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Preface

The purpose of this thesis is to put forth and present a series of new applications
of the gauge/string duality to areas of high energy physics and condensed matter
physics. After having dwelt into the concepts behind this conjecture, I have come
to realize the breakthrough it was for theoretical physics and its usefulness for very
diverse fields. The contributions showcased in this thesis amount to the ever growing
recollection of evidence that supports it. Indeed, even though it was proposed only
sixteen years ago, the duality has already become a broad and extensive field of its
own, so that explaining all its ramifications would have taken too much space and
time. When writing the Introduction to this thesis, I have tried to select those points
that are involved in the successive chapters.

Most of the work contained in this thesis addresses the study of the quark gluon
plasma, a state of matter that might allow to be approximated by simple gravitational
descriptions and is, at the same time, accessible by experiment. This constitutes a
great advantage, since it gives the possibility of testing the qualitative predictions that
can be derived from the calculations in holography. Chapter 2 is devoted to one of
such predictions: that a heavy quark moving sufficiently fast through a quark-gluon
plasma may lose energy by Cherenkov-radiating mesons. Special emphasis is given
to the fact that this effect takes place in all strongly coupled, large-Nc plasmas with a
gravity dual. Phenomenological implications for heavy-ion collision experiments are
also discussed. This chapter contains [1] and [2].

Chapter 3 makes extensive use of a IIB supergravity solution dual to a spatially
anisotropic finite-temperature N = 4 super Yang-Mills plasma. Motivation comes
from the fact that the quark gluon plasma created in heavy-ion collisions is anisotropic.
The analysis focuses on three important observables of the plasma: Firstly, the drag
force experienced by a massive quark propagating through the plasma is considered.
The results show a generic misalignment of the gluon cloud trailing behind the quark,
the quark velocity and the drag force itself whenever anisotropy is taken into account.
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Secondly, a study of the jet quenching parameter of the plasma is presented for ar-
bitrary orientations and arbitrary values of the anisotropy. Perhaps surprisingly, the
anisotropic value can be larger or smaller than the isotropic one, and moreover, this
depends on whether the comparison is made at equal temperatures or at equal en-
tropy densities. Finally, the screening length for quarkonium mesons in the anisotropic
plasma is computed. The most important result is that not only can the temperature
cause the dissociation of mesons, but anisotropy itself, even at zero temperature, may
be responsible for it. This chapter encloses [3], [4] and [5].

Chapter 4 deals with an entirely different field of application of the duality: The holo-
graphic description of condensed matter physics. I have come to reckon that this field
is very well suited for inspecting the predictions of the correspondence, since there
is a great variety of systems that can be studied. Here anisotropic p-wave superflu-
ids are brought into focus, and a gravitational model is used to perform a complete
analysis of their transport phenomena in the superfluid phase. The thermoelectric,
piezoelectric and flexoelectric effects are thoroughly studied. The results reproduce
characteristic features of both superfluids and superconductors. In particular, the vis-
cosities of the fluid deviate from the universal value, as is expected in an anisotropic
condensed phase. An additional viscosity coefficient, associated to the difference
in normal stresses and not previously considered in the holographic context, is also
computed. This chapter is composed of [6].

Chapter 5 contains some conclusions and possible future directions.

And finally, in order to comply with the University rules, I have added chapter 6, written
in Spanish. It consists of a summary of all the previous chapters of the thesis.



ix

List of publications within this thesis

[1] J. Casalderrey-Solana, D. Fernandez, and D. Mateos,
“A New Mechanism of Quark Energy Loss,”

Phys. Rev. Lett. 104 (2010) 172301, arXiv:0912.3717 [hep-ph].

[2] J. Casalderrey-Solana, D. Fernandez, and D. Mateos,
“Cherenkov mesons as in-medium quark energy loss,”

JHEP 1011 (2010) 091, arXiv:1009.5937 [hep-th].

[3] M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli,
“Drag force in a strongly coupled anisotropic plasma,”

JHEP 1208 (2012) 100, arXiv:1202.3696 [hep-th].

[4] M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli,
“Jet quenching in a strongly coupled anisotropic plasma,”

JHEP 1208 (2012) 041, arXiv:1203.0561 [hep-th].

[5] M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli,
“Quarkonium dissociation by anisotropy,”

JHEP 1301 (2013) 170, arXiv:1208.2672 [hep-th].

[6] J. Erdmenger, D. Fernandez, and H. Zeller,
“New Transport Properties of Anisotropic Holographic Superfluids,”

JHEP 1304 (2013) 049, arXiv:1212.4838 [hep-th].



x

...



xi

Acknowledgements

I would like to thank my supervisor, David Mateos, for his wise guidance during the last four
years. He has been an excellent advisor. He didn’t know me when I started, and yet he took
me up with deep enthusiasm. We have worked together in fascinating projects and he has
helped me every time I needed it, always treating me with respect and patience. In the end,
this thesis represents a beginning, and beginnings can be hard. It’s easy to give in to despair
and lose the motivation you had before starting. David has always been encouraging me,
sometimes even without realizing it. So most of all, I’m thankful to him because his faith in me
taught me to have faith in myself.

I would also like to thank Johanna Erdmenger for making my visit to MPI possible, and for a
wonderful collaboration. She was always approachable and nice to me. Thanks to her, the
time I spent in Munich was an amazing academical experience. I’d also like to thank David,
Hansjoerg, Migael, Patrick, Sebastian, Sophia, Srdjan and Stephan for making it also a great
personal experience. We had so much fun together!

I’m also grateful to Luis Lehner, for his warm hospitality at PI. He helped me so much during
my time there, being completely patient and supportive to me. I would thank Alex Buchel for
some conversations, and Marcelo Ponce for his help. From this time, I’d like to thank Anton,
Damián, Federico, Maeve, Natacha, Nima, Stephen and Yigit for the enjoyable times we had
together.

I’m thankful to Jorge Casalderrey for his help during my first collaboration. It was really valu-
able to me. I would also thank Mariano Chernicoff for so many and so helpful discussions. I
hope we’ll have new chances of collaboration in the future. And finally, to Diego Trancanelli
for useful discussions via email. I look forward to meeting him in person.

I thank as well all the professors and postdocs in my department for their help. Specially
Roberto Emparan and Tomeu Fiol for their continuous support, and Enric Verdaguer for agree-
ing to be the tutor of my thesis. Also Domenec Espriu and Josep M. Pons for useful discus-
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mention is for my beloved Naiara, who shall be forever in my heart.

I’m also thankful for having been born in such a perfect family. Starting with my aunts and
cousins, who have all my love. My dear sister Patricia, for all the beautiful moments we have
shared and because I value his affection like a treasure. She is more extraordinary than she
can even see in herself. And lastly, my deepest gratitude is for my parents. I could not have
wished for a brighter light to guide my path in life. They have taught me to be a good person,
and so many things I wouldn’t even know where to start with. I admire and love them so much
that this thesis is dedicated to them.



xiii

...

Agradecimientos

Quiero dar las gracias a mi supervisor, David Mateos, por sus sabias orientaciones durante
los últimos cuatro años. Ha sido un director de tesis excelente. Cuando empecé, él no me
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“The scientist does not study nature because it is useful; he studies it
because he delights in it, and he delights in it because it is beautiful.”
— Henri Poincaré

“Imagination is more important than knowledge. For knowledge is limited,
whereas imagination embraces the entire world.”
— Albert Einstein

“A straight line may be the shortest distance between two points, but it is by
no means the most interesting.”
— The Doctor
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1 The gauge/string duality

Much literature has been written on the field of AdS/CFT [1–3]1. There is no doubt that

it has represented a major advance in our understanding of string theory and quantum

gravity, and a powerful toolkit for studying strongly-coupled quantum field theories. In

general terms, what is known as the gauge/string duality is a conjectured equivalence

between certain conformal field theories and certain gravitational theories in asymptotically

Anti de Sitter spacetimes. It was originally stated as a specific equivalence between N = 4

SU(Nc) SYM theory and type IIB string theory on AdS5 × S5.

In this case, the gauge theory is the maximally supersymmetric gauge theory in (3+1)

dimensions. Its field content includes a gauge field Aμ, six real scalars φi and four Weyl

fermions χa; all of them in the adjoint representation of the gauge group. On the other

hand, the metric of the gravitational theory is

ds2 =
r2

R2
ημνdx

μdxν +
R2

r2
(
dr2 + r2dΩ2

5

)
, (1.1)

where ημν is the four-dimensional Minkowski metric, xμ = (t, �x) are cartesian coordinates,

r ∈ (0,∞) is the radial coordinate and dΩ2
5 contains the angle coordinates that parametrize

a unit five-sphere. The parameter R is a constant known as the AdS radius. This metric

covers the “Poincaré patch” of a global AdS spacetime. Each radial slice of the AdS5

part is isometric to four-dimensional Minkowski spacetime, this is why xμ are identified as

the coordinates of the gauge theory. It is sometimes convenient to rewrite (1.1) using an

alternative radial coordinate z = R2/r, so that

ds2 =
R2

z2
(
ημνdx

μdxν + dz2 + z2dΩ2
5

)
(1.2)

is the metric describing the geometry.

As r → ∞, or z → 0, we approach the so-called boundary of the spacetime. Since

the prefactor R2/z2 also approaches infinity there, this must be understood as a conformal

boundary. According to the conjecture, the Yang-Mills theory lives on the boundary of

AdS5, so that it is simply called “the boundary theory”. In a broader portrayal, this would

only be a limit of the more general description that is outlined in the next section.

1.1 The boundary theory and its RG flow

The duality can be interpreted as a geometrization of the renormalization group (RG) flow

of a quantum field theory (QFT). Let us review the basics behind the concept of RG flow.

Generically, QFTs are defined with a short-distance cutoff ε. The theory loses its validity

below this cutoff, in the sense that phenomena occurring at characteristic lengthscales

comparable to or smaller than ε are not accurately described by the theory. A convenient

outcome of the existence of ε is that it provides a scale, so that the physics can then be

organized in terms of length scales (which in turn can be understood as energy scales),

since degrees of freedom at widely separated scales do not interact with each other.

1See [4, 5] for reviews, and [6] for a review with applications to QCD.
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Figure 1. A schematic picture of the geometry of AdS5.

That is, if one is interested in studying phenomena at a length scale z � ε, there is

no need to go straight to the theory as defined at scale ε, which could result in a very

complicated calculation. It is actually more convenient to integrate out the short-distance

degrees of freedom and work with an effective theory at length scale z. By following this

procedure for every scale z, we end up with a continuous family of effective theories labeled

by the scale z, which defines the RG evolution of the theory.

Now, given a QFT defined in (3 + 1)-dimensional Minkowski spacetime, the family of

effective field theories may be visualized as a single theory in a (4+1)-dimensional spacetime

(commonly referred to as the bulk), with the RG scale z playing the role of coordinate of the

spatial extra dimension [7]. In order to establish such a higher dimensional characterization,

we would need to develop a coherent description, by merging this continuous family of

theories. For it to be consistent, there are some properties that have to be required from

the 5-dimensional theory, in particular, all the physics in the region z > z′ (that is, below
the Minkowski plane at z′) should be describable by the effective theory of the original

system defined precisely at the RG scale z′. As a consequence, the whole 5-dimensional

description (region z > 0) has the same number of degrees of freedom as the 4-dimensional

boundary theory. This picture is schematically shown in Fig. 1. Note, however, that the

higher dimensional theory is not guaranteed to be local in the z direction.

Such a description was suggested from the holographic principle [8, 9], an interesting

idea that has been extensively studied. According to it, a theory of quantum gravity in a

region of space can be described by a non-gravitational theory living at the boundary of

that region.

Note that we have adopted z = 0 as the boundary, where the bare QFT (with no

cutoff) lives. A small cutoff corresponds to a slice z = ε that is close to this boundary, and

there is where the short-distance effective theory lives.

4



1.2 The extra dimension as an energy scale

Going back to the case of the metric (1.2) we asserted that the boundary must be under-

stood in the conformal sense. This is due to the presence of the factor R2/z2, which causes

the length scales along the gauge theory directions in the bulk to be related to their coun-

terparts in the gauge theory by a z-dependent rescaling. The same applies to the energy

scale, given that it is a quantity conjugate to time. The rescalings of these quantities are

as

dbulk =
R

z
d, Ebulk =

z

R
E, (1.3)

where d,E are respectively the characteristic length and energy of a process in the gauge

theory and dbulk, Ebulk are the corresponding proper size and energy of the corresponding

process occurring in the bulk theory. Thus, note that two physical process taking place in

the bulk with the same proper energy but at different radial positions are translated in the

gauge theory description as processes with different characteristic energies, for they would

scale as E ∼ 1/z. An analogous deliberation applies to the length scale, which scales as

d ∼ z.

With this argument we are coming back to Sec. 1.1. Indeed, the identification between

the radial z-direction of the bulk and the energy scale of the boundary theory is made

precise by arguing that z has to be identified with a geometrized direction of the RG flow

of the gauge theory. In short,

UV limit / E → ∞ / z → 0 / near boundary

IR limit / E → 0 / z → ∞ / near horizon

where “horizon” refers to the core of the bulk, located at r = 0, or z → ∞. The reason

for the name is that usually the spacetime is cut off by an event horizon at a finite radial

distance r0, so that z does not actually extend all the way to infinity, but it ends at a

finite value z0. More precisely, this happens whenever we consider a confining theory with

a mass gap or at finite temperature. If there exist excitations or arbitrarily low energy,

this is reflected in the bulk by a geometry extending up to z → ∞, but a mass gap m or a

temperature T provide an IR cutoff at z0 ∼ 1/m or z0 ∼ 1/T respectively.

1.3 Relations between parameters

Once we have reached this point let us state that the details regarding how the duality is

constructed can be lengthy and are beyond the scope of this chapter. As an introduction to

the work developed in this thesis, we will concentrate on laying down those aspects of the

topic that are related to, or used in, the research results that are contained in the following

chapters.

An important point is the set of parameters that characterize the theories that are

being discussed. N = 4 SYM theory is scale-invariant and contains only two parameters:

the Yang-Mills coupling gYM = g, and the number of colors, Nc. On the other hand, type

IIB string theory is characterized by the string coupling gs and length �s. Equivalently, one

could consider Newton’s constant G and the curvature radius R, which is the parameter

for the metric of the maximally symmetric spacetime AdS5 × S5.

5



The relations are derived in the following way. First, the ten-dimensional Newton’s

constant in IIB Supergravity is given by

16πG = (2π)7 g2s�
8
s , (1.4)

and a stack of Nc D3-branes can act as source for the solution (1.1), so that the parameter

R is given by

R4 = 4πgsNc�
4
s . (1.5)

One can then consider the spectrum of massless fields excited on the branes by the open

string modes. It turns out that this spectrum, and their low energy effective action, co-

incides precisely with those of N = 4 SYM theory with gauge group U(Nc) in (3 + 1)-

dimensions. This is, of course, a very important ingredient for the construction of the

duality. What matters at this stage is that one can derive a relation between the Yang-

Mills coupling constant and the string coupling, namely

g2 = 4πgs . (1.6)

Recalling now that G ∼ �8p, with �p the Planck length, relations (1.4 - 1.6) imply

�8p
R8

∝ 1

N2
c

,
�2s
R2

∝ 1√
λ
, (1.7)

where λ = g2Nc is known as the ’t Hooft coupling and we are omitting numerical fac-

tors only. As stated above, we are interested in considering the gauge/gravity limit, for

simplicity since the full IIB string theory is very complicated. In other words, the regime

of interest is the limit of classical supergravity, an approximation valid for large curvature

radii compared to the planck and string scales, so that both the stringy nature of the string

theory and its quantum nature are suppressed. That is,

�8p
R8

	 1 ,
�2s
R2

	 1 . (1.8)

From the relations (1.7), it follows that this limit corresponds to

Nc � 1 , λ � 1 . (1.9)

This is usually referred to as the strong coupling, large Nc limit of the correspondence.

2 The field/operator correspondence

After having identified the parameters on both sides of the duality, we consider the map

between their spectra of solutions. An intuition for this comes from the fact that the string

coupling constant gs is not really a parameter of the supergravity theory, but it is given by

the expectation value of the dilaton field Φ, as in gs = eΦ. Consequently, gs is a function

of space and time. When making contact with the boundary theory, one may take it as

a constant, by selecting its asymptotic value at infinity (that is, at the AdS boundary,

∂AdS), so that gs = eΦ∞ .

6



Since gs is related to the gauge theory coupling constant g, this means that changing

the value of g corresponds to changing the asymptotic value of the dilaton field. This

observation is extended to suggest the idea that deforming the theory with an additional

contribution to a coupling constant corresponds to modifying a bulk field in ∂AdS. More

precisely, given the deformation

S → S +

∫
d4x φ(x)O(x) , (2.1)

where O(x) is a local gauge invariant operator and φ(x) a point-dependent coupling which

is usually called source. Note that in the particular case in which φ(x) is a constant, the

deformation above amounts to simply changing the coupling of the operator O(x), which

is what we were considering above. Extrapolating the previous idea, we conceive that for

each possible source φ(x) (rather than to each coupling) and for each possible local gauge

invariant operator O(x), there corresponds a dual bulk field Φ(x, z); and vice versa. This

bulk field must be so that its asymptotic value at the boundary is identified with the source,

in the same way that eΦ∞ was identified with the coupling g. That is,

φ(x) = Φ|∂AdS (x) = lim
z→0

Φ(x, z) . (2.2)

This one-to-one map between the bulk fields and the local gauge invariant operators of the

dual gauge theory is known as the field/operator correspondence.

2.1 Global and local symmetries

The symmetries on both sides of the correspondence can also be identified. TheN = 4 SYM

theory is a conformal theory, and is invariant under the symmetry group Conf(1, 3)×SO(6),

where Conf(1, 3) is the full conformal group (containing, among others, the dilatation

symmetry) and SO(6) is the R-symmetry under which the φi fields transform as a vector.

On the other hand, the string side of the correspondence is invariant under the group of

diffeomorphism-induced gauge transformations. The subgroup of these consisiting of large

gauge transformations that leave the asymptotic form of the metric invariant is precisely

SO(2.4)×SO(6), where SO(2, 4) corresponds to the isometry group of the AdS5 part and

is isomorphic to Conf(1, 3).

Thus, the global symmetry groups on both sides of the correspondence agree. A

simple and specific example is the dilatation symmetry of Minkowski spacetime, which in

AdS5 is realized as the transformation {(t, �x) → Λ(t, �x), z → λz}, which indeed leaves the

metric (1.2) invariant. Similarly, the four special conformal transformations are realized as

isometries of AdS5, only that in a slightly more involved way.

The conclusion of the analysis of symmetries is that the global symmetries are the same

on both sides of the duality, but it is important to note that on the gravity side the global

symmetries arise as large gauge transformations. In this sense, there is a correspondence

between global symmetries in the gauge theory and gauge symmetries in the string theory.

This is an important feature in any gauge/gravity duality.
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2.2 Important examples

In general, given an operator in a gauge theory, there is no systematic recipe to identify

the dual field. There is an exception, however, that applies for a very important set of

operators: the conserved currents associated to global symmetries. Given what was briefly

described in the previous section, it is natural to make the identification with dynamical

gauge fields, associated to the corresponding gauge symmetries of the dual theory.

For example, in the case of the N = 4 SYM theory, a current associated to a U(1)

subgroup of the SO(6) symmetry, Jμ(x), is coupled to a source Aμ(x) via the term∫
d4x Aμ(x)J

μ(x) . (2.3)

Here Aμ(x) can be thought of as an external background field and, according to the field-

operator correspondence, it is given by the boundary value of a dynamical gauge field

Aμ(x, z) in the bulk.

Another important example of conserved currents are those contained in the energy-

momentum tensor operator T μν(x), associated to translational invariance. The source that

couples to this operator can be interpreted as an external spacetime metric deformation.

Thus, the coupling term is ∫
d4x gμν(x)T μν(x) . (2.4)

Following the same discussion, this source is given by the boundary value of a dynamical

gauge field, in this case the bulk metric gμν(x, z). An important consequence of this

argument is that the dual of any gauge theory in which the energy-momentum tensor is

conserved must involve dynamical gravity.

2.3 The normalizable modes

In order to illustrate further details regarding the field/operator correspondence, we con-

sider the specific example of a massive bulk scalar field Φ, dual to some scalar operator O
in the four-dimensional boundary theory. The bulk action for this field is

S = −1

2

∫
dz d4x

√−g
[
gMN∂MΦ ∂NΦ+m2Φ2

]
+ . . . (2.5)

where the dots stand for higher order terms, supressed by positive powers of 1/Nc, that

will be omitted.

The equation of motion for Φ(z, x) can be solved asymptotically, so that generically

near the boundary it can be written as

Φ(z, k) ≈ A(k) z4−Δ +B(k) zΔ as z → 0 , (2.6)

where Δ = 2+
√
m2R2 + 4, and the integration functions A and B depend on k under the

requirement that the solution be regular for all z > 0. Note that the exponents are real

provided that

m2R2 ≥ −4 . (2.7)
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It can be shown that this is a requirement for the stability of the theory. For values of

m2 in the range m2R2 < −4, there exist modes that grow exponentially in time and the

theory is unstable [11–13]. Thus, a negative mass-squared is allowed for a stable solution,

provided that it is not “too negative”. Equation (2.7) is what is called the Breitenlohner-

Freedman (BF) bound, applied to this example. It turns out that in the stable region

−4 ≤ m2R2 < −3, both terms in (2.6) are normalizable. We will not comment further on

this case, and focus on the region m2R2 ≥ −3.

In this case, the first term of (2.6) is non-normalizable whereas the second term is

normalizable and, consequently, does not affect the leading boundary behavior. Note that

the normalizability is with respect to the inner product

(Φ1,Φ2) = −i

∫
Σt

dz d�x
√−g gtt(Φ∗

1∂tΦ2 − Φ2∂tΦ
∗
1) , (2.8)

where Σt is a constant-t slice. It was already motivated at the beginning of this section that

the boundary value of Φ has to be identified with the source of the corresponding boundary

operator O. The boundary behavior of (2.6) is controlled by the non-normalizable term

A(x). Therefore, its presence corresponds to the deformation

Sbdry → Sbdry +

∫
d4xA(x)O(x) . (2.9)

Thus, the non-normalizable term determines the boundary theory lagrangian. And we see

that eq. (2.2) is not strictly valid in this case; it must be generalized so that for m = 0 we

have

φ(x) = Φ|∂AdS (x) = lim
z→0

zΔ−4Φ(x, z) . (2.10)

The normalizable modes are also significant. Note that the non-normalizable solutions

are not elements of the Hilbert space of the bulk theory, but the normalizable modes are.

In order to build the Fock space and compute the bulk Green’s functions, one would need

to expand Φ in terms of a basis of normalizable solutions. Now, we claim that the bulk

and boundary theories are dual, that is, equivalent. Such an equivalence implies that

their respective Hilbert spaces must be identified. As a consequence, the normalizable

modes should be identified with states of the boundary theory. This identification is a very

important feature of the duality, for it allows to find the spectrum of low-energy excitations

of strongly coupled gauge theories.

Furthermore, it can be shown [14] that the coefficient B(x) of the normalizable term

in (2.6) can be identified with the expectation value of the operator O in the presence of

the source φ(x) = A(x),

〈O(x)〉A(x) = 2(Δ− 2)B(x) . (2.11)

In the particular case of a purely normalizable solution (that is, when A(x) = 0), this

equation yields the expectation value of the operator in the undeformed theory.

Thus we have completed the basic description of how normalizable and non-normalizable

modes of a bulk field are interpreted in the boundary theory [15, 16].
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3 Generalizations of the duality

In addition to the one between N = 4 SU(Nc) SYM theory and type IIB string theory on

AdS5 × S5, there are many other gauge/string dualities. Some are in different spacetime

dimensions [17], others have fewer supersymmetries and there are theories which are not

scale invariant too (in particular confining theories [18–21]). In general, the dual geometry

in these cases is more complicated than pure AdS.

Here we will comment on the most commonly used generalizations of the mentioned

well-known example.

3.1 Temperature and chemical potential

The solution (1.1) constitutes an extremal one, belonging to a family of solutions parametrized

by their temperature T . The generalized solution comes about by exciting the D3-branes

that source the metric, which in this case are sorrounded by an event horizon, thus becoming

black branes. Note that the black brane is the only metric with AdS asymptotic boundary

conditions, translationally-invariant along all the boundary directions while rotationally-

invariant along the boundary spatial directions; and with a temperature that satisfies all

laws of thermodynamics.

The solution is given by

ds2 =
r2

R2

(
−f(r) dt2 + dx21 + dx22 + dx23

)
+

R2

r2

(
dr2

f(r)
+ r2dΩ2

5

)
, (3.1)

where f(r) = 1− r40/r
4. Equivalently, in terms of the z coordinate, (1.2) is generalized to

ds2 =
R2

z2

(
−f(z) dt2 + dx21 + dx22 + dx23 +

dz2

f(z)
+ z2dΩ2

5

)
, (3.2)

where f(z) = 1 − z4/z40 . The horizon of the black brane is located at r = r0 (or z = z0),

and it extends along the three spatial directions �x of the dual gauge theory. The Hawking

temperature associated to this horizon is related to these parameters by r0 ∝ 1
z0

∝ T , and

is identified with the temperature of the N = 4 SYM theory at finite temperature.

The Hawking temperature is calculated by demanding that the Euclidean continuation

of the metric (obtained by the replacement t → −itE) be regular at z = z0 [22]. This re-

quires that tE be periodically identified with a period β = 1/T = πz0. Since tE corresponds

precisely to the Euclidean time coordinate of the boundary theory, the identification of

temperatures is natural.

On the other hand, a chemical potential μ can also be turned on. For a boundary theory

with a U(1) global symmetry, as is the case of N = 4 SYM theory, we are referring to the

chemical potential of the corresponding U(1) charge. Following the arguments presented

in Sec. 2, this requires that the bulk field Aμ (the one dual to the boundary current Jμ)

satisfy the boundary condition

lim
z→0

At = μ . (3.3)

If finite temperature is also considered, this condition is complemented with the requirement

that Aμ be regular at the horizon. In this case, the black hole is charged, since there is a

finite radial electric field in the bulk.
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Figure 2. Schematic depiction of open strings and probe D-branes (gsNc 	 1 regime).

3.2 Fundamental matter

As mentioned in Sec. 1, all the field content of N = 4 SYM transforms in the adjoint

representation of the gauge group. But matter in the fundamental representation can

also be added. This is desirable, since in QCD the quarks transform in the fundamental

representation and they play a most important role. In order to construct holographic

models more closely related to QCD, we need to introduce matter degrees of freedom in

the fundamental representation.

First, let us recall that fundamental matter fields (let us call them simply quarks)

have Nc degrees of freedom, as opposed to the N2
c carried by the adjoint matter ones (the

gluons), so to include loops in their Feynman diagrams would lead to 1/Nc suppressions.

For instance, in a theory with Nf flavors, the single-quark loop planar diagram contribution

to the vacuum amplitude scales as NfNc rather than as N2
c . Then, in the large Nc limit,

while keeping Nf finite, the contribution from quark loops is suppressed by factors of Nf/Nc.

Also in this limit, Feynman diagrams with quark loops can be classified in a topological

expansion of two-dimensional Riemann surfaces with boundaries (as opposed to diagrams

without quarks, which have no boundaries). Each boundary is identified with a quark loop.

On the string side, these diagrams are formulated as worldsheets containing both closed

and open strings, with boundaries corresponding to the worldlines of the endpoints of the

open strings. These open strings must be attached to D-branes, therefore the introduction

of quark degrees of freedom must correspond to introducing additional D-branes, so that

these open strings can be present in the theory. Since they only need to act as supporting

surfaces for their endpoints, they can be regarded as probe D-branes. Indeed, if there are

Nf of them, provided that Nc � Nf, their gravitational backreaction can be neglected.

The field/operator correspondence relates the closed string fields living in the bulk to
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gauge-invariant operators built out of adjoint matter and gauge fields only, like O = TrF 2.

This is a way of saying that closed strings are dual to states such as glueballs (in confining

models). On the other hand, open string fields are dual to meson-like operators like O = q̄q.

The picture (see Fig. 2) devised by this correspondence is that the two endpoints of an

open string, which must lie on the D-brane probe worldsheets, are respectively dual to a

quark and an antiquark.

Thus we come to the conclusion that the introduction of gauge theory quarks must

correspond to the introduction of Dp-brane probes in the string description, where the

dimension p can be a subject of discussion that will not be addressed here, other than

saying that it has to be p > 3. The open string sector includes three types of open strings:

i) with both ends on the D3-branes, which give rise to the N = 4 SYM multiplet in the

adjoint of SU(Nc). The coupling constant for these degrees of freedom is simply the one

in (1.6), which is dimensionless, so they remain interacting at low energies.

ii) with both ends on the Dp-branes. In this case, the coupling constant has dimensions

of (length)p−3. If p > 3, this implies that these strings become non-interacting at low

energies.

iii) with one endpoint on the D3-branes and the other one on the Dp-branes. These

degrees of freedom transform in the fundamental representation of the gauge group on

the D3-branes, and in the fundamental representation of the gauge group on the Dp-

branes as well; which means that they transform in the bifundamental representation of

SU(Nc) × SU(Nf). They interact with the other types of strings with strengths given by

the corresponding coupling constants on the D3-branes and on the Dp-branes.

At low energies, when gsNc 	 1, the system yields two decoupled sectors. The first

sector is free (non-interacting) and consists of closed strings, propagating on the ten-

dimensional spacetime, and p-p open strings, propagating on the worldvolume of the Nf

Dp-branes. The second sector is interacting and consists of the 3-3 strings coupled to the

3-p strings. The gauge group SU(Nf) becomes a global symmetry group because the effec-

tive coupling on the Dp-branes vanishes. This is the origin of the flavor symmetry expected

in the presence of Nf equal mass quark species in the gauge theory.

On the other hand, if gsNc � 1, the D3-branes may be replaced by their backreaction

on spacetime, to consider the closed string description, which is now complemented with

the Dp-brane probes living in this geometry. The excitations of the system consist of

closed strings and p-p open strings, propagating in two regions that decouple in the low-

energy limit: the asymptotically flat region, where strings become non-interacting, and the

AdS5 × S5 throat, where strings remain interacting because of the gravitational redshift

(see Fig. 3).

In any of the two cases, the low energy limit contains a free sector of closed and p-p

open strings. These free sectors are identified and conjectured to provide dual descriptions

of the same physics. That is, N = 4 SYM coupled to Nf fundamental degrees of freedom

is dual to type IIB closed strings in AdS5 × S5 coupled to open strings living on the

worldvolume of Nf Dp-brane probes.

Nevertheless, note that the leading contribution of the fundamental matter is always

of relative order Nf/Nc with respect to the contribution of the gluons. This does not
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Figure 3. Excitations of the system in the gsNc � 1 regime.

mean that in the large Nc limit the quarks have to be completely ignored. When taking

Nc → ∞, the ratio Nf/Nc can be kept finite so that any observable can be calculated as a

double expansion in 1/N2
c and Nf/Nc, so that the relevant contribution from the quarks is

captured. Indeed, in this thesis it will be shown that quarks can act as probes of dynamics

dominated by adjoint matter, in order to answer questions regarding the effect of heavy

quarks in the plasma: jet quenching, meson radiation, . . .

4 Making the duality precise

The duality conjecture is made precise by postulating that the Euclidean partition functions

of the two theories are identified [2, 3] as

ZCFT [φ(x)] = Zstring [Φ|∂AdS (x)] . (4.1)

An important point that must be taken into account is that the gravitational side has

as many degrees of freedom as its dual. This is the concept that makes the holographic

principle conceivable, and it also makes it possible to parametrize the degrees of freedom

of the theory in terms of boundary variables. This is the reason why Zstring is expressed in

terms of the boundary conditions Φ|∂AdS(x). Also, because of the previous identification

(2.2), the variables appearing on both functionals in this equation are the same. In fact,

the most general form of ZCFT includes a source for each gauge-invariant operator of the

theory. The Φ fields constitute (the duals of) the collection consisting of all these sources.

Of course, Zstring is in general difficult to compute. But in the classical gravity limit

(1.8), it is greatly simplified as the exponential of the renormalized on-shell classical action

of the supergravity limit of the theory (that is, the classical action evaluated on a solution

of the equations of motion Φ
(E)
c ),

Zstring[φ] � exp
(
S(ren)

[
Φ(E)
c

])
. (4.2)
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where the superindex (E) stands for Euclidean. Note that we have absorbed the usual

minus sign into the definition of the Euclidean action. The boundary conditions for the

solution relate it to the φ(x) fields appearing on the left hand side of (4.1),

lim
z→0

zΔ−4Φ(E)
c (z, x) = φ(x) , (4.3)

which are complemented by the requirement of regularity everywhere in the bulk.

The renormalization of the action is an important detail of this calculation. Typically,

there are contributions given by boundary-evaluated terms, the lack of which makes the

on-shell classical value of the action divergent [3]. The divergence removal procedure is

called “holographic renormalization” and is now a well understood topic (see [23] for a

review).

The classical gravity limit is attained if one considers the strong coupling, large Nc

limit. Since the classical gravitational action is proportional to 1/G, which scales as G ∼
1/N2

c (see subsec. 1.3), then the action scales as S(ren)[Φ
(E)
c ] ∼ N2

c . This is what one would

expect for a theory with N2
c degrees of freedom for its fields, such as SU(Nc) SYM theory

in the large Nc limit. Quantum corrections would be included as an expansion in powers

of 1/
√
λ and 1/Nc.

4.1 The physics of correlation functions

Eq. (4.1), with (4.2), makes it possible to compute connected correlation functions of the

gauge theory simply from functional derivatives of the on-shell classical gravity action with

respect to the associated sources, as in

〈O(x1) . . .O(xn)〉 =
δnS(ren)[Φ

(E)
c ]

δφ(x1) . . . δφ(xn)

∣∣∣∣∣
φ=0

. (4.4)

This is an important tool that is extensively used in many AdS/CFT models. A particular

case for this formula takes us back to (2.11), which can be derived from

〈O(x)〉φ =
δS(ren)[Φ

(E)
c ]

δφ(x)
= lim

z→0
z4−Δ δS(ren)[Φ

(E)
c ]

δΦ
(E)
c (z, x)

, (4.5)

where (4.3) has been taken into account.

A very important application of this formula applies when considering O(x) = T μν(x).

As outlined in (2.4), in this case the dual field is the metric Φ(x) = gμν(x), which is an

operator of dimension Δ = d. Thus, (4.5) results in

〈T μν(x)〉 = lim
z→0

δS(ren)[g(E)]

δg
(E)
μν (x, z)

. (4.6)

Note that T μν is a tensor density, for the actual tensor we have

〈Tμν(x)〉 = lim
z→0

2√
−g(E)(x, z)

δS(ren)[g(E)]

δg
(E)
μν (x, z)

, (4.7)
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which is recognized as the usual definition of the stress-energy tensor of a classical field

theory [24] (except for the limit z → 0).

It is usual practice to follow the analogy with classical mechanics and identify the

derivative on the right hand side of (4.5) as the canonical momentum Πc conjugate to Φ
(E)
c

evaluated on the classical solution. This Πc is calculated as the variation of the action with

respect to the time derivative of the field, but, in this analogy, this concept of momentum

is generalized to considering the variation with respect to the boundary value of the field,

this boundary not necessarily being a constant-time surface. In the present case, of course,

the boundary would be a constant-z source. Thus, the renormalized momentum is defined

as

Π(ren)
c (z, x) =

δS(ren)[Φ
(E)
c ]

δΦ
(E)
c (z, x)

, (4.8)

so (4.5) becomes

〈O(x)〉φ = lim
z→0

z4−ΔΠ(ren)
c (z, x) . (4.9)

In the example of section 2.3, (2.5), the momentum corresponding to the bulk scalar field

is

Π = −gzz
√−g ∂zΦ , (4.10)

and by performing this calculation, it can be shown that this implies (2.11), where A(x) is

φ(x).

4.2 Green’s functions

Consider now two different observables, O1 and O2. Retarded Green’s functions are defined

as two-point Lorentzian correlation functions:

GO1O2
R (ω,�k) = −i

∫
d3x dt e−iωt−i�k·�x θ(t)〈[O1(t, �x),O2(0, 0)]〉 , (4.11)

where θ(t) is the Heaviside step function. It is convenient to consider a time-dependent

perturbation in the action, reflected by the addition to the Hamiltonian of a term composed

of the second operator and its source,

δH(t) =

∫
d3xφ2(t, �x)O2(x) . (4.12)

The expectation value of the first operator is given by

〈O1(t, �x)〉 = Tr ρ0(t)O1(�x) (4.13)

where ρ(t) is the time-dependent density matrix associated to the unperturbed hamiltonian

H0. This expected value can also be calculated from a derivative, as in (4.5), but here it

is more convenient to consider this relation and go to the interaction picture, in which the

time dependence due to δH(t) is absorbed into the operators O1 and O2, so that

〈O1(t, �x)〉 = Tr ρ0 U
−1(t)O1(t, �x)U(t) , (4.14)
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where ρ0 = e−H0/T and U is the usual time-ordered exponential

U(t) = T e−i
∫ t dt′H(t′) . (4.15)

Now adding the perturbation term (4.12) and expanding to first order in the perturbation

of the Hamiltonian gives

δ〈O1(t, �x)〉 = −iTr ρ0

∫ t

dt′
[
O1(t, �x), δH(t′)

]
(4.16)

= −i

∫ t

d3x′ dt′〈
[
O1(t, �x),O2(t

′, x′)
]
〉φ2(t

′, �x′) .

Taking a Fourier’s transform of (4.16), we can derive the characteristic relation of linear

response theory, namely that the expectation value of an operator in momentum space

is proportional to the corresponding source, assuming the former is a small perturbation

around equilibrium. For instance, the appearance of an electric current triggered by an

electric field is determined by the conductivity. Here we see that the constant of propor-

tionality is actually the Green’s function defined above:

δ〈O1(ω,�k)〉φ2 = GO1O2
R (ω,�k)φ2(ω,�k) , (4.17)

In the geometry dual to the field theory at equilibrium, there will be profiles for the

various bulk fields involved, φA(x, z), with corresponding boundary values φA (0)(x). If we

wish to perturb the boundary value, then in order to satisfy the bulk equations of motion

we will need to perturb the entire bulk field,

φA(x, z) → φA(x, z) + δφA(x, z)e
−iωt−i�k·�x . (4.18)

The equation of motion for δφA(x, z) is obtained by substituting (4.18) into the bulk

equations of motion and linearizing.

In general, there will be couplings between different operators, but for simplicity let’s

consider a particularly simple case in which both operators are the same, O1 = O2 = O.

Then, in Euclidean signature, we can define

δ〈O(ωE ,�k)〉φ = GE(ωE , �k)φ(ωE , �k) , (4.19)

where ωE denotes Euclidean frequency. In the case of (2.5), this yields

GE(ωE , �k) =
〈O(ωE ,�k)〉φ
φ(ωE , �k)

= lim
z→0

z2(4−Δ)Π
(ren)
c

Φ
(E)
c

= 2(Δ− 2)
B(ωE , �k)

A(ωE ,�k)
. (4.20)

Note that GE(ωE , �k) possesses a pole precisely at those frequencies for which A(ωE ,�k)

vanishes. As a consequence, each pole of the Green’s function corresponds to a normalizable

solution of the equations of motion. This is a one-to-one correspondence, related to the

one outlined below (2.10).

There is a reason why we give the definition (4.4) in Euclidean signature: This equation

in Lorentzian signature is not directly applicable to obtain correlators. The complications
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arise because a Lorentzian black hole spacetime contains an event horizon, and it is manda-

tory to impose an appropriate boundary condition at the horizon when solving the classical

equations of motion, in addition to imposing them at the spatial boundary. Besides, the

resulting correlation function should be time-ordered, which leads to some subtleties.

However, it all amounts to an appropriate analytic continuation:

GE(ωE , �k) = GR(i ωE ,�k) for ωE > 0 , (4.21)

GR(ω,�k) = GE(−i(ω + i ε), �k) . (4.22)

So if the Euclidean correlation functions GE are known exactly, the retarded ones can be

obtained very simply. However, it is often the case that the Euclidean functions can only

be obtained numerically, and then the analytic continuation becomes difficult. Therefore,

it is advisable to compute the correlation functions directly in Lorentzian signature. There

exists a prescription [25–27] that allows to do so very easily. The idea is to analytically

continue the equations of motion to Lorentzian signature (4.22) and require the solution

to obey the in-falling boundary condition at the future event horizon of the black brane

metric,

Φc(t, �x) ∼ e−i ω (t−z) . (4.23)

This ensures that the retarded correlator is causal and only propagates information forward

in time. Intuitively, information can fall into the black hole horizon but not come out2 (at

the classical level). It can be verified that the analytic continuation of Φ
(E)
c (ωE , �k),

Φc(ω,�k) = Φ(E)
c (−i(ω + iε),�k) , (4.24)

satisfies this condition.

5 Wilson Loops

Wilson loops are are very important observables in any gauge theory because they are

non-local, contain information about the non-perturbative physics and have applications

to many physical phenomena, such as confinement and thermal phase transitions. Their

expectation value is defined as

W r(C) = TrP exp

[
i

∫
C
dxμAμ(x)

]
, (5.1)

where P denotes path ordering,
∫
C denotes a line integral along a closed path C, r denotes

the representation of the symmetry group (usually r = F or A, that is, fundamental or

adjoint) and Aμ(x) = Aa
μ(x)T

a is the vector potential expressed in terms of the generators

T a of the corresponding representation.

In the strong coupling limit, Wilson loops can be computed easily using the gravity

description of the theory, since they have a dual portrayal in terms of a string worldsheet.

2Note that if we were to calculate the advanced correlator, as opposed to the retarded one, we would

require the solution to obey the out-going boundary condition at the horizon.
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Figure 4. String worldsheet Σ associated to a Wilson loop C.

For this purpose, it is useful to think of the loop C as the path followed by a fundamental

matter field (a quark). As explained in Sec. 3.2, the endpoint of an open string, dual to

the quark, lies on a D-brane. Therefore, the boundary of its worldsheet, ∂Σ, must coincide

with the path traversed by the quark, C (see Fig. 4). On the other hand, the expectation

value of the Wilson loop operator (5.1) is basically the partition function (or amplitude)

of the quark traversing C. This suggests to identify W r(C) with the partition function of

the dual string worldsheet Σ [28, 29],

〈W (C)〉 = Zstring[∂Σ = C] . (5.2)

The radial position at which the string is attached to the brane is proportional to the quark

mass. For simplicity, we can focus on the large quark mass limit, so that the quark is non-

dynamical. In this case, we can imagine the probe D-brane placed on the AdS boundary,

so that the boundary ∂Σ also lies on the boundary of AdS.

However, the string endpoint couples to the gauge field Aμ as well as to the scalar fields

on the D-brane φi. They both get excited when the string pulls on the brane. This suggests

that the amplitude of the quark should include also the scalar fields. Let us consider N = 4

SYM theory as an example. In this case, (5.1) is generalized to

W (C) = 1

Nc

TrP exp

[
i

∮
C
ds
(
Aμẋ

μ + �n · �φ
√
ẋ2
)]

. (5.3)

The dual description of theW r(C) of (5.1) is the same as that of (5.3), except that Neumann

boundary conditions (instead of Dirichlet) must be used on the string worldsheet along the

S5 directions [30]. As a consequence, the strong coupling results to leading order are the

same for (5.1) and (5.3). They only differ at the next order in the 1/
√
λ expansion.

Moreover, in the strong coupling, large Nc limit, the string partition function is greatly

simplified because it is given by the exponential of the classical string action, as seen in

(4.2). Therefore we have, in Lorentzian signature:

Zstring[∂Σ = C] = eiS(C) ⇒ 〈W (C)〉 = eiS(C) , (5.4)
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Figure 5. String associated with a quark-antiquark pair in vacuum (left) and in a plasma with

temperature T > 0 (right).

where the classical action S(C) is obtained by extremizing the Nambu-Goto action for the

string worldsheet, under the condition that it ends on the curve C. Intuitively, the reason

why this limit is required is that a) strong coupling (large λ) ensures that the string tension

is sufficiently large to neglect fluctuations on it, and b) large Nc sends the string coupling

to zero, so we can ignore the possibility of loops of string breaking off from the worldsheet.

Under this conditions, the worldsheet just hangs down from the contour C taking the shape

corresponding to its classical configuration. Note that it is remarkable that a calculation of

a Wilson loop in a strongly interacting gauge theory may simplify to a classical mechanics

problem not more difficult than finding a catenary curve.

In many cases, the qualitative behavior of the Wilson loop can be explained by gross

features of the bulk geometry. One of the clearest examples is that of a rectangular loop

at zero or finite temperature. Consider C sitting at a constant position on the S5 with a

rectangular shape, so that the long side extends along the time direction (length T ) and

the short side along the x1-direction (length L), so that T � L. This can be thought of

as a static quark-antiquark pair separated by a distance L.

In a pure AdS spacetime (1.2), since there are no scales, the calculation must result in

a potential energy between the pair with a dependence V (L) ∝ 1/L. But if we introduce

temperature as in (3.2), there exists a critical value of the separation, Ls, beyond which

the preferred configuration takes on a different shape. As can be seen in Fig. 5, in this case

there is a horizon, and at some separation the lowest part of the string touches the horizon.

Above (and at) this separation the energy of the string gets minimized by splitting into two

disjoint independent strings, each of which falls through the horizon. The transition value

is called screening length and in this case it is determined by the temperature, which is the

only scale of the problem, so Ls ∼ 1/T . When L = Ls, the lowest point of the connected

configuration is close but still somewhat above the horizon.

Once L > Ls, the quark-antiquark separation can be increased further at no additional

energy cost (because the strings become independent of each other). Thus, the potential

must become a constant because the quark and antiquark are completely screened by

the plasma between them. This description is a simple model for what happens in the
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z = z0

z = 0.

Figure 6. String associated with a quark-antiquark pair in a confining theory.

deconfined phase of QCD with the mesons that survive deconfinement, and it illustrates

that, even though N = 4 SYM at T = 0 is very different from QCD at T = 0, N = 4 SYM

at T = 0 can work as an approximation to QCD at T > Tc. This is a fact that will be

employed to motivate many of the calculations on this thesis.

Now let us consider a spacetime metric corresponding to a confining theory [18]:

ds2 =
R2

z2
(
−dt2 + dx21 + dx22 + f(z)dx23

)
+

R2

z2f(z)
dz2 , (5.5)

where f(z) = 1 − z4/z40 . The crucial difference with respect to pure AdS is that this

spacetime ends smoothly at a finite value z = z0, which introduces a scale in the theory;

and with respect to the finite temperature metric is that the string has no place to end,

so in order to minimize its energy it tends to drop down to z0 and to run parallel there,

as pictured in Fig. 6. Beyond some critical value of the separation, so that L � z0, we

can expect the potential to be V (L) ∼ L because increasing further the separation does

not make the string sag deeper, but it adds more and more string at the same depth z0,

which costs an energy that increases linearly with the separation. The lengthscale z0 in

this gravitational description corresponds to the mass gap of the gauge theory, M ∝ 1/z0,

that only exists in the confining phase.

6 Quantum criticality and superconductors

Quantum critical theories arise at continuous phase transitions at zero temperature, caused

by non-analyticities in the ground state of a system as a function of some order parameter,

such as pressure or an applied magnetic field. The quantum critical point may or may not

be the zero temperature limit of a finite temperature phase transition. A generic feature

of quantum critical points is that they have a spacetime scale invariance that provides a

strong connection to simple versions of the AdS/CFT correspondence. Furthermore, the

absence of weakly coupled quasiparticles often makes them difficult to study using tradi-

tional methods. Outside of the AdS/CFT, there are no models of strongly coupled quantum

criticality in which analytic results for processes such as transport can be obtained.

Typically, as the continuous quantum critical point is approached, the energy of fluctu-

ations about the ground state (energy gap) vanishes and the coherence length (that is, the
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Figure 7. Typical phase diagram near a quantum critical point.

characteristic lengthscale) diverges with specific scaling properties. The quantum critical

theory itself is scale invariant, and in regions of the phase diagram away from the point

at which the energy gap vanishes, the quantum critical points dominate the behavior of

the system. For instance, in regions where the deformation away from criticality due to

an energy scale Δ is less important than the deformation due to a finite temperature T

(that is, where Δ < T ), the system can actually be described by the fnite temperature

quantum critical theory. This leads to the counterintuitive fact that the imprint of the

zero temperature critical point grows as temperature is increased (see Fig. 7).

As outlined in Sec. 1.2, the gauge/gravity duality geometrizes the field theory energy

scale. Most commonly, the theory is defined either with a UV cutoff or via a UV fixed

point which depicts a theory valid at all scales. At the fixed point itself, the theory is scale

invariant, and that makes it the simplest place to start for the gravitational dual. The

framework of the gravitational dual is expected to be applicable to strongly coupled con-

densed matter systems in the vicinity of quantum phase transitions. Examples of systems

that display quantum criticality and that can be subject to holographic models are the

Wilson-Fisher fixed point and the spinon-photon interaction in quantum magnets. Typi-

cally the critical theory is strongly coupled and so any action we write down to describe

the theory will not be directly useful for the analytic computation of many quantities of

interest. Indeed, this is the motivation for turning to gravitational models.

Specially important are those systems that display induced symmetry breaking phase

transitions. These are generically known as superconductors or superfluids, because of

features that arise as consequences of that symmetry breaking. In the simplest supercon-

ducting systems, we have a global U(1) symmetry which is spontaneously broken at the

phase transition. This breaking results in a massless Goldstone boson ϕ, which transforms

under U(1) by the shift ϕ → ϕ+Λ. Gauge invariance of the theory in an electromagnetic

background Aμ means that the renormalized classical action can be written as

S(ren) =

∫
ddx

√−gF [Aμ − ∂μϕ] (6.1)
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for some function F . Stability of the theory in the absence of Goldstone mode excitations

or background fields implies that F must have a minimum at Aμ = ∂μϕ. Following (4.5),

the expected value of the current operator associated to the gauge field, Jμ, is calculated

as

Jμ =
δS(ren)

δAμ(x)

∣∣∣∣∣
Aμ=∂μϕ+δAμ

= F ′′[0] δAμ . (6.2)

In the gauge with δAt = 0, the electric field in Fourier space is just δEμ = i ω δAμ.

Therefore,

Jμ = − iF ′′[0]
ω

δEμ = σ(ω) δEμ , (6.3)

where σ(ω) is the conductivity, divergent as ω → ∞.

Beyond this generic simple model, one needs a microscopic theory to determine how

the symmetry breaking condensate forms in the material. Most traditional theories, BCS

theory being the canonical example, introduce charged quasiparticles that are paired into

bosonic operators by a gluing interaction mediated by another quasiparticle such as phonons.

The composite charged operator can then be shown to condense. One motivation for de-

veloping holographic models of superconductivity is to have a microscopic description of

superconductivity out of first principles, rather than effective models, in which there are no

quasiparticles whatsoever. Instead, there is a strongly coupled theory in which a charged

operator condenses below a critical temperature.

High-Tc and p-wave superconductors are being accommodated into the gravitational

framework [32]. There are many gravitational backgrounds that one may consider for the

dual theory, the simplest one being (3.2), which corresponds to a scale invariant theory

at finite temperature. But this one will not describe superconductivity, since all nonzero

temperatures are equivalent. In order to have a critical temperature Tc, another scale must

be introduced. The simplest way to do so is to work at finite chemical potential, as in (3.3).

By dimensional analysis, this allows Tc ∝ μ. For instance, a chemical potential appears

when describing cuprate superconductors, as a measure of the doping away from critical

doping [33].

The normal state of the system is generically dual to the solution (3.2), which is

unstable to the formation of a charged condensate (i.e. a non-vanishing expectation value

〈O〉 for the operator dual to a bulk scalar field) if T 	 μ. In order for this to happen, in

this regime the spacetime should be unstable against perturbations of the bulk field, so that

it acquires a non-zero solution spontaneously. Note that it is highly unusual from a weakly

coupled perspective that a theory with charged bosons can be stable against condensation

at zero temperature in the presence of a chemical potential.

In a broader sense, theories with gravitational duals are well defined, albeit exotic, the-

ories against which the arsenal of condensed matter concepts can be tested. As opposed to

other approaches, it is important to keep in mind that we can ask questions about currents

and parameters, but not about “electrons” or “phonons”, that is, we cannot resort to weak

coupling language. The fact that the holographic approach provides explicit examples of

theories without a quasiparticle description in which computations are, nevertheless, feasi-

ble is one of the reasons why AdS/CFT turns out to be very useful in the field of strongly
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coupled condensed matter physics. Another one is that, although the holographic duals

may have unfamiliar points, they also display features that are expected to be universal

for all strongly coupled theories with a gravity dual, so that we can use their qualitative

predictions to test our expectations and guide us in refining our assumptions.

7 Potential of the holographic approach

If the numerical agreement between the theoretical predictions and experimental results

is used as the only justification for it, there is clearly an uncertainty when it comes to

evaluating the applicability of the gauge/string duality to heavy ion phenomenology or to

condensed matter systems. However, the possibility of gaining insight into problems that

cannot be addressed within the available theoretical technology outside of string theory

is inherently valuable. Within the gauge/string correspondence, it has been possible to

formulate and solve many problems in a large class of quantum field theories. In particular,

strongly coupled N = 4 SYM theory at large Nc turns out to provide a simple model for

the strongly coupled plasma being produced and probed in heavy ion collisions, in addition

to a fairly natural description of superconductivity.

Another important role played by the duality is being a testing ground for pre-

established ideas and a source of new ones, in those regimes beyond the guidance of pertur-

bation theory. For example, holographic calculations have given support to the possibility

that heavy quarkonium mesons survive deconfinement. In this thesis, we focus on the quali-

tatively new ideas suggested by the duality: The in-medium energy loss of heavy quarks via

Cherenkov emission of mesons (Chapter 1); and the non-trivial dependence on anisotropy

of several observables of the plasma, such as screening lengths or the jet quenching pa-

rameter (Chapter 2), as well as its effect over transport coefficients of p-wave superfluids

(Chapter 3). Even though it is true that a critical mind must be kept when trying to

extract definitive conclusions from any holographic calculation, it is beyond a doubt that

within their range of applicability they have provided useful computable models where

direct means have failed to do so.

Thus, it is hoped that these new applications of the gauge/gravity duality will continue

to make an important contribution to our understanding of fundamental open problems in

high energy and condensed matter physics.
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Chapter 2

Cherenkov emission of mesons:

A universal prediction
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We show that a heavy quark moving sufficiently fast through a quark-gluon plasma may lose energy by

Cherenkov-radiating mesons. We demonstrate that this takes place in all strongly coupled, large-Nc
plasmas with a gravity dual. The energy loss is exactly calculable in these models despite being an

Oð1=NcÞ effect. We discuss implications for heavy-ion collision experiments.

DOI: 10.1103/PhysRevLett.104.172301 PACS numbers: 25.75.�q, 11.25.Tq

Introduction.—A remarkable conclusion from the
Relativistic Heavy Ion Collider (RHIC) experiments [1]
is that the quark-gluon plasma does not behave as a weakly
coupled gas of quarks and gluons, but rather as a strongly
coupled fluid [2]. This makes the study of the plasma a
challenging task.

Experimentally, valuable information is obtained by
analyzing the energy loss of energetic partons created in
hard initial collisions. In order to use this information to
learn about the plasma, a theoretical, quantitative under-
standing of the different mechanisms of parton energy loss
is needed. Several such mechanisms have been previously
studied, both in QCD itself [3] and in the context of the
gauge-gravity duality [4].

In this Letter we will uncover a new mechanism
whereby a sufficiently fast heavy quark traversing a
strongly coupled plasma loses energy by Cherenkov-
radiating in-medium mesons. We will first show that this
takes place in all strongly coupled, large-Nc theories with a
gravity dual. Next we will calculate the energy loss in a
simple example. Finally, we will discuss possible implica-
tions for heavy-ion collision experiments.

Universality of the mechanism.—This follows from two
universal properties of the gauge-gravity duality (in the
limit Nc, � ! 1): (i) the fact that the gauge theory decon-
fined phase is described by a black hole (BH) geometry [5],
and (ii) the fact that a finite number of quark flavors Nf is

described by Nf D-brane probes [6]—see Fig. 1. In addi-

tion to the gauge theory directions, the gravity description
always includes a radial direction which is dual to the
gauge theory energy scale. The radial position of the
horizon is proportional to the plasma temperature T. The
D-branes extend in the radial direction down to a minimum
value proportional to the (constituent) quark mass Mq.

For sufficiently largeMq=T, theD-branes sit outside the

horizon [7–9]. In this phase, low-spin gauge theory mesons
are described by small, normalizable fluctuations of scalar
and vector fields propagating on the branes, whose spec-
trum is discrete and gapped. In particular, this means that
sufficiently heavy mesons survive deconfinement, in agree-

ment with lattice and potential model predictions for real-
world QCD [10].
Let !ðqÞ be the in-medium dispersion relation (DR) for

these mesons. As an illustrative example, the DR for vector
mesons in the D3=D7 system is depicted in Fig. 2. As q !
1, the DR becomes linear: !ðqÞ � vlimq, with vlim < 1.
This subluminal limiting velocity, which is the same for all
mesons, is easy to understand in the gravitational descrip-
tion [11]. Since highly energetic mesons are strongly at-
tracted by the BH, their wave function is very concentrated
at the bottom of the branes. Consequently, their velocity is
limited by the local speed of light vlim at this point (see
Fig. 1). Because of the BH redshift, vlim is lower than the
speed of light at infinity. In the gauge theory this translates
into the statement that vlim is lower than the speed of light
in the vacuum [12].
Consider now a heavy quark in the plasma. In the

gravitational picture, this is described by a string that starts
on the D-branes and falls through the horizon—see Fig. 1.
In order to model a highly energetic quark we consider a
string whose end point moves with an arbitrary velocity v
at an arbitrary radial position r0, where r0 is inversely
proportional to the size of the gluon cloud that dresses
the quark [15].
Two simple observations now lead to the effect that we

are interested in. The first one is that the string end point is
charged under the scalar and vector fields on the branes. In
the gauge theory, this corresponds to an effective quark-
meson coupling (see Fig. 3) of order �1=

ffiffiffiffiffiffi
Nc

p
. The dy-

namics of the branes þ string end point system is thus (a

FIG. 1 (color online). D-branes and open string in a BH
geometry.
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generalization of) that of classical electrodynamics in a
medium in the presence of a fast-moving charge. The
second observation is that the velocity of the quark may
exceed the limiting velocity of the mesons, since the
redshift at the position of the string end point is smaller
than at the bottom of the branes. As in ordinary electro-
dynamics, if this happens then the string end point loses
energy by Cherenkov radiating into the fields on the brane.
In the gauge theory, this translates into the quark losing
energy by Cherenkov-radiating scalar and vector mesons.
The rate of energy loss is set by the square of the coupling,
and is therefore of order 1=Nc.

A quantitative example.—In this section we will calcu-
late the rate of energy loss in four-dimensional, SUðNcÞ,
N ¼ 4 super-Yang-Mills (SYM) theory coupled to one
quark flavour (but the result is valid for arbitrary Nf, see

Discussion section). The dual description consists of a
D7-brane probe in the supergravity background of Nc
black D3-branes. Following [12] we write the induced
metric on the D7-brane world volume as ds2 ¼ L2ds2ðgÞ
with

ds2ðgÞ¼�
2

2

�
�f

2

~f
dt2þ ~fdx2i

�
þð1þ _R2Þ

�2
dr2þ r2

�2
d�2

3;

(1)

where �2 ¼ R2 þ r2, f ¼ 1 � 1=�4, ~f ¼ 1 þ 1=�4, _R ¼
dR=dr, and x� ¼ ft; xig are the four gauge theory direc-
tions. RðrÞ describes the D7-brane embedding, with

Rð1Þ ¼ 2Mq=
ffiffiffiffi
�

p
T. The dimensionless coordinates above

are related to their dimensionful counterparts (denoted
with tildes) through x� ¼ �T~x�, fr; R; �g ¼
f~r; ~R; ~�g=�L2T.

The terms in the brane þ string action relevant to our
calculation are

S ¼ �
Z
d8�

ffiffiffiffiffiffiffi�gp 1

4
FabFab � e

Z
d�Aa

d�a

d�
; (2)

where Fab ¼ @½aAb� and �a ¼ fx�; r;�3g. The first term

comes from expanding the Dirac-Born-Infeld part of the
D7-brane action to quadratic order in the gauge field. The
metric g that enters this term is that in Eq. (1), which
contains no factors of L; these have been absorbed in the
definition of e in Eq. (3). The Wess-Zumino part of the
D7-brane action will not contribute to our calculation. The
second term in (2) is the minimal coupling of the end point
of an open string, whose worldline is parametrized by
�að�Þ, to the gauge field on the branes. We have omitted
a similar coupling to the scalar fields, which will be con-
sidered in [16]. The coupling constant in (2) is

e2 ¼ 1

TD7ð2�l2sÞ2L4
¼ 8�4

Nc
; (3)

where TD7 ¼ 1=gsð2�Þ7‘8s is the D7-brane tension. As
expected, e is of order 1=

ffiffiffiffiffiffi
Nc

p
, which justifies our neglect

of terms of order higher than quadratic in the action.
The second term in (2) may be written as

�eR
d8�AaJ

a. For simplicity, we will assume that the
quark moves with constant velocity along a straight line
at constant radial and angular positions, so we write

Ja¼�ð3Þð ~x� ~vtÞ�ðr�r0Þ�ð3Þð���0Þ�ð1; ~v;0; ~0Þ: (4)

In reality, r0 and v will of course decrease with time
because of the BH gravitational pull and the energy loss.
However, for simplicity we will concentrate on the initial
part of the trajectory (which is long provided the initial
quark energy is large) for which r0 and v are approxi-
mately constant [17]—see Fig. 1.
The rate of quark energy loss is given by minus the work

per unit time done by the gauge field:

dE

dt
¼ �e

Z
d3xdrd�3F0aJ

a ¼ �eviF0iðt; ~vt; r0;�0Þ:
(5)

Since real-world QCD has no internal S3, we focus on
modes with no angular momentum on the S3. These take
the form A�ðx	; rÞ, Arðx	; rÞ, A� ¼ 0. We set Ar ¼ 0 by a

gauge choice. Further, we work with the Fourier-space
components A�ð!; q; rÞ and choose ~q ¼ ðq; 0; 0Þ, ~v ¼
vðcos
; sin
; 0Þ. After integrating over the S3, the relevant
Fourier-space components of the current are

J�¼2��ð!�qvcos
Þ�ðr�r0Þ�ð1;cos
;sin
;0Þ: (6)

With this choice the only transverse mode of the gauge
field excited by the source is A ¼ A2. The equation of
motion for this mode is

@r

�
fr3@rA

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p r3

�4

�
!2 ~f

f
�q

2f
~f

�
A¼ ~eJ ; (7)

where J ¼ J2, ~e ¼ e=�3, and�3 ¼ 2�2 is the volume of
a unit S3. We solve (7) by expanding A as

A ð!; q; rÞ ¼ X
n

Anð!; qÞ�nðq; rÞ (8)
FIG. 3. Effective quark-meson coupling.

FIG. 2 (color online). DR for the transverse (black, continuous
curve) and longitudinal (red, dashed curve) modes of a heavy
vector meson with vlim ¼0:35 in the D3=D7 system. The blue,
continuous straight line corresponds to!¼vqwith vlim<v<1.
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in terms of a basis of normalizable eigenfunctions
f�nðq; rÞg in the radial direction. These are solutions of
Eq. (7) with J ¼ 0 with q-dependent eigenvalues ! ¼
!nðqÞ, and satisfy the orthonormality relations

Z 1

0
dr

~fr3

f�4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ _R2

p
�m�n ¼ �mn: (9)

Inserting the expansion (8) in (7), and using the eigenstate
equation and the orthonormality relations, we find

½!2 �!2
nðqÞ�Anð!; qÞ ¼ ~eJ nð!; qÞ; (10)

where

J nð!; qÞ ¼
Z
drJ ð!; qÞ�nðq; rÞ

¼ 2��ð!� qv cos
Þv sin
�nðq; r0Þ: (11)

Through the expansion (8) we have ‘‘Kaluza-Klein’’ re-
duced the five-dimensional gauge field to a discrete, infi-
nite tower of independent four-dimensional gauge fields
fAnð!; qÞg. Each of these fields is characterized by a
q-dependent radial ‘‘wave function’’ �nðq; rÞ, as well as
by a DR ! ¼ !nðqÞ, and couples to the quark with an
effective strength eeffðq; r0Þ ¼ e�nðq; r0Þ.

With retarded boundary conditions, as appropriate for
the reaction to the quark’s passage, Eq. (10) yields

A nð!; qÞ ¼ ~eJ nð!; qÞ
ð!þ i�Þ2 �!2

nðqÞ
: (12)

We now evaluate (5) to obtain the energy deposited on the
nth transverse mode. We first express F02ðt; ~vt; r0;�0Þ as
an integral over its Fourier components. We then integrate
over frequencies trivially because of the delta function in
(11). Finally, we set d3q ¼ 2�q2dqds, where s ¼ cos
, to
arrive at

dEn
dt

¼�e
2v

�3

Z 1

0

dq

2�
q�2nðq;r0Þ

Z 1

�1

ds

2�i

sð1�s2Þ
ðsþ i�Þ2�s2nðqÞ

¼ e2v

2�3

Z 1

0

dq

2�
q�2nðq;r0Þð1�s2nðqÞÞ�ð1�s2nðqÞÞ;

(13)

where sn ¼ vn=v and vnðqÞ ¼ !nðqÞ=q is the phase ve-
locity of the mode. The Heaviside function confirms the
expected result: the quark only radiates into modes with
phase velocity lower than v—those to the right of the
dashed, vertical line in Fig. 2. The numerical result for n ¼
0 is plotted in Fig. 4. For fixed r0, the energy loss increases
monotonically with v up to the maximum allowed value of
v—the local speed of light at r0. As r0 decreases, the
characteristic momentum qchar of the modes contributing
to the integral increases. As r0 ! 0 these modes become
increasingly peaked at small r, and eeffðqchar; r0Þ and the
energy loss diverge [16]. However, this mathematical di-
vergence is removed by physical effects we have not taken
into account. For example, for sufficiently large q the
radial profile of the mesons becomes of order the string

length and stringy effects become important [13]. Also,
mesons acquire widths � / q2 at large q [18] and can no
longer be treated as well-defined quasiparticles. Finally,
the approximation of a constant-v, constant-r0 trajectory
ceases to be valid whenever the energy loss rate becomes
large.
Phenomenology.—The Cherenkov radiation of mesons

by quarks depends only on the qualitative features of the
DR of Fig. 2, which are universal for all gauge theory
plasmas with a dual gravity description [19]. Moreover, it
is conceivable that they may also hold for QCD mesons
such as the J=c or the � (see, e.g., the discussion in [14]).
Here we will examine some qualitative consequences of
this assumption for HIC experiments.
The energy lost into mesons would be reflected in a

reduction of the heavy quark nuclear modification factor
RAA [21]. This would only occur for high enough quark
velocities, thus yielding a very particular behavior of RAA.
Note that the minimum quark velocity at which the reduc-
tion starts to occur may actually be higher than vlim, since
the quark energy must be larger than the mass of the
radiated meson. For example, for a charm quark to radiate
a J=c meson this condition yields v > 0:87. In fact, our
calculation applies strictly only in the limit of infinite
quark energy, which suggests that it should be more rele-
vant to HIC experiments at the Large Hadron Collider than
at RHIC.
The radiated mesons would be preferentially emitted at a

characteristic Cherenkov angle cos
c¼vlim=v. Taking the
gravity result as guidance, vlim could be as low as vlim ¼
0:35 at the meson dissociation temperature [12], corre-
sponding to an angle as large as 
c � 1:21 rad. This emis-
sion pattern is similar to the emission of sound waves by an
energetic parton [22] in that both effects lead to a nontrivial
angular structure. One important difference, however, is
that the radiated heavy mesons would not thermalize and
hencewould not be part of a hydrodynamic shock wave. As
in the Mach cone case, the meson emission pattern could
be reflected in azimuthal dihadron correlations triggered by
a high-pT hadron. Because of surface bias, the energetic
parton in the triggered direction is hardly modified, while
the one propagating in the opposite direction moves
through a significant amount of medium, emitting heavy

FIG. 4 (color online). Energy loss into Aðn¼0Þ for an embed-
ding with Rð1Þ ¼ 1:32. The continuous curves correspond to
r0 ¼ 0:86, 0.97, 1.10, 1.25, 1.45. The dotted curve is defined by
the end points of the constant-r0 curves.
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mesons. Thus, under the above assumptions, the dihadron
distribution with an associated J=c would have a ringlike
structure peaked at an angle 
 � �� 
c.

Discussion.—Cherenkov emission of gluons in the con-
text of heavy-ion collisions has been considered in [23],
where the in-medium gluons are assumed to have spacelike
DR. Although some of the underlying physics is similar,
the mechanism we have discussed is different in two
respects. First, the radiated particles are colorless mesons,
not gluons. Second, the gauge-gravity duality provides a
large class of completely explicit and calculable examples
in which this mechanism is realized.

We have focused on the transverse modes of the gauge
field. Since the vector mesons are massive, there is a
similar energy loss into the longitudinal modes [16].

We calculated the energy deposited on the branes by the
string end point. Since the branes sit outside the BH, this
energy must stay on the branes (in the limit Nc, � ! 1).
Because total conserved charges must agree, this energy is
the same as the energy lost by the quark in the gauge
theory. The Cherenkov angle 
c is also the same, since it
is determined by kinematics alone. In contrast, extracting
unintegrated gauge theory quantities (e.g., the differential
power spectrum) would require computing the boundary
stress-energy tensor as in [24].

The validity of our results requires not just large Nc, but
also strong coupling. In this regime the holographic me-
sons behave as elementary excitations, as opposed to com-

posite bound states, up to energies of order
ffiffiffiffi
�

p
T � T

[7,12]. Despite the strong coupling requirement, our results
might apply to asymptotically free theories as long as
(i) they are sufficiently strongly coupled at the scale T,
so that the in-medium meson DR shares the qualitative
features of that in Fig. 2, and (ii) there is a nonzero quark-
meson coupling in the medium.

The energy loss is Nf independent because (at leading

order) the string end point couples directly to the gauge
field on only one of the Nf D-branes. The 1=Nc scaling of

the energy loss does not necessarily imply that the analo-
gous effect (if present) is small in Nc ¼ 3 real-world QCD,
in particular, at high quark velocities. Furthermore, its
characteristic geometry and velocity dependence may
make it easily identifiable.

We close with a comment on the energy loss of heavy
mesons. At Nc ! 1, these mesons experience no drag
[12,25]. At finite Nc, pointlike heavy mesons experience
a drag of orderOð1=N2

cÞ [26]. Cherenkov radiation implies
an Oð1=NcÞ drag for fast excited mesons describable as a
long string with both end points on theD-branes [27], since
each end point may radiate as an individual quark.
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1 Introduction

With the advent of the Large Hadron Collider (LHC) the field of heavy-ion collisions (HIC)

enters a new era. The center-of-mass energy per nucleon in LHC collisions,
√
sNN � 5.5TeV,

is almost 30 times larger than that of the most energetic collisions at the Relativistic Heavy

Ion Collider (RHIC). The highest temperature of the quark-gluon plasma (QGP) created

in RHIC experiments is approximately TRHIC � 2Tc, with Tc � 175MeV the deconfinement

temperature of Quantum Chromodynamics (QCD). Despite the large increase in the colli-

sion energy, this is expected to lead only to a moderate increase in the plasma temperature
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at the LHC [2], i.e. TLHC � (3 − 4)Tc.
1 In contrast, high-energy partons originating from

hard initial collisions will be copiously produced at the LHC. This will allow the study

of quarks and gluons in the 100GeV range, an order of magnitude larger than that at

the RHIC.

Experimentally, extremely valuable information is obtained by analyzing the energy

loss of these energetic partons as they travel through the QGP. In order to use this infor-

mation to learn about the plasma, a theoretical, quantitative understanding of the different

mechanisms of parton energy loss is needed. Several such mechanisms have been previously

studied, both in QCD itself [3–5] and in the context of the gauge/gravity duality [6–10].

A remarkable conclusion from the RHIC experiments [11, 12] is that the QGP does

not behave as a weakly coupled gas of quarks and gluons, but rather as a strongly coupled

fluid [13, 14]. Because of the moderate increase in the temperature and the logarithmic

running of the QCD coupling constant, a qualitatively rather similar behaviour may be

expected for the QGP at the LHC. This makes it particularly important to understand

mechanisms of parton energy loss that may operate at strong coupling. We recently uncov-

ered one such mechanism [1] whereby a sufficiently fast heavy quark traversing a strongly

coupled plasma loses energy by Cherenkov-radiating in-medium mesons.

The analysis in [1] showed that this mechanism takes place in all strongly coupled,

large-Nc gauge theory plasmas with a gravity dual. The argument is so simple that we

reproduce it in section 2 for completeness. This section emphasizes the universality of the

mechanism, since no reference to a specific model is necessary.

Ref. [1] also performed a quantitative analysis in the simple example of a quark moving

through the N = 4 super Yang-Mills (SYM) plasma. The quark Cherenkov-radiates both

vector and scalar mesons. The rate of energy loss into the transverse modes of the vector

mesons was calculated in [1], and again we reproduce it here for completeness. The vector

mesons in question are massive, and thus they also possess a longitudinal mode. Here we

extend the calculation of [1] and obtain the rate of energy loss into longitudinal vector

mesons and scalar mesons. The result for the former is qualitatively similar to that for the

transverse modes, whereas the result for scalar mesons displays some qualitative differences.

Ref. [1] presented a rather preliminary exploration of the potential implications of these

results for HIC experiments. Here we elaborate on that discussion and extend it to include

possible implications of the new results presented in this paper.

2 A universal mechanism of quark energy loss

The reason that the mechanism we are going to describe is universal is that it only relies on

two universal features of the gauge/gravity duality:2 (i) the fact that the deconfined phase

of the gauge theory is described by a black hole geometry on the gravity side [15], and (ii)

the fact that a finite number Nf of quark flavours is described by Nf D-brane probes [16, 17]

— see figure 1.

1A rough estimate is obtained by assuming that the temperature scales as the fourth root of the

energy density.
2In the limit Nc, g

2
YMNc → ∞.
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v
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Boundary

Horizon

Black Hole

D-branes

vlim

Gauge theory directions

ρ

Figure 1. D-branes and an open string in a black hole geometry.

In addition to the gauge theory directions, the gravity description always includes

a radial direction (denoted by ρ in figure 1) which is dual to the gauge theory energy

scale. The radial position of the horizon is proportional to the plasma temperature T .

The D-branes extend in the radial direction down to a minimum value proportional to the

quark mass Mq.

As it is intuitively clear, for Mq sufficiently larger than T the D-branes sit completely

outside the horizon [18–20, 22, 23].3 In this phase, scalar and vector gauge theory mesons

are described by small, normalizable fluctuations of scalar and vector fields propagating on

the branes, whose low-energy dynamics is governed by a Maxwell-like theory. The spectrum

of these fluctuations is discrete and gapped, which means that stable heavy meson states

exist in the plasma. In other words, sufficiently heavy mesons survive deconfinement, in

agreement with lattice and potential model predictions for QCD [25].

Consider now the in-medium dispersion relation ω(q) for these heavy mesons, where

ω and q are the energy and the spatial three-momentum of the meson, respectively. As

an illustrative example, the dispersion relations for vector and scalar mesons in the N = 4

SYM plasma4 are depicted in figure 2.

As q → ∞, the DR becomes linear: ω(q) ∼ vlimq, with vlim < 1. This subluminal limit-

ing velocity, which is the same for all mesons, can be easily understood in the gravitational

description [19]. Since highly energetic mesons are strongly attracted by the gravitational

pull of the black hole, their wave-function is very concentrated at the bottom of the branes.

Consequently, their velocity is limited by the local speed of light at that point, vlim (see

figure 1). Because of the black hole redshift, vlim is lower than the speed of light at infinity

(i.e. at the boundary), which is normalised to unity. In the gauge theory this translates into

the statement that vlim is lower than the speed of light in the absence of a medium, namely

in the vacuum. The reason is that the absence of a medium in the gauge theory corresponds

to the absence of a black hole on the gravity side, in which case vlim = 1 everywhere.

Imagine now a heavy quark in the plasma. In the gravitational picture, this is described

by a string that starts on the D-branes and falls through the horizon — see figure 1. In

3In contrast, as the ratio Mq/T decreases, a first-order phase transition eventually occurs and a part of

the branes falls through the horizon. See section 3.
4With quarks introduced as D7-branes; see below for details.
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Figure 2. Left: dispersion relation for the transverse (black, continuous curve) and longitudinal

(red, dashed curve) n = 0 modes of a heavy vector meson with vlim = 0.35 in the N = 4 SYM

plasma. Right: analogous curves for a scalar (black, continuous curve) and pseudoscalar (red,

dashed curve) meson. In both plots the blue, continuous straight lines correspond to ω = vq

with vlim < v < 1. The black, dotted, vertical lines mark the crossing points between the meson

dispersion relations and the blue lines.

quarkquark

meson

Figure 3. Effective quark-meson coupling.

order to model a highly energetic quark we consider a string whose endpoint moves with an

arbitrary velocity v at an arbitrary radial position ρ0. Roughly speaking, the interpretation

of ρ0 in the gauge theory is that of the inverse size of the gluon cloud that dresses the quark.

This can be seen, for example, by holographically computing the profile of 〈TrF 2(x)〉 around
a static quark source dual to a string whose endpoint sits at ρ = ρ0 [26].

Two simple observations now lead to the effect that we are interested in. The first one

is that the string endpoint is charged under the scalar and vector fields on the branes. In

the gauge theory, this corresponds to an effective quark-meson coupling (see figure 3) of

order e ∼ 1/
√
Nc. We will derive these facts rigorously below, but physically they can be

understood very simply. The fields on the branes describe fluctuations around the branes

equilibrium configuration. The string endpoint pulls on the branes and therefore excites

(i.e. it is charged under) these fields. The branes tension is of order 1/gs ∼ Nc, where gs
is the string coupling constant, whereas the string tension is Nc-independent. This means

that the deformation of the branes caused by the string is of order e2 ∼ 1/Nc. We thus

conclude that the dynamics of the ‘branes+string endpoint’ system is (a generalization of)

that of classical electrodynamics in a medium in the presence of a fast-moving charge.

The second observation is that the velocity of the quark may exceed the limiting

velocity of the mesons, since the redshift at the position of the string endpoint is smaller

than at the bottom of the branes. As in ordinary electrodynamics, if this happens then the

string endpoint loses energy by Cherenkov-radiating into the fields on the branes.5 In the

5This can be viewed as a particular limit of string breaking — see section 7.
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gauge theory, this translates into the quark losing energy by Cherenkov-radiating scalar

and vector mesons. The rate of energy loss is set by the square of the coupling, and is

therefore of order 1/Nc.

3 Quarks in the N = 4 SYM plasma

The four-dimensional N = 4 SYM theory with gauge group SU(Nc) at non-zero temper-

ature is dual to type IIB string theory on the gravitational background sourced by Nc

black D3-branes. Nf quark flavours may be introduced in the gauge theory by adding D7-

branes on the gravity side. The relative orientation of the ‘colour’ and ‘flavour’ branes is

summarised by the array

0 1 2 3 4 5 6 7 8 9

Nc D3: × × × ×
Nf D7: × × × × × × × ×

(3.1)

In the limit Nf 	 Nc the backreaction of the D7-branes on the spacetime metric may

be ignored and the D7-branes may be treated as probes in the gravitational background

sourced by the D3-branes. Following [1, 19] we write the spacetime metric as ds2 =

L2ds2(G), where

ds2(G) =
ρ2

2

[
−f2

f̃
dt2 + f̃dx2i

]
+

1

ρ2
[
dr2 + r2dΩ2

3 + dR2 +R2dϑ2
]
, (3.2)

and

L4 = 4πgsNc�
4
s , ρ2 = R2 + r2 , f = 1− 1/ρ4 , f̃ = 1 + 1/ρ4 . (3.3)

The four gauge theory directions are xμ = {t, �x} = {t, xi}, and they are identified with the

0123-directions shared by both sets of branes in (3.1). The metric inside the second set of

brackets in (3.2) is just the flat metric on R
6 = R

4 ×R
2, which corresponds to the 456789-

directions in (3.1), written in terms of two sets of spherical coordinates {r,Ω3} and {R, ϑ}.
The coordinate ρ is the overall radial coordinate in R

6. This splitting is convenient since

the D7-branes extend along the {r,Ω3}-directions. All coordinates above are dimensionless,

and they are related to their dimensionful counterparts (denoted with tildes) through

xμ = πT x̃μ , {r,R, ρ} =
1

πL2T
{r̃, R̃, ρ̃} . (3.4)

In particular, this means that we are measuring energy and momentum in the gauge theory

in units of πT . In addition, since the horizon of the metric (3.2) in dimensionless coordinates

lies at ρhor = 1, we see that the size of the horizon in physical units is proportional to the

gauge theory temperature, i.e. ρ̃hor ∝ T .

D7-brane embeddings. We now specialize to Nf = 1; we will discuss the case Nf > 1

in section 7. The action governing the dynamics of a D7-brane in the background sourced

by D3-branes takes the form

SD7 = −TD7

∫
d8x
√

− det (g + 2π�2sF ) + TD7

(
2π�2s

)2
2

∫
C4 ∧ F ∧ F . (3.5)
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Figure 4. Minkowski-type D7-brane embedding showing the S3 wrapped by the branes (left) and

the gauge theory directions (right). The angular coordinate ϑ is suppressed in both cases. The

asymptotic position of the brane is proportional to the quark mass Mq, whereas the size of the

black hole horizon (shown in dark grey) is proportional to the temperature T .

In this equation TD7 = 1/gs(2π)
7�8s is the D7-brane tension, �s is the string length, xa

(a = 0, . . . , 7) are intrinsic coordinates on the brane’s worldvolume, g is the induced metric,

F = dA is the field-strength of the worldvolume U(1) gauge field Aa, and C4 stands for

the pull-back of the spacetime Ramond-Ramond four-form potential sourced by the D3-

branes. As we will see below, the term in the action involving C4 will not contribute to

any of our calculations.

In order to describe the D7-brane embedding we use xa = {xμ, r,Ω3} as worldvolume

coordinates. In other words, the brane extends along the gauge theory directions and

the radial direction r, and it wraps an S3 in the directions transverse to the D3-branes.

Translational symmetry along xμ and rotational symmetry along Ω3 then imply that the

embedding must be specified as R = R(r) and ϑ = ϑ(r). Since ϑ is also a symmetry

direction, a consistent solution is obtained by choosing ϑ = const. A typical D7-brane

embedding with different sets of coordinates suppressed is shown in figure 4.

Under these circumstances the induced metric on the D7-brane takes the form ds2 =

L2ds2(g) with

ds2(g) =
ρ2

2

[
−f2

f̃
dt2 + f̃d�x2

]
+

(1 + Ṙ2)

ρ2
dr2 +

r2

ρ2
dΩ2

3 , (3.6)

where Ṙ = dR/dr. The function R(r) is determined by inserting (3.6) in (3.5), setting

F = 0, and varying with respect to R(r). The resulting Euler-Lagrange equation of motion

is

∂r

[
r3
(
1− 1

(r2 +R2)4

)
Ṙ√

1 + Ṙ2

]
= 8

r3R

(r2 +R2)5

√
1 + Ṙ2 . (3.7)

In the limit r → ∞, this equation leads to the asymptotic behaviour

R(r) � m+
c

r2
+ · · · . (3.8)
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Figure 5. First-order phase transition between Minkowski and black-hole type embeddings.

Holography relates the dimensionless constants m and c to the quark mass and condensate

as (see [19] for details)

Mq =
1

2

√
λT m , 〈ψ̄ψ〉 = −1

8

√
λNf Nc T

3 c , (3.9)

where λ = g2YMNc = 2πgsNc is the ’t Hooft coupling. An important point is that the

constant m can also be written in terms of the mass Mmes of the lightest meson in the

theory at zero temperature as [19]:

m =
2Mq√
λT

=
Mmes

2πT
. (3.10)

eq. (3.7) cannot be solved analytically, but numerical solutions for any value of the asymp-

totic brane position, m = R(r → ∞), can be easily found. The constants m and c

correspond to the two solutions at infinity of the second-order equation of motion (3.7).

These solutions are mathematically independent, but not physically: once m is specified,

the requirement of regularity in the interior determines c. The physical solution is thus

uniquely characterized by the value of m.6 In the gauge theory this translates into the

statement that once the quark mass (and the temperature) are specified, the dynamics

determines the quark condensate.

Solutions of eq. (3.7) fall into two classes. For m > 1.3, i.e. for quark masses suffi-

ciently larger than the temperature, the brane bends towards the horizon because of its

gravitational pull, but the brane tension is able to compensate for this and the brane sits

entirely outside the horizon, as in figure 4 and on the left-hand side of figure 5. In this case

the brane embedding is of the so-called ‘Minkowski’ type [18, 19], and we will denote by

R0 = R(r = 0) the radial position of the bottom of the branes. For Minkowski embeddings

there is a one-to-one correspondence between m and R0, and the lowest value m = 1.3

corresponds to R0 = 1.2.

In contrast, for m < 1.3, the brane falls through the black hole horizon in a so-called

‘black-hole embedding’, since in this case the induced metric on the branes possesses a

6For thermodynamically stable embeddings. In the case of thermodynamically metastable or unstable

embeddings, c may be multivalued [18, 19].
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horizon — see figure 5. At m = 1.3 a first-order phase transition between the two phases

occurs, as indicated in figure 5. As we will see below, in the Minkowski phase stable mesons

exist, and their spectrum is discrete and gapped. In contrast, no stable mesons (in fact, no

quasi-particles) exist in the black hole phase. For this reason, the phase transition above is

interpreted in the gauge theory as a dissociation or ‘melting’ phase transition for mesons

in the N = 4 plasma [18, 19, 27].

The value m = 1.3 thus corresponds to the (stable) Minkowski-type brane that comes

closest to the horizon, and therefore to the one for which the in-medium meson dispersion

relation is most dramatically modified with respect to that in the vacuum. For this reason,

we have chosen the embedding with m = 1.3 to illustrate some results in the sections below.

Specifically, we see from eq. (3.6) that the local speed of light at the bottom of the brane

is

vlim =

√
−g00
g11

∣∣∣∣
r=0

=
f(R0)

f̃(R0)
, (3.11)

where we recall that R0 = R(r = 0). Since m = 1.3 corresponds to R0 = 1.2, the formula

above gives vlim � 0.35, i.e. in this case the limiting velocity of mesons in the plasma is

about 1/3 of that in the vacuum.

4 Meson dispersion relations in the N = 4 SYM plasma

Despite the fact that the N = 4 SYM theory is in a deconfined phase at any T > 0, stable

quark-antiquark states exist for sufficiently large Mq/T , and the spectrum of these mesons

is discrete and gapped. In particular, scalar and vector mesons in the gauge theory are

dual to regular, normalizable modes of the scalar and vector fields on the D7-brane. Here

we will review the dispersion relations for these modes, which we will need in order to

compute the quark energy loss below. The dispersion relation for (some) vector mesons

in the D3/D7 system appeared in [1], but no details were presented there. The dispersion

relation for scalar mesons was first computed in [19] and then revisited in [28]. Here we

will review the result in the geometric parametrization of [28], which is particularly suited

for calculating the energy radiated into these modes by the quark.

4.1 Vector mesons

These are dual to regular, normalizable fluctuations of the worldvolume gauge field A. The

N = 4 SYM theory possesses an internal, global SO(6) symmetry that is broken down to

SO(4) by the addition of quarks. In the string description, SO(6) is the isometry group

of the spacetime metric (3.2), whereas SO(4) is the isometry group of the S3 wrapped

by the D7-branes. Under the preserved SO(4) symmetry, meson modes decompose into

singlet and non-singlet modes. Since we are interested in using the N = 4 SYM plasma

as a toy model for the QCD plasma, and since QCD possesses no analog of the SO(4)

symmetry, we will focus on singlet modes. The equation of motion for these modes receives

no contribution from the second term in the action (3.5) [29], and therefore we will ignore

this term in the following.

– 8 –



J
H
E
P
1
1
(
2
0
1
0
)
0
9
1

In conclusion, since we are interested in singlet modes, we only need to consider the

first term in the action (3.5). In addition, since we are only interested in their dispersion

relation (as opposed to higher-order couplings), it suffices to expand this term to quadratic

order in F in the fixed worldvolume metric (3.6).7 The result is

Svector = −TD7L
4
(
2πl2s

)2 ∫
d8x

√−g
1

4
F abFab , (4.1)

leading to the equation of motion

√−g∇aF
ab = ∂a(

√−g F ab) = 0 . (4.2)

The metric g that enters these expressions is that in eq. (3.6), which contains no factors of

L; these have been explicitly included in the prefactor of (4.1).

Singlet modes take the form

Aμ = Aμ(x
μ, r) , Ar = Ar(x

μ, r) , AΩ3 = 0 , (4.3)

i.e. they have no components along the S3 and depend only on r and the gauge theory

directions. The equations of motion are further simplified by the gauge choice Ar = 0,

which we will employ henceforth. In addition, we will work with the Fourier components

of the gauge field defined through

Aμ(t, x, r) =

∫
dωd3q

(2π)4
Aμ(ω, q, r) e

−iωt+iq·x , (4.4)

where ω and q are the energy and the three-momentum of the meson, respectively. Finally,

we choose the momentum to point along x1 without loss of generality.

Under the conditions above, the equations of motion for the transverse modes A2, A3

decouple from each other and from those for the longitudinal mode A0, A1, so we will study

them in turn.

Transverse modes. Let us collectively denote A = {A2, A3}. Both modes obey identical

equations of motion which take the form

∂r
(√

g grrg33 ∂rA
)
−√

g g33
(
g00ω2 + g11q2

)
A = 0 . (4.5)

Upon using (3.6) this becomes

∂r

(
fr3

2
√

1 + Ṙ2
∂rA
)

+
√
1 + Ṙ2

r3

ρ4

(
ω2f̃

f
− q2f

f̃

)
A = 0 . (4.6)

Since we are interested in regular, normalizable solutions, we can expand A as

A(ω, q, r) =
∑
n

An(ω, q) ξn(q, r) (4.7)

7At higher orders gauge field fluctuations would mix with scalar fluctuations. Similarly, at higher orders

singlet modes would generically mix with non-singlet modes.

– 9 –



J
H
E
P
1
1
(
2
0
1
0
)
0
9
1

in terms of a basis of regular, normalizable eigenfunctions {ξn(q, r)} in the radial direction.

These are solutions of eq. (4.6) with q-dependent eigenvalues ω = ωn(q), i.e. they obey the

eigenstate equation

− ∂r

(
fr3

2
√
1 + Ṙ2

∂rξn(q, r)

)
+
√

1 + Ṙ2
fr3

f̃ρ4
q2 ξn(q, r) =

√
1 + Ṙ2

f̃ r3

fρ4
ωn(q)

2 ξn(q, r)

(4.8)

and satisfy the orthonormality relations

∫ ∞

0
dr

f̃r3

fρ4

√
1 + Ṙ2 ξm(q, r)ξn(q, r) = δmn . (4.9)

As we will see in more detail below, the discreteness of the spectrum is guaranteed by the

boundary conditions on the ξn: regularity at r = 0 and normalizability at r = ∞. Inserting

the expansion (4.7) in (4.6), and using the eigenstate equation (4.8) and the orthonormality

relations (4.9), we find that each of the An(ω, q) fields obeys an independent equation of

the form [
ω2 − ω2

n(q)
]
An(ω, q) = 0 . (4.10)

Thus, through the expansion (4.7) we have ‘Kaluza-Klein-reduced’ the five-dimensional field

A(ω, q, r) to a discrete, infinite tower of independent four-dimensional fields {An(ω, q)}.
Each of these fields is dual in the gauge theory to a transverse vector meson with dispersion

relation ω = ωn(q), which is the physical meaning of the wave equation (4.10). In the gauge

theory, each of the mesons in this infinite set is distinguished by its ‘internal’ quantum

number n. In the string description, each value of n corresponds to a different, q-dependent

radial ‘wave-function’ ξn(q, r). As we will see below, this structure of mesons in the fifth

dimension will play an important role in determining the strength with which each of them

couples to a quark.

Given that the brane embedding R(r) entering eq. (4.8) is only known numerically, the

radial profiles must also be found numerically. The general solution of eq. (4.8) behaves

as ξn ∼ a + b/r2 as r → 0, and as ξn ∼ ã + b̃/r2 as r → ∞, for some constants a, b, ã, b̃.

Regularity at r = 0 requires b = 0, whereas normalizability imposes the condition ã = 0.

For fixed q, these two requirements are mutually compatible only for a discrete set of values

of the energy, ωn(q). This is the origin of the dispersion relation.

Figure 6 shows several numerically-obtained radial profiles of the first lowest-lying

modes ξn(q, r) for several values of q for a D7-brane embedding with m = 1.3. The

corresponding values of the energy, ωn(q), are given by the dispersion relation curves in

figures 2 and 7. As is familiar with solutions of Schrödinger-like equations, the nth solution

possesses n zeros. More importantly, we see that the radial wave-functions for all these

modes become concentrated around the bottom of the brane, r � 0, as q → ∞. Relatedly,

we observe that the limiting velocity of all these modes agrees with the local speed of light

at the bottom of the brane, eq. (3.11), as expected from the general argument in section 2.

Longitudinal modes. Eq. (4.2) with b = 0, 1 and r yields two second-order dynamical

equations and a first-order constraint equation, respectively, in which the longitudinal
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Figure 6. Normalized transverse vector meson radial profiles ξn(q, r) for a D7-brane embedding

with m = 1.3. The blue, violet, brown and green curves (i.e. bottom to top on the left, top to

bottom on the right) correspond to q = 1, 2, 4, 11, respectively. The rescalings on the right-hand

side correspond to those in appendix C. Note that the area under the curves is not unity because

of the non-trivial measure in eq. (4.9).

components A0 and A1 are coupled to one another. Only two out of the three equations

are independent, which we take to be

∂r
(√−ggrrg00∂rA0

)
+ iq

√−gg11g00E = 0 , (4.11)

iωg00∂rA0 − iqg11∂rA1 = 0 , (4.12)

where we have introduced the gauge-invariant electric field

E = F10 = iqA0 + iωA1 . (4.13)
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Figure 7. Dispersion relation for the first transverse modes ξn of a heavy vector meson with

vlim = 0.35 in the N = 4 SYM plasma. The curves correspond to n = 0, 1, 2 from bottom to top.

The blue, continuous straight line corresponds to ω = vq with vlim < v < 1.

From these two equations, it is easy to see that E satisfies

− iq ∂r

(√−g grrg00g11

q2g11 + w2g00
∂rE

)
+ iq

√−g g11g00E = 0 . (4.14)

In order to turn this into an eigenstate equation we introduce a new field Φ defined as

Φ =

√−ggrrg00g11

q2g11 + w2g00
∂rE . (4.15)

eq. (4.14) then implies the inverse relation

E =
1√−g g11g00

∂rΦ (4.16)

which, when substituted back into (4.15), yields the equation of motion for Φ:

− ∂r

(
1√−g g11g00

∂rΦ

)
+

q2g11 + w2g00√−g grrg00g11
Φ = 0 . (4.17)

Inserting the explicit form of the metric functions, we arrive at

∂r

(
fρ4

f̃ r3
√
1 + Ṙ2

∂rΦ

)
+ 2

√
1 + Ṙ2

fr3

(
w2 − f2

f̃2
q2
)
Φ = 0 . (4.18)

From this point onward, we proceed as in the case of transverse modes. We expand Φ as

Φ(ω, q, r) =
∑
n

Φn(ω, q)φn(q, r) (4.19)

in terms of a basis of regular, normalizable eigenfunctions {φn(q, r)} in the radial direction.

These are solutions of eq. (4.18) with q-dependent eigenvalues ω = ωn(q), and are subject

to the orthonormality relations

∫ ∞

0
dr 2

√
1 + Ṙ2

fr3
φn(q, r)φm(q, r) = δmn . (4.20)
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Figure 8. Electric field E0(q, r) of the normalized longitudinal vector meson radial profiles φ0(q, r)

for a D7-brane embedding with m = 1.3. The blue, violet, brown and green curves (i.e. bottom to

top on the left, top to bottom on the right) correspond to q = 1, 2, 4, 11, respectively. The rescalings

on the right-hand side correspond to those in appendix C. Note that the area under the curves is

not unity because of the non-trivial measure in eq. (4.20).

As in the case of transverse modes, the longitudinal modes Φn(ω, q) obey the wave equation[
ω2 − ω2

n(q)
]
Φn(ω, q) = 0 , (4.21)

as appropriate for a four-dimensional field with dispersion relation ω = ωn(q). Again,

through the expansion (4.19) we have Kaluza-Klein-reduced the five-dimensional field

Φ(ω, q, r) to a discrete, infinite tower of independent four-dimensional fields {ϕn(ω, q)},
each of which is dual to a longitudinal vector meson in the gauge theory.

The general solution of eq. (4.18) behaves as φn ∼ a + br4 as r → 0, and as φn ∼
ã+ b̃ log r as r → ∞, for some constants a, b, ã, b̃. Normalizability with respect to (4.20) as

r → 0 requires that a = 0, and regularity as r → ∞ requires that b̃ = 0. As in the case of

the transverse modes, for fixed q these two requirements are mutually compatible only for

a discrete set of energies ωn(q).

Figure 8 shows the electric field, eq. (4.16), of several numerically-obtained radial

profiles of the lowest-lying mode φn=0(q, r) for several values of q. The corresponding

values of the energy, ωn=0(q), are given by the dispersion relation curve in figure 2. These

results correspond again to a D7-brane embedding with asymptotic position m = 1.3. We

observe the same limiting velocity vlim = 0.35 given by the local speed of light at the bottom

of the branes, eq. (3.11).

4.2 Scalar mesons

The scalar fields on the brane get excited by the string endpoint because the string tension

pulls on the brane. A crucial feature is the fact that the boundary conditions at the string

endpoint imply that the string must end orthogonally on the brane. (The unfamiliar reader

can find a concise derivation in appendix A.) For this reason it is convenient to work with

spacetime coordinates that locally parametrize the directions orthogonal to the brane. In

the case of interest to us, the ϑ coordinate in (3.2) satisfies this requirement, since the

vector field ∂/∂ϑ is orthogonal to the fiducial D7-brane embedding at each point on the

brane. However, the R coordinate does not meet this requirement, since ∂/∂R is in general
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not orthogonal to the brane due to the brane bending in the r−R directions. We therefore

follow [28] and work with two geometric coordinates XA defined as follows. At each point

on the brane, the two-dimensional space orthogonal to the brane is spanned by the unit

vectors

V1 ∝
∂

∂R
− Ṙ(r)

∂

∂r
, V2 ∝

∂

∂ϑ
, (4.22)

so a general vector orthogonal to the brane takes the form U = XAVA. For each vector U

we shoot off a geodesic with unit affine parameter that at the brane has U as its tangent

vector. The endpoint of this geodesic defines a point in a neighborhood of the brane. In this

way we obtain a one-to-one correspondence (the so-called exponential map [30]) between

the values of XA and the points near the brane. In other words, XA are the coordinates

orthogonal to the brane that we were seeking, since on the brane we have ∂/∂XA = VA

by construction. In particular, this implies that in these coordinates GAB = δAB when

evaluated precisely on the brane, where G is the spacetime metric (3.2). Note that in this

section the ten dimensionless coordinates of spacetime are thus {xa, XA}, with a = 0, . . . , 7

and A = 1, 2.

We chose the fiducial embedding of the brane to be given by XA = 0, so that the XA

fields parametrize fluctuations around it. As shown in [28], to quadratic order in these

fields the D7-brane action takes the simple form

Sscalar = −TD7L
8

∫
d8x

√−g

[
1

2
gab∂aX

A∂bX
BGAB +

1

2
m2

AB(x)X
AXB

]
, (4.23)

where g is the induced metric (3.6) on the fiducial embedding of the brane, i.e. it is

XA-independent. As usual, this metric contains no factors of L, since this have been

factored out explicitly in front of the action. The position-dependent mass matrix m2
AB(x)

is diagonal and given in terms of geometric quantities as

m2
11 = R11 +R2112 + 2R22 +

(8)R−R ,

m2
22 = −R22 +R2112 , (4.24)

where

R2112 = V M
2 V N

1 V P
1 V Q

2 RMNPQ , (4.25)

R11 = V M
1 V N

1 RMN , (4.26)

R22 = V M
2 V N

2 RMN . (4.27)

RMNPQ and RMN are, respectively, the Riemann and the Ricci tensors of the ten-

dimensional spacetime metric G, R is the corresponding Ricci scalar, and (8)R is the Ricci

scalar of the eight-dimensional induced metric on the brane g. Again none of these quan-

tities contains any factors of L.

Using the fact that GAB = δAB the action (4.23) leads to the equation of motion

√−g∇2XA −√−g m2XA = ∂a
(√−g ∂aXA

)
−√−gm2XA = 0 , (4.28)
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where m = m11 or m22 as appropriate. Following the vector meson case, we focus on the

zero-mode of XA on the S3, and work with its Fourier components XA(ω, q, r), for which

the equation of motion is

∂r
(√−g grr∂rX

A
)
−√−g

(
g00ω2 + g11q2 +m2

)
XA = 0 , (4.29)

which upon substitution of the metric functions becomes

∂r

(
ff̃r3ρ2√
1 + Ṙ2

∂rX
A

)
+ ff̃r3

√
1 + Ṙ2

(
2f̃

ρ2f2
ω2 − 2

ρ2f̃
q2 −m2

)
XA = 0 . (4.30)

As usual, we expand XA as

XA(ω, q, r) =
∑
n

XA
n (ω, k)ϕ

A
n (k, r) (4.31)

in terms of a basis of normalizable eigenfunctions {ϕA
n (k, r)} in the radial direction. These

are solutions of eq. (4.30) with q-dependent eigenvalues ω = ωA
n (k), and are subject to the

orthonormality relations

∫ ∞

0
dr

2f̃2r3
√

1 + Ṙ2

ρ2f
ϕA
m(q, r)ϕA

n (q, r) = δmn . (4.32)

Inserting the expansion (4.31) in (4.30), and using the orthonormality relations (4.32), we

find that each of the XA
n (ω, q) fields obeys[

ω2 − ω2
nA(q)

]
XA

n (ω, q) = 0 , (4.33)

as expected. As explained in [22], the modes XA
n (ω, q) with A = 1, 2 correspond in the

gauge theory to scalar and pseudoscalar mesons, respectively.

Both masses (for A = 1, 2) in eq. (4.30) behave as m2 � −3−m2/r2 + · · · for r → ∞
and m2 � −c1 + c2r

2 + · · · for r → 0, where c1,2 are positive constants. It follows that

the two independent solutions for XA behave as 1/r and 1/r3 for r → ∞ and as r0 and

1/r2 for r → 0. Thus in this case normalizability requires that XA ∼ 1/r3 for r → ∞ and

regularity requires that XA ∼ r0 for r → 0. As in the case of vector modes, for fixed q these

two requirements are compatible with each other only for a discrete set of energies ωA
n (q).

Figure 9 shows several numerically-obtained radial profiles of the lowest-lying mode

ϕn=0(q, r) for several values of q. The corresponding values of the energy, ωn=0(q), are

given by the dispersion relation curves in figure 2. These results correspond again to a

D7-brane embedding with asymptotic position m = 1.3. We observe the same limiting

velocity vlim = 0.35 given by the local speed of light at the bottom of the brane, eq. (3.11).

5 Quark energy loss in the N = 4 SYM plasma

We now turn to the main topic of this paper, namely the rate at which a heavy quark

traversing the N = 4 SYM plasma loses energy by Cherenkov-radiating mesons. As we
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Figure 9. Normalized scalar (top plots) and pseudoscalar (bottom plots) meson radial profiles

ϕn(q, r) for a D7-brane embedding with m = 1.3. The blue, violet, brown and green curves

(i.e. bottom to top on the left, top to bottom on the right) correspond to q = 1, 2, 4, 11, respectively.

The rescalings on the right-hand side correspond to those in appendix C. Note that the area under

the curves is not unity because of the non-trivial measure in eq. (4.32).

will see in detail below, the quark acts a source for the brane stress-energy tensor, defined

as

Tab = − 2√−g

δSD7

δgab
. (5.1)

This leads to its non-conservation, ∇aTab = 0, where ∇ is the covariant derivative defined

by the eight-dimensional worldvolume metric g. Under these circumstances the energy per

unit time deposited on the brane by the quark is given by

dE

dt
= −

∫
d7x

√−g∇aTa0 , (5.2)

where the integral is taken over the brane’s worldspace. For the reader’s convenience,

a short derivation of this formula is provided in appendix B. Our task below will be to

evaluate this formula for the cases of vector and scalar mesons.

5.1 Energy loss into vector mesons

The endpoint of an open string attached to the brane couples to the worldvolume gauge

field, so the action (4.1) is modified in the presence of the quark to

Svector = −TD7L
4
(
2πl2s

)2 ∫
d8x

√−g
1

4
F abFab −

∫
dτAa

dxa

dτ
, (5.3)
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where, as usual, the worldvolume metric g contains no factors of L. The second term is

the familiar coupling between an Abelian gauge field and a charged particle moving along

a worldline parametrized as xa(τ).8 In order to work with a canonically normalized gauge

field we rescale A → eA with

e2 =
1

TD7 (2πl2s)
2 L4

=
8π4

Nc

, (5.4)

so that the action becomes

Svector = −
∫

d8x
√−g

1

4
F abFab − e

∫
d8xAaJ

a , (5.5)

where Ja = δ(7)(x − x(τ)) ẋa. As anticipated in section 2, the coupling e between the

quark and the vector mesons is of order 1/
√
Nc, which justifies our neglect of terms of

order higher than quadratic in the action.

Using the definition (5.1), the contribution from the gauge field to the brane’s stress-

energy tensor is easily calculated to be

Tab = FacF
c

b − 1

4
gabF

2 . (5.6)

In the presence of the string endpoint, the equation of motion (4.2) for the gauge field is

modified to √−g∇aF
ab = ∂a(

√−g F ab) = eJb , (5.7)

which implies the non-conservation of the stress-energy tensor

√−g∇aTab = eFbaJ
a . (5.8)

Inserting this into the general formula (5.2) yields the rate at which the quark deposits

energy into the gauge field:

dEvector

dt
= −e

∫
d3xdrdΩ3 F0aJ

a . (5.9)

This formula has the simple interpretation of minus the work done on the quark by the

gauge field. In order to evaluate it, we need to specify the quark trajectory. For simplicity,

we will assume that the quark moves with constant velocity along a straight line at constant

radial and angular positions, so we write

Ja = δ(3)(�x− �vt) δ(r − r0) δ
(3)(Ω− Ω0)× (1, �v, 0,�0) . (5.10)

In reality, r0 and v will of course decrease with time because of the black hole gravitational

pull and the energy loss. However, we will concentrate on the initial part of the trajectory

8The relative normalization between the two terms in the action can be confirmed by noting that it

ensures that supersymmetric BIon-like excitations on a D7-brane in flat space have tension 1/2π�2s, as

in [31, 32].
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(which is long provided the initial quark energy is large) for which r0 and v are approxi-

mately constant [33] — see figure 1. The delta-functions in (5.10) allow us to perform the

integral in (5.9) and obtain

dEvector

dt
= −eviF0i(t, �vt, r0,Ω0) . (5.11)

We thus see that we need to compute the electric field sourced by the string endpoint

at the location of the string endpoint itself. To do so, we will solve the equation of motion

(5.7) by expanding the gauge field in normalizable modes in the radial direction, as in

section 4. Note that the fact that the quark is localized on the S3 means that it will

radiate both into S3 singlets and non-singlets. A simple group theory argument shows

that these two types of contributions can be calculated separately and independently at

the quadratic level at which we are working. For the reasons explained in section 4, we will

only calculate the energy loss into singlet modes, whose form in Fourier-space we recall to

be:

Aμ = Aμ(ω, q, r) , Ar = 0 , AΩ3 = 0 . (5.12)

Without loss of generality, we choose �q = (q, 0, 0) and �v = (v cos θ, v sin θ, 0). After inte-

grating over the S3, the relevant Fourier-space components of the current are then

Jμ = 2πδ(ω − qv cos θ) δ(r − r0)× (1, v cos θ, v sin θ, 0) . (5.13)

We are now ready to compute the energy loss into the transverse and longitudinal modes

of the gauge field.

Transverse modes. With the choice above the only transverse mode of the gauge field

excited by the source is A = A2, which couples to J = J2. The equation of motion (4.6)

for this mode now becomes

∂r

(
fr3 ∂rA
2
√

1 + Ṙ2

)
+
√
1 + Ṙ2

r3

ρ4

(
ω2f̃

f
− q2f

f̃

)
A = ẽJ , (5.14)

where ẽ = e/Ω3 and the volume factor Ω3 = 2π2 comes from integration over the S3.

We now follow section 4 and solve (5.14) by expanding A as in (4.7), where the radial

eigenfunctions {ξn(q, r)} satisfy exactly the same properties as in that section. In this

case, inserting the expansion (4.7) in (5.14), and using the eigenstate equation and the

orthonormality relations, we find that eq. (4.10) becomes[
ω2 − ω2

n(q)
]
An(ω, q) = ẽJn(ω, q) , (5.15)

where

Jn(ω, q) =

∫
drJ (ω, q)ξn(q, r) = 2πδ (ω − qv cos θ) v sin θ ξn(q, r0) . (5.16)

An important fact implied by eqs. (5.15)-(5.16) is that each of the four-dimensional meson

modes An(ω, q) couples to the quark with an effective strength proportional to the value

of ξn at the location of the quark:

eeff(q, r0) = e ξn(q, r0) . (5.17)
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The intuition behind this is that the radial profiles ξn(q, r) roughly play the role of a ‘wave

function’ in the fifth dimension for the corresponding meson mode An(ω, q). This fact will

play an important role below.

With retarded boundary conditions, as appropriate for the reaction to the quark’s

passage, the solution of eq. (5.15) is

An(ω, q) =
ẽJn(ω, q)

(ω + iε)2 − ω2
n(q)

. (5.18)

In order to evaluate the energy loss (5.11), we first express F02(t, �vt, r0,Ω0) as an integral

over its Fourier components:9

dEtrans

dt
= −ev2∂tA2(t, �vt, r0,Ω0)

=

∫
dωd3q

(2π)4
(−ev sin θ)(−iω)A(ω, q, r0) e−iωteiq·x

∣∣
�x=�vt

. (5.19)

Inserting the expansion (4.7) we obtain

dEtrans

dt
=
∑
n

∫
dωd3q

(2π)4
(ev sin θ)(iω)An(ω, q)ξn(q, r0) e

−iωteitq·v . (5.20)

Substituting the solution (5.18) for An and using the delta-function in (5.16) to integrate

over frequencies, we arrive at

dEtrans

dt
=
∑
n

∫
d3q

(2π)3
(ev sin θ)(iqv cos θ)

ẽv sin θ

(qv cos θ + iε)2 − ω2
n(q)

ξ2n(q, r0) . (5.21)

Note that the two exponentials have cancelled out upon setting ω = qv cos θ. In order to

integrate over momenta we set d3q = 2πq2 dqdz, where z = cos θ, so that the integral above

becomes
dEtrans

dt
=
∑
n

−e2v

Ω3

∫ ∞

0

dq

2π
q ξ2n(q, r0)

∫ 1

−1

dz

2πi

z(1− z2)

(z + iε)2 − z2n(q)
, (5.22)

where zn(q) = vn(q)/v, and vn(q) = ωn(q)/q is the phase velocity of the n-th mode. The

integral over z can be performed in the complex plane by considering the contour shown in

figure 10. The integral of interest corresponds to the integral over the segment Γ1. In the

limit ε → 0, this coincides with the integral over Γ2, and the contribution from the vertical

sides of the contour vanishes. Thus in this limit the integral over z in (5.22) equals 1/2

times the contour integral of figure 10. Now consider the poles of the integrand, which lie

at z = ±zn − iε. If v < vn(q) then zn(q) > 1 and the poles lie outside the contour, so the

integral vanishes. In contrast, if v > vn(q), then both poles lie inside the contour and they

yield identical contributions equal to (1 − z2n). Taking into consideration the extra minus

sign coming from the orientation of the contour, the final result is thus

dEtrans

dt
=
∑
n

e2v

2Ω3

∫ ∞

0

dq

2π
q ξ2n(q, r0)

(
1− v2n(q)

v2

)
Θ

(
1− v2n(q)

v2

)
. (5.23)

9Note that the singlet mode is independent of the S3 position Ω0 of the string endpoint.
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Figure 10. Contour in the complex plane used to evaluate the z-integral in eq. (5.22).

We see that the energy loss is a discrete sum over all mesons, as well as an integral over

all the momentum modes of each meson into which the quark is allowed to radiate. As

expected for Cherenkov radiation, this can only happen if the velocity v of the quark

exceeds the phase velocity of the corresponding momentum mode, vn(q). For example, in

the case of transverse vector mesons, the quark can only emit momentum modes to the

right of the dashed, vertical line in figure 2. This cut-off is implemented by the Heaviside

function in eq. (5.23).

Since the radial profiles ξn(q, r0) and the dispersion relations vn(q) entering eq. (5.23)

are only known numerically, the energy loss must also be evaluated numerically. The result

for the n = 0 term in the sum is plotted in figure 11. As one may expect, for fixed r0 the

energy loss increases monotonically with v up to the maximum allowed value of v, the local

speed of light at r0. In other words, a quark sitting at a fixed radial position radiates more

the higher its velocity is. As r0 decreases, the limiting velocity of the quark approaches

that of the mesons from above. Therefore the quark and the meson dispersion relation

curves cross at a higher momentum, i.e. the vertical dashed line in figure 2 moves to the

right. This means that the characteristic momentum qchar of the modes contributing to the

integral in (5.23) increases. As r0 → 0 these modes become increasingly peaked at small

r (see figure 6(left)), and their effective couplings to the quark eeff(qchar, r0) diverge. This

explains why the energy loss at the maximum allowed value of the velocity diverges as

r0 → 0. As we will discuss in section 7, however, this mathematical divergence is removed

by physical effects that we have not taken into account.

Longitudinal modes. In the presence of the source eq. (4.11) becomes

∂r
(√−ggrrg00∂rA0

)
+ iq

√−gg11g00E = ẽJ0 . (5.24)

eq. (4.12) remains unchanged, and together with the eq. above it yields

− iq ∂r

(√−g grrg00g11

q2g11 + w2g00
∂rE

)
+ iq

√−g g11g00E = ẽJ0 . (5.25)

We now introduce a new field Φ defined as in eq. (4.15), but in this case the inverse relation

(4.16) is modified by the source:

E =
1√−g g11g00

∂rΦ+
1

iq
√−g g11g00

ẽJ0 . (5.26)
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Figure 11. Energy loss into the transverse vector mode A(n=0) for an embedding with m =

1.32, R0 = 1.2 (left) and m = 2.0, R0 = 2.0 (right). The continuous curves correspond (from top to

bottom) to r0 = 0.86, 0.97, 1.10, 1.25, 1.45 (left) and to r0 = 1.50, 1.69, 1.91, 2.18, 2.52 (right). The

dotted curve is defined by the endpoints of the constant-r0 curves.

Substituting back into eq. (4.15) we find the new equation of motion for Φ:

− ∂r

(
1√−g g11g00

∂rΦ

)
+

q2g11 + w2g00√−g grrg00g11
Φ =

1

iq
∂r

(
1√−g g11g00

ẽJ0

)
. (5.27)

Inserting the explicit form of the metric functions, we finally arrive at

∂r

(
fρ4

f̃ r3
√
1 + Ṙ2

∂rΦ

)
+ 2

√
1 + Ṙ2

fr3

(
w2 − f2

f̃2
q2
)
Φ = − 1

iq
∂r

(
fρ4

f̃ r3
√

1 + Ṙ2
ẽJ0

)
.

(5.28)

We now follow section 4 and solve (5.28) by expanding Φ as in (4.19), where the radial

eigenfunctions {φn(q, r)} satisfy exactly the same properties as in that section. In this

case, inserting the expansion (4.19) in (5.28), and using the eigenstate equation and the

orthonormality relations, we find that eq. (4.21) becomes[
ω2 − ω2

n(q)
]
Φn(ω, q) = ẽJ0

n(ω, q) , (5.29)

whose solution with retarded boundary conditions is

Φn(ω, q) =
ẽJ0

n(ω, q)

(ω + iε)2 − ω2
n(q)

. (5.30)

The coefficients J0
n are given (after integration by parts) by

J0
n(ω, q) =

∫ ∞

0
dr

1

iq

fρ4

f̃ r3
√

1 + Ṙ2
J0(ω, q) ∂rφn(q, r) =

2π

iq
δ(ω − qv cos θ)Fn(q, r0) , (5.31)

with

Fn(q, r) = − 1√−g g11g00
∂rφn(q, r) =

fρ4

f̃ r3
√

1 + Ṙ2
∂rφn(q, r) . (5.32)

Note that the coefficients Fn appear in the expansion of the electric field (5.26), i.e.

E(ω, q, r) = −
∑
n

Φn(ω, q)Fn(q, r) +
1

iq
√−g g11g00

ẽJ0(ω, q, r) . (5.33)
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As in the case of transverse modes, we see from eq. (5.29) that the effective coupling

between a longitudinal meson Φn(ω, q) and the quark is determined by the radial wave

function of the meson, in this case

eeff(q, r0) = eFn(q, r0) . (5.34)

Our task now is to compute the rate of energy loss into longitudinal meson modes.

For this purpose, eq. (5.11) instructs us to evaluate the electric field at the location of the

quark. If we naively do so using the expression (5.26) for E then the second term gives

a divergent result, since J0(r0) ∝ δ(0). However, this divergence is unphysical: if one

replaces the delta-function by a smooth charge distribution, then the integral over space

in (5.9) vanishes. Indeed, suppose that the current (5.13) is replaced by

Ja = �(3)(�x− �vt, r,Ω)× (1, �v, 0,�0) , (5.35)

where � is a smooth function. Then in Fourier space

Ja = 2π δ(ω − �q · �v) �(3)(�q, r,Ω)× (1, �v, 0,�0) (5.36)

and the energy loss (5.9) is

dE

dt
= −e

∫
drdΩ

∫
d3xE(t, �x, r,Ω) · J(t, �x, r,Ω)

= −e

∫
drdΩ

∫
dωdω̃

(2π)2
e−iωt−iω̃t

∫
d3q

(2π)3
z E(ω̃,−�q, r,Ω) J1(ω, �q, r,Ω) , (5.37)

where as usual z = cos θ is the relative angle between �q and �v and d3q = 2πq2 dqdz. If we

substitute the term in E that is proportional to J0 we see that the integrand is proportional

to
1

iq
δ(ω̃ + qvz) δ(ω − qvz) �(−�q, r,Ω) �(�q, r,Ω) z . (5.38)

This is odd under �q → −�q (since ω and ω̃ are dummy variables) and therefore the integral

over z vanishes.

We therefore conclude that we can neglect the second term in (5.33) in order to evaluate

(5.11). Following the previous section we have

dElong

dt
= ev1E(t, �vt, r0,Ω0)

=
∑
n

−
∫

dωd3q

(2π)4
(ev cos θ) Φn(ω, q)Fn(q, r0) e

−iωteitq·v

=
∑
n

−
∫

d3q

(2π)3
(ev cos θ)

ẽ

iq

1

(qv cos θ + iε)2 − ω2
n(q)

F2
n(q, r0)

=
∑
n

− e2

Ω3v

∫ ∞

0

dq

2π

1

q
F2
n(q, r0)

∫ 1

−1

dz

2πi

z

(z + iε)2 − z2n(q)
. (5.39)
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Figure 12. Energy loss into the longitudinal vector mode Φ(n=0) for an embedding with m =

1.32, R0 = 1.2 (left) and m = 2.0, R0 = 2.0 (right). The continuous curves correspond (from top to

bottom) to r0 = 0.86, 0.97, 1.10, 1.25, 1.45 (left) and to r0 = 1.50, 1.69, 1.91, 2.18, 2.52 (right). The

dotted curve is defined by the endpoints of the constant-r0 curves.

The z-integral can be evaluated using the same contour of figure 10. In this case each pole

contributes -1/2, so the final result is

dElong

dt
=
∑
n

e2

2Ω3v

∫ ∞

0

dq

2π

1

q
F2
n(q, r0)Θ

(
1− v2n(q)

v2

)
. (5.40)

The energy loss into the n = 0 mode is shown in figure 12. The same comments as in

the case of transverse modes apply here.

5.2 Energy loss into scalar mesons

The endpoint of an open string attached to the brane couples to the worldvolume scalar

fields, so in the presence of the quark the action (4.23) is modified to

Sscalar = −TD7L
8

∫
d8x

√−g

[
1

2
gab∂aX

A∂bX
BGAB +

1

2
m2

AB(x)X
AXB

]

− L2

2π�2s

∫
dτ
√

−ẋ2GAB XAnB , (5.41)

where ẋ2 = gabẋ
aẋb and nA is the unit vector that is tangent to the string and orthogonal

to the brane at the string endpoint. As usual, in the last term we have explicitly factored

out the L-dependence associated to the spacetime metric (3.2). The square-root factor in

the last term is necessary to make the integrand a scalar density on the worldline of the

string endpoint, which is contained in the brane’s worldvolume. We emphasize that the

indices of ẋa are not contracted with the gauge theory metric ηab but with the D7-brane

metric gab. The relative normalization between the two lines in (5.41) can be confirmed as

described in footnote 8. As explained in appendix A, the boundary condition at the string

endpoint implies that the string ends orthogonally on the brane. The unit normal in the

last term of the action (5.41) means that the string couples to the scalar that parametrizes

the direction along which the string pulls on the brane, as one may intuitively expect.
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In order to work with canonically normalized fields we rescale XA →
√
TD7L8XA so

that the action becomes

Sscalar = −
∫

d8x
√−g

[
1

2
gab∂aX

A∂bX
BGAB +

1

2
m2

AB(x)X
AXB

]
−e

∫
d8xJAX

A , (5.42)

where JA = δ(7)(x − x(τ))
√
−ẋ2GAB nB and e is the same coupling constant defined in

(5.4). Since the scalars do not interact with each other, they give independent contributions

to the stress tensor of the brane. Using the definition (5.1), the contribution from either

scalar field is easily found to be

Tab = ∇aX∇bX − 1

2
gab

[
(∇X)2 +m2X2

]
+X2 δm

2

δgab
. (5.43)

For ease of notation, in this equation we have dropped the superindex ‘A’ on the scalar, and

we will continue to do so below. The last term originates from the non-trivial dependence

of the scalar masses (4.24) on the metric. Fortunately, we will see that we do not need to

evaluate this term explicitly in order to compute the divergence of the stress-tensor.

In the presence of the string endpoint, the equation of motion (4.28) for the scalars is

modified to √−g
(
∇2 −m2

)
X = eJ . (5.44)

Using this, the divergence of the stress tensor takes the form

√−g∇aTab = J ∇bX −X2∇bm+∇a

(
X2 δm

2

δgab

)
. (5.45)

The second term on the right-hand side is due to the possible spacetime dependence of the

scalar massesm(x), but it vanishes identically for the case of interest here, b = 0, because of

the time-translation invariance of the theory. The last term on the right-hand side vanishes

when evaluated on a solution of the equations of motion, even in the presence of the source

J . To see this, recall that the stress tensor must be identically conserved in the absence

of the source because of the diffeomorphism invariance of the brane’s worldvolume theory.

This means, in particular, that when J = 0 we have

X∇a

(
δm2

δga0

)
+ 2

(
δm2

δga0

)
∇aX = 0 . (5.46)

The key point now is that this equation is linear in X. Since the solution in the presence

of the source is a linear supersposition of solutions of the source-less equation, linearity of

(5.46) implies that this expression also vanishes for solutions of eq. (5.44) with J = 0. We

thus conclude that (the time component of) the non-conservation of the stress-tensor in

the scalar sector takes the form

√−g∇aTa0 = J ∇0X . (5.47)

As in the case of vector mesons, we consider a rectilinear quark motion with constant

velocity, in which case

J =
√
−ẋ2(r0) δ

(3)(�x− �vt) δ(r − r0) δ
(3)(Ω− Ω0) . (5.48)
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Note that, although the velocity v is the quark velocity as seen by a gauge theory observer,

the prefactor above is not just
√
1− v2 but depends non-trivially on the quark position in

the radial direction through√
−ẋ2(r0) =

√
−g00(r0)− g11(r0)v2 . (5.49)

Because of the black hole redshift, for fixed r0 this factor vanishes before v reaches the speed

of light, i.e. at v < 1. As we will see, this fact is responsible for a qualitative difference

between the energy radiated into scalar and into vector mesons.

Following section 4.2, we focus on the zero-mode of X on the S3, and work with its

Fourier components X(ω, q, r), for which the equation of motion takes the form

∂r
(√−g grr∂rX

)
−√−g

(
g00ω2 + g11q2 +m2

)
X = ẽJ , (5.50)

where the relevant Fourier-space components of the source are

J =
√
−ẋ2(r0) 2πδ(ω − qv cos θ) δ(r − r0) , (5.51)

and as usual ẽ = e/Ω3. We solve (5.50) by expanding X as in eq. (4.30). In the presence

of the source, the equation obeyed by the Xn mode is[
ω2 − ω2

n(q)
]
Xn(ω, q) = ẽJn(ω, q) , (5.52)

where

Jn(ω, q) =

∫
drJ(ω, q)ϕn(q, r) =

√
−ẋ2(r0) 2πδ(ω − qv cos θ)ϕn(q, r0) . (5.53)

With retarded boundary conditions, as appropriate for the reaction to the quark’s passage,

eq. (5.52) yields

Xn(ω, q) =
ẽJn(ω, q)

(ω + iε)2 − ω2
n(q)

. (5.54)

As in the case of vector modes, we see from eq. (5.52) that the effective coupling between

a scalar meson Xn(ω, q) and the quark is determined by the radial wave function of the

meson, in this case

eeff(q, r0) = e
√

−ẋ2(r0)ϕn(q, r0) . (5.55)

We are now ready to compute the rate of energy deposition into scalar mesons. From

eqs. (5.2) and (5.47) we have

dEscalar

dt
= −e

∫
d3xdrdΩ3 ẊJ = −e

√
−ẋ2(r0) Ẋ(t, �vt, r0,Ω0) . (5.56)

Following the steps of the vector meson case we find:

dEscalar

dt
=
∑
n

−e
√

−ẋ2(r0)

∫
dωd3q

(2π)4
(−iω)Xn(ω, q)ϕn(q, r0) e

−iωteitq·v

=
∑
n

−e
[
−ẋ2(r0)

] ∫ d3q

(2π)3
(−iqv cos θ)

ẽ

(qv cos θ + iε)2 − ω2
n(q)

ϕ2
n(q, r0)

=
∑
n

− e2

Ω3v

[
−ẋ2(r0)

] ∫ ∞

0

dq

2π
q ϕ2

n(q, r0)

∫ 1

−1

dz

2πi

z

(z + iε)2 − z2n(q)

=
∑
n

e2

2Ω3v

[
−ẋ2(r0)

] ∫ ∞

0

dq

2π
q ϕ2

n(q, r0)Θ

(
1− v2n(q)

v2

)
. (5.57)
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Figure 13. Energy loss into the scalar mode ϕ
(A=1)
(n=0) for an embedding with m = 1.32, R0 = 1.2

(left) and m = 2.0, R0 = 2.0 (right). The continuous curves correspond (from top to bottom) to

r0 = 0.86, 0.97, 1.10, 1.25, 1.45 (left) and to r0 = 1.50, 1.69, 1.91, 2.18, 2.52 (right). The dotted curve

is defined by the maxima of the constant-r0 curves.
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Figure 14. Energy loss into the pseudoscalar mode ϕ
(A=2)
(n=0) for an embedding with m =

1.32, R0 = 1.2 (left-hand side plots) and m = 2.0, R0 = 2.0 (right-hand side plots). The con-

tinuous curves correspond (from top to bottom) to r0 = 0.86, 0.97, 1.10, 1.25, 1.45 (left) and to

r0 = 1.50, 1.69, 1.91, 2.18, 2.52 (right). The dotted curve is defined by the maxima of the constant-

r0 curves.

The result for the energy loss into the lowest-lying scalar and pseudoscalar modes is shown

in figures 13 and 14. The main difference with respect to the case of vector mesons is the

fact that the constant-r0 curves do not rise monotonically as v increases, but instead they

vanish when v reaches the local speed of light at r0. The reason for this is of course the

factor in eq. (5.49).

6 Phenomenological implications for HIC experiments

As is clear from our general discussion in section 2, the mechanism of Cherenkov energy loss

depends only on two qualitative properties encoded in the dispersion relations of figure 2:

the fact that heavy mesons remain bound in the gauge theory plasma, and the fact that

their limiting velocity in the plasma is subluminal. Both properties can be motivated in

QCD irrespectively of whether or not a string dual of QCD exists. The first property is

suggested by the fact that sufficiently heavy mesons are smaller than the screening length

in the plasma [34], and is supported by calculations of both the static quark-antiquark

potential [35–39] and of Minkowski-space spectral functions in lattice-regularized QCD [40–
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45].10 The second property, which goes back to ref. [47], is suggested by the fact that moving

mesons see a boosted, higher energy density that will melt them if they move sufficiently

fast [48–51].11

Rigorously verifying these two properties in QCD is not presently feasible. For this

reason it is reassuring that, as we explained in section 2, they are both realized in all

gauge theory plasmas with a gravity dual in the large-Nc, strong coupling limit. In this

section we will assume that the two properties are also realized in the QGP and extract

some phenomenological consequences that might be observable in heavy ion collisions.12

Since the heavier the meson the more perturbative its properties become, we expect that

our conclusions are more likely to be applicable to the charmonium rather than to the

bottomonium sector.

An interesting feature of the energy loss by Cherenkov radiation is that, unlike other

energy-loss mechanisms, it is largely independent of the details of the quark excited state,

such as the precise features of the gluon cloud around the quark, etc. In the gravity

description these details would be encoded in the precise profile of the entire string, but

the Cherenkov emission only depends on the trajectory of the string endpoint. This leads

to a dramatic simplification which, with the further approximation of rectilinear uniform

motion, reduces the parameters controlling the energy loss to two simple ones: the string

endpoint velocity v and its radial position r0. The former is just the velocity of the quark

in the gauge theory, whereas the second roughly measures the size of the gluon cloud

that dresses the quark [26]. In order to obtain a ballpark estimate of the magnitude

of the energy loss, we will assume that in a typical collision quarks are produced with

order-one values of r0. Under these circumstances the energy loss is of order unity in

units of (2πT )2/Nc, which for a temperature range of T = 200 − 400 MeV and Nc = 3

leads to dE/dx ≈ 2 − 8 GeV/fm. This is is of the same order of magnitude as other

mechanisms of energy loss in the plasma; for example, the BDMPS radiative energy loss

dE/dx = αsCF q̂L/2 yields values of dE/dx = 7 − 40GeV/fm for q̂ = 1 − 5GeV 2/fm,

αs = 0.3 and L ≈ 6 fm. Since our gravity calculation is strictly valid only in the infinite-

quark energy limit (because of the linear trajectory approximation), we expect that our

estimate is more likely to be applicable to highly energetic quarks at LHC rather than to

those at RHIC.

Even if in the QGP the magnitude of Cherenkov energy loss turns out to be subdomi-

nant with respect to other mechanisms, its velocity dependence and its geometric features

may still make it identifiable. Indeed, Cherenkov energy loss would only occur for quarks

moving at velocities v > vlim, with vlim the limiting velocity of the corresponding meson

in the plasma. The presence of such a velocity threshold is the defining characteristic of

Cherenkov energy loss. The precise velocity at which the mechanism starts to operate may

actually be higher than vlim in some cases, since the additional requirement that the energy

10In some models light mesons also remain bound above Tc by Coulomb-like forces [46].
11An alternative possibility would be that meson states with q above some upper bound cease to exist.

In any event, our conclusions rely on meson states existing (with a sufficiently narrow width) only up to

some moderate q for which q � ω(q).
12Implications for photon production have been discussed in [52], and for deep inelastic scattering in [53].
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of the quark be equal or larger than the in-medium mass of the meson must also be met. A

related conclusion of our calculation in the N = 4 model is that the energy loss decreases as

the velocity of the quark approaches the speed of light. This is in fact a universal feature

of all plasmas with a gravity dual. The reason is that the quark velocity can approach

unity only in the limit r0 → ∞, in which the effective couplings (5.17), (5.34) and (5.55)

between the quark and the mesons vanish because the meson radial wave functions are

normalizable. In fact, in the case of scalar mesons the energy loss ceases completely at

some subluminal velocity at which (5.49) vanishes. If these properties also hold in QCD

then Cherenkov energy loss may be identifiable because it only operates in a limited range

of quark velocities.

Cherenkov mesons would be radiated at a characteristic angle cos θc = vlim/v with

respect to the emitting quark, where v is the velocity of the quark. Taking the gravity result

as guidance, vlim could be as low as vlim = 0.35 at the meson dissociation temperature [19],

corresponding to an angle as large as θc ≈ 1.21 rad. This would result in an excess of

heavy mesons associated to high-energy quarks passing through the plasma. Our estimate

of the energy loss suggests that the number of emitted J/ψ’s, for example, could range

from one to three per fm. This emission pattern is similar to the emission of sound waves

by an energetic parton [54] in that both effects lead to a non-trivial angular structure. One

important difference, however, is that the radiated heavy mesons would not thermalize

and hence would not be part of a hydrodynamic shock wave. As in the Mach cone case,

the meson emission pattern could be reflected in azimuthal dihadron correlations triggered

by a high-pT hadron. Due to surface bias, the energetic parton in the triggered direction

is hardly modified, while the one propagating in the opposite direction moves through a

significant amount of medium, emitting heavy mesons. Thus, under the above assumptions,

the dihadron distribution with an associated J/ψ would have a ring-like structure peaked

at an angle θ ≈ π − θc.

A final observation is that Cherenkov energy loss also has a non-trivial temperature

dependence, since it requires that there are meson-like states in the plasma, and therefore it

does not take place at temperatures above the meson dissociation temperature. Similarly,

it is reasonable to assume that it does not occur at temperatures below Tc, since in this

case we do not expect the meson dispersion relation to become spacelike.13 Under these

circumstances, the Cherenkov mechanism is only effective over a limited range of temper-

atures Tc < T < Tdiss which, if Tdiss � 1.2Tc as in [55], is a narrow interval. As was pointed

out in [56], a mechanism of energy loss which is confined to a narrow range of temperatures

in the vicinity of Tc concentrates the emission of energetic probes to a very narrow layer on

the collision geometry and is able to explain v2-data at high pT at RHIC [57, 58]. Provided

that the meson dissociation temperature Tdiss is not much larger than Tc, the radiation of

Cherenkov mesons is one such mechanism.

13This assumption is certainly correct for plasmas with a gravity dual, since the corresponding geometry

does not include a black hole horizon if T < Tc.
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Figure 15. Energy loss into the transverse vector mode A(n=0) for an embedding with m =

1.32, R0 = 1.2 (left-hand side curves) and m = 2.0, R0 = 2.0 (right-hand side curves). The continu-

ous curves correspond (from top to bottom) to r0 = 0.58, 0.70, 0.83, 0.98, 1.18 (left-hand side) and

to r0 = 1.50, 1.69, 1.91, 2.18, 2.52 (right-hand side). The dotted curve is defined by the endpoints of

the constant-r0 curves.

7 Discussion

Cherenkov emission of mesons [59–71] and gluons [72, 73] in QCD has been considered be-

fore. Although some of the underlying physics is similar, the mechanism we have discussed

is different in several respects. First, it operates in the QGP, as opposed to in a hadronic

medium as in [59–71], and the radiated particles are colourless mesons, as opposed to gluons

as in [72, 73]. Second, the gauge/string duality provides a large class of completely explicit

examples (although none of them includes QCD) in which this mechanism is realized and

in which the energy loss can be calculated without further model assumptions.

Figures 11, 12, 13 and 14 show the rate of energy deposition into vector and scalar

modes on the brane. All these figures share the property that the energy loss diverges as

1/r60 (as shown analytically in appendix D) in the limit r0 → 0. However, this mathematical

divergence is removed by physical effects we have not taken into account. For example, for

sufficiently large q the radial profile of the mesons becomes of order the string length and

stringy effects become important [28]. Also, mesons acquire widths Γ ∝ q2 at large q [74]

and can no longer be treated as well defined quasiparticles. Finally, the approximation

of a constant-v, constant-r0 trajectory ceases to be valid whenever the energy loss rate

becomes large.

Figures 11, 12, 13 and 14 also illustrate the simple dependence of the energy loss on

the ratio m ∝ Mq/T . Increasing m decreases the redshift at the bottom of the branes,

and therefore increases the limiting velocity of mesons, vlim, at which quark energy loss via

Cherenkov emission starts to operate. This means that the energy loss becomes concen-

trated on a narrower range of velocities, closer to unity, as m is increased, but the structure

of the curves is roughly the same up to a rescaling. This can be seen in the figures above by

comparing the energy loss for m = 1.2 (left-hand side) and m = 2.0 (right-hand side). The

concentration of energy loss on a narrower velocity interval is also illustrated in figures 15

and 16, where the result for both values of m is shown simultaneously on the same plot

(for the transverse vector and scalar modes).
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Figure 16. Energy loss into the scalar mode ϕ
(A=1)
(n=0) for an embedding with m = 1.32, R0 = 1.2

(left-hand side curves) and m = 2.0, R0 = 2.0 (right-hand side curves). The continuous curves

correspond (from top to bottom) to r0 = 0.64, 0.74, 0.86, 1.00, 1.18 (left-hand side) and to r0 =

1.50, 1.69, 1.91, 2.18, 2.52 (right-hand side). The dotted curve is defined by the maxima of the

constant-r0 curves.
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Figure 17. Meson emissions by a quark in a theory with multiple flavours.

In this paper we have concentrated on the case Nf = 1, i.e. we have assumed the

presence of a single heavy flavour. Consider now a theory with multiple heavy quarks,

such as QCD with c and b quarks, for example. In the string description this corresponds

to a situation with Nf > 1 D-branes. If all quarks have identical masses (and R-symmetry

quantum numbers) then the D-branes are all coincident and their worldvolume theory is

described by a non-Abelian U(Nf) theory, corresponding to the fact that mesons mff̃ come

in multiplets that transform in the adjoint representation of U(Nf). A quark with flavour

f then may emit any of the Nf mesons with flavour ff̃ , with f̃ = 1, . . . , Nf. Under these

circumstances the energy loss is enhanced by a power of Nf.
14 Note that if the resulting

meson has f̃ = f then the quark must change flavour f → f̃ in the emission process, as

shown in figure 17(left). A process in which the quark does not change flavour is also

possible, as shown in figure 17(right), but this requires the emission of at least two mesons

and is therefore further suppressed at large Nc.

14This corrects the corresponding statement in ref. [1].
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Consider now the opposite situation, more analogous to QCD, in which the heavy

quarks have different masses, so that the D-branes in the string description do not overlap.

This is depicted in figures 18, 19 and 20, which show the string description of the emission

processes of figures 17(left) and 17(right), respectively. Figures 18 and 19 correspond to

emissions with f̃ = f , whereas figure 20 describes the emission of an ff -meson. In this

geometric picture the necessity of a two-meson emission in the case f̃ = f in order to

preserve the quark flavour is due to the fact that the string must break twice in order to

stay attached to the same brane — see figure 19. Since string breaking is suppressed at

large Nc, this process is subleading with respect to one-meson emission. In any case, since

an open string must always have its endpoints attached to a brane, the emission of one

or multiple mesons with f̃ = f by a quark of flavour f requires a tunneling process in

which the string fluctuates and touches the f̃ -brane, as shown in figures 18 and 19. The

amplitude for this process can be studied semiclassically provided the distance between

the two branes is sufficiently large compared to �s, but it is far from straightforward to

calculate [75, 76]. In addition, in the present context the calculation would require a

precise specification of the string profile. On general grounds, however, one may expect

the amplitude to be exponentially suppressed, since it requires a large string fluctuation

that is classically forbidden. Note that the same exponential suppression applies to the

emission of a large ff -meson by an f -quark, as shown in figure 20. This is the reason why

we neglected this process in our calculation of energy loss. More precisely, our calculation

can be seen as accounting for this process in the limit in which the size of the emitted

meson is so small that it requires quantization of the resulting string. In this limit there is

no exponential suppression, and the emitted string must be described as a field propagating

on the brane.

We close with a comment on a possible extension of our work. In this paper we have

focused on the energy loss of quarks attached to branes that sit outside the horizon in

a Minkowski embedding. It would be interesting to study the energy loss in the case of

black hole embeddings, which describe light quarks. In this case no stable quark-antiquark

bound states exist in the plasma, which in the string description corresponds to the fact that

excitations on the brane are characterized by quasinormal modes with complex frequencies.

It would be interesting to explore whether the emission of quasinormal modes could also

lead to a significant energy loss.
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Figure 18. String description of the emission of an ff̃ -meson with f̃ = f . The quark changes

flavour in the process.

Figure 19. String description of the emission of two mesons with f̃ = f . The quark does not

change flavour in the process.

Figure 20. String description of the emission of an ff -meson by an f -quark. The quark does not

change flavour in the process.

A Boundary conditions at the string endpoint

The action for the string may be written as

S = −Tstring

∫
dτdσ

√−g
1

2
gαβ∂αX

M∂βX
NGMN . (A.1)
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In this form of the action g is an independent worldsheet metric and XM (τ, σ) specify the

embedding in spacetime of the string worldsheet. Since g appears undifferentiated, it can

be eliminated from the action through its equation of motion. This equation implies that

gαβ = ∂αX
M∂βX

NGMN , (A.2)

i.e. that g is the induced metric on the worldsheet. Substituting this into the action one

obtains the familiar Nambu-Goto action

S = −Tstring

2

∫
dτdσ

√−g . (A.3)

An alternative way to proceed, which is more convenient to elucidate the boundary

conditions at the string endpoint, is to choose the so-called conformal gauge. This means

that one uses the reparametrization invariance of the string action to ensure that the

worldsheet metric is conformally flat, i.e that gαβ = Ω2(τ, σ)ηαβ . (In addition, Weyl

invariance may be used to ensure that Ω = 1.) In this gauge the action becomes

S = −Tstring

∫
dτdσ

1

2
ηαβ∂αX

M∂βX
NGMN . (A.4)

Variation of this action with respect to the embedding coordinates yields a bulk term

proportional to the equation of motion, ηαβ∂α∂βX
M = 0, plus the boundary term

− Tstring

∫
dτ
[
XM ′

δXNGMN

]
bdry

, (A.5)

which is integrated over the string boundary. The equation of motion must be supplemented

by the constraints associated to the gauge fixing of g, which take the form

Ẋ ·X ′ ≡ GMNẊMXN ′
= 0 ,

Ẋ2 +X ′2 ≡ GMN

(
ẊMẊN +XM ′

XN ′)
= 0 . (A.6)

The boundary conditions follow from the requirement that the boundary term vanish. This

may be achieved by imposing either a Neumann boundary condition, XM ′|bdry = 0, or a

Dirichlet boundary condition, δXM |bdry = 0. If all coordinates satisfy Neumann boundary

conditions, then the second constraint immediately implies that Ẋ2|bdry = 0, namely the

familiar condition that the endpoint moves at the speed of light. Suppose however that the

string is attached to a Dp-brane, and let the first p+1 coordinates Xa be coordinates along

the brane directions, and XA be coordinates orthogonal to the brane. Then by definition

we must choose Neumann boundary conditions for Xa and Dirichlet boundary conditions

for XA:

Xa′|bdry = 0 , ẊA|bdry = 0 . (A.7)

The Neumann boundary condition on Xa implies that the string ends orthogonally on the

brane, since the vector tangent to the string at its endpoint, XM ′|bdry = 0, has no com-

ponents along the brane. Substituting both boundary conditions on the second constraint

equation one finds that

Ẋa 2 |bdry = − XA′ 2 |bdry ≤ 0 , (A.8)

which means that the endpoint moves along the brane at a speed lower than or equal to

the local speed of light.
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Figure 21. Brane’s worldvolume, to which Stokes’ theorem is applied.

B Energy loss formula

A charge can be defined for each of the isometries of the brane’s worldvolume metric (3.6).

For concreteness, in this section we will focus on the four-momentum associated to trans-

lations in the gauge theory, which is generated by the set of Killing vector fields kμ = ∂μ.

Let Σ be a spacelike 7-surface in the brane’s worldvolume, which we take to be a

t = const. surface, and n = ∂t/
√−g00 the future-pointing unit normal to Σ. The momenta

are then given by

Pμ =

∫
Σ
d7x

√
gsp n

a Tab k
b
μ =

∫
Σ
d7x

√
gsp n

a Taμ , (B.1)

where gsp is the spatial metric on Σ. Since the time-space off-diagonal components of g

vanish we have that

g00 = 1/g00 ,
√−g =

√−g00
√
gsp . (B.2)

Using these relations Pμ may be rewritten as

Pμ =

∫
Σ
d7x

√
gsp

1√−g00
T0μ = −

∫
Σ
d7x

√−g T 0
μ . (B.3)

For μ = 0, these formulas give the energy on the brane:

E = P0 =

∫
Σ
d7x

√
gsp

1√−g00
T00 = −

∫
Σ
d7x

√−g T 0
0 ≥ 0 . (B.4)

Note that this is non-negative because T00 ≥ 0.15

Consider now the brane’s worldvolume V as shown in figure 21. Σ1 and Σ2 are spacelike

hypersurfaces at times t1 and t2, respectively, and Σ∞ is a timelike hypersurface at spatial

infinity. Applying Stokes’ theorem we then have∫
V

√−g∇aTaμ =

∫
Σ2

√
gsp n

a
(1)Taμ +

∫
Σ1

√
gsp n

a
(2)Taμ +

∫
Σ∞

√
gsp n

a
(∞)Taμ . (B.5)

The unit normals must be taken inward-pointing if they are time-like, and outward-

15For example, in flat space eq. (5.6) gives T00 = E2/2+B2/2 ≥ 0, where Ei = Fi0, E
i = F i

0, E
2 = EiE

i,

and 2B2 = FijF
ij .
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pointing if they are space-like. Therefore we have na
(1) = −na

(2) = n and na
(∞) = ñ, so

eq. (B.5) with μ = 0 yields

E2 − E1 + F∞ = −
∫
V

√−g∇aTa0 , (B.6)

where E1,2 is the energy contained in Σ1,2 and F∞ = −
∫
Σ∞

√
gsp ñ

aTa0 is the energy flux

that has escaped through Σ∞ between t1 and t2.
16 The left-hand side of eq. (B.6) is the

total energy deposited on the brane by the source. Since
∫
V =

∫
dtd7x, if t1 and t2 are

innitesimally close we obtain

dE

dt
= −

∫
d7x

√−g∇aTa0 . (B.7)

C High-momentum radial wave functions

As shown (on the left-hand side of) figures 6, 8, and 9, the high-momentum radial profiles

of the different modes are concentrated near the tip of the brane (r = 0). In this region of

high q and small r it is possible to find analytic expressions for the radial profiles [28]. In

this appendix we shortly review this computation and extend it to vector modes.

Following [28] we introduce the coordinate z which fulfills

dz

dr
=

√
grr
−g00

=

√
2f̃(1 + Ṙ2)

ρ4f2
. (C.1)

In terms of this new coordinate, the different modes Ψα = {φ1, φ2, A, Φ} satisfy a differ-

ential equation of the generic form

∂z [a
α(z) ∂zΨ

α] + aα(z)

[
ω2 − f2

f̃2
q2
]
Ψα − bα(z) (mα)2Ψα = 0 , (C.2)

where mα = {m11, m22, 0 , 0 } and the different coefficient functions are given by

a1 = a2 = −√−g g00 ,

a3 = −√−g g00g11 ,

a4 = −g11g00/
√−g ,

b1 = b2 =
√−g . (C.3)

Via the simple rescaling ψα =
√
aαΨα, the set of eqs. (C.2) can be written in the

Schrödinger form

− ∂2
z ψ

α + V α ψα = ω2ψα , (C.4)

where the potential is given by

V α(z, q) = q2
f2

f̃2
+

∂2
z

(√
aα
)

√
aα

+
bα

aα
(mα)2 . (C.5)

16The minus sign in the definition of the flux comes from the fact that the energy current in the a-direction

is given by −Ta0, as can be seen from the continuity equation. For example, in flat space in the absence of

sources the continuity equation ∂aTa0 = 0 yields ∂0T00 − ∂iTi0 = 0.
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This potential is a complicated function of z which is only known numerically because

it depends non-trivially on the brane embedding. However, since the radial profiles are

concentrated near the tip of the brane, we focus on the small-z expansion of the potential

(C.5). In the limit z → 0, eq. (C.1) reduces to17

z =

√
2(R4

0 + 1)

R4
0 − 1

r , (C.6)

and the small-z potential is given by

V α(z, q) =

(
3

4
+ �α(�α + 2)

)
1

z2
+ v2limq

2 +
1

4
z2q2Ω2 , (C.7)

where �α = {0, 0, 0, 1}, vlim is the meson limiting velocity (3.11), and

Ω2 =
16R2

0(R
4
0 − 1)2(1 +R8

0)

(1 +R4
0)

5
. (C.8)

As claimed, this potential has a minimum at z ∝ 1/
√
q which means that, at least for

the lowest modes, the wave functions are concentrated at small z. Different meson excita-

tions correspond to different states of the four-dimensional harmonic oscillator (C.7). The

eigenfunctions and eigenvalues are given by

ω2
n = v2limq

2 + qΩ(2n+ 2 + �α) , (C.9)

ψα
n = Nαz

3
2
+�αL(�α+1)

n

(
1

2
Ωqz2

)
exp

(
−1

4
Ωqz2

)
, (C.10)

where L�+1
n is the generalized Laguerre polynomial and Nα are normalization constants

determined by the requirements ∫
dz ψα

n(z)ψ
α
m(z) = δmn . (C.11)

These normalization conditions coincide with those in eqs. (4.9), (4.20) and (4.32).

For future use, we provide explicit expressions for the lowest excitations, which corre-

spond to n = 0. The normalization constants are given by

Nα =
(qΩ)1+

�α

2

√
2
1+�α√

(1 + �α)!
, (C.12)

and the radial wave functions take the form

Ψα
0 = βαNαz4�

α
exp

(
−1

4
Ωqz2

)
, (C.13)

17To derive this expression we have used the small-r expansion of the embedding, R(r) = R0 +

r2/
`
R0(R

8
0 − 1)

´
.
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where βα = limr→0

√
aα:

β1 = β2 =
23/2R3

0(
R4

0 − 1
)3/2 , (C.14)

β3 =
2R2

0

(
1 +R4

0

)1/2(
R4

0 − 1
)3/2 , (C.15)

β4 =

(
R4

0 − 1
)3/2

2R2
0

(
1 +R4

0

)1/2 . (C.16)

D Energy loss at small r0

As the quark position approaches the tip of the branes, r0 → 0+, the maximum velocity of

the quark approaches the meson limiting velocity vlim from above. As a consequence, the

quark and meson dispersion relations cross at q0 � T . In figure 2 this means that the dotted

vertical lines move to the right. For a fixed r0 the smallest value of the crossing point, qmin
0 ,

is attained at the maximal velocity of the quark, vmax. Using the high-momentum dispersion

relation (C.9), the crossing momentum at an arbitrary quark velocity v is determined by

the condition

vlimq0 +

(
1 + n+

�α

2

)
Ω

vlim

= vq0 , (D.1)

which leads to

q0 =

(
1 + n+

�α

2

)
Ω

vlim

1

v − vlim

. (D.2)

The maximal velocity for a quark at r0 is

vmax(z0) =

√
−g00

gii

∣∣∣∣
r0

≈ vlim + z20
Ω2

8vlim

, (D.3)

where we have expanded to leading order in r0 and used the definition (C.6) of z. Substi-

tuting this value of v in eq. (D.2) we find that the minimum crossing point is

qmin
0 =

(
1 + n+

�α

2

)
8

Ωz20
. (D.4)

Thus, the energy loss can be reliably computed with the approximate solutions of ap-

pendix C. Since the energy-loss formulas are different for each mode, we will address them

separately. Furthermore, we will focus on the lowest state of each mode.

D.1 Scalar mesons

Since in the high-momentum, small-r region both scalar modes have the same radial profile,

the energy loss into scalar mesons in this limit will also be the same. Expanding the energy

loss formula (5.57) and using the radial profiles (C.13) we obtain

dEscalar

dt
=

e2

2Ω3

[
v2max(z0)− v2

v

] [
1 +R4

0

2R2
0

] (
β1
)2 Ω2

2

∫ ∞

qmin
0

dq

2π
q3 exp

(
−1

2
Ωqz20

)
. (D.5)
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After integration, this yields

dEscalar

dt
=

e2

4πΩ3

(
1 +R4

0

)2 (
β1
)2

2R2
0

[
v2max(z0)− v2

v

]
×[

48 + 24Ωqmin
0 z20 + 6Ω2(qmin

0 )2z40 +Ω3(qmin
0 )3z60

Ω2z80

]
exp

(
−1

2
Ωqmin

0 z20

)
. (D.6)

As expected on general grounds, and in agreement with figures 13 and 14, we see that the

energy loss vanishes both for v → vmax and for v → vlim. The former is due to the fact

that the factor (5.49) vanishes in this limit. The latter is implemented by the fact that

qmin
0 diverges as v → vlim, which in turn is a manifestation of the Heaviside theta function

in eq. (5.57). As reflected in figures 13 and 14, the maximum energy loss occurs at some

intermediate velocity such that vlim < vint < vmax. Although vint is not easy to compute, we

know that vmax − vlim ∝ z20 . It then follows that also vmax − vint ∝ z20 and therefore that the

maximum energy loss diverges as 1/z60 .

D.2 Transverse vector mesons

The energy lost into these modes is given by eq. (5.23) which, utilizing (C.13), leads to

dEtrans

dt
=

e2v

2Ω3

(
β3
)2 Ω2

2

∫ ∞

qmin
0

dq

2π
q3 exp

(
−1

2
Ωqz20

)(
1− v2lim

v2
− 2Ω

qv2

)
. (D.7)

Unlike for scalar meson emission, it is easy to see that in this case the energy loss is a

monotonically growing function of the velocity. Thus, the maximum value of the energy

loss is attained for v = vmax and, to leading order in z0, it is given by

dEtrans

dt
=

e2

4πΩ3

(
β3
)2 76 exp(−4)

vlimz60
. (D.8)

This shows the same divergence for small r0 as in the case of scalar modes.

D.3 Longitudinal vector mesons

Inserting (C.13) into the expression for energy loss (5.40), and to leading order in z0 we

obtain
dElong

dt
=

e2

2Ω3

2Ω3

v

1

(β4)2

∫ ∞

qmin
0

dq

2π
q2
(
1− 1

8
Ωqz20

)2

exp

(
−1

2
Ωqz20

)
. (D.9)

As in the transverse vector case, the maximum energy loss is attained at v = vmax. Using

(D.4) and setting �α = 1 (see the definition below eq. (C.7)) the maximum energy loss is

dElong

dt
=

e2

4πΩ3

1

(β4)2
632 exp(−6)

vlim z60
. (D.10)

Again, this diverges with the same power of z0 as in the cases of transverse and scalar

modes. Note also that since β4 = 1/β3 and the numerical factors in eqs. (D.10) and (D.8)

are similar, we find that in this limit the energy lost into transverse and longitudinal vector

modes is comparable.
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Finally, we may comment on the mass dependence of the energy lost into vector mesons.

The maximal energy loss is proportional to

dE

dt

∣∣∣∣
max

∝ R4
0

(
R4

0 − 1
)2(

R4
0 + 1

) 1

r60
. (D.11)

The fact that this is a growing function of R0 means that the energy loss increases if

the quark mass is increased while keeping all other parameters such as r0, v, etc. fixed.

However, this should not be necessarily taken as an indication that Cherenkov energy loss

in a real HIC experiment increases as the quark mass increases, because the ‘preferred’ or

‘mean’ values of these parameters with which a quark is produced may themselves depend

on the quark mass.

E Low-temperature limit

As T → 0 with all other scales fixed, the redshift at the bottom of the branes decreases,

and so the limiting velocity of mesons, vlim, approaches unity. In turn, this means that the

momentum q0(T ) at which Cherenkov radiation turns on diverges as T → 0, much in the

same way as in the case r0 → 0 studied above. The purpose of this section is to estimate

q0(T ) in the low-temperature limit. As we will see, the product q0(T )T
2 remains finite as

T → 0, which makes this limit harder to study than the r0 → 0 limit.

As T → 0 with fixed quark mass, the parameter m ∝ Mq/T controlling the asymptotic

position of the branes, R(r → ∞) = m, diverges. For this reason it is convenient to

introduce rescaled coordinates

x̂μ =
xμ√
ε
, {r̂, R̂, ρ̂} =

√
ε{r,R, ρ} , (E.1)

where ε ≡ 1/m2 and we are interested in the limit ε → 0. The rescaling of the x-coordinates

is chosen so that the induced metric on the D7-brane takes the same form as that in (3.6),

i.e. ds2 = L2ds2(g) with

ds2(g) =
ρ̂2

2

[
−f2

f̃
dt̂2 + f̃d�̂x2

]
+

(1 +
˙̂
R2)

ρ̂2
dr̂2 +

r̂2

ρ̂2
dΩ2

3 , (E.2)

where now

f(ρ̂) = 1− ε2

ρ̂4
, f̃(ρ̂) = 1 +

ε2

ρ̂4
. (E.3)

In this new set of coordinates the horizon is located at ρ̂hor =
√
ε, whereas R̂(r̂ → ∞) = 1.

In fact, in the limit ε → 0 the gravitational pull of the black hole becomes very small

and the brane bends very little. Inserting the ansatz R̂(r̂) = 1 + δR̂(r̂) in eq. (3.7) and

linearizing in δR̂ one finds that δR̂ = O(ε4). Since we will work to order ε2 we will ne-

glect this correction. Furthermore, it is easy to see that the equations of motion for the

transverse (4.6), longitudinal (4.18) and scalar (4.30) modes are unmodified by the rescal-

ing (E.1) provided we rescale the momentum in a consistent way, i.e. {ω̂, q̂} =
√
ε{ω, q},
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so that we leave the product (ωt − �q · �x) invariant. For ease of notation, in the following

we will omit the hat symbol.

Following appendix C, eqs. (4.6), (4.18) and (4.30) can be rewritten in the Schrödinger

form (C.4). The potential (C.5) is in general a complicated function, but it simplifies in

the limit ε → 0. Indeed, in this case eq. (C.1) can be integrated explicitly with the result

z(r) =
√
2 arctan r +

3

8
√
2

(
3 arctan r +

r(5 + 3r2)

(1 + r2)2

)
ε2 +O(ε4) , (E.4)

so that zmax ≡ z(r → ∞) � π/
√
2. The potential can then be written as

V α(z, q) = V1(z)q
2 + V α

2 (z) , (E.5)

where

V1(z) = 1− 4 cos4
(

z√
2

)
ε2 + g(z)ε4 +O(ε6) , (E.6)

V α
2 (z) =

Aα cos2
(√

2z
)
+ Bα cos

(√
2z
)
+Cα

2 sin2
(√

2z
) +

(mα)2

1 + cos
(√

2z
) + h(z)ε2 +O(ε4) , (E.7)

with Aα = {0, 0, 1, 1}, Bα = {−6,−6, 0, 8} and Cα = {9, 9, 2, 6}. The functions g(z) and

h(z) are smooth and bound, and their explicit form will not be needed.

Before proceeding further let us clarify one point. In the limit z → zmax, V
4
2(z) shows a

negative divergence. This is related to the fact that the radial profile Ψ4(r) = Φ(r) does not

vanish near the boundary. This may seem counterintuitive, since generically one expects a

‘confining’ potential near the boundary (the AdS ‘box’) which is partly responsible for the

discreteness of the spectrum. However, note that the physical electric field E is related to

Φ through eq. (4.16), which may be written as E = a4(z)∂zΦ. In the limit r → ∞, the

factor f2/f̃2 in eq. (C.2) approaches 1, so one can differentiate this equation with α = 4

and use the fact that a4(z) = 1/a3(z) to show that the asymptotic form of the equation

for E is identical to that for the transverse mode Ψ3 = A.

Let us now return to the potential (E.5). As explained above, we are interested in the

limit ε → 0 and q ≥ q0(ε) → ∞. In particular, we wish to determine whether in this limit

the product εq0 goes to zero, remains finite, or diverges. We will establish that the product

remains finite by showing that the other two possibilities lead to a contradiction.

Consider first the possibility that εq0 → ∞ as ε → 0. Then the potential takes the

form

V α(z, q)− q2 � Aα cos2
(√

2z
)
+ Bα cos

(√
2z
)
+Cα

2 sin2
(√

2z
) +

(mα)2

1 + cos
(√

2z
) − 4 cos4

(
z√
2

)
ε2q2 ,

(E.8)

where the last term dominates everywhere except near the endpoints z = 0 and zmax, at

which the order-one part of the potential, given by the first two terms on the right-hand

side, diverges. As an illustration, figure 22 shows the potential for the α = 3 - mode for

several values of εq. We see that the potential develops a minimum at a small value of z

as εq becomes large. This allows us to consider an expansion for small z in order to obtain
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Figure 22. Potential for α = 3, in the limit ε → 0, q → ∞ and εq fixed. From top to bottom the

curves correspond to εq = 4, 8, 12, 16, 20.

the energy levels associated to the potential. In this way we reproduce the result (C.9),

approximated for ε → 0. For example, in the case α = 3 and n = 0 the dispersion relation

takes the form:

ω(q) =
(
1− 2ε2

)
q +

2√
5q

√
1 + 20q2ε2 +O(ε2) . (E.9)

The value of q0 is determined by the condition ω(q0) = vq0, where v is the quark velocity,

which depends on the quark position through

v(r0) = 1− 2ε2

ρ40
+O(ε4) . (E.10)

The result is

εq0 =

⎡
⎣−10 +

√
5

√
20 + r20(2 + r20)

(
40 + 21r20(2 + r20)

)
(1 + r20)

2

⎤
⎦
−1/2

. (E.11)

This expression is not parametrically large for any value of r0 except in the limit r0 → 0,

which was considered above and is unrelated to the zero-temperature limit under consider-

ation here. In particular, for small r0 eq. (E.11) yields εq0 = 1/r0
2 + 3/2 +O(r20), whereas

for large r0 one finds εq0 = 2.01 + 1.99/r40 + O(1/r60). We therefore conclude that εq0(ε)

remains finite as ε → 0, in contradiction with our initial assumption that εq0(ε) → ∞ in

this limit.

Consider now the opposite possibility, i.e. that εq0 → 0 as ε → 0. In this case the

last term in the potential (E.8) is small and the energy levels can be determined using

perturbation theory with the result

ω2
n(q) = q2 + λn − wnε

2q2 +O(ε4q4) . (E.12)

Here, λn are the eigenvalues of the problem in the absence of the perturbation, and −ωn is

the (negative) first-order correction given by the expectation value of the perturbation in

the n-th eigenstate, 〈n|−4 cos4(z/
√
2)|n〉 . The key point is that λn and wn are independent

of ε and q. In order to find the crossing point, we need to solve ω2
n(q0) = v2q20. Since the
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minimum possible value of q0 corresponds to the maximum quark velocity, v = 1, we find

εq0 �
√

λn

wn
, (E.13)

which is in contradiction with our initial assumption that εq0 → 0.

We therefore conclude that the combination

εq̂ = ε
√
εq =

1

m3

q̃

πT
=

(√
λT

2Mq

)3
q̃

πT
=

(
2πT

Mmes

)3 q̃

πT
(E.14)

remains finite in the limit T → 0, where we have reinstated the hat and we recall that q̃ is the

physical, dimensionful momentum. We see that in this limit q̃(T )T 2 ∼ M3
q /λ

3/2 ∼ M3
mes,

which remains finite in the low-temperature limit, as we anticipated. This means that the

relevant potential in this limit is (E.8), where all terms are of the same order. This makes

the problem harder than that associated to the limit r0 → 0, and we have been unable to

find analytic expressions for the corresponding eigenfunctions and eigenvalues.
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1 Introduction

A remarkable conclusion from the experiments at the Relativistic Heavy Ion Collider

(RHIC) [1, 2] and at the Large Hadron Collider (LHC) (see the contributions on ellip-

tic flow at the LHC in [3]) is that the quark-gluon plasma (QGP) does not behave as a

weakly coupled gas of quarks and gluons, but rather as a strongly coupled fluid [4, 5]. This

renders perturbative methods inapplicable in general. The lattice formulation of Quantum

Chromodynamics (QCD) is also of limited utility, since for example it is not well suited for

studying real-time phenomena. This has provided a strong motivation for understanding

the dynamics of strongly coupled non-Abelian plasmas through the gauge/string duality [6–

8] (see [9] for a recent review of applications to the QGP).

For a period of time τout immediately after the collision, the system thus created is

far from equilibrium. After a time τiso > τout the system becomes locally isotropic and

a standard hydrodynamic description becomes applicable. It has been proposed than an

intrinsically anisotropic hydrodynamical description can be used to describe the system at

intermediate times τout < τ < τiso [10–18]. In this phase the plasma is assumed to have

significantly unequal pressures in the longitudinal and transverse directions. The standard

hydrodynamic description is a derivative expansion around equal pressures, and therefore

it is not applicable in this regime. In contrast, the intrinsically anisotropic hydrodynamical

description is a derivative expansion around an anisotropic state, and hence in this case the

requirement that derivative corrections be small does not imply small pressure differences.

In a real collision the degree of anisotropy will decrease with time, but for some purposes

it is a good approximation to take it to be constant over an appropriate time scale.

Motivated by these considerations, in this paper we will investigate the effect of an in-

trinsic anisotropy on the drag force felt by an infinitely massive quark propagating through
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a strongly coupled plasma. For this purpose we will examine a string moving in a gravity

solution [19, 20] dual to an anisotropic N = 4 super Yang-Mills plasma. As we will review

below, the plasma is held in anisotropic equilibrium by an external force. The gravity solu-

tion possesses an anisotropic horizon, it is completely regular on and outside the horizon,

and it is solidly embedded in type IIB string theory. For these reasons it provides an ideal

toy model in which questions about anisotropic effects at strong coupling can be addressed

from first principles.

We will pay particular attention to the ultra-relativistic behavior of the drag force,

which can be determined analytically. To avoid confusion, we emphasize from the be-

ginning that our results correspond to sending the quark mass to infinity first, and then

sending v → 1. In particular, this means that in any future attempt to connect our results

to the phenomenology of the QGP, this connection can only be made to the phenomenology

of heavy quarks moving through the plasma.

Following the original calculations [21, 22] of the drag coefficient, the closely related

diffusion coefficient was obtained independently in [23]. These seminal papers have been

generalized and elaborated on in a vast number of subsequent contributions [24–41], in-

cluding in particular comparisons with the corresponding weakly-coupled results [42–45],

as well as extensive analyses of the energy-momentum tensor which provide a detailed pic-

ture of the directionality of energy flow away from the moving quark [46–53]. Examples of

holographic studies of the drag force in the presence of anisotropies and/or inhomogeneities

include [54, 55].

2 Gravity solution

The type IIB supergravity solution of [19, 20] in the string frame takes the form

ds2 =
L2

u2

(
−FB dt2 + dx2 + dy2 +Hdz2 +

du2

F

)
+ L2e

1
2
φdΩ2

5, (2.1)

χ = az , φ = φ(u) , (2.2)

where χ and φ are the axion and the dilaton, respectively, and (t, x, y, z) are the gauge

theory coordinates. Since there is rotational invariance in the xy-directions, we will refer

to these as the transverse directions, and to z as the longitudinal direction. F ,B and

H are functions of the holographic radial coordinate u that were determined numerically

in [19, 20]. Their form for two values of a/T is plotted in figure 1. The horizon lies at

u = uH, where F = 0, and the boundary at u = 0, where F = B = H = 1 and φ = 0. The

metric near the boundary asymptotes to AdS5 × S5. Note that the axion is linear in the

z-coordinate. The proportionality constant a has dimensions of mass and is a measure of

the anisotropy. The axion profile is dual in the gauge theory to a position-dependent theta

parameter of the form θ ∝ z. This acts as an isotropy-breaking external source that forces

the system into an anisotropic equilibrium state.
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Figure 2. Log-log plot of the entropy density as a function of a/T , with siso defined as in eq. (2.4).

The dashed blue line is a straight line with slope 1/3.

If a = 0 then the solution reduces to the isotropic black D3-brane solution dual to the

isotropic N = 4 theory at finite temperature. In this case

B = H = 1 , χ = φ = 0 , F = 1− u4

u4H
, uH =

1

πT
(2.3)

and the entropy density takes the form

siso =
π2

2
N2

c T
3 . (2.4)

Figure 2 shows the entropy density of the anisotropic plasma as a function of the dimen-

sionless ratio a/T , normalized to the entropy density of the isotropic plasma at the same

temperature. At small a/T the entropy density scales as in the isotropic case, whereas at

large a/T it scales as [19, 20, 56]

s = centN
2
c a

1/3T 8/3 , (2.5)

where cent is a constant that can be determined numerically.
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A feature of the solution (2.2) that played an important role in the analysis of [19, 20]

is the presence of a conformal anomaly. Its origin lies in the fact that diffeomorphism

invariance in the radial direction u gets broken in the process of renormalization of the on-

shell supergravity action. In the gauge theory this means that scale invariance is broken

by the renormalization process. One manifestation of the anomaly is the fact that, unlike

the entropy density, other thermodynamic quantities do not depend solely on the ratio a/T

but on a and T separately. Fortunately, this will not be the case for our drag force, which

will take the form F (a, T ) = T 2f with f a function of the ratio a/T alone. The reason for

this is that no regularization procedure is necessary for the computation of the drag force,

and thus diffeomorphism invariance is preserved. We will also verify this analytically in

certain limits, and numerically for general values of a and T .

3 Drag force

Extending the isotropic analysis of refs. [21, 22], in this section we will consider the

drag force acting on an infinitely massive quark moving at constant velocity through the

anisotropic N = 4 plasma described by (2.2). A simple model for this system is described

by the equation of motion
d�p

dt
= −μ�p+ �F , (3.1)

where �p is the quark’s momentum, μ is a drag coefficient, and �F is an external force. The

necessary force to keep a steady motion is �F = μ�p. An observation that will be important

for us is that, in the case of an anisotropic medium, the drag coefficient is not just a number

but a matrix. In our case we will see that this matrix is diagonal, μ = diag(μx, μy, μz) with

μx = μy = μz. Thus we should expect that the force and the momentum or the velocity of

the quark will not be aligned in general, and indeed our calculations will reproduce this fea-

ture. We will also see that, unlike in [21, 22], the drag coefficient is momentum-dependent.

On the gravity side the quark is described by a string propagating in the back-

ground (2.2). The string action is

S = − 1

2πα′

∫
d2σ

√−g =

∫
d2σL , (3.2)

where g is the induced worldsheet metric. With the L2 factor from the spacetime metric

the Lagrangian scales as L2/2πα′ =
√
λ/2π. We will set this factor to one in intermedi-

ate expressions, and we will reinstate it at the end. Denoting the spacetime coordinates

collectively by XM , the flow of spacetime momentum ΠM along the string is given by

ΠM =
∂L

∂(∂σXM )
. (3.3)

Physically, one can imagine that the external force on the quark needed to sustain steady

motion may be exerted by attaching the endpoint of the string to a D7-brane and turning

on a constant electric field FMN = ∂[MAN ] on the brane. In other words, we add to the

action (3.2) the boundary term

Sbdry = −
∫
∂Σ

dτAN∂τX
N = −1

2

∫
∂Σ

dτFMNXM∂τX
N . (3.4)
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Demanding that the boundary term arising from variation of the total action S + Sbdry

vanish yields the boundary condition

ΠM + FMN∂τX
N
∣∣
∂Σ

= 0 . (3.5)

We will now specify to the case of a quark moving steadily through the plasma. The

string will not move along the sphere directions, so this part of the metric will play no role

in the following. Also, given the rotational symmetry in the xy-directions, we will assume

that y = 0. We fix the static gauge by identifying (t, u) = (σ0, σ1) and consider a string

embedding of the form

x(t, u) →
(
vt+ x(u)

)
sinϕ , (3.6)

z(t, u) →
(
vt+ z(u)

)
cosϕ , (3.7)

corresponding to a quark moving with velocity v in the xz-plane at an angle ϕ with the

z-axis. Under these circumstances the Lagrangian takes the form

L = −

⎡
⎣BF + sin2 ϕ (BF2x′2 − v2) +H cos2 ϕ

[
BF2z′2 − v2 −Fv2(x′ − z′)2 sin2 ϕ

]
Fu4

⎤
⎦
1/2

.

(3.8)

The rates at which energy and momentum flow down the string towards the horizon are then

−Πt =
1

Lu4 BFv
[
x′ sin2 ϕ+Hz′ cos2 ϕ

]
,

Πx =
1

Lu4
[
BF x′ +Hv2(z′ − x′) cos2 ϕ

]
sinϕ ,

Πz =
1

Lu4 H
[
BF z′ + v2(x′ − z′) sin2 ϕ

]
cosϕ , (3.9)

where ′ denotes differentiation with respect to u, and the boundary conditions (3.5) become

Πx = Fx , Πz = Fz , −Πt = Fx v sinϕ+ Fz v cosϕ , (3.10)

where (Fx, Fz) denote the components of the external force (the electric field). The first

two equations are the statement that the external force exactly compensates for the mo-

mentum lost by the quark into the medium. The third equation is identically satisfied by

virtue of (3.9), and it expresses the fact that the work done by the external force precisely

equals the rate at which the quark deposits energy into the medium. As we will see below,

the energy and the momentum flow from the boundary to the horizon (i.e. Πx,Πz and

−Πt) are positive provided the string trails behind the quark (i.e. if x′, z′ are negative), as

we would expect on physical grounds. This can be easily seen by inspection in the simple

cases of motion along the z-direction (ϕ = 0), for which

Πz = − BFH z′

u2
√
B − Hv2

F + BFH z′2
, −Πt = Πz v , Πx = 0 , (3.11)
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and of motion along the x-direction (ϕ = π/2), for which

Πx = − BF x′

u2
√

B − v2

F + BF x′2
, −Πt = Πx v , Πz = 0 . (3.12)

We will now determine the string profile and the corresponding values of the energy

and momentum flows for arbitrary v, ϕ. The first observation is that, generically, the string

does not trail ‘below’ its endpoint’s trajectory. In other words, x(u) = z(u). Indeed, if

x(u) = z(u) then the ratio of the momenta would be given by

Πx

Πz
=

tanϕ

H(u)
, (3.13)

which would be a contradiction because the left-hand side is constant whereas the right-

hand side is not. In order to determine the correct string profile we invert the relations (3.9)

to find

x′ = ± Hv

F
√
BH

Nx√
NxNz −D

, z′ = ± v

F
√
BH

Nz√
NxNz −D

, (3.14)

where

Nx = −Πx(BF cscϕ− v2 sinϕ) + Πzv
2 cosϕ , (3.15)

Nz = −Πz(BF secϕ−Hv2 cosϕ) + ΠxHv2 sinϕ , (3.16)

D =
BF cscϕ secϕ

u4

[
ΠxΠzu

4 −Hv2 cosϕ sinϕ
][
BF − v2

(
H cos2 ϕ+ sin2 ϕ

) ]
. (3.17)

The factor NxNz − D inside the square root in the denominator of (3.14) is positive at

the boundary, where B,F ,H → 1 and u → 0, and also at the horizon, where F → 0, and

generically it becomes negative in some region in between. In other words, it vanishes at

two different values of u between the boundary and the horizon. To see this, consider the

last factor in square brackets in (3.17). BF (H) is monotonically decreasing (increasing)

from the boundary to the horizon, so this factor is positive at the boundary and negative

at the horizon. Therefore there exists a critical value uc in between such that

BcFc − v2
(
Hc cos

2 ϕ+ sin2 ϕ
)
= 0 , (3.18)

where Bc = B(uc), etc. At this point D = 0 and

NxNz|uc
= −v4 (HcΠx cosϕ−Πz sinϕ)

2 , (3.19)

which is negative unless the momenta are related through

Πx

Πz
=

tanϕ

Hc
. (3.20)

If this condition is not satisfied then NxNz −D is negative in some interval u1 < uc < u2
and vanishes at u = u1 and at u = u2. This type of solutions correspond to strings with

two endpoints at the boundary. Here we wish to study isolated quarks, which are described

by strings that extend all the way from the boundary to the horizon, so we must require
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that NxNz − D is non-negative for all 0 < u < uH. This is satisfied if and only if (3.20)

holds and if the two zeros of D coincide with one another, i.e. if the first square bracket

in (3.17) also vanishes at u = uc. The latter condition, together with (3.20), allows us to

solve for the two momenta independently with the final result:

Πx =
v sinϕ

u2c
, Πz = Hc

v cosϕ

u2c
. (3.21)

Under these circumstances the denominator in (3.14) is always real and positive except at

uc, where it vanishes. At this point the numerators also vanish and the functions x′, z′ are
smooth and negative for all 0 < u < uH provided in (3.14) we choose the positive sign for

u < uc and the negative sign for u > uc.

In summary, we have obtained the force �F = (Πx,Πz) that must be exerted on the

quark in order to maintain its stationary motion,

�F =

√
λ

2π

v

u2c
(sinϕ,Hc cosϕ) , (3.22)

in terms of the quark’s velocity �v = v(sinϕ, cosϕ). (In this equation we have reinstated

the factor L2/2πα′.) The external force �F is equal to minus the drag force exerted on the

quark by the plasma, but in a slight abuse of language we will refer to �F itself as the drag

force. Note that �v and �F are not aligned with one another except in the isotropic case,

for which Hc = 1, or in the cases in which the velocity is aligned with one of the axes, in

which ϕ = 0, π/2. Note also the force depends on the velocity both through the explicit

factors of v and ϕ in eq. (3.22) and implicitly through the value of Hc, which is a solution

of the �v-dependent equation (3.18).

Substituting the result (3.21) in (3.14) we obtain the form of the string profile as a

function of the velocity. The projection of this profile on the xz-plane has tangent vector

�τ = (τx, τz) = (x′ sinϕ, z′ cosϕ). The angle ϕτ between this vector and the z-axis is

tanϕτ =
τx
τz

= ε tanϕ , ε = 1 +
BF(H−Hc)

BFHc − BcFcH
. (3.23)

At the horizon we have F = 0 and thus ε = 1, which means that deep in the infrared the

string aligns itself with the velocity. However, near the boundary B,H,F → 1 and thus

ε → 1 +
1−Hc

Hc − BcFc
. (3.24)

This is different from unity for generic ϕ, and so the string does not align itself with the

velocity except if ϕ = 0 or ϕ = π/2. In these two special cases the entire string profile

(not just the infrared part) aligns itself with the z- or the x-axis, respectively, because ε

remains finite in these limits whereas tanϕ → 0,∞, respectively. Note also that the vector

�τ is not aligned with the force �F either, since ε = H−1
c .

The formulas above reduce to the correct expressions in the isotropic limit (2.3). In

this case eq. (3.18) yields

u2c = u2H
√

1− v2 =

√
1− v2

π2T 2
(3.25)
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Figure 3. Drag force as a function of the quark velocity (vx, vz) = v(sinϕ, cosϕ) for a quark

moving through an anisotropic plasma with a/T = 1.38(a), 4.41(b), 12.2(c), 86(d). F is plotted in

the appropriate units to facilitate comparison with the isotropic result (3.27) for a plasma at the

same temperature.

and the force (3.22) becomes

�Fiso(T ) = Fiso(T )(sinϕ, cosϕ) (3.26)

with

Fiso(T ) =
π

2

√
λT 2 v√

1− v2
, (3.27)

as in [21, 22]. For later purposes it is useful to rewrite this result as

Fiso(s) =

√
λ s2/3

(2π)1/3N
4/3
c

v√
1− v2

(3.28)

in terms of the entropy density (2.4) of the isotropic N = 4 plasma.

4 Results

With the groundwork above in place, we can now proceed to state our results. Since for gen-

eral a the metric functions in (2.2) are only known numerically, we have numerically deter-
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Figure 4. Drag force as a function of the quark velocity (vx, vz) = v(sinϕ, cosϕ) for a quark

moving through an anisotropic plasma with aN2/3
c /s1/3 = 0.80(a), 2.47(b), 6.24(c), 35.5(d). F

is plotted in the appropriate units to facilitate comparison with the isotropic result (3.28) for a

plasma at the same entropy density.

mined the drag force as a function of the magnitude of the quark velocity v, of its direction

ϕ, and of the anisotropy a measured in units of the temperature T or in units of the entropy

density s. The reason for working with both a/T and a/s1/3 is that we wish to compare the

drag force in the anisotropic plasma to that in the isotropic plasma, and this can be done

at least in two different ways: the two plasmas can be taken to have the same temperatures

but different entropy densities, or the same entropy densities but different temperatures.

The drag force F (v, ϕ, a/T ) in units of the isotropic drag force in a plasma at the same

temperature is shown in figure 3. The drag force F (v, ϕ, a/s1/3) in units of the isotropic drag

force in a plasma at the same entropy density is shown in figure 4. With a few exceptions,

the results are qualitatively similar. In both cases we see that the anisotropic drag is larger

than the isotropic drag except in a region near the x-axis. This region is more clearly shown

in figure 5: the curves in that figure are the intersections between the two surfaces shown

in each of the corresponding 3D plot in figures 3 or figures 4. Considering that the value

of a/T varies by a factor of 62 between the top and the bottom curves in figure 5, we see

that the region in question depends relatively mildly on the magnitude of the anisotropy.
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Figure 5. (Left) Values of the velocity at which the drag in an anisotropic plasma with (from

top to bottom) a/T = 1.38, 4.41, 12.2, 86 equals the drag in an isotropic plasma at the same

temperature. (Right) Values of the velocity at which the drag in an anisotropic plasma with

(from top to bottom) aN2/3
c /s1/3 = 0.80, 2.47, 6.24, 35.5 equals the drag in an isotropic plasma at

the same entropy density. For a given value of a/T or aN2/3
c /s1/3, the anisotropic drag is larger

(smaller) than the isotropic drag above (below) the corresponding curve.

For motion along the longitudinal z-direction, the anisotropic drag is greater than the

isotropic drag for any value of v. For any direction of motion ϕ = π/2, the ratio Faniso/Fiso

diverges as 1/
√
1− v2 in the ultra-relativistic limit v → 1 irrespectively of whether the

comparison is made at the same temperature or at the same entropy density, as we prove

analytically in appendix A.1 In other words, for motion not perfectly aligned with the

transverse x-direction, the anisotropic drag becomes arbitrarily larger than the isotropic

one as the ultra-relativistic limit is approached. This is most clearly illustrated in figure 6,

which shows constant-ϕ slices of the (c) and (d) plots in figures 3 and figures 4. We will

come back to this result in section 5.

The ratio Faniso/Fiso is always finite for motion along the transverse x-direction. (In-

cidentally, this implies that the limits ϕ → π/2 and v → 1 do not commute.) In this case

we must distinguish between the comparisons at equal temperature or at equal entropy

density. In the first case, our numerical results indicate that the anisotropic drag is smaller

than the isotropic one for 0 ≤ v < vc and larger than the isotropic one for vc < v ≤ 1,

and we have confirmed this analytically in the limits of small and large anisotropies (see

the appendices). The velocity vc at which the transition takes place is vc � 0.9 for small

anisotropies and it approaches 1 as the anisotropy increases.

In the second case our numerical results indicate that the anisotropic drag is smaller

than the isotropic one for all v ∈ [0, 1] provided a/s1/3 is small enough. In the opposite

limit, a/s1/3 � 1, the anisotropic drag stays smaller than the isotropic one for small veloc-

ities and becomes larger above some critical velocity. We have confirmed this analytically

in the appendices. For a fixed v, the angle with respect to the z-direction beyond which

1We recall that we first send the quark mass to infinity and then v → 1. See the penultimate paragraph

of section 1.
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Figure 6. Drag force as a function of the velocity for a quark moving through an anisotropic

plasma with a/T = 12.2, or equivalently aN2/3
c /s1/3 = 6.24, (left column) and a/T = 86, or

equivalently aN2/3
c /s1/3 = 35.5, (right column) along four different directions lying at angles

(curves from top to bottom) ϕ = 0, π/6, π/3, π/2 with respect to the longitudinal direction z. F

is plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma

at the same temperature (top row) or at the same entropy density (bottom row). The isotropic

result is given in eqs. (3.27) and (3.28).

the anisotropic drag may become smaller than the isotropic drag is shown in the constant-v

slices of figure 7.

The dependence of the drag force on the anisotropy for fixed velocity is most clearly

seen in figures 8 and figures 9, where the ratio F/Fiso is plotted for several values of v and ϕ.

In order to illustrate the geometric properties of the string solution, in figure 10 we

have plotted the projection of the string profile onto the gauge theory directions. As antic-

ipated, we see that the string curves in the xz-plane and (unless ϕ = 0 or π/2) only aligns

itself with the velocity in the far infrared, i.e. at large u. The misalignment between the

velocity �v, the drag force �F , and the tangent to the string profile at the string’s endpoint �τ

are shown in figure 11. We see that, generally speaking, the misalignment becomes larger

for larger anisotropies. This is more clearly quantified in figures 12 and 13, where the angles

with respect to the z-direction of the tangent vector to the string and of the force are shown

as a function of the angle of the direction of motion. From figure 12 we see that the tangent

vector to the string systematically ‘lags behind’ the direction of motion as the latter varies

from being aligned with the z-direction to being aligned with the x-direction. Only in these
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Figure 7. Drag force as a function of the direction of motion ϕ, measured with respect to the

longitudinal direction z, for a quark moving through an anisotropic plasma with a/T = 12.2, or

equivalently aN2/3
c /s1/3 = 6.24, (left column) and a/T = 86, or equivalently aN2/3

c /s1/3 = 35.5,

(right column) at three different velocities (curves from top to bottom) v = 0.9, 0.7, 0.5. F is

plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at

the same temperature (top row) or at the same entropy density (bottom row). The isotropic result

is given in eqs. (3.27) and (3.28).

two limits does the string profile align itself entirely with the velocity. Moreover, the larger

the anisotropy the more the string ‘wants’ to stay aligned with the z-direction, changing

direction quickly only as ϕ approaches π/2. From figure 13 we see that the behaviour of

the force is similar, except that for sufficiently large anisotropies its direction does not vary

monotonically with the direction of the velocity.

In order to gain an intuitive understanding of these geometric facts it is useful to think

of the string in our anisotropic background (2.2) as a fishing string immersed in a river.

Since the string provides a semiclassical description of the quark and its gluon cloud in

the dual plasma, each of the statements below can be easily translated into gauge theory

language. In the river analogy, the direction of the river’s current provides the anisotropic

direction, and the fact that the anisotropy function H(u) in (2.2) depends on the radial

coordinate can be modeled by imagining that the magnitude of the current depends on

the depth. Under these circumstances it is clear that the string will curve as it descends

deeper and deeper, since pieces of the string at different depths experience different degrees

of anisotropy. It is also clear that each bit of the string deposits momentum into the river
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Figure 8. Drag force as a function of the anisotropy for a quark moving along the longitudinal

z-direction, i.e. at ϕ = 0 (left column) or along the transverse x-direction, i.e. at ϕ = π/2 (right

column), at four different velocities (curves from top to bottom) v = 0.9, 0.7, 0.5, 0.25. F and a are

plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at

the same temperature (top row) or at the same entropy density (bottom row). The isotropic result

is given in eqs. (3.27) and (3.28).

in a different direction that depends on the bit’s local orientation. The direction of the

total (rate of) momentum deposition is a combination of all of these contributions, and this

combination equals the external force. It is thus clear that the external force will not point

in the same direction as the vector tangent to the string at a generic point, in particular at

its endpoint. Finally, the fact that the string eventually aligns with the velocity deep in the

infrared can be understood as a consequence of the fact that the string ‘piles up’ on top of

the horizon of (2.2). In the river’s analogy, this could perhaps be modeled by imagining that

the current vanishes at the bottom of the river, and that the string piles up there. To under-

stand this point, note that a constant-u slice of the metric (2.2) is locally isotropic, since the

factor H(u) can be locally absorbed through a rescaling of the z-coordinate. For generic u

this is irrelevant since the local isotropy is only experienced by an infinitesimal bit of string.

However, an infinite length of string lies between uH and uH + ε for any ε > 0. Since this

infinite piece of string experiences an effectively isotropic metric, it is not surprising that it

aligns with the velocity of the quark, as it happens in the completely isotropic case [21, 22].

We stress that the heuristic analogy above is only meant to provide a somewhat in-

tuitive understanding of the geometric features described by figures 10–13, which arise
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Figure 9. Drag force as a function of the anisotropy for a quark moving at v = 0.5 (left column) or

at v = 0.9 (right column) along four different angles (curves from top to bottom) ϕ = 0, π/6, π/3, π/2

with respect to the longitudinal direction z. F and a are plotted in the appropriate units to

facilitate comparison with the isotropic result for a plasma at the same temperature (top row) or

at the same entropy density (bottom row). The isotropic result is given in eqs. (3.27) and (3.28).

rigorously from the minimization of the string action in our anisotropic background (2.2).

In particular, we emphasize that, although it may seem counterintuitive at first sight, there

is no reason to expect the tangent vector to the string, the velocity and the force to be

mutually aligned in the presence of an anisotropic medium.

5 Discussion

We have analyzed the drag force exerted on an infinitely massive quark moving through an

anisotropic N = 4 super Yang-Mills plasma described by the metric (2.2). In this case the

anisotropy is induced by a position-dependent theta term in the gauge theory, or equiva-

lently by a position-dependent axion on the gravity side. One may therefore wonder how

sensitive the conclusions may be to the specific source of the anisotropy. In this respect

it is useful to note that the gravity calculation involves only the coupling of the string to

the background metric. This means that any anisotropy that gives rise to a qualitatively

similar metric (and no Neveu-Schwarz B-field) will yield qualitatively similar results for

the drag force irrespectively of the form of the rest of the supergravity fields.
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xz-plane for a quark moving with velocity v = 0.7 in four different directions (indicated by the

dashed straight lines) that lie at angles (clockwise) ϕ = π/18, π/6, π/3, 8π/18 with respect to the z-

direction. The quark moves through a plasma with anisotropy a = 12.2T (left) and a = 86T (right).

The origin (x, z) = (0, 0) corresponds to the string endpoint, which lies at the boundary u = 0. The

coordinate u increases along the curves away from this point. The string curves in the xz-plane

and (unless ϕ = 0 or π/2) only aligns itself with the velocity in the far infrared, i.e. at large u.
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Figure 11. Generic misalignment between the direction of the quark velocity (dashed straight

lines), the direction of the force (arrows) and the direction tangent to the string profile at its

endpoint (continuous straight lines). The quark velocity is v = 0.7, its direction lies at angles

(clockwise) ϕ = π/18, π/6, π/3, 8π/18 with respect to the z-direction, and the anisotropy is

a = 12.2T (left) and a = 86T (right).

An example of a rather robust conclusion is the ultra-relativistic behaviour of the drag

force.2 We have seen that the anisotropic solution (2.2) yields a drag force that becomes

arbitrarily larger than the isotropic one for all ultra-relativistic quarks except for those

whose velocity is perfectly aligned with the transverse xy-plane. This follows from the fact

that the near-boundary fall-off of the metric (2.2) takes the schematic form

gμν =
L2

u2

(
ημν + u2g(2)μν + u4g(4)μν + · · ·

)
. (5.1)

As v grows closer and closer to 1 the string worldsheet develops a horizon closer and

closer to the AdS boundary at u = 0. As a consequence the physics in this limit is solely

2We recall that we first send the quark mass to infinity and then v → 1. See the penultimate paragraph

of section 1.
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the z-axis and the tangent vector to the string at its endpoint, defined as in eq. (3.23). The angle

ϕ is the angle between the z-axis and the velocity. The magnitude of the velocity is v = 0.7 (left)

and v = 0.9 (right).
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Figure 13. Correlation between the direction of the force, ϕF, and the direction of the velocity,

ϕ (with both angles measured with respect to the longitudinal direction z), for four different

anisotropies (from top to bottom) a/T = 12.2, 20.3, 42.6, 744. The magnitude of the velocity is

v = 0.7 (left) and v = 0.9 (right).

controlled by the near-boundary behaviour of the metric. eq. (3.18) can then be solved

using the asymptotic form (5.1) of the metric functions. Generically the solution to leading

order is determined by the O(u2)-terms and yields u2c ∝ 1− v2. Substituting in (3.22) one

gets F ∝ 1/(1− v2), or equivalently F = μp with a momentum-dependent drag coefficient

μ ∝ p. For example, we show in appendix A that the metric (2.2) yields a drag coefficient

μ(p) �
√
λ a2 cos2 ϕ

8πM2
p (5.2)

at large p, where M is the quark mass. In contrast, in the isotropic case of [21, 22]

the O(u2)-terms in the metric are absent. This means that the solution of eq. (3.18) is

u4c ∝ 1 − v2 and hence that in this case the drag force in the ultra-relativistic limit has

a softer divergence Fiso ∝ 1/
√
1− v2. Rewriting this in terms of the momentum gives

F = μp with μ a momentum-independent constant in this case. For certain choices of the

parameters (for example for ϕ = π/2 in our case) the O(u2)-terms in eq. (3.18) may vanish,

in which case F ∝ 1/
√
1− v2.
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The above discussion makes it clear that the linear behaviour of the drag coefficient

in the ultra-relavistic limit, μ ∝ p, depends solely on two features of the solution: The

presence of the g
(2)
μν term in the near-boundary expansion of the metric, and the fact that

the metric (5.1) be non-boost-invariant at order u2 (i.e. that g
(2)
μν not be proportional to

ημν). The latter condition is necessary because otherwise there would be no solution for uc
at order u2. Note that adding temperature to an otherwise boost-invariant metric will only

affect g
(4)
μν , and thus this is not enough to make g

(2)
μν non-boost-invariant. This conclusion

is consistent with the fact that g
(2)
μν is only a function of the external sources which the

theory is coupled to.

Interesting backgrounds with non-zero g
(2)
μν include bona fide string theory construc-

tions, i.e. smooth supergravity solutions with a well known gauge theory dual, as well

as ‘ad hoc’ backgrounds, i.e. backgrounds that do not solve supergravity equations but

are phenomenologically motivated. An example in the first category is the supergravity

flow [57–59] dual to the N = 2∗ deformation of the N = 4 super Yang-Mills theory by

fermion (and scalar) masses. An example in the second category is the linear-dilaton back-

ground of refs. [60–62]. Both sets of examples have in common that, at zero temperature,

conformal invariance is broken but the full Lorentz symmetry of the boundary theory is

preserved. The breaking of conformality results in a momentum-dependent drag coefficient

μ(p), as shown in [63] for the N = 2∗ theory, and in [62, 64] for the linear-dilaton back-

ground. However, in both sets of examples g
(2)
μν is boost-invariant, since this term (unlike

g
(4)
μν ) is unaffected by the further breaking of conformal symmetry that occurs at non-zero

temperature. As a consequence, in the ultra-relativistic limit the drag-coefficient becomes

momentum-independent and approaches a constant. Thus, as measured by this particu-

lar observable, one may regard the breaking of conformality in the anisotropic plasma

of [19, 20] as more severe than in the backgrounds above.
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A Ultra-relativistic limit

In the limit v → 1 the value of uc that solves eq. (3.18) approaches the boundary, i.e. uc → 0.

Therefore in this limit uc can be determined from the near-boundary expansion of the

metric functions, which takes the form:

F = 1 +
11 a2

24
u2 +

(
F4 +

7 a4

12
log u

)
u4 +O(u6) ,
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B = 1− 11 a2

24
u2 +

(
B4 −

7 a4

12
log u

)
u4 +O(u6) ,

H = 1 +
a2

4
u2 −

(
2B4

7
− 5 a4

4032
− a4

6
log u

)
u4 +O(u6) , (A.1)

The coefficients B4,F4 depend on a, T and are related to the energy and the pressures of

the plasma eqs. (35) in [20]. They are not determined by the near-boundary analysis but

must instead be read off from a full bulk solution.

We must solve (3.18) for uc to leading order in 1− v2. For cosϕ = 0 we only need to

consider the terms of O(u2) in the metric functions, and the solution is

1

u2c
=

a2 v2 cos2 ϕ

4(1− v2)
. [cosϕ = 0] (A.2)

Substituting into (3.22) we obtain the drag force

�F =

√
λ

8π
a2 cos2 ϕ

v3

1− v2
(sinϕ, cosϕ) . [cosϕ = 0] (A.3)

The divergence when v → 1 contrasts with the softer behaviour (3.27)–(3.28) of the

isotropic case. We conclude that for cosϕ = 0 the ratio Faniso/Fiso diverges in the limit

v → 1 as 1/
√
1− v2, in agreement with our numerical results displayed in figure 6. Note

that this is true even if the two plasmas have different temperatures and/or different

entropy densities, since in the anisotropic case F diverges as 1/(1 − v2) irrespectively of

the temperature or the entropy density.

The previous analysis shows that the limits v → 1 and ϕ → π/2 do not commute. This

is because if we first set cosϕ = 0 then the terms of order u2 cancel out in eq. (3.18) and

we must go to order u4. The solution in this case is

1

u2c
=

T 2

√
1− v2

√
121

576

a4

T 4
− B4 + F4

T 4
, [cosϕ = 0] (A.4)

which yields the drag force

Fx =

√
λT 2

2π

v√
1− v2

√
121

576

a4

T 4
− B4 + F4

T 4
. [cosϕ = 0] (A.5)

This result is valid for any value of a/T , large or small, and it implies that the ratio

Faniso/Fiso is finite in the limit v → 1 and given by

Fx

Fiso

=
1

π2

√
121a4

576T 4
−
(F4 + B4

T 4

)
. [cosϕ = 0] (A.6)

This result is valid for any a, large or small (as long as the motion is exactly aligned

with the x-direction). In order to proceed further we need analytic expressions for the

coefficients F4,B4. These are known in the limiting cases of small and large a/T . In the
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first case they are given in eq. (175) of [20]:

F4 = −π4T 4 − 9π2T 2

16
a2 −

[
101

384
− 7

12
log

(
2πT

a

)
− 7

12
log
( a
Λ

)]
a4 +O(a6) ,

B4 =
7π2T 2

16
a2 +

[
593

1152
− 7

12
log

(
2πT

a

)
− 7

12
log
( a
Λ

)]
a4 +O(a6) , (A.7)

where Λ is a reference scale related to the conformal anomaly. Substituting into (A.6) we

find
Fx

Fiso

= 1 +
a2

16π2T 2
+O

(
a4

T 4

)
. [cosϕ = 0, small a/T ] (A.8)

Note that the dependence on the reference scale Λ has cancelled out in this result, as

expected from the discussion in the last paragraph of section 2. The result (A.8) shows

that the drag force on an ultra-relativistic quark moving along the transverse directions

in an anisotropic plasma with small a/T is greater than the drag in an isotropic plasma

at the same temperature, in agreement with our numerical results. In order to make this

comparison at equal entropy densities we use the fact that the entropy density at small

a/T is given by (see eq. (174) in [20])

s =
π2N2

c T
3

2
+

N2
c T

16
a2 +O

(
a4

T

)
. (A.9)

Inverting this relation,

T =

(
2

N2
c π

2

)1/3

s1/3

[
1− 1

24

(
N2

c

2π

)2/3
a2

s2/3
+O

(
a4

s4/3

)]
, (A.10)

substituting in (A.5) and taking the ratio with (3.28) we arrive at

Fx

Fiso

= 1− 1

48

(
N2

c

2π

)2/3
a2

s2/3
+O

(
a4

s4/3

)
. [cosϕ = 0, small a3/s] (A.11)

We see that, in contrast to the case of equal temperatures, the drag in the anisotropic

plasma is smaller if the comparison is made at equal entropy densities, again in agreement

with our numerical results.

In the limit of large a/T the coefficients F4,B4 can be obtained by combining

eqs. (35), (89) and (90) of [20]. The result is

F4 =
1

132

[
132a4cint + 77a4 log

( a
Λ

)
− 348centπ

2a1/3T 11/3 + · · ·
]
, (A.12)

B4 =
1

6336

[
−6336a4cint + 1331a4 − 3696a4 log

( a
Λ

)
+ 4032centπ

2a1/3T 11/3 + · · ·
]
, (A.13)

where cint in an integration constant and cent is the constant introduced in (2.5). Following

the same procedure as in the small-a case we find that the ratio at equal temperatures is

Fx

Fiso

=

√
2cent
π

a1/3

T 1/3
+ · · · , [cosϕ = 0, large a/T ] (A.14)
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where the dots stand for subleading terms in the large a/T limit, and at equal entropy

densities it is

Fx

Fiso

=
1

21/6π1/3c
3/16
ent

(
s

N2
c

)1/48 1

a1/16
+ · · · , [cosϕ = 0, large a3/s] (A.15)

We conclude that at large anisotropies the ultra-relativistic drag in the anisotropic case is

always greater than the isotropic drag.

B Small-anisotropy limit

For small values of a/T analytic expressions for the metric functions can be found [19, 20]

by perturbing around the isotropic case. The result is

F(u) = 1− u4

u4H
+ a2F2(u) +O(a4) , (B.1)

B(u) = 1 + a2B2(u) +O(a4) , (B.2)

logH(u) =
a2u2H
4

log

[
1 +

u2

u2H

]
+O(a4) , (B.3)

where

F2(u) =
1

24u2H

[
8u2(u2H − u2)− 10u4 log 2 + 3u4H + 7u4 log

(
1 +

u2

u2H

)]
, (B.4)

B2(u) = −u2H
24

[
10u2

u2H + u2
+ log

(
1 +

u2

u2H

)]
. (B.5)

Using these expressions in the general formulas of section 3 we obtain the correction to the

isotropic result for the drag force at leading order in a/T . The result for the drag force

along the longitudinal direction z is

Fz=Fiso(T )

⎡
⎣1+( a2

T 2

) 1−v2+
√
1−v2+(1+v2) log

(
1+

√
1−v2

)
24π2(1− v2)

+O
(
a4

T 4

)⎤⎦ , (B.6)

whereas for the transverse direction x it is

Fx=Fiso(T )

⎡
⎣1+( a2

T 2

) 1−v2+
√
1−v2+(4v2−5) log

(
1+

√
1−v2

)
24π2(1− v2)

+O
(
a4

T 4

)⎤⎦ , (B.7)

The O(a2/T 2) correction in (B.6) is positive for v ∈ [0, 1], whereas that in (B.7) is negative

for 0 ≤ v < vc and positive for v < vc ≤ 1, where vc � 0.9. This means that, for small

enough an anisotropy, the drag force along the longitudinal direction in the anisotropic

plasma is always larger than the drag force in an isotropic plasma at the same temperature

(but different entropy density). In the case of motion in the transverse direction the

anisotropic drag is smaller than the isotropic drag for low v and larger for high v. This is

in agreement with the numerical results of section 4.
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In order to compare with an isotropic plasma at the same entropy density (but

different temperature) we use the relation found in [20] for the entropy density of the

anisotropic plasma:

s =
π2N2

c T
3

2

[
1 +

a2

8π2T 2
+O

(
a4

T 4

)]
. (B.8)

Inverting this relation and substituting in (B.6) and (B.7) we get:

Fz=Fiso(s)

[
1+

a2

24

(
N2

c

2πs

)2/3 √
1−v2−(1−v2)+(1+v2) log(1+

√
1−v2)

1− v2
+O

(
a4

s4/3

)]
,

Fx=Fiso(s)

[
1+

a2

24

(
N2

c

2πs

)2/3√
1−v2−(1−v2)+(4v2−5) log(1+

√
1−v2)

1− v2
+O
(

a4

s4/3

)]
. (B.9)

In this case the leading correction is positive for all v in z-direction and negative for all v

in the x-direction. Again, this is in agreement with the numerical results of section 4.
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1 Introduction

A remarkable conclusion from the experiments at the Relativistic Heavy Ion Collider

(RHIC) [1, 2] and at the Large Hadron Collider (LHC) (see the contributions on ellip-

tic flow at the LHC in [3]) is that the quark-gluon plasma (QGP) does not behave as a

weakly coupled gas of quarks and gluons, but rather as a strongly coupled fluid [4, 5]. This

renders perturbative methods inapplicable in general. The lattice formulation of Quantum

Chromodynamics (QCD) is also of limited utility, since for example it is not well suited for

studying real-time phenomena. This has provided a strong motivation for understanding

the dynamics of strongly coupled non-Abelian plasmas through the gauge/string duality [6–

8] (see [9] for a recent review of applications to the QGP).

For a period of time τout immediately after the collision, the system thus created is

anisotropic and far from equilibrium. After a time τiso > τout the system becomes locally

isotropic. It has been proposed than an intrinsically anisotropic hydrodynamical descrip-

tion can be used to describe the system at intermediate times τout < τ < τiso [10–18]. In

this phase the plasma is assumed to have significantly unequal pressures in the longitudinal

and transverse directions. The standard hydrodynamic description is a derivative expan-

sion around equal pressures, and therefore it is not applicable in this regime. In contrast,

the intrinsically anisotropic hydrodynamical description is a derivative expansion around

an anisotropic state, and hence in this case the requirement that derivative corrections be

small does not imply small pressure differences. In a real collision the degree of anisotropy

will decrease with time, but for some purposes it is a good approximation to take it to be

constant over an appropriate time scale.

Motivated by these considerations, in this paper we will investigate the effect of an

intrinsic anisotropy on the momentum broadening experienced by a fast parton moving

through the plasma. For this purpose we will compute the jet quenching parameter for

an ultra-relativistic quark propagating through an anisotropic N = 4 super Yang-Mills

– 1 –
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Figure 1. Metric functions for a/T � 4.4 (left) and a/T � 86 (right).

plasma by means of its gravity dual [19, 20]. As we will review below, the plasma is held in

anisotropic equilibrium by an external force. The gravity solution possesses an anisotropic

horizon, it is completely regular on and outside the horizon, and it is solidly embedded in

type IIB string theory. For these reasons it provides an ideal toy model in which questions

about anisotropic effects at strong coupling can be addressed from first principles.

Previous calculations of the jet quenching parameter in the presence of anisotropy in

the context of the gauge/gravity correspondence include [21, 22]. While this paper was

being typewritten we received [23], in which the jet quenching parameter along particular

directions in the background of [19, 20] is studied in the limit of small anisotropy.

2 Gravity solution

The type IIB supergravity solution of [19, 20] in the string frame takes the form

ds2 =
L2

u2

(
−FB dt2 + dx2 + dy2 +Hdz2 +

du2

F

)
+ L2e

1
2
φdΩ2

5, (2.1)

χ = az , φ = φ(u) , (2.2)

where χ and φ are the axion and the dilaton, respectively, and (t, x, y, z) are the gauge

theory coordinates. Since there is rotational invariance in the xy-directions, we will refer

to these as the transverse directions, and to z as the longitudinal direction. F ,B and

H are functions of the holographic radial coordinate u that were determined numerically

in [19, 20]. Their form for two values of a/T is plotted in figure 1. The horizon lies at

u = uH, where F = 0, and the boundary lies at u = 0, where F = B = H = 1 and φ = 0.

The metric near the boundary asymptotes to AdS5 × S5. Note that the axion is linear in

the z-coordinate. The proportionality constant a has dimensions of mass and is a measure

of the anisotropy. The axion profile is dual in the gauge theory to a position-dependent

theta parameter that depends linearly on z. This acts as an isotropy-breaking external

source that forces the system into an anisotropic equilibrium state.

– 2 –
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The dashed blue line is a straight line with slope 1/3.

If a = 0 then the solution reduces to the isotropic black D3-brane solution dual to the

isotropic N = 4 theory at finite temperature. In this case

B = H = 1 , χ = φ = 0 , F = 1− u4

u4H
, uH =

1

πT
(2.3)

and the entropy density takes the form

siso =
π2

2
N2

c T
3 . (2.4)

figure 2 shows the entropy density of the anisotropic plasma as a function of the dimen-

sionless ratio a/T , normalized to the entropy density of the isotropic plasma at the same

temperature. At small a/T the entropy density scales as in the isotropic case, whereas at

large a/T it scales as [19, 20, 24]

s = centN
2
c a

1/3T 8/3 , (2.5)

where cent � 3.21. The transition between the two behaviours takes place approximately

around a/T � 3.7.

A feature of the solution (2.2) that played an important role in the analysis of [19, 20]

is the presence of a conformal anomaly. Its origin lies in the fact that diffeomorphism

invariance in the radial direction u gets broken in the process of renormalization of the on-

shell supergravity action. In the gauge theory this means that scale invariance is broken

by the renormalization process. One manifestation of the anomaly is the fact that, unlike

the entropy density, other thermodynamic quantities do not depend solely on the ratio

a/T but on a and T separately. This will not be the case for the jet quenching parameter,

which as we will see takes the form q̂(a, T ) = T 3f(a/T ).

3 Jet quenching parameter

In this section we will calculate the jet quenching parameter q̂ for an ultra-relativistic quark

following the prescription of refs. [25–27]. This instructs us to consider the worldsheet of a

– 3 –
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Figure 3. Relative orientation between the anisotropic direction z, the direction of motion of the

quark Z, and the direction in which the momentum broadening is measured Δp. In the context of a

heavy ion collision z would correspond to the longitudinal direction along the beam, and x, y to the

directions in the transverse plane. The direction of motion lies in the xz-plane at an angle θ with

respect to the z-axis. The momentum broadening takes place in any direction in the XY -plane

orthogonal to Z. X lies within the xz-plane, whereas y = Y is orthogonal to it. The angle in the

XY -plane between the Y axis and the direction of the momentum broadening is ϕ.

string whose endpoints move at the speed of light along a given boundary direction and are

separated a small distance � along an orthogonal direction. The former is the direction of

motion of the quark, and the latter is the direction along which the momentum broadening

takes place. In the presence of anisotropy the jet quenching parameter depends on how

these directions are oriented with respect to the longitudinal and transverse directions in

the plasma. Recall that there is rotational symmetry in the xy-directions but not in the

z-direction. In the context of a heavy ion collision z would correspond to the longitudinal,

beam direction, and x, y to the directions in the transverse plane. Given the rotational

symmetry in this plane, we will assume without loss of generality that the the direction of

motion is contained in the xz-plane, and we will denote it by Z (see figure 3). We call θ the

angle between this direction and the z-axis. The two independent orthogonal directions

to Z can then be chosen so that one, which we denote by X, lies within the xz-plane,

and the other one, Y , coincides with the y-axis. We denote as ϕ the polar angle in the

XY -plane with respect to the Y -axis. The XY Z-coordinate system is obtained from the

xyz-coordinate system by a rotation of angle θ around the y = Y axis, as described by

eq. (3.31) below. We will determine the jet quenching parameter associated to momentum

– 4 –
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broadening in an arbitrary direction in the XY -plane, and we will refer to it as q̂θ,ϕ in

order to emphasize that it depends on the two angles defined above.

Now recall that q̂ is the average momentum squared acquired by the quark after travel-

ing through the medium a unit distance [28]. If we call pϕ the component of the momentum

in the direction within the XY -plane specified by ϕ, then clearly

pϕ = pY cosϕ+ pX sinϕ . (3.1)

Squaring and taking an average we obtain

〈Δp2ϕ〉 = cos2 ϕ〈Δp2Y 〉+ sin2 ϕ〈Δp2X〉 , (3.2)

where we used the fact that 〈ΔpY ΔpX〉 = 0 given the symmetry under Y → −Y . Rewritten

in terms of the corresponding jet quenching parameters this becomes

q̂θ,ϕ = q̂θ,0 cos2 ϕ+ q̂θ,π/2 sin2 ϕ . (3.3)

We will see that the gravity calculation reproduces this relation.

Rather than starting with the most general case, for pedagogical reasons we will first

study two particular cases corresponding to motion along the longitudinal direction and

motion contained within the transverse plane. The general case will be discussed in sec-

tion 3.3.

3.1 Motion along the longitudinal direction

This case corresponds to θ = 0 and is the simplest one because the momentum broadening

takes place in the transverse xy-plane, which is rotationally symmetric. In particular, this

means that the result is independent of ϕ, since q̂0,0 = q̂0,π/2. In the context of heavy ion

collisions, this case corresponds to motion of the parton along the beam direction.

It is convenient to carry out the calculation using the light cone coordinates

z± =
t± z√

2
. (3.4)

Ignoring the sphere part, which will play no role in the following, the metric (2.1) reads

ds2 =
L2

u2

[
1

2
(H−FB)(dz+)2 + 1

2
(H−FB)(dz−)2

−(H+ FB)dz+dz− + dx2 + dy2 +
du2

F

]
. (3.5)

We consider a quark moving along z−. Given the symmetry in the xy-plane we set y = 0

without loss of generality. We then fix the static gauge by identifying (z−, x) = (τ, σ)

and specify the string embedding through one function u = u(x) subject to the boundary

condition that u(±�/2) = 0. Under these circumstances the Nambu-Goto action

S = − 1

2πα′

∫
dτdσ

√
− det gind (3.6)

– 5 –
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takes the form

S = 2i
L2

2πα′

∫
dz−

∫ �/2

0
dx

1

u2

√
1

2
(H−FB)

(
1 +

u′2

F

)
, (3.7)

where the factor of 2 comes from the fact that the integral over x covers only one half of the

string, and u′ = du/dx. Note that the action is imaginary because the string worldsheet is

spacelike, as expected in order for the jet quenching parameter to be real [26] (see also [9]

for an extensive discussion). The fact that the Lagrangian does not depend on x explicitly

leads to a conserved quantity Πx and to the first-order equation

u′2 =
F

2Π2
xu

4

[
(H−FB)− 2Π2

xu
4
]
. (3.8)

The turn-around point for the string is defined by u′ = 0. The prescription for computing

the jet quenching parameter instructs us to work in the limit � → 0. As we will see

below, this corresponds to the limit Πx → 0. In this case it is clear that the term inside

the square brackets is positive. This follows from the fact that H (FB) is monotonically

increasing (decreasing) from the boundary to the horizon, and that near the boundary

H−FB scales as a2u2/4.

We thus see that in the limit of interest the string descends all the way into the bulk

and turns around precisely at the black hole horizon, as in the isotropic case [25, 26]. As

explained in [27], the string worldsheet must have this property in order to be dual to a

gauge theory Wilson loop with the operator ordering required for the extraction of the jet

quenching parameter. The reason is that this ordering can be implemented by thinking of

the time coordinate t as a complex coordinate and requiring the worldlines of the quark

and the antiquark to lie on the Im t = 0 and Im t = −iε slices, respectively. In the black

hole geometry (2.2) Im t is periodic with period 1/T and these two slices only meet at

the horizon, irrespectively of whether a = 0 or a = 0. Therefore the string must descend

from the boundary to the horizon on the (say) Im t = 0 slice, turn around, and return

to the boundary on the Im t = −iε slice. However, since the metric on these two slices

is identical, the resulting string action is the same as that of a horizon-touching string

worldsheet that lies entirely on a single slice, and which is dual to a Wilson loop with a

different operator ordering. This is the reason why the subtlety identified in ref. [27] did

not change the isotropic result of refs. [25, 26], which considered a single slice. Exactly the

same equivalence applies in our anisotropic case, since all the string worldsheets that we

will consider turn around precisely at the horizon. For this reason in what follows we will

simply use the prescription from [25, 26].

Integrating equation (3.8) we obtain half the separation between the two endpoints of

the string along the spatial side of the Wilson loop:

�

2
=

√
2Πx

∫ uH

0
du

u2√
F
√
(H−FB)− 2Π2

xu
4
. (3.9)

Note that, as anticipated above, � → 0 as Πx → 0, and in this limit we have

� = 2
√
2ΠxIx +O(Π2

x) (3.10)

– 6 –
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with

Ix ≡
∫ uH

0
du

u2√
F
√
H−FB

(3.11)

a convergent integral.

To compute the jet quenching parameter we need to evaluate the on-shell action (3.7)

on the solution (3.8). After changing the integration variable from x to u the result is

S = i

√
λL−
√
2π

∫ uH

0
du

(H−FB)
u2

√
F
√

(H−FB)− 2Π2
xu

4
, (3.12)

where L− is the long side of the Wilson loop. This action diverges due to the integration

near u = 0. This can be seen by expanding in powers of Πx,

S = i

√
λL−
√
2π

∫ uH

0
du

√
H−FB
u2

√
F

+ i

√
λL−�2

8
√
2π Ix

+O(�4) , (3.13)

where we have used the relation (3.10). All terms of order �2 and higher are finite, whereas

the first, �-independent term diverges as log u. This term can be renormalized away using

several methods, including subtraction of the action of two disconnected strings [25, 26] or

addition to the string action of a counterterm proportional to log u
∫
dτ

√
γ, where γ is the

induced worldline metric on a constant-σ slice of the string worldsheet. The logarithm in

this counterterm illustrates the fact that the renormalized string action is sensitive to the

conformal anomaly in the gauge theory [19, 20]. However, the jet quenching parameter

is given by the finite �2-term, whose extraction does not require any renormalization. It

thus follows that q̂ is insensitive to the presence of the anomaly, as anticipated in the

Introduction. Using the prescription from [25, 26],

ei2S = 〈WA(C)〉 = exp

[
−L−�2

4
√
2
q̂

]
, (3.14)

where S denotes the finite part of the action, we finally arrive at

q̂z ≡ q̂0,ϕ =

√
λ

πIx
, (3.15)

where the subscript in q̂z reminds us of the direction of motion of the quark. Eq. (3.15)

reduces to the correct result in the isotropic limit. In this case, using (2.3), we see that

Ix = u2H

∫ uH

0
du

1√
1− u4/u4H

=
1

π3T 3

√
π Γ
(
5
4

)
Γ
(
3
4

) . (3.16)

Substituting into (3.15) we reproduce the isotropic result [25, 26]

q̂iso(T ) =
π3/2 Γ

(
3
4

)
Γ
(
5
4

) √
λT 3 . (3.17)

For later purposes it is useful to rewrite this in terms of the entropy density (2.4) as

q̂iso(s) =
2Γ
(
3
4

)
√
π Γ
(
5
4

)√λ
s

N2
c

. (3.18)
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Figure 4. Jet quenching parameter for a quark moving along the longitudinal z-direction as

a function of the anisotropy. q̂z = q̂0,ϕ and a are plotted in the appropriate units to facilitate

comparison with the isotropic result for a plasma at the same temperature (a), or at the same

entropy density (b). The isotropic result is given in eqs. (3.17) and (3.18).

Since for general a the metric functions in (2.2) are only known numerically, we have

numerically determined q̂z as a function of the magnitude of the anisotropy a measured in

units of the temperature or in units of the entropy density (see figure 4). The reason for

working with both is that we wish to compare the jet quenching in the anisotropic plasma

to that in the isotropic plasma, and this can be done at least in two different ways: the

two plasmas can be taken to have the same temperatures but different entropy densities,

or the same entropy densities but different temperatures.

3.2 Motion in the transverse plane

Given the rotational symmetry in the xy-plane, we will choose the direction of motion

to be the x-direction. Thus this case corresponds to θ = π/2 in the parametrization of

figure 3. Since there is no symmetry between the y and z directions, in this case the result

will depend on ϕ.

As in the previous example, it is convenient to work with adapted coordinates

x± =
t± x√

2
, (3.19)

in terms of which the metric takes the form

ds2 =
L2

u2

[
1

2
(1−FB)(dx+)2 + 1

2
(1−FB)(dx−)2

−(1 + FB)dx+dx− + dy2 +Hdz2 +
du2

F

]
. (3.20)

In this case we choose the static gauge (τ, σ) = (x−, u), set x+ = const., and specify the

string projection in the yz-plane as

y → cosϕy(u) , z → sinϕz(u) . (3.21)

– 8 –
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Under these circumstances, the Nambu-Goto action (3.6) becomes

S = 2i
L2

2πα′

∫
dx−

∫ uH

0
du

1

u2

√
1

2
(1−FB)

(
1

F + y′2 cos2 ϕ+Hz′2 sin2 ϕ
)
, (3.22)

where the primes denote differentiation with respect to u and the overall factor of 2 comes

from the two branches of the string. We now follow the procedure in the previous section

to obtain the jet quenching parameter. Since the Lagrangian does not depend on y, z

explicitly we find that

y′ =
√
2H u2Πy

√
F
√

H (1−FB)− 2u4
(
HΠ2

y cos
2 ϕ+Π2

z sin
2 ϕ
) (3.23)

and

z′ =
√
2u2Πz

√
HF
√
H (1−FB)− 2u4

(
HΠ2

y cos
2 ϕ+Π2

z sin
2 ϕ
) , (3.24)

where Πy and Πz are conserved quantities (into which some factors of cosϕ and sinϕ have

been absorbed). An argument analogous to that in section 3.1 shows that the denominators

in these expressions only vanish at the horizon in the small-Π limit. By integrating these

equations we obtain the separation between the two endpoints of the string. As in the

previous section we will be interested in the limit Πy,Πz → 0, so we work to lowest order

in these quantities:

� = 2
√
2Πy Ixy +O

(
Π2
)
, � = 2

√
2Πz Ixz +O

(
Π2
)
, (3.25)

with

Ixy ≡
∫ uH

0
du

u2√
F(1−FB)

, Ixz ≡
∫ uH

0
du

u2

H
√

F(1−FB)
(3.26)

convergent integrals. Substituting the solution (3.23)-(3.24) into the action (3.22), expand-

ing in powers of Π and keeping only the term of order Π2 we obtain

S =
i
√
λL−

√
2π

∫ uH

0
du

(
u2Π2

y cos2 ϕ√
F(1−FB)

+
u2Π2

z sin2 ϕ

H
√
F(1−FB)

)
. (3.27)

Using (3.25) and (3.26) the action becomes

S =
i
√
λL−�2

8
√
2π

(
cos2 ϕ

Ixy
+

sin2 ϕ

Ixz

)
, (3.28)

so applying the prescription (3.14) and defining

q̂⊥ ≡ q̂π/2,0 =

√
λ

πIyx
, q̂L ≡ q̂π/2,π/2 =

√
λ

πIyz
(3.29)

we finally arrive at

q̂π/2,ϕ = q̂⊥ cos2 ϕ+ q̂L sin
2 ϕ . (3.30)

This is a particular case of the relation (3.3) anticipated above. In figure 5 we have plotted

this result for several values of ϕ.
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Figure 5. Jet quenching parameter q̂π/2,ϕ associated to momentum broadening in the yz-plane for

a quark moving along the transverse direction x. The direction in the yz-plane lies at an angle (from

top to bottom) ϕ = π/2, π/3, π/6, 0 with respect to the y-axis (see figure 3). The top (bottom)

curves correspond to momentum broadening along the longitudinal (transverse) direction. q̂π/2,ϕ
and a are plotted in the appropriate units to facilitate comparison with the isotropic result for a

plasma at the same temperature (a), or at the same entropy density (b). The isotropic result is

given in eqs. (3.17) and (3.18).

3.3 Arbitrary motion

We now consider an arbitrary motion within the xz-plane, as explained in figure 3. For

this purpose we first define rotated coordinates X, Z through

z = Z cos θ −X sin θ ,

x = Z sin θ +X cos θ ,

y = Y , (3.31)

and then we go to light-cone coordinates by setting

t =
Z− + Z+

√
2

, Z =
Z− − Z+

√
2

. (3.32)

Recall that Z is the direction of motion. We thus fix the static gauge Z− = τ, u = σ, and

seek a solution for the string embedding parametrized as

Z+ = Z+(u) , X → X(u) sinϕ , Y → Y (u) cosϕ . (3.33)

With this choice ϕ is the polar angle in the plane orthogonal to Z between the direction

of momentum broadening and the Y -axis. Note that we must allow for a non-constant

embedding in the Z+-direction in order to find a solution.

Starting from the ansatz above it is straightforward to obtain the Nambu-Goto ac-

tion (3.6). However, the resulting expression is quite lengthy and we will not write it down

explicitly. As in the previous sections, we can use the fact that the action does not depend

explicitly on Z+, X, and Y . This allows us to express the derivatives with respect to u of

these embedding functions in terms of three constants of motion, which we call Π+, ΠX ,
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and ΠY . We are only interested in the limit in which these quantities are small. In this

limit we find

(z+)′ = c++Π+ +
1

sinϕ
c+XΠX +O

(
Π2
)
, (3.34)

X ′ =
1

sinϕ
cX+Π+ +

1

sin2 ϕ
cXXΠX +O

(
Π2
)
, (3.35)

Y ′ =
1

cos2 ϕ
cY Y ΠY +O

(
Π2
)
, (3.36)

with

c++ ≡ 1√
2

u2(FB(cos2 θ +H sin2 θ)−H)

FBH
√

F(sin2 θ +H cos2 θ −FB)
, (3.37)

cXX ≡
√
2u2(sin2 θ +H cos2 θ)

H
√
F(sin2 θ +H cos2 θ −FB)

, (3.38)

c+X = cX+ ≡ u2(H− 1) sin θ cos θ

H
√

F(sin2 θ +H cos2 θ −FB)
, (3.39)

cY Y ≡
√
2u2√

F(sin2 θ +H cos2 θ −FB)
. (3.40)

An argument analogous to that in section 3.1 shows that the denominators in these expres-

sions only vanish at the horizon in the small-Π limit. The endpoints of the string are not

separated in the z+-direction, so we must have
∫
dz+ = 0. Integrating (3.34) then gives

Π+ = − 1

sinϕ

∫ uH

0 du c+X∫ uH

0 du c++
ΠX +O

(
Π2
)
. (3.41)

This result can now be used in the integration of eq. (3.35) to obtain ΠX :

ΠX =
�

2

sin2 ϕ
∫ uH

0 du c++(∫ uH

0 du c++

) (∫ uH

0 du cXX

)
−
(∫ uH

0 du c+X

)2 +O
(
Π2
)
. (3.42)

Similarly, integrating (3.36) yields

ΠY =
�

2

cos2 ϕ∫ uH

0 du cY Y
+O

(
Π2
)
. (3.43)

Inserting eqs. (3.34)–(3.36) into the action, expanding to quadratic order in the Π’s and

dropping the leading, Π-independent term we find

S = 2i

√
λL−

4π

∫ uH

0
du

[
c++Π

2
+ +

1

sin2 ϕ
cXXΠ2

X +
2

sinϕ
c+XΠ+ΠX +

1

cos2 ϕ
cY Y Π

2
Y

]
.

(3.44)

With the explicit expressions (3.41)–(3.43) this reduces to

S = 2i

√
λL−�2

16π

[
P (θ) sin2 ϕ+Q(θ) cos2 ϕ

]
, (3.45)
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with

P (θ) ≡
∫ uH

0 du c++(∫ uH

0 du c++

) (∫ uH

0 du cXX

)
−
(∫ uH

0 du c+X

)2 , Q(θ) ≡ 1∫ uH

0 du cY Y
. (3.46)

Using the prescription (3.14) we finally arrive at

q̂θ,ϕ =

√
2λ

π

[
P (θ) sin2 ϕ+Q(θ) cos2 ϕ

]
. (3.47)

We see that we have indeed derived the expected relation (3.3) with

q̂θ,0 =

√
2λ

π
P (θ) , q̂θ,π/2 =

√
2λ

π
Q(θ) . (3.48)

Setting θ = 0 in (3.47) we recover the previous result (3.30). In figure 6 we have plotted

the result (3.47) for ϕ = 0 and ϕ = π/2 as a function of the ratios a/T and aN2/3
c /s1/3

for different values of θ. In figures 7 and 8 we have plotted the result as a function of

θ and ϕ for several values of a/T and aN2/3
c /s1/3, respectively. Note that when θ = 0

(motion along the longitudinal direction) the rotational symmetry in the xy-plane implies

that the jet quenching parameter is independent of ϕ. For this reason the blue, dotted

curves in figures 6(a)-(b) agree with the blue, solid curves in figures 6(c)-(d). The red,

solid curves in figures 5 also agree with the red, dotted curves in figures 6(c)-(d), since they

both correspond to θ = ϕ = π/2. Similarly, the green, dotted curves in figures 5 agree with

the green, solid curves in figures 6(a)-(b), since they both correspond to θ = π/2, ϕ = 0.

4 Discussion

The momentum broadening of a highly relativistic parton moving through a non-Abelian

plasma is described by the jet quenching parameter q̂. We have considered an anisotropic

N = 4 SYM plasma in which the x, y directions are rotationally symmetric, but the z-

direction is not. In the context of heavy ion collisions the latter would correspond to the

beam direction, and the former to the transverse plane. The jet quenching parameter

depends on the relative orientation between these directions on the one hand, and the

direction of motion of the parton and the direction in which the momentum broadening

is measured, on the other. This dependence can be parametrized by two angles (θ, ϕ),

as shown in figure 3. We have determined the jet quenching parameter q̂θ,ϕ for the most

general orientation and for any anisotropy. Our results are valid in the strong-coupling,

large-Nc limit, since we have obtained them by means of the gravity dual [19, 20] of the

anisotropic N = 4 plasma. The anisotropy is induced by a position-dependent theta term

in the gauge theory, or equivalently by a position-dependent axion on the gravity side.

One may therefore wonder how sensitive the conclusions may be to the specific source of

the anisotropy. In this respect it is useful to note that the gravity calculation involves

only the coupling of the string to the background metric. This means that any anisotropy

that gives rise to a qualitatively similar metric (and no Neveu-Schwarz B-field) will yield

qualitatively similar results for the jet quenching parameter irrespectively of the form of

the rest of supergravity fields.
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Figure 6. Jet quenching parameter for a quark moving along an arbitrary direction in the xz-

plane, associated to momentum broadening along the transverse y-direction (top) or within the

xz-plane (bottom). In (a) and (b) the angle between the direction of motion and the longitudinal

z-direction is (from top to bottom) θ = 0, π/6, π/3, π/2, whereas the correspondence in (c) and (d)

is θ = 5π/12 (brown, dashed), 49π/100 (magenta, dotted-dashed), π/2 (red, dotted), π/3 (cyan,

coarsely dashed), and 0 (blue, continuous). q̂θϕ and a are plotted in the appropriate units to

facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at

the same entropy density (right). The isotropic result is given in eqs. (3.17) and (3.18).

For small enough an anisotropy the jet quenching parameter q̂θ,ϕ is always larger

than that in an isotropic plasma at the same temperature (but different entropy density),

regardless of the directions of motion and of momentum broadening. This feature is difficult

to appreciate in figures 4(a), 5(a), 6(a) and 6(c) because of the scale in the horizontal axis,

but it can be clearly seen in figure 7(a). Increasing the anisotropy, q̂θ,ϕ remains larger than

the isotropic value except in a small region close to the (θ, ϕ) = (π/2, 0) corner, which

we recall corresponds to the momentum broadening along the y-direction experienced by

a quark propagating along the x-axis. This region is most clearly shown in figure 9(a), in

which we have plotted the curves along which q̂θ,ϕ = q̂iso(T ), i.e. the intersections between

the two surfaces shown in each of the plots in figure 7. We see that the two regions

separated by these curves depend mildly on the value of a/T , which varies by more than

two orders of magnitude between the magenta, dashed curve (a/T = 12.2) and the black,

dotted curve (a/T = 3380).
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Figure 7. Jet quenching parameter for a quark moving along an arbitrary direction within the

xz-plane as a function of the angles θ and ϕ and for anisotropies a/T = 1.38 (a), 12.2 (b), 86 (c),

3380 (d). q̂θ,ϕ is plotted in the appropriate units to facilitate comparison with the isotropic result

for a plasma at the same temperature. The isotropic result is given in eq. (3.17).

Another interesting feature of the comparison at equal temperature is that, at small

a/T , q̂θ,ϕ is larger for θ � 0, whereas for large a/T the situation gets inverted and q̂θ,ϕ
becomes larger for θ � π/2 (except in the small region close to the (θ, ϕ) = (π/2, 0)

corner). In other words, at small a/T the momentum broadening is larger for quarks

propagating along the beam axis z, whereas at large a/T it is larger for quarks propagating

in the transverse plane (unless the momentum broadening is measured very close to the

orthogonal direction within the transverse plane). Finally, we see that in most of the region

where q̂θ,ϕ > q̂iso(T ), the value of the anisotropic jet quenching parameter increases with

a/T . This can be seen by noting the scales in the vertical axes in the plots of figure 7,

as well as from the slices at constant values of θ and ϕ shown in figures 4(a), 5(a), 6(a)

and 6(c).

In contrast, if the comparison is made between plasmas at equal entropy densities

(but different temperatures), then the anisotropic jet quenching parameter can be either

smaller or larger than its isotropic counterpart for any value of the entropy density, as seen

in figure 8. As most clearly shown in figure 9(b), for small aN2/3
c /s1/3 the anisotropic jet

quenching parameter is greater than the isotropic one except in a small region close to
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Figure 8. Jet quenching parameter for a quark moving along an arbitrary direction within the

xz-plane as a function of the angles θ and ϕ and for anisotropies aN2/3
c /s1/3 = 0.80 (a), 6.24 (b),

18.2 (c), 20.2 (d), 35.5 (e), 928 (f). q̂θ,ϕ is plotted in the appropriate units to facilitate comparison

with the isotropic result for a plasma at the same entropy density. The isotropic result is given in

eq. (3.18).

θ = π/2, i.e. for all quarks except those propagating close to the transverse plane. This

situation gets progressively inverted as aN2/3
c /s1/3 increases, until for large aN2/3

c /s1/3

the anisotropic q̂θ,ϕ is only larger than q̂iso(s) near the (θ, ϕ) = (π/2, π/2) corner, which

we recall corresponds to the momentum broadening along the z-direction experienced by
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Figure 9. Above (below) these curves in the (θ, ϕ) plane the jet quenching q̂θ,ϕ of the anisotropic

plasma is larger (smaller) than the jet quenching of an isotropic plasma at the same temperature

(a) or at the same entropy density (b). In (a) the curves correspond to a/T = 1.38 (green, solid),

12.2 (magenta, dashed), 86 (blue, dot-dashed) and 3380 (black, dotted). In (b) they correspond to

aN2/3
c /s1/3 = 0.80 (solid, green), 6.24 (magenta, dashed), 18.2 (red, coarsely dashed), 20.2 (purple,

very coarsely dashed), 35.5 (blue, dot-dashed) and 928 (black, dotted).

a quark propagating along the x-direction. Thus we see that when the two plasmas are

compared at equal entropy densities, the regions where the anisotropic jet quenching is

larger or smaller than the isotropic one depend strongly on the value of the entropy density.

Also in contrast with the equal-temperature case, at equal entropy densities the value

of the jet quenching parameter for almost all orientations of the directions of motion and

of momentum broadening decreases as aN2/3
c /s1/3 increases. This can be seen from the

scale in the vertical axes of figure 8, as well as from the slices at constant values of θ and

ϕ shown in figures 4(b), 5(b), 6(b) and 6(d).

One feature that the equal-entropy results share with the equal-temperature ones is

that, at small aN2/3
c /s1/3, q̂θ,ϕ is larger for θ � 0, whereas for large aN2/3

c /s1/3 the situation

gets inverted and q̂θ,ϕ becomes larger for θ � π/2 (except in the small region close to the

(θ, ϕ) = (π/2, 0) corner). This agreement is of course expected, since the normalizations

q̂iso(T ) or q̂iso(s) cancel out when comparing the values of q̂θ,ϕ for different values of θ, ϕ at

constant values of T or s.

We will now compare our results to the results for the momentum broadening in

the real-world QGP in the presence of anisotropies [29–32].1 This comparison should be

interpreted with caution because the sources of anisotropy in the QGP created in a heavy

ion collision and in our system are different, and for this reason we will limit our comparison

to qualitative features of the results. In the QGP the anisotropy is dynamical in the sense

that it is due to the initial distribution of particles in momentum space, which will evolve

in time and eventually become isotropic. In contrast, in our case the anisotropy is due

1Refs. [33, 34] considered an explicitly time-dependent situation, so we will not attempt a comparison

with their results.
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to an external source that keeps the system in an equilibrium anisotropic state that will

not evolve in time. We hope that, nevertheless, our system might provide a good toy

model for processes whose characteristic time scale is sufficiently shorter than the time

scale controlling the time evolution of the QGP.

The most interesting case to consider in the context of heavy ion collisions is that of

a quark propagating within the transverse plane, which we discussed in section 3.2. In

this case the momentum broadening along the beam axis, q̂L, and along the transverse

plane, q̂⊥, will generically differ. Refs. [29–31] compared these quantities to their isotropic

counterpart in a plasma at the same temperature. They found that q̂L � q̂iso > q̂⊥,
i.e. that the momentum broadening along the beam axis increases slightly in the presence

of anisotropy, whereas the momentum broadening in the transverse plane decreases more

significantly. These effects become stronger as the anisotropy grows. These results were

suggested as a possible explanation of the asymmetric broadening of jet profiles in the

plane of pseudorapidity (η) and azimuthal angle (φ) [28, 35–38].

The calculations in refs. [29–31] rely on the existence of quasi-particles in the plasma. In

contrast, our strongly coupled model possess no quasi-particle excitations. In this model we

find that the ordering is indeed q̂L > q̂iso > q̂⊥ for a/T � 6.35, but for smaller anisotropies

we find that q̂L > q̂⊥ > q̂iso. The latter region is not clearly seen in figure 5(a) because of

the scale in the horizontal axis, but it is illustrated in figure 7(a), where we see that at

a/T = 1.38 we have q̂θ,ϕ > q̂iso for all θ, ϕ. Note that a/T � 6.35 is a sizable anisotropy,

since the transition between the two limiting behaviours of the entropy density shown in

figure 2 takes place around a/T � 3.7.

Another difference is that, even for a/T � 6.35, the most significant effect of the

anisotropy is actually on q̂L, whose increase with a/T is faster than the decrease of q̂⊥, as
seen in figure 5(a). The momentum broadening at an intermediate angle ϕ with respect

to the transverse plane is given by eq. (3.30), and this can be smaller or larger than the

isotropic value. To illustrate this in figure 10 we have plotted a curve in the (a/T, ϕ)

plane below (above) which the anisotropic jet quenching parameter is larger (smaller) than

its counterpart in an isotropic plasma at the same temperature. Finally, we note from

figure 5(b) that, if the comparison is made at equal entropy densities, then the ordering we

find is q̂iso > q̂L > q̂⊥ for all values of aN2/3
c /s1/3, and moreover the most significant effect

in this case is the fast decrease of q̂⊥ as aN2/3
c /s1/3 increases.

We close by emphasizing one general conclusion of our analysis, namely the fact that

whether the jet quenching parameter increases or decreases with respect to its isotropic

value depends sensitively on whether the comparison is made at equal temperatures but dif-

ferent entropy densities, or viceversa. This contrasts with our recent calculation of the drag

force in the same system [39]. In that case the comparison between the anisotropic and the

isotropic plasmas was relatively insensitive to whether it was done at equal temperatures or

at equal entropy densities. This discrepancy is not surprising. The momentum broadening

and the drag force are related to each other in the limit v → 0 by the fluctuation-dissipation

theorem (see e.g. [40–42] for a discussion in the context of AdS/CFT). However, we have

considered the ultra-relativistic limit v = 1, in which case there is a priori no relation

between the momentum broadening and the drag force.
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Figure 10. Below (above) this curve in the (a/T, ϕ) plane the jet quenching parameter q̂xϕ of

the anisotropic plasma is larger (smaller) than the jet quenching of the isotropic plasma at the

same temperature.

Acknowledgments

It is a pleasure to thank Mauricio Martinez, and specially Jorge Casalderrey-Solana, for

helpful discussions. MC is supported by a postdoctoral fellowship from Mexico’s Na-

tional Council of Science and Technology (CONACyT). We acknowledge financial sup-

port from 2009-SGR-168, MEC FPA2010-20807-C02-01, MEC FPA2010-20807-C02-02 and

CPAN CSD2007-00042 Consolider-Ingenio 2010 (MC, DF and DM), and from DE-FG02-

95ER40896 and CNPq (DT).

References

[1] STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search

for the quark gluon plasma: The STAR collaboration’s critical assessment of the evidence

from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

[2] PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic

nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration,

Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

[3] Proceedings of the Quark Matter 2011, May 23–28, Annecy, France (2011), published in J.

Phys. G 38 (2011).

[4] E. Shuryak, Why does the quark gluon plasma at RHIC behave as a nearly ideal fluid?, Prog.

Part. Nucl. Phys. 53 (2004) 273 [hep-ph/0312227] [INSPIRE].

[5] E.V. Shuryak, What RHIC experiments and theory tell us about properties of quark-gluon

plasma?, Nucl. Phys. A 750 (2005) 64 [hep-ph/0405066] [INSPIRE].

[6] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200]

[INSPIRE].

[7] S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

– 18 –



J
H
E
P
0
8
(
2
0
1
2
)
0
4
1

[8] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[9] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string

duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

[10] W. Florkowski, Anisotropic fluid dynamics in the early stage of relativistic heavy-ion

collisions, Phys. Lett. B 668 (2008) 32 [arXiv:0806.2268] [INSPIRE].

[11] W. Florkowski and R. Ryblewski, Dynamics of anisotropic plasma at the early stages of

relativistic heavy-ion collisions, Acta Phys. Polon. B 40 (2009) 2843 [arXiv:0901.4653]

[INSPIRE].

[12] R. Ryblewski and W. Florkowski, Early anisotropic hydrodynamics and the RHIC

early-thermalization and HBT puzzles, Phys. Rev. C 82 (2010) 024903 [arXiv:1004.1594]

[INSPIRE].

[13] W. Florkowski and R. Ryblewski, Highly-anisotropic and strongly-dissipative hydrodynamics

for early stages of relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 034907

[arXiv:1007.0130] [INSPIRE].

[14] M. Martinez and M. Strickland, Dissipative dynamics of highly anisotropic systems, Nucl.

Phys. A 848 (2010) 183 [arXiv:1007.0889] [INSPIRE].

[15] R. Ryblewski and W. Florkowski, Non-boost-invariant motion of dissipative and highly

anisotropic fluid, J. Phys. G 38 (2011) 015104 [arXiv:1007.4662] [INSPIRE].

[16] M. Martinez and M. Strickland, Non-boost-invariant anisotropic dynamics, Nucl. Phys. A

856 (2011) 68 [arXiv:1011.3056] [INSPIRE].

[17] R. Ryblewski and W. Florkowski, Highly anisotropic hydrodynamics — Discussion of the

model assumptions and forms of the initial conditions, Acta Phys. Polon. B 42 (2011) 115

[arXiv:1011.6213] [INSPIRE].

[18] R. Ryblewski and W. Florkowski, Highly-anisotropic and strongly-dissipative hydrodynamics

with transverse expansion, Eur. Phys. J. C 71 (2011) 1761 [arXiv:1103.1260] [INSPIRE].

[19] D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its

instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].

[20] D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled

anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].

[21] K. Bitaghsir Fadafan, B. Pourhassan and J. Sadeghi, Calculating the jet-quenching parameter

in STU background, Eur. Phys. J. C 71 (2011) 1785 [arXiv:1005.1368] [INSPIRE].

[22] J. Sadeghi and B. Pourhassan, Jet-quenching of the rotating heavy meson in a N = 4 SYM

plasma in presence of a constant electric field, Int. J. Theor. Phys. 50 (2011) 2305

[arXiv:1001.0706] [INSPIRE].

[23] D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP 07 (2012) 031

[arXiv:1202.4436] [INSPIRE].

[24] T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points,

JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].

[25] H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from

AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].

[26] H. Liu, K. Rajagopal and U.A. Wiedemann, Wilson loops in heavy ion collisions and their

calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].

– 19 –



J
H
E
P
0
8
(
2
0
1
2
)
0
4
1

[27] F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet

quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].

[28] R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and

pT broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265

[hep-ph/9608322] [INSPIRE].

[29] P. Romatschke, Momentum broadening in an anisotropic plasma, Phys. Rev. C 75 (2007)

014901 [hep-ph/0607327] [INSPIRE].

[30] A. Dumitru, Y. Nara, B. Schenke and M. Strickland, Jet broadening in unstable non-abelian

plasmas, Phys. Rev. C 78 (2008) 024909 [arXiv:0710.1223] [INSPIRE].

[31] B. Schenke, A. Dumitru, Y. Nara and M. Strickland, QGP collective effects and jet transport,

J. Phys. G 35 (2008) 104109 [arXiv:0804.4557] [INSPIRE].

[32] R. Baier and Y. Mehtar-Tani, Jet quenching and broadening: the transport coefficient q-hat

in an anisotropic plasma, Phys. Rev. C 78 (2008) 064906 [arXiv:0806.0954] [INSPIRE].

[33] A. Majumder, B. Müller and S. Mrowczynski, Momentum broadening of a fast parton in a

perturbative quark-gluon plasma, Phys. Rev. D 80 (2009) 125020 [arXiv:0903.3683]

[INSPIRE].

[34] S. Mrowczynski, On the dynamics of unstable quark-gluon plasma, Acta Phys. Polon. Supp. 3

(2010) 639 [arXiv:0911.0022] [INSPIRE].

[35] P. Jacobs, Jets in nuclear collisions: Status and perspective, Eur. Phys. J. C 43 (2005) 467

[nucl-ex/0503022] [INSPIRE].

[36] STAR collaboration, F. Wang, Measurement of jet modification at RHIC, J. Phys. G 30

(2004) S1299 [nucl-ex/0404010] [INSPIRE].

[37] STAR collaboration, J. Adams et al., Distributions of charged hadrons associated with high

transverse momentum particles in pp and Au + Au collisions at s
1/2
NN = 200GeV, Phys. Rev.

Lett. 95 (2005) 152301 [nucl-ex/0501016] [INSPIRE].

[38] J. Putschke, Intra-jet correlations of high-pT hadrons from STAR, J. Phys. G 34 (2007)

S679 [nucl-ex/0701074] [INSPIRE].

[39] M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Drag force in a strongly coupled

anisotropic plasma, arXiv:1202.3696 [INSPIRE].

[40] C. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. Yaffe, Energy loss of a heavy quark

moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013

[hep-th/0605158] [INSPIRE].

[41] J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4

Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].

[42] J. Casalderrey-Solana and D. Teaney, Transverse momentum broadening of a fast quark in a

N = 4 Yang-Mills plasma, JHEP 04 (2007) 039 [hep-th/0701123] [INSPIRE].

– 20 –



A study of anisotropy in strongly coupled plasmas 126

...

3.3 Screening length of mesons
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1 Introduction

A remarkable conclusion from the experiments at the Relativistic Heavy Ion Collider

(RHIC) [1, 2] and at the Large Hadron Collider (LHC) (see the contributions on ellip-

tic flow at the LHC in [3]) is that the quark-gluon plasma (QGP) does not behave as a

weakly coupled gas of quarks and gluons, but rather as a strongly coupled fluid [4, 5]. This

places limitations on the applicability of perturbative methods. The lattice formulation of

Quantum Chromodynamics (QCD) is also of limited utility, since for example it is not well

suited for studying real-time phenomena. This has provided a strong motivation for under-

standing the dynamics of strongly coupled non-Abelian plasmas through the gauge/string

duality [6–8] (see [9] for a recent review of applications to the QGP). In general, a neces-

sary requirement for the string description to be tractable is that the plasma be infinitely

strongly coupled, λ = g2YMNc → ∞. Of course, the real-world QGP is not infinitely strongly

coupled, and its dynamics involves a complex combination of both weak and strong cou-

pling physics that depend on the possibly multiple scales that characterize the process of

interest. The motivation for studying string models is that they provide examples in which

explicit calculations can be performed from first principles at strong coupling, in particular
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in the real-time domain. The hope is then that, by understanding the weak and the strong

coupling limits, one may be able to bracket the dynamics of the real-world QGP, which

lies somewhere in between.

During the initial stage after the collision the plasma is far from equilibrium, and after

a certain time a hydrodynamic description becomes applicable. If one thinks of hydrody-

namics as a gradient expansion around a locally isotropic system, it is somewhat surprising

that the hydrodynamic description actually becomes applicable when the longitudinal and

transverse pressures are still significantly different. This can be explicitly seen, for example,

in holographic descriptions [10–13] in which gravity provides a valid description all the way

from the far-from-equilibrium phase to the locally isotropic phase, across the intermediate

hydrodynamic-but-still-anisotropic phase. Thus, during most of the time that viscous hy-

drodynamics is applied, the plasma created in a heavy ion collision is anisotropic, with the

level of anisotropy in fact increasing as one approaches the edge of the system. The fact that

the range of time and space over which the QGP is anisotropic is larger than traditionally

assumed has provided additional motivation for the study of anisotropic plasmas.

In this paper we will investigate the effect of an intrinsic anisotropy on the screening

length between a quark-antiquark pair in a strongly coupled plasma. As we will review

below, the plasma is static because it is held in anisotropic equilibrium by an external

force [14, 15]. We will discuss all the caveats in more detail below, but we emphasize from

the beginning that there are several reasons why, in terms of potential extrapolations to

the real-world QGP, our results must be interpreted with caution. First, the sources of

anisotropy in the QGP created in a heavy ion collision and in our system are different. In

the QGP the anisotropy is dynamical in the sense that it is due to the initial distribution

of particles in momentum space, which will evolve in time and eventually become isotropic.

In contrast, in our case the anisotropy is due to an external source that keeps the system

in an equilibrium anisotropic state that will not evolve in time. Nevertheless, we hope that

our system might provide a good toy model for processes whose characteristic time scale

is sufficiently shorter than the time scale controlling the evolution of a dynamical plasma.

The second caveat concerns the fact that, even in an static situation, different external

sources can be chosen to hold the plasma in equilibrium, so one may wonder to what extent

the results depend on this choice. We will provide a partial answer to this question in sec-

tion 7, where we will explain that our qualitative results, for example the ultrarelativistic

limit, do not depend on the details of our solution but only on a few general features.

Nevertheless, it would still be very interesting to compute the same observables in other

strongly coupled, static, anisotropic plasmas. Only then a general picture would emerge

that would allow one, for example, to understand which observables are robust, in the sense

that they are truly insensitive to the way in which the plasma is held in anisotropic equi-

librium, and which ones are model-dependent. Obviously it is the first type of observables

that have a better chance of being relevant for the real-world QGP. Our paper should be

regarded as a first step in this general program.

We will consider the screening length in the case in which the quark-antiquark pair is

at rest in the plasma as well as the case in which it is moving through the plasma. For this

purpose we will examine a string with both endpoints on the boundary of an asymptotically
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AdS spacetime [14, 15] that is dual to an anisotropic N = 4 super Yang-Mills plasma. The

gravity solution possesses an anisotropic horizon, it is completely regular on and outside the

horizon, and it is solidly embedded in type IIB string theory. For these reasons it provides

an ideal toy model in which questions about anisotropic effects at strong coupling can be

addressed from first principles. For the particular case of a quark-antiquark pair at rest,

the screening length has also been computed [16] in a different model [17] of a strongly

coupled, anisotropic plasma. The results exhibit some differences with respect to those

presented here. While this may indicate some model dependence of the screening length,

it is important to note that the solution of [17] possesses a naked singularity. Although

this is a rather benign singularity, its presence introduces a certain amount of ambiguity

in the calculations, which can only be performed by prescribing somewhat ad hoc boun-

dary conditions at the singularity. In any case, this discussion is another indication that it

would be interesting to compute the screening length in a larger class of models in order

to ascertain which of its features are model-independent.

To avoid any possible confusion, we clarify from the beginning that the quarks and

antiquarks that we will consider are infinitely massive, i.e. the bound states that we will

consider are the analogue of heavy quarkonium mesons in QCD. Thus, the reader should

always have the word ‘quarkonium’ in mind despite the fact that we will often refer to these

states simply as ‘mesons’, ‘heavy mesons’, ‘quark-antiquark bound states’, ‘dipoles’, etc.

This is specially relevant in the ultra-relativistic limit of the screening length, to which

we will pay particular attention since it can be determined analytically. We emphasize

that our results correspond to sending the quark and antiquark masses to infinity first,

and then sending v → 1. In particular, this means that in any future attempt to connect

our results to the phenomenology of the QGP, this connection can only be made to the

phenomenology of heavy quarkonium moving through the plasma.

The screening length for quarkonium mesons at rest in the anisotropic plasma of [14, 15]

has been previously studied in [16, 18]. Our section 4 has some overlap with these refer-

ences and, wherever they overlap, our results agree with theirs. Other physical properties

of the anisotropic plasma that have been calculated include its shear viscosity [19, 20], the

drag force on a heavy quark [18, 21], the jet quenching parameter [16, 18, 22], and the

energy lost by a rotating quark [23]. The phase diagram of the zero-coupling version of

the model considered in [14, 15] has been studied in [24]. Dissociation of baryons in the

isotropic N = 4 plasma has been analyzed in [25].

2 Gravity solution

The type IIB supergravity solution of [14, 15] in the string frame takes the form

ds2 =
L2

u2

(
−FB dt2 + dx2 + dy2 +Hdz2 +

du2

F

)
+ L2e

1
2
φdΩ2

5, (2.1)

χ = az , φ = φ(u) , (2.2)

where χ and φ are the axion and the dilaton, respectively, and (t, x, y, z) are the gauge

theory coordinates. Since there is rotational invariance in the xy-directions, we will refer

– 3 –
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Figure 1. Metric functions for a/T � 4.4 (left) and a/T � 86 (right).

to these as the transverse directions, and to z as the longitudinal direction. F ,B and

H are functions of the holographic radial coordinate u that were determined numerically

in [14, 15]. Their form for two values of a/T is plotted in figure 1. The horizon lies at

u = uH, where F = 0, and the boundary at u = 0, where F = B = H = 1 and φ = 0. The

metric near the boundary asymptotes to AdS5 × S5. Note that the axion is linear in the

z-coordinate. The proportionality constant a has dimensions of mass and is a measure of

the anisotropy. The axion profile is dual in the gauge theory to a position-dependent theta

parameter of the form θ ∝ z. This acts as an isotropy-breaking external source that forces

the system into an anisotropic equilibrium state.

If a = 0 then the solution reduces to the isotropic black D3-brane solution dual to the

isotropic N = 4 theory at finite temperature. In this case

B = H = 1 , χ = φ = 0 , F = 1− u4

u4H
, uH =

1

πT
(2.3)

and the entropy density takes the form

siso =
π2

2
N2

c T
3 . (2.4)

Figure 2 shows the entropy density per unit 3-volume in the xyz-directions of the

anisotropic plasma as a function of the dimensionless ratio a/T , normalized to the en-

tropy density of the isotropic plasma at the same temperature. At small a/T the entropy

density scales as in the isotropic case, whereas at large a/T it scales as [14, 15, 26]

s = centN
2
c a

1/3T 8/3 , [a/T � 1] (2.5)

where cent is a constant that can be determined numerically. The transition between the

two asymptotic behaviors of the entropy density takes place at a/T � 3.7.

For later use we list here the near-boundary behavior of the different functions that

determine the solution (2.2):

F = 1 +
11

24
a2u2 +

(
F4 +

7

12
a4 log u

)
u4 +O(u6) ,

– 4 –
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Figure 2. Log-log plot of the entropy density per unit 3-volume in the xyz-directions as a function

of a/T , with siso defined as in eq. (2.4). The dashed blue line is a straight line with slope 1/3.

B = 1− 11

24
a2u2 +

(
B4 −

7

12
a4 log u

)
u4 +O(u6) ,

H = 1 +
1

4
a2u2 −

(
2

7
B4 −

5

4032
a4 − 1

6
a4 log u

)
u4 +O(u6) . (2.6)

The coefficients F4 and B4 depend on a and T and are known analytically in the limits of

low, and high temperature and numerically for intermediate regimes [15].

A feature of the solution (2.2) that played an important role in the analysis of [14, 15]

is the presence of a conformal anomaly. Its origin lies in the fact that diffeomorphism

invariance in the radial direction u gets broken in the process of renormalization of the

on-shell supergravity action. In the gauge theory this means that scale invariance is

broken by the renormalization process. One manifestation of the anomaly is the fact

that, unlike the entropy density, other thermodynamic quantities do not depend solely

on the ratio a/T but on a and T separately. Fortunately, this will not be the case for the

screening length, as we will see below.

To facilitate a (rough) comparison of the anisotropy in our system to that in other

anisotropic plasmas it is useful to consider the ratio

α =
4E + P⊥ − PL

3Ts
, (2.7)

where E is the energy density and P⊥, PL are the transverse and longitudinal pressures,

respectively. In addition to being dimensionless, this ratio has the virtue that it does not

depend on a and T separately, but only on the combination a/T . For the isotropic N = 4

super Yang-Mills plasma α = 1, whereas for 0 < a/T � 20 the ratio is well approximated

by the expression

α � 1− 0.0036
( a
T

)2
− 0.000072

( a
T

)4
, (2.8)

as shown in figure 3.

At various points we will refer to the limit T = 0 of the anisotropic plasma. The

zero-temperature version of the solution (2.2) was found in [26]. In this case the

string-frame metric exhibits a naked curvature singularity deep in the infra-red, and the

– 5 –
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Figure 3. Ratio (2.7) as a function of a/T . The blue dots are the actual values of the ratio, and

the red curve is the fit (2.8).

Einstein-frame metric exhibits infinite tidal forces [27, 28]. However, we emphasize that,

for any finite temperature, the singularity is hidden behind the horizon and the solution

is completely regular on and outside the horizon, exhibiting no pathologies of any type.

Thus we will think of the T = 0 results as those obtained by taking the limit T → 0 of

the finite-temperature results. Moreover, regulating the infra-red geometry in this or any

other way is actually unnecessary for most of the physics of quarkonium dissociation. The

reason is that, as we will see, in the limit in which a/T becomes large the penetration

depth into the AdS bulk of the string that is dual to the quarkonium meson becomes very

small. As a result, the dissociation is entirely controlled by the metric near the boundary,

which is insensitive to the infra-red behavior described above.

3 Preliminaries

In this paper we define the screening length Ls as the separation between a quark and an

antiquark such that for � < Ls (� > Ls) it is energetically favorable for the quark-antiquark

pair to be bound (unbound) [29, 30]. Obviously this satisfies Ls ≤ Lmax, where Lmax is the

maximum separation Lmax for which a bound quark-antiquark solution exists. We will de-

termine Ls by comparing the action S(�) of the bound pair, which is a function of the quark-

antiquark separation �, to the action Sunbound of the unbound system, i.e. by computing:

ΔS(�) = S(�)− Sunbound . (3.1)

The screening length is the maximum value of � for which ΔS is positive (since we will

work in Lorentzian signature). This may correspond to the value of � at which ΔS crosses

zero, in which case Ls < Lmax, or the maximum value of � for which a bound state exists,

in which case Ls = Lmax. In the Euclidean version of our calculations, this criterion cor-

responds to determining which configuration has the lowest free energy, which is therefore

the configuration that is thermodynamically preferred. As shown in figure 4, for a meson

moving through the isotropic plasma (2.3) one has Ls < Lmax for v < vtrans, whereas for

v > vtrans one finds that Ls = Lmax, where vtrans � 0.45 is the transition velocity between the

two behaviors [31–33]. These qualitative features extend to the anisotropic case, as we have

– 6 –



J
H
E
P
0
1
(
2
0
1
3
)
1
7
0

0.00 0.05 0.10 0.15 0.20 0.25
�3.5

�3.0

�2.5

�2.0

�1.5

�1.0

�0.5

0.0

Δ
E

d
ip

o
le
/T

√
λ

T �
Figure 4. Energy difference, as defined in (3.2), between a bound and an unbound quark-antiquark

pair moving through the isotropic plasma (2.3) with velocities (from the rightmost curve to the

leftmost curve) v = 0, 0.35, 0.85, 0.996. The dipole is oriented orthogonally to its velocity. For

v < vtrans one has Ls < Lmax, whereas for v > vtrans one finds L = Lmax, where vtrans � 0.45 is the

transition velocity between the two behaviors. At v = 0 the screening length and the maximum

separation are Ls � 0.24/T and Lmax � 0.27/T , respectively.

illustrated in figure 5. The transition velocity decreases with the anisotropy, so for large

a/T one has Ls = Lmax except for very low velocities. Similarly, if the ultra-relativistic

limit v → 1 is taken at fixed a and T , then obviously v > vtrans and again Ls = Lmax.

All our calculations will be done in the rest frame of the quark-antiquark pair, to

which we will refer as the dipole rest frame. Since any observable can be easily translated

between this frame and the plasma rest frame, we will speak interchangeably of ‘mesons

in a plasma wind’ and of ‘mesons in motion in the plasma’. We emphasize however that

all the physical quantities that we will present, e.g. the screening length, are computed in

the dipole rest frame.

The actions are scalar quantities, so ΔSdipole = ΔSplasma. Moreover, in the dipole rest

frame we have

ΔSdipole = −T ΔEdipole , (3.2)

since the dipole is static in its own rest frame. In this expression Edipole is the energy

(as opposed to the free energy) of the configuration and T =
∫
dt is the length of the

integration region in time. Thus we see that our criterion, which is based on comparing

the actions, can also be thought of as a comparison between the energies of the bound

and the unbound configurations in the dipole rest frame.

We will see that the ultraviolet divergences in the string action associated to integra-

ting all the way to the boundary of AdS cancel out in the difference (3.1), and neither the

bound nor the unbound actions possess infrared divergences associated to integrating all

the way down to the horizon. This can be verified explicitly and it also follows from their

relation to the energy in the rest frame of the dipole: while the energy of the unbound

string pair possesses an infrared logarithmic divergence in the plasma rest frame [34], no

such divergence is present in the dipole rest frame (see e.g. the discussion in [33]).
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Figure 5. Energy difference in an anisotropic plasma, as defined in (3.2), between a bound and

an unbound quark-antiquark pair oriented along the transverse direction x and moving along the

anisotropic direction z. All the curves on the left correspond to a/T = 12.2 and different velocities

(from the rightmost curve to the leftmost curve) v = 0, 0.35, 0.85, 0.996. All the curves on the

right correspond to the same velocity v = 0.25 and different anisotropies (from the rightmost curve

to the leftmost curve) a/T = 0, 6.5, 43, 744. For these anisotropies the corresponding transition

velocities are respectively given by vtrans = 0.45, 0.29, 0.19, 0.11.

4 Static dipole in an anisotropic plasma

In an anisotropic plasma the screening length depends on the relative orientation between

the dipole and the anisotropic direction z. Given the rotational symmetry in the xy-plane

we assume without loss of generality that the dipole lies in the xz-plane, at an angle θ with

the z-axis. We thus choose the static gauge t = τ, σ = u and specify the string embedding as

x → sin θ x(u) , z → cos θ z(u) . (4.1)

The string action takes the form

S = − L2

2πα′ 2
∫

dt

∫ umax

0
du

1

u2

√
B
(
1 + FH cos2 θ z′2 + F sin2 θ x′2

)
, (4.2)

where the 2 comes from the two branches of the string and umax will be determined below.

The conserved momenta associated to translation invariance in the x, z directions are
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given by

Πx =
1

sin θ

∂L
∂x′

=
BF sin θ x′

u2
√
B
(
1 + FH cos2 θ z′2 + F sin2 θ x′2

) , (4.3)

Πz =
1

cos θ

∂L
∂z′

=
BFH cos θ z′

u2
√
B
(
1 + FH cos2 θ z′2 + F sin2 θ x′2

) . (4.4)

Inverting these relations we find

x′ =
√
H csc θ u2Πx√

F
√

BFH − u4 (Π2
z +HΠ2

x)
, z′ =

sec θ u2Πz√
FH
√

BFH − u4 (Π2
z +HΠ2

x)
. (4.5)

Substituting back in the action we arrive at

S = − L2

2πα′ 2
∫

dt

∫ umax

0
du

1

u2
B
√
FH√

BFH − u4 (Π2
z +HΠ2

x)
. (4.6)

For a U-shaped string describing a bound quark-antiquark pair the turning point umax

is determined in terms of the momenta by the condition that x′(umax) = z′(umax) → ∞.

This happens if umax = uH, in which case F(umax) = 0, or if

BFH − u4
(
Π2

z +HΠ2
x

)∣∣
umax

= 0 . (4.7)

The first possibility is not physically relevant because the second possibility is always real-

ized first, meaning that the string turns around at umax < uH, before reaching the horizon.

The only exception is the case Πx = Πz = 0, but this corresponds to x′ = z′ = 0, namely to

an unbound pair of strings that descend from the boundary straight down to the horizon.

The momenta are determined by the boundary conditions that require the string end-

points to lie a distance � apart from each other:

�

2
=

∫ umax

0
dux′ =

∫ umax

0
du z′ . (4.8)

These two equations, together with (4.7), can be solved numerically to express the momenta

and umax in terms of �. In this way the on-shell action (4.6) for a bound pair becomes a

function of � alone. In order to determine Ls we subtract from this action the action of a

static, unbound quark-antiquark pair, which is described by two straight strings hanging

down from the boundary to the horizon. The action of this unbound pair is equal to (4.6)

with the momenta set to zero and the range of integration extended down to the horizon:

Sunbound = − L2

2πα′ 2
∫

dt

∫ uH

0
du

√
B

u2
. (4.9)

We obtain the screening length by numerically determining the value of � at which the

difference S(�)− Sunbound crosses zero, since in the static case we always have Ls < Lmax.

The result for this difference as a function of � in the isotropic plasma [29, 30] described

by eq. (2.3) is plotted in figure 4, from which we see that the screening length is

Liso(T ) �
0.24

T
[static dipole] . (4.10)
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Figure 6. Screening length as a function of the anisotropy for a static quark-antiquark dipole

lying at an angle with the z-direction (from top to bottom on the right-hand side of the plot)

θ = π/2, π/3, π/4, π/6, 0. The screening length is plotted in the appropriate units to facilitate

comparison with the isotropic result for a plasma at the same temperature (left), or at the same

entropy density (right). The isotropic result is given in eqs. (4.10) and (4.11).
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Figure 7. Screening length for a quark-antiquark dipole lying at an angle θ with the z-direction

for anisotropies a/T = 12.2 (red, solid), 42.6 (maroon, coarsely dashed), 86 (violet, dashed), 744

(orange, dot-dashed). The corresponding values in units of the entropy density are (in the same

order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length is plotted in the appropriate units to

facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at

the same entropy density (right). The isotropic result is given in eqs. (4.10) and (4.11).

The scaling with the temperature is expected on dimensional grounds. In the isotropic

case the temperature and the entropy density are related simply through (2.4), so this

result can be recast as

Liso(s) � 0.24

(
π2N2

c

2s

)1/3

[static dipole] , (4.11)

which will be useful later.

The results in the anisotropic case are plotted in figures 6 and 7. Figure 6 shows

the screening length, for several orientations of the dipole, as a function of the anisotropy

measured in units of the temperature (left) and the entropy density (right). The reason

– 10 –



J
H
E
P
0
1
(
2
0
1
3
)
1
7
0

for working with both normalizations is that we wish to compare the screening length in

the anisotropic plasma to that in the isotropic plasma, and this can be done at least in two

different ways: the two plasmas can be taken to have the same temperatures but different

entropy densities, or the same entropy densities but different temperatures. Figure 7

shows the screening length as a function of the dipole orientation for several values of the

anisotropy.

We see from figure 6(left) that Ls decreases monotonically as a increases, for any

dipole orientation, if the temperature is kept fixed. We also see from figure 7(left) that this

effect is more pronounced for a dipole oriented along the anisotropic direction. In contrast,

the behavior of the screening length at constant entropy density depends on the dipole’s

orientation, as shown in figures 6(right) and 7(right). For dipole’s aligned sufficiently close

to the anisotropic direction the screening length decreases with the anisotropy, whereas

for orientations sufficiently close to the transverse plane the screening length increases

with the anisotropy.

5 Dipole in an anisotropic plasma wind

In this section we will consider a static quark-antiquark pair in an anisotropic plasma that

is moving with constant velocity with respect to the dipole — a dipole in an ‘anisotropic

plasma wind’. We will pay particular attention to the ultra-relativistic limit, which can

be understood analytically.1 This limit, together with the static results from section 4,

will allow us to understand qualitatively the results at any velocity 0 < v < 1.

We will first rewrite the solution (2.2) in a boosted frame, and then place a dipole in it

— see figure 8. Given the rotational symmetry in the xy-plane we assume that the boost

velocity is contained in the xz-plane, and that it lies at an angle θv with the z-axis. Thus

we first rotate to a new coordinate system defined through

t = t̃ ,

x = z̃ sin θv + x̃ cos θv ,

y = ỹ ,

z = z̃ cos θv − x̃ sin θv , (5.1)

and then perform a boost along the z̃-direction by setting

t̃ = γ
(
t′ − v z′

)
,

x̃ = x′ ,

ỹ = y′ ,

z̃ = γ
(
−v t′ + z′

)
, (5.2)

where γ = 1/
√
1− v2 is the usual Lorentz factor. Below we will consider a dipole with an

arbitrary orientation with respect to both the velocity of the plasma and the anisotropic

1We recall that we first send the quark mass to infinity and then v → 1 (see section 1).
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Figure 8. Orientation of the dipole in an anisotropic plasma wind. The wind’s velocity lies in the

original xz-plane (before the boost (5.2)) at an angle θv with respect to the anisotropic direction z.

The quark lies at angles �q = (x, y, z) = �
2 (sin θ sinϕ, sin θ cosϕ, cos θ) with respect to the relabeled

directions (after the boost (5.2)), and the antiquark lies at −�q.

direction z — see figure 8. We parametrize the orientation of the dipole by two angles

θ, ϕ so that the quark lies at

�q = (x′, y′, z′) =
�

2
(sin θ sinϕ, sin θ cosϕ, cos θ) (5.3)

and the antiquark lies at −�q.

For notational simplicity, below we will drop the primes in the final set of coordinates.

To avoid confusion, we emphasize that the direction θv of the plasma wind is always mea-

sured with respect to the original (x, y, z) axes, i.e. before the rotation and the boost above.

In particular, motion within (outside) the transverse plane refers to a dipole in a plasma

wind with θv = π/2 (θv = π/2). In contrast, the orientation of the dipole is measured

with respect to the final set of coordinates (x′, y′, z′). However, if instead of specifying the

dipole’s orientation through a pair (θ, ϕ) we specify it by saying that the dipole is aligned

with the x-, y- or z-directions, then we are referring to the original directions. Just as

an illustration, consider the case of a plasma wind blowing along the original x-direction,

i.e. a plasma wind with θv = π/2. Then we see from (5.1) and (5.2) that (x, z) ∼ (z′, x′).
Thus in this case by ‘a dipole oriented along the x-direction’ we mean a dipole with θ = 0.

After dropping the primes from the final set of coordinates in (5.2) the five-dimensional

part of the metric (2.2) takes the form

ds2=
L2

u2

(
−gttdt

2+gxxdx
2+dy2+gzzdz

2+gtxdt dx+gtzdt dz+gxzdx dz+
du2

F

)
, (5.4)
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where

gtt =
BF − v2(sin2 θv +H cos2 θv)

1− v2
, (5.5)

gxx = cos2 θv +H sin2 θv , (5.6)

gzz =
sin2 θv +H cos2 θv − v2BF

1− v2
, (5.7)

gtx =
(H− 1)v√

1− v2
sin(2θv) , (5.8)

gtz =
2v(BF − sin2 θv −H cos2 θv)

1− v2
, (5.9)

gxz =
1−H√
1− v2

sin(2θv) . (5.10)

In order to determine the screening length for a generic velocity we need to compare the

actions of a bound and an unbound quark-antiquark pair, as in the static case of section 4.

However, in the ultra-relativistic this is not strictly necessary because Ls = Lmax (see

section 3). In other words, in this limit we only need to determine the maximum possible

quark-antiquark separation for which a bound state exists. Nevertheless, for completeness

we will briefly present the analysis of the unbound configuration. Each of the strings in the

unbound pair is one of the trailing strings studied in [21], so the reader is referred to this

reference for additional details. Note, however, that [21] worked in the plasma rest frame.

Here we will work in the dipole’s rest and focus on the ultra-relativistic limit.

5.1 Unbound quark-antiquark pair

As in section 4 we fix the static gauge t = τ , σ = u, and specify the embedding of the

unbound string as

x → x(u) , z → z(u) . (5.11)

The embedding in the y-direction is simply y = 0 because of rotational symmetry in the

xy-plane and because the string is unbound. As we will see below, in the case of a bound

string (dipole) the boundary conditions will generically imply a non-trivial embedding y(u).

The action for the unbound string reads

Sunbound = − L2

2πα′ 2
∫

dt

∫ uH

0
du

1

u2

√
F−1K0 +Kxxx′2 +Kzzz′2 +Kxzx′z′ , (5.12)

where

K0 = gtt ,

Kxx =
BF(cos2 θv +H sin2 θv)−Hv2

1− v2
,

Kzz = BF
(
sin2 θv +H cos2 θv

)
,

Kxz =
BF(1−H)√

1− v2
sin(2θv) . (5.13)
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Introducing the conjugate momenta

Πx =
∂Lunbound

∂x′
, Πz =

∂Lunbound

∂z′
(5.14)

and solving for x′, z′ we find

x′ =
u2

F
√
BH

Nx√
D

, z′ =
u2

F
√
BH

Nz√
D

, (5.15)

where

Nx = KzzΠx −
1

2
KxzΠz ,

Nz = −1

2
KxzΠx +KxxΠz ,

D = BHFK0 − u4
(
KzzΠ

2
x +KxxΠ

2
z −KxzΠxΠz

)
. (5.16)

Substituting into the action we arrive at

Sunbound = − L2

2πα′ 2
∫

dt

∫ uH

0
du

√
BHK0

u2
√
D

. (5.17)

The momenta are determined by the condition that (5.15) remain real for a string that

extends all the way from the boundary to the horizon. Following [21] we analyze this

condition by noting that D can be rewritten as

D =
2u4

Kxz
NxNz − b

[
ΠxΠz − c

][
BF − v2(sin2 θv +H cos2 θv)

]
(5.18)

where

b =
Hu4

(1−H)
√
1− v2 sin θv cos θv

, c =
BF(1−H) sin θv cos θv

u4
√
1− v2

. (5.19)

As in [21] we must require that the zeros of the second summand in (5.18) coincide with

one another and with those of Nx and Nz. One of the zeros of the second summand occurs

at a critical value u = uc such that

BcFc − dc v
2 = 0 , dc ≡ Hc cos

2 θv + sin2 θv , (5.20)

where Bc = B(uc), etc. At this point we have

NxNz|uc
=

v4 cos θv sin θv√
1− v2

(Hc − 1) dc

[
dcΠx +

(Hc − 1) cos θv sin θv√
1− v2

Πz

]2
. (5.21)

Noting that Hc > 1 and that Kxz < 0, we see that D would be negative at uc unless the

momenta are related through

Πx =
(1−Hc) cos θv sin θv

dc
√
1− v2

Πz . (5.22)

– 14 –



J
H
E
P
0
1
(
2
0
1
3
)
1
7
0

Assuming this relation and requiring that the other zero in the second summand of (5.18)

coincide with uc yields

Π2
z =

BcFc dc
u4c

, Π2
x =

BcFc(Hc − 1)2 cos2 θv sin
2 θv

u4c(1− v2)dc
. (5.23)

Note that Πz does not vanish for any value of θv, whereas Πx vanishes if θv = 0, π/2.

The reason is that for these two particular orientations the plasma wind blows along the

original z- or x-directions and the string orients itself with the corresponding axis [21]. As

a consequence, the momentum along the orthogonal axis vanishes. However, the changes of

coordinates (5.1) and (5.2) always relabel the direction of motion as z, so after these changes

the non-vanishing momentum is labelled Πz irrespectively of whether θv = 0 or θv = π/2.

We will analyze in detail the ultra-relativistic limit. This is facilitated by explicitly

distinguishing the case of motion outside the transverse plane (θv = π/2) and motion

within the transverse plane (θv = π/2).

5.1.1 Ultra-relativistic motion outside the transverse plane

In the ultra-relativistic limit uc approaches the boundary, i.e. uc → 0, and we can use the

near-boundary expansion (2.6) to determine it. The condition (5.20) yields in this limit [21]

u2c � 4(1− v2)

a2 cos2 θv
[θv = π/2] , (5.24)

which when substituted in (5.23) gives the momenta

Π2
z �

a4 cos4 θv
16(1− v2)2

, Π2
x � a4 cos2 θv sin

2 θv
16(1− v2)

. (5.25)

In these expressions we have ignored subleading terms in an expansion in 1 − v2, for

example we have set v � 1, Hc � 1, etc. Note that in this expansion Πx is subleading

with respect to Πz.

For later use we must evaluate how Sunbound scales with 1− v2 in the limit v → 1. For

this purpose we split the integration region, and hence the action (5.17), as

Sunbound = S
(1)
unbound + S

(2)
unbound , (5.26)

where S
(1)
unbound is the action with the integral in u ranging between 0 and uc, and S

(2)
unbound

is the action with the integral in u ranging between uc and uH. The reason for this

separation is that in the first interval u is small and hence we will be able to use the

near-boundary expressions (2.6), (5.24) and (5.25). In order to exhibit the dependence

on 1 − v2 of S
(1)
unbound explicitly, it is convenient to work with a rescaled variable r which

remains finite in the v → 1 limit, defined though

u = r
√
1− v2 , uc = rc

√
1− v2 . (5.27)

In terms of this variable we get

S
(1)
unbound=− L2

2πα′
2√

1−v2

∫
dt

∫ rc

0
dr

1− 1
4a

2r2 cos2 θv + . . .

r2
√
1− 1

4a
2r2 cos2 θv− 1

16a
4r4 cos4 θv+. . .

. (5.28)
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The divergence near r = 0 will cancel out with that in the action for the bound string. The

integrand is smooth across r = rc. The crucial point is that the result is O
[
(1− v2)−1/2

]
in

the counting in powers of 1−v2, and we will find this same scaling in the bound string action

(see below). In contrast, S
(2)
unbound scales as 1− v2 in the ultra-relativistic limit. The reason

is that u is not small in units of 1− v2 in the corresponding region of integration, so all the

dependence comes from the fact that the action (5.17) scales as 1/Πz ∼ 1−v2 in this region.

5.1.2 Ultra-relativistic motion within the transverse plane

In this case θv = π/2 and hence we see from (5.23) that Πx = 0. The condition (5.20) now

gives [21]

u2c �
√

1− v2

C
, (5.29)

where

C =
121

576
a4 −F4 − B4 , (5.30)

and we recall that F4,B4 are the coefficients that enter the near-boundary expansion (2.6).

Substituting (5.29) into (5.23) and dropping subleading terms as before we obtain the

momentum in the z-direction (recall that this corresponds to the original x-direction):

Πz �
1

u2c
=

√
C

1− v2
. (5.31)

It is now convenient to work with a rescaled radial coordinate r defined through

u = r(1− v2)1/4 . (5.32)

Splitting the unbound string action as before, we find

S
(1)
unbound = − L2

2πα′
2

(1− v2)1/4

∫
dt

∫ rc

0
dr

1− Cr4 + . . .

r2
√
1− 2Cr4 + . . .

. (5.33)

Again, the divergence near r = 0 will cancel out with that in the action for the bound

string, which will also be of O
[
(1− v2)−1/4

]
in the counting in powers of 1 − v2 (see

below). In contrast, S
(2)
unbound scales as 1/Πx ∼

√
1− v2 in the ultra-relativistic limit, and

is therefore subleading.

In summary, we find that in the ultra-relativistic limit

Sunbound =

⎧⎪⎨
⎪⎩

O
[
(1− v2)−1/2

]
if θv = π/2 [outside the transverse plane]

O
[
(1− v2)−1/4

]
if θv = π/2 [within the transverse plane] .

(5.34)

5.2 Bound quark-antiquark pair

We now consider a dipole with an arbitrary orientation with respect to both the velocity

of the plasma and the anisotropic direction z — see figure 8. As before we fix the static

gauge τ = t, σ = u and specify the string embedding via three functions (x(u), y(u), z(u))

subject to the boundary conditions

�

2
sin θ sinϕ =

∫ umax

0
x′du ,
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�

2
sin θ cosϕ =

∫ umax

0
y′du ,

�

2
cos θ =

∫ umax

0
z′du , (5.35)

where umax is the turning point of the U-shaped string. The integral in the action of the

bound string extends only up to this point and now includes a term proportional to y′2:

S = − L2

2πα′ 2
∫

dt

∫ umax

0
du

1

u2

√
F−1K0 +Kxxx′2 +Kyyy′2 +Kzzz′2 +Kxzx′z′ . (5.36)

All the K’s were defined in (5.13) except for Kyy, which is given by

Kyy =
BF − v2(sin2 θv +H cos2 θv)

1− v2
. (5.37)

The momenta are defined as

Πx =
∂L
∂x′

, Πy =
∂L
∂y′

, Πz =
∂L
∂z′

. (5.38)

Inverting these equations we get

x′ =
u2

F
√
BH

√
D

(
KzzΠx −

1

2
KxzΠz

)
,

y′ =
u2

√
BH√
D

Πy ,

z′ =
u2

F
√
BH

√
D

(
−1

2
KxzΠx +KxxΠz

)
, (5.39)

where

D = BHFK0 − u4
(
Kzz Π

2
x + BFHΠ2

y +KxxΠ
2
z −Kxz ΠxΠz

)
. (5.40)

Substituting these expressions into the action (5.36) we get

S = − L2

2πα′ 2
∫

dt

∫ umax

0
du

√
BHK0

u2
√
D

. (5.41)

As in the case of the unbound string, we will now distinguish between the cases of motion

outside and within the transverse plane, focusing on the ultra-relativistic limit.

5.2.1 Ultra-relativistic motion outside the transverse plane

The turn-around point umax is defined by the condition D(umax) = 0. In the ultra-

relativistic limit we expect that this point approaches the boundary for the string solution

of interest, as in the isotropic case. Thus in this limit umax can be determined by using

the near-boundary expansions of the metric functions (2.6).

In the limit u → 0 we find the following expansions:

Kzz � 1 +
a2u2 cos2 θv

4
+ · · · , (5.42)
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Kxz � 0− a2u2 sin θv cos θv

2
√
1− v2

+ · · · , (5.43)

Kxx � 1− a2u2 cos2 θv
4(1− v2)

+ · · · , (5.44)

from which it follows that

D � 1− a2u2 cos2 θv
4(1− v2)

− u4(Π2
x +Π2

y +Π2
z) + · · · . (5.45)

Similarly, the boundary conditions (5.35) take the form

�

2
sin θ sinϕ �

∫ umax

0
du

u2√
D

Πx + · · · , (5.46)

�

2
sin θ cosϕ �

∫ umax

0
du

u2√
D

Πy + · · · ,

�

2
cos θ �

∫ umax

0
du

u2√
D

(
1− a2u2 cos2 θv

4(1− v2)

)
Πz + · · · ,

In the ultra-relativistic limit, all the terms that we have omitted in the equations above,

in particular in (5.45) and (5.47), are subleading with respect to the terms that we have

retained provided the radial coordinate and the momenta scale as

u = r
√
1− v2 , Πi =

pi
1− v2

, (5.47)

where r and pi are kept fixed in the limit v → 1. In terms of these rescaled variables (5.47)

the boundary conditions (5.47) take the form

�

2
sin θ sinϕ �

√
1− v2 px I2(p, θv) ,

�

2
sin θ cosϕ �

√
1− v2 py I2(p, θv) ,

�

2
cos θ �

√
1− v2 pz

(
I2(p, θv)−

a2 cos2 θv
4

I4(p, θv)
)

, (5.48)

where the integral

In(p, θv) ≡
∫ rmax

0
dr

rn√
1− a2r2

4 cos2 θv − r4(p2x + p2y + p2z)
(5.49)

is of O(1) in the counting in powers in (1− v2), and is finite if n ≥ 0. Further noting that

K0 = 1− a2u2 cos2 θv
4(1− v2)

+O(u4) � 1− a2r2 cos2 θv
4

, (5.50)

we see that the bound action scales as

S � − L2

2πα′
2√

1− v2

(
I−2(p, θv)−

a2 cos2 θv
4

I0(p, θv)
)∫

dt . (5.51)
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Since both this bound action and the unbound action (5.28) scale as (1 − v2)−1/2, the

divergence at r = 0 in the bound action coming from the I−2(p, θv) integral would exactly

cancel that in the unbound action in the difference (3.1). Moreover, by comparing the two

actions we would conclude that the momenta pi introduced in (5.47) are indeed of O(1) in

the counting in powers of (1− v2) in the ultra-relativistic limit. It would then follow that

the integrals In(p, θv) are also of O(1), and therefore that the screening length scales as

Ls ∼ (1− v2)1/2 in the ultra-relativistic limit. However, as explained below (5.10), in the

ultra-relativistic Ls = Lmax is simply the maximum possible separation between a bound

quark-antiquark pair, so it can be determined by maximizing � in (5.48) with respect to

the momenta. Since the integrals are bounded from above for any value of the pi, and the

maximum is v-independent, it follows that Ls = Lmax ∼ (1− v2)1/2.

5.2.2 Ultra-relativistic motion within the transverse plane

In this case θv = π/2 and the expansions ofD and of the boundary conditions (5.35) become

D � 1− Cu4

1− v2
− u4(Π2

x +Π2
y +Π2

z) + · · · (5.52)

and

�

2
sin θ sinϕ �

∫ umax

0
duu2

Πx√
1− Cu4

1−v2
− u4(Π2

x +Π2
y +Π2

z)
+ · · · ,

�

2
sin θ cosϕ �

∫ umax

0
duu2

Πy√
1− Cu4

1−v2
− u4(Π2

x +Π2
y +Π2

z)
+ · · · ,

�

2
cos θ �

∫ umax

0
duu2

(
1− Cu4

1−v2

)
Πz√

1− Cu4

1−v2
− u4(Π2

x +Π2
y +Π2

z)
+ · · · ,

where C was defined in (5.30). As in the previous section, in the ultra-relativistic limit all

the terms that we have omitted in the equations above are subleading with respect to the

terms that we have retained provided the radial coordinate and the momenta scale in this

case as

u = r(1− v2)1/4 , Πi =
pi√

1− v2
, (5.53)

where r and pi are kept fixed in the limit v → 1. In terms of the rescaled variables the

boundary conditions (5.53) become

�

2
sin θ sinϕ � (1− v2)1/4 px J2(p) ,

�

2
sin θ cosϕ � (1− v2)1/4 py J2(p) ,

�

2
cos θ � (1− v2)1/4 pz (J2(p)− CJ6(p)) , (5.54)
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where the integral

Jn(p) =

∫ rmax

0
dr

rn√
1− r4(C + p2x + p2y + p2z)

(5.55)

is of O(1) in the counting in powers in (1− v2), and is finite if n ≥ 0. Further noting that

K0 = 1− C

1− v2
u4 +O(u6) � 1− Cr4 , (5.56)

we see that the bound action becomes

S � − L2

2πα′
2

(1− v2)1/4

(
J−2(p)− CJ2(p)

)∫
dt . (5.57)

Since both this bound action and the unbound action (5.33) scale as (1 − v2)−1/4, the

divergence at r = 0 in the bound action coming from the J−2(p) integral would exactly

cancel that in the unbound action in the difference (3.1). Moreover, by comparing the two

actions we would conclude that the momenta pi introduced in (5.53) are indeed of O(1)

in the counting in powers of (1 − v2) in the ultra-relativistic limit. It would then follow

that the integrals Jn(p) are also of O(1), and therefore that the screening length scales as

Ls ∼ (1− v2)1/4 in the ultra-relativistic limit. However, as explained below (5.10), in the

ultra-relativistic Ls = Lmax is simply the maximum possible separation between a bound

quark-antiquark pair, so it can be determined by maximizing � in (5.54) with respect to

the momenta. Since the integrals are bounded from above for any value of the pi, and the

maximum is v-independent, it follows that Ls = Lmax ∼ (1− v2)1/4.

In summary, we conclude that in the dipole rest frame the screening length scales in

the ultra-relativistic limit as

Ls ∼

⎧⎪⎨
⎪⎩

(1− v2)1/2 if θv = π/2 [motion outside the transverse plane]

(1− v2)1/4 if θv = π/2 [motion within the transverse plane]

(5.58)

irrespectively of the dipole orientation.

5.3 Isotropic limit

The results above reduce to the isotropic result of ref. [31, 32] in the limit a → 0. This

limit is most easily recovered from the results for motion within the transverse plane, since

some of the terms in the expansions in section 5.2.1 vanish if a = 0, thus invalidating the

analysis. In contrast, setting a = 0 in section 5.2.2 boils down to simply setting C to its

isotropic value, which from (5.30) and (2.3) is

C = −F4 =
1

u4H
= π4T 4 . (5.59)

Since the value of C does not affect the ultra-relativistic scaling of the screening length,

we recover the scaling

Liso ∼ (1− v2)1/4 [isotropic plasma] (5.60)
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Figure 9. Screening length for a dipole moving through an isotropic plasma in a direction orthog-

onal (top, blue curve) or parallel (bottom, orange curve) to its orientation.

found in the isotropic case by the authors of [31, 32]. As in the anisotropic case, the

ultra-relativistic scaling of the screening length is independent of the dipole’s orientation.

In fact, even for v < 1, the isotropic screening length depends only mildly on the dipole’s

orientation, as shown in figure 9.

5.4 Numerical results for generic velocities

Away from the ultra-relativistic limit the screening length must be obtained numerically.

For this reason we have focused on a few representative cases, namely those in which both

the direction of the plasma wind and the dipole’s orientation are aligned with one of the

original x, y, or z axes. Given the rotational symmetry in the xy-plane, there are only five

inequivalent cases to consider, because if the wind ‘blows’ in the z-direction then orienting

the dipole along x or y gives identical physics. In each case, we plot the screening length

both as a function of the velocity v for different degrees of anisotropy a, and also as a

function of the degree of anisotropy for different values of the velocity. In each case the

result can be qualitatively understood combining the static results from section 4 and

the ultra-relativistic behavior derived analytically in section 5. We recall that in all cases

below, by ‘a dipole oriented along x, y or z’ we are referring to the original directions

before the rotation (5.1) and the boost (5.2).

Wind along z and dipole along z. The numerical results are shown in figures 10

and 11. The curves in figure 10 start at v = 0 with the same value as the θ = 0 static result

shown in figure 7, and that they vanish as (1 − v2)1/4 in the limit v → 1, in agreement

with (5.58)(top line) and (5.60). The screening length decreases with the anisotropy,

irrespectively of whether T or s are kept fixed.

Wind along z and dipole along x. The numerical results are shown in figures 12

and 13. We see that the curves in figure 12 start at v = 0 with the same value as the

θ = π/2 static result shown in figure 7, and that they vanish as (1 − v2)1/4 in the limit

v → 1, in agreement with (5.58)(top line) and (5.60). In this case the screening length

decreases with the anisotropy for any velocity provided the temperature is kept fixed. The
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Figure 10. Screening length for a plasma wind along the z-direction and a dipole oriented

along the z-direction, for four different values of the anisotropy (from top to bottom) a/T =

12.2, 42.6, 86, 744. The corresponding values in units of the entropy density are (in the same

order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length is plotted in the appropriate units to

facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at

the same entropy density (right). The isotropic result is plotted in figure 9, and its ultra-relativistic

behavior is given in eq. (5.60). At v = 0 the curves agree with the θ = 0 values in figure 7. As

v → 1 they vanish as (1− v2)1/4, in agreement with (5.58)(top line) and (5.60).
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Figure 11. Screening length for a plasma wind along the z-direction and a dipole oriented along

the z-direction, at five different velocities (from top to bottom) v = 0.25, 0.5, 0.7, 0.9, 0.9995. The

screening length is plotted in the appropriate units to facilitate comparison with the isotropic result

for a plasma at the same temperature (left), or at the same entropy density (right). The isotropic

result is plotted in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

same behavior is found at constant entropy density for high enough velocities, whereas for

low velocities the screening length at constant s actually increases with a.

Wind along x and dipole along x. The numerical results are shown in figures 14

and 15. The curves in figure 14 start at v = 0 with the same value as the θ = π/2 static

result shown in figure 7, and that they approach a finite, non-zero value as v → 1, in

agreement with (5.58)(bottom line) and (5.60). As in previous cases, the screening length

decreases with the anisotropy for any velocity provided the temperature is kept fixed. The

opposite behavior is found at constant s.
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Figure 12. Screening length for a plasma wind along the z-direction and a dipole oriented along the

x-direction, for four different values of the anisotropy a/T = 12.2 (red, solid), 42.6 (maroon, coarsely

dashed), 86 (violet, dashed), 744 (orange, dot-dashed). The corresponding values in units of the

entropy density are (in the same order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length is plotted

in the appropriate units to facilitate comparison with the isotropic result for a plasma at the same

temperature (left), or at the same entropy density (right). The isotropic result is plotted in figure 9,

and its ultra-relativistic behavior is given in eq. (5.60). At v = 0 the curves agree with the θ = π/2

values in figure 7. As v → 1 they vanish as (1−v2)1/4, in agreement with (5.58)(top line) and (5.60).
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Figure 13. Screening length for a plasma wind along the z-direction and a dipole oriented along

the x-direction, at five different velocities (from top to bottom) v = 0.25, 0.5, 0.7, 0.9, 0.9995. The

screening length is plotted in the appropriate units to facilitate comparison with the isotropic result

for a plasma at the same temperature (left), or at the same entropy density (right). The isotropic

result is plotted in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

Wind along x and dipole along y. The numerical results are shown in figures 16

and 17. We see that the curves in figure 16 start at v = 0 with the same value as the

θ = π/2 static result shown in figure 7, and that they approach a finite, non-zero value as

v → 1, in agreement with (5.58)(bottom line) and (5.60). The qualitative behavior in as

in the case of motion and orientation along x.

Wind along x and dipole along z. The numerical results are shown in figures 18

and 19. We see that the curves in figure 18 start at v = 0 with the same value as the

θ = 0 static result shown in figure 7, and that they approach a finite, non-zero value as

– 23 –



J
H
E
P
0
1
(
2
0
1
3
)
1
7
0

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

v

L
s
/L

is
o
(T

)

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

1.6

v

L
s
/L

is
o
(s
)

Figure 14. Screening length for a plasma wind along the x-direction and a dipole oriented

along the x-direction, for four different values of the anisotropy (from top to bottom) a/T =

12.2, 42.6, 86, 744. The corresponding values in units of the entropy density are (in the same

order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length is plotted in the appropriate units to

facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at

the same entropy density (right). The isotropic result is plotted in figure 9, and its ultra-relativistic

behavior is given in eq. (5.60). At v = 0 the curves agree with the θ = π/2 values in figure 7. As

v → 1 they approach a finite, non-zero value, in agreement with (5.58)(bottom line) and (5.60).
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Figure 15. Screening length for a plasma wind along the x-direction and a dipole oriented along

the x-direction, at five different velocities v =0.25 (yellow, dot-dashed), 0.5 (green, short dashed),

0.7 (brown, medium dashed), 0.9 (cyan, long dashed), 0.9995 (blue, solid). The screening length is

plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at

the same temperature (left), or at the same entropy density (right). The isotropic result is plotted

in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

v → 1, in agreement with (5.58)(bottom line) and (5.60). The screening length decreases

with the anisotropy for any velocity provided the temperature is kept fixed. The same is

true at large anisotropies if the entropy density is kept fixed.

6 Dissociation temperature and dissociation anisotropy

In previous sections we have focused on computing the screening length in an anisotropic

plasma, Ls(T, a), and on comparing it to its isotropic counterpart Liso = Ls(T, 0). The
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Figure 16. Screening length for a plasma wind along the x-direction and a dipole oriented along

the y-direction, for four different values of the anisotropy a/T = 12.2 (red, solid), 42.6 (maroon,

coarsely dashed), 86 (violet, dashed), 744 (orange, dot-dashed). The corresponding values in units

of the entropy density are (in the same order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length

is plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at

the same temperature (left), or at the same entropy density (right). The isotropic result is plotted

in figure 9, and its ultra-relativistic behavior is given in eq. (5.60). At v = 0 the curves agree with

the θ = π/2 values in figure 7. As v → 1 they approach a finite, non-zero value, in agreement

with (5.58)(bottom line) and (5.60).
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Figure 17. Screening length for a plasma wind along the x-direction and a dipole oriented along

the y-direction, at five different velocities v =0.25 (yellow, dot-dashed), 0.5 (green, short dashed),

0.7 (brown, medium dashed), 0.9 (cyan, long dashed), 0.9995 (blue, solid). The screening length is

plotted in the appropriate units to facilitate comparison with the isotropic result for a plasma at

the same temperature (left), or at the same entropy density (right). The isotropic result is plotted

in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

screening length characterizes the dissociation of a quark-antiquark pair for fixed T and

a: a pair separated a distance � < Ls forms a bound state, but if � is increased above

Ls then the bound state dissociates. Similarly, one may define a dissociation temperature

Tdiss(a, �) that characterizes the dissociation of a quark-antiquark pair of fixed size � in a

plasma with a given degree of anisotropy a: for T < Tdiss the pair forms a bound state,

but if T is increased above Tdiss then the bound state dissociates. Analogously, one may

define a dissociation anisotropy adiss(T, �) such that a bound state forms for a < adiss but
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Figure 18. Screening length for a plasma wind along the x-direction and a dipole oriented

along the z-direction, for four different values of the anisotropy (from top to bottom) a/T =

12.2, 42.6, 86, 744. The corresponding values in units of the entropy density are (in the same

order) aN2/3
c /s1/3 = 6.2, 19, 35, 242. The screening length is plotted in the appropriate units to

facilitate comparison with the isotropic result for a plasma at the same temperature (left), or at

the same entropy density (right). The isotropic result is plotted in figure 9, and its ultra-relativistic

behavior is given in eq. (5.60). At v = 0 the curves agree with the θ = 0 values in figure 7. As

v → 1 they approach a finite, non-zero value, in agreement with (5.58)(bottom line) and (5.60).
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Figure 19. Screening length for a plasma wind along the x-direction and a dipole oriented along

the z-direction, at five different velocities (from bottom to top) v = 0.25, 0.5, 0.7, 0.9, 0.9995. The

screening length is plotted in the appropriate units to facilitate comparison with the isotropic result

for a plasma at the same temperature (left), or at the same entropy density (right). The isotropic

result is plotted in figure 9, and its ultra-relativistic behavior is given in eq. (5.60).

not for a > adiss. It is useful to think of the three-dimensional space parametrized by

(T, a, �) as divided in two disconnected regions by a two-dimensional surface: in one region

quark-antiquark pairs bind together, while in the other one they do not. The functions

Ls(T, a), Tdiss(a, �) and adiss(T, �) are then simply different parametrizations of the dividing

surface. It is therefore clear that if a triplet (T, a, �) lies on the dividing surface then

TLs(a, T ) = Tdiss(a, �)� , aLs(T, a) = adiss(T, �)� , etc. (6.1)

In this section we will focus on the qualitative form of Tdiss and adiss. As we will

see, most of the analysis follows from the asymptotic behavior of the screening length for
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Figure 20. Proper velocity in the z-direction at a position u away from the boundary, as defined

in (6.2), for different values of a/T . From right to left, a/T = 1.38, 33, 86, 249.

a � T . This means that, at the qualitative level, most of the results that we will obtain

would also apply if we were to replace the temperature by the entropy density as one of our

variables. The reason is that, by virtue of (2.5), the limit a � T corresponds to the limit

a � s1/3 and vice versa. In addition, we will see that for generic dipole’s orientations and

velocities, the large-anisotropy limit is entirely controlled by the near-boundary behavior

of the metric at O(u2), which depends solely on a and is therefore completely insensitive

to the values of the temperature or of the entropy density.

The key point in the large-a analysis is the requirement that no point on the string

can move faster than the local speed of light in the bulk. Consider a meson moving with a

velocity v that has a non-zero component vz along the z-direction. Then we see from (2.2)

that the proper velocity along this direction of a point on the string sitting at a value u

of the radial coordinate is

vproper(u) = vz

√
−gzz(u)

gtt(u)
= vz

√
H(u)

F(u)B(u) . (6.2)

The function H(u) increases monotonically from the boundary to the horizon, and is does

so more steeply as a/T increases, as illustrated in figure 1. The combination F(u)B(u)
has the opposite behavior, as expected from the fact that gravity is attractive: it decreases

monotonically from the boundary to the horizon. In the isotropic case H = 1 and FB de-

creases more steeply as T increases. This is thus the first hint that increasing the anisotropy

has an effect similar to increasing the temperature: both make vproper(u) a more steeply in-

creasing function away from the boundary. We have illustrated the effect of the anisotropy

in figure 20, where we see that vproper/vz becomes a steeper function of u as a/T increases.

It follows that, for fixed vz = 0, there is a maximum value of umax beyond which vproper

becomes superluminal, so no string solution can penetrate to u > umax. As we will corrobo-

rate numerically, this upper bound on umax translates into an upper bound on Ls. Moreover,

umax decreases as a/T increases. This means that for sufficiently large anisotropies we can

use the near-boundary expansions (2.6) in order to determine Ls, in analogy to what we

did in the ultra-relativistic limit. As in that case, for vz = 0 the analysis is controlled by
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the O(u2) terms in (2.6). The key point is that these terms depend on a but not on T , so by

dimensional analysis it follows that umax ∼ a−1 and Ls ∼ a−1 in the limit a/T � 1. This

limit can be understood as a → ∞ at fixed T , or as T → 0 at fixed a. We thus conclude

that, even at T = 0, a generic meson will dissociate for a sufficiently large anisotropy adiss.

Mesons at rest and mesons whose velocity is exactly aligned with the transverse plane

constitute an exception to the argument above, since in this case vz = 0 and their physics

is mostly insensitive to the function H(u) which characterizes the anisotropic direction.

Therefore in this case we expect that umax and Ls will remain finite as we send a → ∞ at

fixed T , and hence that dimensional analysis will imply Ls ∼ T−1.

In summary, the heuristic argument above suggests that in the limit a/T � 1 we

should have

Ls(T, a)∼

⎧⎪⎨
⎪⎩

const.×T−1 if the meson is static or in motion within the transverse plane,

const.×a−1 otherwise.

(6.3)

The constants may depend on all the dimensionless parameters such as the velocity and

the dipole’s orientation. We will refer to the behavior in the second line as ‘generic’ and to

that in the first line as ‘non-generic’, since the latter only applies if the velocity is exactly

zero or if the motion is exactly aligned with the transverse plane. The generic behavior

is of course consistent with the analysis of section 5.2.1. Indeed, we saw in that section

that for motion outside the transverse plane the ultra-relativistic behavior of Ls is entirely

controlled by the O(u2) terms in the metric, which depend on a but not on T .

Figure 21 shows our numerical results for umax, in units of T−1 and a−1, as a function

of a/T , for the five physically distinct cases discussed in section 5.4. From the continuous,

magenta curves in the first two rows we see that umax goes to zero at large a/T in the cases

of motion along z, irrespectively of the dipole’s orientation. In contrast, we see that umax

does not go zero for a static meson (dashed, blue curves) or for a meson moving along the

x-direction (continuous, magenta curves in the last three rows).

Recalling that the isotropic screening length is of the form Liso ∝ 1/T , we see that

the quantity plotted on the vertical axes in figures 6, 11, 13, 15, 17 and 19 is precisely

proportional to TLs(T, a). However, the asymptotic behavior (6.3) is not apparent in

these plots because in most cases the horizontal axes do not extend to high enough values

of a/T . For this reason we have illustrated the two possible asymptotic behaviors of Ls in

figure 22, where we have extended the horizontal axes to larger values of a/T . We see from

the continuous, magenta curves in the first two rows that Ls ∼ 1/a for motion along the

z-direction. For motion within the transverse plane we see from the same curves in the last

three rows that Ls ∼ 1/T . This approximate scaling relation seems to hold quite precisely

for a dipole oriented within the transverse plane (3rd and 4th rows), whereas for a dipole

oriented in the z-direction the product TLs seems to retain a slight (perhaps logarithmic)

dependence on a/T at large a/T . We can draw similar conclusions from the dashed, blue

curves in the figure, which correspond to static mesons. We see that for mesons oriented

within the transverse plane (2nd, 3rd and 4th rows) the relation TLs ∼ constant holds
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Figure 21. Value of umax in units of 1/T (left) or 1/a (right), as a function of the ratio a/T , for

a dipole at rest (dashed, blue curve) and for a dipole moving with v = 0.45 (continuous, magenta

curve). The first letter on the top right corner of each plot indicates the direction of motion, and

the second one indicates the orientation of the dipole.
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Figure 22. Screening length in units of 1/T (left) or 1/a (right), as a function of the ratio a/T , for

a dipole at rest (dashed, blue curve) and for a dipole moving with v = 0.45 (continuous, magenta

curve). The first letter on the top right corner of each plot indicates the direction of motion, and

the second one indicates the orientation of the dipole.
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Figure 23. Dissociation temperature (left) Tdiss(a, �) = �−1f(a�) and dissociation anisotropy

(right) adiss(T, �) = �−1g(T�) for a dipole at rest (dashed curves) and for a dipole moving along

the z-direction with v = 0.45 (continuous curves). The orientation of the dipole is indicated by a

letter next to each curve.
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Figure 24. Limiting velocity, for fixed anisotropy and T = 0, beyond which a meson oriented along

the x-direction and moving along the z-direction will dissociate.

quite precisely, whereas for mesons oriented in the z-direction (1st and 5th rows) there

seems to be some slight residual dependence on a/T at large a/T .

Combining the two plots on the left and the right columns of figure 22 we can eliminate

a/T and obtain TLs as a function of aLs and vice versa. Recalling (6.1) we see that we can

interpret the result in the first case as Tdiss(a, �) = �−1f(a�), whereas in the second case we

get adiss(T, �) = �−1g(T�). The functions f and g are the curves shown in figure 23(left) and

figure 23(right), respectively. The right plot is of course the mirror image along a 45 degree

line of the left plot. We see in figure 23(left) that the dissociation temperature decreases

monotonically with increasing anisotropy and vanishes at a� � 9.75 (for the chosen velocity

and orientation). On the right plot this corresponds to the dissociation anisotropy at zero

temperature. As anticipated above, even at zero temperature, a generic meson of size � will

dissociate if the anisotropy is increased above adiss(T = 0, �) ∝ 1/�. The proportionality

constant in this relation is a decreasing function of the meson velocity in the plasma. This

implies that for a fixed anisotropy there is a limiting velocity vlim above which a meson will

dissociate, even at zero temperature. The form of vlim(a�) for T = 0 is plotted in figure 24.
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Figure 25. Dissociation temperature for a meson moving along the x-direction and oriented along

the z-direction (left) or along the x-direction (right). Each curve corresponds to a fixed value of

the product a� = 0 (blue curve), 1.4 (green curve), 25 (red curve).

The existence of a limiting velocity for quarkonium mesons is well known in a strongly

coupled isotropic plasma [35, 36], in which case the dissociation at v = vlim is caused by

the temperature. What we see here is that in our anisotropic plasma this behavior persists

as T → 0 for generic motion. In this limit it is the anisotropy that is responsible for the

dissociation. In the case of ultra-relativistic motion the relation between adiss or Tdiss and

vlim can be obtained by combining the scalings (5.58) and (6.3). For generic motion these

relations yield

adiss(T, �) ∼
1

�
(1− v2lim)

1/2 , [a � T , vlim � 1] (6.4)

whereas for motion within the transverse plane we obtain

Tdiss(a, �) ∼
1

�
(1− v2lim)

1/4 . [a � T , vlim � 1] (6.5)

The scaling (6.5) agrees with the isotropic result [31, 32] and illustrates the fact that,

for motion within the transverse plane, the limiting velocity in our anisotropic plasma

approaches unity as T → 0. This behavior is the same for a meson at rest, as illustrated

in figure 23, where we see that a sufficiently small meson will remain bound in the plasma

for any value of the anisotropy provided the plasma is cold enough. In fact, the form of

the dissociation temperature for all anisotropies and all velocities within the transverse

plane is qualitatively analogous to that of the isotropic case, as shown in figure 25. The

fact that the curves in this figure approximately overlap one another signals that the

dependence of the dissociation temperature on v and a� can be approximately factorized

over the entire range 0 ≤ v ≤ 1.

In contrast, for generic motion we saw above that the limiting velocity is subluminal

even at T = 0, vlim(T = 0, a�) < 1. Increasing the temperature simply decreases the value

of the limiting velocity, vlim(T�, a�) < vlim(T = 0, a�). Turning these statements around we

see that, at a fixed anisotropy, the dissociation temperature is a decreasing function of the

velocity that vanishes at v = vlim(T = 0, a�). This is illustrated in figure 26, where we see

that vlim(T = 0, a�) decreases as the anisotropy increases, in agreement with figure 24. In
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Figure 26. Dissociation temperature for a meson moving along the z-direction and oriented along

the x-direction (left) or along the z-direction (right). Each curve corresponds to a fixed value of

the product a�. From right to left, a� = 0, 1, 5.4, 25.

order to facilitate comparison with the isotropic results of [31–33], in figure 26 we have

chosen to normalize the dissociation temperature by its value at v = 0 instead of by the

dipole’s size �. Our numerical results suggest that as v approaches vlim the dissociation

temperature may vanish as
Tdiss(v, a�)

Tdiss(0, a�)
∼
(
v2lim − v2

)ε
. (6.6)

In this equation vlim = vlim(T = 0, a�) and ε = ε(a�) > 0 is an anisotropy-dependent

exponent. Unfortunately, the limit v → vlim is difficult to analyze numerically, so our

results are not precise enough to allow us to establish (6.6) unambiguously. To emphasize

this point, in figure 26 we have plotted as discontinuous the part of the curves between

the last two data points. The last point lies on the horizontal axis at (v, T ) = (vlim, 0), and

the penultimate point lies at a certain height at (v � vlim, T > 0). Since this last bit of

the curves is an interpolation between these data points, it is difficult to establish whether

the slopes of the curves diverge as they meet the horizontal axis, as would be implied by

the scaling (6.6). Presumably, this scaling could be verified or falsified analytically by

including the first correction in T/a to the scaling in the second line of (6.3).

7 Discussion

We have considered an anisotropic N = 4 SYM plasma in which the x, y directions are

rotationally symmetric, but the z-direction is not. In the context of heavy ion collisions

the latter would correspond to the beam direction, and the former to the transverse plane.

The screening length of a quarkonium meson in motion in the plasma depends on the

relative orientation between these directions, on the one hand, and the direction of motion

of the meson and its orientation, on the other. This dependence can be parametrized by

three angles (θv, θ, ϕ), as shown in figure 8. We have determined the screening length

for the most general geometric parameters and for any anisotropy. Our results are valid

in the strong-coupling, large-Nc limit, since we have obtained them by means of the

gravity dual [14, 15] of the anisotropic N = 4 plasma. The anisotropy is induced by a

position-dependent theta term in the gauge theory, or equivalently by a position-dependent
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axion on the gravity side. One may therefore wonder how sensitive the conclusions may be

to the specific source of the anisotropy. In this respect it is useful to note that the gravity

calculation involves only the coupling of the string to the background metric. This means

that any anisotropy that gives rise to a qualitatively similar metric (and no Neveu-Schwarz

B-field) will yield qualitatively similar results for the screening length, irrespectively of

the form of the rest of supergravity fields.

An example of a rather robust conclusion is the ultra-relativistic behavior2 of the

screening length (5.58), which for motion not exactly aligned with the transverse plane

is Ls ∼ (1 − v2)1/2. The 1/2 exponent contrasts with the 1/4 isotropic result [31, 32],

and follows from the fact that the near-boundary fall-off of the metric (2.2) takes the

schematic form

gμν =
L2

u2

(
ημν + u2g(2)μν + u4g(4)μν + · · ·

)
. (7.1)

As v grows closer and closer to 1 the point of maximum penetration of the string into the

bulk, umax, moves closer and closer to the AdS boundary at u = 0. As a consequence, the

physics in this limit is solely controlled by the near-boundary behavior of the metric. For

generic motion the behavior is in fact governed by the O(u2) terms alone, and a simple

scaling argument then leads to the 1/2 exponent above. In the isotropic case the O(u2)

terms are absent and the same scaling argument leads to the 1/4 exponent.

In fact, a similar reasoning allowed us to determine the large-anisotropy limit. Since

the metric component gzz ∝ H(u) grows as one moves from the boundary to the horizon,

a subluminal velocity of the meson at the boundary would eventually translate into a

superluminal proper velocity (6.2) at a sufficiently large value of u.3 This sets an upper

limit on the maximum penetration length umax of the string into the bulk and hence on

Ls. Moreover, gzz becomes steeper as a/T increases, so in the limit a/T � 1 the point

umax approaches the AdS boundary (unless the motion is aligned with the transverse

plane), just as in the ultra-relativistic limit. In this limit the physics is again controlled by

the O(u2) terms in the metric, which depend on a but not on T . Therefore dimensional

analysis implies that Ls = const.× a−1, were the proportionality ‘constant’ is a decreasing

function of the velocity. This led us to one of our main conclusions: even in the limit

T → 0, a generic meson of size � will dissociate at some high enough anisotropy adiss ∼ �−1.

Similarly, for fixed a and T , even if T = 0, a generic meson will dissociate if its velocity

exceeds a limiting velocity vlim(a, T ) < 1, as shown in figure 24 for T = 0. As explained

in section 6, the conclusions in this paragraph would remain unchanged if we worked at

constant entropy density instead of at constant temperature, since in the limit a � s1/3

the physics would again be controlled only by the O(u2) terms in the metric.

The above discussion makes it clear that, at the qualitative level, much of the physics

depends only on a few features of the solution: the presence of the g
(2)
μν term in the near-

boundary expansion of the metric, the fact that the metric (7.1) be non-boost-invariant

at order u2 (i.e. that g
(2)
μν not be proportional to ημν), and the fact that gzz increases as

2We recall that we first send the quark mass to infinity and then v → 1 (see section 1).
3Note that the overall conformal factor 1/u2 in (2.2) plays no role in this argument, since it cancels out

in the ratio (6.2).
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a function of both u and a/T .4 The second condition is necessary because otherwise the

physics of a meson in motion would be equivalent to that of a meson at rest, and we

have seen that the latter is very similar to that of a meson in an isotropic plasma. The

third condition ensures that umax moves close to the boundary as a/T increases. Note that

adding temperature to an otherwise boost-invariant metric will only affect g
(4)
μν , and thus

this is not enough to make g
(2)
μν non-boost-invariant. This conclusion is consistent with the

fact that g
(2)
μν is only a function of the external sources which the theory is coupled to.

From the gauge theory viewpoint, some heuristic intuition can be gained by recalling

that the anisotropy is induced by dissolving along the z-direction objects that extend along

the xy-directions [14, 15, 26]. The number density of such objects along the z-direction,

dn/dz, is proportional to a. On the gravity side these are D7-branes that wrap the

five-sphere in the metric (2.2), extend along the xy-directions, and are homogeneously

distributed in the z-direction. Increasing a has a large effect on the entropy density

per unit 3-volume in the xyz-directions, in the sense that s/T 3 → ∞ as a/T → ∞, as

shown in figure 2. In contrast, the entropy density per unit 2-area in the xy-directions

on a constant-z slice, s2D/T 2, approaches a constant in the limit a/T → ∞. This is

illustrated in figure 27, which is based on our numerical calculations, but it can also be

proven analytically following the argument in section 2.5 of ref. [26]. In view of these

differences, it is perhaps not surprising that the anisotropy has the largest effect on the

physics of mesons moving along the z-direction, and the smallest effect on the physics

of mesons moving within the transverse plane. Mesons at rest are also more sensitive to

the anisotropy if they extend along the z-direction than if they are contained within the

transverse plane. Presumably, the correct intuition behind this physics is that moving

against the D7-branes is harder than moving along them.

We close with a few comments on existing weak-coupling results on the physics

of quarkonium dissociation in the real-world QGP. In the isotropic case the velocity

dependence of the heavy quark potential has been studied using perturbative and effective

field theory methods, see e.g. [37–40]. These analyses include modifications of both the

4Again, up to possible overall conformal factors.
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real and imaginary parts of the potential, which are related to screening and to the

thermal width of the states, respectively. They find that meson dissociation at non-zero

velocity results form a complex interplay between the real and the imaginary parts of

the potential. However, the general trend that seems to emerge is that screening effects

increase with the velocity, while the width of the states decreases. The behavior of the

real part is thus in qualitative agreement with the isotropic limit of our results. However,

the extraction of a screening length from these analyses is not immediate due to the fact

that the real part of the potential is not approximately Yukawa-like [39, 40], in contrast

with the holographic result. In any case, an interesting consequence of the dominance of

the real part of the potential is that, at sufficiently high velocities, dissociation is caused

by screening rather than by Landau damping [39, 40]. In the holographic framework, the

thermal widths of our mesons could presumably be computed along the lines of [41].

To the best of our knowledge no results at non-zero velocity exist in the presence of

anisotropies, so in this case we will limit ourselves to the static situation. We emphasize

though that any comparison between these results and ours should be interpreted with

caution, because the sources of anisotropy in the QGP created in a heavy ion collision

and in our system are different. In the QGP the anisotropy is dynamical in the sense that

it is due to the initial distribution of particles in momentum space, which will evolve in

time and eventually become isotropic. In contrast, in our case the anisotropy is due to

an external source that keeps the system in an equilibrium anisotropic state that will not

evolve in time. We hope that, nevertheless, our system might provide a good toy model

for processes whose characteristic time scale is sufficiently shorter than the time scale

controlling the time evolution of the QGP.

A general conclusion of refs. [42–44] is that, if the comparison between the anisotropic

plasma and its isotropic counterpart is made at equal temperatures, then the screening

length increases with the anisotropy. This effect occurs for dipoles oriented both along

and orthogonally to the anisotropic direction, but it is more pronounced for dipoles along

the anisotropic direction. The dependence on the anisotropy in these weak-coupling

results is the opposite of what we find in our strongly coupled plasma. In our case the

screening length in the anisotropic plasma is smaller than in its isotropic counterpart if

both plasmas are taken to have the same temperature, as shown in figure 6(left). We

also find that the effect is more pronounced for dipoles extending along the anisotropic

direction, as illustrated in figure 7(left).

Refs. [44, 45] argued that if the comparison between the anisotropic and the isotropic

plasmas is made at equal entropy densities, then the physics of quarkonium dissociation

exhibits little or no sensitivity to the value of the anisotropy. This is again in contrast

to our results since, as shown in figure 6(right) and figure 7(right), the screening length

in this case is just as sensitive to the anisotropy as in the equal-temperature comparison.

The difference in the equal-entropy case is simply that the screening length may increase

or decrease with the anisotropy depending on the dipole’s orientation.
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1 Introduction

Gauge/gravity duality has become a valuable tool for gaining insight into the physics of

many different strongly coupled theories and, in particular, is being used to successfully

describe their hydrodynamical behavior, with the prospect of making contact with sys-

tems found in nature. Recently, many new features within hydrodynamics have been

discovered using gauge/gravity duality: For instance, the importance of anomalies for rel-

ativistic hydrodynamics as applied to quark-gluon plasma first appeared in the context of
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gauge/gravity duality [1, 2]. Subsequently, in [3–7] and [8, 9] it has been realized by ther-

mal field theory computations and from general hydrodynamics arguments that anomalies

induce modifications in the constitutive relations of relativistic hydrodynamics. Moreover,

in [10–12] chiral anomalies have been shown to give rise to non-dissipative transport coef-

ficients. Anisotropy has been included by considering the backreacted holographic p-wave

superfluid (see below) and by means of a position-dependent theta-term, leading to several

interesting effects [13–15]. A common feature of these systems is that the breaking of sym-

metries brings about a richer structure to the theory, so that new phenomena are unveiled.

A very suitable system to study anisotropic hydrodynamics is the holographic backre-

acted p-wave superfluid, in which the rotational symmetry is broken by a vector condensate

which may be interpreted as a vector meson. This system has been studied in [16–21]. It

involves a finite SU(2) charge density or isospin density. In the present article we present

the study of the remaining hydrodynamic modes that were not accounted for in [19] and

describe the corresponding new transport properties.

In [18, 19], the helicity two and one fluctuations have been analyzed. It has been found

that the helicity one modes lead to contributions to the viscosity tensor whose ratio with the

entropy density is non-universal at leading order in the ’t Hooft coupling and N . These

contributions are temperature dependent and satisfy the viscosity bound, η/s ≥ 1/4π.

This is in contrast to the θ-term model of [14] where the usual viscosity bound [22–24]

is violated [25]. This happens already for Einstein gravity, violations of the bound by

Gauss-Bonnet terms have been studied in [26].

The Einstein-Yang-Mills model may also be used as a starting point to derive similar

universal relations, such as the holographic realization of Homes’ law [27] of condensed

matter physics. Furthermore when considering finite SU(2) magnetic fields, the system

admits more than one possible solution (or state), but similarly to the holographic super-

fluid at finite SU(2) density, only one is physically realized, determined by the lowest free

energy. A magnetic field generates an Abrikosov lattice [28] in a superconductor, which

becomes the preferred state if the magnetic field is sufficiently large.

The Einstein-Yang-Mills system we consider in this publication is motivated by the

D3/D7 setup [29], which allows for temperature and matter in the fundamental represen-

tation to be added to the system. Holographically, the Hawking temperature of a black hole

geometry coincides with the temperature T of the dual thermal field theory. A chemical

potential μ can also be introduced by placing a non-vanishing boundary condition upon

the bulk gauge field. Given these ingredients, it is possible to do thermodynamics, since

each solution labeled with T/μ describes a different thermal state of the dual field theory.

In this paper we consider a superfluid generated by a finite SU(2) density (for an

extensive study of this background see [16, 19]). In this case, the temperature determines

the preferred state, i.e. at some critical value Tc the system undergoes a phase transition

between the normal (T > Tc) and superfluid (T < Tc) states. We will be interested in the

superfluid phase and study its transport properties. To do so, we consider fluctuations in

a backreacted holographic p-wave superfluid theory defined in an AdS5 geometry with an

– 2 –
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SU(2) Yang-Mills gauge field. The boundary condition that fixes the chemical potential,

lim
r→∞At = μ , (1.1)

breaks explicitly this SU(2) symmetry, leaving a U(1)3 gauge symmetry. Depending on the

values of μ, the system may present a superfluid or a normal phase, with the order of the

phase transition being controlled by a parameter α, which on the gravity side measures

the effect of the gauge fields onto the geometry. The superfluid state is thermodynamically

preferred at low temperatures compared to the chemical potential, and the transition to

this phase is characterised by the formation of a vector condensate 〈J x
1 〉, as opposed to

the case of an s-wave superfluid, in which a scalar field condenses. The vector condensate

designates a particular direction both in momentum and flavor space, and as a consequence

the spatial rotational SO(3) symmetry and the U(1)3 symmetry are spontaneously broken.

Schematically, this process can be represented as

SU(2) −−−→
Expl.B

U(1)3 −−→
SSB

Z2 ,

SO(3) −−→
SSB

SO(2) .
(1.2)

This is an example of spontaneous breaking of continuous symmetries in gauge/gravity

duality (first achieved in [30]) to construct holographic superfluids or superconductors.

This technique was initially developed by breaking Abelian symmetries [31, 32] and later

adapted to p-wave superconductors/superfluids [33] as in the case at hand, giving rise to

the first string theory embeddings of these constructions [34–36].

We present an analysis of the perturbations of the spacetime metric, hμν , and of the

Yang-Mills field, aaμ, about the Einstein-Yang-Mills model in AdS5. Due to the breaking

of the spatial rotational symmetry, these fluctuations can be grouped according to their

transformation behavior under the remaining SO(2) rotational symmetry around the x-

axis. In this paper, we present the fluctuations which transform as scalars under this

group. Vector and tensor fluctuations have been studied in [18, 19]. To make the equations

tractable, we set the spatial momentum �k = 0. This simplification leads to an additional Z2

symmetry under which the scalar fluctuations can be characterized further. We end up with

two distinct blocks, the first of which contains, among others, the gauge field fluctuation

a3x and the metric fluctuation htx, and the second one the diagonal metric fluctuations,

a1x and a2x.

From the field theory point of view, the corresponding correlation functions are related

to the thermoelectric effect which correlates charge and heat transport in the direction of

the condensate, since a3x can be identified with an electric field in the x direction and htx
with a temperature gradient in the x direction. This effect was studied for holographic

s-wave superfluids [32, 37] and for p-wave superfluids in the transverse directions [19], but

to our knowledge, this is the first time this effect has been calculated with backreaction

and in the direction of the condensate.

The second block contains, among others, the diagonal metric fluctuations hxx − hyy
and the gauge field fluctuations a1x and a2x. A field theoretic description of the corresponding

– 3 –
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Green’s functions is not fully addressed in this paper and is left for future work. However,

we know that some of the modes in this block are related to the transport coefficients in

the viscosity tensor ηijkl. In general, the viscosities of a system are encoded in a rank four

tensor ηijkl which in the most general case has 21 independent components. Due to the

symmetries of the system at hand, we are left with five independent components of the

tensor ηijkl [38, 39], two of which are shear viscosities, ηxy and ηyz, that were addressed

in [19]. Two of the remaining components are bulk viscosities and can be set to zero using

the tracelessness condition for the conformal energy-momentum tensor, leaving one free

transport coefficient, denoted by λ. While η and ζ measure the response of the system to

deformations due to shear or normal stress, λ is related to the normal stress difference that

is induced by an anisotropic strain. Our holographic computation shows that in the zero

frequency limit, the ratio of λ to the entropy density is finite. Moreover, in the normal

phase it turns into the shear viscosity of the isotropic fluid, which we simply denote by η.

Therefore it acquires a fixed value given by the well-known

η

s
=

1

4π
. (1.3)

Note that we normalized λ in a way that at the phase transition it matches η. In the

broken phase we see a temperature dependence and the resulting curve does not fall below

1/(4π) for any backreaction parameter α and for any temperature.

Since we have completed our analysis of all fluctuation modes in the p-wave system,

let us now summarize them, as well as the transport phenomena they correspond to:

1. hyz (helicity two) is related to the shear viscosity ηyz which for all values of T takes

the universal value η/s = 1/4π (see [19]),

2. hx⊥ (helicity one) is related to the shear viscosity ηx⊥ which shows a temperature

dependence in the broken phase (see [19]),

3. The coupling between a±⊥ = a1⊥ ± ia2⊥ (helicity one) and hx⊥ leads to an effect which

is similar to the flexoelectric effect known from crystals (see [19]),

4. a3⊥ is related to the “electrical” conductivity σ⊥⊥ (helicity one), and its coupling to

ht⊥ (helicity one) is related to the so called thermoelectric effect transverse to the

condensate (see [19]),

5. Φ4 ∼ a3x (helicity zero) is related to the “electrical” conductivity σxx, and its coupling

to htx (helicity zero) gives the thermoelectric effect in the direction of the condensate

(see section 4),

6. Φ3 ∼ hxx − hyy (helicity zero) is related to the transport coefficient λ found in the

viscosity tensor ηijkl and its coupling to Φ± ∼ a±x (helicity zero) shows a behaviour

similar to the piezoelectric effect (see section 4).

We see that the study of fluctuations in a backreacted holographic p-wave superfluid

provides a rich structure of different effects which by using the fluctuation-dissipation

theorem may be related to well-known transport phenomena in other areas of physics.
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The paper is organized as follows: In section 2, we recapitulate the backreacted holo-

graphic p-wave superfluid. In section 3, the scalar fluctuations (helicity zero) and the

corresponding Green’s functions on the gravity side are presented. The following section 4

contains our results for the transport properties of the superfluid and an approach to in-

terpreting them from a hydrodynamical point of view. In 5 we present our conclusions.

Many of the technical details are collected in the appendices: In A, we discuss the neces-

sary holographic renormalization, in B we specify the physical fields of the system, in C we

review the numerical procedure to deal with the coupled equations of motion, and finally

some general remarks on anisotropic fluids are given in D.

2 Holographic setup and equilibrium

The setup used in this paper was already described in [16, 19]. Therefore, here we give

a brief review of its most important properties. We consider SU(2) Einstein-Yang-Mills

theory in (4 + 1)-dimensional asymptotically AdS space. The action is

S =

∫
d5x

√−g

[
1

2κ25
(R− Λ)− 1

4ĝ2
F a
MNF aMN

]
+ Sbdy , (2.1)

where κ5 is the five-dimensional gravitational constant, Λ = − 12
L2 is the cosmological con-

stant (with L being the AdS radius), and ĝ is the Yang-Mills coupling constant. It is

convenient to define

α ≡ κ5
ĝ

, (2.2)

which measures the strength of the backreaction. The SU(2) field strength F a
MN is de-

fined by

F a
MN = ∂MAa

N − ∂NAa
M + εabcAb

MAc
N , (2.3)

where capital Latin letter indices run over {t, x, y, z, r}, with r being the AdS radial co-

ordinate, and εabc is the totally antisymmetric tensor with ε123 = +1. The Aa
M are the

components of the matrix-valued Yang-Mills gauge field A = Aa
MτadxM , where the τa are

the SU(2) generators, related to the Pauli matrices by τa = σa/2i. Finally, the Sbdy term

includes boundary terms, namely the Gibbons-Hawking boundary term as well as coun-

terterms required for the on-shell action to be finite, that will be discussed below. It does

not affect the equations of motion.

The Einstein and Yang-Mills equations derived from the above action are

RMN +
4

L2
gMN = κ25

(
TMN − 1

3
TP

P gMN

)
, (2.4)

∇MF aMN = −εabcAb
MF cMN , (2.5)

where the Yang-Mills stress-energy tensor TMN is

TMN =
1

ĝ2

(
F a
PMF aP

N − 1

4
gMNF a

PQF
aPQ

)
. (2.6)
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To solve this equations, we use the following ansätze for the gauge field and the metric,

which can be motivated from symmetry considerations [16, 33]

A =φ(r)τ3dt+ w(r)τ1dx , (2.7)

ds2 =−N(r)σ(r)2dt2 +
1

N(r)
dr2 + r2f(r)−4dx2 + r2f(r)2

(
dy2 + dz2

)
, (2.8)

where N(r) ≡ −2m(r)
r2

+ r2

L2 . The AdS boundary is at r → ∞ and for our black hole

solutions we denote the position of the horizon as rh.

This ansatz is compatible with the well-known AdS Reissner-Nordström solution,

where w(r) = 0 for all values of r. This solution features w(r) = 0, so it preserves

the SO(3) symmetry and corresponds to the normal phase of the system. There is a second

solution with non-vanishing w(r), which can only be computed numerically. The second

solution breaks the rotational SO(3) symmetry and describes the condensed superfluid

phase. Due to our choice of boundary conditions, this breaking occurs spontaneously. For

completeness, we state here the coefficients of the expansion at the horizon (in terms of

(r/rh − 1)n), {
φh
1 , σ

h
0 , w

h
0 , f

h
0

}
, (2.9)

being φh
0 = 0 in order for A to be well defined as a one-form [40], and of the expansion at

the boundary (in terms of (rh/r)
2n),{

μ, φb
1,m

b
0, w

b
1, f

b
2

}
. (2.10)

Note that wb
0 = 0, otherwise the SO(3) would be broken explicitly instead of spontaneously.

Besides, we can fix the metric to have asymptotic AdS boundary conditions, so that σb
0 =

f b
0 = 1. The fields can be made dimensionless through m(r) → r4hm(r), φ(r) → rhφ(r) and

w(r) → rhw(r), while f(r) and σ(r) are already dimensionless.

In terms of these coefficients we can express the different field theory quantities, such

as temperature and entropy density, given by

T =
σh
0

12π

(
12− α2 (φ

h
1)

2

σh
0
2

)
rh , s =

2π

κ25
r3h . (2.11)

The field theory expectation values of the dual operators of the different fields are directly

related to the expansion coefficients. For the charge density and the condensate we have

〈J t
3 〉 = −2α2

κ25
r3h φ

b
1 , 〈J x

1 〉 =
2α2

κ25
r3hw

b
1 , (2.12)

and for the energy-momentum tensor [41, 42] they are

〈Ttt〉 =
3r4h
κ25

mb
0 , 〈Txx〉 =

r4h
κ25

(
mb

0 − 8f b
2

)
, 〈Tyy〉 = 〈Tzz〉 =

r4h
κ25

(
mb

0 + 4f b
2

)
. (2.13)

In [16] it was found that the value of the Yang-Mills coupling constant α determines

if the phase transition is second order (α ≤ αc = 0.365) or first order (α > αc = 0.365).

– 6 –
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Figure 1. This diagram shows the dependence of the order of the phase transition on α2 and Tc/μ.

For a description of the plot see the text. This figure is taken from [19].

The quantitative dependence of the critical temperature on the parameter α is given in

figure 1. The broken phase is thermodynamically preferred in the blue and red regions,

while in the white region the ground state is the Reissner-Nordström black hole. The phase

transition from the white to the blue region is second order, while the one from the white

to the red region is first order. The black dot determines the critical point where the order

of the phase transition changes. In the green region the numerics are unstable. At zero

temperature, the data may be obtained analytically as described in [21, 43].

3 Perturbations about equilibrium

In this section we study the response of the holographic p-wave superfluid under small

perturbations. This analysis is necessary to ultimately compute the transport coefficients

of the system. On the gravity side, the perturbations are given by fluctuations of the

metric hMN (xμ, r) and the gauge field aaM (xμ, r). Thus we are studying a total of 14

physical modes: 5 coming from the massless graviton in 5 dimensions and 3 × 3 from the

massless vectors in five dimensions. Due to time and spatial translation invariance in the

Minkowski directions, the fluctuations can be decomposed in a Fourier decomposition as

hMN (xμ, r) =

∫
d4k

(2π)4
eikμx

μ
ĥMN (kμ, r) ,

aaM (xμ, r) =

∫
d4k

(2π)4
eikμx

μ
âaM (kμ, r) .

(3.1)

To simplify notations, we drop the hat on the transformed fields which we use from now

on if not stated otherwise.
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3.1 Characterization of fluctuations and gauge fixing

In general, we would have to introduce two spatial momenta: one longitudinal to the

direction of the condensate, k‖, and another one perpendicular to it, k⊥. Thus, kμ =

(ω, k‖, k⊥, 0). But introducing a momentum perpendicular to the condensate breaks the

remaining rotational symmetry SO(2) down the discrete Z2 parity transformation P⊥:
k⊥ → −k⊥, x⊥ → −x⊥. This leads to a mixing of most of the fields making the problem of

solving the corresponding differential equations unmanageable. Thus we do not study this

case further in this paper. However, a momentum exclusively in the direction longitudinal

to the condensate, or zero spatial momentum, preserves the SO(2) rotational symmetry

such that we can classify the fluctuations according to their transformation under the SO(2)

symmetry (see table 1). The modes of different helicity decouple from each other. The mo-

mentum longitudinal to the condensate, however, breaks the longitudinal parity invariance

P‖. In this paper we will set this spatial momentum to zero as well. Therefore, we can

classify the modes further by their behaviour under the longitudinal parity transformation

P‖. Under this transformation the helicity 0 fields are divided into two blocks, the first

block contains htx, a
3
x, a

1
t and a2t and the second one htt, hxx, hyy + hzz, a

1
x, a

2
x and a3t .

In order to obtain the physical modes of the system we have to fix the gauge freedom.

We choose a gauge where aar ≡ 0 and hMr ≡ 0 such that the equations of motion for

these fields become constraints. These constraints fix the unphysical fluctuations in each

helicity sector and allow only the physical modes to fluctuate. The physical modes may be

constructed by enforcing them to be invariant under the residual gauge transformations,

δaar = 0 and δhMr = 0 (see appendix B). Thus, the physical fields we define are given in

terms of the fluctuations, and classified as (from here on we set k‖ = k)

helicity two: Ξ = gyyhyz, hyy − hzz ,

helicity one: Ψ = gyy(ωhxy + khty); aay ,
(3.2)

and for helicity zero:

Φ1 = a1x −
ik

φ
a2t +

k2

wφ
a3t +

kω

wφ
a3x +

kw

ω
ξtx−

− k2f4Nwσ2

2r2ω2
ξt +

k2f5w2σφ (σN ′ + 2Nσ′)− 2r2ω2f
(
wφw′ + k2φ′)

4rω2wφ (f + rf ′)
ξy,

Φ2 = a2x +
i
(
−k2 + w2

)
ωw

a3t−

− ik

w
a3x −

iwφ

2ω
ξt +

irf
(
w2φ (σN ′ + 2Nσ′) + 2N

(
k2 − w2

)
σφ′)

4ωNwσ (f + rf ′)
ξy,

Φ3 = ξx +
2k

ω
ξtx −

k2f4Nσ2

r2ω2
ξt +

4r2ω2f ′ − 2rω2f + k2f5σ (σN ′ + 2Nσ′)
2rω2 (f + rf ′)

ξy,

Φ4 = a3x +
k

ω
a3t −

wφ

ω2 − φ2
a1t −

iωw

ω2 − φ2
a2t +

w2φ

ω2 − φ2
ξtx−

− kf4Nw2σ2φ

2r2ω (ω2 − φ2)
ξt +

kf
(
f4w2σφ (σN ′ + 2Nσ′) + 2r2

(
−ω2 + φ2

)
φ′)

4rω (ω2 − φ2) (f + rf ′)
ξy,

(3.3)
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dynamical fields constraints # physical modes

helicity 2 hyz, hyy − hzz none 2

helicity 1 hty, hxy; a
a
y hyr 4

htz, hxz; a
a
z hzr 4

helicity 0 htt, hxx, hyy + hzz, hxt; a
a
t , a

a
x htr, hxr, hrr; a

a
r 4

Table 1. Classifications of the fluctuations according to their transformation under the little group

SO(2). The constraints are given by the equations of motion for the fields which are set to zero due

the fixing of the gauge freedom: aar ≡ 0 and hrM ≡ 0. The number of physical modes is obtained

by the number of dynamical fields minus the number of constraints. Due to SO(2) invariance the

fields in the first and second line of the helicity one fields can be identified.

with

ξy = gyyhyy, ξx = gxxhxx, ξt = gtthtt, ξtx = gxxhtx. (3.4)

First we look at the asymptotic behavior of the helicity zero physical fields in terms of

the asymptotic form of the background (2.10) and the fluctuation fields (A.5). The physical

fields are chosen so that each one can be identified at the boundary with a fluctuation field,

or a combination of them. In fact, in this limit they asymptote to

Φ1(ω, r) −→
(
a1x
)b
0
,

Φ2(ω, r) −→
(
a2x
)b
0
,

Φ3(ω, r) −→ (ξx)
b
0 − (ξy)

b
0 ,

Φ4(ω, r) −→
(
a3x
)b
0
.

(3.5)

Note that this computation was done in the �k = 0 limit, since this is the relevant limit for

this paper. The resulting correlators from the helicity zero modes will be written in terms

of this physical fields.

3.2 Equations of motion, on-shell action and correlators

In the following we will focus on the response exclusively due to time dependent pertur-

bations, i. e. kμ = (ω, 0, 0, 0). In this case in addition to the SO(2) symmetry, P‖ parity is

conserved which allows us to decouple some of the physical modes in the different helicity

blocks. In this section we obtain the retarded Green’s functions G of the gauge theory

corresponding to the stress-energy tensor Tμν and the currents Jμ
a , defined as two point

functions, as in

Gμν,ρσ(k) = −i

∫
dtd3x e−ikμxμ

θ(t)〈[Tμν(t, �x), T ρσ(0, 0)]〉 ,

Gμ,ν
a,b (k) = −i

∫
dtd3x e−ikμxμ

θ(t)〈[Jμ
a (t, �x), J

ν
b (0, 0)]〉 ,

Gμνρ
a(k) = −i

∫
dtd3x e−ikμxμ

θ(t)〈[Tμν(t, �x), Jρ
a (0, 0)]〉 ,

Gρ
a
μν(k) = −i

∫
dtd3x e−ikμxμ

θ(t)〈[Jρ
a (t, �x), T

μν(0, 0)]〉 .

(3.6)
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Here Tμν and Jμ
a are respectively the full stress-energy tensor and current, which include

the equilibrium parts of section 2, 〈T μν〉 and 〈J μ
a 〉, as well as the corresponding dissipative

parts which arise due to the introduction of fluctuations in our model.

We use the methods developed in the context of gauge-string duality to extract these

Green’s functions. First we determine the on-shell action at the boundary of the asymp-

totically AdS space from which we can easily read of the Green’s functions using the

recipe described in the seminal paper [44] and its generalisation to the case of operator

mixing (c.f. [45]).

We refer the reader to [19] for the treatment of the helicity one and two modes. Here

we present the analysis of the helicity zero fluctuations.

3.2.1 Helicity zero modes

The equations of motion corresponding to these fluctuations are very lengthy, therefore,

to guarantee readability, we omit them here. They can be derived by expanding the

action (2.1) up to second order in the fluctuations and varying it with respect to the

corresponding fields.

Due to the parity symmetry P‖ in the k = 0 case the modes split into two blocks, one

transforming oddly (block 1) the other evenly (block 2) under P‖.

Block 1 — Parity odd. The first block is composed by the modes {a1t , a2t , a3x, ξtx}. The
contribution of these modes to the on-shell action is1

S̃on-shell
hel.0, bl.1 =

1

κ25

∫
d4k

(2π)4

{
r5

4f4σ
ξtxξtx

′ +
r3α2

2σ

(
a1ta

1
t
′
+ a2ta

2
t
′)− rα2f4Nσ

2
a3xa

3
x
′

+
3r4

2f4σ
ξtx

2 − r3α2

2σ
ξtx
(
w′a1t + φ′a3x

)}∣∣∣∣
r=rbdy

,

(3.7)

which is divergent as we send rbdy → ∞. The divergence can be cured via holographic

renormalization, i.e. the addition of covariant boundary counterterms that cancel the diver-

gences without affecting the equations of motion (see appendix A). To obtain the boundary

action we plug the field expansions at rbdy into equation (3.7). Since we have four fields

satisfying four second order differential equations and three constraints (coming from set-

ting hxr, a
1
r , a

2
r to zero) we are left with a total of five (8− 3 = 5) independent parameters

at the boundary, {
(
a1t
)b
0
,
(
a2t
)b
0
,
(
a3x
)b
0
,
(
a3x
)b
1
, (ξtx)

b
0} (see (A.6)). There is some freedom

in choosing the undetermined coefficients, however the present choice is convenient for the

later use of the gauge/gravity dictionary. We express the renormalized on-shell action at

1Here and in other similar expressions ahead, the products are to be understood as evaluated on opposite

values of the frequency, as is natural for a Lagrangian written in Fourier space. For instance, ξtx a1
t would

actually be ξtx(−ω, r) a1
t (ω, r).
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the boundary in terms of these coefficients2,

Son-shell
hel.0, bl.1 =

r4h
κ25

∫
d4k

(2π)4

{
α2μφb

1

ω2 − μ2

(
a1t
)b
0

2
+

α2μφb
1

ω2 − μ2

(
a2t
)b
0

2
− α2ω2

4

(
a3x
)b
0

2

− 3

2
mb

0(ξtx)
b
0

2
+

2iα2ωφb
1

ω2 − μ2

(
a1t
)b
0

(
a2t
)b
0
+

α2μwb
1

ω2 − μ2

(
a1t
)b
0

(
a3x
)b
0

− iα2ωwb
1

ω2 − μ2

(
a2t
)b
0

(
a3x
)b
0
+ α2

(
a3x
)b
0

(
a3x
)b
1
+ 2α2φb

1

(
a3x
)b
0
(ξtx)

b
0

}
.

(3.8)

As we discuss in appendix B, there is a residual gauge freedom left, which has to be

taken into account to obtain physically sensible observables. Using the gauge transforma-

tions given in (B.11) for �k = 0 and setting Kt = Kr = Λ3
0 = 0, since they do not affect the

fields discussed in this block, we obtain the unique linear combination (up to an overall

scaling discussed in the previous paragraph)

Φ4 = a3x + w
iωa2t + φa1t − wφξtx

φ2 − ω2
(3.9)

Following [33], we rewrite the boundary action (3.8) in terms of gauge-equivalent fields,

which guarantees that our solutions are gauge invariant. The set of allowed transformations

is parametrized by three coefficients. The gauge equivalents to the fields which solve the

equations of motion and constraints are

a1t → α0a
1
t − iωΛ1

0 − φΛ2
0 − iωwKx ,

a2t → α0a
2
t − iωΛ2

0 + φΛ1
0 ,

a3x → α0a
3
x + wΛ2

0 ,

ξtx → α0ξtx − iωKx .

(3.10)

Note that we also took an overall multiplicative scaling factor into account. This can be in-

cluded because different solutions of the equations of motion are related by a rescaling of the

fields. These expressions give a relation, parametrized by four coefficients {α0,Λ
1
0,Λ

2
0,Kx},

between different sets of classical solutions which are equivalent.

In order to compute the two-point functions as derivatives of the classical action, we

will follow the directions given in [33], which instructs us to prescribe the value of the

perturbations at the boundary, respectively defined as {β1
t , β

2
t , β

3
x, βtx}, in terms of the

gauge-equivalent quantities defined in (3.10). Those are

β1
t = α0

(
a1t
)b
0
− iωΛ1

0 − φb
0Λ

2
0 − iωwKx ,

β2
t = α0

(
a2t
)b
0
− iωΛ2

0 + φb
0Λ

1
0 ,

β3
x = α0

(
a3x
)b
0
,

βtx = α0 (ξtx)
b
0 − iωKx .

(3.11)

2All fields in the following boundary action are dimensionless, i.e. we pulled out rh. Wherever the

context allows, we are sloppy with the notation and do not give the dimensionless fields new names.

– 11 –



J
H
E
P
0
4
(
2
0
1
3
)
0
4
9

The four coefficients of the gauge transformation can be chosen so that the fields asymptote

to these vales. Thus, we are effectively fixing the gauge, because the gauge freedom is

“absorbed” in the freedom of choosing the boundary values. Then, we rewrite the boundary

action (3.8) in terms of the βi and obtain

Son-shell
hel.0, bl.1 =

r4h
κ25

∫
d4k

(2π)4

(
β1∗
t β2∗

t β3∗
x β∗

tx

)
G(1)(ω)

⎛
⎜⎜⎜⎝

β1
t

β2
t

β3
x

βtx

⎞
⎟⎟⎟⎠ , (3.12)

where G(1) is the Green’s function matrix of this block, which relates the response of the

system to field fluctuations a1t , a
2
t , a

3
x and htx. Note that, following our convention, the

fields on the left row vector are evaluated in −ω and the fields on the right column vector

are in ω. Next, by taking derivatives ∂2/∂β∗(−ω)∂β(ω) of the action above we obtain

⎛
⎜⎜⎜⎜⎜⎝

〈J t
1〉(ω)

〈J t
2〉(ω)

〈Jx
3 〉(ω)

〈T tx〉(ω)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δSon-shell
helicity 0

δ(a1t )
b

0
(−ω)

δSon-shell
helicity 0

δ(a2t )
b

0
(−ω)

δSon-shell
helicity 0

δ(Φ4)
b
0(−ω)

δSon-shell
helicity 0

δ
(
ξtx
)b
0
(−ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

Gt,t
1,1(ω) Gt,t

1,2(ω) Gt,x
1,3(ω) Gt

1
tx
(ω)

Gt,t
2,1(ω) Gt,t

2,2(ω) Gt,x
2,3(ω) Gt

2
tx
(ω)

Gx,t
3,1(ω) Gx,t

3,2(ω) Gx,x
3,3 (ω) Gx

3
tx(ω)

Gtxt
1(ω) Gtxt

2(ω) Gtxx
3(ω) Gtx,tx(ω)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

(
a1t
)b
0
(ω)(

a2t
)b
0
(ω)

(Φ4)
b
0(ω)(

ξtx
)b
0
(ω)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which explicitly written in terms of the field theory expectation values is

G(1)(ω) =

⎛
⎜⎜⎜⎜⎜⎝

μ
μ2−ω2 〈J t

3 〉 iω
μ2−ω2 〈J t

3 〉 −μ
μ2−ω2 〈J x

1 〉 0

−iω
μ2−ω2 〈J t

3 〉 μ
μ2−ω2 〈J t

3 〉 iω
μ2−ω2 〈J x

1 〉 0

−μ
μ2−ω2 〈J x

1 〉 −iω
μ2−ω2 〈J x

1 〉 Gx,x
3,3 (ω) −〈J t

3 〉
0 0 −〈J t

3 〉 −〈Ttt〉

⎞
⎟⎟⎟⎟⎟⎠ , (3.13)

where we already included a factor of 2 coming from the prescription developed in [44]

for real-time correlators. Note that using the prescription above we automatically get the

correlator which includes the physical field Φ4 instead of a3x as it is pointed out in [33].

The matrix is completely determined by the background solution near the boundary,

except for one entry, the one corresponding to the two-point correlator of Φ4, which in

terms of the parity odd helicity zero modes reads

Gx,x
3,3 (ω) = −1

2
α2ω2 +

2α2

(a3x)
b
0

[(
a3x
)b
1
+ wb

1

μ
(
a1t
)b
0
+ iω

(
a2t
)b
0

μ2 − ω2

]
. (3.14)

Rewriting this correlator in terms of the physical field we obtain

Gx,x
3,3 (ω) = −α2

(
r3

Φ′
4(r)

Φ4(r)

∣∣∣∣
r=rbdy

+ counter terms

)
(3.15)

showing that all entries of G(1) are gauge invariant.
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To compute this correlator we have to numerically integrate the equations of motion

and constraint equations of this block. Since we choose infalling conditions at the horizon,

we fix four of the eight independent coefficients. And out of the remaining four coefficients,

three are fixed by the constraint equations, leaving us with one free parameter. This

parameter corresponds to the overall scaling of the physical field and is related to α0

in (3.10) and (3.11). Since the correlators are defined by ratios of the boundary values,

this parameter is scaled out and we can just set it to one. From the solution of the numerical

integration, we read off the boundary values of the fields and plug them into (3.14) to obtain

the Green’s functions. The results are presented in section 4, together with a qualitative

analysis of the thermoelectric effect associated to these correlators.

Block 2 — Parity even. The second block is composed by the modes

{a3t , a2x, a1x, ξt, ξy, ξx}, which combine to form three physical fields. The combinations we

chose were defined in (3.3), and in this section we are taking �k = 0, in which case they

reduce to

Φ1 = a1x −
fw′

2 (f + rf ′)
ξy ,

Φ2 = a2x +
iw

ω
a3t −

iwφ

2ω
ξt +

irfw (2φNσ′ + φN ′σ − 2φ′Nσ)

4ωNσ (f + rf ′)
ξy

Φ3 = ξx +
2rf ′ − f

f + rf ′ ξy ,

(3.16)

The contribution of this second block of helicity zero modes to the on-shell action is

S̃on-shell
hel.0, bl.2 =

1

κ25

∫
d4k

(2π)4

{
r3Nσ

4
ξyξy

′ − rα2f4Nσ

2

(
a1xa

1
x
′
+ a2xa

2
x
′)

+
r3α2

2σ
a3ta

3
t
′

− 3r2Nσ

8
ξt

2 − r2

8f

(
2fNσ +

frσN ′

2
+ fNrσ′ + 2Nrσf ′

)
ξx

2

+
r3Nσ

4
ξy
(
ξt

′ + ξx
′)+ r2

4f

(
5fNσ − rNσf ′ +

rfσN ′

2
+ rfNσ′

)
ξyξt

+
r3Nσ

4
(ξt + ξx) ξy

′ +
r2

2f

(
2fNσ +

rNσf ′

2
+

rfσN ′

2
+ rfNσ′

)
ξyξx

+
r3Nσ

8

(
ξtξx

′ + ξxξt
′)+ r2

8f

(
5fNσ + 2rNσf ′ +

rfσN ′

2
+ rfNσ′

)
ξtξx

−rα2f4Nσw′

4
a1x (ξt − ξx + 2ξy)−

r3α2φ′

4σ
a3t (ξt − ξx − 2ξy)

}∣∣∣∣
r=rbdy

,

(3.17)

which again is divergent. The renormalized on-shell action is derived and presented in the

appendix, see (A.15).

Since we have six fields determined by second order differential equations and three

constraints, we end up with twelve (12− 3 = 9) undetermined coefficients of the boundary

expansion, in terms of which the expression above is written. They are{(
a3t
)b
0
,
(
a2x
)b
0
,
(
a2x
)b
1
,
(
a1x
)b
0
,
(
a1x
)b
1
, (ξt)

b
0 , (ξy)

b
0 , (ξy)

b
2 , (ξx)

b
0

}
. (3.18)
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Notice that six of them (the ones with subscript 0) coincide with the boundary values of

the fields. The other three are higher-order coefficients. They are undetermined since the

boundary expansion does not know about the boundary conditions set on the horizon (i. e.

that they must satisfy an infalling condition at the horizon). Actually when integrating

the equations these coefficients are fixed by the boundary values we choose at the horizon.

However, how the expansion coefficients at the boundary depend on the coefficients at the

horizon cannot be addressed analytically, since in the bulk we can only solve the equations

of motion numerically and this dependence is precisely determined by the behaviour of the

fields in the bulk.

As in the previous case, the Green’s functions cannot be extracted directly from (3.17)

because there is a residual gauge freedom left under which the fluctuation fields are not

invariant. To fix the gauge freedom, we can apply again the formalism used before to derive

the gauge-equivalent solutions. In this case, we have to look for the restricted set of gauge

transformations and rescalings that keeps unaffected the perturbations of the first block.

This set is parametrized by six coefficients {αi
0,Λ

3
0,Kt,Kr}, with i = 1, 2, 3, and gives the

gauge-equivalents of a solution, which are

a3t → α0a
3
t − iωΛ3

0 + iωφKt +
(√

Nφ′ − ω2(φA− Cφ)
)
Kr ,

a2x → α0a
2
x − wΛ3

0 − iωwCφKr ,

a1x → α0a
1
x +

√
Nw′Kr ,

ξt → α0ξt + 2iωKt +

(
σN ′ + 2Nσ′

√
Nσ

− 2ω2A

)
Kr ,

ξy → α0ξy +
2
√
N (f + rf ′)

rf
Kr ,

ξx → α0ξx +
2
√
N (f − 2rf ′)

rf
Kr ;

(3.19)

where A, Cφ are defined in (B.7). We do not explicitly write the 3 independent scale factors

out, rather we use a general scaling α0. As will be explained later, the 3 independent

scale parameters are related to the freedom of choosing the value for 3 of the fields at

the horizon. However, due to the complicated mixing of the fields in the bulk it is not

known how this translates into the scaling at the boundary. Following the steps of [33],

we would now proceed by prescribing the values of the perturbations at the boundary

{β3
t , β

2
x, β

1
x, βt, βy, βx} by evaluating the asymptotic behavior of the gauge transformations,

that we find is given by

β3
t =

(
a3t
)b
0
− iωΛ3

0 + iωφb
0Kt ,

β2
x =

(
a2x
)b
0
,

β1
x =

(
a1x
)b
0
,

βt = (ξt)
b
0 + 2Kr + 2iωKt ,

βy = (ξy)
b
0 + 2Kr ,

βx = (ξx)
b
0 + 2Kr .

(3.20)
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Since we do not know how the scale parameters enter the above equations, we have to alter

our approach in deriving the action in terms of the physical fields.

We parametrize the fluctuations in such a way that each physical mode asymptotes

(see equation (3.5)) to the boundary value of a fluctuation field. For this reason, from here

on we will work with

ξp(ω, r) = ξx(ω, r) + ξy(ω, r) , ξm(ω, r) = ξx(ω, r)− ξy(ω, r) . (3.21)

In addition, we perform a rotation of the a1x, a
2
x into

a+x (ω, r) = a1x(ω, r) + i a2x(ω, r) , a−x (ω, r) = a1x(ω, r)− i a2x(ω, r) . (3.22)

Accordingly, we rotate the corresponding physical fields into Φ± = Φ1 ± i Φ2, so that

their respective boundary values coincide with those of a±x . This parametrization is more

convenient, since the a+x and a−x fields transform under the fundamental representation

of the unbroken U(1)3. That is, they behave in a similar fashion as electrically charged

vector mesons do under the U(1)em. To make contact with the unbroken phase, we keep

the parametrization also in the broken phase. Notice that these fields are conjugate of one

another: (a±(ω))∗ = a∓(−ω).

Next, we will invert the definitions (3.16) and solve for the selected fluctuation fields

ϕI = {a±x , ξm} in terms of the corresponding physical fields ΦI = {Φ±,Φ3}. The idea is

to replace these three fields and write the on-shell action in terms of the physical fields of

this block along with the remaining fluctuations ϕi = {a3t , ξt, ξp}. This can be seen as a

change to a more convenient basis, which guarantees that the resulting correlators are free

of gauge ambiguity.

We perform the replacement in (3.17) and in the corresponding counterterms (ap-

pendix A.2). In terms of the expansion coefficients of the physical fields at the boundary

we obtain the on-shell action

Son-shell
hel.0, bl.2 =

r4h
κ25

∫
d4k

(2π)4

{
α2

2

[
(Φ+)

b
0 (Φ-)

b
1 + (Φ-)

b
0 (Φ+)

b
1

]

+
1

3
(Φ3)

b
0 (Φ3)

b
2 −

1

4
α2 (μ+ ω)2 (Φ+)

b
0 (Φ-)

b
0

+
2μ− ω

12ω
α2wb

1

[
(Φ+)

b
0 (Φ3)

b
0 + (Φ3)

b
0 (Φ-)

b
0

]
−
(
ω4

64
+

5f b
2

3
+

19mb
0

96

)
(Φ3)

b
0

2

+
α2wb

1

ω

[
(Φ-)

b
0 − (Φ+)

b
0

] (
a3t
)b
0
+

(
f b
2 +

mb
0

16

)
(Φ3)

b
0

[
3 (ξp)

b
0 − 2 (ξt)

b
0

]
+

μ− ω

4ω
α2wb

1

[(
(ξp)

b
0 − 2 (ξt)

b
0

)
(Φ+)

b
0 + (Φ-)

b
0

(
(ξp)

b
0 − 2 (ξt)

b
0

)]
+

mb
0

32

[
12(ξt)

b
0

2 − 9(ξp)
b
0

2
+ 12 (ξp)

b
0 (ξt)

b
0

]}∣∣∣∣
r=rbdy

(3.23)

The fields in this action are defined by equation (3.5) and (3.21) and below equation (3.22).

This new action (including the ϕi part), when written in terms of the block 2 perturbation

modes, coincides exactly with what we have in (A.15).
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The part involving the physical fields only can schematically be written as

Son-shell
hel.0, bl.2 =

r4h
κ25

∫
d4k

(2π)4
[Φ∗

I (−ω, r)A(k, r)IJ∂rΦJ(ω, r) + Φ∗
I (−ω, r)B(k, r)IJΦJ(ω, r)]r=rb

,

where the derivatives ∂rΦI evaluated at the boundary absorb the higher-order coefficients

of the expansions (see (3.18)), in the same way that the ΦI(rb) absorb the boundary values

of the replaced fields. Of the matrices A, B; we only need to know their asymptotic values

at the cutoff rbdy, which are given by

A(ω, rbdy) =

⎛
⎜⎝−1

4α
2r3bdy 0 0

0 −1
4α

2r3bdy 0

0 0 − 1
12r

5
bdy

⎞
⎟⎠ , (3.24)

and

B(ω, rbdy) =

⎛
⎜⎝

1
4α

2 (μ− ω)2 log
(
rh
r

)
0 −2μ+ω

24ω α2wb
1

0 1
4α

2 (μ+ ω)2 log
(
rh
r

) 2μ−ω
24ω α2wb

1

−2μ+ω
24ω α2wb

1
2μ−ω
24ω α2wb

1 B33(ω, rbdy)

⎞
⎟⎠ , (3.25)

with B33(ω, r) =
1
96

[
−4ω2r2 + 2ω4 log

(
rh
r

)
− 160f b

2 − 19mb
0

]
.

At this point we refer the reader to [45] for a prescription to calculate the Green’s

functions in systems where the operators mix. In appendix C, we discuss this prescription

in more detail and show how it can be generalized to our case.

The matrices A, B are the ones used to perform the numerical calculations described

there, and the rest of the terms in (3.23) give directly the Green’s functions. In fact the

matrix of Green’s functions of this block may be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈J t
3〉(ω)

〈Jx
+〉(ω)

〈Jx
- 〉(ω)

〈12
(
T xx − 2T⊥⊥)〉(ω)

〈12
(
T xx + 2T⊥⊥)〉(ω)

〈T tt〉(ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δSon-shell
helicity 0

δ(a3t )
b

0
(−ω)

δSon-shell
helicity 0

δ(Φ+
∗)b0(−ω)

δSon-shell
helicity 0

δ(Φ-∗)b0(−ω)

δSon-shell
helicity 0

δ
(
Φ3

)b
0
(−ω)

δSon-shell
helicity 0

δ
(
ξp
)b
0
(−ω)

δSon-shell
helicity 0

δ
(
ξt
)b
0
(−ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=G(2)(ω)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
a3t
)b
0
(ω)

(Φ+)
b
0(ω)

(Φ-)
b
0(ω)(

Φ3

)b
0
(ω)(

ξp
)b
0
(ω)(

ξt
)b
0
(ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.26)

where the entries are denoted by

G(2)(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gt,t
3,3(ω) Gt,x

3,+(ω) Gt,x
3,-(ω) Gt

3
m
(ω) Gt

3
p
(ω) Gt

3
t
(ω)

Gx,t
+,3(ω) Gx,x

+,+(ω) Gx,x
+,-(ω) Gx

+
m(ω) Gx

+
p(ω) Gx

+
t(ω)

Gx,t
-,3(ω) Gx,x

-,+(ω) Gx,x
-,- (ω) Gx

-
m(ω) Gx

-
p(ω) Gx

-
t(ω)

Gmt
3(ω) Gmx

+(ω) Gmx
- (ω) Gm,m(ω) Gm,p(ω) Gm,t(ω)

Gpt
3(ω) Gpx

+(ω) Gpx
- (ω) Gp,m(ω) Gp,p(ω) Gp,t(ω)

Gtt
3(ω) Gtx

+(ω) Gtx
- (ω) Gt,m(ω) Gt,p(ω) Gt,t(ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.27)

– 16 –



J
H
E
P
0
4
(
2
0
1
3
)
0
4
9

and we find that they are given by G(2)(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2ω 〈J x

1 〉 1
2ω 〈J x

1 〉 0 0 0

1
2ω 〈J x

1 〉 Gx,x
+,+(ω) Gx,x

+,-(ω) Gx
+
m(ω) −μ+ω

8ω 〈J x
1 〉 μ+ω

4ω 〈J x
1 〉

− 1
2ω 〈J x

1 〉 Gx,x
-,+(ω) Gx,x

-,- (ω) Gx
-
m(ω) μ−ω

8ω 〈J x
1 〉 −μ−ω

4ω 〈J x
1 〉

0 Gmx
+(ω) Gmx

- (ω) Gm,m(ω) 3
16 (〈Ttt〉 − 2〈Txx〉) −1

8 (〈Ttt〉 − 2〈Txx〉)
0 μ−ω

8ω 〈J x
1 〉 −μ+ω

8ω 〈J x
1 〉 3

16 (〈Ttt〉 − 2〈Txx〉) − 3
16〈Ttt〉 1

8〈Ttt〉
0 −μ−ω

4ω 〈J x
1 〉 μ+ω

4ω 〈J x
1 〉 −1

8 (〈Ttt〉 − 2〈Txx〉) 1
8〈Ttt〉 1

4〈Ttt〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now some comments are in order explaining the expectation values of equation (3.26)

and the notation we use. Regarding the former, we derive 〈12
(
T xx − 2T⊥⊥)〉 and

〈12
(
T xx + 2T⊥⊥)〉 in appendix D and furthermore use that T yy = T zz. Regarding the

notation, note that the index m is related to Φ3 field, since (Φ3)
b
0 = (ξm)b0. Furthermore

the x± indices are related to the Φ+ and Φ- fields. Here all entries are functions of the

background, except for the sector containing the physical fields and their couplings, which

has to be computed numerically. As before, to do so we choose infalling boundary condi-

tions at the horizon which leaves us with six of the former twelve free parameters. From

the six left, three are fixed by the constraint equations. The value of the three remaining

coefficients just scale the solutions and since we compute ratios of the boundary values it

does not matter which value we choose for them. Note that a more detailed explanation of

the numerical procedure we apply is described in appendix C. This part of G(2) describes

the dynamics of this block, and it is related holographically to several interesting properties

of the superfluid phase, as we describe in the next section.

4 Transport properties

In this section we extract the transport properties of the holographic p-wave superfluid

from the correlation functions presented in the previous section. We split our analysis into

distinct transport phenomena.

4.1 Thermoelectric effect parallel to the condensate

We start by presenting the thermoelectric effect parallel to the condensate, i.e. we look at

charge transport and temperature gradients in the x direction. This is related to the first

block of helicity zero states we presented in section 3.2.1. Furthermore our results are in

agreement with [33] for the non-backreacted case.

The thermoelectric effect describes the simultaneous transport of charge and heat (or

energy). This means that an electric field not only leads to a current, but also to a heat flux

and, conversely, a temperature gradient leads to an electric current in addition to a heat

flux. In holographic systems, this effect was already observed in s-wave superfluids (see

e.g. [31, 37, 46]) or in the p-wave superfluid component transverse to the condensate [19].

However, in the case at hand, we have a slight complication due to a further coupling of

the a1t and a2t fields to the a3x and to the htx metric component (see section 3.2.1).
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A straightforward calculation (see [37]) shows that ∇xT is related to the gtt component

of the metric through the change in the period of the Euclidean time. The change can be

done in a way that δgtt becomes pure gauge provided a complementary change is done for

A3
x and gtx. It is customary to fix the gauge requesting δgtt to vanish, and allowing for

δA3
x and δgtx only. On the other hand, Ex receives an additional contribution from the

vector potential, iω (Φ4)
b
0. The combined effect is so that we define the electric field and

temperature gradient

Ex = iω
[
(Φ4)

b
0 + μ (ξtx)

b
0

]
,

−∇xT

T
= iω (ξtx)

b
0 .

(4.1)

This modes source the charge current Jx in direction of the condensate and the heat flux

Qx = T tx−μJx, respectively. The relation of these currents to the corresponding electrical

field and temperature gradient defines the conductivity matrix(
〈Jx〉
〈Qx〉

)
=

(
σxx Tαxx

Tαxx T κ̄xx

)(
Ex

−(∇xT )/T

)
. (4.2)

Comparing this matrix to the lower right corner of the one in (3.13), we can identify

the electric, thermal and thermoelectric conductivities, which are related to the retarded

Green’s functions by

σxx = − i

ω
Gx,x

3,3 ,

Tαxx = − i

ω

(
Gx

3
tx − μGx,x

3,3

)
=

i

ω
〈J t

3 〉 − μσxx ,

T κ̄xx = − i

ω

(
Gtx,tx − 2μGx

3
tx + μ2Gx,x

3,3

)
=

i

ω

(
〈Ttt〉 − 2μ〈J t

3 〉
)
+ μ2σxx .

(4.3)

The conductivity in direction of the condensate σxx has been calculated numerically. The

results are shown in figures 2 and 3 for α = 0.316 < αc. The results for other values

of α do not show any significant qualitative difference, therefore we do not show them in

this paper.

The rest of the matrix (3.13) shows the response of the system due to the a1t , a2t
fluctuations. This is a manifestation of the fact that the equations of motion of the gauge

field fluctuations are coupled. Therefore, if a temperature gradient excites one of these

modes, the other two will respond, and their response is dictated by the coefficients of the

matrix. In [33], the a1t , a
2
t fluctuation fields are interpreted as generating a rotation of the

charge density in direction 〈J t
1〉 and 〈J t

2〉, however without changing its magnitude.

The complete transport matrix of this block then reads⎛
⎜⎜⎜⎜⎜⎝

〈J t
1〉

〈J t
2〉

〈Jx〉
〈Qx〉

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

σt,t
1,1 σt,t

1,2 σt,x
1,3 −μσt,x

1,3

σt,t
2,1 σt,t

2,2 σt,x
2,3 −μσt,x

2,3

σx,t
3,1 σx,t

3,2 σxx Tαxx

−μσx,t
3,1 −μσx,t

3,2 Tαxx T κ̄xx

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

iωa1t

iωa2t

Ex

−∇xT
T

⎞
⎟⎟⎟⎟⎟⎠ , (4.4)
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Figure 2. Real part of the conductivity Re(σxx) over the frequency ω/(2πT ) for α = 0.316. The

color coding is as follows: blue T = 1.63Tc, red T = 0.98Tc, brown T = 0.88Tc, green T = 0.78Tc,

orange T = 0.50Tc. There is a delta peak at strictly ω = 0, not noticeable in this figure, as dictated

by the sum rule (the area below the curves has to be the same for any T ).

where each of the transport coefficients is simply related to the corresponding Green’s

function by σ = −iG/ω. We will now focus on the electric conductivity σxx, the others

can be obtained from it.

The fact that the longitudinal conductivity σxx has a different behavior than that of

the component transverse to the condensate σ⊥⊥ (c.f. [19]) in the broken phase is an effect

of the breaking of rotational symmetry.

Let us discuss the similarities and differences between σxx and σ⊥⊥ (for a discussion of

σ⊥⊥ see [19]). The curve of the real part of σxx (figure 2) shows the correct [47] asymptotic

behaviour for large frequencies, i. e. the real part is proportional to the frequency for all

temperatures. More precisely, for ω � T we have

κ5
2Re(σxx)

2α2T
→ π2 ω

2πT
. (4.5)

We expect this behavior on dimensional grounds, and as a consequence of the conformal

symmetry in our system.3 On the other hand, for decreasing frequencies we see that the

conductivity decreases until nearly vanishing. This sharp decrease is a known feature of

superconductors. It is present for all temperatures, not only for T < Tc. However, for

smaller temperatures the decrease takes place at larger values of ω. It is by far not as

sharp as in σ⊥⊥, and furthermore there are some qualitative differences: The bump before

decreasing is absent for σxx - the asymptotic value for large frequencies is approached by

the curves with smaller temperature from below, rather than from above, as opposed to

the perpendicular case. Besides, up to numerical inaccuracy the conductivities do not seem

to vanish for any frequency, for temperatures above 0.5Tc. In comparison, the transverse

3There is no lattice spacing which would spoil the high frequency behavior.
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Figure 3. Imaginary part of the conductivity times the frequency, ωIm(σxx) over the frequency

ω/(2πT ) for α = 0.316. The color coding is as follows: blue T = 1.63Tc, red T = 0.98Tc, brown

T = 0.88Tc, green T = 0.78Tc, orange T = 0.50Tc. The curves tend to a constant value as ω → 0,

which indicates the presence of a pole at the origin. This is related to the delta peak in the real

part of σxx.

conductivity has a far stronger temperature suppression in the gapped region. However,

below 0.5Tc the situation seems to change dramatically as is explained in the next section.

The real part of σxx, as opposed to the perpendicular case, increases again for small but

finite frequencies and reaches a finite value in the ω → 0 limit, as seen in the zoomed region

of figure 2. This increase in the real part in the zero frequency limit is due to a quasinormal

mode which moves up the imaginary axis in the complex frequency plane (see the blue arrow

in figure 6) and seems to reach the origin ω = 0 at temperatures slightly above 0.5Tc. The

increase we see towards the ω → 0 limit comes from the projection of the quasinormal mode

onto the real frequency axis. Note that this bump increases with decreasing temperature.

Unfortunately it is challenging to compute the exact temperature when the mode arrives at

the origin, since we have to rely on numerical calculations. Nevertheless, for temperatures

below 0.5Tc it appears that a pole is formed and at the same time the real part of the

conductivity is more strongly suppressed at finite small frequencies in comparison to cases

of temperatures above 0.5Tc (see the green and orange curve in zoomed region of figure 2).

It seems that somewhere around 0.5Tc, due to the quasinormal mode at the origin, the

conductivity behavior in the direction of the condensate changes. It would be interesting

to understand this effect from a field theoretic point of view, we leave this for future work.

Due to the pole in the imaginary part of the conductivity (see figure 3) and the

Kramers-Kronig relation [32] we know that at ω = 0 the real part must have a delta peak.

There are two main contributions to the prefactor of this delta peak, which change with

temperature, and they come from the pole at the origin of the imaginary part, expressed as

ω Im (σxx) � AD(α, T ) +Ax
s (α)

(
1− T

Tc

)
. (4.6)
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Figure 4. These plots show the real and imaginary part of the correlators Gx,x
±,± versus the reduced

frequency ω/(2πT ) for α = 0.316 at different temperatures: blue T = 0.98Tc, red T = 0.88Tc,

brown T = 0.78Tc, purple T = 0.62Tc, green T = 0.50Tc, orange T = 0.46Tc.

This is reminiscent of the perpendicular case (c.f. [19]). In fact, similarly the first contri-

bution AD is a consequence of translational invariance at all temperatures, specifically for

temperatures above Tc. The other contribution, Ax
s , appears when temperatures decrease

below Tc. This prefactor is expected to be connected to the superfluid density, however it

differs from the corresponding factor in the transverse case.

The properties of the two components of the conductivities we state here are very

similar to the ones found in the non-backreacted case (see [33]). Therefore corrections due

to the backreaction seem to be rather small.

4.2 Viscosities and flavour transport coefficients

The second block of coupled modes transforming as scalars under the SO(2) symmetry

includes the fields a1x, a
2
x, a

3
t , ξt = gtthtt, ξx = gxxhxx and ξy = gyyhyy. Similarly to the

first block, these fields form 3 physical modes, Φ1, Φ2 and Φ3 (see (3.3)). It turns out that

it is more sensible to consider this fields in terms of Φ± = Φ1 ± iΦ2, since they transform

fundamentally under the U(1)3 in the unbroken phase.

4.2.1 Piezoelectric effect

The transport properties presented in this section show similarities to an effect known

as piezoelectric effect4 found in crystals [39]. This effect describes the generation of an

4A similar effect, the flexoelectric effect, is related to the helicity one modes, see [19].
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electric current due to the squeezing and/or elongation of a crystal, or the generation of

a mechanical strain due to an external electric field. A coupling between a normal stress

difference and (flavour) currents that resembles this effect is found in this block. Note that

the piezoelectric effect was already found in the context of black branes in [48].

In simple terms, there is an interaction analogous to the one of the first block, between(
〈Jx±〉

〈T xx, T⊥⊥, T tt〉

)
←→

(
a±x

hxx, h⊥⊥, htt

)
. (4.7)

The broken phase is characterized by a condensate 〈Jx
1 〉. The a±x fluctuate around this

background value and the system reacts by working against this perturbations by changing

the diagonal stress-energy tensor components 〈T xx〉, 〈T⊥⊥〉 and 〈T tt〉. The converse case,

where we fluctuate about equilibrium values of the stress-energy tensor and look at the

response of the currents 〈Jx
1 〉 works in a similar fashion. Note that this is not the only

response of the system to these fluctuations. However, in this section we are interested

exactly in the coupling between different modes. In the field theory this may be related to

an electric current being affected by, or generating, mechanical stress (Piezoelectric effect).

Finally, the transport coefficients “measure” the strength of the response of the system,

i.e. how do the expectation values change with respect to the original values when they

are perturbed.

In figures 4 and 5 we plot the real and imaginary part of Gx,x
±,± and Gx,x

±,∓ over the

reduced frequency ω/(2πT ), for several values of the temperature, or equivalently of the

chemical potential μ. We find the symmetry relations

Gx,x
-,- (ω) = Gx,x

+,+(−ω)∗ , Gx,x
+,-(ω) = Gx,x

-,+(−ω)∗ ,

Gx,x
-,- (ω) = Gx,x

+,+(−ω)∗ , Gx,x
+,-(ω) = Gx,x

-,+(−ω)∗ ,

as we did in the study of helicity one modes [19]. This was expected from the fact that

(Φ+(ω))
∗ = Φ-(−ω), (Φ-(ω))

∗ = Φ+(−ω) and (Φ3(ω))
∗ = Φ3(−ω)∗.

In figure 7 we plot the Gmx
±, whose imaginary parts are identical to those of Gx±

m, and

whose real parts are similar, except for small frequencies compared to the temperature.

Notice that many of the curves in figures 4–7 show a pole at ω = 0. To understand

why, remember that the formation of 〈Jx
1 〉 selects a preferred direction in flavor space,

spontaneously breaking the SO(3) and U(1)3 symmetries. As a consequence of this, the

a2x field becomes one of the three massless Goldstone modes arising from the spontaneous

symmetry breaking. This common pole reflects the formation of this Goldstone mode,

since it is included in the fields Φ±, which are involved in all of the correlators presented

here. When plotting the quasinormal modes in the complex frequency plane we also see

this pole at the origin, so that for T > Tc they asymptote to the origin of the frequency

place ω = 0. In fact, although it is not apparent in figures 5 and 7, the correlators vanish

completely in the unbroken phase T > Tc, since in this limit the equations of motion of the

bulk fields decouple.

Another common feature of our results is the appearance of a rich structure for the

correlators in the broken phase, including the formation of a bump located on the same
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Figure 5. These plots show the real and imaginary part of the correlator Gx,x
+,-, or equivalently Gx,x

-,+,

versus the reduced frequency ω/(2πT ) for α = 0.316 at different temperatures: blue T = 0.98Tc,

red T = 0.88Tc, brown T = 0.78Tc, purple T = 0.62Tc, green T = 0.50Tc, orange T = 0.46Tc.

���
���

� � �
� � �

� � � � � �

� � �

Figure 6. This figure, taken from [34], shows the different quasinormal modes in the D3/D7 system

in the complex frequency plane. Here w = ω/(2πT ). The red and green curves show the modes of

the fluctuations which correspond to Φ± in our setup and the blue curve corresponds to our Φ4.

It is interesting to see that the backreaction and the bottom up approach we pursue in the system

at hand behave in a very similar fashion as the D3/D7 probe setup. Note however, that there is

one difference: due to the backreaction and consequently the rotational symmetry breaking in the

superfluid phase, the a±y decouple from the Φ±, contrary to what happens in the D3/D7 mode.

Moreover, we only see the red and green modes in the Φ± sector and not in the a±y sector (see [19]

for a treatment of this modes).

value of the frequency for all of them. These bumps come from higher quasinormal exci-

tations. With decreasing temperature, they move in the direction of smaller values of the

negative imaginary parts and larger real parts of the frequencies. Therefore they become

more accentuated with decreasing temperature. Nevertheless the quasinormal modes stay

in the lower half complex frequency plane for all the temperatures we were able to check

numerically. We will leave it for future work to investigate their behavior at finite spatial

momentum and zero temperature. Note that their behavior is very similar to the one found

in the D3/D7 model in [34] (see figure 6). Following [34], these bumps may be interpreted

as bound states, e.g. mesons. However, since we do not have a precise knowledge of the

the field theory side, this interpretation should be treated with care. We cannot say much

more at this stage, without having the exact formulation of the hydrodynamics dual to this

gravitational setup.
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Figure 7. These plots show the real and imaginary part of the correlators Gx
±
m versus the reduced

frequency ω/(2πT ) for α = 0.316 at different temperatures: blue T = 0.98Tc, red T = 0.88Tc,

brown T = 0.78Tc, purple T = 0.62Tc, green T = 0.50Tc, orange T = 0.46Tc. We are not showing

Gmx
± because their imaginary parts are identical. Their real parts, however, show a different low

frequency behaviour.

The Green’s functions Gx,x
±,± (c.f. figure 4) seem to have different asymptotic values,

however this is just a consequence of the small frequency range displayed here. Actually,

they do asymptote to the same value for all temperatures in the limit of large frequencies.

However this veils the interesting details at low frequency, therefore we do not show it

here. Nevertheless, the large frequency limit is proportional to ω2, in agreement with the

underlying CFT.

Finally, note that the real parts of Gx±
m and Gmx

± are not symmetric to each other.

In the latter one we see poles in the ω → 0 limit. This poles are due to the fact that in

the Gmx
± case we are dividing by the boundary value of Φ±, which contains the (massless)

Goldstone mode a2x and therefore vanishes at ω = 0, whereas in the Gx±
m case we divide

by the boundary value of Φ3, whose quasinormal mode is not located at the origin.

In the next subsection we look at Gm,m, the Green’s function generated by Φ3.
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4.2.2 Transport coefficient associated to a normal stress difference

In the presence of anisotropy, besides the two shear viscosities ηyz and ηxy, there are three

other coefficients. But in a conformal fluid, two of them, ζx and ζy, vanish due to the trace-

lessness condition of the energy-momentum tensor in conformal theories. The remaining

nonzero component, λ, is related to the normal stress difference as discussed below.

In the ω → 0 limit the imaginary part of the two-point function of Φ3 asymptotes to

a finite value different from zero, see figure 8. We can relate this Green’s function to the

transport coefficient λ (see appendix D), i. e.

λ = lim
ω→0

3

2ω
ImGm,m(ω) . (4.8)

As discussed in appendix D there is no λ in the isotropic phase. However, the corre-

sponding transport coefficient in the unbroken phase is just the shear viscosity η (compare

equations (D.5) and (D.6)). Therefore we can match λ to η at the phase transition. In the

following we show that the Green’s function of Φ3 in the isotropic case gives the correct

value of η.

If we consider perturbations around a background with unbroken SO(3) symmetry, i. e.

with zero w(r), then the physical field Φ3 decouples from the other fields. Inserting the

analytic solution of the AdS Reissner-Nordström black hole,

ds2 = −N(r)dt2 +
1

N(r)
dr2 + r2

(
dx2 + dy2 + dz2

)
, (4.9)

its equation of motion can simply be written as

ω2r3

N(r)
Φ3 +

[
r3N(r)Φ′

3

]′
= 0 , (4.10)

whereN(r) = r2− 2m0
r2

+ 2α2q2

3r4
. This is the equation of motion of a minimally coupled scalar,

thus we can apply the procedure developed in [24] to derive the value of the corresponding

transport coefficient. The relevant part of the boundary action in the unbroken case for

this mode is

Son-shell
Φ3

=
r4h
κ25

∫
d4k

(2π)4

[
− r5

12
Φ∗
3(ω, r)∂rΦ3(ω, r) +B33(k, r)Φ

∗
3(ω, r)Φ3(ω, r)

]
r=rb

(4.11)

with B33(ω, r) = 1
96

[
−4ω2r2 + 2ω4 log

(
rh
r

)
− 19mb

0

]
and mb

0 defined as in the AdS

Reissner-Nordström solution. Using the result of [24] and the Kubo formula (4.8),5 we

obtain for this particular case the viscosity coefficient

η

s
=

1

4π
, (4.12)

where s is the entropy density. This is the expected value for the shear viscosity in the

isotropic phase.

5Just interchange η with λ, since λ is normalized in a way to match η at the phase transition.
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Figure 8. We plot λ
s over the temperature T/Tc for α = 0.032 (red), α = 0.224 (yellow), α = 0.316

(blue) and α = 0.447 (green). Note that α = 0.447 > αc and therefore the phase transition is first

order leading to multiple values near the phase transition. All curves tend to 1/(4π) at Tc, since in

the unbroken phase λ corresponds to the isotropic shear viscosity η.

As stated above λ is the transport coefficient related to the normal stress difference,

that is, the difference of the diagonal components of the stress tensor, 〈12
(
T xx − 2T⊥⊥)〉.

Generically, whenever a incompressible material is squeezed between two surfaces by ap-

plying normal stresses, it will tend to expand along the directions parallel to these surfaces

(e.g. normal radial squeezing on a cylinder is expected to lengthen its shape on the verti-

cal direction).

In our setup, a positive strain difference (Φ3)
b
0 ∼
(
hxx − 1

2 (hyy + hzz)
)b
0
,6 corresponds

to a deformation that enlarges a direction �n, which results in the formation of a squeez-

ing normal stress in the perpendicular direction to �n, which translates into a positive

〈Txx − 2T⊥⊥〉. Therefore, one expects to have a positive coefficient λ. An experimental

consequence of this behavior of the coefficient would be that, if the fluid is inside a recipient

and a spinning rod is placed in it, the fluid would be expelled outwards more noticeably in

the superfluid phase, climbing up the walls of the recipient.

5 Conclusion

We have considered a holographic p-wave superfluid within SU(2) Einstein-Yang-Mills the-

ory, in which the formation of the condensate spontaneously breaks the rotation symmetry,

selecting a preferred direction x and keeping transverse isotropy in the y, z-plane. This

6Note that we do not differentiate between hyy and hzz, since both are related via the SO(2) symmetry.

Therefore, we get 1
2
(hyy + hzz) = h⊥⊥.
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remaining SO(2) symmetry group allows us to classify the perturbations about equilibrium

according to their transformation properties, into three different helicity sectors. In this

paper we have focused on the helicity zero states and studied their transport properties.

Due to Z2 parity, the helicity zero sector splits into two blocks. In the first block, we

obtain the thermoelectric conductivity in the direction parallel to the condensate, whereas

the second block allows us to study the piezoelectric effect and transport properties related

to the normal stress difference. These are interesting new phenomena which are due to the

anisotropy in our system.

We see that the thermoelectric conductivity displays some differences with respect to

the transverse case (i. e. the helicity one fluctuations), despite being qualitatively similar.

In particular, the temperature suppression in the broken phase is much lighter in the

presented longitudinal case for temperatures above around 0.5Tc. For temperatures below

the temperature suppression of the real part a finite small frequencies increases dramatically

and we see a pole at ω = 0. This is due to a quasinormal mode traveling up the imaginary

axis of the complex frequency plane. At around 0.5Tc this mode arrives at the origin and

stays there.

On the other hand, in the parity even block we find a behavior reminiscent of the

piezoelectric effect. Furthermore we see bumps in the correlators of this sector, which seem

to be related to the generation of bound states.

In the zero frequency limit, we find a non-zero value for the two-point function of the

diagonal metric fluctuations, which is related by a Kubo formula to a component of the

viscosity tensor, denoted by λ. Since λ has the same dimensions as a shear viscosity we

investigate its behavior by taking its ratio with respect to the entropy density s. We find

that in the broken case λ/s is temperature dependent, whereas in the unbroken phase it

turns into the isotropic shear viscosity η/s = 1/(4π) for all temperatures T > Tc. The ratio

λ/s does not fall below the 1/(4π) for all temperatures and all values of the backreaction

parameter α. The physical interpretation of this coefficient is the effect that an anisotropic

strain has over the normal stress difference, 1
2〈Txx − 2T⊥⊥〉.

We have determined the coefficients associated to these effects for generic values of

the frequency and the temperature. Our results are valid as an effective description of the

transport properties near the critical temperature Tc, where scale invariance is approached

and simple models of AdS/CFT can be applied.

For further progress, a detailed analysis of the hydrodynamics of anisotropic superfluids

is desirable to give a further interpretation to our study. In addition, it would be interesting

to perform an analysis at finite spatial momentum, which would allow us to investigate the

dispersion relations of the normalizable modes [49] and to check if there are instabilities

similar to the ones found in [50, 51].
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A Holographic renormalization

The boundary part Sct of the action (2.1) does not have any influence on the equations

of motion, but it must ensure that the action is finite on-shell. It includes the Gibbons-

Hawking boundary term and some additional terms that will constitute the counterterm

action Sct, needed to cancel out any divergences that may appear. Thus, the full action is

written as

S =
1

2κ25

∫
d5x

√−g

[
R− Λ− α2

2
F a
MNF aMN

]
+

1

κ25

∫
d4x

√−γ K + Sct, (A.1)

where K is the trace of the extrinsic curvature.

We will follow the lead of the references [52, 53] to perform the holographic renormal-

ization and obtain the counterterm action.

A.1 Asymptotic behavior

In this section we look at the behavior of the fluctuation fields {F (r)} at the horizon and at

the boundary. Eventually we will want to calculate real-time retarded Green’s functions [44,

54], therefore at the horizon, besides regularity,7 we have to fulfill the incoming boundary

condition. For this purpose the ansatz we plug in for the behavior of the fields near the

horizon is

F (r)
∣∣
r→rH

= εβh

∑
i≥0

F h
i ε

i
h , (A.2)

where εh = r/rh − 1, into the equations of motion of the fluctuation fields. It turns out

that, as expected, we obtain two possibilities for β, namely

β = ±i
ω

4πT
, (A.3)

with T being the temperature defined in equation (2.11). As said before, we choose the

solution with the “−” sign which corresponds to the incoming boundary condition. The

other solution represents the outgoing boundary condition.

On the other hand, our ansatz at the boundary is similar to the one used for the

background calculation in section 2. However, here we have to add a logarithmic term to

get a consistent solution (c.f. [52]). Therefore we use

F (r)
∣∣
r→rbdy

=
∑
i≥0

(
F b
i +

1

2
F̂ b
i ln εb

)
εib , (A.4)

where εb = (rh/r)
2 is the expansion parameter.

7The condition φ(rH) = 0 at the horizon guarantees regularity. Even with all fluctuations switched on,

there is no need for any further constraint.
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Let us now use the above expansions for the helicity zero states (the expressions for

the helicity one and two states can be found in [19]). In this case, the equations of motion

for the fluctuation fields can be distributed into two blocks. In the first block, we have 5

independent expansion coefficients at the boundary (8 free parameters from the 4 second

order differential equations minus 3 free parameters due to the constraints). We choose

them to be (ξtx)
b
0 ,
(
a1t
)b
0
,
(
a2t
)b
0
,
(
a3x
)b
0
and

(
a3x
)b
1
. At the horizon, we already halved the

independent parameters by choosing the incoming boundary condition. From the remaining

4 parameters, we can get rid of 3 by using the constraint equations. Therefore, we are left

with just one free parameter at the horizon.

We can perform similar considerations for the second block. Here we have also 3

constraints, but we are dealing with 6 fields, each with its corresponding second order dif-

ferential equation. Therefore at the boundary we have 12−3 = 9 independent parameters,

namely (ξy)
b
0 , (ξx)

b
0 , (ξt)

b
0 ,
(
a1x
)b
0
,
(
a2x
)b
0
,
(
a3t
)b
0
,
(
a1x
)b
1
,
(
a2x
)b
1
and (ξy)

b
2. At the horizon,

as before, we already fixed 6 free parameters by choosing the incoming boundary condition.

There are 6− 3 = 3 free parameters that give a fully determined system.

Now we will state the first few non-vanishing terms of the expansion at the boundary of

the different fields, because we will need them later on to determine divergences in the on-

shell action and to calculate the Green’s functions. The explicit form of these expansions is

ξy =(ξy)
b
0 + ω2 (ξy)

b
0 − (ξx)

b
0

12
εb +

(
(ξy)

b
2 −

1

96
ω4
[
(ξy)

b
0 − (ξx)

b
0

]
log εb

)
ε2b +O(ε3b) ,

ξx =(ξx)
b
0 + ω2 (ξx)

b
0 − (ξy)

b
0

6
εb +

(
. . .− 1

48
ω4
[
(ξx)

b
0 − (ξy)

b
0

]
log εb

)
ε2b +O(ε3b) ,

ξt =(ξt)
b
0 + ω2 2 (ξy)

b
0 + (ξx)

b
0

6
εb +O(ε2b) ,

a1x =
(
a1x
)b
0
+

((
a1x
)b
1
− 1

4

[(
μ2 + ω2

) (
a1x
)b
0
− 2iμω

(
a2x
)b
0

]
log εb

)
εb +O(ε2b) ,

a2x =
(
a2x
)b
0
+

((
a2x
)b
1
− 1

4

[(
μ2 + ω2

) (
a2x
)b
0
+ 2iμω

(
a1x
)b
0

]
log εb

)
εb +O(ε2b) ,

a3t =
(
a3t
)b
0
+

(
− i

ω

(
a2x
)b
0
wb
1 −

1

2

[
2 (ξy)

b
0 + (ξx)

b
0 − (ξt)

b
0

]
φb
1

)
εb +O(ε2b) ;

(A.5)

for the fields of the second block, and

a1t =
(
a1t
)b
0
+

[
ω2 (ξtx)

b
0 −
(
a3x
)b
0
μ− (ξtx)

b
0 μ

2
]
wb
1 −
[(
a1t
)b
0
μ+ iω

(
a2t
)b
0

]
φb
1

ω2 − μ2
εb +O(ε2b) ,

a2t =
(
a2t
)b
0
+

−iω
(
a3x
)b
0
wb
1 +
[(
a2t
)b
0
μ− iω

(
a1t
)b
0

]
φb
1

μ2 − ω2
εb +

iω
(
a3x
)b
0
wb
1

8
ε2b +O(ε3b) ,

a3x =
(
a3x
)b
0
+

((
a3x
)b
1
− 1

4
ω2
(
a3x
)b
0
log εb

)
εb +O(ε2b) ,

ξtx =(ξtx)
b
0 − α2

(
a3x
)b
0
φb
1εb +O(ε3b) ; (A.6)

for the first block. Note that μ ≡ φb
0, φ

b
1 and wb

1 are the expansion coefficients of φ(r) and

w(r) at the boundary.
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We do not state the expansions at the horizon, since the explicit form is quite lengthy

and does not provide additional information to equation (A.2).

A.2 Counterterms

By plugging the expansions (A.6) into (3.7) and (3.17), we obtain the non-renormalized

on-shell action, Son-shell =
1
κ2
5

∫
d4k
(2π)4

Lrb , where the integrand Lrb is written in terms of the

free parameters of the previous expansions as

Lrb

r4h
=

α2μφb
1

ω2 − μ2

(
a1t
)b
0

2
+

α2μφb
1

ω2 − μ2

(
a2t
)b
0

2
− α2ω2

4
(1 + log εb)

(
a3x
)b
0

2

+

(
3

2ε2b
− 6f b

2

)
(ξtx)

b
0

2
+

2iα2ωφb
1

ω2 − μ2

(
a1t
)b
0

(
a2t
)b
0
+

α2μwb
1

ω2 − μ2

(
a1t
)b
0

(
a3x
)b
0

− iα2ωwb
1

ω2 − μ2

(
a2t
)b
0

(
a3x
)b
0
+ α2

(
a3x
)b
0

(
a3x
)b
1
− α2φb

1

(
a3x
)b
0
(ξtx)

b
0

+

(
− 3

8ε2b
− ω2

8εb
− 7ω4

192
− f b

2 +
5mb

0

4
+

ω4

48
log εb

)
(ξx)

b
0

2
+

(
− 3

8ε2b
+

3mb
0

4

)
(ξt)

b
0

2

+

(
ω2

8εb
− 13ω4

192
+

ω4

48
log εb

)
(ξy)

b
0

2 − α2
(
μ2 + ω2

)
4

(1 + log εb)

[(
a1x
)b
0

2
+
(
a2x
)b
0

2
]

+ 2 (ξy)
b
2

[
(ξx)

b
0 − (ξy)

b
0

]
+

(
3

2ε2b
+

3ω2

4εb
+

ω4

96
+ f b

2 +mb
0 −

ω4

24
log εb

)
(ξy)

b
0 (ξx)

b
0

+

(
3

2ε2b
− ω2

4εb
− f b

2 − 4mb
0

)
(ξy)

b
0 (ξt)

b
0 +

(
3

4ε2b
− ω2

8εb
+ f b

2 − 2mb
0

)
(ξx)

b
0 (ξt)

b
0

+
α2wb

1

2

(
a1x
)b
0

[
2 (ξy)

b
0 + (ξx)

b
0 − (ξt)

b
0

]
− iα2μwb

1

ω

(
a2x
)b
0

[
(ξx)

b
0 − (ξt)

b
0

]
+ α2

(
a1x
)b
0

(
a1x
)b
1
+
(
1 + iα2μω log εb

) (
a1x
)b
0

(
a2x
)b
0
+ α2

(
a2x
)b
0

(
a2x
)b
1

− iα2wb
1

ω

(
a2x
)b
0

(
a3t
)b
0

∣∣∣∣
r=rbdy

. (A.7)

This is evaluated at the boundary, where εb = (rh/rbdy)
2 = 0, so any higher order terms

vanish. And we have changed to momentum space, so that in each product of expansion

parameters in this expression, the first one has always to be understood as evaluated on

−ω and the second on ω, e.g. on the first term we have
(
a1t
)b
0
(−ω)

(
a1t
)b
0
(ω). Therefore,

note that the order in which they are multiplied matters.

The terms that have to be considered for the counterterms are the ones in (A.7) with

explicit εb dependence, since those are the ones responsible for the divergences

LDiv
rb

r4h
=

1

ε2b

[
3

2
(ξtx)

b
0

2
+

3

8

(
−(ξx)

b
0

2 − (ξt)
b
0

2
+ 4 (ξy)

b
0 (ξx)

b
0 + 4 (ξy)

b
0 (ξt)

b
0 + 2 (ξx)

b
0 (ξt)

b
0

)]

+
1

εb

ω2

8

[
(ξy)

b
0

2 − (ξx)
b
0

2
+ 6 (ξy)

b
0 (ξx)

b
0 − 2 (ξy)

b
0 (ξt)

b
0 − (ξx)

b
0 (ξt)

b
0

]

+ log εb

[
−α2ω2

4

(
a3x
)b
0

2
+

ω4

48

(
(ξy)

b
0

2
+ (ξx)

b
0

2 − 2 (ξy)
b
0 (ξx)

b
0

)

−α2
(
μ2 − ω2

)
4

((
a1x
)b
0

2
+
(
a2x
)b
0

2
)
+ iα2μω

(
a1x
)b
0

(
a2x
)b
0

]
. (A.8)
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For the construction of the counterterms, first we need to define the induced metric γμν on

the r = rbdy plane,

γμν =
∂xM

∂x̃μ
∂xN

∂x̃ν
gMN (r)

∣∣∣∣
r=rbdy

, (A.9)

resulting in

ds2rbdy = −N(rbdy)σ(rbdy)
2dt2 +

r2bdy
f(rbdy)4

dx2 + r2bdyf(rbdy)
2(dy2 + dz2). (A.10)

Note that the expansion of the determinant of the induced metric for r � 1 is divergent

and is given by

√−γ

∣∣∣∣
r�1

= r4
[
1

2
(ξtx)

b
0

2 − 1

8

(
(ξx)

b
0

2
+ (ξt)

b
0

2 − 4 (ξy)
b
0 (ξx)

b
0

− 4 (ξy)
b
0 (ξt)

b
0 − 2 (ξx)

b
0 (ξt)

b
0

)]

+
ω2r2

24

[
2(ξy)

b
0

2 − (ξx)
b
0

2
+ 8 (ξy)

b
0 (ξx)

b
0 − 2 (ξy)

b
0 (ξt)

b
0 − (ξx)

b
0 (ξt)

b
0

]

+
ω4

48
log

1

r

[
(ξy)

b
0

2
+ (ξx)

b
0

2 − 2 (ξy)
b
0 (ξx)

b
0

]

+ (ξy)
b
2

(
(ξx)

b
0 − (ξy)

b
0

)
− ω4

288

(
7(ξy)

b
0

2
+ 4(ξx)

b
0

2 − 2 (ξy)
b
0 (ξx)

b
0

)

− 2f b
2(ξtx)

b
0

2 − f b
2

(
(ξx)

b
0

2 − (ξy)
b
0 (ξx)

b
0 + (ξy)

b
0 (ξt)

b
0 − (ξx)

b
0 (ξt)

b
0

)

+
mb

0

2
(ξtx)

b
0

2
+

mb
0

8

(
5(ξx)

b
0

2
+ (ξt)

b
0

2
+ 4 (ξy)

b
0 (ξx)

b
0

− 12 (ξy)
b
0 (ξt)

b
0 − 6 (ξx)

b
0 (ξt)

b
0

)

− α2φb
1

(
a3x
)b
0
(ξtx)

b
0 +

α2wb
1

2

(
(ξx)

b
0 − (ξt)

b
0

)((
a1x
)b
0
− iμ

ω

(
a2x
)b
0

)
. (A.11)

We will use these divergences to cancel out the ones we find in the non-renormalized

action, together with other counterterms that have to be considered. It is not necessary to

rigorously derive the covariant counterterms here in this work. By looking at the ones that

B. Sahoo and H.-U. Yee calculated in [53], we get an idea of how they should look like;

namely, some combinations of R[γ], Rμν [γ] and F a
μν (i.e. the Ricci scalar and Ricci tensor

on the induced surface, and the field strength tensor on that surface). Possible covariant

combinations of the three terms are
√−γ,

√−γR[γ],
√−γR[γ]2,

√−γRμν [γ]Rμν [γ] and√−γF a
μνF

aμν . The coefficients in front of them can be guessed by requiring the divergences
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to vanish in the complete action. Their expansions for r � 1 are

√−γR[γ]

∣∣∣∣
r�1

= − r2ω2

2

[
(ξy)

b
0

2
+ 2 (ξy)

b
0 (ξx)

b
0

]

+
ω4

12

(
(ξy)

b
0

2
+ (ξx)

b
0

2 − 2 (ξy)
b
0 (ξx)

b
0

)
,

√−γR[γ]2
∣∣∣∣
r�1

= ω4
(
4(ξy)

b
0

2
+ (ξx)

b
0

2
+ 4 (ξy)

b
0 (ξx)

b
0

)
,

√−γRμν [γ]Rμν [γ]

∣∣∣∣
r�1

=
ω4

2

(
3(ξy)

b
0

2
+ (ξx)

b
0

2
+ 2 (ξy)

b
0 (ξx)

b
0

)
,

√−γF a
μνF

aμν

∣∣∣∣
r�1

= − 2ω2
(
a3x
)b
0

2
− 2
(
μ2 + ω2

)((
a1x
)b
0

2
+
(
a2x
)b
0

2
)

+ 8iμω
(
a1x
)b
0

(
a2x
)b
0
.

(A.12)

It can be checked that by adding the real space action

Sct = − 1

κ25

∫
d4x

√−γ

(
3 +

1

4
R[γ]

+

[
1

48
R[γ]2 − 1

16
Rμν [γ]Rμν [γ] +

α2

8
F a
μνF

aμν

]
log εb

)∣∣∣∣
r=rbdy

(A.13)

to the action Son-shell (2.1) we get a divergence-free theory (up to second order in the

fluctuations) for rbdy � 1, i.e. also the real time Green’s functions are divergence-free.

The renormalized rbdy � 1 on-shell action of the helicity 0 modes are

Son-shell
hel.0, bl.1 =

r4h
κ25

∫
d4k

(2π)4

{
α2μφb

1

ω2 − μ2

(
a1t
)b
0

2
+

α2μφb
1

ω2 − μ2

(
a2t
)b
0

2
− α2ω2

4

(
a3x
)b
0

2

− 3

2
mb

0(ξtx)
b
0

2
+

2iα2ωφb
1

ω2 − μ2

(
a1t
)b
0

(
a2t
)b
0
+

α2μwb
1

ω2 − μ2

(
a1t
)b
0

(
a3x
)b
0

− iα2ωwb
1

ω2 − μ2

(
a2t
)b
0

(
a3x
)b
0
+ α2

(
a3x
)b
0

(
a3x
)b
1
+ 2α2φb

1

(
a3x
)b
0
(ξtx)

b
0

}
(A.14)

and

Son-shell
hel.0, bl.2 =

r4h
κ25

∫
d4k

(2π)4

{
−ω4

64
(ξy)

b
0

2 −
(
ω4

64
− 2f b

2 +
5mb

0

8

)
(ξx)

b
0

2
+

3mb
0

8
(ξt)

b
0

2

+

(
ω4

32
− 2f b

2 −
mb

0

2

)
(ξy)

b
0 (ξx)

b
0 +

(
2f b

2 +
mb

0

2

)
(ξy)

b
0 (ξt)

b
0

−
(
2f b

2 −
mb

0

4

)
(ξx)

b
0 (ξt)

b
0 + (ξy)

b
2

[
(ξy)

b
0 − (ξx)

b
0

]

− α2
(
μ2 + ω2

)
4

[(
a1x
)b
0

2
+
(
a2x
)b
0

2
]
+ iα2μω

(
a1x
)b
0

(
a2x
)b
0

− iα2wb
1

ω

(
a2x
)b
0

(
a3t
)b
0
+ α2

[(
a1x
)b
0

(
a1x
)b
1
+
(
a2x
)b
0

(
a2x
)b
1

]
+α2wb

1

(
a1x
)b
0

[
(ξy)

b
0 − (ξx)

b
0 + (ξt)

b
0

]
+

iα2μwb
1

2ω

(
a2x
)b
0

[
(ξx)

b
0 − (ξt)

b
0

]}
.

(A.15)
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Since we have 6 fields determined by second order differential equations and 3 constraints,

we end up with 12− 3 = 9 undetermined coefficients of the boundary expansion, in terms

of which the expression above is written. They are

{(
a3t
)b
0
,
(
a2x
)b
0
,
(
a2x
)b
1
,
(
a1x
)b
0
,
(
a1x
)b
1
, (ξt)

b
0 , (ξy)

b
0 , (ξy)

b
2 , (ξx)

b
0

}
. (A.16)

B Constructing the gauge invariant fields

The gauge group of the SU(2) Einstein-Yang-Mills theory can be a subject of formal studies,

as outlined in [55]. It is shown that diffeomorphism-induced transformations of the metric

functions and pure Yang-Mills transformations of the Yang-Mills fields ought not to be

considered separately. On general grounds, we must look for the most general combination,

which can be written as

δN = ∂tΣ
t +Σi∂iN −N i∂iΣ

t,

δN i = ∂tΣ
i −N∂iΣt +Σt∂iN +Σj∂jN i −N j∂jΣ

i,

δgij =
Σt

N ∂tgij +

(
Σk − ΣtN k

N

)
∂kgij + 2gk(i∂j)Σ

k − 2
Σtgk(i∂j)N k

N ,

δAa
t = Aa

i ∂tΣ
i +Σi∂iA

a
t + F a

ti

ΣtN i

N + ∂tΛ
a + εabcΛbAc

t ,

δAa
i = F a

ti

Σt

N + F a
ij

ΣtN j

N +Aa
j∂iΣ

j +Σj∂jA
a
i + ∂iΛ

a + εabcΛbAc
i ;

(B.1)

where the i, j, . . . indices denote the spatial coordinates {x, y, z, r} of our spacetime. The

metric gij is the spatial metric and gij is its inverse, and the functions N and N i (called

lapse and shift vector respectively) are defined as

ds2 = gMNdxMdxN = −N 2dt2 + gij(dx
i +N idt)(dxj +N jdt). (B.2)

A general infinitesimal gauge transformation acting on a perturbed solution is given in

terms of the 8 descriptors {ΣM ,Λa}. We define

ĝMN = gMN + hMN ,

Âa
M = Aa

M + aaM .
(B.3)

where gMN and Aa
M are the background fields of the hairy black hole solution that is

considered in section 2. This part of the fields is therefore fixed, and the fluctuations hMN

and aaM are our dynamical variables. Thus, for instance the variation of the fluctuation

field defined as ξt = gtthtt is given by δξt = gttδhtt = gttδĝtt.

Furthermore, since they are considered as perturbations, they will be of the same order

as the parameters ΣM and Λa. This allows us to give simple expressions to their variations,

which will be approximated to lowest order.
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B.1 Residual gauge transformations

In section 3.1, we decided to choose a gauge where aar ≡ 0 and hMr ≡ 0. This kind of gauge

fixing is allowed as long as, for any given configuration, there exists a gauge transformation

such that it makes these components vanish. Since there are 8 functions that categorize

each possible transformation, in principle this is feasible. Here we will see that this is

justified, however the gauge is not completely fixed by these choices.

We begin by defining the background metric, which corresponds to the ansatz use in

section 2, so it is of the form

ds2 = gMNdxMdyN = −c1(r)
2dt2 + c2(r)

2dx2 + c3(r)
2(dy2 + dz2) + c4(r)

2dr2, (B.4)

the only non-zero components of the background Yang-Mills field are A3
t = φ(r) and

A1
x = w(r), and we will be working in momentum space, i.e.

ΣM (t, x, r) =

∫
d4x eikμx

μ
ΣM (ω, k, r),

Λa(t, x, r) =

∫
d4x eikμx

μ
Λa(ω, k, r),

(B.5)

where kμ = (ω, k, 0, 0), since in the case we are studying the rotational symmetry SO(2) is

preserved so that the fluctuations can be classified.

With these assumptions, we look at the variations of the hMr components of the metric

and the aar components of the Yang-Mills field, under an infinitesimal gauge transforma-

tion (B.1) acting on a perturbed background solution. To first order, these are

δhtr = −iωc4
2Σr + c1

′Σt − c1∂rΣ
t, (B.6a)

δhxr = ikc4
2Σr + c2

2∂rΣ
x, (B.6b)

δhyr = c3
2∂rΣ

y, (B.6c)

δhzr = c3
2∂rΣ

z, (B.6d)

δhrr = 2c4
(
c4

′Σr + c4∂rΣ
r
)
, (B.6e)

δa1r = w∂rΣ
x + ∂rΛ

1, (B.6f)

δa2r = ∂rΛ
2, (B.6g)

δa3r = −Σt

c1
∂rφ+ ∂rΛ

3. (B.6h)

It is easy to convince oneself that by choosing carefully the ΣM and Λa functions, one could

make the hMr and aar vanish. Now the residual gauge freedom would correspond to any

further transformation that, while keeping these components null, changes the rest of the

dynamical variables. We will find the most general form of a residual gauge transformation.

– 34 –



J
H
E
P
0
4
(
2
0
1
3
)
0
4
9

The solutions to δhMr = 0, δaar = 0 can be written in terms of 8 constants {KM ,Λa
0} as

Σt(ω, k, r) = −Ktc1 − iωKrc1A, with A =

∫
dr

c4
c12

;

Σx(ω, k, r) = Kx − ikKrB, with B =

∫
dr

c4
c22

;

Σy(ω, k, r) = Ky,

Σz(ω, k, r) = Kz,

Σr(ω, k, r) =
Kr

c4
,

Λ1(ω, k, r) = ikKrCw + Λ1
0, with Cw =

∫
dr

c4w

c22
;

Λ2(ω, k, r) = Λ2
0,

Λ3(ω, k, r) = −Ktφ− iωKr (φA− Cφ) + Λ3
0, with Cφ =

∫
dr

c4φ

c12
.

(B.7)

The physics ought to be invariant under any gauge transformation. Therefore, those dy-

namical fields affected by these residual gauge transformations must be unphysical. Those

linear combinations with the property of being invariant constitute the physical fields.

B.2 The physical fields

The helicity two fluctuations, Ξ = gyyhyz and hyy − hzz are already invariant, that is,

δΞ = gyyδhyz = 0,

δ(hyy − hzz) = 0;
(B.8)

therefore they are already physical modes. The helicity one fluctuations transform as

δhxy = ikc3
2Ky,

δhty = −iωc3
2Ky,

δaay = 0;

(B.9)

so that the aay are physical, and the invariant combination of the other two gives the

physical mode Ψ = gyy(ωhxy + khty). Note that the same applies to the z components,

which behave exactly the same as the y components.

Now, for the helicity zero fields8 ξtx, ξt, ξx, ξy, a
a
x and aat , we arrange any possible

physical mode Φ as a linear combination of them given by some r-dependent coefficients

τn, so that its invariance translates into

δΦ =
3∑

a=1

(τaδa
a
x + τ3+aδa

a
t ) + τ7δξtx + τ8δξt + τ9δξx + τ10δξy = 0. (B.10)

8Where we had defined ξy = gyyhyy, ξx = gxxhxx, ξt = gtthtt and ξtx = gxxhtx in (3.4).
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Each of the variations in this expression are given by

δξtx = −iωKx + ik
c1

2

c22
Kt − ωk

(
B +

c1
2

c22
A

)
Kr,

δξt = 2iωKt +

(
2c1

′

c1c4
− 2ω2A

)
Kr,

δξx = 2ikKx +

(
2c2

′

c2c4
+ 2k2B

)
Kr,

δξy =
2c3

′

c3c4
Kr,

δa1x = ikΛ1
0 + ikwKx +

(
w′

c4
+ k2 (wB − Cw)

)
Kr,

δa1t = −iωΛ1
0 − φΛ2

0 − iωwKx − ωk (wB − Cw)Kr,

δa2x = ikΛ2
0 − wΛ3

0 − iωwCφKr,

δa2t = −iωΛ2
0 + φΛ1

0 + ikφCwKr,

δa3x = ikΛ3
0 + wΛ2

0 − ikφKt + ωk (φA− Cφ)Kr,

δa3t = −iωΛ3
0 + iωφKt +

(
φ′

c4
− ω2 (φA− Cφ)

)
Kr.

(B.11)

Plugging everything into equation (B.10) results in 6 algebraic equations, due to the fact

that the variation of the physical mode must vanish for any residual transformation, that

is, for any Kt, Kx, Kr, Λ
1
0, Λ

2
0, Λ

3
0. Thus, we can solve for 6 of the τn coefficients in terms

of the other four. The solution gives the most general gauge invariant combination and it

turns out to be independent of the {A,B,Cw, Cφ} functions.

What we call the four physical fields, Φi (i: 1, . . . , 4), are chosen as a set of independent

fields that generate that invariant combination. There is more than one choice, but the

one we have taken is

Φ1 = a1x −
ik

φ
a2t +

k2

wφ
a3t +

kω

wφ
a3x +

kw

ω
ξtx−

− k2f4Nwσ2

2r2ω2
ξt +

k2f5w2σφ (σN ′ + 2Nσ′)− 2r2ω2f
(
wφw′ + k2φ′)

4rω2wφ (f + rf ′)
ξy,

Φ2 = a2x +
i
(
−k2 + w2

)
ωw

a3t−

− ik

w
a3x −

iwφ

2ω
ξt +

irf
(
w2φ (σN ′ + 2Nσ′) + 2N

(
k2 − w2

)
σφ′)

4ωNwσ (f + rf ′)
ξy,

Φ3 = ξx +
2k

ω
ξtx −

k2f4Nσ2

r2ω2
ξt +

4r2ω2f ′ − 2rω2f + k2f5σ (σN ′ + 2Nσ′)
2rω2 (f + rf ′)

ξy,

Φ4 = a3x +
k

ω
a3t −

wφ

ω2 − φ2
a1t −

iωw

ω2 − φ2
a2t +

w2φ

ω2 − φ2
ξtx−

− kf4Nw2σ2φ

2r2ω (ω2 − φ2)
ξt +

kf
(
f4w2σφ (σN ′ + 2Nσ′) + 2r2

(
−ω2 + φ2

)
φ′)

4rω (ω2 − φ2) (f + rf ′)
ξy.

(B.12)
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C Numerical evaluation of Green’s functions

Here we review and generalize the algorithm to evaluate Green’s functions in cases when

there is operator mixing [45]. The starting point of the algorithm would be a general

bilinear bulk action for some fields ΦI(x
μ, r) given by

S =

∫
ddx dr [∂μΦI AIJ(x, r) ∂

μΦJ +ΦI Bμ
IJ(x, r) ∂μΦJ +ΦI CIJ(x, r) ΦJ] (C.1)

In principle, one could be considering a perturbed background solution, as in the prob-

lem discussed in this paper, and it may be possible that there is some gauge freedom

associated with those perturbation fields. In our case, that would be given by the trans-

formation (B.11). But of course, gauge symmetry implies that the only relevant fields are

the gauge-invariant combinations of the perturbations (3.3). Therefore, the most sensible

strategy would be to write the action in terms of these physical degrees of freedom ΦI, and

proceed from there.

C.1 Writing action in the correct basis

Even though the action is constituted as a gauge-invariant itself, it may not be possible

to express it in terms of the physical fields only. It depends on the number of fluctuation

fields and the extent of the gauge freedom. Let’s say, for instance, that after whatever

gauge fixing, the perturbed background is described by N fields ϕi(x) and we are left with

a residual gauge freedom parametrized by M constants. Then, the set of the possible gauge

invariant linear combinations of ϕi(x) is generated by N −M independent physical fields

ΦI(x). But the part of the action that is quadratic in perturbations may be of the form

S =

∫
ddx dr

[
∂μϕi aij(x, r) ∂

μϕj + ϕi b
μ
ij(x, r) ∂μϕj + ϕi cij(x, r) ϕj

]
, (C.2)

with, assuming for simplicity dependence on r only, (2N + 1)N coefficients {aij , bij , cij}
(Note that a and c form symmetric matrices). The only requirement upon this action is that

it be invariant under any gauge transformation. This gives 2NM equations (one for every

field or derivative of field, and for every transformation), from which some coefficients are

determined, leaving (1 + 2N − 2M)N undetermined coefficients that one is free to choose.

On the other hand, an action written using only physical modes ΦI is constructed using

2(N −M)2+(N −M) = (1+2N −2M)(N −M) coefficients. Thus, the freedom in writing

a gauge-invariant action is always greater than what the ΦI allow for.

We conclude that in general the action will not be expressible as in (C.1). Not with the

Φi being physical, gauge-invariant fields. The generalization of the algorithm consists in

getting as close as possible to an expression of that kind, as we explain below. Our starting

point, for now, will consist in taking the complete quadratic action (C.2) and forgetting

about the gauge symmetry issues. Varying this action, one can obtain the equations of

motion for the perturbation fields, integrate the Lagrangian by parts, insert the equations

of motion to obtain the action evaluated on-shell and add the proper counterterms to

cancel out any divergences. Finally, this expression can be transformed carefully into an

integration in Fourier space (see [45] for a description of the procedure).
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The physical fields obey a set of coupled equations of motion of their own, and each

particular solution gives a vector of functions {ΦI(x, r)}, such that as we approach the

boundary, it asymptotes to some boundary values. It is in general possible to normalize

the physical modes and to parametrize the perturbations in such a way that each boundary

value of a physical mode coincides with the boundary value of one of the fluctuations,

ΦI(k, r) −−−→
r→∞ ϕI(k). (C.3)

So we can make an association one to one between the physical modes and n of the N

fluctuation fields. At any other distance r, each physical mode will of course depend on

the values of all the other fluctuations that are involved in its definition.

Then, the first of the instructions would be to normalize the physical modes and to

choose the appropriate fluctuation modes in order to be able to make this association on the

boundary. The second step is to invert the definitions of the physical modes and solve for

the fluctuations ϕI(k) that enter in the association. The idea is to replace these fields9 by

inserting that solution into the on-shell action. In doing so, one obtains a contribution that

involves only the physical modes, another one with couplings between the physical modes

and the remaining fluctuations, and finally some terms given in terms of these remaining

fluctuations only. That is, So.s. = So.s.1 + So.s.2 where10

So.s.1 =

∫
ddk [ΦI A(k, r)IJ ∂rΦJ +ΦI B(k, r)IJ ΦJ]r=rb

,

So.s.2 =

∫
ddk
[
ΦIa(k, r)Ij∂rϕj + ϕib(k, r)iJ∂rΦJ +ΦIc(k, r)Ijϕj

+ ϕidij(k, r)∂rϕj + ϕieij(k, r)ϕj

]
r=rb

,

The associated ϕI(x) fields no longer enter in the action. Now let’s assume that we cannot

find an analytic solution to the n coupled equations of motion, which is expected except

for some simple cases. Nevertheless, since this action is evaluated on the boundary rb,

a possible analytic approach would be to solve for the equations of motion on the limit

r � rh and obtain the asymptotic expansions of the fields. As shown in the expansions of

section A.1, the expanded solutions are usually not determined by the boundary values ϕb
0

only. There are also some undetermined coefficients ϕb
p which can only be fixed by supplying

initial conditions at a given point from which integration starts. Since these coefficients

depend on the whole integration up to the boundary, they will not be solved for analytically.

It is for this reason that some Green’s functions can only be evaluated numerically.

A convenient position to start the integration is the horizon of the bulk geometry,

because the initial conditions can be made easily at that point by demanding incoming so-

lutions. This condition is related to the fact that we will ultimately be calculating retarded

Green’s functions. For convenience, let us refrain here what has been stated elsewhere in

the text: The condition at the horizon halves the number of degrees of freedom and from a

9From this point on, indices I, J, . . . denote the n = N −M physical modes, while indices i, j, . . . denote

the N − n fluctuation modes that have not been replaced.
10We do not state it explicitly, but each term in the next actions includes the product of a field evaluated

in k and another evaluated in −k. This is natural for a quadratic Lagrangian written in Fourier space.
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basis of 2N solutions (N fluctuations under second order differential equations), we end up

with just N solutions. Furthermore, there are M constraints coming from the equations of

motion of the gauge-fixed fields which reduce these solutions to the n = N −M degrees of

freedom that manifest themselves through the physical solutions and can be found by re-

quiring invariance under residual gauge transformations. However, the analytic expanded

solution obtained around the boundary knows nothing about the incoming condition at

the horizon. We have only the constraints, so accordingly we are dealing with a basis of

2N −M = N + n solutions - that is, N + n undetermined coefficients. N of them can be

taken to be the boundary values ϕb
0. Therefore, the number of undetermined coefficients ϕb

p

is expected to be precisely n, the same as the number of physical modes. So a numerical

integration of the equations of motion of the physical fields starting at the boundary is

sufficient to fix them, since we are implicitly setting n initial conditions.

The expanded on-shell action can be then divided into two terms, So.s. = So.s.(I) +

So.s.(II) where

So.s.(I) =

∫
ddx
[
αIJ (ΦI)

b
0 (ΦJ)

b
0 + βIJ (ΦI)

b
0 (ϕJ)

b
p + ζIJ (ϕI)

b
p (ϕJ)

b
p

]
,

So.s.(II) =

∫
ddx
[
κIj (ΦI)

b
0 (ϕj)

b
0 + λij (ϕi)

b
0 (ϕj)

b
0

]
,

(C.4)

provided that the expansions are arranged in such a way that the n (ϕI)
b
p do not cross

with the N −n (ϕi)
b
0, which in general can be done because the ϕb

p are fixed by integrating

the equations of motion of the physical fields, which are obtained by varying the action

with respect to the physical fields, and therefore the part of the action which contains the

remaining fluctuations ϕi is irrelevant to them.

In this expression, remember that (ΦI)
b
0 = (ϕI)

b
0. Now, to obtain the Green’s functions,

the AdS/CFT prescription instructs us to take the functional derivative of the action with

respect to the boundary values of the fields [44]. The Green’s functions of the fluctuations

ϕi can be easily extracted from (C.4) and read

GR
ij(k) = −λij , GR

Ij(k) = −κIj (C.5)

On the other hand, the Green’s functions GR
IJ(k), associated to the boundary values of the

physical modes cannot be extracted directly, nor can they be expressed in an analytic way.

These are the most interesting Green’s functions because they have physical meaning, as

discussed in section 4. We have computed them numerically following the method presented

in the next section.

C.2 Prescription for numerical solutions

It is tempting to establish the identifications So.s.(I) = So.s.1 and So.s.(II) = So.s.2. However,

it is important to note that this is incorrect, because the equations of motion of the fluc-

tuations are all coupled, and consequently the expansions of the ϕi(k, r) may depend on

boundary values of the replaced ϕI(k, r). Thus, expanding So.s.2 it is possible to produce

terms like the ones found in So.s.(I).
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In order to deal with this, an effective action Seff can be constructed, using physical

fields only, such that its expansion near the boundary reproduces exactly those undesirable

terms. This effective action is to be subtracted from So.s.2 to cancel them out, and at the

same time added to So.s.1 producing

Seff+So.s.1 =

∫
ddk [ΦI(−k, r)A(k, r)IJ∂rΦJ(k, r) + ΦI(−k, r)B(k, r)IJΦJ(k, r)]r=rb

. (C.6)

The matrices A,B are obtained analytically, but only their expression at the boundary

is necessary. We refer to the action as “effective” because its contribution matches ex-

actly So.s.(I), but it is just an artifact - we do not derive any equation of motion from it.

The fields that will be inserted are solutions of the equation of motions derived from the

original action.

These solutions are obtained by numerical integration, starting from some selected

values of the horizon (ΦI)
h
0 . In fact, this set of values determines completely the coefficients

of the expansion at the boundary. We may choose n linearly independent sets (ΦI)
h(J)
0 =

e
(J)
I , in order to obtain n linearly independent sets of boundary values. In particular, a

possible choice is

e
(1)
I = (1, 0, 0, . . .) , e

(2)
I = (0, 1, 0, . . .) , . . . , e

(n)
I = (. . . , 0, 0, 1) . (C.7)

Alternate choices are possible. This is just the one we used because we got good numerical

results (with less noise). A numerical integration can be performed for each set in order to

obtain n independent solutions {Φ(J)
I (k, r)}J extended in the bulk, which can be arranged

in a matrix H(k, r), with entries

HIJ(k, r) = Φ
(J)
I (k, r). (C.8)

Thus, the J th solution appears as the J th column. On the other hand, we know that when

each physical field approaches the boundary, it asymptotes to the value of its associated

perturbation, (ϕI)
b
0 (k). At any other distance or scale r, since the system of differential

equations is coupled, they will in general evaluate to a linear combination of all the {(ϕJ)
b
0}J,

so that the set of functions can be written as

ΦI(k, r) = FIJ(k, r) (ϕJ)
b
0 (k) . (C.9)

In this way, all the dynamics of the fields is encoded in the solution matrix FIJ(k, r), which

has the nice property of becoming the identity at the boundary, FIJ(k, rb) = δIJ.

Any complete set of n independent solutions to the equations of motion is enough to

build the matrix F , because any solution (any one that satisfies the incoming condition

at the horizon) can be written as a linear combination of them. In particular, the matrix

F (k, r) must be linearly related to H(k, r) because each Ith column of F is composed by a

set of solutions that asymptotes to (ϕJ)
b
0 = 0 for all J , except for (ϕI)

b
0 = 1. Since at the

boundary, by definition, F is the identity, the linear relation must be given by

F (k, r) = H(k, r) ·H−1(k, rb) . (C.10)
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This result enables us to calculate the solution matrix, which encodes the dynamics, from

n numerically integrated solutions. Then, by inserting (C.9) into our on-shell action (C.6),

we obtain

Seff+s.o.1 =

∫
ddk ΦI(−k, r)FIJ(k, r)ΦJ(k, r)|r=rb

, (C.11)

where F = F † A ∂rF + F † B F . But, since this is evaluated at the boundary, where

the matrix F becomes the identity and the physical fields coincide with their associated

fluctuations, we might as well write

Seff+s.o.1 =

∫
ddk (ϕI)

b
0 (−k) [AIK(k, rb) ∂rFKJ(k, rb) +BIJ(k, rb)] (ϕJ)

b
0 (k) . (C.12)

The Green’s functions can now be directly extracted from this expression using the

AdS/CFT correspondence prescription, to give

GR
IJ(k) = −A(k, rb)H

′(k, rb)H−1(k, rb)−B(k, rb) . (C.13)

Notice that this formula reproduces the well known result for the Green’s function of a

decoupled equation. Here, instead of the derivative of the field, there is the matrix of

derivatives. And instead of taking the ratio with the boundary value of the field, a factor

given by the inverse of the matrix of solutions is included.

This completes (C.5), giving the way of calculating all the Green’s functions of the

problem. However, as opposed to the ones given in (C.5), these Green’s functions are

not determined by the background only, the solution to the equations of motion of the

perturbed degrees of freedom enters throughH. Their physical meaning is clearer and more

important, since they correspond holographically to the correlators of the dual operators.

D General remarks on viscosity in anisotropic fluids

The concept of viscosity is linked to the internal motion of a system that causes dissipation

of energy [56]. In general, we may define a general dissipation function Ξ, such that

the dissipative forces that describe the internal motion are obtained from it as velocity

derivatives. Typically, frictional forces are linear in velocities uμ, which suggests that the

general form of this function be quadratic in velocities.

But, for an internal motion which describes a general translation or a general rotation,

the dissipation is zero. Since it describes dissipative processes only, Ξ ought to vanish for

these configurations of velocities. Because of this argument, the function must depend on

the velocities through the combination of gradients of velocities uμν = 1
2 (∇μuν +∇νuμ),

rather than on the velocities themselves directly. Thus, the general form is given by the

sum Ξ = 1
2η

μνλρuμνuλρ, where the coefficients ημνλρ define the viscosity tensor [38], whose

symmetries are given by

ημνλρ = ηνμλρ = ημνρλ = ηλρμν . (D.1)

The part of the stress tensor which is dissipative due to viscosity is defined by

Πμν = − ∂Ξ

∂uμν
= −ημνλρuλρ . (D.2)
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In the case of a fluid in the rest frame ut = 1, and in order to satisfy the Landau frame

condition uμΠ
μν = 0, the stress energy tensor (and the viscosity tensor, correspondingly)

must have non-zero components only in the spatial directions i, j, . . . = {x, y, z}. In general,

only 21 independent components of ηijkl appear in the expressions above.

For the particular case of an isotropic fluid, the tensor can be written using only 2

independent components, which are usually parametrized by the shear viscosity η and

the bulk viscosity ζ, so that the dissipative part of the stress tensor can be expressed as

Πij = −2η(uij − 1
3δ

ijull)− ζullδ
ij , which is a well-known result.

For a transversely isotropic fluid, there are 5 independent components in the tensor

ηijkl. Without loss of generality, we choose the symmetry axis to be the x-axis. The

non-zero components are parametrized by

ηxxxx = ζx +
4

3
λ , ηyyyy = ηzzzz = ζy +

λ

3
+ ηyz ,

ηxxyy = ηxxzz = −2

3
λ , ηyyzz = ζy +

λ

3
− ηyz ,

ηyzyz = ηyz , ηxyxy = ηxzxz = ηxy .

(D.3)

So that the non-zero off-diagonal components of the stress tensor are

Πxy = −2ηxyuxy , Πxz = −2ηxyuxz ,

Πyz = −2ηyzuyz .
(D.4)

In this consideration we are including only the contribution to the stress tensor due

to the dissipation via viscosity, and we find the terms in the constitutive equation which

depend on the velocity of the normal fluid uμ. But in general, there would also be terms

depending on the derivatives of the Nambu-Goldstone boson fields vμ = ∂μϕ on the super-

fluid velocity and on the velocity of the director, which may contribute to the dissipative

part of the stress tensor (the director is the vector pointing in the preferred direction).

However, these terms do not contribute to the off-diagonal components of the energy-

momentum tensor because (1) a shear viscosity due to the superfluid velocity leads to a

non-positive divergence of the entropy current [56, 57], and (2) no rank two tensor can be

formed out of degrees of freedom of the director if the gradients of the director vanish [58].

In our case, the second argument is fulfilled since the condensate is homogeneous and the

fluctuations depend on time only. Even though these degrees of freedom will generate addi-

tional transport coefficients, they do not change the shear viscosities, so we can write Kubo

formulae which give the shear viscosities in terms of the stress energy correlation functions.

Let us consider a conformal fluid, so that ζx = ζy = 0 (this can easily be shown using

the tracelessness condition of the stress-energy tensor,i. e. Πa
a = 0, with a = x, y, z). The

usual way to perturb a system in thermal equilibrium is to look at small perturbations of

the background fields and add these sources to the action. Here we are interested in the

metric fluctuations about the flat Minkowski metric,i. e. the terms of interest here that we

add to the action are

Πxxhxx+Πyyhyy+Πzzhzz = +iω
2

3
λ

(
hxx −

1

2
(hyy + hzz)

)2

+ iω
ηyz
2

(hyy − hzz)
2 . (D.5)
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To derive the left side we use equations (D.2) and (D.3), as well as uaa = − iω
2 haa,

11 with

a = x, y, z. Applying the same calculation to the isotropic case we obtain

Πxxhxx +Πyyhyy +Πzzhzz = +
iω

3
η
(
(hxx − hyy)

2 + (hxx − hzz)
2 + (hyy − hzz)

2
)

= +iω
2

3
η

(
hxx −

1

2
(hyy + hzz)

)2

+ iω
η

2
(hyy − hzz)

2 .

(D.6)

We only have one shear viscosity η in the isotropic case. The purpose of the rewriting of

the latter case is to show the connection to the transversely isotropic case. This rewriting

shows that at the phase transition λ turns into the isotropic shear viscosity η, explaining the

behavior we see in figure 8. Note that this is a computation taking place on the field theory

side. Therefore the metric we need to lower and raise indices is the flat Minkowski metric.

By plugging in the components of Πaa it is easy to show that the left hand side of

equation (D.5) is equivalent to

Πxxhxx +Πyyhyy +Πzzhzz =
1

2
(Πxx − (Πyy +Πzz))

(
hxx −

1

2
(hyy + hzz)

)

+
1

2
(Πxx + (Πyy +Πzz))

(
hxx +

1

2
(hyy + hzz)

)

+
1

2
(Πyy −Πzz) (hyy − hzz) .

(D.7)

Applying linear response theory we obtain the Green’s function for the first term in the

equation above, which can be related to Gm,m on the gravity side

Gm,m(ω) = lim
|�k|→0

∫
dt d3xe−ikμxμ

θ(t)×
〈[

1

2
(T xx(t, �x)− (T yy(t, �x) + T zz(t, �x))) ,

1

2
(T xx(0, 0)− (T yy(0, 0) + T zz(0, 0)))

]〉
.

(D.8)

The Kubo formula that gives the λ viscosity is

λ = lim
ω→0

3

2ω
ImGm,m(ω) . (D.9)

Note that the Green’s function of the dissipative part of the second term of (D.7) is zero

therefore we only get background fields for this components of the Green’s function (3.2.1).

Finally the last term of (D.7) corresponds to the helicity two mode and is related to the

shear viscosity ηyz.
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Chapter 5

Conclusions and future directions

The search for means of putting the gauge/gravity duality to the test is an important

issue that has received much attention in recent years. The phenomenological interest

of Maldacena’s original conjecture is rather far-fetched, but it is clear that with the

appropriate adjustments, it is possible to obtain generalizations that may help resolve

open questions from heavy-ion collisions or condensed matter physics. This progress

is essential to find out to what extent can the qualitative conclusions derived from

holographic models be trusted.

This thesis encompasses the construction of different gravitational models, with

the common purpose of obtaining phenomenological predictions, in a way or another.

The quantitative details of these conclusions may depend on the specific details of the

particular model, so we intend to look for results that are as universal as possible. A neat

example of such a prediction is contained in chapter 2. The existence of a subluminal

limiting velocity for mesons in the plasma follows from simple, generic observations

and leads to the Cherenkov radiation of quarkonium mesons by quarks, an effect with

an estimate of the magnitude of its energy loss of the same order as other previously

established mechanisms of energy loss in the plasma. Moreover, even if its effect turns

out to be subdominant with respect to other mechanisms (and therefore, more unlikely

to be observed), its characteristic features may still make it identifiable. However, the

gravity calculation that was performed is strictly valid only in the infinite-quark energy

limit, because of the linear trajectory approximation. It would be interesting to study the

energy loss in the case of light quarks. To this end, black hole embeddings would need to

be considered. Note that in this case no stable quark-antiquark bound states exist in the

plasma, which in the string description corresponds to the fact that excitations on the

brane are characterized by quasinormal modes with complex frequencies.
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The gauge/gravity duality also allowed us to study the physics of a state of matter very

different from the quark gluon plasma. In chapter 4, we considered Einstein-Yang-Mills

theory to describe the formation of a condensate that spontaneously breaks the rotation

symmetry and a U(1) gauge symmetry at the same time. The dynamics of this system

represents those of a p-wave superfluid. We focused on the computation of the complete

set of transport coefficients. Among them, the anisotropy of the system entails interesting

new phenomena, such as the piezoelectric effect and a viscosity coefficient related to

the normal stress difference. The functions we computed present a rich structure, in

particular a very intriguing feature of our results is the presence of bumps in some of

the correlators, which seem to be related to the generation of bound states. For further

progress, a detailed analysis of the hydrodynamics of anisotropic superfluids would be

desirable to give a further interpretation to this study. In addition, it would be worthy

to perform an analysis at finite spatial momentum, which would allow to investigate the

dispersion relations of the normalizable modes and to check for instabilities.

Another contribution we did to the analysis of quark gluon plasma physics, from a

holographic point of view, was the employment of a IIB supergravity solution dual to a

spatially anisotropic N = 4 SYM plasma at finite temperature to determine the effect of

anisotropy over several observables. The conclusions from the calculation of chapter 3

can be summarized as follows:

i) The anisotropy can make the drag force F exerted on massive quarks moving through

this plasma become arbitrarily large, except for those whose velocity is aligned transverse

to the anisotropic direction. However, it can also have the opposite effect and make the

drag force smaller than the corresponding isotropic value. In the ultra-relativistic limit,

the drag coefficient μ (defined so that F = μp) generically increases linearly with the

momentum, μ ∝ p. Finally, the direction of the drag force is generally misaligned with

the quark velocity and the gluon cloud trailing behind the quark.

ii) The jet quenching parameter q̂, which in an anisotropic plasma depends on the relative

orientation between the anisotropic direction, the direction of motion of the parton, and

the direction along which the momentum broadening is measured; can also be larger or

smaller than the corresponding isotropic value. But for small enough an anisotropy, it

is always larger. It is important to note that it being larger or smaller also depends on

whether the comparison is made at equal temperatures or at equal entropy densities, in

contrast with the results for the drag force, that were qualitatively insensitive to this.
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iii) The screening length Ls of a quarkonium meson in motion in the anisotropic plasma,

which depends on relative orientations between the anisotropic direction, the direction of

motion of the meson and its orientation; can also be larger or smaller than the isotropic

value depending on, among other things, how the comparison is made. Perhaps the most

suggestive result is that there is a limiting velocity for mesons in the plasma and that

they dissociate above a certain critical value of the anisotropy, even at zero temperature.

In the ultra-relativistic limit, Ls scales as (1− v2)ε with ε = 1/2, in contrast with the

isotropic result ε = 1/4.

Ultimately, this thorough analysis is a step towards a more realistic description of

the plasma created in heavy ion collisions, which is anisotropic right after the collision

(with the anisotropic direction being the beam direction). However, the plasma that is

considered in this calculations is completely static, which may be a good approximation

when looking at processes with a characteristic timescale much shorter than that of the

evolution of the plasma, but it is an undesirable limitation. Including both anisotropy and

time dependence would be very difficult, but it would enable us to study the process of

isotropization itself. In fact, a very important open issue about this topic is understanding

why the isotropization time is so short.

On the gravity side, the far-from-equilibrium evolution of the plasma corresponds to

the relaxation of a far-from-equilibrium black hole, and requires solving the full nonlinear

Einstein’s equations. This necessarily implies using advanced numerical techniques of

General Relativity. How to incorporate this techniques into the field of AdS/CFT will

probably be extensively studied in the next few years.

In the end, we must keep in mind that QCD itself, and also condensed matter systems,

might or might not have a dual gravitational description. Nevertheless, the gauge/gravity

duality has already produced a mesmerizing connection between string theory and gauge

field theories. On the quest for the ultimate theory of Nature, string theory may still

help us solve puzzles that have been around for many decades.
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1. Introducción

1.1. La dualidad gauge/cuerdas

La correspondencia AdS/CFT, o dualidad gauge/cuerdas, ha supuesto un gran avan-

ce en nuestra comprensión de la teoŕıa de cuerdas, además de ser una herramienta muy

útil para estudiar teoŕıas cuánticas de campos fuertemente acoplados. Espećıficamente, la

equivalencia más conocida está establecida entre la teoŕıa N = 4 Súper-Yang-Mills (SYM)

y la teoŕıa de cuerdas tipo IIB en el espacio AdS5 × S5, cuya métrica es

ds2 =
R2

z2
(
ημνdx

μdxν + dz2 + z2dΩ2
5

)
, (1.1)

donde z es la coordenada radial extradimensional y la frontera se encuentra en z → 0.

Figura 1. Esquema de la geometŕıa de AdS.

La dualidad se puede interpretar como la

geometrización del flujo del grupo de renorma-

lización (GR) de la teoŕıa dual. Podemos vi-

sualizar la familia formada por el conjunto de

teoŕıas efectivas, parametrizada por el valor de

sus acotamientos, como una sola teoŕıa en un

espaciotiempo (4 + 1)-dimensional. La idea es

que la f́ısica de la región que queda debajo de

z = z′ seŕıa descriptible por la teoŕıa efectiva

a escala z′. Esto sugiere la identificación de la

coordenada radial con la escala de enerǵıa de

la teoŕıa gauge dual. Aśı, la f́ısica del ĺımite ul-

travioleta se transcribe a la región cerca de la

frontera, y la infrarroja con la interior.

Los parámetros de la teoŕıa N = 4 SYM son el acoplo g y el número de colores Nc,

mientras que los de la teoŕıa de cuerdas IIB son el acoplo de la cuerda gs y su longitud �s,

o equivalentemente se puede considerar la constante de Newton G y el radio de curvatura

de AdS, R. Todos están relacionados entre śı, de manera que se tiene

�8p
R8

∝ 1

N2
c

,
�2s
R2

∝ 1√
λ
, (1.2)

con λ = g2Nc. De aqúı se deduce que el ĺımite clásico del lado de cuerdas corresponde al

ĺımite Nc � 1 , λ � 1 de la teoŕıa dual.

Por otra parte, para encajar los espectros, las soluciones de un lado de la dualidad

habŕıan de ser las imágenes de las del otro lado. Dado que en Supergravedad el acoplo

está dado por el dilatón, gs = eΦ, esto sugiere la identificación de los operadores en la

teoŕıa gauge O(x) con campos hiperespaciales Φ(x, z), cuyo valor de frontera φ(x) les haŕıa

de fuente:

S → S +

∫
d4x φ(x)O(x) , (1.3)

Otra caracteŕıstica importante de la dualidad es que se puede trazar una correspondencia

entre las simetŕıas globales de la teoŕıa gauge y las simetŕıas gauge de la teoŕıa de cuerdas.
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Esto, a su vez, permite la identificación de algunos operadores con sus campos. El ejemplo

más importante es el tensor enerǵıa-momento, cuyo campo dual es la métrica. T́ıpicamente,

las ecuaciones del movimiento de los campos son de 2o orden, aśı que su solución asintótica

es de la forma

Φ(z, k) ≈ A(k) z4−Δ +B(k) zΔ as z → 0 . (1.4)

La parte no normalizable A(x) se convierte en el mencionado valor de frontera. La parte

normalizable B(x) pertenece al espacio de Hilbert de la teoŕıa, por tanto ha de corresponder

a algún estado descrito por la teoŕıa gauge. De hecho, se puede ver que

〈O(x)〉A(x) = 2(Δ− 2)B(x) . (1.5)

Aśı, el coeficiente del término normalizable da el valor esperado del operador asociado.

Ahora bien, la correspondencia original está muy alejada de las aplicaciones que nos

interesan. Por ejemplo, la métrica (1.1) es un caso extremal. Se puede generalizar para

incluir un horizonte:

ds2 =
R2

z2

(
−f(z) dt2 + dx21 + dx22 + dx23 +

dz2

f(z)
+ z2dΩ2

5

)
, (1.6)

donde f(z) = 1 − z4/z40 . La temperatura asociada a esta solución es T = 1
πz0

. También

se puede incorporar un potencial qúımico μ mediante la existencia de un campo gauge

hiperespacial Aμ que satisfaga la condición de frontera ĺım
z→0

At = μ.

Figura 2. Representación esquemática de las

D-branas sonda y cuerdas abiertas y cerradas.

Otra modificación importante de la co-

rrespondencia original es la incorporación de

Nf campos de materia que transforman en la

representación fundamental del grupo de si-

metŕıas gauge. El desarrollo topológico de sus

diagramas de Feynman indica que en el lado de

gravedad esto requiere a la presencia de cuer-

das abiertas, para lo cual es necesario introdu-

cir D-branas adicionales.

En el ĺımite Nc � Nf, la retroacción de es-

tas D-branas es despreciable, de forma que se

pueden considerar como branas sonda. Y en el

ĺımite de baja enerǵıa, las diversas interaccio-

nes entre cuerdas abiertas y cerradas se pueden

clasificar en sectores. Se recupera la simetŕıa

global de sabor SU(Nf) y los ĺımites gsNc � 1

y gsNc 	 1 pueden ser identificados.

1.2. Funciones de correlación

La conjetura de la dualidad se hace matemáticamente precisa a partir de la igualdad

ZCFT [φ(x)] = Zstring [Φ|∂AdS (x)] (1.7)

entre las funciones de partición Euclideas. Nótese que, debido a la identificación de campos

y fuentes (1.3), las variables que aparecen en sendos funcionales son las mismas.
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En el ĺımite clásico, Zstring está determinada por la acción renormalizada del ĺımite de

Supergravedad clásica evaluada en la solución de las ecuaciones del movimiento:

Zstring[φ] � exp
(
S(ren)

[
Φ(E)
c

])
, (1.8)

lo cual supone una simplificación considerable. Por contra, en el lado gauge esto se corres-

ponde con el ĺımite de acoplo fuerte, que supone una complicación considerable.

Los valores esperados se pueden calcular a partir de 〈O(x)〉φ = δS(ren)[Φ
(E)
c ]/δφ(x),

y en general con sucesivas derivadas con respecto a las fuentes asociadas, se obtienen

funciones de correlación de operadores

〈O(x1) . . .O(xn)〉 =
δnS(ren)[Φ

(E)
c ]

δφ(x1) . . . δφ(xn)

∣∣∣∣∣
φ=0

. (1.9)

A partir del cálculo de los correladores se pueden obtener las funciones de Green. Se puede

demostrar que una manera de computarlas es considerar perturbaciones sobre una solución

clásica y observar los cambios producidos en valores esperados. La relación entre ambos es

δ〈O1(ω,�k)〉φ2 = GO1O2
R (ω,�k)φ2(ω,�k) , (1.10)

Es importante señalar que esta definición está dada en signatura Euclidea. En signatura

Lorentziana, el espaciotiempo contiene un horizonte. Para tratar con esto, la prescripción

consiste en poner condiciones de contorno entrantes en el horizonte: Φc(t, �x) ∼ e−i ω (t−z).

1.3. Bucles de Wilson

C

Σ

D-brane

Figura 3. Hoja de universo Σ asociada al bu-

cle de Wilson C.

Los bucles de Wilson son observables im-

portantes en cualquier teoŕıa gauge, por la in-

formación que contienen sobre f́ısica no pertur-

bativa. Su valor esperado se define como1

W r(C) = TrP exp

[
i

∫
C
dxμAμ(x)

]
, (1.11)

donde
∫
C denota una integral a lo largo de un

contorno C, que se puede considerar como la

trayectoria de un quark (un campo de la repre-

sentación fundamental). En el lado de grave-

dad, esto corresponde al extremo de una cuer-

da abierta, de forma que C seŕıa el borde de su

hoja de universo, Σ.

De nuevo, en el ĺımite clásico Nc � 1 , λ � 1 el cálculo se simplifica. W (C) es bási-

camente la función de partición del quark sobre C, por tanto se identifica como la función

de partición de la Σ dual, que en este ĺımite está determinada por 〈W (C)〉 = eiS(C), donde
S(C) es la acción clásica evaluada en la solución de las ecuaciones del movimiento, que en

definitiva lo que hacen es minimizar la enerǵıa. De esta forma, un cálculo que en la teoŕıa
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z(σ)

AdS boundary. L Ls

Horizon
z = z0

z = 0.

Figura 4. Cuerda asociada a un par quark-antiquark en vaćıo (izquierda), en un plasma a tempe-

ratura T > 0 (centro) y en una teoŕıa confinante (derecha).

gauge seŕıa cuántico y complejo se reduce básicamente a resolver una catenaria en el lado

de gravedad.

De hecho, a veces la dependencia cualitativa del bucle de Wilson se puede explicar sin

necesidad de cálculos. Por ejemplo, consideremos un contorno rectangular correspondiente

a un par quark-antiquark estático. En este caso, S(C) se puede entender como la enerǵıa

potencial del par, V (L). En AdS puro, por análisis dimensional, V (L) ∝ 1/L. Si hay

temperatura, la cuerda que cuelga de los extremos se puede partir y caer a través del

horizonte. Esto sucederá para L > Ls donde Ls ∼ 1/T . Y si la teoŕıa es confinante, lo cual

se puede conseguir generalizando (1.1) a

ds2 =
R2

z2
(
−dt2 + dx21 + dx22 + f(z)dx23

)
+

R2

z2f(z)
dz2 , (1.12)

entonces si L es grande (L � z0) la longitud de la cuerda es aproximable como la separación,

de forma que V (L) ∼ L. Estos razonamientos están ilustrados en la figura 4.

1.4. Criticalidad cuántica y superconductores

Los puntos cŕıticos cuánticos, transiciones de fase a temperatura cero, se caracterizan

por una invariancia de escala que evoca las versiones más simples de AdS/CFT. Además,

la ausencia de cuasipart́ıculas a acoplo fuerte hace que sean dif́ıciles de estudiar con méto-

dos tradicionales. La dualidad es útil por proporcionar resultados anaĺıticos donde otros

métodos no pueden. La región de aplicabilidad de los cálculos holográficos es la vecindad

de la transición de fase cuántica.

Especialmente importantes son aquellos sistemas que sufren una ruptura espontánea

de una simetŕıa en la transición. Por las caracteŕısticas que surgen a consecuencia de ello,

son conocidos como superconductores y superflúıdos.

La descripción gravitatoria se basa en el hecho de que (1.6) no es la única solución con

temperatura, únicamente es la que es termodinámicamente favorecida. Pero la introducción

de escalas adicionales, por ejemplo un potencial qúımico μ, puede hacer que eso cambie

en alguna región del diagrama de fases, generando una transición de fase gravitatoria que

se corresponde con la transición del superconductor, ya que las soluciones de gravedad se

corresponden con estados de la teoŕıa dual.

1Aqúı, r es la representación del grupo de simetŕıas y Aμ(x) = Aa
μ(x)T

a.
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2. Resultados Principales

2.1. Emisión Cherenkov de mesones

En el ĺımite clásico Nc, λ → ∞, existen dos propiedades de la dualidad que son univer-

sales, es decir, aplicables a todas las versiones conocidas de la dualidad: i) que la fase no

confinada de la teoŕıa gauge está descrita por la geometŕıa de un agujero negro, y ii) que

un número de sabores Nf finito se describe mediante la inclusión de Nf D-branas sonda.

Las D-branas se extienden en la dirección radial (r = R2/z) hasta un valor mı́nimo,

que es proporcional a la masa del quark Mq; mientras que el tamaño del agujero negro

es proporcional a su temperatura T . Si T < Mq, las D-branas se mantienen fuera del

horizonte. En esta fase, los mesones se describen por cuerdas abiertas con ambos extremos

en las D-branas, cuyo espectro es discreto y abierto. Su presencia se traduce en que los

mesones suficientemente pesados sobreviven al deconfinamiento.

� � � � � �� �� ��
�

�

�

�

�
ω
/
π
T

q/πT

Figura 5. RD para modos transverso (negro)

y longitudinal (rojo) de un mesón vectorial pe-

sado con vlim = 0,35. La ĺınea azul correspon-

de a ω = v q con vlim < v < 1.

En la fig. 5, podemos ver ω(q), la relación

de dispersión (RD) de los mesones vectoriales

en el plasma. Para q → ∞, la RD se vuelve

lineal, siendo la pendiente adquirida una velo-

cidad ĺımite común a todos, vlim. Vemos que es

subluminal, vlim < 1, de hecho en la descrip-

ción gravitatoria se puede entender intuitiva-

mente como la velocidad de la luz local mar-

cada por el desplazamiento al rojo provocado

por el agujero negro en la parte de abajo de

las branas, que es donde se agolpa la función

de onda de los mesones más energéticos, debido

a la atracción gravitatoria.

Por otra parte, un quark pesado está des-

crito por una cuerda abierta que cuelga de las

D-branas y a través del horizonte (ver fig. 6),

moviéndose en dirección paralela a él.

Dos observaciones son las que conducen al efecto que nos interesa. Una es que el

extremo de la cuerda está cargado bajo los campos escalares y vectoriales de las branas.

En la teoŕıa dual, el acoplo que corresponde es ∼ 1/
√
Nc, que en el ĺımite considerado es

pequeño, de forma que la dinámica se puede aproximar hasta reducirla a una generalización

simple de la electrodinámica clásica. La otra es que la velocidad del quark puede exceder

la velocidad ĺımite de los mesones, ya que el desplazamiento al rojo en su posición no es

tan acentuado como en la parte de abajo de las branas.

Aśı pues, tenemos el análogo de una carga que se mueve en un medio dieléctrico más

rápido que la velocidad de la luz en ese medio. La electrodinámica ordinaria indica que si

esto pasa, la carga perderá enerǵıa por radiación Cherenkov. En este caso, el extremo de

la cuerda radiará en los campos de la brana, lo cual se traduce a la teoŕıa dual como que

el quark radiará mesones (escalares y vectoriales) por Cherenkov.
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Quark
v
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Boundary

Figura 6. D-branas y cuerda abierta en la geometŕıa del agujero negro.

Esta es la predicción, motivada mediante argumentos generales. Para realizar cálculos

cuantitativos, utilizamos la teoŕıa SU(Nc) N = 4 SYM acoplada a un sabor Nf = 1. En

el lado de gravedad consideramos la presencia de una D7-brana sonda. Los términos de la

acción del sistema brana + cuerda relevantes para el cálculo con mesones vectoriales son

S = −
∫

d8σ
√−g

1

4
F abFab − e

∫
d8σ AaJ

a , (2.1)

donde Fab = ∂[aAb], σ
a = {xμ, r,Ω3} y, como se dijo más arriba, e ∼ 1/

√
Nc, lo cual

justifica despreciar términos superiores. El extremo de la cuerda es tratado como una

part́ıcula puntual y, por simplicidad, suponemos que se mueve con velocidad constante v,

siguiendo una ĺınea recta y a posición radial (y angular) constante, aśı que su corriente se

escribe como

Ja = δ(3)(�x− �vt) δ(r − r0) δ
(3)(Ω− Ω0) (1, �v,�0,�0) . (2.2)

Trabajamos con las componentes de Fourier del campo Aμ(ω, q, r), que se desarrollan en

una base de modos normalizables en la dirección radial, {ξn(q, r)}, que son soluciones de las

ecuaciones del movimiento en ausencia de fuentes. Aśı realizamos una reducción del campo

pentadimensional a una torre de infinitos campos tetradimensionales. La fig. 5 muestra

sendas ramas inferiores de un conjunto infinito de RD, tales que la rama n-ésima daŕıa la

autofrecuencia correspondiente al coeficiente del modo n.

El ritmo de pérdida de enerǵıa se calcula como

dE

dt
= −e

∫
d3x dr dΩ3 F0aJ

a = −e vi F0i(t, �vt, r0,Ω0) , (2.3)

y también se puede descomponer en contribuciones de cada uno de los modos de Fourier.

Ahora bien, cuánto más energético es un modo, más cuesta excitarlo, de manera que las

contribuciones de modos superiores a dE/dt serán despreciables. Esto es confirmado en

los cálculos, ya que la ecuación del movimiento del coeficiente n-ésimo muestra un acoplo

efectivo eeff(q, r0) = eξn(q, r0).

El resultado numérico de un caso particular de mesones vectoriales está representado

en la fig. 7. Las curvas son para diversos valores de r0. Nótese que terminan en un valor

finito de v porque el quark también tiene una velocidad ĺımite a su altura, vqlim(r0), aunque

esta sea mayor que la de los mesones. A medida que r0 → 0, la pérdida de enerǵıa crece

más deprisa, mientras que esta vqlim del quark decrece.
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Figura 7. Ritmo de pérdida de enerǵıa hacia el modo de Fourier más bajo de mesones vectoriales

(izquierda) y escalares (derecha). Las curvas corresponden a diversos valores de r0 (valores crecientes

a medida que vamos de la superior a la inferior).

En la fig. 7 se muestra el resultado análogo para mesones escalares. La principal dife-

rencia es que curvas no crecen de manera monótona con v, sino que se anulan para la vqlim
del quark. Esto se debe a que su término de acoplo, que se añadiŕıa a (2.1) es

Sscalar ∝ −
∫

dτ
√

−ẋ2 gabX
a nb , (2.4)

y el factor
√
−ẋ2 =

√
−g00 − g11v2 se anula para esa velocidad.

La divergencia que observamos en la fig. 7 es un artefacto matemático, y seŕıa cancelada

por efectos f́ısicos que no hemos tenido en cuenta, entre otros los debidos a las mencionadas

aproximaciones sobre la trayectoria del quark, o simplemente efectos cuerderos para q

suficientemente grande.

Esta radiación de Cherenkov mesónica es una cualidad universal de todos los plasmas

con un dual de gravedad. Es concebible que también ocurra para algunos mesones de QCD.

Los mesones radiados seŕıan emitidos bajo un ángulo caracteŕıstico θc, dado por

cos θc = vlim/v. (2.5)

Este patrón de emisión es similar al de las ondas de sonido de un partón energético, la

diferencia es que los mesones radiados no termalizan y por tanto no forman parte de la

onda de choque hidrodinámica.

Nuestro cálculo de gravedad solo es estŕıctamente válido en el ĺımite de infinita enerǵıa

para el quark, aśı que esperamos que se aplique mejor para los quarks producidos en el

LHC que en el RHIC. Una estimación burda de la magnitud de la pérdida de enerǵıa

da dE/dx ∼ 2 − 8 GeV/fm, lo cual se traduciŕıa en la emisión, en el caso de J/ψ, de

uno a tres mesones por fm. Esto es del mismo orden de magnitud que otros mecanismos.

Pero incluso si resulta ser subdominante, hay otras caracteŕısticas especiales que podŕıan

hacerlo fácilmente identificable. Una es que solo ocurre cuando la velocidad supera un

cierto umbral, otra es la emisión a θc, y finalmente que solo ocurriŕıa dentro del rango de

temperaturas en el que puede haber estados mesónicos en el plasma.
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2.2. Anisotroṕıa en plasmas fuertemente acoplados

Durante un periodo de tiempo τout inmediatamente posterior a la colisión de dos iones

pesados, el sistema creado está lejos del equilibrio. Pasado un tiempo τiso > τout, se vuelve

localmente isótropo. Es posible que durante este tiempo intermedio se pueda aplicar una

descripción hidrodinámica intŕınsicamente anisotrópica.

Para investigar qué efectos tendŕıa esta anisotroṕıa sobre algunos observables del plas-

ma fuertemente acoplado que se formara en la colisión, examinamos una solución gravita-

toria dual a un plasma N = 4 SYM anisótropo. La solución empleada es estática, regular

con un horizonte y encajada de manera sólida en Supergravedad tipo IIB, por lo que pro-

porciona un buen modelo aproximado en el que hacer cálculos en detalle. Por supuesto,

el tomar una anisotroṕıa constante es una aproximación válida para escalas de tiempo

apropiadamente cortas.

Dicha solución es

ds2 =
L2

u2

(
−FB dt2 + dx2 + dy2 +Hdz2 +

du2

F

)
+ L2e

1
2
φdΩ2

5, (2.6)

χ = az , φ = φ(u) , (2.7)

donde χ y φ son el axión y el dilatón, respectivamente. F , B y H son funciones de la

coordenada radial, que en este caṕıtulo llamamos u. La coordenada z indica la dirección

anisotrópica. La forma del axión es dual a un parámetro theta en la teoŕıa gauge, de la

forma θ ∝ z, que actúa como fuente externa y fuerza al sistema a estar en un equilibrio

anisótropo. El grado de anisotroṕıa está parametrizado por a.

La fuerza de arrastre. El primer observable que analizamos en este trasfondo es la

fuerza de arrastre que actúa sobre un quark infinitamente masivo que se mueve a velocidad

constante. Al igual que en el caṕıtulo anterior, el quark está descrito por una cuerda que

cuelga de una D7-brana, que en esta ocasión está situada en la frontera. La fuerza externa

que sostiene su movimiento seŕıa ejercida por un campo eléctrico constante en la brana.
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�0.15
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x

z

Figura 8. Proyecciones del perfil de la cuerda

en el plano xz para varios ángulos. Las curvas

discontinuas indican el ángulo de la velocidad.

La acción es

S = − 1

2πα′

∫
d2σ

√−g−1

2

∫
∂Σ

dτFMNXM∂τX
N ,

(2.8)

dondeXM denota las coordenadas espaciotem-

porales y ∂Σ la frontera. El flujo de momento

espacial a lo largo de la cuerda hacia el hori-

zonte se obtiene de

ΠM =
∂L

∂(∂σXM )
. (2.9)

En la teoŕıa dual, este momento es absorbido

por el medio, y las ecuaciones que surgen de

variar la acción (2.8) nos indican que la fuerza

externa compensa exactamente este momento

perdido.
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Figura 9. A la izquierda (derecha) vemos la fuerza de arrastre normalizada con respecto al respec-

tivo valor isótropo a la misma temperatura como función de la velocidad v (del cociente a/T ) para

varios valores de la dirección de la velocidad ϕ, que vaŕıa de 0 a π/2 desde la superior a la inferior.

Todas las curvas están con el mismo a/T (la misma v).

Consideramos un quark moviéndose en el plano xz a un ángulo ϕ desde el eje z. La

solución de su encaje da un comportamiento como el de la fig. 8 (obtenido para a/T = 86).

El resultado isótropo (a = 0) da una fuerza alineada con la velocidad:

�Fiso(T ) =
π

2

√
λT 2 v√

1− v2
(sinϕ, cosϕ) , (2.10)

mientras que los resultados del caso anisótropo muestran una fuerza desalineada, tanto

con respecto a la velocidad como al perfil de la cuerda. La comparación con respecto al

caso isótropo puede hacerse considerando una solución con a = 0 pero con el mismo valor

de la temperatura T , o de la densidad de entroṕıa s. Cualitativamente, no hay diferencias

notables entre un caso u otro. En la fig. 9 se hace manteniendo T constante. Además, a

es una magnitud con dimensiones, por lo que se debe normalizar, ya sea considerando el

cociente a/T , o a/s1/3.

En el ĺımite ultrarrelativista, se obtiene F ∝ 1/(1−v2), o equivalentemente F = μp con

un coeficiente de arrastre μ ∝ p, excepto si ϕ = π/2. Este resultado depende únicamente

de la presencia de un término de 2o orden g
(2)
μν en el desarrollo asintótico de la métrica, que

no sea proporcional a ημν , por lo que se puede esperar que se mantenga para otros modelos

y no únicamente para este cálculo en particular.

El parámetro de jet quenching. Para investigar el efecto de la anisotroṕıa sobre el

ensanche de momento experimentado por un partón que se mueve por el plasma, analiza-

mos el llamado parámetro de jet quenching q̂ para un quark ultrarrelativista. Para ello,

deberemos considerar la hoja de universo de una cuerda cuyos extremos se mueven a la

velocidad de la luz a lo largo de una dirección de la frontera (la dirección de propagación

del quark) estando separados una distancia � en la dirección perpendicular al movimiento

(la dirección de ensanche del momento).

El motivo es que esta hoja de universo es dual al bucle de Wilson de la teoŕıa gauge

que sirve para extraer el valor de q̂. Ahora bien, para hacer el cálculo dual al orden de

operadores requerido, hay que considerar la solución clásica en la que se da la vuelta justo
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Figura 10. Parámetros de jet quenching q̂π/2,ϕ (izquierda), q̂θ,0 (centro) y q̂θ,π/2 (derecha), nor-

malizados por el correspondiente valor isótropo a la misma temperatura, para varios valores de la

correspondiente coordenada angular. Los colores coincidentes se pueden identificar entre śı.

en el horizonte. Además, la solución que se da la vuelta cerca de la frontera desaparece

cuando � → 0. La acción de Nambú-Goto evaluada en una configuración como esta diverge,

pero esta divergencia desaparece al considerar la diferencia con respecto a dos cuerdas

separadas que cuelgan desde la frontera hasta el horizonte.

La prescripción que habremos de usar se resume en

ei2S = 〈WA(C)〉 = exp

[
−L−�2

4
√
2
q̂

]
, (2.11)

donde se considera un bucle rectangular de longitud L− a lo largo de z− = (t − z)/
√
2,

y � a lo largo de la dirección perpendicular, y S denota la acción renormalizada por la

sustracción mencionada.

En el caso isótropo q̂ es un solo parámetro, y adquiere el valor

q̂iso(T ) =
π3/2 Γ

(
3
4

)
Γ
(
5
4

) √
λT 3 . (2.12)

En este caso habremos de especificar el caso particular considerado, de forma que q̂θ,ϕ
indicaŕıa el valor medio de la componente del momento pϕ al cuadrado adquirida por el

quark al moverse en la dirección indicada por θ. Siendo pϕ = pY cosϕ + pX sinϕ, es fácil

ver que

q̂θ,ϕ = q̂θ,0 cos2 ϕ+ q̂θ,π/2 sin2 ϕ . (2.13)

Para cada uno de estos términos, q̂θ,0 y q̂θ,π/2 se obtuvieron expresiones exactas que permi-

ten calcularlos a partir de integrales de funcionales de F , B y H; las cuales solo se conocen

númericamente. Dado que consideramos el caso más general, la dependencia respecto a la

velocidad, la anisotroṕıa y las dos orientaciones da lugar a una plétora de resultados, de los

que aqúı solo se da una muestra en la figura 10, que contiene diversas curvas normalizadas

por el valor isótropo q̂iso(T ). Es importante reseñar que en este caso śı existe una gran

diferencia entre hacer la comparación con el caso isótropo a la misma temperatura o a la

misma densidad de entroṕıa.

La comparación con resultados provenientes de estudios del auténtico plasma de quarks

y gluones ha de tomarse con cuidado. Para empezar, esos resultados se basan en la existencia
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de cuasipart́ıculas en el plasma, mientras que nuestro modelo no posee excitaciones de

cuasipart́ıculas. En general, se encuentra que q̂L � q̂iso > q̂⊥, siendo q̂L el ensanche del

momento a lo largo del eje de colisión y q̂⊥ a lo largo del plano transverso. Nuestros cálculos

están de acuerdo si la comparación con el caso isótropo se hace a la misma temperatura y

estamos con a/T � 6,35. En caso contrario, los resultados discrepan.

La longitud de apantallamiento. La anisotroṕıa también tiene un efecto importante

sobre la longitud de apantallamiento Ls de un par quark-antiquark en el plasma, definida

como la separación a partir de la cual deja de ser favorable que se encuentren formando un

estado ligado. Obviamente esto satisface Ls ≤ Lmax, donde Lmax es la máxima separación

para la que dicho estado ligado existe.
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Figura 11. Diferencia de enerǵıas entre un

par quark-antiquark ligado y uno desligado,

para el caso de orientación en x y desplaza-

miento en z. Las curvas son para valores dife-

rentes de la velocidad v.

La manera de determinar Ls es comparar

la acción evaluada del par a distancia �, con la

acción del par sin ligar Sunbound. La longitud de

apantallamiento estará dada por el máximo va-

lor de � tal que dicha diferencia es positiva. Es-

te criterio corresponde a determinar qué con-

figuración tiene menor enerǵıa libre, lo cual es

la manera de ver cuál es termodinámicamente

preferida. Nuestros cálculos están hechos en el

sistema de referencia del par quark-antiquark,

de manera que ΔSdipole = −T ΔEdipole, donde T
es la longitud de integración en el tiempo. Aśı,

la cantidad termodinámica considerada puede

verse como una diferencia de enerǵıas.

En la fig. 13 se muestra un ejemplo de la

forma que toma la función que hay que calcular

(la parte que importa es la rama de abajo). De

manera análoga al caso anterior, hay que consi-

derar una cuerda abierta con ambos extremos

en la frontera, solo que en esta ocasión no se

adentrará hasta el horizonte, sino que se dará la

vuelta a una cierta altura radial umax < uH. Es-

ta distancia, junto con �, se da como condición

de contorno para resolver el momento, que es

análogo al de (2.9), y finalmente tras obtener

ΔE, hacer una representación paramétrica.

De nuevo, la comparación con los resultados de un plasma isótropo se puede hacer a

igual temperatura o densidad de entroṕıa, y eso tiene un efecto crucial en el resultado. Por

ejemplo, para el caso de un par estático, en el primer caso Ls decrece con la anisotroṕıa

en todos los casos, mientras que en el segundo caso, cuando se compara a igual densidad

de entroṕıa, Ls aumenta si la orientación del par q-q̄ yace, o está cerca de yacer, sobre el

plano transverso a la dirección anisótropa.
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Figura 12. Longitudes de apantallamiento, normalizadas con respecto a los correspondientes valores

isótropos a la misma densidad de entroṕıa, como funciones de la anisotroṕıa del plasma y para varios

valores de la velocidad (que decrece con el nivel de punteo, siendo la ĺınea sólida para v = 0,9995);

en tres casos particulares: par q-q̄ extendido en z y moviéndose en z paralelo a śı mismo (izquierda),

par extendido en x y moviéndose en z perpendicular a śı mismo (centro), y par extendido en

x y moviéndose en x, paralelo a śı mismo de nuevo (derecha). Recuérdese que z es la dirección

anisótropa.

Tras estudiar el caso más general, nuestros resultados dependen de la velocidad2 v, la

anisotroṕıa y tres orientaciones (la dirección de v, fijada por un ángulo y la orientación del

par, fijada por otros dos), y además en esta ocasión no hay una relación que simplifique

una de ellas como (2.13), de modo que la diversidad de resultados es aún mayor que en

el apartado del jet quenching. De hecho, incluso en el caso isótropo habŕıa dependencia

respecto a un ángulo: el que forman la velocidad y la orientación del par. Es por este

motivo que nos concentramos en estudiar casos particulares de orientaciones, como los que

se muestran en la fig. 12.

En el ĺımite ultrarrelativista, podemos usar las aproximaciones asintóticas de las fun-

ciones F , B y H, ya que el punto de vuelta umax se acerca a la frontera (rechazamos la

solución en que se acerca al horizonte por no ser f́ısica en este caso). Eso nos permite hacer

un estudio anaĺıtico y averiguar cómo escala con la velocidad. Encontramos que

Ls ∼

⎧⎪⎨
⎪⎩

(1− v2)1/2 si θv = π/2 [movimiento fuera del plano transverso]

(1− v2)1/4 si θv = π/2 [movimiento dentro del plano transverso] ,

(2.14)

sea cual sea la orientación del par.

Uno de los resultados más importantes es el hecho de que hay una Ls finita incluso a

temperatura cero. Se puede hablar de una anisotroṕıa de disociación, totalmente análoga

a la temperatura de disociación, junto con la velocidad ĺımite. De hecho, que haya una

dependencia Ls = Ls(a/T, v) se expresa de manera más precisa diciendo que la disociación

de los mesones tendŕıa lugar en una superficie dentro del espacio de fases formado por las

variables {T�, a/T, v}. Si tenemos estrictamente T = 0 y v = 0, la anisotroṕıa de disociación

es, por análisis dimensional, adiss(�) ∝ 1/�.

2Nótese que nos referimos a la velocidad del par, que debeŕıa entenderse como velocidad del medio, ya

que el cálculo está realizado en el sistema de referencia del mesón.
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2.3. Fenómenos de transporte en superflúıdos de onda p

Un superflúıdo de onda p se caracteriza por la ruptura espontánea de una simetŕıa

rotacional y de una simetŕıa gauge U(1) al mismo tiempo, por un condensado vectorial.

El modelo gravitatorio empleado para construir una descripción dual consiste en la teoŕıa

SU(2) Einstein-Yang-Mills, con acción

S =

∫
d5x

√−g

[
1

2κ25
(R− Λ)− 1

4ĝ2
F a
MNF aMN

]
+ Sbdy , (2.15)

donde a es el ı́ndice de sabor de SU(2). Esta simetŕıa, presente originalmente, se rompe

expĺıcitamente a U(1), ya que seleccionamos el ansatz

A = φ(r)τ3dt+ w(r)τ1dx , (2.16)

con un valor de frontera para φ(r), que es el potencial qúımico μ. Este ansatz es compatible

con la solución de Reissner-Nordström en AdS, para la cual w(r) = 0. Sin embargo, es

posible encontrar numéricamente una segunda solución con w(r) = 0. Se puede estudiar

la termodinámica asociada a ambas, para ver cuál es preferida según qué valores de los

parámetros consideremos. Aśı se construye el diagrama de fases de la figura 13.
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Figura 13. Diagrama de fases del sistema gra-

vitatorio considerado. La fase condensada, con

w(r) = 0, está marcada en azul.

Cada fase describe un estado diferente de

la teoŕıa dual. La región T/μ 	 1 describe la

fase condensada, que manifestará propiedades

de superflúıdos. El esquema de ruptura de si-

metŕıas es el siguiente:

SU(2) −−−→
Expl.B

U(1)3 −−→
SSB

Z2 ,

SO(3) −−→
SSB

SO(2) .
(2.17)

La ruptura espontánea sucede porque w(r) se-

lecciona una dirección particular en el espacio

orbital (que llamamos x) y una ‘dirección’ en

el espacio de sabores (el ı́ndice 1). El carácter

de la transición de fase depende del valor del

parámetro que aparece en la acción (2.15): es

de primer orden si α > αc � 0,365 y de segun-

do orden en caso contrario.

Este es el trasfondo que perturbamos para hallar las funciones de Green de la teoŕıa

completa. Añadimos perturbaciones en torno a la solución de equilibrio y estudiamos su

efecto sobre los valores esperados de los operadores asociados. Las fluctuaciones de la

métrica son hMN (ω, r) y las del campo gauge son aaM (ω, r), en representación de Fourier.

No hay dependencia respecto al momento, porque lo ponemos a cero por simplicidad y

porque queremos conservar el mayor número de simetŕıas posible para poder interpretar

los resultados con más claridad. Si anulamos el momento, las ecuaciones del movimiento

linearizadas para estos campos de perturbaciones se desacoplan, de manera que podemos

clasificarlas en bloques y asociar a cada uno un fenómeno de la teoŕıa dual.
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Figura 14. Partes real e imaginaria del correlador Gx,x
+,-, o también Gx,x

-,+, frente a la frecuencia

reducida ω/(2πT ) para α = 0,316, y para diferentes valores de la temperatura, de forma que los

picos son más marcados cuanto más baja es la temperatura.

Concretamente, la ruptura de la simetŕıa de rotaciones deja atrás una simetŕıa SO(2),

y podemos clasificar las perturbaciones por helicidades (2, 1 ó 0), atendiendo a cómo

transforman bajo estas rotaciones. Centrémonos en los campos de helicidad 0, que son

los que presentan una fenomenoloǵıa más rica. Por ejemplo, el campo eléctrico paralelo

al condensado Ex y el gradiente de temperatura ∇xT pueden obtenerse a partir de las

componentes componentes htx y a3x. Estos modos actúan como fuentes para la corriente

eléctrica Jx y el flujo de calor Qx = T tx − μJx, respectivamente. La relación de estas

corrientes con las respectivas fluctuaciones conforma la matriz de conductividades de la

teoŕıa de respuestas lineales:(
〈Jx〉
〈Qx〉

)
=

(
σxx Tαxx

Tαxx T κ̄xx

)(
Ex

−(∇xT )/T

)
. (2.18)

Los coeficientes que obtenemos de aqúı muestran un comportamiento que reconocemos

como t́ıpico de un material superconductor.

Por otra parte, una interacción análoga para las componentes(
〈Jx±〉

〈T xx, T⊥⊥, T tt〉

)
←→

(
a±x

hxx, h⊥⊥, htt

)
. (2.19)

se puede interpretar como efecto piezoeléctrico: un fenómeno que describe la generación de

corriente eléctrica debido a estrujamientos o alargamientos de un material, o la generación

de deformaciones debido a la aplicación de un campo eléctrico externo. También encontra-

mos un efecto adicional, llamado flexoeléctrico, en el que son gradientes de presión los que

generan corriente eléctrica. Las funciones de Green de este bloque muestran una estructura

interesante en la que se aprecia la formación de picos que son más acentuados cuanto más

baja es la temperatura (ver fig. 14). Su máximo está situado sobre la misma frecuencia

para todos ellos.

Por otra parte, muchos de estos correladores muestran un polo en ω = 0. Esto se

puede entender porque algunas componentes de las fluctuaciones, como a2x, se convierten

en modos de Goldstone que absorben los grados de libertad de las simetŕıas rotas. El polo

refleja su formación, al igual que el diagrama de los modos cuasinormales (ver fig. 15).
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Figura 15. Esquema de los modos cuasinor-

males del sistema. Here w = ω/(2πT ).

Vemos que para T > Tc los modos cuasi-

normales asintotan al origen, ω = 0. Aqúı las

curvas verde y roja tienen que ver con los mo-

dos a±x . Es interesante ver que aunque tene-

mos en cuenta la retroacción, este diagrama es

muy similar al del sistema D3/D7. Los modos

permanecen en la parte de abajo del plano de

frecuencias complejas para todas las tempera-

turas que pudimos comprobar.

Por último, mediante formulas de Kubo,

algunos de estos correladores se pueden relacio-

nar con coeficientes de viscosidad. En presencia

de anisotroṕıa, además de las viscosidades de cizalla ηyz y ηxy, hay otros tres coeficientes,

dos de los cuales se anulan si el fluido es conforme. El tercero, llamado λ, se obtiene a

partir de

λ = ĺım
ω→0

3

2ω
ImGm,m(ω) . (2.20)

donde

Gm,m(ω) = ĺım
|�k|→0

∫
dt d3xe−ikμxμ

θ(t)×
〈[

1

2
(T xx(t, �x)− (T yy(t, �x) + T zz(t, �x))) ,

1

2
(T xx(0, 0)− (T yy(0, 0) + T zz(0, 0)))

]〉
.

y está por tanto asociado a una diferencia de esfuerzos normales. Su valor respeta el conf́ın

universal: λ > 1/(4π) en la fase condensada.

3. Conclusiones y direcciones futuras

Partiendo del conocido ejemplo de dualidad que involucra a la teoŕıaN = 4 SYM, y con

los ajustes adecuados, es posible obtener generalizaciones que pudieran ayudar a resolver

preguntas que siguen abiertas acerca del plasma creado en colisiones de iones pesados, o

del amplio campo de la f́ısica de la materia condensada. Es importante hacer progreso en

estas aplicaciones de la dualidad para saber hasta qué punto puede resultar útil.

Esta tesis recopila construcciones de diversos modelos gravitatorios que tienen el ob-

jetivo común de obtener predicciones fenomenológicas, de una u otra forma. Los detalles

cuantitativos de las conclusiones que de ellos saquemos pueden depender del modelo par-

ticular empleado, aśı que es importante buscar resultados cualitativos que sean lo más

universales posible, como es el caso de la radiación de Cherenkov mesónica. La estimación

que obtenemos de este efecto nos dice que debeŕıa ser comparable a otros mecanismos

de pérdida de enerǵıa previamente estudiados y, además, fácilmente reconocible por sus

caracteŕısticas especiales. Sin embargo, nuestro cálculo es solo válido para quarks pesados

(estrictamente, cogemos quarks de enerǵıa infinita). Seŕıa interesante estudiar el caso de la

pérdida de enerǵıa para quarks ligeros; para lo cual, se tendŕıa que considerar branas cuyo

encaje cae a través del horizonte.
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La aplicación de la dualidad al cálculo de los coeficientes de transporte de un su-

perflúıdo de onda p nos ha permitido ver que la anisotroṕıa del sistema conlleva nuevos

fenómenos de gran interés, como el efecto piezoeléctrico y un coeficiente de viscosidad re-

lacionado con la diferencia de esfuerzos normales. Las funciones de correlación obtenidas

presentan una estructura muy elaborada, en particular, una caracteŕıstica intrigante es la

presencia de bultos y/o picos en algunos correladores, que podŕıan estar relacionados con

la aparición de estados ligados. Se necesitaŕıa una descripción de la hidrodinámica de un

superflúıdo de onda p para poder dar una buena interpretación a este estudio. Lamentable-

mente, tal formulación hidrodinámica no ha sido realizada. Además de eso, generalizar el

análisis a momento finito nos permitiŕıa estudiar las relaciones de dispersión de los modos

normalizables y aśı buscar inestabilidades.

La inclusión de anisotroṕıa es otra modificación respecto a la correspondencia original,

que si se lleva al régimen de aplicación a f́ısica de altas enerǵıas, su estudio podŕıa servir

para, por ejemplo, averiguar porqué el tiempo de isotropización del plasma es tan pequeño.

Hicimos esto mediante una solución de Supergravedad IIB dual a un plasma de N = 4 SYM

anisótropo, y llevamos a cabo un análisis muy detallado de la fuerza de arrastre de un quark,

el parámetro de jet quenching y la longitud de apantallamiento de un mesón. Un análisis

como este es un paso adelante hacia una descripción más realista del plasma creado en las

colisiones de iones pesados. Pero una auténtica simulación incluiŕıa dependencia temporal,

además de anisotroṕıa. El problema alcanza un nivel de dificultad considerable con esto,

de modo que seŕıa necesario emplear técnicas de gravedad numérica. Esta es claramente

una dirección para el futuro cercano del estudio de aplicaciones de AdS/CFT a sistemas

fuera del equilibrio.

Al final, los sistemas que queremos describir puede que no tengan una descripción dual

de gravedad. Sin embargo, la conexión proporcionada por la dualidad gauge/cuerdas es

de por śı sorprendente y podŕıa ayudarnos a ganar comprensión sobre muchos problemas

mientras continuamos la búsqueda de la teoŕıa definitiva para el Universo.
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