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SUMMARY 

 

Crop stover plays an important role in the maintenance of the soil fertility, and 

consequently has an important influence in present and future crop production. 

Returning crop stover to the soil favorably influences its organic matter (OM) levels, 

and consequently the structure, water storage and water and air movement, and other 

determinants of soil productivity. Corn stover returned to the soil also contribute to 

carbon (C) sequestration and hence help to reduce the release of greenhouse gases. 

Interactions between crop stover management and nitrogen (N) fertilization could 

therefore help to improve N use efficiency while increasing crop production and 

maintaining the sustainability of the cropping systems. Mineral fertilization constitutes a 

significant fraction of total corn production cost. Thus, the high concentration of swine 

farms in the Ebro Valley area allows an attractive fertilization strategy of using animal 

manure for reducing the costs of corn production. In order to investigate the effects of 

stover management on corn production and their possible interaction with the N 

fertilization, two field experiments were conducted from 2010 to 2012 in the irrigated 

areas of the Ebro valley. The study analyzed the interaction between corn stover 

management (incorporated vs removed) and N fertilization treatments (organic v.s. 

mineral) on corn production, and on selected soil quality indicators (dehydrogenase 

activity (DHA), microbial biomass carbon (MBC) and earthworm abundance). The N 

fertilization treatments consisted of 60 m
3 
ha

-1
 year

-1
 (about 386 kg N ha

-1
) of cow slurry 

(CS) and mineral N fertilization rates of: 0 (control), 100, 200 and 300 kg N ha
-1 

year
-1
 

(0N, 100N, 200N, and 300N). Apart from these two field trails, the thesis also evaluated 

the impact of long-term (from 2002 to 2011) fertilization, organic (pig slurry, PS) and 

mineral (300N) on corn production and soil quality indicators (as acid-phosphatase 

activity, earthworm abundance, CO2 Flux, Shannon H’ diversity index (H’), number of 

utilized substrates (NUS), MBC, resistance to penetration (RP) and OM, among others). 

Furthermore, we studied the whole plant N concentration with different plant material 

preparation systems. Under our conditions, our data suggested that returned stover to 

the soil (as average 14 Mg of stover ha
-1 

year
-1
) and organic fertilization had a positive 

impact on soil quality without grain yield penalties. Grain yield after three years of 

stover incorporation ranged from 16 to 20 Mg ha
-1 

depending on the N fertilization 

source. 
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RESUM 

 

El rostoll dels cultius te un paper molt important en el manteniment de la fertilitat del 

sòl. L’incorporació del rostoll al sòl afecta favorablement els nivells de matèria orgànica 

(MO) i per tant l'estructura del sòl, l'emmagatzematge i el moviment d'aigua i aire, i 

altres determinants de la productivitat del sòl. Retornar el rostoll de blat de moro al sòl 

també contribueix al segrest de carboni (C) afavorint la reducció de l'emissió de gasos 

d'efecte hivernacle. La interacció entre la gestió del rostoll i la fertilització nitrogenada 

(N) pot ajudar a millorar l'eficiència d'ús de N, alhora que augmentar la producció i el 

manteniment de la sostenibilitat dels sistemes de cultiu. La fertilització mineral, sobre 

tot la nitrogenada, representa una part significativa del cost total de la producció de blat 

de moro. Per tant, l'alta concentració de les explotacions porcines a la zona de la Vall de 

l'Ebre permet que la utilització de purins sigui una estratègia de fertilització atractiva 

per reduir els costos de producció. Per tal d'investigar els efectes de la gestió del rostoll 

en la producció de blat de moro i la seva possible interacció amb la fertilització N, es 

van dur a terme dos assajos de camp des de 2010 fins a 2012 en zones de regadiu de la 

Vall de l'Ebre. Es va analitzar l’efecte de la interacció entre la gestió del rostoll 

(incorporat o eliminat) i els tractaments de fertilització N (orgànic o mineral) en la 

producció de blat de moro, i en alguns indicadors de qualitat del sòl (activitat 

deshidrogenasa (ADH), carboni de la biomassa microbiana (CBM) i l'abundància de 

cucs). El tractament de fertilització orgànica va consistir en 60 m
3
 ha

-1
 any

-1
 (~ 386 kg 

N ha
-1

) de purí vaquí (CS) i de fertilització mineral: 0 (control), 100, 200 i 300 kg N ha
-1

 

any
-1

 (0N, 100N, 200N i 300N ). A part d'aquests dos assaigs de camp, també es va 

avaluar l'impacte a llarg termini (de 2002 a 2011) de la fertilització orgànica (purí de 

porc, PS) i mineral (300N) sobre la producció de blat de moro i dels indicadors de 

qualitat del sòl (com l'activitat de la fosfatasa-àcida, l'abundància de cucs de terra, Flux 

CO2, l’índex de diversitat H de Shannon (H’), el nombre de substrats utilitzats (NUS), 

CBM, la resistència a la penetració (RP) i MO, entre d'altres). A més, des de el punt de 

vista metodològic, es va mesurar la concentració total de N a la planta amb diferents 

mètodes  de preparació de les mostres. Els resultats suggereixen que, sota les nostres 

condicions, incorporar el rostoll al sòl (~14 Mg de rostoll ha
-1

 any
-1

) juntament amb la 

fertilització orgànica té un impacte positiu en la qualitat del sòl sense penalitzacions en 

el rendiment de gra. El rendiment de gra, després de tres anys d'incorporació del rostoll, 

es mou entre 16 i 20 Mg ha
-1

 depenent de la font de  fertilització de N. 
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RESUMEN 

 

El rastrojo de los cultivos tiene un papel muy importante en el mantenimiento de la 

fertilidad del suelo. Incorporar el rastrojo al suelo puede afectar favorablemente los 

niveles de materia orgánica (MO) y por tanto la estructura del suelo, el almacenamiento 

y el movimiento de agua y aire, y otros determinantes de la productividad del suelo. 

Devolver el rastrojo de maíz al suelo también contribuye al secuestro de carbono (C) 

favoreciendo la reducción de la emisión de gases de efecto invernadero. La interacción 

entre la gestión del rastrojo y la fertilización nitrogenada (N) puede ayudar a mejorar la 

eficiencia de uso del N, al mismo tiempo que aumenta la producción y el mantenimiento 

de la sostenibilidad de los sistemas de cultivo. La fertilización mineral, sobre todo la 

nitrogenada,  representa una fracción significativa del coste total de la producción de 

maíz. Por ello,  la alta concentración de las explotaciones porcinas en la zona del Valle 

del Ebro permite que la utilización de purines sea una estrategia de fertilización 

atractiva para reducir los costes de producción. Con el fin de investigar los efectos de la 

gestión del rastrojo en la producción de maíz y su posible interacción con la fertilización 

N, se llevaron a cabo dos ensayos de campo, desde 2010 hasta 2012, en las zonas de 

regadío del Valle del Ebro. Se analizó el efecto de la interacción entre la gestión del 

rastrojo (incorporado o eliminado) y los tratamientos de fertilización N (orgánico o 

mineral) en la producción de maíz y en algunos indicadores de calidad del suelo 

(actividad deshidrogenasa (ADH), carbono de la biomasa microbiana (CBM) y la 

abundancia de lombrices). La fertilización orgánica consistió en 60 m
3
 ha

-1
 año

-1
 (~ 386 

kg N ha
-1

) de purín vacuno (CS) y la fertilización mineral: 0 (control), 100, 200 y 300 

kg N ha
-1 

año
-1

 (0N, 100N, 200N y 300N). También, se evaluó el impacto a largo plazo 

(de 2002 a 2011) de la fertilización orgánica (purín de cerdo, PS) y mineral (300N) 

sobre la producción de maíz y los indicadores de calidad del suelo (como la actividad de 

la fosfatasa-ácida, la abundancia de lombrices, Flujo CO
2
, el índice de diversidad H de 

Shannon (H '), el número de sustratos utilizados (NUS), CBM, la resistencia a la 

penetración (RP) y MO, entre otros). Además, se midió la concentración total de N en la 

planta con diferentes métodos de preparación de las muestras. Los resultados sugieren 

que, bajo nuestras condiciones, devolver el rastrojo al suelo (~ 14 Mg de rastrojo ha
-1

 

año
-1

) junto con la fertilización orgánica tiene un impacto positivo en la calidad del 

suelo sin penalizaciones en el rendimiento. El rendimiento de grano, después de tres 

años de incorporación del rastrojo, se mueve entre 16 y 20 Mg ha
-1

 dependiendo de la 

fuente de fertilización de N. 
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GENERAL INTRODUCTION 

The Ebro Valley is an extensive area located in the northeast of Spain (Fig. 1), 

characterized by a semiarid climate, with average annual rainfall ranging from 200 to 

400 mm. Despite its semiarid environment, this valley is one of the most important 

areas for livestock farming and agriculture in Spain due to the presence of considerable 

irrigation infrastructure. The two largest autonomous communities in this area: Aragon 

and Catalonia, respectively contained about 399,045 ha and 207,035 ha of irrigated land 

in 2011. The prevailing method of irrigation is flood-irrigation, based on systems built 

during the late 19th and early 20th centuries. Even today, this infrastructure still 

represents more than 50% of the irrigated lands of Aragon and Catalonia (MARM, 

2011). The newly irrigated areas are mainly under sprinkler irrigation and represent 

about 20% of the total irrigated land in this area (MARM, 2011). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Ebro river basin (MAPA). 

Source: Confederación Hidrográfica del Ebro.  
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With about 105,694 ha (MARM, 2011), maize is the most important field crop 

cultivated in the Ebro Valley area. It is mainly used for animal consumption, 

constituting an important element in feed for pigs, cows and poultry. Generally 

speaking, average crop yields in the area range from 10 to 15 t ha-1 (14% moisture) 

under sprinkler irrigation (Cela et al., 2011; Boixadera et al., 2005; Daudén and Quílez, 

2004), although under good agronomical conditions, the most efficient farms can 

produce up to 19 t ha-1 (Biau et al., 2011). High yielding maize crops grown in Spanish 

agro-systems require water but also a satisfactory input of available nitrogen (N) and a 

long growing season.  

Surveys conducted in the Ebro Valley (Sisquella et al., 2004) show that about 

50% of the maize-producing land is only fertilized with mineral N fertilizer. The rest of 

the area is fertilized with manure, mainly pig slurry (PS), which is applied before 

sowing the maize crop, normally complemented with mineral N fertilizer, applied at 

sidedress. In general, N is applied at rates of over 300 kg N ha-1 in fields that are only 

fertilized with mineral N and at more than 400 kg N ha-1 in those fertilized with manure. 

Spain is the second largest intensive swine producer in the EU (MARM, 2010) and the 

Ebro Valley contributes 40% of Spanish swine production. However, the excessive 

application of N fertilizer in agricultural systems has produced a possible reduction in 

the profitability of farms as well as the pollution of water and the atmosphere. For this 

reason, an EU nitrate directive (European Union, 1991) now limits the amount of N that 

can be applied to soil in many of the irrigated areas within the Ebro Valley. In this area, 

ground waters are frequently polluted with nitrate (Ferrer et al., 2003), with 

concentrations often exceeding 50 mg NO-
3 L

-1, the maximum level permitted by the 

European Union (1991). Consequently, as in many other regions of the EU, some areas 

of the Ebro Valley have been declared nitrate vulnerable. In these areas, it is not 
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permitted to apply more than 350 kg N ha-1 year-1, of which no more than 180-210 kg N 

ha-1 year-1 should derive from organic materials (Diari Oficial de la Generalitat de 

Catalunya, 2004). 

The agricultural areas with the highest nitrate exports are those associated with 

irrigated agricultural systems growing crops with a high N use, such as maize. There is 

therefore a need for further studies into the development of agronomic practices that 

would enable these areas to increase the efficiency of their N fertilization while at the 

same time reducing nitrate leaching and N gas emissions from maize plots to water 

bodies.  

Stover management is an important aspect of maize production because, apart 

from its agronomical effects relating to soil improvement, it may have also help to 

increase the profitability of maize farming. For instance, last year (2012) maize stover 

produced in the Ebro Valley commanded prices of around 18 € t-1. The quantity of 

maize stover produced in the Ebro valley is large, ranging from about 14-17 t ha-1 year-1 

(Lloveras et al., 2012) depending on total maize production. According to a survey by 

Sisquella et al. (2004) stover is removed on 50% of the land in the Ebro Valley and the 

amount of stover available as feedstock has been estimated at around 40%, with only a 

relatively small portion of this stover being available as pasture (Sisquella et al., 2004). 

These proportions of stover management can change from year to year and according to 

the price. Other aspects of maize stover management are its interaction with N 

fertilization (Wilhelm et al., 2004) and its impact on greenhouse gas emissions into the 

atmosphere and carbon (C) sequestration.  Agricultural practices have been cited as both 

sources and sinks for greenhouse gases, especially CO2 (Follett and Hatfield, 2001; Lal 

et al., 1998). Stover management and soil organic matter (SOM) content account for a 

significant portion of total terrestrial C (Wilhelm et al., 2004). By increasing the amount 
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of maize stover returned to the soil, SOM content could be increased and, as a 

consequence, the quality of the soil, while at the same time reducing atmosphere C 

pools. 

As researchers who work directly with agricultural producers, we are keenly 

aware of the need for farmers to have sustainable production systems and to maintain or 

increase their maize yields and the economic profitability of their farms. For this reason, 

we would like to emphasize the use of maize stover within the management practices 

applied in the Ebro valley. 
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GENERAL OBJECTIVES 

The main objective of this thesi was to contribute to the improvement of the N 

management and profitability of high yielding irrigated maize, while reducing its soil 

and environmental impacts.  

In order to achieve this main objective, we conducted several field trails: a trial 

initiated in the year 2002, (and conducted from 2002 to 2011) and two other trials 

undertaken from 2010 to 2012. The first trial consisted of an evaluation of the long-term 

impact on soil quality of applying different (organic and mineral) N fertilization 

sources. The other two field trials focused on the effects of stover management and its 

interactions with different mineral N fertilization rates on maize production and soil 

quality. 

The main objectives were to:  

1. Evaluate the management of maize stover and its interaction with mineral N 

fertilization in irrigated high-yielding crop systems. 

2. Study the effects of short-term crop management and different (organic and 

mineral) N fertilization sources on selected soil quality parameters. 

3. Study the effects of long-term use of organic and mineral N fertilizers on the 

productivity of irrigated maize and on selected physical, chemical and biological 

indicators of soil quality.  

4. i) Compare the N content determined for the whole maize plant when the stover 

and grain were separately ground and analysed using the NIRS and Dumas 

combustion methods; ii) to compare the N content determined for the whole 

maize plant when the stover and grain were ground and analysed together using 

the NIRS and Dumas combustion methods; and iii) to investigate whether the 



General Objectives 

 

 12 

NIRS method is sensitive enough to detect differences in N concentrations in 

tissue associated with different rates of N application. 

 

This document consists of four independent chapters presented in the format of a 

journal article. For this reason, some parts, such as the material and methods section, 

may contain a certain degree of repetition. 

Some of the chapters have already been accepted for publication in scientific journals, 

while others are currently under revision. 
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ABSTRACT 

The incorporation of crop stover into the soil improves soil fertility and crop 

productivity by increasing carbon (C) sequestration and reducing the emission of 

greenhouse gases among other parameters. Interactions between crop stover 

management and nitrogen (N) fertilization could help to improve C sequestration while 

increasing productivity. The objective of this study was to evaluate the impact of 

incorporating or removing corn (Zea mays L.) stover, in combination with different N 

fertilization rates (0, 100, 200 and 300 kg N ha
-1
), on corn production, soil organic 

carbon (SOC), and soil mineral N (SMN) in high production areas. We carried out two 

field experiments (Experiment 1 and Experiment 2) for three years under sprinkler 

irrigation. Over the duration of the experiment (short term period), stover management 

did not affect corn production or SMN levels, while high average grain yields were 

achieved (16–20 Mg ha
-1
) when N was applied. After three years, removing the stover 

reduced SOC levels by approximately 0.82 and 1.06 g C m
-2
 (0-30 cm depth) in 2012 in 

Experiment 1 and 2, respectively. The amounts of corn stover incorporated were higher 

than 16 Mg ha
-1
 year

-1
 of dry matter. Our data suggest that returning stover to the soil 

has a positive short-term impact on soil quality without grain yield penalties. Although 

selling the stover provides a short-term economic advantage, continuous stover removal 

may cause significant soil degradation in the future. 

 

Abbreviations: SOM, soil organic matter; SOC, soil organic carbon; SMN, soil mineral 

nitrogen.
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The emerging bioenergy market based on corn (Zea mays L.) stover has 

encouraged many farmers to harvest and sell their stover rather than incorporate it back 

into the soil (Frossard et al., 2012). Selling the stover provides short-term economic 

gains, but according to Wilhelm et al. (2004) its incorporation increases soil 

productivity, thus it should not be considered entirely as a waste product (Blanco-

Canqui, 2012). The incorporation of stover has many benefits including the prevention 

of soil erosion, the maintenance of soil organic matter (SOM) and soil structure by 

humification, and is a source of energy for soil biota (Lal, 2005). Stover is also an 

important source of macronutrients (NPK) and micronutrients such as S, Cu, B, Zn and 

Mo (Mubarak et al., 2002).  

Apart from these benefits, corn stover has a long term positive impact on soil 

organic carbon (SOC) levels, and continuous removal can result in a progressive decline 

in yields (Wilhelm et al., 2004) by reducing SOC levels until the production capacity of 

the soil becomes limiting (Johnson et al., 2006; Mann et al., 2002). SOC is a key CO2 

sink, maintaining the productivity of agriculture while reducing greenhouse gas 

emissions and mitigating global climate change (Christopher et al., 2009). The benefits 

of higher SOC levels include the sequestration of atmospheric CO2 as well as better soil 

quality (Benjamin et al., 2010; Blanco-Caqui and Lal, 2009). Furthermore, corn stover 

contains 17.7 g N kg
-1
, 1.82 g P kg

-1
, and 28.36 g K kg

-1 
of the fertilizer applied to crops 

(Johnson et al., 2010). However, not all the nutrients are available to the following 

crops. Most of the N remains in organic forms and mineralization is required before 

absorption, leading to a short-term N deficit affecting grain yield in the following crop 

(Van Den Bossche et al., 2009). Interactions between stover management and N 

fertilization have been reported by several authors (Karlen et al., 2011; Power et al., 

1998; Maskina et al., 1993). The combination of corn stover and N fertilizer can 
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influence SOC storage, but most of these studies involve US cropping systems (Mann et 

al., 2002), with grain yields of approximately 10 Mg ha
-1
 and N fertilization rates of 0–

280 kg N ha
-1 
(Clapp et al., 2000). This productivity is much lower than in the Ebro 

Valley (North-East Spain), where average grain yields under irrigation are typically 14–

16 Mg ha
-1 
(Cela et al., 2011; Berenguer et al., 2009). The higher yields in this area of 

Spain reflect the larger amounts of stover  (HI of 50 %) and N fertilization applied to 

the soil (300–350 kg N ha
-1
) and the use of irrigation (Quílez and Yagüe, 2010). 

There is little information about the interaction between stover management and 

N fertilization rates in irrigated, high-yielding corn crops such as those in Spain. It is 

unclear whether the results from the US can be extrapolated to these conditions. 

Previous studies have compared the effects of stover incorporation with reduced tillage 

agriculture but little is known about the impact of stover management and conventional 

tillage (Karlen et al., 2011; Graham et al., 2007; Allmaras et al., 2000; Linden et al., 

2000). A better understanding of the effects of corn stover management and its potential 

interaction with N fertilization could help to improve N use efficiency, soil quality and 

increase crop productivity in high-yielding environments. 

The objective of this study was to evaluate the effects of two contrasting corn 

stover management practices (incorporation or removal) in combination with different 

N fertilization rates, and the impact on corn production (grain yield, biomass at 

maturity, and plant N content), SOC and soil mineral N (SMN) under conventional 

tillage. 

MATERIALS AND METHODS 

Two field experiments (Experiment 1 and Experiment 2) were conducted from 

2010 to 2012 in Almacelles (NE Spain, 41º43'N, 0º26'E). Both experiments were in the 

same geographical region and were irrigated by sprinkler. The altitude of Experiment 2 
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was ~324 m amsl and that of Experiment 1 was ~271 amsl. The location is 

characterized by a semiarid climate with low precipitation (192 mm) and high 

temperature (19.1 ºC) during the corn growing period (Fig. 1). Experiment 1 had a 

slightly higher temperature than Experiment 2 because of the lower altitude. The soil in 

each experiment was well drained without salinity problems and major characteristics 

are listed in Table 1. 

Experimental treatments consisted of corn stover management and different N 

fertilization rates. The stover management practices were stover removal from the field 

after harvest each year and stover incorporation with conventional tillage (by disk 

ploughing) to a depth of 25–30 cm. These practices were combined with N fertilization 

rates of 0, 100, 200, and 300 kg N ha
-1
, referred to as 0N, 100N, 200N, and 300N, 

respectively. The N fertilizer was applied as ammonium nitrate (33.5% N) in two side-

dressing doses applied using a small drop-type hand-driven fertilizer spreader, 50% at 

V3–V4 and 50% at V5–V6 (Ritchie et al., 1989). P and K fertilizers were applied 

annually before planting at rates of 150 kg P2O2 ha
-1 

and 250 kg K2O ha
-1
. The 

experimental design was a split-plot, with three replications, completely randomized 

treatments in the first year and the same treatments applied to the same plots thereafter. 

The stover management practices represented the main plots and the N fertilization rates 

the sub-plots. The experimental plot dimensions were 18 x 17 m. 

Corn was planted in the first week of April at a rate of 80,000 plants ha
-1
 with 71 

cm between rows in both experiments. The corn hybrids used in the experiment belong 

to the 600-700 FAO cycle. The varieties planted are among the most productive in 

regional variety tests (Lopez et al., 2011). Plots were sprinkler-irrigated 2-3 times per 

week, with approximately 700 and 1000 mm of water per season (lacking nitrate) in 

Experiments 1 and 2, respectively. The applied amounts depended on the climatologic 
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conditions of the season. Both experiments were treated with 3.3 l ha
-1 
of the pre-

emergence herbicide Trophy (Acetochlor 40% + Dichlormid 6%) and 1 l ha
-1 
of the 

post-emergence herbicide Fluoxypyr 20% (to control Abutilon theophrasti M.) plus 1.5 l 

ha
-1 
of Nicosulfuron to control Sorghum halepense. 

Aboveground biomass and N content were evaluated at physiological maturity 

by harvesting 4 m of the central row from each plot. Two entire plants were chopped 

and dried to determine the moisture content, and aboveground plant N content was 

determined by near infrared spectroscopy (NIRS) (InfraAlyzer 2000 spectrometer, 

Bran+Luebbe, Norderstedt, Germany). Corn stover was either incorporated into the soil 

(that is, the whole plant aboveground biomass minus the grain biomass) or all of the 

corn stover was removed using commercial machinery and the rest of the residues were 

removed manually.  

Corn was harvested in the second week of September and grain yield was 

measured by harvesting two complete central rows (1.42 x 17 m). Grain moisture was 

determined in a 300 g sample from each plot and the grain yield was adjusted to 14% 

moisture (GAC II, Dickey-John, Auburn, IL, USA). The grain N content was measured 

by NIRS as above.  

Soil nitrate content (NO3-N) was determined before planting (initial NO3-N) and 

after harvesting (residual NO3-N). Soil samples were taken from each plot (0–90 cm 

depth at 30 cm intervals). The nitrate was extracted in deionized water and measured 

using Nitrackek (KPG Products Ltd., Hove, East Sussex, UK) test strips (Bischoff et al., 

1996) calibrated according to the standard procedure (Bremner, 1965). 

The soil ammonium content (NH4
+
-N)

 
was considered negligible (Berenguer et 

al., 2009) and was only measured at the beginning of the experiment in 2010 (0–30 cm 

depth). The mean of soil residual NH4
+
-N was 16 and 15 kg ha

-1 
in Experiment 1 and 2, 
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respectively. As a consequence, the soil nitrate content was considered the soil mineral 

nitrogen (SMN) content. The SOC in the top layer of the soil (0–30 cm) was determined 

by measuring organic carbon using the dichromate oxidation procedure in which 

residual dichromate is titrated against ferrous sulfate (Walkley and Black, 1934). 

 A general linear model was used to determine if there were the statistically 

significant differences in the agronomic parameters yield, aboveground biomass, and 

plant N content. Soil mineral N and SOC were statistically analyzed as split-plot in time 

using the PROC MIXED procedure of SAS (Littell et al., 1998). In the mixed model, 

stover, N dose, and years were considered fixed variables, while replication was 

considered a random effect. Treatments were compared by Tukey’s mean separation 

procedure (p< 0.05). All the analysis were performed using the SAS statistical package 

(SAS, 1999-2001). 

RESULTS  

Corn production 

Stover management did not significantly affect corn yields in any of the growing 

seasons i.e. grain yields were whether the stover was removed or incorporated (Table 2). 

In both experiments and in all three growing seasons, there was no significant effect of 

the interaction between stover management and N fertilization rates on yield except in 

Experiment 2 in 2012 (Table 2).  

In Experiment 2, the N fertilization rate affected corn production significantly, 

whereas in Experiment 1 grain yield did not respond to the different N fertilization rates 

(Table 2). Stover management had a significantly lower impact than N fertilization rates 

in both experiments (Table 2). Stover management did not affect biomass yields at 

maturity in either experiment. However, in both Experiment 1 and 2 in 2011 and in 
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Experiment 2 in 2010, a significant rise in biomass was observed with increasing N 

rates (Table 2).  

Nitrogen fertilization rates significantly affected plant N content in Experiment 2 

for all three growing seasons. By contrast, in Experiment 1 the N fertilization rate had 

no significant effect in any of the growing seasons. 

Soil mineral nitrogen  

At the beginning of the experiment in 2010, initial NO3
-
N was 282 g kg

-1
 in 

Experiment 1 and 118 g kg
-1
 in Experiment 2, at a depth of 0–90 cm. SMN was 

generally lower in Experiment 2 than 1, perhaps reflecting the use of cow slurry (CS) 

applications in Experiment 1 in previous years (Table 1). Incorporating or removing 

corn stover had no significant impact on SMN. However, in the plots that were not 

treated with mineral N fertilizer over the three growing seasons, stover incorporation 

reduced the residual SMN levels compared to plots from which stover was removed 

(Table 3). 

Soil organic carbon  

SOC levels in Experiments 1 and 2 remained stable when the stover was 

incorporated into the soil (Table 4). When the stover was removed, SOC levels declined 

(from an average of 21.1 to 18.8 g Kg
-1
 in Experiment 1, and from 19.3 to 16.8 g Kg

-1
 in 

Experiment 2) over the three years of the study (Table 4). Consequently, a significant 

interaction was observed (year*stover) in both Experiments (Table 4). SOC content was 

not affected by N fertilization rates (Table 4). 
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DISCUSSION 

Grain yield was not significantly influenced by stover management treatment. 

The stover incorporated in our experiments was higher than 16 Mg ha
-1 
yr

-1
 of dry 

matter (Table 2). Rainfall in the region occurs mainly during the spring season which is 

normally unsuitable for decomposition (Figure 1) of the previous year’s stover because 

of the relatively low temperatures. For this reasons, stover can immobilize a significant 

amount of SMN reducing its availability to the corn crop. However, stover management 

did not present any statistical differences in grain yield as a consequence of the possible 

immobilization of N (Table 2). Reports from studies in the US have demonstrated a 

positive impact when corn stover is returned to the soil at a rate of 7–10 Mg ha
-1 
(Clapp 

et al., 2000; Linden et al., 2000; Power et al., 1998) and some effect on yield might have 

been expected in the present study. One possible reason for the lack of yield response to 

stover management could be due to the high amount (for the area of our study) of SOC.  

Only in 2012, in Experiment 2, after three years of trials, was a significant 

interaction (stover*N rates) observed. This shows that stover incorporation reduced 

grain yields at the lowest N rates, possibly due to N immobilization.  

Biomass production was high with average yields of 32.4 Mg ha
-1
 in Experiment 

1 and 34.24 Mg ha
-1
 in Experiment 2, with a harvest index of about 0.50. As a result of 

the high grain yields, biomass production was also high. 

The average aboveground plant N content ranged from 8.2 to 13.4 g N kg
-1
 

(Table 2). These levels can be considered in line with previous studies in the same area 

(Berenguer et al., 2009; Daudén and Quílez, 2004). 

Soil organic C contents provide a measurement of soil organic matter status. The 

SOC content in both Experiments decreased over the period of the trials when the stover 

was removed in contrast with the stover incorporated treatments (Table 4). When the 
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stover was incorporated (amounts higher than 16 Mg ha
-1
 yr

-1
 of dry matter) SOC 

content improved or remained stable. Similar results of no SOC increase under stover 

incorporation were also observed by Bundy et al. (2011). This study carried out in 

Wisconsin (USA) over a 10-yr period with grain yields ranging from 6 to 14 Mg ha
-1
  

yr
-1
 did not find any significant increase in soil C levels at the end of the experiment. No 

increases in SOC in stover incorporated treatments have also been reported by other 

authors (Blanco-Canqui and Lal, 2007; Mann et al., 2002; Powlson, et al., 2011) who 

accepted the concept of soil C saturation level proposed by Six et al. (2002). At this 

point the soil cannot absorb more C because SOC is in equilibrium with the atmosphere 

and it returns as much C as it absorbs.  

N fertilization can increase biomass production and the amount of crop stover 

available for reincorporation, but an imbalance of nutrients may limit the amount of C 

incorporated into the soil matrix or sequestrated into the soil (Kirkby et al., 2011). 

Although selling stover produces short-term economic gains, in the conditions of our 

study this practice will encourage soil degradation in the future. The mean SOC values 

for 2012 (Table 4) show that after three experimental years stover removal caused a 

reduction in SOC levels of approximately 0.82 and 1.06 g C m
-2
 in Experiment 1 and 2, 

respectively. According to Powlson et al. (2011) and Huggins et al. (2010), these small 

changes could have disproportionally large negative effects on the soil structure 

including its aggregate stability, water infiltration rate, etc. 

Nitrogen use efficiency ranged from 56 kg N kg
-1
 in 300N in Experiment 1 to 

182 kg N kg
-1
 in 100N in Experiment 2. The low N efficiency in Experiment 1 was 

mainly due to the high soil N content. This was because of the excessive application of 

N fertilizer which additionally results in contamination of water and the atmosphere 

(Yagüe and Quílez, 2010). The average aboveground plant N content ranged from 9.2 to 
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12.6 g N kg
-1 
(Table 2). These levels can be considered normal compared with previous 

studies in the same area (Berenguer et al., 2009; Daudén and Quílez, 2004). 

Nevertheless, Ciampitti and Vyn (2012) reported similar values of aboveground plant N 

content using modern-era corn hybrids. Whereas many studies of plant N content have 

been based on grain yields of up to 10–14 Mg ha
-1 
(Liu et al., 2006; Duivenbooden et 

al., 1995), this present study investigated corn production in areas with a higher yield 

potential. Due to the present high corn prices, producers normally apply high amounts 

of N to ensure they obtain high grain yields. 

There was no significant effect of the interaction between stover management 

and N fertilization on grain yields, which was unexpected because more than 16 Mg ha
-1
 

yr
-1
 of dry matter was incorporated into the soil (Table 2). This could be explained by 

the high SMN levels which have been reported in many areas of the Ebro Valley 

(Vazquez et al., 2006; Abad et al., 2004; Villar-Mir et al., 2002). No significant 

interaction between stover management and N fertilization in SMN was observed, 

because the N initial and N residual levels followed similar tendency under the two 

stover management systems. However, the SMN values with increasing N rates were 

much higher in Experiment 1 compared with Experiment 2. This discrepancy could be 

explained by significant N losses due to leaching (Berenguer et al., 2008), 

predominantly in Experiment 2, the soil type and water use. The optimal N fertilization 

rate varied depending on the experiment, showing that N fertilization recommendations 

should not be based on fixed rates of N application.  

CONCLUSIONS 

Our study considers corn crops with high grain yields (16–20 Mg ha
-1
) and 

suggests that, in the short term, farmers can incorporate stover without yield or biomass 

penalties, while improving the SOC level of the soil. No significant effects were 
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observed as a result of the interaction between stover management and N fertilization 

rates, indicating that stover incorporation has minimal impact on C and N storage in the 

short term (three study years), though stover removal did result in a small reduction in 

SOC. However, these small changes could have disproportionally large negative effects 

on soil quality. Farmers must therefore choose between selling the stover for short-term 

economic gain or incorporating the stover and improving the soil properties for future 

growing seasons. These conclusions are based on the results from two experiments 

lasting three years in which different corn stover management practices were tested at 

different N fertilization rates. The findings should be validated by field testing over 

longer duration. 
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Table 1. Chemical and physical soil properties in Experiment 1 and Experiment 2 at the 

beginning of the study (2010) 

 Experiment 1 Experiment 2 

Depth (cm) 0-30 31-102 103-130 0-22 23-45 46-110 >111 

Sand (g kg
-1
) 280 300 320 420 430 170 170 

Silt (g kg
-1
) 420 460 470 330 360 630 650 

Clay (g kg
-1
) 300 240 210 250 210 200 180 

pH 8.4 8.2 8.3 8.2 8.4 8.4 8.4 

E.C. (dS m
-1
) 0.21 1.57 1.73 0.19 0.17 0.22 0.22 

Organic matter (g kg
-1
) 35 - - 33 - - - 

Bulk density (g cm
-3
) 1.4 - - 1.64 - - - 

P (Olsen) (mg kg
-1
) 122 - - 90 - - - 

K (NH4Ac) (mg kg
-1
) 420 - - 383 - - - 

Soil type* Gypsic haploxerept Typic Calcixerept 

Precedent crop Corn-corn Corn-corn 

Previous manure application Yes (cow slurry) No 

Previous mineral N 

application 
~200 kg N ha

-1
 year

-1 
~300 kg N ha

-1
 year

-1
 

*(Soil Survey Staff, 2003) 
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Table 2. Corn yield (140 g kg
-1
 seed moisture content), aboveground biomass (0 g kg

-1
 moisture content), aboveground biomass and plant N 

content at maturity for the different stover management practices and N fertilizer application rates in 2010, 2011, and 2012, in Experiment 1 (low 

altitude) and Experiment 2 (high altitude). 

   Experiment 1  Experiment 2 

Stover 

 management 

N 

rate 
Yield Biomass  Plant N content  Yield Biomass Plant N content 

 
(kg N 

ha
-1
) 

 

(Mg ha
-1
) 

 

(Mg ha
-1
)  (g kg

-1
)  (Mg ha

-1
) 

 

(Mg ha
-1
) 

 

(g kg
-1
) 

   2010 2011 2012  2010 2011 2012  2010 2011 2012  2010 2011 2012  2010 2011 2012  2010 2011 2012 

Incorporated 0  13.9 13.9 16.6  29.4 27.6 30.5  11.8 9.0 10.7  14.0 11.0 16.1  26.1 21.5 26.7  9.3 8.2 9.7 

 100  13.9 15.1 17.1  34.1 33.1 30.0  12.9 11.2 10.1  18.5 17.1 18.3  35.1 32.2 38.3  11.0 8.8 10.8 

 200  13.2 18.8 16.4  26.2 41.7 34.1  12.8 9.9 11.3  19.0 20.0 20.5  31.0 37.9 37.2  11.5 9.6 11.5 

 300  13.3 18.6 17.1  30.7 41.3 28.4  12.4 9.7 11.4  18.7 20.0 20.8  33.0 38.5 35.8  11.7 10.2 10.6 

Mean   13.6 16.6 16.8  30.1 36.0 30.8  12.5 9.9 10.9  17.6 17.0 19.0  31.3 32.5 34.5  10.9 9.2 10.6 

Removed 0  14.8 18.3 16.7  31.3 37.0 28.3  12.3 9.9 10.9  16.0 13.1 17.6  28.4 26.3 35.8  11.2 9.4 9.3 

 100  13.0 18.6 16.2  29.2 36.5 26.7  11.5 9.7 11.3  18.1 18.5 20.2  37.2 31.5 42.7  11.8 9.7 10.4 

 200  14.2 18.8 14.1  25.6 38.3 33.6  13.4 10.4 11.0  19.0 18.8 20.6  30.4 35.6 41.2  11.5 9.6 10.4 

 300  15.4 18.8 17.8  29.8 38.8 34.9  12.7 10.4 10.6  17.1 19.9 21.3  35.7 42.1 41.8  11.4 10.4 10.7 

Mean   14.4 18.6 16.2  29.0 37.7 30.9  12.5 10.1 10.9  17.6 17.6 19.9  32.9 33.9 40.4  11.4 9.8 10.2 

Block   NS NS *  NS NS NS  NS NS NS  NS NS NS  NS ** NS  NS * NS 

Stover (S)   NS NS NS  NS NS NS  NS NS NS  NS NS NS  NS NS NS  NS NS NS 

Error a   - - -  - - -  - - -  - - -  - - -  - - - 

N rate (N)   NS NS NS  NS * NS  NS NS NS  ** ** **  ** ** NS  ** ** * 

SxN   NS NS NS  NS NS NS  NS NS NS  NS NS *  NS NS NS  NS NS NS 

*,**Significant at the 0.05 and 0.01 levels, respectively. NS not significant 
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Table 3. Soil mineral nitrogen (N) (g kg
-1
) before planting and applied N fertilizer (Nini), and residual N after harvest (Nresi) (depth 0-30 cm) for 

2010, 2011, and 2012 in Experiment 1 and Experiment 2.  

   Experiment 1  Experiment 2 

   2010  2011  2012  2010  2011  2012 

Stover  

management 

N rate 

(kg N ha
-1
) 

 Nini Nresi  Nini Nresi  Nini Nresi  Nini Nresi  Nini Nresi  Nini Nresi 

Incorporated 0  63  127 58  86 47  48  52 58  69 37 

 100  108  198 100  145 94  28  52 33  71 27 

 200  226  228 273  159 237  59  73 53  92 37 

 300  225  334 375  254 269  91  75 132  97 103 

Mean   155  222 202  161 161  57  63 69  82 51 

Removed 0  117  138 116  151 93  27  65 36  59 17 

 100  174  208 225  214 101  49  69 33  52 24 

 200  199  314 230  185 250  66  92 58  57 30 

 300  269  354 328  220 175  156  96 134  100 37 

Mean   

96±18 

190  253 225  192 155  

54±11 

74  81 65  67 27 

      Experiment 1        Experiment 2    

      Nini Nresi        Nini Nresi    

Block      NS NS        NS NS    

Stover (S)      NS NS        NS NS    

Error a      - -        - -    

Nrate (N)      ** **        NS **    

SxN      NS NS        NS NS    

Error b      - -        - -    

Year (Y)      ** NS        ** NS    

YxS      NS NS        * NS    

YxN      ** NS        * NS    

Y*S*N      NS NS        NS NS    

*,**Significant at the 0.05 and 0.01 levels, respectively. NS not significant 
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Table 4. Soil organic carbon (g kg
-1
) after harvest following different stover 

management practices and N fertilizer application rates in 2010, 2011, and 2012, in 

Experiment 1 and Experiment 2.  

   Experiment 1  Experiment 2 

Stover management 
N rate 

(kg N ha
-1
) 

 2010 2011 2012  2010 2011 2012 

Incorporated 0  16.9 18.8 19.6  16.9 19.8 19.1 

 100  20.9 20.1 20.0  16.4 19.7 17.9 

 200  19.3 22.3 20.7  18.6 19.0 20.0 

 300  19.9 21.9 21.6  18.4 17.9 19.5 

Means   19.3 20.8 20.5  19.1 19.1 19.1 

Removed 0  22.9 23.9 21.2  18.9 17.3 17.0 

 100  20.2 22.1 18.9  20.2 18.8 19.5 

 200  19.9 21.3 20.4  16.9 21.1 18.4 

 300  21.5 21.4 20.2  17.7 20.1 17.4 

Means   21.1 20.2 18.8  19.3 18.1 16.8 

   Experiment 1  Experiment 2 

Block    NS    NS  

Stover (S)    NS    NS  

Error a    -    -  

Nrate (N)    NS    NS  

SxN    *    *  

Error b    -    -  

Year (Y)    NS    NS  

YxS    *    *  

YxN    NS    NS  

Y*S*N    NS    NS  

*Significant at the 0.05. NS not significant 

 

 

 

 

 

 

 



Chapter I 

 

 31 

Figure 1. Monthly rainfall and mean temperature for the historic period (1989–2012) 

and for the experimental period (2010–2012). 
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ABSTRACT 

Soil amendments with mineral and organic fertilizers together with maize stover 

incorporation is nowadays a common practice that may favorably affect several soil 

properties, including soil biological activity. In this research, a field experiment was 

conducted under a continuous maize monoculture in semiarid irrigated conditions. The 

objective of the study was to investigate the effect of mineral and organic fertilizer and 

its interaction with stover management on grain yield and selected soil quality 

parameters. Treatments tested were stover management (incorporated or removed) and 

nitrogen (N) fertilization: mineral (300N) and organic (cow slurry, CS), and a control 

(0N). Selected soil quality parameters were measured at the end of the experiment after 

three years of maize production: dehydrogenase activity (DHA), microbial biomass 

carbon (MBC), earthworm abundance, and soil organic carbon (SOC) content, apart 

from grain yield and whole plant biomass at physiological maturity. All soil parameters 

measured showed higher values when the stover was incorporated. The stover 

production that ranged between 9.9 and 20.7 Mg ha
-1 

yr
-1

 was sufficient to maintain 

SOC levels in agricultural systems.  Although MBC was higher under mineral N 

fertilization, an increase of 44 mg C kg
-1 

was observed after three years of stover 

incorporated. Grain yield presented a significant interaction between N fertilization and 

stover management. In contrast, dehydrogenase activity (22 and 30 mg INTF kg
-1 

dry 

soil h
-1 

under stover incorporation in 300N and CS, respectively), earthworm abundance 

(7 and 12 earthworm m
-2 

in the plots where the stover was incorporated in 300N and 

CS, respectively), and SOC followed a similar trend (0N<300N<CS). The results 

indicated that organic manure, under incorporated stover, was the treatment with the 

highest beneficial effects on soil quality parameters.  

Keywords: Maize; Cow Slurry; N fertilization; Soil Quality 
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INTRODUCTION 

Agricultural soils in semiarid Mediterranean areas of the Ebro Valley (Spain) are 

characterized by low organic matter (OM) contents mainly due to the warm and dry 

climate, the cultivation systems and because of the extended exposure to erosion and 

degradation (Plaza et al., 2004; Garcia et al., 1994). On the other hand, the Ebro Valley 

is an area with high concentration of livestock that produces large amounts of manure. 

More than 100,000 Mg year
-1

of nitrogen (N) disposed in the Ebro Valley fields come 

from livestock production (Teira, 2008). Animal manure is a source of N and other 

nutrients when applied to crops being a cost-effective way to utilize this animal waste 

(Salmerón et al., 2010). Also, manure and other materials of organic origin are 

frequently applied to the soil to increase the levels of plant nutrients and to improve the 

physical, chemical and biological soil properties that directly affect soil fertility (Bohme 

et al., 2005). Particularly, applications of organic amendments, such as cow slurry (CS), 

produce positive effects on microbial activity that are very important in regulating soil 

properties (Dick, 1992). Moreover, understanding soil microbial activity is increasingly 

recognized as important factor for the restoration and sustainability of ecosystems 

(Potthoff et al., 2006; Steenwerth et al., 2002). Since the microbial community plays a 

critical role regulating some soil processes such as decomposition of OM and nutrient 

cycling, there is a keen interest in better understanding the factors that regulate its size, 

activity and structure (Zeller et al., 2001). The importance of the size of microbial 

biomass is emphasised by the fact that this is the eye of the needle through which all 

organic material that enters the soil must pass (Jenkinson and Powlson, 1976). A variety 

of microbial parameters have the potential for use as diagnostic indicators of soil quality 

such as microbial biomass and microbial diversity (Bending et al., 2004; Anderson, 

2003; Sparling et al., 1997). In contrast, nutrients contained in organic fertilisers that 
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have to be released by microbial metabolism to make most of them available to plants, 

the nutrients in inorganic fertilizers can be directly taken up by plants. This is why 

inorganic fertilisers directly affect crop yields and it is the main reason for its use 

(Böhme et al., 2005). Moreover, the presence of these organic and inorganic nutrients 

substances in the soil is associated with a general increase in nutrient contents and with 

their subsequent effects on some properties such as microbial activity, the humus 

fraction, soil structure and saturation of the ion-exchange system (Kirchner et al., 1993). 

On the other hand, while changes in the soil OM content occur very slowly, the soil 

microbial biomass carbon (MBC) responds much more rapidly to changes in 

managements that alter the annual input of organic material into the soil (Powlson and 

Jenkinson, 1981). Thus, changes in MBC measured over relatively short periods can 

indicate trends in total OM content. Although the long-term effects of organic and 

inorganic fertilization on the soil’s physico-chemical properties have been characterised 

(Biau et al., 2012; Bundy et al., 2011; Mijangos et al., 2010), less is known about the 

effects of CS farming system in irrigated Mediterranean semi-arid zones. Therefore, 

MBC content, microbial activity (as dehydrogenase activity, DHA) and, the earthworm 

abundance are feasibly believed to be appropriate, sensitive and reliable indicators that 

can be used to monitor the microbial response to the organic amendment and, in the 

end, to evaluate the impact in the productive capacity of the soil. 

The objective of this research was to study the effect of maize stover and N fertilization 

source (organic and mineral) on selected soil quality parameters (MBC, DHA, SOC 

content and, earthworm abundance) in high-yielding maize irrigation systems.
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MATERIALS AND METHODS 

Field experiments 

A maize field trial was conducted from 2010 to 2012 in Almacelles (NE Spain, 

41º43’N, 0º26’E) under sprinkler irrigation. The location of the experiment is 

representative of the region, with semiarid climate with a high mean temperature of 

19.1ºC and precipitation of 192 mm during the maize growing season. The study was 

conducted under sprinkler irrigation providing approximately from 900 to 1000 mm of 

water per year during the growing period. The soil is well drained with no problems of 

salinity and is classified as Typic Calcixerept (Soil Survey Staff, 2003). Soil quality 

indicators were taken at the end of the field trials in 2012, after three years of 

experiments. Selected physico-chemical parameters were also measured at the 

beginning of the experiment in 2010. The measurements were soil texture, pH, electrical 

conductivity (EC), cation exchange capacity (CEC), bulk density, water holding 

capacity, available P (Olsen P) and extractable K (NH4Ac) (Table 1). 

Maize was planted during the first week of April every year at a rate of 80,000 plants 

ha
-1

 with 75 cm space between rows. The maize cultivars used were PR33P67 in 2010 

and PR32G49 in 2011 and 2012. Experimental treatments consisted on stover 

management and N fertilization. The stover management practices were i) stover 

removal from the field after harvesting every year and, ii) stover incorporation with 

conventional tillage (with disk ploughing) to a depth of 25-30 cm. Fertilizer treatments 

comprised: i) a single application of CS before planting and ii) a mineral dose of 300 kg 

N ha
-1 

year
-1

 (300N) (33.5% ammonium nitrate) split twice in V3–V4 and V5–V6 

developing stages (Ritchie et al., 1989). A zero N rate was included as a control (0N). 

The applied rate of CS was about 60 m
3 

ha
-1 

year
-1

,
 
meaning and average

 
of about 386 kg 

N ha
-1 

year
-1

. The amount of N applied derived from CS is show in Table 2. The slurry 
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was applied with a commercial spreader and was ploughed into the soil after 3–5 hours 

to reduce ammonia (NH3) volatilization losses. The mineral fertilizer was applied using 

a small, drop-type hand-driven spreader. All plots were also fertilized before planting 

with phosphorus (P) (150 kg P2O5 ha
-1

 year
-1

) and potassium (K) (250 kg K2O ha
-1

 year
-

1
) to avoid mineral deficits of these elements.  

The plot dimensions were 10 x 18 m (with 15–16 rows per plot) and were arranged in a 

randomized block design with three replicates. The plots were randomized the first year 

and in the following years the treatments were always applied at the same plot. 

 

Analysis of plant and soils samples 

Maize was harvested the second week of September each year. Grain yield was 

measured by harvesting two complete central rows (1.50 m x 10 m). Grain moisture was 

determined for each plot from a 300 g sample and grain yield was adjusted to 14% 

moisture (GAC II, Dickey-John, Auburn, IL, USA). The soil physical and biological 

parameters measured were soil organic carbon (SOC), MBC, DHA and the abundance 

of earthworms (at a soil sampling depth of 0-30 cm). 

The SOC in the top layer of the soil (0–30 cm) was determined by measuring organic C 

using the dichromate oxidation procedure in which residual dichromate is titrated 

against ferrous sulfate (Walkley and Black, 1934). Microbial biomass carbon and DHA 

were determined according to Vance et al., (1987) and Tahlmann (1968), respectively. 

The abundance of earthworms (depth 0-30 cm in 25 x 25 cm areas) was measured 

according to Baker and Lee (1993). The results were subjected to analysis of variance 

with the General Linear Model procedure of the Statistical Analysis System (SAS, 

1999-2001).
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RESULTS AND DISCUSSION 

Average grain yield from 2010 to 2012 was 17.5 Mg ha
-1

 and presented a 

significant interaction between stover management and N fertilization source (Table 3). 

The highest grain yields were obtained with the incorporation of the stover under 

mineral N fertilization. The mineral N fertilizer had greater effects than CS on the 

average grain yield (Table 3). According to previous studies of Biau et al. (2012) this 

could be attributed to the differing application strategies, because CS was applied before 

planting whereas the mineral N was applied at sidedress. However, initially the highest 

yields were expected with slurry application because of the high amount of total N 

applied with CS (Table 2). Thus, this result suggests that some N was loss during and 

after the CS application. Consequently, is crucial the immediately incorporation of 

slurry into the soil to avoid N-NH4 volatilization. Previous study (Piñol et al., 2007) 

under similar environmental condition suggests that about 15-50% of the N applied with 

the manure could be lost by volatilization. Furthermore, according to Schröder et al. 

(2005) organic fertilizer has a residual N effect after the year of its application to land, 

because the decomposition of organic material usually takes longer than a year. For this 

reason, when organic fertilizers are used repeatedly, residual effects accumulate and 

significantly increase the availability of N (Whitmore and Schröder, 1996; Wolf and 

Van Keulen, 1989). 

Biomass production at maturity varied according to the N source. The control treatment 

(0N) presented lower values than fertilizer treatments (either organic or mineral) in both 

stover management practices (Table 3). 
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Soil organic carbon 

The effect of stover management and N fertilization on SOC was evaluated using data 

from the last year (2012) after the maize harvest. Soil organic C content vary 

significantly with the stover management, although it did not vary with N source (Table 

4). Comparing both stover management practices, all treatments when the stover was 

incorporated had an increase in SOC of about 2, 3, and 1 g of C kg
-1 

of soil
 
in 0N, 300N 

and CS, respectively (Table 4), as it would be expected after three years of incorporated 

important amounts of stover (between 9.9 and 20.7 Mg ha
-1

 year
-1

)
 
(Table 3). These 

results are consistent with the observations of Johnson et al. (2006), in a study of major 

grain crops (barley, maize, oat, sorghum, soybean, sunflower, and wheat) in the USA, 

who reported that the amount of crop stover needed to maintain SOC can range from 

5.25 to 12.50 Mg ha
-1

 depending on the cropping system and tillage practices. 

Nevertheless, Wilhem et al. (2007) showed that these values exceed the crop stover 

required to control erosion in Corn Belt soils. Although the lack of directly applicable 

data on crop stover return on SOC under Mediterranean conditions, Shukla et al. (2006) 

recently stated that SOC is the best single measure of soil quality. In fact, long term 

studies using slurry as fertilizer showed enhancement of organic C in amended soils. 

For instance, Hountin et al. (1997) observed, in a maize production study, an increase of 

SOC with organic-rich manure after 14 years of application to a poorly-drained area of 

Quebec (Canada). However, Rochette et al. (2000) measured no significant increase of 

SOC after 19 consecutive years of slurry application in a maize study in the same area. 

Thus, different effects may be observed on SOC as a function of slurry applied and soil 

characteristics and climatic conditions in which experiments are conducted. 

Furthermore, the results of SOC content follow the same trend than previous long-term 
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studies in the Ebro Valley (Biau et al., 2012) although in that case it was used pig slurry 

as organic fertilizer. 

 

Microbial biomass carbon 

According to Garcia et al. (2000), the MBC can be a better indicator of variations in soil 

fertility than the SOC because it responds rapidly and with greater sensitivity to soil 

changes. Thus, short-term measurements of MBC can reflect the long-term tendency of 

the OM (Kirkby et al., 2011). Furthermore, the soil MBC, which represents about 1-5% 

of total SOC, can provide an effective early warning of the improvement or 

deterioration of soil quality as a result of different management practices (Powlson et 

al., 1987). In our study, MBC content was positively influenced by the stover 

incorporation, although we did not observe significant differences due to the stover 

management (Table 4). This higher amount of MBC was expected because higher 

amounts of stover were incorporated (9.9, 14.4, and 17.1 Mg ha
-1

 year
-1 

in 0N, 300N, 

and CS, respectively). Microbial biomass carbon was significantly greater in 300N 

(Table 4). This result was not totally expected because, according to Saha et al. (2008) 

and Belay et al. (2002), the most N-containing fertilizers tend to acidify soil. The 

acidifying probably resulted in the appearance of unfavorable conditions to MBC, and 

thus avoids the growth of the autochthonous microorganisms of the soil (Kaur et al., 

2005). In these situations the rate of decomposition of the existing OM is decreased 

rather than the more normal effect of enhancing the rate of OM addition. However, our 

result is consistent with the observations of Mandal et al. (2007) who reported that 

MBC was greater in soils with additions of 34 years of stover plus inorganic NPK. In 

contrast, Hao et al. (2008) observed that the MBC was considerably greater in soils 

receiving manure than in plots receiving merely NPK fertilizer in three subtropical 
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paddy soils. Similarly to the results of Kaur et al. (2005) the MBC, in our study, was 

low in the control 0N than in the N fertilization treatments (300N and CS) in both stover 

management practices (Table 4). As shown in Table 4, the averages of 251 and 207 mg 

C kg
-1 

of MBC found in the plots where stover was incorporated or removed, 

respectively, is very low compared to the values obtained by other long term studies (> 

2051 mg C kg
-1 

of MBC) in quite similar soils in the same area (Chapter III). These 

differences could be explained due to the accumulation effect and the soil 

characteristics, that tend to illustrate the importance of long-term additions of organic 

materials to soil for maintaining land productivity. 

 

Dehydrogenase activity 

Dehydrogenase activity is often used as the indicator of soil fertility and it also can 

denote the amount and activity soil microbes (Gil-Sotres et al., 2005). The activity of 

this enzyme depends on the metabolic state of soil microorganisms. Noteworthy, higher 

DHA found in our study under CS treatments indicating that this source of fertilization, 

together with stover incorporation, was more beneficial to microbial activity than 

mineral N fertilization (300N) applications (Table 4). Generally the enzyme activities in 

the soil are closely related to the SOC content (Beyer et al., 1993). It has been reported 

that the application of balanced amounts of nutrients and manures improved the SOC 

and MBC status of soil, which corresponded with higher enzyme activities (Mandal et 

al., 2007). In our study, similar trend was also observed in both stover management 

practices (Table 4). Hence, according to García et al. (1994), DHA can be used as an 

indicator of microbial activity in semiarid soils. In agreement with Pancholy and Rice 

(1973), dehydrogenase activity is influenced more by the quality than by the quantity of 

OM incorporated into soil. Thus, the stronger effects of CS on dehydrogenase activity 
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might be due to the more easily decomposable components of CS on the metabolism of 

soil microorganisms. The observation that DHA is poorly affected by mineral N 

fertilization is in the same line that the study of Marinari et al. (2000). 

 

Earthworm abundance 

The stover management affected positively, although without statistical significance, the 

earthworm abundance (Table 4) in our study. It is well-known that earthworm activity 

in the soil enhances microbial population and biomass (Aira et al., 2002). Similarly, that 

it happened in the DHA and SOC levels, the earthworm abundance followed the 

tendency: N0<N300<CS. Many authors have reported that organic fertilization caused 

an increase in soil biological activity (Marinari et al., 2000; Fraser et al., 1994; Kirchner 

et al., 1993). Moreover, the organic fertilizers supplied phosphate to the soil, giving a 

more balanced nutritional status than mineral fertilizers. Earthworms were in general 

highly present in organically fertilized plots (CS) (Table 4), emphasizing the beneficial 

effect of slurry on soil biology. However, Curry (1976) reported that slurry may be 

toxic to earthworm in the short term we did not find a negative effect of slurry on 

earthworm abundance after maize harvesting. In fact, our study is in agreement with 

Mijangos et al. (2010) where fertilization with CS seemed to increase earthworm 

population. Regarding that, Ebro Valley is an area characterized by an intensification of 

the livestock sector and detachment of agriculture, for this the supply of slurry in these 

areas is a profitable option to improve soil biological properties. 
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CONCLUSIONS 

Higher values of soil quality parameters (SOC, MBC, DHA, and earthworm 

abundance), although not always significant, were observed when the maize stover was 

incorporated than when it was removed. Manure (CS) and mineral fertilizers (300N) 

had similar effects on maize production, relative to applying no N (0N). Thus, the 

addition of nutrients in either form is essential for the maintenance of soil quality.  

There was no significant interaction between stover management and N fertilization in 

any of the soil quality parameters analyzed. However, the application of organic 

fertilizer (CS) under stover incorporation showed the highest values of soil quality 

parameters as SOC, DHA, and earthworm abundance. Furthermore, the soil quality 

parameters measured (SOC, DHA, and earthworm abundance) followed the same 

tendency: 0N<300N<CS either of the stover management practices. These results 

showed that important functional soil microbial properties were affected by organic N 

fertilization treatments as CS, in the high-yielding maize irrigated areas of the Ebro 

Valley. The set of soil parameters analyzed in this study contributed to a better 

understanding of fertilization effects on the size and activity of microbial communities 

in soils. Overall, three years of continuous CS applications under semiarid conditions 

produce beneficial effects on soil properties in the short term.  

Finally, organic treatments (CS) together with stover incorporated stimulated soil 

biological activity probably due to the synergism of soil and organic material micro-

organisms or a stimulation of microbial growth by organic compounds added with the 

CS. Thus, this change, in the long-term, are believed to have significant influence on the 

quality and productive capacity of the soil. 
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Table 1. Physico-chemical parameters at the beginning of the experiment in 2010. 

 Horizon 

Depth (cm) 0-22 23-45 46-110 >111 

Sand (%) 42 43 17 17 

Silt (%) 33 36 63 65 

Clay (%) 25 21 20 18 

pH 8.2 8.4 8.4 8.4 

E.C. (dS m
-1

) 0.19 0.17 0.22 0.22 

Organic matter (%) 3.30 - - - 

Bulk density (g cm
-3

) 1.64 - - - 

P (Olsen) (mg kg
-1

) 90 - - - 

K (NH4Ac) (mg kg
-1

) 383 - - - 
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Table 2. Applied nitrogen derived from cow slurry (CS). 

N applied (kg N ha
-1

) 

2010  2011  2012  Mean 

Target PS 

rate  

(m
3 
ha

-1
) NH4

+-N Total N  NH4
+-N Total N  NH4

+-N Total N  NH4
+-N Total N 

60  160 345  191 429  154 383  168 386 
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Table 3. Effect of nitrogen fertilization source and stover management on grain yield, 

biomass at maturity, and estimated stover incorporated or removed. Average from 2010 

to 2012. 

Stover 

management 

N source Grain yield 

(GY) 

(Mg ha
-1

) 

Biomass at 

maturity (BM) 

(Mg ha
-1

) 

Estimated stover 

incorporated or 

removed 

 (Mg ha
-1 

year
-1

) 

 ((BM – GY) - 

10%
†
) 

0 14 25  9.9 
‡
 

300 20 36 14.4 

Incorporated 

CS 17 36 17.1 

      Average 17 32 13.8 

     

0 16 30 12.6 

300 19 40 18.9 

Removed 

CS 18 41 20.7 

     Average  18 37 17.4 

ANOVA     

Block  NS NS  

Stover (S)  NS NS  

Error a  - -  

N rate (N)  0.0001 0.0041  

S*N  0.0226 NS  
†
Estimated losses of stover 

‡
(i.e. 25- 14 = 11 - 1.1). NS: not significant. 
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Table 4. Effect of nitrogen source and stover management on biological selected soil 

quality indicators after maize harvest in 2012. 

Stover 

management 

N source Dehydrogenase 

Activity 

(mg INTF kg
-1 

dry soil h
-1

) 

MBC 

(mg C kg
-1

 soil) 

Earthworms 

(m
-2

) 

SOC 

(g C kg
-1

 

soil) 

0 19 215 8 19 

300 22 275 7 20 

Incorporated 

CS 30 263 12 20 

  

Average 
24 251 9 19.7 

      

0 15 127 4 17 

300 17 267 3 17 

Removed 

CS 19 227 10 19 

  

Average 
17 207 6 17.6 

   ANOVA   

Block  NS NS NS NS 

Stover (S)  0,0025 NS 0,0374 0,0025 

Error a  - - - - 

N rate (N)  0,0046 0,0404 NS 0,0046 

S*N  NS NS NS NS 

NS: not significant. 
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ABSTRACT 

In this study, near infrared spectroscopy (NIRS) was compared to the Dumas 

combustion method for estimation of whole maize plant nitrogen (N) concentration. 

Two methods for sample preparation prior to analysis were compared; samples were 

either whole plant (whole-plant) ground and analyzed together or grain and stover were 

ground and analyzed separately (stover-grain). Treatments were the 0 (0N) and the 300 

kg N ha
-1
 (300N). The results showed that there were not significant differences in plant 

tissue N concentration determined with NIRS when the whole-plant (9.68 g N kg
-1
) 

group was compared with the stover-grain (10.13 g N kg
-1
) group. In addition, plant N 

concentration reported by NIRS (9.9 g N kg
-1
) and by the Dumas combustion (9.68 g N 

kg
-1
) were not statistically different from each other. However, both methods were able 

to detect a significant difference between plant tissue N concentration between the 

treatments.  

 

Key words: maize; whole plant; nitrogen content; NIR spectroscopy 
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INTRODUCTION 

Intensified crop production to maximize crop yields is becoming more reliant on 

methods that allow farmers to quickly determine causes for potential yield loss with rapid 

problem solving capability. For example, nitrogen (N) content which is one of the most 

important aspects of maize production and many studies (Berenguer et al., 2009; Yagüe and 

Quílez, 2010) have been conducted about its plant content and soil extractions. Therefore, 

methods that are reliable, effective, fast, and not cost prohibitive should be developed to 

facilitate and speed up the process of plant tissue analysis. Near infrared spectroscopy (NIRS) 

is a simple, fast, and non-destructive method that can be used to measure, at a low cost, the 

nutrient composition in the different parts of the plant (Sileoni et al., 2010). In NIRS analysis, 

samples are irradiated with light at wavelengths ranging from 800-2500 nm. This light 

reflected off powdered solids, contains compositional information which can be unraveled by 

a computer to report multiple analyses under one minute (Murray, 1986). By calibrating the 

NIR spectrum for plant tissue of different composition it is possible to use NIRS to predict 

the nutrient status of plants, which could therefore substitute current chemical methods 

(Pfitzner et al., 2001). NIRS has become a useful approach to determine N concentration in 

maize tissue and especially in maize grain (Melchinger et al., 1986; Volkers et al., 2003; 

Baye et al., 2006). An advantage of using NIRS compared to other destructive methods for 

elemental composition analysis is that the NIR spectrum also provides information about 

organic structure and composition of the material being analysis (i.e. protein, starch, and lipid 

contents) (Orman and Schumann, 1991; Orman and Schumann, 1992; Cogdill et al., 2004; 

Sileoni et al., 2010). This ability to make multiple predictions from one spectrum further 

enhances the value of the NIRS technique. Plant breeders can also benefit from NIRS 

analysis. Analysis of maize grains can provide the uniformity of seed samples with respect to 

specific quality traits; this advantage allows breeders to select lines on the basis of 
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comprehensive quality data in the short time between harvesting of one generation and 

sowing of the next (Osborne, 2006). Because of these benefits, NIRS has been used 

extensively in maize breeding programs aiding in the registration of cultivars throughout 

Canada and Europe (Valdes et al., 1987; Barriere and Argillier, 1993). For maize production, 

total N concentration in plant tissue is an important factor used to forecast crop productivity, 

to evaluate N uptake in the stover residue and, consequently it is also useful for 

environmental protection purpose (Wilhelm et al., 2004). The estimation of whole plant N 

uptake is labor intense, as in most cases researchers need to determine it by first determining 

the N contents of grains and stover separately (Quílez and Yagüe, 2010); then adding the two 

fractions together to give the total N uptake. To maximize the efficiency in determining total 

N uptake by maize plants, some researchers have estimated N uptake in the whole maize 

plant, without separating the grain from the stover (Cela et al., 2011). The process of grinding 

whole maize plants for total N analysis can result in a non-homogenous sample, due to the 

differences in particle sizes resulting from the two different types of plant tissue. The high 

variability in particle size between the maize grain and stover could then lead to higher 

variability in the results than what should be expected. However, it is unknown whether the 

problem of different particle sizes in sample would also present a significant problem for 

NIRS analysis. Therefore, this research was developed to compare two types of plant 

sampling preparation and the use of NIRS compared with the Dumas combustion method to 

determine total N concentration and uptake by maize plants. 

The objectives of this study were to: i) compare the N content determined in whole 

maize plant when stover and grain were ground and analyzed separately by NIRS and by the 

Dumas combustion method; ii) compare the N content determined in whole maize plant when 

stover and grain were ground and analyzed together by NIRS and by the Dumas combustion 

method; and iii) investigate if NIRS is sensitive to detect differences in N concentrations 
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tissue due to different N application rates. The hypothesis is that NIRS is sensitive to detect 

differences in N concentration due to different N application rates in two types of whole 

maize plant sampling preparation. 
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MATERIALS AND METHODS 

The maize plant samples used for this study were collected from two maize N fertility 

trials conducted in the northeast of Spain (41º43’N, 0º26’E) in 2011. In those trials, mineral 

N was applied at the rates of 0, 100, 200, and 300 kg ha
-1
, rates that supplied N amounts that 

ranged from limiting to non-limiting for optimum maize growth and yield (Berenguer et al., 

2008). For each trial, the experimental design was a completely randomized design with six 

replications. Plants collected were used for plant and grain N uptake determined by NIRS and 

by the combustion method of Dumas (Dumas, 1831). Samples were only collected from the 

plots receiving 0 and 300 kg N ha
-1
, namely 0N and 300N, respectively. In total, 24 plots 

were sampled (12 plots from each N treatment); four plants were harvested form each plot 

and separated into two groups of two plants each, which gave a total of 96 samples being 

analyzed. In one group, the whole plant, stover and grain, were ground together and the 

ground material was used for analysis of tissue N concentration, this group will be referred to 

as whole-plant. In the other group, the grain and stover were separated prior to tissue N 

concentration analysis, this group will be referred to as stover-grain. For the stover-grain 

group, the results were expressed as a weighed average of grain plus stover so that they could 

be compared with the plant N concentration determined in the whole-plant group. The 

weighed average was calculated as: 

    

where y is the plant N content, Np is the N content (%) of the whole plant without grain, DWp 

is the dry weight (g) of the whole plant without grain, Ng is the N content (%) of the grain, 

and DWg is the dry weight (g) of the grain.  

) ( 

)]* ( ) * [( 

DWg DWp 

DWg Ng DWp Np 
y 

+ 
+=
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The plant samples used for NIRS analysis were ground three times using a 

commercial VIKING-STIHL garden shredder GE-205 (Langkampfen, Austria). After 

grinding, the particles size ranged from 1 mm in diameter for the grain to 2 cm in diameter 

for the stover part. Because of the large difference in particle size distribution, for the whole-

plant group the ground material was manually mixed so that a homogeneous mixture was 

obtained prior to NIRS analysis. For the Dumas analysis, ground samples of whole plant, 

stover, and grain (approx. 300 g chopped material per sample) were weighted and dried in an 

oven at 65ºC for 48 h to determine the moisture content. After drying, about 100 g of samples 

were ground one more time in a laboratory mill fitted with a 1 mm screen to assure 

homogeneity of samples prior to analysis.  

For the NIRS analysis the N content of the tissues in the whole-plant and stover-grain 

groups were analyzed using an InfraAlyzer 2000 spectrometer (Bran+Luebbe, Norderstedt, 

Germany). This spectrometer has a tungsten lamp as energy source and is equipped with a 

filter wheel to allow absorbance reading of a given sample at 19 different wavelengths (1445, 

1680, 1722, 1734, 1759, 1778, 1818, 1940, 1982, 2100, 2139, 2180, 2190, 2208, 2230, 2270, 

2310, 2336 and 2348 nm) in each recorded spectrum. This spectrometer was previously 

calibrated for N contents in standard whole maize plant samples (including grain) using the N 

values obtained with the Dumas method. Samples were analyzed in triplicates. All the 

instrument management and spectral data recording was monitored with SESAME software 

from Bran+Luebbe. ANOVA was used to determine if there were significant differences in 

total N concentration between the NIRS and Dumas methods and also if there were 

differences in N concentration due to different N application rates. All statistical analysis was 

performed using SAS (2001). 



Chapter IV 

 

 80 

RESULTS AND DISCUSSION  

The whole maize plant N concentration ranged from 9.18 to 10.18 g kg
-1 

as 

determined with NIRS and from 9.6 to 10.2
 
g kg

-1 
as determined with Dumas combustion 

method (Table 1). The weighted average N values ranged from 10.03 to 10.23 g kg
-1 
and from 

9.28 to 10.08 g kg
-1
 with NIRS and Dumas combustion methods, respectively (Table 1). 

These results are consistent with previous studies from Boixadera et al.(2005; 2010) and 

Yagüe and Quílez (2010), who reported maize tissue N concentration ranging from 7.7 to 

13.5 g kg
-1 
in similar environmental conditions using the Dumas combustion method. These 

results show that using the whole plant or weighted average as well as the two methods of N 

analysis (NIRS and Dumas combustion) provide results that were comparable.  

There was a significant N rate effect on plant tissue N concentration as determined by 

both methods for N analysis (Table 2). The plant that received the treatment 300N had higher 

N content than plants that received 0N, as would be expected. However, there were no 

significant differences when comparing the different methods for N content analysis (Table 

2).  

Measurement of nutritional status, as indicated by whole plant tissue N concentration 

in maize production, is crucial to provide N recommendations. Thus, analyzing plant N 

content is essential when trying to improve N use efficiency of crops through the adjustment 

of N fertilizer applications (Gastal and Lemaire, 2002), and therefore, to improve N 

management in agricultural systems (Huang et al., 2011). At present, N application represents 

about 20 % of production fix costs (Lloveras et al., 2012) (without counting the water and 

irrigation expenses), and improved N use efficiency can reduce risks of environmental 

contamination with nitrate and also reduce production costs by reducing the amount of N 

applied.  
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According to Cozzolino et al.(2001) quality parameters in whole maize plants can be 

accurately predicted using NIRS when samples are well ground and they are taken carefully. 

Thus NIRS can potentially become a valuable tool to evaluate the N content of whole plants, 

and also, this procedure can be time effective compared with the weighted average method. 

This is consistent with the results shown in Figure 1. This figure plots the average of NIR 

spectrum for a set of 24 samples scanned for whole plant, stover and grain, separately, at the 

nineteen different wavelengths. The main spectrum of stover and whole plant samples were 

much more similar than the mean spectrum of grain samples (Figure 1). This could be related 

to the different properties of the grain samples, such as higher N concentration. The stover 

and whole plant absorbencies presented similar spectra (Figure 1 a, b), which means that 

grain N concentration is diluted upon mixing with the stover sample. 
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CONCLUSIONS 

The results reported on maize tissue N concentration using NIRS showed sufficient 

accuracy in the analysis of whole plant N concentration for maize, suggesting this technique 

could be used in further experiments to quickly access the N status of the crop. In fact, this 

technique is widely accepted as one of the most promising process control, nondestructive 

and, accurate for monitoring chemical parameters in maize production. Furthermore, this 

research showed that using NIRS on stover and grain samples ground together was as reliable 

and useful as using the weighted average method. In conclusion, the NIRS approach was as 

reliable in determining maize tissue N concentration as was the Dumas combustion method.
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Table 1. Mean (g Kg
-1
), standard deviation and analyses of variance of the method of N 

analysis (NIR vs Dumas), the sample processed (whole plants and weighted average) and its 

interaction.  

 Method 

Sample processed  NIR Dumas 

 N (g Kg
-1
) 

Whole plant 9.68±0.5 9.9±0.3 

Weighted average 10.13±0.1 9.68±0.4 

Effect  

Replication NS
†
 

Sample processed
¶
  NS 

Method of N analysis NS 

Method of N analysis x Sample processed NS 
†
 NS, not significant. 

¶
 Samples processed refers to tissue and grain sample being ground together or separated.
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Table 2. Mean (g Kg
-1
), standard deviation and analyses of variance of the method of N 

analysis (NIR vs Dumas), N treatment (0N and 300N) and its interaction.  

 Method 

N Treatment NIR Dumas 

N (Kg ha
-1
) N (g Kg

-1
) 

0N 9.23±0.3 b† 9.08±0.3 b 

300N 10.43±0.3 a 10.58±0.3 a 

Effect  

Replication NS 

Method of N analysis NS 

N Treatment **
† 

Method of N analysis x N Treatment NS 
† 
**Significant at the 0.01 level. NS, not significant. † Means followed by the different letter 

are significantly different according to Tukey multiple range test (0.05). 
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Figure 1. Mean spectra of the calibration samples of whole plant (WP), grain and stover 

(without grain) for a) 0N and b) 300N. Bars represent one Standard Error from twelve 

replications. 
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The Challenge 

The present thesis seeks to contribute to the development of more sustainable 

agricultural systems in terms of crop production and soil management. Through the 

knowledge generated as a result of the present research, we have sought to interest 

farmers in maintaining the sustainability of their soils. At the same time, we have 

challenged them to take interest in a new potential source of income: crop stover. We 

have also taken on the more difficult challenge of trying to make realistic 

recommendations relating to how stover could be managed to offer a reasonable land 

use.  

The impact of removing crop stover on soil quality and crop productivity must 

be assessed before appropriate decisions can be made and policy decisions taken with 

respect to the emerging biofuel industry. Finally, we must remember and maintain our 

social mandate to develop a safe agricultural system that can help to prevent increases in 

the level of greenhouse gases released into the atmosphere. 

 

GENERAL DISCUSSION 

In the short-term, our results demonstrated that the incorporation of maize stover 

did not penalise maize production and indeed enhanced nutrient cycling. However, in 

their review of USA trials, Wilhelm et al., (2004) showed that the removal of maize 

stover had a negative influence on crop production. The proportion of maize stover 

needed to return into the soil may depend on such factors as soil type, climate and yield 

expectations, etc. The actual amount of maize stover that must be incorporated in order 

to control soil erosion has been estimated at about 70% of total production (McAloon et 

al., 2000). Returning maize stover to the soil increased the soil organic carbon (SOC) 

content with respect to the removal of stover. Changes in SOC were therefore 
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proportional to the amount of crop stover returned to the soil. Layese et al. (2002) also 

reported a positive interaction between nitrogen (N) application and the return of maize 

stover, indicating that N fertilization was insufficient to sustain SOC without the return 

of maize stover. 

 

Maintaining SOC levels should be a primary consideration of agricultural 

producers when they design cropping systems for specific locations and soil types. 

Evidently, crops that produce more stover will offer a greater potential for maintaining, 

or indeed increasing, SOC than those that produce less stover. The removal of maize 

stover for off-field uses such as energy production or livestock feed should only be 

considered when it comes from fields that provide an excess with regard to what is 

needed to maintain the existing SOC level (Benjamin et al., 2010). In a review of the 

long-term effects of different agricultural systems on soil quality parameters, Dick 

(1992) reported that there is generally a positive relationship between soil carbon (C) 

content and microbial biomass and concluded that the incorporation of stover into the 

soil increases biological activity. 

 

In the case of fertilizers, our results showed that in comparison with mineral N 

fertilizers, the use of manure increased the soil organic matter (OM) content when 

stover was incorporated. This is consistent with other evidence (Dick, 1992) and is not 

surprising given that manure supplies the soil with OM. For example, in our study, the 

application of fresh farmyard manure (in the form of pig slurry, PS) at a rate of 45 m
-3
 

ha
-1
 year

-1
 supplied about 3.8 tonne ha

-1 
year

-1
 of OM. However, taking into account the 

results presented in Chapters I and II, we note that manure does not generally confer any 

advantages in terms of maize yields. This may reflect the different strategies applied; 
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manure was applied before sowing, while mineral N was applied at sidedress and then 

split into two doses. A significant proportion of the N applied in the form of manure 

was therefore potentially lost due to volatilization (between 15 and 50% of the N 

applied) before ploughing (Piñol et al., 2007). Despite the fact that the amount of 

manure applied is known, it is an arduous task to calculate the exact amount of N 

applied by organic fertilizers that is available to the crop. This suggests that when 

manure is applied at similar rates to mineral fertilizers, it does not have similar effects to 

maize yields and is demonstrated by the results reported in Chapters I and II. However, 

the beneficial impact of applying manure was seen in the soil quality (Haynes et al., 

1995; Fraser et al., 1994; Perrott et al., 1992). The conclusion that manure applications 

do not have a generally beneficial effect on maize production is not a surprising given 

that we do not know the exactly amount of N applied. 

 

Relative to mineral N fertilizers, we found that the N requirements for a high-

yielding maize crop grown in the Ebro Valley fell within a common range of 300-350 

kg N ha
-1
 (Yagüe and Quílez, 2010). Although stover management and mineral N 

fertilization did not present a significant interaction (Chapter I, Table 2), incorporating 

the stover at an application rate of 300 kg N ha
-1
 produced the most advantageous 

results in terms of maize production. 

 

Overall, our results confirmed the positive effect that the application of manure 

can have on soil quality parameters. For instance, as shown in Chapter I, the 

incorporation of maize stover in combination with organic N fertilization (in the form of 

cow slurry, CS) improved the chemical and biological properties of soil (such as SOC, 

microbial biomass carbon (MBC), dehydrogenase activity (DHA), and earthworm 
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abundance) that directly affect soil fertility. These observations are consistent with those 

of Böhme et al. (2005). Moreover, the results obtained in Chapter II were confirmed by 

those in Chapter III, where long-term applications of organic fertilizer (in this study, PS 

was used) resulted in higher values for soil quality parameters than for mineral N 

fertilizers. Although this Chapter (III) extensively studied the impact of organic and 

mineral fertilizers on soil quality parameters, the most important finding was perhaps 

the relevance of earthworm abundance when evaluating soil quality. These results 

clearly demonstrated the superiority of the integrated use of organic manure over that of 

inorganic fertilizers, confirming those reported in other studies (Liu et al., 2010; Gong 

et al., 2009). Both trials also showed an interesting trend in soil quality parameters 

relating to the source of the fertilizer applied (0N< mineral< organic). This trend 

indicates the benefits that can be obtained from fertilizer treatments and especially from 

organic sources (such as CS or PS).  

 

Finally, grain yields in the AP field were significantly increased by N 

fertilization (Chapter I, Table 2). Very high maize grain production (> 19 Mg ha
-1
) was 

obtained in this field and plant N content ranged from 9.0 to 13.4 g of N kg
-1
 (Chapter I, 

Table 2). Studies involving modern-era maize hybrids have also reported similar values 

(Ciampitti and Vyn, 2012). Whereas many studies have determined the N contents of 

grain and stover separately, with the posterior use of a weighted average to obtain the 

whole-plant N content, we used whole maize plants to determine the N concentration. 

We therefore considered it relevant to validate this method for use with important field 

grain productions. Our results reported that determining whole maize tissue N 

concentrations using the NIRS approach offered as reliable and useful a method as that 

of Dumas. The NIRS method is also sensitive and accurate enough to detect differences 
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in N concentrations. According to Cozzolino et al. (2001), the quality parameters of 

whole maize plants can be accurately predicted using the NIRS method when samples 

are well-ground and carefully processed. NIRS could therefore potentially become a 

valuable tool for evaluating the N content of whole maize plants, in order to calculate 

the equivalent to the weighted average of the grain and stover parts processed 

separately. 
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GENERAL CONCLUSIONS 

 

 

The main conclusions of this thesis are: 

 

1. In the short-term, in high yielding (16-20 Mg ha
-1
) sprinkler-irrigated maize and 

high SOC content, applying typical fertilization rates (200-300 kg N ha
-1
), 

farmers can incorporate stover without yield or biomass penalties and thereby 

improve the SOC levels of their soils.  

2. There was no significant interaction between stover management and N 

fertilization rates. This showed that stover incorporation had only a minimal 

impact on C and N storage in the short-term (during the three years of study) but 

that stover removal caused a reduction in the SOC level. However, at low N 

fertilization rates (0 and 100 kg N ha
-1
) grain yields were generally lower under 

stover incorporation. 

3. Selling stover implies a short-term economic gain, but the incorporation of 

stover improves soil properties for future growing seasons. 

4.  Indicators of soil quality parameters (SOC, MBC, DHA, and earthworm 

abundance) tended to be higher when the stover was incorporated than when it 

was removed. 

5. Manures (such as CS) and mineral fertilizers (300N) had similar effects on 

maize production relative to not applying N fertilizer (0N). However, SOC, 

DHA, and earthworm abundance exhibited the same tendency (0N<300N<CS) 

for each of the stover management practices applied. In short-term CS 

applications under semiarid conditions produced beneficial effects in terms of 

soil quality. 
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6. Continuous maize fertilization with PS (45 m
3
 ha

-1 
year

-1
) (~ 315 kg N ha

-1
 year

-1
), 

under sprinkler irrigation did not improve grain yields compared to plots treated 

with mineral fertilizer containing a similar dose of N (300 kg ha
-1
 year

-1
). 

7. When 8 years of repeated PS applications to a monoculture maize crop were 

compared with mineral fertilization, we noted higher levels of soil quality 

parameters. The most significant impact was on earthworm abundance, which is 

an inexpensive and early indicator of soil quality.  

8. NIRS is an accurate, non-destructive technique for determining the N 

concentration in maize tissue. This technique could therefore be used in further 

experiments to quickly assess the N status of a given crop. 

9. Using NIRS to evaluate whole-plant maize N in stover and grain samples 

ground together offered an equally reliable and useful methodology as 

determining the N content of grain and stover separately (and applying a 

weighted averaging). At the same time, applying the NIRS approach to whole-

plant maize offers a reliable way to determine the maize tissue N concentration 

as the Dumas combustion method. 
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