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Resumen

La dinámica roto-traslatoria del problema completo de los dos cuerpos continúa siendo uno
de los problemas más desafiantes en Astronomı́a y Astronáutica. Debido a su complejidad,
los modelos propuestos hasta la fecha se basan en una serie de suposiciones que simplifican el
problema con objeto de poder abordarlo tanto anaĺıtica como numéricamente (véase por ejemplo
[Scheeres (2011), Kopeikin et al. (2008), Benettin et al. (2008), Ferrer & Lara (2013)]).

Bajo este escenario, esta Memoria se centra en el estudio de la dinámica roto-traslatoria de
un satélite alrededor de un cuerpo mucho más masivo y prácticamente esférico del Sistema
Solar. En concreto, se asume en primer lugar que las dimensiones del satélite son pequeñas en
comparación con la distancia que lo separa del cuerpo atractor. En segundo lugar supondremos
también que objeto bajo estudio orbita a dicho cuerpo atractor siguiendo una trayectoria circular,
de ah́ı que el movimiento de traslación ya sea conocido y venga dado de forma trivial. En
resumen, este trabajo aborda el estudio de la dinámica de actitud de un sólido ŕıgido triaxial
bajo la acción de lo que se conoce como gravity-gradient torque. El sistema aśı constituido
resulta ser uno de los modelos básicos no integrables válidos para analizar el movimiento tanto
de satélites artificiales [Chernousko (1963), Beletskii (1966)] como de otros cuerpos naturales
[Kinoshita (1972), Kinoshita (1977)].

Por tanto, en esta Memoria se estudia el sistema definido por la función Hamiltoniana

ℋ(x,X; v) = ℋ0 + �ℋ1,

cuyo flujo asociado viene dado por el sistema de ecuaciones diferenciales

ẋ =
∂ℋ
∂X

, Ẋ = −∂ℋ
∂x

,

donde (x,X) representan respectivamente las posiciones y los momentos canónicos conjugados
de los diferentes conjuntos de variables que pueden emplearse para analizar el problema; v
representa el vector de parámetros del modelo, entre ellos {A,B,C} son los tres momentos
principales de inercia de un sólido ŕıgido triaxial; y � es el pequeo parámetro que nos permite
tratar el problema por métodos de perturbaciones.

En efecto, según Poincaré [Poincaré (1892)], la mayoŕıa de los problemas de Mecánica Celeste que
tienen que ver con dinámica orbital o rotacional pueden formularse como sistemas perturbados,
lo cual implica que el Hamiltoniano anterior puede ser dividido en dos partes donde ℋ0 define un
sistema integrable y �ℋ1 es la perturbación. En nuestro caso ℋ0 corresponde a la enerǵıa de un
sólido ŕıgido libre y hay que señalar que en algunos problemas la presencia del pequeño parámetro
puede venir dada tanto de forma expĺıcita como impĺıcita. Por su parte, algunos autores se
refieren a ℋ1 como función de perturbación. Conviene también remarcar que, aunque estas
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perturbaciones son generalmente débiles y el movimiento de rotación del cuerpo considerado es
casi el de un sólido libre, la acción de estas fuerzas externas puede provocar cambios notables
en la dinámica de largo periodo.

Los estudios más precisos de dinámica de actitud de satélites artificiales están comúnmente
aproximados de forma numérica, sin embargo, los primeros lanzamientos de estos satélites mo-
tivaron nuevos esfuerzos anaĺıticos con objeto de obtener un mayor control de la dinámica
proporcionado por soluciones anaĺıticas aproximadas [Cochran (1972), Zanardi (1986)]. Existen
incluso grupos en la actualidad que continúan investigando sobre métodos numéricos aplicados
al movimiento del sólido ŕıgido, los cuales basan en parte su trabajo en estas aproximaciones
anaĺıticas (ver [Celledoni & Zanna (2010)] y sus referencias).

Una forma muy común de abordar tales aproximaciones es llevar a cabo lo que se conoce
como la reducción completa de la parte integrable considerada como orden cero. Esta técnica
consiste en encontrar una transformación canónica que nos permita expesar dicho orden cero
como una función que depende solo de los momentos. En ese sentido se han propuesto en
la literatura distintos conjuntos de variables tomando como base las variables de Andoyer
[Andoyer (1923), Deprit (1967)]. Aśı, el principal objetivo de este trabajo es mostrar el com-
portamiento de dos conjuntos diferentes de estas variables que, permitiendo ambas llevar a cabo
la reducción completa del problema, pueden presentar ciertas propiedades que las hacen más
o menos adecuadas para el estudio de una pertubación. El primer conjunto, conocido como
variables de ángulo-acción, fue introducido por Sadov [Sadov (1970a)], el cual será comparado
con un nuevo conjunto propuesto recientemente por Ferrer y Lara [Lara & Ferrer (2010b)].

Manejando funciones eĺıpticas. De la integración a las transformaciones simplécticas

El uso de estos nuevos conjuntos de variables para el sólido ŕıgido conlleva la aparición ineludible
de funciones integrales eĺıpticas. Como se sabe, este tipo de funciones especiales aparece cuando
se resuelven gran cantidad de problemas de dinámica no lineal, incluso algunos tan sencillos
como el péndulo simple. En nuestro caso, la solución general del sólido libre viene dada también
en términos de funciones e integrales eĺıpticas tanto si se formula el problema en variables
de Euler [Whittaker (1937), Heard (2006)] como de Andoyer [Jacobi (1851), Andoyer (1923)].
Sin embargo, cuando el cuerpo posee simetŕıa axial, la solución puede expresarse en términos de
funciones trigonométricas cuya manipulación es claramente más sencilla en el estudio de cuerpos
casi esféricos.

En otros casos, el denominado coeficiente de triaxialidad es pequeo y el uso de funciones eĺıpticas
puede evitarse separando el Hamiltoniano del sólido libre en una parte axial-simétrica y en otra
triaxial que contiene la pertubación. La primera parte se toma como orden cero mientras
la segunda se aade a la función de pertubación. Existe aún una reordenación más drástica
tomando el rotor esférico como el orden cero (véase [Ferrer & Lara (2010a)]). Sin embargo, este
esquema no es válido cuando la triaxialidad no es tan pequea, de ah́ı que el movimiento de
muchos satélites no pueda analizarse correctamente bajo esta aproximación.

Debido a esta situación, el manejo de funciones eĺıpticas es esencial para el estudio de la dinámica
rotacional de un cuerpo triaxial ya que, no sólo la solución del movimiento libre viene dada
en términos de estas funciones especiales, sino que tambien la mayoŕıa de las pertubaciones
vendrán expresadas en términos de funciones eĺıpticas. Además conviene recordar que no todas
las pertubaciones pueden tratarse por métodos de pertubaciones debido a que las funciones e
integrales eĺıpticas no poseen un álgebra cerrada con respecto a la derivación e integración.
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El nacimiento de manipuladores algebraicos como Mathematica o Maple ha hecho más sencilla la
manipulación de funciones integrales eĺıpticas. En nuestro trabajo todos los cálculos presentados
han sido evaluados con Mathematica [Wolfram Mathematica 9.0]. Además, para completar
nuestro conocimiento sobre funciones eĺıpticas hemos hecho uso de libros de referencia clásicos
[Byrd & Friedman (1971), Abramowitz & Stegun (1972)] y la nueva versión digitalizada de esta
última referencia [Olver et al. (2012)]. Sin embargo, dado que la literatura sobre funciones
eĺıpticas es bastante amplia, hemos recogido en un apéndice parte de los conocimientos necesarios
para una mejor comprensión de las manipulaciones aqúı presentadas.

Además, dado que llevaremos a cabo un esquema perturbativo por series de Lie, esta Memoria
presenta una forma de abordar dicho esquema manipulando las funciones integrales eĺıpticas que
intervienen en el proceso de obtención de nuestra teoŕıa anaĺıtica aproximada.

Sobre la estructura y resultados contenidos en esta Memoria

De acuerdo con los comentarios y referencias anteriores, y excluyendo el caṕıtulo introductorio,
el resto de este trabajo queda organizado de la siguiente manera. En el Caṕıtulo 2 se realiza
una revisión del sólido libre donde se recuerda las relaciones y definciones clásicas entre las vari-
ables involucradas en el problema además de algunos detalles sobre cinemática y dinámica. La
integración del problema no perturbado se da en variables de Andoyer, las cuales se emplearán
para llevar a cabo la reducción completa del problema del sólido libre. Por otra parte, este
Caṕıtulo 2 recoge en detalle la idea proporcionada en [Molero et al.(2013)] de llevar a cabo la
intregración del problema realizando una regularización consistente en un cambio de la variable
independiente (el tiempo). En ambas integraciones se ofrecen detalles sobre la manipulación
de las funciones eĺıpticas involucradas, especialmente cuando se considera la integral eĺıptica de
tercera especie (ver también Apéndice). El caṕıtulo finaliza con una sección donde se recoge el
estudio de las fases del problema [Ferrer & Molero (2013)], esto es, las expresiones que determi-
nan cuánto ha girado uno de los ángulos de Andoyer cuando el otro ha rotado 2� radianes. En
concreto, se recogen dos demostraciones de la fórmula de Montgomery a través de las variables
de Andoyer y se propone el uso de la fase alternativa a la propuesta por Montgomery, es decir,
conocer cuánto ha girado la variable � cuando � ha dado una vuelta completa.

El Caṕıtulo 3 muestra cómo se lleva a cabo la reducción completa del problema resolviendo la
ecuación de Hamilton-Jacobi a la Poincaré. Sin embargo seguimos un esquema general donde
los dos conjuntos de nuevas variables empleados en este trabajo no se encuentran eligiendo un
nuevo Hamiltoniano sino haciendo algunas selecciones particulares sobre ciertas funciones donde
se encuentra implicado el módulo eĺıptico. En efecto, se observa que la elección que conduce
a las variables de ángulo-acción de Sadov contiene integrales eĺıpticas pero, por el contrario, la
elección que conduce a las variables de Ferrer-Lara consiste en proponer que las funciones del
módulo eĺıptico comentadas anteriormente sean constantes, lo cual hace que el nuevo Hamiltoni-
ano reducido quede expresado trivialmente como una función cuadrática de los nuevos momentos
canónicos. Este caṕıtulo proporciona las ecuaciones de transformación directa e inversa para
ambos tipos de variables, que dependen sólo de un ángulo como variable intermedia o auxiliar
para resolver las cuadraturas que aparecen cuando se aplica el método de Hamilton-Jacobi-
Poincaré. Dado que existen distintas variables intermedias que permiten reducir las anteriores
cuadraturas, utilizamos una diferente a la propuesta por Sadov para deducir un conjunto alter-
nativo de variables de ángulo-acción cuya bondad dependerá del tipo de perturbación que se
esté manejando. Finalmente, al igual que en [Sadov (1970a), Vallejo (1995)], se presentan las
ecuaciones de transformación expresadas en términos de funciones Theta de Jacobi.
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A continuación, en el Caṕıtulo 4 se realiza una aproximación en forma cerrada de primer orden
del problema perturbado donde se muestra, no sólo el modo en que se manejan las funciones
eĺıpticas bajo el método de perturbación, sino también las diferencias existentes cuando éstas se
analizan empleando los dos conjuntos diferentes de variables estudiados en esta Memoria. A su
vez, el Caṕıtulo 5 emula al Caṕıtulo 4 con el objetivo de comparar las soluciones anaĺıticas y
numéricas dadas por un desarrollo en serie de la función pertubación. En este sentido, dado que
anteriores trabajos han llevado a cabo desarrollos en serie de Fourier (véase [Vallejo (1995)]), en
esta Memoria exploramos la posibilidad de llevar a cabo series de Taylor de funciones eĺıpticas
previamente expresadas en términos de funciones Theta de Jacobi [Sadov (1970a)]. Tal como se
comentó anteriormente, la presencia de funciones eĺıpticas hace que la aplicación de un método
de pertubación basado en el algoritmo de Lie-Deprit no sea trivial, dando cuenta, además, de
la dificultad de extender la teoŕıa a órdenes superiores. En cualquier caso, este problema ha
sido comúnmente evitado expresando la pertubación desarrollada en serie de potencias, lo cual
elimina la presencia expĺıcita de funciones eĺıpticas en favor de las funciones trigonométricas,
aunque ello suponga la obtención de soluciones menos precisas. Sin embargo, como demuestra el
Caṕıtulo 4, algunas pertubaciones como la aqúı estudiada, pueden tratarse mediante métodos de
pertubación sin la necesidad de realizar ningún desarrollo en serie, escenario que denominamos
forma cerrada.

Conclusiones

El problema de un satélite en rotación rápida ya fue investigado a comienzos de los años 70 por
[Hitzl & Breakwell (1971)]. Sin embargo, en su trabajo, Hitzl y Breakwell sólo proponen y anal-
izan un modelo basado en términos de largo periodo. En esta Memoria se realiza una revisión
de la dinámica de actitud del problema del satélite en rotación rápida mejorada mediante la
adición de los términos de corto periodo. Además, a pesar de que restringimos el movimiento
a una órbita circular, los procedimientos matemáticos empleados no quedan limitados en apli-
cación a este modelo tan simple, de modo que la teoŕıa puede extenderse a modelos más reales
incluyendo, por ejemplo, órbitas eĺıpticas y el efecto del achatamiento terrestre.

De una forma u otra, la elección de las variables que representan el movimiento es crucial de cara
al esquema perturbativo, de ah́ı que se estudie el comportamiento de los dos conjuntos diferentes
de variables aplicados al mismo problema. Aśı, revisando la literatura se usan primero las
variables de Sadov que, como se sabe, tienen el inconveniente de requerir la inversión de funciones
impĺıcitas cuando se desea computar el valor del módulo eĺıptico como función de los nuevos
momentos. En concreto, una vez que el Hamiltoniano del sólido libre ha sido reducido mediante
el método de Hamilton-Jacobi-Poincaré, el módulo eĺıptico no puede expresarse expĺıcitamente
como función de los dos nuevos momentos, lo cual hace más dif́ıcil la posterior manipulación
anaĺıtica de sus derivadas parciales además del tiempo que se necesita para invertir las ecuaciones
desde un punto de vista computacional.

A diferencia de Sadov y más cercana a la aproximación de Hitzl y Breakwell, para evitar el
inconveniente anterior Ferrer y Lara han propuesto recientemente un nuevo conjunto de variables
[Lara & Ferrer (2010b)] que nos permite tratar el problema de forma expĺıcita. En efecto el
nuevo Hamiltoniano queda expresado de forma cuadrática en los dos nuevos momentos haciendo
su manipulación más sencilla.

A pesar de estas diferencias ambos conjuntos de variables presentan una caracteŕıstica común:
la función generatriz que hace posible el promedio de la nueva variable asociada a la variable
� de Andoyer se expresa en términos de la función Zeta de Jacobi. Además de que se pueden
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prever dificultades no triviales si se intenta extender la integración en forma cerrada a órdenes
superiores, la presencia de esta función Zeta produce diferentes resultados dependiendo de las
variables utilizadas (ángulo-acción o Ferrer-Lara). En efecto, la derivada parcial de la función
Zeta con respecto al módulo eĺıptico es diferente para ambos conjuntos de variables. En concreto,
mientras esta derivada es periódica en variables de ángulo-acción, en variables de Ferrer-Lara es
no periódica, ya que la derivada introduce términos mixtos cuyos efectos son menos significativos
cuanto menor es el valor de la triaxialidad y viceversa. La aparición de términos mixtos produce
un indeseado efecto en forma de rizado creciente cuando se computa el movimiento en variables
Ferrer-Lara, ya sea en forma cerrada o mediante desarrollo en serie. Además, se demuestra
también que aunque este efecto indesado puede no ser demasiado importante en la escala de
tiempo empleada en Astrodinámica, las variables de ángulo-acción no presentan el citado efecto.

Con respecto a los desarrollos de Taylor de la función perturbación, el hecho de usar funciones
Theta de Jacobi como paso intermedio para estos desarrollos tiene algunas ventajas e incon-
venientes. Por un lado, el uso de las funciones Theta permite introducir la figura de la noma
como la pequeña cantidad sobre la cual acometer los desarrollos en serie buscando una rápida
convergencia, ya que generalmente presenta un valor menor que cualquier otra cantidad del
problema como por ejemplo el módulo eĺıptico. Por otro lado, la presencia de estas funciones
implica tratar con argumentos en forma compleja cuyos desarrollos en serie introducen funciones
hiperbólicas no acotadas. Por tanto, la velocidad de convergencia dependerá principalmente de
la forma de cada cuerpo objeto de estudio. En particular, como se muestra en el Caṕıtulo 5,
cuanto mayor es la triaxialidad mayor es el orden del desarrollo de Taylor que se necesita, lo
cual produce un notable aumento en la complejidad de las funciones a manejar.

Bajo este escenario, la existencia de una teoŕıa análitica en forma cerrada queda claramente
justificada. De hecho, la principal ventaja del uso de funciones eĺıpticas en forma cerrada
es la validez de las expresiones independientemente del objeto estudiado. Sin embargo, esta
aproximación tiene el inconveniente de presentar una velocidad de cálculo más lenta. Aśı, si
se necesita una aplicación en tiempo real, resulta más aconsejable el uso de desarrollos en serie
a pesar de la pérdida de precisión en los cálculos que ello conlleve. Por el contrario, si la
aplicación requiere una gran precisión, la formulación en forma cerrada será en muchos casos la
mejor solución a pesar de un más que probable aumento del tiempo de cálculo.
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Chapter 1

Introduction

The roto-translatory dynamics of the full two-body problem is still one of the challenging prob-
lems both in Astronomy and Astronautics. Due to its complexity, the proposed models rely on
a number of assumptions. The range of models extend from collision-bounded-unbounded con-
ditions [Scheeres (2011), Scheeres (2012)] to the high precision involved going back to the Moon
based on lunar laser ranging measurements [Kopeikin et al. (2008)], including studies with a
more theoretical approach [Benettin et al. (2008), Ferrer & Lara (2013)].

In this frame, the Memoir focuses on the roto-translatory dynamics of a satellite around a nearly
spherical body of the Solar system. Thus, we first assume that the overall dimension of the rigid
body is small when compared with the distance to the attracting center. The other simplifi-
cation consists of assuming a circular orbital motion, hence the translational motion is already
integrated. Therefore, our work deals with the attitude dynamics of a triaxial rigid body under
gravity-gradient torque, which is considered one of the basic nonintegrable models to analyze
the attitude propagation of artificial satellites [Chernousko (1963), Beletskii (1966)], although
this approximation is also valid to describe the motion of natural bodies [Kinoshita (1972),
Kinoshita (1977)].

In short, in this Memoir we study a system defined by the Hamiltonian function

ℋ(x,X; v) = ℋ0 + �ℋ1, (1.1)

whose associated flow is given by the system of differential equations

ẋ =
∂ℋ
∂X

, Ẋ = −∂ℋ
∂x

, (1.2)

where (x,X) represent respectively positions and conjugate momenta of the different sets of
variables by which the problem may be treated; v stands for the parameters of the model,
among them {A,B,C} are the three principal moments of inertia of a triaxial rigid body and
� accounts for a small quantity allowing us to manage the problem by means of a perturbative
scheme.

According to Poincaré [Poincaré (1892)], most of the problems in Celestial Mechanics concerning
orbital or rotational motion can be formulated as a perturbed integrated system. This implies
that the Hamiltonian, as we have done above, may be split in two parts where ℋ0 defines an
integrable system and �ℋ1 is called the perturbation. In our case, ℋ0 corresponds to the energy
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2 1.1. A BRIEF HISTORICAL NOTE

of the free rigid body1. Note that in some problems the presence of the small parameter may
come in an implicit or explicit form. Some authors refer to ℋ1 as the perturbing function.
Indeed, this is the frame of our problem where, although these perturbations are generally weak
and the rotation of a satellite is nearly a torque-free motion, the action of external torques may
induce notable changes in its long-term dynamics.

The accurate propagation of the satellite’s attitude is commonly approached numerically, how-
ever, the early launches of artificial satellites motivated analytical efforts to get a greater insight
on the dynamics provided by approximate analytical solutions [Cochran (1972), Zanardi (1986)].
In fact, some groups are still investigating on numerical methods applied to the rigid body mo-
tion, to which these analytical approximations provide inspiration (see [Celledoni & Zanna (2010)]
and references therein).

A common way to tackle such approximations is to accomplish the complete reduction of the
integrable part considered as the zero order. It consists of finding a canonical transformation
allowing us to express the zero order as a function only of the momenta. Different sets of variables
have been proposed in the literature in order to address such analytical approximation, most of
them starting from Andoyer variables [Andoyer (1923), Deprit (1967)]. Thus, the main goal of
this work is to show the behaviour of two different sets of these variables which, although both
allow us to carry out the complete reduction of the free rigid body, they may present a number
of properties which can make them more or less suitable for the study of a perturbation. The
first set, well known as action-angle variables, was introduced by Sadov [Sadov (1970a)] and we
will compare it with a new set recently proposed by Ferrer and Lara [Lara & Ferrer (2010b)].

1.1 A brief historical note

As it is well known, the rigid body problem has been studied along the history by several of
the most prominent scientifics. The dynamics of a rigid body system is defined by its equations
of motion, whose solution shows how the system changes as a function of time. Thus, one of
the most important contributions was made in the 18th Century by the Swiss mathematician
and physicist Leonhard Euler. Indeed, as we will see in Chapter 2, since the problem requires
the use of two different reference frames, one of them fixed in space and the other one attached
to the body, Euler first solved the system of differential equations leading to obtain the three
components of the angular velocity vector as functions of time. The integration of these equations
involves dealing with elliptic functions, as it can be found in [Whittaker (1937), Golubew (1960),
Landau & Lifshitz (1976)]. Once obtained the solution of the mobile system, the connection with
the fixed system was given by three rotations around the three well known Euler angles (�,  , �),
where the use of elliptic integrals is needed.

Like all great contribution, the Euler’s approach was followed and used for a long time (even
nowadays) until the year 1923, when a French astronomer and mathematician managed to
simplify the problem by introducing some new angles arising when the plane associated to the
angular momentum vector is considered. Indeed, Henri Andoyer’s contribution [Andoyer (1923)],
whose ideas were already given by Jacobi [Jacobi (1851)], involved a revolution on how to deal
with the problem since, in Hamiltonian mechanics, it was reduced to a 1-DOF system plus a

1In the literature there are equivalent ways to refer to this system, namely: Euler-Poinsot problem, torque-free
motion and unperturbed model. We take the liberty of using them along the Memoir.
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CHAPTER 1. INTRODUCTION 3

quadrature. In other words, using these new variables, the Hamiltonian of the free rigid body
depends only on one angle and two momenta, unlike Euler formulation where only the angle �
is verified to be cyclic. Nevertheless, these new variables known as Andoyer’s variables were not
widely used until 1967 when André Deprit rediscovered them [Deprit (1967)].

Later, with the birth of the space travels and space missions, analysis of perturbations affecting
satellites or asteroids started to be required to obtain a greater accuracy in the calculations.
However, looking for an easier analysis of these perturbations, a more simplified Hamiltonian
could be used in order to deal with the free rigid body motion as the zero order within a
perturbative scheme. Indeed, a complete reduction of the problem can be performed by finding
canonical transformations allowing us to have the Hamiltonian depending only on two of the
new momenta. In this sense, authors started to use the Deprit-Andoyer’s work with the aim of
giving complete reductions of the rigid body problem to develop a more simplified version of the
equations of perturbed problems using perturbation theory. Obviously, performing this task is
easier by using Andoyer variables, since only one angle must be removed. We join these authors
hence Andoyer variables will be used as the first stage for this work.

1.2 Dealing with elliptic functions. From the integration to the
symplectic transformation

Elliptic integrals and elliptic functions arise when solving most problems on nonlinear dynamics,
even some of the easier ones like the simple pendulum. In our case, the general solution of the
torque-free motion of a rigid body is also given in terms of elliptic functions and elliptic integrals
when formulated either in Euler variables [Whittaker (1937), Heard (2006)] or Andoyer variables
(see [Jacobi (1851), Andoyer (1923)]). However, when the body has axial simmetry, then the
solution can be expressed in terms of trigonometric functions, whose manipulation is clearly
easier for the study of nearly spherical bodies.

In other cases, the triaxiality coefficient is small and the use of elliptic functions can be avoided
by splitting the free rigid body Hamiltonian into an axisymmetric part and a triaxiality perturba-
tion. The first is taken as the zero order Hamiltonian while the latter is added to the disturbing
function. Still there is a more drastic reordering taking the spherical rotor as the zero-order
Hamiltonian [Ferrer & Lara (2010a)]. Nevertheless, this scheme is not valid when the triaxiality
is not small, hence a lot of satellites can not be well analyzed under this approximation.

Due to this situation, dealing with elliptic functions is essential for the study of the rotational
motion of triaxial satellites because, not only the solution of the torque-free motion is given
by them, but also the majority of the perturbations will be expressed in terms of these elliptic
functions. Moreover, not all the perturbations can be managed by perturbation methods since
elliptic functions and integrals do not have a closed algebra with respect to the derivation and
integration.

The birth of the algebraic manipulators like Mathematica or Maple has made easier the ma-
nipulation of elliptic functions and integrals. In our case, all the calculations here presented
have been evaluated by Mathematica 8.0 (although some of the expressions have been checked
in [Wolfram Mathematica 9.0]). Furthermore, to complete our knowledge on elliptic functions
we have used classical reference books [Byrd & Friedman (1971), Abramowitz & Stegun (1972)]
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and the new digitalized version of the last one [Olver et al. (2012)]. However, since the litera-
ture on elliptic functions is quite large, we have collected in Appendix A some of the knowledge
necessary to a better understanding of the manipulations here presented.

1.3 The techniques

1.3.1 Hamilton-Jacobi-Poincaré’s transformation

Canonical transformations can be used as a general procedure for solving mechanical problems.
In particular, the Hamilton-Jacobi (H-J-P) equation is one of the classic tools in Mechanics
[Goldstein (2002)] allowing us to look for variables in order to reduce the systems to simpler
versions. Following recent work by Ferrer and Lara [Ferrer & Lara (2010b)], here we approach
a problem dealing with Hamiltonian systems given by (1.1). The standard approach in treating
perturbed Hamiltonian systems is to define a symplectic transformation, which is built based
on ℋ0, using H-J equation such that the new Hamiltonian depends only on the new momenta.

We recall that the transformations TΦ : (x0, x,X0, X)→ (y0, y, Y0, Y ) are defined by

Xi =
∂W
∂xi

, yi =
∂W
∂Yi

, i = 0, . . . , n (1.3)

derived from a generating function W = W(x0, x, Y0, Y, �) that is a complete solution of the
generalized H-J equation [

∂W
∂x0

+ℋ0

(
x,
∂W
∂x

)]
� = Φ(Y0, Y ) (1.4)

where Φ is the new unperturbed Hamiltonian, which may be a function of all or several of the
new momenta, and � is the regularizing factor.

Although Sussman and Wisdom [Sussman & Wisdom (2001)] deserve credit for having presented
H-J equation in this form, Sadov [Sadov (1970a)] was the first to obtain such a complete reduc-
tion in action-angle variables. By the same time, Hitzl and Breakwell [Hitzl & Breakwell (1971)]
propose a different set of non-action-angle variables by reducing the Euler-Poinsot Hamiltonian
in Andoyer variables to its averaged form. Later, Kinoshita [Kinoshita (1972)] bases on the
work of Hitzl and Breakwell as an intermediary step in his own derivation of the action-angle
variables.

Nevertheless, Ferrer and Lara [Ferrer & Lara (2010b)] state that the reduction can be done
formally without need of choosing in advance any specific form of the reduced Hamiltonian,
what makes that the secular terms of the problem, as well as the generating function, can be
computed in a general form that either does not need the previous selection of the canonical
variables used in the procedure. They therefore suggest that all the previous solutions of the
Euler-Poinsot problem, as well as other appearing in the literature, may pertain to a general
family of transformations based on the Hamilton-Jacobi reduction. In fact, the two sets of
variables analyzed in this work can be obtained by making specific choices over the general
family of transformations.
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CHAPTER 1. INTRODUCTION 5

1.3.2 Perturbation theory. The Lie-Deprit algorithm

The Lie-Deprit algorithm [Deprit (1969), Meyer, Hall & Offin (2009)] defines a canonical trans-
formation depending on a small parameter: Ψ : (y, Y, �) ⇒ (x,X) given by the solution of a
system of differential equations

dx

d�
=

∂W

∂X
, x(y, Y, � = 0) = y, (1.5)

dX

d�
= −∂W

∂x
, X(y, Y, � = 0) = Y , (1.6)

where x = x(y, Y ; �); X = X(y, Y ; �), being (y, Y ) the initial conditions; � the independent
variable and W the generating function.

In a more practical point of view, since our problem has the Hamiltonian structureℋ = ℋ0+�ℋ1,
we generically start from this Hamiltonian expanded as a power series of a small parameter �
and we seek to reduce it to its secular terms K, this is

ℋ(x,X; �) =
∑
i≥0

�i

i!
ℋi,0(x,X) −→ K(y, Y ; �) =

∑
i≥0

�i

i!
K0,i(y, Y ), (1.7)

where the transformation is computed from a generating function given by

W = W (x,X; �) =
∑
i≥0

�i

i!
Wi+1(x,X). (1.8)

This is done in a stepwise procedure that is usually known as “filling the Lie triangle”, whose
recursive equation is given by

ℋi,j = ℋi+1,j−1 +
∑

0≤m≤i

(
i

m

)
{ℋi−m,j−1;Wm+1} , (1.9)

where {ℋ;W} is the Poisson bracket of ℋ and W .

As observed, the new Hamiltonian K0,i is selected from an averaging of previous terms while the
corresponding order of the generating function Wi is solved from a partial differential equation
generically given by

{Wi;ℋ0,0}+K0,i = ℋi,0, (1.10)

which is called homological equation.

Keeping in mind the almost identity character of the Lie transformations, they are usually denote
by TΨ : (x,X) → (x′, X ′), i.e., using a superscript prime. In Chapter 4 all these aspects are
taken into account and develop in detail.

1.4 On the structure and results contained in this Memoir

According to the previous comments and references and excluding this introductory chapter, the
rest of this Memoir is organized as follows. In Chapter 2 the free rigid body dynamics is revisited
where we recall classical definitions and relations among the variables as well as some details
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6 1.4. ON THE STRUCTURE AND RESULTS CONTAINED IN THIS MEMOIR

on kinematics and dynamics. The integration of the torque-free motion is given in Andoyer
variables, which will be used to accomplish the complete reduction of the torque-free motion.
Some details on the manipulation of the involved elliptic functions are also given, specially in the
case of the elliptic integral of the third kind (see also Appendix A.4). Furthermore, a different
way to address the integration of the free rigid body problem is carried out by a regularization
of time. Finally, due to a renewal of interest in geometric aspects of the rigid body dynamics, a
study of the phases of the problem is also included, that is, to know how much one of the angles
has rotated when the other angle has rotated 2�.

Chapter 3 shows how the complete reduction is carried out by solving the Hamilton-Jacobi-
Poincaé equation (Section 1.3.1). However we follow a general scheme where the two sets
of new variables used in this work are not found by choosing a new Hamiltonian but rather
by making some particular choices more related to expressions where the elliptic modulus is
involved. Indeed, it will be observed that the choice leading to Sadov action-angle variables
contains elliptic integrals but, on the contrary, the choice leading to get Ferrer-Lara variables
consists of assuming some functions as constant values, which makes trivial the expression of
the new reduced Hamiltonian. Direct and inverse transformation equations are provided in both
cases depending only on one angle as an intermediary variable to reduce the quadratures arising
when applying Hamilton-Jacobi-Poincaré method. The expression of the new Hamiltonian is
strongly affected by these choices and it is important to remark that the later application of a
pertubation method involves calculations whose existence depends entirely on the expression of
the zero order. Moreover, an alternative intermediary variable is used to build up a new set of
action-angle variables which may be utilized for the study of a number of perturbations.

Next, a first-order closed form solution of the perturbed problem is presented in Chapter 4
where it is shown not only the way to handle the elliptic functions under a perturbation method
but also the existing differences when analyzing them using the two different sets of variables
given by Sadov and Ferrer-Lara. In turn, Chapter 5 emulates Chapter 4 in order to compare the
analytical and numerical solutions given by a series expansion of the perturbing function. In this
sense, since other previous works have carried out expansions as Fourier Series [Vallejo (1995)],
in this work we explore the possibility of developing Taylor expansions of the elliptic functions
previously expressed in terms of Jacobi Theta functions [Sadov (1970a)] (see also Appendix
A.6). As commented before, the presence of elliptic functions makes non-trivial the application
of a perturbation method based on Lie-Deprit algorithm and, of course, enhances the difficulty
to extend the theory to higher orders. Thus, this problem has been commonly avoided by
developing the perturbation as a power series expansion, which removes the explicit presence
of the elliptic functions in favour of the trigonometric functions, despite giving less accurate
solutions. Notwithstanding, some perturbations can be treated by perturbation methods with
no need of a previous series expansion, so this scenario will be called closed form.
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Chapter 2

The rigid body and its unperturbed
dynamics

The torque-free motion of a rigid body is an essential part of the full two-body problem
[Scheeres (2011)], which continues to be a fundamental problem in rotational dynamics due
to several reasons. As Ferrer and Lara have pointed out in [Ferrer & Lara (2010a)], on one
side, depite the analytical solution of the so-called Euler-Poinsot problem is well known since
the times of Jacobi [Jacobi (1851)] and it has been studied in detail in most classical mechan-
ics textbooks [Whittaker (1937), Landau & Lifshitz (1976), Goldstein (2002)], its closed form
solution involves elliptic integrals and functions, whose difficult evaluation has motivated ef-
forts to improve its computation [Fukushima (2009a), Fukushima (2009b), Fukushima (2010),
Celledoni & Zanna (2010)]. On the other side, this solution is of difficult application to per-
turbed problems, and the search for canonical variables that expedite the application of pertur-
bation methods is also an active field of research.

The most intuitive description of the attitude of a rigid body is provided by the Euler angles,
but they do not reflect all the dynamical symmetries of the torque-free motion. On the con-
trary, when using Andoyer variables the problem is trivially reduced to a 1-DOF system plus
a quadrature. Thus, this set of variables will be used to give the solution of the torque-free
motion.

In this chapter we revisit the rigid body problem by setting first all the definitions of the variables
over which the rest of the chapters are based on. Next some details on kinematics and dynamics
are provided and we will finally give the full integration of the problem in Andoyer variables.

2.1 Space, body and nodal reference frames

2.1.1 Classical relations. Euler angles

As shown in Fig. 2.1, let us consider two right oriented orthonormal reference frames where one
of them is fixed in the space S = {s1, s2, s3} and the other one introduces a certain rotation

7



8 2.1. SPACE, BODY AND NODAL REFERENCE FRAMES

with respect to the first one ℬ = {b1, b2, b3}, both with the same origin1 the point O. Under
these assumptions, one has different ways to express the vectors of the second reference frame
with respect to the space frame. This depends on the way we define the three basic rotations
which are needed for connecting both frames.

s3

s2

s1

b1

b3

ℓb

ℓs

I0

�

�
�

�

J

J

O

 

I

I

n

�

�

퓑

퓢

퓝

Figure 2.1: Definition of the Andoyer variables.

Let us assume s3 and b3 are not parallel. Then, among the triads named as Euler angles (for
other choices see Goldstein et al. [Goldstein (2002)]) let � be the angle between them (measured
always counterclockwise), i.e.

s3 ⋅ b3 = cos � with 0 < � < �. (2.1)

According to this geometry, the characteristic planes to these vectors through the origin O
intersect giving a straight-line common to both planes. Then, the ascending node vector I0 is
defined as

s3 × b3 = I0 sin �, ∥I0∥ = 1. (2.2)

If we define � to be the angle between s1 and I0, we have

I0 = s1 cos�+ s2 sin� with 0 ≤ � ≤ 2�. (2.3)

Then we may introduce another orthonormal reference frame: {I0, b3 × I0, b3}. Thus, if we
further define  to be the angle on the plane {I0, b3 × I0} between I0 and b1, we may also
express

b1 = I0 cos + (b3 × I0) sin with 0 ≤  ≤ 2�. (2.4)

1Later, studying the dynamics of the rigid body, we will make a particular choice of ℬ, the frame attached to
the body, taking into account its structure measured by the moments of inertia.
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CHAPTER 2. THE RIGID BODY AND ITS UNPERTURBED DYNAMICS 9

Once defined these angles and vectors, the position of the frame ℬ can be given by a matrix
A∗ ∈ SO(3) as follows

A∗ = R3( )R1(�)R3(�), (2.5)

hence the components of the vectors of the frame ℬ in the frame S are found to be

(b1)S1 = cos� cos − cos � sin� sin , (2.6)

(b1)S2 = cos sin�+ cos � cos� sin , (2.7)

(b1)S3 = sin � sin , (2.8)

together with

(b2)S1 = − cos � cos sin�− cos� sin , (2.9)

(b2)S2 = cos � cos� cos − sin� sin , (2.10)

(b2)S3 = sin � cos , (2.11)

and

(b3)S1 = sin� sin �, (2.12)

(b3)S2 = − cos� sin �, (2.13)

(b3)S3 = cos �. (2.14)

2.1.2 Introducing the Nodal frame by an intermediary plane

Let us now consider a unit vector n (different from the triads defining the previous frames), and
the associated characteristic plane through the origin O. In particular it intersects the plane
s1s2 of S and the plane b1b2 of ℬ. These straight lines are called nodes. We will express vector
n in reference frames S and ℬ. (What we have to do is just to proceed with n the same way
we have made previously with b3).

∙ With respect to S this new vector allows to define the angle I

s3 ⋅ n = cos I with 0 ≤ I ≤ �. (2.15)

where I is the angle between s3 and n, reckoned from s3.

Then, the ascending node ℓs of the characteristic plane to n on the reference plane s1,s2 is
defined to be

s3 × n = ℓs sin I, ∥ℓs∥ = 1 (2.16)

and it is given by
ℓs = s1 cos�+ s2 sin� with 0 ≤ � ≤ 2�, (2.17)

where � is the angle between s1 and ℓs.

Then, the components of n in the space frame are

nS1 = sin� sin I, nS2 = − cos� sin I, nS3 = cos I. (2.18)

9



10 2.1. SPACE, BODY AND NODAL REFERENCE FRAMES

Note that a new orthonormal basis N = {ℓs,m,n} can be completed by defining vector m as

m = n× ℓs. (2.19)

∙ As before, but now with respect to ℬ we may also define the angle J such that

n ⋅ b3 = cos J with 0 ≤ J ≤ �. (2.20)

where J is the angle between b3 and n, reckoned from b3.

Introducing the node ℓb as
n× b3 = ℓb sin J, ∥ℓb∥ = 1 (2.21)

hence the node ℓb in the plane b1,b2 is given by

ℓb = b1 cos � + b2 sin � with 0 ≤ � ≤ 2�, (2.22)

where � is the angle between b1 and ℓb.

Note the node ℓb may be given by the vectors ℓs,m of the nodal frame

ℓb = ℓs cos�+m sin� with 0 ≤ � ≤ 2�. (2.23)

∙ Alternatively, we may introduce an angle � = 2� − � which gives the orientation of b1 with
respect to the ascending node ℓb

b1 = ℓb cos � + (b3 × ℓb) sin � with 0 ≤ � ≤ 2�. (2.24)

where � = 2� − �.

Finally, taking into account all the previous definitions one may get the components in the frame
S of the vectors in the frame ℬ, thus, the first vector can be put into the form

(b1)S1 = − cos � cos I sin� sin�+ cos�(cos� cos � − cos I cos J sin� sin �)

+ sin �(− cos� cos J sin�+ sin� sin I sin J), (2.25)

(b1)S2 = sin�(cos� cos � − cos J sin� sin �)

+ cos�
[

cos � cos I sin�+ sin �(cos� cos I cos J − sin I sin J)
]
, (2.26)

(b1)S3 = cos � sin� sin I + sin �(cos� cos J sin I + cos I sin J); (2.27)

the second vector is

(b2)S1 = − cos�(cos � cos J sin�+ cos� sin �)

+ sin�(− cos� cos � cos I cos J + cos I sin� sin � + cos � sin I sin J), (2.28)

(b2)S2 = − cos� cos I sin� sin � + cos�(cos� cos � cos I cos J − sin� sin �)

− cos �(cos J sin� sin�+ cos� sin I sin J), (2.29)

(b2)S3 = cos� cos � cos J sin I − sin� sin � sin I + cos � cos I sin J ; (2.30)

and the third vector is

(b3)S1 = cos J sin� sin I + sin J(cos� sin�+ cos� cos I sin�), (2.31)

(b3)S2 = sin� sin� sin J − cos�(cos J sin I + cos� cos I sin J), (2.32)

(b3)S3 = cos I cos J − cos� sin I sin J. (2.33)

10



CHAPTER 2. THE RIGID BODY AND ITS UNPERTURBED DYNAMICS 11

Moreover, the vector of the ascending node ℓb can explicitly be given also in the frame S by

(ℓb)
S
1 = cos� cos�− cos I sin� sin�, (2.34)

(ℓb)
S
2 = cos� cos I sin�+ cos� sin�, (2.35)

(ℓb)
S
3 = sin� sin I. (2.36)

2.2 On the kinematics and dynamics of the free rigid body

2.2.1 Inertia metrics

As known, to describe the rotation of a rigid body, we need a magnitude indicating the mass
distribution around a point or a rotation axis. This magnitude, known as inertia tensor (I),
accounts for the rotational inertia of the body. Once defined the inertia tensor, the rotation
kinetic energy in the frame ℬ may be expressed as

E =
1

2
!ℬ ⋅ I ⋅ !ℬ (2.37)

where !ℬ is the angular velocity vector in the frame ℬ and it is known that, in this frame, the
inertia tensor is diagonal and then

E =
1

2

[
A(!ℬ1 )2 +B(!ℬ2 )2 + C(!ℬ3 )2

]
, (2.38)

where {A,B,C} are the principal moments of inertia.

On this moments of inertia, it is important to remark that by choosing A < B < C (with no
loss of generality), by construction any rigid body must further satisfy that

A+B > C (2.39)

therefore, the set of possible moments of inertia of a real rigid body are given in Fig. 2.2(a).

Furthermore, at this point Andoyer defined a triaxiality coefficient as a function of the moments
of inertial, which is given by

� =
C(B −A)

C(A+B)− 2AB
=

a1 − a2

a1 + a2 − 2a3
. (2.40)

where {a1, a2, a3} = {1/A, 1/B, 1/C}.

This quantity, taking into account the previous constraints, allows us to get an idea of the
different shapes of a real rigid body since the axis of maximum moment of inertia usually
corresponds to the most oblate part of the body (see Fig. 2.2(b)).

11



12 2.2. ON THE KINEMATICS AND DYNAMICS OF THE FREE RIGID BODY

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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1.0

A�C
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�
C

(a) (b)

Figure 2.2: Constraints to be considered on the inertia metrics of a real rigid body: A < B < C and
A+B > C. (a) Region which satisfies the relations among the moments of inertia representing real rigid
bodies. (b) Triaxiality surface taking into account the above constraints.

2.2.2 The geometry and the first integrals of the free rigid body

The free rigid body is characterized by two conserved quatities: the energy and the angular
momentum. According to the previous description, denoting ℎ ≡ E, we may write

(Mℬ1 )2

A
+

(Mℬ2 )2

B
+

(Mℬ3 )2

C
= 2ℎ, (2.41)

(Mℬ1 )2 + (Mℬ2 )2 + (Mℬ3 )2 = M2. (2.42)

Note that Eqs. (2.41) and (2.42) define an ellipsoid and a sphere respectively, and the intersection
between these two quadrics gives the solution curve of the problem. In particular, Fig. 2.3 shows
different intersection between a sphere and an ellipsoid. Thus, the sphere can protrude from the
ellipsoid or vice-versa, existing a separatrix at the middle of these two cases.

M1
B

M2
B

M3
B

(a) A < M2

2ℋ < B < C

M1
B

M2
B

M3
B

(b) A < B = M2

2ℋ < C

M1
B

M2
B

M3
B

(c) A < B < M2

2ℋ < C

Figure 2.3: Intersections between the ellipsoid and the sphere standing for the energy integral and the
angular momentum respectively. (a) The sphere protrudes from the ellipsoid. (b) Intersection giving the
separatrix of the problem. (c) The ellipsoid protrudes from the sphere.
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CHAPTER 2. THE RIGID BODY AND ITS UNPERTURBED DYNAMICS 13

As the components of vector M in the frame N (MN ) are given by

MN1 = 0, MN2 = 0, MN3 = M, (2.43)

we may express these components in the frame ℬ by means of the three following rotations

Mℬ = R3(�)R1(J)R3(�)MN (2.44)

giving2

Mℬ1 = M sin � sin J, Mℬ2 = M cos � sin J, Mℬ3 = M cos J. (2.45)

Furthermore, taking into account (2.43), we may express the components of M in the frame ℬ
by

MS = R3(−�)R1(−I)MN (2.46)

obtaining
MS1 = M sin� sin I, MS2 = −M cos� sin I, MS3 = M cos I. (2.47)

Moreover, we know that the components of the angular momentum vector M are related to the
components of the angular velocity vector ! by the expression

M = I! (2.48)

whence
Mℬ1 = A!ℬ1 , Mℬ2 = B!ℬ2 , Mℬ3 = C!ℬ3 . (2.49)

and from Eq. (2.38) we may also write

E =
1

2

[
(Mℬ1 )2

A
+

(Mℬ2 )2

B
+

(Mℬ3 )2

C

]
. (2.50)

Then, taking into account Eq. 2.45, the components of the angular velocity vector in the frame
ℬ are

!ℬ1 =
1

A
M sin � sin J, !ℬ2 =

1

B
M cos � sin J, !ℬ3 =

1

C
M cos J. (2.51)

and hence this components can be again expressed in the frame N by the opposite of the
aforementioned three rotations

Ω = R3(−�)R1(−J)R3(−�)! (2.52)

which yields

!N1 = M sin J

[
(a1 − a2) sin � cos � cos�+ sin� cos J

[
a3 − (a1 sin2 � + a2 cos2 �)

]]
, (2.53)

!N2 = M sin J

[
(a1 − a2) sin � cos � sin�+ cos� cos J

[
− a3 + (a1 sin2 � + a2 cos2 �)

]]
, (2.54)

!N3 = M
(
a3 cos2 J + sin2 J(a1 sin2 � + a2 cos2 �)

)
. (2.55)

2Note that the signs of these components depend on the initial position of the vector (i.e. position when t0 = 0)
according to the value of the previous angles. Because of this, different signs have been used along the literature
(see [Scheeres (2011), Lawden (1989), Vallejo (1995), Jacobi (1851)]).
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14 2.3. THE SYMPLECTIC CHARACTER OF THE ANDOYER VARIABLES

Poinsot’s Theorem. If the angular velocity vector whose components are given in Eqs. 2.53-
2.55 corresponds to the velocity of a free rigid body, then the third component Ω3 depends only
on the two integrals of the system: the energy and the angular momentum.

Proof.

Expressing the integral of the energy (2.50) as a function of the angular velocity in the body
frame, after some calculations we have

E =
M2

2

[(
a1 sin2 � + a2 cos2 �

)
sin2 J + a3 cos2 J

]
, (2.56)

therefore, by comparing this expression with the one shown in Eq. (2.55), it inmediately follows
that

!N3 =
2E

M
. (2.57)

2.3 The symplectic character of the Andoyer variables

As said in the introduction, from now on we will develop our work in Hamiltonian form. At
present, most researchers usually carry out their research works based on Euler variables. We
make here a different choice, namely, we will use the symplectic chart built on Andoyer variables
[Andoyer (1923), Deprit (1967)]. Another way to show the symplectic character can be found
in [Heard (2006)].

On one hand, following Deprit-Elipe [Deprit & Elipe (1993)] we may find the expression for an
infinitesimal rotation, which is given by

d퓡 = d�s3 + dIℓs + d�n+ dJℓb + dℓb3 (2.58)

and on the other hand, the vector M can be written as

M = Mn = M sin I sin�s1 −M sin I cos�s2 +M cos Is3 (2.59)

hence the 1-form is

M ⋅ d퓡 = (M ⋅ s3)d�+ (M ⋅ ℓs)dI + (M ⋅ n)d�+ (M ⋅ ℓb)dJ + (M ⋅ b3)dℓ (2.60)

= (M ⋅ s3)d�+ (M ⋅ n)d�+ (M ⋅ b3)dℓ (2.61)

and it is clear that the new conjugate momenta are defined as

Λ = M ⋅ s3 = M cos I, (2.62)

M = M ⋅ n = M, (2.63)

N = M ⋅ b3 = M cos J. (2.64)

It may also checked that, according to (2.45), the components of M referred to the body frame
are expressed to be

M1 = C!1 = M ⋅ b1 = Mn ⋅ b1 = M sin � sin J =
√
M2 −N2 sin �, (2.65)

M2 = B!2 = M ⋅ b2 = Mn ⋅ b2 = M cos � sin J =
√
M2 −N2 cos �, (2.66)

M3 = A!3 = M ⋅ b3 = Mn ⋅ b3 = N, (2.67)

14



CHAPTER 2. THE RIGID BODY AND ITS UNPERTURBED DYNAMICS 15

where != {!1, !2, !3} are the components of the angular velocity vector in the body frame and,
in what follows, we will denote {Mℬ1 , Mℬ2 , Mℬ3 } = {M1, M2, M3} for the sake of clarity.

Then, the Eq. (2.56) may be written in symplectic form giving3

ℋ(�,N,M ; a1, a2, a3) =
1

2
(a1 sin2 � + a2 cos2 �)(M2 −N2) +

a3

2
N2. (2.69)

where a1 = 1/A, a2 = 1/B, a3 = 1/C are the inverse of the moments of inertia.

2.4 On the integration of the problem in Andoyer variables

Despite the integration of the free rigid body can be found in several books and articles
[Jacobi (1851), Andoyer (1923)], in this section we tackle again this integration due to the im-
portance of fixing notation when manipulating elliptic functions and elliptic integrals. Thus the
free rigid body in Hamiltonian formalism take the form

ẋ =
∂ℋ
∂X

, Ẋ = −∂ℋ
∂x

, (2.70)

where ℋ(x,X) is called the Hamiltonian function of the system. In our case,

ℋ(�, �, �,Λ,M,N) = E(−,−, �,−,M,N)

with ℋ given by (2.69). Observe that the Hamiltonian does not depend on two of the variables
(�, �) and one momenta (Λ) which means that they are cyclical variables. This fact is which
makes the use of Andoyer variables so convinient for the study of the rigid body dynamics. We
suggest the reader to compare the Hamiltonian function in Andoyer variables versus the same
function in Euler variables to realize the benefit of these new variables.

The previous system of differential equations is given explicitly by

�̇ =
d�

dt
=
∂ℋ
∂N

= N(a3 − a1 sin2 � − a2 cos2 �), (2.71)

Ṅ =
dN

dt
= −∂ℋ

∂�
= (a2 − a1)(M2 −N2) sin � cos �, (2.72)

�̇ =
d�

dt
=
∂ℋ
∂M

= M(a1 sin2 � + a2 cos2 �), (2.73)

Ṁ =
dM

dt
= −∂ℋ

∂�
= 0, (2.74)

�̇ =
d�

dt
=
∂ℋ
∂Λ

= 0, (2.75)

Λ̇ =
dΛ

dt
= −∂ℋ

∂�
= 0. (2.76)

3According to [Ferrer & Lara (2010a)], this Hamiltonian can also be given as a function of the triaxiality
coefficient by

ℋ(�,N,M ; a1, a2, a3;�) =
1

2
a3M

2 +
1

4
(a1 + a2 − 2a3)(M2 −N2) (1− � cos 2�) , (2.68)
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16 2.4. ON THE INTEGRATION OF THE PROBLEM IN ANDOYER VARIABLES

As it is well known, the solution of the problem expressed in Andoyer variables can be found by
solving the system (2.71)-(2.72) plus the quadrature given by (2.73). Nevertheless, depending
on initial conditions, two different solutions are possible as the reduced phase space shows in
Fig. 2.4. Indeed, there is a region above and below the separatrix where the angle � circu-
lates (that is, 0 ≤ � ≤ 2�) and another region around the equilibria (inside the separatrix)
where � does not circulate. Besides, it is also well known that solutions are given in terms of
Jacobi elliptic functions and elliptic integrals, like many other dynamical systems. In fact, the
three main Jacobian elliptic functions solve a number of systems of differential equations (see
[Molero et al.(2013), Molero et al.(2013)]).

Then, in this section we integrate the problem and show the general solutions wherever initial
conditions are taken, but excluding particular solutions concerning on relative equilibria and the
separatrix, which will be analyzed in forthcoming papers.

-
Π

2-Π
Π

2 Π
Ν

-1

1
N�M

(a) A < M2

2ℋ < B < C

-
Π

2-Π
Π

2 Π
Ν

-1

1
N�M

(b) A < B < M2

2ℋ < C

Figure 2.4: Reduced phase space of the system. (a) When initial conditions are taken inside the
separatrix (for instance at green point), both N and � are bounded by the blue curve, that is, the angle
� does not circulate. (b) When initial conditions are taken outside the separatrix (see again the green
point), the angle � circulates.

2.4.1 Circulation

In order to solve the system (2.71)-(2.72), we can work out sin2 � and cos2 � from (2.69), that is

sin2 � =
2ℋ− a3N

2 − a2(M2 −N2)

(a1 − a2)(M2 −N2)
, cos2 � =

a1(M2 −N2)− (2ℋ− a3N
2)

(a1 − a2)(M2 −N2)
, (2.77)

and replace it in Eq. (2.72), giving

Ṅ =
√

[(2ℋ− a3N2)− a2(M2 −N2)][a1(M2 −N2)− (2ℋ− a3N2)]. (2.78)

Thus, taking a specific value of the energy given by the initial conditions ℎ = ℋ(�0, N0) and
integrating the previous equation, after several calculations we have

N(t) = R dn(s t∣m). (2.79)
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where it can be found that

m =
(B −A)(2ℎC −M2)

(C −B)(M2 − 2ℎA)
, s2 =

(C −B)(M2 − 2ℎA)

ABC
, R2 =

C(M2 − 2ℎA)

C −A
. (2.80)

At this point one may observe that we could have used the solution of the Euler equations
given in [Lawden (1989), Tantalo (1993)] to integrate the system. Thus, considering again Eqs.
(2.65)-(2.67) and (2.79)-(2.80), we can equate

M1(t) = A!1 = P cn(s t∣m) =
√
M2 −N2 sin �(t), (2.81)

M2(t) = B!2 = Q sn(s t∣m) =
√
M2 −N2 cos �(t), (2.82)

M3(t) = C!3 = R dn(s t∣m) = N(t), (2.83)

where R has been already defined in (2.80) and

P 2 =
A(2ℎC −M2)

C −A
, Q2 =

B(2ℎC −M2)

C −B
. (2.84)

Eq. (2.83) leads inmediately to Eq. (2.79) and we can also work out sin � and cos � from (2.81)
and (2.82), respectively, hence, taking into account (2.79), the angle �(t) is defined unambigu-
ously by means of

sin �(t) =
P√

M2 −N(t)2
cn(s t∣m) =

cn(s t∣m)√
1− n sn2(s t∣m)

, (2.85)

cos �(t) =
Q√

M2 −N(t)2
sn(s t∣m) =

√
B(C −A)

A(C −B)

sn(s t∣m)√
1− n2 sn(s t∣m)

, (2.86)

where from (2.80), it follows inmediately that

n =
mR2

R2 −M2
=
C(B −A)

A(C −B)
, (2.87)

which is related to the elliptic integral of the third kind as we will see below.

We could also obtain the own angle by working out sin2 � from Eq. (2.69) and, by replacing it
into Eq. (2.71) together with Eq. (2.79), after several calculations it yields

�(t) = − arctan

(√
B(C −A)

A(C −B)
sc(s t∣m)

)
. (2.88)

Finally, as indicated previously, the system is completely integrated by solving the quadrature
caming from (2.73), that is

�(t) = M

∫ t

0
(a1 sin2 �(t) + a2 cos2 �(t)) dt. (2.89)

Then, from (2.69) we can work out

a1 sin2 � + a2 cos2 � =
2ℎ− a3N

2

M2 −N2
(2.90)
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18 2.4. ON THE INTEGRATION OF THE PROBLEM IN ANDOYER VARIABLES

hence, taking into account (2.79) and the relation dn2(s t∣m) = 1−m sn2(s t∣m), we may write
Eq. (2.89)

�(t) = M

∫ t

0

2ℎ− a3N
2

M2 −N2
dt

= M

∫ t

0

2ℎ− a3R
2 dn2(s t∣m)

M2 −R2 dn2(s t∣m)
dt

= M

∫ t

0

(
a3 +

2ℎ− a3M
2

M2 −R2 dn2(s t∣m)

)
dt

= M

∫ t

0

(
a3 +

2ℎ− a3M
2

M2 −R2

1

1 + n sn2(s t∣m)

)
dt.

where the elliptic parameter n has been defined in (2.87) 4 and

2ℎ− a3M
2

M2 −R2
=
C −A
AC

, (2.91)

hence

�(t) = M

(∫ t

0
a3 dt+

C −A
AC

∫ t

0

1

1− n sn2(s t∣m)
dt

)
(2.92)

and finally it leads to

�(t) = M

[
1

C
t+

1

s

C −A
AC

Π(−n; am(s t∣m)∣m)

]
. (2.93)

where Π is the Legendre elliptic integral of the third kind. We will talk about this function
again in the following chapter when the complete reduction of the problem is tackled.

2.4.2 Libration

Proceeding in the same way for the libration case (see Fig. 2.4(a)) we find that

N(t) = R cn(s̃ t∣m̃), (2.94)

where R is the same as the previous case and

m̃ =
(C −B)(M2 − 2ℎA)

(B −A)(2ℎC −M2)
, s̃2 =

(B −A)(2ℎC −M2)

ABC
. (2.95)

In order to obtain the new equation for �, we start again from Eq. (2.89), and taking into
account Eqs. (2.87) and (2.95) we have

�(t) = M

[
1

C
t+

1

s̃

C −A
AC

Π(−ñ; am(s̃ t∣m̃)∣m̃)

]
. (2.96)

4Note that Tantalo in [Tantalo (1993)] used a different definition of the elliptic integral of the third kind where
� = −n.

18
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where

ñ =
C(M2 − 2ℎA)

A(2ℎC −M2)
. (2.97)

Note that this elliptic parameter depends not only on the moments of inertia but also on the
firts integrals. Meanwhile it depends only on the moments of inertia for the circulation case.

Finally, the solution for the angle � is found by replacing (2.94) into (2.77).

2.5 On the integration of the free rigid body by regularization

2.5.1 The Euler equations with a “new time”

Every text in classical mechanics devotes a chapter to the free rigid body. The reason is that it
is one of the classical integrable systems in dynamics. The Euler fundamental equations are

A
d!1

dt
+ (C −B)!2 !3 = 0, (2.98)

B
d!2

dt
+ (A− C)!1 !3 = 0, (2.99)

C
d!3

dt
+ (B −A)!1 !2 = 0. (2.100)

which have two well known first integrals given by

A!2
1 +B!2

2 + C!2
3 = 2ℎ, (2.101)

A2!2
1 +B2!2

2 + C2!2
3 = M2 (2.102)

where ℎ is the kinetic energy and M is the angular momentum.

The treatment of these equations has been already done in the aforementioned classical texts
[Whittaker (1937), Landau & Lifshitz (1976), Goldstein (2002)]. Nevertheless, an alternative
way to deal with Euler equations has been recently proposed by [Molero et al.(2013)]. Indeed,
Eq. (2.98)-(2.100) may be put into the form

d!1

dt
= c1 !2!3,

d!2

dt
= c2 !1!3,

d!3

dt
= c3 !1!2, (2.103)

where

c1 = −C −B
A

< 0, c2 =
C −A
B

> 0, c3 = −B −A
C

< 0. (2.104)

Then, considering the system (2.103) and the regularization t → � given by the differential
relation

d�

dt
= !3, (2.105)

in the domain where !3 ∕= 0, the previous system (2.103) takes the form

d!1

d�
= c1 !2,

d!2

d�
= c2 !1, !3

d!3

d�
= c3 !1!2, (2.106)
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20 2.5. ON THE INTEGRATION OF THE FREE RIGID BODY BY REGULARIZATION

showing that the first two equations decouple from the third. The reduced system is no more than
a linear differential system with constant coefficients whose solution is given by a combination
of exponentials. Depending on the sign of c1 we will find the classic harmonic oscillator or
a hyperbolic motion. In the case of the rigid body where c1 < 0 and c2 > 0 the solution is
expressed by means of trigonometric functions. Then, the third equation is trivially solved by
quadrature. Note also that the linear differential system has a new integral given by

c2!
2
1 + ∣c2∣!2

2 = k (2.107)

where from (2.101) and (2.102), it can be checked that

k =
2ℎC −M2

AB
. (2.108)

which is no more than a linear combination of the two first integrals of the problem.

The solution of the above linear differential system is given by

!1(�) = d1 cos(��), !2(�) = d2 sin(��), (2.109)

and taking into account (2.104) and (2.108), by replacing (2.109) in the first two equations of
(2.106), we have three three equations to solve three unknowns d1, d2 and �, which are found
to be

d2
1 =

2ℎC −M2

A(C −A)
, (2.110)

d2
2 =

2ℎC −M2

B(C −B)
, (2.111)

�2 =
(C −B)(C −A)

AB
. (2.112)

where we will take the positive roots of the previous quantities.

Once solved the linear system, taking into account (2.109), the third equation of (2.106) may
be solved and put into the form

!2
3 =

d1d2∣c3∣
2�

(1− 2� ci)

[
1− 2

1− 2�ci
sin2(��)

]
(2.113)

where ci is an integration constant. To find it in terms of the moments of inertia and the first
integrals, we can express (2.101) as

!2
3 =

2ℎ−Ad2
1

C

[
1 +

Ad2
1 −Bd2

2

2ℎ−Ad2
1

sin2(��)

]
(2.114)

and by identifying terms we have that

ci =
1

2�
− 2ℎ−Ad2

1

C

1

d1d2∣c3∣
, (2.115)

which we replace in (2.113), giving

!3(�) = d3

√
1−m sin2(��) (2.116)
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where

d2
3 =

M2 − 2ℎA

C(C −A)
, m =

(B −A)(2ℎC −M2)

(C −B)(M2 − 2ℎA)
. (2.117)

being m again the elliptic modulus and d3 = R, both already given in (2.80).

Finally, the time is recovered by the quadrature (2.105) to get

t =

∫
d�

!3(�)
=

1

d3

∫
d�√

1−m sin2(��)
=

1

d3�
F(�� ∣m), (2.118)

and taking into account that d3� = s as given in (2.80), we may express

t =
1

s
F(�� ∣m) =

√
ABC

(C −B)(M2 − 2ℎA)
F(�� ∣m). (2.119)

where F is the incomplete elliptic integral of the first kind.

2.5.2 Completing the integration

Once obtained !1 = !1(�), !2 = !2(�) and !3 = !3(�) given respectively by (2.109) and (2.116),
we have also solved Andoyer variables � and N according to Eqs. (2.81)-(2.83). However �
remains to be found under this new scenario. Therefore, applying (2.105) to Eq. (2.73), it can
be put into the form

!3
d�

d�
= M(a1 sin2 � + a2 cos2 �). (2.120)

Considering (2.90), (2.83) and (2.116) we may write

�(�) = M

∫
1

!3

2ℎ− a3N
2

M2 −N2
d�

= M

∫
1

!3

2ℎ− a3d
2
3 [1−m sin2(��)]

M2 −R2[1−m sin2(��)]
d�

= M

∫
1

!3

(
a3 +

2ℎ− a3M
2

M2 − d2
3

1

1− n sin2(��)

)
d�

=
M

d3

[
a3

∫
d�√

1−m sin2(��)
+
C −A
AC

∫
d�

[1− n sin2(��)]
√

1−m sin2(��)

]

=
M

s

[
1

C
F(�� ∣m) +

C −A
AC

Π(n; �� ∣m)

]
(2.121)

where n is the elliptic parameter given in (2.87).

Note finally that (2.121) can be directly derived from (2.93) by replacing (2.119).
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22 2.6. ON THE PHASES OF THE FREE RIGID BODY

2.6 On the phases of the free rigid body

For the last two decades there has been a renewal of interest in geometric aspects of the rigid
body dynamics [Marsden & Ratiu (1999)]. Among them, one of the aspects recently revisited
has to do with the phases of the free rigid body, that is, to compute how much one of the angles
of the problem has rotated when the other one has made a rotation. Within this vein Mont-
gomery germinal paper [Montgomery (1991)] connecting Berry phase with classical mechanics
has spurred several publications of which we just mention a few: [Levi (1993), Levi (2002)],
[Zhuravlev (1996)], [Bates (2005)], [Natario (2010)]. In particular, as we will prove below, Mont-
gomery gave a formula to compute how much the angle � has rotated when � has rotated 2�.
Additionally, we will give new expressions to compute the other phase, that is, how much the
angle � has rotated when � has rotated 2� [Ferrer & Molero (2013)]. However, in order to
connect with the aforementioned literature, we will use A > B > C for this section.

2.6.1 Spherical area defined by the integral surfaces

To reckon these phases, a fundamental quantity is the spherical area given by the intersection
of the surfaces defined by the first integrals of the system. Although its explicit expression is
not needed in the previous proofs of Montgomery formula, we will base our proof on it. Thus,
we bring here that area whose determination may be found in vectorial calculus handbooks (or
see also [Tantalo (1993)]). Indeed, the surface area A on the sphere limited by the intersection
of the sphere (2.42) with the ellipsoid (2.41) is given by:

(i) If A > B > M2

2ℎ > C then

A = 2�M2 + 4Ms−1

(
M2 − 2ℎC

C
K(m)− M2(A− C)

AC
Π(−n∣m)

)
(2.122)

where n, m and s have been defined above.

(ii) If A > B = M2

2ℎ > C then

A = 8M2 arctan(
√

1 + n−
√
n), (2.123)

and of course, if A > B > M2

2ℎ = C then A = 0.

2.6.2 The trajectory in configuration space

We quote from [Zhuravlev (1996)]: “Poinsot’s geometrical interpretation is not complete if we
mean by a complete geometrical interpretation a clear representation of the sequence of positions
of a rigid body in a space without indicating the instants of time at which these positions are
reached. In other words, a complete geometrical interpretation is the interpretation of the
trajectory in a configuration manifold (group SO(3)) without indicating the schedule of motion
in it.” With the previous differential equations (2.73) and (2.71) we may eliminate the time and
to obtain the expression � = �(�) asked by Zhuravlev for the complete geometric interpretation.
Indeed, we divide first Eq. (2.71) by Eq. (2.73). Then, we take into account (2.69) and fix a
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value of the energy, which gives N = N(�;M,ℋ0, ai), we obtain

d�

d�
=
N(a3 − a1 sin2 � − a2 cos2 �)

M(a1 sin2 � + a2 cos2 �)
(2.124)

from where

�− �0 =

∫ �

�0

a1 sin2 � + a2 cos2 �√
(d− a1 sin2 � − a2 cos2 �)(a3 − a1 sin2 � − a2 cos2 �)

d� (2.125)

with d = 2ℋ/M2.

The previous quadrature may be computed by introducing an auxiliary variable � → � given by

sin � =

√
1− �3 sin�√
1− �3 sin2 �

, cos � =
cos�√

1− �3 sin2 �
, d� =

√
1− �3

1− �3 sin2 �
d�, (2.126)

with

�3 =
M2(A−B)

B(2ℎA−M2)
. (2.127)

Indeed, taking �0 = 0 at the instant when �0 = 0 (and therefore �0 = 0) and taking into account
[Fukushima (2012)] (formula 6), after some computations we can express � = �(�) as

�[�(�)] =
1√

(a3 − a2)(d− a1)
[dF(�∣m)− (d− a2)Π(�3;�∣m)] . (2.128)

This expression will play a key role when looking for the Montgomery formula without requiring
the explicit involvement of time.

2.6.3 The periods of the Andoyer variables

With the solution of the free rigid body in explicit form given in Section 2.4 (but for the case
A > B > C), we ask first for the period of the two angles involved (T� and T�). Fig. 2.5 gives
two examples of the evolution of the period of the angles as functions of the energy for fixed
values of the moments of inertia. It is important to remark the biparametric character of the
system given by the ratios B/A and C/A (see Fig. 2.2). As it is pointed out in [Borisov (2008)],
the periods of the two angles will show a different behaviour according to these ratios. Indeed,
when � circulates, there are conditions leading us to T� = T� as observed in Fig. 2.5(b), which
means that, depending on the shape of the body, when one of the angles has rotated 2�, the
other angle could not have reached this value or even have exceeded it depending on the energy.

We compute first that period of the angle �. From (2.81) we obtain

T� = 4s−1 K(m) = 4

√
ABC

(B − C)(2ℎA−M2)
K(m). (2.129)

as a function of the energy; we should keep in mind that apart from the explicit presence of
ℎ, we have also that m = m(ℎ). We have illustrated that functional relation by the two upper
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(b) (A,B,C) = (1, 0.8, 0.35)

Figure 2.5: Example of the evolution of the periods T� and T� for two different triaxial bodies. The blue
curve corresponding to the evolution of T� has been plotted from (2.129); the black curve corresponding
to T� has been plotted with Mathematica [Wolfram Mathematica 9.0] by solving implicitly (2.130) for a
list of energy values within the range where � circulates.

curves in Fig. 2.5. Doing the same with � from (2.93) for the case A > B > C, replacing t by
the period, we obtain

2� = M

[
1

C
T� −

1

s

A− C
AC

Π(−n; am(s T�∣m)∣m)

]
(2.130)

whose inversion lead us to T� = T�(ℎ) as shown by the lower curve in Fig. 2.5.

Now, once found the Andoyer variables as a function of time, we ask ourselves the question put
by Montgomery [Montgomery (1991)]: how much the angle � has rotated when � has revolved
2� radians, i.e. for the time t = T�?

2.6.4 Recovering Montgomery formula via equations of integration

Now, in answering Montgomery question we consider the period of � given by (2.129). Then, if
this period is replaced into Eq. (2.93), knowing that

Π(−n; am(s T� ∣m)∣m) = Π(−n; am(4 K(m)∣m)∣m) = Π(−n; 2�∣m) = 4Π(−n∣m) (2.131)
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we have that

�(T�) = 4Ms−1

(
1

C
K(m)− A− C

AC
Π(−n∣m)

)
. (2.132)

Note that this expression relates to the spherical area defined by the intersection of the energy
ellipsoid ℰℎ and the momentum sphere SM , whose expression was already given (2.122). In our
case, examination of the solution shows that the previous oriented area is AO = −A. Thus, the
corresponding solid angle is equal to

Ω =
AO
M2

= −2� − 4M−1s−1

(
M2 − 2ℎC

C
K(m)− M2(A− C)

AC
Π(−n∣m)

)
. (2.133)

which can be written

Ω = −2� − 4Ms−1

(
1− 2ℎC/M2

C
K(m)− A− C

AC
Π(−n∣m)

)
= −2� − 4Ms−1

(
1

C
K(m)− A− C

AC
Π(−n∣m)

)
︸ ︷︷ ︸

�(T�)

+
2ℎ

M
4s−1K(m)︸ ︷︷ ︸

T�

= −2� − �(T�) +
2ℎ

M
T� , (2.134)

that we may write

2� + �(T�) =
2ℎ

M
T� − Ω = Δ�. (2.135)

Finally, considering that � could have given more than one rotation when � = 2� we will have

�(T�) = 2k� + Δ�(mod 2�), 0 ≤ k. (2.136)

2.6.5 Recovering Montgomery formula via the trajectory �(�)

Montgomery’s question can be answered by obtaining the value of the Andoyer angle � when
� has rotated 2�. To do this, we can make use of the relation given by (2.128). Thus, after
Δt = T� we have that

�(Δ� = 2�) = 4M−1s−1

[
2ℎK(m)− 2ℎB −M2

B
Π(�3∣m)

]
. (2.137)

On the other side, note that this expression apparently does not relate to the spherical area
(2.122) defined by the intersection of the energy ellipsoid and the momentum. Nevertheless, by
using the relation between the Legendre first and third complete elliptic integrals given by

(�3 −m) Π(�3∣m) = (n+m)

[
Π(−n∣m)− m

n+m
K(m)

]
, (2.138)

the aforementioned spherical area (2.122) may be written in the form

A = 2�M2 − 4Ms−1 2ℎB −M2

B
Π(�3∣m). (2.139)
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26 2.6. ON THE PHASES OF THE FREE RIGID BODY

In our case, the oriented area is again AO = −A. Thus,

AO = −2�M2 + 4Ms−1 2ℎB −M2

B
Π(�3∣m). (2.140)

The corresponding solid angle is equal to

Ω =
AO
M2

= −2� + 4M−1s−1 2ℎB −M2

B
Π(�3∣m), (2.141)

which, taking into account (2.129) and (2.137), can be written

Ω = −2� − �(� = 2�) +
2ℎ

M
4s−1K(m)︸ ︷︷ ︸

T�

= −2� − �(� = 2�) +
2ℎT�
M

, (2.142)

that we may write

2� + �(� = 2�) =
2ℎ

M
T� − Ω = Δ�. (2.143)

Like in the previous proof, as � could have given more than one rotation when � = 2� we will
have

�(� = 2�) = 2�k + Δ�(mod 2�), 0 ≤ k. (2.144)

2.6.6 A new phase for the free rigid body

As we have just shown, depending on the shape of the body, Montgomery formula could require
the use of a counter allowing us to keep control of the number of turns given by �, if necessary.
This circumstance forces us to resort to mod 2� which leads us finally to the Δ� associated to
t = T� .

During the preparation of this note we came into the consideration that in our problem there
is another phase, that is, to reckon how much has rotated � when � has rotated 2�. Indeed,
taking � = 2� and replacing d = 2ℎ/M2 in (2.128), we may write

2� =
M

s

[
2ℎ

M2
F(Δ�∣m)− 2ℎB −M2

B
Π(�3; Δ�∣m)

]
, (2.145)

where Δ� represents the fraction of the auxiliary angle we are looking for. Then, taking into
account (2.141), this last equation can be put into the form

2� =
2ℎ

sM
F(Δ�∣m)− 1

4
(2� + Ω)

Π(�3; Δ�∣m)

Π(�3∣m)
, (2.146)

which is an implicit relation from where one can obtain Δ� when known the first integrals and
the solid angle. The corresponding Δ� = Δ�(Δ�) can then be found by using (3.86).

If one wishes to identify dynamic and geometric phases, they are contained in the previous
formulas (2.130) and (2.146) both being considered as parametrized by the energy ℎ in the form

T� = T�(ℎ), Δ� = Δ�(ℎ). (2.147)
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Chapter 3

On the complete reduction of the
free rigid body

The complete reduction of the Euler-Poinsot problem may be performed in different sets of
variables. Action-angle variables are usually preferred because of their suitability to approach
perturbed rigid-body motion, but they are just one among the variety of sets of canonical
variables that integrate the problem. Thus, in this chapter we will revisit them and present
an alternate set of variables proposed by Ferrer and Lara [Lara & Ferrer (2010b)] which shows
an important advantage over the action-angle one: the transformation from and to Andoyer
variables is given in an explicit form while implicit equations must be solved when dealing with
action-angle variables.

Meanwhile many authors still rely on Eulerian variables when dealing with rotational dynam-
ics (see for instance [Marsden & Ratiu (1999)]), the formulation of H-J-P equation in Andoyer
variables fully take into account the symmetries of this system [Andoyer (1923), Deprit (1967)].
Thus, we use Andoyer variables to find a family of transformations allowing the complete re-
duction of the Euler-Poinsot problem. However, in the first stages of this procedure the explicit
expression of the Hamiltonian in the new variables is still to be chosen, hence symmetries and
other geometric considerations should be addressed in the search for new variables. These sym-
metries relate to the symplectic charts used to formulate the H-J equation, and the corresponding
transformation. It is worth to notice that we only deal with canonical transformations derived
from integrable Hamiltonians, which are cyclic in all but one variable, allowing the analysis of
different choices and avoiding to deal with rather cumbersome expressions.

Indeed, although a general expression for the new variables is here proposed within the frame
given by Ferrer and Lara in [Ferrer & Lara (2010b)], where different choices produce different
sets of variables, in this chapter we will deal only with the set proposed by Sadov [Sadov (1970a)]
and the aforementioned set proposed by Ferrer and Lara. It is worth to remark that both sets
of variables are obtained by using the same angle as an intermediate variable when solving the
quadratures involved in the H-J-P equation. Furthermore, as the Ferrer-Lara’s set is non-action-
angle, their variables are not considered to be angles.

Due to the existence of a relatively wide literature on complete reductions of the free rigid body
problem, we show a table containing the notation used by several authors.

27
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Authors

Param. Ferrer-Lara Deprit-Elipe Sadov Kinoshita Hitzl-Breakwell

Old var. (�, �, �,N,M,Λ) (ℓ, g, ℎ, L,G,H) (', , ℎ,G� , G, L) (ℓ1, g1, ℎ1, L1, G1, H1) (q1, q2, q3, p1, p2, p3)

New var. (ℓ, g, ℎ, L,G,H) (�, , ?,Δ,Γ, ?) (f, �, ℎ, I,G, L) (�1, �2, �3, �1, �2, �3) (�1, �2, �3, �1, �2, �3)

M. inertia A < B < Δ < C I1 < I2 < J < I3 A < B < C A < B < C A < B < C

Int. var.  {�,  } � = − � �; (�/2− �)?

Module m k3(�3, �0
3) �2 = m k k

Charac. −f �3 �2 = f e1; 1 + �2 = 1+e1
1−e1

� = f
2+f

Table 3.1: Table containing the different variables used by several authors in the complete
reductions of the free rigid body.

3.1 A General Form of the Hamilton-Jacobi Equation

We borrow from [Ferrer & Lara (2010b)] the explanation of the basic concepts related to the
Hamilton-Jacobi-Poincaré equation.

We only deal with Hamiltonians of the type

K(x0, x,X0, X;�) ≡ (X0 +ℋ)�, (3.1)

where x = (x1, . . . , xn) are coordinates and X = (X1, . . . , Xn) conjugate momenta; x0 is the
independent variable and X0 its conjugate momentum in the extended phase space formulation,
in which we restrict to the manifold K = 0; � is a vector of parameters, and the Hamiltonian ℋ
as well as the “regularizing factor” � may depend on all or some of the parameters defining �:

� = �(x0, x,X0, X;�), ℋ = ℋ(x0, x,−, X;�). (3.2)

A dash in the place of a variable is used to remark that the corresponding variable is not present.

Hamilton equations are

dx0

d�
=

∂K
∂X0

,
dX0

d�
= − ∂K

∂x0
,

dxi
d�

=
∂K
∂Xi

,
dXi

d�
= − ∂K

∂xi
, (i = 1, . . . , n)

(3.3)

where � is the evolution parameter of the flow. Note that the first of the previous equations
reads

dx0

d�
= � (3.4)

which tells the function � ought to verify that � > 0 in its domain. Moreover, in the case of
conservative systems ℋ = ℋ(−, x,−, X), X0 is an integral, and the manifold K = 0 may be also
seen as X0 = −ℋ = constant.

We are interested in canonical transformations

(x0, x,X0, X)
TΦ−→ (y0, y, Y0, Y ) (3.5)

28
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in the sense of Poincaré. More precisely, we look for transformations such that they simplify
Hamiltonian systems defined by functions ℋ which can be written as

ℋ = ℋ0 +ℋ1 (3.6)

where ℋ0 = ℋ0(−, x,−, X) defines an integrable system, and ℋ1 = ℋ1(x0, x,X) is a perturba-
tion. Specifically, we focus on canonical transformations such that the Hamiltonian in the new
variables K = K0 +K1 satisfies

K0 = (X0 +ℋ0)� = Φ(−,−, Y0, Y ), (3.7)

i.e. the full reduction of the unperturbed part is carried out.

The transformations are defined by

Xi =
∂W
∂xi

, yi =
∂W
∂Yi

, i = 0, . . . , n (3.8)

derived from a generator W = W(x0, x, Y0, Y, �) that is a complete solution of the generalized
H-J equation [

∂W
∂x0

+ℋ0

(
x,
∂W
∂x

)]
�

(
x, x0,

∂W
∂x0

,
∂W
∂x

)
= Φ(Y0, Y ). (3.9)

This Eq. (3.9) is what we refers as the variant of Poincaré to the H-J equation; the classical case
chooses Φ(−,−, Y0, Y ) ≡ 0.

Thus, the Hamiltonian K in the new variables will take the form

K = K0 +K1 = Φ + ℋ1 � (3.10)

where ℋ1 and � are expressed in the new variables. Note that in what follows we take ℋ1 = 0.

In this paper we limit to generators of the form

W =
∑

0≤ i<n−1

xi Yi +ℛ(xn, Y0, Y ), (3.11)

and regularizing function � = �(xn, X0, X1, . . . , Xn−1). Hence, from Eq. (3.9) we may write

ℋ0

(
x, Y1, . . . , Yn−1,

∂ℛ
∂xn

)
=

Φ(Y0, Y1, . . . , Yn)

�(xn, Y0, Y1, . . . , Yn−1)
− Y0. (3.12)

Depending on the form of ℋ0, Eq. (3.12) may be solved for ∂ℛ/∂xn and, therefore, ℛ is
computed from a quadrature, whose solution will depend on the choices made for Φ and �.
Note that, in fact, there is no reason why we should impose on ℋ0 to be cyclic in x0. What we
have presented above, properly adapted, remains valid if we lift that constraint. This is referred
in the literature as nonautonomuos systems; the driven oscillator, the relativistic particle, etc are
just simple examples within that category (for other systems of interest see for instance recent
papers in Journal of Geometric Mechanics). In the families we will study below the possible
presence of x0 occurs in the perturbing part.

Apart from the general case of Eq. (3.12), transformations non-based on the homogeneous
formalism (� ≡ 1, Φ = Y0 + Ψ), adopt the simpler formulation

ℋ0

(
xn, Y1, . . . , Yn−1,

∂ℛ
∂xn

)
= Ψ(Y1, . . . , Yn). (3.13)
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3.2 The Hamilton-Jacobi-Poincaré in Andoyer variables

In this section we will tackle the complete reduction of the Euler-Poinsot problem from Andoyer
variables (�, �, �,N,M,Λ) to a new set of canonical variables (ℓ, g, ℎ, L,G,H) by solving the
well-known Hamilton-Jacobi-Poincaré equation. The goal is that the new reduced Hamiltonian
depends only on the new momenta. Note that in the unperturbed problem given by (3.14), �
and Λ do not appear because they are constant.

The Hamiltonian of the torque-free motion in Andoyer variables is [Deprit (1967)]

ℋ0(�,−, N,M ; �) =

(
sin2 �

2A
+

cos2 �

2B

)
(M2 −N2) +

N2

2C
. (3.14)

where � = {A,B,C} is a vector containing the three principal moments of inertia where, in our
case, with no loss of generality A < B < C. We note that �, Λ and � are cyclic and therefore
� = �0, Λ = Λ0, and M = M0 are constant. Then the Hamiltonian of the Euler-Poinsot problem
is of 1-DOF, and the integration of the Hamilton equations for �, �, and N can be solved by
quadrature, accepting a closed form solution in elliptic integrals. In the case of zero inclination
of the angular momentum plane with respect to either the inertial plane or the equatorial plane
of the body, Andoyer variables are singular. These singularities are virtual and may be avoided
using a different set of variables [Fukushima (1994)].

In order to carry out the complete reduction of the previous Hamiltonian we have to solve the
Hamilton-Jacobi equation. To do this, we take in the transformation the two new coordinates
and the two old momenta as

ℓ =
∂S
∂L

, g =
∂S
∂G

, M =
∂S
∂�

and N =
∂S
∂�

, (3.15)

and by means of this transformation we have to look for two new functions K and S satisfying
the differential equation

K0(L,G) =

(
sin2 �

2A
+

cos2 �

2B

)(
∂S
∂�

)2

+

(
1

2C
− sin2 �

2A
− cos2 �

2B

)(
∂S
∂�

)2

. (3.16)

Since the angle � is cyclic in (3.14) we may separate the coordinates � and � by choosing a
S-function as

S(�, �, L,G) = G�+W(�, L,G), (3.17)

hence from (3.15) we have

ℓ =
∂W
∂L

, g = �+
∂W
∂G

, M = G and N =
∂W
∂�

, (3.18)

then, by replacing (3.18) in (3.16) we can work out ∂W/∂�

∂W
∂�

= G
√
Q =⇒ W =

∫ �

�0

G
√
Qd�, (3.19)

where

Q(Δ) =

sin2 �

A
+

cos2 �

B
+

1

Δ
sin2 �

A
+

cos2 �

B
+

1

C

with
1

Δ
=

2K0

G2
. (3.20)
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Note that Δ = Δ(K0, G) = Δ(L,G). Note also that, as can be clearly seen in Eq. (3.19), Q ≥ 0,
which indicates that all our formulas are valid as long as A < B < Δ < C.

SinceW has been obained in (3.19) as a function of Δ, we can already look for the transformation
equations from (3.18). For instance, for the first equation we have

ℓ =
∂W
∂L

=
∂

∂L

(∫ �

�0

G
√
Qd�

)
=

∫ �

�0

G
∂Q/∂L

2
√
Q

d�, (3.21)

where
∂Q

∂L
=

∂Q

∂(1/Δ)

∂(1/Δ)

∂K0

∂K0

∂L
=

∂Q

∂(1/Δ)

2

G2

∂K0

∂L
, (3.22)

and by replacing (3.22) in (3.21), after some calculations we have

ℓ =
1

G

∂K0

∂L
I2, I2 =

∫ �

�0

1√
Q

∂Q

∂(1/Δ)
d�. (3.23)

Proceeding as before, we can find the equation of g as

g = �+ I1 −
I2

G2

(
2K0 −G

∂K0

∂G

)
, I1 =

∫ �

�0

√
Qd�, (3.24)

and, from the fouth euation of (3.18), we finally find

N =
∂W
∂�

=
∂

∂�

(∫ �

�0

G
√
Qd�

)
= G

√
Q, (3.25)

hence the transformation equations are1

ℓ =
1

G

∂K0

∂L
I2, (3.26)

g = �+ I1 −
1

G2

(
2K0 −G

∂K0

∂G

)
I2, (3.27)

M = G, (3.28)

N = G
√
Q. (3.29)

In the spirit of the Ferrer-Lara paper [Ferrer & Lara (2010b)], the Hamilton-Jacobi Poincaré
scheme is the frame in the search for canonical transformations either for a qualitative analysis
or perturbation procedures and so on. We show below that from the previous equations a more
compact form of them can be found by imposing

2K0 −G
∂K0

∂G
= 0, (3.30)

from where one can see that for any function J (L), a new Hamiltonian given by

K0(G,L) =
1

2

G2

J (L)
(3.31)

1A recent reference where these expressions can be found is [Lara & Ferrer (2013)]. Note that the definitions
of the quadratures I1 and I2 are changed.
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is a solution of the differential equation (3.30).

The consequence of choosing (3.31) is that the transformation (3.26)-(3.29) take now the more
compact form

ℓ = −G
2

1

J 2(L)

dJ (L)

dL
I2, (3.32)

g = �+ I1, (3.33)

M = G, (3.34)

N = G
√
Q. (3.35)

Note that in the literature there is a transformation within this scenario. When we choose
J (L) = L we have Deprit-Elipe’s transformation (see [Deprit & Elipe (1993)]). The analysis of
the family of transformations defined by J (L) is the content of a forthcoming paper by Molero
and Ferrer.

3.3 Legendre elliptic integrals and the Standard Hamiltonian

Nevertheless, in order to get the transformation equations we find convenient to set

� = L/G, (3.36)

thus we will only have to manage a variable as a momenta, not two of them. Moreover, as we
will see below, this new scenario will allow us a better flexibility to make choices of new variables
because we will make decisions for the value of �, not for L and G independently. Thus, we can
differentitate

∂�

∂L
=

1

G
, (3.37)

∂�

∂G
= − �

G
=⇒ ∂K0

∂G
= −∂K0

∂�

�

G
, (3.38)

and replacing this in Eq. (3.26)-(3.29) we get 2

ℓ =
I2

G2

∂K0

∂�
, (3.39)

g = �+ I1 −
I2

G2

(
2K0 + �

∂K0

∂�

)
, (3.40)

M = G, (3.41)

N = G
√
Q. (3.42)

The following step consists of computing the quadratures I1 and I2. To do this we make use of
the well-known change of variable (see [Sadov (1970a), Sadov (1970b)])

cos =

√
1 + f sin �√
1 + f sin2 �

, sin =
cos �√

1 + f sin2 �
, (3.43)

2These expression can be found in [Lara & Ferrer (2010b)].
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where3

f =
C(B −A)

A(C −B)
> 0. (3.44)

However, we have Q(�) hence we need to express � as a function of  , that is, inverting (3.43)
we have

sin � =
cos √

1 + f sin2  
, cos � =

√
1 + f sin √
1 + f sin2  

, (3.45)

and from the first equation of (3.45) we get

d� = −
√

1 + f

1 + f sin2  
d . (3.46)

In order to solve the cuadrature, we are interested in expressing Q as a function only of sines,
thus, by using the well-known relation sin2 � + cos2 � = 1 and doing some calculations we have

Q =
C(Δ−B)

Δ(C −B)

1 + p sin2 �

1 + f sin2 �
with p =

Δ(B −A)

A(Δ−B)
, (3.47)

hence, by doing some more calculations in Eqs. (3.23) and (3.24) we obtain the standard form
of the elliptic integrals of the first and third kinds, which allow us to give the quadratures I1

and I2 as

I1 = 

[
m

f +m
F( ∣m)−Π(−f ; ∣m)

]
, (3.48)

I2 = 
AC

C −A
F( ∣m), (3.49)

where

m =
(C −Δ)(B −A)

(C −B)(Δ−A)
, (3.50)

 =

√
(1 + f)(f +m)

f
, (3.51)

being 0 < m < 1 the elliptic modulus, from which it is deduced that Δ < C.

Furthermore, from the second equation of (3.20) and Eq. (3.50) we get

Δ(m) =
mA(C −B) + C(B −A)

m(C −B) + (B −A)
=⇒ 1

Δ
=

1

A

(
1− C −A

C

f

f +m

)
(3.52)

and by replacing it in the second equation of (3.20) we have

K0(L,G) =
G2

2A

(
1− C −A

C

f

f +m

)
, (3.53)

3In his treatment of the full reduction, [Kinoshita (1972)] uses a sligthly different intermediate variable � =
 ± �/2 and, indtead of f , he built his expressions on a triaxiality coefficient defined by Andoyer e1 = �.
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34 3.3. LEGENDRE ELLIPTIC INTEGRALS AND THE STANDARD HAMILTONIAN

which appears in Sadov papers with no number attached to it and Ferrer-Lara called The
Standard Hamiltonian in [Lara & Ferrer (2010b)]. Note that K0 is explicitly a function of G,
hence, at least, it has to be a function of L through m, but, in general m = m(L,G) which
indicates that we may make choices either by means of the new Hamiltonian K0 or by means of
the elliptic modulus itself.

As the Standard Hamiltonian is already known, we can now find its partial derivatives. However,
this is not a trivial task because the result of ∂K0/∂� is not the same for (3.39) and (3.40)
since, as above commented, we take derivatives in (3.39) according to L knowing that K0 =
K0(G,m(L,G)) and we take derivatives in (3.40) according to G. Starting from (3.39), since K0

depends only on L through m, we have that

∂K0

∂�
=
∂K0

∂m

∂m

∂�
. (3.54)

From Eq. (3.53) we may obtain

∂K0

∂m
=

fG2(C −A)

2AC(f +m)2
(3.55)

hence, by replacing (3.55) and (3.54) in (3.39) and taking into account (3.49) we finally get

ℓ =
1

2

1 + f

f +m

∂m

∂�
F( ∣m). (3.56)

Nevertheless, for (3.40) we have to take into account that K0 depends explicitly on G and
through m, therefore, making use of (3.38)

∂K0

∂�
= −G

�

∂K0

∂G

= −G
�

[
G

A

(
1− C −A

C

f

f +m

)
+
G2

2A

1

(f +m)2

f

C
(C −A)

∂m

∂G

]

= −G
2

A�

(
1− C −A

C

f

f +m

)
+
G2

2A

1

(f +m)2

f

C
(C −A)

∂m

∂�
. (3.57)

Once more, by replacing (3.57) and (3.53) in (3.40) and taking into account (3.48) and (3.49)
we finally get

g = �+ 

[
1

f +m

(
m− f

f +m

�

2

∂m

∂�

)
F( ∣m)−Π(−f ; ∣m)

]
(3.58)

Since Eq. (3.41) remains unchanged, we just have to update Eq. (3.42). To do this, if we express
the first equation of (3.20) as a function only of cosines, after several calculations we find

N = G

√
f

f +m

√
1−m sin2  . (3.59)
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Therefore, taking into account Eq. (3.51), the new transformation equations can finally be
written as 4

ℓ =
1

X(m)
F( ∣m), (3.60)

g = �+

√
(1 + f)(f +m)

f
[Y (m,�)F( ∣m)−Π(−f ; ∣m)] , (3.61)

M = G, (3.62)

N = G

√
f

f +m

√
1−m sin2  . (3.63)

where

X(m) =
2

∂m/∂�

(f +m)3/2√
f(1 + f)

, Y (m,�) =
1

f +m

(
m− f

f +m

�

2

∂m

∂�

)
. (3.64)

are the functions on which we will do the different choices leading to the different sets of new
variables.

Nevertheless, the previous equations are still formed by a mixture of old and new variables and
we need both the direct and the inverse transformation equations. In order to get the set of
direct equations, Eqs. (3.62) and (3.63) have to be inverted. To do this, by working out ∂m/∂�
from the first equation of (3.64) and replacing it in the second equation of (3.64), we find

�(X(m), Y (m)) =
L

G
= X(m)

√
(1 + f)(f +m)

f

[
m

f +m
− Y (m)

]
, (3.65)

from which one can work out L as a function of the old variables. Therefore, the direct trans-
formation equations are given by

ℓ =
1

X(m)
F( ∣m), (3.66)

g = �+

√
(1 + f)(f +m)

f
[Y (m,�) F( ∣m)−Π(−f ; ∣m)] , (3.67)

G = M, (3.68)

L = M X(m)

√
(1 + f)(f +m)

f

[
m

f +m
− Y (m,�)

]
. (3.69)

4If we had not chosen to set � = L/G, the new transformation equations would be given by

ℓ =
G

2

1 + f

f +m

∂m

∂L
F( ∣m),

g = �+ 

[
1

f +m

(
m+

f

f +m

G

2

∂m

∂G

)
F( ∣m)−Π(−f ; ∣m)

]
,

M = G,

N = G

√
f

f +m

√
1−m sin2  .
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36 3.4. ACTION-ANGLE VARIABLES. SADOV TRANSFORMATION

It is also possible to obtain the set of inverse transformation equations, that is, formulas ex-
pressing the old variables as functions of the new variables. Thus, by working out  from Eq.
(3.66) we have

 = am (X(m) ℓ∣m) , (3.70)

and replacing it in Eq. (3.45), (3.67) and (3.63), the set of inverse transformation equations can
be written as

sin � =
cn (X(m) ℓ∣m)√

1 + f sn2 (X(m) ℓ∣m)
, cos � =

√
1 + f sn (X(m) ℓ∣m)√
1 + f sn2 (X(m) ℓ∣m)

(3.71)

� = g −

√
(1 + f)(f +m)

f
[X(m)Y (m,�) ℓ−Π(−f ; am(X(m) ℓ)∣m)∣m] , (3.72)

M = G, (3.73)

N = G

√
f

f +m
dn (X(m) ℓ∣m) . (3.74)

As said before, we may make choices either on the new Hamiltonian function K0 or on the elliptic
modulus m, that is, if a new Hamiltonian function (o elliptic modulus) has been chosen for any
reason, it is necessary to verify the existence of a transformation making possible such a choice.
The point is that if the choice is very fussy, it may not be found a transformation satisfying it
or being this too complex, therefore, to avoid this problem it is easier and safer to look for sets
of new variables after obtained the transformation equations, making choices on them.

Following [Lara & Ferrer (2010a)] three properties are always desirable in every symplectic trans-
formation:

1. to retain the topology of the Euler-Poinsot problem. In our case, this means that the
problem has to be still of two degrees of freedom.

2. to adhere to KAM conditions, which is always satisfied when the Hessian of the transfor-
mation is not equal to zero.

3. to be explicit and as simple as possible. Implicit equations are more difficult to manipulate.

In what remains in this chapter, we concentrate in two choices within the previous scenario.

3.4 Action-angle variables. Sadov transformation

3.4.1 The original transformation

The proposal by Sadov (see [Sadov (1970a)]) consisted of taking the two new coordinates to be
angles. To achieve this goal under our scheme, X(m) and Y (m) in Eq. (3.64) has to be set as

X(m) = −2 K(m)

�
, Y (m) =

Π(−f ∣m)

K(m)
, (3.75)
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which produces, for instance, that the first direct transformation equation (3.66) can be written
as

ℓ = − �

2 K(m)
F( ∣m). (3.76)

Observe that ℓ is actually an angle. When F( ∣m) = 0 then ℓ = 0, and when F( ∣m) = ±4 K(m)
then ℓ = ±2� (see Appendix A for further details on elliptic functions). Proceeding as in the
previous section, by replacing (3.75) in (3.65), the new expression for � is given by

� =
2

�

√
(1 + f)(f +m)

f

[
Π(−f ∣m)− m

f +m
K(m)

]
, (3.77)

from which can be seen that, in this case, we do not explicitly work out m as a function of �,
therefore the Standard Hamiltonian given in (3.53) remains unchanged. This means that we may
not express explicitly the new Hamiltonian as a function of the new momenta, but implicitly
through the Eq. (3.77).

Since the action-angle variables will be use in the subsequent sections and they will be compared
with Ferrer-Lara variables, it is necessary to give a new name to the action-angle variables, thus
we set ℓ ≡ '� ; g ≡ '�; L ≡ IN ; G ≡ IM . Taking into account this change of notation, by
replacing Eq. (3.75) in Eqs. (3.66)-(3.69) the direct transformation equations are given by5

'� = − �

2K(m)
F ( ∣m), (3.78)

'� = �+
√

(1 + f)(f +m)/f

[
Π(−f ∣m)

K(m)
F ( ∣m)−Π(−f,  ∣m)

]
, (3.79)

IM = M, (3.80)

IN =
2M

�

√
(1 + f)(f +m)/f

[
Π(−f ∣m)− m

f +m
K(m)

]
. (3.81)

Proceeding as before, the set of inverse transformation equations is given by

sin � =
cn
(

2K(m)
� '� ∣m

)
√

1 + f sn2
(

2K(m)
� '� ∣m

) , cos � = −

√
1 + f sn

(
2K(m)
� '� ∣m

)
√

1 + f sn2
(

2K(m)
� '� ∣m

) , (3.82)

� = '� + 

[
2

�
Π(−f ∣m)'� + Π

(
−f,−am

(
2K(m)

�
'� ∣m

)
∣m
)]

, (3.83)

M = IM , (3.84)

N = IM

√
f

f +m
dn

(
2K(m)

�
'� ∣m

)
. (3.85)

5Note that, according to [Sadov (1970a)], f ≡ �2 and m ≡ �2. Note also that by setting  = −�, the
transformation (3.78)-(3.81) become the same than Sadov’s one except for the definition of the elliptic integral
Π, where the characteristic has a different sign.
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38 3.4. ACTION-ANGLE VARIABLES. SADOV TRANSFORMATION

3.4.2 New expression for Sadov transformation

In the literature there is a well-known alternative auxiliary variable when dealing with the
quadratures related to the H-J equation given by

sin � =

√
1− �3 sin�√
1− �3 sin2 �

, cos � =
cos�√

1− �3 sin2 �
, d� =

√
1− �3

1− �3 sin2 �
d�, (3.86)

hence the transformation (3.78)-(3.81) takes the form

'� =
�

2K(m)
F(�∣m), (3.87)

'� = �+ 

[
Π(�3, �∣m)− Π(�3∣m)

K(m)
F(�∣m)

]
, (3.88)

IM = M, (3.89)

IN =
2M

�
Π(�3∣m), (3.90)

where

 = (1−m)

√
�(1− �)

�+m(1− �)
, � =

f

1 + f
=
C(B −A)

B(C −A)
< 1, �3 = �+m(1− �). (3.91)

To obtain the inverse set of transformation equations, from (3.87) we have

� = am

(
2K(m)

�
'�

∣∣∣∣m) , (3.92)

which transforms Eq. (3.86) into

sin � = −

√
1− �3 sn

(
2K(m)
� '�

∣∣∣∣m)√
1− �3 sn2

(
2K(m)
� '�

∣∣∣∣m)
, cos � =

cn

(
2K(m)
� '�

∣∣∣∣m)√
1− �3 sn2

(
2K(m)
� '�

∣∣∣∣m)
, (3.93)

and the rest of the equations are given by

� = '� − 
[
Π(�3, �∣m)− 2

�
'� Π(�3∣m)

]
, (3.94)

M = IM , (3.95)

N = IM

√
�(1−m)

�+m(1− �)
1

dn

(
2K(m)
� '�

∣∣∣∣m) . (3.96)
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3.4.3 The transformation in Jacobi Theta functions

The way in which perturbation theory will be treated in this Memoir needs to make use of the
transformation expressed in Jacobi Theta functions. Since the original Sadov’s set has been
already given in [Sadov (1970b), Barkin (1992)] and [Vallejo (1995)] (pages 47 − 48), we will
only look for the expressions of the new set as given in Eqs. (3.93)-(3.96).

As observed, according to (3.93), to express the above transformation in Jacobi Theta functions,
the first obstacle one finds is how to express in these Theta functions (biparametric functions)
a three-parameter expression, this is, '� , m and �3. This problem can be avoided6 by means of
a mathematical resource given by

m sn2(a∣m) = �3, �3 > m (3.97)

from where the amplitude

a = F

(
arcsin

√
�3

m

∣∣∣∣m) = F

(
�

2
− i'

∣∣∣∣m) . (3.98)

According to [Byrd & Friedman (1971)] (formula 115.01) we can express

F(�/2− i') = F(�∣m)− iF(�∣1−m), (3.99)

where it can be found that

sin� =
�

2
, sin� =

tanh'√
1−m

, (3.100)

and therefore (3.98) can be expressed as

a = K(m)− iF

[
arcsin

(
tanh'√
1−m

) ∣∣∣∣ 1−m] . (3.101)

To find ' in our notation, taking into account [Lawden (1989)] (formula 5.7.44), after some
calculations we see that

a = K(m)− iF

[
arcsin

√
�3 −m
�3(1−m)

∣∣∣∣ 1−m] . (3.102)

However, since Theta functions deal with angles as arguments and a is an amplitude, we are
interested in denoting

a =
2 K(m)

�
z (3.103)

hence

z =
�

2 K(m)
a =

�

2
− i �

2 K(m)
F

[
arcsin

√
�3 −m
�3(1−m)

∣∣∣∣ 1−m] . (3.104)

In particular, with these equations, the procedure to express the term 1 − �3 sn2 in Jacobi
Theta functions is carried out by applying the quasi-addition formulas of the Theta functions.
Specifically, from formula 1.4.19 in [Lawden (1989)] (page 9) we have

#4(x+ y, q)#4(x− y, q)#2
4(0, q) = #2

4(x, q)#2
4(y, q)− #2

1(x, q)#2
1(y, q) (3.105)

6The reader may also see [Byrd & Friedman (1971), Vallejo (1995), ?]
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where x and y are two angles and

#2
4(0, q) =

2K(m)

�

√
1−m (3.106)

Furthermore, taking into account

sn(u∣m) =
1

4
√
m

#1(�1, q)

#4(�1, q)
, (3.107)

cn(u∣m) =
4

√
1−m
m

#2(�1, q)

#4(�1, q)
, (3.108)

dn(u∣m) = 4
√

1−m #3(�1, q)

#4(�1, q)
. (3.109)

where �1 = {x, y} the above expression can be put into the form

#4(x+ y, q)#4(x− y, q)#2
4(0, q) = #2

4(x, q)#2
4(y, q)

[
1− #2

1(x, q)

#2
4(x, q)

#2
1(y, q)

#2
4(y, q)

]
(3.110)

= #2
4(x, q)#2

4(y, q)

[
1−m sn2

(
2K(m)

�
x∣m

)
sn2

(
2K(m)

�
y∣m

)]
,

and note further that if we call x = '� and y = z, by taking into account (5.10), then

#4('� + z, q)#4('� − z, q) =
#2

4('� , q)#
2
4(z, q)

#2
4(0, q)

[
1− �3 sn2

(
2K(m)

�
'� ∣m

)]
, (3.111)

and therefore we can solve the factor

1− �3 sn2

(
2K(m)

�
'� ∣m

)
=
#4('� + z, q)#4('� − z, q)

#2
4('� , q)#2

4(z, q)
#2

4(0, q). (3.112)

Then, taking into account (5.16) and Eqs. (A.71)-(A.73), (3.93) is expressed

sin � = − 1
4
√
m(1−m)

√
�(1− �3)

2K(m)

#1('� , q)#4(z, q)√
#4('� + z, q)#1('� − z, q)

(3.113)

cos � =
1

4
√
m

√
�

2K(m)

#2('� , q)#4(z, q)√
#4('� + z, q)#4('� − z, q)

, (3.114)

On the other side, taking into account (3.95)-(3.96), we express

cos J =
N

M
=

√
�(1−m)

�+m(1− �)
1

dn

(
2K(m)
� '�

∣∣∣∣m) (3.115)

from where, knowing that �3 = �+m(1− �), then

sin J =

√
m

�3

√
1− �3 sn2

(
2K(m)
� '�

∣∣∣∣m)
dn

(
2K(m)
� '�

∣∣∣∣m) . (3.116)
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Then, both can be expressed in Theta functions as

cos J =
1

4
√

1−m

√
�(1−m)

�+m(1− �)
#4('� , q)

#3('� , q)
(3.117)

sin J =

√
m

�3

√
2K(m)

�

√
#4('� + z, q)#4('� − z, q)

#3('� , q)#4(z, q)
, (3.118)

Finally, we also need to express Eq. (3.94) in Theta functions. To do this, taking into account
that

Π

[
�3; am

(
2K(m)

�
'�

∣∣∣∣m)∣∣∣∣m] =ℳ2K(m)

�
'� +

1

2

sn(a∣m)

cn(a∣m) dn(a∣m)
ln

[
#4('� − z, q)
#4('� + z, q)

]
(3.119)

Π(�3∣m) =ℳK(m), (3.120)

where

ℳ = 1 +
sn(a∣m)

cn(a∣m) dn(a∣m)

�

2K(m)

#′4(z, q)

#4(z, q)
(3.121)

and from (5.10)

sn(a∣m) =

√
�3

m
, cn(a∣m) = i

√
�3 −m
m

, dn(a∣m) =
√

1− �3 (3.122)

then, after a few calculations, Eq. (3.94) can be put into the form

! = '� − � = − i
2

ln

[
#4('� − z, q)
#4('� + z, q)

]
(3.123)

from where

ei! =

√
#4('� − z, q)
#4('� + z, q)

. (3.124)

However, in the same way as � and J , sine and cosine of � are also looked for in this section.
Thus, knowing that

sin� =
ei� − e−i�

2i
=
ei('�−!) − e−i('�−!)

2i
=
ei'�e−i! − e−i'�ei!

2i
(3.125)

cos� =
ei� + e−i�

2
=
ei('�−!) + e−i('�−!)

2
=
ei'�e−i! + e−i'�ei!

2
, (3.126)

using (3.124), we finally have

sin� =
ei'�#4('� + z, q)− e−i'�#4('� − z, q)

2i
√
#4('� + z, q)#4('� − z, q)

(3.127)

cos� =
ei'�#4('� + z, q) + e−i'�#4('� − z, q)

2
√
#4('� + z, q)#4('� − z, q)

(3.128)

41



42 3.5. FERRER-LARA TRANSFORMATION

3.5 Ferrer-Lara transformation

The proposal by Ferrer and Lara consists of making X(m) and Y (m) to be constant in (3.64).
Specifically, they proposed to set7

X(m) = −1, Y (m,�) = 1, (3.129)

which produces that Eq. (3.65) become

� =

√
f(1 + f)

f +m
, (3.130)

from which one can explicitly work out m as a function of �(L,G),

m(L,G) = f

[
(1 + f)

G2

L2
− 1

]
, (3.131)

and by replacing it in Eq. (3.53) we obtain the new Hamiltonian function to be

K0(L,G) =
1

2A
G2 − 1

2

(
1

B
− 1

C

)
L2. (3.132)

Note that, since 0 < m < 1, from Eq. (3.130) can be identified the lower and upper limit for �.
That is, if m = 0, then � =

√
1 + f , but if m = 1, then � =

√
m, therefore√

f < � =
L

G
<
√

1 + f. (3.133)

Finally, we can easily find the direct transformation equations by replacing Eq. (3.129) in the
system (3.66)-(3.69), getting

ℓ = −F( ∣m), (3.134)

g = �+

√
(1 + f)(f +m)

f
[F( ∣m)−Π(−f ; ∣m)] , (3.135)

G = M, (3.136)

L = N

√
1 + f

1−m sin2  
. (3.137)

where to obtain the Eq. (3.137) we should take into account Eqs. (3.130) and (3.63). In the
same way, proceeding as before, we may get the inverse transformation equations by replacing
Eq. (3.129) in the system (3.71)-(3.74), getting

sin � =
cn (ℓ∣m)√

1 + f sn2 (ℓ∣m)
, cos � = −

√
1 + f sn (ℓ∣m)√
1 + f sn2 (ℓ∣m)

(3.138)

� = g + (1 + f)
G

L
[ℓ+ Π(−f ;−am(ℓ)∣m)∣m] , (3.139)

M = G, (3.140)

N =
L√

1 + f
dn (ℓ∣m) . (3.141)

7In fact there are two papers where Ferrer-Lara have proposed two different new Hamiltonians, both
quadratic in the momenta. In what follows we will refer to the one presented in [Lara & Ferrer (2010b),
Lara & Ferrer (2012)].
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where to obtain Eqs. (3.139) and (3.141) we should take into account Eq. (3.130) again.

Both action-angle and Ferrer-Lara will be the sets of variables we will focus in the following
sections in order to study the perturbed rigid body. However, from the above equations we
may already see the advantages and disadvantages of both sets. While Ferrer-Lara set has the
advantage to be an explicit transformation from and to Andoyer variables, its coordinates are
not angles, which is the main advantage of action-angle set permiting easily to do Fourier series
expansions. Nevertheless, as commented before, the transformation in action-angle variables is
not explicit, which is an important disadvantage as will be seen below.
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Chapter 4

First order closed form solution of a
fast rotating satellite under gravity
gradient torque

In this chapter a closed form approach of the perturbed problem is tackled in the two sets of
variables given in the previous chapter. It is important to remark that most of the ideas here pre-
sented rely heavily on the articles recently published by Ferrer and Lara [Lara & Ferrer (2010a),
Lara & Ferrer (2010b), Lara & Ferrer (2012), Lara & Ferrer (2013)].

First of all the perturbing function has to be analyzed. As commented in Chapter 1, since
the dimensions of a satellite are small when compared with its distance to the origin of the
fixed reference frame, situated in a nearly spherical perturbing body, the disturbing potential
is assumed to be formulated in the MacCullagh approximation [MacCullagh (1840)]. Besides,
we will assume that the rigid body will move in a rotating frame consisting of a circular orbit,
hence the orbital motion is already given integrated. Additionally, a further simplification can
be accomplished when the body is also assumed to be in fast rotation compared with the orbital
rate. In such a case, a fast rotating approximation is considered and the fast Andoyer variable �
may be averaged before applying the perturbation method, in our case the Lie-Deprit algorithm
(see Section 1.3.2). Therefore, our averaged disturbing function depends on (�,−, �,N,M,Λ) in
Andoyer variables.

As it was demonstrated by Hitzl and Breakwell [Hitzl & Breakwell (1971)], the problem of the
attitude propagation of a triaxial satellite under gravity-gradient perturbations admits a closed
form solution at least in the case of a fast rotating satellite. The solution is based on a per-
turbation approach in which the complete reduction of the torque-free rotation Hamiltonian is
taken as the zero-order part. However, the formulation of the perturbing function in the new
sets of canonical variables requires the use of Jacobi elliptic functions.

While the Hitzl and Breakwell’s solution deals only with the secular terms of the problem, Ferrer
and Lara have been recently pointed out that the periodic terms of the solution can be also
provided in closed form [Lara & Ferrer (2012)]. In the new solution, the averaging is obtained
as the result of a canonical transformation of the Lie type which is computed using Deprit’s
method [Deprit (1969)]. As we will see below, the use of a set of non-action-angle variables like
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46 4.1. DISTURBING FUNCTION IN NEW VARIABLES

Ferrer-Lara’s one is related to the introduction of mixed terms in the transformation equations of
the averaging, thus constraining the time validity of the solution. This fact compels us to revisit
our problem from the point of view of action-angle variables and perturbation theory. Thus, we
will provide a complete closed form solution to the problem both in action-angle variables and
in Ferrer-Lara variables, and both for the secular and periodic terms, in order to compare these
two solutions by showing the advantages and disadvantages of each approach.

4.1 Gravity-gradient torque. Disturbing function in new vari-
ables

In this section we will show the perturbing potential over which the perturbation approaches
will be accomplished both in action-angle variables and Ferrer-Lara variables. As recalled, the
Hamiltonian of the torque-free motion in Andoyer variables introduced in (2.69) can be put into
the form

ℋ0 =

(
sin2 �

A
+

cos2 �

B

)
M2 −N2

2
+
N2

2C
=
M2

2C

[
1 +

(
sin2 �

A/C
+

cos2 �

B/C
− 1

)
sin2J

]
. (4.1)

In order to formulate the gravity-gravient torque, the following preliminary assumptions have
to be made:

1. We assume that the dimensions of the rigid body are small when compared with the
distance to the perturbing body, which allow us to truncate the disturbing potential to
the MacCullagh’s term [MacCullagh (1840)].

2. We assume that the non-sphericity of the rigid body does not affect its orbital motion
about the distant body, which is therefore Keplerian.

3. We limit to the case of circular orbital motion with constant radius r.

Thus, under the previous assumptions we may neglect the Keplerian part of MacCullagh’s
potential and limit our study to the disturbing potential given by

V = −GM⊙
2r3

(A+B + C − 3D) , (4.2)

where G is the gravitational constant, M⊙ is the mass of the disturbing body, r is the distance
between the centers of mass of both bodies, and

D = A2
1 +B 2

2 + C 2
3 (4.3)

is the moment of inertia of the rigid body with respect to an axis in the direction of the line
joining its center of mass with the perturber, of direction cosines 1, 2, and 3.

By replacing Eq. (4.3) in Eq. (4.2) and taking into account that 2
1 + 2

2 + 2
3 = 1, we get

V = −M
2

2C2

(
n

M/C

)2 [
(C −B)(1− 32

3)− (B −A)(1− 32
1

)
], (4.4)
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where n is the constant orbital mean motion given therefore by

n =

√
GM⊙
r3

. (4.5)

If the orbital plane is chosen as the inertial reference frame, then the orbital reference frame is
related to the body frame by the following composition of the rotations:⎛⎝ 1

2

3

⎞⎠ = R3(�)R1(J)R3(�)R1(I)R3(�)

⎛⎝ 1
0
0

⎞⎠ (4.6)

where � = �− �̃ and �̃ is the usual polar coordinate of the orbital motion given by �̃ = �̃0 + n t
as corresponds to a uniform circular motion.

Then, by replacing 1 and 3 as given by Eq. (4.6) in the disturbing potential (4.4), after several
calculations we get that,

V = −M
2

2C2

(
n

M/C

)2 1

16

[
(2C −B −A)V1 +

3

2
(B −A)V2

]
(4.7)

which separates the “axisymmetric part” of the potential

V1 = (4− 6s2
J)
(
2− 3s2

I + 3s2
I C1,0,0

)
−12sJcJsI [(1− cI)C−2,1,0 + 2cI C0,1,0 − (1 + cI)C2,1,0]

+3s2
J

[
(1− cI)2C−2,2,0 + 2s2

I C0,2,0 + (1 + cI)
2C2,2,0

] (4.8)

which is independent of �, from the “tri-axiality part”

V2 = 6s2
Is

2
J (C2,0,−2 + C2,0,2)− 4(1− 3c2

I)s
2
J C0,0,2

+(1 + cJ)2
[
(1− cI)2C−2,2,2 + 2s2

I C0,2,2 + (1 + cI)
2C2,2,2

]
+(1− cJ)2

[
(1− cI)2C−2,2,−2 + 2s2

I C0,2,−2 + (1 + cI)
2C2,2,−2

]
+4sIsJ (1 + cJ) [(1− cI)C−2,1,2 + 2cI C0,1,2 − (1 + cI)C2,1,2]

−4sIsJ (1− cJ) [(1− cI)C−2,1,−2 + 2cI C0,1,−2 − (1 + cI)C2,1,−2] ,

(4.9)

which carries the � contribution to the perturbation. Note that Ci,j,k ≡ cos(i� + j� + k�) and
the notation has been abreviated by writing cI ≡ cos I, sI ≡ sin I, cJ ≡ cos J , and sJ ≡ sin J .

Nevertheless, in this work we will consider that the rate of variation of � is much faster than
the rate of variation of � and the mean orbital motion n. Then, short periodic terms related to
� may be neglected hence the previous potential contributions are now given by

⟨V1⟩� = −2(1− 3c2
J)(2− 3s2

I + 3s2
I cos 2�), (4.10)

⟨V2⟩� = 4(1− c2
J)(2− 3s2

I + 3s2
I cos 2�) cos 2�. (4.11)

and therefore, recalling (4.7), the gravity-gradient torque exerted on a fast rotating satellite can
be approximated by

⟨V⟩� = −M
2

2C2

(
n

M/C

)2 1

16

[
(2C −B −A) ⟨V1⟩� +

3

2
(B −A) ⟨V2⟩�

]
. (4.12)

47



48 4.2. ROTATING FRAME

Finally, if Eqs. (4.10)-(4.11) are replaced in Eq. (4.12), we face a fast rotating satellite problem
which is defined by the Hamiltonian ℋ = ℋ0 + ⟨V⟩�, that is

ℋ =
M2

2C

{(
sin2 �

A/C
+

cos2 �

B/C

)
s2
J + c2

J +
1

8C

(
n

M/C

)2

(2− 3s2
I + 3s2

I cos 2�)

×
[
(2C −B −A)(1− 3c2

J)− 3(B −A)(1− c2
J) cos 2�

]}
, (4.13)

where n2/(M/C)2 will our small parameter since it is a small quantity and, therefore, the fast
rotating satellite problem can be approached by perturbation methods.

Once obtained the Hamiltonian of the problem, it remains to express the disturbing function
(4.12) in the new variables given in the previous chapter. Thus, from Eqs. (3.73) and (3.74), we
find that

cJ =

√
f

f +m
dn(u∣m), u = X(m) ℓ, (4.14)

and cI = IΛ/IM in action-angle variables or cI = H/G in Ferrer-Lara variables. Then, taking
into account Eq. (3.71), the disturbing potential (4.12) is given by

⟨V⟩� ≡ U =
n2

16
(2− 3s2

I + 3s2
I cos 2�)

{
(2C −B −A)

[
1− 3

f

f +m
dn2(u∣m)

]
+3(B −A)

[
1− f

f +m
dn2(u∣m)

] [
1− 2

(1 + f) sn2(u∣m)

1 + f sn2(u∣m)

]}
, (4.15)

where � = ℎ− �̃. Note that m, and therefore u, are still remain to be defined depending on the
specific set of variables to be used. Note further that the elliptic functions involved in (4.15) are
squared and therefore, in what follows we can neglect in the argument u the negative sign from
(3.129) and (3.75) leading to the two different sets of variables here analyzed.

4.2 Rotating frame

As the reader noted in the previous section, the existence of an orbital motion shows that we
are actually immersed in a roto-translatory problem. In fact, since the goal of this work is to
show how the rotational motion evolves, we will use the easiest frame given by a uniform circular
motion trivially integrated as a lineal function of time.

The explicit appearance of the time can be avoided by moving to a rotating frame at the same
rotation rate as the orbital motion (see [San-Juan (2012)], page 4). Because of that, the new
variable � = �− nt (with �̃0 = 0) has been introduced, which is the argument of the ascending
node of the invariant plane with respect to the inertial plane, in a rotating frame with orbital
rate d�̃/d t = n. Indeed, note that as

d�

dt
=

dℎ

dt
− n =

∂ℋ
∂H
− n =

∂

∂H
(ℋ− nH), (4.16)

the change of reference frame requires the introduction of the Coriolis term −nH in the Hamil-
tonian. The result is a new conservative Hamiltonian K with Φ ≡ Λ = H is now the conjugate
momenta of �, and then we finally have that

K = K0 − nΦ + U (4.17)
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where we consider the Coriolis term to be of first order and the gravity-gradient potential U to
be a second order quantity.

4.3 Perturbation approach

As an alternative to recent efforts in giving a solution to the attitude propagation of a fast
rotating triaxial satellite under gravity-gradient torque, the new solution will be computed by
the Lie-Deprit approach and given in closed form, either for the secular or periodic terms,
therefore being valid for any triaxial satellite. In our case, as commented above, we assume
that the gravity-gradient torque is of higher order than the Coriolis term, which in turn is of
higher order than torque-free rotation. This allows us to split the averaging procedure into two
parts. As the first stages of the perturbation approach can be obtained in a general form, i.e.
without the need of taking any particular set of variables, we use (ℓ, g, �, L,G,Φ) to be this
general variables before any choice.

Average over ℓ

First, we look for a canonical transformation (ℓ, g, �, L,G,Φ)
Tℓ−→ (ℓ′, g′, �′, L′, G′,Φ′) that re-

moves the variable ℓ from the Hamiltonian.

As indicated before, we set

H0,0 = K0, H1,0 = −nΦ, H2,0 = 2U,

where all the functions are assumed to be expressed in prime variables but, for the sake of
brevity, we drop the prime notation in what follows when there is no risk of confusion.

The first step in the computation of the Lie triangle gives

G

2A

C −A
C

f

(f +m)2

∂m

∂�

∂W1

∂ℓ
= H1,0 −H0,1, (4.18)

However, as H1,0 does not depend on ℓ or g, we can choose

H0,1 = H1,0, (4.19)

and the first term in the generating function is found to be W1 = 0. Because the vanishing of
W1, the next step gives

G

2A

C −A
C

f

(f +m)2

∂m

∂�

∂W2

∂ℓ
= H2,0 −H0,2. (4.20)

Then, we can choose H0,2 = ⟨H2,0⟩ℓ and recalling that Jacobian elliptic functions are 4K(m)-
periodic, therefore,

H0,2 =
1

T

∫ T

0
H2,0 dℓ =

1

4K(m)

∫ 4K(m)

0
H2,0 du. (4.21)

from where we get

H0,2 =
n2

4
� (2− 3s2

I + 3s2
I cos 2�), (4.22)
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where

� = (B −A)

{
C −A
B −A

+ 1− 3
1 + f

f +m

[
1 +

C −B
B

E(m)

K(m)

]}
, (4.23)

and E(m) is the complete elliptic integral of the second kind.

Then, the term W2 of the generating function can be solved from Eq. (4.20). We get

W2 = −3

2

n2

G
(C −B)A

√
f(1 + f)

f +m
Z( ∣m)(1− 3s2

I sin2 �), (4.24)

where

Z( ∣m) = E( ∣m)− E(m)

K(m)
F ( ∣m) = E(am(u∣m)∣m)− E(m)

K(m)
u (4.25)

is the Jacobi Zeta function, which is 2K(m)-periodic (see A.3 for further details) and E( ∣m) is
the incomplete elliptic integral of the second kind. Note, therefore, that the generating function
of the first averaging is intrinsically expressed in terms of Jacobi Zeta function for this perturbing
function, regardless of the used variables.

4.4 Perturbation approach in action-angle variables

As indicated in Eq. (3.77) (Section 3.4), in action-angle variables we can not express m as
a function of � and, therefore, as a function of the new momenta, hence Eq. (4.14) remains

unchanged, only taking into account that u = −2K(m)
� '� . Thus, taking into account the general

scheme shown in Section 4.3, next we follow it by using action-angle variables.

4.4.1 Transformation equations of the first averaging

Before computing these transformation equations, some previous partial derivatives have to be
calculated. In particular, because m = m(IN , IM ), it worths to recall that

∂E(m)

∂(IN , IM )
=

∂E(m)

∂m

∂m

∂(IN , IM )
=

1

2m
[E(m)−K(m)]

∂m

∂(IN , IM )
, (4.26)

∂K(m)

∂(IN , IM )
=

∂K(m)

∂m

∂m

∂(IN , IM )
=

1

2m

[
1

1−m
E(m)−K(m)

]
∂m

∂(IN , IM )
, (4.27)

As m is an implicit function of �, some calculations are needed to find its partial derivatives
with respect to the momenta. Thus, taking into account Eq. (3.77) we find

∂IN
∂m

= −IM
�

√
f(1 + f)

(f +m)3/2
K(m) and m = �1(� = IN/IM ), (4.28)

where �1 is a certain function of the momenta that we cannot obtain as said before. Nevertheless,
from Eq. (4.28),we can find that

∂�1

∂�
=

1

∂�/∂�1
= IM

1

∂IN/∂�1
= IM

1

∂IN/∂m
= IM

∂m

∂IN
= − �(f +m)3/2√

f(1 + f)K(m)
. (4.29)
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Finally, from Eq. (4.29) and Eq. (4.28), we obtain

∂m

∂IN
=

∂�1

∂�

∂�

∂IN
= − �(f +m)3/2

IM
√
f(1 + f)K(m)

, (4.30)

∂m

∂IM
=

∂�1

∂�

∂�

∂IM
=
IN
I2
M

�(f +m)3/2√
f(1 + f)K(m)

(4.31)

=
2(f +m)

IM f K(m)
[(f +m)Π(−f,m)−mK(m)], (4.32)

from which it follows that

I2
M

IN

∂m

∂IM
= −IM

∂m

∂IN
=

�(f +m)3/2√
f(1 + f)K(m)

. (4.33)

In this case, the transformation equations are

� = �′ +
1

2
{�′;W2}, � ∈ ('� , '�, �, IN , IM , IΛ) (4.34)

where {a; b} stands for the Poisson bracket of the functions a and b.

Then, calling Δ� = � − �′, we find

Δ'� =
3�n2

8I2
MK(m)

A(C −B)(1− 3s2
I sin2 �)

[
2(f +m)

∂Z( ∣m)

∂m
− Z( ∣m)

]
, (4.35)

Δ'� = − IN
IM

[
Δ'� −

3n2

4INIM
A(C −B)

√
f(1 + f)

f +m
Z( ∣m)(1− 3s2

I sin2 �+ 6c2
I sin2 �)

]
,(4.36)

Δ� = − 3n2

4 I2
M

A(C −B)

√
f(1 + f)

f +m
Z( ∣m) 6 cI sin2 �, (4.37)

ΔIN =
3n2

4 IM
A(C −B)

√
f(1 + f)

f +m
(1− 3s2

I sin2 �)
2

�

[
E(m)− dn2

(
2K(m)

�
'� ∣m

)
K(m)

]
,(4.38)

ΔIM = 0, (4.39)

ΔIΛ = − 3n2

4 IM
A(C −B)

√
f(1 + f)

f +m
Z( ∣m) 3 s2

I sin(2�). (4.40)

The derivative of the Jacobi Zeta function with respect to the elliptic modulus required by Δ'�
in Eq. (4.35)-(4.36) (see A.5.2) is given, after several calculations, by

∂

∂m
Z( ∣m) =

cn(u∣m)

2(1−m)
[sn(u∣m) dn(u∣m)− cn(u∣m) Z( ∣m)], (4.41)

where  = am(u∣m) and u = −2K(m)'�/�. Moreover, Fig. 4.1 shows its periodicity.
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Figure 4.1: Derivative of Z(am(−2K(m)'�/�∣m)∣m) with respect to the modulus for the case
m = 1/2.

4.4.2 Average over �

A new Lie transform ('′� , '
′
�, �

′, I ′N , I
′
M , I

′
Λ) −→ ('′′� , '

′′
�, �

′′, I ′′N , I
′′
M , I

′′
Λ) such that it removes the

angle � is then computed assuming � ∕= 0 (details on this case is given in [Molero & Ferrer (2013)]).
We start by setting K0,0 = K, K1,0 = H0,1, and K2,0 = H0,2, all of them evaluated in the double
prime variables, although we drop the primes from the notation for brevity again.

Because the only angle appearing in the Hamiltonian is �′′, we may assume that the new gener-
ating function V =

∑
i≥0("i/i!)Vi+1 depends only on this angle. Then, the first step in the Lie

triangle gives 0 = K1,0−K0,1 and we trivially choose K0,1 ≡ K1,0 while V1 remains unknown at
this step. The second step gives

K0,2 = 2n
∂V1

∂�
+K2,0 (4.42)

from where we choose K0,2 = 1
2�

∫ 2�
0 K2,0 d�, giving

K0,2 =
n2

4

(
3
I2

Λ

I2
M

− 1

)
� (4.43)

Then, from Eq. (4.42) V1 = 1
2n

∫
(K0,2 −K2,0) d�, resulting in

V1 = −3n

16

(
1−

I2
Λ

I2
M

)
� sin 2� (4.44)

4.4.3 Transformation equations of the second averaging

This time, the transformation equations are

�′ = �′′ + {�′′;V1}, � ∈ ('′′� , '
′′
�, �

′′, I ′′N , I
′′
M , I

′′
Λ).
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Then, calling �� = �′ − �′′, we find

�'� =
9� n

16 IM K(m)

(
1−

I2
Λ

I2
M

)
(B −A)

√
1 + f

f(f +m)
sin 2� (4.45)

×
{

1− C −B
B

f +m

2m

[
2

E(m)

K(m)
− E2(m)

(1−m)K2(m)
− 1

]
+
C −B
B

E(m)

K(m)

}
,

�� =
3n

8

IΛ

I2
M

� sin 2�, (4.46)

�'� = − IΛ

IM
��− IN

IM
�'� , (4.47)

�IN = 0, (4.48)

�IM = 0, (4.49)

�IΛ =
3n

8

(
1−

I2
Λ

I2
M

)
� cos 2�. (4.50)

4.4.4 Secular terms

After the double averaging we find the secular Hamiltonian S = K0,0 +K0,1 + 1
2K0,2 given by

S =
I2
M

2A

(
1− C −A

C

f

f +m

)
− n IΛ (4.51)

−n
2

8

(
1− 3

I2
Λ

I2
M

)
(B −A)

{
C −A
B −A

+ 1− 3
1 + f

f +m

[
1 +

C −B
B

E(m)

K(m)

]}
where L, G, and therefore m, and Φ are constant. The secular frequencies of the motion are
obtained from Hamilton equations

d'�
dt

= − � IM
2AK(m)

C −A
C

√
f

(1 + f)(f +m)
+

3� n2

8IMK(m)

(
1− 3

I2
Λ

I2
M

)
(B −A)

√
1 + f

f(f +m)

×
{

1− C −B
B

f +m

2m

[
2

E(m)

K(m)
− E2(m)

(1−m)K2(m)
− 1

]
+
C −B
B

E(m)

K(m)

}
= n'� (4.52)

d�

dt
= −n+

3n2

4

IΛ

I2
M

(B −A)

{
C −A
B −A

+ 1− 3
1 + f

f +m

[
1 +

C −B
B

E(m)

K(m)

]}
= n� (4.53)

d'�
dt

=
IM
A

(
1− C −A

C

f

f +m

)
− IΛ

IM
(n� + n)− IN

IM
n'� = n'� (4.54)

and dℎ/dt = nℎ = n+ n�.

4.4.5 Results

In order to illustrate the application of the above theory, a sample application is here pro-
vided. We will base on the orbit and inertia parameters of a PEGASUS-A satellite taken from
Ref. [Cochran (1972)] except for considering a Keplerian circular orbit, in agreement with the
assumptions of our theory. Thus,

A = 1.03068× 105 kg m2, B = 3.33455× 105 kg m2, C = 3.94992× 105 kg m2
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and

M = 5.842× 105 kg m2/min, n = 3.71∘/min

Besides, we set the initial conditions � = 2 rad, � = 1 rad, � = −0.1 rad, J = 10∘, i = 70∘.

For the integration we use internal units such that M = C = 1. Then, using first Eqs. (4.35)-
(4.40), and later Eqs. (4.46)-(4.50) we propagate the initial conditions to the different phase
spaces collected in Table 4.1, and the solutions are given in Fig. 4.2. Note that the variables
denoted as x∗ are given by

x∗ = x′ + Δx′, x′ = x′′ + �x′′, (4.55)

where x ∈ ('� , '�, �, IN , IM , IΛ) and x′′(t) is obtained directly from the double-averaged
Hamiltonian by the Eqs. (4.52)-(4.54).

object var. non-averaged prime double-prime sec. frequency

PEGASUS '� −0.1479898511 −0.1481370529 −0.1448526999 −0.6501504248
'� 1.5775303900 1.577664962 1.574852779 1.6830026275
� −0.1 −0.09999987511 −0.1009172983 −0.0441809427
IN 0.9548381629 0.9548769383 0.9548769383
IM 1.0 1.0 1.0
IΛ 0.3420201433 0.3420169296 0.3531301948

Table 4.1: Initial conditions in the different phase spaces for Pegasus.

Specifically, Fig. 4.2 shows the differences between the numerical solution and the complete
analytical solution (after recovering periodic terms). Observe how '� delays with respect to the
analytical solution with a constant rate of about 0.002 units per orbital period and how the
motion is hardly ever affected by short-period terms. On the contrary, note that '� advances
over the analytical solution with a very similar constant rate of about 0.003 units per orbital
period. The evolution of � is similar to '� , but the variation is roughly a ten times lower per
orbital period and only affected by periodic terms related to the orbital motion. We further
appreciate that IN differs only in low-amplitude periodic terms. In turn, IΛ advances each
period with a very slow rate lower than 10−5 units per orbital period.

4.5 Perturbation approach in Ferrer-Lara variables

In this section we will again apply perturbation theory to our system in order to find a new
canonical transformation which allows us to obtain a new Hamiltonian as a fuction only of the
momenta up to a certain order (secular terms), therefore moving the coordinates to high order
terms. In this case, as indicated in Eq. (3.130) (Section 3.5), in Ferrer-Lara variables we can
express m as a function of � and, therefore, as a function of the new momenta (L and G), hence
Eq. (4.14), knowing that u = −ℓ, can be put into the form

cJ =
1√

1 + f

L

G
dn(ℓ∣m), (4.56)
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Figure 4.2: Differences between the perturbed motion in elliptic functions and the averaged motion with
x∗ = x′ + Δx′ and x′ = x′′ + �x′′ in internal units in action-angle variables. T stands for orbital periods.

while Λ = H, M = G and cI = H/G remain unchanged. As a consequence of the explicit
dependence of m with respect to the momenta, taking into account (3.130) and (4.56) or (4.15),
the new disturbing function is given by

(T : ⟨V⟩� ≡ U) =
n2

16

(
2− 3s2

I + 3s2
I cos 2�

){
(2C −B −A)

[
1− 3f

dn2(ℓ∣m)

f +m

]
+3 (B −A)

[
1− f dn2(ℓ∣m)

f +m

] [
1− 2

(1 + f) sn2(ℓ∣m)

1 + f sn2(ℓ∣m)

]}
(4.57)

Thus, taking into account again the general scheme shown in Section 4.3, next we follow it by
using Ferrer-Lara variables.

4.5.1 Transformation equations of the first averaging

Note that as m ≡ m(G,L), it worths to recall that

∂E(m)

∂(L,G)
=

∂E(m)

∂m

∂m

∂(L,G)
=

1

2m
[E(m)−K(m)]

∂m

∂(L,G)
,

∂K(m)

∂(L,G)
=

∂K(m)

∂m

∂m

∂(L,G)
=

1

2m

[
1

1−m
E(m)−K(m)

]
∂m

∂(L,G)
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where, cf. Eq. (3.131),

G
∂m

∂G
= −L ∂m

∂L
= 2 (m+ f). (4.58)

In this case, the transformation equations are

� = �′ +
1

2
{�′;W2}, � ∈ (ℓ, g, �, L,G,Φ)

where {a; b} stands for the Poisson bracket of the functions a and b.

Then, calling Δ� = � − �′, we find

Δℓ =
3n2

4G2
A (C −B)

[
Z(u∣m)− 2(f +m)

∂Z(u∣m)

∂m

] (
1− 3s2

I sin2�
)

(4.59)

Δg = −L
G

[
Δℓ+

3n2

4G2
A (C −B)Z(u∣m)

(
1− 3s2

I sin2�+ 6c2
I sin2�

)]
(4.60)

Δ� =
3n2

4G2
A (C −B)

L

G
Z(u∣m) 6cI sin2� (4.61)

ΔL =
3n2

4G2
A (C −B)L

[
E(m)

K(m)
− dn(ℓ∣m)2

] (
1− 3s2

I sin2�
)

(4.62)

ΔG = 0 (4.63)

ΔΦ =
3n2

4G2
A (C −B)LZ(u∣m) 3sI

2 sin 2� (4.64)

where we remind that the right member of the equations should be assumed in the prime
variables.

The derivative of the equation of the center with respect to the elliptic modulus required by Δℓ
in Eqs. (4.59)-(4.60) is

∂

∂m
Z
(
am(ℓ∣m)

∣∣m) =
∂

∂m
E
(
am(ℓ∣m)

∣∣m)− ℓ ∂

∂m

E(m)

K(m)

where

∂

∂m

E(m)

K(m)
=

1

2m

[
2
E(m)

K(m)
− E2(m)

(1−m)K2(m)
− 1

]
,

∂

∂m
E
(
am(ℓ∣m)

∣∣m) =
1

2(1−m)

[
dn(ℓ∣m) cn(ℓ∣m) sn(ℓ∣m)

− cn2(ℓ∣m)E(u∣m)− (1−m) sn2(ℓ∣m) ℓ
]
,

and hence

∂

∂m
Z(u∣m) =

sn(ℓ∣m) cn(ℓ∣m) dn(ℓ∣m)

2(1−m)
− cn2(ℓ∣m)

2(1−m)
E
(
am(ℓ∣m)

∣∣m) (4.65)

− 1

2m

[
2
E(m)

K(m)
− E2(m)

(1−m)K2(m)
− dn2(ℓ∣m)

]
ℓ

that is not periodic, as illustrated in the right plot of Fig. 4.3. This means that the transformation
equations for the variables ℓ and g are affected of mixed terms.
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Figure 4.3: Derivative of the Jacobi Zeta function Z
(
am(−ℓ ∣m)∣m

)
with respect to the modulus

in the case m = 1/2.

Note that this lack of periodicity does not contradict the properties of the Jacobi zeta function,
whose derivative with respect to the modulus is guaranteed to be periodic only when the argu-
ment of the Jacobi zeta function is independent of the modulus. Nevertheless, some cases can
be found in which this derivative is also a periodic function, thus avoiding the appearance of
mixed terms in the transformation equations. That is the case of action-angle variables.

4.5.2 Average over �

A new Lie transform (ℓ′, g′, �′, L′, G′,Φ′) −→ (ℓ′′, g′′, �′′, L′′, G′′,Φ′′) such that it removes the
angle � is then computed. We start by setting K0,0 = K, K1,0 = H0,1, and K2,0 = H0,2, all of
then evaluated in the double prime variables, although we drop the primes from the notation
for brevity.

Because the only angle that appears in the Hamiltonian is �′′, we may assume that the new
generating function V =

∑
i≥0("i/i!)Vi+1 only depends on this angle. Then, the first step in the

Lie triangle gives 0 = K1,0−K0,1 and we trivially choose K0,1 ≡ K1,0 while V1 remains unknown
at this step. The second step gives

K0,2 = 2n
∂V1

∂�
+K2,0 (4.66)

We choose K0,2 = 1
2�

∫ 2�
0 K2,0 d�, giving

K0,2 =
n2

3

(
3

Φ2

G2
− 1

)
� (4.67)

Then, from Eq. (4.66) V1 = 1
2n

∫
(K0,2 −K2,0) d�, resulting in

V1 = −n
4

(
1− Φ2

G2

)
� sin 2� (4.68)
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4.5.3 Transformation equations of the second averaging

Now, the transformation equations are

�′ = �′′ + {�′′;V1}, � ∈ (ℓ, g, �, L,G,Φ).

Then, calling �� = �′ − �′′, we find

�ℓ =
n

2L

9

4
A
C −B
C

(
1− Φ2

G2

)
L2

G2
(4.69)

×
{

1 +
C −B
B

f +m

2m

[
1− 2f

f +m

E(m)

K(m)
+

1

1−m
E2(m)

K2(m)

]}
sin 2�

�� =
n

2Φ

Φ2

G2
� sin 2� (4.70)

�g = −Φ

G
��− L

G
�ℓ (4.71)

�L = 0 (4.72)

�G = 0 (4.73)

�Φ =
n

2

(
1− Φ2

G2

)
� cos 2� (4.74)

where the right member of the equations must be expressed in the double-prime variables.

4.5.4 Secular terms

After the double averaging we find the secular Hamiltonian S = K0,0 +K0,1 + 1
2K0,2 given by

S =
G2

2A
−
(

1

B
− 1

C

)
L2

2
− nΦ (4.75)

−n
2

8

(
1− 3

Φ2

G2

)
(B −A)

{
C −A
B −A

+ 1− 3
1 + f

f +m

[
1 +

C −B
B

E(m)

K(m)

]}
where L, G, and therefore m, and Φ are constant. The secular frequencies of the motion are
obtained from Hamilton equations

dℓ

dt
= −

(
1

B
− 1

C

)
L+ L

3n2

4G2
A
C −B
C

(
1− 3

Φ2

G2

)
(4.76)

×
{

1− C −B
B

f

m

E(m)

K(m)
+
C −B
B

f +m

2m

[
1 +

1

1−m
E2(m)

K2(m)

]}
d�

dt
= −n+ Φ

3n2

4G2
(B −A)

{
C −A
B −A

+ 1− 3
1 + f

f +m

[
1 +

C −B
B

E(m)

K(m)

]}
(4.77)

dg

dt
=

1

A
G− Φ

G

(
d�

dt
+ n

)
− L

G

[
dℓ

dt
+

(
1

B
− 1

C

)
L

]
(4.78)

and dℎ/dt = n+ d�/dt.
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4.5.5 Results

In this section we repeat the procedure followed in action-angle variables but now in Ferrer-
Lara. Thus, using first Eqs. (4.59)-(4.64), and later Eqs. (4.69)-(4.74) we propagate the initial
conditions to the different phase spaces collected in Table 4.1. Note that, as in the previous
section, all the variables denoted as x∗ are given by

x∗ = x′ + Δx′, x′ = x′′ + �x′′, (4.79)

where x ∈ (ℓ, g, �, L, G, Φ) and x′′(t) is obtained directly from the double-averaged Hamiltonian
by the Eqs. (4.78)-(??).

object var. non-averaged prime double-prime sec. frequency

PEGASUS ℓ −0.1626833313 −0.1628298853 −0.1592197766 −0.7146350295
g 2.0665318080 2.067093641 2.053430312 3.8310289890
� −0.1 −0.09999987511 −0.1009172983 −0.0441809427
L 3.8744459575 3.874481234 3.874481234
G 1.0 1.0 1.0
H 0.3420201433 0.3420169296 0.3531301948

Table 4.2: Initial conditions in the different phase spaces for Pegasus satellite.

As before, Fig. 4.4 shows the differences between the numerical solution and complete analytical
solution (after recovering periodic terms). We can see that ℓ delays with respect to the analytical
solution with a constant rate of about 0.002 units per orbital period and the motion is affected
by short-period terms. On the contrary, note that g advances over the analytical solution with
a constant rate of about 0.01 units per orbital period and is also affected by short-period terms.
The evolution of � is similar to ℓ, but the variation is roughly a ten times lower per orbital
period and only affected by periodic terms related to the orbital motion. As in the case of the
action-angle variables, L differs only in low-amplitude periodic terms. In turn, Φ advances again
each period with a very slow rate lower than 10−5 units per orbital period.

4.6 Concluding remarks and comparisons

The attitude evolution in the non-averaged phase space is presented in Fig. 4.5, where to better
appreciate details introduced by the gravity-gradient torque, we subtract to each variable the
constant rate of the torque-free motion, represented by the tilde variables. From Hamilton
equations derived from K0 − nΦ, with K0 given in Eq. (??), we find in Ferrer-Lara variables:
L̃ = L0, G̃ = G0, Φ̃ = Φ0, and

ℓ̃ = ℓ0 −
(

1

B
− 1

C

)
L0 t, (4.80)

g̃ = g0 +
1

A
G0 t, (4.81)

�̃ = �0 − n t. (4.82)
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Figure 4.4: Differences between the perturbed motion in elliptic functions and the averaged motion with
x∗ = x′ + Δx′ and x′ = x′′ + �x′′ in internal units in Ferrer-Lara variables. T stands for orbital periods.

In turn, we find in action-angle variables: ĨN = IN0 , ĨM = IM0 , ĨΛ = IΛ0 , and

'̃� = '�0 −
�

2

C −A
AC

f IM0√
f(1 + f)(f +m) K(m)

t, (4.83)

'̃� = '�0 +

[
IM0

A

(
1− C −A

C

f

f +m

)
+
�

2

C −A
AC

f IN0√
f(1 + f)(f +m) K(m)

]
t, (4.84)

�̃ = �0 − n t. (4.85)

This Fig. 4.5 shows how both variables reflect the effects of the perturbation for the case of
Pegasus. Note that this effect is comparable for the variables '� and ℓ, but clearly unequal for
the variables '� and g. Observe that after seven orbital periods, the differences between the
non-perturbed and the perturbed problem for the action-angle variable '� is still not greater
that fourteen hundredth units, while the differences for the Ferrer-Lara variable g is nearly
ninety degrees. Differences of quality for the momenta are not noticeable.

Fig. 4.6 shows a comparison of the two variables for the differences between original perturbed
problem and the double-averaged system. Note the reduction of the slope of the deviation
observed with respect to the previous figure for the two angles, specially in Ferrer-Lara variables,
which means that the new second-order secular Hamiltonian is enough to reproduce the secular
trend of the perturbing function. However, the oscillations for the action-angle variables are

60



CHAPTER 4. A PERTURBED RIGID BODY. CLOSED FORM APPROACH 61

still about one order of magnitude lower tha in the case of Ferrer-Lara. Differences are not
appreciated for the momenta.

Finally, the effects are again comparable between the two sets of variables when periodic terms
are considered in Fig. 4.7. However, differences for the angles are in the same order of magnitude
after seven orbital periods. Values of the momenta are also comparable.
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Figure 4.5: Comparisons Ferrer-Lara variables vs. action-angle variables considering the differences
between the perturbed non-averaged motion and the non-perturbed motion. Only the angles are shown
in internal units. T stands for orbital periods.
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Figure 4.6: Comparisons Ferrer-Lara variables vs. action-angle variables considering the differences
between the perturbed non-averaged motion and the secular (double prime) motion. Only the angles are
shown in internal units. T stands for orbital periods
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Figure 4.7: Comparisons Ferrer-Lara variables vs. action-angle variables considering the differences
between the perturbed non-averaged motion and the averaged motion with x∗ = x′ + Δx′ and x′ =
x′′ + �x′′. Only the angles are shown in internal units. T stands for orbital periods

64



Chapter 5

A perturbed rigid body. Expansions
approach

Due to the difficulty computing and dealing with elliptic functions and integrals in the past,
some efforts were carried out to avoid its direct manipulation. Indeed, the classical method is
to expand the elliptic function as a power series of the modulus or the argument, among other
similar techniques rapidly convergent when the modulus is close to zero. Nevertheless, similar
and much more rapidly convergent developments can be obtained when the elliptic function is
expanded as a power series of the Jacobi’s nome instead of the modulus (see A.6.1).

Expressing elliptic functions as a power series sometimes involves a lost of certain precision in
exchange for a faster calculation time. In fact, computing elliptic functions is normally much
slower than computing the trigonometric functions arising when a series expansion of the elliptic
function has been accomplished. Then, in this chapter we consider the treatment of the elliptic
functions involved in the perturbing function as power series. In other words, we explore whether
there is a good trigonometric approach of the elliptic solution given in the previous chapter.

Indeed, this lack of precision is often acceptable since, many times, what engineers look for is to
compute rapidly new solutions from new data, without the need of waiting for such a solution
by numerical integrators. Therefore, these fast solutions allow us to make also fast decisions
to control a satellite, for instance. Moreover, depending on the satellite, these solutions can be
quite accurate when the mission is programmed to be not very long in time.

As commented above, since the elliptic nome is the best quantity to tackle the series expansions,
a good way to involve the nome in the problem is achieved by first expressing the elliptic
functions in terms of Jacobi Theta functions, which are in fact series expansions in the nome.
However the elliptic functions seldom appear isolated in the expressions but rather together
with other variables and parameters of the problem, hence one can be interested not only in
the expansion of the elliptic functions themselves but also in the expansions of those factors or
quotients where the elliptic functions and the other parameters are present. Since some authors
(see [Sadov (1970a), Sadov (1970b), Hitzl & Breakwell (1971), Vallejo (1995)]) opted for Fourier
series of such expressions revolving around the nome, this chapter focuses on elaborating a
simpler analytical theory based on a Taylor expansion by Mathematica of these expressions
previously given in Theta functions.
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66 5.1. ON SERIES EXPANSIONS OF THE PERTURBATION

To do this, there are two elements to control the truncation order of the expansions. On one
hand, the approximation of the perturbing function itself where the elliptic functions are in-
volved. Note further that two orders of truncation have to be controlled: the first one has to do
with the approximation order of the Theta functions and the second with the Taylor expansion.
On the other hand, performing numerical simulations by truncating the disturbing function up
to different orders is always a good help in these cases, but it is known that there are ongo-
ing investigations about numerical methods in rotational dynamics [Celledoni & Zanna (2010)],
hence analytical theories can not be neglected at all.

5.1 On series expansions of the perturbation

As shown in Chapter 4, the perturbing function analyzed in this Memoir is a simplified version
of a more general model given by Eq. (4.4) after carrying out an averaging of the variable � when
it is much faster than the variable � and the mean orbital motion n. The model revolves around
the calculation of the direction cosines of the line joining the center of mass of the rigid body
with the perturber, which are part of the perturbing function. This calculation depends on how
the different frames of the problem have been chosen. In our model the orbital plane is chosen
as the inertial reference frame but in a more general model, the orbital plane may not match
with the intertial frame, hence in [Vallejo (1995)], the orbital frame {r1, r2, r3} is defined by
taking r1 in the same direction as the line joining the center of mass of the rigid body with the
perturber; r3 in the direction of the orbital angular momentum; and r2 = r3×r1. Nevertheless,
in order to simplify the calculations, Vallejo set as reference frame the plane perpendicular to
the total angular momentum vector (also an integral of the problem), which is the sum of the
orbital angular momentum and the rotational angular momentum.

In short, as can be noted in [Barkin (1992)], [Vallejo (1995)] (page 56) or [Barkin (1998)] (page
201), the direction cosines may be expressed as functions of the components of the rotation
matrix connecting the body frame (ℬ) with the angular momentum frame (N ), both defined in
Section 2.1. That is [bi,j ] = R3(−�)R1(−J)R3(−�), which gives1

[bi,j ] =

⎛⎝ cos � cos�− sin � sin� cos J − sin � cos�− cos � sin� cos J sin� sin J
cos � sin�+ sin � cos� cos J − sin � sin�+ cos � cos� cos J − cos� sin J

sin � sin J cos � sin J cos J

⎞⎠ . (5.1)

where it can be noted that (5.1) is the same matrix as [Sadov (1970b)] (page 14, formulas (3.2),
matrix S2)2 and its components the same, expressed in elliptic functions, as [Barkin (1998)]
(page 188, formulas (27)), but not the same as [Vallejo (1995)] (page 53, formula (3.7)), which
is clearly a typo. Note also that all the components of this matrix can be expressed in terms
of Jacobi Theta functions with argument '� (see [Vallejo (1995)] page 48) except for the cases
sin� and cos� where the new Sadov variable '� also appears.

As commented before, Fourier series expansions have been the classical way to carry out the
series expansions of the disturbing function in rotational dynamics. To address this work,
[Sadov (1970b)] pointed out the convenience of separating (5.1) as the product of two new

1In order to compute these rotations with Mathematica in a right way we may type, for instance:
[bi,j ] = Transpose[R�].Transpose[RJ ].Transpose[R� ] where R� = RotationMatrix[−�, {0, 0, 1}], RJ =
RotationMatrix[−J, {1, 0, 0}] and R� = RotationMatrix[−�, {0, 0, 1}].

2Observe that ' ≡ �,  ≡ � and # ≡ J
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matrices, one of them only containing the variable '� and the other one, denoted as Vallejo
[Bi,j ], containing a new variable

!(Vallejo) = Δ(Sadov) = '� − �, (5.2)

which may be also expressed in terms of Theta functions with argument '�.

Indeed, Sadov and Vallejo denoted

[bi,j ] =

⎛⎝ cos'� − sin'� 0
sin'� cos'� 0

0 0 1

⎞⎠ [BS
i,j ] =

⎛⎝ − exp (i'�)/(2i) exp (−i'�)/(2i) 0
exp (i'�)/2 exp (−i'�)/2 0

0 0 1

⎞⎠ [BV
i,j ],

(5.3)
where [BS

i,j ] denotes the components of the matrix defined by [Sadov (1970b)] (page 21, formulas

3.21) and [BV
i,j ] denotes the components of the matrix defined by [Vallejo (1995)] (page 24,

formulas 3.10).

To obtain these components, the quasi-addition formulas of the Jacobi Theta functions have to
be used (see formula (5.12) for further details), and once obtained, the Fourier series expansions
may be tackled by the method depicted in [Sadov (1970b)] (pages 23-25) or [Vallejo (1995)] (page
6, Section 1.3). More information about Fourier series expansions of the elliptic functions can
be found in [Whittaker & Watson (1927), Armitage & Eberlein (1972), Wang & Guo (1989),
Hall (1995)].

Nevertheless, as pointed out in [Barkin (1998)] (page 190) and [Vallejo (1995)] (pages 56− 57),
the expression of the perturbing function does not contain exactly the values of [bi,j ], but rather
squares and products of them. Therefore, the series expansions needed when dealing with the
perturbing funcion are really these squares and products. Note that Vallejo indicated this
fact on page 57 of his thesis, but he did not give the new expansions which can be found in
[Barkin (1998)] (Appendix).

5.2 Series expansions in the case of a fast rotating satellite

As done in Chapter 4, before applying perturbation theory one has to express the perturbing
function in Jacobi Theta functions. Recall that, in (4.15), this disturbing function was

U =
n2

16
(2− 3s2

I + 3s2
I cos 2�)

{
(2C −B −A)

[
1− 3

f

f +m
dn2(X(m)ℓ∣m)

]
+3(B −A)

[
1− f

f +m
dn2(X(m)ℓ∣m)

] [
1− 2

(1 + f) sn2(X(m)ℓ∣m)

1 + f sn2(X(m)ℓ∣m)

]}
. (5.4)

Nevertheless it is more convenient to start expressing this function not in new variables but in
Andoyer variables. Thus, taking into account Eqs. (4.10)-(4.12) and doing a few calculations
we can express the disturbing function as

U =
n2

16
(2− 3s2

I + 3s2
I cos 2�)

[
(2C −B −A)(3s2

J − 2) + 3(B −A)s2
J(1− 2 cos2 �)

]
, (5.5)
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where3

cos2 � =
(1 + f) sn2(X(m)ℓ∣m)

1 + f sn2(X(m)ℓ∣m)
, (5.6)

sin J =

√
m

f +m

√
1 + f sn2(X(m)ℓ∣m), (5.7)

being

cos J =

√
f

f +m
dn(X(m)ℓ∣m).

As we show in the previous section, we could already replace the elliptic funcions by the Jacobi
Theta functions using Eqs. (A.71)-(A.73), but the goal is now to prove that both (5.6) and (5.7)
can be expessed in Jacobi Theta functions including the term 1 + f sn2 in the developments.

5.2.1 Disturbing function in Jacobi Theta functions (action-angle variables)

In action-angle variables, Eqs. (5.6) and (5.7) are expressed as

cos2 � =
(1 + f) sn2

(
2K(m)
� '� ∣m

)
1 + f sn2

(
2K(m)
� '� ∣m

) , (5.8)

sin J =

√
m

f +m

√
1 + f sn2

(
2K(m)

�
'� ∣m

)
, (5.9)

As observed, the first obstacle one finds is how to deal with Jacobi Theta functions (biparametric
functions) a three-parameter expression, this is, '� , m and f . This problem can be avoided (see
Appendix A.4.2)4 by means of a mathematical resource given by

m sn2(a∣m) = −f, (5.10)

where

a =
2K(m)

�
z i and z =

�

2K
F

(
arctan

√
f

m

∣∣∣∣1−m
)
. (5.11)

In particular, with these equations, the procedure to express the term 1 + f sn2 in Jacobi Theta
functions is carried out by applying the quasi-addition formulas of the Theta functions. Specif-
ically, from formula 1.4.19 in [Lawden (1989)] (page 9) we have

#4(x+ y, q)#4(x− y, q)#2
4(0, q) = #2

4(x, q)#2
4(y, q)− #2

1(x, q)#2
1(y, q) (5.12)

where x and y are two angles and

#2
4(0, q) =

2K(m)

�

√
1−m (5.13)

3Recall that X(m) = −1 in Ferrer-Lara variables and X(m) = − 2K(m)
�

in action-angle variables.
4The reader may also see [Byrd & Friedman (1971), Vallejo (1995)]
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Furthermore, taking into account (A.71) this expression can be put into the form

#4(x+ y, q)#4(x− y, q)#2
4(0, q) = #2

4(x, q)#2
4(y, q)

[
1− #2

1(x, q)

#2
4(x, q)

#2
1(y, q)

#2
4(y, q)

]
(5.14)

= #2
4(x, q)#2

4(y, q)

[
1−m sn2

(
2K(m)

�
x∣m

)
sn2

(
2K(m)

�
y∣m

)]
,

and note further that if we call x = '� and y = iz, by taking into account (5.10), then

#4('� + iz, q)#4('� − iz, q) =
#2

4('� , q)#
2
4(iz, q)

#2
4(0, q)

[
1 + f sn2

(
2K(m)

�
'� ∣m

)]
, (5.15)

and therefore we can solve the factor

1 + f sn2

(
2K(m)

�
'� ∣m

)
=
#4('� + iz, q)#4('� − iz, q)

#2
4('� , q)#2

4(iz, q)
#2

4(0, q). (5.16)

Then, taking into account (5.16) and (A.71), we can finally express (5.8) and (5.9) respectively
as5

cos2 � =
1 + f√
m(1−m)

�

2K(m)

#2
1('� , q)#

2
4(iz, q)

#4('� + iz, q)#4('� − iz, q)
, (5.17)

sin J = 4
√

1−m
√

m

f +m

√
2K(m)

�

√
#4('� + iz, q)#4('� − iz, q)

#4('� , q)#4(iz, q)
. (5.18)

We can now express the disturbing function (5.5) in terms of the Theta functions. However, as
we have to make some averages when applying the Lie-Deprit algorithm, we find convenient to
expand this disturbing function showing all its summands. It will allow us to distinguish easier
the secular terms and the periodic terms of the function. Thus, taking into account (5.17) and
(5.18) we have

Ã = −2n2

16
(2− 3s2

I + 3s2
I cos 2�)(2C −B −A), (5.19)

B̃ =
6n2

16
(2− 3s2

I + 3s2
I cos 2�)(C −A) s2

J

=
6n2

16
(2− 3s2

I + 3s2
I cos 2�)(C −A)

m
√

1−m
f +m

2K(m)

�

#4('� + iz, q)#4('� − iz, q)
#2

4('� , q)#2
4(iz, q)

,(5.20)

C̃ = −6n2

16
(2− 3s2

I + 3s2
I cos 2�)(B −A) s2

J cos2 �

= −6n2

16
(2− 3s2

I + 3s2
I cos 2�)(B −A)

√
m(1 + f)

f +m

#2
1('� , q)

#2
4('� , q)

, (5.21)

where of course U = Ã+ B̃ + C̃. Note also that Ã is secular itself and the other two terms are
a combination of both secular and periodic summands. We can also observe that we have not
expressed the modulus in Theta functions, as well as the complete integral of the first kind. This
decision has been made because the value of the modulus is one of the first known values by
means of the energy and the moments of inertia. Moreover, the calculation of K(m) is currently
very fast and efficient.

5For the benefit of the reader, some more expressions of the Andoyer variables as function of Theta functions
are collected in [Vallejo (1995)] (page 46).

69



70 5.2. SERIES EXPANSIONS IN THE CASE OF A FAST ROTATING SATELLITE

5.2.2 Taylor expansion of the disturbing function (action-angle variables)

In order to complete the treatment of the perturbing function, we will further perfom a Taylor
series expansion in the nome of those quotients involving Theta functions in the previous sum-
mands; in particular B̃ and C̃. However, before applying Taylor we have to choose a truncation
order for Theta functions. As the reader can see in Fig. 5.1(a), using the initial conditions
shown in the previous chapter, when truncated as little as j = 1, the differences between the
perturbing function evaluated with Mathematica elliptic functions and the truncated version are
never greater than 10−7, which is in fact a very good approximation taking into account that
the small parameter is around 10−3 as we commented above.
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Figure 5.1: Different approximations of the perturbing function in action-angle variables. (a) Differences
between the perturbing function evaluated with Mathematica elliptic functions according to (5.4) and the
same function in Theta functions truncated up to order j = 1. (b) Differences between the perturbing
function evaluated with Mathematica elliptic functions and the function truncated up to order j = 1 and
later expressed as a power series expansion in the nome up to order O(q3).

Since in this work we will perform a Taylor series expansion in the nome, a truncation order
of such a development must be chosen. Initially, as we do not have information about the
convergence speed, some numerical trials can be carried out for different truncations. Indeed,
Fig. 5.2 shows two numerical approaches of PEGASUS-A satellite when truncations up to O(q3)
and O(q12) are developed. Note that, for this body and initial conditions, an O(q12)-expansion
have to be developed in order to get an approach whose differences when compared with the
exact model are at the same level as the small parameter for the three angles of the problem.
Note further the improvements achieved with respect to the momenta.

Nevertheless, if we repeat the above test applied to a different body (different moments of
inertia) but with the same initial conditions as Pegasus, excellent results are found in Fig. 5.3
when truncated as little as O(q3). Therefore, we are interested in developing a perturbation
approach up to order O(q3) to check the quality of such an approximation. Obviously, as we
have just seen, this approximation will no be specially good for a number of objects, but it is
known that, for a number of space missions, decisions in real-time prevail over great precisions
for these objects or satellites, so this kind of low-precision (in some cases) algorithms are usually
good for this purpose.

Therefore, in this work we will perform a power series expansion in the nome up to O(q3). Once
analyzed some numerical simulations, we can also see the behaviour of the perturbing function
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Figure 5.2: Some numerical trials to have an idea on how the convergence evolves according to the
truncation order of a Taylor series expansion of the perturbing function. (a) Differences between the
perturbed motion in elliptic functions ('� , '�, �, IN , IM , IΛ) and the motion when the perturbing func-
tion is expanded as a Taylor power series up to O(q3) ('̄� , '̄�, �̄, ĪN , ĪM , ĪΛ) in internal units for the
initial conditions of Pegasus. T stands for orbital periods. (b) The same when the perturbing function
is expanded up to O(q12).

with respect to the truncation order. Fig. 5.1(b) shows the differences between the perturbing
function in elliptic functions and the same function expanded as a Taylor series up to O(q3).
Observe that this time the errors are never greater than 10−4, the same order of magnitude as
the perturbing function itself.

For the benefit of the reader, we next give the expressions of the expansions of the above
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Figure 5.3: Differences between the perturbed motion in elliptic functions ('� , '�, �, IN , IM , IΛ)
and the motion when the perturbing function is expanded as a Taylor power series up to O(q3)
('̄� , '̄�, �̄, ĪN , ĪM , ĪΛ) in internal units for initial conditions given by: a = 0.7, b = 0.8, c = 1.0, f =
0.714, m = 0.019. T stands for orbital periods.

summands:

ÃSE = Ã = −2n2

16
(2− 3s2

I + 3s2
I cos 2�)(2C −B −A), (5.22)

B̃SE = −3n2

8

m
√

1−m
f +m

2K(m)

�
(2− 3s2

I + 3s2
I cos 2�)(C −A){

− 1− 12q2 + 16q3 + 4q(−1 + 2q − 13q2) cosh(2z) + 8q2(−1 + 2q) cosh(4z)− 12q3 cosh(6z)

+
[
4q(−1 + 2q − 13q2) + 4q(1− 4q + 18q2) cosh(2z) + 8q2(1− 4q) cosh(4z) + 12q3 cosh(6z)

]
cos(2'�)

+
[
8q2(−1 + 2q) + 8q2(1− 4q) cosh(2z) + 16q3 cosh(4z)

]
cos(4'�)

+
[
− 12q3 + 12q3 cosh(2z)

]
cos(6'�)

}
(5.23)

C̃SE = −3n2

4

(1 + f)
√
m

f +m
(2− 3s2

I + 3s2
I cos 2�)(B −A)

√
q{

1− 2q + 6q2 + (−1 + 4q − 11q2) cos(2'�) + 2q(−1 + 4q) cos(4'�)− 3q2 cos(6'�)

}
. (5.24)

where the formulas

cos(x'� + y iz) + cos(x'� − y iz) = 2 cos(x'�) cosh(y z)

sin(x'� + y iz) + sin(x'� − y iz) = 2 sin(x'�) cosh(y z)
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has been taken into account. Note further that the terms B̃SE and C̃SE can be expressed as a
secular part plus a periodic part in the angle '� . In the case of B̃SE , observe that the second
line of the expression corresponds to the secular part and the rest of the lines correspond to the
periodic part.

5.2.3 On the bounding of the Taylor expansion of the disturbing function

As noticed in Figs. 5.1(b) and 5.2, the convergence speed is not as good as it could be expected
according to the value of the nome. Indeed, taking into account the initial conditions used
in the previous chapter, we have m ≈ 0.32 which involves q(m) ≈ 10−2. Since a three-order
deveplopment has been carried out for the disturbing functions, it should be expected errors not
greater than q3 ≈ 10−6, however we have errors around 10−4.

Observe that the larger errors are introduced by the term B̃SE due to the presence of complex
arguments. When Taylor approach is accomplished, cosines of complex angles become hyperbolic
cosines according to

cos(ikz) = cosh(kz)

and therefore the presence of no bounded functions arises in the problem. Nevertheless, although
slowly, this term B̃SE converges, hence the powers of the nome compensate the effects of the
hyperbolic cosines. Indeed, note that, for instance, the secular part of (5.23) can be expressed
as

3∑
k=0

qkP3−k(q) cosh(2kz)

where P3−k(q) denotes a (3 − k)-degree polynomial in the nome. Table 5.1 shows how the
products qk cosh(2kz) decrease slowly according to the value of k when consider Pegasus ini-
tial conditions. However, table 5.2 shows how the products qk cosh(2kz) decrease faster when
different initial conditions are considered.

qk cosh(2kz) qk cosh(2kz)

k = 1 2.42× 10−2 12.8738 0.3119

k = 2 5.87× 10−4 330.4706 0.1940

k = 3 1.42× 10−5 8, 495.9695 0.1209

k = 4 3.44× 10−7 218, 420.7645 0.0753

Table 5.1: Convergence speed according to the value of qk and cosh(2kz) taking into account
the initial conditions for Pegasus.

5.2.4 Disturbing function in Ferrer-Lara variables

The expressions given in previous section are valid when used Ferrer-Lara variables, but we have
to note that the variable ℓ is not an angle. Since Theta functions have to receive an angle as
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qk cosh(2kz) qk cosh(2kz)

k = 1 1.22× 10−3 55.5826 0.0681

k = 2 1.50× 10−6 6, 177.8716 9.29× 10−3

k = 3 1.84× 10−9 686, 709.9097 1.26× 10−3

k = 4 2.26× 10−12 7.63× 107 1.72× 10−4

Table 5.2: Convergence speed according to the value of qk and cosh(2kz) taking into account
initial conditions such that a = 0.7, b = 0.8, c = 1.0, f = 0.714, m = 0.019.

argument, one has to transform previously this variable into an angle by means of

� =
�

2K(m)
ℓ. (5.25)

which was already given in (A.70). Then, '� must be replaced by � in Eqs. (5.8)-(5.24).
However, it is important to remark that, in Ferrer-Lara variables our angle is � = �(ℓ,m).
Moreover, Fig. 5.4 (equivalent to Fig. 5.1) shows that Ferrer-Lara variables maintain the same
errors as action-angle variables.
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{

5. ´ 10-8
1. ´ 10-7

1.5 ´ 10-7
2. ´ 10-7

2.5 ´ 10-7
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ÈU-UThetaÈ j=1

(a)

KHmL 2KHmL 3KHmL 4KHmL
{

0.00005

0.00010

0.00015

ÈU-UTaylorÈ

(b)

Figure 5.4: Different approximations of the perturbing function in Ferrer-Lara variables. (a) Differences
between the perturbing function evaluated with Mathematica elliptic functions according to (5.4) and the
same function in Theta functions truncated up to order j = 1. (b) Differences between the perturbing
function evaluated with Mathematica elliptic functions and the function truncated up to order j = 1 and
later expressed as a power series expansion in the nome up to order q = 3.

5.3 Perturbation approach in action-angle variables

In this section we will repeat the procedure carried out in close form in the previous chapter,
but starting from the series expansion in the nome of the disturbing function.

5.3.1 Average over '�

Like in the previous chapter, we look for a canonical transformation that removes the variable
'� from the Hamiltonian. We set

H0,0 = K0, H1,0 = −nΦ, H2,0 = 2U,
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where all the functions are assumed to be expressed in prime variables. For the sake of brevity,
we drop the prime notation in what follows when there is no risk of confusion.

Taking into account Eqs. (4.18) and (4.29) in the previous chapter, the first step in the compu-
tation of the Lie triangle gives

− IM
A

C −A
C

�

2K(m)

√
f

(1 + f)(f +m)

∂W1

∂'�
= H1,0 −H0,1, (5.26)

As H1,0 does not depend on '� or g, we choose

H0,1 = H1,0, (5.27)

and the first term of the generating function is W1 = 0. Because the vanishing of W1, the next
step gives

− IM
A

C −A
C

�

2K(m)

√
f

(1 + f)(f +m)

∂W2

∂'�
= H2,0 −H0,2. (5.28)

where, by inspecting Eqs. (5.22)-(5.24), we can easily express H2,0 as a secular term (S) plus a
periodic term (P), that is H2,0 = H2,0(S) +H2,0(P ).

We then choose H0,2 = H2,0(S) where, after several calculations we have

H0,2 = −n
2

4
(2− 3s2

I + 3s2
I cos 2�)

{
(2C −B −A) + 6(B −A)

(1 + f)
√
m

f +m

√
q X0

−3(C −A)
m
√

1−m
f +m

2K(m)

�

3∑
k=0

[Y2k cosh(2kz)]

}
, (5.29)

and Table 5.3 shows the polynomials involved in the above average.

Table 5.3: Polynomials involved in H0,2

X0 = 1− 2q + 6q2

Y0 = 1 + 12q2 − 16q3

Y2 = 4q − 8q2 + 52q3

Y4 = 8q2 − 16q3

Y6 = 12q3

Finally, according to (5.30), in order to get W2 we have to solve the differential equation

− IM
A

C −A
C

�

2K(m)

√
f

(1 + f)(f +m)

∂W2

∂'�
= H2,0(P ). (5.30)
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whose solution, after several calculations, is given by

W2 =
3n2

4

C

C −A
A

IM

√
m(1 + f)

f(f +m)

2K(m)

�
(2− 3s2

I + 3s2
I cos 2�)

{
(B −A)(1 + f)

√
q

3∑
k=1

[P2k sin(2k'�)]

+4(C −A)
√
m(1−m)

2K(m)

�
sinh2 z

3∑
k=1

[Q2k sin(2k'�)]

}
. (5.31)

and Table 5.4 shows the polynomials involved in the above average.

Table 5.4: Expressions involved in W2

P2 = −1 + 4q − 11q2

P4 = −q + 4q2

P6 = −q2

Q2 = q + 11q3 + (4q2 − 4q3) cosh(2z) + 6q3 cosh(4z)
Q4 = q2 + 4q3 cosh(2z)
Q6 = q3

5.3.2 Transformation equations of the first averaging

Now we have to follow the same procedure done in the previous chapter. Note that this procedure
involves the calculation of the partial derivative of W2 with respect to m, which is given by

∂W2

∂m
=

[
E(m)

2m(1−m)K(m)
− 1

2(f +m)

]
W2 −

3n2

16

C

C −A
A

IM

√
m(1 + f)

f(f +m)

K(m)

�2

× (2− 3s2
I + 3s2

I cos 2�)

{
(B −A)(1 + f)�3√q
m(1−m) K2(m)

3∑
k=1

[P̃2k sin(2k'�)]− 16(C −A)√
m(1−m)

×

[
2

3∑
k=1

[Q2k sin(2k'�)]
[

sinh2(z)(E(m)− (1−m) K(m)) + 2m(1−m)Ψ K(m) sinh(2z)

+ (1− 2m) K(m) sinh2(z)
]

+
q sinh2(z)

K(m)

[
�2

3∑
k=1

[Q̃2k sin(2k'�)]

+ 32q m(1−m)Ψ K2(m) sinh(2z)

2∑
k=1

[Z2k sin(2k'�)]

]]}
, (5.32)
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where

Ψ = − 1

2m(1−m) K(m)

{
�

2

[
E

(
arctan

√
f

m

∣∣∣∣1−m
)
−mF

(
arctan

√
f

m

∣∣∣∣1−m
)]

+ z
[
E(m)− (1−m) K(m)

]}
, (5.33)

and Table 5.5 shows the rest of the expressions involved in (5.32).

Table 5.5: Expressions involved in ∂W2/∂m

P̃2 = 1− 12q + 55q2

P̃4 = 3q − 20q2

P̃6 = 5q2

Q̃2 = 1 + 33q2 + (8q − 12q2) cosh(2z) + 18q2 cosh(4z)

Q̃4 = 2q + 12q2 cosh(2z)

Q̃6 = 3q2

Z̃2 = 1− q + 6q cosh(2z)

Z̃4 = q

Taking into account the previous partial derivative and the function W2 itself, the transformation
equations for the first averaging are given by

Δ'� =
1

2

∂W2

∂m

∂m

∂IN
, (5.34)

Δ� =
3IΛ

I2
M

1− cos(2�)

2− 3s2
I + 3s2

I cos 2�
W2, (5.35)

Δ'� = − 1

IM

(
IN Δ'� + IΛ Δ�+

W2

2

)
, (5.36)

ΔIN = −3n2

8

C

C −A
A

IM

√
m(1 + f)

f(f +m)

2K(m)

�
(2− 3s2

I + 3s2
I cos 2�)

{
(B −A)(1 + f)

√
q

3∑
k=1

[2kP2k cos(2k'�)]

+4(C −A)
√
m(1−m)

2K(m)

�
sinh2 z

3∑
k=1

[2kQ2k cos(2k'�)]

}
, (5.37)

ΔIM = 0, (5.38)

ΔIΛ =
3 s2

I sin(2�)

2− 3s2
I + 3s2

I cos 2�
W2, (5.39)
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where we recall that

∂m

∂IN
=

∂�1

∂�

∂�

∂IN
= − �(f +m)3/2

IM
√
f(1 + f)K(m)

, (5.40)

∂m

∂IM
=

∂�1

∂�

∂�

∂IM
=
IN
I2
M

�(f +m)3/2√
f(1 + f)K(m)

(5.41)

5.3.3 Average over �

Once obtained the transformation equations of the first averaging, we know that the new Hamil-
tonian function in the new prime variables is given by

ℋ('′� , '
′
�, �

′, I ′N , I
′
M , I

′
Λ) = H0,0 +H0,1 +

1

2
H0,2, (5.42)

where H0,1 = H1,0 = −n I ′Λ and H0,2 is given in (5.29). For the second averaging, this will be
the starting Hamiltonian function. In other words, the new secular Hamiltonian is set to be

S = K0,0 +K0,1 +
1

2
K0,2, (5.43)

where K0,0 = H0,0, K1,0 = H0,1 and K2,0 = H0,2.

Recalling Eq. (4.42), since we will only reach a first order in this averaging, Lie’s algorithm
leads to

K0,2 = H0,2︸︷︷︸
K2,0

+2n
∂V 1

∂�
. (5.44)

Note that H0,2 (see Eq. 5.29) can be expressed as a secular term (H0,2(S)) and a periodic part
(H0,2(P )) with respect to �. Indeed,

H0,2(S) = −n
2

4
(2− 3s2

I)

{
(2C −B −A) + 6(B −A)

(1 + f)
√
m

f +m

√
q X0

−3(C −A)
m
√

1−m
f +m

2K(m)

�

3∑
k=0

[Y2k cosh(2kz)]

}
(5.45)

=
2− 3s2

I

2− 3s2
I + 3s2

I cos 2�
H0,2, (5.46)

H0,2(P ) = −n
2

4
(3s2

I cos 2�)

{
(2C −B −A) + 6(B −A)

(1 + f)
√
m

f +m

√
q X0

−3(C −A)
m
√

1−m
f +m

2K(m)

�

3∑
k=0

[Y2k cosh(2kz)]

}
(5.47)

=
3s2
I cos 2�

2− 3s2
I + 3s2

I cos 2�
H0,2. (5.48)

We choose again
K0,2 = H0,2(S), (5.49)
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and then, from Eq. (5.44) we have to solve

V1 = − 1

2n

∫
H0,2(P ) d�, (5.50)

which leads to

V1 =
3n

16
s2
I sin 2�

{
(2C −B −A) + 6(B −A)

(1 + f)
√
m

f +m

√
q X0

−3(C −A)
m
√

1−m
f +m

2K(m)

�

3∑
k=0

[Y2k cosh(2kz)]

}
(5.51)

= − 3

4n

s2
I sin 2�

2− 3s2
I + 3s2

I cos 2�
H0,2. (5.52)

5.3.4 Transformation equations of the second averaging

One more time, these transformation equations involve the calculation of the partial derivative
of V1 with respect to m. After several calculations this expression is given by

∂V1

∂m
=

3n

16
s2
I sin 2�

{
3(B −A)(1 + f)

√
q

4
√
m(1−m)(f +m)2 K2(m)

[
�2(f +m)Z̃2 + 4(f −m)(1−m) K2(m)X0

]

− 3(C −A)

�
√

1−m(f +m)

[[
E(m) +

(
1− 2m

1 + f

f +m

)
K(m)

] 3∑
k=0

[Y2k cosh(2kz)]

+2m(1−m) K(m)
[
Ψ

3∑
k=1

[ℰ2k sinh(2kz)]
]

+
�2q

m(1−m)K2(m)

3∑
k=0

[ℱ2k cosh(2kz)]

]}
, (5.53)

where the new involved polynomials Z̃2, ℰ2k and ℱ2k are given in Table 5.6.

Taking into account the previous partial derivative (5.53) and the function V1 itself, the trans-
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Table 5.6: Expressions involved in ∂V1/∂m
ℰ2 = 8q − 16q2 + 104q3

ℰ4 = 32q2 − 64q3

ℰ6 = 72q3

ℱ0 = 6q − 12q2

ℱ2 = 1− 4q + 39q2

ℱ4 = 4q − 12q2

ℱ6 = 9q2

Z̃2 = 1− 6q + 30q2

formation equations for the second averaging are given by

�'� =
∂V1

∂m

∂m

∂IN
, (5.54)

�� = − 2

s2
I

IΛ

I2
M

V1, (5.55)

�'� = − 1

IM
(IN �'� + IΛ ��) , (5.56)

�IN = 0, (5.57)

�IM = 0, (5.58)

�IΛ = −2
cos 2�

sin 2�
V1, (5.59)

5.3.5 Secular terms

After the double averaging we find the secular Hamiltonian S = K0,0 +K0,1 + 1
2K0,2 given by

S =
I2
M

2A

(
1− C −A

C

f

f +m

)
− n IΛ −

n2

8
(2− 3s2

I)

{
(2C −B −A)

+ 6(B −A)
(1 + f)

√
m

f +m

√
q X0 − 3(C −A)

m
√

1−m
f +m

2K(m)

�

3∑
k=0

[Y2k cosh(2kz)]

}
(5.60)

where IN , IM , and therefore m, and IΛ are constant. The secular frequencies of the motion are
obtained from Hamilton equations

d'�
dt

=

(
I2
M

2A

C −A
C

f

(f +m)2
− 2n

3

2− 3s2
I

s2
I sin 2�

∂V1

∂m

)
∂m

∂IN
= n'� (5.61)

d�

dt
= −n+

3IΛ

I2
M

H0,2

2− 3s2
I + 3s2

I cos 2�
= n� (5.62)

d'�
dt

=
IM
A

(
1− C −A

C

f

f +m

)
− IΛ

IM
(n� + n)− IN

IM
n'� = n'� (5.63)

and dℎ/dt = nℎ = n+ n�.
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5.3.6 Results

Once obtained the equations allowing us to have a new double-averaged Hamiltonian of our
perturbed problem, a first set of results can be offered. Table 5.7 shows the propagation of the
initial conditions for the two different bodies considered by using the expressions given by Eq.
(5.35)-(5.39). Fig. 5.5 shows these results. Note that all the variables denoted as x∗ are given
by

x∗ = x′ + Δx′, x′ = x′′ + �x′′, (5.64)

where x ∈ ('� , '�, �, IN , IM , IΛ) and x′′(t) is obtained directly from the double-averaged
Hamiltonian by the Eqs. (5.61)-(5.63).

object var. non-averaged prime double-prime sec. frequency

PEGASUS '� −0.1479895115 −0.1476002434 −0.1510420588 −0.6506356386
'� 1.5775303900 1.577172216 1.580866560 1.6835946526
� −0.1 −0.1000002879 −0.1011478868 −0.0442806225
IN 0.9548381629 0.9547486244 0.9547486244
IM 1.0 1.0 1.0
IΛ 0.3420201433 0.3420275517 0.3557644344

OBJECT X '� −0.4540080976 −0.4540617779 −0.4519849708 −0.3211640629
'� 1.8832288438 1.883280647 1.881429408 1.3269767332
� −0.1 −0.09999998044 −0.1005426193 −0.0440180974
IN 0.9825021167 0.9825035675 0.9825035675
IM 1.0 1.0 1.0
IΛ 0.3420201433 0.3420196399 0.3487250577

Table 5.7: Initial conditions in the different phase spaces for both Pegasus and an unknown
object with initial conditions such that a = 0.7, b = 0.8, c = 1.0, f = 0.714, m = 0.019.

As we can see, the results verify the numerical simulations shown in Figs. 5.2 and 5.3. Further-
more, while for Pegasus '� advances over the analytical solution with a constant rate of about
0.06 units per orbital period, the same variable delays with respect to the analytical solution
when OBJECT X is considered with a lower constant rate of about −0.0008 units per orbital
period. Both motions are only affected by long-period terms. On the contrary, it can be ob-
served how for Pegasus '� delays with respect to the analytical solution while it advances for
OBJECT X with a constant rate ten times lower per orbital period. The evolution of � is similar
to '� , but the variation for OBJECT X is roughly a hundred times lower per orbital period and
both are only affected by periodic terms related to the orbital motion. We further appreciate
that IN differs in both cases only in low-amplitude periodic terms (lower-amplitude terms for
OBJECT X) and is the only variable affected by short-period effects. In turn, IΛ advances in a
similar way in both cases but with a higher rate for Pegasus.
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Figure 5.5: Differences between the perturbed motion in elliptic functions and the averaged motion
with x∗ = x′ + Δx′ and x′ = x′′ + �x′′ in internal units. T stands for orbital periods. (a) Results
for Pegasus. (b) Results for an unknown object with initial conditions such that a = 0.7, b = 0.8, c =
1.0, f = 0.714, m = 0.019.

5.4 Perturbation approach in Ferrer-Lara variables

In this section we will repeat the procedure carried out in close form in the previous chapter,
but starting from the series expansion in the nome of the disturbing function.

5.4.1 Average over ℓ

Like in the previous chapter, we look for a canonical transformation that removes the variable
'� from the Hamiltonian. We set

H0,0 = K0, H1,0 = −nΦ, H2,0 = 2U,

where all the functions are assumed to be expressed in prime variables. For the sake of brevity,
we drop the prime notation in what follows when there is no risk of confusion.

Taking into account Eq. (4.18) in the previous chapter, the first step in the computation of the
Lie triangle gives

−
(

1

B
− 1

C

)
L
∂W1

∂ℓ
= H1,0 −H0,1 (5.65)
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As H1,0 does not depend on ℓ or g, we choose

H0,1 = H1,0, (5.66)

and the first term of the generating function is W1 = 0. Because the vanishing of W1, the next
step gives

−
(

1

B
− 1

C

)
L
∂W2

∂ℓ
= H2,0 −H0,2. (5.67)

where, by inspecting Eqs. (5.22)-(5.24), we can easily express H2,0 as a secular term (S) plus a
periodic term (P), that is H2,0 = H2,0(S) +H2,0(P ).

We then choose H0,2 = H2,0(S) where, after several calculations we have

H0,2 = −n
2

4
(2− 3s2

I + 3s2
I cos 2�)

{
(2C −B −A) + 6(B −A)

(1 + f)
√
m

f +m

√
q X0

−3(C −A)
m
√

1−m
f +m

2K(m)

�

3∑
k=0

[Y2k cosh(2kz)]

}
, (5.68)

and Table 5.8 shows the polynomials involved in the above average. Note that this table is the
same as Table 5.3, but we bring it here again for the benefit of the reader.

Table 5.8: Polynomials involved in H0,2

X0 = 1− 2q + 6q2

Y0 = 1 + 12q2 − 16q3

Y2 = 4q − 8q2 + 52q3

Y4 = 8q2 − 16q3

Y6 = 12q3

Finally, according to (5.69), in order to get W2 we have to solve the differential equation

−
(

1

B
− 1

C

)
L
∂W2

∂ℓ
= H2,0(P ). (5.69)

whose solution, after several calculations, is given by

W2 =
3n2

4L

B C

C −B

√
m

f +m

2K(m)

�
(2− 3s2

I + 3s2
I cos 2�){

(B −A)(1 + f)
√
q

3∑
k=1

[P2k sin(2k�)]

+4(C −A)
√
m(1−m)

2K(m)

�
sinh2 z

3∑
k=1

[Q2k sin(2k�)]

}
. (5.70)

and Table 5.9 shows the polynomials involved in the above average. Note again that this table
is the same as Table 5.4.
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Table 5.9: Expressions involved in W2

P2 = −1 + 4q − 11q2

P4 = −q + 4q2

P6 = −q2

Q2 = q + 11q3 + (4q2 − 4q3) cosh(2z) + 6q3 cosh(4z)
Q4 = q2 + 4q3 cosh(2z)
Q6 = q3

5.4.2 Transformation equations of the first averaging

Now we have to follow the same procedure done in the previous chapter. Note that this procedure
involves the calculation of the partial derivative of W2 with respect to m, which is given by

∂W2

∂m
=

(
E(m)

2m(1−m) K(m)
− 1

f +m

)
+

3n2

4L

B C

C −B

√
m

f +m

2 K(m)

�
(2− 3s2

I + 3s2
I cos 2�){

(B −A)(1 + f)
√
q

2m(1−m) K2(m)

[
�2

4

3∑
k=1

[P2k sin(2k�)]− �2

2

3∑
k=1

[Z2k sin(2k�)]

−2�K(m)
[
E(m)− (1−m) K(m)

] 3∑
k=1

[Z̃2k cos(2k�)]

]

+
4(C −A) sinh(z)

�
√
m(1−m)

3∑
k=1

[Q2k sin(2k�)]

×

[
E(m) sinh(z)−mK(m)

[
sinh(z)− 4(1−m)Ψ cosh(z)

]]

+
8(C −A) sinh2(z)

�
√
m(1−m) K(m)

[
3∑

k=1

[X̃2k sin(2k�)]− �K(m)
[
E(m)− (1−m) K(m)

]
×

3∑
k=1

[X2k cos(2k�)]

]}
(5.71)

where

Ψ = − 1

2m(1−m) K(m)

{
�

2

[
E

(
arctan

√
f

m

∣∣∣∣1−m
)
−mF

(
arctan

√
f

m

∣∣∣∣1−m
)]

+ z
[
E(m)− (1−m) K(m)

]}
, (5.72)

and Table 5.10 shows the rest of the expressions involved in (5.71).

Taking into account the previous partial derivative and the function W2 itself, the transformation

84



CHAPTER 5. A PERTURBED RIGID BODY. EXPANSIONS APPROACH 85

Table 5.10: Expressions involved in ∂W2/∂m
Z2 = −4q + 22q2

Z4 = q − 8q2

Z6 = 2q2

Z̃2 = P2

Z̃4 = 2P4

Z̃6 = 3P6

X2 = Q2

X4 = 2Q4

X6 = 3Q6

X̃2 = �2

4 q
[
1 + 33q2 + (8q − 12q2) cosh(2z) + 18q2 cosh(4z)

]
+8q2Ψm(1−m)K2(m)

[
(1− q) sinh(2z) + 3q sinh(4z)

]
X̃4 = �2

2 q
2[1 + 6q cosh(2z)] + 8q3Ψm(1−m)K2(m) sinh(2z)

X̃6 = 3�2

4 q3

equations for the first averaging are given by

Δℓ = − 1

2L
W2 +

1

2

∂W2

∂m

∂m

∂L
, (5.73)

Δ� =
3Φ

G2

1− cos(2�)

2− 3s2
I + 3s2

I cos 2�
W2, (5.74)

Δg = − 1

G

[
L

(
Δℓ+

W2

2L

)
+ Φ Δ�

]
, (5.75)

ΔL = −3n2

8L

B C

C −B

√
m

f +m

2K(m)

�
(2− 3s2

I + 3s2
I cos 2�){

(B −A)(1 + f)
√
q

3∑
k=1

[
k

�

K(m)
P2k cos(2k�)

]

+4(C −A)
√
m(1−m)

2K(m)

�
sinh2 z

3∑
k=1

[
k

�

K(m)
Q2k cos(2k�)

]}
, (5.76)

ΔG = 0, (5.77)

ΔΦ =
3 s2

I sin(2�)

2− 3s2
I + 3s2

I cos 2�
W2, (5.78)

where we recall that

G
∂m

∂G
= −L∂m

∂L
= 2(f +m). (5.79)

85



86 5.4. PERTURBATION APPROACH IN FERRER-LARA VARIABLES

5.4.3 Average over �

Once obtained the transformation equations of the first averaging, we know that the new Hamil-
tonian function in the new prime variables is given by

ℋ(ℓ′, g′, �′, L′, G′,Φ′) = H0,0 +H0,1 +
1

2
H0,2, (5.80)

where H0,1 = H1,0 = −nΦ and H0,2 is given in (5.68). For the second averaging, this will be
the starting Hamiltonian function. In other words, the new secular Hamiltonian is set to be

S = K0,0 +K0,1 +
1

2
K0,2, (5.81)

where K0,0 = H0,0, K1,0 = H0,1 and K2,0 = H0,2.

Recalling Eq. (4.66), since we will only reach a first order in this averaging, Lie’s algorithm
leads to

K0,2 = H0,2︸︷︷︸
K2,0

+2n
∂V 1

∂�
. (5.82)

Note that H0,2 (see Eq. 5.68) can be expressed as a secular term (H0,2(S)) and a periodic part
(H0,2(P )) with respect to �. Indeed,

H0,2(S) = −n
2

4
(2− 3s2

I)

{
(2C −B −A) + 6(B −A)

(1 + f)
√
m

f +m

√
q X0

−3(C −A)
m
√

1−m
f +m

2K(m)

�

3∑
k=0

[Y2k cosh(2kz)]

}
(5.83)

=
2− 3s2

I

2− 3s2
I + 3s2

I cos 2�
H0,2, (5.84)

H0,2(P ) = −n
2

4
(3s2

I cos 2�)

{
(2C −B −A) + 6(B −A)

(1 + f)
√
m

f +m

√
q X0

−3(C −A)
m
√

1−m
f +m

2K(m)

�

3∑
k=0

[Y2k cosh(2kz)]

}
(5.85)

=
3s2
I cos 2�

2− 3s2
I + 3s2

I cos 2�
H0,2. (5.86)

We choose again

K0,2 = H0,2(S), (5.87)

and then, from Eq. (5.82) we have to solve

V1 = − 1

2n

∫
H0,2(P ) d�, (5.88)
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which leads to

V1 =
3n

16
s2
I sin 2�

{
(2C −B −A) + 6(B −A)

(1 + f)
√
m

f +m

√
q X0

−3(C −A)
m
√

1−m
f +m

2K(m)

�

3∑
k=0

[Y2k cosh(2kz)]

}
(5.89)

= − 3

4n

s2
I sin 2�

2− 3s2
I + 3s2

I cos 2�
H0,2. (5.90)

5.4.4 Transformation equations of the second averaging

One more time, these transformation equations involve the calculation of the partial derivative
of V1 with respect to m. After several calculations this expression is given by

∂V1

∂m
=

3n

16
s2
I sin 2�

{
3(B −A)(1 + f)

√
q

4
√
m(1−m)(f +m)2 K2(m)

[
�2(f +m)Z̃2 + 4(f −m)(1−m) K2(m)X0

]

− 3(C −A)

�
√

1−m(f +m)

[[
E(m) +

(
1− 2m

1 + f

f +m

)
K(m)

] 3∑
k=0

[Y2k cosh(2kz)]

+ 2m(1−m) K(m)
[
Φ

3∑
k=1

[ℰ2k sinh(2kz)]
]

+
�2q

m(1−m)K2(m)

3∑
k=0

[ℱ2k cosh(2kz)]

]}
, (5.91)

where the new involved polynomials Z̃2, ℰ2k and ℱ2k are given in Table 5.11.

Table 5.11: Expressions involved in ∂V1/∂m
ℰ2 = 8q − 16q2 + 104q3

ℰ4 = 32q2 − 64q3

ℰ6 = 72q3

ℱ0 = 6q − 12q2

ℱ2 = 1− 4q + 39q2

ℱ4 = 4q − 12q2

ℱ6 = 9q2

Z̃2 = 1− 6q + 30q2

Taking into account the previous partial derivative (5.91) and the function V1 itself, the trans-
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formation equations for the second averaging are given by

�ℓ = − 2

L
(f +m)

∂V1

∂m
, (5.92)

�� = − 2

s2
I

Φ

G2
V1, (5.93)

�g = − 1

G
(L�ℓ+ Φ ��) , (5.94)

�L = 0, (5.95)

�G = 0, (5.96)

�Φ = −2
cos 2�

sin 2�
V1, (5.97)

5.4.5 Secular terms

After the double averaging we find the secular Hamiltonian S = K0,0 +K0,1 + 1
2K0,2 given by

S =
G2

2A
−
(

1

B
− 1

C

)
L2

2
− nΦ− n2

8
(2− 3s2

I)

{
(2C −B −A)

+ 6(B −A)
(1 + f)

√
m

f +m

√
q X0 − 3(C −A)

m
√

1−m
f +m

2K(m)

�

3∑
k=0

[Y2k cosh(2kz)]

}
(5.98)

where IN , IM , and therefore m, and IΛ are constant. The secular frequencies of the motion are
obtained from Hamilton equations

dℓ

dt
= −

(
1

B
− 1

C

)
L− 2n

3

2− 3s2
I

s2
I sin 2�

∂V1

∂m

∂m

∂L
= nℓ (5.99)

d�

dt
= −n+

3Φ

G2

H0,2

2− 3s2
I + 3s2

I cos 2�
= n� (5.100)

dg

dt
=

G

A
− Φ

G
(n� + n)− L

G

[
nℓ +

(
1

B
− 1

C

)
L

]
= ng (5.101)

and dℎ/dt = nℎ = n+ n�.

5.4.6 Results

Once obtained the new equations in Ferrer-Lara variables, table 5.12 shows the propagation of
the initial conditions for the two different bodies considered by using the expressions given by
the Eqs. (5.54)-(5.59). Fig. 5.6 shows the equivalent results in the new variables. Note that all
the variables denoted as x∗ are given again by Eq. (5.64) where x ∈ (ℓ, g, �, L, G, Φ) and x′′(t)
is obtained directly from the double-averaged Hamiltonian by the Eqs. (5.99)-(5.101).

As we can see, in broad outline, the trend of the variables is similar to that given in action-angle
variables, this is, for Pegasus, when a variable advances or delays with respect to the analytical
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object var. non-averaged prime double-prime sec. frequency

PEGASUS ℓ −0.1626833313 −0.1622900734 −0.1660744347 −0.7153797544
g 2.0665318080 2.065021987 2.080092257 3.8340342373
� −0.1 −0.1000002879 −0.1011478868 −0.0442803523
L 3.87444595753 3.874364524 3.874364524
G 1.0 1.0 1.0
Φ 0.3420201433 0.3420275517 0.3557644341

OBJECT X ℓ −0.4562382482 −0.4562920019 −0.4542049941 −0.3227428032
g 2.0265571677 2.026625672 2.024118795 1.4283694946
� −0.1 −0.09999998044 −0.10054261926 −0.04401811484
L 1.2918518846 1.2918533283 1.2918533283
G 1.0 1.0 1.0
Φ 0.3420201433 0.3420196399 0.3487250577

Table 5.12: Initial conditions in the different phase spaces for both Pegasus and an unknown
object with initial conditions such that a = 0.7, b = 0.8, c = 1.0, f = 0.714, m = 0.019.
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Figure 5.6: Differences between the perturbed motion in elliptic functions and the averaged motion
with x∗ = x′ + Δx′ and x′ = x′′ + �x′′ in internal units. T stands for orbital periods. (a) Results
for Pegasus. (b) Results for an unknown object with initial conditions such that a = 0.7, b = 0.8, c =
1.0, f = 0.714, m = 0.019.
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theory, the opposite situation happens with OBJECT X. It can be also appreciated that all the
variables for OBJECT X are hardly ever affected by short-period effects and they advance or
delay with constant rates of about hundreds times lower than the variables measuring Pegasus’
motion.

5.5 Concluding remarks and comparisons

As commented at the begining of this chapter, a new and simpler approach based on a Taylor
expansion in the nome of the perturbing function (5.4) is decided to carry out. Expansions of
the elliptic modulus and the complete integral of the first kind have been neglected due to their
steadily appearance when partial derivatives of the nome are computed. Furthermore, a better
convergence of Taylor expansions is obtained when the characteristic f is added to the argument
of the Theta functions through the angle z. Nevertheless, the addition of this angle involves the
treatment of complex arguments in those functions, which leads to the arising of no bounded
functions in our theory.

Indeed, as the disturbing function can be splitted as the sum of three terms, one of them is
unavoidably expressed by a quotient of Theta functions with complex arguments (see Eq. (5.23))
while a fast convergence of the other two terms is always guaranteed. Thus, hyperbolic sines
and cosines of the angle z appear when a Taylor expansion of this quotient is developed. Since
these hyperbolic functions are always multiplied by powers of the nome, the convergence speed
depends on how low is each power of the nome compensating for the value of the corresponding
hyperbolic function, which depends in turn on the initial conditions and above all on the moments
of the inertia. Note the different results shown in Tables 5.1 and 5.2.

Moreover, as expected, all the expressions given along this chapter as far as the pertubation
theory concerns shows that the treatment of the perturbative scheme is nearly the same for
both type of variables here studied. Indeed, a few differences between these equations are
noticed because of the different nature of both variables, i.e., while in Ferrer-Lara variables the
elliptic modulus is an explicit function of the momenta, one must deal with implicit functions
in action-angle variables. Note, for instance, that the functions H0,2 and V1 are equal for both
variables.

With respect to the numerical calculations, Fig. 5.7 shows how both variables reflect the effects
of the perturbation for the case of Pegasus. Note that this effect is comparable for the variables
'� and ℓ, but clearly unequal for the variables '� and g. Observe that after seven orbital
periods, the differences between the non-perturbed and the perturbed problem for the action-
angle variable '� is still not greater that fourteen hundredth, while the differences for the
Ferrer-Lara variable g is nearly ninety degrees. Differences of quality for the momenta are not
noticeable.

When compared the original perturbed problem with the double-averaged system (Fig. 5.8),
the same features as in the previous case are observed. For these initial conditions, the new
double-averaged Hamiltonian is not sufficient to reduce the slope of the differences between the
numerical simulation and the analytical theory. Unfortunately, the same situation is noticed
when also periodic terms are considered (see Fig. 5.9). As a consequence, a 3-order series
expansion theory does not seem to be the most proper solution to measure the attitude dynamic
of an object like Pegasus for a long period of time, above all in Ferrer-Lara variables.
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Nevertheless, the quality of our 3-order series expansion theory should not be judged by taking
only one object or satellite. Indeed, considering a new set of moments of inertia corresponding
to a different object with different geometry, Fig. 5.10 shows that the worse results are in the
thousandth after seven orbital periods. Note further that Ferrer-Lara variables are even a little
bit better than action-angle variables within this range of approximation. Note also that when
the value of the elliptic modulus is so low, the ripple observed in Ferrer-Lara variables is strongly
damped. As seen in the previous chapter, this phenomena is due to the different damping level
of the partial derivative of the Jacobi Zeta function with respect to the modulus.
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Figure 5.7: Comparisons action-angle variables vs. Ferrer-Lara variables considering the differences
between the original perturbed motion and the non-perturbed motion in internal units. T stands for
orbital periods.
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Figure 5.8: Comparisons action-angle variables vs. Ferrer-Lara variables considering the differences
between the original perturbed motion and the secular (double-prime) motion in internal units. T stands
for orbital periods
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Figure 5.9: Comparisons Ferrer-Lara variables vs. action-angle variables considering the differences
between the perturbed non-averaged motion and the averaged motion with x∗ = x′+Δx′ and x′ = x′′+�x′′

in internal units. T stands for orbital periods
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Figure 5.10: Comparisons Ferrer-Lara variables vs. action-angle variables considering the differences
between the perturbed non-averaged motion and the averaged motion with x∗ = x′+ Δx′ and x′ = x′′+
�x′′, taking into account new initial conditions such that a = 0.7, b = 0.8, c = 1.0, f = 0.714, m = 0.019
in internal units. T stands for orbital periods
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Conclusions

Taking into account the contribution of each one of the chapters in this Memoir, the next
paragraphs contain the conclusions we have reached.

The main contribution of Chapter 2 is twofold. On one hand, after recalling some basic facts
on the rigid body dynamics, we show a different way to address the integration of the free rigid
body problem by a regularization of time (Section 2.5). This procedure allows us to reach the
solution of the system avoiding the explicit presence of the Jacobi elliptic functions in favour
of trigonometric functions. The presence of the elliptic integrals remains in the transformation.
On the other hand, due to a renewal of interest in geometric aspects of the rigid body dynamics,
Section 2.6 proves the Montgomery formula from the Andoyer variables’ point of view as well
as proposing a new phase for the problem, that is, to reckon how much has rotated � when �
has rotated 2�, complementing Montgomery’s approach.

Chapter 3 presents in Section 3.4.2 a new version of the classical Sadov transfomation to get
the complete reduction of the problem, together with the calculations involved to express such
a transformation in terms of Jacobi Theta functions. This new version is based on the use of
a different intermediary variable allowing us to introduce a new quantity 0 < �3 < 1 instead
of f > 0. Although this new approach itself does not improve the convergence of the series
expansions in Chapter 5, its possible benefits should be studied by means of other perturbations.

Chapters 4 and 5 focus on the treatment of the perturbed model by the use of Lie transfor-
mations with the aim of studying the behaviour of two different sets of variables (Sadov vs.
Ferrer-Lara) when both are applied to the same problem. As known, Sadov variables have the
drawback of requiring the inversion of implicit equations when one has to obtain the value of the
elliptic modulus as a function of the momenta. In particular, once the torque-free Hamiltonian
has been reduced by using the Hamilton-Jacobi-Poincaré method, elliptic modulus can not be
explicitly expressed as a function of the two momenta, which makes more difficult the later an-
alytical manipulation of its partial derivatives, as well as the time needed to the inversion of the
equations from a computational point of view. Unlike Sadov and closer to Hitzl and Breakwell
approximation, to avoid the above disadvantages, Ferrer and Lara have recently proposed a new
set of variables allowing us to treat the problem in an explicit way. Indeed, the new explicit
Hamiltonian is quadratic in the two momenta, hence its manipulation is easier.

In spite of these differences, both sets of variables have a common analytical feature: the gen-
erating function making possible the averaging of the new variable associated to the Andoyer
variable � is expressed in terms of the Jacobi Zeta function. As well as one may anticipate
non-trivial difficulties when trying to extend the closed form integration of the fast rotating
satellite problem to higher orders, the presence of this function involves different consequences
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depending on whether the selected variables are action-angle or Ferrer-Lara. Indeed, the partial
derivative of the Zeta function with respect to the elliptic modulus is different for both sets of
variables. In particular, while this derivative is shown to be periodic in action-angle variables
(Fig. 4.1), in Ferrer-Lara variables is found to be non-periodic (Fig.4.3) because this derivative
introduces mixed terms (see Appendix A.5 for further details), whose effects are less pronounced
when the value of the triaxiality is lower and vice-versa.

This fact produces an undesired and increasing curly effect when computing the motion in Ferrer-
Lara variables (see Fig. 4.4). Naturally, as it is shown in Chapter 5, in spite of a series expansion
of the perturbing function can be developed in order to avoid the explicit manipulation of elliptic
functions, the curly effect is still affecting the behaviour of the solution (see Fig. 5.6). Besides,
it has been also proved that although this undesired effect may be not important in the time
scales used in astrodynamics, a remedy is found when using action-angle variables, which are
not affected by this effect.

With respect to Taylor expansions of the perturbing function, the fact of using Theta functions
as an intermediate step to this expansion shows a number of pros and cons. On one side, the
use of Theta functions allows us to introduce the nome as the small quantity over which the
expansion can be accomplished for a faster convergence, since it is usually lower than any other
quantity like the elliptic modulus. On the other side, the presence of these functions involves
dealing with complex arguments whose series expansions introduce hyperbolic functions, which
are non-bounded. Therefore, the convergence speed will depend mainly on the shape of each
body. In particular, as it has been shown in Chapter 5, the larger is the triaxiality, a higher
order Taylor expansion is needed and more troublesome expressions have to be handled.

Under this scenario, the existence of a closed form theory is clearly justified. In fact, the main
advantage of using elliptic functions in a closed form is the validity of the expressions regardless
of the shape of the satellite or rigid body considered.
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Appendix A

Elliptic integrals and functions

Within academic world trigonometric functions have allowed us to solve a wide variety of prob-
lems in mechanics. Nevertheless, when one faces problems like getting the length of an ellipse
or the solution of the motion of a simple pendulum or Duffing oscillator, one finds that the
answer involves certain quadratures whose solution is not given by trigonometric functions. In
fact, many dynamical systems are solved by this kind of quadratures which, reduced to their
canonical forms, are known as elliptic integrals.

This Appendix does not pretend to be a summary of some handbooks ([Byrd & Friedman (1971),
Gradshteyn & Ryzhik (2007), Abramowitz & Stegun (1972)] and its recent digitalized version
[Olver et al. (2012)]), but rather a short guide which grew in the process of writing this Mem-
oir. This process started by the basic definitions. An interested reader might complement the
following paragraph with the reading of the paper [?] where a more friendly problem is analyzed
in some detail.

A.1 Canonical form of the Legendre elliptic integrals and Jacobi
elliptic functions

Indeed, consider the three elliptic integrals whose canonical forms are given by

F ('∣m) =

∫ z

0

dx√
(1− x2)(1−mx2)

=

∫ '

0

d'√
1−m sin2 '

, (A.1)

E('∣m) =

∫ z

0

√
1−mx2

1− x2
dx =

∫ '

0

√
1−m sin2 'd', (A.2)

Π(n;'∣m) =

∫ z

0

dt

(1− nx2)
√

(1− x2)(1−mx2)
=

∫ '

0

d'

(1− n sin2 ')
√

1−m sin2 '
, (A.3)
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which are the Legendre incomplete elliptic integrals of the first, second and third kind1 respec-
tively. Note that x = sin' where 0 < ' < �/2 is an angle and 0 < m < 1 is a parameter known
as elliptic modulus. It is important to remark that, depending on the problem, this parameter
may be less than zero or greater than one, changing the form of these expressions as indicated
in Apendix A.2.

In turn, the complete elliptic integrals of the first, second and third kind, respectively given by

K(m) = F (�/2,m), E(m) = E(�/2,m) Π(n∣m) = Π(�/2, n,m), (A.5)

then, if we denote u = F (',m), one can invert this expression by introducing the function
Jacobi Amplitude (see Fig. A.1), that is

' = arcsinx = am(u∣m), (A.6)

from where we get that
x = sin am(u∣m) = sn(u∣m), (A.7)

which is the Jacobi elliptic function known as elliptic sine. Note that the elliptic modulus plays
an important role within the function; when m = 0 the elliptic function become trigonomet-
ric and when m = 1 become hyperbolic, hence the elliptic functions may be considered as a
generalization of the trigonometric ones.

K 2K 3K 4K
u

Π

2

Π

3 Π

2

2 Π

j = amHu È m=0.4L

Figure A.1: Graphic representation of the relation between ' and u.

On the other hand, since sin2 '+cos2 ' = 1, then sin2 am(u∣m)+cos2 am(u∣m) = 1, which gives
sn2(u∣m) + cn2(u∣m) = 1 and therefore we have cn2(u∣m) = 1− sn2(u∣m). As well, for different
purposes, it is sometimes necessary to use what is known as complementary elliptic modulus
which is given by m′ = 1−m. Moreover, a number of additional formulas can be found among
the elliptic functions (see [Byrd & Friedman (1971)] and [Abramowitz & Stegun (1972)]) but,
in general, we finally refer to the relation

dn2(u∣m) = 1−m sn2(u∣m), (A.8)

which arises in Section 4 being part of the disturbing function of this work.

1Note that other authors like [Tantalo (1993)] define a slightly different elliptic integral of the third kind given
by

Π̃(ñ;'∣m) =

∫ '

0

d'

(1 + ñ sin2 ')
√

1−m sin2 '
= Π(−n;'∣m) (A.4)
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Like trigonometric functions, elliptic functions are periodic. However, their periods are not
constant because they are function of the elliptic modulus. Specifically we have

Tsn = Tcn = 4K(m) and Tdn = 2K(m), (A.9)

where Tsn denotes the period of the elliptic sine function.

A.2 On elliptic integrals and functions with {m,n} /∈ [0, 1]

It is known that, depending on the characteristics of the considered problem, the value of the
elliptic modulus may change and even be out of the range [0, 1]. Then, there is a set of alternative
formulas to treat this kind of problems which are shown next.

A.2.1 Elliptic integrals with {m,n} < 0

When our problem or application has a negative value of the modulus m and / or the charac-
teristic n, the classical formulas used to compute elliptic integrals have to be changed by the
following ones.

Complete elliptic integrals with {m,n} < 0

K(m) =
1√

1−m
K

(
m

m− 1

)
, (A.10)

E(m) =
√

1−mE

(
m

m− 1

)
, (A.11)

Π(n∣m) =
1

(m− n)
√

1−m

[
mK

(
m

m− 1

)
− nΠ

(
m− n
m− 1

∣∣∣∣ m

m− 1

)]
. (A.12)

Incomplete elliptic integrals with {m,n} < 0

F(�∣m) =
1√

1−m
F

(
�

∣∣∣∣ m

m− 1

)
, (A.13)

=
1√

1−m

[
K

(
m

m− 1

)
− F

(
�

2
− �

∣∣∣∣ m

m− 1

)]
, (A.14)

E(�∣m) =
m sin � cos �√
1−m cos2 �

+
√

1−mE

(
�

∣∣∣∣ m

m− 1

)
, (A.15)

Π(n;�∣m) =
1

(m− n)
√

1−m

[
mF

(
�

∣∣∣∣ m

m− 1

)
− nΠ

(
m− n
m− 1

; �

∣∣∣∣ m

m− 1

)]
, (A.16)

where

sin � =

√
1−m sin�√
1−m sin2 �

, cd = cn/dn, u = F(�∣m). (A.17)
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A.2.2 Elliptic integrals with {m,n} > 1

When our problem or application has a value greater than one of the modulus m and / or the
characteristic n, the classical formulas used to compute elliptic integrals have to be changed by
the following ones.

Incomplete elliptic integrals with {m,n} > 1

F(�∣m) =
1√
m

F

[
arcsin(

√
m sin�)

∣∣∣∣ 1

m

]
, (A.18)

E(�∣m) =
1−m√
m

F

[
arcsin(

√
m sin�)

∣∣∣∣ 1

m

]
+
√
mE

[
arcsin(

√
m sin�)

∣∣∣∣ 1

m

]
, (A.19)

Π(n, �∣m) =
1√
m

Π

[
n

m
; arcsin(

√
m sin�)

∣∣∣∣ 1

m

]
. (A.20)

Complete elliptic integrals with{m,n} > 1

K(m) =
1√
m

K

(
1

m

)
, (A.21)

E(m) =
√
mE

(
1

m

)
+

1−m√
m

K

(
1

m

)
, (A.22)

Π(n∣m) =
1√
m

Π

[
n

m

∣∣∣∣ 1

m

]
. (A.23)

NOTE: In order to see the expressions of the elliptic integral of the third kind (complete and
incomplete), go to page 225 of Byrd & Friedman and the following, and consult the cases for
values n > 1 and / or m > 1. See also Abramowitz & Stegun page 599 and the following.

A.2.3 Elliptic functions with m < 0

When our problem or application has a negative value of the modulus m, the classical formulas
used to compute elliptic functions have to be changed by the following ones.

sn(u∣m) =
1√

1−m
sd

(√
1−mu

∣∣∣∣ m

m− 1

)
, (A.24)

cn(u∣m) = cd

(√
1−mu

∣∣∣∣ m

m− 1

)
, (A.25)

dn(u∣m) = nd

(√
1−mu

∣∣∣∣ m

m− 1

)
, (A.26)

where sd = sn/dn, cd = cn/dn and nd = 1/dn.

A.2.4 Elliptic functions with m > 1

When our problem or application has a value greater than one of the modulus m, the classical
formulas used to compute elliptic functions have to be changed by the following ones.
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sn(u∣m) =
1√
m

sn(
√
mu∣m−1), (A.27)

cn(u∣m) = dn(
√
mu∣m−1), (A.28)

dn(u∣m) = cn(
√
mu∣m−1). (A.29)

A.3 Jacobi Zeta function

Of course, new Jacobian elliptic functions have been defined from the three ones here presented
(see [Lawden (1989)] for further details), but we will deal only with the functions sn, cn and dn
besides one special function whose properties are key to understand the effects of the perturba-
tion depending on the variables used to study the problem. We are talking about the Jacobi
Zeta function. As well as derivation, the elliptic functions can be integrated. In particular, in
order to tackle the different averages in Section 4 we have to integrate the disturbing function
containing the elliptic function dn2(u∣m), which leads to the appearance of the Zeta function.
This function, by definition, can be expressed as

Z(u∣m) =

∫ (
sn2(u∣m)− E(m)

K(m)

)
du =

∫
sn2(u∣m) du−

∫
E(m)

K(m)
du (A.30)

= E(u∣m)− E(m)

K(m)
u. (A.31)

Nevertheless, the software (Mathematica) forces users to introduce an angle as the argument of
the function (' in our case), which implies that this argument has to be am(u∣m) according to
(A.6). Thus, the Mathematica version of the Zeta-function is given by

Z('∣m) = E('∣m)− E(m)

K(m)
F('∣m), (A.32)

where we must actually type JacobiZeta[JacobiAmplitude[u,m],m].

Fig. A.2 shows the graphic representation of the Zeta-function. Note that the function is
2K(m)-periodic.

KHmL 2KHmL 3KHmL
u

Z@amHuÈmLÈmD

Figure A.2: Graphic representation of the Z-function.
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A.3.1 On the derivative of the Jacobi Zeta function

As Byrd&Friedman (p. 284) pointed out “the Jacobi elliptic functions are not only function of
k2 = m but of the argument u which may also depends on the modulus.” In order to obtain the
total derivative with respect to the modulus, according to the computation with Mathematica,
we find convinient to rewrite the Byrd&Friedman expression as

dZ( ∣m)

dm
=
∂Z

∂m
+
∂Z

∂ 

(
∂ 

∂m
+
∂ 

∂u

∂u

∂m

)
,  = am(u∣m), (A.33)

and therefore, it is clear that the analytical derivative of the Zeta-function depends on the
function u, which is different according to whether the variables you are using are Ferrer-Lara
or action-angle, which is a basic aspect in this work.

A.4 On the elliptic integral of the third kind

At this point we find convenient to collect here the different expressions related to the third
elliptic integral. Thus, considering [Byrd & Friedman (1971), ?] we have

Legendre’s Form. Join to the previous expression of Π, we also may write

ΠLegendre(n, ',m) ≡
∫ y

0

dt

(1− n t2)
√

(1− t2)(1−mt2)

=

∫ '

0

d#

(1− n sin2 #)
√

(1− sin2 #)(1−m sin2 #)
(A.34)

=

∫ u1

0

du

1− n sn2u
≡ Π(u1, n), (A.35)

where y = sin' = snu1, t = sin# = snu, n ∕= 1 orm.

Jacobi’s Form. Related with the addition formulas, Jacobi found convenient to introduce a
new parameter a, alternative to n, by the expression

n = m sn2a. (A.36)

Then, he proposed another expression for Π:

ΠJacobi(u1, a) = m sn a cn adn a

∫ u1

0

sn2u du

1−m sn2a sn2u
, (A.37)

and the relation between the two formulas takes the form

ΠLegendre(u1, n) = u1 +
sn a

cn a dn a
ΠJacobi(u1, a). (A.38)

A.4.1 Computing Π: The Z and Θ Jacobi integral functions

For our purposes a question remains to be answered: how to deal with the integral function
Π which, like the function E(u), is a quadrature involving the elliptic function sn. As we will
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see, Jacobi based his study in the use of the addition formulas and quadratures of them. After
implementing a quadrature over one of the variables in the addition formulas, he introduced the
periodic Z function

Z(u) = E(u)− E

K
u, (A.39)

combination of two of the previous basic functions. Then, another quadrature with this new
function leads to the Theta function �2, defined in the form∫

0
Z(u) du = log

�(u)

�(0)
. (A.40)

Let us present some of the steps of this sequence. One way should be to rely on Lawden
[Lawden (1989)] approach. But, if we proceed, as Meyer suggests, following [Greenhill (1892)]
things are slightly different; although the scheme is the same, more details are given, with no
need to go back and forth through different chapters. Note that in both an application to the
rigid body motion is presented.

From Greenhill (p. 191) we quote: “We can now make a fresh start, and prove the Addition
Theorem for the Zeta Function independently; and then proceed to Jacobi’s form of the Third
Elliptic Integral. . . ” From addition formulas

dn(u− v) + dn(u+ v) =
2 dnudnv

1−m sn2u sn2v
, (A.41)

dn(u− v)− dn(u+ v) =
2m snu cnu snv cnv

1−m sn2u sn2v
, (A.42)

where u is called the parameter, and v the argument, and multiplying them we obtain

dn2(u+ v)− dn2(u− v) =
−4msnu cnudnu sn v cn v dn v

(1−msn2u sn2v)2
. (A.43)

Then, we integrate with respect to the argument v, according to the definition (A.39), after
some manipulations, we obtain

Z(u+ v) + Z(u− v)− 2Z(u) =
−2msnu cnu dnu sn2v

1−msn2u sn2v
(A.44)

as one of the forms of the addition equation of the Zeta function, which is convenient considering
the expression taken by Jacobi (A.37) for the third elliptic integral.

Then, integrating (A.44) with respect to v, we obtain

Π(v, u) = v Z(u)− 1

2

∫
Z(u+ v) dv − 1

2

∫
Z(u− v) dv. (A.45)

At this step Jacobi introduced a new integral function given above (A.40) called Theta function.
Using it we may write (A.45) as follows

Π(v, u) =
1

2
ln
�(u− v)

�(u+ v)
+ v Z(u). (A.46)

We leave at this point the exposition of Greenhill. The reader interested will find there several
expressions related to Legendre and Jacobi forms of the third integral which are used later in
applications. Note that we have maintained the notation of Greenhill. Nevertheless, in the
context of the whole paper, the meaning of u and v should be interchanged.

2Note that below Byrd and Friedman use the notation #0, which is #4 for Mathematica.
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A.4.2 Comparing with Vallejo expressions

As we know, the incomplete elliptic integral of the third goes with us from the very beginning
in our problem. Indeed, Π is involved in the solution of the Andoyer variable �(t) in Chapter
2 as well as in the complete reduction of the problem in Chapter 3. The treatment of the
incomplete elliptic integral of the third kind in Jacobi Theta functions is not a straightforward
task. According [Vallejo (1995)] (page 5), this integral can be put into the form

Π(f ;�∣m) =

∫ �

0

sn2(u∣m)

1 + f sn2(u∣m)
du

= ℳ�+
1

2

sn(a ∣m)

cn(a ∣m) dn(a ∣m)
ln
#4(�− iz, q)
#4(�+ iz, q)

, (A.47)

where 3

m sn2(a∣m) = −f, (A.48)

a =
2K(m)

�
iz, (A.49)

z =
�

2K
F

(
arctan

√
f

m

∣∣∣∣1−m
)
, (A.50)

ℳ = 1 +
sn(a∣m)

cn(a∣m) dn(a∣m)

�

2K(m)

#′4(iz, q)

#4(iz, q)
. (A.51)

It is important to remark that the parameter a can be real or complex depending on the value of
the characteristic f . Indeed, handbooks like [Byrd & Friedman (1971)] show the classification of
those solutions to be taken into account according to the ordinal relation between the modulus
and the characteristic.

On the other hand, as it can be noted, the challenge when trying to express the elliptic Π (a
three parameter function) in Jacobi Theta functions (biparametric functions) is how to add the
characteristic to these functions. The answer to this question lies in Eq. (A.48). It is clear that
by the inclusion of the term sn(a∣m), the characteristic is incorporated to the solution as well
as the modulus.

The connection between Eq. (A.47), (A.46) and (A.38) is not difficult. By replacing (A.51) in
(A.47) we have

Π(f ;�∣m) = �+
sn(a∣m)

cn(a∣m) dn(a∣m)

⎡⎢⎢⎢⎣� �

2K(m)

#′4(iz, q)

#4(iz, q)
+

1

2
ln
#4(�− iz, q)
#4(�+ iz, q)︸ ︷︷ ︸

ΠJacobi≡Eq.(A.46)

⎤⎥⎥⎥⎦ (A.52)

which is actually Eq. (A.38). Note that in Eq. (A.46), our notation sets u = � and v = iz.

3Note that there is a typo in the equivalent formula (A.48): the exponent of the elliptic functions is missing.
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A.4.3 Dealing with formulas of Byrd and Friedman.

We would like to finish coming back to the way this integral is treated at present. Apart from the
literature where fast and efficient computation of these integrals is still a topic of research (see
Fukushima [Fukushima (2012)] and references therein), when we confront it from the analytical
point of view Byrd and Friedman (BF) handbook [Byrd & Friedman (1971)] continues to be a
basic reference.

Figure A.3: Snapshot of one of the six boxes given in [Byrd & Friedman (1971)], corresponding to the
case 0 < k < �2 < 1≡ 0 <

√
m < f < 1, for a third integral evaluation

Just for readers not familiar with BF we offer in Fig. A.3 a snapshot presenting the form in which
their computation is organized. In particular two auxiliary functions Ω and Λ are introduced,
as well as the series expansions of the Theta functions used in applications due to their fast
convergence. Moreover, as parameters k2 = m and �2 = f are involved, several cases have to be
treated separately. A final detail to keep in mind is the different names given in the literature to
the parameters: k2 or m for the modulus and �2, n or square of them for the elliptic parameter.

A.5 Derivative of the Jacobi Zeta function

As shown in Section 4, we are not interested in studying generically the derivatives of the
Zeta-function, but rather in analyzing the necessary derivatives to find the solution of the Lie-
Deprit’s algorithm. Indeed, since such an algorithm only requires the partial derivatives of every
function with respect to the momenta, and both momenta are within the elliptic modulus m
pertaining to the Zeta-function, we are only interested in the derivatives with respect to the
modulus. Nevertheless, as Zeta-function is a biparametric function where the argument ' is
also a function of m, the derivative we are looking for is not actually a partial derivative, but a
total derivative. Thus, taking into account that  is our angle in Section 4, we can state that

dZ( ∣m)

dm
=
∂Z

∂m
+
∂Z

∂ 

(
∂ 

∂m
+
∂ 

∂u

∂u

∂m

)
,  = am(u∣m), (A.53)

107



108 A.5. DERIVATIVE OF THE JACOBI ZETA FUNCTION

and therefore, it is clear that the analytical derivative of the Zeta-function depends on the
function u, which is different according to whether the variables you are using are Ferrer-Lara
or action-angle.

A.5.1 Derivative in Ferrer-Lara variables

Now we have to tackle the derivative given in (A.53) but taking into account that the function
 = am(−ℓ∣m) and hence u = −ℓ. Note therefore that the partial derivative of u with respect
to m is zero, thus we have that

dZ( ∣m)

dm
=
∂Z

∂m
+
∂Z

∂ 

∂ 

∂m
, (A.54)

where

∂Z

∂m
=

1

2m

[
1

1−m
E(m)

K(m)

(
Z
(
am(ℓ∣m)∣m

)
− m sn(ℓ∣m) cn(ℓ∣m)

dn(ℓ∣m)

)
− Z

(
am(ℓ∣m)∣m

)]
, (A.55)

∂Z

∂ 
= dn(ℓ∣m)− E(m)

K(m)

1

dn(ℓ∣m)
, (A.56)

∂ 

∂m
=

1

2m(1−m)

[
dn(ℓ∣m)

(
E
(
am(ℓ∣m)∣m

)
− (1−m) ℓ

)
−m sn(ℓ∣m) cn(ℓ∣m)

]
. (A.57)

Fig. A.4 shows the shape of the above partial derivatives with respect to ℓ. It is clear that the
non-periodicity of the total derivative of Z with respect to the modulus is due to the partial
derivative of  with respect to m, which has a linear contribution according to (A.57). This
circumstance produces an increasing value of the envelope of the total derivative as seen in Fig.
4.3.

KHmL 2KHmL 3KHmL 4KHmL
{

¶ Z@Ψ È mD

¶m

(a)

KHmL 2KHmL 3KHmL 4KHmL
{

¶ Z@Ψ È mD

¶ Ψ

(b)

KHmL 2KHmL 3KHmL 4KHmL
{

¶ Ψ

¶m

(c)

Figure A.4: Graphic representation of the three partial derivatives involved in the calculation of the
total derivative of the Zeta-function with respect to the elliptic modulus in Ferrer-Lara variables.
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A.5.2 Derivative in action-angle variables

We will now tackle the derivative given in (A.53) but taking into account that the function
 = am(−2K(m)'�/�∣m) and hence u = −2K(m)'�/�, thus we have that

∂Z

∂m
=

1

2m

{
1

1−m
E(m)

K(m)

[
Z

(
am

(
2K(m)

�
'�

∣∣∣∣m) ∣∣∣∣m)

−
m sn

(
2K(m)
� '�

∣∣∣∣m) cn

(
2K(m)
� '�

∣∣∣∣m)
dn

(
2K(m)
� '�

∣∣∣∣m)
]
− Z

(
am

(
2K(m)

�
'�

∣∣∣∣m) ∣m)
}
, (A.58)

∂Z

∂ 
= dn

(
2K(m)

�
'�

∣∣∣∣m)− E(m)

K(m)
dn

(
2K(m)

�
'�

∣∣∣∣m)−1

, (A.59)

∂ 

∂m
=

1

2m(1−m)

{
dn

(
2K(m)

�
'�

∣∣∣∣m)[E(am

(
2K(m)

�
'�

∣∣∣∣m)∣∣∣∣m)− (1−m)
2K(m)

�
'�

]
−

m sn

(
2K(m)

�
'�

∣∣∣∣m) cn

(
2K(m)

�
'�

∣∣∣∣m)}, (A.60)

∂ 

∂u
= dn

(
2K(m)

�
'�

∣∣∣∣m), (A.61)

∂u

∂m
= − 1

2m(1−m)

2K(m)

�
'�

[
E(m)

K(m)
− (1−m)

]
. (A.62)

Fig. A.5 shows the shape of the above partial derivatives with respect to '� . By inspecting the
figure, this time it is unclear whether the resulting total derivative is periodic or not since Figs.
A.5(c) and A.5(e) are not periodic. These two figures corresponds with two partial derivatives
within the brackets in (??), hence this part of the derivative should be analyzed more carefully.
Thus, according to Eqs. (A.60)-(A.62), after a few calculations we can write

∂ 

∂u

∂u

∂m
= − 1

2m(1−m)

2K(m)

�
'�

[
E(m)

K(m)
− (1−m)

]
dn

(
2K(m)

�
'�

∣∣∣∣m), (A.63)

∂ 

∂m
+
∂ 

∂u

∂u

∂m
=

1

2m(1−m)

[
dn

(
2K(m)

�
'�

∣∣∣∣m)

×Z

(
am

(
2K(m)

�
'�

∣∣∣∣m)∣∣∣∣m)−m sn

(
2K(m)

�
'�

∣∣∣∣m) cn

(
2K(m)

�
'�

∣∣∣∣m)].(A.64)

It is not difficult to realize that Eq. (A.63) is not periodic due to a linear contribution (see
Fig. A.6(a)) but when the partial derivative of  with respect to m is added, Z appears in
the resulting expression (A.64) making it periodic (see Fig. A.6(b)). It is therefore proved the
periodicity of the total derivative of Z with respect to m in action-angle variables.
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Figure A.5: Graphic representation of the five partial derivatives involved in the calculation of the total
derivative of the Zeta-function with respect to the elliptic modulus in action-angle variables.

A.6 On Jacobi Theta functions

A.6.1 On Jacobi Nome

Due to the difficulty computing and dealing with elliptic functions and integrals in the past, some
efforts were carried out to avoid its manipulation. The classical method is to expand the elliptic
function as a power series of the modulus or the argument, among other similar techniques
rapidly convergent when the modulus is close to zero. Nevertheless, similar and much more
rapidly convergent developments can be obtained when the elliptic function is expanded as a
power series of the Jacobi’s nome instead of the modulus. The Jacobi’s nome is given by

q(m) = exp

(
−�K(1−m)

K(m)

)
, (A.65)

where it is already known that K(m) is the complete elliptic integral of the first kind. Fig. A.7
shows the benefits of using the nome to do the series expansions of elliptic functions.

A.6.2 On Jacobi Theta functions and their use to compute elliptic functions

The Jacobi theta functions are defined by series expansions in the nome, whose definitions may
be found in classical books (see [?, Lawden (1989), Byrd & Friedman (1971)]). Alternatively
modern computer algebra systems recognize these functions and allow us for the automatic
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Figure A.6: Graphic representation of some products and sums of partial derivatives showing that the
total derivative of Z with respect to m is �-periodic in Action-Angle variables.
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Figure A.7: Graphic representation of the Jacobi Nome (green) with respect to the modulus m (blue).
Note the differences with the modulus itself.

computation of their series expansions in the nome. In our case we take and use the following
definition from Mathematica c⃝4

#1(�, q) = 2q1/4∑∞
j=0(−1)jqj(j+1) sin[(2j + 1)�], (A.66)

#2(�, q) = 2q1/4∑∞
j=0q

j(j+1) cos[(2j + 1)�], (A.67)

#3(�, q) = 1 + 2
∑∞

j=1q
j2cos(2j�), (A.68)

#4(�, q) = 1 + 2
∑∞

j=1(−1)jqj
2
cos(2j�), (A.69)

where the argument � is given by

� =
�

2K(m)
u. (A.70)

being � an angular variable coming from the Jacobi Amplitude u.

Fig. A.8 shows a graphic representation of the four Jacobi Theta functions for different values
of the modulus. Note the remarkable differences when m is close to zero and when is close to
one. Note further the tiny variation of �3 and �4 when m is small.

Once known the series expansions of the Jacobi Theta functions, according to [Vallejo (1995),

4Note that in Lawden’s book [Lawden (1989)] we have # ≡ �.
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Figure A.8: Graphic representation of the Jacobi Theta functions for different values of the modulus:
m = {0.01, 0.5, 0.99}.
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Figure A.9: (a)-(c) Differences between the sn(u∣m) by Mathematica and its truncated version up to
j = 1 by Jacobi theta functions (s̃n(u∣m)) for three different values of the modulus. (d)-(f) The same as
the previous set with the function dn(u∣m).

Lawden (1989)], the three main Jacobi elliptic functions can be put into the form

sn(u∣m) =
1

4
√
m

#1(�, q)

#4(�, q)
, (A.71)

cn(u∣m) =
4

√
1−m
m

#2(�, q)

#4(�, q)
, (A.72)

dn(u∣m) = 4
√

1−m #3(�, q)

#4(�, q)
. (A.73)
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To illustrate the order of approximation according to Theta functions, Fig. A.9 shows the
differences between the programmed elliptic functions sn(u∣m) and dn(u∣m) by Mathematica
and the same functions expressed in Theta functions and only truncated up to j = 1. It can
be appreciated that the error grows up with the modulus. Note further that Fig. A.9(b) and
A.9(e) have been included in this set of pictures because they show the two elliptic functions
involved in the disturbing function for the value of m obtained from the initial conditions given
in the previous chapter. For these conditions, assuming that the Mathematica version of the
functions provides the most exact value, the error for our value of m when truncated up to
order j = 1 ≡ O(q9/4) is 10−7 for sn(u∣m) and 10−8 for dn(u∣m). At this point it is important
to recall that the value of the small parameter of our perturbing function (nC/M)2 is about
10−3, hence an approximation of 10−7 is apparently good enough. As well, the treatment of the
elliptic integral of the third kind, which is also involved in the solution of the problem, can be
found in A.4.2 and [Byrd & Friedman (1971), ?].

A.7 On Fourier series of elliptic functions

As it is well known, one of the classical ways to handle elliptic functions is to expand them
as Fourier series in the nome. This was carried out, for instance, by [Sadov (1970b)] and
[Vallejo (1995)]. In their works, both authors had to deal with products of elliptic functions
according to the perturbing function studied, that is, products and quotients of Theta func-
tions. Since this task can firstly be tedious, we think it is useful to show the process followed to
obtain a Fourier expansion of the elliptic function sn(u∣m). Even though this effort has already
been accomplished by [Whittaker & Watson (1927)] (page 510) or [Wang & Guo (1989)] (page
567), we will show the process in more detail.

Indeed, as shown in [Whittaker & Watson (1927)], since sn(u∣m) is an odd function, it may be
put into the form

sn(u∣m) =
∞∑
n=1

bn sin(nx) (A.74)

where

u =
2 K(m)

�
x, 0 ≤ x ≤ 2�, (A.75)

and bn are the coefficients of the expansion. To obtain these coefficients of the serie, according
to [Oppenheim et. al. (1927)], we multiply by eimx both sides of the equation (A.74) and we
take the integral within a period. Thus∫ T/2

−T/2
sn(u∣m)eikx =

∞∑
n=1

bn

∫ T/2

−T/2
eikx sin(nx)dx. (A.76)

Taking into account that sin(nx) = (einx − e−inx)/(2i), the above quadrature can be expressed
as∫ T/2

−T/2
eikx sin(nx)dx =

∫ T/2

−T/2
eikx

einx − e−inx

2i
dx =

1

2i

[∫ T/2

−T/2
ei(k+n)xdx−

∫ T/2

−T/2
ei(k−n)xdx

]
(A.77)

113



114 A.7. ON FOURIER SERIES OF ELLIPTIC FUNCTIONS

which, by the Euler relation eix cosx+ i sinx, can be reordered yielding∫ T/2

−T/2
eikx sin(nx)dx =

1

2i

[ ∫ T/2

−T/2
cos[(k + n)x]dx+ i

∫ T/2

−T/2
sin[(k + n)x]dx

−
∫ T/2

−T/2
cos[(k − n)x]dx− i

∫ T/2

−T/2
sin[(k − n)x]dx

]
. (A.78)

Observe that, if k ∕= n, then the above four quadratures are equal to zero. However, if k = n,
then all the quadratures are again equal to zero except for∫ T/2

−T/2
cos[(k − n)x]dx =

∫ T/2

−T/2
dx = T (A.79)

therefore, substituting it in (A.76) we get∫ T/2

−T/2
sn(u∣m)einx = −T

2i
bn (A.80)

and taking into account that sn(u∣m) is 2�-periodic in the variable x, we may finally write

i� bn =

∫ �

−�
sn(u∣m)einx. (A.81)

Now we have to compute the above quadrature. As getting the primitive function can be very
complicated, we will evaluate the quadrature by the Cauchy integral theorem, that is, by com-
puting the residues of the function at the poles inside a period parallelogram C as shown in Fig.
A.10(b) (see [Whittaker & Watson (1927), Armitage & Eberlein (1972), Hall (1995)] for further
details). Note that the corners of the parallelogram are located at the points −�, �, ��,−2�+��
where

� = i
K(1−m)

K(m)
(A.82)

and note also that −� + ��/2 and ��/2 are the only two poles of the integrand inside the
contour.

The Laurent series expansions of the function sn(u∣m) around these poles are, respectively5

sn

[
2K(m)

�

(
x− � +

��

2

) ∣∣∣∣m] = − �

2
√
mK(m)

1

x
− 1 +m

3�
√
m
x+ . . . (A.83)

sn

[
2K(m)

�

(
x+

��

2

) ∣∣∣∣m] =
�

2
√
mK(m)

1

x
+

1 +m

3�
√
m
x+ . . . (A.84)

Since the residue of any pole is defined as the coefficient of the term x−1 in the corresponding
Laurent expansion, then we may write

Res
[
sn(u∣m)einx,−� +

��

2

]
= − �

2
√
mK(m)

e−i�n+in��/2 (A.85)

Res
[
sn(u∣m)einx,

��

2

]
=

�

2
√
mK(m)

ein��/2. (A.86)

5Note that the Laurent expansion around the poles can be obtained with Mathematica as a Taylor expansion
around the origin of the function shifted the value of the pole.
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Figure A.10: Location of poles and zeros of the function ∣sn[2K/�(x+ iy)∣m]∣. The value of � is given
in (A.82). (a) Modular surface. (b) Period parallelogram where circles correspond to zeros and crosses
represent poles of the function.

and therefore∫
C

sn(u∣m)einx =

{∫ �

−�
+

∫ ��

�
+

∫ −2�+��

��
+

∫ −�
−2�+��

}
sn(u∣m)einx (A.87)

= 2�i

(
�

2
√
mK(m)

ein��/2 − �

2
√
mK(m)

e−i�n+in��/2

)

=
i�2

√
mK(m)

qn/2{1− (−1)n}. (A.88)

Note that, from the periodic properties of sn(u∣m) and einx, by applying the change z = x+ 2�
to the fourth quadrature in (A.87) we see that∫ ��

�
+

∫ −�
−2�+��

=

∫ ��

�
+

∫ �

��
= 0 (A.89)

and therefore, from (A.87) and (A.88) and taking into account (A.89), we may write{∫ �

−�
−
∫ ��

−2�+��

}
sn(u∣m)einx =

i�2

√
mK(m)

qn/2{1− (−1)n}. (A.90)

In turn, again from the periodic properties of sn(u∣m) and einx, by applying the change z =
x+ � − �� to the second quadrature in (A.90) we see that6∫ ��

−2�+��
sn(u∣m)einx =

∫ �

−�
sn

[
2K(m)

�
(z + �� − �)∣m

]
ein(z+��−�)

= −(−1)nqn
∫ �

−�
sn(u∣m)einx. (A.91)

6Note that sn
[

2K(m)
�

(x− �� + �)∣m
]

= −sn
[

2K(m)
�

x∣m
]
.
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and substituting it in (A.90), we have

{1 + (−1)nqn}
∫ �

−�
sn(u∣m)einx =

i�2

√
mK(m)

qn/2{1− (−1)n}. (A.92)

Now, taking into account (A.81), the coefficients of the Fourier serie are

bn =
�√

mK(m)

qn/2{1− (−1)n}
{1 + (−1)nqn}

. (A.93)

However, note that when n is even, then bn = 0; but when n is odd we have

bn =
2�√

mK(m)

qn/2

1− qn
. (A.94)

and therefore

sn(u∣m) =
2�√

mK(m)

{
q1/2 sinx

1− q
+
q3/2 sin 3x

1− q3
+
q5/2 sin 5x

1− q5
+ . . .

}
, x ∈ ℝ. (A.95)

Nevertheless, both sides of the last equation are analytic in the strip ∣Im(x)∣ < �/2 Im(�), hence
by the theory of analytic continuation, we finally have

sn(u∣m) =
2�√

mK(m)

∞∑
n=0

qn+1/2

1− q2n+1
sin[(2n+ 1)x] (A.96)

where

u =
2 K(m)

�
x, 0 ≤ x ≤ 2�. (A.97)
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