its particular stimuli to his/her particular colour categories. We have takes this 
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approach after realizing the large variations in colour categorization across individuals, and especially 

when dealing with non focal regions (border regions). 

The main functionality to surface colour recognition is object identification and according to Jameson 

and Hurvich: "such recognition is adequately accomplished by category matching and does not 

require precise matching-to-sample by the three colour variables of hue, brightness and 

saturation"(Jameson and Hurvich 1989). Also Boynton and Olson: "Measurable colour changes that 

do not produce categorical shifts may not matter very much if memory is of basic sensations and their 

names, rather than colours per se" (Boynton and Olson 1987) . Then when studying colour constancy 

we should focus on the changes of categorical colour perception of observers, something that is 

naturally measured by colour naming tasks but it is not obtained straightforwardly from others such 

achromatic setting. Also most of the colour constancy indices remain blind on categorical colour 

constancy and are only based on the samples coordinates in some colour space.  

The Helson-Judd effect: "Spectrally nonselective surfaces seen against a spectrally nonselective 

background all appear achromatic (white through grays to black) in white light. When illuminated by 

chromatic light, samples whose reflectances are near the background level continue to appear gray, 

those above the background level take on the hue of the illuminant, and those below take on a hue or 

with its complementary,..." (Jameson and Hurvich 1989). It is a first demonstration that categorical 

colour perception may not be strictly linked to colour constancy. 

The colour constancy phenomenon is composed by several mechanisms all gathered under this name 

due to its bonds to achieve its functional aim. One of the mechanisms that contributes most to the 

phenomenon is global contrast, i.e., adaptation to the chromatic mean of the visual scene. This process 

shift the achromatic locus of the observer in the illumination chromaticity direction, being a first 

consequence the maximization of the number of colour perceived. General movement under 

adaptation is towards grey, then growing the number of colours in the perceived scene. But are the 

number of perceived colour categories maximized as well? Is this perception influenced by the 

colours, categorical or not, present in the stimulus? Here we formulate two hypothesis: 

H1: Illumination colour dependent (influence of departure categories): dependent the perception of 

some colour categories at the first miliseconds of adaptation constraints the process and makes that 

this categories are preserved. Ideally colour constancy happens in several stages, being the first 

simultaneous colour constancy which happens the first milliseconds. Then we wonder if this first 

categorical appreciation by the subject could influence the posterior adaptation and in particular the 

existence, or not, of some particular colour categories. 
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H2: Surface colour dependent (influence of arrival categories): object dependent the expectation or 

possibility to perceive some colours at the final temporal interval of the adaptation is what guides this 

adaptation. Are there any differences according to colour categories or the behaviour of all categories 

is symmetric? This is, if the colour constancy process is perfect then we should recover the original 

categories displayed under D65, then we wonder about the influence recovery of this particular colour 

categories. 

From brainard shcema, studying colour constancy we must pursue two aims: describing the colour 

constancy extent and also try to model the phenomenon. In this paper we will aim to a new aim, 

predict the categorical colour. We would like to achieve this aim in order to predict the colour after 

adaptation( because we did not apply colour naming paradigm ) and conclude if nameability has 

growth under adapation. Our aim is to predict categorical colour appearance of displayed colours from 

adjusted Selected Representatives. 

In order to systematize the analysis of adaptation for each subject we could look for the intrinsic 

properties described by the adaptation matrix. This could be could be interesting to classify adaptation 

matrices according to its internal features. In particular studying the diagonal plus translation and 

affine cases. Can we extract a common matrix pattern for each adapted illuminant that holds at the 

same time for all subjects? Are the vep’s and its vap’s revealing this pattern? Then use this pattern to 

predict categorical colour appearance with simulated synthetic cases. Lemma: colour constancy 

mechanisms maximizes the number of colours. Lemma: colour constancy mechanisms maximize the 

number of colour categories. Here we show how high values of colour constancy indices may not be 

correlated by a high degree of categorical colour constancy. 

6.2 Methods 

Observers underwent a chromatic setting task followed by a constrained colour naming task for the 

adaptation state achieved in each experimental session. The main experiment consisted of 12 sessions 

and in each session observers achieved a particular adaptation state consequence of a long period of 

adaptation to an illuminated three-colour Mondrian background, displayed in a CRT. For each 

observer and adaptation state we defined his/her adapted colour naming model in CIELab colour space 

and from its parameters were derived categorical colour predictions of unmeasured samples. 
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6.2.1 Observers 

Three observers (1 female and 2 males) participated, of mean age 29 (range 26-32). Their colour 

vision was normal as tested by the Ishihara colour vision test (Ishihara 1972) and the Farnsworth-

Munsell D15 Hue test (Farnsworth 1957). All had self-reported normal or corrected to normal visual 

acuity. Two observers were unpaid volunteers naïve to the experiment's purpose, the other was one of 

the authors. All were no native English speakers but had excellent English language skills. 

6.2.2 Experimental setup and procedure 

All sessions were conducted inside a dark room, with all walls lined in black. The experiment was 

programmed in Matlab and the stimuli were displayed on a CRT monitor and it was the only light 

source. Viewing was binocular and unrestrained. Subjects modified the test stimuli by navigating the 

CIELab colour space using six different buttons, two for each colour space dimension on a 

commercial gamepad. The reference white point was D65, Lum = 100 Cd/m
2
. The experimental setup 

was the same as the one detailed in subsection 4.3.2. 

The whole experiment consisted of 16 sessions: 12 sessions from all combinations between 2 different 

Mondrian backgrounds and 6 different illuminations, and 2 reference sessions to reinforce the selected 

representatives, and 2 regular sessions with background Type 0 and D65 illumination to check for 

observers ability to reproduce the same colours throughout the experimental period. All sessions were 

done in two weeks. Each experimental session lasted approximately 25 minutes and each trial 30 

seconds.  

Observers performed two different tasks in each session. First, the observers performed a chromatic 

setting (see details in subsection 4.2) and just after, while keeping the same stimulus on the CRT 

screen, they were required to complete a constrained colour naming task for all the colours present on 

the screen. Colour names were recorded by hand by the observer itself to a white sheet of paper which 

was out of sight during the chromatic setting task. 

Constrained-naming. Observers were required to assign a colour term as fast as possible to each 

colour present on the screen. In their colour naming task, observers were required to use the eleven 

basic terms (Green, Yellow, Blue, Red, Grey, Orange, Pink, Purple and Brown) or combinations of 

them, or complemented with the adjectival form of basic terms (Greenish, Yellowish, Bluish, Reddish, 

Greyish, Oranges, Pinkish, Purplish and Brownish). 
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6.2.3 Stimuli 

Our basic stimulus consisted of a Mondrian background pattern, i.e. a set of randomly overlaid 

coloured rectangles, distributed across the screen. The average rectangle size was 70x70 pixels. There 

were two types of backgrounds: 

Type III. It was built from the SRs chosen by each observer in the reference session. There were three 

colours in total and they were selected to lie in the SRs joining lines: in between yellow and green 

(25% away from green), in between yellow and brown (25% away from yellow), and in between 

purple and pink (50% from purple). 

Type IV. It was built from the SRs chosen by each subject in the reference session. There were three 

colours in total and they were selected to lie in the SRs joining lines: in between blue and green (50% 

from green), in between yellow and brown (25% from purple ), and in between purple and pink (50% 

from purple). 

CIELab coordinates of the three colours displayed in backgrounds Type III and IV are detailed in 

Table 6.1. Also, their CIE 1976 u'v' coordinates are plotted in Figure 6.1. Notice that each observer 

had a different set of stimuli colours while keeping the same categorical information.  

 

 Type III Type IV 

Observer Colour a* b* L* a* b* L* 

JR 

1 -8.57 8.01 48.78 -8.85 -4.05 57.29 

2 -0.37 -13.18 66.88 -6.85 -14.26 76.15 

3 12.87 -6.20 56.96 12.87 -6.20 56.96 

        

IR 

1 -8.75 8.47 58.03 -8.85 -4.05 57.29 

2 0.82 -21.86 57.33 -2.44 -22.78 57.17 

3 12.55 -8.46 67.40 12.55 -8.46 67.40 

        

JV 

1 -6.61 10.82 49.40 -8.98 -2.00 48.52 

2 -1.49 -14.70 55.82 -9.18 -20.50 67.04 

3 14.94 -0.98 57.41 14.94 -0.98 57.41 

Table 6.1 CIELab coordinates of the three stimuli colours under D65 illumination for each observer. Reference white 

point D65 with L=100. 

Unique randomized Mondrians were created for each experimental trial: no observer saw the same 

Mondrian twice. To illuminate the Mondrian pattern, we first assigned to each rectangle a spectral 

reflectance function, interpolated from the set of Munsell chips assuming a Lambertian reflectance 

model -see COLOURLAB (Malo and Luque 2002) for implementation details. Illumination was 



112 

 

simulated by performing the spectral product of each rectangle’s reflectance by one of six illuminants, 

whose CIE xy chromaticities are shown in Table 6.2. Given the singular 3D shape of the CRT gamut 

we diminished (40%) the power intensity of the bluish illumination in order to ensure that all 

illuminated colours were displayable by the CRT. 

 

Illuminant x y 
Munsell 

coordinates 

Saturation 

strength in E* 

D65 0.317 0.329 - 0 

Greenish 0.296 0.454 2.5G 7/10 37.4 

Yellowish 0.453 0.435 2.5Y 7/8 43.9 

Bluish 0.242 0.285 7.5B 7/8 16.8 

Unsaturated greenish 0.316 0.405 2.5G 7/6 21.2 

Unsaturated yellowish 0.401 0.393 2.5Y 7/4 25.2 

Table 6.2 Illuminant coordinates in CIE 1931 xy colour space used in Experiment IV. Also the last columns contain 

its Munsell coordinates. 

The number and sizes of rectangles were manipulated so that the pixel average chromaticity of all 

background types under D65 illumination was close to D65, i.e., close to the origin in the a*b* plane. 

Table 6.3 reports these average values in CIELab coordinates. Background Type III was effectively 

centred around the origin but background Type IV was slightly shifted towards the negative part of the 

b* axis, for all three observers. This fact is probably due to the particular selection of colours selected 

in Type IV. Notice how in Figure 6.1b all triangles under D65 illumination do not include the D65 

chromaticity, something that do not happen for background Type III. 

 

 Background Type III Background Type IV 

Observer a* b* L* a* b* L* 

JR 0.00 0.00 54.26 -0.61 -6.21 59.71 

IR -0.75 -0.94 60.89 -1.62 -7.88 60.28 

JV 0.00 0.00 53.29 0.17 -4.10 54.42 

Table 6.3 Average pixel chromaticity of displayed Mondrians under D65 illumination in CIELab coordinates. D65 

was used as a reference white point. 

As specified in subsection 4.3.4 of Experiment II we used a multiple test patch to perform the 

chromatic setting task. In the current experiment the average number of patches was 11 (3 StDev) and 

their total average area was approximately a 7% of displayed images. 

 



113 

 

 

 

Figure 6.1 CIE 1976 u'v' coordinates of stimuli colours used in Experiment IV 

. Panel a and b corresponds to the three-colour Mondrians (triangles joined by black dotted lines) under all tested 

illuminations for all observers, respectively Type III and IV backgrounds. Circle markers correspond to the u'v' 

coordinates of the illuminants and are colour coded according to its representative colour. Coloured lines link D65 to 

the rest of illuminants coordinates with the same colour codification. 

6.3 Data analysis 

6.3.1 Linking lost correspondences in the constrained naming test 

During the constrained colour naming task each sample was classified by a single or compound colour 

term. Due that colour terms were recorded in an arbitrary order by observers, then the correspondences 

between colours across sessions were confounded. In order to study possible categorical changes 

across different adaptations we need to recover this correspondences from recorded data. Here we 

present a simple algorithm to achieve this purpose. 

Since each stimulus had three different colours, then each session ended with a list of three basic or 

compound colour terms. Then, given the results of two different sessions, we need to find a bijective 

correspondence between the three elements of each list.  



114 

 

Our developed algorithm has two steps. First, for each list the three basic or compound terms are 

translated into a 3x9 matrix with coefficient values 0, 0.5 and 1. In that matrix each row corresponds 

to the codification of one list colour term into basic terms and each column corresponds to a particular 

basic term. Initially all matrix coefficients has zero value. For instance, if the first term of the list was 

blue-greenish then the first row of the matrix would be updated with value 1 in ith coefficient 

corresponding to blue and with 0.5 in jth coefficient corresponding to green. If the second term was 

pink-purple then the second row would be updated with value 1 in both coefficient positions 

corresponding to the pink and purple. If the last term of the list was yellow then the last row of the 

matrix would update with 1 the kth column coefficient for yellow. The same process applies to the 

second list and gives another matrix. The second step, takes one of both matrices and consider the 

resultant matrices from all possible row permutations. Then, for each permutation the absolute 

difference between the permutated matrix and the other matrix is computed. We choose the 

permutation which gives the lowest value of the accumulated sum of the difference between the 

permutated matrix and the other matrix. Thus, this technique set correspondences between two lists of 

basic or compound colour terms. It is based in maximizing the coincidences for all three colours at the 

same time. 

6.3.2 A similarity index for compound basic colour terms 

For each displayed colour the constrained colour naming test produced a colour term and also, through 

the algorithm introduced in the last subsection, a correspondence of colour terms under the six 

different illuminations was obtained. In order to evaluate systematically how similar are these sets of 

six colours we developed an index to evaluate the similarity between pairs of such colour terms. Our 

naming results indicate that observers did not use in any case more than two terms for each coloured 

sample, then possible combinations are: [basic term], [basic term, basic term] and [basic term, basic 

term adjective]. When combining these naming types we have six possible combinations as described 

in the first column of Table 6.4. 

 



115 

 

Case description Discussion  Index Example 

I.              
  =      1 (B,-)&(B,-) 

         0 (B,-)&(G,-) 

II.                 

  =   
  =     1 (B,G)&(B,G) 

        0.5 (G,B)&(G,Y) 

      
  =     0.5 (B,G)&(Y,G) 

        0 (B,Pr)&(G,Y) 

  =   
  =     1 (B,G)&(G,B) 

        0.5 (B,G)&(Pr,B) 

      
  =     0.5 (B,G)&(G,Y) 

        0 (B,G)&(Y,O) 

III.                

  =      0.75 (G,-)&(G,Y) 

      
  =     0.75 (G,-)&(Y,G) 

        0 (G,-)&(Y,O) 

IV.                

  =      0.875 (G,-)&(G,Y-ish) 

      
        0.125 (B,-)&(G,B-ish) 

        0 (B,-)&(G,B-ish) 

V.                 

  =   
        0.875 (B,G)&(B,G-ish) 

        0.5 (B,G)&(B,Pr-ish) 

      

  =   
       0.875 (G,B)&(B,G-ish) 

       0.5 (B,G)&(B,Pr-ish) 

      

       0.125 (G,B)&(Pr,B-ish) 

       0.125 (G,B)&(Pr,G-ish) 

            0 (G,B)&(Pr,P-ish) 

VI.                 

  =   
  =     1 (G,B-ish)&(G,B-ish) 

        0.75 (G,B-ish)&(G,Y-ish) 

      

  =     0.25 (G,B-ish)&(Pr,B-ish) 

        0 (G,B-ish)&(Pr,P-ish) 

      
       0.75 (G,B-ish)&(B,G-ish) 

       0.125 (G,B-ish)&(B,P-ish) 

      
       0.125 (G,P-ish)&(B,B-ish) 

       0 (G,Y-ish)&(B,P-ish) 

Table 6.4 A similarity index between two compound colour terms 

. The first column contains the prototype description of the compound colour term combination (n1,n2, m1 and m2 are 

BCT, and a1 and a2 are BCT adjectives also the   symbol indicates coincidence of BCT category), the following four 

columns contains the discussion of possible cases and the sixth column contains the index value. Finally, the last 

column contains and example. 

The similarity index reported in Table 6.4 was assigned following a rationale derived of each case 

while keeping consistency throughout all six cases. Index values ranges between 0 and 1, indicating 

null and full categorical coincidence respectively. Notice that compound names cannot have both 

terms belonging to the same basic colour category. Case I corresponds to the comparison between two 

single basic terms and thus only two options are possible: coincidence or not, and thus its values are 1 

or 0 respectively. Case II corresponds to the comparison between two compound basic terms without 

adjectives, then possible cases are: coincidence of both basic colour terms, coincidence of one basic 

colour term and any coincidence, and thus its values are 1, 0.5 and 0 respectively. Case III is even 
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simpler, only allowing to the coincidence of one basic term or no coincidence at all, then its values are 

0.75 and 0 respectively. Notice here that we need to keep consistency with a previous case: take for 

instance the current case (G,-)&(G,Y) with 0.75 and the previous one (G,B)&(G,Y) which was 

assigned 0.5 of similarity, if we think in terms of geometrical distances then the green centroid is 

closer to the green-yellow centroid than the green-blue and green-yellow are, from here follows the 

higher value of the (G,-)&(G,Y) case. Case IV is similar to the previous one but instead of having in 

the compound term two basic colour terms it has a basic term plus a basic term adjective. Then its 

values are basic terms coincidence, adjectival term categorical coincidence to the noun and no 

coincidence at all, and thus its values are 0.875, 0.125 and 0 respectively. Notice here that we have a 

similar case of inter-case consistency, for instance the (G,-)&(G,Y-ish) needs to have a higher index 

value than (G,-)&(G,Y). Case V and VI follows the same rationale as in the previous cases, however 

there is a singular case: take for instance (G,B-ish)&(B,G-ish) where formal coincidence is null but the 

categorical quality of the colour sample is so close, we assigned 0.75 similarity in that particular case. 

6.3.3 A categorical colour prediction model 

Despite the constrained colour naming task provided categorical information for each displayed colour 

in each adaptation state, we developed a method to predict its categorical colour appearance under the 

reference illuminant (D65). The method is based on three steps applied to each displayed colour: (i) 

To predict its LMS coordinates under the reference illuminant, (ii) From LMS coordinates we 

assigned a two-category probability, and (iii) From the two-category probability we assigned a single 

or compound BCT. 

Given a colour sample under a test illuminant (any of detailed in Table 6.2),  the first step obtains its 

LMS coordinates under the reference illuminant. We measured the chromatic settings under the 

reference and test illumination while keeping the same background, then as described in subsection 

4.4.4 we modelled the adaptation through a linear model of colour constancy. Here we used an affine 

matrix fitted with the nine correspondences between test and reference chromatic settings. Finally, the 

matrix was applied to the LMS coordinates of displayed colours under test illuminant and a prediction 

of the LMS coordinates of them under the reference illuminant was obtained. 

Second, for the produced LMS coordinates we assigned a probability of belonging to two basic colour 

categories. Since the reference illuminant was D65 and the LMS coordinates represented the colour 

seen under the reference illuminant too we computed its CIELab coordinates with D65 as a reference 

white point, label them as x. Next, from the set of nine chromatic settings measured under the 
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reference illuminant and same background, we assigned a categorical classification in terms of only 

two basic colour categories.  

Construction of a Hue-luminance map. The categorical classification discarded saturation and was 

based on the hue of x in relation to the location of xN while keeping luminance information. The 

particular implementation makes use of a cylinder whose main axis is parallel to the L*axis but its 

origin coordinates in a*b* plane were that of   . Its L* values ranged between the minimum and 

maximum L* of chromatic settings and its cylinder radius was 22 E*. The method uses the CIELab 

colour space because it is a 3D colour space and perceptually uniform. It uses three main steps and the 

CIELab colour space, because it is opponent and perceptually uniform, and three dimensional to 

differentiate amongst the categories yellow, brown, pink, red and purple. 

 

 

Figure 6.2 Schematics of the Hue-Luminance map. Panel a shows the first step in the Hue-Luminance map creation 

and two different hypothetical cases according to the achromatic threshold. Panel b shows how the cylinder surface is 

divided according to basic colour categories. See text for further details. 

The procedure was divided in several instructions according to E* distance between the grey 

chromatic setting and x, in the a*b* chromatic plane. If               then: 

1. Project x to the surface of the previously defined cylinder. 

2. Assign a probability of belonging to two basic colour categories. In the hue map defined in 

Figure 6.2b compute the closest dotted line to the previous projection. The extremes of the 

dotted line set the two basic colour categories that characterize the colour appearance of that 

colour. 

3. Assign a probability of belonging to each category from the relative distances between line 

extremes and the projection. Notice that this distances are computed on the cylinder surface 

and when the extremes has the same L* value then equals to use only the hue. 
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If               then: 

1'. Do (1) to (3) and select the category with the highest probability. 

2'. Compute relative distances between y x and N (panel a of Figure 6.2). 

3'. Assign a probability of belonging to grey and the other category. 

 

Finally, the third step applied the function defined in Equation 6.1 to the probabilities output of 

previous step. Equation 6.1 summarizes all five possible cases and its classification depends on two 

threshold parameters:  

 

         

 
 
 

 
 
                     

              

              

                     

                     

    

                                               

                       
                       
                                  
                              

 (6.1) 

 

Threshold parameters are    and    and satisfy          . Threshold values rule when one 

colour is classified as belonging to only one category, to two categories, or complemented by basic 

colour terms adjectives. See discussion for an empirical discussion on our results. We tested its 

influence and set to 0.25 and 0.5 respectively, see subsection 6.5.1 for further details. 

6.4 Results 

We have developed a technique to study categorical changes under colour constancy. And if the 

technique works fine then we could claim that we have developed a method to predict categorical 

appearance under illumination changes. However the previous statement is provided that we 

demonstrate that the colour constancy is not categorically stable under some cases despite colour 

constancy indices suggest it.  

 

6.4.1 Usage of compound basic colour terms 

The constrained naming test provided a total of 108 named samples, 54 for each background type (3 

colour names for each of 6 illuminants and 3 observers). Table 6.5 contains all assigned compound 

colour terms for each background, illuminant and observer. Rows highlighted in bold correspond to 
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the colour terms assigned under D65 illumination. As previously stated, correspondences between 

colour terms were confounded in the constrained colour naming task across sessions. Coded colours in 

Table 6.5 are sorted by the algorithm introduced in the previous subsection 6.3.1, i.e., colour terms 

were reordered in such a way that maximized the categorical coincidence with colours seen under the 

reference illuminant. For instance, the colours labelled as C1, C2 and C3 for the JR observer under 

illumination one were B, G and P-Pr-ish, then all three colour lists recorded under other illuminations 

were reordered such the similarity with those terms was maximized. The same procedure applied to all 

other cases. 

 

  JR IR JV 

Back Illum C1 C2 C3 C1 C2 C3 C1 C2 C3 

III 

1 B G P,Pr-ish B G Pr,P-ish B,R-ish G,N-ish P,Pr-ish 

2 B,G G,Y-ish N B,G G N,O-ish B,O-ish G N,O-ish 

3 N G,Y-ish P,R-ish B,N-ish G,Y-ish P,O-ish N G R-P 

4 B G Pr,N-ish B G Pr,N-ish B G Pr,N-ish 

5 B,G G Pr,P-ish B G N,Pr-ish B,R-ish G N,R-ish 

6 N,B-ish G,Y-ish P,R-ish B G P N,B-ish G P,R-ish 

           

Back Illum C4 C5 C6 C4 C5 C6 C4 C5 C6 

IV 

1 B, N G,N-ish P,R-ish B G P,N-ish B G,N-ish R,P-ish 

2 B,G G Pr,R-ish B,G G ,Y-ish G B,O-ish G R,N-ish 

3 N,Y-ish G,Y-ish R B,N-ish G O,P-ish B,N N,B-ish R,P-ish 

4 B G,N-ish Pr,R-ish B G Pr,N-ish B G,B-ish R,Pr-ish 

5 B,G G,N Pr,P-ish B G Y,P-ish B,O-ish G R,Br-ish 

6 N G,N-ish P,R-ish B G P,O-ish B,N-ish G,N-ish R,P-ish 

Table 6.5 Naming results from the constrained naming task for our three observers. 

 Rows indicate results according to illuminants and background types. Columns indicated results according to 

observers and colours. In bold are the results obtained under D65 illumination. Notice that colours were sorted 

according to the method introduced in subsection 6.3.1. 

Observers used at maximum two colour terms to describe perceived colours and its usage was reduced 

to the following cases: [basic term] or [basic term, basic term] or [basic term, basic term adjective]. 

The usage pattern of these colour terms is resumed in the histograms of Figure 6.4 where naming 

results are averaged over backgrounds and illuminants in panel a. Observers used an average of 8.8 

times for [basic terms] case, 7.5 times for [basic term, basic terms adjective] and only 1.7 times for 

[basic term, basic term] case. Figure 6.4b contain the breakdown of the previous panel a histogram 

into different backgrounds and illuminants, top histogram for Type III and bottom for Type IV. Notice 

how for both background types the pattern N-NA-NN is similar for the first four illuminants but the 

last two had a tendency to a higher number of NA.  
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Figure 6.3 Pattern usage of compound colour terms in the constrained-naming task. 

 Panel a: usage averaged over all observers and illuminants. Panel b: usage breakdown according to illuminants and 
backgrounds type. Top corresponds to Type III and bottom to type IV. 

If colour constancy was complete then the assigned colour terms in Table 6.5 would be the same in 

each column. We quantified these categorical variations using the colour terms similarity index 

introduced in the previous subsection 6.3.2, i.e., we computed the index of categorical coincidence for 

each pair of assigned colour terms under D65 and a test illumination. For instance, take the similarity 

index between the colour assignments done for observer IR under illumination 1 (D65) and C1, which 

is G, to the same but colour but under illumination 2, which is G and then the index is 1. Table 6.5 

contains the resulting values of computing these similarities and also summarized in its last row for 

each background type (highlighted in bold). 
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  JR IR JV Mean 

Back Illum C1 C2 C3 C1 C2 C3 C1 C2 C3  

III 

2 0.75 0.875 0 0.75 1 0 0.875 0.875 0 0.57 

3 0 0.875 0.75 0.875 0.875 0.125 0 0.875 0.5 0.54 

4 1 1 0.125 1 1 0.75 0.875 0.875 0.125 0.75 

5 0.75 1 0.75 1 1 0.125 0 0.875 0 0.61 

6 0.125 0.875 0.75 1 1 0.25 0.125 0.875 0.75 0.62 

Mean 0.52 0.92 0.47 0.92 0.97 0.22 0.37 0.87 0.27 0.62 

            

Back Illum C4 C5 C6 C4 C5 C6 C4 C5 C6  

IV 

2 0.875 0.5 0 0.875 0.75 0 0.75 1 0.875 0.62 

3 0.75 0.5 0.125 1 0.875 0.125 1 0.75 0.125 0.58 

4 1 0.75 0 1 1 0 0.75 1 0.75 0.69 

5 0.875 0.5 0.125 1 1 0.125 0.75 1 0.875 0.69 

6 1 0.75 1 1 1 0.75 1 0.875 1 0.93 

Mean 0.90 0.60 0.25 0.97 0.92 0.20 0.85 0.92 0.72 0.71 

Table 6.6 Index of categorical term coincidence applied to constrained-naming data. Quantify the degree of 

categorical change from previous Table 6.4 through the index of categorical coincidence. 

The average value of Table 6.6 is 0.71 and thus suggesting that categorical colour perception was 

mostly stable under illumination changes and over both background types. However, a close analysis 

into the conforming background colours suggested that this categorical stability only hold for colours 

C1 (0.60), C2 (0.92), C4 (0.91) and C5 (0.81), and not for colours C3 (0.32) and C6 (0.39) with a 

much lower index of categorical similarity. Then green and blue were the most stable colours when 

illumination was changed and colours C3 and C6 labelled as combinations of pink, red and purple 

under D65 illumination were the less stable. 

6.4.2 Chromatic settings under six different illuminants 

Figure 6.4 shows the averaged chromatic settings in CIELab colour space over all three observers, 

discriminated by background type (III and IV), and separated in panels according to the six adapted 

illuminations. CIELab coordinates of these results were computed using the same reference white 

point (D65) in order to highlight the effect of illuminant shift (direction and magnitude), hence the 

displacement of the data in plots. 

The precision of measured chromatic settings was computed as the average E* distance to the trials 

mean for each colour category, as described in subsection 4.4.2. The average experimental error of 

chromatic settings was of 3.2 E* () and no differences were found according to background 

type. According to illuminants, it varies significantly (F(5,102)=2.72, p<0.05) but differences were 

only significant between the greenish (mean=3.7, =0.8) and unsaturated yellowish (mean=2.9, 

=0.6). According to colour categories, grey was the one with the lowest error (mean=2.54, =0.44) 

and purple with the largest (mean=4, =1). Also, there were small differences according to observers: 
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JR 2.66 E* (=0.93), IR 2.83 E* (=1.26) and JV 4.13 E* (=1.65). Average time spend in each 

trial was 24.2 seconds (=5.5). 

A series of sessions were included in the experiment to assess the ability of observers to reproduce the 

same colours over the experimental period. Appendix F contains a brief report about the repeatability 

of the chromatic settings following the same approach as described previously (see subsection 4.4.1). 

We conclude that observers were able to reproduce reliably the chromatic settings.  

 

 

Figure 6.4 Chromatic settings averaged over all three observers for all six illuminants 

. Each panel corresponds to one particular illuminant (a to D65, b to greenish, c to yellowish, d to bluish, e to 

unsaturated greenish and f to unsaturated yellowish), and squares and circles correspond to background type III and 

IV respectively. Notice the consistent shift according to background type over all panels, this is due to global contrast 

effects, see text for details. 
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All six panels of Figure 6.4 show a consistent difference in the location of chromatic settings 

according to background type (linked by a black line). The tendency may be summarized as a broadly 

uniform shift, in magnitude and direction, for all categories between the same colour coded markers.  

The shift was modelled for each colour category as the vector defined from the chromatic settings 

under background type III and IV (same colour coded square and circle). Its average magnitude was 

7.2 E* (=2.1) and its direction was computed as the angular distance between the vector defined 

under the reference and test illuminants while keeping the same colour category. Average angular 

difference was 30 degrees (=20) which indicate an overall broad agreement. The existence of this 

shift is expected from global colour contrast adaptation, which adjusts for changes in the average 

colour across scenes (Webster 1996). 

Along the experimental period we kept track of observers ability to reproduce the chromatic settings 

by means of two repeatability tests. These were conducted regularly at approximately three days' 

intervals and included a reference session where observers were asked to reproduce the original 

chromatic settings and a regular session with D65 illumination and Type 0 background. Figure 6.5 

contains the chromatic settings for the reference sessions; columns correspond to observers and the 

first row the original chromatic settings and the other correspond to the repeatability test in temporal 

sequence. We quantified this ability by performing a series of t-tests to the same categories across 

different rows in each CIELab dimension. Our results show that the means of the results populations 

considering all observers were equal in 90% of the cases. The same approach was applied to the other 

kind of session and populations were equal in 70% of the cases (these results are reported in a Figure 

contained in Appendix F). As in Experiment II, this difference is likely to the absence of the Boundary 

Cylinder which increased uncertainty in the saturation dimension. 
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Figure 6.5 Chromatic settings in Experiment IV repeatability tests. First row shows the selected representatives
chosen by the three subjects in the reference session. Following rows show the corresponding settings for the three 
subsequent repeatability tests. Square markers represent the average of individual trials (small dots joined by lines) 
and the large red circle corresponds to the Bounding Cylinder in a*b* chromaticity plane. 

6.4.3 Hue disruption in chromatic settings due to illuminant changes 

Each set of chromatic settings in Figure 6.5 seems to preserve somehow its inter-distances, something 

that was observer and quantified in Chapter 5 by means of the graph approach. We applied the same 

technique (see subsection 5.3) in order to find overall structural differences in the interrelations of 

chromatic settings motivated by illumination changes. Graphs were computed for each averaged set of 

chromatic settings in Figure 6.5 and distances computed between the reference and test illuminants 

while keeping the same background type. No differences were found according to background types. 
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Then averaged results for each illuminant were: 13% for greenish, 22% for yellowish, 10% for bluish 

and unsaturated greenish and 12% for unsaturated yellowish. Noticeably, this results are somehow in 

agreement with Chapter 4 findings which reported a higher degree of chromatic settings structural 

disruption under the yellowish illuminant motivated for different index values of the structural colour 

constancy index and linear models precision. 

According to the graph approach, inter-distances among chromatic settings were highly stable (86.6% 

in average) and thus suggesting a high degree of stability in the categorical colour structure of colour 

space under changes of illuminant. However, the graph approach could hide cancellations among 

relatively small chromatic settings movements and also, results from our naming task (see next 

subsection) revealed the existence of consistent categorical changes. We further analysed our data by 

removing the saturation dimension from the analysis whilst focusing only in hue and luminance. The 

hue dimension was computed from the CIE 1976 u'v' coordinates of chromatic settings, i.e., for each 

chromatic setting we computed the angle between the vector defined as parallel to the u' axis from 

grey and the vector conformed by grey and the chromatic setting. The horizontal dimension of Panel a 

in Figure 6.6 corresponds these hue values, and the vertical dimension corresponds to the luminance. 

The hue and luminance coordinates of chromatic settings in Figure 6.6 are plotted according to 

backgrounds (panels) and illuminants (markers). Each panel in corresponds to a different background 

type; panel a to type III, panel b to type IV, and panel c to the averaged chromatic settings of types 0, I 

and II (obtained in Experiment II). Notice that results in panel c were averaged after any significant 

differences were found among types 0, I and II. 
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Figure 6.6 Hue and luminance differences in chromatic settings due to illuminant changes. Markers are colour coded 

according to the chromatic setting colour category and markers shape indicate the illuminant adapted. Each panel 

corresponds to results obtained under different backgrounds, see text for details. Black lines indicate standard 

deviation.  

Figure 6.6 reveals three main facts. First, luminance information is not a distinctive factor despite that 

chromatic settings under bluish illumination (diamond in panels a and b) had lower luminance, 

something directly related to the lower intensity of bluish illuminant. Second, panels a and b has 

remarkable hue differences according to the adapted illuminants for nearly all categories. Third, 
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chromatic settings in panel c has no differences according to the adapted illuminants (D65, greenish 

and yellowish). 

Figure 6.7 summarized the previous hue differences; it contains the difference (in degrees) between 

the corresponding colour hues under the reference  and test illuminants (between the circle marker and 

the rest in Figure 6.6). Panel a of Figure 6.7 contains the results for background type III and results are 

grouped according to illuminants in colour coded bars for each chromatic setting. Notice the tendency 

for the greenish, yellowish, unsaturated greenish and unsaturated yellowish is that broadly exist two 

rotations with opposite directions at the same time: red, yellow, pink, orange and brown rotate to the 

left, and green and purple to the right (according to Figure 6.6 markers location). Panel b contains the 

results for background type IV and also contains these two opposite rotations, however less consistent. 

When results are compared over backgrounds there is a close similarity for the yellowish, bluish and 

unsaturated greenish illuminants. Notice that under the bluish illuminant hue disruption was minimal 

and also consistent to the same orientation in both background types. 

The magnitude of hue disruption was averaged over backgrounds and categories and it was: 11.6 deg 

for greenish, 19.9 deg for yellowish, 6.6 deg for bluish, 9.1 deg for unsaturated greenish, and 10.7 deg 

for unsaturated yellowish. Interestingly these magnitudes were strongly correlated (r=0.91 and p=0.03) 

to the magnitude of the illuminant shift (computed as E* distances in a*b* plane from the origin 

(D65) to the illuminants coordinates: 37.4 for greenish, 43.9 for yellowish, 16.8 for bluish, 21.2 for 

unsaturated greenish and 25.2 for unsaturated yellowish). This correlations suggests that as more 

intense is the chromaticity saturation of the illuminant then higher distortions for chromatic settings 

are expected. However, the proportion of disruption was lower for the greenish illuminant. 
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Figure 6.7 Hue distance for chromatic settingsunder the reference and test illuminants. Panel a corresponds to 

background type III results which are grouped by illuminants and colour coded according to chromatic setting 

categories (bars). Panel b corresponds to background type IV and follows the same description. 

6.4.4 Extent of categorical colour constancy 

Here we quantified the extent of colour constancy from two different approaches. First, we computed 

a traditional colour constancy index which quantified the magnitude of displacement between 

corresponding locations of chromatic settings in colour space under the test and reference illuminants. 

Second, we predicted the location of background colours in colour space once adapted to a test 

illuminant and compared to their locations under the reference illuminant. Both approaches 

contributed to describe the extent, in magnitude and quality, of categorical colour constancy. 

Figure 6.8 contains the CIE 1976 uv coordinates of chromatic settings corresponding to the grey 

category for all tested observers and background/illumination conditions. As expected by the results of 

previous studies in successive colour constancy (Foster 2011) the location of this particular point lies 
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close to the joining line between illuminants coordinates. Notice that its close location to the 

coordinates of test illuminants suggests a high degree of colour constancy. Also, the small existent 

shift for measurements done under D65 confirms the global contrast effects described in subsection 

6.4.2., consequence of the biased average chromaticity of background type IV.  

Figure 6.8 Coordinated of chromatic settings corresponding to "grey" in CIE 1976 uv colour space for all observers 
and background/illuminant conditions; squares and circles correspond to background type III and IV. Coloured 
circles indicate the illuminants location and are colour coded according to the illuminant colour. 

We quantified the extent of colour constancy for each chromatic setting computing the Brunswick 

ratio between measurements done under the reference (D65) and test (the rest) illuminants. 

Computations followed the same approach as described in subsection 4.4.3 and Equation 4.1. Figure 

6.9 shows these results according to colour categories (x-axis), background (panel) and illuminants 

(coded coloured lines). The overall average value was 0.83 (=0.17) and thus confirming a high 

degree of colour constancy. Differences in index values were studied according to backgrounds and no 

differences were found, also according to illuminants (F(4,265)=2.99 and p<0.05) with the only 

significant difference between the greenish (mean=0.87, =0.19) and the yellowish (mean=0.77, 

=0.16) illuminants. To study differences according to colour categories we averaged index values 

over backgrounds and illuminants and significant differences existed (F(8,81)=25.68, p<0.001 ), being 
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the highest for purple with a value of 1.07 (=0.11) and the lowest for yellow with a value of 0.67 

(=0.05). 

Figure 6.9 Brunswick ratio computed from chromatic settings of Experiment IV. Results are shown discriminated by 
colour categories and illuminants. Panels a and b correspond to background types III and IV respectively. 

The Brunswick ratio values over colour categories were broadly uniform but not completely, the 

variation was still a 20% (coefficient of variation: 0.17/0.83=0.20), something that was in agreement 

with the hue distortions reported in subsection 6.4.5. Furthermore, it allowed the possibility to explain 

for the categorical results reported in subsection 6.4.4. 

Next we quantified the extent of categorical colour constancy. We studied the relationship between 

background colours under the reference illumination and the "same" colours once adapted from a test 

illumination. To do so, we predicted the coordinates of background colours after adaptation using a 

linear model of colour constancy, as described in subsection 4.4.4. We used the chromatic settings 

between the test and reference illumination to fit the coefficients of an affine matrix, then it predicted 

the LMS coordinates of adapted colours under the reference illumination. 

Figure 6.10 shows this approach where columns and rows correspond to observer and background 

type respectively. In each panel, the adapted colours are coded with a different symbol according to 

which were its test illuminant and, linked to the reference location with a black line. Coordinates 

shown are in CIELab a*b* plane with the reference illuminant as a reference white point. If adaptation 

was complete then different illuminant-symbols would be in the same location, but notice how the 
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distribution of adapted colours around the expected location under the reference illuminant (circle) is 

not uniform. We quantified the magnitude of this observation from E* distances between the 

reference and test illuminant locations. Table 6.8 contains its values observers averaged according to 

illuminants and backgrounds. 

 

 Type III Type IV  

Illum / Colour C1 C2 C3 C4 C5 C6 Mean 

Greenish 5.68 15.58 13.76 8.68 18.45 12.66 12.47 

Yellowish 5.07 13.51 13.31 7.79 14.60 10.84 10.85 

Bluish  5.12 5.47 8.47 3.42 4.29 8.98 5.96 

Greenish unsaturated 5.77 7.94 8.04 4.02 7.63 6.75 6.36 

Yellowish unsaturated 3.93 8.34 7.51 4.67 7.60 7.48 6.59 

Mean 5.11 10.16 10.22 5.72 10.51 9.34 8.51 

Table 6.7 Distance in E* between reference and adapted background colours. This table contains 

observer averaged distances observed in Figure 6.10 (black lines), see text for details. 

Previously we observed the tendency that distortion grows among chromatic settings according to 

illuminant saturation, however Table 6.8 reveals another pattern; C1 and C4 colours keeps the same 

distance to the reference background colour (5.11 E* and 5.72 E*) despite the adapted illuminant. 

That fact suggests that colours C1 and C4, which corresponds to the green category, could have 

influenced the categorical perception under the adaptation process and thus inhibiting/constraining the 

existence of other colour categories. 
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Figure 6.10 Prediction of adapted background colours under test illuminants . They are colour coded with its 

compound colour naming classification from the colour naming task. Each panel corresponds to one observer and 

background type. Illuminant are marker coded. Coloured lines outside the circle indicate hue of D65 chromatic 

settings. Solid squares indicate the SR location under D65 and Nameable background. The doubled coloured squares 

indicate the location of displayed colours under D65 and are colour 
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Each panel in Figure 6.10 has a set of coloured lines close to the circle, they indicate the hue of the 

chromatic settings under D65 accordingly to each observer in each panel. Visual inspection reveals the 

consistency of the chromatic settings with colour naming results, i.e., in general all hues are aligned 

with their categorical codifications. The validity to use the chromatic settings for a colour naming 

model is assessed in the subsection 6.5.1. 

6.4.5 Simulating categorical colour perception on the achromatic axis 

The performed colour naming task only provided categorical information for three points in colour 

space under each adaptation state and its results demonstrated that categorical colour constancy was 

not complete. We are interested into expand this categorical information to untested regions of colour 

space and to do so we used the categorical colour prediction model introduced in subsection 6.3.3. 

However, chromatic settings are the categorical parameters of the model and so the reliability of its 

predictions rely on their proximity to the chromatic settings. Thus we restricted the analysis to the 

achromatic axis with its lightness range limited to the chromatic settings one. Also only adaptations 

under background type III were studied. 

Figure 6.11 shows the categorical colour predictions of the achromatic axis under the reference, test 

and adapted test illuminations. The achromatic axis was sampled by seven points according to each 

adaptation stated, i.e., points were selected to be equally spaced in the range defined by chromatic 

settings lightness. In each panel, the first column contains the categorical colour prediction of the 

achromatic points under the reference illumination (sorted according to lightness from lower-bottom to 

higher-top) and then follows five pairs of columns each corresponding to the categorical prediction of 

illuminated achromatic points and adapted achromatic points, both under the reference illumination. 

Thus, categorical colour perception was assigned according to the D65 one, i.e., the categorical colour 

prediction model (parameters: 0.25, 0.5 and 20) used the chromatic settings adjusted under D65 

illumination. Notice that procedure was adjusted to each observer and its particular adapted state under 

a given illumination and background type. Colour codification used in Figure 6.11 follows the same 

rule than Figure 6.10. 
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Figure 6.11 Prediction of categorical colour perception of the achromatic axis  under reference, test and adapted test 

illuminations. Each panel corresponds to one observer using the adaptation measured under background type III. 

Each round marker is colour coded according to the compound basic terms classification: only one colour indicates 

one category, one colour with the border outlined indicates basic + basic adj and two concentric circles indicates the 

case basic + basic. Column indicated with R is colours seen under ref illum, then Ii corresponds to colour seen under i 

illum but categorized using d65 adapt and Ai are the categorization done on the adapted colours. See text for details. 

We quantified how categorically constant are the predictions displayed in Figure 6.11 from the 

similarity index introduced in subsection 6.3.2. More precisely, we computed the similarity index 

between the prediction under the test illuminant and the reference illuminant for each pair of 

predictions corresponding to the same luminance points (that means between each lightness 

corresponding point of columns R and Ai). Table 6.8 contains these values averaged over all three 

observers and it reveals two tendencies. First, a lower similarity index for illuminants with higher 

saturation and second, a higher similarity index for lower lightness points. The latter probably due to 

the physics of illumination where darker colours are less influenced by illumination change and so 

they help constancy.  

 

Colours / Illum Greenish Yellowish Bluish 
Greenish 

unsaturated 

Yellowish 

unsaturated 
Mean 

Achromatic 1 0.25 0.00 0.79 0.79 0.54 0.56 

Achromatic 2 0.25 0.08 0.83 0.79 0.54 0.58 

Achromatic 3 0.33 0.12 0.87 0.79 0.66 0.63 

Achromatic 4 0.58 0.54 0.96 0.83 0.71 0.77 

Achromatic 5 0.66 0.79 0.96 0.79 0.87 0.85 

Achromatic 6 0.75 0.92 0.96 0.83 0.96 0.90 

Achromatic 7 0.96 0.87 1.00 0.79 0.62 0.87 

Mean 0.54 0.48 0.91 0.80 0.70 0.69 

Table 6.8 Similarity index computed between categorical predictions on reference and adapted achromatic colours 
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. Each row corresponds to one achromatic colour and are sorted from bottom to top into lower to higher lightness. 

Each column corresponds to the adaptation under the column header illuminant. Coefficients has been observer 

averaged. Notice that the similarity index acts as a categorical colour constancy index. The considerable number of 

repeated coefficients is due to the non continuous nature of the similarity index coefficients. See further details in 

text. 

Interestingly the previous categorical predictions suggest large failures of categorical colour constancy 

for the most saturated illuminants, the greenish and the yellowish. For the other three illuminants the 

degree of categorical colour constancy is much higher, similar to the colour constancy indices reported 

before, however the categorical colour constancy is only completed under the bluish illuminant. The 

overall categorical changes observer are in agreement with the Helson-Judd effect (Derefeldt and 

Swartling).  

Figure 6.11 is a visual approach to the hypothesis stated in the chapter introduction, i.e., which aim is 

priority either to recover reference colours or either to keep categorical colour perception of 

illuminated colours. In order to acquire a formal approach to this question we computed the same 

similarity index as in Table 6.8 but this time instead of using adapted colours we used the colours 

under the test illuminations. Table 6.9 reveals opposite tendencies to Table 6.8; saturated illuminants 

had a higher degree of categorical constancy than unsaturated ones and, colours with higher lightness 

had a higher degree of constancy.  

 

Colours / Illum Greenish Yellowish Bluish 
Greenish 

unsaturated 

Yellowish 

unsaturated 
Mean 

Achromatic 1 0.96 0.96 0.25 0.58 0.62 0.67 

Achromatic 2 0.96 0.87 0.12 0.58 0.62 0.63 

Achromatic 3 0.87 0.83 0.08 0.58 0.58 0.59 

Achromatic 4 0.79 0.58 0.00 0.54 0.37 0.46 

Achromatic 5 0.75 0.50 0.00 0.29 0.25 0.36 

Achromatic 6 0.50 0.25 0.04 0.25 0.25 0.26 

Achromatic 7 0.00 0.50 0.33 0.25 0.25 0.27 

Mean 0.69 0.64 0.12 0.44 0.42  

Table 6.9 Similarity index computed between categorical predictions on reference and illuminated achromatic 

colours. The table description follows the same rationale as Table 6.8. 

Notice how averaged results from Table 6.8 and 6.9 are inversely correlated, in broad terms. Take for 

instance similarity values under the green illuminant, 0.54 to the reference colours and 0.69 to the 

illuminated colours, these values indicate that adapted categorical colours were more similar to the 

illuminated ones than to the reference ones. From the global contrast property we can expect that 

adapted colours will lie close to the regions lead by the joining line between the reference and test 

illuminant coordinates, then previous results makes sense because somehow all categorical predictions 
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lie in this line and so values needs to be in overall inversely correlated (as it is). Something that also 

reinforces the validity of the approach of simulation on the achromatic axis. We will discuss further 

this point in the next subsection. 

6.5 Discussion 

6.5.1 Accuracy of the categorical colour prediction model 

We studied the accuracy of the categorical colour prediction model (see subsection 6.3.3) according to 

its parameters: an achromatic threshold value, two categorical threshold values and two sets of 

chromatic settings measured under the test and reference illuminations. We used two tests, first we 

evaluated how well categorical data obtained from the naming task is predicted and second we 

compared categorical predictions between our model and fuzzy sets models of colour naming. 

Our first test obtained the categorical colour prediction for each adapted colour (Markers of Figure 

6.10) and computed the similarity index between this prediction and its corresponding colour naming 

result. We used the similarity index to address the quality of the prediction and it had an average (over 

all conditions) value of 0.79 (=0.16) when using the parameters values tachr=12, t1=0.25 and t2=0.5. 

Next we studied the influence of t1 and t2 parameters to this quality index. We considered a sampling 

of the 0< t1< t2<1 parameter space in 0.01 steps and computed for each t1, t2 pair their related quality 

index. Panel b of Figure 6.12 shows the surface resulting from considering the function where for each 

pair of parameters obtains its quality index. Surface values range between 0.66 and 0.80 and its 

average value is 0.75 (=0.03) corresponding to (t1,t2) = (0.3,0.4). Also, notice the smooth properties 

of the surface, i.e., it is continuous and differentiable, and it has only one local maximum thus 

supporting the consistency of the approach. The high values of the similarity index demonstrated that 

the prediction method succeeded at least for the colour terms measured. However due to the small 

number and limited colour space location of tested colours we will not rely on threshold values for 

predictions of subsection 6.4.5 and use the more canonical values of 0.25 and 0.5. 
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Figure 6.12 Accuracy of the categorical colour prediction model 

 according to its conforming parameters. Panel a: Section of CIELab colour space at L*=60 with its categorical model 

predictions colour coded as usual, for one observer. Notice how it reveals categorical transition in the plane as well as 

in the lightness dimension. Panel b: Surface relating threshold values to the coincidence index between adapted points 

predictions and its recorded colour naming results. Results are averaged over all conditions and observers. 

Our second test studied the shape of categorical regions generated by the categorical model, according 

to its definition the shape is clearly radial from the adjusted grey. Due to the limited extension of 

chromatic settings in colour space only makes sense to study the inner part of colour space, this is the 

corresponding region limited by the chromatic settings lightness, saturation and hue ranges. Panel a of 

Figure 6.1 shows a cross section of categorized CIELab colour space at lightness L*=60 for one 

particular observer (IR). To render this figure we sampled the inner part of CIELab colour space in 

steps of 2 units (JND) for all three dimensions and categorized applying the categorical colour 

prediction model. Visual inspection of panel a confirms the consistency with previous approaches 

(Lammens 1995; Hansen, Walter et al. 2007; Benavente, Vanrell et al. 2008) containing the same 

basic features: large regions for basic colour terms, large border regions for green-blue, green-yellow 

and blue-purple, and limited round region for grey. As expected by model definition most of the 

category boundaries are represented by straight lines, something coincident to previous approaches. 

However this is clearly an oversimplification from what we have found in Chapter 3, an artefact 

created by the necessary simplicity of the model. 

It is interesting to have recovered this particular shape with such a simple algorithm, something that 

challenges more complex approaches as the fuzzy sets (Lammens 1995; Hansen, Walter et al. 2007; 

Benavente, Vanrell et al. 2008). 
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6.5.2 Categorical inconstancy in successive colour constancy  

Here we summarize previous results in terms of categorical changes occurred from changes of 

illumination. The number of colours is a visual cue for colour constancy mechanisms as demonstrated 

by previous works and seen from our own results, however in that case we do not study the amount of 

colour constancy but the categorical influences to them. 

 

 

Figure 6.13 Coincidence to illuminated and reference colours.
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Chapter 7 Conclusions 

This chapter summarizes the main findings of previous chapters. In particular it summarizes the 

previous four experiments and their results and conclusions. Furthermore the results are linked from 

one chapter to the other and a the principal aim stated in the first chapter confronted. Also, as in the 

first chapter, the conclusions are stated in terms of possible contributions to the Computer Vision field. 

Finally future lines of research are proposed in visual perception as well as in computer vision. 

7.1 Summary of findings 

7.1.1 Chapter 3: Existence and particularities of colour categories 

Colour naming ability may be compactly described by a reduced set of indices which characterize the 

3D structure of the individual categorical colour space and allow quantification of its inter-individual 

differences. Although the population of normal trichromat observers tested here had broadly similar 

categorical structures, there was significant variation amongst observers in the centroid locations of 

categories, 3D shapes of the outer layers, and overlap between neighbouring categories. These 

variations were not explained by the concomitant inter-individual variation in sensory discrimination 

ability, as tested by the Farnsworth-Munsell 100-hue test. The indices may be further used to extract 

descriptors of naming behaviour for other populations, differing in age, sex and colour vision 

deficiency type. It will also be of interest to examine the variation in index values under different 

states of adaptation due to different scene configurations or illumination contexts, to supplement 

measures of colour appearance or colour constancy. The tested samples used here were embedded in a 
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uniform grey background, and we expect that introducing more complex backgrounds may alter the 

indices; i.e. naming behaviour will vary with context as well as the individual. 

7.1.2 Chapter 4: Colour categories under illumination changes 

Colour constancy is usually measured by achromatic setting, asymmetric matching or colour naming 

paradigms, whose results are interpreted in terms of indexes and models which arguably do not 

capture the full complexity of the phenomenon. Here we propose a new paradigm, Chromatic Setting, 

which allows a more comprehensive characterization of colour constancy through the measurement of 

multiple points in colour space under immersive adaptation. We demonstrated its feasibility by 

assessing the consistency of subject’s responses over time. The paradigm was applied to 2D Mondrian 

stimuli under three different illuminants, and the results were used to fit a set of linear colour 

constancy models. The use of multiple colours improved the precision of more complex linear models 

compared to the popular diagonal model computed from grey. Our results show that a diagonal plus 

translation matrix which models mechanisms other than cone gain might be best suited to explain the 

phenomenon. Additionally, we calculated a number of colour constancy indices for several points in 

colour space and our results suggest that interrelations among colours are not as uniform as previously 

believed. To account for this variability, we developed a new structural colour constancy index which 

takes into account the magnitude and orientation of the chromatic shift in addition to the interrelations 

among colours and memory effects. Our results do not show any quantitative difference regarding the 

types of coloured background tested. 

7.1.3 Chapter 5: Structural constancy of colour categories 

We have collected information on the perceptual interrelations of coloured surfaces under illuminant 

changes and modelled our measurements using graphs. Our results show that these interrelations 

remained 87% constant under an illumination shift, in contrast with the structural deformation 

undergone by the physical colours. This suggests that categorical perception may be used to guide 

colour constancy adaptation. This result is in accordance with previous studies, (Hansen, Walter et al. 

2007; Olkkonen, Hansen et al. 2009), that reported categorical stability using colour naming 

techniques. Based on our previous results, we could state that categorical colour perception maintains 

a high degree of structural invariance under illuminant changes. It is not perfect. Remains some 20% 

of changes that still allow to border colours to change of categorical perception. 
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7.1.4 Chapter 6: Categorical changes under different illuminants 

Experiment IV used the chromatic setting to measure differences in the categorical colour structure 

under different illuminants and non categorically balanced backgrounds. Results indicated a clear 

differences with those of Experiment II, i.e., two opposite rotations appeared to be operating in the 

chromatic settings hue. Thus the categorical information included in the background influenced the 

final categorical perception. In order to increase our knowledge about categorical changes we 

developed a colour naming model from the chromatic settings, the model allowed to predict 

categorical colours according to each particular observer and adaptation state. We validated the model 

using several complementary techniques and applied it to unveil categorical changes occurred for non 

measure colours for the constrained naming task. Our first approach was to model categorical changes 

in the achromatic axis and doing so we recovered the Helson-Judd effect. Results confronted the two 

initial hypothesis, is adaptation trying to keep categorical perception and so the categorical perception 

of initial colours influences the adaptation or is the possibility to recover the canonical colours under a 

reference illumination leading the adaptation? We have gathered support for both approaches 

according to the illumination used and thus indicating that the region of colour space where colours 

fall after illumination could constrain the process of global adaptation at certain noticeable degree. 

7.2 Contribution to Computer Vision 

Our results indicated the overall structural stability of categorical colour space, i.e., the stability of 

inter distances of chromatic settings under a change of illuminant. This structural stability was 

exploded by the computational colour constancy algorithm developed by Vazquez et al (Vazquez-

Corral, Vanrell et al. 2011), which estimated the scene illumination according to its potential to map 

colours into parameterised regions of colour space, ideally regions corresponding to the basic colour 

terms. 

However if to recover images with constant colours is the primary aim of this algorithms may be they 

should incorporate other approaches than to recover physical information. Recently neuroscience and 

in particular computational neuroscience introduced new approaches to solve the colour constancy 

problem. We know that colour constancy mechanism are divided into several levels in the HVS, 

cortical ones are still being delineated and still difficult to simulate (only functional attempts) but 

sensory levels are much further understood. Vanleeuwen et al (Vanleeuwen, Joselevitch et al. 2007) 

demonstrated feasible computational replications of the outer retina to model a large part of the colour 

constancy. This suggest clear path to solve the colour constancy just mimicking what the HVS does.  
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However, now it is still difficult to simulate the behaviour of neurons and their synaptic connexions in 

the large scale that such mechanisms would involve. As highlighted by Lindblad and Kinser (Lindblad 

and Kinser 2005) the behaviour of neurons is not linear so it is impossible to replicate its behaviour 

from only sums and products, then neurons should be modelled as dynamical systems (Izhikevich 

2007) which allow a neuron to modify its behavioural pattern according to different inputs. However 

this approach is far but some interesting applications has been implemented in computer vision 

(Lindblad and Kinser 2005). Now it is not only possible to simulate this in terms of functional features 

of the mechanisms but also to simulate precisely from a close position to the actual physiology of 

neurons which has a behaviour of dynamical systems and it is far more complicated than computer 

vision traditional approaches. So a new field is claiming his own right to interact with the colour 

constancy problem, adding to the psychophysics. 

7.3 Further work 

Previous conclusions lead to the need to further work in order to clarify/increase our knowledge on 

colour constancy. Regarding visual perception the main lines of future research are: 

 Get a reliable tool to quantify the magnitude of colour constancy, most probably by 

developing multidimensional indices to summarize the phenomenon.  

 Get an empirical review of colour constancy; up to now there are only qualitative reviews of 

the phenomenon. To gather all empirical data, from different experiments and paradigms into 

on single colour space, then define a vector field that summarized this information and model 

it using differential equations. In this way the empirical behaviour of the phenomenon would 

be best summarized. 

 To explore more contextual properties through the chromatic setting paradigm, it allows to 

measure precisely nine points in colour space as well as to get categorical information at the 

same time. In particular to study different geometrical distributions of colours in the 

background under a more extensive set of illuminants. 

Also our conclusions allows to propose further work in the computer vision field: 

 Most illuminant estimation approaches estimate the illuminant chromatic coordinates in a 3D 

colour space and so they use after a diagonal matrix to correct the image (Ebner 2007). From 

conclusions in chapter 4 we know that also other affine models can be used to increase the 

colour constancy modelling, also that our own non reported studies confirm. 
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 Colour constancy phenomenon has been divided into several mechanisms and neural levels in 

visual perception. Perhaps the computer vision approach should use this functional division to 

design two step (or more) colour constancy algorithms.  

Finally highlight that neuroscience is increasing its influence and has become a new scientific field in 

its own among the older ones as psychology, Colorimetry, physics, computer vision, visual perception, 

etc. From its approaches we can attempt to simulate the precise behaviour of neuronal nets and in 

particular to simulate the behaviour of cones in the retina. Previous stated lines of future research 

should be contextualized in this emerging scientific field. 
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Appendix A: CIELab coordinates of surface and light 

samples in Experiment I 

Num L* a* b* Num L* a* b* Num L* a* b* 

1 85,67 26,41 6,98 115 81,89 -21,26 66,50 229 83,97 -4,92 -22,89 

2 115,48 25,69 8,36 116 112,28 -23,07 69,25 230 113,10 -6,57 -19,93 

3 144,55 26,50 10,97 117 143,94 -24,11 70,11 231 144,14 -7,88 -20,52 

4 85,92 38,90 9,25 118 160,12 -24,16 72,23 232 83,04 -5,98 -34,08 

5 114,39 38,01 11,84 119 145,02 -35,62 118,15 233 114,21 -8,42 -33,08 

6 145,07 39,96 16,11 120 79,57 -19,29 37,71 234 143,91 -8,98 -29,09 

7 86,42 63,52 15,45 121 112,25 -21,65 43,53 235 83,56 -4,87 -60,79 

8 114,42 63,17 19,28 122 143,56 -21,39 47,18 236 113,04 -9,73 -58,10 

9 85,65 76,81 19,06 123 159,56 -23,01 50,70 237 81,93 0,42 -23,61 

10 114,57 77,98 25,85 124 80,83 -29,51 57,65 238 113,54 -0,73 -19,99 

11 85,64 91,79 22,32 125 112,69 -30,05 61,96 239 143,45 -2,97 -20,90 

12 85,40 27,20 11,36 126 143,70 -31,29 64,61 240 83,05 0,61 -36,68 

13 114,71 25,07 10,36 127 143,99 -47,05 103,65 241 113,37 -0,88 -33,82 

14 144,68 26,80 14,21 128 79,86 -26,64 34,22 242 144,57 -2,61 -29,36 

15 85,99 37,28 14,80 129 112,87 -26,21 34,90 243 83,65 4,60 -59,17 

16 114,32 38,68 16,93 130 144,41 -29,04 37,59 244 112,87 0,37 -56,68 

17 144,32 37,52 19,19 131 160,90 -28,35 39,24 245 83,36 6,51 -71,82 

18 85,68 62,37 26,77 132 78,72 -39,22 45,29 246 81,91 7,76 -23,40 

19 114,18 64,53 30,69 133 112,31 -37,98 51,69 247 113,20 5,76 -20,85 

20 85,16 74,05 30,24 134 144,21 -41,07 55,89 248 143,33 4,17 -21,29 

21 114,71 76,05 32,74 135 113,15 -64,03 85,97 249 83,10 11,02 -34,59 

22 86,60 89,33 35,95 136 143,60 -65,28 88,84 250 114,48 9,43 -34,40 

23 85,99 24,38 13,41 137 81,93 -26,52 23,11 251 82,37 21,59 -58,20 

24 114,03 23,81 15,48 138 113,56 -29,38 26,68 252 113,30 15,82 -52,18 

25 144,07 24,53 18,14 139 144,71 -31,28 31,25 253 82,78 24,90 -66,30 

26 85,02 34,83 18,77 140 160,08 -32,82 33,52 254 84,23 13,23 -23,11 

27 114,58 36,66 22,67 141 81,82 -40,92 33,59 255 114,62 10,28 -19,34 

28 86,05 60,45 34,33 142 113,62 -44,07 39,12 256 144,56 8,90 -19,86 

29 114,89 59,96 38,41 143 144,59 -48,25 42,88 257 83,84 18,97 -34,66 

30 86,53 68,52 36,19 144 114,73 -73,86 63,33 258 113,48 16,42 -31,87 

31 114,78 71,65 45,07 145 113,13 -86,56 73,28 259 84,37 33,41 -54,81 

32 85,82 82,32 46,27 146 88,63 -24,11 12,78 260 113,19 26,22 -50,09 

33 85,11 23,01 17,34 147 116,74 -29,77 17,64 261 82,69 38,37 -61,13 

34 114,59 22,73 20,86 148 144,97 -34,04 22,04 262 83,55 17,27 -21,88 

35 144,07 22,48 23,39 149 159,80 -30,07 21,08 263 114,20 14,35 -18,97 

36 85,27 32,56 24,61 150 89,16 -36,30 18,10 264 144,52 13,19 -18,59 

37 114,04 35,77 31,73 151 116,73 -43,98 24,32 265 82,83 24,45 -30,17 

38 144,61 35,54 36,12 152 145,41 -50,47 30,74 266 112,68 22,50 -29,68 

39 86,06 57,16 44,16 153 89,02 -61,16 27,72 267 82,90 41,13 -49,79 

40 114,42 54,90 48,13 154 117,35 -72,71 38,44 268 81,86 45,97 -52,83 

41 85,87 65,72 51,94 155 87,80 -24,28 8,96 269 83,02 18,69 -19,03 

42 114,43 65,41 58,44 156 116,63 -30,51 12,61 270 112,70 17,17 -17,28 

43 114,49 73,90 69,89 157 145,00 -34,17 15,83 271 143,38 16,14 -16,20 

44 85,29 22,22 21,94 158 88,62 -37,23 12,35 272 82,81 28,44 -27,75 

45 114,97 20,70 25,07 159 117,63 -44,87 17,58 273 113,24 24,89 -26,24 

46 144,71 20,70 28,04 160 144,87 -51,81 22,68 274 82,23 45,60 -43,39 

47 86,77 32,23 33,10 161 89,45 -62,91 17,58 275 83,05 51,48 -47,71 

48 114,75 31,52 37,77 162 116,95 -72,68 24,97 276 83,52 21,13 -15,63 

49 85,76 47,85 50,42 163 87,79 -25,47 6,17 277 113,89 20,43 -13,12 

50 114,63 52,77 62,91 164 116,08 -32,60 9,60 278 143,79 19,35 -11,67 

51 114,33 60,00 75,02 165 144,99 -35,89 12,08 279 83,43 31,46 -22,19 

52 115,57 67,90 90,59 166 86,71 -39,98 8,47 280 113,81 31,14 -19,84 

53 85,81 18,07 22,24 167 115,31 -45,08 11,45 281 143,31 30,30 -16,50 
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54 114,47 19,80 28,07 168 144,94 -51,39 15,81 282 83,24 50,35 -36,53 

55 144,46 18,01 31,29 169 87,19 -64,21 11,93 283 113,35 45,44 -32,66 

56 85,27 27,99 35,09 170 115,54 -73,91 16,57 284 83,79 55,63 -40,48 

57 114,81 27,92 41,64 171 88,34 -25,60 3,40 285 84,29 24,31 -12,73 

58 144,01 29,27 48,43 172 116,49 -31,68 5,16 286 113,74 21,83 -10,28 

59 114,22 43,99 70,21 173 145,02 -34,00 8,22 287 144,07 21,87 -7,53 

60 114,49 47,61 79,95 174 87,55 -38,39 3,80 288 84,34 34,38 -18,07 

61 115,49 55,49 95,86 175 116,82 -46,77 7,45 289 113,45 34,29 -15,32 

62 86,05 17,72 28,72 176 144,57 -50,29 10,01 290 144,43 34,70 -14,49 

63 114,88 15,76 31,86 177 87,68 -51,25 4,88 291 83,64 55,78 -29,23 

64 144,80 14,76 35,72 178 115,41 -68,08 9,12 292 113,77 56,86 -26,70 

65 87,32 21,20 38,93 179 88,42 -25,06 -0,07 293 82,25 66,40 -35,73 

66 115,85 22,35 48,22 180 115,28 -31,62 2,47 294 84,37 26,96 -8,43 

67 144,52 20,30 52,09 181 145,62 -33,98 4,64 295 114,14 22,78 -5,75 

68 115,23 34,11 76,79 182 88,10 -37,43 -0,44 296 144,36 23,08 -3,63 

69 116,31 37,60 93,30 183 115,39 -46,14 3,02 297 84,02 37,87 -13,01 

70 115,43 39,99 98,32 184 144,40 -48,77 5,70 298 114,08 36,83 -9,41 

71 78,84 11,09 37,32 185 115,54 -68,02 1,96 299 143,28 35,70 -6,39 

72 112,87 10,01 39,79 186 88,17 -24,12 -4,11 300 83,65 61,24 -20,14 

73 144,14 9,55 43,76 187 116,37 -28,60 -2,05 301 113,54 61,52 -17,15 

74 80,45 18,42 57,89 188 144,46 -33,40 -0,08 302 83,63 72,86 -24,14 

75 112,07 17,64 58,86 189 87,83 -36,44 -6,10 303 113,38 73,07 -21,18 

76 143,46 12,82 60,63 190 114,59 -42,91 -3,24 304 84,20 27,25 -2,24 

77 112,35 22,89 99,58 191 115,60 -60,93 -7,08 305 113,84 24,96 -0,04 

78 79,88 5,58 41,83 192 88,82 -22,01 -7,64 306 143,57 24,04 0,41 

79 111,63 5,10 42,30 193 116,57 -25,51 -6,48 307 83,33 39,89 -5,77 

80 144,00 4,47 44,64 194 144,54 -30,02 -3,99 308 114,03 37,65 -2,96 

81 78,93 8,09 58,82 195 87,99 -33,67 -12,34 309 143,76 37,03 1,54 

82 112,07 7,32 65,34 196 115,87 -40,80 -10,18 310 83,87 62,73 -8,08 

83 143,77 6,52 66,76 197 87,45 -20,62 -10,69 311 113,96 62,86 -5,36 

84 144,18 12,60 108,28 198 116,50 -26,07 -9,48 312 84,08 76,88 -11,99 

85 79,88 1,00 45,82 199 145,30 -30,53 -8,31 313 113,59 77,66 -5,87 

86 112,37 -1,93 46,84 200 87,93 -31,82 -17,55 314 84,59 27,16 -0,17 

87 144,56 -3,47 48,39 201 116,55 -37,27 -15,58 315 113,76 24,68 1,87 

88 159,74 -4,26 54,26 202 88,45 -17,16 -13,89 316 144,23 24,78 5,00 

89 80,36 -0,14 62,97 203 115,83 -22,80 -13,04 317 84,14 41,09 1,03 

90 112,66 -1,50 69,52 204 145,14 -27,50 -12,40 318 113,46 40,65 3,73 

91 144,31 -4,09 71,34 205 87,77 -27,28 -21,51 319 143,61 39,00 5,61 

92 144,20 -2,63 115,23 206 116,41 -34,03 -21,32 320 84,20 65,34 0,61 

93 80,89 -5,51 47,95 207 88,02 -16,00 -16,94 321 113,38 66,27 4,96 

94 112,19 -6,37 48,99 208 114,91 -18,70 -16,20 322 83,37 75,16 -1,23 

95 144,38 -7,76 51,01 209 145,13 -21,89 -15,97 323 114,13 75,98 4,82 

96 160,40 -7,52 53,22 210 88,38 -21,64 -26,09 324 85,10 28,12 4,86 

97 80,66 -5,82 63,86 211 116,38 -27,46 -24,72 325 115,05 24,37 4,97 

98 111,79 -8,93 69,83 212 87,75 -29,19 -43,55 326 144,15 26,18 7,36 

99 143,52 -10,29 72,06 213 115,42 -39,55 -41,27 327 85,94 39,87 6,41 

100 159,97 -11,02 77,15 214 86,66 -12,57 -18,06 328 114,51 37,95 7,11 

101 144,49 -13,91 118,07 215 115,82 -14,49 -16,96 329 144,48 39,60 9,23 

102 79,10 -10,15 47,24 216 145,29 -17,85 -16,87 330 84,86 64,05 8,30 

103 112,32 -10,75 47,76 217 87,25 -16,65 -27,98 331 115,01 63,39 11,17 

104 143,77 -11,39 51,43 218 115,94 -21,19 -28,26 332 84,47 78,69 10,58 

105 159,33 -12,21 55,45 219 87,66 -22,74 -50,14 333 113,86 75,46 14,51 

106 79,74 -13,35 68,95 220 115,35 -32,44 -49,54 334 84,08 87,26 11,41 

107 112,39 -15,24 74,02 221 87,51 -8,60 -19,66 335 48,62 0,36 -0,15 

108 143,70 -16,28 72,04 222 115,36 -9,76 -17,88 336 52,81 0,01 -0,20 

109 159,94 -18,29 77,97 223 145,01 -12,35 -17,41 337 56,00 0,34 -0,63 

110 144,36 -22,95 118,18 224 87,98 -11,69 -29,87 338 60,75 -0,01 -0,43 

111 78,97 -14,42 42,91 225 116,36 -15,46 -29,63 339 71,45 -0,25 -0,03 

112 112,55 -16,16 45,62 226 143,84 -18,97 -28,60 340 85,48 0,01 0,34 

113 144,46 -16,96 49,01 227 87,96 -16,47 -58,21     

114 159,46 -17,83 53,30 228 116,12 -22,77 -53,97     

Table 0.1 CIELab coordinates of light samples in Experiment I. 
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Num L* a* b* Num L* a* b* Num L* a* b* 

1 190,38 0,23 1,80 48 129,97 45,63 37,12 95 51,76 -0,25 -3,50 

2 42,94 -0,54 -3,74 49 50,35 -28,67 6,39 96 163,83 0,06 -0,24 

3 103,00 0,04 -0,16 50 89,41 0,08 0,39 97 118,07 39,80 40,91 

4 179,91 -0,60 2,36 51 46,32 -0,20 -2,91 98 119,51 33,48 41,29 

5 37,40 -0,03 -3,75 52 130,82 35,40 29,00 99 110,02 20,96 75,23 

6 96,11 0,04 -0,15 53 83,12 27,96 -82,19 100 162,99 -1,29 2,76 

7 169,24 -0,56 2,23 54 108,82 -74,02 60,61 101 109,68 0,04 -0,17 

8 33,56 -0,05 -3,73 55 151,58 0,82 0,06 102 169,76 17,23 31,09 

9 89,65 -0,41 0,21 56 69,37 -0,10 -1,83 103 173,10 -28,24 11,71 

10 158,96 -0,53 2,11 57 119,31 20,57 39,13 104 162,14 9,93 -9,93 

11 107,59 0,56 -0,58 58 117,06 20,37 26,16 105 158,07 -19,77 -13,67 

12 74,93 82,37 -20,53 59 109,05 -62,40 11,32 106 133,28 0,05 -0,20 

13 124,25 45,10 -31,19 60 32,70 -0,64 -2,68 107 89,89 0,04 -0,14 

14 68,99 80,52 -64,71 61 195,34 -0,64 2,55 108 50,96 -0,11 -1,77 

15 100,40 -10,48 -78,51 62 103,95 -3,16 -41,39 109 110,87 -28,83 86,19 

16 115,67 -38,46 -41,98 63 100,59 88,33 29,66 110 89,73 -0,36 0,74 

17 50,56 -26,29 -12,57 64 81,63 102,71 52,61 111 46,32 -0,74 -2,48 

18 110,31 -55,79 -20,43 65 127,39 0,05 -0,19 112 58,36 51,96 8,07 

19 49,73 0,93 9,00 66 84,39 -0,04 -1,14 113 90,29 111,23 68,31 

20 88,51 0,08 0,39 67 86,92 22,36 39,29 114 119,41 60,06 4,86 

21 45,86 -0,78 -3,09 68 117,87 24,28 24,59 115 118,42 57,91 26,91 

22 62,96 27,23 -28,63 69 110,36 -51,31 65,07 116 115,10 81,82 116,21 

23 91,01 37,34 -63,78 70 162,99 -1,29 2,76 117 132,47 -26,14 138,22 

24 56,69 8,85 -55,67 71 109,97 0,04 -0,17 118 112,96 -2,19 88,29 

25 118,62 -21,28 -51,40 72 89,65 -33,11 48,08 119 125,61 -49,46 111,82 

26 52,72 -12,99 -33,88 73 61,34 43,11 -40,93 120 33,00 -0,85 -2,52 

27 113,93 -2,58 -50,84 74 155,96 -4,91 150,56 121 108,47 0,04 -0,17 

28 96,54 -62,74 -17,14 75 100,66 -0,45 0,23 122 92,25 103,32 13,80 

29 109,57 -59,88 29,85 76 117,21 0,60 -0,63 123 56,00 42,32 -11,68 

30 32,62 -0,41 -2,59 77 123,79 22,00 24,78 124 82,66 104,63 43,22 

31 193,92 0,23 1,83 78 118,42 24,88 26,41 125 100,99 109,96 69,87 

32 168,98 -1,06 -14,22 79 96,19 -78,90 66,51 126 146,96 30,32 140,17 

33 165,76 25,09 0,07 80 90,05 0,08 0,39 127 145,59 0,53 149,71 

34 163,83 -30,54 -0,82 81 45,81 -0,20 -2,88 128 127,39 -34,19 116,41 

35 159,55 21,92 10,97 82 111,82 20,07 -46,35 129 47,97 17,19 16,92 

36 155,35 -16,47 40,85 83 142,78 -48,31 105,93 130 88,34 -0,40 0,21 

37 114,20 46,17 55,74 84 99,93 92,04 -26,45 131 190,38 -0,63 2,49 

38 116,34 30,87 25,61 85 78,80 -0,04 -1,08 132 104,69 0,04 -0,16 

39 94,44 -75,23 20,33 86 141,34 0,77 0,05 133 42,78 -0,52 -3,43 

40 161,86 -1,28 2,74 87 87,76 40,41 54,86 134 178,97 -0,59 2,35 

41 110,25 0,04 -0,17 88 73,27 20,61 36,56 135 97,39 0,56 0,04 

42 79,10 27,49 29,14 89 111,43 -81,22 68,12 136 37,27 -0,70 -2,93 

43 123,24 61,99 110,31 90 33,56 -0,42 -2,64 137 167,92 0,27 2,53 

44 56,69 40,99 -89,57 91 194,94 -0,64 2,54 138 91,01 0,08 0,39 

45 180,15 -0,60 2,37 92 143,49 -54,64 -1,21 139 32,51 -1,33 -2,90 

46 38,94 -0,25 -3,39 93 139,87 26,06 131,14 140 158,37 -0,53 2,10 

47 138,75 31,55 35,35 94 101,38 -39,33 -50,44     

Table 0.2 CIELab coordinates of surface samples in Experiment I. 
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Appendix B: Shape of ACNS regions in Experiment I 
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Appendix C: Chromatic setting training in Experiment II 

Subjects were systematically trained in a two sessions loop procedure which lasted between one and 

two hours according to subject ability. Each loop consisted in two sessions: a reference session 

followed by a regular session with Type 0 background and D65 illumination. Notice that these 

sessions only differed regarding to the existence or not of the bounding cylinder. The conclusion that 

one particular subject was trained followed from two points:  (a) Understanding of the chromatic 

setting methodology of first selecting and then reproducing colours and (b) Ability to reproduce the 

same colour at certain degree. 

After the first loop, the first question was readily answered from the difference between corresponding 

categorical adjustments of both sessions: if the second session adjustments were at half distance more 

than the cylinder and the CRT gamut then the subject was enforced to do a second training loop. The 

second question was answered looking at the average distance between the adjustments and their mean 

for each colour category: if they were approximately uniform over categories and if they were similar 

to the previous tests performed by the authors (this is 4 DeltaE units).  

All subjects undergone the training procedure except for the authors which were already trained from 

previous test experiments. Table X contains the training sessions details and demonstrates that the 

training procedures succeeded for all reported subjects. Explain in more detail its values. It shows the 

improvement of subject ability to set colours concluding  that initial training sessions contributed to 

reduce the StDev by about 1.33 E* and the average time duration of a single run was reduced by 8.25 

seconds. Also, subjects keep the trend to higher the precision as the experimental sessions went along, 

however this did not happen with time which stabilized readily after the training sessions. 

  Precision (DeltaE*) Time (seconds) 

Observer 
Loop 

number 

First 

session 

Last 

session 
Diff 

First 

session 

Last 

session 
Diff 

MS 1 3.27 2.28 0.99 31.76 20.76 11 

XO 1 4.66 2.54 2.12 26.90 17.72 9.18 

RB 1 8.79 4.19 4.6 37.68 15.05 22.63 

LC 2 5.04 4.31 0.73 29.31 16.02 13.29 

AB 2 5.21 3.68 1.53 22.78 16.34 6.44 

RBV 2 3.52 4.19 -0.67 19.63 22.73 -3.1 

JC 1 4.32 4.29 0.03 16.34 18 -1.66 

Mean - 4.97 3.64 1.33 26.34 18.08 8.25 

Table C.0.1 Observers training results in Experiment II. 
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Appendix D: Long term memory in Experiment II 

Given that our experiments were conducted over a few weeks, we tested whether the uncertainty 

introduced by longer-term memory was significantly larger than the uncertainty present in a typical 

25-minutes session. We did this by repeating the same measures over different days using two 

experienced subjects. They were required to select 4 SR (green, purple, orange and grey) and to 

reproduce the same colours 7 days later. To collect more data, the selection of SRs was repeated forty 

times for each colour. Figure D.1 shows the variability of our measures for these control sessions: the 

small darker points correspond to results for the first session and the small lighter points to the second 

session. Squares and triangles represent the corresponding averages. The lightness variability results 

followed a similar trend and were omitted from the plots for clarity’s sake. To determine if both 

distributions of points are the same, we computed the statistic D, the maximum difference of the 

integrated probabilities of the two distributions, developed by Fasano and Franceschini and others 

(Peacock 1983; Fasano and Franceschini 1987). Our results showed that, predictably there were 

memory effects in all cases except two. However, D was comparatively small, i.e. the mean’s 

difference between the light and dark points was always smaller than the standard deviation (itself 

about 1 E*) of either the light or the dark point distributions. 

 

 

Figure D.0.1 Results of the long-term memory control experiment for two subjects. Four categories were tested (40 

trials each). Dark and light dots were measured with a 7-day time difference. Averages are represented by triangles 

(first session) and squares (second session). The results clustered near the origin, are equivalent to those of a typical 

achromatic setting experiment. 
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Appendix E: Akaike Information Criterion for model 

selection 

The Akaike Information Criterion (AIC) method is based on Information Theory and it is widely used 

for model selection, i.e., given several candidate models the method selects the model which minimize 

the loss of information when approximating the reality. In order to test our four models we used the 

AIC version adapted to small sets of samples (AICc) and the residual sum of squares (RSS) as detailed 

in Equation 9, where n corresponds to the number of data points and k to the number of variables plus 

the error term (Burnham and Anderson 2002).  

 

         
   

 
     

       

     
 (E.9) 

 

Notice that AICc formulae depends exclusively on the dimensions of the multivariate system resulting 

from Equation 5, because this approach does not reflect the number of free parameters existent in our 

tested models we rearranged the system into an equivalent univariate system. In order to apply the 

AICc we assumed that our prediction errors followed a normal distribution.  

The model with the lowest AIC value is the best model among all models specified. However, AIC 

values become interesting when compared to the AIC value of a series of models. Two measures 

associated with AIC can be used to compare models: (i) the difference between the model with the 

lowest AIC and the rest (  =    -         ) and (ii) the Akaike weights which quantify the 

plausibility of each model as being the best (  =                        
 
    ). As a rule of the 

thumb, a      suggests substantial evidence for the model, values between 3 and 7 indicate that the 

model has considerably less support, whereas       indicate that the model is very unlikely 

(Burnham and Anderson 2002). 

 

 

 Greenish Yellowish 
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Table 6. The Akaike Information Criterion applied to our data. Each row corresponds to the model case considered 
and the columns correspond to the number of fitting points used, the number of free parameters in each model, the 
RSS, and the Akaike results: AICc, i and wi. Note that the multivariate system was rearranged into an equivalent 
univariate system, therefore the 3n factor in the second column. See details on how these values were computed in the 
main text. 

Table 6 contains the values of the RSS, AICc, i and wi when applied to our data according to the 

model, number of fitting points and illumination used. Notice that the reported RSS values do not 

correspond to the minimization ones in Figure 6, this is because we took as RSS value the 

accumulative error of the fitting points that participated in the minimization process only. In practice, 

RSS values were not obtained by linear regression but from the minimization process described in 

Equation 6, however the target value of the minimization is equivalent. Also the RSS values used in 

Table 6 resulted from the average over all subjects and backgrounds. 

Model 3n k RSS AICc wi RSS AICc wi

D 15 4 293.18 56.59 0 0.96 535.1 65.62 0 0.99

DT 15 7 134.79 62.93 6.34 0.04 298.2 74.84 9.23 0.01

L 15 10 109.74 104.85 48.26 0 218.6 115.18 49.57 0

A 15 13 40.96 405.01 348.48 0 81.1 415.31 349.69 0

D 18 4 367.05 65.35 0 0.77 671.6 76.22 0 0.95

DT 18 7 187.90 67.42 2.07 0.26 425.9 82.15 5.92 0.05

L 18 10 164.36 91.24 25.89 0 328.4 103.70 27.47 0

A 18 13 82.27 144.36 79.00 0 170.5 157.47 81.25 0

D 21 4 440.95 74.43 0.44 0.45 808.3 87.16 0 0.88

DT 21 7 242.55 74.00 0 0.55 547.2 91.08 3.92 0.12

L 21 10 218.61 91.20 17.20 0 434.7 105.63 18.47 0

A 21 13 123.84 115.26 41.27 0 270.1 131.63 44.48 0

D 24 4 514.87 83.69 2.27 0.24 945 98.26 0 0.83

DT 24 7 297.47 81.41 0 0.76 685 101.45 3.19 0.17

L 24 10 273.25 95.30 13.88 0 550 112.07 13.81 0

A 24 13 169.47 109.31 27.90 0 381.9 128.81 30.55 0

D 27 4 588.79 93.04 3.72 0.13 1081.8 109.46 0 0.70

DT 27 7 353.17 89.31 0 0.86 794 111.19 1.72 0.29

L 27 10 327.65 101.14 11.83 0 617 118.23 8.77 0.01

A 27 13 226.17 111.39 22.07 0 495.3 132.55 23.10 0



155 

 

i and wi values in Table 6 indicate that the Diagonal and Diagonal plus Translation models are the 

ones that best model the data, and thus suggesting that the Linear and Affine models overfits. The 

small differences in i between D and DT are not conclusive about which is the best model, however 

there is a clear tendency as we add more fitting points; the DT model becomes better than D. From one 

to four fitting points the AIC indicates that the best model is the D, DT, L and A as expected due to the 

coincidence between the number of fitting points and the free parameters. 

 

 

Figure E.0.1 Distribution of the Chromatic setting error measures of each CIElab dimension. Each histogram 

contains data from all results of Experiment II. This results demonstrates the hypothesis of AIC criterion. Graphs 

shows clearly how all follow a normal distribution. 
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Appendix F: Repeatability of chromatic settings in 

Experiment IV

Figure F.0.1 Chromatic settings repeatability in the regular sessions under D65 illumination and background type x. 

3.1 E* units (1.3 std). 
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