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Abstract

The automatic analysis of musical rhythm from audio, and more speci�cally
tempo and beat tracking, is one of the fundamental open research problems
in Music Information Retrieval (MIR) research. Automatic beat tracking is
a valuable tool for the solution of other MIR problems, because enables the
beat-synchronous analysis of music for tasks such as: structural segmentation,
chord detection, music similarity, cover song detection, automatic remixing
and interactive music systems. Even though automatic rhythm description is
a relatively mature research topic in MIR and various algorithms have been
proposed, tempo estimation and beat tracking remain an unsolved problem.
Recent comparative studies of automatic rhythm description systems suggest
that there has been little improvement in the state of the art over the last few
years. In this thesis, we describe a new method for the extraction of beat times
with a con�dence value from music audio, based on the measurement of mu-
tual agreement between a committee of beat tracking systems. Additionally,
we present an open source approach which only requires a single beat tracking
model and uses multiple onset detection functions for the mutual agreement.
The method can also be used to identify music samples that are challenging
for beat tracking without the need for ground truth annotations. Using the
proposed method, we compiled a new dataset that consist of pieces that are dif-
�cult for state-of-the-art beat tracking algorithms. Through an international
evaluation framework we show that our method yields the highest AMLc and
AMLt accuracies obtained in this evaluation to date. Moreover, we compare
our method to 20 reference systems using the largest existing annotated dataset
for beat tracking and show that it outperforms all of the other systems under
all the evaluation criteria used. In the thesis we also conduct an extensive
comparative evaluation and combination of automatic rhythm description sys-
tems. We evaluated 32 tempo estimation and 16 beat tracking state-of-the-art
systems in order to identify their characteristics and investigated how they can
be combined to improve performance. Finally, we proposed and evaluated the
use of voice suppression algorithms in music signals with predominant vocals
in order to improve the performance of existing beat tracking methods.
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Resumen

El análisis automático musical del ritmo en audio, y más concretamente el
tempo y la detección de beats (Beat tracking), es uno de los problemas fun-
damentales en recuperación de información de Musical (MIR). La detección
automática de beat es una valiosa herramienta para la solución de otros pro-
blemas de MIR, ya que permite el análisis sincronizado de la música con los
beats para tareas tales como: segmentación estructural de musica, detección
de acordes, similitud músical, la detección de versiones de una cancion, mezcla
automática de canciones y sistemas interactivos músicales. Aunque la descrip-
ción automática de ritmo es un area de investigación relativamente madura
en MIR y diversos algoritmos se han propuesto, la estimación tempo y la de-
tección de beats siguen siendo un problema sin resolver. Recientes estudios
comparativos de estos sitemas sugieren que ha habido pocas mejoras en el es-
tado del arte en los últimos años. En esta tesis, describimos un nuevo método
para la extracción de beats en señales de audio que mide el grado de con�anza
de la estimación, basado en la medición del grado de similitud entre un comité
de sistemas de detección de beats. Además, se presenta una variante a este
metodo que sólo requiere de un modelo único de detección de beats y que uti-
liza varias funciones de detección de onsets como comité para la estimación de
similitud. Estos métodos se puede utilizar también para identi�car canciones
que son difíciles para la detección de beats sin la necesidad de intervención
humana. Utilizando el método propuesto, Hemos compilado una nueva base
de datos que se compone de piezas que son difíciles para los algoritmos de
detección de beats. A través de una evaluación internacional se demuestra que
nuestro método proporciona el más alto resultado en las medidas de ALMc
y AMLt obtenidas en esta evaluación hasta la fecha. Además, comparamos
nuestro método con 20 sistemas de referencia en la mas grande base de datos
existente para la detección de beats y demostramos que supera a todos los
otros sistemas en todos los criterios de evaluación utilizados. En este trabajo
también llevamos a cabo una extensa evaluación comparativa de los sistemas
actuales de descripción automática ritmo. Para esto, Evaluamos 32 algoritmos
de tempo y 16 sistemas de detección de beats que re�ejan el estado del arte
en el area con el �n de identi�car sus características e investigar la forma en
que se pueden combinar para mejorar el rendimiento en esta area. Por último,
proponemos y evaluamos el uso de algoritmos de supresión de voz para señales
de música con voz predominante con el �n de mejorar el rendimiento de los
métodos de detección de beats.
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CHAPTER 1
Introduction

�If I have seen further it is by standing on the shoulders of giants�

- Sir Isaac Newton -

1.1. Motivation

Rhythm, along with harmony, melody and timbre, are one of the most fun-
damental aspects of music, sound, by its very nature, is temporal while the
word rhythm, in its most generic sense, is used to refer to all of the temporal
aspects of a musical work, whether it is represented in a score, measured from
a performance, or existing only in the perception of the listener. In order to
build a computer system capable of intelligently processing music, it is essential
to design representation formats and processing algorithms for the rhythmic
content of music (Gouyon & Dixon, 2005).
The content analysis of musical audio signals has received increasing atten-
tion from the research community, speci�cally in the �eld of music information
retrieval (MIR) (Pampalk, 2006). MIR aims to retrieve musical pieces by pro-
cessing not only text information, such as artist name, song title or music
genre, but also by processing musical content directly in order to retrieve a
piece based on its rhythm or melody (Typke et al., 2005). Since the earli-
est audio beat tracking systems by Dixon (1997); Goto & Muraoka (1994);
Scheirer (1997) in the mid to late 1990s, there has been a steady growth in
the variety of approaches developed and the applications to which these beat
tracking systems have been applied. The use of automatic rhythm description
has become a standard tool for solving other MIR problems, e.g. structural
segmentation (Levy & Sandler, 2008), chord detection (Mauch et al., 2009),
music similarity (Holzapfel & Stylianou, 2010), cover song detection (Ravuri
& Ellis, 2010), automatic remixing (Hockman et al., 2008) and interactive mu-
sic systems (Robertson & Plumbley, 2007); by enabling �beat-synchronous�
analysis of music.
While many di�erent beat tracking and tempo estimation techniques have
been proposed over the last �ve years, e.g. for beat tracking (Böck & Schedl,
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2 CHAPTER 1. INTRODUCTION

2011; Davies & Plumbley, 2007; Degara et al., 2012; Dixon, 2007; Ellis, 2007;
Peeters, 2009) and for tempo estimation (Gainza & Coyle, 2011; Gkiokas et al.,
2010; Peeters, 2010), recent comparative studies of rhythm description systems
suggest that there has been little improvement in the state of the art over the
last seven years (McKinney et al., 2007) and the method by Klapuri et al.
(2006) is still widely considered to represent the state of the art for both tasks.
Current approaches for rhythm description focus on the analysis of mainstream
popular music with clear and stable rhythm and percussion instruments, which
facilitates this tasks. These approaches mainly consider periodicity of intensity
descriptors (principally onset detection functions) to locate the beats, and then
to estimate the tempo. Nevertheless, they usually fail when they are analyzing
other music genres like classical music, because this type of music presents
tempo variations; in other words, it does not include clear percussive and
repetitive events. The same problem appears with acapella or choral music
(only singing voice with a �xed and evident periodic rate), acoustic music,
some jazz and pop music (Gouyon & Dixon, 2005).
While the e�cacy of automatic rhythm description systems can be evaluated
in terms of their success of these end-applications, e.g. by measuring chord
detection accuracy, considerable attention has been given to the beat tracking
the evaluation of through the use of annotated test databases in particular the
MIR community has made a considerable e�ort to standardize evaluations of
MIR systems. As part of this e�ort, there are speci�c tasks in the Music In-
formation Retrieval Evaluation eXchange (MIREX)(Downie, 2008) initiative
to evaluate audio beat tracking and tempo induction systems. In the small
number of comparative studies of automatic beat tracking algorithms with hu-
man tappers (Collins, 2006; Davies & Plumbley, 2007; Holzapfel et al., 2012b;
McKinney et al., 2007; Scheirer, 1998) musically trained individuals are gene-
rally shown to be more adept at tapping the beat than the best computational
systems. Given this gap between human performance and computational beat
trackers, we consider that beat tracking is not yet a solved problem.

1.2. De�nitions

Musical rhythm is used to refer to the temporal aspects of a musical work
and its components are Beat, Tempo, Meter, Timing and Grouping presented
in Figure 1.1. For the sake of understanding the computational approaches
of automatic rhythm description methods it is important to emphasize the
di�erence between musical pulse and beat. It is often, incorrectly assumed
that the musical pulse which can be felt by a human being corresponds to a
beat. To address that we have focused our research on automatically estimate
the musical beats in audio signals (Beat tracking) and tempo estimation related
to the beats per minute in a song.
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Figure 1.1: Rhythm Components

1.2.1. Pulse

Musical pulse is de�ned by Cooper & Meyer (1960) as:

�One of a series of regularly recurring, precisely equivalent stimuli

... Pulses mark o� equal units in the temporal continuum.�

In a perceptual way, Berry (1987) de�ned pulse as:

�The felt, underlying, at times regularly recurrent unit by which

music's times span is measured and its division felt at some speci�c

level.�

Commonly, �pulse� and �beat� are often used indistinctly and refer both to one
element in such a series and to the whole series itself. It is not always correct to
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assume that the pulse indicated in a score (Maelzel Metronome) corresponds
to the �foot-tapping� rate, nor to the actual �physical tempo� that would be
an inherent property of audio streams (Drake et al., 1999).

1.2.2. Beat

Beat is de�ned by Berry (1987) as:

�The basic unit of time, the pulse of the mensural level.�

Additionally, Handel (1989) describes the relation between beat and pulse as:

�Typically what listeners entrain to as they tap their foot or dance

along with a piece of music.�

The beat perception is an active area of research in music cognition, in which
there has long been an interest in the cues listeners use to extract a beat.
Temperley & Bartlette (2002), list six factors that most researchers agree are
important in beat �nding (i.e., in inferring the beat from a piece of music).
These factors can be expressed as preferences:

1. for beats to coincide with note onsets.

2. for beats to coincide with longer notes.

3. for regularity of beats.

4. for beats to align with the beginning of musical phrases.

5. for beats to align with points of harmonic change.

6. for beats to align with the onsets of repeating melodic patterns.

1.2.3. Tempo

Tempo, is de�ned as the number of beats in a time unit (usually the minute).
There is usually a preferred pulse, which corresponds to the rate at which most
people would tap or clap in time with the music. However, the perception
of tempo exhibits a degree of variability. Di�erences in human perception of
tempo depend on age, musical training, music preferences and general listening
context (Lapidaki, 1996). They are, nevertheless, far from random and most
often correspond to a focus on a di�erent metrical level and are quanti�able
as simple ratios (e.g. 2, 3, 1/2 or 1/3 ) (Polotti, 2008). In this work, the
automatic tempo estimation is related to detect the beats per minute.
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1.2.4. Metrical levels

Lerdahl & Jackendo� (1983) Generative Theory of Tonal Music (GTTM) de�ne
Meter as the metrical structure of a musical piece based on the coexistence of
several pulses (or �metrical levels�), from low levels (small time divisions) to
high levels (longer time divisions). The segmentation of time by a given low-
level pulse provides the basic time span to measure music event accentuation
whose periodic recurrences de�ne other higher metrical levels.
GTTM also formalizes the �musical grammar�, the distinction between group-
ing structure (phrasing), and metrical structure by de�ning rules. Whereas
the grouping structure deals with time spans (durations), the metrical struc-
ture deals with duration-less points in time-beats that obey the following rules.
First, beats must be equally spaced. A division according to a speci�c duration
corresponds to a metrical level. Several levels coexist, from low levels (small
time divisions) to high levels (longer time divisions). There must be a beat of
the metrical structure for every note in a musical sequence. A beat at a high
level must also be a beat at each lower level. At any metrical level, a beat that
is also a beat at the next higher level is called a downbeat, and other beats are
called upbeats.
The metrical levels can be divided into three hierarchical levels: Tatum, Tac-
tus (Beat), Bar or measure. The relations between the audio signal and the
metrical levels are represented in Figure 1.2 using a representation of an audio
excerpt of a percussive performance of samba rhythm. The sequence of note
onsets, related with each drum hit of the audio is shown in Figure 1.2(b). The
tatum, the low metrical level, is de�ned by Bilmes (1993) as the shortest com-
monly time interval. The tactus or beat, Figure 1.2(d), is de�ned by Lerdahl
& Jackendo� (1983, p.21) as the preferred human tapping tempo and the com-
putational approach of this task is called beat tracking. The bar, Figure 1.2(e),
is the highest metrical level and is typically related to the harmonic change
rate or to the length of a rhythmic pattern.

1.2.5. Automatic rhythm description

The aim of automatic rhythm description is parsing acoustic events that occur
in time into more abstract notions of tempo, timing and meter. Algorithms
described in the literature di�er in their goals, some of them derive beats and
tempo of a single metrical level, others try to derive the complete transcrip-
tion (i.e. musical scores), others aim to determine some timing features from
musical performances (such as tempo changes, event shifts or swing factors),
others focus on the classi�cation of music signals by their overall rhythmic sim-
ilarities, while others look for rhythm patterns. Nevertheless, these computer
programs share some functional aspects (feature list creation, pulse induction,
Figure 1.3), as pointed out by Gouyon & Dixon (2005).
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Figure 1.2: Metrical Structure for a Samba rhythm. (a) Audio signal. (b) Note
onset locations. (c) Lowest metrical level: the Tatum. (d) Beat locations. (e)
Bar boundaries. Example by Davies (2007).

Beat tracking can be considered one of the fundamental problems in music
information retrieval (MIR) research. There have been numerous algorithms
presented, e.g. Dixon (2007); Ellis (2007); Klapuri et al. (2006), whose common
aim is to �tap along� with musical signals.
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1.3. Applications of automatic rhythm description

There are several areas of research for which automatic rhythm description is
relevant, like:

Estimation of tempo and variations in tempo for performance analy-
sis considers the interpretation of musical works, for example, the per-
former's choice of tempo and expressive timing. These parameters are
important in conveying structural and emotional information to the lis-
tener (Clarke, 1999).

Rhythm description is necessary for automatic score transcription from
musical signals, like music transcription (Bello, 2003) , chord detec-
tion (Mauch et al., 2009), structural segmentation (Levy & Sandler,
2008).

Rhythm data is used in audio content analysis for automatic indexing and
content-based retrieval of audio data, such as in multimedia databases
and libraries, like music similarity (Holzapfel & Stylianou, 2010), cover-
song detection (Ravuri & Ellis, 2010).

Automatic audio synchronization with devices such as lights, electronic
musical instruments, recording equipment, computer animation and video
with musical data. Such synchronization might be necessary for multi-
media or interactive performances or studio post-production work. The
increasingly large amounts of data processed in this way leads to a de-
mand for automation, which requires that the software involved operate
in a �musically intelligent� way, and the interpretation of beat is one of
the most fundamental aspects of musical intelligence (Dixon, 2001).

Other applications

Source Separation (Ra�i & Pardo, 2013)

Interactive music accompaniment (Robertson & Plumbley, 2007)

Automatic remixing (Hockman et al., 2008)

Real-Time Beat-synchronous Audio E�ects (Stark et al., 2007)

Biorhythms detection (Barabasa et al., 2012)
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1.4. Overall scheme

The general scheme of automatic rhythm description methods proposed by
Gouyon & Dixon (2005), presented in Figure 1.3, includes :

1. Feature list creation block: It transforms the audio waveform into a
temporal series of features representing predominant rhythmic informa-
tion.

2. Pulse induction block: It uses the parsed information to estimate pe-
riodicities in the signal.

the following steps have also been incorporated by the beat tracking
systems:

3. Pulse tracking block: It provides the temporal positions of the beats.

4. Back-end block: It parses the beat positions to a global tempo esti-
mation or selects the strongest tempo for some methods. In order to
compare all of the methods in the same conditions, this last block had
to be implemented for some systems.

Figure 1.3: General tempo induction blocks by Gouyon & Dixon (2005).

1.5. Challenges

Automatic description of musical rhythm is not obvious. It seems to entails
two processes: a bottom-up process, that enabling faster perception of pulses
from scratch, and a top-down process (a persistent mental framework) that
lets this induced perceptual guide the organization of incoming events (Desain
& Honing, 1999). Implementing in a computer program both reactivity to the
environment and persistence of internal representations is a challenge. It is im-
portant to say that rhythm description does not solely call for handling timing
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features. Moreover, despite the somewhat automatic inclusion of beat track-
ers as temporal processing components in di�erent applications, beat tracking
itself is not considered a solved problem.
While the idea of a universal model for automatic rhythm description would
seem to be an attractive goal, Collins (2006) proposes strong arguments as to
why this is unrealistic. He suggests that the main �aw of computational beat
tracking systems is a lack of understanding of the higher-level musical context;
where this context is obvious to the trained human listener when tapping to
music. The eventual route towards improving beat tracking would therefore
appear to be through the use of higher level knowledge of musical style coupled
with the understanding of how to apply this knowledge in the context of auto-
matic rhythm description. For example, harmonic analysis (including tonality,
key, and chord progressions) (Bello & Pickens, 2005; Gómez, 2006; Gómez &
Bonada, 2005; Müller et al., 2005; Yoshii, 2008) can enhance the information
of rhythm changes in music signals and improve the performance of automatic
rhythm description algorithms (Eronen & Klapuri, 2010). Through simulated
evaluation, e.g. in Davies & Plumbley (2005b), (Stark, 2011, ch.4), where a

priori knowledge of the best beat tracking system per genre can be used, large
hypothetical gains in performance are possible. However, to the best of our
knowledge, no such system currently exists which can outperform the state of
the art using automatic determination of musical style or genre, in order to
select the best system per genre. Based on the above, improving automatic
rhythm description (tempo and beat tracking) using multiple systems, entails
two main challenges - determining which rhythm description systems to use
and how this systems can be combined.

1.6. Goal and outline of the thesis

This thesis is driven by the hypothesis that when combined in a meaning-
ful way multiple automatic rhythm description systems can complement each
other to achieve better performance. In order to devise a method of combining
automatic rhythm description systems, our principal goals to determine which
rhythm description systems can be used and how can they be combined to im-
prove the automatic rhythm description accuracies. We address an evaluation
of tempo estimation and beat tracking approaches to analyze their capabili-
ties and statistical relations, in order to choose a representative selection of
these systems and propose a meaningful way to combine them and to build a
system that can improve automatic rhythm description. Finally, based on the
agreement of a committee of beat trackers, we proposed an automatic way to
detect di�cult samples for beat tracking and the use of voice suppression for
improving beat tracking. Lastly we present a methodology for automatic beat
tracking annotation of large data sets with a con�dence value of the estimation.
The work is divided into the following chapters.
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Chapter 2

In this chapter we present an updated state of the art and comparative eva-
luation of automatic tempo estimation, in order to devise a method for tempo
estimation using a combination of di�erent approaches,. We consider 32 audio
tempo estimation approaches, 28 academic and 4 commercial systems, in order
to evaluate their respective accuracies and behavior on a subset of the music
collection used in MIREX 2004 tempo task. We used this subset because al-
lowed us to compare with approaches documented in the literature, where we
did not have access to their software implementation. In the evaluation, we
analyzed the di�erences between di�erent steps of the algorithms. We provide
their performance and error distribution, and discuss the strategies that seem
to yield better results. We also proposed a tempo estimation system by select-
ing 7 tempo estimation approaches and using a decision tree method in order
to improve the main performance of the best algorithm. Based on the evi-
dence, the best tempo estimation performances in the evaluation are achieved
by beat trackers.

Chapter 3

In order to devise a method for beat tracking using a combination of di�erent
approaches, we compiled and evaluated 16 state of art beat tracker systems.
Based on their evaluation results we selected 5 beat tracker systems to build a
committee, and we devised a meaningful way to compare the beat estimations
of these beat tracking systems and we present an automatic method to select
the best beat tracking estimation per song from a committee of beat trackers
without the need of ground truth. This Method demonstrates a signi�cant
improvement over using individual state of the art beat tracking algorithms.
Moreover, despite the good performance results of the beat tracking committee,
it is a problematic approach because there are di�erences between approaches
and system requirements of each algorithm. To sort this out, we extend the idea
of the beat trackers committee in an implementable beat tracker system that
uses the query by committee idea, using a committee composed by multiple
onset detection functions as inputs to one beat tracker model, and the �nal
output is selected from the beat estimations of the committee that more agree
with the other ones. This proposed method outperforms the state of the art
beat trackers in the evaluated measures.

Chapter 4

In chapter 3, we present a method for comparing the beat estimations of a
committee of beat trackers by measuring the level of agreement between them.
We found a correlation between the level of agreement and the mean accuracy
performance of the beat trackers in the committee, using this information and
based on the hypothesis that a glass ceiling in beat tracking exists due to a
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lack of diversity in annotated data, we proposed a methodology to identify
challenging music samples for beat tracking in a dataset without ground truth
annotations. In order to improve beat tracking, we compiled a new public
audio dataset for beat tracking evaluation that consists mainly of di�cult
pieces for beat tracking. We looked for the global audio properties that makes
beat tracking di�cult for the current of the state of the art systems with the
intention of point out the di�culties and challenges for future work. One
of the properties that makes beat tracking di�cult is quiet accompaniment
and strong vocals in songs, in order to improve the performance of existing
systems, in this chapter we propose the use of voice suppression algorithms
for music signals in the presence of highly predominant vocals. To evaluate
this hypothesis, we compared systematically the accuracy and e�ciency of
�ve state of the art beat tracking systems against seven voice suppression
systems. Finally, having demonstrated the validity of using the beat tracker
output that most agrees among the committee of beat trackers to improve the
mean performance in beat tracking on a manually annotated dataset, we now
turn our attention to estimating the level of successful beat tracking without
ground truth and applying it to a large collection of non-annotated data. We
determine a threshold value in the agreement level of the committee to establish
a value above which the beat tracker outputs are perceptually acceptable and
the accuracy of the estimation is good.

Chapter 5

We conclude this thesis by summarizing the possible contributions to the �eld
of each of the topics, and o�er an analysis of the strengths and weaknesses of
our proposed methods and suggest promises areas for further research.

1.7. Publications

This thesis contains work previously published in the following journals and
conference papers:

ISI-indexed peer-reviewed journals

Zapata, J.R., Davies, M.E.P., Gómez, E.Multi feature beat tracking.
IEEE Trans. on Audio, Speech, and Language Processing.

Holzapfel, A., Davies, M.E.P., Zapata,J.R., Oliveira, J.L., Gouyon, F.
(2012). Selective sampling for beat tracking evaluation. IEEE
Trans. on Audio, Speech, and Language Processing, 20 (9), 2539-2548.
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Full-article contributions to peer-reviewed conferences

Zapata, J.R. & Gómez, E. (2013). Using Voice Suppresion Algo-
rithms To Improve Beat Tracking In The Presence Of Highly
Predominant Vocals. In Proc. of the 38 IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP). Vancouver, Canada.

Zapata, J.R., Holzapfel, A., Davies, M.E.P., Oliveira, J. L., F. Gouyon.
(2012). Assigning a con�dence threshold on automatic beat an-
notation in large datasets. In 13 Proc. of the Int. Conf. on Music
Information Retrieval (ISMIR). pp. 157-162. Porto, Portugal.

Zapata, J.R. & Gómez, E. (2012). Improving Beat Tracking in the
presence of highly predominant vocals using source separation
techniques: Preliminary study. In Proc. of the 9th Int. Symposium
on Computer Music Modeling and Retrieval (CMMR). pp. 583-590. Lon-
don, UK

Zapata, J.R. & Gómez, E. (2011). Comparative Evaluation and
Combination of Audio Tempo Estimation Approaches. In Proc.
of the AES 42nd International Conference: Semantic Audio. pp. 198-
207. Ilmenau, Germany.

Holzapfel, A., Davies, M.E.P., Zapata, J.R., Oliveira, J.L., Gouyon, F.
(2012). On the automatic identi�cation of di�cult examples
for beat tracking: towards building new evaluation datasets.
In Proc. of the 37 IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP). pp. 89-92. kioto, Japan.

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O.,
Roma, G., Salamon, J., Zapata, J.R.& Serra, X. (2013). ESSENTIA:
an Audio Analysis Library for Music Information Retrieval.
14th International Society for Music Information Retrieval Conference
(ISMIR). pp. 493-498. Curitiba, Brazil.

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O.,
Roma, G., Salamon, J., Zapata, J.R.& Serra, X. (2013). ESSENTIA:
an open-source library for sound and music analysis. The 21st
ACM International Conference on Multimedia. pp. 855-858 Barcelona,
Spain.

Other contributions to conferences

Zapata, J.R., Davies, M.E.P., Gómez, E. (2013). MIREX 2013: Multi
Feature Beat Tracker. Music Information Retrieval Evaluation eX-
change (MIREX) extended abstract.
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Zapata, J.R., Davies, M.E.P., Gómez, E. (2012). MIREX 2012: Multi
Feature Beat Tracker (ZDG1 AND ZDG2). Music Information
Retrieval Evaluation eXchange (MIREX) extended abstract.

Zapata, J.R. & Gómez, E. (2011). Combination of Audio Tempo
Estimation Approaches (MIREX 2011 Submission).Music Infor-
mation Retrieval Evaluation eXchange (MIREX) extended abstract.

Beat Tracking Datasets

SMC Dataset: Dataset with challenging beat tracking situations like:
quiet accompaniment, expressive timing, changes in time signature, slow
tempo, poor sound quality etc. By Holzapfel, A., Davies, M.E.P., Zapata,
J.R., Oliveira, J.L., Gouyon, F.(2012). 217 Manually beat-annotated
musical pieces.

Genres:classical music, romantic music, jazz, blues, chanson, and solo
guitar compositions.

http://smc.inescporto.pt/research/data/

This dataset was used in MIREX 2012 and MIREX 2013 Beat Tracking
task.

http://www.music-ir.org/mirex/wiki/2012:Audio_Beat_Tracking

http://www.music-ir.org/mirex/wiki/2013:Audio_Beat_Tracking

DatasetVocal: Dataset whose signal properties and highly predominant
vocals of each excerpt makes beat tracking di�cult for the state of the
art systems. by Zapata, J.R. & Gómez, E. (2013).

75 Manually beat-annotated musical pieces.

Genres: romantic music, jazz, blues, chanson, swing, rock, folk, tango
and Balkan music

http://mtg.upf.edu/people/jzapata

Beat Tracker system

Multifeature Beat tracker, open-source C++ audio beat tracker pub-
licly available under A�ero-GPL license, designed by Zapata, J.R., im-
plemented in Essentia by Bogdanov, D.

http://essentia.upf.edu/

Algorithm: BeatTrackerMultiFeature()

http://smc.inescporto.pt/research/data/
http://www.music-ir.org/mirex/wiki/2012:Audio_Beat_Tracking
http://www.music-ir.org/mirex/wiki/2013:Audio_Beat_Tracking
http://mtg.upf.edu/people/jzapata
http://essentia.upf.edu/
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1.8. Thesis contributions

The main contributions contained within this thesis are:

Tempo Estimation:

• Comparative evaluation of 32 state of the art tempo estimation
algorithms.

• A proposed tempo estimation algorithm that combines the tempo
estimation of other algorithms and outperforms the results of the
single evaluated approaches.

Beat Tracking:

• Evaluation of 16 state of the art beat tracking algorithms and the
determination of the global properties that makes beat tracking dif-
�cult for the state of the art systems.

• Automatic method for detect problematic audio songs for beat track-
ing without the need of ground truth.

• Automatic method for selecting the best beat tracking estimation
per song from a committee of beat trackers.

• Public Audio Dataset with annotations (SMC Dataset) for beat
tracking evaluation that consists mainly of di�cult pieces for beat
tracking.

• Open source beat tracking system under GNU A�ero public license,
which uses the query by committee concept, that outperforms the
beat tracking performance compared with 20 state of the systems
with a con�dence value of the estimation. Moreover, it can detect
problematic audio songs for beat tracking without of ground truth.

• Method for improving the beat tracking performance in music sig-
nals in the presence of highly predominant vocals using voice sup-
pression systems.

• Public Audio Dataset with annotations (DatasetVocal) for beat
tracking evaluation that consist mainly of highly predominant vocal
di�cult pieces for beat tracking.

In order to guarantee the reproducibility of the results if this research, the
scienti�c papers, built datasets, are available at:
http://mtg.upf.edu/people/jzapata

http://mtg.upf.edu/people/jzapata


CHAPTER 2

Tempo Estimation

Many approaches to tempo estimation have been proposed in the literature,
and some e�orts have been devoted to their quantitative comparison. The
�rst public evaluation of tempo extraction methods was carried out in 2004 by
(Gouyon et al., 2006) evaluating the accuracy of 11 methods at the ISMIR au-
dio description contest . In 2005, 2006, 2010, 2011, 2012 and 2013 the MIREX
(Music Information Retrieval Evaluation eXchange) initiative1 continued the
evaluation of tempo extraction methods. In order to avoid the training of
methods to the speci�c MIREX dataset, the audio �les are not available to
participants, so it is not possible to analyze limitations of the evaluated sys-
tems.
In order to devise a method for tempo estimation using a combination of
di�erent approaches , we present a state of the art and a comparative evaluation
of automatic tempo estimation. We considered 32 audio tempo estimation
approaches, 28 academic and 4 commercial systems, in order to evaluate their
respective accuracies and behavior on a subset of the music collection used in
ISMIR 2004 tempo task. We used this subset because it allow us to compare
with approaches documented in the literature, where we did not have access
to their software implementation.
In the tempo evaluation we analyze the di�erences between the di�erent stages
of the algorithms. We provide the systems performance and error distribution,
and discuss the strategies that seem to yield better results. We also propose
a combination method of some algorithms in order to improve the main per-
formance of the best algorithm. Based on the evidence, a discussion of the
limitations of current methods and ideas for future work are presented.
This chapter is structured as follows: �rst, we provide a brief description of
the evaluated methods; second, the evaluation strategy, results, errors and
statistical signi�cance analysis are presented; third, a combination method of
some tempo estimation algorithms is described and we end by providing our
main conclusions on the limitations and challenges of the evaluated approaches.

1http://www.music-ir.org/

The Material of this chapter was previously published by Zapata & Gómez (2011)
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2.1. Tempo estimation approaches

We have considered a total of 32 audio tempo induction methods, 11 of which
were already evaluated in Gouyon et al. (2006). Five of them were already
evaluated with the same dataset and the results with the same evaluation met-
rics are available in Eck & Casagrande (2005); Gainza & Coyle (2011); Gkiokas
et al. (2010); Ong & Streich (2008); Peeters (2010), but each estimated tempo
per song is not available, therefore, some results such as statistical signi�cance
are not accessible. We also tested 4 commercial stand-alone systems and we
had access to 12 approaches through di�erent infrastructures.
We provide a general description of each of the approaches. All of the ap-
proaches were used with default con�guration parameters. Finally, in order to
compare all of the outputs of the approaches under the same conditions, we
implemented a stage that parses the outputs which are not only one value of
BPM (Beats per minute), in the following way:

Beat Positions are parsed into BPMs computing the IBI (inter beat inter-
val), and the median value of all BPM's is taken as the system's output.

MIREX tempo output: slower tempo (T1), a faster tempo (T2) and the
strength of T1 relative to T2. The output is selected according to the
value of the strength of T1 relative to T2 [0-1], so T1 is selected when
the value is bigger than 0.5, T2 is selected in the other cases.

A summary of all of the algorithms is provided in Table 2.1

Aubiotempo

Aubio is an open source software released under the GNU/GPL license. The
implementation for beat extraction based on Davies et al. (2005) is a test Vamp
plugin for Sonic Annotator2. The feature extraction of this algorithm considers
a complex domain onset detection function, and the pulse induction block
computes the maximal output of passing the unbiased autocorrelation function
(ACF), at the end uses a Context Dependent Model for beat alignment. The
output of this system is the beat positions.

BeatIt

In 2006, Jordi Bonada and Fabien Gouyon from Music Technology Group,
Universitat Pompeu Fabra, proposed an approach called BeatIt. It is a C++
implementation of a beat tracking algorithm. The input signal is split into
several frequency bands. For each band, the energy is computed, compressed,
and di�erentiated. Next, the peak-to-peak distances between the maximum
peaks of the autocorrelation function of each band are computed and stored.

2www.omras2.org/SonicAnnotator

www.omras2.org/SonicAnnotator
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Those are added to a histogram of one BPM octave. The maximum of the
histogram (the tatum, the fastest metrical level) sets the wrapped BPM esti-
mation. Some statistics of the peak-to-peak distribution are used to select the
output BPM octave. The output is a single tempo value.

Beatroot

BeatRoot, developed by Dixon (2001) when he was working at OFAI Intelligent
Music Processing Group, is a java implementation for beat tracking under the
GNU Public License 3. This algorithm is based on a spectral �ux onset detector
followed by an inter onset interval (IOI) clustering algorithm. The output of
this algorithm is the beat positions. We also consider another 3 algorithms
from the same author (DixonI, DixonT, DixonACF). These algorithms were
evaluated in the audio tempo induction task at ISMIR 2004 by Gouyon et al.
(2006).

BpmHistogram

Aylon & Wack (2010) from the Music Technology Group (UPF), proposed
a tempo estimation approach based on the Predominant Local Pulse curves
(PLP), by Grosche & Müller (2009). The method assumes a constant tempo
in the song, in order to be able to better estimate the beat locations where the
con�dence is low. The algorithms computes the PLP curve (combination of
weighted novelty curves derived from the �rst order di�erence energy curves
of 5 bands), and the autocorrelation function is used in the pulse induction
process, then a histogram of the principal peaks over tempo are calculated and
�nally the prominent peak in the pulse induction block is used as output of
the algorithm. This method is available at the Essentia framework4

Eck

Eck & Casagrande (2005) from The University of Montreal, proposed a tempo
induction algorithm based on the detection of the metrical structure. First
the audio signal is down-sampled, then the sum-of-squares of the envelope is
computed over windows of size 42 with 5 points of overlap. The periodicity
function detection is then calculated by autocorrelation plus entropy on the
phase autocorrelation matrix, and multiple hierarchically related lags in pre-
diction. The tempo selection is done by an analysis over the hierarchical meter
relations between peaks.

3www.eecs.qmul.ac.uk/~simond/beatroot/
4http://essentia.upf.edu/ BpmHistogram()

www.eecs.qmul.ac.uk/~simond/beatroot/
http://essentia.upf.edu/
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Ellis

Ellis (2007) from Columbia University, proposed a tempo induction approach
on Matlab 5. The algorithm computes an onset energy envelop obtained from
a 40 mel-frequency spectrogram as audio feature, and for the Pulse induction
block an autocorrelation function is computed over the onset envelop to obtain
the periodicity peaks. The output of this algorithm is given as the MIREX
audio tempo estimation task (slower tempo and faster tempo).

Fixedtempo

Cannam from the Centre for Digital Music Queen Mary, University of London,
wrote this �Simple Fixed Tempo Estimator� as a simpli�cation of the method
derived from work by Davies & Plumbley (2005a). This algorithm is part
of the vamp examples plugins in Sonic annotator6. This algorithm analyzes
a fragment of audio and estimates its tempo. Assuming an input of �xed
tempo, it analyzes only the �rst seconds before returning a result, discarding
all subsequent input. The audio feature block calculates an overall energy
rise function across a series of short frequency-domain input frames, and then
in the pulse induction part takes the autocorrelation of this function, �lters
it to stress possible metrical patterns, locates peaks, and converts them from
autocorrelation lag to the corresponding tempo from the pulse induction block.
A simple perceptual curve is also applied in order to increase the probability of
detecting a "likely" tempo in the �ltering step. For improved tempo precision,
each tempo with strong related peaks is averaged for the tempo calculated
from those peaks. The output of the algorithm is a single tempo value.

GK

Gkiokas et al. (2010), from the National Technical University of Athens, pro-
posed a tempo induction approach using �lter-bank analysis and tonal features
and assuming a constant tempo. For the audio feature block a sliding window
is applied to the signal and two feature classes are extracted, the log-energy
of each band of a mel-scale triangular �lter-bank, and the strengths of the
twelve western musical tones at all octaves for each audio frame. The pulse-
induction was carried out by convolution of the time-evolving feature vectors
with a bank of resonators, each resonator corresponding to a target tempo.
Then the results of each feature class are combined to give the �nal output.

Hyb2

Gainza & Coyle (2011) from the Dublin Institute of Technology, proposed
an algorithm called Hyb2. The algorithm splits the signal into three di�erent

5labrosa.ee.columbia.edu/projects/beattrack/tempo2.m
6www.vamp-plugins.org/plugin-doc/vamp-example-plugins.html#fixedtempo

labrosa.ee.columbia.edu/projects/beattrack/tempo2.m
 www.vamp-plugins.org/plugin-doc/vamp-example-plugins.html#fixedtempo
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frequency bands; then detects the signal changes using a complex spectral onset
detection method, calculated from the low frequency bands. The transient
detection method is calculated from the mid and high frequency bands. The
periodicity detection is based on autocorrelation in each band and it is then
combined into a single periodicity function. A weight function is applied in
order to reduce the number of double and half tempo estimations.

IBT

Oliveira et al. (2010) proposed a C++ approach for tempo induction and beat
tracking system based on the strategy of competing agents sequentially pro-
cessing musical input, and considering parallel hypotheses regarding tempo
and beats, this strategy was introduced by Dixon (2001) in the BeatRoot sys-
tem. It di�ers from BeatRoot strategy by using a causal decision process over
competing agents, instead of taking decisions after the whole data that has
been analyzed. Spectral �ux is used for the audio feature extraction, then the
algorithm implements a period hypotheses induction and phase hypotheses se-
lection, this is followed by an agents Setup to score each hypothesis and to
rank them. IBT is integrated in MARSYAS 0.4.0 framework marsyas.info/,
under GPL general public license. The algorithm was tested in o�ine mode
and gives a BPM estimate value as one of its outputs.

jAudio

McKay from McGill University, Canada, is the author of the tempo induction
algorithm called StrongestBeat of BeatHistogram7 and implemented in the
system Jaudio 1.0.4. using the Java framework: jaudio.sourceforge.net/.
The algorithm extracts the energy envelope to obtain the Beat Histogram from
a signal. This histogram shows the strength of di�erent rhythmic periodicity
in a signal and is calculated by taking the RMS of 256 windows and then
taking the FFT of the result, at the end the BPM is calculated by �nding the
strongest beat and dividing it by the sum of all entries in the beat histogram.
The output of the tempo estimation is a single tempo value.

MIRTempo

Lartillot (2010) from University of Jyväskylä, provides the Mirtempo algo-
rithm as part of the Mirtoolbox platform 8. The feature extraction consists
of an onset curve, represented by an amplitude envelope computed through a
10-channel Gamma-tone �lter bank and a low-pass �ltering. This procedure re-
tains from the signal the long-term evolution, while �ltering faster oscillations.

7jaudio.sourceforge.net/jaudio10/javadoc/jAudioFeatureExtractor/

AudioFeatures/BeatHistogram.html
8www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox

marsyas.info/
jaudio.sourceforge.net/
jaudio.sourceforge.net/jaudio10/javadoc/jAudioFeatureExtractor/AudioFeatu res/BeatHistogram.html
jaudio.sourceforge.net/jaudio10/javadoc/jAudioFeatureExtractor/AudioFeatu res/BeatHistogram.html
www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
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The signal is down-sampled and subsequently di�erentiated by computing the
di�erence between successive samples. The pulse induction process is based on
autocorrelation in a tempo range between 20 and 230 BPM. Tempo strength is
estimated using the normalized autocorrelation coe�cients related to the esti-
mated periodicity, and the output is the one with the highest tempo strength.
The MIR toolbox is available under the GNU general public license.

MPEG7-xm

Jan Rohden from the Fraunhofer Institute for Digital Media Technology IDMT,
described this matlab algorithm9 along MPEG document w5212 (15938-4:2001
/FPDAM). The algorithm starts by extracting energy using the same process
proposed by Scheirer (1998). It considers 6 frequency bands in segments of
4 sec. each. The envelopes obtained for each band are then weighted and
the pulse induction is based on autocorrelation based periodicity detection via
forward and inverse �t (biased autocorrelation). The output is a BPM value
each time the estimated tempo changes. For our evaluation, the estimated
BPM of each song is computed as the median of all the provided estimations.

OS

Ong & Streich (2008) from the Center for Advanced Sound Technologies,
Yamaha, created an approach for tempo induction called OS [an e�cient o�-
line beat tracking method for music with steady tempo]. The audio feature
is based on an enhanced onset detection function from the spectral di�erences
between adjacent frames. The pulse-induction block is based on autocorrela-
tion, and of the di�erent candidates, the output is the most reliable peak. This
tempo value is also used to initialize the beat tracking algorithm.

Peeters

Peeters (2010), from IRCAM, proposed an algorithm which uses reassigned
spectral energy �ux with a window of 93ms in the audio feature block. The
tempo-induction step is based on a new periodicity measure consisting of a
combination of discrete Fourier transform and frequency-mapped autocorre-
lation function. Using a set of proposed meter/beat subdivision templates a
Viterbi decoding algorithm estimates the most likely tempo and meter over
time.

QMTempo

Davies and Landone from the Centre for Digital Music Queen Mary, University
of London, proposed an algorithm for tempo and beat tracking called qm-
tempotracker based on Davies & Plumbley (2007) beat tracker, which works as

9mpeg7.doc.gold.ac.uk/mirror/v2/Matlab-XM/AudioBpmD/AudioBpmD.m

mpeg7.doc.gold.ac.uk/mirror/v2/Matlab-XM/AudioBpmD/AudioBpmD.m
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a Vamp plugin in SonicAnnotator 10. We used the �Complex domain� method
for our tests, which consists of a hybrid of the two-state beat tracking model
and a dynamic programming method. It computes the onset detection function
to estimate the tempo contour and then given the tempo, to recover the beat
locations.
The periodicity estimation is based on autocorrelation, this signal is weighted
by a �lter-bank and grouped together into a matrix of observations of perio-
dicity through time. The best path of periodicity is found using the Viterbi
algorithm, where the transition matrix is de�ned as a diagonal Gaussian. Given
the estimates of periodicity, the beat locations are recovered by applying a dy-
namic programming algorithm. Its output consists of BPM values for each time
the estimated tempo changes. For our test, estimated BPMs are combined into
a single value using the median.

Tzanetakis

Tzanetakis (2010) from The University of Victoria proposed a tempo induc-
tion algorithm for MARSYAS11 framework distributed under the GNU Public
Licence (GPL) and presented in MIREX 2010. The audio tempo estimation
is based on transforming a normalized autocorrelation of the onset strength
signal (based on spectral �ux) to a Beat Histogram. A simple peak picking
heuristic is used to select the dominant tempo. This algorithm provides a
MIREX output. Tzanetakis is also the author of 3 other algorithms (Tzane-
takisMS, TzanetakisMM and TzanetakisH) that took part at the previously
experimental comparison of audio tempo induction algorithms at ISMIR 2004.

Algorithms of ISMIR Audio Description Contest 2004

The evaluation presented here has been carried out using the audio excerpts
dataset from the ISMIR Audio Description Contest 200412 by Gouyon et al.
(2006). This allows us to compare the results of new methods with the ones
that were evaluated before:

AlonsoACF, AlonsoSP (Alonso et al., 2004)

DixonACF (Dixon & Pampalk, 2003), DixonI and DixonT (Dixon, 2001)

Klapuri (Klapuri et al., 2006)

Scheirer (Scheirer, 1998)

TzanH, TzanMS and TzanMM (Tzanetakis & Cook, 2002)

Uhle (Uhle et al., 2004)

10www.vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#qm-tempotracker
11marsyas.info/
12mtg.upf.edu/ismir2004/contest/tempoContest/data3.tar.gz

www.vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#qm-tempotracker
marsyas.info/
mtg.upf.edu/ismir2004/contest/tempoContest/data3.tar.gz
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Commercial tempo systems

We selected four commercial systems to compare the performance of academic
approaches with theses, but the information about how these methods work is
not documented.

Auftakt

AufTAKT V2 is a tempo estimator of music audio signals where audio signals
are analyzed in terms of onset information (note on) via an algorithm which
detects energy and frequency components and weighting them according to
their perceptual importance. This system is able to adapt the tempo and beat
estimation to an input signal with varying tempo.
www.zplane.de/index.php?page=description-Auftakt.

Beatcounter

BPM Counter, from Abyssmedia, is a free stand-alone beats per minute detec-
tor for MP3 music for windows www.abyssmedia.com/bpmcounter/.

Beatunes

Beatunes from Tagtrum industries, is a bpm estimator for itunes, which can
be used as a 14-day trial or with a commercial license, www.beatunes.com/.

BPMer

BPMer from wildbits is a bpm estimator for Macintosh OS and its binary can
be evaluated for free. www.wildbits.com/bpmer/.

2.2. Evaluation

2.2.1. Dataset

The Song excerpt dataset is a part of the datasets used for the ISMIR 2004
tempo induction13 contest presented in Gouyon et al. (2006). It consists of
songs with approximately constant tempi, and the format is the same for all:
mono, linear PCM, 44100 Hz sampling frequency, 16 bits resolution. The total
duration of the test set is approximately 9300 sec. The dataset is composed of
465 song excerpts of 20 seconds. The genre distribution is in Table 2.2 and a
tempo range between 24 and 242 bpm, Figure 2.1. The ground-truth tempo
was computed as the median of the IBIs (Inter Beat Interval).

13http://mtg.upf.edu/ismir2004/contest/tempoContest/data3.tar.gz

www.zplane.de/index.php?page=description-Auftakt
www.abyssmedia.com/bpmcounter/
www.beatunes.com/
www.wildbits.com/bpmer/
http://mtg.upf.edu/ismir2004/contest/tempoContest/data3.tar.gz
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Algorithm AlonsoACF AlonsoSP Aubio BeatIt Beatroot DixonACF

Author
Alonso et al.
(2004)

Alonso et al.
(2004)

Brossier
Davies et al.
(2005)

Bonada and
Gouyon

Dixon
(2001)

Dixon &
Pampalk
(2003)

Software Matlab Matlab Vamp Windows Java Matlab

Output One Bpm One Bpm
Beats in
time

One Bpm Beats in Sec. One Bpm

Audio

Feature

Onsets of
Notes

Onsets of
Notes

Complex
spectral
di�erence

Energy dif-
ferences in 8
bands

Energy
based Onset
detector

Energy of 8
freq. bands

Periodicity ACF SP ACF ACF IOI ACF

Algorithm DixonI DixonT Eck Ellis BpmHist Fixedtempo

Author
Dixon
(2001)

Dixon
(2001)

Eck &
Casagrande
(2005)

Ellis (2007)
Aylon &
Wack (2010)

CannanDavies
& Plumbley
(2005a)

Software Java Java Matlab Essentia Vamp

Output One Bpm One Bpm
slower and
faster tempo

One Bpm One Bpm

Audio

Feature

Energy
based Onset
Detector

Energy
based Onset
Detector

The sum of
squares of
the envelope

Mel Audi-
tory Feature

Energy
enveloped
di�erences
for 5 bands

Overall en-
ergy rise
function.

Periodicity IOI IOI ACF ACF ACF ACF

Algorithm GK Hyb2 IBT jAudio Klapuri MIRTempo

Author
Gkiokas
et al. (2010)

Gainza &
Coyle (2011)

Oliveira
et al. (2010)

McEnnis
and McKay

Klapuri
et al. (2006)

Lartillot
(2010)

Software Matlab Marsyas Java Linux Matlab
Output One Bpm One Bpm One Bpm One Bpm One Bpm One Bpm

Audio

Feature

Spectral
Flux

Spectral
Flux

Spectral
Flux

Energy en-
velope (256
window)

Loudness
di�erence
in 36 freq.
subbands

10 channel
gammatone
�lterbank

Periodicity ACF ACF ACF ACF BF ACF

Algorithm Mpeg7-xm OS Peeters Qmtempo Scheirer Tzanetakis

Author Rohden
Ong & Stre-
ich (2008)

Peeters
(2010)

Davies &
Plumbley
(2007)

Scheirer
(1998)

Tzanetakis
(2010)

Software Matlab Matlab C/C++ Vamp Linux Marsyas

Output

BPM values
when tempo
changes

BPM values
when tempo
changes

Beats in sec.
slower and
faster tempo

Audio

Feature

Energy from
6 bands

spectral dif-
ferences

Reasigned
spectral �ux

Spectral
Flux

Energy dif-
ferences for
6 bands

Onset
strength
signal

Periodicity ACF ACF
DFT /FM-
ACF

ACF BF ACF

Algorithm TzanH TzanMM TzanMS Uhle

Author

Tzanetakis
& Cook
(2002)

Tzanetakis
& Cook
(2002)

Tzanetakis
& Cook
(2002)

Uhle et al.
(2004)

Software Linux Linux Linux Windows
Output One Bpm One Bpm One Bpm One Bpm

Audio

Feature

Energy in
5 octave
space freq.
bands using
Wavelets

Energy in
5 octave
space freq.
bands using
Wavelets

Energy in
5 octave
space freq.
bands using
Wavelets

Energy dif-
ference from
log. space
freq. bands

Periodicity ACF ACF ACF ACF

Table 2.1: Brief description of all methods (ACF= Autocorrelation, BF=
Bank-comb �lter, SP= Spectral product, IOI = inter onset interval clustering,
DFT/FM_ACF = Discrete Fourier transform and frequency_mapped ACF)
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Figure 2.1: BPM ground-truth Histogram.

Table 2.2: Genre Distribution of the song excerpts

Genre # Songs

Rock 68
Classical 70
Electronic 59
Latin 44
Samba 42
Jazz 12

Afrobeat 3
Flamenco 13

Balkan and Greek 144
Fado 10

2.2.2. Tempo measures

This evaluation was carried out using a single tempo estimation value for each
algorithm, this allowed us to compare the previous evaluation in ISMIR 2004
to the existing results in published research. The evaluation metrics were then
used for the test:

Metric 1: The percentage of the tempo estimation within a 4% (preci-
sion window) of the ground truth. This procedure was used to evaluate
the accuracy of the algorithms to detect the main bpm of the song.
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Metric 2: The percentage of the tempo estimation within a 4% (preci-
sion window) of the 1, 2, 1

2 , 3,
1
3 times the ground-truth. This procedure

takes into account the problems of double or triple deviation of the tempo
estimation.

2.2.3. Results

The mean performance results of the evaluation metrics 1 and 2 are summa-
rized in Table 2.3 and Figure 2.2 including the combination method explained
in section 2.3. Table 2.4 shows the overall ranking of algorithms according to
the estimation accuracy (metric 1 and 2). We highlighted some characteristics
of the algorithms that we consider relevant: the strategy for pulse induction
and, for those methods using multi-band processing, it's speci�ed if the band
integration happens before or after the periodicity detection stage.
By using the oracle result (the best estimation per song from the results of
all the methods), it is possible to reach an accuracy of: [90.53%, 100%] in the
evaluation metrics 1 and 2 respectively. As a general observation, for all the
song excerpts, at least one algorithm correctly estimates the tempo with a ratio
of 2, 1

2 or 3. For these reasons, we conclude that rhythmic periodicity can be
accurately estimated from the raw audio signal. Also the maximum number
of algorithms agreeing on the same correct tempo estimation is 24, and this
occurs for 3 song-excerpts. This means that none of the songs was extremely
easy for all algorithms to estimate the tempo correctly at the same time.

Table 2.3: Tempo evaluation results

AlonsoACF AlonsoSP Auftak Aubio Beatcounter

Metric 1 23.44 37.42 56.13 39.35 32.90
Metric 2 58.28 68.60 83.44 67.31 49.68

BeatIt Beatroot Beatunes BPMer BpmHistogram

Metric 1 60.43 23.23 19.35 31.83 24.52
Metric 2 78.28 67.96 38.28 63.01 83.44

DixonACF DixonI DixonT Eck Ellis

Metric 1 16.99 28.60 19.35 60.00 45.59
Metric 2 76.99 62.58 68.82 79.00 80.65

FixedTempo GK Hyb2 IBT jAudio

Metric 1 24.73 42.15 48.90 35.91 5.16
Metric 2 50.75 90.11 91.80 79.78 32.26

Klapuri MIRTempo Mpeg7-xm OS Peeters

Metric 1 58.49 30.97 48.39 42.20 49.50
Metric 2 91.18 65.59 70.54 70.50 83.70

Qmtempo Scheirer Tzanetakis TzanH TzanMM

Metric 1 43.23 37.85 25.59 21.29 18.71
Metric 2 80.43 69.46 66.45 47.74 41.08

TzanMS Uhle Combination

Metric 1 27.53 41.94 65.37

Metric 2 52.47 71.83 91.39
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Table 2.4: Evaluation performance ranking of methods and Periodicity data
(ACF = Autocorrelation, BF = Bank-comb �lter, SP= Spectral product,
IOI = inter onset interval clustering, DFT/FM_ACF = Discrete Fourier trans-
form and frequency_mapped ACF), Band Combination (after or before pulse
induction) and Beat estimation

ALGORITHM Pulse Induction Combining Bands Beats

Klapuri BF After P.I Yes

Hyb2 ACF After P.I

Eck ACF Yes

BeatIt ACF After P.I Yes

Peeters DFT/FM- ACF Yes

GK BF

Ellis ACF

Qmtempo ACF

Mpeg7-xm ACF After P.I

IBT ACF Yes

Uhle ACF After P.I

OS ACF Yes

BpmHistogram ACF After P.I Yes

Scheirer BF After P.I Yes

Aubio ACF Yes

AlonsoSP SP

MIRTempo ACF Before P.I

DixonACF ACF Before P.I

Tzanetakis ACF

Beatroot IOI Yes

DixonI IOI

DixonT IOI

AlonsoACF ACF

TzanMS ACF Before P.I

FixedTempo ACF

TzanH ACF Before P.I

TzanMM ACF After P.I
jAudio ACF
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The best performance in the evaluation is obtained by the Klapuri algorithm.
It obtains the following accuracy measures: [58.49%, 91.18%]. The �rst metric
is lower than for BeatIt and Eck [60.43%, 60%] respectively, but the results are
statistically comparable for BeatIt and Klapuri. For metric 2, Hyb2 provides
the best performance 91.8% but with a small di�erence 0.72% with Klapuri,
so that the statistical signi�cance is not considerable.
The main di�erence between Klapuri's method and the others lies in the audio
signal feature, which computes the subtle energy changes that might occur
in narrow and wide frequency sub-bands, but the induction block is a bank-
comb �lter like the one used by Scheirer (1998). So we might assume that
the accuracy of the algorithm lies in good feature extraction, rather than in a
complex tempo induction block. At the end, Klapuri's algorithm computes the
tempo as the median of the IBI's. Being the same method used to compute
the ground truth of the music collection.
From the information of each approach and by comparing 12 algorithms (Kla-
puri, Hyb2, BeatIt, Mpeg7-xm, uhle, BpmHistogram, scheirer, DixonACF,
MIRtempo, Tzan_ms, Tzan_h, Tzan_mm), we observed that these algorithms
divides the audio signal into sub-bands and then uses autocorrelation in the
pulse induction block. The seven best performing algorithms compute the au-
tocorrelation function before the frequency integration step. The statistical
di�erence of the �rst three algorithms and the other methods, which compute
autocorrelation after combining signals of each band, are signi�cant.
The algorithms which compute the �rst derivative of the signal (Klapuri,
BeatIt, Uhle, BpmHistogram and Scheirer) in the audio feature performed
better than those that employ only frame values.
None of the algorithms correctly estimated the tempo of the 13 song-excerpts
with a tempo below of 49 bpm, but more than 4 methods provided the double or
triple of the ground-truth annotation. This might re�ect that current methods
are not adapted to slow tempi, but they can detect at least one metrical level
of the song, mostly the tatum. For the 36 song-excerpts with only one correct
estimation (ratio=1), the algorithms with most correct estimations were BeatIt
(seven) and IBT (�ve), and the double tempo was the most common error
among the rest of algorithms.
We also observe signi�cant di�erences in the values of metric 1 and metric 2,
because most of the algorithms detect the double or the triple tempo of the
ground-truth. At least 22 algorithms are above 65% accuracy for metric 2.

2.2.4. Statistical signi�cance

The statistical signi�cance of the algorithm estimations in the two evaluation
metrics was carried out by means ofthe McNemars Test14 (Gillick & Cox, 1989),
considering a p-value of 0.01 as the threshold for statistical signi�cance.

14staffwww.dcs.shef.ac.uk/people/R.Hofe/mcnemar.html

staffwww.dcs.shef.ac.uk/people/R.Hofe/mcnemar.html
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The signi�cance between algorithms for each evaluation order by the perfor-
mance in the whole evaluation is presented on Figure 2.3. Metric 1 and 2 are
respectively in the bottom and top side of the main diagonal. From the statis-
tical comparison between algorithms, a �lled cell represents an equal statistical
performance between the algorithms.
According to this statistical signi�cance analysis, Beatroot, Tzanetakis and
DixonI results were found to be comparable to each other. Moreover, Aubio,
AlonsoSP, Scheirer and Uhle had the same statistical performance too. The
relation between DixonI and Beatroot shows that the di�erence in the pulse
induction block does not represent statistical di�erences in the results. The
best performance in metric 1, obtained by BeatIt method and is statistically
comparable with the Klapuri method; however it shows lower performance in
metric 2. The di�erence between these algorithms results, is a consequence
of the lower tempo estimation tendency in the BeatIt algorithm, because its
octave correction processing.

IB
T
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Figure 2.3: Statistical signi�cance between tempo algorithms in Metric 1(low
side) and Metric 2 (up side), a �lled cell represents an equal statistical perfor-
mance between the algorithms.
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2.2.5. Error analysis

Compared to the ground truth of the dataset, most of the algorithms estimates
the Double, but other error tendencies such as 1

2 , 3, 4,
4
3 ,

2
3 were present in the

results of all of the algorithms in the whole dataset. The test was done without
any knowledge of the meter of the songs, but a ternary tendency of some songs
can be detected from the relation between the algorithm estimations. The
histogram of the error ratio tendencies and the values of all of the algorithms
can be seen in Figure 2.4 and Table 2.5.
We �rst observe that seven algorithms (Beatunes, FixedTempo, Tzanetakis,
MIRtempo, Aubio, AlonsoACF, Tzan_mm) had an error with a ratio = 4

3
above 8% with a value of [9.68%, 12.9%, 11.40%, 10.75%, 10.54%, 8.6%, 8.39%]
respectively. This represents an error of 3

4 in the Inter Beat Intervals, that is,
a focus on e.g the dotted quarter-note instead of the half- note. This error is
more common than the 1

2 in this dataset.
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Figure 2.4: General error ratio histogram

The Jaudio algorithm tends to estimate faster tempo than the rest, and has
most of its estimations above a ratio of 2. Because this algorithm was tested
with default parameters, we cannot conclude if it tends to estimate faster tempi
than the others. On the other hand, the BeatIt algorithm tends to estimate
slower tempo than the rest, but the tempo distribution of the dataset had more
song-excerpts with a BPM in a range between 60 and 110, so a dataset with
equal bpm distribution would be needed to con�rm this tendency.
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The sum in percentage of the fraction errors of all of the algorithms is 18.40%.
If the meter of each song excerpt was known,the tempo estimation could then
be improved. The errors of 2

3 ,
4
3 ,

8
3 and 3 show a problem in the pulse selection.

Without this knowledge it can be di�cult to estimate the ground- truth value.
These estimations can be useful for meter detection and are a problem in the
pulse selection process, but they show that the methods can detect a periodicity
related with the ground-truth in the audio signal.
Based on the di�erences of evaluation metric 1 and 2, the algorithms with
tendency to detect the double or the triple value instead of the ground- truth
values are: DixonAFC, BpmHistogram, DixonT, jAudio, Beatroot, Tzanetakis,
AlonsoACF, Tzan_MM and MIRtempo, with a di�erence equal to [42.58%,
32.9%, 29.89%, 21.94%, 21.08%, 12.04%, 8.6%, 1.08%, 0.86%] respectively.

Table 2.5: Other tendencies ratio results of all of the algorithms (Figure 2.4)

Ratio %
1/4 0.02

1/3 0.09

1/2 3.29

2/3 1.77

3/4 0.68

Good 32.55

5/4 1.12

4/3 5.50

3/2 2.06

2 27.85

9/4 1.73

5/2 1.09

8/3 1.43

3 1.66

4 1.15

16/3 0.06

6 0.13

Other 17.81

2.3. Combination of methods for tempo estimation

Based on the statistical signi�cance, we used the estimation results of the top
seven academic methods in the evaluation (Klapuri, BeatIt, Ellis, Qmtempo,
IBT, BpmHistogram and Mpeg7-xm) as components in a heuristic decision
tree strategy to improve the results of the best method in the evaluation.
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The hypothesis obtained from the experiment is that the ground-truth and the
double tempo value are among the estimations for most of the song-excerpts.
The Klapuri estimations are checked with a metrical hierarchy analysis using
the results of the other six methods, and using the low tempo tendency of
BeatIt and the double tendency of BpmHistogram, In order to correct inaccu-
rate estimations and meter level errors. The steps are presented in pseudo code
in the algorithm 1. The accuracy results of this con�guration are: [65.37%,
91.39%] for metric 1, 2 respectively in this dataset. These values are less than
the oracle results but Klapuri estimations are improved in 6.67% for metric 1
and 0.21% for metric 2. Calculating the statistical relation between Klapuri
and the combination method the p-values are: [0.0029, 1] for the evaluation
metrics 1 and 2 respectively, considering a p-value of 0.01 as threshold for sta-
tistical signi�cance, the results of the combination method against Klapuri are
statistical di�erent for metric 1.

Algorithm 1 BPM = Combination-BPM(�le.wav)

% BPM Estimations
BeatIt = BeatIt-BPMestimation(�le.wav);
Ellis = Ellis-BPMestimation(�le.wav);
BpmHistogram = BpmHistogram-BPMestimation(�le.wav);
Klapuri = Klapuri-BPMestimation(�le.wav);
Qmtempo = Qmtempo-BPMestimation(�le.wav);
IBT = IBT-BPMestimation(�le.wav);
Mpeg7-xm = Mpeg7-xm-BPMestimation(�le.wav);
array = [BeatIt Ellis Qmtempo IBT BpmHistogram Mpeg7-xm];

% Combination and Selection
if (Klapuri 6= BeatIt && Klapuri 6= BpmHistogram) then
if three or more values from array are equal & at least one value in the
array are the double of the repeated value then
Out = the repeated value in the array;

else
Result = Klapuri;

end ifthat
else
Result = Klapuri;

end if

% To avoid the double error
if (Result == BeatIt*2 & BeatIt == Ellis) then
Result = BeatIt;

end if
return Result
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Some of these tested methods had more than one output and the combination
results are less than the oracle results, if all outputs of the methods are used,
assuming these results as some other tempo estimator, the tempo estimation
might be improved.

2.3.1. Tempo estimation submission (MIREX 2011)

Based on the oracle results, the tatum and tactus tempo hierarchal levels can be
obtained from the tempo estimations of all these approaches for the evaluated
dataset. A tempo estimation algorithm (Zapata & Gomez, 2011) was presented
in the music information retrieval evaluation exchange (MIREX 2011) in the
Tempo estimation task. The algorithm used a heuristic decision tree strategy to
analyze the relations between the tempo estimations, and obtain the perceptual
slow and the fast tempo from a audio song.
Due to implementation limitations (di�erent language implementation) this
combination algorithm uses four tempo estimation approaches (BeatIt, Davies,
Ellis and MPEG7-XM) and the combination algorithm steps are:

1. Sort all the tempo estimation values and eliminate the repeated ones.

2. Cluster tempo values with di�erences of 4% (e.g: 127.6, 125.8 , 128.4)
and calculated the median value of each cluster.

3. Check if each value has a relation of (12 , 2,
1
3 or 3) and eliminate those

not related.

4. Heuristic

If only two values are obtained, the lowest value is the slow tempo
(T1) and the highest value is the fast tempo (T2). The strength of
T1 relative to T2 is taken from the Ellis Results.

If there are 3 values with a binary relation between them, the low-
est value is the slow tempo (T1)and the double value is the fast
tempo(T2). The strength of T1 relative to T2 is used from the Ellis
Results.

If there are 3 values and two of these had a ternary relation bet-
ween them, we take these two numbers and the lowest value is the
slow tempo (T1) and the double value is the fast tempo(T2). The
strength of T1 relative to T2 is taken from the Ellis Results.

If there are more than 3 values, we choosed the values related with
the BeatIt estimation, then the heuristic rules were checked to ob-
tain the slow tempo (T1), the fast tempo(T2) and the strength of
T1 relative to T2, taken from the Ellis Results.

5. Output: slow tempo(T1), fast tempo(T2) and the strength of T1 relative
to T2 values between [0-1].
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2.3.2. MIREX Tempo task evaluation results

The MIREX 201115, 2010 16 and 2006 17: Audio Tempo Extraction - MIREX06
Dataset results are presented in Table 2.6, sorted by Tempo P-score per year.
Our algorithm, ZG1, obtained the second best mean results (2011) in both
tempi correct value (0.5714) and the third overall position until 2011.

Table 2.6: Results MIREX 2011, 2010 and 2006: Audio Tempo Extraction

Year Algorithm
Tempo
P-Score

One
tempo
correct

Both
tempi
correct

GKC3 0.8290 0.9429 0.6214
FW2 0.7385 0.8357 0.5429
ZG1 0.7275 0.8214 0.5714
SP1 0.7105 0.9286 0.3857
GKC6 0.6777 0.8214 0.4286

2011

SB5 0.6559 0.8429 0.3500

2010

GKC1 0.8099 0.9643 0.5000
NW2 0.7875 0.9143 0.5000
ES1 0.7714 0.9071 0.5500
TL1 0.7639 0.8929 0.4786
BES2 0.7429 0.9143 0.4857
OL1 0.6679 0.8786 0.3786
GT1 0.6150 0.6929 0.5071

2006

Klapuri 0.806 0.9429 0.6143
Davies 0.776 0.9286 0.4571
Alonso 0.7242 0.8929 0.4357
Alonso 0.6931 0.8571 0.4571
Ellis 0.673 0.7929 0.4286
Antonopoulos 0.669 0.8429 0.4786
Brossier 0.62 0.7857 0.5071

The GKC3 approach by Gkiokas et al. (2011) has the highest reported accuracy
on the audio tempo task on MIREX until 2011. This method extracts two
main feature classes using percussive/harmonic separation of the audio signal,
in order to extract energy in the percussive signal and chroma in the harmonic
signal. Periodicity analysis is carried out by a bank of resonators as in the
others approaches with similar results from section 2.2.3, suggesting that the
improving of the algorithm accuracy lies in good a feature extraction.

15http://nema.lis.illinois.edu/nema_out/mirex2011/results/ate/
16http://nema.lis.illinois.edu/nema_out/mirex2010/results/ate/
17http://www.music-ir.org/mirex/wiki/2006:Audio_Tempo_Extraction_Results

http://nema.lis.illinois.edu/nema_out/mirex2011/results/ate/
 http://nema.lis.illinois.edu/nema_out/mirex2010/results/ate/
 http://www.music-ir.org/mirex/wiki/2006:Audio_Tempo_Extraction_Results
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The proposed method uses Ellis and Davies tempo algorithms presented in
MIREX 2006 in the same dataset. When compared ZG1 with both algorithms,
the results of ZG1 are higher for the both tempi correct value. Finally, the
ZG1 algorithm had better results in at least one tempo correct value compared
with the Ellis result. These results could be improved using a combination of
more algorithms with better performance.

2.4. Discussion and future Work

2.4.1. The dataset and the metric

The ISMIR 2004 tempo dataset is used to compare the new approaches in
tempo estimation with the previous published research and for 91.18% of the
song-excerpts in the dataset, based on the evaluation results, their metrical
levels can be estimated with the estimations of all the algorithms and the
double is the most common error, followed by the 4

3 error. In order to obtain
more information about the data of all these results, future work could include
annotation data of the meter, tactus and tatum of each song-excerpt. This
information helps to improve the analysis of the results and errors inherent in
the metric 1 and 2, because its not clear if the relations 2, 1

2 , 3 and 1
3 are a

metrical level error or another kind of error. As a consequence, the MIREX
evaluation method could be used in this dataset, if the information of the
metrical levels are added.
Some song-excerpts of the dataset are not tempo stable, therefore information
of the tempo stability of the song (if the song has a bimodal tempo or a very
variable tempo) will be useful for performance analysis of the algorithms. To
detect the slow or fast tendency of the algorithms and a �at tempo distribution
of the dataset, more data will be needed. Moreover, more types of music genres
need to be included to have a better tempo estimation analysis per genre.

2.4.2. Performances by genre and limitations

Comparing the evaluation results againts the past evaluation in 2004, classical
music still remains less accurate for metric 1 and 2 and the academic approaches
(Klapuri, BeatIt, Ellis, Qmtempo, IBT) compared with most of the commercial
approaches had better performance in most of music genres even for electronic
and percussive music. The commercial Auftakt algorithm had a statistical
performance equal to Klapuri and BeatIt for the metric 1, but for metric 2
the algorithms had a statistical signi�cance di�erence in their performances.
Working with Percussive music such as jazz the algorithms had di�culties
determining the metrical level, because of their complex rhythms. As past
results, most of the approaches had good accuracy in percussive genres as
latin and afrobeat.
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A robust method capable to estimating the tempo in classical music with soft
onsets or soft transitions does not exist. For most of the music with strong
emphasis on singing voice (e.g: fado, greek) tempo estimators fail to detect
the tactus metrical level. This problem is addressed in Chapter 4. Based on
the results, a limitation of all of the algorithms is to estimate lower tempo
( 49 BPM or less, in the evaluated dataset) in the tactus metrical level, but
this problem be caused by the window size in the feature extraction or the
periodicity function calculation, or by also an e�ect of the tempo correction in
some algorithms.
Furthermore, most of the errors are due to double tempo estimation, ternary
meters and low tempi, which re�ects the current glass ceiling in tempo esti-
mation. Research should be devoted to metrical level estimations, binary and
ternary detection, soft beats detection and slow tempo estimation.

2.4.3. Challenges in the design of an algorithm for tempo
estimation

Designing an unique system to estimate tempo for all genres and tempo range
is one of the goals in automatic rhythm description. After analyzing the best
performing algorithms in this tempo estimation evaluation, we found these
common characteristics: frequency band decomposition, periodicity detection
prior to the weighting of each band and multi-band integration; detection of
the metrical levels (tatum, tactus and musical measure) along with a tempo
correction function in order to reduce the number of double and half tempo
estimations.
Nevertheless the evidence does not show which audio features are better for
tempo estimation (e.g. spectral �ux, energy envelope, energy changes) along
with the pulse induction methods used in di�erent approaches (e.g. ACF, Alon-
soSP = spectral product, Scheirer = comb �lter bank), which had statistically
similar performance. It is not clear which periodicity function (e.g. ACF,
bankcomb �lters, DFT, spectral product) or combination of these functions
are appropriate for pulse induction.
Most of the tested tempo estimators use ACF to �nd periodicities in the signal;
however, their performances are statistically di�erent. In addition, di�erent
methods to select the best tempo in the periodicity signal are used (e.g. his-
togram, peak selection, tempo hypothesis with agents setup, Viterbi decoding
and clustering); however, it is indistinguishable, through the results, which of
these methods yields better results by itself. For future work, an analysis of the
combination of di�erent periodicity functions and di�erent selection methods
would be needed.
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The evaluation results shows that the algorithms with better performance on
this dataset use band decomposition as a part of their signal processing, though
it is not clear which band decomposition (e.g 5, 6, 36 bands and linear, log-
arithmic or perceptually spaced) is more suitable for rhythm description. As
future work, tempo estimation could be improved by identifying which pe-
riodicity function, audio features and which band decomposition method its
better.
The best performing algorithms (Klapuri, Hyb2 and BeatIt) are based on the
following steps: frequency decomposition, periodicity detection prior to the
multi-band integration, tatum detection and a post-processing block which
reduces the number of double and half error tempo estimations. Klapuri's
algorithm is still the best performing one among all the evaluated algorithms
but its performance can be improved by a combination with other tempo esti-
mation methods.
Finally, the computational global tempo estimation is intrinsically linked to
determining beat positions, and most of the best tempo estimators in this
evaluation are beat trackers, so an enhancement of beat-tracking systems would
shed light on this relation for tempo estimation improvement.

2.4.4. Combination of algorithms for tempo estimation

Despite the good results of the combination method, in practice, this algorithm
requires considerable e�ort. To install appropriate system components and op-
erating systems to make all of the algorithm work. Additionally, the algorithm
only analyzes the binary and ternary relations between the algorithms results,
the results could be improved by searching for odd or changing meter and for
future work, an implementation of a single system that uni�es di�erent tempo
estimation approaches could be done. For example, by using the methodology
of query by committee concept proposed in chapter 3.
Finally, two open questions remains about how their results could be integrated
to increase tempo estimation accuracy and how can be combined the results
of the tempo systems, to estimate the slower (tactus) and faster(tatum) tempo
of a song.
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2.5. Summary

In this chapter, we evaluated and compared 32 state-of-the-art algorithms for
tempo estimation, that we consider representative of current approaches. We
observed that current accuracy levels are around 91% on the considered dataset
and the best result, obtained by a beat tracker, can be enhanced by a heuristic
decision tree strategy combination with the other methods and their results
are better than each approach by itself. Although, an open question remains
about how their results could be integrated to improve tempo estimation to
get better performance.
The best performing algorithms share the following characteristics : frequency
decomposition, periodicity detection prior to the multi-band integration, tatum
detection and a post-processing block which reduces the number of double and
half error tempo estimations. Moreover, according to the statistical signi�-
cance analysis of the evaluation results, we conclude that among the tested
algorithms involving band decomposition, those computing the periodicity de-
tection before the multi-band integration and beat estimation achieve better
results. While the accuracy of our tempo estimation system is not yet the best
tempo algorithm, we propose a method for improving performance which is
speci�c to our goal of combining multiple systems. Consequently, these analy-
sis became the motivation to investigate the limitations and problems in beat
tracking in order to improve automatic rhythm description.
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Beat Tracking

The automatic extraction of beat times from music signals is a mature re-
search topic within music information retrieval (MIR) and is a key aspect of
computational rhythm description (Gouyon & Dixon, 2005). The aim of a beat
tracking system is to recover a sequence of time instants consistent with how a
human might tap their foot in time to music. For a recent review see (Degara,
2011, ch.2). Beat tracking systems are now considered �standard� processing
components within many MIR applications, such as chord detection (Mauch
et al., 2009), structural segmentation (Levy & Sandler, 2008), cover song de-
tection (Ravuri & Ellis, 2010), automatic remixing (Hockman et al., 2008) and
interactive music systems (Robertson & Plumbley, 2007), see Section 1.3.
While the e�cacy of beat tracking systems can be evaluated in terms of their
success of these end-applications, e.g. by measuring chord detection accuracy,
considerable e�ort has been made to on the evaluation of the beat tracking
systems directly through the use of annotated test databases in particular
within the MIREX initiative. In the small number of comparative studies of
automatic beat tracking algorithms with human tappers (Collins, 2006; Davies
& Plumbley, 2007; Holzapfel et al., 2012b; McKinney et al., 2007; Scheirer,
1998) musically trained individuals are generally shown to be more adept at
tapping the beat than the best computational systems. Given this gap between
human performance and computational beat trackers, we consider there is room
for improvement.
In order to devise a method for beat tracking using a combination of di�e-
rent approaches, in machine learning, selective sampling approaches have been
proposed to select informative samples the absence of ground truth (Dagan
& Engelson, 1995). In this work, we follow the Query by Committee concept
by Seung et al. (1992) which assign a degree of agreement to a given piece by
measuring the mean mutual agreement (MMA) between a set of state of the
art beat tracking approaches. In fact, we consider that the beat estimation

This section is based upon work in collaboration with Andre Holzapfel, Matthew E. P.
Davies, João Lobato Oliveira and Fabien Gouyon. This is a compilation of papers published
in a journal and peer reviewed conferences, Holzapfel et al. (2012a,b); Zapata et al. (2012b)

39
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that most agrees among the others is the most reliable, and the song in ques-
tion will be di�cult in case of not consensus among beat estimations. When
assembling our committee of beat trackers, we take into account that the co-
mmittee should be characterized by both high accuracy and diversity (Melville
& Mooney, 2004). Similar concepts have been evaluated in the domain of
speech processing by Dagan & Engelson (1995). Mandel et al. (2006) develop
an approach which includes user interaction to identify informative samples for
training a music retrieval system. However, to our knowledge, selective sam-

pling has not yet been applied to evaluate music signal processing applications
like beat tracking.
The remainder of this chapter is structured as follows; In Section 3.1, we use the
mutual agreement to address issues of evaluation measures and the choice of
beat tracking algorithms for mutual agreement computation. In Section 3.2, we
use an existing beat tracking database to determine system parameters for the
MMA computation, and demonstrate the validity of our approach. Based on
the previous sections, in Section 3.3.1 we give an overview of a stand alone beat
tracking method based on mutual agreement and a committee conformed by
multiple onset detection functions. In Section 3.4 we describe the experimental
setup used to select the best committee members. In Section 3.5 we present the
performance and behavior of each onset detection function and demonstrate
the improvement of the system on a manually annotated dataset. Finally, in
Section 3.6 we present the discussions of the results and areas for future work.

3.1. Mutual sequence agreement

Our approach is motivated by the Query by committee concept proposed by
Seung et al. (1992), which provides a method for selecting informative data
samples by measuring the agreement between the committee members. Even
though most beat tracking systems are optimized manually, we can compare
this optimization process with a learning process, and the current state of the
art can be considered a committee of learners that can pro�t from selecting
the committee member which most agree with the others.
A graphical representation for estimating the committee agreement of a music
sample for beat tracking when ground truth is given is shown in Figure 3.1a.
Here, a set of N beat sequences is calculated for a given sample using N di-
�erent beat trackers. These beat sequences are then compared with the given
ground truth of the piece using an evaluation measure, and the mean ground

truth performance of all beat trackers, BT-MGP, on this piece can serve as
an estimate of its committee agreement. Note that this is di�erent from cal-
culating the mean ground truth performance of a single beat tracker over a
whole data set, which can serve as an indicator of its performance and will be
referred to as D-MGP throughout the chapter.
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(a) Ground truth given (b) No ground truth

Figure 3.1: Setups for determining di�culty of a sample for N = 4 beat trackers, (a)
with and, (b) without ground truth.

However, when no ground truth is given, an unknown sample might be labeled
as �interesting� for beat tracking if a committee of beat trackers disagrees in
their estimates of the beat. Hence, the beat sequences of the N beat trackers
are compared to each other, creating a complete graph with N(N−1)/2mutual
agreement values on its edges, as shown in Figure 3.1b. The mean weight of the
edges is equal to the mean mutual agreement between the beat sequences, BT-
MMA, which can then serve to estimate for the level of agreement of a piece
for beat tracking and to select the committee member that more agree with
the other ones. There are two important questions that have to be considered
in order to use the method of committee for beat tracking.

1. Which evaluation measure to apply to compute the mutual agreements?

2. Which beat trackers to compare?

3.1.1. Evaluation measures

Our mutual agreement measure relies on the use of an objective beat tracking
evaluation method to determine the relationship between pairs of beat se-
quences. The selection of this evaluation method poses a problem since there
is no commonly accepted technique for measuring beat tracking performance.
This lack of consensus has led to many approaches being developed, each with
di�ering parameters and/or methodologies. For a review and further discus-
sion, see Davies et al. (2009a). The variations among evaluation methods1

arise due to di�ering hypotheses on how to address the localization between
beat times and annotations (e.g. by the use of tolerance windows), and how
to contend with ambiguity over the validity of metrically related sequences.
The eventual choice of a speci�c evaluation method is usually made in the
context of a particular application. For example, when evaluating a real-time

1All measures were computed using the beat tracking evaluation toolbox, available at
http://code.soundsoftware.ac.uk/projects/beat-evaluation

http://code.soundsoftware.ac.uk/projects/beat-evaluation
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beat tracking system, a continuous relationship between beats and annotations
may be an important criterion (Stark et al., 2009). Or, for chord recognition,
permitting many di�erent interpretations of the beat may be detrimental to
chord detection accuracy (Bello, 2007) hence it may be advisable to restrict
the range of alternate interpretations of the beat.
Our reason for using a beat tracking evaluation method is somewhat di�erent,
since our primary interest is not in identifying where beat sequences agree with
each other per se, but rather in �nding the one which most agree. While this
agreement could be measured in terms of ambiguity in metrical level or beat
phase, this is of limited use since these beat sequences could be considered
�somehow� related. Of greater importance for our application is �nding when
the beat sequences are completely related or unrelated. This is based on our
intuition that beat trackers are usually built out of similar components, and the
lack of consensus of their outputs is the condition that we are interested in to
�nd the beat tracker that more agrees with the others. Based on this reasoning,
the choice of evaluation method may appear trivial, since we could simply look
for cases where the evaluation score is high but we need to know when the
beat sequences don't agree or their value was close to 0% for any evaluation
method. To explore this hypothesis further we brie�y address the properties of
three evaluation methods which cover the main types of techniques currently
used. For each we describe its basic functionality and indicate the conditions
under which a minimal accuracy score can occur.
F-measure (Dixon, 2007): Beats are considered accurate if they fall within a
±70ms tolerance window around annotations. Accuracy in the range from [0
-100]% is measured as a function of the number of true positives, false positives
and false negatives. If the beat sequences are tapped at metrical levels related
by a factor of two (but otherwise well aligned), this causes the score to drop
from 100% to 66.7%. A score of 0% can only occur if no beat times fall within
any tolerance windows. The most likely scenario for this score is if the beat
sequences tapped in anti-phase (i.e. on the �o�-beat�). Completely unrelated
beat sequences typically score around 25% (Davies et al., 2009a) by virtue of
beats arbitrarily falling within the range of tolerance windows.
AMLt (Hainsworth & Macleod, 2004): A continuity-based method, where
beats are accurate when consecutive beats fall within tempo-dependent toler-
ance windows around successive annotations. Beat sequences are also accurate
if the beats occur on the o�-beat, or are tapped at double or half the anno-
tated tempo. The range of values for AMLt is[0 -100]%. A score of 0% can only
occur if no two consecutive beats fall within the speci�ed tolerance windows;
this is most likely the result of the beat sequences being related by an unspec-
i�ed metrical relationship, e.g. �2 against 3� (Davies et al., 2011). As with
F-measure, unrelated sequences do not score 0%, being closer to 18% (Davies
et al., 2009a).
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Information Gain (Davies et al., 2011): Accuracy is determined by calculat-
ing the timing errors between an annotation and all beat estimations within a
one-beat length window around the annotation. Then, a beat error histogram
is formed from the resulting timing error sequence. A numerical score is de-
rived by measuring the K-L divergence between the observed error histogram
and the uniform case. This method gives a measure of how much information
the beats provide about the annotations. The range of values for the Informa-
tion Gain is 0 bits to approximately 5.3 bits, where the upper limit is log2(K)
for K histogram bins. Maximal Information Gain is the result of all beat error
measurements falling within a single histogram bin, hence the choice of K is
important and should be neither too large nor too small; K = 40 histogram
bins is an appropriate choice. An information gain of 0 bits is obtained, in the
limit, when the beat error histogram is uniform, i.e. where the beat sequences
are totally unrelated.
To illustrate the di�erences in beat tracking outputs and the e�ect of di�erent
evaluation methods we examine two examples, Figure 3.2 shows beat annota-
tions and estimations for two song excerpts. It is evident that in Figure 3.2a
beat estimations widely agree, apart from a tempo doubling by the ELL algo-
rithm. This doubling is penalized by the F-measure by a value close to 66%,
as explained above. All three measures are characterized by high mean ground
truth performances for this song. For the example shown in 3.2b all beat es-
timations disagree both mutually and also with the ground truth. However,
both F-measure and AMLt result in mean accuracies of about 35%, while only
Information Gain (D) is characterized by a value close to zero.
Based on the properties of these evaluation methods, all the evaluation mea-
sures can detect when all the beat sequences agree, but the Information Gain
approach would appear most suited to our purpose since it is the only method
guaranteed to be close to 0 only in the condition where the beat sequences
have no meaningful relationship. However, to con�rm this we retain all three
evaluation methods throughout the subsequent analysis. In our notation, we
will add a subscript z ∈ {F,A,D} for F-measure, AMLt and Information
Gain, respectively, whenever a distinction is of importance (e.g. BT-MMAD

for BT-MMA using Information Gain).

3.1.2. Choice of committee members

Implementations of various beat tracking algorithms were collected including
those freely available online and others kindly provided by the authors of the
systems on request. In total we compiled an initial committee of 16 beat track-
ers (Table 3.1), describing their principal characteristic like Figure 1.3. In
practice, to use all the collected beat trackers requires considerable e�ort, such
as installing appropriate system components and operating systems necessary
to make all of the algorithms run. Furthermore there was both considerable
variability in the computational complexity of the algorithms, with some al-
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100.00 100.00 3.28

97.48 65.54 3.30

100.00 100.00 4.27

100.00 100.00 4.63

99.50 93.11 4.10

(a) Example for an easy song (Busta Rhymes)

A F D

Mean

DIX

DEG

ELL

IB2

KLA 33.90 40.00 0.59

29.41 34.78 0.68

53.92 40.52 0.36

40.59 35.56 0.53

18.81 25.71 0.16

35.33 35.32 0.47

14 16 18 20 22 24 26

 

 

 

 

 

TIME/s

(b) Example for a di�cult song (Tom Waits)

Figure 3.2: Ground truth annotations shown as dotted vertical lines. Beat estima-
tions for �ve algorithms (see Table 3.1) are superimposed as crosses. The tables list
the performances of the evaluation methods for each song, and their means.

gorithms slower than the fastest by up to two orders of magnitude, and large
variation in beat tracking performance (see Section 3.2). So as to make the
results of this work more easily reproducible we propose a method to select a
subset of these algorithms. The selected algorithms should be characterized by
good performance, but at the same time care should be taken to include ap-
proaches that complement each other. The goal is to obtain a small but diverse
committee, where each beat tracking implementation is publicly available and
not too demanding in terms of execution time. To �nd a subset of the N = 16
beat tracking algorithms we make use of oracle scores (the best performance
per song), following the sequential forward selection (SFS) method, computed
as depicted in Algorithm 2. It requires a set of data with available beat anno-
tations, with a number of samples equal to NS . It starts with computing the
ground truth performance vectors of length NS for all i = 1...N beat trackers
on this dataset, D-GP(i). We start by including the best single performing
algorithm into the committee (�rst pass through the While loop).
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The next pass through the while loop combines it with each other beat tracker
and obtains an oracle vector of each pair of beat trackers. The best combi-
nation is selected and a vector is built that contains the oracle performance
of these two beat trackers for each �le. This procedure is repeated until all
beat trackers are included in the subset. We can then look at which order
the algorithms entered the subset and what improvement in performance was
achieved by their inclusion. A choice of beat trackers guided by this algorithm
takes into account both accuracy and diversity.

Algorithm 2 Sequential forward selection (SFS), Oracle score computation

init: oraclegp = zeros(NS , 1), oracle = {}.
for i = {1, ..., N} do
Compute D-GP(i)

end for

while length(oracle) ≤ N do
for All i not in oracle do
temp(i) = pairwise max(oraclegp,D-GP(i))

end for
add î = argmaxi mean(temp(i)) to oracle
oraclegp = temp(̂i)

end while

3.2. Beat Tracking Evaluation and Applying MMA

to an existing dataset

The largest dataset for beat tracking evaluation to date is a compilation of
4 beat annotated datasets [CUIDADO (70 songs excerpts), Hainsworth (221
songs excerpts), Klapuri (474 songs excerpts), and SIMAC (595 songs ex-
cerpts)] introduced by Gouyon (2005), and it contains a total of 1360 excerpts
from di�erent styles of music. The dataset will be referred to as Dataset1360
throughout the following sections. Original genres were grouped in 10 classes,
mostly with respect to their instrumental or rhythmic contents (see Table 3.2).

Using this dataset we evaluated the accuracy and the diversity of the available
16 beat trackers. Based on these results we will de�ne our committee of beat
trackers and give a proof of concept for ourMMAmethod to improve automatic
beat tracking and to determine the most appropriate evaluation method.
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Table 3.2: Genre Distribution of the Dataset1360

Genre Songs Description

Acoustic 84
Mostly sung pieces accompanied with acoustic in-
strument, as the guitar, some percussion but no
loud drums.

Jazz/Blues 194
Quite heterogeneous set, many instrumental pieces
with lots of horns, jazz-like drum playing.

Classical 204
Mostly orchestral music, symphonies or sonatas,
few operas.

Classical solo 79 Solo instruments such as piano, guitar or organ.

Choral 21 Just Choirs.

Electronic 165 lots of electronic drums, mostly strong beats.

Afro-American 93
4
4 time signatures and clear drum patterns on the
great majority of excerpts.

Rock/Pop 334
Quite heterogeneous set, mostly sung pieces, with
drums.

Balkan/Greek 144
Sung pieces accompanied by acoustic instruments,
typical folklore music from Greece and Balkans.

Samba 42
Sung pieces accompanied by acoustic instruments,
with typical second and fourth beats marked by
percussion, folklore music from Brazil.

3.2.1. Accuracies of potential committee members

In Table 3.3 the D-MGP of all 16 beat trackers are given for Dataset1360. In
order to compare the beat trackers, a one-way ANOVA followed by a series
of t-tests with level of signi�cance of α = 0.05 was performed. Tukey's HSD
adjustment was used to account for the e�ect of multiple comparisons. The best
beat tracking results without statistically signi�cant di�erences are depicted
in boldface.
It can be seen from Table 3.3 that a subset of beat trackers perform signi�cantly
better than most of the others. The set of the best beat trackers varies slightly
depending on the evaluation measure which is applied. Comparing the D-MGP
values of the approaches with the mean values of all beat trackers we can see
that some approaches perform worse than the mean for all evaluation measures.
When looking to �nding a subset of committee members we considered the need
for accuracy in beat tracking, since poorly performing beat trackers can lead to
an over-estimation of disagreement and is better to select our output between
the best committee members.
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Table 3.3: Mean ground truth performance of each BT (D-MGP) on
Dataset1360. Bold numbers indicate best performances.

Beat Tracker AMLt (%) F-measure (%) Inf. Gain (bits)
Aubio (AUB) 50.6 49.4 1.58
Beatit (BIT) 61.0 52.7 1.62
Beatroot (DIX) 70.8 61.7 1.98
BeatUJAEN (BUJ) 41.6 33.9 1.18
Boeck (BOE) 58.7 66.6 1.98
BpmHistogram (BH) 57.3 51.7 1.43
Davies (DAV) 75.9 62.8 2.25
Degara (DEG) 77.7 65.3 2.26
Ellis (ELL) 60.0 55.1 1.76
Hainsworth (HAI) 59.6 51.1 1.84
IBT causal (IB1) 58.0 55.2 1.67
IBT non-causal (IB2) 73.8 60.5 1.92
Klapuri (KLA) 77.7 65.5 2.32
Lee (LEE) 26.4 48.8 1.09
Scheirer (SCH) 49.0 56.2 1.69
Stark (STA) 71.0 59.5 2.03

Mean 60.6 56.0 1.79

3.2.2. Selecting the committee

We now illustrate the e�ect of choosing the committee members based on
oracle performances as described in Section 3.1.2. The development of the
oracle scores are depicted in Figure 3.3. A saturation e�ect can be observed
when the number of beat trackers in the subset increases, and we decided
to limit the number of beat trackers to 5 (dotted red line). The order in
which algorithms entered the oracle slightly varied between the evaluation
measures. We decided to choose the 5 beat trackers based on their average
ranking obtained from the three evaluation measures, which gave [KLA, DEG,
HAI, BOE, IB2]. This ranking results have higher diversity of approaches
instead of ordering according to ground truth performance. For example, the
DAV2 algorithm is not among the best �ve in the ranking. This is caused by
the fact that the DAV and DEG algorithms are very similar, and DAV does
not improved to much after DEG entered. Instead of the DAV algorithm, the
HAI and the BOE algorithm enter the committee, which follow quite di�erent
approaches from the KLA and the DEG algorithm and seem to increase the
diversity of the committee. However, we chose not to include the approaches
by Böck & Schedl (2011) (BOE) and Hainsworth & Macleod (2004) (HAI) into

2Note, we use an improved version of the original algorithm which is implemented as a
Sonic Visualiser plugin.
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Figure 3.3: Development of the oracle scores for the three evaluation measures.
Performance of the chosen committee is depicted by a blue cross.

our committee of 5 beat trackers for reasons of portability, computation time
and public availability. Instead, we included the widely available approaches
by Dixon (2007) (DIX) and Ellis (2007) (ELL). This lead to non-signi�cant
decrease in oracle performance (marked by a cross in Figure 3.3) by 0.63%,
0.13% and 1.15% for Information Gain, AMLt, and F-measure, respectively.
Finally, to form our committee we selected �ve state of the art and publicly
available beat trackers: Dixon (Dix.) (Dixon, 2007), Degara (Deg.) (Degara
et al., 2012), Ellis (Ell.) (Ellis, 2007), IBT (Oliveira et al., 2012), and Klapuri
(Kla.) (Klapuri et al., 2006). These systems had the performance and diversity
necessary to compute a reliableMMA. We hope that the chosen committee will
enable other researchers to most easily reproduce results presented in this work.

3.2.3. Mean Mutual Agreement (MMA)

After the selection of committee members, mutual agreement between the se-
quences obtained from the 5 beat trackers were computed using the three
evaluation measures described in Section 3.1.1. Then, for each evaluation mea-
sure, mutual agreements for a particular piece were summarized in a mutual
agreement histogram with 11 bins spanning the whole range of values of the
particular evaluation measure (e.g. 0% to 100% for AMLt). In the left column
of Figure 3.4 these histograms are depicted for Dataset1360. The histograms
are sorted by their BT-MMA value for each evaluation method. Dark colors in
the histogram plots indicate a high population of the speci�c histogram bin. In
the right column of Figures 3.4, scatter plots of the BT-MMA over the mean
ground truth performance BT-MGP are shown. For our purposes, BT-MMA
can predict BT-MGP at least for di�cult pieces. These are located at low BT-
MGP values, while easier pieces are found at higher BT-MGP values, i.e. in
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Figure 3.4: Left side: Each column depicts the histogram obtained from the
5 ∗ 4/2 mutual agreements of the beat sequences for a song in Dataset1360,
histograms are sorted by their mean values (BT-MMA). Dark colors indicate
high histogram values. Right side: MMA versus MGP scatter plots.

the region where beat trackers perform well in the mean for a speci�c sample.
Comparing the scatter plots for the three evaluation measures we can observe
that the BT-MMAD in Figure 3.4b is characterized by the highest correlation
with the BT-MGP. This correlation is even larger for low BT-MMAD values,
which indicates that low BT-MMAD can reliably predict low ground truth
performance. The other two scatter plots (Figures 3.4d and 3.4f) show an in-
creased correlation only for high ground truth performance, i.e. in the upper
right corner of these scatter plots. For lower BT-MGP, F-measure in particu-
lar cannot be applied to predict BT-MGP using BT-MMA. This di�erence of
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Information Gain on the one side and F-measure and AMLt on the other can
be attributed to the property of Information Gain of having an unambiguous
�true� zero value, as explained in Section 3.1.1.
By observing the histogram plots in the left column of Figure 3.4, it is apparent
that only for the Information Gain in Figure 3.4a a continuous transition from
histograms centered at low values to histograms centered at high values exists.
The other two measures are characterized by generally �atter histograms, and
the F-measure histograms are often characterized by simultaneous high values
for 100% and 66.7%. This can be ascribed to sequences that are at metrical
levels related by a factor of 2 (see 3.1.1). These characteristics imply that the
computation of a mean is most reliable for the Information Gain. Hence, we
conclude that using Information Gain for MMA computation is superior to
using either F-measure or AMLt.

3.2.4. Measuring Mutual Agreement, Mean Mutual
Agreement

The measurement of Mean Mutual Agreement (MMA) gives an agreement level
of the beat trackers per song in a dataset based on the mutual (dis-)agreement
between a designated committee of learners. As depicted in Figure 3.5, the
MMA is computed using the beat outputs (or beat sequences) of a committee
of N beat trackers on a musical piece, by measuring the mutual agreement
MAi,j (see eq. (3.4)) between every pair of estimated beat tracker outputs i
and j, and retrieving the mean of all N(N − 1)/2 mutual agreements:

MMA =
1

N(N − 1)/2
∗
N−1∑
i=1

N∑
j=i+1

MAi,j . (3.1)

In addition to calculating the MMA as a summary statistic, we can easily
identify the mutual agreement, MAi, of the beat tracker output i which most
agrees with the remainder of the committee, the MaxMA, and the beat tracker
output i which agrees the least, the MinMA :

MAi =
1

N − 1
∗

N∑
j=1,j 6=i

MAi,j , (3.2)

{
MaxMA = maxi (MAi)

MinMA = mini (MAi) i, j = 1, . . . , N ∧ i 6= j
(3.3)

In order to measure the mutual agreement MAi,j between each pair {i, j} of
beat tracker outputs, a beat tracking evaluation method must be chosen. In
3.1.1 we reviewed the properties of existing evaluation methods (Davies et al.,
2009a) and selected the Information Gain approach by Davies et al. (2011)
(InfGain) as the only one with a true zero value, able to match low MMA
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Beat
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Figure 3.5: Example calculation of the MMA and MaxMA for a song with the
beats estimated from a committee of four beat trackers.

(measured in bits) with unrelated beat tracker outputs:

MAi,j = InfGain(i, j), i, j = 1, . . . , N ∧ i 6= j. (3.4)

The Information Gain measure is determined by forming a beat error histogram
representing the timing error between beat sequences. A numerical score is
calculated as a function of the entropy of the histogram. The range of values
for the InfGain is 0 bits to approximately 5.3 bits, where the upper limit is
log2(K) for K=40 histogram bins. For more details see Davies et al. (2011).

3.2.5. Maximum Mutual Agreement (MaxMA)

In this experiment we used our committee of beat trackers (Selected in Section
3.2.2) on Dataset1360 and calculated BT-MMAD for each sample. We then
excluded those samples with BT-MMAD below a speci�ed threshold. The
threshold was incremented in steps of 0.3 bits from 0 to 3 bits. We now
tried to select the beat sequence with maximum mutual agreement with the
committee, which we denote, MaxMA (Equation 3.3). For each sample (at
a given threshold), we simply selected the beat sequence with the maximum
mutual agreement (MaxMA) with the other four sequences as the most reliable
beat estimation. In e�ect we assume that the beat tracker that best agrees
with the rest of the committee is the most reliable algorithm. In Figure 3.6,
we compare the MaxMA approach to another viable option, that of picking the
beat tracker (Klapuri et al., 2006) with the best mean overall performance from
our experiments in Section 3.2. We denote this option Best mean. To illustrate
the upper limit on performance we also include the theoretical optimumOracle
(that picks the most accurate beat tracker for each individual sample).



3.2. BEAT TRACKING EVALUATION AND MMA ESTIMATION IN A

DATASET 53

Figure 3.6 shows that applying the MaxMA method to choose a beat tracker
leads to signi�cant improvements when evaluating against ground truth for
both Information Gain and AMLt for a wide range of thresholds. T-tests with
a level of signi�cance of α = 0.05 were performed to compare the MaxMA

method with the Best mean method at each threshold, and all di�erences on
the left of the blue vertical lines in Figures 3.6a and 3.6b are signi�cant. This
improvement in performance occurs even when no samples are discarded and
remains when retaining up to 41% for of samples AMLt and 27% for Informa-
tion Gain. Beyond this point only the samples with high mutual agreement
remain, which are among the easiest in the dataset, hence the choosingMaxMA

over the Best mean may o�er less improvement. Indeed both the MaxMa and
Best Mean performance approach the Oracle results when only very few (easy)
samples remain.
While there is still a consistent improvement for the F-measure (Figure 3.6c),
this improvement is not signi�cant for any threshold value. This is likely
the result of the discontinuity of the F-measure, which assigns 0% to beat
sequences misaligned in phase and values of 66% for tempo halving/doubling.
These properties of the F-measure increase its variance even for sets of beat
sequences that can be acceptable in terms of perceptual criteria. This supports
the observation that signi�cant di�erences in beat tracking performance can
vary dependent on the evaluation measure (Davies et al., 2009a).
On the basis of these results, we infer that mutual agreement can be successfully
applied both for choosing �beat-trackable� �les and for improving beat tracking
performance on these �les by selecting the beat tracker that has the maximum
mutual agreement with the other beat trackers. Since all beat sequences must
be estimated for the �le selection/rejection process, the improvement given by
the MaxMA beat tracker choice adds negligible additional complexity.
We present in Figure 3.7 the same results of Figure 3.6b adding the performance
results of the beat tracking which agrees the least (MinMA) and the MMA

values related with the plot. These MMA values act as a threshold for the
selection of excerpts from the dataset (e.g., for an MMA of 2.1 bits we retain
52.1% of the song in the dataset).
Across all MMA thresholds we can observe that the performance of MinMA
is signi�cantly lower than all other con�gurations tested. Although as seen
before, lower than the Oracle, MaxMA outperforms the BestMean algorithm,
and the di�erence between the two, around 3.3%, is statistically signi�cantly
(p<0.01) for all songs with an MMA below 2.4 bits. Above 2.4 bits this di�er-
ence is no longer signi�cant however the performance of the Oracle, BestMean
and MaxMA are all very high. This suggests that for very high MMA thresh-
olds, where beat tracker outputs are highly consistent with one another, any
attempt to choose between the members of the committee o�ers little scope
for improvement.
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Figure 3.6: Result of automatic beat tracker selection (MaxMA), compared
with single best beat tracker choice (Best Mean) and oracle scores (Oracle)
on Dataset1360. For the thresholds from 0 to 3 bits on the BT-MMAD the
percentage of �les which are kept for evaluation is depicted on the x-axis (total
number of �les: 1360).
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Figure 3.7: AMLt scores of the beat tracker output with maximum (MaxMA)
and minimum (MinMA) agreement per song, compared with the single best
beat tracker choice (BestMean), and the oracle score (Oracle) for various
thresholds of MMA applied to Dataset1360.

3.3. Multi Feature beat tracking

In section 3.2.4 through the calculation of both Maximum mutual agreement
(MaxMA), we presented a method to automatically annotate the beats in a
way that exceeds the performance of the state of the art. By this method,
instead of using only one beat tracker, it selects the beat estimation that most
agrees (MaxMA) to a given piece, between beat estimations of a set of state
of the art beat tracking approaches based on the Query by committee concept.
Moreover, using MaxMA leads to improve the performance over consistently
picking any individual algorithm from the committee of beat trackers.
Despite the good performance results, this approach is problematic because of
the di�erence in implementation and system requirements of each algorithm.
In addition, previous research in improving beat tracking presented in (Stark,
2011, chap. 4), describes the results of a modular evaluation of �ve state of
the art beat tracking systems by comparing and contrasting their di�erent in-
put features and tracking models. They conclude that signi�cant improvement
in performance in beat tracking is possible by using existing tracking models

This section is based upon work in collaboration with Matthew E. P. Davies and
its published in Multi-feature beat tracking, IEEE Trans. on Audio, Speech, and Language
Processing by José R. Zapata, Matthew E.P. Davies and Emilia Gómez.
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and improving the input feature. Furthermore the approach of using a single
input feature for all signal types does not adequately take account of the dif-
ferences between signals from di�erent genres. and shows that by choosing a
more appropriate input feature for a given signal we can achieve considerable
improvements in performance.
Based on these research results, the main goal of this chapter is to extend
the method of the beat trackers committee in an implementable beat tracker
system that uses the query by committee idea, using a committee composed
by multiple onset detection functions as inputs to one beat tracker model, and
the �nal output is selected from the beat estimations of the committee that
more agrees with the other ones.
The Figure 3.8 shows an overview of the proposed beat tracking system.

F1 F2 F3 Fn

Selection

Output Beats

Audio

...

Beat Period
Es timation

Beat Tracking

...

...

F4

stage (i)

stage (ii)

stage (iii)

Figure 3.8: System Overview. The multi-feature beat tracker is comprised of
three stages: i) a set of onset detection functions, F1 . . . Fn, as input features;
ii) beat period estimation and beat tracking; and iii) a selection method to
choose between the set of beat outputs.
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3.3.1. Proposed model

The proposed multi feature beat tracking system (shown in Figure 3.8) is
composed of three parts, �rst, a set of onset detection functions (ODF), this
is followed by beat period estimation and beat tracking for each ODF. Finally,
the overall beat output is chosen using a selection method applied to the set of
estimated beat locations. The proposed beat tracker and its code is publicly
available3.

3.3.2. Feature extraction

In beat tracking, an onset detection function is commonly used as a mid-
level representation that reveals the location of transients in the original audio
signal. This detection function is designed to show local maxima at likely event
locations (Bello et al., 2005). Many methods exist to emphasize the onset of
musical events and the performance of beat trackers strongly depends on the
low-level signal features used at this stage (Gouyon et al., 2007).
To building our multi-feature beat tracking system we �rst collected the onset
detection functions from each beat tracking algorithms used in Section 3.2.2,
for the beat tracker committee. Some of these algorithms were freely available
online and the remainder were provided by the algorithm authors or reimple-
mented. In addition, other onset detection functions were included, where they
were deemed to be complementary to those already selected. As in chapter 3
our goal is to obtain a small but diverse committee, where each implementa-
tion is publicly available and not too demanding in terms of execution time.
In addition, while a computationally e�cient system is not the speci�c goal of
this research, we seek to avoid any input features which are very computation-
ally expensive to calculate - as their eventual bene�t may not be worth the
increase in computation time.
In total we compiled an initial set of nine onset detection functions which are
described below. Note that while each onset detection function is extracted
according to its original parametrizations in terms of window length and hop
size (assuming a mono input audio signal sampled at 44.1kHz), each onset
detection function is subsequently resampled to have a temporal resolution
of 11.6ms prior to extracting the beats in order to match the input feature
resolution expected by the beat tracking model. In the following equations
for generating onset detection functions, X(k) refers to the discrete Fourier
transform spectrum of an audio frame xn, the symbol k is the index over linear
frequency bins in X and b is an index over a smaller number of sub-bands, B.

3http://essentia.upf.edu/ , BeatTrackerMultiFeature(), A�ero-GPL

http://essentia.upf.edu/
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Energy Flux (EF)

Equation 3.5 is a simpli�ed implementation of the Energy �ux function by
Laroche (2003), and is calculated by computing short time Fourier transform
frames using a window size of 2048 and hop size of 512, corresponding to
an input feature resolution of 11.6ms. From these frames, each input feature
sample EF (n) is calculated as the magnitude of the di�erences of the root
mean square (RMS) value between the current short time Fourier transform
frame and its predecessor:

EF(n) = |RMS(Xn(k))−RMS(Xn−1(k))| (3.5)

Spectral Flux (SFX )

The spectral �ux onset detection function proposed by Masri (1996) and pre-
sented in Equation 3.6, is calculated by computing short time Fourier transform
(STFT) frames using a window size of 2048 and hop size of 512, corresponding
to an input feature resolution of 11.6ms. From these frames, each input feature
sample SFX(n) is calculated as the sum of the positive di�erences in magni-
tude between each frequency bin of the current short time Fourier transform
frame and its predecessor:

SFX(n) =
K∑
k=1

H(|Xn(k)| − |Xn−1(k)|) (3.6)

where H(x) = x−|x|
2 is the half-wave recti�er function.

Spectral Flux Log Filtered (SFLF)

Introduced by Böck et al. (2012) this method is based on spectral �ux, but
the linear magnitude spectrogram is �ltered with a pseudo Constant-Q �lter
bank, as can be seen in Equation 3.7,

X logfilt
n (b) = log(λ · (|Xn(k)| · F (k, b)) + 1) (3.7)

where the frequencies are aligned according to the frequencies of the semitones
of the western music scale over the frequency range from 27.5 Hz to 16 kHz,
using a �xed window length for the STFT, a window size of 2048 and a hop
size of 512. The resulting �lter bank, F (k, b), has B = 82 frequency bins with
b denoting the bin number of the �lter and k the bin number of the linear
spectrogram. The �lters have not been normalized, resulting in an emphasis of
the higher frequencies, similar to the high frequency content (HFC ) method.
From these frames, in Equation 3.8 each input feature sample is calculated
as the sum of the positive di�erences in logarithmic magnitude (using λ as a
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compression parameter, λ = 20) between each frequency bin of the current
STFT frame and its predecessor:

SFLF(n) =
B=82∑
b=1

H
(∣∣∣X logfilt

n (b)
∣∣∣− ∣∣∣X logfilt

n−1 (b)
∣∣∣) (3.8)

Complex Spectral Di�erence (CSD)

The complex spectral di�erence input feature by Duxbury et al. (2003), pre-
sented in Equation 3.9, is calculated from the short time Fourier transform
of 1024 sample frames with a 512 sample hop size, the output is interpolated
resulting in a resolution of 11.6ms. The feature produces a large value if there
is a signi�cant change in magnitude or deviation from expected phase values,
di�erent from the spectral �ux that only computes magnitude changes in fre-
quency. X̃n is the expected target amplitude and phase for the current frame
and is estimated based on the values of the two previous frames assuming
constant amplitude and rate of phase change,

CSD(n) =
K∑
k=1

|Xn(k)− X̃n(k)| (3.9)

Beat Emphasis Function (BEF)

Introduced in Davies et al. (2009b), the Beat emphasis function is de�ned as a
weighted combination of sub-band complex spectral di�erence functions Equa-
tion 3.9, Sb(n), which emphasize periodic structure of the signal by deriving a
weighted linear combination of 20 sub-band onset detection functions driven a
measure of sub-band beat strength,

BEF(n) =

B=20∑
b=1

w(b) · Sb(n) (3.10)

where the weighting function w(b) favours sub-bands with prominent periodic
structure. In Equation 3.10, BEF is calculated from the short time Fourier
transform of 2048 sample frames with a 1024 sample hop size, the output is
interpolated by a factor of two, resulting in a resolution of 11.6ms.

Harmonic Feature (HF)

The harmonic feature presented by Hainsworth &Macleod (2003) is a harmonic
change detection and is calculated in Equation 3.11 by computing a short
time Fourier transform using a window size of 2048 sample frames with a 512
sample hop size. HF uses a modi�ed Kullback-Leibler distance measure to
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detect spectral changes between frequency ranges of consecutive frames. The
modi�ed measure is thus tailored to accentuate positive energy change,

HF(n) =
B∑
b=1

log2

(
|Xn(b)|
|Xn−1(b)|

)
(3.11)

Only the region of 40Hz-5kHz was considered to pick peaks, a local average of
the function was formed and then the maximum picked between each of the
crossings of the actual function and the average.

Mel Auditory Feature (MAF)

The Mel Auditory Feature, introduce by Ellis (2007), is calculated by resam-
pling the audio signal to 8kHz and calculating a short time Fourier transform
magnitude spectrogram with a 32ms window and 4ms hop size. In Equa-
tion 3.12 each frame is then converted to an approximate �auditory� represen-
tation in 40 bands on the Mel frequency scale and converted to dB, Xmel(b).
Then the �rst order di�erence in time is taken and the result is half-wave rec-
ti�ed. The result is summed across frequency bands before some smoothing is
performed to create the �nal feature,

MAF(n) =
B=40∑
b=1

H
(∣∣∣Xmel

n (b)
∣∣∣− ∣∣∣Xmel

n−1(b)
∣∣∣) (3.12)

Phase Slope Function (PSF)

The group delay is used to determine instants of signi�cant excitation in audio
signals and is computed as the derivative of phase over frequency τ(k), as can
be seen in Equation 3.13, in (Holzapfel & Stylianou, 2008) is used as an onset
detection function: using a large overlap, an analysis window is shifted over
the signal and for each window position the average group delay is computed.
The obtained sequence of average group delays is referred to as phase slope
function (PSF). The resulting resolution of the signal is 6.2 ms. To avoid the
problems of unwrapping the phase spectrum of the signal for the computation
of group delay can be computed as:

τ(k) =
XRe(k) · YRe(k) +XIm(k) · YIm(k)

|X(k)|2
(3.13)

Where X(k) and Y (k) are the Fourier Transforms of x[n] and nx[n], respec-
tively. The phase slope function is then computed as the negative of the average
of the group delay function.
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Bandwise Accent Signals (BAS)

Introduced by Klapuri et al. (2006), Bandwise Accent Signals are calculated
from 1024 sample frames with a 512 sample hop size. The Fourier transform
of these frames is taken and used to calculate power envelopes at 36 sub-bands
on a critical- band scale. Each sub-band is up-sampled by a factor of two,
smoothed using a low-pass �lter with a 10-Hz cuto� frequency and half-wave
recti�ed. A weighted average of each band and its �rst order di�erential is
taken, ub(n). Finally, in Equation 3.14 each group of 9 adjacent bands (i.e.
bands 1�9, 10�18, 19�27 and 28�36) are summed up to create a four channel
(c) input feature with a resolution of 5.8 ms. We sum these four channels to
generate a single output feature,

BAS(n) =
4∑

c=1

9c∑
b=9(c−1)+1

ub(n) c = 1, . . . , 4 (3.14)

3.3.3. Beat period estimation and tracking model

Given each onset detection function we now address the task of estimating beat
locations. Since our system relies on a single beat tracking model, we select a
beat tracker which has been shown to perform well in comparative studies and
is freely available4. To this end, we choose the method of Degara et al. (2012),
which was also part of the committee of beat tracking algorithms in section
3.2.2.
The core of Degara's beat tracking model is a probabilistic framework which
takes as input an onset detection function (used to determine the phase of
the beat locations) and a periodicity path which indicates the predominant
beat period (or tempo) through time. While a di�erent input feature (or user-
speci�ed input) could be used to determine the periodicity path, in practice it
is estimated from the same onset detection function. The technique for �nding
the periodicity (as used in (Degara et al., 2012)) is an o�ine version of the
Viterbi model in (Stark et al., 2009). This Viterbi model assumes the beat
period to be a slowly varying process with transition probabilities modeled
using a Gaussian distribution of �xed standard deviation. To estimate the
beats, the system integrates musical-knowledge and signal observations using
a probabilistic framework to model the time between consecutive beat events
and exploits both beat and non-beat signal observations. For more information
on the tracking method, see (Degara et al., 2012). Since our primary concern
in this paper relates to the input features supplied to the beat tracker, we
can treat the beat tracker as a �black box�. To create the committee of beat
trackers, we calculate a separate periodicity path and set of beat locations for
each onset detection function.

4http://www.gts.tsc.uvigo.es/~ndegara/Publications.html

http://www.gts.tsc.uvigo.es/~ndegara/Publications.html
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3.3.4. Selection method and measuring mutual agreement

In Section 3.2.4 we use the Maximum Mutual AgreementMaxMA as a selection
method to obtain an output between a set of beat tracker beat estimations, this
selection leads to signi�cant improvements when evaluated against the ground
truth and compared with a set of 16 state of the art beat tracking systems.
In Section 3.1.1 we reviewed the properties of existing evaluation measures and
selected the Information Gain (InfGain) approach by Davies et al. (2011) as
the only measure with a true zero value, able to match low MMA (measured
in bits) with unrelated beat sequences.
While Information Gain was shown to be a good indicator of agreement bet-
ween beat sequences from among existing beat tracking evaluation methods, it
is not the only approach which could be used. In this section we also explore
an alternative mechanism for measuring agreement, the regularity function of
Marchini & Purwins (2011), which quanti�es the degree of temporal regularity
between time events.
Regularity: Quanti�es the degree of temporal regularity between beat es-
timations. Firstly, to calculate the regularity we �rst concatenate and sort
the beats of two di�erent beat sequences, then we compute the histogram of
the time di�erences between all possible combinations of two beats (the com-
plete inter-beat interval histogram, CIBIH ). In this way, we obtain is a kind
of �harmonic series� of peaks that are more or less prominent according to
the self-similarity of the sequence at di�erent time scales. Second, we com-
pute the autocorrelation ac(t)(where t corresponds to lag in seconds) of the
CIBIH which, in the case of a regular sequence, has peaks at multiples of the
tempo. Let tusp be the positive time value corresponding to its upper side
peak. Given the sequence of m beats x = (x1, ..., xm) we de�ne the regularity
of the sequence of beats x to be:

Regularity(x) =
ac(tusp)

1
tusp

∫ tusp
0 ac(tusp)

. (3.15)

If the beat estimations are more equally spaced in time the regularity value will
be higher, whereas if the beat estimations are unrelated the regularity value
will be lower. For more Information see (Marchini & Purwins, 2011).
Referring again to Figure 3.8, the chosen selection mechanism (either Informa-
tion Gain or Regularity) is the �nal stage in our multi-feature beat tracking
which provides the eventual beat output.

3.4. Experimental setup

3.4.1. Dataset

The Evaluation was realized using Dataset1360, the largest available dataset
for beat tracking evaluation that contains a total of 1360 excerpts presented
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in Section 3.2. We use Dataset1360 to analyze the diversity and accuracy
of the onset detection functions. Based on these results we will i) select our
committee of onset detection functions ii) give proof of using Maximum Mutual
Agreement (MaxMA) for selecting the best beat tracking estimation from the
committee and iii) verify the behavior of the MMA method calculated with a
committee formed by di�erent onset detection functions to assess di�culty for
automatic beat tracking.

3.4.2. Evaluation measures

For evaluating the beat tracking accuracy against manual annotations, we use
a subset of methods from the beat tracking evaluation toolbox5 (Davies et al.,
2009a). These evaluation methods are also used in the beat tracking evaluation
task within MIREX.
Among all the proposed evaluation metrics, we use the continuity measures
as originally de�ned in (Hainsworth, 2004; Klapuri et al., 2006) with an out-
put range between [0 - 100]%. This allows us to analyze both the ambiguity
associated with the annotated metrical level and the continuity in the beat
estimates. These accuracy measures consider regions of continuously correct
beat estimates relative to the length of the audio signal analyzed. Continuity is
enforced by de�ning a tolerance window of 17.5% relative to the current inter-
annotation-interval. To allow the beat tracker to initially induce the beat,
events within the �rst �ve seconds of each excerpt are not evaluated. The
continuity-based criteria used for performance evaluation are the following:

CMLc (Correct Metrical Level with continuity required) gives informa-
tion about the longest segment of continuously correct beat tracking.

CMLt (Correct Metrical Level with no continuity required) accounts for
the total number of correct beats at the correct metrical level.

AMLc (Allowed Metrical Level with continuity required) is the same as
CMLc but it accounts for ambiguity in the metrical level by allowing for
the beats to be tapped at double or half the annotated metrical level.

AMLt (Allowed Metrical Level with no continuity required) is the same
as CMLt but it accounts for ambiguity in the metrical level.

3.4.3. Reference systems

To compare our system against existing beat trackers, we compiled a set of ex-
isting algorithms, including those with freely available implementations on-line
and others provided by the authors of the systems on request. To summarize
the accuracy of each beat tracking system, the mean value of the performance

5http://code.soundsoftware.ac.uk/projects/beat-evaluation

http://code.soundsoftware.ac.uk/projects/beat-evaluation
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measures across all the audio �les of the test database is presented. Statisti-
cally signi�cant di�erence on the mean values are also checked. For this, we
use a paired T-test with α = 0.05 as a guide to indicate statistical signi�cance.
In total we compiled 20 state of the art beat trackers, expanding the set origina-
lly in Table 3.1 with the approaches by Krebs & Widmer (2012), Gkiokas et al.
(2012), Khadkevich et al. (2012) and a commercial approach by the Echonest6,
and also compare against the �ve committee beat tracker (Section 3.2.2) .

3.5. Results

3.5.1. Committee members

Before presenting comparative results against other beat tracking algorithms
we �rst analyze the composition of the committee of beat trackers in our multi-
feature beat tracker. The committee is composed of the beat tracking esti-
mation from the following onset detection functions: bandwise accent signal
(BAS ), beat emphasis function (BEF ), complex spectral di�erence (CSD), en-
ergy �ux (EF ), harmonic feature (HF ), mel auditory feature (MAF ), phase
slope function (PSF ), spectral �ux (SFX ) and spectral �ux log �ltered (SFLF ).
To �nd the relevance of each ODF in the committee we make use of the se-
quential forward selection, SFS, method, as used in Section 3.1.2. We ran the
Degara beat tracker with each onset detection function on Dataset1360 and
measure the per track performance of the beats resulting from each ODF. As
the �rst member of the committee we select the ODF with the best mean per-
formance across the entire dataset. Then we iteratively add a new member to
the committee based on whichever ODF (combined with those already in the
committee) leads to the best Oracle performance - i.e. by choosing a priori the
best beat sequence per excerpt in the dataset. This procedure is iteratively
continued until all onset detection functions have been included.
Once this selection process has been completed we can look at the order
in which each ODF entered the committee and the improvement in perfor-
mance achieved by its inclusion. The mean performance of each feature in
the Dataset1360 is presented in Table 3.4, from which we can see the CSD

performs best, and the EF and PSF have lowest overall accuracy, perhaps due
to the speci�c emphasis in detecting changes in only one signal variable (i.e.
energy, or phase), compared to the more general nature of the CSD method.
We can determine a subset by �xing the number of committee members at the
point where improvements o�ered by additional members is small. A choice
of beat trackers guided by this strategy takes into account both accuracy and
diversity.

6http://developer.echonest.com/

http://developer.echonest.com/


3.5. RESULTS 65

Table 3.4: Mean Continuity measures performance (%) of each feature and the
Oracle in the 1360 Song Dataset, sort by sequential forward selection method

ODF CMLc CMLt AMLc AMLt
CSD 46.1 50.3 69.8 77.6
HF 38.5 45.6 62.0 73.7
PSF 31.1 35.2 61.3 69.9
EF 39.6 44.7 56.1 64.6
SFLF 44.2 48.0 68.9 76.8
BEF 38.0 42.2 65.5 73.5
BAS 43.0 46.8 68.5 76.4
MAF 42.2 46.8 63.9 73.0
SFX 43.2 47.9 65.8 73.9

Oracle 64.9 69.0 85.5 90.5

Using the SFS method the order in which the ODF enter the committee is
as follows: Complex spectral di�erence (CSD), Harmonic function (HF ), En-
ergy Flux (EF ), Phase slope function (PSF ), Spectral �ux logarithmic �ltered
(SFLF ), Beat emphasis function (BEF ), Bandwise accent signal (BAS ), Mel
auditory function (MAF ) and spectral �ux (SFX ).
In Figure 3.9(a) a comparison between the mean performance of the Oracle and
the Multi-feature beat tracker versus the number of committee members is pre-
sented. By comparing the improvements between the best ODF alone (CSD)
when new members (given by the SFS method) are added to the committee, we
�nd that after the sixth member is added, the performance is higher and sta-
tistically signi�cant for the AMLc and AMLt measures. In Figure 3.9(b) we
show the improvement obtained by automatic selection between beat outputs
using information gain and regularity. Table 3.5 presents the evaluation results
of the best ODF mean performances of each of the genres of Dataset1360 per
evaluation measure. There is no statistical di�erence between the results of
the best three ODFs per genre. However some ODFs performed statistically
worse than the others in these genres: Acoustic (EF ), Afro-American (PSF ),
Classical (BEF, EF, SFX ), Classical Solo (SFX ), Electronic (PSF ), Jazz (EF,
HF, MAF ), Rock/Pop (PSF ), Samba (HF, MAF ). Overall our results con�rm
the intuition that ODFs which are sensitive only to phase or harmonic changes
are not the best choice for music genres with strong percussion, furthermore
the EF is not a good choice for music without prominent percussion. Com-
paring the AMLt results of each onset detection function in Dataset1360, we
�nd that 53% of the songs could be improved by using multiple ODF versus
only using the single best performing onset detection function for this model,
which led to an 11.6% average improvement.
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Table 3.5: Mean performance (%) of the best feature per genre in the 1360
Song Dataset

Genre CMLc CMLt AMLc AMLt
Acoustic 39.8 (SFLF ) 45.6 (SFLF ) 57.1 (SFLF ) 67.6 (SFLF )
Afro-American 70.8 (SFX ) 73.4 (SFX ) 85.6 (CSD) 93.3 (CSD)
Balkan 19.6 (EF ) 20.9 (EF ) 77.4 (SFLF ) 83.0 (SFLF )
Choral 8.8 (PSF ) 13.9 (PSF ) 16.4 (HF ) 32.2 (HF )
Classical 38.7 (BAS ) 47.0 (BAS ) 53.9 (BAS ) 67.5 (HF )
Classical Solo 31.0 (BAS ) 33.3 (BAS ) 66.1 (BAS ) 73.6 (BAS )
Electronic 55.8 (CSD) 58.7 (EF ) 81.6 (SFX ) 83.6 (SFX )
Jazz 48.5 (SFLF ) 54.9 (CSD) 68.1 (SFLF ) 78.4 (CSD)
Rock/Pop 62.5 (CSD) 65.8 (CSD) 82.6 (CSD) 88.9 (CSD)
Samba 52.2 (CSD) 53.1 (CSD) 67.0 (BEF ) 68.5 (BEF )

3.5.2. Comparison results

In Table 3.6, the mean accuracy of the di�erent beat tracking algorithms is
compared. We present two con�gurations of the multi feature beat tracker: the
�rst one with only six committee members (CSD, HF, EF, PSF, SFLF and
BEF ) chosen by the SFS method, for this con�guration, the information gain
(MultiFt InfG) and regularity (MultiFt Reg) were used in the selection step
of the proposed algorithm; and the second con�guration (MultiFt Essentia)
which is the C++ of the Multi-feature Information Gain (ZDG1) (Zapata et al.,
2012a) submitted to the MIREX 2012 beat tracking task using CSD, HF, EF,
BEF and MAF, this con�guration is the released version of the Multi-feature
beat tracker due to the computational cost of including the PSF ODF.
While the mean performance of all beat tracking systems is moderately low
when using CMLc or CMLt (i.e., when the beats must be tapped at the an-
notated metrical level), performance naturally improves when we incorporate
the additional, �allowed� metrical levels using AMLc and AMLt.
When comparing the proposed beat tracking algorithm with the reference sys-
tems, as shown in Table 3.6, we see that the proposed method outperforms the
reference methods in the mean value for all of the evaluation criteria. However,
not all of the di�erences are statistically signi�cant (p<.05). We �nd no signif-
icant di�erences between the proposed algorithm and the following reference
methods with the DAV, DEG and KLA systems under CMLc, and then with
the KLA system under CMLt.
When we compare MultiFt InfG and MultiFt Reg, which uses a subset of six
ODFs, with MultiFt Essentia which uses a subset of �ve ODFs, we do not �nd
statistically signi�cant di�erences. Furthermore we do not �nd any statistical
di�erence compared to the committee system with �ve separate beat tracking
algorithms (Beatroot, Degara, Ellis, Klapuri, IBT) as proposed in Section 3.2.2.
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Figure 3.9: (a) Oracle Mean Performance vs number of committee members.
(b) Multi Feature (Inf Gain and Regularity) Mean Performance vs number of
committee members.

3.5.3. Automatic selection results

To verify that using either Information Gain or Regularity as a selection mech-
anism provides a signi�cant improvement, we can compare the performance in
Table 3.6 for our system with what happens if we make a random selection of
the �best� beat tracking output per song. Running multiple trials we obtained
mean performance of [40.6%, 45.3%, 64.6%, 73.3%] with variance [0.49, 0.50,
0.37, 0.32] for CMLc, CMLt, AMLc, AMLt respectively. The increase in
performance we achieve using a structured, rather than random selection pro-
cess is highly signi�cant (p<.00001). However, the beat tracking accuracy from
using either Information Gain or Regularity as a selection method falls well
below the theoretical optimum of the Oracle system which can choose the best
beat sequence per song, suggesting that automatic selection methods remains
a pro�table avenue for future work.
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Table 3.6: Mean ground truth performance of each BT on Dataset1360. Bold
numbers indicate best performances.

CMLc CMLt AMLc AMLt
Beat Tracker

(%) (%) (%) (%)
Aubio (Brossier, 2006) 26.43 35.12 37.73 50.57
Beat.e (Krebs & Widmer, 2012) 36.13 42.19 61.59 73.95
Beatit (Bonada & Gouyon, 2006) 6.98 8.69 43.64 60.95
Beatroot (Dixon, 2007) 29.05 35.70 53.51 70.84
BeatUJAEN (Mata-Campos et al., 2010) 10.45 17.17 26.84 41.63
Boeck (Böck & Schedl, 2011) 31.46 43.48 42.20 58.74
BpmHistogram (Aylon & Wack, 2010) 13.82 21.60 34.38 57.32
Davies (Davies & Plumbley, 2007) 46.82 50.79 69.28 75.88
Degara (Degara et al., 2012) 46.04 50.17 69.89 77.72
Echonest http://developer.echonest.com 31.68 36.32 52.01 59.83
Ellis (Ellis, 2007) 10.66 14.02 38.54 60.03
Gkiokas (Gkiokas et al., 2012) 41.47 47.10 62.73 72.75
Hainsworth (Hainsworth & Macleod, 2004) 34.28 37.24 54.08 59.62
IBT causal (Oliveira et al., 2012) 25.27 30.82 47.05 58.0
IBT non-causal (Oliveira et al., 2012) 32.54 36.88 63.97 73.76
Klapuri (Klapuri et al., 2006) 47.75 52.71 69.79 77.70
Lee (Lee, 2010) 1.61 7.06 5.87 26.38
Scheirer (Scheirer, 1998) 21.19 34.52 30.38 48.97
Shine (Khadkevich et al., 2012) 45.23 48.67 62.52 67.70
Stark (Stark et al., 2009) 41.68 47.32 61.64 70.99
Multi-Feature InfGain 46.8 51.5 72.9 80.8
Multi-Feature Regularity 47.9 52.1 73.5 81.0
Multi-Feature Essentia 46.16 50.67 71.91 80.37
5 BT Committee, (Section 3.2.2) 46.88 51.55 72.28 81.39
Oracle 64.95 69.02 85.47 90.54

3.5.4. MIREX results

Thus far, all of our analysis has been Dataset1360, and while there is a wide
diversity of musical genres and a large number of annotated �les, we should
acknowledge that the performance we observe might be slightly optimistic given
access to the test data when choosing the committee members. Therefore, in
addition to our own evaluation on the Dataset1360, we also report results
from the 2012 MIREX Audio Beat Tracking task, where we submitted two
versions of our multi-feature beat tracker: ZDG1 and ZDG2 (Zapata et al.,
2012a) which used BEF, CSD, EF, HF and MAF as committee members,
and used the information gain and regularity selection methods respectively.
The MIREX dataset is private and therefore can be considered as appropriate
validation for our method.
In the Table 3.7 we show the 2012 MIREX results (sorted by AMLt) for
the beat tracking task are presented, and also the best AMLt performers in

http://developer.echonest.com
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2011, 2010 and 2009 in the MCK dataset. The MCK dataset contains 160
30-sec. excerpts (WAV format) and has been used since the beginning of
the MIREX beat tracking evaluation in 2006. These audio recordings had a
stable tempo value, a wide distribution of tempi values, and a large variety of
instrumentation and musical styles. About 20% of the �les contain non-binary
meters, and a small number of examples contain changing meters.
As can be seen from the table, our multi-feature systems ZDG1 and ZDG2
perform competitively with the submitted algorithms for 2012 and those which
have performed well in previous years. While the di�erences in performances
are small between the most accurate systems, we believe that, to date, ZDG1
has the highest reported accuracy on the MCK dataset for AMLc and AMLt.

Table 3.7: MIREX 2012 mean performance (%) and the best AMLt perfor-
mance in 2011,2010 and 2009 in MCK dataset

Year Beat Tracker CMLc CMLt AMLc AMLt

20127

ZDG2 25.0 33.4 51.8 66.7
GP3 23.7 33.7 49.3 66.5
ZDG1 23.7 32.3 49.5 65.1
GP2 23.3 32.3 48.6 64.9
GKC2 25.8 32.9 51.0 64.2
ODGR1 21.6 20.0 49.4 64.2
FK1 22.3 35.1 41.5 63.3
ODGR2 22.4 30.4 47.0 62.7
KB1 17.5 29.9 35.9 60.2
ODGR3 21.8 29.7 44.2 59.7
FW4 23.7 34.5 42.4 59.1
KFRO1 25.0 32.0 47.1 58.8
ODGR4 20.0 28.3 41.4 58.2
SB6 20.4 29.3 40.8 57.2
FW3 22.5 34.1 39.2 57.0
SB3 20.8 30.0 37.2 53.6
GP4 19.6 30.4 35.2 52.5
SB7 16.5 26.4 27.6 44.2
SB4 14.2 24.0 24.4 42.1
FW5 9.4 18.8 17.0 34.8

20118 GP5 24.0 33.7 49.3 66.5
20109 GP3 24.0 33.7 49.0 66.1
200910 GP1 26.0 35.5 49.1 66.6

3http://nema.lis.illinois.edu/nema_out/mirex2012/results/abt/mck/
4http://nema.lis.illinois.edu/nema_out/mirex2011/results/abt/mck/
5http://nema.lis.illinois.edu/nema_out/mirex2010/results/abt/mck/
6http:/music-ir.org/mirex/wiki/2009:Audio_Beat_Tracking_Results

http://nema.lis.illinois.edu/nema_out/mirex2012/results/abt/mck/
http://nema.lis.illinois.edu/nema_out/mirex2011/results/abt/mck/
http://nema.lis.illinois.edu/nema_out/mirex2010/results/abt/mck/
http:/music-ir.org/mirex/wiki/2009:Audio_Beat_Tracking_Results
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3.6. Conclusions and future Work

In this chapter, we present a technique, based on Mean Mutual Agreement
(MMA) and the selection of the beat tracker output which most agrees with
the remainder of the committee (MaxMA), that automatically annotate the
beats in a way that exceeds the performance of the state of the art.
The fact that a simple approach of this kind was able to demonstrate a signi�-
cant improvement over using individual state of the art algorithms is encourag-
ing. Yet, as our results indicate, performance of MaxMA falls some way below
that of the Oracle system (selecting the best performance per song) using our
committee of beat trackers or the proposed model with information gain and
regularity. This suggests that there is still room for making a more accurate
selection among existing algorithms, and exploring new selection methods will
form a further area for future work.
We demonstrated that the choice of the evaluation measure to compute the
mutual agreement is crucial, and that the Information Gain was better suited
to this task than both the F-measure and AMLt evaluation methods. However,
the Information Gain method appears less e�ective in highlighting where beat
tracking algorithms strongly agree with each other. Hence in future work
we will explore methods to combine the information from di�erent evaluation
methods.
The proposed Multi feature beat tracker system was compared to 20 reference
systems in a large beat tracking annotated dataset and outperformed all the
reference systems in the mean value under all the evaluation criteria used. We
found signi�cant statistical di�erences in all of the measures on 17 of the 20 ref-
erences systems against the Multi feature and the �ve beat tracker committee.
Moreover the improvement in the AMLc and AMLt measures are statistically
signi�cant when compared with all the reference systems.
The Multi feature beat tracker achieved better results when uses existing onset
detection functions and a tracker model, contrary to recent work in the �eld,
than designing more complex tracking models. Because the beat tracker could
be improved with other onset detection functions, we encourage the research
community to work on this subject by trying other onset detection functions,
mixing the existing ones (Stark, 2011, chap. 4) or enhancing the periodicity
characteristics of the audio signal with other techniques like source separation
or voice reduction.



3.7. SUMMARY 71

3.7. Summary

In this chapter, we present a beat tracking strategy based on the Maximum
mutual agreement (MaxMA) method to select the best beat tracking output
from a committee of beat trackers. This method improves the accuracy of the
beat estimations over consistently picking any individual algorithm from the
committee. To build our system we select a set of 5 beat trackers over 16
evaluated beat trackers, our method, is based on the measurement of mutual
agreement between beat estimations and we determine the in�uence of choosing
the Information gain to computed the mutual agreement.
Finally, we present an stand-alone beat tracker (Multi feature Beat tracker)
that extends the method of the beat trackers committee (Section 3.2.2). The
Multi feature beat tracker uses a committee composed by multiple onset de-
tection functions and one beat tracker model. The �nal output is selected by
using the Maximum mutual agreement from the beat estimations outputs of
each onset detection function. The Multi feature Beat Tracker outperforms
the state of the art beat trackers on the evaluated measures, and its evaluation
performance is statistically comparable to the �ve beat trackers committee.





CHAPTER 4

Improving Beat Tracking

Has beat tracking reached the upper limit of performance (the so-called �glass-
ceiling� e�ect)? and no further gains in performance are possible ? Perhaps
a more likely explanation for the current stagnation in performance lies in
the data used to evaluate beat trackers. We believe the continual re-use of
existing datasets, e.g. Dixon (2007); Hainsworth & Macleod (2004); Klapuri
et al. (2006), has led to an (somewhat) inevitable over-�tting of beat tracking
algorithms to the limited data which is available. Furthermore, within these
existing databases, there is a bias towards musical styles whose beats can be
more easily tracked; genres typically characterized by clear percussive content
and steady tempi like rock, pop and electronic dance. This preference towards
easier musical styles means that challenging excerpts, where beat tracking algo-
rithms fail, are typically treated as outliers and little e�ort is made to determine
how to process them.
Given the hypothesis that a glass ceiling in beat tracking exists due to a lack
of diversity in annotated data, an appropriate strategy to address it would
be to annotate more musical examples. However, the manual annotation of
beat locations can be extremely di�cult and time-consuming. Therefore, it
makes sense to restrict annotation to music examples which are in someway
informative for the beat tracking problem. To this end, our approach is to
focus on the selection of musical pieces that are shown to be di�cult for current
state of the art systems. Since the goal is to subsequently derive ground truth
annotations, this estimation of di�culty must be achieved without any ground
truth annotations.
While some e�ort has been made to estimate rhythmic di�culty, this has ty-
pically been limited in scope by focusing on measures of beat strength (Goto,
2001; Tzanetakis et al., 2002). Furthermore, these methods have not been used
for the selection of music samples to annotate. A related study of di�culty

This section is based upon work in collaboration with Andre Holzapfel, Matthew E. P.
Davies, João Lobato Oliveira and Fabien Gouyon. This is a compilation of papers published
in a journal and peer reviewed conference, Holzapfel et al. (2012b); Zapata et al. (2012b)
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in beat tracking by Grosche et al. (2010) considered local properties of com-
positions that cause beat trackers to stumble. Our interest is on the global
properties of musical excerpts.
In chapter 3, we present the correlation between the mean ground truth perfor-

mance of all beat trackers (BT-MGP) and the mean mutual agreement between
the beat estimation of the beat trackers (BT-MMA). Using this information
we found when the MMA value is low the MGP is low and vice when the
MMA value is high, the MGP value is high. To improve the beat tracking es-
timation, we want to take advantage of the MMA value to devise a method to
identify the speci�c musical characteristics that negatively a�ect beat tracking
performance and identify the MMA value where the automatic beat tracking
is successful without the need of ground truth.
We used the proposed Mean Mutual Agreement (MMA) method to build a
dataset of samples that are problematic for beat trackers. Listeners were then
asked to tap the beat of those detected samples in a spontaneous manner,
describe the signal properties, and eventually to determine ground truth beat
annotations. This data was used to examine similarities and di�erences bet-
ween human listeners and automatic beat tracking. Results demonstrate that
among the �les show to be di�cult for beat trackers some were perceptually
easy for human tappers, while �les characterized by expressive timing and/or
quiet accompaniment were considered equally di�cult. We believe that the
highest potential for improving beat tracking technology lies in setting the
methods to address those �les whose cause failure of beat trackers. However,
we focus on �les that contain a perceivable beats rather than attempting to
address those which human tappers also struggled with.
The remainder of this chapter is structured as follows; in Section 4.1, we use
the mutual agreement to build a new dataset with problematic cases for beat
tracking and we we provide details about a new dataset and the annotation
process. In Section 4.1.2, we research the di�culty of the new dataset for
both, automatic beat tracking and human listeners. Based on the analysis of
the di�culties in beat tracking, in Section 4.2, we evaluate and discuss how
voice suppression techniques improve rhythmic saliency in songs with highly
predominant vocals and quiet accompaniment. In Section 4.3, we describe
the application of our MMA method in order to identify and reject musical
pieces where beat tracking will fail, and we demonstrate how beat tracking
performance can be improved by inspecting the properties of the beat tracking
committee applying the technique to non-annotated data. Moreover, we de�ne
a MMA perceptual con�dence threshold (Section 4.3.1) to determine a �sucess�
in the automatic beat tracking process. Additionally, those songs with MMA,
above the perceptual con�dence threshold (Section 4.3.2), were automatically
beat annotated in a way that exceeds the performance of the state of the art.
Finally, in Section 4.5 we conclude with a discussion of the results and areas
for future work.
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4.1. Building a challenging dataset

We start from the assumption that adding diversity to existing collections is
necessary to facilitate future improvement in beat tracking systems. To this
end we now describe a new dataset and compare its properties to those of
Dataset1360. The new dataset was compiled by choosing a set of CDs and
extracting 40s of each song. We chose music that could be considered di�cult
in terms of their rhythmic properties. For this, we concentrated on styles of
Western music, because it is not apparent how the notion of beat could be
applied to music of other cultures. The CDs contained a variety of styles
including, classical music, romantic music, �lm soundtracks, blues, chanson,
and solo guitar compositions. We extracted a total of 678 excerpts.
A subset of the 678 pieces was chosen for manual annotation with the goal
of selecting those pieces that cause the largest problems to the beat tracking
approaches. We decided to choose samples with BT-MMAD values ≤ 1 bit,
this resulted in 270 samples. Because for values ≤ 1 bit, the histograms in
Figure 3.4a have a clear peak and the correlation with BT-MGPD in Figure
3.4b is strong. We do not intend for this threshold to be interpreted as a
globally valid division between easy and di�cult �les, rather it was chosen
empirically to maximize the probability of obtaining only di�cult �les. In
order to cross-check the assumption of those �les being di�cult, we added 19
samples with the highest BT-MMAD value which should be characterized by
a high BT-MGP. This set of 289 pieces that are chosen for annotation will be
referred to as DatasetSMC throughout the remainder of the work.
The �rst step consists of recording spontaneous taps from all authors of this
work for all 289 pieces in DatasetSMC. The taps enable us to examine the abil-
ity of listeners to follow the beat in a possibly di�cult piece of music without
any entrainment. The MMA of these tappings is used to assess the perceptual
di�culty, and will be compared with the MMA of automatic beat trackers. It
should be stated that all authors come from an engineering background, but
four had many years of experience as practicing musicians in di�erent styles
and instruments. Before tapping, each subject was not allowed to listen to the
piece. They were instead asked to tap the beat of the piece while listening to it
for the �rst time and without the possibility of correcting the taps afterwards.
In the next step the �les in DatasetSMC were equally distributed among the
authors for ground truth annotation. The annotations were performed using
Sonic Visualiser (Cannam et al., 2010). To assist with the annotation, each
annotator was allowed to use multiple visualizations such as the waveform or
spectrogram, but the use of automatic beat tracking or onset detection algo-
rithms was not permitted, however, spontaneous taps could be used. When
available, scores of the pieces were used as a guideline to arrive at a valid an-
notation especially for classical and romantic music. Each annotator was given
the option to reject a �le if the annotation process appeared intractable. This
happened in 72 cases, resulting in 217 valid beat annotations for DatasetSMC.
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Finally, the annotator had to compile a tag �le for each annotated sample. The
tags specify which signal characteristics either made the annotation di�cult
or might caused errors in automatic beat tracking algorithms. An arbitrary
number of tags could be assigned to a song, if none of the tags applied to a
song the tag �none� was used. The list of tags and their rate of appearance in
DatasetSMC will be presented in Section 4.1.2.
Each annotation was subsequently evaluated by a second subject. In the an-
notation process all annotators expressed insecurity about some of their an-
notations due to the high rhythmic complexity of some of the �les. In order
to cope with this problem we decided to consult experts1 with conservatory
degrees in music and composition, and with their assistance we were able to
obtain a more reliable ground truth especially for the most di�cult samples.

4.1.1. Automatic beat tracking on the new dataset

For DatasetSMC, BT-MMA histograms and scatter plots of BT-MMA over
BT-MGP are depicted in Figure 4.1. Computations were performed in the
same way as for Dataset1360, enabling for a comparison between Figure 3.4
and Figure 4.1. A common characteristic of the plots for Dataset1360 and
DatasetSMC is the high correlation between BT-MGP and BT-MMA for small
values when using the information gain measure (see Figures 3.4b and 4.1b),
respectively. Again, for F-measure and AMLt such a correlation cannot be
observed. This provides strong evidence for using BT-MMAD to detect di�cult
�les in the context of the newly annotated DatasetSMC.
Di�erences between Dataset1360 (Table 3.3) and DatasetSMC (Table 4.1)
are evident for all three evaluation measures: The mutual agreement his-
tograms in the left columns are strongly biased towards the upper right corner
for Dataset1360 and towards the lower left corner for DatasetSMC. Again, the
histograms for BT-MMAD in Figure 4.1a show a more accentuated concentra-
tion and a continuous development from concentration in low to concentration
in high histogram bins. However, in Figure 4.1a a higher proportion of his-
tograms is characterized by a concentration in bins of 1 bit or less. This
indicates that DatasetSMC contains a larger relative percentage of di�cult
samples than Dataset1360. The super-imposed blue vertical lines in the his-
togram plots in Figure 4.1 indicate the borders for the initial choice of �les to
be annotated, i.e., the �rst 270 �les and the last 19 �les sorted by BT-MMAD

(see Section 4.1). Samples on the left of the �rst line were chosen because they
were assumed to be di�cult (low BT-MMAD), while the 19 �les on the right
of the second line in the histogram plots have been included because they were
supposed to be the easiest in the dataset (high BT-MMAD). In Figure 4.1b
a clear separation can be observed between those �les, where the di�cult �les
are marked by black triangles and the easy �les by gray circles. This separation

1We thank Michael Hecht and the group at Butler school of music in UT Austin, for
assistance in improving the annotations
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Figure 4.1: Left side: Each column depicts the histogram obtained from the 5 ∗ 4/2
mutual agreements of the beat sequences for a song in the 678 samples that were used
to derive DatasetSMC, histograms are sorted by their mean values (BT-MMA). Dark
colors indicate high histogram values. Files that were excluded from annotation lie
between the blue lines. Right side: MMA versus MGP scatter plots for the annotated
217 �les in DatasetSMC. Pieces which are supposed to be easy according to their
BT-MMA are depicted by gray circles.

is not evident for the other evaluation measures in Figures 4.1d and 4.1f, and
the di�cult �les form wider spread clusters.
The D-MGP values for DatasetSMC are depicted in Table 4.1, bold numbers
indicate the best beat tracking results without statistically signi�cant di�er-
ences. Note that the �les in DatasetSMC were selected based on BT-MMAD

and are supposed to be di�cult, with the exception of the included 19 �les
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Table 4.1: Mean ground truth performance of each BT (D-MGP) on
DatasetSMC. Bold numbers indicate best performances.

Beat Tracker AMLt (%) F-measure (%) Inf. Gain (bits)
Aubio (AUB) 18.5 24.7 0.68
Beatit (BIT) 20.6 28.7 0.53
Beatroot (DIX) 27.6 32.2 0.66
BeatUJAEN (BUJ) 23.9 27.7 0.60
Böck (BOE) 26.1 40.1 0.91
Davies (DAV) 33.4 32.2 0.90
Degara (DEG) 33.4 34.6 0.89
Ellis (ELL) 20.8 35.2 0.62
BpmHistogram (BHI) 23.3 26.6 0.64
Hainsworth (HAI) 26.0 24.8 0.83
IBT causal (IB1) 21.1 26.8 0.70
IBT non-causal (IB2) 28.6 31.1 0.78
Klapuri (KLA) 33.9 36.2 0.92
Lee (LEE) 12.9 34.6 0.50
Scheirer (SCH) 18.5 30.2 0.70
Stark (STA) 26.0 27.3 0.74
Mean 22.7 30.8 0.73
Random 18.0 25.0 0

with high BT-MMAD. Indeed, for DatasetSMC the overall performance is
much lower than for Dataset1360 (see Table 3.3), and there are less signif-
icant di�erences among the best beat trackers. Moreover, for DatasetSMC
there is no set of best beat trackers, because all except four beat trackers are
among the best performers for at least one measure. The performance of some
beat trackers is close to the mean performance of an entirely deterministic
(baseline) beat sequence, �xed at 120 bpm and generated as in Davies et al.
(2009a). In general, this proves that the compiled dataset is more di�cult for
automatic beat tracking than Dataset1360, and again supports the validity of
our proposed BT-MMA method.

4.1.2. Perceptual vs. automatic beat tracking di�culty

Assessing perceptual di�culty

To better understand the di�culty of beat tracking, subjective listening aspects
should be taken into account. In DatasetSMC, we can gain insight into these
subjective aspects by using the spontaneous taps collected in the annotation
process.
During the annotation of DatasetSMC, we were able to con�rm that tapping
spontaneously to an unknown piece without a clear and simple beat is a very
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demanding process. Thus, we assume that perceptually easier �les result in
tap sequences that show a higher mutual agreement, analogous to the beat
tracker outputs. In order to di�erentiate these agreements from the MMA

obtained from beat trackers (i.e. BT-MMA) we will refer to them as TAP-
MMA, and to the mean performance of the taps compared to ground truth
as TAP-MGP (in contrast to BT-MGP). Figure 4.2a shows a scatter plot of
these TAP-MMAD values against theMMA values between the chosen �ve beat
tracking algorithms (BT-MMAD). While the sparse cluster in the upper right
corner indicates that high agreement of beat sequences implies high agreement
of spontaneous taps, such a relation does not exist for low BT-MMAD. In
this case, we can observe the existence of a wide range of TAP-MMAD values.
This implies that among �les that are di�cult for automatic beat tracking,
there are di�cult as well as easy �les for the human tappers. In Figure 4.2b a
high correlation between TAP-MMAD and the mean performance of the taps
against the ground truth annotations (TAP-MGPD) can be observed. This
correlation supports the assumption that high agreement between subjects
implies perceptually easier pieces. Comparing Figures 4.1b and 4.2b, we can
see that in Figure 4.2b there are no separate clusters of data for very lowMMA

and MGP values. This indicates that, for the di�cult samples, the human taps
tended to be more accurate when compared to the ground truth, and that the
spontaneous taps are characterized by a higher mutual agreement than the
beat tracker outputs.
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Figure 4.2: TAP-MMAD and TAP-MGPD for annotated 217 �les in DatasetSMC.
Pieces which are supposed to be easy according to their BT-MMAD are depicted by
gray circles. (a): Scatter plot of TAP-MMAD versus BT-MMAD, blue lines indicate
chosen border for di�cult �les for beat tracking (vertical line) and human tappers
(horizontal line) (b): Scatter plot of TAP-MMAD versus TAP-MGPD

In conclusion, we can state that, even without ground truth available, it is
possible to reliably detect samples where automatic beat tracking will fail, but
among these �les there will be both �les that are perceptually di�cult and �les
that are easy. Because our aim is to facilitate improvement in beat tracking,
we want to focus on those pieces that have a perceivable beat but that make
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beat trackers fail. These pieces are located in the top-left rectangle of Figure
4.2a, and we will now focus on the signal properties that di�erentiate them
from perceptually di�cult pieces which are located in the lower-left rectangle
of Figure 4.2a.

Signal properties

The general signal properties encountered in DatasetSMC are summarized in
the tags that were assigned during the annotation process. Figure 4.3 shows
the number of occurrences of all tags for the 217 annotated pieces. The most
prominent tag is expressive timing, which was applied when a sample changes
in tempo in correlation with its melodic phrase or segment boundaries (Todd,
1989) as often happens in romantic music. Other prominent tags related to
tempo were slow tempo, gradual tempo change (i.e. one stable tempo changes
gradually to a di�erent stable tempo) and tempo discontinuity (i.e. a sudden
tempo change). This con�rms that any kind of tempo changes cause trouble for
beat tracking approaches, and adds the characteristic of having a slow tempo to
the list of problematic tempo-related features. Furthermore, ternary meter as
a characteristic of the metrical structure of the composition also lead the beat
trackers to fail, which suggests that many approaches may be tailored to track
music mainly in a 4

4 time signature. Characteristics related to the instrumental
timbres, such as lack of transient sounds and quiet accompaniment complete
the picture of the problematic signal properties that make beat trackers fail
into three groups:

1. Timing/tempo related

2. Time signatures

3. Lack of clear rhythmic onsets

The tag none was applied when none of the other tags �t to the properties
of the signal, and its appearance is always related to the �les with high BT-
MMAD, i.e. the 19 easy �les in DatasetSMC.
Having obtained an overview of the signal properties that make automatic beat
tracking di�cult, we would like to know which of these properties makes tap-
ping for human listeners di�cult. We want to address the question of whether
the �les in the upper and lower left rectangles of Figure 4.2a di�er according
to their signal properties. If we can identify some signi�cant di�erences here
this can give valuable insight into how to discriminate between perceptually
di�cult pieces and those that are di�cult only for automatic beat tracking. To
this end, features describing those discriminant signal properties might be used
in a machine learning approach to automatically classify into one of the two
classes. A threshold was set to a TAP-MMAD value of 1 bit (dotted horizontal
line in Figure 4.2a), i.e. the same threshold that was applied to BT-MMAD
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Figure 4.3: Frequency of tags for all annotated �les in DatasetSMC. Tags
indicate which signal properties made a sample appear di�cult during the
manual annotation.

when choosing di�cult �les for annotation. Then, a set of t-tests was applied
in order to look into if the beat-annotated samples in the lower and upper left
rectangles di�ered regarding their given tags. By performing this set of t-tests
we can infer which properties lead to inaccurate tappings.

Table 4.2: Tags with di�erent mean according to t-test, sorted by increasing p-value,
from top to bottom. The presence of a tag implies that it appears signi�cantly more
frequently for low TAP-MMAD

T-test: TAP-MMAD p-value
changing time signature 0.0010
expressive timing 0.0011
quiet accompaniment 0.0035
no repetition 0.0047
low familiarity with song/style 0.0110
beat phase ambiguity 0.0360

The results of the t-tests are listed in Table 4.2. For convenience, the appear-
ance of a tag in the list means that it is signi�cantly more present in �les
with low TAP-MMAD. We can see that a change in time signature was the
most important factor that leads to low tapping agreement. However, this
tag is quite sparse among the dataset as can be seen in Figure 4.3. The most
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prominent factors, taking into account their number of appearance, are expres-
sive timing and quiet accompaniment. Hence, these factors apparently cause
problems both for beat trackers and for human tappers. The list of properties
given in Table 4.2 can serve as a guideline to which signal descriptors might
be applied when trying to exclude signals from automatic beat tracking be-
cause of their high complexity even for human listeners. It is apparent that
e.g. processing music with highly expressive timing should be postponed, as
its beat is too complex to be spontaneously tracked even by human listeners.
Demanding a proper beat tracking on music of this kind would resemble de-
manding high word recognition rates from an automatic speech recognizer in
signals that cannot be perceived by a human listener. A �rst step may be to
focus on music characterized by e.g. ternary meters, slow tempo or soft onsets,
or other characteristics that do not impose increased di�culty to the human
beat perception.

4.2. Voice suppression algorithms as a

preprocessing step

As a result of the analysis of the general signal properties that makes beat
tracking di�cult, songs with strong and expressive vocals resulted in beat es-
timation errors even in the presence of a rhythmically stable accompaniment.
This section focuses on beat estimation in this particular context and is mo-
tivated by previous research that showed the advantage of source separation
techniques as a preprocessing step for automatic tempo estimation (Alonso
et al., 2007; Chordia & Rae, 2009) and beat tracking (Gkiokas et al., 2012;
Malcangi, 2005; Zapata & Gómez, 2012). We evaluate and discuss how voice
suppression techniques improve rhythmic saliency in songs with highly pre-
dominant vocals and quiet accompaniment, and thus facilitate the automatic
estimation of beat positions.
Source separation for improving tempo accuracy estimation has been proposed
by Alonso et al. (2007), using harmonic + noise decomposition of the audio
signal. To improve beat/tempo estimation, Gkiokas et al. (2012) use a per-
cussive / harmonic blind source separation and Chordia & Rae (2009) use a
blind source separation technique using Probabilistic Latent Component Ana-
lysis (PLCA). In this section we propose the use of source separation for voice
suppression in excerpts with highly predominant vocals, in order to improve
beat tracking performance. To the best of our knowledge, such an approach
has not been previously considered.
In this study, we evaluate the performance of �ve state-of-the-art beat tracking
algorithms in combination with seven di�erent voice suppression approaches
and a simple low pass �lter. We consider an annotated dataset of di�cult
audio song excerpts with highly predominant vocals.

The Material of this section was previously published in Zapata & Gomez (2013)
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4.2.1. Music material

Two datasets have been considered for this study, the �rst one is theDataset1360
(section 3.2) and the DatasetSMC 2 obtained in section 4.1. The di�culty of
the song excerpts in Dataset1360 and DatasetSMC was further assessed from
the mean performance of the �ve considered beat trackers using the Mean
Mutual Agreement proposed in Section 3.2.4. From the di�cult excerpts, we
�nally selected 75 examples with highly predominant vocals (DatasetVocal).

4.2.2. Voice suppression methods

Voice suppression methods remove the singing voice from a polyphonic music
signal by means of source separation techniques. According to Gómez et al.
(2012), there are three main approaches for singing voice separation methods:
spectrogram factorization, pitch-based inference and repeating-structure re-
moval. In this study, we consider a set of state-of-the-art algorithms based on
those di�erent principles which are accessible for evaluation purposes. Three
di�erent spectrogram factorization approaches are evaluated. They are based
on decomposing a magnitude spectrogram as a set of components that repre-
sent features such as the spectral patterns (basis) or the activations (gains) of
the active components along time (Durrieu et al., 2011; Gómez et al., 2012;
Marxer et al., 2012).
We also evaluate the use of four repeating-structure removal methods (Liutkus
et al., 2012; Ra�i & Pardo, 2012, 2013) which rely on pattern recognition to
identify and extract accompaniment segments, without manual labeling, which
can be classi�ed as repeating musical structures. Finally, we evaluated the use
of a low pass �lter to remove higher spectral components in order to compare
the results of voice suppression algorithms with a simple approach. We provide
a brief description of the algorithms.

1. Low Pass Filter (LPF): Based on Masataka Goto et al. (1999), a
simple Butterworth double-pole low-pass �lter at 261.6 Hz (4800 cent)
and Q = 0.707 was used as a baseline approach to remove high spectral
components where the voice is assumed to be predominant 3.

2. Instantaneous Mixture Model (IMM): Durrieu et al. (2011) propose
a source/�lter signal model of a mixed power spectrum as a decompo-
sition into a dictionary of pre-de�ned spectral shapes, which provide a
mid-level representation of the signal content together with some timbre
information. A non-negative matrix factorization (NMF) technique is
used for source separation 4.

2http://smc.inescporto.pt/research/data/
3sox in.wav out.wav lowpass 261.6
4www.durrieu.ch/research/jstsp2010.html VU output

 http://smc.inescporto.pt/research/data/
www.durrieu.ch/research/jstsp2010.html
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3. Low Latency Instrument Separation (LLIS): This method allows
voice suppression under real-time constraints, and it is based on time-
frequency binary masks resulting from the combination of azimuth, phase
di�erence and absolute frequency spectral bin classi�cation and harmonic-
derived masks. A support vector machine (SVM) is used for timbre
classi�cation, and for the harmonic-derived masks, a pitch likelihood es-
timation technique based on Tikhonov regularization is used. We refer
to (Marxer et al., 2012) for a detailed description of the algorithm.

4. Repeating Pattern Extraction Technique (REPET): REPET5 is a
method for separating the repeating background from the non-repeating
foreground in an excerpt audio mixture. The approach assumes that mu-
sical pieces are often characterized by an underlying repeating structure
over which varying elements are superimposed. The system identi�es the
repeating elements in the audio, compares them to repeating models de-
rived from them, and extracts the repeating patterns via time-frequency
masking. REPET with sliding window (REPET win) is an extension
of the algorithm to full-track songs that applies the algorithm to local
sections over time by using a �xed sliding window. We refer to (Ra�i &
Pardo, 2013) for a detailed description of the algorithm.

5. Adaptive REPET (REPET ada): The REPET method is originally
intended for excerpts with a relatively stable repeating background. For
full-track songs, the repeating background is likely to vary over time, so
the adaptive REPET can be directly adapted along time by locally mod-
eling the repeating background to handle varying repeating structures.
This method is detailed in (Liutkus et al., 2012).

6. REPET with Similarity Matrix (REPET sim): This method by
Ra�i & Pardo (2012), generalizes the REPET approach to handle cases
where repetitions also happen intermittently or without a �xed period,
thus allowing the processing of music pieces with fast-varying repeating
structures and isolated repeating elements. Instead of looking for periodi-
city, this method uses a similarity matrix to identify repeating elements.
It then calculates a repeating spectrogram model by using the median
and extracts repeating patterns using a time-frequency masking.

7. Singing Voice Separation (UJaen): The last approach considered,
described by Gómez et al. (2012), factorizes a mixture spectrogram into
three separated spectrograms (Percussive, Harmonic and Vocal). Har-
monic sounds are modeled by sparseness in frequency and smoothness
in time, percussive sounds by smoothness in frequency and sparseness in
time and vocal sound are modeled by sparseness in frequency and sparse-
ness in time. A predominant f0 estimation method is used for the vocal

5music.cs.northwestern.edu/

music.cs.northwestern.edu/
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separation, for which the vocal parts were previously labeled by hand.
The implementation used in this study had the same source separation
method, but was completely unsupervised.

4.2.3. Beat trackers

To analyzes the e�ect of the voice suppression in the beat tracking of audio
signal with high predominant vocals we consider �ve beat trackers, four state-
of-the-art beat tracking approaches: Beatroot (Dixon, 2007), Degara (Degara
et al., 2012), IBT (Oliveira et al., 2012), Klapuri (Klapuri et al., 2006). and
the multi feature beat tracker (Zapata et al., 2012a).

4.2.4. Evaluation measures

Among all of the proposed evaluation metrics, we consider the most permissive
continuity measures that Allowed Metrical Level errors, because it considers
that beat estimations at double or half of the correct metrical level are valid,
and it also accepts o�-beat estimations. We compute AMLc (Allowed Metrical
Level with continuity required) and AMLt (Allowed Metrical Level with no
continuity required) as de�ned in (Hainsworth & Macleod, 2004; Klapuri et al.,
2006). Output range between [0 - 100]%.

4.2.5. Results

Table 3.6 shows the average evaluation results of the considered beat track-
ing systems on Dataset1360 and Table 4.3 shows their performance on the
DatasetVocal. Beat estimations and evaluation data are publicly available 6.
We observed that the beat tracking performance drastically decreases for songs
with highly predominant vocals for all the considered methods. This con�rms
our hypothesis and the observations in Section 4.1.2, which identi�ed the dif-
�culty of these examples. To get an idea of the best algorithmic performance
currently achievable, we de�ne an �Oracle" beat tracker whose performance is
equal to the best performance obtained for each excerpt by any of the consid-
ered algorithms. For the DatasetVocal, the Oracle tracker would yield 33.95%
and 52.65% accuracy for the AMLc and AMLt measures respectively. Evi-
dently, there is still much room for improvement for this type of music.
Regarding the advantage of using voice suppression techniques, we observe
that all beat trackers increases their mean performance (AMLc and AMLt
measures) over DatasetVocal when using UJaen and IMM as a preprocess-
ing step, although the accuracy increase is small. In addition, Degara's beat
tracking approach (with one of the highest performance in Dataset1360 ) sta-
tistically improves its performance for all the evaluated voice suppression al-
gorithms (p<0.05). Moreover, all beat trackers improve their accuracy (AMLt

6sites.google.com/site/tempoandbeattracking/

sites.google.com/site/tempoandbeattracking/
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measure) by using LLIS as a preprocessing step. Finally, the three best per-
forming methods on Dataset1360 experience an increase of the performance
on DatasetVocal using very simple (LPF ) and fast (REPET ) approaches.
One of the most critical aspects of using voice suppression over large collection
is the computational cost (The runtime is provided in Table 4.3). Although
these approaches vary in terms of optimization level, we observe large di�er-
ences in runtime (e.g.IMM is almost 50 times slower than UJaen algorithm).
In Table 4.4 we present the total number of songs for which all beat trackers
obtained improved performance when using voice suppression algorithms. We
observe that the performance is improved for the majority of songs (with the
exception of the REPET method). We also observe that the better the per-
formance of the voice suppression algorithm, the greater the increase in beat
tracking performance.
If we apply voice suppression methods not only to music with highly predom-
inant vocal but to Dataset1360, we only get small improvements in accuracy
for the combination of all REPET+Degara, LLIS+Klapuri and REPET sim+
IBT. None of these improvements are statistically signi�cant, though. We then
conclude that while voice suppression might be bene�cial for excerpts with
highly predominant vocals, these algorithms do not provide enhancements for
varied datasets.
Voice suppression allows beat trackers to achieve higher estimation accuracy
than the Oracle in some song excerpts with highly predominant vocals, because
they enhance the signal and allow a better mid-level representation for beat
tracking. Although the highest increase is yielded by the IMM voice suppres-
sion method, this approach needs a very high computation time (around 196
min per song) to process the audio. Other methods such as LLIS and UJaen

yield similar results in less time (around 3.9 min per song). This fact makes
them more suitable to process large music collections.

4.3. Automatic beat annotation in large datasets

In Section 4.1 we present a technique to automatically identify challenging
examples for beat tracking without the need for ground truth annotations. The
technique is based on measuring the mean mutual agreement (MMA) between
a committee of state of the art beat tracking algorithms, where low mutual
agreement (or put another way, high disagreement) between beat outputs was
shown to be a good indicator of low performance against the ground truth. We
empirically determined an MMA �failure� threshold below which beat tracking
performance was shown to be very poor, and created a new database comprised
of challenging songs with MMA below this threshold.

This section is based upon work in collaboration with Andre Holzapfel, Matthew E. P.
Davies, João Lobato Oliveira and Fabien Gouyon. This work was published in the ISMIR
2012 peer reviewed conference, Zapata et al. (2012b)
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In this section we address the opposite issue, where, instead of trying to �nd
where beat tracking algorithms fail, we wish to identify where beat tracking
has been successful. When ground truth annotations are available this question
can be easily answered, however the problem is when no ground truth exists,
i.e., in the vast majority of music. The current means for doing so is simply
to extrapolate the performance on the limited dataset, for which a precise
evaluation can be conducted, and assume that this is representative.
In light of our previous concerns about the make-up of these annotated da-
tabases, we believe that extrapolating performance in this way and expecting
reliable results will be overly optimistic. Therefore when seeking to determine
an unbiased measure of performance we can either manually annotate more
and more music examples for evaluation, or attempt to estimate beat tracking
performance without ground truth. Due to the impractical nature of the �rst
option, we pursue the second. Furthermore, if no ground truth is required, then
performance can be estimated on very large (e�ectively unlimited) collections
of music.
We attempt to determine an MMA �success� threshold above which we can
have high con�dence in the beat tracking output of a committee of state of
the art algorithms. We determine the success threshold by means of a sub-
jective listening test, where listeners are asked to rate the quality of the beat
output given by the committee across a range of songs for which the MMA

has been calculated. In each case the beat tracker output chosen to represent
the committee is selected automatically as the one which most agrees with the
remainder of the committee, i.e., the beat tracker output with the maximal
mutual agreement (MaxMA). We demonstrate (Section 3.2.5) that selecting
between beat tracker outputs using MaxMA leads to improved performance
over consistently picking any individual algorithm from the committee.

4.3.1. Beat tracking annotation

Having illustrated the validity of using the MaxMA method to select a beat
tracker output among a committee of algorithms on a manually annotated
dataset, we now turn our attention to applying it to a large collection of non-
annotated data. For very large collections it is impractical to expect there to
be ground truth annotations on which to base the performance evaluation. To
understand how well the state of the art in beat tracking can automatically
annotate beats in large collections we employ our MMA and MaxMA methods
and attempt to determine the proportion of songs for which the beat estimates
are acceptable via a subjective listening test. We want to establish a threshold
on MMA above which the beat tracker outputs are perceptually acceptable.
For each �le, the beat tracker output will be chosen using the MaxMA method.
In order to correlate the MaxMA technique to automatic annotated a large
dataset and determine the perceptual success of the beat estimation, we used
the least stringent continuity-based measure, AMLt (Allowed Metrical Level
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with no continuity required), where beats are accurate when consecutive falling
within tempo-dependent tolerance windows around successive annotations.
Beat tracker outputs are also considered accurate if beats occur on the o�-
beat, or are estimated at double or half the annotated tempo. This perfor-
mance measure provides a more intuitive scale of 0 to 100% than Information
Gain and allows some ambiguity in the choice of metrical level at which the
beats are estimated.

Million song subset

The large collection we aim to automatically annotate is the MillionSong-
Subset from the Million Song Dataset (Bertin-Mahieux et al., 2011). The
subset is comprised of 10,000 songs without ground truth for which audio pre-
views were obtained. The majority of audio previews were either 30 sec or
60 sec in duration, however to provide su�ciently long excerpts for beat track-
ing we discarded those shorter than 20 sec. This left a set of 9940 songs on
which to automatically estimate beats. To complement the audio data, we
obtained 31696 Last.fm7 tags which covered a subset of 4638 songs.
Once all of the audio and meta data was collected we ran the committee of
beat tracking algorithms recording the MMA value per excerpt and saving the
MaxMA beat tracker output on the 9940 songs.

Subjective listening test

The aim of our listening test was to determine an MMA threshold above which
the beat tracker output given by the MaxMA method was deemed acceptable
to human listeners. By subsequent inspection of the number of songs in the
dataset above this MMA threshold we could then estimate the proportion for
which beat tracking can be considered successful.
Just as it is not possible to hand annotate beats in nearly 10,000 songs, it is
equally impractical to ask participants to listen and rate this large number.
As alternative to the exhaustive rating of all audio songs, we selected 8 levels
of MMA = [0.5, 1.0, 1.5, . . . , 4.0] bits and chose the 6 closest songs from the
MillionSongSubset to each MMA level, giving a total of 48 songs to summarize
the dataset. To create the musical stimuli for the listening test we constructed
stereo audio �les containing a mixture of source audio and the MaxMA beat
output synthesized as short click sounds. To mitigate the e�ect of errors in
beat tracking at the start of songs, which might bias the listener ratings, each
musical stimulus was formed out of the middle 15 s of each song. To allow
listeners to hear the audio with and without click sounds, we panned the
source audio on its own on the left channel, and on the right channel we mixed
the click sounds conveying the beats with a quiet version of the source audio.

7http://labrosa.ee.columbia.edu/millionsong/lastfm

http://labrosa.ee.columbia.edu/millionsong/lastfm
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Through informal listening tests prior to the main experiment, this was deemed
an acceptable method for creating the stimuli.
We recruited 25 participants to take the listening test (21 male, 4 female) with
an age range of 23 to 41 (mean = 31 years, std = 4.7 years). The participants'
level of music training ranged from 0 to 20 years (mean = 8.7 years, std =
7.7 years). Each participant was instructed to perform the test in a quiet
environment with good quality headphones. Prior to starting the main test, the
participants were given three training examples (not in the main set of 48). The
training phase was used for three reasons: i) to familiarize participants with
the type of musical stimuli in the test, ii) for the participants to understand
the panning of the beats in the stimuli and iii) so the participants could set
the playback volume to a comfortable level. To prevent order e�ects in the
stimuli, each participant was given an individual playlist of songs in a di�erent
random order.
In taking the test, the participants were asked to answer the following question:
�How do you rate the overall quality of the given click as a beat annotation of

the piece? � The options for rating were: 1 - Bad, 2 - Poor, 3 - Fair, 4 - Good,
5 - Excellent.

4.3.2. Results

Listening test

Figure 4.4 presents a comparison between the human ratings and the MMA of
our committee of beat trackers for the selected 48 pieces of the MillionSong-
Subset. The plot shows that for an MMA equal to 1.5 bits the mean rating
was 3.7 (Good) with a standard deviation of 0.93. However, for MMA equal
to 1 bit, the mean rating was much lower, at around 2.4 (Poor). Performing
a t-test, we found the di�erence between the mean ratings at these MMA val-
ues to be highly signi�cant (p < 0.0001). On this basis we can easily identify
an MMA threshold of 1.5 bits which separates perceptually acceptable beat
tracking from inaccurate beat tracking.

MMA Threshold

By selecting anMMA of 1.5 bits as a threshold of perceptual con�dence for beat
tracking we found 996 songs (73%) in Dataset1360 and 7252 songs (coinciden-
tally also 73%), in the MillionSongSubset above this limit (see Figure 4.5). Ta-
ble 4.5 shows the AMLt scores for the Oracle,MaxMA, Best Mean, and MinMA
for the two subsets of Dataset1360 separated by MMA = 1.5 bits, evaluated
against the ground truth. The beat tracking performance is consistently high
for songs with MMA >1.5 bits, with a mean MaxMA performance of ≈90%,
which must be considered very accurate, and hence hints at a meaningful re-
lationship between subjective judgment of beat tracking and the AMLt scores
obtained from the objective evaluation. While beat tracking performance is
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Figure 4.4: Listening test ratings vs MMA for the selected 48 music excerpts,
from the MillionSongSubset.

Name AMLt (%) MMA

Oracle 95.4

MMA>1.5
MaxMA 89.9
Best Mean 86.3
MinMA 63.9

Oracle 70.9

MMA<1.5
MaxMA 58.8
Best Mean 54
MinMA 50.1

Table 4.5: Mean AMLt score of Oracle, MaxMA, Best_Mean, and MinMA for
the two subsets of Dataset1360 divided by an MMA threshold of 1.5 bits.

lower for MMA < 1.5 bits this does not mean the MaxMA beat estimations
cannot be perceptually accurate, merely that we do not have high con�dence
in them.

Last.fm Tag analysis

Given the MMA threshold and collected Last.fm meta-data, we now look at
the genre-related tags of the songs that appear signi�cantly more often (with
p < 0.0001) in the MillionSongSubset with MMA above and below 1.5 bits.
These are shown in Table 4.6. From inspection of the table we can see that
the genres above the MMA threshold are those which we would typically asso-
ciate with being �easier� for beat tracking where as those below the threshold
appear more challenging. Seeing all genre labels related to metal music below
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Figure 4.5: Datasets sorted by MMA and the perceptual threshold = 1.5 bits.

the threshold was a surprising result since this music is strongly percussive
and is not characterized by wide tempo changes. The fact that metal music
consistently falls below the threshold indicates it might be the �noisy� element
of the music which causes it to be di�cult. To the best of our knowledge we
are unaware of many metal examples in existing beat tracking databases. This
suggests it is something of a forgotten genre for beat tracking.
Another important observation is related to the tag frequency for genre labels
above and below the threshold. There is a far higher proportion of songs
tagged �Rock� and �Pop�, and in general the tags used above the threshold
appear much more frequently than those below it. From this we can infer
that, just as Dataset1360 is biased towards easier cases for beat tracking, the
same could be said of the MillionSongSubset. Evidence for this conclusion can
be found in the description of the MillionSongDataset itself (Bertin-Mahieux
et al., 2011) where the lack of diversity is mentioned; in particular the small
amount of classical and world music.



4.3. AUTOMATIC BEAT ANNOTATION IN LARGE DATASETS 93

Given the disproportionate number of easier songs for beat tracking in this
dataset, our estimate of 73% of songs for which beat tracking is acceptable may
still be an optimistic estimate of the true level of beat tracking performance
across all music.

Table 4.6: Frequency of the genre-based occurrence of tags for the two subsets
of MillionSongSubset divided by an MMA threshold of 1.5 bits.

Tag Frequency MMA

Rock 1080

MMA>1.5

Pop 680
Dance 320
Hip-hop 271
Rap 193
Pop rock 154
Reggae 149

Jazz 227

MMA<1.5

Instrumental 199
Death metal 80
Black metal 74
Progressive metal 59
Classical 36
Grindcore 28

MaxMA choice of beat tracker

Having explored the main results of applying MaxMA to automatically anno-
tate beat locations, we now address the properties of the committee. Figure 4.6
presents histograms for both evaluated datasets depicting the proportion of
songs where each beat tracking algorithm is selected as the MaxMA beat out-
put. Both histograms show similar shapes, indicating that there may be similar
properties between the musical content of both datasets. The two most cho-
sen algorithms are those of Degara and Klapuri; both of which perform most
accurately against the ground truth, and can be considered the best among
the state of the art methods. As to why the Degara algorithm is chosen more
frequently than that of Klapuri, results in Degara et al. (2012) indicate that
the inter-quartile range of the Degara algorithm is smaller than that of Klapuri
(for a similar median), implying it is �wrong� in a lower proportion of songs.
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Figure 4.6: Histograms with the number of times each algorithm is chosen with
the MaxMA approach.

4.4. Multi Feature Mean Mutual Agreement and

con�dence threshold

To further explore the properties of the multi-feature beat tracker, we under-
take an analysis of the MMA values. First, we seek to recreate the primary
result from section 3.2.5 which showed a high correlation between the MMA

of the beat tracking committee and the mean performance of the committee
against ground truth, the MGP. As shown in Figure 4.7a we can see that the
MMA (using Information Gain) is strongly correlated with the MGP of the
committee using the set of ODFs. Thus we can con�rm that disagreement
between the beats of the committee is indicative of overall poor beat tracking
accuracy and vice-versa.
While we could not �nd a statistically signi�cant di�erence in performance
between the six member and nine member committees, we would like to ex-
plore the extent to which the mutual agreement changes based on the number
of committee members. To this end we show the range of observed MMA

values obtained with committees of six, seven, eight and then nine members,
in Figure 4.7b. As expected, we �nd very low variance in the MMA values
obtained with committees of di�erent sizes both when the mutual agreement
is very low and likewise when it is very high. In this sense the variation in the
size committee becomes apparent in the middle MMA range.
To complete our analysis of Dataset1360, we investigate whether we can use
the MMA vs MGP correlation to automatically assign either high or low con-
�dence to the estimated beats. Following the section 4.3.2, where a threshold
of MMA>1.5 bits was found to be indicative of acceptable beat tracking, we
re-examine the beat tracking performance on songs with MMA above and be-
low 1.5 bits. As shown in Table 4.7, we see that performance is far higher for
excerpts where the MMA is above the threshold compared to below it. Of the
1360 excerpts in the dataset, we found 1126 (82.9%) were above it, for which
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Figure 4.7: (a) ODF mean mutual agreement (MMA) vs ODF Mean ground
truth performance(MGP). (b) Error-bar of MMA calculated with 6 and more
committee members vs songs, sorted by MMA(9 committee members)

the AMLt value >86% for all con�gurations of the multi-feature beat tracker.
While beat tracking performance is lower for MMA < 1.5 bits this does not
mean the multi feature beat estimations cannot be accurate, merely that we
do not have high con�dence in the result, likewise there will be cases with
MMA above the threshold which are not accurate. These can arise when the
beats are tapped at a meaningful metrical level, but one which is not included
with in the set of allowed levels speci�ed for AMLt (Davies et al., 2009a).
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Table 4.7: Mean scores (%) of Oracle, committee of 5 beat trackers, multi-
feature beat tracker and best mean performance beat tracker (BestBt) for the
two subsets of Dataset1360 divided by an MMA threshold of 1.5 bits.

Name CMLc CMLt AMLc AMLt MMA
Oracle 70.4 72.8 91.8 94.4

>1.5

5BT 52.6 56.1 80.4 87.5
Multi-Feature Regularity 53.3 56.1 81.3 86.7
Multi-Feature InfGain 51.4 54.8 80.4 86.6
MultiFt Essentia 51.7 55.0 80.0 86.3
BestBt 53.5 57.4 77.6 84.0

Oracle 38.5 50.8 54.8 71.8

<1.5

Multi-Feature Regularity 21.7 32.8 35.6 53.4
Multi-Feature InfGain 24.7 35.5 36.3 52.8
5BT 19.1 29.5 32.7 51.8
MultiFt Essentia 19.2 29.8 32.7 51.5
BestBt 19.9 29.8 31.7 47.0

4.5. Conclusion and future work

In this chapter, we presented a method based on mutual agreement of beat se-
quences to detect informative samples in non-annotated data collections. We
compiled and annotated a new dataset that consists mainly of pieces with low
mutual agreements, and showed that this dataset is signi�cantly more di�cult
for state of the art beat tracking algorithms than the largest existing collec-
tion. Using the new di�cult dataset, we analyzed the signal characteristics
that make beat trackers fail, and research the extent to which these characte-
ristics coincide with the properties that make tapping di�cult for humans.

The proposed method of measuring mutual agreement represents an e�cient
approach to improve diversity in existing datasets, as well as a simple technique
for improvement of beat tracking in large non-annotated datasets. While all the
directions for future work have so far been related to beat tracking, we strongly
believe that, given suitable evaluation metrics, Our method based onMMA and
MaxMA could be readily applied in other contexts, e.g. to detect problematic
�les in chord recognition or onset detection where it may be valuable to reject
the use of beat tracking as a temporal analysis component. We therefore
encourage MIR researchers to explore its usage in problems such as onset
detection, chord detection,structural segmentation, and music transcription.
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Based on our informal analysis of human tapping it appears that expressive
timing contributes strongly to making music di�cult to tap to. Furthermore it
may not be musically appropriate to attempt to follow large expressive changes
precisely. The musical experts who assisted in the annotation process demon-
strated that more musically meaningful annotations could be obtained by tap-
ping a stable pulse around which the timing changes deviate. However this
level of tapping required extensive musical training (beyond the level of the
authors) and provides strong evidence towards rejecting beat tracking for mu-
sical pieces of this nature. For more realistic advances in beat tracking, we
propose investigating techniques for music with properties that do not pose
considerable di�culties for humans, such as pieces characterized by ternary
meter, slow tempo, or soft instrument onsets. In order to reliably detect dif-
�cult samples using mutual (dis-)agreement, we demonstrated that the choice
of the evaluation measure is crucial, and that the Information Gain was better
suited to this task than both the F-measure and AMLt evaluation methods.
However, the Information Gain method appears less e�ective in highlighting
where beat tracking algorithms strongly agree with each other. Hence in fu-
ture work we will explore methods to combine the information from di�erent
evaluation methods.
We have demonstrated that voice suppression techniques push up the glass
ceiling of state-of-the-art beat tracking algorithms in music with highly pre-
dominant vocals. Beat trackers seem to bene�t more from voice suppression
in di�cult songs with highly predominant vocals and voice suppression can
be used as a pre-processing stage without having to modify the beat tracking
algorithm. Nevertheless, this approach would decrease beat tracking perfor-
mance in the other situation, i.e. a capella, choral or music where the voice
carries relevant rhythmic information. Future work has to be devoted to auto-
matically selecting the candidate material where voice suppression would have
a positive e�ect on beat tracking, additionally use full length stereo songs in
order to evaluate voice suppression methods in more realistic setting, because
most of the voice suppression algorithms use spatial information.
Through a subjective listening test we determined an MMA threshold between
this committee of beat trackers of 1.5 bits above which we believe automatic
beat tracking can be applied with high degree of con�dence. Based on this per-
ceptual con�dence, we demonstrate that around 73% of the MillionSongSubset
could be automatically annotated using our committee of beat trackers. This
proportion of songs for which we can be con�dent in an automatic beat anno-
tation was also veri�ed in a second dataset with manually annotated ground
truth. Given the apparent bias in these datasets towards easier genres for beat
tracking, we consider this value of 73% to be somewhat optimistic. As fu-
ture work this hypothesis can be to verify by measuring MMA in more diverse
datasets.
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Regarding the types of music which formed the remaining 27% of the Million-
SongSubset (i.e., those below the threshold) we found a high proportion of tags
related to metal and similar �noisy� styles of music. Beyond classical music
and jazz, which are known to be challenging for beat tracking systems, we con-
sider the di�culty of beat tracking in Metal genre to be a new and unexpected
result, and furthermore an interesting area for the future development of beat
tracking algorithms.
As well as the �ve beat tracker committee, the Multi feature beat tracker esti-
mates the con�dence of beat tracking and select the best beat tracking output
without ground truth annotations, using a the committee of onset detection
functions and measuring the Mean Mutual Agreement and the Maximum Mu-
tual Agreement respectively. Additionally there is no statistical di�erence bet-
ween the mean performance and the beat tracking con�dence when compared
to the �ve beat tracker committee.
One limitation of our approach in the MMA threshold test, may be the use of
short song excerpts for the listening test. This was done to make the listening
test as manageable as possible for a wide range of participants. Nevertheless, to
obtain a greater understanding of subjective ratings for longer musical excerpts
and a better understanding of perceptual di�culty in beat perception is better
to conduct more sophisticated subjective listening experiments.
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4.6. Summary

In this chapter, we present a method that can identify challenging music sam-
ples for beat tracking without ground truth. Our method, motivated by selec-
tive sampling, is based on the measurement of mutual agreement between beat
sequences, and we show the in�uence of choosing di�erent evaluation measures
to compute this agreement. Using this approach, we demonstrated how to
compile a new dataset, whose signal properties make beat tracking di�cult,
and examine this di�culty in the context of perceptual and musical properties.
Based on tag analysis, we indicated musical properties which advances in beat
tracking research would be most pro�table. Additionally, we proposed the
use of voice suppression systems to enhance the signal for a better mid-level
representation for beat tracking in di�cult songs with highly predominant
vocals.
To automatically beat annotate and estimate the con�dence of beat tracking
in a dataset without ground truth annotations we have proposed the use of
two methods based on the mutual agreement between a committee of beat
tracking algorithms. The �rst, the Mean Mutual Agreement, was used to
estimate the level of consensus between the beat outputs of the committee.
The second, the Maximum Mutual Agreement, was used to select the best
beat tracking output from the committee of beat trackers. Furthermore, we
established a threshold for perceptually acceptable beat tracking based on the
mutual agreement of a committee of beat trackers. In the �rst step we use an
existing annotated dataset to show that mutual agreement can be used to select
one committee member as the most reliable beat tracker for a song. Then we
conduct a listening test using a subset of the Million Song Dataset to establish
a threshold which results in acceptable quality of the chosen beat output. For
both datasets, we obtain a 73% of trackable music, and we look into which
data tags are related to acceptable and problematic beat tracking. The results
indicate that current datasets are biased towards genres which tend to be easy
for beat tracking.
The multi feature beat tracker and the committee of beat trackers, can auto-
matically beat annotate, estimate the con�dence of beat tracking and identify
challenging music samples for beat tracking in a dataset without ground truth
annotations using the measurement of mutual agreement between the commi-
ttee members.





CHAPTER 5

Conclusions

In this thesis, we carry out an extensive comparative evaluation and combina-
tion of automatic rhythm description systems for tempo estimation and beat
tracking from audio signals. We evaluated 32 tempo estimation and 16 beat
tracking state of the art systems in order to identify their characteristics, and
how they can be combined to improve the actual performance on these tasks.
Moreover, we described a new method for automatic beat annotation with a
con�dence degree value of its beat tracking estimation. This con�dence degree
can identify challenging music samples for beat tracking in a dataset with-
out ground truth annotations based on the measurement of mutual agreement
between a committee of beat tracker systems. Based on this method, we com-
piled and annotated a new dataset that consists mainly of challenging pieces
for state of the art beat tracking algorithms. Finally, we present a method for
the extraction of beat times, based on a committee of multiple onset detection
functions and one beat tracker model.

5.1. Thesis contributions

In order to guarantee the reproducibility of the results of this research,

scienti�c papers

data results

built datasets

are publicly available at: http://mtg.upf.edu/people/jzapata
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We now summarize the main outcomes of the research within this thesis.

Tempo estimation

We evaluated and compared 28 academic algorithms and 4 commercial ap-
proaches for tempo estimation, that we consider representative on current ap-
proaches. The best result, obtained by a beat tracker, can be enhanced by a
heuristic decision tree combination with the other methods and their results
are higher than each approach by itself. We found that the best performing
algorithms share the following characteristics: frequency decomposition, pe-
riodicity detection prior to the multi-band integration, tatum detection and a
post-processing block which reduces the number of double and half error tempo
estimations. Furthermore, algorithms involving band decomposition and com-
putes the periodicity detection before the multi-band integration achieve better
results.

Improving beat tracking research

We evaluated 16 state of the art beat tracking systems and presented a method
that can automatically identify challenging music samples for beat tracking
without ground truth, based on the mutual agreement of a committee of beat
trackers, selected from the evaluated systems, and computed using the Infor-
mation Gain measure. Using this approach, we compile a new dataset, whose
signal properties make beat tracking di�cult, and examine this di�culty in the
context of perceptual and musical properties. Based on tag analysis, we in-
dicate that changing time signature, expressive timing, quiet accompaniment,
no repetition and beat phase ambiguity are musical properties where advances
in beat tracking research would be most pro�table. The Dataset is available
at http://smc.inescporto.pt/research/data/
Moreover, based on the mutual agreement between a committee of beat track-
ing algorithms we have proposed the use of two methods to automatically beat
annotate and estimate the con�dence of beat tracking in a dataset without
ground truth. The �rst, the Mean Mutual Agreement (MMA), was used to
estimate the level of consensus between the beat outputs of the committee,
challenging songs have MMA < 1 bit. The second, the Maximum Mutual
Agreement, was used to selecting the best beat tracking output from the co-
mmittee of beat trackers and its mean AMLt performance is around 85% for
songs with MMA > 1.5 bits.
Finally, to improve automatic rhythm description, our experiments suggest
that voice suppression systems enhance the audio signal for a better mid-level
representation for beat tracking in di�cult songs with highly predominant
vocals.

http://smc.inescporto.pt/research/data/
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Beat tracker

We present an stand-alone beat tracker (the Multi feature beat tracker) that
extends the work of the beat trackers committee, using a committee composed
by multiple onset detection functions as inputs to one beat tracker model, and
the �nal output is selected by MaxMa. Results of our experiments demon-
strated how our approach outperforms (in the evaluated measures) the current
state of the art beat trackers. From a statistically point of view, it is signi�cant
in most of the evaluated measures and it is comparable with the evaluation
results of the �ve beat trackers committee. As well as the committee of beat
trackers, the Multi-Feature beat tracker not only can automatically annotate
beats but also it estimates the con�dence of beat tracking and it identi�es
challenging music samples for beat tracking in a dataset without ground truth
annotations using the measurement of MMA.
The Multi-Feature beat tracker is released under the GNU A�ero general public
license and is publicly available at:
http://essentia.upf.edu/ (Bogdanov et al., 2013)
Algorithm: BeatTrackerMultiFeature().

5.2. Future work and perspectives

The proposed methods for automatic rhythm description within this thesis can
not be considered as a �nal solutions to the problems addressed. All the levels
in the algorithms are potential areas for rhythm description improvement. We
now outline some areas of potential future research extensions to our work.

Tempo estimation

Future work in tempo estimation could be devoted to build new public datasets
for evaluation, compiling music pieces mainly by audio songs with signal cha-
racteristics whose make tempo estimators fail. The meter data, tactus and
tatum of each song-excerpt could improve the analysis of the evaluation results,
as well as it limits the errors inherent in the metrical level errors, because is
not clear if the relations 2, 1

2 , 3 and 1
3 are a metrical level error or of another

kind of estimation error.
Most of the tested tempo estimators use ACF to �nd periodicities in the signal
but the performance of these approaches are statistically di�erent. On the
other hand other systems used di�erent pulse induction systems (e.g. ACF,
AlonsoSP = spectral product, Scheirer = comb �lter bank) and they had sim-
ilar statistical performance. As a result, it is not clear which systems (e.g.
ACF, comb �lter bank, DFT, spectral product) or combination of these are
appropriate for pulse induction. Moreover, the relation between audio features
and pulse induction systems could be studied.

http://essentia.upf.edu/
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In addition, di�erent methods are used to select the best tempo output on
the periodicity signal (e.g. histogram, peak selection, tempo hypothesis with
agents setup, Viterbi decoding and clustering) however, looking at the results
of the evaluation, it is not noticeable which of these methods yields better
results. For future work, a modular analysis of di�erent audio features combi-
nation, periodicity functions and selection methods, such as the modular beat
tracking evaluation by (Stark, 2011, chap. 4), would shed light on this relation
for tempo estimation improvement.

Finally, the implementation of a single system that uni�es the combination
of di�erent tempo estimation approaches could be done instead of using a
heuristic combination of di�erent tempo estimation systems. The performance
of the heuristic tempo combination falls some way below, compared to the
Oracle results. This suggests that there is still room to explore new combina-
tion methods and develop more accurate selections methods with the existing
algorithms.

Beat tracking challenges

In the process of building the SMC dataset, the musical experts, who assisted
in the annotation process, demonstrated that more musically meaningful anno-
tations could be obtained by tapping a stable pulse around which the timing
changes deviate. However, this level of tapping required extensive musical
training (beyond the level of the authors) and it provides strong evidence
towards rejecting beat tracking for musical pieces of this nature. For more re-
alistic advances in beat tracking, we propose investigating techniques for music
with properties that do not pose considerable di�culties for humans, such as
pieces characterized by ternary meter, slow tempo, soft instrument onsets or
strong voices with quiet accompaniment.
One limitation of our approach may be the use of short song excerpts for the
listening test. This was done to make the listening test as manageable as
possible for a wide range of participants. Nevertheless, to obtain a greater
understanding of subjective ratings for longer musical excerpts and a better
understanding of perceptual di�culty in beat perception it is important to
conduct more sophisticated subjective listening experiments.
Furthermore, future work in beat tracking over songs with highly predominant
vocals, has to be focus on automatically detect when voice suppression would
have a positive e�ect on the beat tracking. Additionally, to extend the Dataset
Vocal is important to consider full length stereo songs, in order to evaluate
voice suppression methods in more realistic settings, because most of the voice
suppression algorithms use spatial information.
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Mean Mutual Agreement

In order to reliably detect di�cult samples using mutual (dis-)agreement, we
demonstrated that the choice of the evaluation measure is crucial, and that the
Information Gain was better suited to this task than both the F-measure and
AMLt evaluation methods. However, the Information Gain method appears
less e�ective in highlighting where beat tracking algorithms strongly agree
with each other. It is important to incorporate other metrics, like reliability
by Degara et al. (2012), to further re�ne and improve results. Furthermore,
we encourage to explore other evaluation methods to estimate the MMA, like
Goto accuracy, P-score, Cemgil, CMLc, CMLt, AMLc (Davies et al., 2009a).
Using our committee the performance of MaxMA, with Information Gain and
Regularity, falls some way below that of the Oracle system. This suggests
that there is still room to develop a more accurate selection methods using the
existing algorithms.
The Mutual Agreement methods could be used over small segments in order to
identify di�cult sections of a song and the best beat tracker estimation could
be selected for that segment, even if there are other beat trackers with better
estimations for the rest of the song. It is also important to research the relation
between the MMA value and the length of the song, because the value of the
information gain measure depends on the number of beat estimations used.
The Mutual Agreement method represents an e�cient way to improve diver-
sity in existing datasets, as well as a simple technique to improve beat tracking
in large non-annotated datasets. While all the directions for future work have
so far been related to beat tracking, we strongly believe that, given suitable
evaluation metrics, our framework based on MMA and MaxMA could be read-
ily applied in other contexts. For instance, it may be valuable to reject the use
of beat tracking as a temporal analysis component when it has detected prob-
lematic �les in chord recognition or onset detection. Therefore, we encourage
MIR researchers to explore MMA usage in problems such as onset detection,
chord detection, structural segmentation, and music transcription.

Multi feature beat tracker

The proposed Multi feature beat tracker achieved better results when uses ex-
isting onset detection functions and a tracker model, contrary to recent work
in the �eld, than designing more complex tracking models. Furthermore, beat
tracking could be improved by adding a stage to analyze di�erent metrical
levels and with other onset detection functions, so we encourage the research
community to work on this subject trying other onset detection functions, mix-
ing the existing ones (Stark, 2011) or enhancing the periodicity characteristics
of the audio signal with other techniques like source separation (Zapata &
Gómez, 2012) or voice reduction (Section 4.2).





José Ricardo Zapata González, Barcelona, September 19, 2013.
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