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TESI DOCTORAL UPF / 2013

Directors de la tesi

Dr. Xavier Serra i Dr. Jordi Janer
Department of Information and Communication Technologies





This dissertation is dedicated to my family and loved ones.





Acknowledgments

I wish to thank the Music Technology Group (MTG) at the Universitat
Pompeu Fabra (UPF) for creating such a great environment in which to
work on this research. I especially want to thank my supervisors Xavier
Serra and Jordi Janer for giving me this opportunity and their support
during the whole process. I also want to express my deepest gratitude to
the Yamaha Corporation and their Monet research team formed by Keita
Arimoto, Sean Hashimoto, Kazunobu Kondo, Yu Takahashi and Yasuyuki
Umeyama, without whom this work would not have been possible. I also
want to thank MTG’s signal processing team composed of Merlijn Blaauw,
Jordi Bonada, Graham Coleman, Saso Musevic and Marti Umbert with
whom we had many fruitful discussions that became the seeds of the research
conducted here.

Another special thanks goes to the Music Cognition Group at the ILLC
/ University of Amsterdam with Henkjan Honing, Leigh Smith and Olivia
Ladinig who invited me to stay and do research with them for a while. There
I learned a lot about how we humans perceive music and how this can be
taken into account when processing these types of signals.

Many thanks to all the researchers with whom I have collaborated, discus-
sed and shared great moments over these years. Some of these are Eduard
Aylon, Andreas Beisler, Dmitry Bogdanov, Òscar Celma, Maarten de Boer,
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Abstract

Source separation in digital signal processing consists in finding the original
signals that were mixed together into a set of observed signals. Solutions to
this problem have been extensively studied for musical signals, however their
application to real-world practical situations remains infrequent. There are
two main obstacles for their widespread adoption depending on the scenario.
The main limitation in some cases is high latency and computational cost.
In other cases the quality of the results is insufficient. Much work has gone
toward improving the quality of music separation under general conditions.
But few studies have been devoted to the development of low-latency and
low computational cost separation of monaural signals, as well as to the
separation quality of specific instruments.

We propose specific methods to address these issues in each of these scena-
rios independently. First, we focus on methods with low computational cost
and low latency. We propose the use of Tikhonov regularization as a method
for spectrum decomposition in the low-latency context. We compare it to
existing techniques in pitch estimation and tracking tasks, crucial steps in
many separation methods. We then use the proposed spectrum decompo-
sition method in low-latency separation tasks targeting singing voice, bass
and drums. Second, we propose several high-latency methods that improve
the separation of singing voice by modeling components that are often not
accounted for, such as breathiness and consonants. Finally, we explore using
temporal correlations and human annotations to enhance the separation of
drums and complex polyphonic music signals.
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Resum

En el camp del tractament digital de senyal, la separació de fonts consisteix
en l’obtenció dels senyals originals que trobem barrejats en un conjunt de se-
nyals observats. Les solucions a aquest problema s’han estudiat àmpliament
per a senyals musicals. Hi ha però dues limitacions principals per a la seva
aplicació generalitzada. En alguns casos l’alta latència i cost computacional
del mètode és l’obstacle principal. En un segon escenari, la qualitat dels
resultats és insuficient. Gran part de la recerca s’ha enfocat a la millora
de qualitat de separació de la música en condicions generals, però pocs es-
tudis s’han centrat en el desenvolupament de tècniques de baixa latència i
baix cost computacional de mescles monoaurals, aix́ı com en la qualitat de
separació de instruments espećıfics.

Aquesta tesi proposa mètodes per tractar aquests temes en cadascun dels
dos casos de forma independent. En primer lloc, ens centrem en els mètodes
amb un baix cost computacional i baixa latència. Proposem l’ús de la
regularització de Tikhonov com a mètode de descomposició de l’espectre
en el context de baixa latència. El comparem amb les tècniques existents
en tasques d’estimació i seguiment dels tons, que són passos crucials en
molts mètodes de separació. A continuació utilitzem i avaluem el mètode
de descomposició de l’espectre en tasques de separació de veu cantada, baix
i percussió. En segon lloc, proposem diversos mètodes d’alta latència que
milloren la separació de la veu cantada, gràcies al modelatge de components
espećıfics, com la respiració i les consonants. Finalment, explorem l’ús de
correlacions temporals i anotacions manuals per millorar la separació dels
instruments de percussió i dels senyals musicals polifònics complexes.
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Resumen

En el campo del tratamiento digital de la señal, la separación de fuentes
consiste en la obtención de las señales originales que han sido mezcladas
en un conjunto de señales observadas. Las soluciones a este problema se
han estudiado ampliamente para señales musicales. Hay dos limitaciones
principales para su adopción generalizada. En algunos casos la alta latencia
y coste computacional es el mayor obstáculo. En un segundo escenario, la
calidad de los resultados es insuficiente. Gran parte de la investigación se ha
enfocado en la mejora de la calidad de separación de la música en condiciones
generales, pero pocos estudios se han centrado en el desarrollo de técnicas de
baja latencia y bajo coste computacional de mezclas monoaurales, aśı como
en la calidad de separación de instrumentos espećıficos.

Esta tesis propone métodos para tratar estos temas en cada uno de los ca-
sos de forma independiente. En primer lugar, nos centramos en los métodos
con un bajo coste computacional y baja latencia. Proponemos el uso de la
regularización de Tikhonov como método de descomposición del espectro
en el contexto de baja latencia. Lo comparamos con las técnicas existentes
en tareas de estimación y seguimiento de los tonos, que son pasos cruciales
en muchos métodos de separación. A continuación utilizamos y evaluamos
el método de descomposición del espectro en tareas de separación de voz
cantada, bajo y percusión. En segundo lugar, proponemos varios métodos
de alta latencia que mejoran la separación de la voz cantada, gracias al
modelado de componentes que a menudo no se toman en cuenta, como la
respiración y las consonantes. Finalmente, exploramos el uso de correlacio-
nes temporales y anotaciones manuales para mejorar la separación de los
instrumentos de percusión y señales musicales polifónicas complejas.
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Résumé

Dans le domaine du traitement du signal, la séparation de source consiste
à obtenir les signaux originaux qui ont été mélangés dans un ensemble de
signaux observées. Les solutions à ce problème ont largement été étudiés
pour l’application à la musique. Il existe deux principales limitations. La
première est une latence et un coût de calcul élevés. La seconde est une
qualité insuffisante des résultats. Une grande partie de la recherche actuelle
s’est concentrée à améliorer, dans le cas générale, la qualité de séparation de
la musique. Peu d’études ont été consacrées à minimiser la latence et le coût
de calcul des techniques, ainsi qu’à la qualité de séparation d’instruments
spécifiques.

Cette thèse propose des méthodes pour aborder ces deux questions indépen-
damment. Dans un premier temps, nous nous concentrons sur les méthodes
à faibles coût de calcul et de latence. Pour cela, nous proposons d’utiliser la
régularisation de Tikhonov en tant que méthode de décomposition spec-
trale. Nous la comparons à des techniques existantes dans le cadre de
l’estimation et de suivi des tons, qui sont des étapes cruciales pour de nom-
breux procédés de séparation. Nous avons aussi utilisé et évalué la méthode
de décomposition spectrale pour la séparation de voix chantée, de basse et
de percussion. Dans un second temps, nous proposons des méthodes à la-
tence élevée. La modélisation des composants qui ne sont souvent pas pris
en compte, comme la respiration et les consonnes, nous permet d’améliorer
la séparation de voix chantée. Nous explorons l’utilisation de corrélations
temporelles et annotations manuelles pour améliorer la séparation des ins-
truments de percussion et les signaux musicaux polyphoniques complexes.
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Chapter 1

Introduction

During the past few decades we have witnessed exponential growth in com-
puting power, motivating the development of digital audio systems and
new audio processing techniques and algorithms. This technological de-
velopment provided professional audio engineers with new tools that go
beyond their counterparts in the traditional analog domain such as filters
or compressors. There has also been an enormous decrease in the cost
of computational devices which translates into a democratization of these
tools. This is giving birth to a community of audio enthusiasts who search
for a more intuitive interaction with digital audio. The roles and the re-
lations between musicians and audience are changing, leading to proactive
listening habits in contrast to the traditional passive music-listening expe-
rience. These circumstances have led to a significant amount of research
in high-level representations, descriptions, generation and manipulation of
audio signals, and more specifically, of music.

The field of psychoacoustics has focused on understanding and mimicking
the human auditory system. Bregman (1990) presented a series of psy-
choacoustical studies that set the basis for understanding human listening
capabilities in sound segregation. Wang (1998) introduced the concept of
Computational Auditory Scene Analysis (CASA), systems designed to sep-
arate mixtures of sound sources in the same way that human listeners do.
Research in CASA systems aims to explain how the human auditory sys-
tem works and how the human brain “makes sense” of the binaural audio
stream.

Research in the domain of mathematics and statistics has been targeting the
separation or isolation of signals, developing a field known as Blind Signal

3
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Separation or Blind Source Separation (BSS). Jutten and Herault (1991)
and Comon (1994) were the pioneer contributors with the proposal of Inde-
pendent Component Analysis (ICA), which allowed separating signals based
on two assumptions: statistical independence and not being Gaussian. Since
then there have been multiple methods with the same goal, but focusing on
specific types of signals such as audio and music. Recently the focus has
shifted towards factorization techniques like Non-negative Matrix Factoriza-
tion (NMF) (Smaragdis and Brown, 2003) that exploit the non-negativity
of the factors.

In recent years we have seen enormous growth in the number of people using
mobile devices. Mobile platforms impose constraints such as low computa-
tional power and limited memory on digital audio processing methods. Fur-
thermore new forms of human-computer interaction such as touch screens,
depth cameras and others are promoting the use of manual intervention in
the source separation process. Finally, recent developments in the world
of robotics are motivating the use of source separation methods in embed-
ded computing. These facts translate into a growing interest in low-latency
and realtime source separation methods. While these types of methods
have been extensively researched in communications signals, they have only
rarely targeted music signals (Vinyes et al., 2006; Ono et al., 2008a).

Low-latency source separation methods proposed until now were usually
based on multiple sensors. In robotics and communications this is feasible
because the capture process can be controlled by adding more microphones.
Music mixtures, on the other hand, are created by sound engineers and pro-
ducers, and the consumer typically does not have access to or information
about the mixing process. However a large number of music mixtures are
available in stereo format and therefore the separation process can often
access two different channels. This has led the research in low-latency re-
altime music separation to focus on multiple-sensor scenarios. These music
separation methods have limited scope since the assumptions about the
mixing processes and the requirement of multiple channels are not always
valid. The sources in music mixtures are not always panned differently in
the stereo image and there is still a significant amount of music in mono
format, where only a single channel is available.

On the other hand, the increasing computational power of desktop comput-
ers and their presence in many households is motivating the use of com-
putationally expensive source separation methods in consumer products.
In this scenario the main limitation is the quality of the results. Recent
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methods for music signals have significantly improved separation quality
and accuracy over previous techniques. However current state-of-the-art
methods are still unacceptable for many commercial uses. By narrowing
the scope of the task and the range of target instruments, one may ex-
ploit further assumptions or previous knowledge and improve the quality of
existing high-latency, computationally expensive techniques.

1.1 Applications

Advancements in computational models of human sound segregation have
seen many applications over the years. Audio compression and hearing aid
systems have benefited from findings in the field of psychoacoustics and
from systems such as CASA. Blind source separation methods have been
applied in many diverse fields, ranging from medical imaging and computer
vision to speech enhancement.

In this work we concentrate on blind source separation methods for audio
signals or Blind Audio Source Separation (BASS). Working towards the
creation of a BASS evaluation framework, Vincent et al. (2003) presented
a typology of the different BASS tasks. This study proposed a distinction
between two main groups of applications. Audio Quality Oriented (AQO)
tasks are those whose output consists of a set of extracted sources intended
for listening. Significance Oriented (SO) tasks, on the other hand, use the
extracted sources or mixing parameters to obtain other information at an
abstract level.

We present several applications of blind audio source separation methods
that serve as motivation to work on this problem. These possible appli-
cations are also interesting for defining future lines of work and further
delimiting the constraints under which the problem is framed.

We first briefly present applications for general audio signals. We then
describe separation applications for music signals, and finally discuss a series
of tasks related to the specific context of low-latency and realtime scenarios.

Audio source separation

Source separation applied to audio signals was first used in the field of com-
munications. One of the most popular problems in this domain is known
as the cocktail party effect. Cherry (1953) describes it as the ability of a
human to follow the conversation of a single speaker in a highly noisy en-
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vironment. The noisy environment may include other talkers, background
noise or music, and humans are able to understand the conversation even
when the interfering sources have an energy level similar to that of the
source on which the listener is focusing. Methods for source separation
have often been used to enhance the audio quality of target speech in com-
munication systems. These sorts of tasks would fall into the AQO category
described above. The enhancement of audio signals has also been used in
non-communication tasks. For example, the restoration of old audio record-
ings has used source separation techniques to achieve better results. Audio
imputation consists in restoring missing or corrupted regions in the time-
frequency representation of an audio signal. Recently we have seen some
researchers (Han et al., 2012) focusing on this task from a source separation
perspective.

On the other hand, several applications target the extraction of source-
specific information other than the audio signal from the mixtures. Re-
searchers have long been working on Automatic Speech Recognition (ASR)
systems that are able of transcribing speech and identifying speakers from
audio recordings. In line with the cocktail party effect problem, recently we
have observed an increasing interest in ASR from audio mixtures (Di Per-
sia et al., 2007; Persia et al., 2008; Marti et al., 2012). These efforts have
not been limited to speech signals, lately we have seen a growing interest
in other common environmental sounds, such as the detection and classifi-
cation of acoustic scenes and events (Aucouturier et al., 2007; Giannoulis
et al., 2013).

Motivated by the questions raised in the domain of psychoacoustics and
needs arising in the field of robotics, there has been extensive work on acous-
tic source localization (Blauert, 1983; Knapp and Carter, 1976; Schmidt,
1986; Asano et al., 1999). These methods are often based on source sepa-
ration methods such as beamforming.

Music source separation

Music signals are especially interesting targets for source separation meth-
ods. We often find many more sources (instruments) than mixtures (chan-
nels) in music which renders the task quite difficult. Due to harmony and
rhythm there is a large amount of structure and a priori knowledge in the
signals. However there is also a lot of overlap between sources which makes
the problem yet more challenging.
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One of the most difficult applications of music source separation is to isolate
the sounds produced by the different instruments of a song. This process
is often called “unmixing” or “demixing”, and the goal is to produce a
multitrack recording from a mono or stereo version of a recorded piece of
music. In the optimal scenario, the recovered audio tracks would have the
same quality as if they were recorded separately. This task clearly belongs
to the AQO category proposed by Vincent et al. (2003). In some cases the
task consists in recovering the dry sources, without any applied effects such
as reverb or delays. “Unmixing” is a complex task and current methods
are far from achieving satisfactory results, except for some very specific
situations.

A more attainable goal from a quality point of view is the process of “remix-
ing”. This task consists in performing transformations to the individual
unmixed sources and mixing them back together. When the recovered and
transformed sources are remixed, many of the artifacts and interferences
may be masked, reducing significantly the audible errors. This process has
many applications in the context of audio post-production. Recently, prod-
ucts that provide this solution, such as the Direct Note Access extension for
Melodyne (Celemony Software GmbH, 2009), are generating a lot of interest
from music producers and sound engineers.

The “remixing” process is also used to create specific mixes for different
speaker configurations when the original multitrack version is not available.
This task is named “downmixing” or “upmixing” depending on whether the
speaker configuration has fewer or more channels than the original. With
the increase in 3-D audio setups, the use of audio source separation for these
tasks is gaining traction (Shim, 2009; Fitzgerald, 2011). Some applications
only require removing one specific instrument from the mix, resulting in so-
called “minus-one” mixes. This kind of process is used to create karaoke
versions from mono or stereo recordings or practice versions of songs for
musicians.

There are also several source separation applications in the SO category
related to the field of music. Music Information Retrieval (MIR) research
focuses on automatically extracting meaningful information such as instru-
ment recognition, beat detection or polyphonic transcription from music
signals. Very often researchers target the analysis of music signals with
multiple simultaneous instruments, in such cases source separation methods
may be used as a preprocessing step. Burred (2008) takes a source sepa-
ration approach to polyphonic instrument recognition. Zapata and Gómez
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(2013) remove the singing voice in order to improve accuracy of beat esti-
mation and tracking methods.

Another field benefiting from music source separation is audio compression
(Vincent and Plumbley, 2005). Audio compression seeks to achieve a faith-
ful representation of the audio signal in a condensed form. Source separation
techniques usually lead to sparse representations of the music signals, which
help in reducing redundancies.

Realtime/low-latency separation

Realtime audio processing is becoming an important research topic in the
fields of communications, robotics and music. Realtime processing on most
devices often requires low latency and low computational costs. Addition-
ally audio techniques on certain embedded devices need to work under lim-
ited memory conditions. Many recent applications impose these require-
ments on the use of source separation methods.

In communication technologies, many researchers are exploring the advan-
tages of employing realtime source separation methods for denoising and
speech enhancement (Joder et al.; Duan et al., 2012). With the boom in
home automation and humanoid robots, robot audition is becoming an im-
portant field of research. In scenarios where multiple sound sources are
present, such as office or outdoor environments, source separation is often
used to detect, localize and recognize acoustic events (Asano et al., 2001;
Nakadai et al., 2006; Valin et al., 2007). In most cases the response time
of the robot must be short and therefore low-latency processing is often
necessary. Hearing aids present another application area where realtime
and low-latency source separation is crucial. For a long time, hearing aids
have been exploiting beamforming techniques to improve the listening of
humans. Recently we have seen increasing interest in improving cochlear
implants in contexts where music signals are present by means of other
source separation methods (Hidalgo, 2012).

Low computation cost and low-latency source separation also has many
applications specifically for music signals. The widespread availability of
music from online sources in streaming mode is motivating the creation of
source separation techniques which can quickly process large collections and
can operate on the data as it arrives (Dessein et al., 2010). Interactive music
editing applications often require low-latency responses to user input. In
these cases low-latency source separation can be used to achieve immediate
previews while editing (Celemony Software GmbH, 2009).
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High-latency/computationally expensive separation

There are many music source separation applications where response time
is not a restriction. In these cases the main goal is often to perform the
separation that will lead to results with the highest possible perceptual
quality while keeping interference between the sources to a minimum. Ex-
amples of this type of application can be found in Digital Audio Worksta-
tions (DAW). These are starting to include functions to perform pitch and
temporal modifications of individual notes in polyphonic music mixtures
(Celemony Software GmbH, 2009). Fast response time in rendering the
modified audio is less important than high quality separation in this type of
application. Karaoke system developers are also exploring the use of blind
source separation methods to automatically generate versions of commer-
cially available songs without vocals. Since the version can be generated
before the reproduction, the process can take a long time for computation.
The main goal is to completely remove the voice source without producing
perceivable artifacts. This type of “minus-one” process can also be applied
in other contexts such as in music performance training. Another field in-
terested in high-quality separation regardless of computational cost is the
entertainment industry. Restoration or dubbing of old films often requires
processing separately signals of different audio sources which are only avail-
able in a mixture (Burred and Leveau, 2011; Pedone et al., 2011).

1.2 Motivation and Objectives

This dissertation focuses on source separation methods for western commer-
cial monaural and stereo music. The main motivation is the use of source
separation methods for musical signals in a wide spectrum of practical situa-
tions. Currently source separation methods are used mainly in research and
rarely exploited in real-world applications. Several companies have pointed
out that in some situations the quality of music source separation methods
may be acceptable but the methods are not used because they are too com-
putationally expensive and too slow. In other situations the computational
cost and latency may be acceptable, however the separation quality is not
high enough.

Nowadays low latency and memory restrictions constraints are becoming
common due to the increase in low cost computing devices. The growing
availability of music streamed via the Internet and the desire to manipulate
it on mobile or embedded devices makes achieving fast, low-computational-
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cost source separation methods for music more necessary.

In settings where computation and memory constraints are not an issue,
current source separation methods have often targeted general solutions to
accommodate most signal types. In real world applications we may reduce
the scope of the problem by targeting specific types of music and sources.
By sacrificing generality and restricting the set of targeted sources we may
further exploit a priori knowledge and increase separation quality.

The objective of this thesis is to design, develop and evaluate methods for
separating musical components found in commercial western music which
are practical for use in a wide variety of real-world applications. This work
belongs in the context of AQO (Audio Quality Oriented) applications as
described above, where the property of interest is the audio quality of the
isolated sources.

The strategy used to achieve the objective is to take different research paths
for the low-latency and high-latency scenarios. In low-latency scenarios the
signal must be processed as it arrives and often has constraints on memory
consumption and computational cost. If the processing is fast enough it may
lead to real-time processing that can have a wide range of applications. In
high-latency situations we assume access to large blocks of data which often
requires higher memory consumption and greater computational complex-
ity. However the quality of the separation can be significantly improved,
since more information is available at the moment of processing.

1.3 Context of the Study

This work was done in the Music Technology Group (MTG), Universitat
Pompeu Fabra (UPF) in Barcelona. The research presented in this disserta-
tion was conducted under the umbrella of the Monet project, a 3-year joint
research project with the Yamaha Corporation. The goal of the project was
to develop practical methods to produce minus-one mixes of commercially
available western popular music signals. Minus-one mixes are versions of
music signals where all instruments except the targeted one are present.

1.4 Presentation of Contributions

This dissertation comprises three main contributions. First, we perform
an extensive review of source separation methods with a special focus on
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those applied to musical signals and based on Non-negative Matrix Factor-
ization. Second, we propose a new spectrum factorization technique based
on Tikhonov regularization, which is simple, intuitive and computationally
less expensive than NMF, making it specially interesting for contexts in
which low-latency processing is sought. This technique is evaluated in a
series of applied tasks comprising single and multiple pitch estimation and
singing voice, bass and drums separation. Third and last, we propose a set
of enhancements to state of the art source separation techniques in high-
latency and semi-supervised scenarios. Due to the context of this study as
a collaboration with a corporation, all the developments in this dissertation
focus principally on western popular music widely available commercially
and on practical real-world situations.

1.5 Organization

This thesis is divided into four main parts: Part I provides an introduction,
context and a review of the state of the art. Part II is devoted to low-latency
scenarios. Part III is dedicated to high-latency cases. And Part IV contains
conclusions and suggestions for future research directions. Figure 1.1 shows
the thematic dependencies between the chapters.

Part I: Chapter 1 is this Introduction.

Chapter 2 is a definition of the context and the problem. It starts by
presenting a formal definition of the source separation problem and the
elements involved. It then reviews the possible representations of signals
involved in source separation tasks. Next it discusses the different types of
mixing processes, the generated mixtures and their nature. Chapter 2 also
provides an overview of the types of sources and their properties. It contains
a definition of the target conditions, constraints and scenario. Lastly, it
describes the typical evaluation frameworks and datasets employed in the
field.

Chapter 3 is an exhaustive review of state of the art techniques in the field of
source separation. The presentation is structured by order of generality and
applicability to our target scenario. It begins with general statistics-based
methods and continues with a review of beamforming techniques. Special
attention is dedicated to music signal modeling and spectrum decomposition
methods which are commonly applied in our context.

Part II: Chapter 4 introduces Tikhonov regularization as an alternative to
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NMF under low-latency and low computational costs constraints, and con-
siders the tasks of pitch and multipitch estimation as application domains.

Chapter 5 focuses on source separation applications of the Tikhonov regular-
ization spectrum decomposition method. It presents experiments covering
three instruments: singing voice, bass and drums.

Part III: Chapter 6 is dedicated to improvements of current high-latency
separation methods with a focus on singing voice, drums and mixes with
multiple monophonic sources. Regarding the singing voice, it considers two
common issues with current separation methods. First a technique to es-
timate and separate the breathiness component of the voice is presented.
Second, a method to estimate and separate the unvoiced fricative conso-
nants is proposed. With respect to drums, this chapter explores the use
of regularizations and constraints based on transient estimation and man-
ual annotations to enhance the isolation of percussive sources. Finally, the
chapter contains a section dedicated to the use of multiple pitch annota-
tions for the separation of music mixes with multiple harmonic sources,
often encountered in classical music pieces.

Part IV: Chapter 7, presents the conclusions and a summary of the contri-
butions and results. It also suggests potential future directions for research.
Finally, it contains a compilation of the outcomes of this work.
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Figure 1.1: Overview of thematic dependencies.





Chapter 2

Audio Source Separation
Basics

The best choice of Blind Audio Source Separation (BASS) methods is highly
dependent on the a priori information we have and the assumptions we can
make regarding the properties of the sources and the mixing process. In this
chapter we define a global framework for the source separation problem. We
review the different types of mixtures and sources involved and how these
affect the difficulty of the task.

2.1 Problem Definition and Classification

The problem of source separation consists in retrieving one or more source
signals given a set of one or more observed signals in which the sources are
mixed. The observed signals are sometimes referred to as observations, sen-
sors or mixtures and the sources are sometimes referred to as components.
The concept of mixture is very general and can include any function of the
set of original source signals. We can express a given set of observed signals
in the following way:

(vo[n])1≤o≤NO = f
(

(xm[n])1≤m≤NM

)
(2.1)

where (vo[n])1≤o≤NO are the observed signals (or mixture) and (xm[n])1≤m≤NM
are the source signals we want to retrieve. f is a mixing function that gen-
erates a set of observed signals given a set of source signals.

15
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Formulated in such way the problem is very general and open. However,
depending on the field of application and the task at hand, there are nu-
merous assumptions, approximations and/or bits of prior knowledge that
can be used to render the problem more tractable.

Four main characteristics of the problem are determinant to the difficulty
and approach chosen:
– The properties and knowledge of the mixing process f
– The properties and knowledge of the sources xm[n]
– The ratio between the number of mixtures and sources NM

NO
– Conditions and constraints on the separation procedure
O’Grady et al. (2005) presented a survey of different methods with a classi-
fication depending on several of these properties. We will now present these
characteristics in somewhat more detail.

2.2 Signal Representation

The sources and mixtures in our context are acoustic signals. The most
common representation of an acoustic signal is the audio waveform. The
waveform is a function in time of the sound pressure level. For most common
applications the waveform is sampled at regular time intervals, which results
in a digital signal or sampled waveform. An acoustic signal s(t) and the
sampled waveform s[n] can be expressed as:

s(t) ∀t ∈ R+ (2.2)

s[n] = s(n ∗ TS) ∀n ∈ Z+ (2.3)

where TS is the sampling period TS = 1/FS . When the signal is finite in
time, then the sampled waveform is only defined for a given limited range
n ∈ [0, NT ].

The sampled waveform representation of an acoustic signal is used for many
applications. However in most tasks other representations have proven more
useful. Temporal signals can be represented in different domains or sup-
ports. The representation of the signal has a large influence on its properties
and the techniques that we can use. A generic way to express a temporal
signal is known as additive expansion. This consists in representing the
signal as the weighted sum of a set of expansion functions.

s[n] =

Nω∑
ω=0

cωbω[n] (2.4)
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where cω are the expansion coefficients and bω[n] are expansion functions
or basis components.

If our signal s[n] has finite length NT and our basis expansion set has a finite
number Nω of basis functions that are also limited in the time support
bω[n] for n ∈ [0, NT − 1], Equation 2.4 can be expressed as a matrix
expression:

s = Bc (2.5)

where s is a column vector containing the values of our signal s = (s[0], s[1]
. . . s[NT−1]). c is a column vector containing the expansion coefficients c =
(c[0], c[1] . . . c[Nω − 1]) and B is an NT ×Nω matrix whose column vectors
bω are the vector representations of the basis functions bω = (bω[0], bω[1]
. . . bω[NT − 1]).

Using the additive expansion expression, the temporal representation of our
signal can be rewritten as an expansion over time-shifted impulses:

s[n] =

NT−1∑
k=0

ctωδ[n− k] (2.6)

where the expansion coefficients are simply the waveform samples ctω = s[ω].
This representation is often referred to as a time localized representation,
because the energy of the basis components is localized in the time domain.

Similarly, the frequency localized representation is also widely used in audio
tasks. This consists in expanding the signal as a weighted sum of functions
with their energy localized in the frequency domain. The Discrete Fourier
Transform (DFT) is probably the most well known frequency-localized rep-
resentation:

s[n] =

NT−1∑
k=0

cdftω e
i2π k

NT
n

(2.7)

In the DFT representation, the expansion functions are single frequency
complex exponentials and the expansion coefficients are computed as:

cdftω =
1

NT

NT−1∑
k=0

s[n]e
−i2π k

NT
n

(2.8)

The signal models most commonly used in digital audio processing are time-
frequency localized representations, in which the expansion functions are
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localized in both the time and the frequency domains where the expansion
functions and coefficients are indexed in two dimensions. One index is for
the time localization and the other for the frequency localization. However
this can still be seen as the addition of a set of expansion functions. One
of the most well known representations is the short-time Fourier transform
(STFT). In this case, the expansion functions are single frequency complex
exponentials multiplied by a time localized windowing function:

s[n] =
M−1∑
t=0

NT−1∑
ω=0

cstftt,ω w[n− tH]e
i2π ω

NT
n

(2.9)

where w[n] for n ∈ [0, L − 1] is a windowing function of length L, and
H is the hop size of the windowing function. In the STFT representation,
the expansion coefficients are computed as:

cstftt,ω =
1

NT

L−1∑
ω=0

s[n− tH]w[n]e
−i2π ω

NT
n

(2.10)

Since the STFT is a signal representation that we often use, we will refer to
the STFT coefficients of a signal s[n] as S̃(ω, t) = cstftt,ω where t is the index
of the time axis and ω the index of the frequency axis. Throughout this
text we will use S(ω, t) as a simplified notation for either the magnitude
|S̃(ω, t)| or the power spectrum |S̃(ω, t)|2 depending in the context.

One limitation common to all signal representations is analogous to the
uncertainty principle. In the context of signal processing it is often called
the Gabor limit, which states that a function cannot be both time limited
and band limited. In other words there is a limit to the joint temporal and
frequency localization of our signals. The limitation is common to all signal
representations, however different representations have different temporal
and frequency resolutions. There is a tradeoff between time and frequency
resolution, the higher the frequency resolution the lower the temporal one
and vice versa.

One of the main strengths of the DFT and STFT is that a very fast and
efficient algorithm, the Fast Fourier Transform (FFT), is used to calcu-
late them. Furthermore the FFT is implemented on most available plat-
forms and even in some hardware implementations, which often permit fast,
energy-efficient computation. However the DFT and STFT also have their
shortcomings. Their main limitation in the field of audio processing is that
the resolution of their frequency axis is constant on the Hertz scale, while
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humans perceive frequency differences linearly on a logarithmic Hertz scale
Stevens et al. (1937). In practice this means that when choosing a frequency
resolution for our STFT we must decide between having good frequency res-
olution or separability for the low frequencies or good temporal resolution
for the high frequencies. This choice determines the size of the window used
for the analysis, the larger the window the higher the frequency resolution
and the lower the temporal resolution.

In Appendix A we review some of the signal representations found in the
literature that tackle the frequency-temporal localization limitation. It re-
mains as future work to evaluate these alternative representations for use as
a replacement for the STFT representation that used throughout our work.

The expansion of a signal into a set of basis components allows us to exploit
the linearity property of some systems. In such cases we can understand
how the system affects our signal by studying how it affects the individual
basis components. There are several reasons for choosing a specific sig-
nal representation. Some properties of a signal are obscured or revealed
depending on the representation that we use. Features that could be ad-
vantageous for a given task are more prominent in certain representations.
On the other hand, in some cases we have a priori information about the
source in a specific representation. The mixing process is often simpler and
easier to estimate using a specific representation of the signals being mixed.
Computing certain representations of a signal is often not a trivial task.
The process of transforming a signal from one representation to another
may impose some conditions on the availability of the data and affect the
complexity of the process. Therefore the conditions imposed on the separa-
tion tasks also influence the choice of the representations used. These cases
will be reviewed in the following sections 2.3, 2.4, 2.6.

2.3 Mixing Processes

The mixing process in music signals is a practical, aesthetic, and/or creative
treatment by which multiple recorded sounds are combined into one or more
channels in order to produce a mix that is more appealing to listeners. From
a signal processing point of view, it consists in creating a set of observed
mixture signals from a set of source signals. Information about this process
can significantly help the separation task. In this section we review the most
common mixing processes and the way they are modeled. We also discuss
the availability of knowledge of the model parameters depending on the
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scenario. First we present mixing situations that are general and common
to many different type of signals. Next we focus on mixing processes specific
to music signals.

General mixing processes

Instantaneous

The simplest model of a mixing process consists in assuming that the mix-
tures are linear combinations of the sources:

vo[n] =

NM∑
m=1

aomxm[n] (2.11)

where aom is the contribution gain of the mth source to oth mixture. Mixing
processes so modeled are called instantaneous mixtures. The name re-
flects the fact that the mixture is performed instantaneously for every input
sample of the sources, without requiring information from previous input.

Given a specific time index, this model can be expressed in the following
matrix notation:

v = Ax (2.12)

where v is a column vector containing the values of our mixtures at a given
time frame v = (v1[n], v2[n]...vNO [n]), A is a NO × NM matrix containing
the mixing gains aom, and x is a column vector containing the values of the
sources at a given time frame x = (x1[n], x2[n]...xNM [n]). The matrix A is
often called the mixing matrix.

If the coefficients of the mixing matrix A are known, the problem is a basic
linear problem with many solutions available in the literature. However in
most source separation cases the coefficients of this matrix are not known
and must be estimated. This renders the problem much harder and specific
solutions must be used. As we will see in section 2.5, the ratio between the
number of sources NM and mixtures NO will determine the availability of
a unique solution.

Attenuated and delayed

A common scenario in the fields of communications and signal processing
is to have a sensor array when capturing signals. This configuration creates
a mixture signal for each sensor, in which the source signals are mixed.
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In most cases the source signals will be captured by all or most of the
sensors. However the positions of the sources with respect to each sensor
and the travel speed of the signals will affect the delay and attenuation
with which the source signal will contribute to each mixture. Given the
previous situation, if we consider the sources static in space we may express
the mixing process as:

vo[n] =

NM∑
m=1

gomxm[n− dom] (2.13)

where gom is the attenuation with which the mth source contributes to
the oth mixture, and dom is the delay in sample units with which the mth

source arrives at the oth sensor. This is a very common scenario when we
have control over the capturing process and are able to use sensor arrays.
However in many cases the mixtures have not been created in such a way
and using this model would lead to incorrect results.

A matrix representation of such model would consist in:

v = A ∗ x (2.14)

where ∗ denotes the elementwise convolution. In this case, the mixing ma-
trix A would be composed of the following elements Aom = gomδ[n− dom],
where δ[n] is a Kronecker delta whose value is 1 at n = 0 and 0 elsewhere.

Convolutive

A more general model for many mixing processes is to consider the mixtures
as a sum of filtered sources. In each mixture, instead of having a single
attenuated delay of each source, we have multiple attenuated delays of each
source:

vo[n] =

NM∑
m=1

L∑
k=0

hom[k]xm[n− k] (2.15)

where hom[k] are the coefficients with which the mth source is filtered when
contributing to the oth mixture and L is the maximum length of the filters.
This model is often referred as convolutive mixtures, since the sources
are convoluted into the mixtures.

The matrix representation of 2.15 is the same as for 2.13:

v = A ∗ x (2.16)
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However in this model, the mixing matrix A ∈ NO ×NM × L is composed
of the filter coefficients Aomk = hom[k].

It can be easily seen that 2.13 is a specific case of 2.15. An attenuation
and a delay mixing process is a linear system that can be reformulated as
a convolution by choosing the filter as:

hom[k] =

{
gom if k = dom
0 if k 6= dom

(2.17)

Music mixing processes

Since in this study we concentrate on music signals, we now present some
of the properties common to most music mixing processes.

Non-physical delays

The general mixing models presented in the previous section (Sections 2.3
and 2.3) are rarely directly applicable to the music signals we target in this
study. Our main focus in this work is on methods that can be applied
to widely available commercial western popular music. This type of music
is often mixed in studios using a Digital Audio Workstation (DAW) or a
multitrack mixer. Using such devices for mixing normally invalidates the
assumptions made in the Attenuated and Delayed mixture model.

In stereo or other multichannel music signals, attenuations and delays can
be artificially added during the mixing process using the DAW. This allows
producers to give a sense of source localization. In some cases only atten-
uation of the different sources is used in order to move the sources in the
stereo image. This is often known as the panning control of the sources in
the mixing process.

A musical signal may comply with the assumptions of the Attenuated and
Delayed mixture model when the excerpt has been recorded with a micro-
phone pair. An extensive study and discussion of such recordings in the
context of source separation can be found in the work by Burred (2008).
Such spatial information is valuable and we will show how to use it when
it is available. However, it is not always present and our goal is to study
methods that can also handle situations in which multiple sensors are not
available, such as monophonic music signals.
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Spatially Static sources

One main characteristic of music signals in contrast to other audio mixtures
is that most often the sources mixed are statically or almost statically posi-
tioned in the spatial image. For instance, in a music ensemble recording the
musicians stay in the same place during the whole piece and therefore the
attenuation and delay of that instrument will remain constant. In studio
mixtures this is often also true, that is, the instruments stay in the same or
a similar position in the spatial image throughout the song.

In popular western music the assumption can be taken a step further. Most
pop and rock songs maintain a very similar distribution of the instruments
in the stereo space. The drums and lead vocals are typically panned in
the center channel, the bass is often panned slightly to the right while other
accompaniment instruments such as rhythm guitars get panned to the sides.
This disposition replicates the distribution of the musicians in a scene during
a live performance. By panning the instruments in this manner the producer
tries to recreate the sonic situation we are used to when attending a live
show.

These properties make it possible to perform separation without the need for
tracking the positioning of the sources. This situation led to the proposal of
a series of simple methods based on simple spectral bin classification derived
from the clustering of the spatial positions of the bins (see Section 3.2).

Even though these assumptions cannot always be made, they can often be
used as a priori information during the source separation process.

Reverberation

Another common effect used when mixing popular western music is rever-
beration. Reverberation is the persistence of sound in a particular space
after the original sound is produced. It is often caused by the multiple
reflections of the sound waves on the boundaries of the space.

Music producers often replicate this effect to recreate the acoustic sensation
of being in a certain room, stadium, chapel, concert hall or other space. The
reverberation effect can be applied in many different ways, it can be applied
to each source individually and/or applied to the mixture itself. The amount
and type of reverberation are highly related to the music genre and style.
For instance while classical music is often recorded with all the instruments
playing live in a concert hall, in pop and rock music the instruments are often
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recorded individually in a studio under dry conditions and the reverberation
effects are synthetically added afterward.

In the field of signal processing this effect is often modeled as a filter with a
very long tail that can easily surpass 1 second in length. Reverberation has
been widely studied in the literature. In our particular scenario reverbera-
tion time, decay and/or how it is applied to the different sources and the
mixture is unknown. Therefore using the characteristics of reverberation as
a priori information to source separation methods can be a challenging task.
The lack of proposed BSS methods exploiting or targeting reverberation in
musical signals is a hint to how challenging the task is.

Non-linear Effects

One of the last steps in the music production chain consists in mastering
the final mix. This process may be performed using non-linear effects. The
use and nature of non-linear effects largely depend on the type of music.
Modern rock and pop make a wide use of compression and distortion, while
jazz and classical music often avoid such effects. There are a large number
of non-linear effects that can be applied and they cannot be easily taken
into account when modeling the signal, therefore they are often considered
as noise in the signal. Recent work (Gorlow and Reiss, 2013) has begun to
target the inversion of some of these non-linear operations on music signals.
However these studies are restricted to scenarios in which the parameters
and the procedure of the effect are known in advance.

2.4 Source Properties

Defining the target source to be recovered is one of the first tasks in the
source separation problem. In the context of music it is common to define
the target sources as the vibrant physical entities producing the sounds.

However, depending on the task there may be exceptions to this definition.
For instance, it is quite common to treat the vocal chorus as one single source
or the whole group of violins that are playing the same voice as one single
source. Another exception where a target source does not map directly to
a physical entity is with the drum kit. Drum kits are composed of several
drums and other percussive instruments, but in most source separation tasks
these are treated as a single drums source.
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The definition of the target source will greatly influence the assumptions
and prior knowledge that we can include in our models. Therefore, and in
order to avoid confusion, throughout this research we define clearly in each
task and experiment which sources we target. Once the target source is
defined we can start making some assumptions about the signals in order
to have a model with fewer free variables, which will then be easier to learn
from the data. In this section we will describe properties of the individual
sources that will allow us to make certain assumptions in order to render the
problem more approachable. We will also define some properties that are
applicable to sets of sources. These refer to relations between the sources
and allow us to assess their separability given a mixture.

General Properties

At first we will only consider properties common to all signals. These are
generic properties that are independent of the nature of the source and that
derive mostly from the mathematical definition of a signal as a temporal
sequence of values.

Statistical Independence Sometimes we face the problem of not having
any prior knowledge about the sources. This can happen in situations where
we do not know the nature of the sources that we are studying or when the
sources do not present any specific or interesting features. In those cases the
most common assumption is to view target sources as independent random
variables. As we will see in Section 3.1, these assumptions lead to the
development of the first set of well-known source separation methods.

The statistical independence of the sources is defined as:

p(x1, . . . , xNM ) =

NM∏
m=1

p(xm) (2.18)

This condition implies that for any m1 6= m2, t and τ :

E[xm1(t)xm2(t+ τ)] = E[xm1(t)]E[xm2(t+ τ)] (2.19)

Which means that the occurrence of one source does not affect the occur-
rence probability of the other. In terms of variables, it implies that the
observed value of one does not affect the probability distribution of the
other. This applies to multiple statistics of different orders such as the vari-
ance or the kurtosis. While the statistical independence of the sources is
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often a necessary condition or assumption in most methods, we often also
require a more restrictive assumption such as the difference between these
statistics.

Stationarity The stationarity of a signal often refers to the invariance
with respect to time of the joint probability distribution of it’s values. If
we consider the sequence of signal coefficients ct1 , . . . , ctT as a discrete-time
random process {Ct} and let FC(ct1+τ , . . . , ctk+τ ) represent the cumulative
distribution function of the joint distribution of {ct} at times t1 +τ, . . . , tk+
τ . We can express the stationarity condition as:

FC(ct1+τ , . . . , ctk+τ ) = FC(ct1 , . . . , ctk) ∀τ, k, t1, . . . , tk (2.20)

When the condition only evaluates true for the first two statistical moments
it is called weak–sense stationarity, wide–sense stationarity (WSS) or co-
variance stationarity. In this case the mean and variance of the stochastic
process is constant over time.

In some source separation situations the mixture signals can be explained
as a linear superposition of stationary and nonstationary sources. The as-
sumption that the target source is nonstationary in contrast to the other
sources in a mixture, is often used to derive source separation methods.
This is the case for Subspace Stationarity Analysis (SSA). This type of
method has been used to separate sources principally in the fields of Brain
Computer Interfacing and Speech Separation.

Correlation Correlation between sources is another property that can
be exploited in the separation techniques. Given a mixture that can be
modeled using Equation 2.14, we can easily show that the correlation matrix
of the mixtures Rvv = E[vi[n]vj [n]] maintains the following relation with
the correlation matrix of the sources Rxx = E[xi[n]xj [n]]:

Rvv = ARxxA
> (2.21)

When the sources are uncorrelated, the matrix Rxx will be a diagonal
matrix since all the cross correlation terms between the sources will be
0. As we will see in Section 3.1 the problem of estimating the mixing
matrix A is reduced to a linear algebra diagonalization problem. Of course,
special care must be taken when working with a different number of mixtures
and sources. In real world cases where the mixing process adds noise or
the sources are not fully uncorrelated, this property can still be used as
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an approximation. In a more general case we can exploit not only the
correlation but also the temporal cross correlation of the sources. In such
situations equation 2.21 can be reformulated using the cross correlation
matrices Cxx(τ) = E[xi[n]xj [n− τ ]] and the extra dimension of τ turns the
problem into a tensor diagonalization problem.

Disjointness Another key aspect influencing the separation process is the
disjointness of the sources in the mixture. Disjointness refers to the non-
overlapping of the energy of a set of signals in a given representation, see
Jourjine et al. (2000) and Yilmaz and Rickard (2004). We must note that
disjointness depends not only on the individual properties of the sources
or the mixing process but on their mutual properties. On the other hand
the signal representation has a high impact on the degree of disjointness of
a set of signals. As an example, lets consider two pure sinusoids of very
different frequencies occurring at the same time. The time domain mixture
signal presents very low disjointness since both signals overlap in energy at
most instants. However in a time-frequency representation these signals will
barely overlap. Thus, the representation of the signal can greatly influence
the apparent disjointness of a set of signals.

Sparsity In practice, when choosing a good signal representation we may
not have information about the specific source sets that will be present in
each mixture. Therefore we will not be able to know for sure the representa-
tion that will maximize their disjointness. However we may select a signal
representation that is more likely to produce highly disjoint source sets.
This is done by considering the sparsity of the representations. Sparsity is
the property of a signal that relates to the amount of non-zero coefficients
in a given representation. A sparse representation of a signal is one in which
there are few non-zero coefficients.

Although high sparsity of the components does not guarantee high disjoint-
ness, low sparsity does guarantee low disjointness. In the extreme case
where two sources have energy in all their coefficients they will definitely
overlap, and therefore have low disjointness.

Several criteria for sparsity have been proposed in the literature. The
measure based on the strict definition of sparsity corresponds to the L0-
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“norm” 1:

κL0(cω) =

Nω∑
i

|ci|0 (2.22)

This measure corresponds to the number of non-zero coefficients of the
signal.

However solving a problem that involves minimizing the L0-“norm” of a
signal is often hard. To overcome this problem, people use the L1-norm:

κL1(cω) =

Nω∑
i

|ci| (2.23)

The use of the L1-norm leads to well-known efficient linear programming
solutions (Rolewicz, 1985). In the context of Compressive Sampling, Candes
and Wakin (2008) have proven that when the solution is sufficiently sparse,
minimizing the L1-norm is equivalent to minimizing the L0-“norm”.

Hoyer and Dayan (2004) propose a sparseness criteria based on the relation
between the L1 and L2 norms:

κL1,L2(cω) =

√
Nω
∑Nω

i |ci|/
√∑Nω

i c2
i√

n− 1
(2.24)

The measure evaluates to 1 if and only if cω contains a single non-zero
component, takes the value of 0 if all components are equal (ignoring the
signs), and interpolates smoothly between the two extremes. This measure
has been used for the development of Non-negative Matrix Factorization
with sparseness constraints, see 3.4.

Burred (2008) presented an extensive study about the influence of signal rep-
resentation on the sparsity of sources and the disjointness of mixtures. He
evaluated different time-frequency representations on two different datasets:
speech and music. The representations tested were: STFT, Constant-Q
(CQ), Equal Rectangular Band (ERB), Bark Bands and Mel Bands. The
methods were compared in terms of sparsity of the individual sources and
the disjointness between them in given mixtures. The experiments showed
that representations well adapted to the signals in play have a great impact
on sparsity and disjointness measures.

1. Note the quotes around the word norm. The measure, proposed by Donoho is not
a proper F-norm, because it is not continuous with respect to scalar-vector multiplication
(as the scalar approaches zero).
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Acoustic Sources

All the sources comprising music mixtures in this work are acoustic signals.
We may therefore exploit knowledge about the properties and characteristics
of acoustic sources in performing the separation.

Harmonic Structure A characteristic common to many acoustic signals
is that for long periods of time they are periodic or quasiperiodic. This
is often the case for sounds produced by sustained vibrating bodies such
as many musical instruments (guitar, flute, saxophone...) or speech and
singing voice.

The main property of such signals is that their waveform can be decomposed
into a summation of a set of sine waves called the fundamental and the
harmonics, partials, or overtones.

These sounds have a harmonic frequency spectra. Usually, the lowest fre-
quency present is the fundamental, and is the frequency at which the entire
wave vibrates. The overtones vibrate faster than the fundamental, but must
vibrate at integer multiples of the fundamental frequency in order for the
total wave to be exactly the same each cycle. In some cases the partial cor-
responding to the fundamental frequency is missing, however the harmonic
structure remains and the fundamental frequency can be estimated from
this structure.

The energy of these sounds are concentrated in narrow regions around the
partial positions in the spectra. These types of signals are called narrow
band or frequency-localized components.

Transients In contrast to narrow band harmonic structured acoustic sig-
nals, we often encounter time localized sounds. These are often referred to
as transient sounds. This type of sound is often generated from impacts
such as in percussive musical instruments or fast changes of airflow found,
for example, in plosive consonants.

The distinguishing characteristic of this type of sound is that the energy
of the signal is concentrated in a short segment of time. These signals
have their energy distributed in a wide range of frequencies and therefore
are often called wideband signals. An example is the sound produced by
snare drums, a very noisy wave shortly after they are struck. The double
headed nature of this instrument means that the harmonics are extraordi-
narily complex since there are, theoretically, an infinite number of resonant
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modes, and thus harmonics. In practice, though, the sound produced is
not infinitely harmonic, rather it is extremely dissonant, due to the large
number of constructive and destructive interfaces.

Noise In acoustics noise refers to any unwanted sound. It is clearly a
context or task dependent definition. In the context of source separation
noise refers to sounds other than the ones targeted for isolation. Given
such a definition any type of sound could be a noise, if it is an unwanted
component of the mix. In some cases noise refers to both unwanted and
random components of the signal. Here we present several types of sounds
that are often considered as noise in many audio tasks. Most audio mixtures
are composed of audio recordings. The recording system and electronics are
responsible for a random additive component. However in most professional
audio recordings this component is very small, and can often be discarded
when comparing to other noise sources.

Another source of noise that often appears in audio recordings is the ambient
noise. These are audio sources that are not the target source of the recording
and are mixed during the recording. In a recording of a live concert, the
sum of the audience voices and sounds composes such noise. In this case
the individual noise signals are not completely random since speech signals
are highly predictable and deterministic. However the level at which they
are recorded and the fact that they are all summed together and interfere
with each other renders them less modelable.

While noise often refers to random components in the signal, not all random
components are unwanted. In source separation tasks, we often want to
isolate the drums. The sounds generated by drums are inherently noisy by
nature. The spectra of such sounds do not present a harmonic structure and
in some cases they are not time localized, but are rather sustained during
a long period of time. An example of such sounds are those produced by
cymbals.

Human auditory perception An important factor to take into account
when processing acoustic signals, is the way these are perceived by humans.
One characteristic of human auditory perception is its large dynamic range.
The difference between the threshold of hearing and the threshold of pain is
around 100 dB (Rossing (1990)). Therefore low-energy components in audio
are important from a perceptual point of view. This property of human per-
ception will play an important role in selecting a good divergence function
between spectra (see 3.4). It is well known that humans perceive pitches
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equally spaced in an approximately logarithmic fundamental frequency scale
(Stevens et al., 1937). This has often motivated the use of logarithmic distri-
butions of spectral bins (Constant-Q), spectral bands (Mel scale) and pitch
candidates. Another important property of the human auditory perception
is that of masking when listening to complex stimuli. This has motivated
the development of a subdivision of the audible frequency range into critical
bands such as the Bark bands (Zwicker, 1961). Many other properties of
auditory perception (Purwins et al., 2008b,a) may be taken into account
when processing acoustic signals targeted at humans.

Music Sources

The sources mixed in musical audio signals are highly structured in the time
and frequency dimensions. Additionally, depending on the music genre and
culture, they often present a limited set of timbres, pitches and pitch ranges.

In this section we review some of this a priori knowledge that can be useful
in the design of source separation methods.

Tonality In Western music of the major-minor tonality period, roughly
from Bach’s birth (1685) to Wagner’s Tristan (1857), the tonality of a piece
of music is defined by the kinship of tone centers (local keys during a short
time frame).

Furthermore, the sources present in western music almost always use a
limited set of pitches or concentrate the pitches used around a fixed set
of frequencies from an equal temperament system. Equal temperament
is a musical tuning system in which every pair of adjacent notes has an
identical frequency ratio. As pitch is perceived roughly as the logarithm of
frequency, this means that the perceived “distance” from each note to its
nearest neighbor is the same for every note in the system.

In particular western popular and classical music is mainly based on the 12
tone equal temperament scale in which an interval of an octave is divided
into a series of 12 equal steps, also known as semitones. This known dis-
tribution of notes can be of great utility when creating methods for pitch
estimation of sources in western music.

Frequency Correlation Harmony is the use of simultaneous pitches or
chords. The study of harmony has highly influenced western music since
the 17th century. Theories of harmony provide examples of how to subsume
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chords in different harmonic categories (Riemann, 1877; Schenker, 1935).
Some traditions of Western music performance, composition, and theory
have specific rules of harmony. These rules are often held to be based
on natural properties such as the Pythagorean tuning law’s whole number
ratios or harmonics and resonances.

From a spectral point of view these properties translate to high correlation
values at specific lags of the spectra between the sources in a music mixture.
These correlation values are due to the fact that the notes in chords often
used in pop/rock western music have overlapping partials. This quality is
quite specific to music signals, in contrast to other acoustic mixtures such
as speech that do not show such large correlations.

Temporal Correlation Rhythm is another very important aspect of
Western music. Rhythm is the temporal structure of music and the orga-
nization of the different musical events in the music sequence. In Western
music rhythm is often composed of highly regular and periodic structures.
Pop and rock western music often present a section of instruments called the
rhythm section (Randel (1999)). This section provides the accompaniment
of the music, giving the music its rhythmic texture and pulse, also serving
as a rhythmic reference for the rest of the band.

In Blind Audio Source Separation (BASS) we often encounter the task of
separating the main melody or leading voice from the accompaniment. The
use of rhythm or temporal correlation information is of great value in these
cases, as we will see in Section 3.3.

Timbre Information Timbre is the quality of a musical sound that dis-
tinguishes different types of sound production, such as voices, string instru-
ments, wind instruments, percussion instruments or other musical instru-
ments. Timbre is the property that allows us to distinguish and recognize
the different instruments in a musical mixture. This property allows us to
distinguish the sound of a trumpet from the sound of a clarinet even if they
are playing the exact same pitch at the same loudness.

There is a long history of research on musical timbre (Grey (1977); Wessel
(1978)) focused mostly on studying the properties of a sound that contribute
to its timbral qualities. Klapuri (2006) empirically found a spectral enve-
lope that could best represent most of the pitches found in a given music
dataset. Haro et al. (2012) showed that the most frequent spectral energy
distributions in music, speech and environmental sounds are quite different.
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In musical signals, both western and non-western, the energy of the most
common spectral shapes is mostly concentrated in the first bark bands. In
speech signals the energy is mostly concentrated in the first or middle bark
bands, while in environmental sounds, the energy is often concentrated in
the high frequency bark bands.

In the field of Music Information Retrieval (MIR) we have seen (Fuhrmann
and Herrera (2011); Fuhrmann (2012)) a growing interest in developing au-
tomatic instrument recognition systems based on appropriate timbral char-
acteristics. This type of work led to the creation of a set of features and
machine learning algorithms used to classify different timbres. The study
of sound production of musical instruments and the proposal of sound pro-
duction models such as the source-filter model have been quite successful
at decoupling to some extent the timbre information from the pitch infor-
mation (Noll, 1967).

The timbral information of the sources can be a very important aid in Blind
Audio Source Separation (BASS) of musical mixtures. When the pitch
information is not sufficient to distinguish between sources, timbre may be
the only alternative. Furthermore, in contrast to pitch, timbre information
often changes slowly in time, and this temporal correlation of the sources
can be exploited in the segregation of musical mixtures.

2.5 Ratio of Sources and Sensors

The ratio between the number of sources NM and mixtures NO is an impor-
tant and determinant factor in the choice of source separation method. In
this section we will review several common situations, with a special focus
on music audio recordings and how these affect the selection of methods.

Determined or Over/under-determined

Many source separation techniques are based on a two-stage approach. The
first step is estimating the mixing matrix A or the unmixing matrix U =
A−1 and the second step consists in unmixing the mixture signals. This is
often the case with the statistics-based approaches (see Section 3.1). In such
cases the existence of U and the possibility of computing it is sometimes
necessary. Taking into account that A ∈ NO × NM , the existence of the
unmixing matrix requires the rank of the mixing matrix to be higher than
the number of sources rank(A) ≥ NM . If we assume linear independence
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of the mixtures and the sources, then this condition comes down to having
NO ≤ NM .

When a source separation problem has the same number of sources as mix-
tures NO = NM it is labeled determined. If the mixture count is larger
than the source count NO > NM it is named overdetermined. When
there are fewer mixtures than sources it is called underdetermined.

The most common formats for the audio signals in western pop/rock music
are mono or stereo. This means we have NO = 1 or NO = 2. Additionally
we can often expect to find 3 instruments or more playing simultaneously
(NM > 3). Therefore we can safely assume that in our work we are targeting
an underdetermined problem.

Knowledge of the number of sources

As we have seen above the number of sources is a critical aspect for selecting
a source separation method. Prior knowledge of the number of sources
present in the mixture will play a fundamental role in the source separation
process. Many speech enhancement applications, which can be viewed as
source separation tasks, assume only two sources in the mixture: the speech
and the noise. This assumption is rarely true for musical signals, since the
number of instruments in a song is quite variable.

However an option that is often used is to separate the instruments one at a
time or to separate a specific source given some a priori knowledge. In these
situations knowing or estimating the number of sources in the mixture is
not necessary. Instead we may estimate for each target instrument whether
it is present or not and treat the mix as being composed of two sources, the
target instrument and the rest.

2.6 Separation Conditions and Constraints

Apart from the properties that we have presented here, the source separation
problem may be further qualified by special conditions or constraints on the
separation process. These conditions and constraints are often due to the
task or application as well as the availability of the data. In this section we
will review some of the more common constraints and how they affect the
choice of method.
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Blind or Informed Separation

In the literature we often find a distinction between uninformed (or blind)
and informed source separation. This distinction is based on the amount
and type of knowledge we have about the sources being processed in a given
task. Informed source separation refers to situations in which we have
information about the specific sources that are being retrieved (Parvaix
and Girin, 2011; Liutkus et al., 2011). On the other hand blind source
separation (BSS) consists in retrieving sources about which we don’t have
any specific knowledge. We must note that even though we may not have
information about the specific sources being retrieved, we may have prior
knowledge or make assumptions about the nature of the target sources.
For instance, if the task consists in separating speech signals we can make
certain assumptions about their spectral structure or temporal properties,
but if we do not have information about the specific speech signal that we
are separating then it could be considered a blind source separation problem.

In this work we assume that we do not have any information about the
specific sources being separated. However, we will make and use a significant
number of assumptions about the nature and types of sources and mixtures
based on the properties presented above.

Online

Another factor that will affect the method used to solve the problem is the
way in which the mixtures are made available and the way we must output
the separated sources. If the mixture signal is available in its totality at the
time the separated sources are required we may apply methods that require
the full signal. These type of methods are often referred to as batch source
separation or batch processing.

On the other hand a more restrictive situation is when we must output the
separated sources as the mixture signal becomes available. Methods doing
this are often called online methods. An increasing number of applications
in source separation impose this constraint. Interactive applications often
impose this condition. In many interactive tasks the mixture signal does
not have a determined duration and is continuously lengthening such as
in machine listening and robotics. Another situation in which this type
of processing is preferable is when memory is restricted or costly. With
the increasing availability of mobile and memory-limited devices, online
methods are often more advantageous and sometimes the only acceptable
solutions.
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Interest in online methods is growing as the number of recent publications
on this topic demonstrate (Mairal et al., 2010; Lefevre et al., 2011; Marxer
et al., 2011; Duan et al., 2012).

Low-latency

Even though online is a necessary constraint on methods used for interactive
applications, it is not the only requirement. Every source separation method
necessarily creates a small delay between input of the mixtures and output
of the separated sources. This delay is called latency. Source separation
tasks in the field of communication or hearing aids, often require a very low
latency.

In the field of music this constraint may also appear when the user input
requires immediate response from the system. The low-latency constraint
also occurs when the mixture data is available only in streaming and buffer-
ing is limited. These situations are more and more common with the arrival
of popular streaming music services.

Realtime

Finally another important constraint in interactive source separation tasks
is that the computation of each block of mixture data must be performed
in a deterministic amount of time. Furthermore the implementation of the
method should compute the block of data faster than the presentation time
of the data. In other words the implementation of the method should be
fast enough to present the resulting data to the user as it is being computed.
These constraints basically define the concept realtime.

Even though this study does not focus on the implementation details of the
source separation methods, one of our goals is to limit the computational
cost of solutions to facilitate implementations operating under realtime con-
straints. We also consider the realtime nature of the methods by studying
whether they can be performed in a deterministic number of operations.

2.7 Target Scenario

In this section we present the target scenario that serves as context for this
study. The main task in our work is to isolate the singing voice and the
percussion or drums in commercially available western music audio record-
ings under low-latency and/or realtime constraints. We review the nature



2.7. target scenario 37

and types of sources and mixtures we focus on as well as the constraints
and restrictions we impose on ourselves. Finally, we present the reasons for
these choices.

The choice of studying blind audio source separation of western popular
music is motivated by the large number of such mixtures commercially
available. Furthermore, our focus on low-latency methods is driven by the
growing availability of audio in streaming distribution form and of embed-
ded devices with strong memory restrictions. Given the diversity of western
music, in terms of genre, styles and instruments, we decided to narrow our
goals to a set of specific instruments and music styles. However, through-
out this work we propose methods that are general enough to be applied to
other instruments and styles.

The main reason for targeting singing voice and percussion is the fact that
these instruments are present in most western popular music.

The choice of target instruments was made to cover a wide range of source
properties. We chose the singing voice and percussion because they repre-
sent two very different types of sources. The singing voice produces a very
harmonic narrowband signal while percussion instruments produce wide-
band signals highly localized in time. Singing voice sources have components
that present deterministic properties and temporal and frequency domain
correlations. Drum sources are dominated by stochastic signals, such as the
sound of cymbals.

Additionally the singing voice has a very wide range of pitch values, pitch
contour behaviors and timbres. These variations exist not only between dif-
ferent singers, but also between the singing voice and musical instruments
or even between the different vocalizations and realizations of a given singer.
Such a variety of parameters makes the task interesting for the development
of techniques that can be used to isolate other harmonic instruments. Sim-
ilarly, techniques used for the percussion section can be easily applied to
other transient sounds such as the attacks of most instruments.

In the following sections we will present specific characteristics of these two
instruments.

Singing Voice

The sounds produced by the human voice have been the focus of a great deal
of research. Domains such as speech recognition and speech identification
have become very important with the arrival of desktop computers and
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mobile devices. The knowledge that we have gained about singing voice and
speech production can be extremely useful in source separation scenarios
where voice is one of the sources to be separated. This section presents a
brief introduction to the mechanisms involved in human singing generation,
a review of the different sounds that are produced in human singing, and
a discussion of some of the signal characteristics of these sounds. Finally
it introduces some of the mathematical models developed over the years
which will be used in source separation techniques.

Human singing is the act of producing musical sounds with the human voice,
which are the sounds made by humans using mainly the vocal folds(vocal
cords). Even though humans are able to make sounds in many ways, the
human voice refers to sounds generated using the vocal folds as the primary
sound source. The mechanism for generating the human voice can be sub-
divided into three parts: the lungs, the vocal folds within the larynx, and
the articulators. The lungs must produce adequate airflow and air pressure
to vibrate vocal folds. The vocal folds are a vibrating valve that chops up
the airflow from the lungs into audible pulses that form the laryngeal sound
source. The muscles of the larynx adjust the length and tension of the vocal
folds to modify the pitch and tone. The articulators are the parts of the
vocal tract above the larynx consisting of tongue, palate, cheek, lips, etc.
They are in charge of articulating and filtering the sound emanating from
the larynx and to some degree can interact with the laryngeal airflow to
strengthen it or weaken it as a sound source. This mechanism is capable
of producing a large variety of different sounds (Titze, 1994; Stevens, 1998;
Titze and Alipour, 2006).

As stated above, the vibration of the vocal folds is the process responsible for
the most energetic component of the voice, because of the resonance in the
vocal tract. However in human voice there are other components that do not
require the vibration of the vocal cords. For instance, in some situations
the airflow going through the space between the vocal cords produces a
sound that also gets filtered by the vocal track. This component is often
referred to as the breathiness of the singing voice since it is similar to the
sound produced when breathing. Other components that do not require the
vibration of the vocal cords are the sounds corresponding to the voiceless
plosives (such as the English /p/, /t/, /k/, etc.) or the voiceless fricatives
(such as the English /f/, /s/, etc.).

Depending on the domain of study, the different sounds produced by a hu-
man being during singing can be categorized in different ways: production
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mechanism (vocal cord vibration or non-vibration), signal characteristics
(quasi-stationary or non-stationary, wideband or narrowband, harmonic or
non-harmonic), phonetically, timbrically, etc. Given our focus on source sep-
aration, we will concentrate on the signal properties of the different sounds
present in the singing voice.

Harmonic components are usually present during vowels and voiced con-
sonants. These components are mainly non-stochastic and narrow band.
These components appear in the spectrum as periodic structures where
most energy is concentrated in bins which are located at positions which
are integer multiples of the fundamental frequency. These energy concen-
trations are also referred to as partials or harmonics. While harmonic com-
ponents are present in most western music instruments, the ones present
in singing voice are characterized by their flexibility. Different singing ef-
fects, such as vibratos, growl, pitch bends and glissandos, can significantly
modify the spectrum of this component. The harmonic component of the
voice is mainly due to the glottal excitation or vibration of the vocal cords,
which occurs mainly during vowels that are predominant in singing voice
and carry most of the musical information.

Another major part of the human voice consists of the wideband sustained
component. This component is stochastic and smoothly modulated over
time. It is often due to the breathiness in the voice. Breathiness is of special
importance in western music where it is often used for aesthetic purposes.
Breathiness is produced by the turbulent air that flows through the vocal
folds at opening instants. Since this sound is filtered by the vocal tract
it is highly correlated to the harmonic component. There are other voice
production mechanisms, such as the fricative phonemes, that also generate
wideband sustained component. However in this case of fricatives, since the
turbulence is not produced at the vocal folds level, their sound is not filtered
by the same filter as the glottal excitation of the harmonic component.

The human voice can also generate a large and varied set of wideband
transient components. These are usually produced by sudden opening or
closing of air channels by the use of the tongue, lips or other human speech
organs. These components are characterized by their wideband and time
localized nature.

There have been many works targeting the modeling and parametrization of
the human voice. We will briefly introduce some that are of special interest
for our work. The glottal source is probably one of the components that
have drawn most attention over the years due to its fundamental role in
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voice production. Rosenberg (1971) proposed several glottal pulse models
created using inverse filtering. The best matching model is composed of 2
polynomial parts. Klatt and Klatt (1990) extended the previous model by
adding a low pass filter to smooth the pulse shape and control the spec-
tral tilt. The model was controlled by two main parameters: the opening
quotient and the spectral tilt. Many other models have been proposed
(Fujisaki and Ljungqvist, 1986; Fant et al., 1985; Fant, 1995; Doval et al.,
2003), however their study is out of the scope of this work. The glottal
aspiration noise produced by the turbulence of the airflow, responsible for
a wideband stochastic component in human voice, has also been studied
and modeled (Stevens, 1971; Flanagan, 1972; Liljencrants, 1985; Mehta and
Quatieri, 2005). Finally the filtering parts of the human voice production
system, such as the vocal tract and the radiation produced at the mouth
and nostrils, have also received extensive research (Fujimura and Lindqvist,
1971; Flanagan, 1972; Maeda, 1982; Liljencrants, 1985; Lim and Lee, 1993;
Niu et al., 2005).

In the context of our work, we are mostly interested in the modeling of the
singing voice as a whole, taking into account all the processes involved. In
the field of source separation the possibilities for estimating singing voice
components from audio recordings are most interesting. Degottex (2010)
and Degottex et al. (2011) proposed a glottal source and vocal tract model
as well as the means for estimating its parameters from audio recordings of
isolated singing voice.

Due to the importance of vocals in western music culture, the singing voice
has become a widely targeted source in music transcription and separation
tasks (Ryynänen, 2006; Li and Wang, 2007; Hsu and Jang, 2010b; Durrieu
et al., 2010; Rafii and Pardo, 2012; Gómez et al., 2012).

Percussion

Percussion instruments have gotten a lot of attention in the Music Infor-
mation Retrieval community. This focus is due to the role of rhythm in
western music and to the fact that sounds produced by percussive instru-
ments are significantly different from those produced by other instruments
such as guitar, piano or saxophone. The percussion family is also believed
to include the oldest musical instruments, following the human voice.

Percussion instruments are often categorized into two groups: pitched per-
cussion instruments, which produce notes with an identifiable pitch, and
unpitched percussion instruments, which produce notes without an identi-
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fiable pitch. Most drums and cymbals belong to the latter category and are
typically used to maintain or to provide accents, and their sounds are un-
related to the melody and harmony of the music. In western popular music
percussion is commonly interpreted by a single player using a drum kit or
drum set. A standard modern drum kit, as used in popular music, taught
in many music schools and similar institutions consists of: a snare drum, a
bass drum, a hi-hat stand and cymbals, one or more tom-tom drums and
one or more cymbals.

In this work we mainly focus on unpitched percussion, since in most cases
the separation of pitched percussion can be done the same way as for other
pitched instruments or even the singing voice. From now on we will use
percussion or drums to refer to unpitched percussion instruments.

From a signal point of view percussion or drums sounds are often highly
characterized by their temporal evolution, usually with a short attack and
different decay lengths depending on the instrument. Different drums present
different frequency profiles. The bass drum presents a low frequency reso-
nance, the tom-toms usually have different mid-band resonances, the hi-hat
presents a high-band burst, and the snare-drum is a wideband short noise
burst. Cymbals usually display a highly stochastic and slowly decaying
wideband spectral component.

Over the years, there has been extensive work on modeling drums and
the sounds produced by them (Rossing, 1990; Van Duyne and Smith, 1993;
Trautmann et al., 2001; Marogna and Avanzini, 2009). Given the stochastic
nature of drums they have usually been approached using physical models.

The task of analysis, recognition and classification of drums and other un-
pitched percussive instruments has also received much attention from the
MIR community (Schloss, 1985; Herrera et al., 2002; Gillet and Richard,
2004; Yoshii et al., 2005b; Paulus and Virtanen, 2005; Tanghe et al., 2005;
Hazan, 2005), in most cases using spectrotemporal pattern matching and
adaptation techniques.

Finally, drums separation from music mixes has also become of special in-
terest in the past decade (FitzGerald, 2004; Helén and Virtanen, 2005; Ono
et al., 2008b; Schuller et al., 2009; Kim et al., 2011).





Chapter 3

Review of BASS Methods

In this Chapter we present the state of the art in Blind Source Separation
(BSS) methods. We will be reviewing a wide spectrum of approaches, from
the well-established statistical methods to more recent signal decomposition
and factorization approaches. We will focus especially on methods used in
low-latency and real-time conditions, as well as techniques that specifically
target music mixes. There are many ways to categorize the different BSS
techniques. From a filtering point of view we have methods that filter
the estimated sources using multichannel time-invariant filtering and other
methods that perform Time-Frequency (TF) masking. In the TF masking
category we can further divide the methods into those that apply binary
masking and those that use soft masks. In this work we organize the BSS
methods categorized by the a priori information that they exploit. Sec-
tion 3.1 first briefly introduces separation methods based on the statistics
of the sources and the assumptions made about them. Section 3.2 presents
the so called Beamforming techniques which exploit prior knowledge of the
geometric configuration of the mixing process. Section 3.3 discusses using
musical knowledge and information to aid the separation process. Sec-
tion 3.4 covers methods based on signal decomposition techniques which
exploit knowledge of signals’ structure properties, especially important in
music and audio source separation. Finally, Section 3.5 presents evaluation
methods specifically developed to assess the performance of BSS methods.

43
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3.1 Statistical Based Separation

The first efforts in Blind Source Separation (BSS) were focused mainly
on using knowledge or assumptions about the statistics of the sources to
perform the separation. These methods are important due to the weak
assumptions they require, and have proven successful on synthetic tests
and simulations. However they often rely on the problem being determined
or overdetermined (see Section 2.5). In our target scenario we focus on
musical signals with at most one or two mixtures and many sources and
therefore these methods are not directly applicable.

Decorrelation Techniques

In cases where we have very little knowledge about the set of sources, one
of the simplest assumptions that we can make is about the correlation of
the sources.

One of the first methods to exploit the decorrelation of multiple sources was
proposed by Weinstein et al. (1993). The authors also proposed the use of
a priori knowledge about the sources to increase the performance of the
method.

Belouchrani et al. (1997) proposed a method based on the time coherence
of the sources. It relies only on stationary second-order statistics based on
a joint diagonalization of a set of covariance matrices.

TDSEP is another BSS algorithm using time structure. Proposed by Ziehe
and Müller (1998), this method is based on a set of time-delayed second-
order correlation matrices. The unmixing matrix is built by performing a
whitening step followed by the joint diagonalization of the whitened matri-
ces.

Another example of decorrelation-based separation was proposed by Parra
and Spence (2000). By assuming decorrelated second order statistics of
the sources the authors show that the problem becomes a Singular Value
Decomposition (SVD) task. Parra et al. (1998) and Parra and Sajda (2004)
used decorrelation between sources in their unified framework of BSS by
Generalized Eigenvalue Decomposition.

Independent Component Analysis

Independent Component Analysis (ICA) is one of the most popular BSS
techniques. It is based on the assumption that the sources of the mixture are
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statistically independent. Unlike Principal Component Analysis (PCA), the
measure of independence used in ICA is not the variance (decorrelation) but
rather higher order statistics. When employing the 3rd and 4th moments
of the sources, they must be assumed to be non-Gaussian.

Several measures of independence have been proposed in the literature
(e.g. skewness, kurtosis, mutual information, entropy, maximum likeli-
hood). Usually the separation process is based on a gradient descent (or
ascent) of these independence measures given the unmixing matrix as pa-
rameter.

The assumption of statistical independence between sources allows further
exploiting other statistical properties in order to perform source separa-
tion. For instance the components being non-Gaussian leads to the well
known Independent Component Analysis (ICA) method (Jutten and Her-
ault (1991); Comon (1994)). The non-Gaussian assumption is necessary
because ICA assumes that the mixtures will necessarily be more Gaussian
than the components due to the central limit theorem.

On the other hand, different autocorrelations of the components lead to
decorrelation methods (Weinstein et al., 1993). Finally, smoothly changing
nonstationary variances of the sources can also be exploited using a log-
likelihood maximization approach as in Pham and Cardoso (2001).

Similar or equivalent properties and assumptions can be found in a prob-
abilistic or information theory framework. Bell Anthony J. and Sejnowski
Terrence J. (1995) proposed an information theory framework to derive
methods similar to ICA where the mutual information between the sources
is exploited.

Cardoso (1998) reviewed the different approaches to the Blind Source Sep-
aration task under the assumption of mutual independence of the sources.
The author explored the different higher order statistics or measures used
in different separation algorithms and how these relate to each other. He
also explored the different probabilistic interpretations of such methods.

Parra and Sajda (2004) showed that when further assumptions about the
sources are made, the linear blind source separation problem is equivalent
to a Generalized Eigenvalue Decomposition. The additional assumptions
consist in considering independent sources non-Gaussian, non-stationary or
non-white.

In audio these methods can be applied in the time domain (Time Domain
ICA or TD-ICA) by interpreting the waveform of the sources as random
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variables. However these methods often require the availability of at least
as many mixture signals as sources. In the case of music, this is rarely
possible, since music is mostly available in stereo format and more than 2
instruments are often present in the mix. As an alternative, we can assume
a certain degree of time-frequency disjointness, and apply these methods in
the frequency domain (Frequency Domain ICA or FD-ICA). This is done
by treating the spectral bins as independent random variables. In this case
an additional step is necessary where we must group together the estimated
sources of each of the bins that belong to a given instrument. This step is
needed due to the permutation and scaling ambiguity of ICA methods.

3.2 Beamforming Techniques

In some situations we may be dealing with live signals and/or we may have
access to the capturing process and to the sensors. In such cases there is a
set of assumptions that can be exploited to enhance the separation process.
In a musical context this is often the case with multiple microphone studio
mixtures or the recording of live concerts.

The use of geometrical assumptions about the sources and sensors has pro-
duced a set of methods known as beamforming techniques. These make
use of interferences between the mixture signals to filter the sources coming
from some specific direction or position.

Degenerate Unmixing Estimation Technique (DUET)

Probably one of the simplest methods based on geometrical assumptions
about the sources/mixtures is the Degenerate Unmixing Estimation Tech-
nique (DUET) method. It classifies the bins of the spectrum depending
on the panning (magnitude ratio) and phase difference between two given
channels. This method is especially interesting for commercial stereo music.

Jourjine et al. (2000) proposed a mixture model where we consider the
measurements of the direct path from NM sources to 2 sensors. If we dismiss
the absolute position of the sources, the attenuation and delay parameters
of one of the mixtures can be absorbed into the definition of the source. In
other words, the mixture of one of the two channels is considered as the
simple addition of all the sources. The mixture in the other source is the
sum of the sources weighted and delayed. This leads to a simplified version
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of the attenuated and delayed mixture model presented in Section 2.3:

v1[t] =

NM∑
m=1

xm(t) +B1[t] (3.1)

v2[t] =

NM∑
m=1

gmxm[t− dm] +B2[t] (3.2)

where Bo[t] is the noise at the oth sensor (Yilmaz and Rickard, 2004) and
(Vinyes et al., 2006).

This bin classification technique has been extended to other measures such
as the frequency value of each bin in order to separate non-pan-disjoint
sources (Li and Wang, 2008).

Time Difference of Arrival (TDOA) Estimation

These types of methods use geometric assumptions about the relative po-
sitions of sources and sensors and about the traveling sound wave in order
to perform the separation. These methods can be split into two different
steps. The first step consists in estimating the relative location or direction
of the source. The second step uses the estimated location to perform the
separation.

The first step, also referred to as source localization, has been widely stud-
ied over the years due to its wide range of applications. Knapp and Carter
(1976) proposed the Generalized Cross-Correlation (GCC) approach, a Max-
imum Likelihood estimator for determining time delays between two signals
by prefiltering them before computing correlation. Reed et al. (1981) pro-
posed a method called Least Mean Squares (LMS) Adaptive Filter. The
authors estimated the time delay by optimizing the coefficients of a Finite
Impulse Response (FIR) filter that minimizes the mean square difference be-
tween the two inputs. Carter (1987) proposed using the Magnitude Square
Coherence (MSC) function to estimate the bearing, range and position of
a source given the response of a sensor array. The coherence function be-
tween two random processes is defined as the crosspower spectrum divided
by the square root of the product of the two auto power spectra. Omologo
and Svaizer (1997) introduced a variation of the GCC method where the
correlation prefiltering is chosen to be the inverse of their respective magni-
tude. Called Crosspower Spectrum Phase (CSP), it leads to a sharpening of
the cross correlation peaks, which in turn achieves better results, especially
under low SNR conditions.
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Cross-spectrum

An interesting set of methods to perform beamformer-based audio source
localization and separation comes from the field of robotics. Robotics meth-
ods are often required to be online and realtime. Even though these methods
may not be directly applicable to musical signals, they are of special interest
in our work due to the low-latency constraints they assume.

One of the beamforming techniques coming from robotics relevant to our
work was proposed by Valin et al. (2004). The method is based on the
frequency domain approximation of the delay-and-sum beamformer:

rτ [t] =

NO∑
o

vo[t− τo] (3.3)

Assuming a single source the energy of this measure over a given length L
will be maximal when the delays τo are set in such a way that the mix-
ture signals vo are in phase. The energy of this measure can be seen as a
localization spectrum:

Eτ [t] =

L−1∑
l=0

(
NO∑
o

vo[t+ l − τo]

)2

(3.4)

Expanding the energy expression we appreciate an almost constant term
which will not play a role in the maximization K =

∑L−1
l=0

∑NO
o v2

o [t − τo]
and a variable term containing the cross factors:

Eτ [t] = K + 2

L−1∑
l=0

NO∑
o1

o1−1∑
o2

vo1 [t+ l − τo1 ]vo2 [t+ l − τo2 ] (3.5)

which can be rewritten in terms of the cross-correlation as:

Eτ [t] = K + 2

NO∑
o1

o1−1∑
o2

Rvo1 ,vo2 [τo1 − τo2 ] (3.6)

This approach works correctly under the assumption of a single source.
When multiple sources are present, the frequency domain version allows
computing this measure for each frequency bin, for which the single source
assumption has more chances to hold true, given the disjointess of the
sources in this representation domain:

Ro1o2(τ, t) ≈
L∑
l=0

VO1(t+ l)VO2(t+ l)∗ej2πkτ/L (3.7)
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where VO is the Discrete Fourier Transform of vo[t] and (·)∗ denotes the
complex conjugate. Other benefits of the frequency domain approach are
less computational complexity and the possibility of weighting the different
bins when computing their contribution to the localization spectra which
leads to an enhanced cross-correlation measure:

Reo1o2(τ, t) =

L∑
l=0

ζo1(t+ l)VO1(t+ l)ζo2(t+ l)VO2(t+ l)∗

|VO1 ||VO2 |
ej2πkτ/L (3.8)

This use of the cross-spatial correlation has often been incorporated in mul-
tiple sensor beamforming source localization/separation. The definition of
the weight ζo is often what varies among methods. However another in-
teresting contribution of Valin et al. (2007) is how the source tracking is
performed using the proposed beamforming spectrum. While most track-
ing techniques in audio and music analysis are based on Hidden Markov
Models (HMM) and dynamic programming approaches such as Viterbi algo-
rithms (Durrieu et al., 2010), Valin et al. (2007) proposed using a sequential
Monte Carlo method (SMC) or particle filtering to track the position of the
sources. This technique is a model estimation method based on simulation.
It assumes a Bayesian model with latent variables connected in a Markov
chain. It is similar to HMM, however the state space of the latent variables
is typically continuous rather than discrete.

The authors of this work propose a set of possible mappings from candidates
to source tracks. The candidates are computed as the peaks of the beam-
forming spectra. The source track assignment can be selected from a set of
possible simultaneous tracks. Additionally a source track may exist but be
inactive or be active but unobserved. Finally the latent state space is defined
by the speed and position of the sources and an excitation-damping dynam-
ics model is used in order to predict next states from current states. This
configuration allows for a low latency estimation of the current simultaneous
source tracks. It also allows a flexible framework for assigning probabilities
to the different source behaviors, such as source activation/deactivation or
start/end of source track probability.

MUSIC and MVBF

Another approach to the TDOA estimation problem consists of exploiting a
subspace of the spatial cross-correlation matrix between the spectra of the
channels.
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Multiple Signal Classification (MUSIC) MUSIC (Multiple Signal
Classification) is a method for performing sound source localization when
various sensors are available. This type of method stems from the assump-
tion that the mixing process can be modeled as in Section 2.3. The process
exploits the phase delays and magnitude attenuations at the different sen-
sors from the different sources. In the frequency domain the input at the
sensors can be modeled as:

v(ω, t) = [V 1(ω, t) . . . V NO(ω, t)]> = Akx(ω, t) + n(ω, t) (3.9)

where the vector x(ω, t) represents the sources’ outputs as:

x(ω, t) = [X1(ω, t) . . . XNM (ω, t)]> (3.10)

The vector n(ω, t) corresponds to the noise. In this case the noise refers to
the non-directional or less-directional components of the signal. The matrix
Ak is the transfer function matrix, whose element (o,m) is the transfer
function of the kth bin from the mth source to the oth sensor.

The first step consists in calibrating the system beforehand by recording
the impulse responses or computing the transfer function from each possible
source to each sensor. Depending on the application and the assumptions
that can be made about the sources, different sets of parameters will be
used to characterize each possible source. In the domain of audio source
separation the parameters are usually spatial properties of the sources. For
instance if the sensors are close together in relation to their distances from
the sources, we can safely assume the sound to act as a plane wave. Under
this assumption and disregarding the attenuation of the wave, the sources
can be characterized by just their angles of incidence or directions to the
sensor array. In these situations the space of possible source parameters
would be defined by (θ, φ) where θ and φ are the elevation and azimuth
angles of incidence from the source respectively. In other situations, for
example when the sources are near the sensors, the distance of the source r
to the sensor array may also be used. This happens when the sound wave
cannot be considered as a plane wave but rather as a spherical wave. In
all cases the parameter space of the sources is discretized into a finite set
of parameter combinations. For simplicity, from now on we consider the
case where the sources are parametrized with (θ, φ), however the method
can easily be generalized to other parameterizations of the sources. The
calibration results in a set of vectors aω(θ, φ), called location vectors which
will be used later in the calculation of the spatial spectrum.
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The localization process is performed by taking the STFT at each sensor
and calculating a spatial correlation matrix of the bins of these multichannel
spectra:

Rvv(ω, t) = E
[
v(ω, t)vH(ω, t)

]
(3.11)

In order to have a stable estimation of the correlation matrices we must
average along H frames in the time dimension:

Rvv(ω, t) =

H/2∑
h=−H/2

v(ω, t+ h)vH(ω, t+ h) (3.12)

In order to simplify the following explanation, we will focus on a single frame
t and the averaged matrix correlation will be referred to as Rω = Rvv(ω, t)

The method proceeds by computing the eigenvalue decomposition of the
correlation matrices:

Rω = EωΣE−1
ω (3.13)

The eigenvectors are split as Eω = [Ex
ω|En

ω] where Ex
ω and En

ω denote the
sets of eigenvectors corresponding to the NM dominant eigenvalues and the
rest of the eigenvalues, respectively.

We use En
ω and the transfer function matrix Aω to the calculate the MUSIC

spatial spectrum:

P (θ, φ, ω) =
1∣∣ãHω (θ, φ)En

ω

∣∣2 (3.14)

where ãω(θ, φ) is the normalized location vector for the scanning point (θ, φ)
defined as:

ãω(θ, φ) =
aω(θ, φ)

‖aω(θ, φ)‖
(3.15)

The MUSIC spatial spectrum gives us a distribution for each bin over the
parameter space. This spectrum is then averaged over a frequency range in
order to get a spatial spectrum:

P (θ, φ) =
1

ω

ωH∑
ωL

P (θ, φ, ω) (3.16)
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where ωL and ωH are the indices for the lower and upper boundaries of the
frequency range, and ω = ωH − ωL + 1.

The location of the parameter values (in our case the direction of arrival) of
the sources can be estimated from the peak locations of the spatial spectrum
P (θ, φ).

This method was first proposed by Schmidt (1986). These kinds of methods
are also called subspace methods.

Asano et al. (1999, 2001) successfully applied this method to automatic
speech recognition under real-time conditions. This first use of the MU-
SIC technique in the context of robotics audition was followed by many
variations focusing mainly on speech signals.

In this study the authors also proposed a way to locate more sources, as well
as a method to estimate the number of sources. This method consists in
performing a preliminary estimation of the source count and location from
the narrow band MUSIC spatial spectrum P (θ, φ, ω) before aggregating it
into the broadband spatial spectrum P (θ, φ).

Minimum Variance Beamforming (MVBF) Once the source local-
ization has been performed, the next step is to separate it from the mix-
ture. The MUSIC source localization technique is often coupled with the
Minimum-Variance Beamformer (MVBF) technique for source separation
developed by Johnson and Dudgeon (1993). This consists of recovering the
spectrum of the mth source by filtering the multichannel spectrum in the
following way:

X̂m(ω, t) = wH(ω)v(ω, t) (3.17)

where

w =
R−1
ω âm,ω

âHm,ωR
−1
ω âm,ω

(3.18)

The vector âm,ω is the location vector of the mth source estimated in the
source location step previously presented.

There exist several variations of this method. The different approaches vary
in the use of the correlation matrix in the calculation of the filter w. Asano
et al. (2001) showed the use of two other methods named MV1 and MV2.
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In MV1 the filter is computed as:

w =
K−1

ω âm,ω

âHm,ωK
−1
ω âm,ω

(3.19)

where Kω is the spatial correlation matrix computed during a period when
the target source Xm(ω, t) is not present in the mixtures. This method
largely reduces the presence of noise in the estimation, however it requires
some means of detecting the absence of the target source in the mixture.

The other variant, named MV2 consists in defining the filter as:

w =
Q−1
ω âm,ω

âHm,ωQ
−1
ω âm,ω

(3.20)

where

Qω = ÂωÂ
H
ω + γI (3.21)

The matrix Âω = [â1,ω . . . âm,ω] is built using the estimates of the source
locations. The γ parameter controls the directivity of the beamformer fil-
ter. The larger the value of γ is, the larger the reduction of directional
interference will be. A smaller value of γ will result in less reduction of
non-directional noise. This method does not require large amounts of data
since it does not rely on the correlation matrices. This reduces even more
the latency of the algorithm. However it is more sensitive to errors in the
localization of the sources.

The MUSIC and MVBF methods are widely used in the fields of robotic
audition and conferencing. They present very interesting low-latency and
realtime properties, and perform quite well on speech signals even sometimes
with the presence of environmental sounds. However in the context of music
signals, their application has been less successful. One of the main reasons is
that the geometric assumptions about the sources’ positions and the mixing
process do not apply to many musical signals, especially musical recordings
mixed and mastered in studios, which comprise the majority of commer-
cially available western music. In studio mixes, the different instruments
are often recorded separately and then mixed artificially without necessar-
ily respecting the traveling sound wave models. In many cases, to achieve
the sensation of different locations of the instruments in the mix, panning
and reverb effects are used. These effects invalidate the assumptions of the
MUSIC and MVBF methods, significantly degrading their performance.
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Another shortcoming of these methods in music is the ratio between the
number of sources and mixtures. In musical signals we often have many
more sources than mixtures, and in these cases subspace methods do not
work. Even though some solutions have been proposed when there are
more sources than mixtures, these depend on high disjointness in the time-
frequency representation of the signal.

3.3 Music-specific Signal Model Methods

The solutions based only on statistical knowledge of the sources and/or the
mixing process often require that the number of mixture signals be larger
than or equal to the number of sources (determined or overdetermined prob-
lem). This condition can sometimes be relaxed if we make some assumptions
about the individual sources themselves.

Several techniques make use of a priori information about the actual sources
which may be extracted from the mixture signals. This situation is quite
common in music sources separation. The extensive research in Music In-
formation Retrieval (MIR) has been applied to extract information about
the target sources in order to simplify the separation.

Pitch Estimation and Tracking

Pitch is a perceptual property that allows the ordering of sounds on a
frequency-related scale (Klapuri, 2004). The technical term for this prop-
erty is fundamental frequency (f0). Pitch is a major auditory attribute
of musical tones, along with duration, loudness, and timbre. Pitch may
be quantified as a frequency, but pitch is not a purely objective physical
property; it is a subjective psychoacoustical attribute of sound. Histori-
cally, the study of pitch and pitch perception has been a central problem in
psychoacoustics.

The estimation of pitch is highly related to source separation in the field
of music. Many music source separation methods use pitch estimation as
a previous step. Additionally pitch estimation approaches often share the
same techniques as those of source separation. Therefore we briefly review
here some pitch estimation techniques proposed in the literature.

In the field of pitch estimation several tasks are often differentiated. Mono-
phonic pitch estimation consists in estimating the pitch line of an audio
recording where a single pitched sound is present at any given time. It



3.3. music-specific signal model methods 55

has often been used in speech analysis, audio effects or transformations
and other applications in which the individual instrument tracks are avail-
able. Predominant pitch, bass line or melody estimation often refers to the
estimation of one of the pitch lines in a polyphonic recording, where the
selection of the pitch line depends on the application. Multiple pitch esti-
mation consists in extracting all the pitch lines in a polyphonic recording.
These two last families of methods are the ones of interest in the field of
source separation.

Probably the most intuitive and well-known method for pitch estimation of
monophonic signals consists in computing the Auto Correlation Function
(ACF) and finding the second highest peak (Rabiner, 1977). In the litera-
ture we find multiple variations of this method, such as de Cheveigné (1991)
computing the ACF per band and aggregating the results. de Cheveigné
and Kawahara (2002) propose a fast computation based on the DFT. An-
other relevant monophonic pitch estimation method is the cepstrum (Noll,
1967) which consists in performing the DFT of the logarithm of the spec-
trum. This calculation allows us to decouple the filter component from the
pitched source when assuming a smooth filter source-filter model. Finally
the so called harmonic summation or Harmonic Product Spectrum (HPS)
methods (Schroeder, 1968) are based on a histogram that counts the con-
tribution of each spectral peak to the pitch candidates that are common
divisors of its frequency.

The methods for monophonic pitch estimation usually present limitations
when applied to polyphonic signals. These are mostly due to not taking into
account the overlapping partials and background spectral noise when multi-
ple instruments are present. Several authors have proposed variations of the
monophonic methods to overcome these problems, including heuristics to
reduce the influence of other instruments (Goto and Hayamizu, 1999; Kla-
puri, 2003; Salamon and Gomez, 2012). These methods often use heuristics
such as iterative spectral substraction or pitch contour-based selection in
order to achieve satisfactory results in single pitch estimation of polyphonic
recordings.

Most recent research on the task of multipitch estimation has been focusing
on generative models (Yeh et al., 2010) or signal decomposition approaches.
Deconvolution in the logarithmic frequency domain (Sagayama et al., 2004;
Saito et al., 2008) and factorization techniques such as NMF (Smaragdis
and Brown, 2003; Kameoka et al., 2007; Raczyński et al., 2007) and PLCA
(Smaragdis, 2011; Benetos and Dixon, 2011b, 2013) have been widely used
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for this purpose. Semi-supervised techniques that exploit a priori knowl-
edge about the instrument timbres (Quesada et al., 2010) have also been
used to perform multipitch estimation.

Li and Wang (2008) use pitch annotations to create a binary time frequency
mask that exploits the harmonic structure of pitched instruments for sepa-
ration purposes. Hu and Wang (2004) and Li et al. (2009) use the estimated
pitch and correlations between the amplitude modulations and phase evo-
lutions of the partials to separate monaural mixes of monophonic instru-
ments. Durrieu et al. (2011) applies predominant pitch-based constraints
to the factorization of a source-filter plus accompaniment spectrum model.
The predominant pitch estimation and the separation are both performed
using NMF and the same spectrum model. Carabias-Orti et al. (2011) and
Rodriguez-Serrano et al. (2012) assume instrument-specific harmonic en-
velopes that, once learned from isolated instrument recordings, can be used
to perform multipitch estimation and separation. The pitch estimation and
instrument separation is performed using NMF on source-filter spectrum
models.

Transients

In music, there is no strict definition of what a transient is, but it usually
refers to sudden changes in the statistics of the signal. Note onsets or high-
amplitude, short-duration sounds that occur at the beginning of a steady
state waveform are commonly referred to as transients. Transients are found
in many musical sources. Percussive instruments or the note attacks of cer-
tain instruments concentrate a lot of their energy in a localized time region.
These regions can be exploited in source separation tasks. Estimating tran-
sient locations has been the target of many MIR studies. Transients are
especially useful in drums isolation or removal. Most transient estimation
algorithms are based on an onset (or transient) detection function, which is a
one dimensional function that represents the saliency or intensity of change
in the input signal. In a post-processing stage a discretization algorithm
is applied to the onset detection function in order to detect and localize
the transients. Many onset detection functions have been proposed. The
spectral flux introduced by Masri (1996) consists in calculating the change
rate of the power of the spectrum by means of the STFT by comparing the
current frame to the previous one. Duxbury et al. (2002) and Bello et al.
(2005) studied the use of the L1-norm and L2-norm when comparing the
frames. In some cases logarithmic magnitudes (relative or normalized) of
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the STFT frame are used in order to make the onset detection function less
dependent on the global energy of the signal (Klapuri, 1999).

The High Frequency Content (HFC) method (Masri, 1996; Brossier et al.,
2004) applies a linear weighting when comparing frames, emphasizing the
higher range of the spectrum, usually associated with percussive sounds.
Duxbury et al. (2003) and Bello and Sandler (2003) proposed the use of spec-
tral phase time-derivatives in order to compute an onset detection function
that relates to large changes in the instantaneous frequency. Phase devia-
tion methods have also been used in combination with magnitude changes
(Dixon, 2006). In order to capture harmonic transients, Macleod and Mal-
colm (2003) proposed the use of the Kullback-Leibler divergence between
spectral frames.

Röbel (2003, 2005, 2009) proposed an onset detection function related to the
center of gravity of the spectrum in the analysis window. The computation
of the center of gravity is based on the spectral reassignment work done by
Auger and Flandrin (1995).

Some of these transient detection techniques have been used as a prepro-
cessing step in many drum transcription and separation methods (Gillet
and Richard, 2004; Barry, 2005; Yoshii et al., 2005a; Gillet, 2007; Gillet and
Richard, 2008). In other cases the transient estimation and transcription
steps are performed jointly by performing pattern matching and adaptation
(Zils et al., 2002; Yoshii et al., 2005a).

Beat Detection and Tracking

As explained in Section 2.4 music sources are characterized by their high
temporal correlations. The beat, the basic unit of time in music, has re-
ceived special attention for decades. The beat level is a metric level of
rhythm that is often used as a reference.

Automatic beat analysis has often been done in Music Information Retrieval
(MIR) and it comprises two main tasks: beat detection and beat tracking.
Beat detection consists in finding the beat rate of an excerpt, while beat
tracking consists in finding the actual beat positions. In blind source sepa-
ration tasks, beat positions can be of great help for isolating or separating
the rhythmic section of the music mixture.

Goto and Muraoka (1994) developed a real-time algorithm for beat detec-
tion and tracking based on detected onsets and multiple agent architecture.
Smith (1996) proposed the use of wavelets and phase congruence to find
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the beat positions and account for beat variations. Dixon (1997) derived a
beat estimation algorithm based on onset times and inter-onset intervals.
Scheirer (1998) estimated the beat by creating a small number of bandpass
filters coupled to banks of parallel comb filters. This method is causal and
able to predict future beat positions, allowing it to work under low latency
conditions. Desain and Honing (1999) created a rule-based method to de-
tect and track the beat and other higher level metric structures. Lang and
de Freitas (2004) attempted a probabilistic approach to the beat tracking
problem. Finally Hazan et al. (2007) performed beat tracking and predic-
tion under real-time and low-latency constraints.

Identifying the beat has recently been used to separate the melody from
the background music. The work done in the MIR field has led to recent
methods of regularity-based source separation. These methods mainly focus
on the separation of the accompaniment or background music from the main
melody or lead voice. The accompaniment often presents a highly repetitive
structure while the main melody tends to be less predictable.

Rafii and Pardo (2011) proposed a method named Repeating Pattern Ex-
traction Technique (REPET) based on a model for the repeating segments
in a music excerpt. The beat rate and positions of the music piece are first
estimated and then the musical signal is segmented into repeating sections
and an average of the repeating segments is taken to create the model of
the repeating segment. Finally a binary mask is computed from the simi-
larities/dissimilarities of frequency bins to the model. This binary mask is
applied to the original spectrogram and the inverse STFT is performed to
resynthesize the audio waveform.

Liutkus et al. (2012) developed an extension of the REPET technique.
REPET is based on the beat rate and the repeating model of the entire
music piece. Liutkus et al. (2012) proposed an adaptive method that al-
lows variations in the beat and in the repeating model. The goal of this
method is to correctly handle the different sections of the music piece, such
as verse and chorus. Additionally the authors used a soft mask in contrast
to a binary mask, which should lead to less musical noise due to smoother
frequency domain filters and in consequence lower temporal aliasing.

Kameoka et al. (2012) proposed the use of constraints on Non-negative Ma-
trix Factorization to exploit this type of musical information. The authors
proposed a constraint specifically tailored to capture the beat structure of
the music mixture in the gains of the factorization.
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Score Informed

In cases where the score of a given musical piece is known, we may use this
signal-specific information to greatly increase the performance of existing
source separation methods. Woodruff et al. (2006) combine prior informa-
tion from an aligned score to improve the performance of a music source
separation system based on panning and time-frequency masking. The sys-
tem is evaluated on synthetic music performances with and without score
alignment to assess its influence in the separation. Raphael (2008) pro-
poses a time-frequency and panning classification-based system that relies
on aligned score information.

Due to the widespread availability of musical transcriptions of popular mu-
sic, these techniques are lately drawing more attention from the scientific
community. Ganseman et al. (2010) use score synthesis to initialize a signal
decomposition monaural source separation system. The score is aligned to
the music recording using Dynamic Time Warping (DTW) and then used
to create the priors of a Probabilistic Latent Component Analysis (PLCA)
model. Similarly, Hennequin et al. (2011) use the musical score to perform
an initialization of a parametric Nonnegative Matrix Factorization (NMF)
of the mixture spectrum.

Ewert and Müller (2011) and Ewert and Müller (2012) use the score to im-
pose activity and harmonicity constraints on the components of a factorization-
based source separation method. This approach is applied to piano record-
ings and allows the authors to achieve high quality separation results. The
score of the pieces must be previously globally aligned to the recording
and the constraints must be loose to permit local misalignments. Bosch
et al. (2012) present a method in which Musical Instrument Digital Interface
(MIDI) scores improve the lead voice pitch estimation of audio recordings.
The estimated pitch is then used in a singing voice separation task. As in
the previous work the score must be first globally aligned to the recording.
The aligned score is then used to derive the state probabilities of the Hidden
Markov Model (HMM) used in the pitch tracking stage.

3.4 Signal Decomposition Approaches

The music signal model-based approaches are very practical since we are
able to easily reuse much of the work done in Music Information Retrieval
(MIR). On the other hand they are very dependent on the model itself, and
mismatch between the data and the model can be the source of artifacts
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Figure 3.1: Example of the NMF decomposition of 3 piano notes, with the spec-
trogram of the mixture V top right, 3 basis componentsW top left, gainsH bottom
of the 3 components.

and/or noise. Alternatives to these types of solutions are those based on
signal decomposition methods. These methods are based on finding the
components that form a given signal and mixing them into different groups
so that an estimate of the sources can be computed.

Non-negative Matrix Factorization (NMF)

Currently some of the most popular methods for performing audio source
separation use Non-negative Matrix Factorization (NMF). The main as-
sumption in NMF based methods is that the spectra (magnitude or power
of the STFT) of the audio mixture signal, V can be modeled as linear com-
binations of NW elementary non-negative spectra (also called basis compo-
nents). This can be expressed as V ≈ V̂ = WH where V is the observed
spectrum of the mixture signal at a given frame and V̂ is the modeled
spectrum. W ∈ RNω×NW is the matrix whose columns are the basis com-
ponents, it is also referred to as the basis matrix. H ∈ RNW×NT is a vector
of component gains for the current frame.

The factorization of a positive matrix into two non-negative factor matri-
ces was first proposed by Paatero and Tapper (1994) and fast convenient
algorithms were developed by Lee and Seung (2001). The algorithms pro-
posed by Lee and Seung (2001) consisted of two rules based on the gradient
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descent formulation. When using a specific step, the update steps become
multiplicative rules under which the targeted cost functions were shown to
be non-increasing. The objective functions they studied were the Euclidean
distance and I-divergence 1:

Φeuc(H,W ) =
∑NT

t=1

∑Nω
ω=1

1

2
([WH]t,ω − [V ]t,ω)2 (3.22)

Φkl(H,W ) =
∑NT

t=1

∑Nω
ω=1 [V ]t,ωlog

[V ]t,ω
[WH]t,ω

− [V ]t,ω

+[WH]t,ω (3.23)

where [X]k is the kth element of vector X.

The proposed update rules for the Euclidean distance cost function are:

H ←H ⊗ W>V

W> (WH)
(3.24)

W ←W ⊗ H>V

(WH)H>
(3.25)

where ⊗ is the Hadamard product (an elementwise multiplication of the
matrices) and all divisions are elementwise. H and W are initialized as
random positive matrices.

For the Kullback-Leibler divergence cost function, the update rules are:

H ←H ⊗
W> V

(WH)

W>1
(3.26)

W ←W ⊗
V

(WH)H
>

1H>
(3.27)

where 1 is a matrix of ones with the same size as V .

The resulting algorithm to perform the non-negative matrix factorization
can be resumed as:

where the initialization matricesW 0 andH0 are commonly random positive
matrices. The normalization step is optional, however it is often performed
to avoid the scale ambiguity of the solution.

1. They are also referred to as generalized Kullback-Leibler divergence or simply
Kullback-Leibler if the basis and gains sum to 1.
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Initialize the basis W = W 0

Initialize the gains H = H0

while continue criterion do
Compute the estimation V̂ = WH
Update the basis W
Update the gains H
Normalize the basis W [ω,w] = W [ω,w]/

∑Nω
i W [i, w]

end while

Smaragdis and Brown (2003) were the first to apply this factorization method
to music in the context of polyphonic music transcription. They focused on
music passages comprised of notes exhibiting a harmonically fixed spectral
profile, such as piano notes. This allowed them to express the spectrogram
of the signal as a linear basis transformation and use non-negative matrix
decomposition techniques to find the spectral basis and the activations over
time of this basis.

NMF Divergences

While the objective functions (also called loss functions) based on Eucli-
diean distance and Kullback-Leibler divergence have served well in many
applications, there has been a continuous search to find divergences that
better suit each specific task and/or type of data. For instance if the error
between the model and the data is Gaussian, then the Euclidean distance
will be the most appropriate divergence. If we are dealing with histograms or
probability distributions the Kullback-Leibler divergence is a better choice.

Cichocki et al. (2006, 2008) developed update rules for the family of Amari’s
α divergences (Amari, 1985):

Φα(H,W ) =

NT∑
t=1

Nω∑
ω=1

[V ]t,ω

(
[V ]t,ω

[WH]t,ω

)β−1
− 1

(β − 1)β
(3.28)

+
[WH]t,ω − [V ]t,ω

β

The α-divergence depends on a given parameter β and covers a wide range of
well known distances such as the Hellinger distance (for β = 0.5), Pearson’s
chi-square distance (β = 2), Neyman’s chi-square distance (β = −1) and it
converges to the Kullback-Leibler divergence (β = 0.5).
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Dhillon and Sra (2006) introduced a technique called Nonnegative Matrix
Approximation (NNMA) for dimensionality reduction and data analysis
that yields a part-based, sparse, nonnegative representation for nonnega-
tive input data. NNMA can be viewed as a generalization of the NMF
algorithms from Lee and Seung (2001) to the family of Bregman divergences-
based objective functions 2. The authors derived multiplicative update rules
for objective functions consisting of any Bregman divergence function:

Φϕ(H,W ) =
∑NT

t=1

∑Nω
ω=1 ϕ([V ]t,ω) (3.29)

−ϕ([HW ]t,ω)

−∇ϕ([HW ]t,ω)([V ]t,ω − [HW ]t,ω)

The solution to such objective functions becomes:

H ←H ⊗ ψ−1

(
W>ψ (V )

W>ψ (WH)

)
(3.30)

W ←W ⊗ ψ−1

(
ψ (V )H>

ψ (WH)H>

)
(3.31)

where ψ(x) = ∇ϕ(x).

Extending the work by Dhillon and Sra (2006), Raczyński et al. (2008)
derived the solutions for a specific sub-family of the Bregman divergences.
The proposed subset is the r-divergence family, which is generated by a
function whose second derivative is of the form ϕ′′(x) = x−r. The simplest
solution for the generating function becomes:

ϕ(x) =


xlog(x)− x if r = 1
−log(x)− 1 if r = 2

x2−r

(1−r)(2−r) otherwise
(3.32)

It’s easy to show that for different values of r the divergence becomes the
Euclidean distance (r = 0), the I-divergence (r = 1) and especially the
Itakura-Saito divergence (r = 2) which had been proven useful for speech
spectra (Itakura and Saito, 1968; Gray et al., 1980).

The update rules for this sub-family of divergences was derived from 3.29
as:

H ←H ⊗
W> (V ⊗ (WH)−r

)
W>

(
(WH)1−r

) (3.33)

2. Bregman divergences are functions of the form: Dϕ(x, y) , ϕ(x)−ϕ(y)−∇ϕ(y)(x−
y). They are nonnegative, convex in the first argument and zero if and only if x = y.
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W ←W ⊗
(
V ⊗ (WH)−r

)
H>(

(WH)1−r
)
H>

(3.34)

Cichocki et al. (2006) and Kompass (2007) presented multiplicative update
rules for another subset of Bregman divergences called the β-divergences.
This subset also included the Euclidean distance, Kullback-Leibler and the
Itakura-Saito:

Φβ(H,W ) =

NT∑
t=1

Nω∑
ω=1

[V ]t,ω
[V ]β−1

t,ω − [WH]β−1
t,ω

β(β − 1)
(3.35)

+[WH]β−1
t,ω

[WH]t,ω − [V ]t,ω
β

This family of divergences was later studied in more detail by FitzGerald
et al. (2009) and Févotte et al. (2009) with special attention to music signals
and the Itakura-Saito case:

Φis(H,W ) =

NT∑
t=1

Nω∑
ω=1

[V ]t,ω
[WH]t,ω

− log [V ]t,ω
[WH]t,ω

− 1 (3.36)

The proposed generalized update rules for the β-divergence, the basis W
and the gains H are expressed as:

H ←H ⊗
W>

(
(WH)[β−2] ⊗ V

)
W> (WH)[β−1]

(3.37)

W ←W ⊗
H>

(
(HW )[β−2] ⊗ V

)
(WH)[β−1]H>

(3.38)

where all powers are elementwise and 0 ≤ β ≤ 2 is the coefficient that
will define the objection function that is being minimized. β = 2 for the
Euclidean distance (NMFeuc), β = 1 for the Kullback-Leibler divergence
(NMFkl) and β = 0 for the Itakura-Saito divergence (NMFis).

The special case of the Itakura-Saito divergence results in the following
update rules:

H ←H ⊗
W>

(
V

(WH)2

)
W> (WH)−1 (3.39)
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W ←W ⊗
H>

(
V

(HW )2

)
(WH)−1H>

(3.40)

The Itakura-Saito divergence is widely used in audio separation tasks due
to the way it quantifies differences between spectra. As described in Sec-
tion 2.4, human audio perception is characterized by perceiving audio dif-
ferences in a wide loudness range. We may assume that an appropriate
divergence should quantify similarly the differences in both high and low
magnitude ranges. From this point of view, Itakura-Saito shows better per-
formance than other well known divergences such as the Euclidean distance
or the Kullback-Leibler.

NMF Regularizations

Févotte et al. (2009) proposed temporal smoothness using priors on the
gains. However these were only proposed for an algorithm (SAGE) based
on Expectation Maximization (EM), different from NMF multiplicative up-
dates. Bertin et al. (2010) used harmonicity and temporal smoothness reg-
ularizations.

Although NMF had proven useful for certain decomposition tasks, the non-
negativity constraint was not sufficient to always achieve a parts-based rep-
resentation of the data. Li et al. (2001) and Feng et al. (2002) introduced
into the standard NMF cost function a sparseness regularization term on the
gains and a locality term on the basis. The goal of such cost terms was to
learn spatially localized parts-based representation of visual patterns. This
formulation lead to the Local Nonnegative Matrix Factorization algorithm
(LNMF) whose cost function is defined as:

Φlnmf (H,W ) = Φkl(H,W ) + α

NW∑
i,j=1

[
W>W

]
ij

(3.41)

−β
NW∑
i,j=1

[
HH>

]
ij

The multiplicative update rules that the authors proposed remain unchanged
for the basis, and become the following for the gains:

H ←

√
H ⊗W> V

(WH)
(3.42)
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It is worth noting that even though the update rule is not strictly multi-
plicative, given the square root, the convergence is still fast.

Hoyer and Dayan (2004) considered adding limits to the sparsity of the basis
W and/or of the gains H and derived the algorithms to enforce such limits
during the factorization. Hoyer (2002) also considered adding a sparseness
regularization term to the gains in the Euclidean distance objective function.
This method was called Non-negative Sparse Coding (NNSC):

Φnnsc(H,W ) = Φeuc(H,W ) + λ

NT∑
t=1

NW∑
w=1

Hw,t (3.43)

However in this case the update rule of the basis is not multiplicative and the
non-negativity constraint is implemented by setting the negative values of
W to 0 after each update. For this objective function the author proposed
the following update rules:

H ←H ⊗ W>V

W> (WH + λ)
(3.44)

W ←W − µ (WH − V )H> (3.45)

Eggert and Korner (2004) also added the sparseness regularization term to
the gains in the Euclidean distance objective function. The authors also
took into consideration the normalization of the basis by inserting it into
the objective function: The following equation does not fit properly.

Φeggert(H,W ) =

NT∑
t=1

Nω∑
ω=1

1

2

([
W

‖W ‖
H

]
t,ω

− [V ]t,ω

)2

+λ

NT∑
t=1

NW∑
w=1

g (Hw,t) (3.46)

where g(x) is a < → < differentiable function that acts as a regularization
term on the gains and ‖X‖ stands for any differentiable norm. This formu-
lation allowed the authors to derive simple and easy to implement update
rules similar to those presented by Lee and Seung (2001):

H ←H ⊗ W
>
V

W
> (
WH

)
+ λg′ (H)

(3.47)
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W ←W ⊗
H>

[
V +

(
WH

)
∇W ‖W ‖

]
H>

[
WH +

(
VW

)
∇W ‖W ‖

] (3.48)

The authors also provided update rules for the specific case where g (x) = x
and where ‖X‖ is the Euclidean norm.

Cichocki et al. (2006, 2008) generalized the addition of sparseness con-
straints and regularization to the Euclidean distance and to the generalized
Kullback-Leibler divergence (also known as the I-divergence) leading to the
following objective functions:

Φeucreg(H,W ) = Φeuc(H,W ) + αWJW (W ) + αHJH(H)(3.49)

Φklreg(H,W ) = Φkl(H,W ) + αWJW (W ) + αHJH(H) (3.50)

where JW (W ) and JH(H) are custom cost functions (or regularization
terms) for the basis and the gains respectively. αW and αH are the regu-
larization parameters.

The proposed update rules for Φeucreg(H,W ) are:

H ←H ⊗ bW
>V − αHϕHcε

W> (WH) + ε
(3.51)

W ←W ⊗ bV H
> − αWϕW cε

(WH)H> + ε
(3.52)

where ε = 10−9 is introduced to ensure non-negativity and avoid divisions
by zero. bxcε = max{x, ε} and the matrices ϕW and ϕH are defined as:

[ϕW ]i,j =
δJW (W )

δW i,j
, [ϕH ]i,j =

δJH(H)

δH i,j
(3.53)

And for the Φklreg(H,W ) objective function the authors proposed:

H ←

(
H ⊗

W> V
(WH)

bW> + αHϕHcε

)1+αsH

(3.54)

W ←

(
W ⊗

H> V
(WH)

bH> + αWϕW cε

)1+αsW

(3.55)
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where additional small positive regularization terms αsH ≥ 0 and αsW ≥ 0
are introduced in order to enforce sparseness of the solution, if necessary.
Typical values of αsH , αsW ∈ [0.001, 0.005].

Chen and Cichocki (2005) and Chen et al. (2006) proposed a temporal
smoothness regularization based on the ratio between the mean value and
the exponentially weighted local average of the gain of the component. This
regularization is based on a Toeplitz matrix that performs the local average
filter. The authors also proposed a component decorrelation regulariza-
tion. The proposed method is evaluated on EEG data. On the other hand,
Pascual-Montano et al. (2006) proposed a temporally non-smooth version of
the Nonnegative Matrix Factorization algorithm. The goal is to decompose
the signal in factors that are localized in time. The technique is then applied
to both synthetic and experimental data with a focus on brain imaging.

Virtanen (2007) proposed the addition of two regularization terms based
on the gains matrix to the I-divergence cost function in the specific case of
music audio source separation. This leads to the cost function 3.50 where
the JW (W ) = 0 and JH(H) is defined as:

JH(H) = αtcJ
tc
H(H) + αsJ

s
H(H) (3.56)

One regularization term consists in penalizing temporal discontinuities on
the gains of each component. The idea behind this term is that many
musical sources have a slowly varying spectrum, such as the sustain phases
of the notes. This consists in adding a cost term of the form:

J tcH(H) =

NW∑
w

1

σtw
2

NT∑
t

(
[H]w,t − [H]w,t−1

)2
(3.57)

where the standard deviation of the components is estimated as σtw =√
(1/NT )

∑NT
t ([H]2w,t).

The other term promotes the sparseness of the gains in the component
dimension. This means that the solution with fewer gains active is preferred.
The rationale for this term is to try to explain the majority of a given source
with the fewest number of bases possible.

JsH(H) =

NW∑
w

NT∑
t

g([H]w,t /σw) (3.58)
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where g(·) is a function that penalizes non-zero gains. The update rules for
the function g(x) = |x| were derived by the authors.

In order to derive the update rules in this situation, the author calculated
the gradient of the terms:[

ϕtcH(H)
]
w,t

= 2NT

2 [H]w,t − [H]w,t−1 − [H]w,t+1∑NT
i [H]2w,i

−NT

2 [H]w,t
∑NT

i=2

(
[H]w,i − [H]w,i−1

)2

(∑NT
i [H]2w,i

)2 (3.59)

[ϕsH(H)]w,t =
1√

1
NT

∑NT
i [H]2w,t

−
√
NT

[H]w,t
∑NT

i [H]w,i(∑NT
i [H]2w,i

)3/2
(3.60)

The gradients of the regularization terms proposed by Virtanen (2007) can
take negative values and therefore cannot be directly used in equation 3.50.
Instead, the author derives new update rules by separating the gradients into
positive and negative contributions. This is also done with the Kullback-
Leibler cost function and the new update rule factor is defined as the neg-
ative contribution divided by the positive contribution:

H ←H ⊗
W> V

(WH) + αHϕ
−
H

bW> + αHϕ
+
Hcε

(3.61)

W ←W ⊗
H> V

(WH) + αWϕ−W

bH> + αWϕ+
W cε

(3.62)

where ϕ+
H and ϕ−H are the positive and negative contributions to ϕH re-

spectively. We can observe that if the gradients of the regularization terms
are positive (ϕ−H = 0) the update rules are equivalent to Equations 3.54 and
3.55 with their regularization terms αsH and αsW set to 0.

Wilson et al. (2008b,a) applied the objective function 3.50 and the update
rules 3.54 to the task of speech denoising and created the following regular-
ization term:

J(H) = JwH(H) + J tH(H) (3.63)
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where JwH accounts for the relations of the gains between all the bases at a
given frame in time and J tH accounts for the covariance of the gains between
consecutive frames in time. They are defined as:

JwH(H) = αw
1

2

NT∑
t=1

(logH :,t − µ)>Λ−1
w (logH :,t − µ) (3.64)

−log
[
(2π)NW |Λw|

]

J tH(H) = αt
1

2

NW∑
w=1

(
logHw,: − µw1>

)>
w

Λ−1
t

(
logHw,: − µw1>

)>
(3.65)

−log
[
(2π)NW |Λt|

]
where µ and µw are the means of the gains H in the basis and time dimen-
sions respectively. Similarly Λw and Λt represent the covariance matrices
of the gains H. These statistics have been found previously by training a
standard NMF on speech and noise signals separately and then concatenat-
ing their statistics by assuming independence. Xi,: represents the ith row
of X and X :,j is the jth column. In this work only the gains are learned,
since the bases are fixed to those learned during the training phase. There-
fore the regularization terms are used to penalize solutions of the H whose
statistics deviate from those found during the training phase. Finally, by
applying 3.54, the update rule of the gains becomes:

H ←H ⊗
W> V

(WH)

bW> + ϕwH(H) + ϕtH(H)cε
(3.66)

where:

[ϕwH(H)]w,t = −αw

(
Λ−1
w (logH :,t − µ)

)
w

Hw,t
(3.67)

[
ϕtH(H)

]
w,t

= −αt

(
wΛ−1

t

(
logHw,: − µw1>

)>)
t

Hw,t
(3.68)

The authors showed that the use of these regularization terms in the NMF
objective function improves the speech denoising task.

Raczyński et al. (2008) also studied the introduction of regularization terms
in the NMF formulation in the context of music transcription tasks. By
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extending the r-divergence objective function 3.29 and 3.32 with two extra
regularization terms, they derived general update rules:

Φϕreg(H,W ) = Φϕ(H,W ) + JW (W ) + JH(H) (3.69)

where JW (W ) and JH(H) are the regularization terms on the basis W
and on the gains H respectively. The proposed update rules become:

H ←H ⊗
W> (V ⊗ (WH)−r

)
W>

(
(WH)1−r

)
+ ϕH(H)

(3.70)

W ←W ⊗
(
V ⊗ (WH)−r

)
H>(

(WH)1−r
)
H> + ϕW (W )

(3.71)

Another interesting development in the work of Raczyński et al. (2008) is
the proposal of three specific regularization terms on the gains JH(H) for
the context of polyphonic music transcription and separation. The first
regularization proposed was a sparseness regularization that would lead to
a preference for sparse gains:

JspH (H) = αsp|Hp|, (3.72)

ϕspH(H) = αsppH
p−1 (3.73)

This regularization is simply the lp-norm of the gains. The p must be kept
under 2.

The next regularization term proposal is a penalty for cross-correlation of
the gains. This permits decreasing the cross-talk between activities of dif-
ferent notes:

JcrH(H) = αcr|C ⊗
(
HH>

)
|, (3.74)

ϕcrH(H) = 2αcrCH (3.75)

where C is a weight matrix that selects what cross-terms to penalize and by
how much. The weights are set so that the non-cross terms (elements on the
diagonal) are not penalized Cii = 0 and so that the penalties only depend
on the intervals between the notes, therefore the matrix C is circulant.
These conditions allow the simple derivation that leads to ϕcrH(H). Usually
the C is used to especially penalize octave, fifths and thirds intervals.
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Together the sparseness and cross-correlation terms help in the reduction
of the typical errors encountered in the transcription of polyphonic music
such as octave and fifths errors.

The last proposed regularization term is used to encourage temporal smooth-
ness of the gains. It is done like the cross-correlation penalty:

JsmH (H) = −αsm|D ⊗
(
H>H

)
|, (3.76)

ϕsmH (H) = −2αsmHD (3.77)

where D is used to penalize discontinuities between consecutive frames. As
in 3.74 D is forced to be circulant and have a nullified diagonal (Dii =
0) in order to achieve a simple derivative that will lead to the proposed
ϕsmH (H). The specific proposed D has an exponentially decaying profile, so
that elements close to the diagonal have high values and those that are far
tend to zero. However the authors noted that negative elements in ϕsmH (H)
tend to lead to instabilities and negative solutions in the algorithm. To
avoid this ϕsm

′
H (H) = eϕ

sm
H (H) is used instead. The authors showed that in

a specific multipitch transcription task, the use of a combination of these
regularization terms improves accuracy.

NMF Constraints

The use of regularizations in the objective function can greatly help to
improve the physical interpretation of the spectrum templates in the basis
matrixW or of the gainsH. For instance in an audio mixture factorization,
promoting a set of gains to be sparse will likely be used to reconstruct
impulsive sounds.

Another method to improve the physical interpretation of the components
and to guide the factorization process is fixing some of the matrices’ ele-
ments. This is equivalent to reducing the number of free parameters.

We must note that the NMF algorithms discussed do not guarantee con-
vergence towards a global minimum of the objective function. These multi-
plicative update rules only guarantee convergence towards a local minimum.

We present a series of algorithms where the basis matrix W or a subset
of it is fixed. Even though the idea of fixing some or all components of
the basis matrix W is simple, there has been a significant amount of re-
search into what values to use for the fixed components. Two main trends
have developed. First, supervised or semi-supervised methods rely on using
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ground truth data and/or sources in isolation to estimate a set of useful
bases. This family of methods is often called Supervised or Semi-supervised
NMF. Second, the basis can be set or constrained using knowledge of the
type of sources we want to separate. This second family of methods do not
need training and therefore are often called unsupervised NMF.

Abdallah and Plumbley (2004) presented a semi-supervised method for
polyphonic music transcription based on Non-negative Sparse Coding (NNSC)
(Hoyer, 2002). In this method a basis of piano harmonic spectra is learned
using isolated piano notes as training data. In the second stage of the
method, the basis is fixed and used to learn the gains or activations of the
piano notes in the mixture. In order to enforce a harmonic structure on the
learned piano basis, the basis components are initialized to harmonic combs
before the training stage.

Schmidt and Olsson (2006) presented a supervised NMF method based on
the Sparse NMF (SNMF) objective function for use on speech separation.
The bases were fixed to a set of components that were previously trained on
audio of individual speakers. The authors presented two ways to estimate
the fix basis. The first approach consisted of applying a non-constrained
SNMF and also learning the basis matrixW , on a large amount of individual
and isolated speaker data. The learned basis would then be used fixed in the
separation stage. The second approach consisted in reducing the amount of
preliminary data necessary by first segmenting the isolated speaker data into
phonemes. Then the non-constrained SNMF would be run independently on
all the segments of each phoneme, generating a set of bases per phoneme.
All these bases would finally be concatenated to create the learned basis
used in the separation phase.

Smaragdis et al. (2007) proposed the use of a method called Probabilis-
tic Latent Component Analysis (PLCA) in order to perform supervised or
semi-supervised single channel source separation. This method is closely re-
lated to NMF, in fact, the two procedures can be proven to be numerically
identical 3. The authors proposed a learning stage where a set of sounds
are learned using PLCA, which leads to a set of basis spectra. The learn-
ing procedure uses an entropic prior that permits controlling the amount
of sparsity in the solutions. The learned basis spectra may be used in the
separation procedure by fixing them as the full set of bases with which to
reconstruct the data. This method is useful in the case where we have
been able to train our models for all the sources present in the mixture

3. This relation is further described in the section 3.4
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and is called supervised PLCA or NMF. On the other hand, when only
some of the sources are known, the authors allowed a set of spectra in the
bases to be learned during the separation phase, and that is known as the
semi-supervised method.

Instead of performing an NMF on isolated sources in order to extract the set
of learned bases, Smaragdis et al. (2009) used as basis components actual
spectrum frames from training data of the sources in isolation. This is
known as exemplar-based NMF and the study showed that it can improve
the performance of the separation in comparison to similar systems based
on statistical models. Raj et al. (2011) proposed using an exemplar-based
NMF approach in the context of speech enhancement. In order to build
the basis of the NMF the authors concatenated a set of randomly selected
spectra magnitudes of the desired and other competing sources. These were
used as bases for the factorization. For the estimation of the desired sources
the gains of the competing sources were set to 0.

An alternative way to restrict the solution space of the NMF is to constrain
some of the elements of the factors to constant values based on a priori
knowledge about the components and their activations. The large amount
of a priori information in musical mixtures makes this method attractive for
such situations. One simple way of adding constraints is by initializing some
of the elements to 0, given the multiplicative nature of the updates, these
elements will remain at 0. Another way is to set them to some constant
that respects a given structure and not update them when computing the
update rules.

As we will see in Section 3.4, one of the first uses of constraints in the context
of music mixtures NMF was Heittola et al. (2009), who used the source-
filter model in order to constrain the excitation components to harmonically
structured spectra and the filter components to smooth spectra. Other
examples of the use of such constraints are found in Durrieu et al. (2009b),
Hennequin et al. (2010) and Durrieu et al. (2011).

These types of constraints are not used only in harmonic sources. Transients
can also be modeled using temporal localized spectra. Wu et al. (2011) and
Ewert and Müller (2011) proposed spectrally constrained and temporally
localized Gaussians as constant components during the factorization. In
Ewert and Müller (2012) these constraints were taken a step further by
using external information specific to the mixture. In their method, there
are two types of basis components. One type represents harmonic spectra
and is enforced by setting to zero all the bins but those around the partial
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positions. The other type represents the transients, in which all the elements
are non-zero and therefore are free to take any positive value. The gains of
the transient components are only set nonzero around the frames where the
notes start, given the score. On the other hand, the gains of the harmonic
components are set nonzero during the sustain regions of the notes.

NMF Spectrum Models

The standard NMF algorithm proposed by Lee and Seung (2001) performed
the factorization of a given method into two matrices V = WH. In the
context of audio, traditionally the NMF decomposition would be applied
to the magnitude or power spectrogram of the mixture signal, so that each
component in our basis matrix W would represent a single spectral frame.
This method fits well with sources that have constant or linearly evolving
spectral profiles, and the decomposition has proven very useful in many
tasks and applications. However in some situations we may have a priori
information about the components that can help us restrict even further the
decomposition. This is frequently the case with audio and musical signals
that present a highly structured spectrum (see 2.4 and 2.4). In the music
context, NMF has been applied to more complex spectrum models in which
the spectrogram of a signal is not simply the multiplication of two unknown
non-negative matrices.

The use of more complex spectrum models permits a better interpretation
of the components. For instance, if we want to model the source filter voice
production phenomena we can decompose the basis matrix into two other
matrices, one with the sources or excitation spectra and another one with
the filterbanks. Another reason to introduce more than two factors into
our spectrum models is to constrain the components of our basis. If we
know that our basis components can only be generated by the filtering of
some given excitation spectra, then using such a factorization will force
the basis components to contain that structure. Finally one more reason
to further decompose the factors of the standard NMF is to reduce the
number of free parameters. For example, if we have a basis matrix W
of size Nω × NW and we know that its components are structured in a
specific way, then we may break the basis up into two other matrices so
that W = W sW f where W s ∈ Nω × k and W f ∈ k ×NW . Given a small
enough k NωNW ≥ Nωk + kNW .

Smaragdis (2004) created a set of basis components that represent sound
objects and that have a support in time longer than that of one STFT
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frame. In this way the basis components are thus not rows of W but rather
matrices composed of several consecutive spectrum frames. The spectrum
model can be expressed in the following way:

V ≈
H∑
h=1

W h

h→
H (3.78)

where the
i→
(·) operator shifts the columns of its argument by i positions

to the right, filling the new columns with 0. This model implies that the
spectrogram is the result of a linear mixture of convolutions between each
non-negative basis component and its gains. This also implies that the
basis components have one more dimension h representing the temporal
dimension. Smaragdis (2004) also proposed a set of multiplicative update
rules to minimize the Kullback-Leibler divergence objective function. This
solution is called convolutive NMF and the proposed update rules are:

H ←H ⊗
W>

t

←t[
V
Λ

]
W>1

(3.79)

W t ←W t ⊗
V
Λ

t→
H
>

1H>
(3.80)

where 1 is a matrix of ones the same size as V , Λ =
∑H

h=1W h

h→
H and the

overset operator
←i
(·) shifts the columns of its argument by i positions to the

left. These rules have to be applied for each basis t ∈ [0 . . . T −1]. Following
the convolutive NMF work, O’Grady and Pearlmutter (2006) and Mørup
and Schmidt (2006) proposed a solution that adds sparsity constraints on
the H. Schmidt and Mørup (2006a,b) also proposed convolutive NMF
spectrum models where the convolution is performed on both the frequency
and time domains. They also proposed the use of sparsity constraints.
However for sparse constraints no multiplicative update rules were proposed.

Sra and Dhillon (2006) and Dhillon and Sra (2006) studied the deriva-
tion of different NMF problems mainly using the Karush-Karger-Tucker
(KKT) conditions. This work led to the easy derivation of complex fac-
torization models with more than two factors. The authors generalized
the factorization of a matrix into multiple non-negative matrices V ≈
W 1W 2 . . .W r . . .WR. This was called Multifactor Non-negative Matrix
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Approximation:

V ≈
R∏
r=1

W r (3.81)

The multiplicative rule for such factorization using a Bregman divergence
Φϕ cost function 3.29 becomes:

W r ←W r ⊗
B̂
>

(ψ(R)⊗ V )Ĉ
>

B̂
>

(ψ(R)⊗R)Ĉ
> (3.82)

where B̂ = W 1W 2 . . .W r−1, Ĉ = W r+1W r+2 . . .WR, R = W 1W 2

. . .W r . . .WR and ψ(x) = ∇ϕ(x).

Another of the applications of the NNMA is the use of weights in non-
negative factorization problems. Weights can be applied in different ways
during the factorization process. The objective function may be weighted
elementwise, we may also weight the approximant (M ⊗WH) or we may
weight each of the approximant factors by multiplying them by weight ma-
trices V ≈M1WHM2.

FitzGerald et al. (2008) proposed a spectrum model specifically designed
for stereo signals. The sources are panned independently and therefore con-
tribute with different gains to each channel. This model approximates the
stereo spectrograms of the signal as the outer product of several tensors.
The tensors represent the gains of the instruments per channel, the basis
components of the instruments’ spectra and the gains of these components.
The standard NMF cannot be used to perform the factorization since it
deals with 2-dimensional matrices. Instead the authors derived a method
called Nonnegative Tensor Factorization (NTF). This method is derived
similar to the NMF algorithm and leads to multiplicative update rules to
estimate the different factors. FitzGerald et al. (2008) extended the work by
proposing and exploring signal tensor frameworks that incorporate several
restrictions and constraints. Among these models we find the incorpora-
tion of shift-invariance as in Shifted 2D Nonnegative Tensor Factorization
(SNTF), fixed harmonic basis as in Sinusoidal Shifted 2D Nonnegative Ten-
sor Factorization (SSNTF), source-filter models (SF-SSNTF) and models
containing wideband noise components (SF-SSNTF+N).

Another spectrum model specifically designed for musical instruments was
proposed by Virtanen and Klapuri (2006) and Vincent et al. (2008). The
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proposal consisted of a spectrum model defined as:

V ≈ V̂ = W ΓW f0Hf0 (3.83)

The authors derived multiplicative rules for the Kullback-Leibler objective
function:

Hf0 ←Hf0 ⊗
(W ΓW f0)> V

V̂

(W ΓW f0)>
(3.84)

W f0 ←W f0 ⊗
W>

Γ

V H>f0
V̂

>

W>
ΓH

>
f0

(3.85)

and:

W Γ ←W Γ ⊗
(W f0Hf0)> V

V̂

>

(W f0Hf0)>
(3.86)

The authors also proposed another version of the model that reduces the
number of free parameters by allowing frequency shifting in the logarithmic
domain of the excitation filters.

Heittola et al. (2009) also proposed specific spectrum models for musical
instruments source separation. However they set some of the factors to
constant values and added an extra factor in order to limit the possible filter
shapes. The method consisted of a source-filter model with an augmented
NMF algorithm for instrument recognition and separation. The model can
be expressed as:

V ≈ V̂ = (W ΓHΓ)⊗ (W f0Hf0) (3.87)

The factor W f0 is fixed for each frame given the results of a multipitch
estimator. These are constructed by computing the spectra of a set of
sinusoidal components of unity amplitude. The frequencies of the sinusoids
are the harmonics of the detected fundamental frequency of a given frame
f0. The components of W Γ are also fixed and consist of the spectra of a
filterbank of triangular filters uniformly spaced on a Mel frequency scale.
The gains HΓ and Hf0 are learned using the derived update rules that
minimize the Kullback-Leibler divergence:

Hf0 ←Hf0 ⊗
W>

f0
V
V̂

W>
f0

1
(3.88)

and:

HΓ ←HΓ ⊗
W>

Γ
V
V̂

>

W>
Γ 1

(3.89)
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where 1 is a matrix of ones the same size as V . The authors also proposed
a streaming method where the gains of previous frames are used in combi-
nation with a random matrix to initialize the gains of new frames. Finally
instrument recognition is performed by applying MFCC feature extraction
and Gaussian Mixture Models (GMM) classifications to the filter estimates.

Durrieu et al. (2009b, 2010, 2011) approximated the mixture spectrum as
a combination of the spectrum of the monophonic lead instrument X̂v and
the spectrum of the accompaniment X̂m. The accompaniment was modeled
as a standard NMF spectrum model X̂m = WmHm. However for the lead
instrument a source-filter model was used X̂v = XΦ ⊗Xf0 , where both
the source and the filter components are further decomposed into basis and
gains matrices as X̂Φ = W ΓHΓHΦ and X̂f0 = W f0Hf0 . By performing
this decoupling between the excitation and the filter of the lead instrument,
the model reduces significantly the degrees of freedom and the number of
free parameters. This model is called the Smoothed Instantaneous Mixing
Model (SIMM), in which the observed mixture spectrum V is approximated
by the spectrum model V̂ in the following way:

V ≈ V̂ = (W ΓHΓHΦ)⊗ (W f0Hf0) +WmHm (3.90)

where W Γ and W f0 are fixed matrices and the rest are learned from the
data. W Γ is fixed to a set of filters of a smooth filterbank that represents
the resonant body of the lead instrument. HΓ represents the different
possible weight combinations of the resonant body filter. HΦ represents the
evolution of the filter of the lead instrument, this evolution is modeled as a
linear combination of the filters generated byW ΓHΓ. TheW f0 is fixed to a
set of harmonic combs representing the excitation spectra. When targeting
voice signals as the lead instrument, the envelope of the excitation spectra
can be set using the glottal source model by Klatt and Klatt (1990) (see
2.7). Hf0 represents the pitch evolution of the lead instrument. FinallyWm

and Hm represent the accompaniment music without any specific model of
the spectrum other than the standard NMF. The authors also proposed a
version of this method where the smoothness constraint on the filterbank
is not enforced. This is done avoiding the factorization WΦ = W ΓHΓ

and leaving these filters to adopt any shape. The resulting method receives
the name of Instantaneous Mixing Model (IMM). The authors used a two
step procedure to estimate the factors presented. The first step is a rough
estimation of the pitch where the matrix Hf0 is completely unconstrained
and learned. In a second step the maximum pitch is selected and tracked in
Hf0 . Then a monophonicity constraint is applied to Hf0 , that sets to 0 the
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values for all the pitches other than those around the tracked pitch. Finally
the other free parameters of the model are learned. In both stages the β
-divergence objective function is used (3.29), and the update rules become:

Hf0 ←Hf0 ⊗
W>

f0

(
X̂Φ ⊗ V̂

(β−2) ⊗ V
)

W>
f0

(
X̂Φ ⊗ V̂

(β−1)
) (3.91)

HΦ ←HΦ ⊗
(W ΓHΓ)>

(
X̂f0 ⊗ V̂

(β−2) ⊗ V
)

(W ΓHΓ)>
(
X̂f0 ⊗ V̂

(β−1)
) (3.92)

Hm ←Hm ⊗
W>

m

(
V̂

(β−2) ⊗ V
)

W>
mV̂

(β−1)
(3.93)

HΓ ←HΓ ⊗
W>

Γ

(
X̂f0 ⊗ V̂

(β−2) ⊗ V
)
H>Φ

W>
Γ

(
X̂f0 ⊗ V̂

(β−1)
)
H>Φ

(3.94)

Wm ←Wm ⊗

(
V̂

(β−2) ⊗ V
)
H>m

V̂
(β−1)

H>m

(3.95)

Ozerov et al. (2010) proposed a general framework allowing flexible inclusion
of the different aspects of most spectrum models that have been presented.
The framework, named Flexible Audio Source Separation Toolbox (FASST),
consists of a spectrum model that can be hierarchically decomposed into
factors that reconstruct the different components in musical signals. It con-
tains a set of constant factors for wideband or harmonic sustained sources
that target sustained notes. Additionally they proposed a set of factors
for wideband or harmonic fast decaying elements, which models transient
sounds such as attacks or note onsets. It also further decomposes the sus-
tained harmonic components following a source-filter model. The spectrum
model can be resumed as:

V ≈ V̂ =

NM∑
m

(Wm
f0H

m
f0H

m
tenvW

m
tenv)⊗W

m
Γ (3.96)

where Wm
f0

is a dictionary of narrowband spectral patterns, containing a
set of bases with harmonic structures and another set of bandpass filters
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bases. Hm
f0

is a matrix of spectral pattern weights that are used to create
linear combinations of the bases inWm

f0
that will represent the characteristic

spectral patterns present of the mth source in the mixture. The spectral
patterns are then modulated in time using the matrices Hm

tenv and Wm
tenv .

Hm
tenv contains the temporal pattern weights and Wm

tenv is composed of
time localized patterns. Finally, Wm

Γ contains the filters applied to the
spectral patterns at each frame. Despite the large number of components,
many of them are constrained to predetermined constant values (Wm

f0
and

Wm
tenv) and therefore the number of free parameters is much lower. Several

generic iterative solvers are proposed allowing an automatic solving of the
factorization problem.

NMF Derivations and Interpretations

Various different derivations of the NMF update rules have been proposed
in the literature. The differences between them are in the perspective taken
or the framework used. It is worth explaining here some of the most widely
used derivations.

The problem of non-negative matrix factorization was initially viewed as
a gradient descent problem with a specially selected step. Lee and Seung
(2001) were the first to derive a set of multiplicative update rules that
ensured that the cost function would not increase. The nonincreasing of
the cost function was enforced by using an auxiliary function that serves as
an upper bound.

While considering the addition of other regularization terms to the cost
function Virtanen (2007) used a gradient descent method. In this derivation
the gradient of the cost function is calculated and it is partitioned into
additive and substractive elementwise nonnegative terms. This can be done
because the elements of the gradients are only formed of elements of the
data V , of the basis W and of the gains H that are all non-negative.
In order to descend the gradient, multiplicative rules are defined where
the multplicative term is the ratio between the substractive term and the
additive term.

Another approach to deriving the multiplicative update rules is to use the
Karush-Kuhn-Tucker (KKT) conditions (Sra and Dhillon, 2006; Dhillon and
Sra, 2006) to generalize the method of Lagrange multipliers to inequality
constraints. The authors viewed the NMF problem, called Non-negative
Matrix Approximation (NNMA), as a minimization of the objective function
given an inequality constraint for the non-negativity of the factors. Using
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such a derivation the authors easily found multiplicative update rules for
the Bregman divergences including generic regularization terms on the gains
and the basis. Additionally this derivation technique allowed the authors
to solve more complex factorization models, with more than two factors.

Finally it has become widely popular to derive the solutions to the NMF
problem under a probabilistic formulation. As presented by Winther and
Petersen (2007) and Schmidt and Laurberg (2008), the problem of factoriz-
ing V = WH+B can be formulated as a Maximum Likelihood estimation.
Where V are the observations,W andH the parameters andB is the resid-
ual. By assuming the elements of the residual to be independent, identically
distributed and Gaussian random variables with variance σ2

N we can express
the likelihood in the following way:

P(V |W ,H)euc =
1√

2πσN
e

(
− ‖V −WH‖2

2σ2
N

)
(3.97)

It is trivial to show that maximizing the likelihood function corresponds to
minimizing the negative log likelihood, which serves as a cost function and
is equal to:

LeucV |W ,H(W ,H) =
1

2σ2
N

‖V −WH‖2 + γ (3.98)

where γ is a constant with respect to W and H. Therefore the update
rules corresponding to the Euclidean distance cost function 3.25 and 3.24,
can be interpreted as a Maximum Likelihood Estimator (MLE).

The update rules of the other cost functions can be interpreted in a prob-
abilistic framework as Maximum Likelihood estimators of different random
processes (Févotte et al., 2009). For the Itakura-Saito divergence, a frame
of the spectrogram is modeled as a sum of random variable components:

Ṽ t =

NW∑
w=1

cw,t (3.99)

where each component follows a proper multivariate complex Gaussian dis-
tribution cw,t ∼ Nc(0,Hw,tdiag(Ww)) and the proper complex Gaussian

distribution is Nc(x|µ,Σ) = |πΣ|−1e−(x−µ)HΣ−1(x−µ). Due to the additiv-
ity of the Gaussian distributions, the likelihood can be expressed as:

P(V |W ,H)is =

NT∑
t=1

Nω∑
ω=1

Nc

(
V ω,t|0,

NW∑
w=1

W ω,wHw,t

)
(3.100)
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and the negative log likelihood can be shown to be:

LisV |W ,H(W ,H) =

NT∑
t=1

Nω∑
ω=1

log

(
NW∑
w=1

W ω,wHw,t

)

+
|Ṽ ω,t|2∑NW

w=1W ω,wHw,t

+ γ (3.101)

where γ is a constant with respect to W and H. Therefore the update rules
corresponding to the Itakura-Saito distance cost function 3.40 and 3.39,
can be interpreted as a Maximum Likelihood Estimator (MLE). Finally the
Kullback-Leibler divergence can be related (Févotte et al. (2009)) to the
Maximum Likelihood Estimator where the magnitude of the spectral bins
are modeled as a sum of random variables following the Poisson distribution:

|Ṽ t| =
NW∑
w=1

|cw,t| (3.102)

where |cw,ω,t| ∼ P(W ω,wHw,t), where P(x|λ) = λx

x! e
−λ is the Poisson dis-

tribution. However one must bear in mind that the Poisson distribution is
defined for integer random variables and the magnitude of a spectrum bin is
a continuous value. In order to adapt the data one can assume an appropri-
ate scaling and a fine grain quantization, this draws interesting parallelisms
between a spectrum and a histogram (Shashanka et al. (2008)).

Shashanka et al. (2008) proposed interpreting a normalized version of the
spectrogram as a probability distribution P(Xω, Xt) of two multinomial ran-
dom variables Xω ∈ {1 . . . Nω} and Xt ∈ {1 . . . NT }. In other words, it can
be viewed as the probability distribution of randomly drawing a given time-
frequency bin. The authors then propose two ways to model P(Xt, Xω).
The symmetric factorization model is characterized by the independence
of the conditional distributions of the temporal and frequency dimensions
given the index of a latent class (or hidden component) Zw:

P(Xω, Xt) =

NW∑
w

P(Zw)P(Xω|Zw)P(Xt|Zw) (3.103)

This model is equivalent to the Probabilistic Latent Component Analysis
(PLCA) method (Smaragdis and Raj (2007)). By representing the probabil-
ity distributions P(Xω, Xt), P(Zw), P(Xω|Zw), P(Xt|Zw) as the matrices
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P , S, W and G we arrive at P = WSG which is equivalent to NMF’s
well known V = WH. The parameter can be estimated using the EM
algorithm which leads to the NMF multiplicative rules with a scaling factor
difference, since P is a normalized version of V .

The other model presented by the authors for the probability distribution
P(Xω, Xt) is called asymmetric factorization:

P(Xω, Xt) = P(Xi)P(Xj |Xi) (3.104)

P(Xj , Xi) =

NW∑
Zw

P(Xj |Zw)P(Zw|Xi) (3.105)

where i, j ∈ 1, 2, i 6= j. This method is popularly known as Probabilistic
Latent Semantic Analysis (PLSA). As in the previous case, this approach
leads to the NMF multiplicative update rules when using a matrix repre-
sentation and an EM algorithm. This relation was previously shown by
Gaussier and Goutte (2005).

This way to derive the NMF updates allowed the authors to derive update
rules for other more complex spectrum models. The main benefit of such a
perspective is that it provides an easy way of generalizing the derivation of
update rules to data in more than 2 dimensions. The authors derived mul-
tiplicative update rules for convolutive NMF and for Non-negative Tensor
Factorization (NTF).

Another probabilistic approach to derive the NMF update rules consists
in modeling the error E between the observed V and estimated spectra
V̂ = WH as random variables. This is equivalent to assuming a cer-
tain probability distribution for p(V ω,t|V̂ ω,t). For instance by modeling
the residual as an additive Gaussian noise, the Maximum Likelihood es-
timation results in the Euclidean Distance cost function update rules. If
p(V ω,t|V̂ ω,t) is assumed to follow a Poisson distribution, the ML estima-
tion corresponds to the Kullback-Leibler divergence update rules. Finally
if we assume multiplicative noise following a Gamma distribution, the ML
estimation leads to the Itakura-Saito divergence update rules.

Schmidt and Laurberg (2008) derived the NMF decomposition with regular-
izations by computing the Maximum A Posteriori (MAP) estimator. This
allows adding a priori knowledge to the NMF factorization. This deriva-
tion is inspired by the Maximum Likelihood estimator previously presented.
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Following the Bayes rule:

P(W ,H|V ) =
P(V |W ,H)P(W ,H)

P(V )
(3.106)

and assuming the denominator P(V ) as constant. The log likelihood of the
basis and gains is defined as follows:

LW ,H|V (W ,H) ∝ LV |W ,H(W ,H) + LW ,H(W ,H) (3.107)

Non-negative Sparse Coding (NNSC) update rules (see Equation 3.45) cor-
respond to a MAP estimator when the probability is set as follows:

PNNSC(W ,H) =
∏
i,j

λe−λHi,j (3.108)

The authors also proposed a general family of priors that use a linking
function and a set of underlying Gaussian Processes, specified by their co-
variances. This is referred to as Gaussian Process Priors NMF (GPP-NMF).
It is derived by defining the priors on the basis and gains as independent
and each of them belonging to a distribution of the following form:

PGPPNMF (H) ∝ exp

(
−1

2
fH(vec(H))>Σ−1

H fH(vec(H))

)
∏
i

|f ′H(vec(H))|i (3.109)

where vec() is an operator that rearranges the elements of a matrix into a
vector. fH : <+ → < is a strictly increasing and derivable linking function
that maps the non-negative elements of H to elements drawn from a mul-
tivariate Gaussian distribution. This derivation leads to update rules such
as those used by Wilson et al. (2008a) (see Equation 3.63).

Another probabilistic interpretation of the NMF regularizations was devel-
oped by Virtanen et al. (2008a) who proposed a regularized NMF where
temporal discontinuities are penalized, by imposing priors on the gains. To
derive the prior probabilities the gains are modeled as Gamma chains.

NMF has been linked to previous well-established methods from other fields.
Gaussier and Goutte (2005) showed that the NMF with the Kullback-Leibler
cost function is equivalent to the Probabilistic Latent Semantic Indexing
(PLSI) proposed by Hofmann (1999) and often used in text analysis works.
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Smaragdis et al. (2007) proposed a straightforward extension of PLSI named
Probabilistic Latent Component Analysis (PLCA), where the spectra are
interpreted as probabilistic distributions and where the estimation of the
components’ probabilities are found using EM. A similar interpretation is
used in the work of Durrieu et al. (2009b) to derive the proposed update
rules.

3.5 Evaluation

As in all research problems a proper evaluation must be defined to assess the
performance of the proposed solutions. For blind source separation there
have been many proposals of evaluation frameworks as well as data sets.
In this section we will review the most popular and established evaluation
methodologies for BSS problems.

Performance Measures

Lambert (1999) and Schobben and Torkkola (1999) proposed the first set
of generic BSS evaluation measures and data in order to compare different
speech enhancement and separation methods. Before their proposal, most
evaluation work was performed specifically for each solution. Additionally
evaluations were often based on indirect performance measurements or sub-
jective tests such as speech recognition rates, plots of separated signals,
plots of cascaded mixing/unmixing impulse responses and signal to noise
ratios. Finally, since most evaluation measures were different for each al-
gorithm, comparing results between algorithms was difficult or impossible.
Schobben and Torkkola (1999) provided a unified methodology of evaluating
BSS algorithms, by providing measures and data. The methodology targets
a wide range of BSS applications focusing on the context of acoustic speech
data. The authors propose two categories of test cases. First, a number of
controllable synthetic separation problems, useful for testing the limits of
the solutions and allowing a straightforward performance measure since the
sources are available. Second, a set of real world recordings of mixtures and
of their individual sources which are available online 4 for future research in
the area. The authors proposed a set of parameters defining the difficulty
of the problem as well as a protocol to perform the mixture and sources
recordings. It is worth noting that the mixing process is also applied dur-
ing the recording of the individual sources, which leads to multiple mixture

4. http://web.archive.org/web/19991004145501/http://www.ele.tue.nl/ica99/

http://web.archive.org/web/19991004145501/http://www.ele.tue.nl/ica99/
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signals per source recording. In the methodology, vo,xm [n] refers to the mix-
ture vo when the source xm is recorded (or synthetically mixed) in isolation.
Finally the authors propose two objective measures given the recording of
the individual sources vo,xm [n] and the separated sources x̂m[n]. The first
measure is distortion, a measure of how distorted the estimated source
is with respect to the actually recorded source. This distortion measure is
defined as:

Ddistortion
m = 10log10

(
E
[
(vm,xm − αmx̂m)2

]
E
[
v2
m,xm

] )
(3.110)

with αm = E
[
v2
m,xm

]
/E
[
x̂2
m

]
and where the separated sources’ indices have

been chosen such that x̂m corresponds to the mth source. This measure
is robust to scaling and permutation indetermination in source separation
tasks. The second measure proposed assesses the amount of separation
performed. And is defined as:

Dseparation
m = 10log10

 E
[
x̂2
m,xm

]
E
[∑

i 6=j x̂
2
j,xi

]
 (3.111)

where x̂j,xi is the jth output of the cascaded mixing/unmixing system when
only xi is active.

With a closer focus on audio and as a preliminary step to define a global
BSS evaluation framework, Vincent et al. (2003) proposed a series of tasks
and applications of Blind Audio Source Separation (BASS). The authors
defined two main categories of BASS applications, a set of Audio Quality
Oriented (AQO) applications and another set of Significance Oriented (SO)
applications. The main objective of the first group of applications is to
achieve a good Signal to Noise Ratio (SNR) and reduce artifacts in the
separated sources or the remixed signals. While the second group focuses
on retrieving features and/or descriptions of the audio scene by estimating
the sources and/or parameters of the mixing process.

Following this line of work, Gribonval et al. (2003) and Vincent et al. (2006)
proposed several evaluation measures that also take into account the gain
indeterminacies of the BSS algorithms. In their new approach the total
error term etotalm between each real source xm and the source separated
by the BSS method x̂m is decomposed into three different type of errors
(etotal = einterf + enoise + eartif ): the interferences from other sources, the
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distortion from the noise and the artifacts from the algorithm. The authors
proposed a measure for each type of error.

The authors also showed the existence of an upper bound of Source to Inter-
ference Ratio in most common source separation problems. They proposed
the use of such an upper bound to assess performance and compare different
BSS methods.

The total distortion between a separated source and the true source is de-
fined as:

Dtotal
m =

‖x̂m‖2 − |〈x̂m, xm〉|2

|〈x̂m, xm〉|2
(3.112)

where in the general case one can safely assume that the different sources
may be correlated but are still linearly independent. P x is considered the
orthogonal projector onto the subspace spanned by the set of source signals
{xm[n]}NMm=1 and P x,B the orthogonal projector onto the subspace spanned

by the source signals together with the noise signals {Bo[n]}NOo=1. Where
Bo[n] is the additive noise signal on the oth mixture.

Under such assumptions the error terms can be expressed as:

einterfm = P xx̂m − 〈x̂m, xm〉xm (3.113)

enoisem = P x,Bx̂m − P xx̂m (3.114)

eartifm = x̂m − P x,Bx̂m (3.115)

P xx̂m can be computed as:

P xx̂m =

NM∑
l=1

clxl = c>x (3.116)

c = conj(G)−1d (3.117)

G = xxH (3.118)

[d]k = 〈x̂m, xk〉 (3.119)

and P x,Bx̂m can be calculated as:

P x,Bx̂m = P xx̂m +

NO∑
o=1

〈x̂m,Bo〉Bo/‖Bo‖2 (3.120)

Using such error terms we can then define the relative distortions. The
interference distortion is the error term due to interference from the other
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sources:

Dinterf
m =

‖einterfm ‖2

|〈x̂m, xm〉|2
(3.121)

The relative distortion due to additive noise considered linearly independent
from all the sources can be defined as:

Dnoise
m =

‖enoisem ‖2

‖〈x̂m, xm〉xm + einterfm ‖2
(3.122)

The relative distortion due to artifacts added by the algorithm is expressed
in the following form:

Dartif
m =

‖eartifm ‖2

‖〈x̂m, xm〉xm + einterfm + enoisem ‖2
(3.123)

Finally the widely used Signal to Distortion Ratio (SDR), Signal to Inter-
ference Ratio (SIR), Signal to Noise Ratio (SNR) and Signal to Artifact
Ratio (SAR) are defined as:

SDRm = 10log10

(
1

Dtotal
m

)
(3.124)

SIRm = 10log10

(
1

Dinterf
m

)
(3.125)

SNRm = 10log10

(
1

Dnoise
m

)
(3.126)

SARm = 10log10

(
1

Dartif
m

)
(3.127)

Vincent et al. (2007c) created a new set of quantitative measures specific to
stereo signals based on the previously presented measures. In this case the
error of the signal is decomposed into the following set of components:

x̂o,m = xo,m + espato,m + einterfo,m + eartifo,m (3.128)

espato,m = Pm,Lx̂o,m − xo,m (3.129)

einterfo,m = P all,Lx̂o,m − Pm,Lx̂o,m (3.130)

eartifo,m = x̂o,m − P all,Lx̂o,m (3.131)

where x̂o,m and xo,m are the estimated and true signals for the oth channel of
the mth source. P x,L is the orthogonal projector onto the subspace spanned
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by all the channels of delayed versions of the mth source, xk,m[t − τ ] for
1 ≤ k ≤ NO, 0 ≤ τ ≤ L − 1. P all,L is the orthogonal projector onto the
subspace spanned by all the channels of delayed versions of all the sources.
The filter length L is set to the largest tractable value (512 samples or 32
ms). The energy ratios are derived as in the previous approach:

ISRm = 10log10

( ∑
o

∑
t x

2
o,m∑

o

∑
t e
spat
o,m

2

)
(3.132)

SIRm = 10log10

(∑
o

∑
t(xo,m + espato,m )2∑
o

∑
t e
interf
o,m

2

)
(3.133)

SARm = 10log10

(∑
o

∑
t(xo,m + espato,m + einterfo,m )2∑

o

∑
t e
artif
o,m

2

)
(3.134)

SDRm = 10log10

( ∑
o

∑
t x

2
o,m∑

o

∑
t(e

spat
o,m + einterfo,m + eartifo,m )2

)
(3.135)

These measures were used in the first stereo audio source separation evalu-
ation campaign (Vincent et al., 2009), and several underdetermined source
separation algorithms were tested.

The main objection to such a quantitative evaluation framework is that it
may not correctly represent the perceptual quality of the separation. The
proposed measures do not take into account important auditory phenomena
such as loudness perception and spectral masking. Emiya et al. (2011) tried
to overcome this limitation by proposing a subjective test protocol to assess
the perceived quality of an audio source separation task. Additionally the
authors propose a set of objective measures aiming to predict the resulting
subjective scores. These new measures are based on a multiband processing
of the error components. An auditory filterbank based on ERB Gamma-
tone filters is used for decomposition. Additionally a Perceptual Similarity
Metric (PSM), provided by the PEMO-Q auditory model, is computed for
each of the error components. Finally these metrics are fed to a nonlinear
mapping to compute the new measures named Overall Perceptual Score
(OPS), Target-related Perceptual Score (TPS), Interference-related Percep-
tual Score (IPS) and Artifacts-related Perceptual Score (APS). This evalu-
ation framework is freely and publicly distributed online 5 as the Perceptual
Evaluation of Audio Source Separation (PEASS).

5. http://bass-db.gforge.inria.fr/peass/

http://bass-db.gforge.inria.fr/peass/
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Oracle Estimators

The performance of a source separation technique is highly dependent on
the data. It would not be sensible to directly aggregate this measure for
many data instances. Likewise we cannot draw conclusions from a small
number of data examples. In order to overcome this problem, Vincent
et al. (2007a) derived oracle estimators for several types of methods. These
estimators find the optimal separation of a method given the true sources.
In order to use the oracle BSS estimators we need a controlled scenario in
which the true sources are known. These oracle separations can then be
used as an upper bound of the performance measures. We are then able to
get a performance relative to the best case scenario. This strategy leads to
a smaller dependence of the performance on the data.

Vincent et al. (2007a) proposed oracle estimators for three classes of meth-
ods: multichannel time-invariant filtering, single-channel time-frequency
masking and multichannel time-frequency masking. In order to derive the
oracle estimators, the authors defined a separation method as:

x̂ = f(v, θ) with θ ∈ Θ (3.136)

where f is a fixed function, which given a set of mixtures v and a set of
parameters θ returns a set of estimated separated sources x̂. Θ is the set
of possible parameters sets, that can be defined by the constraints that
delimit such set. Given a function f the oracle estimator is defined as the
parameter set θ̃(v,x,Θ) that minimizes a distortion measure d(x, x̂) for a
set of sources x and mixtures v:

θ̃(v,x,Θ) = arg min
θ∈Θ

d(v, f(x, θ)) (3.137)

Note that in a controlled situation where the true sources x are known,
the oracle estimator θ̃ may be found using an exhaustive search over the
parameter space Θ. The authors propose three different functions f and
methods to compute the optimal parameters θ̃(v,x,Θ) for the distortion
measure Dtotal

m as defined in 3.112. The proposed oracle estimators were
made available online (see Vincent et al. (2007b)).

Datasets

Several datasets of multitrack audio recordings have been made publicly
available to assess the separation methods in different scenarios and ap-
plications. Vinyes (2008) and Vinyes et al. (2006) prepared a database
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(MASS 6) to help evaluate Musical Audio Signal Separation algorithms and
statements on a representative set of professionally produced music (i.e. real
music recordings).

Vincent et al. (2007a,b) also included a set of of multitrack audio examples
in their toolbox (BSS Oracle 7) to create oracle estimators for musical audio
source separation methods.

As part of the SiSEC 8 source separation evaluation campaign, the organiz-
ers published a set of multitrack audio excerpts to prepare submissions to
the professionally produced music recordings task.

Recently Hsu and Jang (2010b) published a large dataset (MIR-1K 9) of
1000 song clips containing singing voice and accompaniment in separate
tracks. The dataset is designed to evaluate singing voice separation meth-
ods. The dataset also contains manual annotations of the pitch contours,
unvoiced frames, lyrics and voiced-unvoiced segments. Speech recordings of
the lyrics performed by the singer of each song are included in the dataset.

3.6 Summary of Part I

In this first part we presented the basic theoretical framework to describe
and study the source separation problem, and reviewed currently available
techniques to perform audio and music source separation. We paid special
attention to signal decomposition methods, and more specifically NMF,
due to their flexibility and widespread use in the context of audio. We also
presented the methods and datasets that are used nowadays to evaluate
performance. Our main objectives consist in developing methods that are
more adapted to real world and practical applications. To achieve this we
take two separate paths. In Part II we focus on reducing the computational
complexity and latency of current existing methods, sacrificing separation
quality if necessary. In Part III we concentrate on the quality of the sep-
aration and propose methods that target the separation and isolation of
certain components that current techniques do not take into account. In
the latter chapter we do not impose latency constraints, thereby allowing
batch processing and offline user guidance.

6. http://www.mtg.upf.edu/static/mass

7. http://bass-db.gforge.inria.fr/bss_oracle/

8. http://sisec.wiki.irisa.fr/

9. https://sites.google.com/site/unvoicedsoundseparation/mir-1k

http://www.mtg.upf.edu/static/mass
http://bass-db.gforge.inria.fr/bss_oracle/
http://sisec.wiki.irisa.fr/
https://sites.google.com/site/unvoicedsoundseparation/mir-1k
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Chapter 4

Low Latency Pitch Estimation
and Tracking

4.1 Introduction

Pitch estimation and tracking is often used as a first step in audio source
separation of mixes. Acoustic sources very often concentrate most of their
energy in a harmonic structure. Pitch estimation consists in finding the fun-
damental frequency of such a structure, which can then be used to estimate
the time-frequency location of its energy. Estimating the pitch of a par-
ticular target source is crucial in music source separation, where frequently
many pitched sources are simultaneously present. This task is similar to
melody track estimation, which has been widely studied by the Music Infor-
mation Retrieval (MIR) community. However in some cases melody may be
interpreted by multiple sources and in such cases a different approach should
be taken. Furthermore most melody estimation techniques presented until
now do not enforce latency-limited constraints. Here we focus on lowering
the computational cost and latency of existing source separation methods.
Since pitch estimation and tracking is often a required step of many monau-
ral music source separation methods, these processes must also work under
low-latency and low computational cost conditions.

In this chapter we introduce the Tikhonov regularization approach to matrix
factorization. This method presents interesting qualities for computations
under low-latency, low computational cost and realtime constraints. We
propose using this method as an alternative to Non-negative Matrix Fac-
torization (NMF) in predominant and multiple pitch estimation scenarios.

95
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The proposed method is tailored to target specific sources by means of tim-
bre models. Additionally the method is designed to operate within the
latency specified by the user.

Our proposed technique is compared to other well-established techniques in
the context of predominant pitch estimation. Finally, we propose modifi-
cations to improve the use of Tikhonov regularization in tasks of multiple
pitch estimation, specifically targeting issues related to glissandos and vi-
bratos that are common in singing voice scenarios. We also target problems
related to octave errors which are quite common when working with joint
pitch likelihood estimation, such as NMF and Tikhonov regularization.

4.2 Tikhonov Regularization

Over the past decade Non-negative Matrix Factorization (NMF) has been
gaining a lot of attention in tasks of pitch estimation and source separation
in music signals. The interpretability of the results due to the non-negativity
constraint, the flexibility of the factorization model that allows incorporat-
ing multiple factors with different constraints or regularizations, and the
convenient multiplicative update rules have made this method very attrac-
tive in many applications. However new types of applications are posing
challenges to NMF-based methods. In real-time and low-latency scenarios,
the high computational cost and its iterative nature are the main problems
with NMF techniques. These problems are often dealt with by reducing the
number of free parameters of the NMF, using constant basis or initializing
to 0 certain gains. However, the update of the free parameters remains
iterative and requires a large number of computations.

We propose the use of Tikhonov Regularization as an alternative factoriza-
tion method for certain specific situations and show its viability in some
common scenarios. We target those tasks in which the problem can be
stated or approximated in the linear form V = WH +B where V is the
magnitude spectra of the mixture, W is a constant set of previously known
fixed basis components, H are the gains over time of the basis components
and B is random noise. This is often the case in pitch likelihood estima-
tion and in unsupervised or semi-supervised source separation (Virtanen
and Klapuri, 2006; Vincent et al., 2008; Heittola et al., 2009; Durrieu et al.,
2009b, 2011). Even though most of these methods use more complex spec-
trum models, they can often be reformulated or approximated using the
targeted linear model. In most cases the matrix W is composed of spec-
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tral harmonic combs or other similar correlated patterns. This leads to an
ill-posed problem where the condition number of W is very high, implying
that the solution may be very sensitive to model/data noise or non-unique
solutions (Hansen, 2010). In these situations the naive Least Square Means
solution Ĥ = (W>W )−1W>V often gives unsatisfactory results.

Tikhonov regularization (Tikhonov, 1963) is a well-studied method that
has seen several incarnations and has received many interpretations over
the years (Riley, 1955; Phillips, 1962; Twomey, 1963; Golub, 1965; Foster,
1961). In the field of statistics, Tikhonov regularization is known as ridge
regression and has also been widely studied (Hoerl and Kennard, 1970a,b;
Marquardt, 1970).

The Tikhonov solution Ĥ
λ

in its simple form is defined as the solution to:

min
H

{
|WH − V |2 + λ2 |H|2

}
(4.1)

where the regularization parameter λ is a positive parameter that controls
the weighting between the two terms of the objective function.

There are two ways to compute the solution. The most commonly used is
by transforming it into a Least Squares Means (LSM) problem, and solving
it using common LSM approaches. The other way of computing the solution
is by using the so-called normal equations. In this case, we obtain a closed

form solution Ĥ
λ
, where the resolution matrix Ĥ

λ
= RλV is defined in

the following way:
R = W t[WW t + λINω ]+ (4.2)

where [Z]+ denotes the Moore–Penrose pseudoinverse of Z.

There exist other forms of Tikhonov regularization that allow including a
priori knowledge about the solution. These will be explored for certain
specific tasks.

From a linear algebra point of view the Tikhonov regularization solution can
be expressed as a filtered Singular Value Decomposition (SVD) expansion
of the form:

Ĥ
λ

=

NW∑
w

ϕλw
u>wV
σw

vw (4.3)

where σw, uw and vw are the wth singular value, left and right singular
vectors of W respectively. ϕw are the filtering factors, that in the case of
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Tikhonov regularization are:

ϕλw = σ2
w

σ2
w+λ2

≈

{
1, , σw � λ

σ2
w/λ

2, , σw � λ
(4.4)

This has the effect of gradually filtering out from the contribution to the
solution the singular vectors with singular values smaller that λ. It is similar
to the effect of applying a Truncated SVD, however the transition between
retained and filtered SVD components is smoother.

Calvetti and Somersalo (2008) show that Tikhonov regularization can also
be derived from a Bayesian perspective if the gains H and the noise B are
considered random variables, independent and Gaussian. The Tikhonov
regularization solution is equivalent to the Maximum A Posteriori (MAP)
estimation.

Regularization parameter

The regularization parameter λ plays an important role in the Tikhonov
regularization method. It controls the tradeoff between the smoothness
of the solution and its fit to the data. There has been extensive work in
finding ways to automatically estimate the optimal value of regularization.
Many methods have been proposed to automatically determine an optimal
regularization parameter. The discrepancy principle technique makes use
of an estimation of the noise’s B standard deviation (Hansen, 1987). The
L-curve method exploits the curvature of the plot that relates the two terms
of the objective function (Castellanos et al., 2002; Hansen et al., 2007). The
Generalized Cross Validation method (GCV) uses statistical tools to find
the regularization parameter that maximizes the ability of the model to
predict missing data (Wahba, 1990). However, to date there is no method
that achieves an efficient, robust and reliable way to compute the optimal
regularization parameter.

Computational Cost

One of the main reasons we propose the use of Tikhonov regularization to
perform spectral decomposition is that it accepts a closed form solution with
a low computational cost in comparison with the well established NMF. It
is trivial to show that the computational complexity, in big ’Ω’ notation, of
both methods is the same. In the scenario that we set, where each spectral
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frame is independently decomposed into a fixed set of constant basis com-
ponents, both algorithms are dominated by a matrix-vector multiplication
operation.

In the case of the the Tikhonov regularization solution the single matrix-
vector multiplication performed is RV . Since R ∈ <Nω×NW is the previ-
ously computed resolution matrix, the complexity of the Tikhonov regular-
ization spectral decomposition method is O (NωNW ). For the Euclidean dis-
tance NMF (presented in Section 3.4) the computational complexity is domi-
nated by three matrix-vector multiplications: WH,W>V andW>(WH).
Since W ∈ <Nω×NW the complexity also becomes O (NωNW ). However the
actual computational cost in terms of number of multiplications, divisions
and additions is much larger for the case of NMF. The total number of op-
erations in the Tikhonov regularization method is exactly NωNW since the
matrix-vector multiplication is only performed once. For the NMF method
the total number of arithmetic operations is k(3NωNW + 2NW ) where k is
the number of NMF update iterations and usually k ∈ [1, 60]. Similar results
can be derived for the NMF update rules of the other objective functions.

Therefore using the Tikhonov regularization method translates into a sig-
nificant reduction in computational cost for the spectral decomposition task
NωNW << k(3NωNW + 2NW ).

Advantages

In our context, one of the main advantages of the Tikhonov regularization
method is the possibility of obtaining a closed form solution. In the closed
form solution we see that the resolution matrix can be computed indepen-
dently from the data. Furthermore the only computation that must be
performed on the arrival of the data is a matrix-vector multiplication, for
which many optimized implementations are available. Another interesting
characteristic of this method is that, unlike other methods such as NMF,
Tikhonov regularization results in a unique solution.

Limitations

Tikhonov regularization has certain limitations compared to NMF or other
current approaches. The basis matrix W must be fixed and constant, and
cannot be estimated from the data. The estimated solution can contain
negative values and this may pose interpretability problems. The use of the
closed form solution requires the Euclidean distance to be used for fitting the
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data, however for certain type of signals this limitation can be solved using
pre-whiting. Finally, in the case of wanting to compute the resolution matrix
before receiving and independently from the data, the regularization cannot
depend on the analyzed data. This last issue can be addressed by previously
computing multiple resolution matrices with different regularization values.

Throughout this work we evaluate the use of Tikhonov regularization in
pitch estimation and source separation tasks, under low-latency and low
computational cost constraints. We explore the use of different basis ma-
trices W depending on the use case and compare the results to other state-
of-the-art methods such as NMF.

4.3 Target Instrument Pitch Estimation and
Tracking

Predominant pitch estimation and tracking is often the first step in source
separation methods that target harmonic sources and specially for removing
or isolating singing vocals. In this Section we propose a pitch tracking
method that estimates the predominant pitch of a specific instrument. This
method of pitch tracking is useful for both low-latency and high-latency
source separation scenarios, producing better results than other current
methods in both cases.

Harmonic Summation Likelihood Estimation

Harmonic summation (Klapuri, 2006) is a well known and conceptually sim-
ple frequency domain technique to estimate the pitch salience of an audio
frame. We use this method in this work as the reference for a computation-
ally inexpensive, low-latency pitch likelihood estimation approach.

The salience of each pitch candidate is computed by summing the energy
of the spectrum bins contributing to that pitch weighted by the strength of
their contribution. The strength of their contribution can be computed in
many ways. Klapuri (2006) proposes training the weighting function using
a database of samples of individual instruments with annotated pitch.

For a given spectrum frame V , the salience is defined as:

s[j] =

NR∑
r=1

g(j, r) max
ω∈κj,r

|Ṽ [ω]| (4.5)
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where NR is the number of hypothetical harmonics to take into account,
g(j, r) is the weighting function, Ṽ is the whitened and noise-suppressed
spectrum, and κj,r defines the frequency neighborhood of a partial position
given the pitch candidate frequency j and the harmonic index r. It can be
defined as:

κj,r = [〈rNω/ (j + ∆j/2)〉, . . . , 〈rNω/ (j −∆j/2)〉] (4.6)

〈· 〉 denotes rounding to the nearest integer. ∆j controls the width of the
harmonic neighborhood when computing the salience, in order to take into
account widening of the partials and inharmonicity of the pitch.

Klapuri (2006) proposes the following weighting function:

g(j, r) =
fs/j + α

rfs/j + β
(4.7)

where fs is the sample rate of the analyzed signal, and the parameters
α = 27Hz and β = 320Hz are chosen by training the model on existing
harmonic envelopes.

Finally the pitch likelihood that we use in the following sections is a nor-
malization of the salience function L[j] = s[j]/

∑
s[j].

The harmonic summation method is useful for predominant pitch estima-
tion tasks, however it presents problems in multiple pitch estimation due
to the independent estimation of the candidates and does not provide a
generative model of the spectrum which is especially interesting in spectral
decomposition and source separation scenarios.

Tikhonov Regularization Likelihood Estimation

The pitch likelihood estimation method that we propose is a linear signal
decomposition model. Similar to NMF, this method allows us to perform
a joint pitch likelihood estimation. The main strengths of the presented
method are low latency, implementation simplicity and robustness in mul-
tiple pitch scenarios with overlapping partials. This technique performed
better than a simple harmonic summation method in our preliminary tests.

The main assumption is that the spectrum V t ∈ RNω×1 at a given frame t,
is a linear combination of NW elementary spectra, also named basis com-
ponents. This can be expressed as V t = WHt, Nω being the size of the
spectrum. W ∈ RNω×NW is the basis matrix, whose columns are the basis
components. Ht ∈ RNW×1 is a vector of component gains for frame t.
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We set the spectra components as filter combs in the following way:

ϕ[m,n] = 2πflHNP
2
iH−F/2+n
HNP − 1

Sr ln (2)

Wm[k] =
F∑
n=0

wa[n]

(
Nh∑
h=1

sin (hϕ[m,n])

)
e−j2πnk/Nω (4.8)

with H = (1−α)F . Where α is a coefficient to control the frequency overlap
between the components, F is the frame size, Sr the sample rate, wa[n] is the
analysis window, Nh is the number of harmonics of our components, Wm

is the spectrum of size Nω of the component of mth pitch. Flat harmonic
combs have been used in order to estimate the pitch likelihoods of different
types of sources.

The condition number of the basis matrix W defined in Equation 4.8 is
very high (κ(W ) ≈ 3.3 · 1016), possibly due to the harmonic structure and
correlation between the components in our basis matrix. For this ill-posed
problem we propose using the well-known Tikhonov regularization method
to find an estimate of the components gains vector Ĥt given the spectrum
V t. This consists in the minimization of the following objective function:

Φ(Ht) = |WHt − V t|2 + λ |Ht|2 (4.9)

where λ is a positive scalar parameter that controls the effect of the reg-
ularization on the solution. Under the assumption of Gaussian errors, the
problem has the closed-form solution Ĥt = RV t where R is defined as:

R = W t[WW t + λINω ]+ (4.10)

and [Z]+ denotes the Moore–Penrose pseudoinverse of Z. The calculation
of R is computationally costly, however R only depends on W , which is de-
fined by the parameters of the analysis process, therefore the only operation
that is performed at each frame is Ĥt = RV t.

We must note that in contrast to NMF, our gains Ĥt can take negative
values. In order to have a proper likelihood we define the pitch likelihood
as:

Lt = [Ĥt]+/sum([Ĥt]+) (4.11)

where [Ĥt]+ denotes the operation of setting to 0 all the negative values of
the vector Ĥt.
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Figure 4.1: Spectrum magnitude (solid black line) and the harmonic spectral
envelopes (colored dashed lines) of three pitch candidates.

Timbre Classification

Estimating the pitch track of the target instrument requires determining
when the instrument is not active or not producing a harmonic signal (e.g.
in fricative phonemes).

We select a limited number of pitch candidates NJ by finding the largest
local maxima of the pitch likelihood function Lt 4.11. For each candidate
a feature vector c is calculated from its harmonic spectral envelope eh(ω)
and a classification algorithm predicts the probability of it being a voiced
envelope of the target instrument. The feature vector c of each of the can-
didates is classified using Support Vector Machines (SVM). The envelope
computation eh(ω) comes from the Akima interpolation (Akima, 1970) be-
tween the magnitude at harmonic frequencies bins. The timbre features c
are a variant of the Mel-Frequency Cepstrum Coefficients (MFCC), where
the input spectrum is replaced by an interpolated harmonic spectral enve-
lope eh(ω). This way the spectrum values between the harmonics, where the
target instrument is often not predominant, have no influence on the classi-
fication task. Figure 4.1 shows an example of a spectrum V t[ω] (in black)
of a singing voice signal, and the interpolated harmonic spectral envelopes
eh,1(ω), eh,2(ω) and eh,3(ω) (in magenta, blue and orange respectively), of
three different pitch candidates.

The features vector c contains the first 13 coefficients of the Discrete Co-
sine Transform (DCT), which are computed from the interpolated envelope
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Figure 4.2: In the training stage, the eh(ω) is based on the annotated pitch if it
exists if (ref. f0), and on the estimated pitch otherwise.

eh(ω) as:

c = DCT (10 · log (E[l])) (4.12)

where E[l] =
∑fl,high

fl,low
eh(ω)2, and fl,low and fl,high are the low and high

frequencies of the lth band in the Mel scale. We consider 25 Mel bands
in a range [0...5kHz]. Given an audio signal sampled at 44.1kHz, we use
a window size of 4096 and a hop size of 512 samples. The workflow of
our supervised training method is shown in Figure 4.2. Two classes are
defined: voiced and unvoiced in a frame-based process 1. Voiced frames
contain pitched frames from monophonic singing voice recordings (i.e. only
a vocal source). Pitched frames have been manually annotated. In order to
generalize well to real audio mixtures, we also include audio examples com-
posed of an annotated vocal track mixed artificially with background music.
Unvoiced frames come from three different sources: a) non-pitched frames
from monophonic singing voice recordings (e.g. fricatives, plosives, aspi-
rations, silences, etc.); b) other monophonic instrument recordings (sax,
violin, bass, drums); and c) polyphonic instrumental recordings not con-
taining vocals. We employ a radial basis function (RBF) kernel for the
SVM algorithm (Chang and Lin, 2001). As a pre-process step, we apply
standardization to the dataset by subtracting the mean and dividing by
the standard deviation. We also perform a random subsampling to reduce
model complexity. We obtain an accuracy of 83.54%, when evaluating the
model against the test dataset.

1. The original training and test datasets consist of 384, 152 (160, 779/223, 373) and
100, 047 (46, 779/53, 268) instances respectively. Sub-sampled datasets contain 50, 000
and 10, 000 respectively. Values in brackets are given for the voiced and unvoiced instances
respectively.
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Instrument Pitch Tracking

The timbre classification described in the previous section is integrated into
the instrument pitch tracking step. We describe first an offline dynamic pro-
gramming algorithm for estimating the sequence of fundamental frequencies
f0 belonging to the singing voice. The algorithm is divided into two steps,
as shown in Figure 4.3.

Figure 4.3: Block diagram of the predominant pitch estimation.

The output of the algorithm is the estimated predominant pitch of frame i,
with a fixed latency of L frames. If the frame is unvoiced, i.e. no predomi-
nant pitch found, the estimated predominant pitch is set to 0.

The first step is selecting the best sequence of f0 candidates. The number
of candidates NJ per frame is an arbitrary value. For each frame, the NJ

largest peaks of the f0 likelihood function within the target frequency band
are selected as f0 candidates. We used four candidates per frame in our
experiments (NJ = 4). For each node in the matrix, the probabilities are
computed according to the following criteria 2:

f0-estimation likelihood : the higher the f0-estimation likelihood value,
the higher the probability. For each frame, the f0-likelihood values
of the candidates are normalized with respect to the highest one, and

2. Gaussian function parameters µ and σ are set empirically for each probability.



106 low latency pitch estimation and tracking

the probability is computed as:

P1,f0 = e
−

(x−µf0 )2

2σ2
f0 (4.13)

where x is the normalized f0-likelihood value, µf0 = 1, and σf0 = 0.4.

voiciness : the higher the voiciness value predicted by SVM, the higher
the probability. Voiciness values go from 0=unvoiced to 1=voiced.
This offers a more controlled mapping function on the SVM output
prediction. The probability is computed as:

P1,v = e
− (pv−µv)2

2σ2v (4.14)

where pv is the voiciness value, µv = 1, and σv = 1.

frequency continuity : the shorter the frequency distance in semitones,
the higher the probability. The probability is computed as:

P1,f = e
−

(x−µf )
2

2σ2
f (4.15)

where x = min(6,max(0, |∆f | − 0.5)), ∆f is the frequency difference
in semitones, µf = 0, and σf = 4.

Probabilities P1,f0 and P1,v are combined into the state probability P1,S =
P1,f0P1,v, and P1,f is used as transition probability P1,T = P1,f . Note that
one fundamental frequency value is found per frame, therefore there are no
unvoiced segments in the estimated path.

The second step is selecting the best path in a matrix with two rows (states)
and several columns corresponding to the frames. The first row corresponds
to the voiced state (e.g. the estimated f0 sequence found in the first step of
the algorithm), and the second row corresponds to the unvoiced state. In
this case, node probability is computed from the voiciness measure as

P2,v =

e
− (0.5−µv)2

2σ2v for the unvoiced row,

e
− (pv−µv)2

2σ2v for the voiced row.

where pv is the voiciness value, µv = 1, and σv = 1. Node jump probability
is computed as:
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P2,f =

e−
(x−µf )

2

2σ2
f for the voiced -unvoiced jump,

1 otherwise.

where x = min(6,max(0, |∆f | − 0.5)), ∆f is the frequency difference in
semitones, µf = 0, and σf = 4. Note that jumping from voiced to unvoiced
or vice versa is not penalized, thus irregular f0 segments or low-voiciness
segments will become unvoiced segments.

We have adapted the dynamic programming described to work with a fixed
latency that can be manually set. The adaptation consists in updating the
matrices at each new frame and performing an incremental forward pass and
a normal backtracking pass. At each new frame, a new column is added to
the matrix of the first step, we calculate transition and state costs only for
the new nodes and the first column of the matrix is then removed. Then
a partial backtracking is performed for a number of columns equal to the
latency parameter. The same process is performed on the the matrix of
the second step. It is updated with the found f0 trajectory, and the node
and jump probabilities are computed as previously reported. A partial
backtracking is performed in this second matrix, and we choose the best
node in the column corresponding to the frame at the desired latency.

Evaluation

First, we compute several measures for the estimated lead vocals pitch,
including a voiced/unvoiced frame classification when the lead voice is not
present.

With regard to the evaluation measures, we used those of the MIREX evalu-
ation campaign (Downie et al., 2005):Voiced recall, Voiced precision, Voiced
false alarm and Overall accuracy. For the pitch frequency estimation Raw
pitch is the percentage of voiced frames in the reference with a difference
below 50 semitone cents (1/4 tone) between estimated and reference pitch.
Raw pitch chroma does not consider octave errors

From the MIREX’2005 evaluation campaign’s training dataset (MIREX,
2005), we took nine examples containing vocals as lead instrument by female
and male singers. The results are comparable to the best participants in
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Latency (frames) 1 3 10 20 100

voiced-recall 100.00 92.50 93.84 95.01 93.80

voiced-precision 65.41 72.16 71.63 70.19 71.66

voiced-false-alarm 100.00 67.47 70.27 76.30 70.13

overall-accuracy 52.99 62.37 62.35 59.25 62.43

raw-pitch 81.01 78.15 79.60 78.06 79.64

raw-pitch-chroma 83.28 80.24 81.51 79.62 81.56

Table 4.1: Latency influence on the pitch accuracy for the LLIS-SVM method.
Latency is expressed in number of frames (frame time is 11.6 ms).

the MIREX’2005 evaluation campaign for the task of melody extraction 3,
which obtain a voiced recall of 81.8% and an overall accuracy of 71.4%,
with a voiced false alarm rate of 17.3% (MIREX, 2005; Dressler, 2005). Our
approach has a much higher false alarm rate (76%), although in the use-case
of lead vocals removal, obtaining a good voiced recall is more important.

Table 4.1 shows the effect of latency in the pitch tracking step. Latency is
expressed in number of frames (frame duration is 11.6 ms) and corresponds
to the size of the Viterbi backtracking as detailed in section 4.3. For lead
instrument removal, we need a high value for voice recall since false negatives
(FN) will result in by-passing the lead instrument. Therefore we choose a
latency of 20 frames for the pitch tracking step, taking the highest voiced
recall values while maintaining good voice precision.

Table 4.2 contains the results on pitch accuracy, comparing our algorithm
with an implementation of the Instantaneous Mixture Model (IMM) ap-
proach by Durrieu et al. (2010) which is an NMF-based approach presented
in Section 3.4. The implementation code is available online 4.

Additionally, we can observe the contribution of the voice timbre classifi-
cation of section 4.3. The LLIS-noSVM method forces the algorithm to
output an estimated predominant pitch (i.e. all frames are considered as
voiced). The accuracy results, raw pitch and raw chroma, are computed
taking into account only frames that are voiced in the reference pitch files.
By adding the timbre classifier (LLIS-SVM), we accomplish an improvement
of 5% in voiced precision vp, with a decrease of 3% in raw pitch accuracy.

3. Although these results were computed with a test dataset from the MIREX collec-
tion that is not publicly available, the results should be comparable to some extent.

4. http://durrieu.ch/phd/software.html (last accessed on January 3, 2011)

http://durrieu.ch/phd/software.html
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Method IMM LLIS-noSVM LLIS-SVM HarmSum-SVM

voiced-recall - - 95.01 92.90

voiced-precision 65.44 65.41 70.19 70.34

voiced-false-alm - - 76.30 74.08

overall-accuracy - - 59.26 61.39

raw-pitch 71.77 81.06 78.06 80.14

raw-pitch-chroma 76.19 84.07 79.62 81.50

Table 4.2: Pitch accuracy evaluation. Note that the some measures are not
applicable since the algorithm does not provide voiciness detection.

However the proposed method is not yet capable of achieving the results
obtained by the Harmonic Summation approach combined with the timbre
model (HarmSum-SVM). Overall, the LLIS-SVM method seems to offer an
adequate raw pitch detection but still needs improvement in the detection
of false positives.

4.4 Extension to Multiple Pitch Estimation and
Tracking

Given the proposed predominant pitch estimation and tracking method,
and motivated by addressing several shortcomings of it, we developed an
extension capable of tracking multiple pitches under a controllable latency
constraint. This work shows another use of the Tikhonov spectrum decom-
position method that we propose in Section 4.2, and can serve as a base for
further studies.

This section demonstrates the use of Tikhonov regularization in multiple
fundamental frequency likelihood estimation, and how it would fit into a
full latency-controlled multiple pitch tracking system.

In Chapter 6 Section 6.6 we show that the estimation of multiple pitches
present in the mixture signal can improve even more the separation quality.

Introduction

This method addresses two main problems with the technique presented in
Section 4.3. The previously proposed method fails with regions where the
pitch is highly modulated in frequency. Singing voice often presents these
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types of regions, notably glissandos and vibratos. Another shortcoming
with the proposed predominant pitch tracking method comes from using the
results of timbre modeling and classification in the Hidden-Markov Model of
the tracking step. The classifier does not always output correct results and
this leads to breaks in the pitch contours. This problem is very noticeable
in source separation tasks.

The method developed in this section lessens these two problems, while at
the same time extending the method to estimate multiple pitches simultane-
ously. This is done by splitting the system into three stages: pitch likelihood
estimation, pitch tracking and pitch contour selection (see Figure 4.4).

The pitch likelihood estimation stage consists in finding the presence prob-
ability of all possible pitches. This stage is done in the same way as in the
predominant pitch method (see Section 4.3), and it is not developed any
further here.

The pitch tracking step will not use information from the timbre. Only pitch
likelihood and transition information is needed to create the pitch contours
independently of the timbre. The timbre information could be very useful
when computing pitch transition probabilities. It could be done by creating
a measure of timbre similarity between consecutive frames, however this
falls out of the scope of this study.

The pitch contour selection is based on the features of a short history of
frames of the contours. These features extract information from the contour
rather than from the instantaneous spectrum frame. In this work we propose
a set of simple features based on the timbre classification information and
on the probability of there being an octave error. In the future, other
features such as timbre evolution over time or frequency statistics (Salamon
and Gomez, 2012) could be extracted and could increase the flexibility and
accuracy of the selection.

Pitch Tracking

The pitch tracking stage in a multipitch scenario consists in assigning certain
frequencies of the pitch likelihood function to a set of pitch tracks in time.
For a single pitch, this task is often modeled as a Hidden-Markov Model
as done in Section 4.3. In the case of single pitch we have a HMM with as
many states as possible pitches, and in order to reduce complexity we often
reduce the candidates to a selection of peaks in the pitch likelihood function.
However for multiple pitches the number of states increases significantly,
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Figure 4.4: Block diagram comparing the predominant pitch estimation method
(from Section 4.3) and the multipitch estimation extension.

since there are many combinations of paths and possible pitches. In order
to reduce the complexity we perform iteratively a single pitch tracking and
removal process. This iterative method is especially disadvantageous in
situations where pitch contours cross, however it serves as proof of concept
here.

In this work we mainly focus on the use of the pitch likelihood function
resulting from decomposition methods, such as Tikhonov regularization and
NMF, in multipitch tracking without going in depth into the details of the
tracking itself.

With relation to the pitch likelihood function, there is an important differ-
ence between harmonic summation methods and decomposition methods.
In the former the computation of the likelihoods is performed indepen-
dently for each pitch, while in the latter it is performed jointly. Further-
more decomposition methods are generative models in the sense that they
can reconstruct the spectrum given the pitch likelihood or an intermediate
representation of it. In decomposition methods the likelihood function not
only depends on the position and energy of the partials but also on their
shape.

This property becomes apparent when dealing with vibratos and glissandos,
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as can be seen in Figure 4.5. In these cases the partials of the spectrum
become wider and of lower magnitude. This happens because the energy
of the signal in a given analysis window is not concentrated on one single
specific frequency, it is distributed in a region of frequencies. In decom-
position methods, this translates to a spreading of the peaks in the pitch
likelihood function, which become wider and of lower magnitude when the
pitch is frequency modulated. This property may also affect some harmonic
summation methods, if these take the shape of the partials into account.
However most often these techniques sum all the energy of the partials,
independently of their shape, to the likelihood of the corresponding pitch.
While this property could be seen as a problem, it can be used in the track-
ing stage as a cue to ensure continuity of the tracks.

The first proposal to address this issue is to use the energy of the pitch
likelihood peaks as the probability of belonging to a pitch contour. How-
ever since the peaks in the pitch likelihood function may partially overlap,
it is not straightforward to compute the energy from the pitch likelihood
function.

In order to compute the energy of a given pitch likelihood peak, we first
fit the pitch likelihood function with a set of Gaussian functions (see Fig-
ure 4.5). Lets assume wj are the positions of the NJ largest peaks in the
pitch likelihood function. The Gaussian fitting is performed by using a mix-
ture of Gaussian distributions to model the likelihood function around these
peaks. We minimize to the objective function:

Φ({aj , σj , µj : ∀j}) =
∑

w∈NWsel

∥∥∥∥∥∥L(w)−
NJ∑
j=1

ajG(w;σj , µj)

∥∥∥∥∥∥
2

(4.16)

where G(x;σ, µ) = 1√
2πσ

e
−(x−µ)2

2σ2 is the Gaussian distribution. NWsel

is a subset of the bins of the pitch likelihood function in order to only
take into account in the fitting the regions around the selected candidate
pitches NWsel = {w : |w − wj | < d, ∀w, j}. Where d is a threshold dis-
tance around the peak positions. The peak positions wj and magnitudes
L(wj) are used for the initial values of the µj and aj respectively, during
the optimization of Equation 4.4.

The parameters resulting from the minimization of Φ are then used as the
characteristics of the pitch candidates. aj represents the energy of the
pitch candidate and can be related to the likelihood or predominance in
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Figure 4.5: Example of the Gaussian fitting procedure to model the pitch candi-
dates on a mixture with singing voice and acoustic guitar. Pitch likelihood (often
referred to as pitchgram or chromogram) over time (top). Pitch likelihood slice
corresponding to the vertical line on the top plot (bottom). The thick curve is the
pitch likelihood of the given frame. The fitted Gaussians are plotted as thin curves.
The red thick vertical line corresponds to the global maximum of the likelihood
function. Note that the Gaussian of the pitch likelihood peak of the singing voice
vibrato has a larger amplitude than that of the peak corresponding to the less
predominant acoustic guitar (a1 > a0).

the current time frame. µj represents the frequency of the pitch. Finally
the frequency modulation rate of the pitch track affects the pitch likelihood
peak width and therefore the parameter σj .

The parameters can then be used to perform the tracking in a way similar
to that shown in Section 4.3. We create an HMM with t ∈ [0, NT ] time
indices and j ∈ [0, NJ ] states for each time index. The extra state j = 0
corresponds to a track set to non-pitched, the other states correspond to
the peaks of the likelihood function.

We may use aj and µj in the computation of the state probability P1,S and
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the transition probability P1,T respectively:

P1,S(jt) =

e−
(µjt
−µS)2

2σ2
S for jt > 0,

Pu1,S for jt = 0.

P1,T (jt, jt−1) =


0 if jt−1 = 0, jt = 0

e
− (x−µT )2

2σ2
T if jt−1 6= 0, jt 6= 0

Pp−u1,T else

where µS = 0.15, σS = 0.1, x = min(6,max(0, |∆µs|−0.5)), ∆µs is the dif-
ference between µj in semitones, µT = 1 and σT = 1. Pu1,S is the probability

of a pitch track being unpitched and Pp−u1,T is the transition probability be-
tween a pitched and unpitched state of the track. Note that in this extension
to multipitch tracking the voiciness probability P1,v is not used.

However we propose a different method to compute the transition probabil-
ity based on the divergence between two Gaussians. We take into account
not only the difference between frequencies of consecutive frames, but also
the differences in energies and frequency modulation rates. As in Zouari
and Chollet (2006) we have chosen the symmetric Kullback-Leibler as a di-
vergence measure between weighted Gaussians. In our case the Gaussians
are 1-D resulting in:

kl(a1, σ1, µ1; a2, σ2, µ2) =
1

2

(
a1
σ1

σ2
+ a2

σ2

σ1

)
+

1

2
(µ1 − µ2)2

(
a1

σ1
+
a2

σ2

)
− (a1 + a2) (4.17)

In this case the transition probability between two consecutive pitch candi-
dates is defined as:

gd(jt, jt−1) = log
(∣∣kl(ajt , σjt , µjt ; ajt−1 , σjt−1 , µjt−1)

∣∣)
P1,T (jt, jt−1) = e

−
(gd(jt,jt−1)−µTgd

)2

2σ2
Tgd , if jt > 0, jt−1 > 0 (4.18)

where µTgd = 0, and σTgd = 0.15.

Finding the best path in the HMM is performed using a Viterbi algorithm
as in Section 4.3. However in this case we want to be able to find the first
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Ncont best paths. Therefore we apply the Viterbi algorithm iteratively on
multiple copies of the HMM using the following algorithm:

n = 1
Compute state costs of HMM[n], ∀n
while n < Ncont do

Compute Viterbi’s forward step of HMM[n]
Estimate best path ~p = [j0, j1...jNT ] using Viterbi’s backward step on
HMM[n]
Set to 0 state probability P1,S(~p[t]) = 0,∀t of HMM[n],∀n
n = n+ 1

end while

In order to limit the latency of the system the Viterbi is only performed
on a limited history of the signal in the same manner as in Section 4.3.
The forward step, computing the state costs and accumulated costs, can be
done one frame at a time since it only depends on the past. However the
best path resulting from the backward step might change with the arrival
of each new frame. If the best path changes, it may cause jumps in the
resulting pitch contours. This may be attenuated by raising the history and
therefore the latency of the system. However this effect can also be reduced
by raising the number of HMM (Ncont), such that the state probability of
the candidates that could lead to best path changes are set to 0, reducing
the chances of obtaining a different path for that HMM.

Pitch Contour Selection

The pitch contour selection consists in choosing the tracks resulting from
the previous step that are of interest for a given application. The basic idea
is to use a limited history of the pitch contours, compute some features on
them and select the ones that better match a given criterion. In this way we
can capture mid-term and long-term characteristics that are not obtained
using the HMM.

Salamon and Gomez (2012) compute first and second order pitch contour
statistics to select melody lines in a mixture. In Marxer et al. (2011) we
compute timbre classification features that are integrated in the HMM to
select the pitch contours of a specific instrument. Here we propose three
features that are useful for some general use cases such as selecting a specific
instrument and/or avoiding common errors in pitch trackers.
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Statistical Features

The statistical features of the contours are useful for most tasks. The con-
tours are time series of two dimensions: frequency and likelihood. The
likelihood is often related to the intensity, salience and/or loudness of the
pitch. There are many useful statistical features that can be extracted from
the pitch contours. Salamon and Gomez (2012) propose a set of characteris-
tics that can be used for melody selection. Among the features proposed we
find the means and standard deviations of the salience and frequency. They
also propose other global characteristics including the sum of the salience,
the length of the contour or the presence of vibrato.

In this work we focus on systems with a controllable latency and there-
fore we limit ourselves to features that can be computed incrementally. Of
the characteristics proposed by Salamon and Gomez (2012), the means and
standard deviations of the salience and frequency allow for incremental es-
timates to be performed. The sums of the salience and duration require the
full pitch contour to be calculated making incremental estimates impossible.

Timbre Features

The timbre feature is based on the work presented in Section 4.3. This
feature consists of the incremental mean of the result from the SVM classifier
applied to the c feature vector from Equation 4.12. In contrast to the
method proposed in Marxer et al. (2011), here the timbre information is used
as a feature of the pitch contour instead of as a feature of each instantaneous
frame. This feature is useful for selecting specific instruments for which we
have trained the timbre model.

Octave Error Features

Octave errors are some of the most common problems in multiple funda-
mental frequency estimation methods. This is a consequence of the octave
ambiguity: a pitched sound of fundamental frequency 2f0 can be spectrally
very similar to a pitched sound of fundamental frequency f0 if all the odd
partials (1st, 3rd, 5th,...) are set to 0 by the filter (the timbre of the sound)
or if they are masked by other sounds present in the mixture. This case is a
limit situation and quite rare, however intermediate scenarios where pitches
and their octaves occur simultaneously or the odd partials are simply low-
ered are not uncommon, and the same ambiguity applies.
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We propose a feature for finding the pitch based on its timbre to alleviate
octave errors. As in Section 4.3 we characterize the timbre of a pitch by
using the Harmonic Spectral Envelope (HSE) eh(f). For the development of
this feature we propose several measures for a given fundamental frequency
f based on the divergence between its HSE (hser(f) = eh(f)) and the HSE
of its relative lower octave hsel(f) = eh(f/2) and higher octave hseh(f) =
eh(2f). These measures are defined as:

dhsel(f) = DSKL(hsel||hser)
dhseh(f) = DSKL(hseh||hser)
dhsehl(f) = DSKL(hseh||hsel) (4.19)

where DsKL(x||y) = DKL(x||y) + DKL(y||x) is the symmetrised Kullback-
Leibler divergence between the distributions x and y, withDKL = x log (x/y)
The main hypothesis we propose is that for the correct pitch the ratio be-
tween dhsel(f0) and dhseh(f0) is larger than for the higher and lower oc-
taves. In other words assuming f0 is the correct fundamental frequency of
a given pitch:

dhsel(f0)

dhseh(f0)
>
dhsel(2f0)

dhseh(2f0)
>
dhsel(f0/2)

dhseh(f0/2)
(4.20)

The motivation to propose this hypothesis comes from two main assump-
tions. The first assumption is that the HSE of the true fundamental fre-
quency can be modeled as a spectrally smooth filter. This assumption has
been widely used in the literature (Klapuri, 2003; Every, 2006; Durrieu
et al., 2010; Benetos and Dixon, 2011a). The second assumption is that
the magnitude of the spectrum between the true pitch partials is signifi-
cantly lower than at the partial positions. In other words the magnitude
of the background spectrum is low with respect to the HSE of the true
fundamental frequency.

The theory behind this method can be explained in terms of downsampling
and upsampling an imaginary envelope. If we consider any octave compared
to the true pitch, going down or up an octave is equivalent to upsampling
and downsampling the HSE respectively. Since the HSE is assumed smooth
(it has low energy in the high frequency components) the aliasing effect will
be small and the resulting interpolated envelope will be similar. Therefore
the ratio dhsel/dhseh should be close to one. Let’s consider a different
situation where we are computing the feature for the frequency an octave
lower than the true pitch. The HSE of the given fundamental frequency
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Figure 4.6: Harmonic envelopes for the reference, lower octave and higher octave
pitches for a singing voice in isolation. Notice the harmonic envelope of the octave
lower is significantly different from the envelope of the correct pitch and the octave
higher.

is not smooth, because it corresponds to the multiplex of the true smooth
HSE with a low magnitude background spectrum. If we go up an octave
we will be computing the HSE of the true pitch and therefore a sampling of
a smooth spectrum. However if we compute the HSE of a lower octave we
will again end up with a multiplex of the background spectrum and the true
pitch HSE. This leads to a ratio of dhsel/dhseh lower than one. Finally, if
we compute the feature for the true pitch the result is a ratio of dhsel/dhseh
larger than one.

Taking into account normalization terms in order to maintain the value of
the feature in a specific range, the octave error feature is defined as:

oerr(f) = log

(
dhsel(f)

dhseh(f)

)
(4.21)

Evaluation

To evaluate the octave error feature we use monophonic audio excerpts for
which the pitch is previously estimated. The estimated pitch is considered
as reference fref . The excerpts are mixed together at different polyphonies.
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The octave error feature is computed at every frame on the mixtures for the
pitches flow = fref/2, fhigh = 2fref and fref of each of the sources present.

We consider two different multi-track datasets: wind (a wind instruments
quintet) and choir (a vocal quartet).

The first consists of the wind instruments database for the Multiple Fun-
damental Estimation task of the Third Music Information Retrieval Eval-
uation Exchange (MIREX2007). This dataset is composed of a woodwind
quintet recording of Beethoven’s Variations for String Quartet Op.18 No. 5.
Each instrument (flute, oboe, clarinet, horn, or bassoon) was recorded sepa-
rately while the performer listened to the other parts (recorded previously)
through headphones. The mixtures are generated by mixing the recordings
of the individual instruments, with polyphonies ranging from 2 to 5. This
combinatorial process results in a total of 26 individual mixtures.

The second dataset consists of recordings of four voices (bass, tenor, alto
and soprano) of the choir composition “Water Night”, composed by Eric
Whitacre. Isolated solo recordings were downloaded from the Virtual Choir
site 5. The goal is to observe the effect of having sources with similar timbre
(singing voice) and with pitch contours having overlapping harmonic par-
tials. With polyphonies ranging from 2 to 4, the dataset has a total of 11
mixtures.

The pitch annotation of each track is carried out automatically using a
monophonic pitch estimation method (de Cheveigné and Kawahara, 2002)
on the individual recordings. The same pitch range (30−1800 Hz) and voici-
ness threshold are used to process all recordings. Pitch data is computed
using a frame rate of 86 fps.

In order to test the hypothesis of Equation 4.4 presented in Section 4.4,
we computed the distributions of the octave error features for the reference
pitch (solid red), the lower octave (dashed blue) and the higher octave
(dotted green). Figure 4.7 shows the result for the different polyphony
rates. The first observation we make is that, as in our hypothesis, the mean
of the octave error feature for the reference pitch is highest, followed by
those of the higher octave pitch distribution and finally the lower octave
pitch presents the lowest mean. We may also notice that the individual
distributions have a large spread.

5. These recordings are copyrighted and available online: http://ericwhitacre.com/
the-virtual-choir/resources

http://ericwhitacre.com/the-virtual-choir/resources
http://ericwhitacre.com/the-virtual-choir/resources
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Figure 4.7: Histogram of octave error feature by polyphony.

Another important observation is that the overlap between the distributions
rises with the polyphony rate. This can be explained by the fact that
the background spectrum is higher when the polyphony increases. This
happens, for example, when partials of other instruments appear between
the partials of the reference. Another source of this effect could be the
overlap of the partials of other instruments with the ones from the reference.
Finally, this could also occur because the harmonic spectral envelope (HSE)
of the reference pitch cannot be assumed to be smooth enough to avoid
aliasing.

The overlap of the distributions is an issue if using the octave error feature
as an absolute value for simple thresholding classification. This is the case
when we must decide if a given individual pitch contour is a false positive or
a true positive. However this feature can be used in conjunction with other
features of the frame to perform a higher dimensional classification. We
may consider two other frame features such as the pitch value and salience
that are linked to this feature and could aid in obtaining a larger disjoint-
ness. Another consideration to keep in mind is that these are frame-based
features, aggregation of multiple frames could also decrease the overlap.

When performing multipitch estimation and tracking we may identify can-
didates that are separated by an octave and share a very close contour
evolution. In these cases we may assume one of them can be an octave
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Figure 4.8: Histogram of octave error relative feature for the lower octave
(dashed) and higher octave (dotted).

error and a selection should be performed. In this situation we do not need
to perform a classification based on an absolute value of the octave error
feature and we may use the relative value. In Figure 4.8 we show the relative
difference between the reference and higher octave (dashed blue) and be-
tween the reference and lower octave (dotted green) for all polyphony rates
aggregated. As expected the means of both distributions are over zero, with
the lower octave presenting a smaller overlap with the negative plane than
the higher octave.

Overall the results show that on average the proposed features could help
improve octave error decisions. However we also observe that the assump-
tions are not always valid leading to ambiguous feature values in certain
cases. There are other sources present in the mixture and the background
spectrum is not always lower than the partials. This issue is more visible
as the polyphony rate of the mixture increases. Furthermore the timbre of
the true pitch is not always necessarily smooth.

We have also conducted quantitative tests, by performing T-tests to show
the effect of the polyphony and dataset on this feature. Table 4.3 shows the
T-test results for the different polyphonies.

The T-tests reveal that there is a significant difference between the feature
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df reference lower octave higher octave

2 293784 M=2.6;SD=3.9 M=-2.9;SD=3.9; t(df)=-386.0 M=-1.0;SD=3.6; t(df)=-261.1
3 373276 M=1.6;SD=3.4 M=-1.9;SD=3.6; t(df)=-301.9 M=-0.9;SD=3.2; t(df)=-222.7
4 203916 M=0.9;SD=3.1 M=-1.5;SD=3.2; t(df)=-171.6 M=-0.7;SD=2.9; t(df)=-120.5
5 39744 M=0.6;SD=2.9 M=-1.3;SD=2.9; t(df)=-67.7 M=-0.4;SD=2.6; t(df)=-36.0

Table 4.3: T-tests of the higher and lower octave pitches with relation to the
reference pitch. The first column indicates the polyphony number of the tested
dataset. In all T-tests p� 0.01.

values of the reference pitches and those of the octave errors. This difference
decreases as the polyphony of the mixture increases. These results show
that the octave error feature can be useful to differentiate between the true
pitches and the octave errors.

Figure 4.9 illustrates the advantages of using the Gaussian fitting pitch
tracking method and the octave error feature for pitch selection. In this
example we analyze an excerpt of an in-house multitrack professional music
recording containing singing voice, electric guitar, bass and drums. The
groundtruth pitch track is created by performing a single pitch analysis us-
ing the well-known YIN pitch estimation method (de Cheveigné and Kawa-
hara, 2002) on the isolated singing voice track. The proposed extensions
show an improvement in the predominant pitch estimation, with fewer oc-
tave errors and pitch discontinuities.

Furthermore Figure 4.10 shows the use of the proposed techniques in a task
of multiple fundamental frequency estimation and tracking. In this figure
we plot the estimated pitches of our proposed method on a mixture of
bassoon, saxophone and violin in the excerpt Fur Deinen Thron which can
be found in the Bach10 (Duan et al., 2010) pitch-annotated dataset 6. We
can observe how the proposed method recovers most of the pitch contours,
even in sections where the sounds produced by the instruments have a low
energy. This is the case at the boundaries of the pitch contours, such as
at the end of the vibratos at seconds 16 and 24. These regions are marked
as non-pitched on the groundtruth annotations, however listening to the
excerpt we notice that the instruments are present with low energy and with
only one or two partials over the background spectral noise. We also note
that there are still many false positives which would lead to low accuracy
in subjective evaluations. This is due to the fact that currently we do

6. http://www.cs.northwestern.edu/~zdu459/multipitch/multipitch.html

http://www.cs.northwestern.edu/~zdu459/multipitch/multipitch.html
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Figure 4.9: Comparison of predominant pitch estimation and tracking methods.

not perform an estimation of the polyphony in the piece and a constant
number of pitch tracks are assumed present at all times. In the future
this method of multipitch estimation and tracking should be extended to
perform polyphony estimation and be objectively evaluated and compared
with existing techniques (Pertusa and Inesta, 2008; Duan et al., 2010).

Conclusion

In this section we have shown that the Tikhonov regularization method
for spectrum factorization can be useful in tasks of multipitch estimation
under low-latency constraints. We have proposed a multiple fundamental
frequency estimation method based on a two stage approach, where tracking
of pitch candidates and selection of pitch contours are performed indepen-
dently.

We have proposed solutions for two main issues that arise when working
with joint pitch likelihood estimations such as the ones produced using
Tikhonov regularization:

– The spreading of the likelihood function due to frequency modulation is
addressed by using Gaussian fitting.

– The octave error ambiguities are handled by computing an octave error
feature based on the timbre smoothness assumption. We also presented
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Figure 4.10: Example of multiple fundamental frequency estimation and tracking.

a preliminary evaluation of this solution to differentiate between octave
errors and true pitches.

In future work the pitch tracking stage could be improved by adding an ex-
tra state to the HMM representing hidden or masked peaks. We could also
consider adding a dynamic model for the pitch tracks that could account
for the track direction. With respect to the selection stage, future research
should focus on testing different classification techniques and adding other
dimensions to the pitch track features such as the pitch and salience. Aggre-
gations of multiple frames of a given pitch contour should also be considered.
The Gaussian fitting, octave error and predominant pitch estimation and
tracking extensions show promise and future work on them might prove use-
ful. These suggestions should be tested in the context of pitch, melody and
multipitch estimation by performing a quantitative evaluation and compar-
ison using state-of-the-art techniques.



Chapter 5

Low Latency Audio Source
Separation

5.1 Introduction

Audio source separation consists in retrieving one or more audio sources
given a set of one or more mixture signals. Audio source separation in
the field of music processing has received special attention in the past few
decades. A number of methods have been proposed, most of them based on
time-frequency masks. We differentiate between two main strategies in the
creation of time-frequency masks depending on the constraints imposed on
the separation process.

Realtime solutions are often based on binary masks, because of their simple
and inexpensive computation. These solutions assume the target sources
are orthogonal in the time-frequency domain. The most common binary
mask used in stereo music recordings is based on panning information of
the sources (Yilmaz and Rickard, 2004; Jourjine et al., 2000; Vinyes et al.,
2006).

Non-realtime approaches do not make such an orthogonality assumption,
and make use of a soft mask based on Wiener filtering (Benaroya et al.,
2006) which requires estimating all spectrograms of the constitutive sources.
For harmonic sources this estimation is often performed in two steps. First
the pitch track of the target source is estimated and then the spectrum of
that given pitch track is estimated. The first step often relies on melody ex-
traction algorithms (Goto and Hayamizu, 1999; Fujihara et al., 2006). Some

125
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methods estimate the pitch of the components independently (Ryynänen,
2006), while others perform a joint estimation of the pitches in the spectrum
(Ryynänen, 2006; Yeh et al., 2010). Most joint pitch estimation methods are
computationally expensive since they evaluate a large number of possible
pitch combinations. NMF approaches to multipitch likelihood estimation
(Sha and Saul, 2005; Févotte et al., 2009) address this limitation by fac-
toring the spectrogram into a multiplication of two positive matrices, a set
of spectral templates and a set of time-dependent gains. In Durrieu et al.
(2010) and Ozerov et al. (2010) the spectral templates are fixed to a set
of comb filters representing the spectra generated by each individual pitch
spectrum.

Here we briefly introduce a state of the art method used in music source sep-
aration under low latency realtime constraints based on pan-derived binary
masks. We generalize binary masks under the perspective of spectrum bin
classification techniques, where several spectral bin features can be taken
into account for the classification (e.g. the bin position with respect to the
harmonic structure of the estimated pitch). As an alternative, we propose
applying the Tikhonov Regularization spectrum decomposition technique.
This technique leverages the low computational cost and realtime property
of the Tikhonov regularization and the advantages of using spectrum decom-
position to perform source estimation. In addition it allows using Wiener
filtering, which results in a soft time-frequency mask separation technique,
with the goal of decreasing the presence of artifacts and musical noise in
the resulting signal. Tikhonov regularization spectral decomposition is ap-
plied to three common source separation scenarios in the context of Western
commercial music:

– The separation of the singing voice
– The separation of the drums
– The separation of the bass line

Several modifications and extensions of the signal model are presented in
order to adapt it to each scenario, however the focus of this work remains on
the use of Tikhonov regularization as a spectrum decomposition technique.
The study of how the signal model affects the decomposition and posterior
separation is not the main research target and will only be considered in
certain specific contexts.
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5.2 Singing Voice Separation Using Binary
Masks

We propose combining several sources of information for the creation of
the binary mask in order to better the results of currently existing methods
while maintaining low latency. We propose two main sources of information
for the creation of the masks. Spectral bin classification based on measures
such as lateralization (panning), phase difference between channels and ab-
solute frequency is used to create a first mask. Information gathered through
a pitch-tracking system is used to create a second mask for the harmonic
part of the main melody instrument.

A similar system was proposed in Fujihara et al. (2006). The authors per-
form a pitch likelihood estimation, a pitch tracking process and finally a
timbre classification of the detected pitch using Gaussian Mixture Models.
In their work the main focus is on the vocal pitch detection and they demo
the possibilities of using such output for audio source separation tasks. In
our case we are focusing on the source separation capabilities of a similar
system with realtime constraints. We also present the use and combina-
tion of other non-harmonic masks such as those based on lateralization and
absolute frequency.

Introduction

We present the use of binary masks as a common method for separating
musical sources under realtime and low-latency constraints. These methods
are generalized as spectral bin classification separation techniques. Spectral
bin classification is performed using simple thresholding or decision trees
that can easily integrate user control information, especially interesting in
interactive applications. The classification is based on features such as
panning and frequency, as well as the distance to a hypothetical harmonic
position.

This approach is taken as a starting point and a baseline for the methods
we propose.

Spectral Bin Classification Masks

Panning information is one of the features that have been used successfully
(Jourjine et al., 2000; Yilmaz and Rickard, 2004) to separate sources in
real-time. Vinyes et al. (2006) used the pan and the IPD (inter-channel
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phase difference) features to classify spectral bins. An interesting feature
for source separation is the actual frequency of each spectrum bin, which can
be a good complement when the panning information is insufficient. Using
pan and frequency descriptors we define a filter in the frequency domain
using a binary mask to mute a given source:

mpf
t [ω] =

{
0 if plow < pt[ω] < phigh and ωlow < ω < ωhigh,

1 otherwise.

where pt[ω] is the pan value of the spectral bin ω at frame t. The parameters
plow and phigh are the pan boundaries and ωlow and ωhigh are the frequency
boundaries fixed at −0.25, 0.25 and 60Hz and 6000Hz respectively, to keep
the method unsupervised.

Results from this method are acceptable in some situations. The most
obvious limitation is that it is not capable of isolating sources that share
the same pan/frequency region. This technique is also ineffective in the
presence of strong reverberation or in mono recordings which have no pan
information.

Harmonic Mask

Harmonic mask creation is based on two assumptions: that the vocal compo-
nent is fully localized in the spectral bins around the position of the singing
voice partials and that the singing voice is the only source present in these
bins. Under such assumptions an optimal mask to remove the singing voice
consists of zeros around the partials positions and ones elsewhere.

These assumptions are often violated. The singing voice is composed of
other components than the harmonic components such as consonants, frica-
tives or breath. Additionally other sources may contribute significantly to
the bins where the singing voice is located. This becomes clear in the results
where signal decomposition methods such as Instantaneous Mixture Model
(IMM) (Durrieu et al., 2010) that do not rely on such assumptions perform
better than our binary mask proposal. However these assumptions allow us
to greatly simplify the problem.

Under these assumptions we define the harmonic mask mh to mute a given
source as:

mh
t [ω] =

{
0 for (f0t · h)− L/2 < ω < (f0t · h) + L/2, ∀h,
1 otherwise.
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where f0t is the pitch of the tth frame, and L is the width in bins to be
removed around the partial position.We may also combine the harmonic
and spectral bin classification masks using a logical operation by defining a
new mask mpfh

t as:

mpfh
t [ω] = mpf

t [ω] ∨mh
t [ω] (5.1)

Finally, we are also able to produce a soloing mask m̄t[ω] by inverting any
of the previously presented muting masks m̄t[ω] = ¬mt[ω].

In order to estimate the pitch contour f0t of the chosen instrument, we fol-
low a three-step procedure: pitch likelihood estimation, timbre classification
and pitch tracking presented in Section 4.3.

Evaluation

The material used in the evaluation of the source separation method consists
of 15 multitrack recordings of song excerpts with vocals, compiled from
publicly available resources (MASS 1, SiSEC 2, BSS Oracle 3)

Using the well known BSSEval toolkit (Vincent et al., 2007c), we compare
the Signal to Distortion Ratio (SDR) error (difference from the ideal binary
mask SDR) of several versions of our algorithm and the IMM approach (Dur-
rieu et al., 2010). The evaluation is performed on the ”all-minus-vocals” mix
versions of the excerpts. Table 5.1 presents the SDR results averaged over
15 audio files in the dataset. We also plot the results of individual audio ex-
amples and the average in Figure 5.1. The Pan-freq mask method consists
of applying the mpf mask from Equation 5.1.

The quality of our low-latency approach to source separation is not as high
as for off-line methods such as IMM, which shows an SDR almost 3 dBs
higher. However, our LLIS-SVM method shows an increase of 2.2 dBs in
the SDR compared to the LLIS-noSVM method. Moreover, adding azimuth
information to the multiplicative mask (method LLIS-SVM-pan) increases
the SDR by 0.7 dBs.

Conclusions

We present a source separation approach well suited to low-latency applica-
tions. The separation quality of the method is inferior to offline approaches,

1. http://www.mtg.upf.edu/static/mass

2. http://sisec.wiki.irisa.fr/

3. http://bass-db.gforge.inria.fr/bss_oracle/

http://www.mtg.upf.edu/static/mass
http://sisec.wiki.irisa.fr/
http://bass-db.gforge.inria.fr/bss_oracle/
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Figure 5.1: SDR error of various excerpts for four methods: pan-frequency mask,
LLIS and IMM.

Method SDR-vocals SDR-accomp

pan-freq 0.21 4.79

LLIS-noSVM 0.47 5.05

LLIS-SVM 2.70 7.28

LLIS-SVM-pan 3.43 8.01

IMM 6.31 10.70

Ideal 12.00 16.58

Table 5.1: Signal-To-Distortion Ratio (in dB) for the evaluated methods. The
Ideal column shows the results of applying an ideal binary mask with zeros in the
bins where the target source is predominant and ones elsewhere.

such as NMF-based algorithms, but it performs significantly better than
other existing real-time systems. Maintaining low-latency (232 ms), an im-
plementation of the method runs in real-time on current, consumer-grade
computers. The method only targets the harmonic component of a source
and therefore does not remove other components such as the unvoiced con-
sonants of the singing voice. Additionally it does not remove the reverbera-
tion component of sources. However these are limitations common to other
state-of-the-art source separation techniques and are out of the scope of our
study.

We propose a method with a simple implementation for low-latency pitch
likelihood estimation. It performs joint multipitch estimation, making it
well-adapted for polyphonic signals. We also introduce a technique for de-
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tecting and tracking a pitched instrument of choice in an online manner
by means of a classification algorithm. This study applies the method to
the human singing voice, but is general enough to be extended to other
instruments.

Finally, we show how the combination of several sources of information can
enhance binary masks in source separation tasks. The results produced by
the ideal binary mask show that there are still improvements to be made.

5.3 Singing Voice Source Estimation Using
Wiener Filtering

We present a Tikhonov regularization-based method as an alternative to the
Non-negative Matrix Factorization (NMF) approach for source separation
in professional audio recordings. This method is a direct and computation-
ally less expensive solution, which makes it useful in low-latency scenarios.
The technique removes the non-negativity constraint which characterizes
NMF in exchange for a closed-form solution to the problem of spectrum
factorization. We quantitatively evaluated it in terms of reconstruction and
separation quality on a dataset of excerpts of professionally recorded songs
with singing voice. Results show that the the proposed approach achieves
quality similar to that of NMF.

Introduction

Spectrum decomposition has often been used in audio transcription and
source separation tasks. It consists in modeling the spectral representation
of a signal as a combination of a set of spectral components.

Some techniques such as Harmonic Temporal Clustering (HTC) (Kameoka
et al., 2007; Kameoka, 2007) propose spectrum components with parametrized
frequency and temporal envelopes and with a fixed harmonic structure. Sim-
ilarly Wu et al. (2011) consider components for the modeling of transients.
In both cases the parameters are found using iterative Expectation Maxi-
mization update rules.

Non-negative Matrix Factorization (NMF) has received a lot of attention
in the past few years. NMF was first introduced in the context of music
transcription in Smaragdis and Brown (2003). The main strengths of such
methods are the non-negativity constraints on the component gains, the
ability to learn the components and its flexibility in adding additional cost
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terms. Raczyński et al. (2007) use a harmonic initialization of the compo-
nents and musically inspired penalties on the factorization. Durrieu et al.
(2010) propose an NMF method to decompose a signal using a source-filter
model and then performing NMF on the residual. Ozerov et al. (2010)
present a source separation framework in which priors on the distributions
of the spectral components can be introduced in a hierarchical way. In all
cases the decomposition is performed by iterating over a set of multiplicative
rules.

Existing spectrum decomposition methods have proven useful in audio source
separation tasks, however their iterative nature carries a high computational
cost. We present here an alternative method based on Tikhonov regular-
ization that sacrifices the flexibility and the non-negativity constraints of
NMF or the generality of other methods in exchange for a direct and rapid
solution with a much lower computational cost.

Signal Decomposition Model

The main assumption of our spectrum decomposition method is that the
short-term Fourier transform (STFT) of our audio signal, V is a linear
combination of NW elementary spectra, also called basis components. This
can be expressed as V = WH where V ∈ RNω×1 is the spectrum at a given
frame t, Nω being the size of the spectrum. W ∈ RNω×NW is the matrix
whose columns are the basis components, it is also referred to as the basis
matrix. H ∈ RNW×1 is a vector of component gains for the current frame.

Our focus is on low latency, unsupervised applications which require the de-
composition of each spectrum frame to be done very quickly. Therefore, we
will only consider solutions in which the basis components W are constant
and fixed a priori.

It is obvious that the choice of the basis matrix has a large influence on the
decomposition results. It is not in the scope of this experiment to study the
effect of the basis matrix, but rather to propose a computationally cheap
method to perform the decomposition given a suitable basis matrix.

As in other NMF-based approaches (Virtanen, 2007; Durrieu et al., 2010),
we set the basis matrix to be a set of NL single-pitch, multiple-harmonic
spectra. We must allow different spectral envelopes in order to model har-
monic sources of different timbres. Therefore we filter the single-pitch com-
ponents with a filterbank of NI filters. This results in a total of NL · NI

harmonic basis components.
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Modeling only harmonic sources is often not enough to explain all the possi-
ble observed spectra. Wu et al. (2011) propose modeling wideband compo-
nents to reconstruct transient sounds or background noise. We take a similar
approach by adding to our basis matrix the spectra of the filters in our filter-
bank as wideband components. This results in a total of NW = (NL+1)·NI

basis components.

The spectra components can be defined as:

ϕ[l, n] = 2πflHNL
2
iH−F/2+n

HNL − 1

Sr ln (2)

El[ω] =
F∑
n=0

w[n]

(
Nh∑
h=1

sin (hϕ[l, n])

)
e−jωn

W l,i[ω] =

{
Ui[ω]El[ω] if l ≤ NL

Ui[ω] if l = NL + 1
(5.2)

with H = (1−α)F . Where α is a coefficient to control the frequency overlap
between the components, F is the frame size, Sr the sample rate, w[n] is the
analysis window, Nh is the number of harmonics of our components, W l,i

is the spectrum of the component of lth pitch filtered by ith filter. Ui is the
spectrum of the ith filter in our filterbank. Ui is constructed as a sequence
of NI Hann windows, linearly distributed in the Mel scale and with a 50%
overlap.

The column vectors W l,i are stacked horizontally to form the matrix W .
This results in the spectrum W l,i of the component of lth pitch and ith filter
being the column vector W lNI+i.

Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) has been widely used in audio
source separation tasks (Durrieu et al., 2010; Ozerov et al., 2010; Févotte
et al., 2009). The NMF-based approach to solving our spectrum decompo-
sition problem V = WH consists in finding the best non-negative estimate
of the component gains Ĥ that minimizes a given objective function. We
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Figure 5.2: Two components of our basis matrix W . Top shows El[ω] for a
frequency of 480Hz. Middle shows Ui[ω] for two consecutive values of i. Bottom
shows W l,i[ω] for the selected El[ω] and Ui[ω].

consider the following objective functions:

Φeuc(H) =

Nω∑
k=1

1

2
([WH]k − [V ]k)

2 (5.3)

Φkl(H) =

Nω∑
k=1

[V ]klog
[V ]k

[WH]k
− [V ]k + [WH]k (5.4)

Φis(H) =

Nω∑
k=1

[V ]k
[WH]k

− log [V ]k
[WH]k

− 1 (5.5)

where [X]k is the kth element of vector X. It is well known (Févotte et al.,
2009) that the solution to the non-negative factorization problem given these
objective functions results in the following multiplicative update rule:

Ĥ
NMF
n = Ĥ

NMF
n−1 ⊗

W t

((
WĤ

NMF
n−1

)[β−2]
⊗ V

)
W t

(
WĤ

NMF
n−1

)[β−1]
(5.6)

where ⊗ is the Hadamard product (an elementwise multiplication of the
matrices), all divisions are elementwise and 0 ≤ β ≤ 2 is the coefficient that
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will define the objection function that is being minimized. β = 2 for the
Euclidean distance (NMFeuc) β = 1 for the Kullback-Leibler divergence
(NMFkl) and β = 0 for the Itakura-Saito divergence (NMFis). Finally n

is the iteration of the solution and Ĥ
NMF
0 is a random positive vector.

Tikhonov Regularization

The condition number of the basis matrix W defined in Equation 5.2 is
very high (κ(W ) ≈ 5.9 · 1017), therefore we may assume that our problem
is ill posed. This could be due to the harmonic structure and correlation
between the components in our basis matrix.

We propose using the Tikhonov regularization (TR) method (Tikhonov,
1963) to find an estimate of the components gains vector Ĥ given the spec-
trum V . This consists in minimizing the following objective function:

ΦTR(H) =

Nω∑
k=1

([WH]k − [V ]k)
2 + ([ΓH]k)

2

where Γ is the Tikhonov matrix that defines the preference among all possi-
ble solutions. In this study we set Γ = λL where L ∈ RNW×NW is a singular
matrix that allows weighting the a priori probabilities of the solutions. λ is
a positive scalar hyperparameter. This parameter controls the effect of the
regularization on the estimated solution.

We decided to give preference to solutions with low norms while compen-
sating for biases due to energy differences between components of different
pitch. This is known as the Weighted Minimum Norm Estimate (WMNE)
and it can be achieved by defining L as a diagonal matrix such that:

diag(L)iNI+k =

√√√√ Nω∑
ω=1

NI∑
k=1

W 2
i,k[ω]

where i = 1...NL + 1 and k = 1...NI . The main reason for such a choice
is that we assume that the basis components correspond quite well to the
sources in the audio signal and only a few sources are simultaneously present
in the audio. Therefore the gains of the components should have few high
values and many low values, leading to a small norm.

The TR method, results in the following closed-form solution Ĥ
TR

= RV

where Ĥ
TR

is the estimated components gains, and R is defined as:

R = (LtL)−1W t[W (LtL)−1W t + λINω ]+
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where [Z]+ denotes the Moore–Penrose pseudoinverse of Z. The calculation
of R is computationally costly, however this operation is independent of the
input spectra and can be performed before the analysis of the audio signal.
The R matrix only depends on W and Γ . As we saw in section 5.3 the
W only needs the parameters of the analysis process, therefore the only

operation that is performed at each frame is Ĥ
TR

= RV .

Compared to the NMF method, the TR approach does not constrain the
component gains to be non-negative. However, as we will show in the ex-
periments, this assumption has little impact on the performance of the
reconstruction and source separation tasks.

Evaluation

The main goal of the experiment is to compare the TR closed-form solution
with the NMF solution in the general context of source separation. The
comparison will be made on two main factors:
– How faithful is the factorization to the data?
– How well does the factorization separate the data?
In order to evaluate the factorization quantitatively, we simply compare
the Signal to Noise Ratio (SNR) of the reconstruction without modifying
the factors (components and gains). The reconstruction is computed as
V̂ = WĤ. And the SNR calculation is performed in the frequency domain:

SNR = 10 · log10

∑
V 2∑∣∣∣V̂ − V ∣∣∣2 (5.7)

To quantitatively evaluate how well the factorization separates the data, we
perform a simple separation of the vocal track on a set of audio recordings.
The separation produces two versions of the excerpt, one with only the voice
track (foreground) and another with all but the voice track (background).
We follow the same procedure as in Durrieu et al. (2009a) for the separation.
We reconstruct the spectrum selecting the candidates in Ĥ that correspond
to the voice. We have run two different tests: a supervised test in which
the pitch of the vocal track is estimated in a previous stage using the well
known Yin method (de Cheveigné and Kawahara, 2002) on the vocal track
in isolation, and an unsupervised test in which the pitch is estimated using
Ĥ:

if0 = arg max
i=1...NL

 ∑
k=1...NI

max
(
Ĥ i,k, 0

)
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where if0 is the index corresponding to the f0 at a given frame. Due to
correlations between pitches with harmonic relations, we also remove pitches
that are at intervals Θf (Θi in pitch index units) from the predominant
pitch.

isel = {if0 + o|o ∈ Θi}

Since the voice often presents pitch fluctuations a series of adjacent basis
components will also be selected. In our experiments, we select ∆f semi-
tones (∆i in pitch index units) around the selected pitches. This results in
the following set of selected indices:

Csel = {(i± j)NI + k|i ∈ isel, j ≤
∆i

2
, k ≤ NI}

where j ≥ 0 and k ≥ 1. The estimate of the foreground and background
spectra are computed using a binary mask M ∈ RNW×1 on the component
gains:

ml =

{
1 if l ∈ Csel
0 else

V̂ f = γ(M ⊗ Ĥ)W V̂ b = ((1−M)⊗ Ĥ)W

where γ > 1 is a gain on the foreground estimation. This is needed because
part of the target source energy is actually spread in other pitch components
that share harmonic relations, such as fifths and octaves.

Once we have the spectra estimates we calculate the actual foreground and
background Discrete Fourier Transform (DFT) signals using Wiener filter-
ing:

Ŝf =
V̂

2
f

(V̂
2
f + V̂

2
b)
S Ŝb =

V̂
2
b

(V̂
2
f + V̂

2
b)
S

where S is the original DFT of the mix signal. Note that even though the
mask applied to the component gains is binary, the final mask applied to the
DFT frames is actually a soft mask, resulting from the Wiener filtering. To
go back to the time domain we apply a simple overlap and add technique.
Finally we evaluate the performance of the separation by computing the
Signal to Distortion Ratio (SDR) with the popular audio source separation
evaluation toolbox BSSEV AL (Vincent et al., 2006). We compared each
method to a baseline obtained with a non-binary oracle separation (Vincent
et al., 2007a). The values used in our experiments are the difference between
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the measure of each algorithm and the oracle estimation measure, averaged
for all audio examples in the dataset. The evaluation material consists of
a dataset of 11 multitrack recordings with vocals, compiled from publicly
available resources (MASS 4, SiSEC 5, BSS Oracle 6).

Results

The STFT analysis is performed with a 92ms Blackman-Harris window
(F = 4096 for signals at sample rate Sr = 44100Hz), a hop size of 46ms
(H = 2048) and a DFT size of 4096 which results in Nω = 2049. As in
other pitch estimation techniques, we apply whitening to the spectrum to
enhance the high harmonics by applying a compression factor of η = 0.75
so that Y = |S|η. We also apply this process to the components spectra
of matrix W . Regarding the parameters of the W matrix, we have set
the number of filters NI = 12, the lowest pitch frequency fl = 27.5, the
frequency overlap α = 0.5, 60 pitches per octave covering a total of 6 octaves
(NL = 60 · 6 = 360) and a maximum number of harmonics per component
Nh = 120. This leads to a total number of components NW = 4332. The
factorization has been performed using the presented NMF solution (5.6) for
the three objective functions in Eq. 5.3 and the proposed TR method with
λ = 10, 1, 0.1, 0.01. Audio examples from our experiments are available
online 7.

In Figure 5.3 we observe the evolution of the SNR with relation to the num-
ber of iterations of the NMF approaches. On the same figure we plot the
SNR of the TR methods. The results for the NMF behave as expected,
constantly growing with the iteration count. The SNR results of the TR
approaches demonstrates reconstruction equivalent to NMF-based methods
depending on the value of λ. As expected, lower values of λ lead to better
reconstruction results. Methods to find optimal λ values will be consid-
ered in future work. We have tested the following separation parameter
values: source estimation gain γ = 1, 2, 4, 8, component gains mask width
∆f = 0.1, 0.2, 0.4, 0.8 and intervals for the mask Θf = {0}, {0, −12, 12}.
For each factorization method the best parameter combination has been
selected for the plots and comparisons. In Figures 5.5 and 5.4 we show the
results of our separation tests. As we can see the difference between TR
and NMF methods is relatively small (< 2dB). In the supervised scenario

4. http://www.mtg.upf.edu/static/mass

5. http://sisec.wiki.irisa.fr/

6. http://bass-db.gforge.inria.fr/bss_oracle/

7. http://www.mtg.upf.edu/~rmarxer/papers/icassp12

http://www.mtg.upf.edu/static/mass
http://sisec.wiki.irisa.fr/
http://bass-db.gforge.inria.fr/bss_oracle/
http://www.mtg.upf.edu/~rmarxer/papers/icassp12
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Figure 5.3: Reconstruction SNR versus the factorization method and number of
iterations.

of Figure 5.4 we can observe a slightly better performance of NMF with
respect to TR. However in the case where the pitch is estimated from Ĥ
the TR method performs better, this could be due to NMF finding and
separating better other non-predominant pitches. The TR method has a
much lower computational cost and is a closed-form solution that does not
require iterations. This makes it much more attractive for low-latency and
computation-limited contexts. Taking a closer look at the TR method, we
observe that in contrast to the SNR case, lower values of λ do not necessarily
lead to better separation.

Conclusions

We present a new spectrum model and factorization method with applica-
tions in source separation. This method is based on a Tikhonov regular-
ization (TR) approach to the spectrum decomposition problem and offers a
direct and closed-form solution with a significantly lower computational cost
than NMF-based methods. We also present a comparative study between
the TR approach and the NMF approach in the context of spectrum re-
construction and source separation. The study shows that TR can perform
similarly to NMF with the proposed basis matrix.

The comparison has been limited to one single basis matrix in the current
study. In future work we should compare the TR method to NMF-based ap-
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Figure 5.4: Separation SDR for the background source (non vocals track) in the
supervised test where the pitch is extracted from the vocal track in isolation.
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Figure 5.5: Separation SDR for the background source (non vocals track) in the
unsupervised test where the pitch has been estimated from Ĝ.

proaches using different basis matrices. Furthermore the flexibility of NMF
should be taken into account when comparing the computational cost, for in-
stance source-filter models for the basis matrix could lead to a significantly
lower number of components. NMF with sparsity constraints (Raczyński
et al., 2007) should also be taken into account. Another direction for future
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research consists in exploring the choice of the Tikhonov matrix Γ . Finally
other measures (SIR and SAR) should also be evaluated for a more complete
comparison.

5.4 Drums Separation

Many recent approaches to musical source separation rely on model-based
inference methods that take into account the signal’s harmonic structure.
To address the particular case of instantaneous percussion separation, we
propose a method that combines a harmonic-based decomposition using a
Tikhonov regularization-based algorithm with the transient analysis of spec-
tral peaks from a single audio frame. The signal model allows the estimation
of harmonic and non-harmonic sources. Later, as shown in the evaluation,
adding transient peak information improves the Signal-to-Distortion Ratio
(SDR). Compared to other existing methods, this approach achieves com-
parable performance while being suitable for low-latency conditions.

Introduction

Recent techniques allow for separating instrumental sources from a musical
mixture signal. This process may have various application areas including
musical production (e.g remixes), entertainment (e.g. karaoke), music anal-
ysis (e.g. transcription) or cultural heritage (e.g. restoration). This section
addresses the particular case of separating non-harmonic percussion sources
(e.g drums, cymbals) in musical mixtures.

In our scenario, we assume that the audio mixture contains one or more har-
monic instrumental sources in addition to the percussion to be extracted.
The timbre structure of the percussion source is difficult to model, since it
might comprehend a large variety of instruments. However, a more distin-
guishable trait is its time signature, consisting of a sharp attack followed by
an exponential decay.

Algorithms such as Non-negative Matrix Factorization (NMF) decompose
an input time-frequency representation into basis components without prior
knowledge, which allows blind source separation. Most approaches impose
additional constraints in the factorization process. For example, some au-
thors (Virtanen, 2007) add temporal continuity constraints, while other
approaches force a source/filter decomposition with a set of harmonic pat-
terns and filter banks (Klapuri et al., 2010; Durrieu et al., 2009b). More
recently, Ozerov et al. (2010) have proposed a framework that combines
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spectral patterns (source/filter model) and temporal patterns (attack and
decay envelopes of hundreds of milliseconds). In this case, the factorization
step estimates the patterns’ gains.

We found methods that specifically address the problem of percussion sepa-
ration. A two-step separation method, with NMF decomposition and SVM
(Support Vector Machines) classification (Helén and Virtanen, 2005), clas-
sifies the separated components into drums or pitched. Another approach
makes use of drum separation with NMF methods as a pre-process for its
classification and transcription (Gillet and Richard, 2008). The Harmonic
Percussion Sound Separation (HPSS) method (Ono et al., 2008a) provides
an efficient and effective two-dimensional filtering of the spectrogram, to
distinguish harmonic components (temporal continuity but spectral discon-
tinuity) from percussive components (temporal discontinuity and spectral
wide band energy). This method has proven effective as a pre-process for
automatic music description tasks.

Our method combines transient estimation of spectral peaks with a model-
based inference algorithm that decomposes the input signal into harmonic
and non-harmonic magnitude spectra. The algorithm processes a single
frame magnitude spectrum to estimate the two decomposed spectra. Com-
pared to other approaches, our method is causal and therefore appropriate
for low-latency situations.

Method

The separation process involves various steps, as shown in figure 5.6. First,
the input audio signal is windowed and represented as a sequence of com-
plex spectra using the Short-Time Fourier Transform (STFT). Next, we
decompose the magnitude spectrum as a linear combination of basis spec-
tral components with the Tikhonov regularization method presented earlier.
Additionally, we extract temporal information by means of a transient anal-
ysis of spectral peaks in the current spectrum. Combining this information
with the estimated non-harmonic spectrum, we can improve the separation
of percussion sources from background noise and other harmonic compo-
nents.

Signal model

The central part of the source estimation is the signal model, which is
built from a set of spectral basis components. Our focus is on low-latency
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Figure 5.6: The separation mask combines the non-harmonic estimation and the
transient peak analysis. Thick arrows represent spectral masks.

applications which require the decomposition of each spectrum frame to be
done independently.

For each frame, we assume that the spectrum magnitude V can be de-
composed into a linear combination of NW elementary spectra, also named
basis components. This can be expressed as V = WH where V ∈ RNω×1

is the spectrum at a given frame m, Nω being the size of the spectrum.
W ∈ RNω×NW is the matrix whose columns are the basis components, also
referred to as the basis matrix. H ∈ RNW×1 is a vector of component gains
for the current frame.

Spectral basis components W are constant and fixed a priori. It consists
of a set of NL single-pitch multiple-harmonic spectra. In order to model
different timbres we must allow different spectral envelopes. This is done
by filtering the single-pitch components with a bank of NI filters. To cope
with all possible observed spectra (e.g. in the presence of percussive events
or noise), we add a set of filters as wideband components similar to Wu et al.
(2011). This results in a total of NW = (NL + 1) · NI basis components.
Detailed information about the creation of these spectral basis components
can be found in Marxer (2011).

As described in 5.3, solving our spectrum decomposition problem with
Tikhonov regularization consists in finding the best component gains vector
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Ĥ that minimizes the objective function based on the Euclidean distance
with the norm regularization term. The solution Ĥ can be computed us-
ing a closed form solution based on a simple matrix vector multiplication.
Apart from reconstructing the input spectrum, we can use Ĥ to compute
a pitch likelihood function by summing the individual gains corresponding
to a given pitch candidate in the basis components matrix W .

Harmonic and non-harmonic source estimation

In the decomposition solution, we expect a harmonic instrumental source to
contribute principally to specific candidates in the pitch likelihood function.
In contrast, we expect percussion source contributions to be distributed over
several candidates, both pitched and wide-band filter candidates. The con-
sequence is that non-harmonic sources will show energy spread over the
pitch likelihood function and not exclusively localized in individual candi-
dates.

Then to reconstruct the harmonic component, we select K pitch candidates
from the pitch likelihood function by means of a peak picking algorithm.
Candidates with a likelihood value below an empirically defined threshold τ1

are discarded. Figure 5.7 shows two pitch likelihood curves corresponding to
different time instants of a polyphonic audio mixture, one with percussion
and one without.
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Figure 5.7: Pitch likelihood curves in two different time instants of an audio
excerpt containing: vocals and guitar (solid green); and vocals, guitar and drums
(dashed blue).
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From the estimated vector Ĥ , we create a new vector Ĥh containing
non-zero values only at those selected candidates. Therefore, we can com-
pute the harmonic signal estimation as X̂h = WĤh. In a complementary
fashion, the reconstruction of the non-harmonic part takes a gains vector
Ĥnh containing non-zero values for the unselected pitch candidates plus the
wideband filter banks. The non-harmonic source estimation is computed as
X̂nh = WĤnh

With the estimated magnitude spectra X̂h and X̂nh, we can recover a
separated output complex spectrum by means of Wiener filtering, as used
extensively in recent approaches (Benaroya et al., 2006). Equation 5.8 con-
tains the spectral mask mnh, which is then multiplied element-wise by the
input complex spectrum Ṽ (ω, t) to reconstruct the non-harmonic signal.

mnh =
X̂

2
nh

X̂
2
h + X̂

2
nh

(5.8)

By informally listening to the separated non-harmonic signal, we realized
that in the presence of a percussion event, the separated signal is weak and
lacks clarity. The rationale behind this is that a percussion attack increases
the spectrum’s energy in the form of wide-band noise. The parameter esti-
mation, instead of representing it exclusively with the wideband (unpitched)
filter candidates, also assigns energy to the selected pitch candidates, to rep-
resent the percussion spectrum. To help the identification and separation of
the percussion contribution in the spectrum, we propose including transient
analysis.

Transient analysis

Our aim is to detect transient events in the signal, which should reveal
the presence of percussion sources. This analysis can be achieved in the
spectral domain by means of the temporal center of gravity of spectral peaks.
Given a magnitude spectrum, spectral peaks are detected by localizing local
maxima, and neighboring local minima, which determine the spectral peak
width.

Röbel (2003) suggested computing the temporal center of gravity (COG)
to treat transient events in a phase vocoder algorithm. The COG of an
isolated spectral peak can describe how the energy of a given frequency is
localized inside the temporal window. It is based on the group delay and
it can be computed directly from the bins of a spectral peak in the STFT,
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as shown in equation 5.9. If a spectral peak is part of a transient event, its
energy will be concentrated at the rightmost part of the window, and will
have a high COG value. A spectral peak p that corresponds to a sustained
sound will have its energy spread over the whole window, having a COG
value near 0.

pCOG =

∫
−∂φ(ω,pt)

∂ω A(ω, pt)
2dω∫

A(ω, pt)2dω
(5.9)

Similar to the transient detection in Röbel (2005), which computes statisti-
cal measures of COG values of individual peaks pCOG, our approach defines
NI = 14 bands with a bandwidth of 1500Hz. For each band i, we compute
the average of the COG value of individual spectral peaks, referred to as ci.
We create a transient spectral mask mt, in which the bins corresponding
to all spectral peaks in a frequency band i are set to one if ci > τ2 and set
to zero otherwise.

However, the decay of a percussion sound can typically extend over hundreds
of milliseconds. To handle the decay, our method keeps a history ofN frames
(e.g. covering 250 ms) of each band’s COG average ci. First, for a given
frame t we compute the time derivative as ∆ci[t] = ci[t] − ci[t − 1] of all
band’s COG average. Then, for a band i, a binary transient decay value
di[t] is set to one if two conditions are fulfilled:

if maxn ci[n] > τ2 and ∆ci[t] < 0 then
di[t] = 1

else
di[t] = 0

end if

The leftmost condition in the above pseudo-code requires the presence of
a transient event in that past N history frames (t − N ≤ n ≤ t). At the
same time, by forcing a negative derivative value ∆ci[t], we assure that the
transient ”is shifting to the left of the window”. In order to take the tran-
sient decay into account, we compute a decay mask md, in which the bins
of all spectral peaks found in a frequency band i are set to the binary value
di. Note that the transient analysis does not distinguish between harmonic
and non-harmonic transients. Therefore the masks mt and md would let
through transients corresponding to harmonic instrumental sources.
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Separation mask

Finally, to build the final percussion separation mask mp for the current
frame, we combine the partial masks previously computed (mt, md, mh

and mnh). We have to take into account that, on the one hand, a per-
cussion source will contribute greatly to the estimated harmonic mask mh.
Therefore, we cannot achieve the separation only from the estimated non-
harmonic mask mnh. On the other hand, applying only the transient masks
mt and md based on spectral peaks analysis, we would effectively separate
the percussion but leaks from other harmonic transients (e.g. bass guitar,
piano) would still be present.

To tackle this problem, for those spectral peaks classified as transients in
mt, we compare the values of the harmonic mask mh to a given threshold
τ3 at the center frequency of each spectral peak. Typically, when a spectral
peak in the input spectrum corresponds to a harmonic source frequency
partial, the estimated value in the harmonic mask at this specific frequency
will be high. Hence, we can identify those harmonic transient peaks and not
separate them as percussion. During the percussion decay, we proceed in a
similar manner, but adding at the same time the estimated non-harmonic
mask mh to the final percussion separation mask mp. This process can be
written as mask operations.

mτ =

{
1, if mh < τ3

0, if mh ≥ τ3

mp = b(mτ ⊗mt) + (mτ ⊗md ⊗mnh)c0,1
(5.10)

In equation 5.10, a binary matrix mτ is computed by thresholding the
harmonic mask mh. The operator ⊗ denotes Hadamard’s (element-wise)
product and b c0,1 indicates a clipping of the mask values between 0 and

1. Finally, the separated percussion source
ˆ̃
Xp(ω, t) is computed from the

input complex spectrum Ṽ and the separation mask as
ˆ̃
Xp(ω, t) = mp ⊗

Ṽ (ω, t). The time-domain signal is recovered by means of the inverse Fourier
transform and an overlap-add mechanism.

Evaluation

Source separation algorithms can be objectively evaluated if the original
multi-track sources are available. We use the same measurements employed
in the community evaluation campaigns such as SiSEC (Vincent et al.,
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2006): SDR (Signal to Distortion Ratios), SIR (Source to Interference Ra-
tios) and SAR (Sources to Artifacts Ratios). Evaluation material consists
of a dataset of 18 multi-track recordings with presence of drums, compiled
from publicly available resources (MASS 8, SiSEC 9 and BSS Oracle 10) and
an in-house multitrack dataset.

Table 5.2 shows the results of three configurations of our Transient Harmonic
Percussion Separation (THPS) method. Different masks are used, mnh for
the non-harmonic separation (THPS-NH), bmt + mdc10 for the transient
separation (THPS-TD) and mp for the final percussion separation (THPS).

We also include two state-of-the-art methods: a custom implementation
of the HPSS method (Ono et al., 2008a) and the publicly available imple-
mentation of FASST 11 (Ozerov et al., 2010). Additionally we perform an
approximately optimal binary mask (ORACLEBIN) used as a glass ceiling
reference. We compared each method to a baseline obtained with the ora-
cle separation (Vincent et al., 2007a). Error measures in table 5.2 are the
difference between the oracle estimation measure and the measure of each
algorithm, averaged for all audio examples in the dataset.

SIR SAR SDR

THPS-TIK-TD 18.65 9.89 13.34
THPS-TIK-NH 17.62 9.99 11.50
THPS-TIK 15.32 11.83 10.26
FASST 20.01 8.07 11.33
HPSS 16.13 11.50 10.46
ORACLEBIN -0.60 2.43 1.09

Table 5.2: Average error measures for various algorithms of the low latency drums
separation.

For the experiments with the THPS algorithm, we performed an STFT
analysis with a Blackman-Harris window 92ms long (F = 4096 for signals
at sample rate Sr = 44100), a hop size of 11ms (H = 512) and a DFT size of
8192 which results in Nω = 4097. Regarding the parameters of the B matrix
we have set the number of filters NI = 12, the lowest pitch frequency fl = 35

8. http://www.mtg.upf.edu/static/mass

9. http://sisec.wiki.irisa.fr/

10. http://bass-db.gforge.inria.fr/bss_oracle/

11. http://bass-db.gforge.inria.fr/fasst/

http://www.mtg.upf.edu/static/mass
http://sisec.wiki.irisa.fr/
http://bass-db.gforge.inria.fr/bss_oracle/
http://bass-db.gforge.inria.fr/fasst/
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Hz, 40 pitches per octave covering a total of 5 octaves (NL = 40 · 5 = 200).
This leads to a total number of components NW = 2412. The number of
NMF iterations is set to 15, and harmonic candidate threshold is τ1 = 0.05,
the transient mask threshold is τ2 = 0.3, and the harmonic mask threshold
is τ3 = −30dB.

The HPSS implementation separates the input signal into two sources: har-
monic and percussion. The frame size in this process was set to 1024,
which offered a good trade-off between audio quality and vocals/percussion
separation. Regarding the FASST framework, we used its default configu-
ration which separates the input signal into four sources: lead melody, bass,
drums and other. In our experiment, we consider only the separated drums
as percussion source.

The results show that our THPS algorithm is comparable to both state-
of-the-art methods. It outperforms both partial configurations THPS-NH
and THPS-TD, demonstrating the hypothesis of the proposed combination.
Figure 5.8 illustrates the SDR error for the individual audio examples in
the dataset 12. It shows how depending on the audio example, one approach
may work better than the others, explaining also the similar average results.
A perceptual-based evaluation, either by subjective listening tests or using
perceptual software toolkits (e.g. PEASS), was not possible to carry out
for the current experiment.

Conclusions

This section presents a musical source separation approach specifically adapted
to isolate percussion sources. It combines transient analysis with a spectrum
decomposition based on a harmonic model. We show that the combination
of these two strategies improves the separation quality.

In contrast to other state-of-the-art methods, this method features fast sep-
aration from a single audio frame, which makes this approach suitable for
low-latency situations. The quantitative evaluation shows that it obtains
performance very similar to offline methods meaning that quality is not lost
due to the low-latency processing constraint. Nevertheless, the method still
presents some limitations. In the presence of vocals in the mix, the sepa-
rated percussion source contains residues of fricative phonemes. Also the
separated percussion decay loses fidelity. We think that in both cases the

12. Audio examples are available online: http://www.mtg.upf.edu/~jjaner/

presentations/icassp12.

http://www.mtg.upf.edu/~jjaner/presentations/icassp12
http://www.mtg.upf.edu/~jjaner/presentations/icassp12
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Figure 5.8: SDR error measures of individual audio examples for all the methods
of low latency drums separation.

quality can be improved by including statistical modeling of these particular
signals.

5.5 Bass Line Separation

In this section we explore the use of Tikhonov regularization spectrum de-
composition for the task of bass separation under low-latency constraints.
We test whether Tikhonov regularization is a valid alternative to NMF for
spectrum decomposition when using fixed harmonic basis. Our experiment
compares the separation performance of this method to a naive low-pass fil-
ter, a state-of-the-art NMF-based method and a near-optimal binary mask.
The proposed low-latency method achieves results similar to the NMF-based
high-latency approach at a lower computational cost. Therefore the method
is valid for real-time implementations.

Introduction

In the rhythm section of popular western music, the bass line often ful-
fills the role of anchoring the harmonic framework and laying down the
beat. The sound produced by the bass is predominantly harmonic with a
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Figure 5.9: Average of all error measures for all the methods.

low fundamental frequency and usually has an impulsive excitation. Bass
line estimation is a relevant case in musical source separation, since it can
improve the separation of drums or the predominant melody from the mix.

In comparison to other instruments, bass line separation is difficult due to
the low frequency and the presence of the bass drum that shares a similar
spectrum distribution. FitzGerald et al. (2005) demonstrated the use of
Non-negative Tensor Factorization for isolating the bass guitar from other
instruments in multichannel synthetic mixtures. Ozerov et al. (2010) em-
ployed their general source separation framework for the isolation of the
bass line in professionally recorded music.

Nowadays, with increasing availability of music in online streaming services,
it is often necessary to process audio data as it is received by the system.
And with the increase of embedded devices in our everyday lives, limiting
memory requirements is often important. These factors motivate the devel-
opment of low-latency methods. We propose an extension to the method
presented in Section 5.4 with modifications to the signal model in order to
better represent bass line components. An evaluation is conducted where
the proposed method is compared to a baseline naive method and to FASST,
a state-of-the-art high latency and computationally expensive method.
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Figure 5.10: Example of a spectrum of the bass in a mixture and the bass in
isolation (top). Separated bass using the old signal model presented in Section 5.3
and with the new proposed signal model (bottom).

Method

In Section 5.4 we introduced a low-latency drum separation method based
on harmonic decomposition using single-frame Tikhonov regularization. In
Section 5.3 we presented a signal model that contains spectrum patterns to
represent both wideband and narrowband pitched components.

The bass guitar is mainly a pitched instrument, and at first sight the narrow-
band components in the signal model would seem to be sufficient. However
bass drums quite often present a narrowband spectrum with a resonance of
high magnitude and low frequency similar to that of the first partial of the
bass guitar. Due to the low pitch of the bass guitar and the limited size of
the analysis window of the STFT, the partials in its spectrum are often very
close together (see Figure 5.10). This leads to a harmonic comb with less
contrast. These components are similar to certain wideband components
such as drums or sustained background noise. This causes problems, espe-
cially in the high frequency range, where the bass spectrum has very low
energy. To solve this issue, the signal model contains specific basis compo-
nents for non-harmonic wideband spectra and the bass guitar components
are constrained to represent their specific timbre.
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Bass Specific Signal Model

We employ the same signal model used in Section 5.3, in which pitched
sources are modeled as various components of band-filtered harmonic oscil-
lators. Non-pitched sources are incorporated into the model as wideband
noise components. The main modification to the signal model is to account
for the usual spectral shape characteristics of the bass guitar and bass line
in western music. The lowest note in a bass guitar is E1 (41.20Hz) and
usually the pitch rarely goes higher than 120Hz. The harmonic envelope
of the bass guitar is mainly restricted to the frequency range from 0Hz to
5000Hz.

To achieve this behavior in our signal model, the pitch components that
would correspond to the bass are limited in frequency by setting the mag-
nitude of high frequency partials to zero. Using the same notation as in
Section 5.3 we can redefine the source-filter model of the pitched compo-
nents of the basis matrix by adding a function a[l, ω] that serves as an
excitation envelope:

ϑ[l, n] = flowHNL
2
iH−NT /2+n

HNL − 1

Sr ln (2)

El[ω] = F

{
Nh∑
h=1

a[l, hfl]sin (2πhϑ[l, n]n)

}

W l,i[ω] =

{
Ui[ω]El[ω] if l ≤ NL

Ui[ω] if l = NL + 1
(5.11)

with H = (1 − α)NT . Where α is a coefficient to control the frequency
overlap between the components, NT is the frame size, Sr the sample rate, F
is the Discrete Fourier Transform (DFT), Nh is the number of harmonics of
our components, W l,i is the spectrum of the component of lth pitch filtered
by the ith filter. Ui is the spectrum of the ith filter in our filterbank. Ui is
constructed as a sequence of NI Hann windows, linearly distributed in the
Mel scale and with a 50% overlap. fl = ϑ[l, NT /2] is the center fundamental
frequency of the lth pitch. ϑ[l, n] is the instantaneous frequency function of
the lth pitch component.

In order to restrict the use of bass pitched components during the decom-
position, we force their excitation envelope to a function decreasing to zero
after a given cutoff frequency fcut. The bass pitched components are defined
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as those having a fundamental frequency lower than f0bass:

a[l, ω] =

{
r(ω)/ω if fl ≤ f0bass

1/ω else
(5.12)

where r(ω) is a function of ones that ramps down linearly to 0 from fscut to
fecut:

r(ω) =


1 if ω ≤ fscut
1− ω−fscut

fecut−fscut
if f scut < ω ≤ fecut

0 if ω > f ecut

(5.13)

In our experiments we fix the size of the ramp and only control the start
frequency fscut = fcut and fecut = 1.3fcut.

Bass Source Estimation

Using Tikhonov regularization as in Section 5.3 with the modified signal

model, we can derive the pitch likelihood L from the gains vector Ĥ
TR

.
The next step is the selection of the components belonging to the bass line.

Instead of using a pitch tracking algorithm as in Section 4.3 that would
add complexity and latency to the method, we rely here on a simple peak
detection and picking algorithm. The proposed method is simple and has
a low computational cost. In order to select the pitch of the bass line, at
every frame we select the highest peak in the pitch likelihood function under
a certain frequency value f0bass. We assume that only one pitched source
will be present in this low frequency range, and that this source will be the
targeted bass guitar or bass line.

The peak picking is performed by selecting local maxima in the pitch like-
lihood L:

ωi ∈

{
ω| arg max

j=ω−Wω ...ω+Wω

L(j) and L(ω − 1) < L(ω) ≥ L(ω + 1)

}
(5.14)

where 2Wω is the size of the local neighborhood for the peak local maximum.

However as we previously explained, the basis components of the bass de-
scribed in Section 5.5 are similar to those of wideband components such as
the bass drum or other background sources present in the low frequency
range. This leads to pitch likelihood functions with a high energy distri-
bution in the low pitch components that do not necessarily correspond to
pitched instruments.
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As presented in Section 4.4, pitched sources in the spectrum can be modeled
as Gaussians in the pitch likelihood function L. The width of the Gaussian
is related to the chirp ratio of the fundamental frequency of the pitch. If
the source is wideband and not pitched (e.g. drums), it can be regarded as
a limit case of the partials widening and forming a smooth spectrum with
no harmonic structure. Empirical observations show that wideband non-
pitched sources that are not decomposed into the wideband components of
our signal model, appear as wide noisy Gaussians in the pitch likelihood
function.

To distinguish between pitch likelihood peaks corresponding to a pitched
bass and those related to other wideband sources, for each pitch likelihood
peak p we define a measure of peak contrast cp. The peak contrast feature
is computed using the difference between the height of the peak and the
heights of the local minima around it:

cp = max
(
L(ωp)−L(ωlp),L(ωp)−L(ωrp)

)
(5.15)

where ωp is the position of the pth peak, ωlp is the first local minimum under
ωp and ωrp is the first local minimum over ωp.

The bass component in the pitch likelihood ωb is defined as the position of
the highest peak, with frequency under f0bass and whose contrast is over a
given threshold Lth.

As in Section 5.4 we create a new vector Ĥb containing non-zero values only
at those bins corresponding to the selected bass pitch.

Ĥb[ω] =

{
Ĥ[ω] if |ωb − ω| < ∆ω

0 otherwise.

where ∆ω controls the amount of selected pitch components around ωb.
Therefore, we can compute the bass signal estimation as |X̂b| = WĤb.
In a complementary fashion, the reconstruction of the non-harmonic part
takes a gains vector Ĥnb containing non-zero values for the unselected bass
pitch plus the wideband filter banks. The non-harmonic source estimation
is computed as |X̂nb| = WĤnb.

With the estimated magnitude spectra |X̂b| and |X̂nb| we perform a Wiener
filtering to obtain the mask that isolates the bass component:

mb =
|X̂b|2

|X̂b|2 + |X̂nb|2
(5.16)
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Finally the estimated bass spectrum is simply the result of multiplying the
input complex spectrum with the previously presented mask X̂b = mb⊗ V̂ .
The output time-domain signal is recovered by means of the inverse STFT
and an overlap-add process.

Evaluation

We employ the evaluation techniques used in community evaluation cam-
paigns such as SiSEC (Vincent et al., 2006) to measure the performance
of the proposed method. We compute the following measures using the
BSSEval toolbox: SDR (Signal to Distortion Ratios), SIR (Source to Inter-
ference Ratios) and SAR (Sources to Artifacts Ratios). Evaluation material
consists of a dataset of 12 multi-track recordings containing bass guitar or
a bass line compiled from publicly available resources (MASS 13, SiSEC 14)
and two in-house professional recordings. The audios were downmixed to
mono to avoid using pan information in the separation, since that is out
of the scope of this work. The sampling rate of the audio examples is 44.1
kHz, and the spectral analysis uses a frame size of 4096 and a hop-size of
512 samples.

The proposed method, Tikhonov Regularization Bass Separation (TRBS),
is compared to several existing techniques. A low frequency filter (LOWP)
is used as a baseline trivial method. The publicly available implementation
of FASST 15 (Ozerov et al., 2010) serves as a state-of-the-art high-latency
option. Finally an oracle separation (Vincent et al., 2007a) using a binary
mask is tested as a glass ceiling for spectral bin classification techniques (see
Section 5.2). We compared each method to a reference obtained with the
soft mask oracle separation. All values presented are error measures: the
difference between the soft mask oracle estimation measure and the measure
of each algorithm. Thus, the lower the value the closer it is to the oracle
estimator meaning better quality.

In a first experiment we perform a parameter exploration for the LOWP
and TRBS methods. For the low pass filter we studied the effect of the
cutoff frequency. For the TRBS method we studied the effect of varying
parameter f0bass that controls the threshold under which a pitch may be
considered as belonging to the bass. A second experiment consisted of a

13. http://www.mtg.upf.edu/static/mass

14. http://sisec.wiki.irisa.fr/

15. http://bass-db.gforge.inria.fr/fasst/

http://www.mtg.upf.edu/static/mass
http://sisec.wiki.irisa.fr/
http://bass-db.gforge.inria.fr/fasst/
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comparative study of all the selected methods, where the best parameters
for the LOWP and TRBS methods were used.

Results

In Figure 5.13 we observe that the artifacts error (SAR) of the LOWP
method is very low. This is expected because the low pass filter does not
add new components such as musical noise. The frequency response of the
LOWP method is very smooth compared to all other methods, including
the oracle soft mask that is used as reference, which explains the negative
value of this error measure. We also see that the interference error (SIR)
of the LOWP method is high. This method is used as a trivial baseline,
and in fact it does not target the bass guitar source, it simply separates
low frequency components without making any discrimination. Another
observation to be made is that the cutoff frequency parameter controls the
tradeoff between artifacts and interferences. A local minimum of distortion
error (SDR) is found at 250Hz, even though the average error continues to
descend to 75Hz. The results of the individual excerpts, not presented here,
show that the SDRs of some songs increase significantly between 250Hz and
120Hz. For that reason 250Hz was chosen as the optimal parameter value.

SAR SDR SIR

60 -17.53 16.68 15.30
120 -28.46 17.30 14.75
250 -32.14 17.17 15.77
500 -37.88 17.47 16.95
1000 -40.54 18.05 17.86
2000 -41.43 18.48 18.41
5000 -42.29 18.76 18.76

Table 5.3: Average error measures for various values of the cutoff frequency
parameter (in Hz) of the LOWP method.

Table 5.4 and Figure 5.12 show best performance for both artifacts errors
(SAR) and interference errors (SIR) when the f0bass parameter is around
100Hz. Therefore 100Hz was selected as the best parameter value for f0bass

for the comparative study. We see a significant difference in the errors (≈ 3
dB) depending on the parameter value. This leads us to think that a more
precise pitch selection method could further reduce separation error.
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Figure 5.11: Average error measures for various values of the cutoff frequency
parameter (in Hz) of the LOWP method.

Several conclusions can be drawn from the results of the comparative study.
Table 5.5 and Figure 5.13 show that the proposed method performs similarly
to state-of-the-art techniques such as FASST. While FASST achieves a lower
artifact error (SAR) separation, TRBS has less interference error (SIR).
Another observation is that the oracle binary mask scores a slightly negative
SIR error measure. This means that on average the binary mask produces
less interference than the soft mask oracle. However, this improvement is
balanced by the artifacts error (SAR), where the oracle binary mask reveals
the highest error level of all methods.

In Figure 5.14 we can see that this behavior is consistent on all the individual
excerpts. In listening to the separated sources, we found that these quanti-
tative results seem to correctly reflect the perceived differences between the
methods. A web page 16 with audio examples illustrates the results obtained
with our method.

Conclusion

We show that the Tikhonov regularization spectrum decomposition method
can be used successfully to perform low latency bass guitar/base line sep-

16. http://www.dtic.upf.edu/~rmarxer/dafx13/bass

http://www.dtic.upf.edu/~rmarxer/dafx13/bass
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SAR SDR SIR

60 12.89 13.14 14.03
70 10.41 13.08 13.54
80 8.43 12.87 12.37
90 6.85 13.01 12.41
100 6.13 12.95 12.40
110 6.43 12.96 12.34
120 6.63 13.05 12.50
130 7.22 13.37 13.18
140 7.73 13.46 13.65
160 8.15 13.83 14.13
180 8.54 13.98 14.60

Table 5.4: Average error measures for various values of f0bass parameter (in Hz)
of the TRBS method.

SAR SIR SDR

LOWP-250 -32.14 15.77 17.17
FASST 4.35 15.02 14.33
TRBS-100 6.13 12.40 12.95
ORACLEBIN 9.26 -1.98 6.53

Table 5.5: Average error measures for the evaluated algorithms.

aration of western music signals. Furthermore the use of pitch likelihood
peak contrast and specific bass timbre models allows us to produce separa-
tion results comparable to state of the art high latency methods, such as
FASST. Quantitative results show the accuracy of the separation in contrast
to baseline trivial methods such as low pass filters. The proposed method
was also compared to approximations of the best possible performance of
binary masks by using BSS oracle techniques.
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Figure 5.12: Average error measures for various values of f0bass parameter (in
Hz) of the TRBS method.

Figure 5.13: Average error measures (x-axis) for the evaluated algorithms. The
LOWP-250 method presents very low artifacts (SAR) but a worse global separation
(SDR).
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Figure 5.14: SDR error measures of individual audio examples for the methods.
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Chapter 6

High Latency Audio Source
Separation

6.1 Introduction

This chapter is dedicated to insights on audio source separation in high la-
tency scenarios acquired during our work on separation under low latency
constraints. While developing low-latency pitch estimation and source sep-
aration methods some source characteristics were not exploitable or had to
be approximated and simplified due to the temporal locality of the process.
Some of this knowledge is presented here as proof-of-concept and for com-
parison. The work shown in this chapter should also serve as a reference
glass ceiling for future low latency source separation developments. Fur-
thermore the research presented here is also of interest for future work on
low-latency contexts. Many of the techniques proposed can be adapted in
the future to low latency situations by performing simplifications and/or
approximations.

The structure of this chapter is similar to that of Chapter 5. Two specific
musical instruments are considered, the singing voice and drums, due to
their presence in western popular music. We also consider multiple-pitch-
based separation. Current state-of-the-art high-latency multipitch estima-
tion methods achieve higher accuracy than low-latency methods. Therefore
the assumption of accurate multipitch transcription availability of the mix-
ture signal is much more plausible.

Furthermore high-latency scenarios allow the inclusion of manual interven-
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tion and user-assisted semiautomatic methods. This motivated us to con-
sider semi-supervised versions of some of the methods presented.

6.2 Comparing Low and High Latency
Separation Methods

In this section we first analyze the limitations of performing music source
separation under low-latency constraints. We then present a short review of
current state-of-the-art high-latency methods with the focus on singing voice
and drums separation. We emphasize the Smoothed Instantaneous Mixture
Model (SIMM) method due to its flexibility, intuitivity and performance in
the community-based source separation evaluation campaigns.

Low-latency Separation Limitations

The low latency constraint imposed in some source separation scenarios im-
plies a series of limitations on the methods. A low latency constraint is
defined by a limit on the availability of future signal during the process-
ing. Musical signals usually have large temporal correlations in the form of
rhythmic, tonal and timbral structures. A history and/or a future of the sig-
nal is usually needed to exploit them. Furthermore, western music is often
composed of sections that contain significantly different cues, often the case
with the verse and chorus divisions. Methods using only past signal will of-
ten fail to take into account changes in sections. The use of prediction-based
methods could solve these issues, however low-latency prediction models are
still limited and complex, and they are rarely applied to source separation
tasks. Regarding the melody line, low-latency constraints often limit the
use of future regions of the signal to apply continuity and best path estima-
tion techniques. State-of-the-art high accuracy pitch estimation methods
have failed to show good results under low-latency conditions. Perhaps
the largest issue with low-latency source separation methods in the case
of singing voice, is the temporal limitation in correctly estimating timbre
information. Due to the nature of singing voice production, the timbre is
far from constant, presenting large variations over time (different phonemes
and voice characteristics). Even though in many cases these transitions
may be smooth in time, a history of the signal is often necessary for their
correct estimation. All the low-latency models that were presented in pre-
vious chapters use a set of constant basis components for the decomposition
of the mixture. By combining the different basis components several varia-
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tions can be approximately reconstructed, however due to insufficient signal
history or excessive computational cost, the basis cannot be learned from
the data and therefore the approximation will be restricted to the rank of
the constant basis set. Another limitation of low-latency methods which
we are easily able to overcome in high-latency situations is the inability to
add regularizations on the temporal evolutions of the gains. Low-latency
methods are also limited in allowing user-assistance because that requires in-
tegrating information that is unavailable as the audio frames arrive. Manual
intervention in audio processing often requires the user to access the whole
audio waveform or at least large regions of it. Certain works on human-
assisted source separation (Smaragdis and Mysore, 2009) allow the user to
input information in realtime (e.g. by humming), however the separation is
performed later as a batch process.

Existing High-latency Techniques

Currently most research on audio source separation for music is performed
without taking into consideration latency constraints. Therefore most meth-
ods presented in the literature address the problem with relaxed high-
latency constraints. Several approaches consider the case of main instru-
ment separation from the accompaniment, typically focusing on singing
voice extraction (Virtanen et al., 2008b; Durrieu et al., 2009b; Hsu and
Jang, 2010b). Other works address the separation of harmonic and percus-
sion components, which has applications ranging from music transcription
to remixing (Helén and Virtanen, 2005; Ono et al., 2008b; Rafii and Pardo,
2011). On the other hand, Ozerov et al. (2010) take a general approach
accounting for multiple types of spectra during the signal decomposition.
Recent approaches have shifted from purely blind source separation towards
incorporating supervised source separation. They focus on obtaining high
quality results with the help of additional information such as a musical
score (Ewert and Müller, 2012), timbre training (Carabias-Orti et al., 2011;
Rodriguez-Serrano et al., 2012) or pitch information manually provided by
the user (Smaragdis and Mysore, 2009; Durrieu and Thiran, 2012).

Most high-latency audio source separation methods are based on signal
decomposition techniques (see Section 3.4). Here we focus on those of special
relevance to our work.

Virtanen (2007) used regularization terms on the basis and gains for the
spectral decomposition. He proposed a regularization based on the temporal
continuity of the gains and another based on the sparseness in frequency
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of the basis. This solution increases the physical interpretability of the
estimated basis, allowing better reconstruction of the target sources.

Rafii and Pardo (2011) estimated the repeating background spectrum using
beat estimation techniques in order to isolate the lead singing voice. The
background spectrum was estimated by averaging spectra taken from beat
period positions. This method was extended in Liutkus et al. (2012) with
the use of beat tracking methods to account for beat changes during the
song.

Virtanen et al. (2008b) also proposed a separation of the lead singing voice
by estimation of the accompaniment spectrum using NMF decomposition.
The method is characterized by the use of the estimated pitch to mask re-
gions that must not contribute to the NMF decomposition. The proposed
method consists in creating a harmonic binary mask to avoid the contri-
bution of bins where vocals are predominant in the multiplicative update
rules for the NMF estimation of music accompaniment. This way the bins
where the vocals are predominant do not bias the estimation of the musical
accompaniment spectra. The estimated musical accompaniment spectra is
then subtracted from the original to isolate the targeted pitch line.

Durrieu et al. (2009b) also made use of the estimated pitch to create a binary
mask. However in this case the mask is used to enforce a monophonicity
constraint. Similarly, as in Virtanen et al. (2008b) the spectrum of the
mixture was modeled as the addition of a lead voice and accompaniment.
However Durrieu et al. (2009b) went further, decomposing the lead voice
component using a source-filter model. In this way the estimation of the
lead voice spectra and the accompaniment spectra are performed jointly
during the NMF decomposition. Furthermore the source-filter model for
the lead singing voice imposes other constraints on the smoothness of the
filter and the harmonic structure of the source.

Ozerov et al. (2010) took the spectrum modeling approach further by creat-
ing a general set of factors that describe independently the frequency struc-
ture and the temporal evolution of the spectral patterns. The music signal
was thus decomposed into harmonic sustained, harmonic transient, wide-
band sustained and wideband transient components. The authors proposed
using Generalized Expectation-Maximization (GEM) to solve the decom-
position and derived multiplicative update rules inspired by those used in
NMF.

The previously presented methods are based on a priori general knowledge
of music signals characteristics, such as the smoothness of the singing voice,
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timbre and the temporal regularities of the accompaniment. Recent ap-
proaches are starting to focus on the use of knowledge specific to the signals
analyzed, such as the specific instruments or the score of the song.

Carabias-Orti et al. (2011) and Rodriguez-Serrano et al. (2012) derived
spectral models using audio recordings of the instruments in isolation. The
training of the models is done by performing NMF decompositions of the
instruments’ spectra using a source-filter spectrum model. This results in
a set of source and filters spectra that can be used to represent the instru-
ments’ timbres during the decomposition of the mixture spectra.

Ewert and Müller (2012) also proposed using external information by inte-
grating knowledge originating from the score of the analyzed audio recording
into the NMF decomposition of the mixture spectra. Like Virtanen et al.
(2008b) and Durrieu et al. (2009b) the fundamental frequencies of the notes
in the score are used to restrict the basis to harmonic structures. Addition-
ally the note starts of the scores are used to restrict the gains of a set of
wideband basis components that serve to reconstruct note attacks. This
method was successfully applied to piano audio recordings.

Finally another type of information used in high-latency methods is that
supplied by the user. Smaragdis and Mysore (2009) and Durrieu and Thi-
ran (2012) investigated the use of human-assisted annotations of specific
processed recordings to enhance the separation. In both cases, the user
assists the estimation of the melody line, which is then used to perform the
separation using NMF-based harmonically constrained source separation
methods.

Smoothed Instantaneous Mixture Model

The Smoothed Instantaneous Mixture Model (SIMM) introduced by Dur-
rieu et al. (2011) is especially interesting for us because most of the work
presented here is an extension of it. We chose SIMM as a base due to its
flexibility and simplicity. Furthermore SIMM has proven successful in mu-
sic source separation tasks in several community evaluation campaigns and
can therefore be used as a reference in further work. More recent methods,
such as Flexible Audio Source Separation Toolbox (FASST) by Ozerov et al.
(2010) have a more flexible and general spectrum model, however they also
have increased complexity and higher computational cost.

SIMM is an iterative parameter estimation approach based on NMF ex-
ploiting a source/filter model for the predominant instrument. The code
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implementing it is available online 1.

This method approximates the mixture magnitude spectrum V as the sum
of the lead singing voice and the accompaniment spectra V̂ = X̂v + X̂m.
These components are further factorized. The accompaniment is modeled
as the non-negative combination of a set of NWm constant basis compo-
nents X̂m = WmHm. The singing voice spectrum is approximated as an
elementwise multiplication (⊗) of a smooth filter and a monophonic har-
monic excitation X̂v = XΦ ⊗Xf0 . The factor corresponding to the filter
is modeled as a combination of constant spectral shapes that are smooth in
frequency XΦ = WΦHΦ. To ensure smoothness, the spectral shapes WΦ

are modeled as a non-negative linear combination of band-limited spec-
tra WΦ = W ΓHΓ. The monophonicity of the excitation is achieved by
modeling it as a non-negative combination of harmonic spectral templates
Xf0 = W f0Hf0 , where all the gains Hf0 , except a region limited in fre-
quency around the estimated predominant pitch f0, are set to 0. In this
work we use the low-latency method presented in Section 4.3 to estimate
the source’s pitch f0. To sum up, the observed mixture spectrum V is
approximated by the spectrum model V̂ in the following way:

V̂ SIMM = (W ΓHΓHΦ)⊗ (W f0Hf0)

+WMHM (6.1)

where ⊗ is the Hadamard product (an elementwise multiplication of the
matrices). W Γ and W f0 are fixed matrices and the rest are estimated from
the data. W f0 is composed of harmonic spectra with a magnitude decay
computed using the Klatt glottal model. W Γ is a set of band-limited filters,
modeled with Gaussians centered at frequencies distributed uniformly on
the spectrum. The author derived a set of multiplicative update rules for
the other components which are detailed in Section 3.4.

Current Limitations

While high-latency source separation methods address some of the short-
comings of low-latency techniques, limitations still remain with current
state-of-the-art approaches. In singing voice separation it is well known
that most current source separation techniques focus on the harmonic or
voiced part of the signal, rarely addressing other components such as un-
voiced consonants, breathiness, growl and other noises or wideband sounds

1. http://durrieu.ch/phd/software.html (last accessed on January 3, 2011)

http://durrieu.ch/phd/software.html
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that accompany the voice. These components of the singing voice are very
noticeable to humans due to the information they carry and to correlations
with the voiced components. Because of this their presence or absence
is often perceived in the source separation results even when their energy
is relatively low. Another important shortcoming of current high-latency
methods is that user assistance has just begun to be taken into consid-
eration. Currently most methods concentrate on manual correction and
selection of pitch tracks (Smaragdis and Mysore, 2009; Durrieu and Thi-
ran, 2012) or on the use of scores to achieve this (Ewert and Müller, 2012;
Bosch et al., 2012). However using other sources of information such as the
instants of the drums or the polyphonies present in a recording have rarely
been studied. Ewert and Müller (2012) showed the potential of using similar
information such as note starts and fundamental frequencies, however only
in a very limited scenario with a single instrument and style of music.

In the following sections we present a series of experiments and methods
that explore these limitations and propose solutions for some of them.

6.3 Singing Voice with Breathiness

Most current source separation methods only target the voiced component of
the singing voice, failing to remove the breathiness. The remaining breath-
iness is very noticeable to humans and it retains much of the phonetic and
timbral information from the singer. Breathy voice is a phonation mode in
which the vocal cords vibrate as they do in normal (modal) voicing, but are
held further apart, so that a larger volume of air escapes between them pro-
ducing an audible noise. We propose a method for estimating the spectrum
of the breathiness component and taking it into account when isolating the
singing voice source from the mixture. The breathiness component is de-
rived from the detected harmonic envelope in pitched vocal sounds. The
separation of the voiced components is used in conjunction with an existing
iterative approach based on spectrum factorization. Finally, we conduct an
evaluation that demonstrates the separation improvement.

Introduction

Breathiness is an aspect of voice quality that is difficult to estimate or ana-
lyze due to its stochastic nature and wideband spectral characteristics. In
western music mixture signals, this component often overlaps with other
wideband components such as drums or transients. To our knowledge there
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are no music source separation methods that have focused on this com-
ponent of the singing voice. However, in the field of speech analysis and
synthesis, the decomposition and manipulation of the breathiness compo-
nent has been done in a variety of areas such as text-to-speech synthesis,
speech encoding, and clinical assessment of disordered voices.

For example, Nordstrom et al. (2005, 2008) studied the relations between
the vocal tract and the glottal source in human speech signals. Mehta
and Quatieri (2005) focused on the analysis of the breathy component of
speech voice and proposed a modulation-based model where the noise com-
ponent of the voice is modulated by the glottal waveform. This model is
used to analyze, synthesize and transform isolated voice recordings. De-
gottex et al. (2011) proposed an extension to the source-filter model that
takes into account turbulence at the glottal level and the radiation at the
lips and nostrils level. Their model, Separation of the Vocal-tract with the
Liljencrants-fant model plus Noise (SVLN), shows benefits in pitch trans-
formation and breathiness control tasks for singing voice synthesis.

All of this work focused on voice signals in isolation and did not consider
either the source separation problem or the analysis of mixture signals.

Proposed Estimation Method

Our method can be integrated into any source separation approach that
approximates the mixture spectrum as the sum of the lead singing voice
spectrum and the accompaniment spectrum V̂ = X̂v + X̂m. It is appropri-
ate for both low-latency and high-latency situations since it only requires a
single audio frame.

The estimation of the breathiness component is based on the approximation
of a pitched voice spectrum (with pitch f0) as a filtered composition of two
additive components: a glottal excitation Xv and a wideband component
(due to the glottal air flow) Xvr, both filtered by the vocal tract. The
magnitude of the voice spectrum can be expressed in the following manner
(Degottex et al., 2011):

Xv′ [ω] = Xv[ω] +Xvr[ω] (6.2)

= L[ω]U [ω]S[ω]H[ω] +L[ω]U [ω]γ (6.3)

= L[ω]U [ω](S[ω]H[ω] + γ) (6.4)

where S[ω]H[ω] is the spectrum of the excitation, S[ω] is the excitation
envelope, H[ω] is a harmonic comb of unity magnitude, L[ω]U [ω]γ is the
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Figure 6.1: Representation of the different components of the singing voice model
given a synthetic spectrum.

magnitude spectrum of the breathiness, U [ω] is the magnitude of the fre-
quency response of the vocal tract filter, γ is the gain of the breathiness
spectrum relative to the pitched component, and L[ω] is the component
due to lips and nostrils radiation. Here we approximate the wideband com-
ponent as a constant spectrum filtered by the vocal tract. This is equivalent
to modeling the glottal air flow as white noise, which is realistic especially
for a mid-range frequency region.

The human voice excitation envelope can be modeled, as proposed in Klatt
and Klatt (1990), using a linear decay in the decibel/octave scale:

S[ω] = C · ωm/20 log10(2) (6.5)

where C is a scaling factor, ω is the frequency in Hz, and m is the slope of
the excitation envelope in decibels per octaves (dB/octave).

In our scenario the vocal source spectrum Xv′ is unavailable, only the mix-
ture spectrum V is accessible. Therefore we cannot directly estimate the
breathiness spectrum γU [ω] using Equation 6.2. Instead, we exploit the fact
that at harmonic positions lf0 of the singing voice pitch we can consider
the vocals spectrum predominant V [lf0] ≈Xv′ [lf0] for all harmonic indices
l > 0. If we additionally consider the vocal tract filter smooth in frequency,
as is done in previous works (Durrieu et al., 2011), we can then use Akima
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interpolation (Akima, 1970) between the harmonic positions to estimate the
harmonic envelope eh[ω] = L[ω]U [ω]S[ω] as done in Section 4.3. By assum-
ing the magnitudes (in the decibel scale) of L[ω]U [ω] to be drawn from a
Gaussian distribution, we can make an estimation Ŝ[ω] using least squares
fitting of the model from Eq. 6.5 on the harmonic envelope eh[ω]. The least
squares can be linear if the envelope and frequencies are first translated to
logarithmic scales. However this must be done on a limited region [ωlo, ωhi]
of the spectrum where the vocals source is usually predominant and the
estimated eh[ω] is reliable. Finally we whiten the harmonic envelope eh[ω]
using the excitation envelope Ŝ[ω] derived from the excitation slope:

ˆL[ω]U [ω] = eh[ω]/Ŝ[ω] (6.6)

The model of Equation 6.5 is only valid for the mid frequency region and the
estimation of S[ω] is based on the region where the harmonics are present
and predominant. In order to overcome this limitation, whitening is only
performed under ωwhi and is limited to Ŝ[ω] = Ŝ[ωwlo] for ω < ωwlo. In our
proposed method, γ is a parameter that is not estimated from the data.
This parameter controls the gain of the breathiness relative to the harmonic
component. In Section 6.3 we explore the effect of this parameter on the
separation performance.

Figure 6.2 illustrates the intermediate results of the breathiness estimation
on a spectrum of a song that contains pitched singing voice. The breathiness
envelope is derived from the spectral envelope sampled at the harmonic
partial frequencies.

At this point we have estimated the breathiness component as X̂vr =
ˆL[ω]U [ω]γ. The next section describes how to use it in conjunction with

an existing separation approach to obtain the final isolated singing voice .

Integration into a Separation Approach

We integrate our proposed breathiness method into the SIMM separation
approach for the reasons previously cited in Section 6.2.

The reader might observe that the SIMM method already provides an esti-
mation of the smoothed filter as XΦ. Theoretically this filter should have
a spectral shape similar to the estimated breathiness component found in
section 6.3. However, the goal of this work was not to extend the SIMM
method but to provide a general breathiness estimation valid for various
separation approaches, even in low-latency conditions. The separation of
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Figure 6.2: Spectrum, harmonic envelope, source-based whitening and the esti-
mated breathiness.

the vocals is done using a Wiener filter as in Durrieu et al. (2011). The
estimated breathiness spectrum is added to the estimation of the harmonic
part of the voice. Using a notation similar to that used in Section 6.2, the
spectrum model becomes V̂ = X̂v′ + X̂m, which leads to the following
mask:

mv′ =
X̂v′

X̂v′ + X̂m

(6.7)

where X̂v′ [ω] = Xv[ω] + ˆL[ω]U [ω]γ is the estimated vocal source spectrum
and X̂v is estimated following the procedure described in Section 6.2. The
mask is then applied to the mixture complex spectrum to compute the

estimated source complex spectrum
ˆ̃
Xv′ = mv′⊗Ṽ . Then a simple overlap-

add technique is used to achieve the output waveform signal.

Experiments

We prepared a dataset of multitrack recordings containing singing voice
to evaluate the effect of integrating breathiness estimation into the SIMM
source separation method. The multiple tracks of each recording were com-
bined forming two sources: the vocals, and the accompaniment music cre-
ated by mixing all the other tracks.
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The evaluation material consists of a dataset of 14 multitrack pop-rock
recordings with vocals, compiled from publicly available resources (MASS 2,
SiSEC 3, BSS Oracle 4) and 2 in-house multitrack recordings.

A quantitative evaluation was done using the BSSEval toolbox to calcu-
late the SDR (Signal-to-Distortion Ratio), SIR (Signal-to-Interference Ra-
tio) and SAR (Signal-to-Artifacts Ratio) values. On a first inspection of the
results, we saw that the objective measures did not reflect the perceived dif-
ferences. Additionally we also computed the perceptually motivated objec-
tive measures from PEASS: OPS (Overall Perceptual Score), TPS (Target-
related Perceptual Score), IPS (Interference-related Perceptual Score), APS
(Artifact-related Perceptual Score).

For all the excerpts we also computed the near-optimal time-frequency
mask-based separation using the BSS Oracle framework. The evaluation
measures of the oracle versions of each excerpt were used as references to
reduce the dependence of the results on the difficulty of each audio. There-
fore the values shown are error values (lower is better) with respect to the
near-optimal version.

In the experiments we set the frequency limits for the excitation slope es-
timation to ωlo = 200Hz and ωhi = 4000Hz. The whitening limits were
set to ωwlo = 400Hz and ωwhi = 15000Hz. Audio examples have a sampling
rate of 44.1kHz, and the spectral analysis used a frame size of 4096 without
zero-padding and a hop-size of 512 samples respectively.

Discussion

In an informal listening test we noticed that in the samples where the vo-
cals are predominant over the background music our approach achieved its
objective of maintaining the breathiness in the isolated voice. The down-
side, however, is that in some cases a dynamic low pass filtering is applied,
which reduces the brightness of drums and cymbals in the mute version. In
examples where the vocals are fast and the background is loud with relation
to the vocals, the breathiness removal is less noticeable.

Looking at the objective quantitative results (not shown here), the BSSEval
evaluation results show very little variation (< 0.2dB) for the different values
of γ. However this does not reflect the perceived differences in the informal

2. http://www.mtg.upf.edu/static/mass

3. http://sisec.wiki.irisa.fr/

4. http://bass-db.gforge.inria.fr/bss_oracle/

http://www.mtg.upf.edu/static/mass
http://sisec.wiki.irisa.fr/
http://bass-db.gforge.inria.fr/bss_oracle/
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listening procedure. This is probably due to the fact that the differences
are in frequency bands with low energy, such as the regions between the
partials.

APS IPS OPS TPS

0.0 64.03 7.53 28.89 60.32
0.1 62.66 8.64 28.41 56.83
0.2 62.57 9.31 28.15 55.95
0.3 62.44 9.89 28.29 55.09
0.4 62.61 10.12 28.31 54.69
0.5 62.71 10.61 28.24 54.46
0.6 62.86 11.01 28.17 54.30
0.7 63.04 11.31 28.20 54.03
0.8 63.17 11.27 28.42 53.78
0.9 63.17 11.54 28.42 53.46
1.0 63.32 11.73 28.31 53.09
1.1 63.43 11.81 28.35 52.86
1.2 63.73 11.84 28.33 52.65
1.3 63.82 11.97 28.45 52.50
1.4 63.99 12.14 28.37 52.34
1.5 64.07 12.40 28.42 52.19

Table 6.1: Average error values of PEASS measures for various values of γ.

In the PEASS results (Table 6.1) we observed a larger change in the perfor-
mance scores, however the differences in scores remained small. This could
be due to limitations of the auditory model used in PEASS. Shrivastav and
Sapienza (2003) showed the need for special care with voice breathiness
quality in objective measures based on perceptual ratings.

In any case these results reflect the conclusions extracted from the infor-
mal listening tests rather than the BSSEval results. We see a separation
improvement for the OPS, APS and TPS measures, with an optimal param-
eter value of around γ = 0.2 for the breathiness estimation gain. While the
improvement on the Overall Perceptual-related Score error is small (0̃.74 de-
crease), the proposed method does perform significantly better with respect
to other measures such as APS and TPS.

Figures 6.3 and 6.4 show the trends of the different perceptually-motivated
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Figure 6.3: PEASS OPS and APS results for different parameters of the breath-
iness gain γ.

separation performance measures. Figure 6.4 shows that the tradeoff be-
tween the interference and the target scores can be controlled with this gain
parameter. OPS and APS curves in Figure 6.3 show a global minimum cor-
responding to the optimal gain for the breathiness estimation, after which
the errors slowly increase with γ. The OPS curve has several local min-
ima which could mean that the optimal value of γ depends on the song.
From the results of the individual songs in Figure 6.5, we observe that for
excerpts 5, 6 and 10 there is a clear improvement in OPS. On the other
hand excerpts 2 and 12 show a significant decrease in performance when
using the proposed method. Manual inspection of these instances reveal
that excerpts 5 and 6 belong to the same song, with a voice containing a
high degree of breathiness. Excerpt 2 shows a large number of pitch errors
that could explain the large increase in errors. Finally, excerpt 12 presents
a vocal track with almost no breathiness component, which would imply,
as the results show, a gradual increase in errors with the increase in the
parameter γ.

Another observation is that each excerpt presents a point of minimum error
at a different value of γ, this shows the desirability of developing methods
for estimating the optimal value γ, and thus the strength of the breathiness,
from the mixture data. In a practical implementation, we suggest a user-
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Figure 6.4: PEASS TPS and IPS results for different parameters of the breathi-
ness gain.

controllable parameter γ that can be adapted to the audio content. To
demonstrate the subjective improvement in the singing voice separation of
our approach, we prepared a web page 5 with several audio examples.

Conclusions

We propose a method to estimate the breathiness component of the singing
voice in a professional music mixture. The method extends the source-filter
model in a way similar to Degottex et al. (2011). The spectrum model
for the source is decomposed into harmonic deterministic narrowband and
stochastic wideband components. The harmonic envelope of singing voice
and a regression with a Klatt model is used to estimate the spectral shape
of the breathiness. The spectral shape is then scaled with a parameter
empirically adjusted to control the gain of the breathiness spectrum. An
experiment shows that this breathiness estimation method can be used in
conjunction with the SIMM method to improve the isolation of the singing
voice. Additionally, the parameter exploration of the breathiness shows
that estimating the scale of the breathiness from the mixture could further
improve the performance of the separation process. Future work could also

5. http://www.dtic.upf.edu/~rmarxer/dafx13/breath

http://www.dtic.upf.edu/~rmarxer/dafx13/breath
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Figure 6.5: PEASS OPS error score (relative to Oracle) for individual songs.

be dedicated to estimating the optimal high-pass filter that models the
radiation effect from lips and nostrils as well as the distribution of the glottal
turbulence noise, both of which are currently empirically parametrized.

6.4 Singing Voice Fricatives

Separating the singing voice from a musical mixture is a problem widely
addressed due to its various applications. However, most approaches do
not tackle the separation of unvoiced consonant sounds, which causes a loss
of quality in vocal source separation algorithms, and is especially notice-
able for unvoiced fricatives (e.g. /s/, /S/, /T/) due to their energy level
and duration. Fricatives are consonants produced by forcing air through a
narrow channel made by placing two articulators close together. We pro-
pose a method to model and separate unvoiced fricative consonants based
on a semi-supervised Non-negative Matrix Factorization, in which a set of
spectral basis components are learned from a training excerpt. We imple-
mented this method as an extension of an existing well-known factorization
approach for singing voice (SIMM). An objective evaluation shows a small
improvement in the separation results. Informal listening tests show a sig-
nificant increase of intelligibility in the isolated vocals.
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Introduction

In the context of musical audio source separation, we do not find many
references in the literature addressing the problem of unvoiced phonemes in
singing voice. Usually, removing the unvoiced (e.g. fricative) components
of the singing voice in a polyphonic mixture is addressed as a joint problem
in the signal modeling step. For example, NMF approaches that use har-
monic basis sometimes integrate a flat spectrum component to capture the
unvoiced parts of the lead vocals (Durrieu et al., 2011). While not specif-
ically addressing singing voice separation, the technique by Wong et al.
(2007) performs spectral subtraction to obtain the enhanced vocal signal.
Then a multilayer perceptron (MLP) is used to segregate the vocal from
the non-vocal segments taking as input the spectral flux, the Harmonic Co-
efficient (HC), the Zero Crossing Rate (ZCR), the Mel-frequency Cepstral
Coefficients (MFCCs), the amplitude level and the 4Hz modulation energy.
Finally, the Dynamic Time Warping (DTW) algorithm is used to align the
two sequences.

Hsu and Jang (2010a) specifically addressed the problem of unvoiced singing
voice separation. A first step segments the signal into accompaniment,
voiced and unvoiced predominant frames by means of a Hidden Markov
Model (HMM) using 39 MFCC features computed directly from the STFT
(taking energy and the first and second derivative of the cepstral coeffi-
cients). A second step uses a Gaussian Mixture Model (GMM) classifier
to perform an “Unvoiced-Dominant Time-Frequency (T-F) Unit Identifica-
tion” within only the unvoiced frames. T-F units are computed by means
of a gammatone filter-bank of 128 channels. In the training stage, each T-F
unit is labeled as unvoiced-dominant or accompaniment-dominant, depend-
ing on the energy ratio in the training mixture examples (during training
the source singing voice and accompanying signals are known). The Gaus-
sian mixture model consists of 32 components with a diagonal covariance
matrix. This approach seems promising after listening to the results. One
drawback of this method is the large number of parameters to learn (39
features x 32 GMM components x 128 channels), which requires a lot of
training data. However, in addition to audio examples they do provide a
publicly available dataset for training 6.

Recent work has shown that a semi-supervised variation of the NMF can be
useful for detecting and modeling individual phonemes in speech. Schmidt
and Olsson (2006) approached the speech separation problem using semi-

6. http://sites.google.com/site/unvoicedsoundseparation
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supervised sparse NMF. The basis components are previously learned from
training data in this technique. The authors showed an improvement in
the separation when the basis components learned are phoneme-specific.
Raj et al. (2011) proposed a phoneme-dependent, exemplar-based NMF
model for speech enhancement of monaural mixes. The authors created a
set of basis components for each phoneme by drawing spectral vectors from
segments of speech recordings that contained the target phoneme.

Lately NMF constraints have been widely used in music separation tasks.
Heittola et al. (2009), Durrieu et al. (2009a) and Hennequin et al. (2010)
proposed harmonicity and monophonicity constraints by initializing basis
or gain bins to zero where the target source is known to have a low or
no energy contribution. Ewert and Müller (2011) used musical scores to
apply harmonicity, fundamental frequency and note-start constraints on
the basis and gains of an NMF decomposition of the mixture spectrum.
Note attacks were modeled using wideband learned basis components with
the gains initialized to 0 at all time frames except those where the notes
started.

We propose a method to detect and suppress unvoiced fricative consonants
of the singing voice in music mixture recordings. The method extends SIMM
with semi-supervised NMF and additional constraints on the factors in or-
der to take into account unvoiced fricative consonants during the singing
voice separation. This technique serves as a proof of concept and could
be extended to other singing voice components as well as unvoiced com-
ponents of other musical instruments. The method is tested on a dataset
of multitrack music recordings and shows an improvement on the objective
perceptual-based separation measures.

Proposed Method

We propose an extension to SIMM that approximates the fricative con-
sonants as an additive wideband component to the singing voice spec-
trum. Using the same notation as the SIMM spectrum model results in
V̂ = (X̂v + X̂fric) + X̂m, where X̂fric is interpreted as the spectrum of

the fricative consonants of the singing voice, and X̂v′ = X̂v + X̂fric is
the full spectrum of the singing voice comprising voiced and fricative com-
ponents. Similarly to what is done for the accompaniment spectrum X̂m

in SIMM, we use an NMF decomposition to model the fricative spectrum
X̂fric = W fricHfric. However in this case the W fric are learned during a
training stage and set constant during the separation stage.
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Figure 6.6: Spectrogram of the unvoiced fricative sounds used in the NMF train-
ing stage. Frequency axis shown in a logarithmic scale

The proposed method has two steps: 1) training a model of NMF basis;
and 2) separating the fricatives with the learned NMF basis. We provide
a recording to train the NMF basis which contains only the target sounds.
We record a sequence of several unvoiced (voiceless) fricative sounds (/s/,
/f/, /S/, /T/, /h/, /tS/) by a single subject using a Shure SM-58 microphone
(see Figure 6.6) and apply a low-shelf filter with cutoff frequency at 200Hz
to remove the blowing noise (low frequency). We refer to the resulting
processed waveform as xtfric[t].

We then specify the number of basis components NWfric to be learned
and perform an NMF decomposition of the training audio spectra Xt

fric =

W t
fricH

t
fric into a set of NWfric basis components and the corresponding

gains Ht
fric. Both the basis components W t

fric and the gains Ht
fric are

learned from the data.

The resulting Ht
fric can be disregarded, since they are only applicable to

the specific training input spectrum Xt
fric. However we can assume W t

fric

to be a good generic basis for general vocal fricative instances.

Since the fricative spectrum is assumed additive and independent from other
factors, the multiplicative update rules are trivial to derive. The update
rules of all the components except Hfric are computed in the same manner
as for SIMM (see Section 3.4 Equations 3.91, 3.94, 3.92, 3.93 and 3.95). We
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must take into account that in the proposed method the estimation of the
mixture spectrum V̂ also includes the estimated fricative spectrum X̂fric.
The multiplicative update rules for the Hfric become:

Hfric ←Hfric ⊗
W t

fric
>
(
V̂

(β−2) ⊗ V
)

W t
fric
>
V̂

(β−1)
(6.8)

Applying the multiplicative rules for a given number of iterations, we obtain
the estimated gains of the fricatives Ĥfric.

The separation of the voice is then done by performing a Wiener filter where
the target source is composed of the voiced and fricatives spectrum:

mv′ =
X̂v′

X̂v′ + X̂m

(6.9)

where X̂v′ [ω] = Xv[ω] +Xfric[ω] is the estimated vocal source spectrum.
The mask is then applied to the complex spectrum of the mixture to com-

pute the estimated source complex spectrum
ˆ̃
Xv′ = mv′⊗

ˆ̃
V . Then a simple

overlap-add technique is used to achieve the output waveform signal.

After initial examination of the results, we realized that the main drawback
of this approach for estimating the spectrum of the fricatives is the use of
the fricatives basis components to reconstruct other wideband sources such
as hi hats, cymbals or even snare drums. This is due to the similarity of the
spectra of these sources. The main difference between these two sources is
the transient nature of the sounds. Drums generally create sounds with a
very fast increase in energy, which are referred to as transient sounds. On
the other hand, fricatives are usually more sustained, with a very slow onset
and termination.

In order to overcome this problem we propose using the transient quality of
the spectrum frames to differentiate between the fricatives and the drums.
Using the same transient estimation method presented in Section 5.4 we
extract from the audio mixture a set of NJ transient timepoints ttrj for
j ∈ [1 . . . NJ ].

We assume that at transient positions the fricative presence will be neg-
ligible compared to other sources such as drums or other attacks. These
timepoints are then used as constraints on the gains of the fricatives by
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initializing the corresponding columns to zero:

HT
fric[w, t] =

{
0, if |t− ttfj | < τ∀j
γ, else

(6.10)

where γ > 0 is a random positive value and τ is a parameter that controls
the size of the vicinity of the transient timepoint.

Following a similar rationale we assume unvoiced fricatives will not be
present at the same instants as the pitched singing voice component. There-
fore we can define a different initialization based on the estimated singing
voice pitch p[t]. By following the same convention as in Section 4.3 where an
unvoiced frame is defined by p[t] <= 0 we can determine the initialization
constraint based on pitch as:

HP
fric[w, t] =

{
0, if p[t] > 0

γ, else
(6.11)

Finally we propose another initialization constraint that combines the two
previous ones:

HPT
fric[w, t] =

{
0, if p[t] > 0 or |t− ttfj | < τ

γ, else
(6.12)

Each of these initialization constraints will lead to a different factorization
and separation result. From now on, we will use the names FRIC-T, FRIC-
P and FRIC-PT respectively for these separation methods. The method
that does not apply any constraint on Hfric will be called FRIC.

Experiment

We hypothesize that in the context of singing voice separation the use of
trained basis components with transient and pitch-based gains constraints
can improve the estimation of unvoiced fricative consonants with the SIMM
model. In the experimental setting we test this hypothesis by evaluating
the separation results of the SIMM method with the proposed extensions
(FRIC, FRIC-T, FRIC-P and FRIC-PT) and without extensions (NON-
FRIC). The evaluation is performed on the same 14-excerpt dataset as in
Section 6.3 and using the same performance measures. The results of these
tests are shown and discussed in the following section. The main parameter
of the proposed method has been set empirically to τ = 75ms for all the
tests.
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Figure 6.7: OPS error measures of individual audio examples for the vocal frica-
tives separation methods.

Results

As shown in Figure 6.7, results are better on the Overall Perceptual Score
in the singing voice isolation task with most of the fricatives estimation
methods. This improvement is present in almost all the excerpts, and in
those where the proposed methods do not improve, the penalty on the OPS
is relatively small. The FRIC-P method, which uses the pitch as a constraint
for the fricative gains is the only method that does not improve over the no
fricative estimation (NONFRIC).

In Figure 6.8 and in Table 6.2 we can observe that the overall separation
improvement is mainly due to a decrease in interference, and the conse-
quent reduction of the IPS error. We also note that the different constraint
methods (FRIC-T, FRIC-P, FRIC-PT) have a large influence on the score
errors. The use of pitch-based constraints on the fricative gains degrades
significantly the separation performance in terms of TPS and APS. Listen-
ing examination of the results show that this is mainly due to false positive
pitches at fricative positions. Fricatives are often positioned close to voiced
phonemes and the pitch estimation used often extends the resulting pitch
tracks to these regions due to large analysis windows. Future work could
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Figure 6.8: Average error measures for the vocal fricatives separation methods.

be devoted to studying the adaptation of the pitch estimation and tracking
methods to avoid such situations.

Transient-based constraints (FRIC-T and FRIC-PT) improve the overall
separation results in comparison to using no constraints at all (FRIC). The
improvement of the FRIC-T method comes in the form of a tradeoff between
interference and target/artifact errors, possibly due to transient constraints
being binary thereby leading to non-smooth changes in the time-frequency
masks. Informal listening to the results shows mainly a reduction of drums
interference in the isolated singing voice, which was the desired effect of the
constraint.

TPS IPS APS OPS

NONFRIC 50.01 11.10 59.77 28.72
FRIC-P 51.57 9.51 60.42 28.96
FRIC 46.24 10.06 57.91 28.27
FRIC-PT 53.07 9.42 61.23 27.72
FRIC-T 50.74 9.19 59.35 27.01

Table 6.2: Average error values of PEASS measures for all the fricative estimation
methods.
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We also conducted preliminary tests using basis components trained on
“plosive” and “trill” consonants, however the singing voice separation did
not improve. Possibly this was due to the lack of characterization of the
temporal evolution of their spectra.

Conclusions

We propose an extension to the SIMM spectrum model and separation tech-
nique that takes into account unvoiced fricative consonants when isolating
the singing voice. The method uses semi-supervised NMF to train a set
of basis components on audio recordings of isolated fricative consonants.
The resulting components are then used in the separation stage. Two types
of constraints on the factorization were evaluated. Transient analysis was
used to distinguish between percussive events and fricatives. Pitch-based
constraints were used to restrict the estimation of unvoiced fricatives to
regions without pitch. Although the improvement of the objective separa-
tion measures is small the perceived difference in informal listening tests
is significant. The method is capable of retaining many of the unvoiced
fricatives present in the mixture. The transient-based constraints improved
the separation by disambiguating between fricatives and drums. However
the pitch-based constraints had a negative effect on the separation results,
probably due mainly to pitch estimation errors. This research shows the po-
tential of combining semi-supervised NMF with model-based factorization
such as SIMM. Future work could focus on non-fricative unvoiced conso-
nants such as “plosives” and “trills” to better understand the limitations
of the current spectrum model and factorization technique. The use of
constraints could be further studied by adapting the pitch estimation tech-
niques to this particular use-case and by testing the methods on ground
truth pitch annotations. The use of regularization could also be an inter-
esting alternative to the constraints, and could reduce the musical artifacts
by avoiding the binary masks on the gains matrices.

6.5 Drums Separation

Drums separation is especially interesting for high-latency scenarios because
percussive events are highly characterized by their temporal evolution. Cur-
rent research has often focused on drums separation without specifically
modeling the other sources present in the signal. Other approaches perform
a joint modeling of the multiple sources present in the signal but being very
general and generic they may be too restrictive to achieve low interference
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rates. We compare the use of signal-specific information, in our case drum
hits positions, combined with specifically modeling other non-target sources
such as the singing voice.

Introduction

Drums transcription has been regarded as an important task by the Music
Information Retrieval (MIR) community and in the past decade there has
been increasing interest in developing techniques for separating the drums
track from music mixes. Zils et al. (2002) derived a method based on syn-
thetic drums sound pattern matching. The matching is performed using the
correlation as the objective function. Barry (2005) computed the presence
of percussive events based on the temporal derivative of the spectral mag-
nitudes on the decibel scale. The separation is then performed by spectral
modulation, weighting the spectral bins by the individual bin derivatives
previously computed. Ono et al. (2008b) proposed another method based
on spectrotemporal features. However in this case both the temporal and
frequency derivatives are taken into account. Gillet and Richard (2005) de-
composed the signal into a basis of Exponentially Damped Sinusoids (EDS)
using a noise subspace projection approach. This leads to a harmonic/noise
decomposition that is used to extract the percussive sources. Yoshii et al.
(2005a) used a template-based pattern matching technique to estimate and
separate the drums spectrum from the rest. The authors showed several ap-
plications such as remixing, drum timbre modification and rhythmic sources
equalization. Helén and Virtanen (2005) proposed the use of Non-negative
Matrix Factorization (NMF) and Support Vector Machine (SVM) classifica-
tion to perform drum separation. The technique consists in performing an
NMF decomposition of the spectrogram of the mixture and classifying the
basis components of the factorization using Mel-Frequency Cepstrum Coef-
ficients (MFCC) and an SVM previously trained using isolated drums and
harmonic audio recordings. Yoo et al. (2010) proposed a similar approach
where Nonnegative Matrix Partial Co-Factorization (NMPCF) is used to
avoid training harmonic components. In Ozerov et al. (2010) the authors
proposed using the Flexible Audio Source Separation Toolbox (FASST) to
perform an isolation of the drums components in a mixture. FASST is
based on non-negative factorization of a complex spectrum model that con-
tains templates for specific spectral and temporal patterns which are able
to reconstruct harmonic and percussive components when combined.

The use of temporal constraints on NMF is not new and has proven useful
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in several scenarios. Ewert and Müller (2011) used score-based temporal
restrictions on the gains of an NMF decomposition to estimate piano notes
attacks.

Here we address the separation of drums in polyphonic music mixtures, typ-
ically containing lead vocals. We integrate our proposed drums separation
method into the SIMM separation approach for the reasons previously cited
in Section 6.2.

In Section 6.4 we showed the benefits of using temporal constraints on the
gains of a SIMM-based spectrum model component to improve the estima-
tion of fricatives.

Proposed Method

We propose an extension to the SIMM method that includes an extra ad-
ditive spectral component to represent percussive events. The proposed
spectrum model can be defined as V̂ = X̂v + X̂m′ + X̂d, where the ad-
ditional component X̂d corresponds to the estimation of the drums. The
lead vocals spectrum X̂v is decomposed into multiple factors representing
a source-filter harmonic model, the other components are decomposed into
two factors X̂m′ = Wm′Hm′ and X̂d = W dHd. It is trivial to show that
without any further modifications and with a specific ordering of the mul-
tiplicative updates, the proposed spectrum model is equivalent to SIMM
with Wm = [Wm′ ;W d] and Hm = [Hm′ ,Hd].

As in the original SIMM the actual separation is performed by Wiener
filtering using the drums spectrum estimation X̂d. Thus the time-frequency
mask becomes:

md =
X̂d

X̂v + X̂m′ + X̂d

(6.13)

In the following sections we show different techniques to achieve the dif-
ferentiation between drums and other musical accompaniment sources in
X̂d and X̂m′ . First we present a method based on NMF regularizations
and then one that uses information specific to the processed signal to apply
constraints to the factorization.

Training

We study the use of semi-supervised NMF in conjunction with the SIMM
method for the separation of drums sources. In this scenario we first learn
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a set of basis components W t
drums using recordings of drums in isolation

and then use these components during the separation stage. The learned
components will be used as constants and complemented with NWd′ basis
components that will be free and learned during the separation W d =
[W t

drums;W d′ ].

For the proposed method we trained for two different types of drums: snare
drums and cymbals. The result is two sets of learned basis components
W t

drums = [W t
snare;W

t
cymbal].

Regularizations

Virtanen (2007) (see Section 3.4) proposed the use of temporal continuity
and sparseness regularizations on the gains of an NMF process to isolate
sustained harmonic sources. We extend these regularization terms to the
the basis factor and integrate them into the proposed spectrum model based
on SIMM.

In our proposed method we apply different regularizations to the factors
X̂m′ and X̂d in order to disambiguate between drums and other musi-
cal accompaniment. Drums are characterized by their wideband smooth
spectral shape and their sparseness in the time axis, since they are often
transient sounds with a short decay and a shorter attack. On the other hand
we assume the spectral evolution of the other musical accompaniment to be
smooth in time. We define two additional regularization terms to include
this prior knowledge into the factorization. We propose a regularization
on the basis that penalizes frequency domain discontinuities in the spectra.
The smoothness regularization on the temporal axis of the gains proposed
by Virtanen (2007)(Equation 3.57) is modified to evaluate the smoothness
on the frequency domain of the basis, the resulting frequency continuity
regularization is defined as:

JfcW (W ) =

NW∑
w

1

σωw
2

Nω∑
ω

(
[W ]ω,w − [W ]ω−1,w

)2
(6.14)

where the standard deviation of the components is estimated as σωw =√
(1/Nω)

∑Nω
ω ([W ]2ω,w).
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The gradient of the regularization then becomes:[
ϕfcW (W )

]
ω,w

= 2Nω

2 [W ]ω,w − [W ]ω−1,w − [W ]ω+1,w∑Nω
i [W ]2w,i

−Nω

2 [W ]ω,w
∑Nω

i=2

(
[W ]i,w − [W ]i−1,w

)2

(∑Nω
i [W ]2i,w

)2 (6.15)

which can easily be expressed as an addition of positive and negative terms
ϕfc

+
W and ϕfc

−
W . The term w represent the basis index, ω the frequency

index and t the time index (columns in H).

We also propose a regularization on the drums activation matrix Hd that
penalizes gains that are non-sparse in time. The regularization is a simple
variation on that proposed by Virtanen (2007) (Equation 3.58).

J tsH(H) =

NT∑
t

NW∑
w

g([H]w,t /σt) (6.16)

where g(·) is a function that penalizes non-zero gains, in our case g(x) = |x|.
The only difference between the regularization term proposed in Virtanen
(2007) and the one we propose is that the standardization is done with
respect to each time frame instead of each basis. The gradient then becomes:

[
ϕtsH(H)

]
w,t

=
1√

1
NW

∑NW
i [H]2w,t

−
√
NW

[H]w,t
∑NW

i [H]i,t(∑NW
i [H]2i,t

)3/2
(6.17)

Due to the additive nature of the spectrum model and regularizations, the
derivation of the multiplicative update rules are quite straightforward. The
multiplicative update rule for accompaniment Wm′ remains the same as for
Wm in the original SIMM method. The update rules for the Hm′ W d and
Hd become:

Hm′ ←Hm′ ⊗
W>

m′

(
V̂

(β−2) ⊗ V
)

+ ϕ−Hm′

W>
m′V̂

(β−1)
+ ϕ+

Hm′

(6.18)



6.5. drums separation 193

Hd ←Hd ⊗
W>

d

(
V̂

(β−2) ⊗ V
)

+ ϕ−Hd

W>
d V̂

(β−1)
+ ϕ+

Hd

(6.19)

W d ←W d ⊗

(
V̂

(β−2) ⊗ V
)
H>d + ϕ−W d

V̂
(β−1)

H>d + ϕ+
W d

(6.20)

where the gradient terms are defined as follows:

ϕ−Hm′
= αtcϕ

tc−
Hm′

ϕ+
Hm′

= αtcϕ
tc+
Hm′

(6.21)

ϕ−Hd
= αtsϕ

ts−
Hd

ϕ+
Hd

= αtsϕ
ts+
Hd

(6.22)

ϕ−W d
= αfcϕ

fc−
W d

ϕ+
W d

= αfcϕ
fc+
W d

(6.23)

and the parameters αtc ∈ <+, αts ∈ <+ and αfc ∈ <+ control the en-
forcement of the temporal continuity of the accompaniment gains Hm′ , the
temporal sparseness of the drums gains Hd and the frequency continuity
on the drums basis W d respectively.

The regularizations can improve the separation between the musical ac-
companiment and the percussive components in the SIMM method. This
separation is performed in an unsupervised manner since no signal-specific
knowledge is needed. However the parameters controlling the regulariza-
tions may have a large influence on the results.

Constraints

Another extension proposed to the SIMM method for isolating the percus-
sive instruments is the use of constraints. In this extension we assume the
temporal positions of the drum events are known. This information is used
to restrict the activation of the gains of the percussive components, reduc-
ing the degrees of freedom of the factorization problem. The constraints are
performed in a manner similar to Ewert and Müller (2011).
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We consider a set of percussive sources md ∈ [1, NMd]. We denote tmde for
e ∈ [1, Ne] the frame indices of the attacks of the events of the percus-
sive source md. The dictionary W d is the set of basis components for all
the percussive sources, with NW

s components assigned to each percussive
source. The constraints are set in the form of initializations to 0 in the
corresponding gains matrix Hd:

Hd[w, t] =


γ, if tmde − (1− α)τ < t < tmde + ατ

and (m− 1)NW
s < w < mNW

s ∀md, te

0, else

(6.24)

where γ > 0 is a random positive value, τ is a parameter that controls
the size of the event region and α controls the position of the active region
around the event position.

We examine two different ways of supplying the drum event positions tmde .
We propose an unsupervised approach using a transient estimation method
and two scenarios with user-supplied annotations.

Transient Analysis The transient analysis used to evaluate the constraint-
based unsupervised method is the same one used in Section 5.4. It is based
on the work by Röbel (2003) where the spectral peak center of gravity is
used as a measure of transient quality. This measure is coupled with a band
analysis and thresholding in order to extract a frame-level decision about
the presence of a percussive event attack. This method for drum event
estimation is quite straightforward and serves as a baseline for constraint-
based blind drums separation methods. State-of-the-art drum estimation
techniques can achieve much better results, probably leading to improved
separation.

Annotations Two main scenarios for user-supplied annotations are con-
sidered. The first consists in creating different annotations sets for each of
the drum sounds (bass drum, snare drum, closed hi-hat, open hi-hat,...).
This implies having multiple drum sources NMdind > 1 in our spectrum
model. The second technique uses a single set of annotations, by merging
all the drum sounds together NMdjoin = 1, in order to keep both approaches
comparable, the number of basis components used in the second approach
is NW

s
join = NMdindNW

s. The annotations of the drum events were man-
ually performed by an amateur experienced drum player using the Son-
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icVisualiser software application 7. The annotations were created using the
isolated drum tracks in order to evaluate near-optimal separation using a
constraint-based method. The annotations dataset has been made publicly
available online 8.

Experiments

We used the same dataset of multitrack audio recordings with drums as in
Section 5.4 to evaluate the proposed methods. We conducted measurements
using the PEASS and BSSOracle frameworks to obtain quantitative results
for the separation. We performed two series of experiments (regularization
and constraints) evaluating the results of the different methods.

The first set of tests consisted of parameter explorations of the regularization-
based methods (REG). In these experiments we tested the separation for
multiple values of the time continuity regularization αtc = 25 (SM25),
αtc = 50 (SM50), αtc = 75 (SM75), αtc = 100 (SM100) for the non-
percussive accompaniment basis Wm. We also evaluated the effect of em-
ploying a sparseness regularization αts = 10 (SP10) on the drums gains. The
regularizations for the frequency continuity of the non-percussive accompa-
niment has been kept to a fixed value αfc = 1. These tests were conducted
in an unsupervised scenario (UNS) where all the drum basis components
are learned during the separation and a semi-supervised (SUP) case where
the basis components are learned previously using training data with the
drums in isolation.

In a second series of experiments we evaluated three constraint-based meth-
ods. We compared a blind transient analysis method (CON-TR) to two an-
notated methods: individual sources model (CON-AN-I), and joint sources
model (CON-AN-J). We explored the influence of the main parameter NW

s

on each method and the effect of using the SIMM lead voice model with an
external annotated pitch (CON-TR-NP, CON-AN-I-NP, CON-AN-J-NP).
Finally we performed a comparative evaluation with state-of-the-art meth-
ods THPS-TIK (from Section 5.4), HPSS (Ono et al., 2008b) and FASST
(Ozerov et al., 2010). The best parameter combination found in the param-
eter exploration was used in the comparative tests.

7. http://www.sonicvisualizer.org

8. http://mtg.upf.edu/download/datasets/dreanss

http://www.sonicvisualizer.org
http://mtg.upf.edu/download/datasets/dreanss
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Figure 6.9: Individual OPS error measures for the drums separation unsupervised
scenario with relation to the regularizations applied.

Discussion

Regularizations Experiments

Figure 6.9 and Figure 6.10 show the Overall Perceptual Score (OPS) errors
relative to Oracle, for the individual excerpts in the unsupervised and semi-
supervised configurations. We can appreciate that in both scenarios the
results are not conclusive, since the OPS error varies a lot with changes
in the regularization parameters. For the unsupervised configuration, on
average we observe an increase of the error with the amount of temporal
continuity regularization applied to the accompaniment gains. The average
result also shows that the application of the sparseness is detrimental since it
increases the separation errors. The average results show very little variation
for the semi-supervised scenario.

However we do notice that for certain excerpts, such as for excerpt 0 in the
unsupervised case, temporal continuity regularization causes a significant
improvement. This improvement for individual excerpts is more visible still
for the temporal sparseness regularization parameter of the drums gains
Hd.

In Figures 6.11 and 6.12 we plot a histogram of the improvements from
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Figure 6.10: Individual OPS error measures for the drums separation semi-
supervised scenario with relation to the regularizations applied.

adding sparseness regularization. This value is computed as the difference
of OPS error obtained with the method using sparseness regularization and
that obtained without using it. These values are computed for all the values
of the temporal continuity regularization. The histograms show a large
variance in improvement. In some cases the use of αts = 10 creates a large
improvement and in others the opposite.

These results suggest the utility of future investigation of the dependence
of optimal regularization parameters on the data, and the potential for
deriving methods to estimate optimal regularization for each excerpt to be
analyzed.

Informal listening to the results confirms the findings that we show here.
In some excerpts the regularization improves the separation while in oth-
ers it is disadvantageous. We can also see that the regularizations behave
as expected, controlling the desired spectro-temporal qualities of the esti-
mated sources. In general we also observe that semi-supervised separation
maintains the bass drum and snare sources better. Unsupervised separa-
tion tends to produce a filtered signal keeping only mid-high components. A
drawback of the semi-supervised version is the greater interference between
lead vocals and the bass line.
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Figure 6.11: Histogram of the OPS improvement by using the sparseness regu-
larization (SP10) in the unsupervised scenario.

Constraints Experiments

Figures 6.13 and 6.14 show the NW
s parameter exploration experiment

for the constraint-based method that uses annotations of the individual
drums sources (CON-AN-I). This represents the method with the most prior
information supplied about the mixture and can serve as a maximum for
our proposed constraint-based methods. The plot of the OPS and APS
score errors shows that the results vary slightly depending on the number
of basis components assigned to each drum source NW

s. There are several
local minima implying that there is no unique optimal value for all excerpts
and drum sources.

In terms of TPS and IPS the number of basis components NW
s controls the

tradeoff between target fidelity and interference. This is an expected result,
since a large number of basis components to reconstruct drum components
could lead to overfitting of the mixture spectra causing the capture of other
non-percussive components thus increasing the interference while at the
same time better reconstructing the target drums.

Figures 6.15 and 6.16 show a similar trend when the constraints are based on
generic drums annotations NMdjoin , without making a distinction between
drum sounds (CON-AN-J). In future work we should investigate optimizing
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Figure 6.12: Histogram of the OPS improvement by using the sparseness regu-
larization (SP10) in the supervised scenario.

the parameter for each drum type and its dependence on the number of
occurrences in the excerpt.

Figure 6.17 shows the effect of implementing constraint-based methods as
extensions of the SIMM approach in contrast to not performing the lead
voice estimation (NP). There is a reduction of the OPS error in all the
constraint-based methods. This improvement is mainly due to a decrease
in interference and informal listening to the results confirms this finding.
The lead voice is often an energetic component and by specifically modeling
it we significantly reduce the parts of it that are counted as drum sounds.

Figure 6.18 shows how these constraint-based methods relate to other state-
of-the-art drums separation approaches. The annotation-based informed
source separation methods show a clear improvement in OPS over the blind
techniques. This indicates that the development of better temporal esti-
mation of the drum event positions could lead to significant improvements
in blind drums separation. The difference between annotations of individ-
ual drum sources (CON-AN-I) and generic drum sources (CON-AN-J) is
insignificant, from which we can conclude that estimation of general drums
events should be sufficient.

The artifact-based scores (APS) show unexpected results where the FASST
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Figure 6.13: OPS and APS score errors with relation to NW
s for the constraint-

based individual annotation method (CON-AN-I).

method achieves better average scores (negative score difference) than the
Oracle version. This is probably due to the perceptual-inspired relations in
the PEASS framework, since the non-perceptual-related BSSEval results in
Figure 6.19 do not present this behavior.

Finally, we can observe that the naive blind transient constraint-based
method (CON-TR-J) does not achieve results comparable to other blind
techniques. Note that the transient detection is not adapted to drums and
thus is prone to false positives caused by other instruments.

Subjective assessment by informal listening to the comparative study con-
firms the trend presented in Figure 6.18. The main shortcoming of the
constraint-based methods is that the full decay of the drums is often not
preserved. Increasing the parameter τ could help reduce this issue, how-
ever it would also increase the amount of noise in the learning process of the
drums component basis during the factorization. In the future, studying the
relations between τ and NWd might be useful since together they influence
the amount of overfitting and underfitting of the problem.

Conclusions

We propose and study an extension to the SIMM method to perform drums
separation. The proposed extension makes use of regularizations and con-
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Figure 6.14: TPS and IPS score errors with relation to NW
s for the constraint-

based individual annotation method (CON-AN-I).

straints to separate percussive from non-percussive music accompaniment.
We propose two new regularization terms that consist in small variations
on those proposed by Virtanen (2007). The proposed regularizations con-
trol the frequency smoothness of the basis components and the temporal
sparseness of the gains. These regularizations are used together with the
temporal continuity regularization of the gains to perform blind drums sep-
aration. We also study the effect of using a set of pre-trained basis compo-
nents for drums sources. The experiments show that the optimal value for
the strength of the regularizations is highly dependent on the excerpt.

We evaluate the use of temporal constraints on the gains to perform drums
separation. The technique consists of using the positions of the drums events
in the mixture to limit the regions of activation of the drums basis. This
technique is tested using both ground truth manual annotations from the
isolated tracks and automatically extracted transients from the mixture.
This allows us to assess both a glass ceiling and a baseline for this type
of approach. Results show that a simple transient estimation technique is
insufficient for this task, compared to the method with manual annotations
or other state-of-the-art methods. Additionally we test how the number
of basis components assigned to each drum source affects the quality of
the separation. The results show that the overall performance and the
artifacts related score do not vary much with respect to this parameter.



202 high latency audio source separation

2 4 6 8 10 12 14 16 18
Transient Basis Count

12.0

12.5

13.0

13.5

14.0

14.5

Sc
or

e 
di

ffe
re

nc
e 

(%
)

Score Difference (%)
APS (right)
OPS

22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

Figure 6.15: OPS and APS score errors with relation to NW
s for the constraint-

based joint annotation method (CON-AN-J).

This parameter controls the tradeoff between interference and target related
scores.

We also observe that it may not be of much benefit to estimate the positions
of the individual drum sounds (closed hi-hat, open hi-hat, snare drum,...)
since this does not significantly improve the separation results. However it
remains to be tested whether using different parameter values per type of
drum sound enhances the results. Furthermore the use of frequency domain
constraints specific to each drum type could also improve the separation.
Another possible future direction could be to perform a two step strategy,
where a subset of the drum positions are first used to estimate the basis
components, and a second step in which the separation is done by loosening
the temporal constraints.
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Figure 6.16: TPS and IPS score errors with relation to NW
s for the constraint-

based joint annotation method (CON-AN-J).
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Figure 6.18: PEASS results of the comparative study of the constraint-based
methods for drums separation.
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6.6 Multiple Instruments Separation

This section addresses the modeling of multiple monophonic instrument
voices in a polytimbral audio source separation problem. We present a gen-
eralization of the Smoothed Instantaneous Mixing Model (SIMM ) method
which improves results for mixtures of multiple instruments. It is compared
to the single-source filter approach and to a multiple-source, single filter
extension as well as to the original SIMM. The method is evaluated on
polyphonic audio recordings in three datasets with different mixtures: wind
instruments, vocal choir and multi-talker speech. In a pitch-informed ex-
periment, where pitch is extracted from the isolated tracks, we find that the
proposed methods cope better with simultaneous timbres in the mixtures.
We obtain an improvement of 3dB SDR on objective measures and a clear
gain in listening quality.

Introduction

Source separation in polyphonic and polytimbral music mixtures is a com-
plex task which has attracted much research interest in recent years. Several
approaches consider the case of main instrument separation from the ac-
companiment, typically focusing on singing voice extraction (Durrieu et al.,
2009b; Virtanen et al., 2008b; Hsu and Jang, 2010b). Other works address
the separation of harmonic and percussion components, which has appli-
cations ranging from music transcription to real-time remixing (Helén and
Virtanen, 2005; Ono et al., 2008b; Janer et al., 2012).

Most of these approaches are based on methods of automatic pitch estima-
tion and tracking. While automatic predominant pitch tracking has proven
successful (Marxer et al., 2012), automatic multipitch tracking has not been
widely used in blind source separation tasks due to the complexity of accu-
rate polyphonic multiple f0-frequency estimation (Klapuri, 2003).

Recent approaches have shifted from purely blind-source separation towards
incorporating supervised source separation. They focus on obtaining high
quality results with the help of additional information such as a musical
score (Ewert and Müller, 2012), timbre training (Carabias-Orti et al., 2011;
Rodriguez-Serrano et al., 2012) or pitch information manually provided by
the user (Smaragdis and Mysore, 2009; Durrieu and Thiran, 2012).

Our work addresses the separation of multiple monophonic instrument mix-
tures that are pitch-informed, i.e. pitch contour is provided for each source
in the mix. The assumption is that there is a multipitch detector, able
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to accurately track the pitch contour of each instrument. In our experi-
ments, the pitch contour is estimated from the isolated tracks by means
of a monophonic pitch detection algorithm (de Cheveigné and Kawahara,
2002).

Proposed Extensions To SIMM

In a polyphonic mixture containing several harmonic instruments, one lim-
itation of the SIMM method described in section 6.2 is that only a single
instrument is represented by the harmonic model. We propose two exten-
sions to the SIMM in order to model multiple pitched instruments.

Multiple Excitation Single Filter SIMM

The first extension to the SIMM is to add multiple excitations. This does
not modify the spectrum model in any way. However we do not apply a
monophonicity constraint to Hf0 . Instead we apply a polyphonicity con-
straint that zeroes all the excitations other than those around multiple given
pitches. When estimating the target source spectrum, we set to zero all the
gains Hf0 of the excitations except those around the target instrument
pitch. This method implies all instruments are to be modeled with the
same filter basis W ΓHΓ. In contrast to the existing method SIMM, here
we increase the number of filter basis components KI = K ·NI , proportional
to the number of sources in the mixture.

Multiple Excitation-Filter SIMM

The second extension, the multiple-excitation filter SIMM model, is a gener-
alization of SIMM which assumes that we have multiple source filter models.
Under this assumption the spectrum model becomes:

V̂ msfSIMM =

NL∑
l

(
(W ΓH

l
ΓH

l
Φ)⊗ (W f0H

l
f0)
)

+WMHM (6.25)

Monophonicity constraints are applied to eachH l
f0

, assigning the lth tracked

pitch to H l
f0

. The update rules of this method remain the same as for the
SIMM method (Durrieu et al., 2011). However we must point out that we
have more matrices to update since for each source H l

Γ,H l
Φ and H l

f0
are

different. The mixture spectrogram estimation V̂ msfSIMM is also different
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Figure 6.20: Examples of the source/filter configurations for the existing (SIMM )
and the two proposed methods (ms-SIMM and msf-SIMM ), for the case of a two-
source mixture.

from that of the SIMM. When estimating the spectrum of the target source
we use only the gains H l

Γ,H l
Φ and H l

f0
of the corresponding pitch.

Experimental Setup

The experimental setup proposed in this study is similar to that proposed
in Vincent et al. (2010) and Carabias-Orti et al. (2011). We evaluate the
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separation performance of different spectrum models given the pitch anno-
tations of the different instruments in the mixture.

Test Data

We consider three different multi-track datasets: wind (a wind instruments
quintet), choir (a vocal quartet) and speech (multi-talker speech).

The first dataset is the wind instruments database for the Multiple Funda-
mental Estimation task of the Third Music Information Retrieval Evaluation
Exchange (MIREX2007). This dataset is composed of a woodwind quintet
recording of the fifth variation from Beethoven’s Variations for String Quar-
tet Op.18 No. 5. Each instrument (flute, oboe, clarinet, horn, and bassoon)
was recorded separately while the performer listened to the other parts
(recorded previously) through headphones. The mixtures are generated by
mixing the recordings of the individual instruments, with polyphonies rang-
ing from 2 to 5. This combinatorial process results in a total of 26 individual
mixtures.

The second dataset consists of recordings of four voices (bass, tenor, alto
and soprano) of the choir composition “Water Night”, composed by Eric
Whitacre. Isolated solo recordings were downloaded from the Virtual Choir
site 9. The goal is to observe the effect of having sources with similar tim-
bre (singing voice), pitch contours with overlapping harmonic partials and
polyphonies ranging from 2 to 4. The dataset has a total of 11 mixtures.

We also use a non-musical sample with multi-talker speech signals to observe
the influence of pitch consonance. Speech shows a varying pitch contour
driven by the prosody, and in a situation with simultaneous talkers no
consonance is expected. To build the multitalker dataset, we randomly
selected 10 sentences of four talkers from the GRID corpus (Cooke et al.,
2006). generating four separate signals (one per talker) with a duration of
20 seconds. Here also the polyphonies range from 2 to 4, and the dataset
has a total of 11 mixtures.

Annotation Data

The pitch annotation of each track is carried out automatically using a
monophonic pitch estimation method (de Cheveigné and Kawahara, 2002)

9. These recordings are copyrighted and available online: http://ericwhitacre.com/
the-virtual-choir/resources

http://ericwhitacre.com/the-virtual-choir/resources
http://ericwhitacre.com/the-virtual-choir/resources
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on the individual recordings. The same pitch range (30−1800 Hz) and voici-
ness threshold are used to process all recordings. Pitch data is computed
using a frame rate of 86 fps.

Algorithm parameters

In this experiment, we use the following algorithm parameters for all com-
pared methods and datasets. Input signal has a sampling rate of 44.1 kHz.
The spectrogram is computed using a Sinebell window of 4096 samples,
with a hop size of 512 samples, without zero-padding. The separation algo-
rithm works block-wise, processing consecutive blocks of 1000 frames (11.61
seconds). For the spectrum model we use excitation basis (W f0) with fre-
quencies ranging from 27.5Hz to 2489Hz. The smooth filters (W Γ) are
composed of 60 linearly distributed Gaussians. The timbres (HΦ) are mod-
eled using a linear combinations of KI smooth filters with K = 50. Finally,
we use 40 accompaniment basis components in WM .

Evaluation measures

We use the measures found in the BSSEval toolkit proposed by Vincent
et al. (2006) to objectively compare the results of the different separation
methods. The measures used in this study are: SDR (Signal to Distortion
Ratios), SIR (Source to Interference Ratios) and SAR (Sources to Artifacts
Ratios). To more consistently compare the results of mixtures of different
complexity (datasets and polyphony), we compare the values for each sep-
arated track to an oracle estimator (Vincent et al., 2007a) as a reference
baseline. As in Marxer and Janer (2012), we use an error measure (e.g.
SDR error) which is the difference between the measure obtained by the
oracle estimator and the measure obtained by each separation algorithm.

Results

At first glance the results show a lot of space for improvement in SDR
to achieve results equivalent to the Oracle solution (see Tables 6.3 6.4 6.5):
10dB for speech signals and 16dB for musical signals. However in this work
we focus only on the harmonic components of signals, without attempting
to separate other transient or wideband parts.

There is clear improvement in absolute separation performance of musical
signals with respect to speech signals. This is due to the fact that the
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Polyphony 2 3 4

Method SDR SAR SIR SDR SAR SIR SDR SAR SIR

SIMM 11.2 8.0 17.6 10.3 6.9 17.3 9.9 6.7 17.4

ms-SIMM 10.9 9.0 14.1 9.8 8.0 13.7 9.3 7.8 14.3

msf-SIMM 10.6 9.2 12.9 9.4 8.1 11.3 8.8 7.8 11.6

Table 6.3: BSSEval Results for the speech dataset

Polyphony 2 3 4 5

Method SDR SAR SIR SDR SAR SIR SDR SAR SIR SDR SAR SIR

SIMM 18.6 18.5 20.2 17.5 17.1 21.3 17.1 16.6 21.3 16.7 16.2 21.1

ms-SIMM 17.9 18.7 13.8 15.8 16.8 14.8 15.0 16.2 14.9 14.5 15.9 14.9

msf-SIMM 16.8 17.5 12.9 14.4 15.4 12.5 13.3 14.6 11.9 12.6 14.2 11.3

Table 6.4: BSSEval Results for the wind dataset

Polyphony 2 3 4

Method SDR SAR SIR SDR SAR SIR SDR SAR SIR

SIMM 18.5 17.9 20.2 16.2 15.5 21.0 15.9 14.9 22.9

ms-SIMM 18.4 18.5 14.8 16.4 16.7 15.1 15.2 15.6 14.9

msf-SIMM 15.5 15.1 11.7 13.7 13.0 13.7 12.8 12.2 14.0

Table 6.5: BSSEval Results for the choir dataset

musical signals we focus on are dominated by harmonic components which
lead to larger disjointness of the sources.

The proposed msf-SIMM method outperforms the existing SIMM and the
proposed ms-SIMM method for all the polyphonies and all the datasets,
however for speech signals the improvement is minimal. This can be ex-
plained by the fact that speech signals have very few regions where the
partials of the sources overlap. Western music, on the other hand, is charac-
terized by large regions of pitch consonance, where the sources have pitches
with small integer ratios of frequency. This results in a significant number of
partials overlapping, which is where the multiple source-filter model excels.
This effect is most visible in the choir signals where even the ms-SIMM fails
to show better results than the traditional SIMM method.

Another important result is that the SDR error relative to the Oracle de-
creases as the polyphony increases (see Figure 6.21). At first glance this
result is surprising since it would seem the source separation problem is
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more difficult when more sources are present. In Figure 6.22 we see that
the absolute values of the SDR decrease as the polyphony increases. This
is also the case for the Oracle solution, however this decrease is more pro-
nounced than for the source separation methods.
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Figure 6.21: SDR error by method. Relative separation error decreases with
the proposed methods ms-SIMM and msf-SIMM.

For demonstration purposes, we prepared a web site 10 containing all the
processed audio examples. The quality improvement obtained by the pro-
posed methods is especially noticeable with the wind dataset, where the
instrument timbre is better preserved when using the msf-SIMM method.

Conclusions

We study a very specific audio source separation scenario where the pitch
contours of the different sources in a mixture are known in advance. Al-
though this is not a common real world case, user- and score-assisted mul-
tipitch estimation techniques are becoming more common. We propose a
source separation method especially adapted to these situations. We also
show the types of signals for which this method gives the best performance

10. Audio examples can be found in:
http://www.dtic.upf.edu/~rmarxer/papers/multipitch_separation/

http://www.dtic.upf.edu/~rmarxer/papers/multipitch_separation/
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Figure 6.22: SDR by polyphony. Absolute separation performance decreases
with the polyphony.

improvement over current techniques. The proposed method (msf-SIMM )
generalizes the well known SIMM (Durrieu et al., 2011) to multiple source-
filter models. This differs from the work by Rodriguez-Serrano et al. (2012)
since they perform the pitch estimation automatically and assume knowl-
edge about the instrument’s timbre gained by performing a previous training
stage. In our case the timbre is learned automatically from the signal, how-
ever the pitch of the different sources must be provided. msf-SIMM presents
an improvement with all types of signals, especially music signals where an
improvement of up to 3dB can be observed in the objective evaluations.
This improvement can also be clearly perceived by listening to the results,
showing the timbres of the separated sources to be much more stable and
similar to the original.
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Chapter 7

Conclusions

The work presented in this dissertation was motivated by the need for audio
source separation methods that can be used in a wide range of real-world
audio applications. We focus on two main issues with current separation
techniques: the high latency and computational cost of some techniques
and the low audio quality of others. The specific scenario addressed is the
separation of monaural and stereo instantaneous mixtures of western com-
mercial music. We set our focus on the singing voice, the bass and the
drums, due to their diversity from a signals perspective and their impor-
tance in western popular music. We propose a number of novel approaches
that improve over the state-of-the-art in both low-latency and high-latency
situations.

In low-latency settings we propose the use of Tikhonov regularization as a
low-computational-cost and easy-to-implement technique for spectrum de-
composition. To our knowledge this technique has not been previously used
to perform audio spectrum factorization. This method is then proven use-
ful in a series of tasks covering target source predominant pitch estimation,
multiple pitch estimation, and singing voice, bass and drums separation. In
the high-latency case, singing voice has been extensively studied in source
separation research. Therefore it is harder to make significant improvements
in this scenario. We propose novel methods to handle specific components
of the singing voice that have rarely been tackled in the source separation
literature. These methods focus on breathiness and unvoiced fricatives and
they provide observable improvements in separation quality. We also pro-
pose a series of methods for separating drums in both unsupervised and su-
pervised contexts. Finally we focus on multiple monophonic pitch-informed
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separation.

7.1 Summary of results and contributions

Here we compile the main contributions and results in the order they are
presented in the dissertation. For further details the reader is referred to
the conclusions sections in the relevant chapters.

Novel Spectral Decomposition Approach based on Tikhonov Reg-
ularization The starting point of this work is the proposal to use Tikhonov
Regularization as a spectral decomposition method (Section 4.2). The pro-
posed method targets cases in which the basis matrix is fixed and indepen-
dent from the signal, and in which spectral frames are analyzed one at a
time. Processing the frames one at a time makes this method especially
interesting in low-latency scenarios. The proposed decomposition approach
is then used throughout the low-latency part of this dissertation with basis
matrices specifically designed for each task. The main advantage of this
method is the availability of a closed-form solution, in contrast with the
iterative non-unique solution of the NMF approach. The implementation of
the Tikhonov Regularization is very simple. The processing of each spec-
tral frame consists in performing a common matrix multiplication which
can be easily performed in many embedded architectures and significantly
optimized.

Low-latency Singing Voice Pitch Tracking using Timbre Models
The first task considered for the application of the Tikhonov Regularization
spectral decomposition method is the estimation of the pitch likelihood
(Section 4.3). The basis matrix for the decomposition is composed of a set
of harmonic and wideband spectra. In the context of pitch tracking, the
proposed pitch likelihood estimation method is compared to an approach
based on the well known Harmonic Summation technique. The results show
similar performance for both methods, with the proposed approach having
the added advantage that it also estimates the spectrum of the pitched
source. We also propose a pitch tracking method based on an online Viterbi
algorithm with a limited latency on an HMM (Section 4.3). Furthermore
the tracking algorithm integrates information about the timbre of each pitch
candidate to enforce tracking the target instrument. The timbre information
is based on MFCC features of the harmonic envelope and a trained SVM
classifier. This method tracks the predominant pitch of a specific instrument
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for which the training was performed. The method is compared to pitch
tracking without using timbre information in a task of singing voice pitch
estimation. The proposed method significantly decreases the number of
false positives which is especially interesting in source separation tasks to
avoid the removal/isolation of non-targeted instruments.

Low-latency Multiple Pitch Tracking After the single pitch estima-
tion task we focus on the estimation and tracking of multiple simultaneous
pitches. We present a prototype of a low-latency multiple pitch tracking
system composed of tracking and selection stages. Based on the previous
results, we propose a method to improve the selection and characterization
of candidates in the pitch likelihood function (Section 4.4). The proposed
technique targets pitch likelihood functions created using generative ap-
proaches such as spectral decomposition. The method consists in modeling
the peaks in the likelihood function as Gaussian functions, and using the
divergence between these as a transition probability in the HMM of the
tracking stage. Empirical tests show significant improvements in the pre-
dominant pitch tracking task, however a quantitative evaluation remains to
be done. For the multiple pitch tracking stage, we conceive an extension
to the previous Viterbi algorithm that uses multiple copies of the HMM
and iterative cancellation of the best paths. For the selection stage a set
of pitch contour features that can be computed incrementally is proposed.
Among them we put special attention on one that characterizes octave error
probability of the contour, which is a common issue in multiple pitch estima-
tion using generative models, such as the spectral decomposition based on
Tikhonov regularization. Multipitch estimation and tracking is not a main
objective in this dissertation and the proposed system is not quantitatively
evaluated, however initial tests show promising results.

Real-time Singing Voice Separation using Tikhonov Regulariza-
tion In the context of audio source separation we first focus on the singing
voice (Section 5.3). We develop two low-latency singing voice separation
systems based on the Tikhonov regularization decomposition of the spec-
tra. In the first, we use the previously proposed pitch estimation method
and perform a binary harmonic TF mask separation. A notable result is
that the use of timbre models in the pitch tracking is able to improve the
separation significantly when compared to other real-time methods such as
pan-based TF masks. Another significant result is that there is still room
for improvements to achieve the quality of state-of-the-art high-latency ap-
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proaches. The second system tries to improve over the harmonic binary
mask, by performing Wiener filtering using the Tikhonov regularization de-
composition. To cope with the varying timbres of the singing voice we
propose using a basis matrix composed of filtered harmonic components
that, linearly combined, can reconstruct multiple harmonic envelopes. In
this case the number of basis components increases the computational cost
as well. However the proposed Tikhonov regularization decomposition re-
mains significantly less computationally costly than standard NMF while
achieving similar separation quality in a simple low-latency singing voice
isolation task.

Real-time Drums Separation using Tikhonov Regularization An-
other contribution of our work is the use of Tikhonov regularization spectral
decomposition in a drums separation task (Section 5.4). We propose a sys-
tem that estimates the percussion spectrum with a single frame of latency
based on the harmonicity of the spectral bins and the transient quality of the
spectral peaks. The harmonicity is estimated by picking peaks in the pitch
likelihood function and computing the respective harmonic TF masks. A
transient mask is computed using the center of gravity of the spectral peaks.
The combination of both masks is used to separate the percussive source.
Objective evaluation and informal listening tests show that the proposed
method achieves separation quality similar to other existing methods while
presenting significantly lower latency and computational cost. Another im-
portant result is that the artifacts error of the proposed method remains
significantly higher than that of the high latency separation approach.

Real-time Bass Separation using Tikhonov Regularization The
last contribution presented in the field of low-latency source separation is
a technique to separate the bass source in real-time (Section 5.5). This
method is similar to the previously presented technique for drums sepa-
ration. In this case the basis matrix is adapted to better represent bass
sources. The energy of the harmonic components of bass pitches is limited
above a given cutoff frequency. Additionally the bass pitch selection makes
use of the likelihood peak contrast in order to disambiguate between bass
and other similar spectra. The method achieves separation results similar to
a state-of-the-art high-latency method and significantly better than simply
applying a low-pass filter. As in the case of the drums, there is still room
for improvement in terms of artifact errors with respect to high latency
methods.
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High-latency Breathiness Estimation in Singing Voice Separation
In the context of improving existing high-latency source separation methods
our first contribution is a method to estimate and separate the breathiness
component of the singing voice (Section 6.3). The spectral shape of the
breathiness component is estimated using the harmonic envelope and an
estimation of the glottal source based on the harmonic magnitudes. The
relative energy of the breathiness with respect to the harmonic component
of the voice is manually set with a parameter. The results show that inte-
grating the estimated breathiness component into a state-of-the-art singing
voice separation method improves the objective perceptual-related separa-
tion measures. This objective result is confirmed in informal listening tests.
The proposed method can also be integrated into other source separation
techniques, including low-latency approaches since only the pitch value of a
single frame is needed.

High-latency Unvoiced Fricatives Estimation in Singing Voice Sep-
aration Another contribution in the context of high-latency source sep-
aration methods is the separation of unvoiced fricative consonants (Sec-
tion 6.4). To account for unvoiced fricatives in the singing voice we pro-
pose using semi-supervised NMF in conjunction with the existing SIMM
method. The basis components to represent fricatives are learned from iso-
lated audio recordings. We propose transient-based NMF constraints to
disambiguate between fricatives and similar percussive sources in the mix-
ture. The method slightly improves the separation of the singing voice in
perceptual-oriented objective tests and in listening to the results we notice
that many of the fricatives are conserved in the isolated signal.

High-latency Drums Separation using NMF Regularizations and
Transient / Annotation-based Constraints The other instrument
considered in the high-latency separation scenario is percussion. We present
two different methods that extend SIMM to separate drums. The first
method uses a temporal continuity NMF regularization on the accompa-
niment gains to separate them from the drums components. Furthermore
we test using temporal sparsity and frequency smoothness regularizations
for the drums gains and basis respectively. The second method is based on
NMF constraints derived from estimated transients or human annotations.
The use of regularizations for the drums does not show any overall perfor-
mance improvement over simply regularizing the accompaniment gains, but
we observe that this behavior is highly dependent on the analyzed signal.
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The evaluation conducted on the second method shows that using manual
annotations of the drum positions significantly improves separation perfor-
mance with respect to existing methods.

Study the Effect of Multiple Source-Filter Models in the High-
latency SIMM-based Separation Finally we extend the SIMM method
to perform separation of mixtures with multiple monophonic sources in
a pitch-informed scenario (Section 6.6). We propose three different ap-
proaches. The first is the original SIMM with a single source-filter model.
The second is a model with multiple sources but a single set of filters for all.
The third assigns each source in the mixture an independent source-filter
model. The contribution is a study of the performance differences in sepa-
ration between the three methods. The results show that good results can
be obtained with accurate pitch information. Another observation is that
the improvement in separation results is more noticeable in music signals
than in speech, probably due to harmonicity.

7.2 Future work

There is growing interest in low-latency and computationally inexpensive
source separation methods in the context of music processing. We have
shown that by making certain assumptions and imposing some restrictions
we were able to significantly lower the latency and computational cost of
existing methods. There is still a long way to go in terms of improving both
the performance and the latency of music source separation. One possible
future direction is to use prediction models, which are being widely studied
in the field of music cognition (Hazan et al., 2009; Marchini and Purwins,
2010). These models could exploit the history of the music signal in order
to improve the separation of the current frame.

The focus in the high-latency scenario is shifting towards exploiting user
guidance or assistance to improve the separation. This research direction
centers on minimizing human effort while maximizing the acquisition of
information useful for the separation process. This research path is gaining
traction with the arrival of new HCI techniques, such as multi-touch screens,
depth cameras and Brain Computer Interaction (BCI) apparatus.

Furthermore, the fact that the role of the human is becoming more im-
portant in source separation scenarios will motivate even further the de-
velopment of low-latency techniques. Rich interaction usually requires an



7.2. future work 221

immediate response of the system with a preview of the expected result.
In the spirit of What You See Is What You Get (WYSIWYG) editing sys-
tems in the graphics and text worlds we could imagine a What You Hear Is
What You Get (WYHIWYG) source separation paradigm. We could also
imagine the use of Brain Computer Interaction technologies to develop sys-
tems where the user guides the source separation process towards isolating
the audio components on which he is focusing. These developments will
require research in combined low-latency and user-guided source separation
techniques.

More specifically many of the topics covered in this dissertation can be
further developed and studied in order to improve audio source separation
in both low-latency and high-latency scenarios. We here list several possible
future directions of this work:

Theoretical Analysis of How NMF Compares To Tikhonov Reg-
ularization solutions Given the extensive work done in NMF and the
promising results of applying Tikhonov regularization to spectral decom-
position, pitch estimation and source separation, it would be useful to un-
derstand how these two solutions compare from a theoretical point of view.
In Section 5.3 we compare the two factorization methods in terms of re-
construction error and separation capability of the predominant harmonic
source. In this study only the standard NMF algorithm is considered, how-
ever an interesting future study could also consider NMF with a sparsity
regularization term, since its objective function is more similar to that of
Tikhonov regularization. Furthermore, a theoretical analysis could allow us
to better understand how these results extrapolate to other basis matrices
and signals.

Different Tikhonov Matrix Regularizations Throughout this disser-
tation we present several instantiations of the Tikhonov solution with differ-
ent regularization terms. In its simplest form the Tikhonov regularization
selects solutions with minimum norm. A more refined version regularizes
the factorization using the norms of the components normalized by their
energy. Finally, in a more advanced approach we propose using as regular-
ization, the correlation between the pitch candidates, reducing coactivations
of pitches with harmonic relations (e.g. octaves and fifths). There is still
a lot of room for improvement in this direction. One idea is to perform
training on the covariance matrix of known sources and use this as regular-
ization. In a similar manner we could perform a weighting on the spectral
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bins to give more importance to those where the target instrument has a
higher probability of having energy. However, one must note that these
regularizations must be independent of the signal in order to maintain the
computational cost of factorizing each spectral frame low.

Parameter Study of the Filtered Harmonic Candidates Basis In
Section 5.3 we propose a novel harmonic basis matrix composed of filtered
pitch candidates that permits correct reconstruction of multiple different
timbres. The tests are conducted with a single Mel-scale filterbank that tries
to accommodate simultaneously the whole range of targeted instruments.
However significant improvements could be made in terms of reconstruction
and interpretability of the decomposition with filterbanks that are better
adapted to the analyzed signals. In the field of singing voice one could
use filterbanks that are specifically built to better reconstruct the formant
structure of the singing voice. For the bass we could develop filterbanks
that only cover the low and mid frequency range.

Evaluation and Improvements for the Low-latency Multipitch Es-
timation and Tracking The work we present in low-latency multi-pitch
estimation is highly preliminary and only intends to demonstrate that Tikhonov
regularization spectral decomposition can be useful for that specific task un-
der low-latency constraints. The first subjective results are promising and
an objective and comparative evaluation must be conducted. Given the
high number of parameters involved this evaluation is not straight forward,
and an extensive parameter grid search should be performed to achieve op-
timal results. In terms of the proposed pitch contour selection features,
the octave error method should be tested with pitches maintaining other
harmonic relations, such as fifths and thirds. This method could also be
integrated into other multipitch estimation approaches. Furthermore the
development of new features, such as pitch contour correlations, could lead
to more accurate pitch estimation results.

Improvements to Low-latency Source Separation In the low-latency
source separation side there is still much space for improvement and opti-
mization. The proposed Wiener filtering separation method for the singing
voice (Section 5.3) should be integrated with the low-latency predominant
pitch estimation method that we propose and compared with existing tech-
niques. Another quality improvement could be achieved by performing a
more advanced selection of the pitch candidates when reconstructing the
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target spectra. Currently the target pitch is selected by binary masking the
gains resulting from the Tikhonov regularization decomposition. We could
use a technique similar to that presented in Section 4.4, where the peaks
are modeled using Gaussian functions, leading to a smoother masking of
the gains and probably more accurate separation. Another direction for
future research is the optimization of the Tikhonov regularization spectral
decomposition when the basis matrix is large. In the case of singing voice
separation, we use filtered harmonic components for a large range of pitches,
this leads to a high number of basis components and therefore a large reso-
lution matrix. Many coefficients of the basis are close to 0 and by allowing
a certain amount of error many operations could be avoided while lowering
the computational cost of the method.

Non-harmonic Components in Singing Voice Separation An obvi-
ous improvement in the estimation of the singing voice breathiness compo-
nent is to estimate the gain automatically from the mixture. We foresee two
main possible approaches to achieve this. One may exploit the regularity of
the background music to find the gain using the difference between voiced
and unvoiced frames. Another option is to estimate the gain making use of
the fact that the breathiness is an amplitude modulated noise with a mod-
ulation rate equal to the pitch of the singing voice (Mehta and Quatieri,
2005). There are also many singing voice components that remain to be
addressed. In Section 6.4 we propose a method to tackle unvoiced fricative
consonants, which we also try to apply without success to other consonants
such as plosives and trills. These consonants may require a special treatment
because their timbral evolution in time is very diverse and instantaneous
characterization of their spectrum may not be sufficient. More work on
these and other phonemes will certainly lead to a more accurate separation
of the singing voice.

Advances in Constraint-based Drums Separation The proposed
regularization-based approach to drums separation (Section 6.5) does not
provide any improvement over existing methods. The constraints-based
method (Section 6.5) shows that accurate drum event positions can be used
to achieve very good separation results. An obvious followup of this work
is to automatically estimate the drum positions from the mixture. There
is extensive research in the MIR community addressing such a task, and
it could be used directly for the separation of drums. We show that with
our specific configuration, the classification of the different drums does not



224 conclusions

necessarily improve the separation, and may therefore not be necessary.
However in the case where each of the percussive instruments may have
especially adapted constraint parameters, this classification would proba-
bly lead to an improvement. Another future research direction might be to
split the method into two steps, a first step dedicated to learning the drums
basis from the mixture and a second step in which the basis is set constant
and only the gains are learned. This would allow considering only drum
positions with high confidence for the basis learning step which could lead
to a better separation and might better tolerate errors in the drum position
estimation.

7.3 Outcomes

Several methods and experiments presented in this dissertation have been
published in the following scientific articles:

– R. Marxer, J. Janer, and J. Bonada. Low-Latency instrument separation
in polyphonic audio using timbre models. Latent Variable Analysis and
Signal Separation, pages 314–321, 2012
This article presents a method for the removal of the singing voice based
on time-frequency binary masks resulting from the combination of az-
imuth, phase difference and absolute frequency spectral bin classifica-
tion and harmonic-derived masks as described in Section 5.2. For the
harmonic-derived masks it uses the pitch likelihood estimation technique
based on Tikhonov regularization and supervised timbre models from
Section 4.3.

– R. Marxer and J. Janer. A Tikhonov regularization method for spec-
trum decomposition in low latency audio source separation. In Proceed-
ings IEEE Int. Conference on Acoustics, Speech and Signal Processing
(ICASSP’2012), March 2012
The comparison between the NMF and Tikhonov regularization spectral
decomposition methods (see Section 5.3) for the singing voice separation
task was presented in this article.

– J. Janer, R. Marxer, and K. Arimoto. Combining a harmonic-based NMF
decomposition with transient analysis for instantaneous percussion sepa-
ration. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on, pages 281–284. IEEE, 2012
This work presents the use of NMF spectral decomposition in the task
of drums separation. This study is similar to the one presented in Sec-
tion 5.4, where Tikhonov regularization spectral decomposition is used
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instead.
– J. Bosch, K. Kondo, R. Marxer, and J. Janer. Score-informed and tim-

bre independent lead instrument separation in real-world scenarios. In
Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th
European, pages 2417–2421, aug. 2012
This article shows how score information can be integrated into the low-
latency pitch estimation technique presented in Section 4.3.

– R. Marxer and J. Janer. Realtime Bass Separation using Harmonic-
Percussion Decomposition. In Proc. (DAFx) International Conference
on Digital Audio Effects, Dublin, Ireland, 2013a. (accepted)
This paper covers the low-latency real-time bass separation method pre-
sented in Section 5.5.

– R. Marxer and J. Janer. Modelling and Separation of Singing Voice
Breathiness in Polyphonic Mixtures. In Proc. (DAFx) International Con-
ference on Digital Audio Effects, Dublin, Ireland, 2013b. (accepted)
The singing voice breathiness component estimation and its integration
into a source separation system found in Section 6.3 is presented in this
study.

– J. Janer and R. Marxer. NMF-based Separation of Unvoiced Fricatives in
Singing Voice Music Mixtures. In Proc. (DAFx) International Conference
on Digital Audio Effects, Dublin, Ireland, 2013. (accepted)
This paper presents the estimation of fricative components using semi-
supervised NMF and its use in the task of singing voice isolation (see
Section 6.4).

– R. Marxer and J. Janer. Use of regularizations and constraints in NMF-
based drums monaural separation. In Proc. (DAFx) International Con-
ference on Digital Audio Effects, Dublin, Ireland, 2013c. (accepted)
This article presents the drums separation study from Section 6.5.

Additionally the following patents are related to the research presented in
this thesis:
– Y. Umeyama, K. Kondo, Y. Takahashi, J. Bonada, J. Janer, and R. Marxer.

Graphical Audio Signal Control, February 7 2012. US Patent App. 13/367,696
This patent is related to the work described in Section 5.2, where binary
masks based on spectral bin features are used in combination with human-
controlled parameters.

– J. Bonada, J. Janer, R. Marxer, Y. Umeyama, K. Kondo, and F. Garcia.
Technique for Estimating Particular Audio Component, May 3 2012b. US
Patent 20,120,106,746
This patent relates to the method of low-latency target source predom-
inant pitch estimation and tracking using timbre models. Part of the
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research leading to this patent is found in Section 4.3 of this dissertation.
– J. Bonada, J. Janer, R. Marxer, Y. Umeyama, and K. Kondo. Technique

for Suppressing Particular Audio Component, May 3 2012a. US Patent
20,120,106,758
This patent covers some of the separation methods that we propose in
Section 5.3.

Furthermore Yamaha Corp. has applied for three more patents related to
the research conducted and presented in this dissertation. At time of print-
ing the details about these three patent applications cannot be disclosed.
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Appendix A

Other Signal Representations

Several methods have been proposed to overcome the problem of finding
a good tradeoff between frequency and temporal localization in signal rep-
resentations. In this Appendix we review some of the methods that are
specially relevant to the analysis and processing of music signals.

Multiresolution Dressler (2006) proposes a fast multiresolution STFT
that uses a different analysis window for each frequency band, larger win-
dows for low frequency bands and smaller windows for high frequency
ranges:

s[n] =

M−1∑
t=0

N−1∑
ω=0

cmstftt,ω wω[n− tH]ei2π
ω
N
n (A.1)

where wω[n] for n ∈ [0, L− 1] are the windowing functions of length L
and H is the hop size of the windowing function, with different magnitudes
depending on the frequency index ω. The expansion coefficients are simply
computed as:

cmstftt,ω =
1

N

L−1∑
ω=0

s[n− tH]wω[n]e−i2π
ω
N
n (A.2)

The multiresolution STFT has a much higher computational cost due to
using different windowing for the different frequency bands. However an
approximation has been proposed where the different windows are applied
in the frequency domain by the use of a convolution. Since we normally
use windows that have a large main lobe and very low side lobes, we can
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approximate the DFT of the window by setting to zero all the coefficients
that are far away from the center. This approximation significantly reduces
the computational cost and has the additional advantage of being able to
use the well-established FFT and perform one single transform of the signal
per frame, on the other hand the FFT performed must be the size of the
largest window in the multiresolution analysis.

crt,ω =
1

N

L−1∑
ω=0

s[n− tH]e−i2π
ω
N
n (A.3)

cmstftt,ω = crt,ω ∗Wω (A.4)

where Wω[ω] is the DFT transform or the approximation of the DFT of the
window used for bin ω.

Other multiresolution techniques (Zhou et al., 2009) may also reduce the
computational cost in exchange for complexity, using recursive decimation
and filtering followed by analysis.

While the multiresolution STFT allows modifying the frequency-temporal
resolution depending on the frequency, the frequency scale of the coefficients
still lies on a linear axis in Hertz. Numerous studies have proposed the use
of different frequency scales (Mel, Bark, Constant-Q,...) that are more
adapted to human auditory perception characteristics (Brown, 1991).

Matching Pursuit All of the previous signal representations are based
on a previously known and fixed set of basis functions. For the waveform
the basis functions are shifted diracs and for the DFT and STFT they are
complex exponentials. Another family of representations called adaptive
basis representations represents a signal by using a basis that is adapted to
the specific signal being analyzed.

One of the most popular algorithms used to calculate such representations
is the Matching Pursuit (MP) (Mallat and Zhang, 1993) technique. It is
a greedy iterative solution that starts with the signal and at each step
matches the residual of the previous step to all the functions in a dictionary
gi[n] ∈ D of possible basis functions in search of the maximally matching
function. Then it removes the match from the residual leading to a new
residual. This can be expressed as:
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ω = 0
rω[n] = s[n]
while continue criterion do
gmatch[n] = arg maxgi∈D(‖〈rω[n], gi[n]〉‖)
bω = gmatch[n]
cmpω = 〈rω[n], gmatch[n]〉
rω+1[n] = rω[n]− cmpω bω
ω = ω + 1

end while

where the continue criterion can take several forms depending on the appli-
cation (e.g. ‖rω[n]‖ >= threshold). 〈x,y〉 denotes the inner product. The
basis B of the MP representation is a subset of the dictionary D. This can
also be seen as D being the basis, with 0 coefficients for the elements in
D which are not in B. The computation of the inner product 〈rω[n], gi[n]〉
can be done recursively using previously calculated 〈gi[n], gj [n]〉.

An extension to this technique named Orthogonal Matching Pursuit (OMP)
(Pati et al., 1993; Davis et al., 1994) leads to faster convergence when using
non-orthogonal dictionaries D. The difference between OMP and MP is
that at each step the coefficients compω are updated in order to keep the
residual orthogonal to the subspace spanned by bi|∀i ∈ 1 . . . ω. The update
of compω can then be performed recursively using previously calculated inner
products of the basis functions.

In all these cases there is no discussion about how to determine a good dic-
tionary D. However some studies have targeted the problem of dictionary
learning and of how these learned dictionaries relate to other known and
established bases. In the context of audio Smith and Lewicki (2006) com-
pared the basis learned using an MP technique to the gammatone filters
that play an important role in the modeling of human and animal auditory
perception.

Empirical Mode Decomposition (EMD) Another popular technique
for deriving a time frequency representation of the signal using an adap-
tive basis is known as Empirical Mode Decomposition (EMD). EMD is a
specific case of adaptive basis representation in which the basis is derived
directly from the signal being analyzed. These methods are often known
as data-driven or data-fusion transformations. The EMD method earned
its popularity due to the fact that the Intrinsic Mode Function (IMF) com-
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ponents into which the signals are decomposed are well suited for Hilbert
Spectral Analysis (HSA). The HSA of the IMF leads to an easy estimation
of the instantaneous frequencies of the individual components. The coupling
of these two methods was proposed by Huang et al. (1996, 1998, 1999) and
was named the Hilbert-Huang Transform (HHT). The HHT is especially
interesting for the analysis of non-stationary and non-linear signals.

The EMD method consists in finding the set of IMFs that compose a given
signal. An IMF is defined as a function with an equal (or different by
1) number of extrema and zero-crossings and with a symmetric extrema
envelope. In other words, the mean between the envelope defined by the
local maxima and the one defined by the local minima must be 0 or close to
0. An IMF component is similar to a harmonic in a DFT or STFT, however
instead of having a constant amplitude and frequency, its amplitude and
frequency can vary as a function of time.

The algorithm used to extract the IMF components can be described using
an operation named sifting and defined as follows:

ω = 0
rω[n] = s[n]
while continue decomposition criterion do
i = 0
giω[n] = rω[n]
while continue sifting criterion do

Identify the local extrema of giω[n]
Estimate a curve eup[n] for the support of giω[n] connecting the
local maxima
Estimate a curve elo[n] for the support of giω[n] connecting the local
minima
gi+1
ω [n] = giω[n]− (eup[n]+elo[n])

2
i = i+ 1

end while
bω = gi+1

ω [n]
rω+1[n] = rω[n]− bω
ω = ω + 1

end while

We note that given this representation, the coefficients cemdω can be consid-
ered equal to 1. Similarly we can normalize the IMF components bω and
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then the normalization factor becomes cemdω . The first criterion for contin-
uing the sifting, proposed by Huang et al. (1998), is similar to a Cauchy
convergence test, and consists in a threshold on the sum of differences:

SDω =

∑
n

∣∣gi+1
ω [n]− giω[n]

∣∣2∑
n |giω[n]|2

(A.5)

Applying a Hilbert filter on the IMF components gives the following expres-
sion for the signal:

s(t) = <

(∑
ω

aω[n]ejΦω [n]

)
(A.6)

where aω[n] is the amplitude envelope of the IMF component ω and Φω[n]
is the instantaneous phase.

From this expression it is easy to estimate the instantaneous frequency as
the time derivative of the unwrapped instantaneous phase.

Given the empirical and algorithmic nature of this representation there has
been significant research into explaining it’s properties mathematically. Wu
and Huang (2004) find empirically that EMD is in practice a dyadic fil-
ter. Flandrin et al. (2004) relate the method to adaptive constant-Q filter
banks. Rilling et al. (2003) show different variations of the EMD stan-
dard algorithm. The authors compare different stopping criteria as well as
an online version of the EMD algorithm, which performs the transforma-
tion using a limited amount of previous data. The results from the study
also support the interpretation of the representation in terms of adaptive
constant-Q filter banks.

Instantaneous frequency / Spectral reassignment Another type of
representation which has long been useful in the field of audio and music
analysis is the family of spectrum reassignment transforms (Auger and Flan-
drin, 1995). These methods derive from the interpretation of the STFT as
a filterbank. Each output of a filter can be represented in polar coordinates
as:

S(ω, t) = ea(ω,t)+jΦ(ω,t) (A.7)

where a(ω, t) is the instantaneous amplitude and Φ(ω, t) the instantaneous
phase. Their values can be isolated and expressed as:

a(ω, t) = <(log(S(ω, t))) (A.8)

Φ(ω, t) = =(log(S(ω, t))) (A.9)
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From these expressions the instantaneous frequency can be estimated as:

ω̂(ω, t) =
∂

∂t
Φ(ω, t) = =

(
∂S
∂t

S

)
(A.10)

It is easy to show that:

∂S

∂t
= −Sw′ + jωS (A.11)

where Sw′ is the DFT of our signal using the derivative of the window used
for the computation of S. Therefore the instantaneous frequency can be
expressed as:

ω̂(ω, t) = ω −=
(
Sw′

S

)
(A.12)

In addition to the instantaneous frequency, other Frequency Modulation
(FM) parameters can be derived in the same manner by the use of higher
order derivatives (Musevic and Bonada, 2010). We may also estimate the
Amplitude Modulation (AM) parameters using the same technique. In that
case the group delay t̂(ω, t) can be computed as:

t̂(ω, t) = t+ <
(
Stw
S

)
(A.13)

where Stw is defined as the DFT of our signal using the window multiplied
by the time function.

Once these parameters have been estimated we may use them in order to
construct spectral representations better tailored for our needs. Several
derived representations have been proposed over the years. Probably the
most popular of them all is the reassigned spectrum. This representation
consists in reassigning the magnitude or energy from each bin of the S to
the frequency position corresponding to the instantaneous frequency. This
reassignment procedure can be also be performed in the temporal domain
using the estimation of the group delay t̂(ω, t). Our reassigned spectrum
can be then defined as:

Ŝ(ω̂(ω, t), t̂(ω, t)) =
∑
∀ω t
‖S(ω, t)‖ (A.14)
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Abe et al. (1997) proposed another representation based on the instan-
taneous frequency called the IF spectrum which is a modified amplitude
spectrum:

cifspecω,t =
1

∆ω̂

∫
ω̂<ω̂(ω,t)<ω̂+∆ω̂

‖S(ω, t)‖dω (A.15)

Dominance Nakatani and Irino (2004) proposed a measure of degree of
dominance and a spectrum based on it called the dominance spectrum. The
degree of dominance D(ω, t) represents the magnitude of a harmonic com-
ponent relative to other components in each bin. This measure is computed
as:

cdominanceω,t = 10 log10(1/B2(ω, t)) (A.16)

B2(ω, t) =

∫ ω+∆ω/2
ω−∆ω/2 (ω̂(ω′, t)− ω)2S(ω′, t)2dω′∫ ω+∆ω/2

ω−∆ω/2 S(ω′, t)2dω′
(A.17)

where B2(ω, t) is a local average of the deviation of each bin’s frequency
from the instantaneous frequency weighted by the spectrum’s energy. This
measure is low for bins where the instantaneous frequency is close to the
bin’s frequency.
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