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Abstract

The Vehicle Routing Problem (VRP) is a well known domain in optimization

research community. Its different basic variants have been widely explored

in the literature. Some studies have considered specific combinations of real-

life constraints to define the emerging Rich VRP scopes. This work deals

with the integration of heuristics, biased probability, simulation, parallel &

distributed computing techniques, and constraint programming. The pro-

posed approaches are tested for solving some variants of VRPs, namely,

first, the deterministic families: Heterogeneous VRP (HVRP), Heteroge-

neous VRP with Variable cost (HVRP-V), Heterogeneous fleet VRP with

Multi-trips (HVRPM), Asymmetric cost matrix VRP (AVRP), Heteroge-

neous fleet with Asymmetric cost matrix VRP (HAVRP), VRP with Time

Windows (VRPTW), and Distance-Constrained VRP (DCVRP); second,

the stochastic nature families: VRP with Stochastic Demands (VRPSD),

and Inventory Routing Problem with Stochastic Demands (IRPSD). An

extensive literature review is performed for all these variants, focusing on

the main contributions of each work. A first approach proposes a biased-

randomization of classical heuristics for solving the deterministic problems

addressed here. A second approach is centered on the combination of ran-

domized heuristics with simulation (Simheuristics) to be applied on the

commented stochastic problems. Finally, a third approach based on the

joined work of randomized heuristics with constraint programming is pro-

posed to solve several types of routing problems. The developed heuristic

algorithms are tested in several benchmark instances —between these, two

real-life case studies in Spain are considered— and the results obtained are,

on average, highly promising and useful for decision makers.

Keywords: Rich Vehicle Routing Problems, Biased Randomized Heuristics,

Metaheuristics, Real-Life Applications, Optimization, Logistics.





Resumen

El Problema de Enrutamiento de Veh́ıculos (VRP) y sus diferentes variantes

básicas son un dominio ampliamente estudiado en la comunidad cient́ıfica

de optimización. Algunos estudios han utilizado combinaciones espećıficas

de restricciones encontradas en la vida real para definir los emergentes VRP

Enriquecidos. Este trabajo aborda la integración de heuŕısticas, probabil-

idad sesgada, simulación, técnicas de computación distribuida & parale-

las, y programación con restricciones. Los enfoques propuestos han solu-

cionado algunas variantes del VRP: en primer lugar, las familias determin-

istas: VRP con flotas Heterogéneas (HVRP), VRP con flotas Heterogéneas

y costo variable (HVRP-V), VRP con flota Heterogénea y Múltiples viajes

(HVRPM), VRP con matriz de costo Asimétrica (AVRP), VRP con flota

Heterogénea y matriz de costo Asimétrica (HAVRP), VRP con ventanas de

Tiempo (VRPTW), y VRP Distancia limitada (DCVRP); en segundo lu-

gar, las familias de naturaleza estocástica: VRP con Demandas estocásticas

(VRPSD), y Problemas de Inventario y Enrutamiento de Veh́ıculos con De-

mandas estocásticas (IRPSD). Una extensa revisión bibliográfica se ha re-

alizado para cada una de estas variantes. Un primer enfoque propone la

combinación de una aleatorización sesgada con heuŕısticas clásicas para la

solución de problemas deterministas. Un segundo enfoque se centra en la

combinación de heuŕısticas aleatorias con simulación (Simheuristics) para

ser aplicados sobre los problemas estocásticos comentados. Por último, se

propone un tercer enfoque basado en el trabajo conjunto de heuŕısticas

aleatorias con programación de restricciones para resolver varios tipos de

problemas de enrutamiento. Los algoritmos heuŕısticos desarrollados han

sido aplicados en varios casos de referencia —entre ellos, dos estudios de

casos reales de distribución en España— y los resultados obtenidos son, en

general, prometedores y útiles para los decisores.



Palabras claves: Problemas Enriquecidos de Enrutamiento de Veh́ıculos,

Heuŕısticas Aleatorias y Sesgadas, Metaheuŕısticas, Aplicaciones Reales,

Optimización, Loǵıstica.
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to all PhD candidates of the programme (new and old generations) to share

the good and hard moments of this path: Jordi, Denise, Debora, Nadia,

Guillem, Sergio, Ola, Marc, Cecilia, etc. Particularly, thanks to Enosha

and Barry for helping me with patience to improve my english. Also thanks

to all scientific collaborators who help me to develop the content of this

thesis, specially to Daniel Guimarans and Pol Arias to show me the path

of constraint programming.

The work in this thesis has been also part of the MICINN project with

reference TRA2010-21644-C03-02 (“Algoŕıtmos y software distribuido para
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16.9 Front page of publication Cáceres-Cruz et al. (2013). . . . . . . . . . . . 270

16.10Front page of publication Juan et al. (2013a). . . . . . . . . . . . . . . . 271
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1

Introduction

Transportation & Logistics (T&L) issues have a major economic and environmental im-

pact in most countries and regions over the world. For instance, the EU land transport

policy aims at promoting a “sustainable mobility that is efficient, safe and with reduced

negative effects on the environment” (Janic, 2006; Steg and Gifford, 2005; Whiteing and

Stantchev, 2008). Several international organizations have developed projects for trans-

portation optimization. Likely since 2011, the Inter-American Development Bank has

supported for programs to modernize logistical and freight transport systems in several

countries of south- and central-america (Bate, 2012; Constance, 2011; Funez, 2012).

Road transportation is the predominant way of transporting goods in Europe and

in other parts of the world. Direct costs associated with this type of transportation

have increased significantly since 2000, and more so in recent years due to rising oil

prices. Furthermore, road transportation is intrinsically associated with a good deal

of indirect or external costs, which are usually easily observable congestion, contam-

ination, security- and safety-related costs, mobility, delay time costs, etc. However,

these costs are usually left unaccounted because of the difficulty of quantifying them

(Kumares and Labi, 2007). For example, traffic jams in metropolitan areas constitute

a serious challenge for the competitiveness of European industry: according to some

studies (Bastiaans, 2000), external costs due to traffic jams could represent about 2%

of the European GDP, a percentage which continues to increase. In addition to these

easily observable costs, many others might be considered. In this scenario, it becomes

evident that new methods must be developed to support the decision-making process so

that optimal (or quasi-optimal) strategies can be chosen in road transportation. This
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1. INTRODUCTION

necessity for optimizing the road transportation affects both the public and private

sectors, and constitutes a major challenge for most industrialized regions.

Recent advances on Information and Communications Technologies (ICT) —such as

the growing use of GPS and smart-phone devices, Internet-scale (distributed) systems,

and Internet computing technologies—, open new possibilities for optimizing the plan-

ning process of road transportation (Orozco, 2011). In particular, when combined

with advanced Simulation and Optimization techniques, Distributed- and Parallel-

Computing Systems (DPCS) allow the practical development and implementation of

new ICT-based solutions to support decision-making in the T&L arena. ““Real-world

applications, both in North America and in Europe, have widely shown that the use

of computerized procedures generates substantial savings (generally from 5% to 20%)

in the global transportation costs” (Toth and Vigo, 2001).” Road-transportation op-

timization (cost-saving) issues are especially critical in the case of Small and Medium

Enterprises (SME), since they are rarely able to obtain the economic and human re-

sources required to implement, maintain, and manage efficient routing-optimization

methods. Similarly, those companies have difficulties to access the appropriate tech-

nologies —e.g., computer clusters and expensive commercial software—, which would

help them to improve their productivity level and to reduce the unnecessary costs, thus

making a more sustainable business model.

In this context, the goal of the so-called Vehicle Routing Problem (VRP) is to

optimize the routing design (distribution process from depots to customers) in such a

way that customers’ demand of goods is satisfied without violating any problem-specific

constraint —e.g., route maximum distance or time-related restrictions (Golden et al.,

2008). The VRP has many variants depending on the parameters and constraints con-

sidered. Its most basic variant is the so-called Capacitated Vehicle Routing Problem

(CVRP). The CVRP assumes the existence of a homogeneous fleet (same capacity for

all vehicles) and a central storehouse. It also assumes that customers’ demands are

given in advance. Even in its apparent simplicity, the CVRP is a combinatorial explo-

sion problem. This implies that, in practice, it will not be possible to guarantee the

(mathematically) optimal solution except in the case of small problems with no more

than 75 customers. Here is where heuristic and metaheuristic algorithms can make an

outstanding contribution by providing quasi-optimal solutions, in reasonable comput-

ing times, for medium- and large-scale problems and even when considering real-life

2



constraints. Notice, however, that as a general rule, the closer the VRP constraints

are to real-life scenarios the more difficult it is to obtain quasi-optimal solutions. Un-

fortunately, real-world T&L environments are complex and rich in nature. In recent

years, due to the fast development of new and more efficient optimization and com-

puting methods, the interest of academics and practitioners has been shifting towards

realistic VRP variants, which are commonly known as Rich VRP. These problems deal

with realistic (and sometimes multi-objective) optimization functions, uncertainty (e.g.,

stochastic or fuzzy behaviour), dynamism, along with a wide variety of real-life con-

straints related to time and distance factors, use of heterogeneous fleets, linkage with

inventory and scheduling problems, integration with ICT, environmental and energy

issues, etc. Of course, there exists commercial software which has been developed to

support transportation companies when designing their routing (distribution) plans

(Drexl, 2012). However, these tools do not satisfy all the routing requirements of SME,

they usually require some experts’ support, and they can be unaffordable for all except

the largest corporations.

In most existing works, the core optimization task is mainly focused in the minimiza-

tion of time, costs, CO2 emissions, and risk. Alternatively, it is focused on the maxi-

mization of profit, quality, and efficiency (Talbi, 2009). Since most real-life optimization

problems are complex and difficult to solve, many researchers have approached trans-

portation problems by developing efficient heuristics and metaheuristics. Following

these trends, a wide set of randomized algorithms have promoted and published (Fauĺın

and Juan, 2008; González et al., 2010; Juan et al., 2009, 2010). These algorithms, which

combine simulation-optimization, heuristics, and computer-parallelization techniques,

have been able to efficiently solve several VRP variants. Accordingly, the main goal

of this thesis is the development of new open-source, hybrid, and randomized algo-

rithms and methods which provide efficient support to decision-making in the Rich

VRP context. As a consequence, it is expected that these algorithms can be poten-

tially interesting not only for the academic community but also for real SME in the

T&L business sector.

3



1. INTRODUCTION

1.1 Structure of this Thesis

This thesis discusses several issues concerning the Rich Vehicle Routing Problem (RVRP).

The general presentation will be focusing on providing the reader with a theoretical

basis for studying the RVRP. Also it provides the practitioner with the implementation

of tailored techniques as well as generic solution methods for solving the RVRP. A

substantial portion of the problem data in a RVRP is subject to deterministic sources.

Uncertainty is a real feature demanded by real-life companies scenarios. In fact, it is

hard to consider into the optimization models and approaches. For this, we use this

feature as a primary division of the approaches developed in this thesis. So we propose

a broad division of four blocks for grouping chapters:

� Block I: Introduction, the classical VRP and its applied methodologies, and finally

the Rich VRP context (chapters 1–4). In this block, the relevance of the road

transportation is discussed. Also some VRP methodologies are introduced. The

classical Vehicle Routing Problem (VRP) and its Rich counterpart —the RVRP—

are introduced and we give a discussion of the differences between them. We

provide a survey of the existing literature dealing with the RVRP. The main goal

of this block is to provide the reader with a consistent overview of the work on

the RVRP and the progress made within this area throughout the past 15 years.

� Block II: Tailored approaches for some deterministic VRPs (chapters 5–8). In

this block, we discuss how to deal with some deterministic cases (like HVRP,

HVRPM, AVRP, HAVRP and VRPTW) when analyzing VRP and RVRP sce-

narios using biased-randomized solution techniques. Also a detailed literature

review of specific studied variants is provided.

� Block III: Tailored approaches for some stochastic VRPs (chapters 9–11). In

this block, we consider stochastic variables in the resolution of RVRP scenarios

(like the VRPSD and IRPSD) using simple simulation techniques. Some solution

techniques for the RVRP cases with Stochastic Demands are provided.

� Block IV: Generic Approach for Rich VRPs (chapters 12–13). In this block, the

creation of a generic framework based on constraint programming is discussed.

This can solve some variants of RVRP without an additional coding phase. A
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generic approach is then developed and preliminary tested to illustrate its per-

formance against tailored techniques.

Finally, in the last chapter we give our conclusions in a brief summary of the dis-

cussions of this thesis, as well as the importance of knowledge transfer to SME, and a

list of the scientific contributions included in this dissertation.

In all these chapters we could appreciate the adaptation of some heuristics to dif-

ferent routing contexts and its constraints. We have explored several integration of

heuristics, simulation, biased probability, parallel and distributed computing, and con-

straint programming. The application of proposed methodologies have allowed to solve

two real-life enterprise cases and some other theoretical known instances. On these

instances, several phases of the supply-chain were addressed which offers useful and

fast tools to the decision-maker. Some quantitative methods were used to analyze the

generated results where remarkable savings on distance, money and time were obtained.

The global study developed on this dissertation can be summarized in the context of

Rich VRP. A large and detailed literature review of the evolution of this emerging

research line is presented. The studies related to this optimization line have the partic-

ular feature of being inspired on real-life situations where an enterprise is interested on

applying new advanced techniques to solve a given problem with complex constraints.

The addressed Rich VRPs cover a set of both deterministic and stochastic routing prob-

lems. This is a major contribution of this dissertation since few studies have covered

both of these routing optimization families. The way we pretend to design algorithms

for Rich VRPs is proposing several methodologies mainly based on biased-randomized

heuristics.

1.2 Relevance of this Topic

Transportation has had a key role in human history. It is related to migrations, eco-

nomic development, military moves, etc. Since the XX century, the development of

technology has changed this sector forever. The real time of routing planning and all

available information associated to demands, locations, times, etc. has created new

opportunities to optimize. Some numbers related to the last ten-twelve years will help

to contextualize the current importance of transportation. As discussed in the Intro-

duction, Vehicle Routing —as part of the supply chain process (see Fig. 1.1)— is one
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Figure 1.1: Cost of Logistic Activities as a Percentage of Total Logistics Costs (Source:

Differentiation for Performance: Excellence in Logistics, 2004, ELA/AT Kearney).

of the most important and complex activities in modern economies. Being a complex

combinatorial problem, efficient solving of VRP instances can only be attained by com-

bining knowledge from different areas such as Computer Science, Operations Research,

and Applied Mathematics. A successful planning of this activity might result in signif-

icant cost reductions and higher service levels to the customer (see Fig. 1.2). However,

real-life vehicle routing involves a wide range of variables, uncertainty, and complex

constraints. Therefore the Rich VRP is an emerging research area which constitutes a

relevant topic for current researchers and practitioners (Drexl, 2012).

Most of the works in the literature are focused on theoretical analysis (Laporte,

2007, 2009). Many real-life instances are unsolved and a great interest is growing

up between public and private sectors to invest in this kind of studies. In addition,

the use of hybrid algorithms and new computing paradigms —e.g., the use of GPUs

or the use of Internet-scale computing— are changing the research scenario and new

work lines have been created (Crainic, 2008; Crainic and Toulouse, 2003; Talbi, 2012).

During the last three years, several companies have manifested their interest in the

potential applications for the routing optimization algorithms, among others: Tech

Ideas, Evolution Algorithms (Logisplan), Corporación Alimentaria de Guissona, Eptisa,

and ITENE (Instituto Tecnológico del Embalaje, Transporte y Loǵıstica).

In the EU17 countries, the turnover of freight transport by road represent an im-

portant percentage of the national turnover (see Fig. 1.3). In particular, Spain has
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Figure 1.2: Total External Costs in 2000 of Transportation in UE17 Countries (Source:

INFRA/IWW 2004, Germany-Switzerland).
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Figure 1.3: Turnover of freight transport by road as a percentage of national turnover

(Source: EU road freight transport sector; Work and employment conditions. European

Foundation for the Improvement of Living and Working Conditions, 2004) [* No informa-

tion available].

the highest level of this percentage. For instance, in Table 1.1, we can appreciate the

road transportation portion against other types of transport inside of Spain for 2009.

Once again the road transportation sector takes the greatest value which represent a

remarkable sector to be optimized and all aspects waterfalls down. There are many

real applications where the transport optimization represents a significant saving —

i.e., logistic, retailing, bottle distribution, garbage collection, food production, among

others. In general, the research community states that using advanced techniques in

routing-distribution could improve this current context (Laporte, 2009).
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Rail Road Boat Airplane

Number of Enterprises 10 134,915 80 22

Turnover (thousands of Euros) 2,289,659 33,108,840 935,270 199,151

Employed persons (annual average) 20,770 382,070 2,888 821

Table 1.1: Main magnitudes by type of transportation sectors (Source: Service Annual

Survey, CNAE-2009, National Institute of Statistics, Spain).

1.3 Objectives

In general, a desirable or efficient optimization algorithm for a VRP context should

be able to generate results in a short period of time (seconds or minutes); produces

good quality solutions; is simple to configure; flexible to be adapted to new constraints

or new computing architectures; and easy to understand/explain to other researchers

(Cordeau et al., 2002). Therefore these can be categorized as the main requirements of

any VRP algorithm. The main goal of this research is to develop hybrid randomized

algorithms and methods which combine simulation-optimization, heuristics, and com-

puting techniques in order to efficiently support decision-making processes in the Rich

VRP arena. To reach this general goal, some specific objectives are considered:

� To design, implement, and test (validate) new hybrid randomized algorithms

for solving different variants of Rich VRPs. These algorithms will combine

simulation-optimization methods with heuristics and metaheuristics.

� To adapt the developed algorithms so that they can benefit from parallel-computing,

multi-agent, and other related techniques. This, in turn, will contribute to sig-

nificantly reduce the wall-clock time necessary to obtain high-quality solutions to

Rich VRP instances.

� To promote the knowledge transfer to SME, so that they can improve their com-

petitiveness by using these algorithms when designing their road distribution

planning.

Our main hypothesis is to check if it is possible to develop efficient techniques for

a broad set of VRPs using randomized methods. So the main idea is to extend the

VRPs to more rich ones, as originally proposed Toth and Vigo (2001). In fact, this

has been the main direction for the Operation Research field, as the increasing number
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Authors Year Problem Number of instances Number of requests

Christofides and Eilon 1969 CVRP 3 25–100

Christofides et al. 1979 CVRP 14 50–100

Golden et al. 1984 HVRP 20 12–100

Solomon 1987 VRPTW 168 25–100

Fisher 1994 CVRP 3 45–135

Fischetti et al. 1994 AVRP 20 10–300

Augerat et al. 1995 CVRP 74 16–101

Golden et al. 1998 CVRP-DCVRP 20 200–480

Taillard 1999 HVRP 8 50–100

Li and Lim 2001 VRPTW 56 200

Prins 2002 HVRP 20 100

Olivera and Viera 2007 VRPM 104 50–100

Li et al. 2007a HVRP 5 200–360

Rodŕıguez and Ruiz 2012 AVRP 540 50–500

Table 1.2: Some VRP Benchmarks.

of papers could confirm (Golden et al., 2008; Laporte, 2009). However the randomized

features have an intrinsic potential that could add some interesting solutions to the

state-of-the-art in this field. One important sub-objective of this study is to make a

literature review on each routing variant addressed.

Some issues could be found when a Rich VRP approach is developed, like not

having data to execute tests. Many studies use real data provided by distribution

companies even when this used to be private or hard to access. However, some studies

proposed the generation of instances following random aspects or specific ones. In

Lahyani et al. (2011), the authors analyze different design factors for instances on the

context of Rich VRP with heterogeneous fleet, time windows and multiple products.

They test an instance generator with an exact method in order to help companies to

identify best policies. In our case, real data from several interested enterprises will be

used for testing the performance of developed algorithms. Also several well-known and

public benchmarks (see Table 1.2) will be used to test the proposed techniques on this

dissertation. Each of these benchmarks have been developed for a specific VRP branch.

In the literature, some of these have been solved using methods inspired on heuristic,

meta-heuristics, exact methods, hybrids, etc. as we will appreciate on next chapters.

9



1. INTRODUCTION

1.4 Chapter Conclusions

In this first chapter, we have defined the context and motivation of this thesis. We have

presented the relation of routing optimization contexts to human economy activities and

its impact on different sectors. Also the research objectives of this study on its limited

scope have been pointed out. Next chapters will help to understand the academic

definition of routing optimization, the mathematical notation or modelling of the VRP

as well as its most important variants in the literature.
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2

Capacitated VRP

In the Capacitated Vehicle Routing Problem (CVRP), first defined by Dantzig and

Ramser (1959), a homogeneous fleet of vehicles supplies customers using resources

available from a depot or central node (see Fig. 2.1). Each vehicle has the same capacity

(homogeneous fleet) and each customer has a certain demand that must be satisfied.

Additionally, there is a cost matrix that measures the costs associated with moving a

vehicle from one node to another. These costs usually represent distances, travelling

times, number of vehicles employed or a combination of these factors.

2.1 Definition

More formally, we assume a set Ω of n + 1 nodes, each of them representing a vehicle

destination (depot node) or a delivery point (demanding node). The nodes are num-

bered from 0 to n, node 0 being the depot and the remaining n nodes are the delivery

points (Ω∗ = Ω−{0}). A demand qi > 0 of some commodity has been assigned to each

non-depot node i (1 ≤ i ≤ n). In the other hand, A = {(i, j)/i, j ∈ Ω; i < j} represents

the set of the n · (n + 1)/2 existing edges connecting the n + 1 nodes. Each of these

links has an associated aprioristic cost, cij > 0, which represents the cost of sending

a vehicle from node i to node j. In this original version, these cij are assumed to be

symmetric (cij = cji, 0 ≤ i, j ≤ n), and they are frequently expressed in terms of the

Euclidean distance, dij , between the two nodes. The delivery process is to be carried

out by a fleet of K vehicles (K ≥ 1) with equal capacity, Q >> max{qi/1 ≤ i ≤ n}.

11



2. CAPACITATED VRP

These K vehicles are responsible of M routes. Some additional constraints associated

to the CVRP are the following (Laporte et al., 2000):

� Each non-depot node is supplied by a single vehicle.

� All vehicles begin and end their routes at the depot (node 0).

� A vehicle cannot stop twice at the same non-depot node.

� No vehicle can be loaded exceeding its maximum capacity.

In this generic formulation, useful for both symmetrical and asymmetrical issues as

well as for both homogeneous and heterogeneous fleet, O(n2K) binary variables x are

used. This is the main advantage of the three-index model representation proposed by

Toth and Vigo (2001) and then used in Baldacci et al. (2008) for the heterogeneous fleet

VRP variant. The variable xkij indicating the arc (i, j) (i, j ∈ Ω) is used or travelled by

a vehicle type k (k ∈ 1, . . . ,K;K ≤M) in the optimal solution (2.8). Each vehicle type

k has a capacity defined by Qk, and a number of available vehicles mk. In addition,

there are O(nK) binary variables y. The variable yij represents the load in the truck

arriving at customer j after visiting customer i in terms of units of commodity.

min
M∑
k=1

∑
i∈Ω

∑
j∈Ω

ckij · xkij (2.1)

subject to:∑
i∈Ω∗

xki0 =
∑

j∈Ω∗\{i}

xk0j ∀k ∈ {1, . . . ,M} (2.2)

M∑
k=1

∑
i∈Ω

xkij = 1 ∀j ∈ Ω∗ (2.3)∑
i∈Ω\{u}

xkiu =
∑

j∈Ω\{u,i}

xkuj ∀u ∈ Ω∗, ∀k ∈ {1, . . . ,M} (2.4)

∑
j∈Ω∗

xk0j ≤ mk ∀k ∈ {1, . . . ,M} (2.5)

∑
i∈Ω

yij + qj =
∑
i∈Ω

yji ∀j ∈ Ω∗ (2.6)

0 ≤ qi xkij ≤ yij ≤ (Qk − qj)xkij ∀i, j ∈ Ω,∀k ∈ {1, . . . ,M} (2.7)

xkij ∈ {0, 1} ∀i, j ∈ Ω, i 6= j,∀k ∈ {1, . . . ,M} (2.8)
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Figure 2.1: Representation of a VRP example where it designs the routes through a

group of nodes.

The objective function in Eq. 2.1 minimizes the total cost distance of the arcs used

by all M routes generated. Constraint Eq. 2.2 implies that the number of vehicles

leaving the depot is the same as the number of vehicles returning to it. Constraint Eq.

2.3 and 2.4 require that each customer is visited exactly once, and that the vehicle k

arrives and leaves each h customer location respectively. Constraint Eq. 2.5 imposes

that the number of used vehicles does not exceed the number of available vehicles.

Constraint Eq. 2.6 states that the quantity of products in the truck arriving at customer

j, yij , plus the demand of that customer, equals the quantity of products in the truck

leaving it after the service has been completed. Constraint Eq. 2.7 guarantees lower

and upper bounds ensuring that: the quantity of products in the truck leaving customer

i, yij , is equal to or greater that its demand, qi; and the total demand served by each

vehicle k does not exceed the service capacity Qk. All the mathematical notation used

in this dissertation is summarized in the Glossary.
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2. CAPACITATED VRP

In computational complexity theory, the classical version of VRP and its variants

(for extension) are NP-hard (non-deterministic polynomial-time hard). This is a gen-

eral classification which means that there is no known deterministic algorithm that can

solve the problem in a polynomial number of steps (Garey and Johnson, 1978). NP-

hard problems may be of any type: decision problems, search problems, or optimization

problems. Some practical examples could be found in Data mining, Scheduling, Plan-

ning, Decision support, etc. (Lenstra and Rinnooy-Kan, 1981). For more information

and definitions related to computational complexity theory, the reader can consult

Garey and Johnson (1979).

2.2 VRP Variants

Different variants of the Vehicle Routing Problem (VRP) have been studied in the last

fifty years (Laporte, 2009). In the literature, the variants of the VRP include a large

family of specific optimization problems. As their main common feature, they are fo-

cused in considering one or few constraints into their mathematical models; this has

created a huge set of separated branches of VRP research lines with long abbrevia-

tion names. Each research line has been identified by the acronym of the considered

constraints or attributes inside of the optimization problem. Many of these individual

branches have been recombined creating new ‘basic’ branches. The main variants of

the VRP could be found in Golden et al. (2008); Toth and Vigo (2001). So far the most

common current extensions studied in the literature are described here:

� Asymmetric cost matrix VRP (AVRP): The cost for going from customer a to b

is different for going from b to a.

� Distance-Constrained VRP (DCVRP): The total length of the arcs in a route

cannot exceed a maximum route length. This constraint can either replace the

capacity constraint or supplement it.

� Heterogeneous fleet VRP (HVRP): The company uses different kinds of vehicles

and the routes have to be designed according to the capacity of each vehicle.

Some costs could be considered and the number of vehicles could be limited or

not creating different contexts. When the number of vehicles is unlimited then

it is called Fleet Size and Mix VRP (FSMVRP). If a specific type of vehicle can
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2.2 VRP Variants

not reach some clients for any accessible reason then the problem become Site-

Dependent VRP (SVRP). Also if a vehicle is allowed to perform more than one

trip then we are solving a HVRP with Multiple use of vehicles (HVRPM).

� Multiple Depots VRP (MDVRP): A company has several depots from which

they can serve their customers. Therefore, some routes will have different start-

ing/ending points.

� Open VRP (OVRP): The planned routes can end on several points distinct to

the depot location.

� Periodic delivery VRP (PVRP): The optimization is done over a set of days. The

customers may not have to be visited each day. Customers can have different

delivering frequencies.

� Pickup-and-delivery VRP (PDVRP): Each customer is associated by two quan-

tities, representing one demand to be delivered at the customer and another

demand to be picked up at the customer and returned to the depot. In addi-

tion to the constraint that the total pickup and total delivery on a route cannot

exceed the vehicle capacity, also it has to ensure that this capacity is not ex-

ceeded at any point of the route. One variant of the pickup and delivery problem

is when the pickup demand is not returned to the depot, but should be deliv-

ered to another customer —e.g., transport of people. In some cases, the vehicles

must pickup and deliver items to the same customers in one visit (Simultaneous

Pickup-and-delivery VRP) —i.e., new and returned bottles.

� Split-delivery VRP (SDVRP): The same customer can be served by different

vehicles if it will reduce the overall cost. This relaxation of the basic problem is

important in the cases where a customer order can be as large as the capacity of

the vehicle.

� Stochastic VRP : There is a realistic aspect of the routing problem where a random

behaviour is considered. So far, this uncertainty aspect has shown to be a key

aspect for future demanding developments. This can be the demand of each

customer, if the customer itself is present (VRPSD) or the service or travel times

15



2. CAPACITATED VRP

between the customers. This last one is also known as Time-Dependent VRP

(TDVRP).

� VRP with Backhauls (BVRPB): As in the VRPPD, the customers are divided into

two subsets. The first subset contains the linehaul customers, which are customers

requiring a given quantity of product to be delivered. The second subset contains

the backhaul customers, where a given quantity of inbound product must be

picked up. Then all linehaul customers have to be visited before the backhaul

customers on a route.

� VRP with Time Windows (VRPTW): Each customer is associated with a time

interval and can only be served within this interval. In this problem the dimension

of time is introduced and one has to consider the travel time and service time at

the customers. A set of time windows for each customer could be also considered

(VRP with Multiple Time-Windows). Also these time windows could be flexible

depending on some extra costs (VRP with Soft Time-Windows).

Several hybrid variants have been created in the literature from these ‘basic’ variants

which are also inspired in real-life scenarios. A large number of VRP acronyms have

been developed to refer to these combinations of routing restrictions. However, all these

can be encompassed in the larger family of Rich VRP, as we will explain later.

2.3 Chapter Conclusions

In this second chapter, we have presented the basic definition used on routing optimiza-

tion, the three-index mathematical notation of the VRP as well as its most important

variants in the literature. A wide number of routing families have been created in the

last years. Thus, new routing family acronyms have been often proposed. However,

this different routing scopes can be summarized into a global research area called Rich

VRPs. The next chapters will introduce some of the most important proposed method-

ologies developed for the VRP so far; and also the demanded evolution of VRPs to the

Rich VRPs.
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VRP Methodologies

Different approaches to VRPs have been explored during the last years. These ap-

proaches range from the use of pure optimization methods, such as mathematical

programming, for solving small- to medium-size problems with relatively simple con-

straints, to the use of heuristics and metaheuristics that provide near-optimal solutions

for medium and large-size problems with more complex constraints. Metaheuristics

serve three main purposes: solving problems faster, solving larger problems, and ob-

taining more robust algorithms.

They “are a branch of optimization in Computer Science and Applied Math-

ematics that are related to algorithms and computational complexity theory.

Metaheuristics provide acceptable solutions in a reasonable time for solving

hard and complex problems” (Talbi, 2009).

Even though the VRP has been studied for decades and a large set of efficient opti-

mization methods, heuristics and metaheuristics have been developed (Golden et al.,

2008; Laporte, 2007), more realistic or Rich VRP problems —such as the VRP with

Stochastic Demands or the Inventory VRP— are still in their infancy. There is a large

set of methods applied to the VRP. Following the proposed division of Talbi (2009), this

huge family could be preliminary summarized in a balanced tree presented in Fig. 3.1.

For practical reasons, only the used techniques are depicted.
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3. VRP METHODOLOGIES

Figure 3.1: Representation of relation of Classical Optimization Methods.

3.1 Exact Methods

From Talbi (2009), “Exact methods obtain optimal solutions and guarantee their op-

timality”. This type of technique is often applied to small-size instances. This family

includes a broad set of methods. There are methods like the family of Branch-and-X

(where the X represent the different variants) used for solving Integer Linear Program-

ming (ILP) and Mixed Integer Linear Programming problems (MILP); and also Dy-

namic Programming which focus on solving complex problems by breaking them down

into simpler subproblems. Likely, Column Generation is a popular technique used for

solving larger linear programming problems, which consists in splitting the given prob-

lem into two problems: the master problem and the subproblem (Desaulniers et al.,

2005). This allows to simplify the original problem with only a subset of variables in

the master problem. While a new variable is created in the subproblem, which will be

minimized in the objective function with respect to the current dual variables and the

constraints naturally associated to the new variable. The Set Partitioning modelling

is another binary variable formulation for each feasible route. This technique is quite

general and can consider several constraints at the same time (Subramanian, 2012;

Subramanian et al., 2012). In this thesis, we will use Constraint Programming (CP)

as a complete checking technique of the feasibility of generated solutions. CP has an

intrinsic flexibility to check different complex routing constraints at the same time in a

short period of time. So the idea will be to complement other routing techniques with

the advantages of CP. This has been wide used in several domains and is based on a

tree search combined with logical implications.
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3.2 Approximate Methods

3.2 Approximate Methods

From Talbi (2009):

“Heuristics find good solutions on large-size problem instances. They allow

to obtain acceptable performance at acceptable costs in a wide range of

problems. They do not have an approximation guarantee on the obtained

solutions. They are tailored and designed to solve a specific problem or/and

instance. Meta-heuristics are general-purpose algorithms that can be ap-

plied to solve almost any optimization problem. They may be viewed as

upper level general methodologies that can be used as a guiding strategy in

designing underlying heuristics”.

The author also proposes that two contradictory criteria must be taken into account:

exploration of the search space (diversification) and the exploitation of the best solu-

tions found (intensification). Promising regions are determined by the obtained good

solutions. In the intensification, the promising regions are explored more thoroughly

in the hope to find better solutions. In diversification, non-explored regions must be

visited to be sure that all regions of the search space are evenly explored and that the

search is not confined to only a reduced number of regions.

There are many metaheuristic inspired in natural process like Evolutionary Algo-

rithms (including Genetic Algorithms, GA) and Ant Colony Optimization (ACO). For

instance the ACO metaheuristic is inspired from the communication and cooperation

mechanisms among real ants that allow them to find short paths from their nest to

food sources. The communication medium is a chemical compound (pheromone). The

amount of pheromone is represented by a weight in the algorithm (Gendreau et al.,

2008). In ACO algorithms, the range [min,MAX] of pheromone trail values can be

controlled. This type of technique can be also classified as population-based meta-

heuristics because they iteratively improve a population of solutions. Another member

of this wide group is the deterministic strategy of Scatter Search which recombines

selected solutions from a known set to create new ones (Talbi, 2009).

Other techniques are based on memory usage (short-, medium-, and long-term).

Tabu Search (TS) is a local search-based metaheuristic where, at each iteration, the

best solution in the neighbourhood of the current solution is selected as the new current
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solution, even if it leads to an increase in solution cost. A short-term memory (the Tabu

list) stores recently visited solutions (or attributes) to avoid short-term cycling (Gen-

dreau et al., 2008). This family can considered as single-solution based metaheuristics

since they are focused on improving a single solution at a time. A common feature is

that all include the definition of building an initial solution. Other promising techniques

are Variable Neighbourhood Search (VNS) and Greedy Randomized Adaptive Search

Procedure (GRASP). VNS has been wide used in several problems. It is based on a

successive exploration of a set of predefined neighbourhoods to find a better solution at

each step. Large Neighbourhood Search (LNS) can be interpreted as a special case of

VNS where efficient procedures are designed to consider a high number of neighbour-

hoods at the same time. Inside of this branch, we can find one of the first techniques

used for the Travelling Salesman Problem which is the Nearest Neighbour. GRASP will

be explained on the next chapter. Simulated Annealing (SA) is other single-solution

based method which is based in the process of heating and then slowly cooling of a

substance in order to produce a strong crystalline structure. So it is typical to include

a temperature element in order to control the process.

There are some approximate algorithms made with a tailored design to solve a

specific problem called Heuristics. Following a systematically number of steps, they

used to find an acceptable solutions. However, they do not guarantee to find the

optimal solution. For instance, Clark-and-Wright Savings (CWS) (Clarke and Wright,

1964) is probably one of the most cited heuristic to solve the CVRP. As the authors

propose, this procedure uses the concept of savings. In general, at each step of the

solution construction process, the edge with the most savings is selected if and only if

the two corresponding routes can feasibly be merged using the selected edge. The CWS

algorithm usually provides relatively good solutions in less than a second, especially

for small and medium-size problems. In the literature, there are several variants and

improvements of the CWS (Golden et al., 1984). The original version of CWS is

based on the estimation of possible savings originated from merging routes, i.e., for

unidirectional or symmetric edges Sav(i, j) = ci0+c0j−cij . These savings are estimated

between all nodes, and then decreasingly sorted. Then the bigger saving is always

taken, and used to merge the two associated routes. In fact, new algorithms have

been proposed based on CWS. For instance, Juan et al. (2010) propose a multi-start

randomized approach, called Simulation in Routing via the Generalized Clarke and
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Wright Savings heuristic (SR-GCWS), that could be considered a metaheuristic in this

general classification.

Local Searches are another type of metaheuristics that move from one solution to

another making systematic punctual or local changes. In fact, Juan et al. (2011e)

propose two easy-to-use-and-to-understand local searches. The first is based in a cache

memory for the best-known order to travel among the nodes that constitute one route.

This cache is constantly updated whenever a better order with a lower cost is found for

a given set of nodes. At the same time, the routes contained in this cache are re-used

whenever possible to improve newly merged routes. Second, a Splitting local search

method which divides the current solution into disjoint subsets of routes together with

their previously assigned vehicles; then, each of these subsets are solved applying the

same methodology described before during a given number of iterations. This tries to

apply a “divide-and-conquer” approach since smaller instances could be easier to solve.

So a new set of routes could be created on each partition with the previously assigned

vehicles.

3.3 Chapter Conclusions

In this chapter, we have reviewed some of the most important methodologies definitions

in the VRP arena. We have highlighted the CWS and SR-GCWS as the main techniques

that we will use in this thesis. The next chapter will explain the definition of Rich VRP

and the main studies related to this global research line.
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Rich VRPs

In a previous chapter, we have introduced the most important variants families of VRPs.

However, the objectives and contexts of these individual variants have slowly evolved

towards more realistic scenarios. Therefore, these basics variants are far away from

the current needs of enterprises. For instance, Sörensen et al. (2008) states: “although

there is an increasing academic focus on so-called rich vehicle routing problems (that

incorporate more complex constraints and objectives), they have not in any way caught

up with the whole complexity of real-life routing problems.” Considering several VRP

restrictions at the same time still represents a challenge for the research community.

The authors listed several characteristics of real-world VRPs. They also refer a survey

made in 2006 by the magazine OR/MS Today about routing commercial software (Hall,

2006). There exists a wide product offer in the software market which has been devel-

oped to support transportation companies when designing their routing (distribution)

plans. In 2010, another survey was made by the same magazine considering 16 ven-

dors. In 2011, a survey of 28 software developing enterprises from Germany has been

made (Drexl, 2012). Finally, in 2012, an OR/MS Today survey of 12 vendors in U.S.

and Europe for 15 products shows the new needs demanded by enterprises. Between

the new requirements highlight the connectivity, flexibility and dynamic of software

(Partyka and Hall, 2012). However, many of these software products are too generic to

solve the dynamic and demanding requirements of enterprises. The commercial routing

tools often are not based on scientific approaches nor follows the features of efficient

optimization algorithms previously commented in chapter 1.
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4.1 Definition

A first attempt to define the Rich VRP (RVRP) has been made by Toth and Vigo

(2001). The authors define the potential of extending the “vehicle flow formulations,

particularly the more flexible three-index ones”. The authors stated that models of

the symmetric and asymmetric CVRP “may be adapted to model some variants of

the basic versions”. Other authors have given a different adjective to this realistic

problem. Inside the research community, the RVRP is a generalization or union of

other independent problems. As Goel and Gruhn (2005, 2006, 2008) deal with the

General Vehicle Routing Problem (GVRP):

“a combined load acceptance and routing problem which generalizes the

well known Vehicle Routing Problem and Pickup and Delivery Problem...

Furthermore, it amalgamates some extensions of the classical models which,

up to now, have only been treated independently”.

On a Special Issue explicitly specialized for Rich models, the editors summarize “non-

idealized models that represent the application at hand in an adequate way by including

all important optimization criteria, constraints, and preferences” (Hasle et al., 2006). In

fact, Hasle and Kloster (2007) refers to this type problem as an Industrial or Applied

Routing Problem. Pellegrini et al. (2007) state that:

“in recent years, moreover, thanks to the increasing efficiency of these meth-

ods and the availability of a larger computing power, the interest has been

shifted to other variants identified as Rich VRP. The problems grouped

under this denomination have in common the characteristics of including

additional constraints, aiming a closer representation of real cases... [Their

case study] it is characterized by many different types of constraints, each

of which unanimously classified as challenging even when considered alone”.

For instance, Crainic et al. (2009a,b) introduces another term to refer RVRP. They

deal with the multi-attribute VRP like rich problems. They also stated that:

“real-world problems are generally characterized by several interacting attributes,

which describe their feasibility and optimality structures. Many problems

also display a combinatorial nature and are, in most cases of interest, both
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formally difficult and dimensionally large. In the past, the general approach

when tackling a combinatorial multi-attribute, rich problem was either to

frontally attack it, to address a simplified version, or to solve in a pipeline

manner a series of simpler problems”.

Therefore, the constraints may be known also as attributes of the RVRP (VRP with

multi-attributes). More recently, Rieck and Zimmermann (2010) states that:

“hence, research has turned to more specific and rich variants of the CVRP.

The family of these problems is identified as rich vehicle routing problems.

In order to model RVRPs, the basic CVRP must be extended by considering

additional constraints or different objective functions”.

The evolution of models can be appreciated when new needs about the models them-

selves emerges. On this respect, the authors stated:

“rich vehicle routing problems are usually formulated as three-index vehicle-

flow models with decision variables xijk which indicate whether an arc

(i, j)/i, j ∈ Ω is traversed by vehicle k (k = 1, ...,K). These models seem

to be more flexible incorporating additional constraints, e.g., different ca-

pacities of the vehicles. In their monograph, Toth and Vigo (2001) suggest

that two-index vehicle-flow formulations ‘generally are inadequate for more

complex versions of vehicle routing problems’. Their arguments are based

on that these models are not suited for the cases where the cost or the fea-

sibility of a circuit [each corresponding to a vehicle route] depends on the

overall vertex sequence or on the type of vehicle allocated to the route”.

The new models have been extended to include other features in the logistic or supply

chain process. Furthermore, Schmid et al. (2013) have proposed six integrative models

considering the classical version of the VRP and some important extensions in the con-

text of supply chain management. These extensions are lotsizing, scheduling, packing,

batching, inventory and intermodality. The authors state as benefit of their models that

these consider an efficient use of resources as well as the inclusion of inter-dependencies

among the subproblems. Lahyani et al. (2012) have point out the importance of stating

a common and closed definition for RVRP scope:
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“in most papers devoted to RVRPs, definitions of rich problems are quite

vague and not significantly different. There is no formal definition either

criterion which leads to decide whether or not a VRP is rich. Such definition

has to rely on a relevant taxonomy which can help to differentiate among

numerous variants of the VRP”.

In fact, the authors conclude their study with a numerical proposal for a specific defi-

nition:

“a RVRP extends the academic variants of the VRP in the different decision

levels by considering additional strategic and tactical aspects in the distri-

bution system (4 or more) and including several daily restrictions related

to the ‘problem physical characteristics’ (6 or more) [pure routing or opera-

tional aspects]. Therefore, a RVRP is either a VRP that incorporates many

strategic and tactical aspects and/or a VRP that reflects the complexities

of the real-life context by various challenges revealed daily. The state of

the art of RVRP has changed since 2006. Now studies incorporate more

complex aspects of reality. Therefore, some variants described as rich by

their authors in 2006 may not be considered as such anymore”.

So depending on the considered paper (or photography of achievements in research

community), the RVRP definition will be evolving all the time.

As the reader can appreciate, the implications of the Rich VRP definition has

evolved to a more precise concept during time. The new demanding needs of enterprises

have forced academics to consider more complex approaches. There is a clear trend

of creating generic and efficient approaches. Considering the large number of papers

that have been devoted to the VRP, just a few of these could be applied to the RVRP

context. There are a small number of papers that have explicitly addressed the RVRP.

This fact emphasizes the emptiness in the literature as well as the opportunities that the

academy sector has to collaborate with enterprises addressing real routing problems.

The next section presents a brief literature review on some strategies addressed to solve

Rich VRP instances with more than one constraint simultaneously.
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4.2 Literature Review

In this section, we have find more than 50 papers selected because they auto-denominate

Rich extensions of the original VRP or are related to other RVRPs, plus some few others

that consider several VRP variants. They have in common that they consider one or

more variants of the classical VRP. The approaches presented on these papers solve

separated VRP variants or with different combinations of their constraints. One of

the first-explicitly Rich VRP cases is presented on Pellegrini (2005). The authors have

addressed a specific Rich VRP approach with the consideration of heterogeneous fleet,

multiple time windows, the delivery cannot be offered in some intervals of time and there

is a maximum time for a single tour. The author proposed two heuristic algorithms

based on the well-known Nearest Neighbour (NN) heuristic procedure (Solomon, 1987)

and other combined with a swap local search. The author created a Deterministic

version of a NN (DNN) algorithm as well as a Randomized NN (RNN) version which

adds a random behaviour to the selection of the next customer in the building process

of a route. The author showed encouraging results in a short computational time with

generated instances of 50, 100, 150, and 200 customers. The RNN algorithm reaches

better results than the DNN version. Although the RNN version loses some efficiency

as the number of customers increases.

On the other hand, Goel and Gruhn (2005, 2006) address the capacity restrictions,

time windows, heterogeneous fleet with different travel times, and also multiple pickup

and delivery locations, travel costs, different start and end locations for vehicles and

other constraints. They propose iterative improvement approaches based on Large

Neighbourhood Search (LNS). The authors have created a instance generator of 50,

100, 250 and 500 orders in order to show the performance of their approach. Likely,

Goel and Gruhn (2008) consider real-life requirements —e.g., time window restrictions,

a heterogeneous vehicle fleet with different travel times, travel costs and capacity, multi-

dimensional capacity constraints, order/vehicle compatibility constraints, orders with

multiple pickup, delivery and service locations, different start and end locations for vehi-

cles, and route restrictions for vehicles. The authors propose an iterative improvement

approach. They used a reduced Variable Neighbourhood Search (VNS) algorithm for

exchanging elements between neighbourhood, and also a LNS approach for using nested

neighbourhoods of different size. This combination helps to avoid local minimum.
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Following the LNS research line, Ropke and Pisinger (2006a,b) propose a heuristic

based on LNS as proposed by Shaw (1998). Furthermore, their approach is a unified

heuristic with an adaptative layer. They are focused on the BVRP with time windows,

pickup-and-delivery and multi-depots. They propose a model transformation of the

BVRP to solve the simultaneous pickup-and-delivery. Nine data sets are used to test

several configurations of the proposed heuristic, where more of the 50% of best known

solutions for those instances are improved. Later, the same authors developed an Adap-

tative LNS framework (Pisinger and Ropke, 2007) for addressing the capacitated, time

windows, multi-depot, split-deliveries and open routes constraints. They use several

sets of instances with up to 1000 customers, and improve 183 best known solutions out

of 486 benchmark tests.

Hasle et al. (2005) shortly describe four mechanisms for enhance scalability and

present a generic route construction heuristic for Rich VRPs. The empirical inves-

tigation results based on standard test instances for several VRP variants show the

effectiveness of this approach. Likely, Hasle and Kloster (2007) propose a generic ap-

proach to harness a modelling flexibility. The authors present a generic solver based

on a unified algorithmic approach which is a combined operation of Local Searches

and Metaheuristics (Variable Neighbourhood Descent and Iterated Local Search). An

initial solution is generated using the parallel version of CWS, then other methods are

applied. They address the capacitated constraint, the distance limitation, the pickup-

and-delivery, the fleet size and mix problem as well as the time windows. They present

the possibility to extend it for multi-depot and site-dependent problems. Classical

benchmarks of Solomon (1987) and its modification (Li and Lim, 2001) for new con-

texts are also used. Their results are based on a range of customers between 50 up to

1000.

A wide classification of the Rich VRP variants is presented in a special issue pub-

lished by Hartl et al. (2006). On this, seven papers were selected for covering different

aspects of ampleness and illustrating novel types of VRP applications for that time.

The editors state “VRP research has often been criticized for being too focused on

idealized models with non-realistic assumptions for practical applications”. Several op-

timization methods are proposed for solving problems inspired in real applications of

VRP knowledge. For instance, Reimann and Ulrich (2006) addressed the VRP with

backhauls and time windows. Hoff and Løkketangen (2006) is focused in the Travelling
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Salesman Problem with pickup and delivery. Ileri et al. (2006) work in the pickup and

delivery requests with time windows, heterogeneous fleet, and some operational con-

straints over the driver routes. The authors use a Set Partitioning technique and also

Column Generation to solve real-life instances. Fügenschuh (2006) proposes a meta-

heuristic for the VRP with coupling time windows. This method combines classical

construction aspects with mixed-integer preprocessing techniques, and improving with

a randomized search strategy. Several randomly generated instances are used, as well

as a real-world case for public bus transportation considering school times in rural areas

of Germany. (Magalhães and Sousa, 2006) presents a real case of adopting a system

of variable routes that are dynamically designed. Sörensen (2006) shows a bi-objective

case considering marketing and financial interests for being solved using metaheuristics.

Bolduc et al. (2006) addressed a multiple period horizon in an inventory context with

heterogeneous fleet, multi-trips and capacity restrictions. The authors use heuristics

to minimize the cost of distributing products to the retailers and the cost of maintain-

ing inventory at the facility. Randomly generated instances were used to measure the

performance of the approach with two set of small and large cases.

Pellegrini et al. (2007) have presented a case of study characterized by multiple

objectives, constraints concerning multiple time windows, heterogeneous fleet of vehi-

cles, maximum duration of the sub-tours, and periodic visits to the customers. They

considered two versions of Ant Colony Optimization (ACO): (a) Multiple Ant Colony

System (M-ACS) first proposed by Dorigo and Gambardella (1997); and (b) MAX-MIN

Ant System (MMAS) based on Stützle and Hoos (1997). The authors compared the re-

sults with a Tabu Search (TS) algorithm and a Randomized NN (RNN) heuristic which

was mentioned before. Both ACO developed algorithms perform significantly improved

than the TS and RNN approaches, using an instance generator of 70-80 orders. Other

ACO implementation is proposed by Rizzoli et al. (2007) which has been applied to real

contexts addressing separately heterogeneous fleet, time windows, pickup and delivery,

time dependent and on-line VRP. The authors have tested four ACO algorithms using

data from real distribution companies between 15 and 600 customers.

In Hoff (2006), we can find four papers (Hoff and Løkketangen, 2006, 2007; Hoff

et al., 2009, 2010) focused in the development of Lasso Solution Strategies using TS

and heuristics for the VRP with pickup and delivery, time-depending and stochastic

demands. The author has created instances with 7-262 nodes which are derived from
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classical ones used in CVRP. A real-life problem from a Norwegian company is also

considered. In Derigs and Döhmer (2005), the authors also addressed the pickup and

delivery VRP with time windows. They proposed an indirect search procedure based on

sequence/permutation of tasks, cheapest insertion of a visit, and a Threshold-Accepting

like a local search metaheuristic. The proposed algorithm has been implemented into a

Decision Support System for a removal firm. They produce some promising preliminary

results with random generated instances.

Irnich (2008) takes advantages of strong modelling capabilities and proposes a Uni-

fied Modelling and Heuristic Solution Framework. The author highlights the potential

of k − edge exchange neighbourhoods. This approach is intended to support efficient

local search procedures for addressing all standard types of VRPs, such as the capaci-

tated and distance-constrained, multiple depots, time windows, simultaneous delivery

and pickup, backhauling, pickup-and-delivery problems, periodic VRP, fleet mix and

size, site dependencies as well as mixtures and extensions of these. The author propose

to integrate the efficient search blocks into different metaheuristics. Some promising

results are presented for VRPTW and MDVRPTW combining a VNS with LNS strate-

gies —inspired on Ropke and Pisinger (2006a). On large scale instances, they speed-up

the results.

There is a long line of studies using exact methods or combinations with them.

In Wen (2010), we can find three papers to address some variants of the Rich VRP

inspired in real-life situations. The author proposes different strategies to solve each:

(a) the VRP with cross-docking options through a TS based heuristic and testing with

200 pairs of suppliers and customers (Wen et al., 2008); (b) the dynamic VRP with

multiple objectives over a planning horizon that consists of multiple periods through

Mixed Integer Linear Programming (MILP) and a three phase heuristic (Wen et al.,

2010a); and (c) the VRP with multi-period horizon, the time windows for the delivery,

the heterogeneous vehicles, the drivers working regulations, and other constraints (Wen

et al., 2010b). On the last work, the author proposes a MILP and treated by a multi-

level VNS algorithm. Good quality solutions for solving up to 2000 orders are generated

using a real case information. On this same research line, (Rieck and Zimmermann,

2010) propose a new MILP (two-index vehicle-flow) model for a Rich VRP with docking

constraints. They consider time windows, simultaneous delivery and pick-up at cus-

tomer locations and multiple uses of vehicles. The test instances with 10-30 customers
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were generated from the classical set of Solomon (1987). The proposed method solves

small and medium problem instances efficiently. Other promising approach, as pro-

posed by Doerner and Schmid (2010), consists in the combination of exact algorithms

and metaheuristics search components. The author presents a survey of several hybrid

techniques and also highlights some key aspects for future studies. Hybrid approaches

allow conquering the obstacles observed when the individual concepts are applied in-

dependently. They present three trends of hybridization schemes: set-covering based,

local branching approaches, and decomposition techniques. They addressed the peri-

odic VRP with time windows and the multi-depot VRP with time windows, but other

variants are commented. An exact solution framework based on Set Partioning (SP)

modelling is proposed by Baldacci et al. (2010, 2011a,b) for individual types of VRPs.

The results outperforms all other exact methods published so far and also solve several

previously unsolved test instances. The preliminary step to the proposed Framework is

presented on Baldacci and Mingozzi (2009) where a unified exact method based on set

partitioning is introduced for solving the well-known CVRP, HVRP, FSMVRP, SVRP

and the MDVRP. Computational results show the performance of their approach over

the main instances from the literature of the different variants of HVRP, SVRP and

MDVRP.

Several studies have developed Column Generation-based (CG) methods. Oppen

et al. (2010) consider a real scenario called the Livestock Collection Problem (LCP)

which is considered a Rich VRP extended with inventory constraints. This context

includes duration and capacity restrictions, heterogeneous fleets, time windows, multi-

trips and multi-product issues. The authors addressed it through an exact solution

method based on CG. The authors have created instances with less than 30 customers’

orders inspired in real-world. The CG approach has helped to find optimal solutions in

different scenarios. But the authors defined limitations for finding optimal solutions to

LCP instances. Another CG heuristic is proposed by Goel (2010) for addressing a VRP

with time windows, heterogeneous vehicle fleet, multiple depots, and with pickup-and-

delivery. Some small instances are randomly generated in order to test the heuristic

performance. Ceselli et al. (2009) also propose the use of a CG combined with a

dynamic programming algorithm in order to address simultaneously a heterogeneous

fleet, different depots, time windows, route length, optionally opened routes, pickup

and delivery and several other constraints. The authors tested their approach with 46
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randomly generated instances composed by 100 orders and the results are compared

with lower bounds. Under a similar restricted context, Ruinelli (2011) has compared

three methods on a master thesis context: an ACS, a CG algorithm and a general

purpose MILP solver. Computational results are presenting using 14 real instances

from a distribution company, where the CG outperforms the other two methods.

Other generic Rich solvers have been emerged in the literature. Cordeau and La-

porte (2003); Cordeau et al. (1997, 2001b, 2004) propose an Unified Tabu Search ap-

proach for VRPs with time windows, multi-period, multi-depot and site-dependent.

Several real and theoretical benchmarks have been used to test the performance of

this approach. Some ILS approaches are proposed by Hashimoto et al. (2006, 2008);

Ibaraki et al. (2005). In fact, Subramanian (2012) propose a promising combination

of ILS with Integer Programming aspects for several VRP variants. In fact, this work

was extended to the FSM and HVRP research line in Subramanian et al. (2012). They

have developed a hybrid algorithm composed by an Iterated Local Search (ILS) based

heuristic and a Set Partitioning (SP) formulation. The SP model is solved by using a

MIP solver that calls the ILS heuristic during its execution. Three benchmark instances

with up to 360 customers were used to test the approach. For instance, Groër et al.

(2010) implemented a library of 7 local search Heuristics for addressing several vari-

ants like the CVRP, VRPTW and MDVRP. Some classical heuristics are used —e.g.,

Record-to-Record, CWS. Their approach is based on simply removing and inserting

customers from an existing solution (called neighbourhood ejection). Several classical

benchmarks are used to show the performance of their approach. On Battarra (2011)

several exact and heuristic algorithms for several routing problems are presented in-

dividual Rich VRP cases (Baldacci et al., 2009; Battarra et al., 2009). Some of the

problems addressed are the Fleet Size and Mix and the HVRP with multi-trips and

time windows.

Prescott-Gagnon et al. (2010) present a real-inspired oil distribution which presents

a set of particular features. Some of the constraints addressed are the heterogeneous

vehicle fleet, multiple depots, intra-route replenishment, time windows, driver shifts and

optional customers. The authors propose three metaheuristics, namely, a TS algorithm,

a LNS heuristic combined with TS heuristic, and another LNS heuristic based on a

CG heuristic. Computational results indicate that both LNS methods outperform the

TS heuristic. In fact, the LNS method based on CG tends to produce better quality
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solutions. Also Lannez et al. (2010) present a heuristic based on CG for a very particular

extension of Rich VRP called Rich Arc Routing Problem, where the demand is located

on the arcs and not in the nodes.

Recently, Santillán et al. (2012) solve a Routing-Scheduling-Loading using a heuristic-

based system. As a first step, the proposed system applies an ACS for the Routing

and Scheduling Problem, then a Bin Packing technique is used for the Vehicle Load

problem. Some tests with Solomon (1987) instances are developed. Also the authors

use real information from the distribution of bottles provided by a mexican company.

Another hybrid approach is proposed by Vallejo et al. (2012). They apply a three-

phase heuristic which merges the use of a memory-based approach with clustering

techniques. The authors present promising test results using between 100 and 2000

customers comparing their approach against a Genetic Algorithm. Two particular real

cases are presented next inspired on Ropke and Pisinger (2006a). First, Amorim et al.

(2012) create a new Adaptative LNS for solving specific real instances of a heteroge-

neous fleet site dependent vehicle routing problem with multiple time windows. This

case is inspired in a food distribution company in Portugal. Second, Derigs et al. (2013)

propose to combine the commented ALNS with Local Searches both controlled by two

metaheuristic procedures (Record-to-Record travel and attribute based hill climber)

for addressing a particular real case called Rollon-Rolloff VRP (RRVRP) occurred in

sanitation/waste collection. Some promising computational results are presented using

previous benchmarks.

Vidal et al. (2012a) develop a study of over 64 metaheuristics comparing their

benchmarks on 15 classic variants of VRP with multi-attributes. They present a clas-

sification on the types of constraints as attributes and identify promising principles

in algorithmic-designing for Rich VRP. In fact, they state that the critical factors for

efficient metaheuristic is the appropriate balance between intensification and diversifi-

cation explorations in the solution space. The authors conclude that the combination

of hybrid algorithms and parallel cooperative methods would create effective solvers.

Later the same authors proposed a Unified Solution Framework called Unified Hybrid

Genetic Search (UHGS) for several types of Rich VRP (Vidal et al., 2012b). The

Framework uses efficient generic local search and genetic operators. This approach is

also based on a giant-tour representation with a Split procedure originally proposed by
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Prins (2004). The authors present interesting computational results using 39 bench-

marks over 26 different Rich VRP. Furthermore, the authors apply their method com-

bined with diversity management mechanisms to different large scale instances of Rich

Time-constrained VRPs (Vidal et al., 2013). The used instances involve up to 1000 cus-

tomers. The proposed framework outperforms all current state-of-the-art approaches.

The approach is addressed to any combination of periodic, multi-depot, site-dependent,

and duration-constrained VRP with time windows.

In Table 4.1 a summary of the state-of-the-art approaches developed for the Rich

VRP is presented by authors, year of publication, type of proposed method, maximum

number of customers addressed in the study. As the reader can appreciate the rows

are sorted by type of method, year and last name of first author. Also we have applied

a restrictive filter if the approach can solve more than one Rich VRP. The star (*)

on the last column highlights the approaches that have been or can be tested with no

restriction on the combination of constraints. The table is divided on two parts. The

first part describes the exact methods then it follows the heuristic and meta-heuristic

inspired approaches.

4.3 Classification of Rich VRP papers

Most routing constraints considered in the previous works were unified and classified.

The next list presents the main distribution constraints considered on these papers.

Table 4.2 shows the presence of each constraint on commented papers. This is useful

to appreciate the diversity of cataloged papers as Rich VRPs. In fact, all steps in the

supply-chain are being considered at the same time in order to be optimized in a general

way. Then in Table 4.3 a classification of these routing constraints is done using com-

mented studies of Lahyani et al. (2012); Vidal et al. (2012b). In Vidal et al. (2012b), the

routing constraints are related to its representation point inside of the inner method-

ology process. For this, they propose three groups which represent the simple aspects

that any solver must deal with: Assignment of customers and routes to resources, the

Sequence choices, and the Evaluation of fixed sequences. The authors state that this

“simply classification is intimately connected with the resolution methodology”. In

Lahyani et al. (2012), constraints are associated to the enterprise decision levels (oper-

ational, tactical, and strategy). The first level (strategic) includes decisions related to
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Authors Year Method Maximum Several

n Rich VRPs

Ruinelli 2011 Column Generation 150

Baldacci et al. 2011a Exact Method 200
√

*

Baldacci et al. 2011b Exact Method 200
√

*

Baldacci et al. 2010 Exact-Solution Framework 200
√

*

Bettinelli et al. 2011 Branch-and-Cut-and-Price 144

Doerner and Schmid 2010 MatHeuristics -

Goel 2010 Column Generation 250

Oppen et al. 2010 Column Generation 27

Rieck and Zimmermann 2010 Mixed-Integer Linear Programming 30

Baldacci and Mingozzi 2009 Exact algorithm based on Set Partitioning 100
√

Ceselli et al. 2009 Column Generation 100

Fügenschuh 2006 Mixed-Integer Programming 404

Derigs et al. 2013 LS/LNS-based metaheuristic 199

Vidal et al. 2013 Hybrid Genetic Search with Advanced Diversity Control 1000
√

*

Amorim et al. 2012 Adaptative Large Neighbourhood Search Framework 366

Santillán et al. 2012 Ant Colony System 100

Subramanian et al. 2012 Iterated Local Search 360

Vidal et al. 2012b Unified local search and Hybrid Genetic Search 480
√

*

Vallejo et al. 2012 3-phase heuristic using a memory-based and clustering techniques 2000

Battarra 2011 Exact and Heuristic algorithms 100
√

Groër et al. 2010 Local Search Heuristic 483

Prescott-Gagnon et al. 2010 Tabu Search, LNS+TS heuristic, LNS+CG heuristic 750

Wen et al. 2010a 3-phase heuristic 80

Goel and Gruhn 2008 Variable and Large Neighbourhood Searches 40

Irnich 2008 Heuristic Framework using Local Search-Based Metaheuristics 1000
√

*

Wen et al. 2008 TS and Adaptive Memory Procedure 200

Hasle and Kloster 2007 MetaHeuristics 199
√

*

Pellegrini et al. 2007 Multiple Ant Colony Optimization 80

Pisinger and Ropke 2007 LNS Heuristic 1008
√

*

Rizzoli et al. 2007 Ant Colony Optimization 600
√

Bolduc et al. 2006 Heuristics 75

Goel and Gruhn 2006 Large Neighborhood Search 500

Hoff and Løkketangen 2006 Tabu Search Heuristic 262

Ileri et al. 2006 Set partitioning model 130

Magalhães and Sousa 2006 Heuristic based on clustering 450

Reimann and Ulrich 2006 Ant Colony Optimization 100

Ropke and Pisinger 2006a LNS Heuristic 500
√

Ropke and Pisinger 2006b LNS Heuristic 500
√

Sörensen 2006 Memetic algorithm with population management 199

Derigs and Döhmer 2005 Local Search Algorithm -

Goel and Gruhn 2005 Large Neighborhood Search 500

Pellegrini 2005 Nearest Neighbor 200

Cordeau et al. 2004 Improved Unified Tabu Search heuristic 288
√

Cordeau et al. 2001b Unified Tabu Search heuristic 1035
√

Cordeau et al. 1997 Tabu Search 288

Table 4.1: State-of-the-art of Rich VRP methods.
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the locations, the number of depots used and the data type. The tactical level defines

the order type and the visit frequencies of customers over a given time horizon. Finally,

the operational level considers the vehicle and the driver schedules; so the constraints

are related to the distribution planning and specified for customers, vehicles, drivers

and roads. Additionally, we propose a second level of classification associated to the

routing element involved (depot, customer, route, vehicle, and product) in order to

help for a better understanding of the classification.

� Multi-Products (CP): Some vehicles can carry out several types of products

(fresh-cold, small-big, etc.).

� Multi-Dimensional capacity (CD): The capacity of vehicles is considered in 2D

or 3D.

� Vehicle Capacity (C): The capacity of vehicles is limited.

� Homogeneous Fleet of Vehicles (FO): All vehicles of the fleet have the same

capacity.

� Heterogeneous Fleet of Vehicles (FE): Several type of vehicles (capacities) can be

found in the fleet.

� Unfixed Fleet of Vehicles (VU): The number of vehicles considered is unlimited.

� Fixed Fleet of Vehicles (VF): The number of vehicles considered is limited.

� Fixed Cost per Vehicle (FC): To use a vehicle implies an extra cost.

� Variable Cost of Vehicle (VC): The real cost is represented by the product of the

distance assigned to a vehicle and its price per distance unit.

� Multi-Trips (MT): All or some vehicles of the fleet can execute more than one

trip (multiple uses of vehicles).

� Vehicle Site Dependent (DS): Some vehicles can not visit some nodes due to

geographical, compatibility or legal issues.

� Vehicle Road Dependent (DR): Some vehicles can not pass through some edges

of the network for some legal issues.

36



4.3 Classification of Rich VRP papers

� Duration Constraints/Length (L): The duration of each route can not exceed a

maximum value or cost, including service times on each visited client.

� Driver Shifts/Working Regulations (D): The design of routes include the number

of legal working hours of drivers (stops, breaks, rest, etc).

� Balanced Routes (BR): The load of routes or vehicles must be balanced between

all.

� Symmetric Cost Matrix (CS): The cost matrix has a symmetric nature.

� Asymmetric Cost Matrix (CA): The cost matrix has an asymmetric nature.

� Intra-route replenishments (IR): The vehicles must be re-loaded in some point of

the routes.

� Time Dependent/Dynamic/Stochastic times (TD): The target is minimizing time

and the travelling times could vary during a day (hard or flexible). The loca-

tion/distance of clients changes.

� Stochastic Demands/Dynamic (S): The demands of clients can change during the

application of a routing solution.

� Time Windows (WT): The clients can not receive the orders out of a time win-

dows. Each client has a particular time window (hard or soft).

� Multiple Time Windows (WM): The clients can not receive the orders out of a

set of time windows. Each client has a particular set of time windows.

� Pick-up & Delivery (PD): The construction of routes must consider the picking

up of products in some clients and the delivery to others, in a sequentially or

separately way. The depot just define the starting/ending point of vehicles.

� Simultaneous Pick-up & Delivery (SP): The construction of routes must consider

the picking up and delivery of products/persons at the same time in all nodes by

the same vehicle. The depot just define the starting/ending point of vehicles.
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� Backhauls (B): The construction of routes must consider the picking up of prod-

ucts in some clients and the delivery to others, in a sequentially or separately way.

The critical assumption is that all deliveries must be made on each route before

any pickups can be made (sometimes a client could require both a delivery and a

pick-up). The re-arrangement of products could be expensive or unfeasible. The

depot just define the starting/ending point of vehicles.

� Multiple Visits/Splitted deliveries (MV): The clients are visited several times for

delivering the summatory of the original order orders. Each vehicle may deliver

a fraction of a customer’s demand.

� Multi-Period/Periodic (MP): The optimization is made over a set of days, con-

sidering several visits and each client has a different frequency of visits.

� Inventory Levels Controls (I): The costs of stocks are also considered to be min-

imized with the routing costs while the levels of stock are controlled.

� Customer Capacity (CC): The capacity stock of clients is also considered.

� Multi-Depot (MD): There is more than one depot from where the vehicles leave

and arrive.

� Time Windows for the Depot (WD): The depot is open during a period of time.

So if vehicles need to do more than one trip they need to consider this.

� Different end locations/Open Routes (O): The routes start at the depot but finish

on the last client. The return cost is not considered or optional.

� Different start and end locations (DA): The vehicles start and end in different

locations.

� Departure from different locations (DD): The vehicles start in different locations.

� Precedence constraints (PC): The order of visits some clients could be important

for the loading and unloading of products. Its order could be important for

healthy or security reasons.

� Multi-Objectives (MO): The study considers more than one objective function

or related costs at the same time.
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4. RICH VRPS

Restriction Code/Id (Vidal et al., 2012b) (Lahyani et al., 2012) Our 2nd Level

Classification Classification Classification

Multi-Products CP Assign Strategic Veh-Prod

Multi-Dimensional capacity CD Assign Strategic Veh-Prod

Vehicle Capacity C Assign Operational Veh

Homogeneous Fleet of Vehicles FO Assign Operational Veh

Heterogeneous Fleet of Vehicles FE Assign Operational Veh

Unfixed Fleet of Vehicles VU Evaluation Operational Veh

Fixed Fleet of Vehicles VF Assign Operational Veh

Fixed Cost per Vehicle FC Evaluation Operational Veh

Variable Cost of Vehicle VC Evaluation Operational Veh

Multi-Trips MT Sequence Operational Veh

Vehicle Site Dependent DS Assign Operational Veh-Cust

Vehicle Road Dependent DR Assign Operational Veh-Route

Duration Constraints/Lenght L Evaluation Operational Route-Driver

Driver Shifts/Working Regulations D Evaluation Operational Route-Driver

Balanced Routes BR Assign Operational Route-Driver

Symmetric Cost Matrix CS Sequence Operational Route

Asymmetric Cost Matrix CA Sequence Operational Route

Intra-route replenishments IR Assign Tactical Route

Time Dependent/Dynamic/Stochastic times TD Evaluation Tactical Route

Stochastic Demands/Dynamic S Evaluation Tactical Customer

Time Windows WT Evaluation Tactical Customer

Multiple Time Windows WM Evaluation Tactical Customer

Pick-up & Delivery PD Sequence Tactical Customer

Simultaneous Pick-up & Delivery SP Evaluation Tactical Customer

Backhauls B Sequence Tactical Customer

Multiple Visits/Splitted deliveries MV Assign Tactical Customer

Multi-Period/Periodic MP Assign Tactical Customer

Inventory Levels Controls I Assign Tactical Customer

Customer Capacity CC Assign Tactical Customer

Multi-Depot MD Assign Strategic Depot

Time Windows for the Depot WD Evaluation Strategic Depot

Different end locations/Open Routes O Evaluation Strategic Depot

Different start and end locations DA Evaluation Strategic Depot

Departure from different locations DD Evaluation Strategic Depot

Precedence constraints PC Sequence Tactical Depot

Multi-Objectives MO Evaluation Tactical Depot

Table 4.3: Classification of main documented Rich VRP constraints.
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4.4 Chapter Conclusions

4.4 Chapter Conclusions

In this last three chapters, we have reviewed the evolution of studied problems in the

VRP arena. We present a variety of routing scenarios that can be found in reality.

Also several methods have been developed for addressing all types of Rich VRPs. The

Rich VRP domain has appeared on the first decade of XXI century; and it is shown

itself as a promising research area. There are many tailored approaches for specific

cases of Rich VRP. However, in the last ten years the general-purpose methods are

slowly emerging keeping the previous quality features but for generic Rich VRP sce-

narios. Next chapters, we will study some tailored approaches for both deterministic

(HVRP, HVRPM, HAVRP, AVRP, VRPTW, and DCVRP) and stochastic (VRPSD

and IRPSD) scenarios (see Fig. 4.1). Progressively on the thesis, we will present three

methodologies related between them in order to finally design a generic approach for

the Rich VRP. The first methodology is the core of the other two which consists in the

biased-randomization of classical heuristics. The second is based in the combination of

Monte-Carlo simulation with biased-randomized heuristics. Finally, a generic approach

is proposed joining the advantages of constraint programming validation and the so-

lution generation of biased-randomized heuristics. In the next chapter, we discuss the

main implementation aspects of the first methodology.

Figure 4.1: Relation of VRPs studied on this dissertation.
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5

Biased Randomization of

Heuristics

Parts of this chapter have been taken from the co-authored publica-

tion: Juan, Cáceres-Cruz, González-Mart́ın, Riera, and Barrios (2014a)

in Encyclopedia of Business Analytics and Optimization. IGI Global.

USA.

In this chapter, we will present the basic core used in all approaches proposed in this

thesis. This common aspect for addressing different variants is a biased-randomization

aspect inside of the proposed methods. The potential of biased randomized heuristics

for solving real problems (mainly using the CWS) is actually promoted in this thesis.

This chapter discusses how to randomize classical heuristics in order to transform these

deterministic procedures into more efficient probabilistic algorithms. This randomiza-

tion process can be performed by using a uniform probability distribution or, even more

interesting, by using a non-symmetric distribution.

Combinatorial Optimization Problems (COPs) have posed numerous challenges to

the human mind throughout the past decades. From a theoretical perspective, they

have a well-structured definition consisting of an objective function that needs to be

minimized or maximized, and a series of constraints that must be satisfied. From a

theoretical point of view, these problems have an interest on their own due to the

mathematics involved in their modelling, analysis and solution. However, the main

reason for which they have been so actively investigated is the tremendous amount
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5. BIASED RANDOMIZATION OF HEURISTICS

of real-life applications that can be successfully modelled as a COP. Thus, for ex-

ample, decision-making processes in fields such as logistics, transportation, and man-

ufacturing contain plentiful hard challenges that can be expressed as COPs (Faulin

et al., 2012; Montoya-Torres et al., 2012). Accordingly, researchers from different areas

—e.g., Applied Mathematics, Operations Research, Computer Science, and Artificial

Intelligence— have directed their efforts to conceive techniques to model, analyze, and

solve COPs.

A considerable number of methods and algorithms for searching optimal or near-

optimal solutions inside the solution space have been developed. In some small-sized

problems, the solution space can be exhaustively explored. For those instances, ef-

ficient exact methods can usually provide the optimal solution in a reasonable time.

Unfortunately, the solution space in most COPs is exponentially astronomical. Thus,

in medium- or large-size problems, the solution space is too large and finding the opti-

mum in a reasonable amount of time is not a feasible task. An exhaustive method that

checks every single candidate in the solution space would be of very little help in these

cases, since it would take exponential time. Therefore, a large amount of heuristics

and metaheuristics have been developed in order to obtain near-optimal solutions, in

reasonable computing times, for medium- and large-size problems, some of them even

considering realistic constraints.

The main goal of this chapter is to present a hybrid scheme which combines classical

heuristics with biased-randomization processes. As it will be discussed later, this hybrid

scheme represents an efficient, relatively simple, and flexible way to deal with several

COPs in different fields, even when considering realistic constraints.

5.1 Background

In the context of this section, we will refer to any algorithm which makes use of pseudo-

random numbers to perform ‘random’ choices during the exploration of the solution

space by the term randomized search method, or simply randomized algorithm. This

includes most current metaheurisics and stochastic local-search processes. Thus, since

it does not follow a deterministic path, even for the same input, a randomized search

method can produce different outputs in different runs. Within these type of algorithms

we can include, among others, the Genetic and Evolutionary Algorithms (Reeves, 2010),

44



5.1 Background

Simulated Annealing (Nikolaev and Jacobson, 2010), Greedy Randomized Adaptive

Search Procedure or GRASP (Festa and Resende, 2009a,b), Variable Neighborhood

Search (Hansen et al., 2010), Iterated Local Search (Lourenço et al., 2010), Ant Colony

Optimization (Dorigo and Stützle, 2010), Probabilistic Tabu Search (Løkketangen and

Glover, 1998), or Particle Swarm Optimization (Kennedy and Eberhart, 1995).

One of the most popular randomized search methods is GRASP (Resende and

Ribeiro, 2010). Roughly speaking, GRASP is a multi-start or iterative process which

uses uniform random numbers and a restricted candidate list to explore the solution

space (Pseudo-code 1). At each iteration, two phases are executed: (a) the construction

phase, which generates a new solution by randomizing a classical heuristic; and (b) a

local search phase, which aims at improving the previously constructed solution. At

the end of this multi-start process, the best found solution is kept as the result.

Algorithm 1 General pseudo-code for GRASP.

1: procedure GRASP(inputs)

2: while stopping criterion is not satisfied do

3: solution← ConstructGreedyRandomizedSolution(inputs)

4: solution← ApplyLocalSearch(solution)

5: bestSolution← UpdateBestSolution(solution)

6: end while

7: return bestSolution

8: end procedure

It is interesting to notice that most of the work on randomized algorithms is based

on the use of uniform random numbers, i.e., randomness is generated throughout a

symmetric (non-biased) uniform distribution. Of course, other non-symmetric (i.e.,

biased) distributions can also be used to induce randomness into an algorithm. As far

as we know, the first approach based on the use of biased randomization of a classical

heuristic is due to Bresina (1996). This author proposes a methodology called Heuristic-

Biased Stochastic Sampling (HBSS), which performs a biased iterative sampling of

the search tree according to some heuristic criteria. Bresina applies the HBSS to a

scheduling problem, and concludes that this approach outperforms greedy search within

a small number of samples.
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5. BIASED RANDOMIZATION OF HEURISTICS

More recently, Juan et al. (2011c) proposed the use of non-symmetric probability

distributions to induce randomness in classical heuristics. Their general framework

was called Multi-start biased Randomization of classical Heuristics with Adaptive local

search (MIRHA). In this approach, the authors propose to combine classical greedy

heuristics with pseudo-random variates from different, non-symmetric, probability dis-

tributions. In particular, the algorithm induced biased-randomness to slightly pertur-

bate the greedy behaviour of a classical heuristic, which transforms a deterministic

heuristic into a probabilistic algorithm. According to the obtained results, the use of

proper biased distributions -as an alternative to the use of the uniform distribution-

contributes to explore the solution space in a more efficient way. Pseudo-code 2 shows

the logic flow of the MIRHA general framework. Similar to GRASP, a multi-start pro-

cedure encapsulates the randomization of a heuristic, but this time a non-symmetric

distribution will be employed instead. At each iteration, two processes are carried out.

First, a new solution is constructed using a biased randomization version of the selected

classical heuristic -which will depend on the particular problem being considered. Sec-

ondly, an adaptive local search is employed in order to improve the randomized solution.

Notice that both the randomization effect and the multi-start process work together to

reduce the probabilities that the procedure gets trapped into a local minimum, while

ensuring that different feasible regions in the solution space are sampled and explored.

The common aspects of MIRHA with GRASP are the construction of an initial so-

lution using randomization and, afterwards, the application of a local search. But there

are relevant differences: (a) MIRHA does not use a restrictive candidate list, one main

characteristic of the GRASP algorithm; and (b) MIRHA uses a non-symmetric distribu-

tion to select the next element to be included in the solution, while most GRASP imple-

mentations only consider uniform distributions. The HBSS proposed by Bresina (1996)

is similar to MIRHA since it uses a biased distribution function combined with a sam-

pling methodology. In fact, MIRHA can be seen as a natural extension/enhancement of

the HBSS methodology, one which incorporates a local search step after each solution

obtained by the biased sampling.
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Algorithm 2 General pseudo-code for MIRHA.

1: procedure MIRHA(inputs)

2: heuristic← DefineHeuristic(inputs) . different for each COP

3: initialSolution← GenerateSolution(heuristic, inputs)

4: bestSolution ← ApplyAdaptiveLocalSearch(initialSolution) . for each

COP

5: probaDist ← DefineProbabilityDistribution(COP ) . different for each

COP

6: while stopping criterion is not satisfied do

7: solution← GenerateRandomSolution(heuristic, probaDist, inputs)

8: solution← ApplyAdaptiveLocalSearch(solution)

9: bestSolution← UpdateBestSolution(solution)

10: end while

11: return bestSolution

12: end procedure

In general, probabilistic algorithms have been widely used to solve many combina-

torial optimization problems such as, for example: Sequencing and Scheduling Prob-

lems (Pinedo, 2012), Vehicle Routing Problems (Laporte, 2009), Quadratic and Assign-

ment Problems (Loiola et al., 2007), Location and Layout Problems (Mladenović et al.,

2007), Covering, Clustering, Packing and Partitions Problems (Chaves and Nogueira-

Lorena, 2010; Muter et al., 2010). They have also been used to solve real combinatorial

optimization problems that arise in different industrial sectors, e.g.: Transportation,

Logistics, Manufacturing, Aeronautics, Telecommunication, Health, Electrical Power

Systems, Biotechnology, etc.

As described in Festa and Resende (2009b), GRASP algorithms have been applied

to solve a wide set of problems like scheduling, routing, logic, partitioning, location,

graph theory, assignment, manufacturing, transportation, telecommunications, biology

and related fields, automatic drawing, power systems, and VLSI design.

Regarding the use of biased/skewed randomization as proposed by the HBSS and

MIRHA general schemes, Juan et al. (2010) proposed a specific implementation, called

SR-GCWS, for solving the Capacitated Vehicle Routing Problem. The SR-GCWS

algorithm combines a biased randomization process with the Clarke Wright savings

heuristic (Clarke and Wright, 1964). A geometric distribution is used to randomize the

47
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constructive process while keeping the logic behind the heuristic. Similarly, González-

Mart́ın et al. (2012) developed the RandSHARP algorithm for solving the Arc Routing

Problem. This algorithm combines a savings-based heuristic for the Arc Routing Prob-

lem with a biased randomization process also guided by a geometric distribution. Other

authors have also proposed the randomization of a classical heuristic for solving the

Arc Routing Problem. For example, Gomes and Selman (1997) propose a randomized

version of the Backtrack Search algorithm where randomization is added to break ties,

and also a randomization of the Branch-and-Bound algorithm where randomization

is added in the variable selection strategy by introducing noise in the ranking of the

variables. However, in both cases the authors add uniformly distributed randomiza-

tion to the base heuristic. Finally, Juan et al. (2012b) propose the ILS-ESP algorithm

for solving the Permutation Flow-Shop Problem. The ILS-ESP uses an Iterated Local

Search framework and combines the NEH heuristic (Nawaz et al., 1983) with a biased

randomization process guided by a descending triangular distribution.

All in all, the proposed methodology can be used to improve the efficiency of most

existing heuristics for solving combinatorial-optimization problems. This is done by

transforming the greedy deterministic behaviour of the heuristic into a probabilistic

behaviour which still follows the logic behind the heuristic but randomizes the con-

struction process using a biased, non-uniform, distribution.

5.2 Applying a Biased Randomization

Most classical heuristics for solving combinatorial optimization problems employ an

iterative process in order to construct a feasible —and hopefully good- solution. Ex-

amples of these heuristics are the Clarke and Wright procedure for the Vehicle Routing

Problem (Clarke and Wright, 1964), the Nawaz-Enscore-Ham procedure for the Flow-

Shop Problem (Nawaz et al., 1983), or the Path Scanning procedure for the Arc Rout-

ing Problem (Golden et al., 1983). Typically, a priority list of potential movements

is traversed during the iterative process, i.e., at each iteration, the next constructive

movement is selected from this list, which is sorted according to some criteria. The

criteria employed to sort the list depends upon the specific heuristic being considered.

Thus, any constructive heuristic could be seen as an iterative greedy procedure, which

48



5.2 Applying a Biased Randomization

constructs a feasible ‘good’ solution to the problem at hand by selecting, at each iter-

ation, the ‘best’ option from a list, sorted according to some logical criterion. Notice

that this is a deterministic process, since once the criterion has been defined, it pro-

vides a unique order for the list of potential movements. Of course, if we randomize

the order in which the elements of the list are selected, then a different output is likely

to occur each time the entire procedure is executed. However, a uniform randomiza-

tion of that list will basically destroy the logic behind the greedy behaviour of the

heuristic and, therefore, the output of the randomized algorithm is unlikely to provide

a good solution —in fact, we could run the randomized algorithm thousands of times

and it is likely that all the solutions generated would be significantly worse than the

one provided by the original heuristic. To avoid losing the ‘common sense’ behind the

heuristic, GRASP proposes to consider a restricted list of candidates —i.e., a sublist

including just some of the most promising movements, that is, the ones at the top of

the list—, and then apply a uniform randomization in the order the elements of that

restricted list are selected (see Fig. 5.1). This way, a deterministic procedure is trans-

formed into a randomized algorithm —which can be encapsulated into a multi-start

process—, while most of the logic or common sense behind the original heuristic is still

respected. The MIRHA approach goes one step further, and instead of restricting the

list of candidates, it assigns different probabilities of being selected to each potential

movement in the sorted list. In this way, the elements at the top of the list receive a

higher probability of being selected than those at the bottom of the list, but potentially

all elements could be selected. Notice that by doing so, we are not only avoiding the

issue of selecting the proper size of the restricted list, but we also guarantee that the

probabilities of being selected are always proportional to the position of each element

in the list.

Thus, it is possible to identify the following steps when transforming a classical

heuristic into a probabilistic algorithm by means of biased randomization:

1. Given a COP, select a deterministic and constructive heuristic with the following

characteristics: (a) it should be able to run quite fast —typically in less than a

second— even for large-size problems —this is a critical requirement since the

probabilistic algorithm relies in executing over and over a randomized version of

the heuristic; (b) it should provide, by design, some stage able to be randomized
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Figure 5.1: Uniform randomization vs. biased randomization.

—e.g., a priority list as the one described before; and (c) it should provide ‘good’

solutions which are not too far from the ones generated with more complex and

time-consuming metaheuristics —e.g., average gap about 5-10%.

2. Once the base heuristic is selected, the new probabilistic algorithm should follow

some kind of multi-start process —e.g., a pure multi-start or an iterated local

search. At each round of this multi-start process, a new complete solution would

be generated. For the construction of this solution, the base heuristic is ran-

domized —e.g., its priority list is randomized- using a non-symmetric probability

distribution. The specific distribution to employ will depend upon the specific

COP being considered. Some candidate distributions to be considered are the

geometric and a discrete version of the descendent triangular.

3. Optionally, a local search process can be added to the algorithm in order to

improve the solution provided at each round of the multi-start process. This
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local search is COP-tailored, meaning that it will be different for each COP.

The approach described above is able to quickly generate several feasible solutions

with different properties. Therefore, a list containing the top ‘best-found’ solutions

—each of them having different characteristics— can be saved and considered by the

decision maker.

5.3 Benefits

The main motivation behind designing biased-randomized heuristics is to meet many

of the desirable features of a metaheuristic as described by Cordeau et al. (2002), i.e.:

accuracy, speed, simplicity, and flexibility. Most of the metaheuristics in literature are

measured against accuracy —the degree of departure of the obtained solution value from

the optimal value—, and against speed -the computation time. However, there are two

other important attributes to be considered in any optimization method: simplicity and

flexibility. Simplicity is related to the number of parameters to be set and the facility

of implementation. This is an important feature since the method can be applied

to different instances than the ones tested without losing quality or performance and

without the need of performing a long run test. Flexibility is related to the possibility

of accommodating new side constraints and also with the adaptation to other similar

problems.

Having in mind these measured attributes, we list the main benefits of biased-

randomized heuristics over other related approaches:

� They allow a simplification of the fine-tuning process, since typically the employed

probability distributions require just one (e.g., the Geometric) or zero parameters

(e.g., the descendent Triangular).

� Being based on classical well-tested heuristics, they are relatively simple and easy

to implement methods, which can be adapted to account for new constraints

(flexibility).

� Using non-uniform (biased) distributions rather than uniform distributions, they

offer a more natural and efficient way to select the next movement from the

priority list.
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� By combining randomization with a multi-start-like process, they promote di-

versification during the exploration of the solution space, i.e., the search is not

restricted to just a reduced number of regions.

� Likewise, the combination of randomization with a multi-start-like process pro-

motes parallelization in an easy and natural way (Juan et al., 2013a).

� Finally, the biased-randomized heuristics can also be combined with other tech-

niques, such as Monte-Carlo simulation, in order to consider stochastic variants

of COPs (as we will see further in this thesis).

Most of the work developed so far in the area of stochastic local search and meta-

heuristics is based on the use of uniform randomization. As discussed in this chapter,

probability distributions other than the uniform one can also be used to induce random-

ness inside heuristics or local search processes. In fact, the use of biased randomization,

as proposed in this study, can contribute to make the search process even more effi-

cient. For that reason, we expect to see a significant increase in the use of non-uniform

distributions in all metaheuristics and probabilistic algorithms during the next few

years.

5.4 Chapter Conclusions

In this chapter we have analyzed some key aspects, benefits, and examples related to

the combination of randomization strategies with classical heuristics as a natural way

to develop probabilistic algorithms to solve combinatorial optimization problems. Both

uniform as well as non-symmetric randomization strategies have been reviewed. In par-

ticular, we have discussed how the non-symmetric or biased approach constitutes an

efficient way to randomize the priority list of a constructive heuristic without losing the

logic behind it. Some examples of applications to several combinatorial optimization

problems have also been exposed, including: vehicle routing problems, arc routing prob-

lems, and flow-shop problems. One of the main advantages of this type of probabilistic

algorithms is their relative simplicity, since they are based in well-known heuristics

and they do not incorporate many additional parameters. Moreover, these algorithms

are flexible, quite efficient, and can be implemented and parallelized in a natural way,

which makes them an interesting alternative to more sophisticated metaheuristics in
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most practical applications. In next chapters, we will apply this methodology to create

some tailored approaches for deterministic scenarios (see Fig. 5.2).

Deterministic VRPs

HVRP

HVRPM

HAVRP

AVRP

VRPTW

Figure 5.2: VRPs studied in this dissertation using biased-randomized heuristics.
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6

Heterogeneous VRPs

Parts of this chapter have been taken from the co-authored publications:

Grasas, Cáceres-Cruz, Lourenço, Juan, and Roca (2013), OR Insight;

Juan, Faulin, Cáceres-Cruz, Barrios, and Mart́ınez (2014b), European

J. of Industrial Engineering.

In most real-life transportation scenarios, it is necessary to consider heterogeneous

fleets (i.e., vehicles having different capacities) instead of homogeneous ones. In fact,

most road-transportation companies own a heterogeneous fleet. This diversity in the ca-

pacity of vehicles might be due to the fact that different customers and locations might

require different type of vehicles, e.g.: narrow roads in a city, available parking spaces,

vehicle weight restrictions on certain roads, etc. Another reason for owning vehicles

with distinct capacities is the natural diversity that arises when vehicle acquisitions are

made over time. Accordingly, Privé et al. (2005); Ruiz et al. (2004) highlighted the

importance of considering heterogeneous fleets while developing new vehicle routing

methods. On this chapter, we will present some tailored-purpose approaches for some

realistic variants of the VRP. This variant is the Heterogeneous fleet VRP where a real

case application is also described. The real case includes some extra constraints like

multi-trips and several involved function costs. There will be a preliminary literature

review, the presentation of the proposed approach, and finally some computational

results.
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6.1 Definition

Several variants of the Heterogeneous fleets VRP (HV RP ) have been proposed in the

literature. For instance, Baldacci et al. (2008) presents a comprehensive description of

some of them. In general, the research community has addressed the HVRP in different

ways, first, considering an unlimited (i.e., ∀k ∈ K, mk = +∞) or limited number of

vehicles, and second, minimizing a function cost based on a variable, fixed or both

costs. Each vehicle could have a fixed cost for using it in a trip (i.e., ∀k ∈ K, Fk 6= 0)

as well as a variable cost that is the result of multiplying a coefficient by the distance

of the assigned route (i.e., ∀k, l ∈ K, ckij 6= clij). These costs are associated to each type

of vehicle. So the combinations of these aspects have created the main HVRP families,

known as:

� Fleet Size and Mix VRP with fixed and variable costs (FSMVRP-FV) where an

unlimited number of vehicles is considered for minimizing the addition of using a

specific vehicle and the variable distance.

� Fleet Size and Mix VRP with only fixed costs (FSMVRP-F) where an unlimited

number of vehicles is considered for minimizing fixed cost of all used vehicles.

� Fleet Size and Mix VRP with only variable costs (FSMVRP-V) where an unlim-

ited number of vehicles is considered for minimizing the variable distance of all

routes.

� Heterogeneous Fixed Fleet VRP with only variable costs (HVRP-V) where a

limited number of vehicles is used to minimizing the variable cost.

� Heterogeneous Fixed Fleet VRP with fixed and variable costs (HVRP-FV) where

a limited number of vehicles is used to minimizing both variable and fixed costs.

Notice that there are other HVRP branches considering constraints like Site-Dependent,

Site-Road, etc. Another branch considers that each vehicle can optionally perform

several trips (HVRPM).
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6.2 Literature Review

One of the first published papers dealing with the FSMV-F is that of Golden et al.

(1984). This paper defines the problem of optimal fleet design and configuration, and

presents a mathematical model for it. The authors have proposed a set of benchmarks

widely used. However, Taillard (1999) has improved them by adding the variable cost.

This author has proposed an heuristic based on CG. Since then a large number of

techniques have been developed for addressing this problem: TS techniques (Brandão,

2009; Gendreau et al., 1999; Wassan and Osman, 2002), Memetic Algorithms (MA)

(Lima et al., 2004; Prins, 2009), heuristic-based method (Renaud and Boctor, 2002),

and Genetic Algorithms (GA) (Liu et al., 2009).

Several techniques have been done to address the FSMV-V. Some of the main

contributions can be found in Choi and Tcha (2007) (Branch-and-bound), Prins (2009),

Imran et al. (2009) (Variable Neighbourhood Search) and Brandão (2011). Notice that

Choi and Tcha (2007) provide an Integer Programming model. The FSMV-FV is also

considered in some of the commented works, like Belfiore and Yoshizaki (2009); Choi

and Tcha (2007); Imran et al. (2009); Prins (2009).

One of the most relevant works on HVRP-V is Li et al. (2007a) which developes a

Record-To-Record (RTR) algorithm. Tarantilis et al. (2004) has developed two Thresh-

old Accepting algorithms (TA). Other interesting approaches for this type of problem

are presented in Brandão (2011); Ceschia et al. (2011); Euchi and Chabchoub (2010);

Prins (2009); Yazgı-Tütüncü (2010).

A small number of works have considered the HVRP-FV. In fact, most of them are

academic iniciatives. For instance, Baldacci and Mingozzi (2009) present a MIP model,

introducing two new classes of inequalities to improve some of the variable bounds for

the HVRP-FV. Li et al. (2010) has considered this type of routing problem as well.

The realistic aspect of this research line has produced recent studies considering

many branches of HVRP at the same time, like that in Penna et al. (2013); Subrama-

nian et al. (2012). These last two studies have proposed to apply methods based on

an Iterative Local Search (ILS) heuristic. In order to address all families of HVRP, the

first paper employs a VN Descent procedure and a random neighbourhood ordering.

While the second applies a Set Partitioning (SP) formulation. However, some com-

mented works have also addressed more than one type of HVRP. In Table 6.1, it can be
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Authors Year Method Heterogeneous Cap. FSMVRP-FV FSMVRP-F FSMVRP-V HVRP-V HVRP-FV

Golden et al. 1984 Heuristics
√ √

Gendreau et al. 1999 TS
√ √ √

Taillard 1999 HCG
√ √ √

Renaud and Boctor 2002 Heuristics
√ √

Wassan and Osman 2002 TS
√ √ √

Lima et al. 2004 MA
√ √

Tarantilis et al. 2004 TA
√ √

Choi and Tcha 2007 B&B
√ √ √ √

Li et al. 2007a RTR
√ √

Belfiore and Yoshizaki 2009 SS
√ √

Brandão 2009 TS
√ √ √

Imran et al. 2009 VN
√ √ √

Liu et al. 2009 GA
√ √

Prins 2009 MA
√ √ √ √ √

Euchi and Chabchoub 2010 TS
√ √

Li et al. 2010 MetaHeuristic
√ √

Yazgı-Tütüncü 2010 MetaHeuristic
√ √

Brandão 2011 TS
√ √ √

Ceschia et al. 2011 TS
√ √

Subramanian et al. 2012 ILS
√ √ √ √ √ √

Penna et al. 2013 ILS
√ √ √ √ √ √

Table 6.1: Published HVRP studies.

appreciated a summary of commented studies considering several types of HVRP. Some

problems have been more studied than others. This table presents papers exclusively

dedicated to different types of HVRP.

There are VRP versions of the problem that consider multi-trip, i.e., a vehicle can

do more than one trip on the same planning period. This is a very common case

for distribution and retailing companies, since most of these have a limited number of

vehicles. Although this multi-trip feature is very relevant in practice (see Baldacci et al.

(2008); Golden et al. (2008); Şen and Bülbül (2008) for more information), few authors

have addressed it. The methods usually applied to solve this multi-trip version are

based on the CWS method and Tabu Search approaches. Fleischmann (1990); Prins

(2002) combine a Savings heuristic with a Bin Packaging Problem technique (BPP).

The BPP is also used in the work of Petch and Salhi (2003), where the authors combine

this technique with the savings method in a multi-phase approach. Taillard et al. (1996)

propose a Tabu Search metaheuristics and also define a set of instances for this problem

that have been used by other authors. Brandão and Mercer (1998); Olivera and Viera

(2007) present also a Tabu Search metaheuristic for the multi-trip version of the HVRP.

Multi-objective approaches have been also proposed in Lin and Kwok (2006), which is

based on Tabu Search and Simulated Annealing meta-heuristics. The authors have
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compared their approaches with real data and simulated data. Notice that several of

these authors include a real application of their algorithms to test the performance

of their approach. Notice that the CWS approaches offer a simple way to develop

algorithms to solve real problems (Poot et al., 2002), and unlike the Tabu Search,

there is not need to perform a fine-tuning process in order to get a good performance.

However the combination of heterogeneous fleets and multiple trips is quite uncommon

in the literature.

Summarizing, we consider the Heterogeneous Fleet and Multitrip Vehicle Routing

Problem. In particular, we consider the following additional considerations regarding

the available fleet and its costs:

� The number of vehicles of each type, mk.

� For each vehicle type:

– The fixed costs could be ignored (i.e., Fk = 0, ∀k ∈ K) or not;

– The routing costs could be vehicle-independent (i.e., ∀k ∈ K, γk = 1, so

γk · dij = γl · dij = ckij = clij = cij ,∀k, l ∈ K,∀i, j ∈ Ω) or not;

– There are no restrictions on the customers they can visit (due to size or

maneuverability, for example).

� Some vehicles can make multiple trips from the depot (i.e., multi-trips).

6.3 Proposed Approach

This section provides an overview of our approach for solving the HVRP as well as

the HVRPM. We discusses some of its main design properties, such as: (a) the biased

randomization of the MER heuristic, which allows transforming the MER deterministic

heuristic (Prins, 2002) into a multi-start probabilistic algorithm; and (b) the use of two

additional local search methods developed in Juan et al. (2011e), which are based on

cache and splitting techniques. It should be mentioned at this point that the MER

heuristic for solving the HVRP is based on the popular savings heuristic for solving the

homogeneous VRP (Clarke and Wright, 1964). Fig. 6.1 depicts a high-level flowchart

of the proposed algorithm, which overall description is included next.
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Apply cache-based Local Search  

Unify routes 

Extract a savings’ edge from the list 

 

Sort the list of savings’ edges with a 
biased random criterion 

Compute initial dummy solution  
and list of savings’ edges 

Is the savings’ edge list empty? 

Yes 

Yes 

No 

No 

Compute decreasing sorted list of 
vehicles and decreasing sorted list 

of routes’ loads 
 

 

Each route load can be assigned to a 
candidate vehicle? (load <= vCap) 

 
 

Yes 

No 

Start 

Clarke & Wright, 1964 

Juan et al., 2010 

Is mergedCost <= maxRouteLength? 

Apply 2-Opt-based Local Search 

Assign final vehicles 

Is time < maxTime? 

Apply splitting-based Local Search 

Update best solution found 

Juan et al., 2011 

Juan et al., 2011 

Croes, 1958 

Yes 

No 

alpha 

maxSplitter 

maxRouteLength 

Prins, 2002 

maxTime 

End 

Figure 6.1: Overview of our HVRP approach.
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We propose a general approach for both HVRP and HVRPM. So given a instance,

first the algorithm constructs an initial solution as proposed in the classical CWS

heuristic. In this initial solution, a virtual truck is assigned to each customer. Also

as proposed in the aforementioned heuristic, the algorithm computes the savings as-

sociated with each edge connecting two different customers. Put in simple terms, the

savings associated with a given edge are computed as the reduction in costs (distance

and/or time-based) due to the use of this edge for merging two different routes into

a single new one. The edges are then stored into a list, which is sorted from highest

to lowest savings. At this point, a multi-start procedure begins. Typically, this proce-

dure is executed over and over until a time-based ending condition is reached. At each

iteration of this multi-start procedure, the following steps are performed:

1. A new savings list of edges is obtained by randomizing the original savings list

throughout the Geometric probability distribution, as suggested in Juan et al.

(2010). By randomizing the savings list, the deterministic heuristic described in

step 2 is transformed into a probabilistic method. This allows obtaining different

outputs at each iteration of the multi-start procedure. Furthermore, by using a

biased probability distribution —the Geometric in this case— most of the logic

behind the classical savings heuristic is kept, i.e.: edges with higher savings will

be more likely to be selected from the list than those with lower savings.

2. Then, until the savings list gets empty, an iterative process begins in which the

edge at the top of the randomized list is extracted. This edge will connect two

different routes. In order to merge these two routes, the extreme points of the

edge must be ‘external’ to their respective routes, i.e., they need to be directly

connected to the depot. Moreover, both capacity and maximum-route-length

constraints must be validated. A similar method to the one proposed in Prins

(2002) is used to validate the capacity constraint in a heterogeneous fleet, i.e.: the

list of vehicles is sorted from highest to lowest capacity, while the list of routes

is sorted from highest to lowest accumulated demands; after that, a temporary

assignment between the two lists is searched; if a successful match including all

previously merged routes plus the new one is found, then the capacity constraint is

validated and the temporary assignment becomes final; otherwise, the temporary
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assignment is discarded and the merge becomes unfeasible. After each merge, a

fast 2-Opt local search Croes (1958) is run over the new route.

3. Once all the edges in the savings list have been considered, the resulting solution

is then improved throughout the two local search methods proposed in Juan et al.

(2011e): First, a cache (hash-table) of routes is employed to quickly update any

route in the current solution by the best-known route —among those routes found

in previous iterations— covering the same set of nodes. Secondly, using proximity

criteria, the current solution is divided into several sets of routes together with

their associated vehicles; then, each of these subsets is considered as a smaller

and feasible HVRP problem over which steps 1 and 2 above can be applied to

find better ‘local’ routing plans. As a last step, the enhanced solution provided

by these local search methods is compared against the best solution obtained so

far by the multi-start procedure and, whenever appropriate, this best solution is

updated.

Eventually, once the time-based criterion is reached, the best solution found by

the described multi-start procedure is the one returned. An interesting property of

this approach is that it can be naturally and easily parallelizable. In effect, due to

its probabilistic nature, the searching path followed by the aforementioned procedure

greatly depends upon the seed employed to initialize the pseudo-random number gen-

erator —which is used during the randomization of the savings list. Therefore, using

an object-oriented programming terminology, it is possible to simultaneously run dif-

ferent ‘instances’ of the algorithm ‘class’ by simply changing the initial seed. These

independent instances can then be run in different threads, cores, or even computers,

as discussed in Juan et al. (2013a).

A lower-level description of the proposed algorithm is presented in (Pseudo-code 3),

called RandCWS-Prins. The input data are the nodes information (geographical lo-

cation and individual demands), the costs of moving from one node to another, and

the fleet composition. This procedure requires parameters: (a) alpha, the one as-

sociated with the Geometric distribution employed during the randomization pro-

cess of the savings list; (b) maxTime, the stopping time of the multi-start process;

(c) maxRouteLength, associated with the maximum route length allowed; and (d)
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maxSplitter, associated with the maximum number of iterations for the splitting local

search.

First (line 2), the procedure generates a list of edges connecting any two nodes.

This list is sorted according to the savings obtained when using each edge. Then, an

initial dummy solution is generated (line 3). In this solution, one round-trip route

starting at the depot is considered for each client. After that, a multi-start process

begins (lines 4-28). This multi-start process is especially useful for several reasons: (a)

it allows the randomized algorithm to escape from local minima; and (b) it facilitates

parallelization of the approach —this can be achieved by running different agents or

threads of the algorithm with the same instance, each one using a different seed for the

pseudo-random number generator. At each iteration of the multi-start process, a biased

randomization of the savings list is produced (lines 5-6). At the end of each iteration,

a new solution is iteratively constructed by merging routes, if feasible, according to the

randomized list (lines 7-20). Several fast Local Search techniques are applied in order to

improve values. Each merged route is improved through a classical 2-Opt local search

process (line 18). Once a solution is generated, a memory-based local search process is

applied (line 21). In this process, each route in the solution is checked against a cache,

which contains the best found-so-far route covering the same set of nodes. Moreover, if

the data instance is provided with the coordinates of nodes and the generated solution

is considered as promising, a divide-and-conquer process is also applied (lines 22-24).

Eventually, the algorithm returns the best solution produced in the entire multi-round

process (line 29).
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Algorithm 3 General Pseudo-code of the Randomized CWS-Prins Algorithm.

1: procedure RandCWS-Prins(nodes, costs, vehs)

2: savingsList← computeSavingsList(nodes, costs)

3: initialSol← constructInitialSol(nodes, costs) . Build dummy solution

4: while stopping criterion is not satisfied do . Multi-start process de-

fined by MaxTime parameter

5: currentSol← initialSol . Reset the dummy solution as the base

6: randomSavingsList ← biasedRandomization(savingsList) . Bi-

ased randomized selection of savings

7: while randomSavingsList is not empty do . Execute the route

merging process

8: savEdge← selectNextEdge(randomSavingsList)

9: rA← getStartingRoute(savEdge) . Route A

10: rB ← getClosingRoute(savEdge) . Route B

11: mergeIsV alid← validateConstraints(savEdge, rA, rB, vehs, currentSol)

. Check merging conditions for CWS-HVRP approach

12: if mergeIsV alid then

13: unifiedRoute← unifyRoutes(routeA, rB, savEdge) . Merge

routes A and B into A

14: currentSol← deleteRoute(currentSol, rB)

15: for eachRouteInCurrentSol do

16: route ← assignFinalV ehicle(getCandidateV ehicle(route))

. Assign final vehicles to routes

17: end for

18: unifiedRoute← improveWithTwoOpt(unifiedRoute) . Op-

timize route applying a Local Search

19: end if

20: end while

21: currentSol← improveSolutionUsingCache(currentSol, costs, vehs)

22: if currentSol is promising then

23: currentSol← improveSolutionUsingSplitting(currentSol, costs, vehs)

24: end if

25: if currentSol outperforms bestHvrpSol then

26: bestHvrpSol← currentSol

27: end if

28: end while

29: return bestHvrpSol . Return the best found solution so far

30: end procedure
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One of the key steps in our approach is the vehicle assignment process that takes

place during the merging of any two routes. Pseudo-code 4 shows the logic flow of the

procedure employed to validate a potential merging as feasible. Notice that in order to

merge two routes, three conditions must be satisfied. First (lines 2-4), both nodes in

the connecting edge must be external nodes, i.e., both have to be directly connected

with the depot. Secondly, the length of the merged route cannot be greater than the

maximum allowed. Finally, it must be possible to cover each merged route with a

truck. So we are facing an assignment problem (lines 5-15). To check this condition,

all merged routes (including the new one) are sorted from the highest to the lowest

aggregated demand (line 5), while all vehicles are similarly sorted by capacity (line

6). Then, starting from the top of both lists, the next vehicle is assigned to the next

merged route as far as the truck capacity can cover the route demand (lines 8-15). If

this assignment is not feasible after a certain point, then multi-trips are considered,

i.e.: vehicles already covering one route are assigned to a second one as far as travelling

times allow to cover both routes in the specified time period. Of course, if some merging

routes cannot be covered by any vehicle, then the potential merging process is discarded

and a new potential merging is considered as far as the edges list is not empty. Notice

that our approach allows for the realistic multi-trip scenario and, at the same time, it

tries to use all vehicles in the fleet before assigning additional trips to some of them.

This is a relevant difference with regards the vehicle assignment proposed in Prins

(2002), where multi-trips of larger vehicles are promoted and preferred over the use

of the entire fleet. In our case, however, the company was interested in using the

entire fleet in order to reduce total delivery times as much as possible (for customer

satisfaction).
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Algorithm 4 Validation for merging of two routes.

1: procedure validateMergeConstraints(edge, routeA, routeB, vehicles, solution)

2: if (nodes of edge are internals in routeA or routeB) OR (cost(routeA) +

cost(routeB)− saving(edge) > MaxRouteLength) then

3: return false

4: end if

5: candidateSolution← getRoutesWithNewCandidate(solution, routeA, routeB)

. Vehicle Assignment Problem: create a new candidate route joining routes A and

B and deleting these two from solution

6: routeList ← getSortedRouteList(candidateSolution) . Sort list of all

routes in decreasing order of loads

7: vehicleList← getSortedV ehicleList(vehicles)

8: for each route in routeList do

9: vehicle ← getF irstAvailableV ehicle(vehicleList, route) . Assign

each route to the first bigger-free truck

10: if capacity(vehicle) < load(route) then

11: return false

12: end if

13: route← setCandidateV ehicle(vehicle)

14: end for

15: return true

16: end procedure

6.4 Computational Results

While there are some standard benchmarks for the homogeneous (capacitated) VRP,

this is not the case for the heterogeneous VRP, where several authors have proposed

different sets of benchmarks depending on the specific version they are dealing with,

e.g.: with or without fixed and/or variable costs associated with the use of each type

of vehicle, with our without multi-trips, etc. Even worse, most authors have proposed

instances which make use of probability distributions to generate the spatial coordi-

nates of customers, as well as their associated demands. In our opinion, this is not a

good practice since just from the specific probability distributions it is not possible to

reproduce the exact customers’ coordinates and/or demands —which makes it difficult

to reproduce the experiments. For those reasons, we have decided to use three different
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testbeds in order to measure the performance of our approach:

1. Prins’ instances: Proposed in Prins (2002), these are twenty random instances,

denoted as Pi with i ∈ {1, . . . , 20}. Each instance contains 100 customers uni-

formly distributed in a 200 x 200 km2 grid. Each customer’s demand is uniformly

distributed in [1, 100]. The depot is placed at the center of the grid, and the max-

imum time allowed per route is 300 minutes (or 350 km at a speed of 70 km/h).

The fleet is composed of k = 9 types of vehicles with mk = 2, ∀k ∈ {1, 2, . . . , 9}.
Each type of vehicle has a capacity given by Qk = 600− 50(k − 1).

2. Golden and Taillard instances: the first work (Golden et al., 1984) proposed 20

instances for the FSMVRP of different sizes, and the second (Taillard, 1999)

defined the number of available vehicles of each type. The first 12 instances are

quite small —they have less than 50 nodes-, so we have not considered them. Also,

instances 13, 16, and 18 cannot be solved with the MER heuristic since they do

not satisfy some of the Prins’ assumptions. For our algorithm, we selected eight

test instances, denoted as GTi with i ∈ {13, . . . , 20}. The number of customers in

these instances, originally proposed by Christofides and Eilon (1969), is between

50 and 100. Information about the fleet composition in these instances is displayed

in Table 6.2.

3. Li instances: five large-scale HVRP instances (Li et al., 2007a), inspired in the

previously commented and denoted as Hi with i ∈ {1, . . . , 5}. The number of cus-

tomers in these instances is between 200 and 360. Each instance has a geometric

symmetry, with nodes located in concentric circles around the depot. Information

about the composition of the fleets for these instances is displayed in Table 6.3.

To test the aforementioned set of instances, both the MER and RandCWS-Prins

algorithms have been implemented as a Java application. Notice that on this experi-

ments our objective function is minimizing distance. These implementations have been

executed on a Java Virtual Machine (JVM) version 1.6 using a computer with the

following characteristics: a Windows 7 Professional SP1 64 bits operating system, an

Intel Xeon E5603 1.60Ghz processor, and 8 GB of RAM.

We run 10 independent executions per instance, each of them using a different

seed for the pseudo-random number generator. Each execution was run for 1 minute.
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Instance QA γA mA QB γB mB QC γC mC QD γD mD QE γE mE QF γF mF %

GT13 20 1.0 4 30 1.1 2 40 1.2 4 70 1.7 4 120 2.5 2 200 3.2 1 95.39

GT14 120 1.0 4 160 1.1 2 300 1.4 1 88.48

GT15 50 1.0 4 100 1.6 3 160 2.0 2 94.76

GT16 40 1.0 2 80 1.6 4 140 2.1 3 94.76

GT17 50 1.0 4 120 1.2 4 200 1.5 2 350 1.8 1 95.38

GT18 20 1.0 4 50 1.3 4 100 1.9 2 150 2.4 2 250 2.9 1 400 3.2 1 95.38

GT19 100 1.0 4 200 1.4 3 300 1.7 3 76.74

GT20 60 1.0 6 140 1.7 4 200 2.0 3 95.92

Table 6.2: Specifications for 8 Golden and Taillard instances with 6 Vehicle Types [Col-

umn ‘%’: 100 x (total demand/total capacity)].

Instance QA γA mA QB γB mB QC γC mC QD γD mD QE γE mE QF γF mF %

H1 50 1.0 8 100 1.1 6 200 1.2 4 500 1.7 3 1000 2.5 1 93.02

H2 50 1.0 10 100 1.1 5 200 1.2 5 500 1.7 4 1000 2.5 1 96.00

H3 50 1.0 10 100 1.1 5 200 1.2 5 500 1.7 4 1000 2.5 2 94.76

H4 50 1.0 10 100 1.1 8 200 1.2 5 500 1.7 2 1000 2.5 2 1500 3.0 1 94.12

H5 50 1.0 10 100 1.2 8 200 1.5 5 500 1.8 1 1000 2.5 2 1500 3.0 1 92.31

Table 6.3: Specifications for 5 Li instances with 6 Vehicle Types [Column ‘%’: 100 x

(total demand/total capacity)].

Table 6.4 shows a comparison, for the three data sets, between the outcomes obtained

with the MER heuristic and our algorithm. The first columns describe the name of the

instance, the number of visited customers, and the total delivered demand. Next, for

each algorithm the number of routes in the corresponding solution and the computation

time are given. The last column shows the percentage gap between both solutions.

Notice that our approach clearly outperforms the MER heuristic (average gap about

4.76%). However, as discussed before, the exact values obtained in Prins (2002) could

not be replicated due to the use in that paper of random inputs.

Results in Table 6.4 are useful to directly compare our algorithm and the MER

heuristic —which, to the best of our knowledge, is the only one considering the HVRPM.

However, unlike the Prins and Li instances, instances GT13, GT16, and GT18 do not

satisfy the MER assumption that any vehicle can cover any customer demand. This

constraint can be somewhat unrealistic. In fact, we have been involved in a real case

(described in the next section) in which a company delivers to large-size customers

which cannot be covered with the smallest vehicles in its fleet.
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MER RandCWS-Prins

Total Cost Time Best Time Gap Average Gap

Instance n Delivered (1) M (sec) Cost M (sec) (2-1) 10 Seeds (3-1)

Demand (2) (3)

P1 100 4806 2537.62 10 0.09 2457.29 10 8 -3.17% 2482.2 -2.18%

P2 100 4895 2731.76 11 0.14 2591.28 10 7.79 -5.14% 2604.8 -4.65%

P3 100 5218 2712.66 11 0.07 2672.8 11 6.23 -1.47% 2691.01 -0.80%

P4 100 4763 2398.98 10 0.08 2316.77 10 25.55 -3.43% 2337.92 -2.55%

P5 100 5069 2750.92 11 0.06 2586.02 11 5.59 -5.99% 2611.97 -5.05%

P6 100 4896 2711.17 10 0.09 2613.88 10 7.13 -3.59% 2619.71 -3.37%

P7 100 5268 2844.43 12 0.07 2705.84 11 12.44 -4.87% 2726.04 -4.16%

P8 100 5310 2812.29 12 0.05 2680.22 12 30.69 -4.70% 2709.45 -3.66%

P9 100 5403 2757.86 12 0.06 2600.38 12 5.83 -5.71% 2623.62 -4.87%

P10 100 4462 2426.23 10 0.09 2365.94 9 7.28 -2.48% 2379.53 -1.92%

P11 100 5269 2832.11 12 0.06 2653.04 12 6.24 -6.32% 2695.42 -4.83%

P12 100 4860 2645.14 10 0.07 2510.77 10 5.69 -5.08% 2548.09 -3.67%

P13 100 4772 2626.43 10 0.09 2454.11 10 8.1 -6.56% 2464.2 -6.18%

P14 100 5065 2658.18 11 0.08 2573.93 11 47.16 -3.17% 2584.44 -2.77%

P15 100 4716 2768.28 10 0.09 2597.41 10 8.4 -6.17% 2617.78 -5.44%

P16 100 5504 3013.82 13 0.05 2813.44 12 5.69 -6.65% 2839.76 -5.78%

P17 100 4632 2563.45 10 0.08 2381.5 10 38.03 -7.10% 2401.9 -6.30%

P18 100 4727 2517.39 11 0.08 2411.38 10 49.1 -4.21% 2427.3 -3.58%

P19 100 5398 3003.3 12 0.06 2857.48 12 39.16 -4.86% 2874.62 -4.28%

P20 100 4730 2539.31 10 0.10 2415.98 10 14.48 -4.86% 2452.3 -3.43%

Average 2692.57 10.9 0.08 2562.97 10.65 16.93 -4.78% 2584.6 -3.97%

GT13 50 973 NA NA NA 821.34 17 37.64 NA 844.93 NA

GT14 50 973 569.76 7 0.01 539.01 6 39.12 -5.40% 540.9 -5.07%

GT15 50 777 677.57 9 0.01 633.79 9 9.24 -6.46% 634.17 -6.40%

GT16 50 777 NA NA NA 637.94 9 3.48 NA 638.47 NA

GT17 75 1364 796.14 11 0.04 770.54 10 5.11 -3.22% 775.66 -2.57%

GT18 75 1364 NA NA NA 787.57 12 19.87 NA 788.53 NA

GT19 100 1458 853.15 6 0.17 760.24 6 73.28 -10.89% 773.94 -9.29%

GT20 100 1458 1032.78 13 0.08 984.8 13 8.26 -4.65% 998 -3.37%

Average 767.73 9.17 0.05 741.9 10.25 24.5 -6.12% 749.33 -5.34%

H1 200 4000 9188.1 18 3.16 8459.35 18 32.25 -7.93% 8637.68 -5.99%

H2 240 4800 6535.64 25 8.27 6457.83 24 29.89 -1.19% 6480.85 -0.84%

H3 280 5600 11121 20 19.03 10990.18 19 76.63 -1.18% 11114.85 -0.06%

H4 320 6400 9480.08 23 53.96 9331.28 21 59.67 -1.57% 9413.13 -0.71%

H5 360 7200 12502.36 18 208.65 11918.75 18 143.71 -4.67% 12360.08 -1.14%

Average 9765.44 20.8 58.61 9431.48 20 68.43 -3.31% 9601.32 -1.75%

Table 6.4: Results on 3 Datasets after 10 minutes of Execution for each instance (single

trip case).
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6. HETEROGENEOUS VRPS

6.4.1 HVRP with Variable Costs

For considering, variable costs (see Eq. 6.1) we had made a specific change in the pre-

viously proposed algorithm. As we have commented, there is an assignment problem

inside of the randomized CWS. So we thought appropriate to complement the vehi-

cle assignment proposed by Prins with a polynomial method tailored to this type of

problem. Therefore we decided to use the popular Hungarian Algorithm reviewed by

Munkres (1957). This algorithm works particularly well with small instances. So we

introduce a new parameter (limitMunkres) to decide when to use this procedure and

when to used the Prins one. As starting value, we set this value on 30 because it was

a reasonable value regarding the nature of instances.

min
∑
i∈Ω

∑
j∈Ω

M∑
k=1

γk · ckij · xkij (6.1)

As in the previous experiment, we run 10 independent executions per instance.

Each execution was run for 1 minute. Table 6.5 shows a comparison, for the Golden

and Taillard data set, between the outcomes obtained by Li et al. (2007a) and the new

version of our algorithm. The first columns describe the name of the instance and the

Best Known Solution. Next, the number of routes in the corresponding solution and

the computation time are given. The last column shows the percentage gap between

both solutions. The average gap of best solutions is about 2.08%. However, the values

get worse while the instances get bigger. Notice that our approach is easily adaptable

to different routing scenarios. Also that some distance values (e.g., GT13 and GT15) are

even worst than the previous experiments because on this we are evaluating a different

objective function.

6.5 Real Case I: HVRP with Multiple Trips

The distribution company of this study distributes products from its central facilities in

the Northeast of Spain to a chain of around 400 stores all over the country. Orders from

every store are received daily (i.e., Monday through Saturday), and the distribution is

then carried out from a central depot by a company-owned fleet of 169 vehicles. This

fleet includes trucks of different capacities (see Table 6.6 for the fleet composition). At

a glance, the daily distribution planning process unfolds as follows:
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6.5 Real Case I: HVRP with Multiple Trips

Instance BKS (1) M Distance Best Variable Cost (2) Gap (2-1) 10 seeds Variable Cost (3) Gap (3-1)

GT13 1517.84 17 841.57 1522.27 0.29% 1566.29 3.19%

GT14 607.53 7 537.57 609.17 0.27% 623.20 2.58%

GT15 1015.29 9 655.79 1019.55 0.42% 1026.90 1.14%

GT16 1144.94 9 659.39 1148.62 0.32% 1155.75 0.94%

GT17 1061.96 11 785.03 1078.80 1.59% 1097.62 3.36%

GT18 1823.58 12 821.42 1862.84 2.15% 1921.53 5.37%

GT19 1117.51 6 767.68 1190.21 6.51% 1216.92 8.90%

GT20 1534.17 13 982.31 1612.86 5.13% 1634.81 6.56%

Average 10.50 753.51 1,255.97 2.08% 1,280.38 4.01%

Table 6.5: Results on 1 Dataset after 10 minutes of Execution for each instance (single

trip case with variable cost).

� Order placement: stores place orders by noon with no restriction on the number

of boxes.

� Order planning: orders are received at the central depot and may be adjusted

depending on product availability.

� Route planning: three route dispatchers plan routes to all stores by 2pm (see

more details on route planning below).

� Distribution: vehicles load the cargo at the depot and depart to the stores. Truck

loading is divided into three shifts (at 2pm, 3pm, and 5pm, respectively).

� Delivery: vehicles arrive at the stores between 5pm and 1am of the next day, and

unload their cargo.

� Return to depot: after the last store in the route is served, vehicles return to the

depot.

The route planning step establishes the routes that vehicles must follow to deliver

the products. This phase is obviously the crucial step in the distribution process as

it determines most of the total distribution costs. Currently, this task is executed

manually by three route dispatchers. They divide all stores into three geographical

areas, so that each dispatcher is responsible for the routes in her region (that is, each

of them solves a smaller VRP). For each region, they have sets of predetermined routes

that modify slightly according to daily demand and truck availability. Trucks and

stores are usually assigned to one of the loading shifts, so that routes include stores in

the same shift only. In addition, there exist other specific constraints on the routing
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6. HETEROGENEOUS VRPS

k Qk mk MQk AMk MQMk

V ehA 222 8 1,776 1 1,776

V ehB 414 5 2,070 1 2,070

V ehC 482 139 66,998 2 133,996

V ehD 550 3 1,650 1 1,650

V ehE 616 6 3,696 1 3,696

V ehF 676 3 2,028 1 2,028

V ehG 752 4 3,008 1 3,008

V ehH 1,210 1 1,210 1 1,210

Total 169 75,691 149,434

Table 6.6: Fleet composition of the distribution company.

problem that make this real VRP quite unique. These need to be considered when

designing routes:

� The number of trucks available each day and shift may vary due to eventualities.

� Not all types of vehicles can visit all stores. For example, large trucks cannot

access some stores for maneuverability reasons.

� Some stores have restrictions on their delivery times. For example, trucks may

not be allowed in some urban areas before (or after) a determined time. These

are known as delivery time windows.

� Some trucks are allowed to make multiple trips (generally two). In days of high

demand, for example, the total capacity of all available vehicles may not be

enough to cover all demand, so that some trucks perform two trips on that same

day. This implies that some stores could be visited twice by the same truck or

by a different one, having to split their order in two.

� Each truck is driven by a single driver, so there is an upper bound on the route

duration given by the maximum number of working hours (i.e., 8 hours).

With all this information and constraints, the three company dispatchers have about

one hour every day to configure the delivery routes. The planning is done manually with

some computer aid to perform simple verifications (like tracking the number of boxes

yet to be assigned). As the number of stores continues to grow, the need for a scientific
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6.5 Real Case I: HVRP with Multiple Trips

Instance n Total Demand Delivered Instance n Total Demand Delivered

A 372 77913 L 368 67875

B 366 79130 M 313 35373

C 371 91901 N 370 70199

D 372 83571 O 371 65007

E 373 85773 P 364 63078

F 372 84023 Q 315 32006

G 374 85539 R 373 71662

H 370 89596 S 372 65869

I 372 76846 T 366 62362

J 372 94892 U 314 30211

K 373 83901 V 374 67663

W 371 63941

X 368 61770

Y 315 34455

Table 6.7: General Features of involved Real Instances.

method to help the decision making becomes more latent. This is a very complex

problem that requires more sophisticated methods to obtain better and faster solutions

that allow the company to save considerable costs in transportation. To illustrate the

nature of the involved instances we summarize the information for 25 real instances

from 25 business days in 2011 (see Table 6.7). However, this study only consider the

multiple trips —previous fourth condition.

6.5.1 Computational Results

Before running the algorithm to solve the problem, all necessary input data had to be

compiled and prepared in the appropriate format. This basically refers to all problem

parameters and constraints which include data from all stores (demands and postal

addresses), vehicle capacities, truck-store incompatibilities, delivery time windows and

maximum time per route (i.e., at most 8 hours per route). With all addresses, including

that of the depot, we constructed distance and time matrices. These matrices contained

all travel distances and times between every pair of stores, and between all stores and

the depot. For about 400 stores plus a depot, this implied finding around 160,000

distances and times. To automate this quest, we developed a web application http:

//vrp.upf.edu that uses Google Maps in which the user uploads an Excel file with

all addresses, and the application returns, in few seconds, a plain text file with the
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6. HETEROGENEOUS VRPS

matrices in a format ready for our algorithm. Notice that our function cost is focused

on minimizing total travelling distance.

To illustrate the performance of the algorithm we summarize the results obtained for

11 multi-trips real instances (see Table 6.8) and 14 single-trips instances (see Table 6.9).

We imposed a time bound of ten minutes to the algorithm (maxTime). For each

instance, it shows the number of stores visited that day as well as the total demand (in

boxes) delivered. This table compares the solution obtained by the company dispatchers

with our solution, showing the total logistics cost and the number of routes employed.

Notice that more routes does not necessarily imply higher costs as can be seen in some

instances. In Table 6.8, multi-trips appear in almost all solutions as expected, that is,

those in which the number of routes exceeds the total number of vehicles (i.e., 169). In

Table 6.9, the magnitude of improvements is bigger even when the instances are smaller

and single-trip. The algorithm was executed using 10 different seeds per instance. This

table reports both the average cost of the 10 runs and the best solution found. The

best solution for each instance was obtained in few seconds and the general average

cost reduction was around 15%, which represents savings of around e6,000 per day.
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6.5 Real Case I: HVRP with Multiple Trips

Fig. 6.2 shows the twenty longest routes obtained by proposed algorithm in instance

I, providing a picture of the territorial extension supplied by the company. These routes

represent a total distance of 9,057 km and 68 customers. Depot is marked with a ‘D’

pinpoint while customers are the remaining pinpoints.

Figure 6.2: Geographical situation of the twenty longest routes of instance I, using Google

Maps.

6.5.2 Sub-case: HVRPM with Real Cost Function

The previous study was focused on minimizing total distance travelling. However, the

company was interested in including other related costs in the objective function. So

we modified the objective function and run the algorithm over the same 25 instances.

The new function cost (see Eq. 6.2) is composed by four components explained next

and which values can be found in Table 6.10:

1. The variable cost based on the distance and multiplied by a factor depending on

the used vehicle for a route (previously defined as γk),

2. A fixed cost based on the used vehicle for a route (previously defined as Fk),

3. A second fixed cost per visited store (denoted as λ = 8 e),
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6. HETEROGENEOUS VRPS

k γk Fk

V ehA 0.2446 66

V ehB 0.3195 72

V ehC 0.3315 72

V ehD 0.3315 90

V ehE 0.3640 106

V ehF 0.3640 106

V ehG 0.3640 106

V ehH 0.3640 106

Table 6.10: Complementary cost information of Fleet composition of the distribution

companyRelated.

4. A third fixed cost per box delivered (denoted as κ = 0.1115 e) which is multiplied

by a theoretical capacity of the truck (denoted as Q′k/Q
′
k < Qk). This theoretical

capacity was defined in the fares agreement with drivers because they consider

that the vehicle goes full.

min(
∑
i∈Ω

∑
j∈Ω

M∑
k=1

γk · ckij · xkij +
M∑
k=1

Fk +
∑
i∈Ω

λ+
M∑
k=1

κ ·Q′k) (6.2)

As in the previous experiment, we run 10 independent executions per instance.

Each execution was run for 1 minute. Table 6.11 shows a comparison between the cost

of minimizing distance versus minimizing the new cost function both obtained with our

algorithm. The first columns describe the name of the instance, and column (1) with

the related cost in euros of the best solutions previously found in Tables 6.9 and 6.8.

Next, the number of routes in the corresponding solution, and column (2) with the

travelling distance in Km are given. The gap of the distance (Km) in the new solution

against the current solution of the company, and also with the best solution previously

found. The associated real cost of the new solution is presented in column (3). The last

column shows the percentage gap between generated and current company solutions.

This average gap for best solutions is less than 1%. Notice that one more time our

approach is easily adaptable to different scenarios.

On the provided instances, the total costs of current routing planning is about

877,602.61 ewith a total distance of 1,050,150.59 Km. So far, minimizing only distance,

we have reduced the total cost to 848,267.17 e(3.34% better) and total distance to
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6.5 Real Case I: HVRP with Multiple Trips

Min(Distance) Min(Real Costs)

Instance Real Cost M Distance Cost Gap Gap Real Cost Gap

(e) (1) (Km) (2) (2-Current) (2-Best) (e) (3) (3-1)

A 38289.60 181 39800.00 -12.15% 0.04% 38285.68 -0.01%

B 39051.86 184 41179.97 -12.73% 0.00% 39051.86 0.00%

C 46146.12 219 50155.98 -7.02% 0.74% 46134.57 -0.03%

D 42226.99 199 45423.57 -10.71% 0.00% 42226.99 0.00%

E 43383.69 207 45777.50 -10.79% 0.52% 43351.66 -0.07%

F 41834.08 196 45345.44 -10.19% 0.00% 41834.08 0.00%

G 42420.15 202 44734.90 -13.01% 0.00% 42420.15 0.00%

H 45111.51 212 49406.72 -9.26% 0.26% 45035.03 -0.17%

I 37602.21 174 39736.12 -11.81% 1.48% 37329.90 -0.72%

J 47712.45 229 51145.95 -15.11% 0.00% 47712.45 0.00%

K 41945.63 199 44156.93 -12.21% 0.24% 41863.61 -0.20%

L 32598.75 146 34234.77 -17.84% 0.00% 32598.75 0.00%

M 17463.35 70 16726.46 -33.68% 0.20% 17347.41 -0.66%

N 33972.95 153 35815.12 -13.66% 0.91% 33960.09 -0.04%

O 31227.50 139 32329.39 -15.25% 0.55% 31156.93 -0.23%

P 30323.48 134 31422.39 -14.84% 0.10% 30216.48 -0.35%

Q 16055.47 63 14919.63 -36.98% 0.04% 15932.14 -0.77%

R 34343.53 156 35776.78 -15.04% 0.00% 34343.53 0.00%

S 31490.91 141 32579.90 -17.82% 0.00% 31490.91 0.00%

T 29953.86 132 31175.31 -15.52% 0.82% 29905.68 -0.16%

U 15230.24 59 14260.62 -36.11% 0.00% 15230.24 0.00%

V 32414.24 145 33890.79 -17.60% 0.01% 32404.95 -0.03%

W 30636.01 136 31812.79 -17.97% 0.00% 30636.01 0.00%

X 29971.28 132 30977.40 -18.58% 0.22% 29868.77 -0.34%

Y 16861.30 68 15909.83 -32.42% 0.00% 16861.30 0.00%

Average 33,930.69 155.04 35,547.77 -17.13% 0.24% 33,887.97 -0.15%

Total 848,267.17 888,694.22 847,199.18

Table 6.11: Results of minimizing Real Cost Function on Real Instances after 10 minutes

of execution for each instance.
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6. HETEROGENEOUS VRPS

Figure 6.3: Comparison of distance travelled and real costs for each objective function

considered.

884,773.21 Km (improved in 15.75%). While minimizing the real cost function, it have

reduced the total cost to 847,199.18 eand total distance to 888,694.22 Km. Against

the current company solution, the gap related to total costs is slightly better than the

previous results (3.46%) as expected but in detriment of total distance (just 15.37% of

improvement). So the use of different cost functions can impact on the optimization

process of real-big instances like the used ones. In Fig. 6.3, we can appreciate how

the distance is quite improved against the current company solution. There is a small

distance difference (0.24%) between the solutions generated with objective functions

considered, where logically the best value is obtained when distance is minimized. Even

when the detail of the cost per each day is not given, the general cost is also reduced

with both objective functions. The first 11 instances (with multi-trips) represent the

higher values on distance and real costs. So this results open the question to what could

be better for an enterprise: “have a small fleet of big vehicles or a large fleet of small

capacity vehicles?”. The design of a fleet is important to define then the performance

of multiple trips. The next section presents a sensibility study in order to help to find

a way to handle this situation.
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6.6 HVRP Sensibility Analysis

6.6 HVRP Sensibility Analysis

There is a specific problem, commonly named Fleet Composition Problem, which fo-

cuses on how to design an optimal (heterogeneous) fleet considering the number as well

as the particular properties of the different vehicles composing it (Hoff et al., 2010). So

we propose to analyze how distance-based costs vary when slight deviations from the

homogeneous fleet assumption are considered, i.e., how marginal costs/savings change

when a few ‘standard’ vehicles in the homogeneous scenario are substituted by other

vehicles with different loading capacity. Despite this type of ‘what-if’ analysis might

be very interesting for decision makers, it has not been discussed before in the HVRP

literature, which constitutes another important contribution of our work.

6.6.1 Proposed Approach

In this first part, we will focus on the distance-based costs, and thus we will not

take into account different fixed and variable costs for different types of vehicles. Our

approach for solving this variant of the HVRP is based on the combination of the

so-called Successive Approximations Method (SAM) and any efficient method —either

exact or approximate— for solving the CVRP. The SAM method proposes a multi-

round process. At each round of this process, a new type of vehicle —e.g., the largest

one available— is selected among the unused vehicles. Then, assuming an unlimited

fleet of vehicles of this type (all of them with the same loading capacity), a new and

smaller CVRP is solved for those nodes not yet served.

We make use of the SR-GCWS algorithm (Juan et al., 2010, 2011e) for solving the

CVRP at each round. The SR-GCWS is a relatively simple, parameter-less, yet efficient

approach for solving the CVRP. Notice, however, that other similar algorithms —e.g.,

the one by Rieck and Zimmermann (2009)— could have been employed at this stage

as well. From the resulting CVRP solution, only those routes which constitute feasible

routes for the entire heterogeneous routing problem are saved as partial solutions. The

remaining routes are discarded, releasing the associated nodes for the next round. Once

all the nodes have been served, a global routing solution is constructed as the union

of the partial solutions found at each round. Notice that after each round the size of

the next CVRP to be solved will be smaller. In this sense, it is possible to say that

the SAM approach for the HVRP makes use of already efficient algorithms to: (a)
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solve a set of ‘nested’ CVRPs in a multi-round process; (b) save feasible routes (partial

solution) at each round by assigning them to available vehicles; and (c) after the last

round is performed, constructing a global solution for the original HVRP by unifying

the disjoint partial solutions obtained at each round.

Pseudo-code 5 shows a logic flow for the SAM approach. Notice that the multi-round

process will continue until all customers’ demands have been satisfied (line 2). Thus,

at each round a new type of vehicle —e.g., the largest one available— is selected from

the list of available (non-used) vehicles (line 3), and its capacity is employed to define

a new CVRP (lines 4 and 5). This will be a CVRP composed by: (a) the non-served

customers plus the depot; and (b) a fleet of unlimited vehicles, all of them with the

same capacity. Notice that the first round the CVRP may simply be the homogeneous

particular case of the original HVRP stated with the capacity of the selected vehicle.

On the contrary, in the remaining rounds a series of ‘nested’ CVRPs will be defined, i.e.,

smaller CVRPs in which only customers not already served and vehicles not already

employed are considered. Once a new CVRP has been defined, it is solved by using

any of the numerous efficient methods already available in the literature (line 6). In

our case, the SR-GCWS algorithm developed by Juan et al. (2010) is employed to solve

each of the nested homogeneous CVRPs. The resulting solution will contain routes

designed for an imaginary fleet of vehicles with the selected capacity. For that reason,

it is likely that only some of the routes in this ‘virtual’ solution will be feasible, i.e.:

since the real fleet is composed of a limited number of vehicles with a given capacity

(the one associated with the selected type of vehicle), only some of the routes in the

‘virtual’ solution can be implemented in practice. In order to select which routes to

assign to the available vehicles, both routes and vehicles are sorted according to their

total requested demand and their loading capacity, respectively (lines 7 and 8). Then,

routes are assigned to vehicles following the order in the sorted lists as far as the

resulting assignment is still feasible, i.e., as far as the new free vehicle in the vehicles

list has enough capacity to cover the demand of the new route in the routes list (lines 9

to 16). On the one hand, the feasible routes are saved as part of a global solution, and

the customers and vehicles involved in them are deleted from the lists of non-served

customers and unused vehicles, respectively. On the other hand, the unfeasible routes

are discarded, and the associated customers are set to be served in the next round
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(lines 17 to 19). At the end of the multi-round process, a global solution covering all

customers with different types of vehicles will be obtained.

Algorithm 5 Pseudo-code for the SAM procedure.

1: procedure SAM(nodes, vehs)

2: while list of non − served customers is not empty do . Perform a

multi-round solving process until all customers are served

3: newV ehType← selectNextType(vehs) . Select a new type of vehicle

an define a new homogeneous CVRP, the largest one available

4: vehCap← getCapacity(newV ehType)

5: newCV RP ← defineCV RP (nodes, vehCap)

6: sol ← solveHomogeneousCV RP (newCV RP ) . Solve the new

CVRP using an efficient algorithm (e.g., SR-GCWS)

7: routes ← sortRoutes(sol) . Sort routes by total demand required

and vehicles by capacity

8: vehs← sortV ehicles(sol)

9: i← 0

10: while i < size(routes) AND demand(routes[i]) ≤ getCapacity(vehs[i]) do

. While feasible assign most demanding routes to largest vehicles

11: newRoute← assignV ehicleToRoute(routes[i], vehs[i])

12: routes[i]← markAsUsed(routes[i])

13: vehs[i]← markAsUsed(vehs[i])

14: globalSol← addRouteToSol(newRoute, globalSol)

15: i← i+ 1

16: end while

17: vehs ← deleteUsedV ehicles(vehs) . Dissolve (reset) the unused

routes and vehicles

18: routes← deleteUsedRoutes(routes)

19: nodes← extractNodes(routes)

20: end while

21: return globalSol . Return the global solution

22: end procedure

The SR-GCWS algorithm uses some concepts from the CWS heuristic (Clarke and

Wright, 1964), such as the ‘savings list of edges’, the ‘initial dummy solution’, and

the ‘merging process’. The main idea behind the biased randomization process is to
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introduce, at each iteration of the multi-start process, a slight variation to the order

in which edges in the savings list are processed. Instead of using always the edge with

the most savings (deterministic approach), the savings list is processed in a slightly

different order each time the multi-start process is run. However, it is important to

introduce bias in this random behaviour by giving edges with higher savings a higher

probability of being selected, otherwise the logic behind the heuristic would be lost.

In order to introduce this biased randomization, a Geometric probability distribution,

which only has one parameter, has proven to be an excellent option (Juan et al.,

2010). Additionally, two local search processes can be considered: (a) the first one is

based on the use of a cache of routes, so that new solutions can benefit from ‘high-

quality’ roots already found in previous iterations —notice that this technique adds

some kind of memory to the algorithm; and (b) the second one is based on the use of

splitting policies, which benefits from a divide-and-conquer strategy: a given solution

is split according to some geometric properties and then each of its subparts is solved

separately as a new and smaller CVRP. For a more in-deep discussion on the SR-GCWS

algorithm and its details, the reader is referred to Juan et al. (2011e).

6.6.2 Experimental Design

For our study we decided to perform a natural adaptation of some of the classical CVRP

instances (Augerat et al., 1995). In particular, our instances use exactly the same nodes,

including their location coordinates and demands, and the same number of vehicles.

We then consider a heterogeneous fleet composed of standard vehicles —i.e., vehicles

with the capacity defined in the CVRP benchmarks— and non−standard vehicles with

modified capacities. In our opinion, this is a natural way to adapt the homogeneous-

capacity benchmarks, since it allows the decision-maker to answer sensitivity-analysis

questions such as: “How would my routing costs be changed if we could employ one or

two trucks with a different capacity?”

Thus, in order to test our approach, a total of fifteen classical CVRP instances were

selected and adapted as ‘base’ HVRP instances. The selection was made at random

among the set of medium- and large-size instances (in terms of number of nodes). For

each base instance, six different fleet typologies were defined —thus, ninety different

instances were considered in total. These fleet typologies are partially composed of
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standard vehicles, each of them with capacity Q, but they differ in their exact compo-

sition as explained in the following general rule:

� Fleet 150–125: two standard trucks are substituted by a large truck (with capac-

ity Ql = 150%·Q) and by a large−medium truck (with capacity Qlm = 125%·Q),

respectively.

� Fleet 125–125: two standard trucks are substituted by two large − medium

trucks.

� Fleet 125–80: two standard trucks are substituted by a large −medium truck

and by a small truck (with capacity Qs = 80% ·Q), respectively.

� Fleet 90–90: two standard trucks are substituted by two small−medium trucks

(with capacity Qsm = 90% ·Q).

� Fleet 90–80: two standard trucks are substituted by a small − medium truck

and by a small truck, respectively.

Notice, however, that in some cases a reduction in the fleet capacity might cause the

infeasibility of the problem, i.e., the total demand to be satisfied might be greater than

the total fleet capacity. In those particular cases, an additional standard vehicle is

added to the fleet to ensure the feasibility of the problem.

6.6.3 Computational Results

The proposed SAM algorithm has been implemented as a Java application. The com-

putational tests have been carried out on a standard desktop computer with the MS

Windows 7 operating system, an Intel Xeon E5504 at 2.00 GHz processor, and 4 GB

RAM. Each instance was run twenty times using different seeds for the pseudo-random

number generator. Each of these run employed a maximum time of 300 seconds. Tables

6.12, 6.13 and 6.14 contain, for each of the fifteen base instances, the following informa-

tion: (a) instance name, which includes the number of nodes and necessary standard

vehicles —e.g.: A-n80-k10 has 80 nodes and can be solved with 10 standard vehicles;

(b) loading capacity of each standard vehicle; (c) problem tightness, i.e., total demand

requested by nodes divided by total capacity of the available fleet of vehicles; (d) costs

provided by the savings method (CWS) for the homogeneous case —i.e., fleet rule
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100-100; (e) costs associated with the best-known solution (BKS) for the homogeneous

case; (f) different fleet rules for the heterogeneous case, each of them defining a new

routing instance; (g) capacities for vehicles 1 and 2 associated with each fleet rule (e.g.

210 = 150% ·140); (h) costs provided by the SAM algorithm for the heterogeneous case

when the CWS heuristic is employed as routing method at each round; (i) percentage

gap between the BKS for the homogeneous case and the SAM-CWS solution for the

heterogeneous case; (j) our best solution (OBS), i.e., costs provided by the SAM algo-

rithm for the heterogeneous case when the SR-GCWS algorithm is employed as routing

method at each round; (k) fleet configuration for OBS; (l) percentage gap between the

BKS for the homogeneous case and the OBS for the heterogeneous case. Instances are

distributed in the aforementioned tables according to their relative sizes.

For each base instance, it is interesting to observe the evolution of the gaps be-

tween the OBS (heterogeneous case) and the BKS (homogeneous case). Notice that for

most instances it is possible to obtain notorious reductions in routing costs when two

standard vehicles are substituted by vehicles with a somewhat larger capacity. A clear

example of this are the negative gaps associated with the B-n45-k5 instance in Table

6.12. Another interesting effect that can be observed in these tables is that the number

of necessary vehicles in the fleet can sometimes be reduced by employing one (or two)

vehicle(s) with larger capacity. An example of this effect can be seen in Table 6.12,

instance B-n50-k7, and also in Fig. 6.4 for instance A-n80-k10. On the contrary, when

reducing the capacity of one or two vehicles in the fleet, it might become necessary to

incorporate an additional ‘standard’ vehicle to obtain feasible solutions. This happens,

for example, with instances E-n51-k5 or P-n55-k15 in Table 6.13. Observe that for the

latter instance no feasible solution has been found, for the fleet rules 90–90 and 90–80,

when combining SAM with the CWS heuristic. This difficulty in finding a feasible

solution might be due to the combination of two factors: (a) the high tightness of that

particular instance (99%); and (b) the fact that the CWS routing process is far from

being as efficient as the SR-GCWS routing process. In this sense, the gaps in the (i)

column are always much higher than the gaps in the (l) column, which proves that

the performance of the SAM approach greatly depends on the quality of the routing

algorithm it employs when solving the homogeneous case at each round. A similar

effect can be observed in Fig. 6.5.
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Homogeneous Case Heterogeneous Case

Instance Q CWS BKS (1) Fleet Rule (%) CWS OBS (2) (m1,m2,ms) Gap (1-2)

P-n40-k5 140 518.37 461.73

150–125 473.78 426.83 (1,1,3) -7.56 %

125–125 493.58 441.87 (1,1,3) -4.30 %

125–80 496.56 461.73 (1,1,3) 0.00 %

90–90 546.07 461.73 (1,1,3) 0.00 %

90–80 546.07 462.93 (1,1,3) 0.26 %

B-n41-k6 100 898.09 834.92

150–125 794.97 782.00 *(1,1,3) -6.34 %

125–125 819.33 812.64 (1,1,4) -2.67 %

125–80 812.64 812.64 (1,1,4) -2.67 %

90–90 NA 836.79 (1,1,4) 0.22 %

90–80 898.09 833.66 (1,1,5)* -0.15 %

B-n45-k5 100 757.16 754.22

150–125 655.55 655.55 (1,1,3) -13.08 %

125–125 712.36 702.11 (1,1,3) -6.91 %

125–80 711.56 711.56 (1,1,3) -5.66 %

90–90 791.20 788.00 (1,1,4)* 4.48 %

90–80 791.20 788.00 (1,1,4)* 4.48 %

A-n45-k6 100 1,006.45 944.88

150–125 898.69 876.87 (1,1,4) -7.20 %

125–125 911.64 911.64 (1,1,4) -3.52 %

125–80 NA 930.36 (1,1,4) -1.54 %

90–90 1,006.45 974.69 (1,1,5)* 3.15 %

90–80 1,006.45 974.69 (1,1,5)* 3.15 %

A-n45-k7 100 1,199.98 1,146.71

150–125 1,060.38 1,036.77 *(1,1,4) -9.59 %

125–125 1,125.22 1,045.12 *(1,1,4) -8.86 %

125–80 1,166.37 1,121.88 (1,1,5) -2.17 %

90–90 1,199.98 1,147.00 (1,1,5) 0.03 %

90–80 1,199.98 1,147.00 (1,1,5) 0.03 %

B-n50-k7 100 748.80 744.23

150–125 686.75 666.55 *(1,1,4) -10.42 %

125–125 698.21 666.65 *(1,1,4) -10.42 %

125–80 720.97 687.11 *(1,0,5) -7.68 %

90–90 748.80 744.23 (1,1,5) 0.00 %

90–80 748.80 744.23 (1,1,5) 0.00 %

Table 6.12: Experimental results for small-size instances with different fleet configura-

tions.
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Homogeneous Case Heterogeneous Case

Instance Q CWS BKS (1) Fleet Rule (%) CWS OBS (2) (m1,m2,ms) Gap (1-2)

E-n51-k5 160 584.64 524.61

150–125 533.75 515.43 (1,1,3) -1.75 %

125–125 589.02 520.94 (1,1,3) -0.70 %

125–80 577.11 520.94 (1,1,3) -0.70 %

90–90 584.64 539.69 (1,1,4)* 2.87 %

90–80 584.64 540.15 (1,1,4)* 2.96 %

P-n55-k15 70 978.07 944.56

150–125 937.83 905.06 (1,1,13) -4.18 %

125–125 965.11 926.23 (1,1,13) -1.94 %

125–80 967.71 938.85 (1,1,14)* -0.60 %

90–90 NA 952.02 (1,1,14)* 0.79 %

90–80 NA 953.74 (1,1,14)* 0.97 %

P-n76-k5 280 698.51 635.04

150–125 678.09 621.77 (1,1,3) -2.09 %

125–125 699.71 631.47 (1,1,3) -0.56 %

125–80 691.03 631.47 (1,1,3) -0.56 %

90–90 703.20 645.74 (1,1,4)* 1.68 %

90–80 703.20 645.74 (1,1,4)* 1.68 %

E-n76-k14 100 1,054.60 1,026.71

150–125 994.00 982.91 (1,1,12) -4.27 %

125–125 1,012.52 988.72 (1,1,12) -3.70 %

125–80 1,063.43 1,013.14 (1,1,12) -1.32 %

90–90 1,073.43 1,033.96 (1,1,13)* 0.71 %

90–80 1,073.43 1,033.96 (1,1,13)* 0.71 %

B-n78-k10 100 1,264.56 1,229.27

150–125 1,142.94 1,133.37 *(1,1,7) -7.80 %

125–125 1,185.83 1,177.46 *(1,1,7) -4.22 %

125–80 1,238.49 1,201.46 (1,1,8) -2.26 %

90–90 1,264.56 1,242.38 (1,1,8) 1.07 %

90–80 1,264.56 1,242.38 (1,1,8) 1.07 %

Table 6.13: Experimental results for medium-size instances with different fleet configu-

rations.
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Homogeneous Case Heterogeneous Case

Instance Q CWS BKS (1) Fleet Rule (%) CWS OBS (2) (m1,m2,ms) Gap (1-2)

A-n80-k10 100 1,860.94 1,766.50

150–125 1,768.52 1,639.56 *(1,1,7) -7.19 %

125–125 1,771.62 1,682.35 *(1,1,7) -4.76 %

125–80 1,856.38 1,731.49 (1,1,8) -1.98 %

90–90 1,863.74 1,779.49 (1,1,8) 0.74 %

90–80 1,863.74 1,780.15 (1,1,8) 0.77 %

M-n101-k10 200 833.51 819.81

150–125 788.41 777.32 (1,1,8) -5.18 %

125–125 824.67 799.34 (1,1,8) -2.50 %

125–80 824.41 812.88 (1,1,8) -0.85 %

90–90 833.51 821.11 (1,1,8) 0.16 %

90–80 833.51 821.11 (1,1,8) 0.16 %

M-n121-k7 200 1,068.14 1,045.16

150–125 1,093.12 1,011.11 (1,1,5) -3.26 %

125–125 1,100.01 1,011.11 (1,1,5) -3.26 %

125–80 1,059.95 1,030.12 (1,1,5) -1.44 %

90–90 1,079.37 1,052.32 (1,1,6)* 0.69 %

90–80 1,079.37 1,052.32 (1,1,6)* 0.69 %

F-n135-k7 2,210 1,219.32 1,170.65

150–125 1,225.20 1,015.36 *(1,1,4) -13.27 %

125–125 1,225.55 1,086.76 (1,1,5) -7.17 %

125–80 1,240.95 1,131.19 (1,1,5) -3.37 %

90–90 1,227.48 1,191.89 (1,1,5) 1.81 %

90–80 NA 1,191.89 (1,1,5) 1.81 %

Table 6.14: Experimental results for large-size instances with different fleet configura-

tions.
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Combining SAM with the SR-GCWS algorithm seems to provide an efficient ap-

proach for solving heterogeneous problems. In fact, even for the 90-90 and 90-80 fleet

configurations, the gaps between the heterogeneous OBS and the homogeneous BKS

are quite small for most instances.

Figure 6.4: A-n80-k10 BKS (left, 10 routes) vs. heterogeneous 150-125 OBS (right, 9

routes).

Figure 6.5: P-n76-k5 SAM-CWS (left) vs. SAM-SRGCWS (right).

The effect that different fleet configurations might have with respect to the routing

costs is quantified in obtained results. This ‘what-if’ analysis might be particularly

useful in those scenarios characterized by certain degree of flexibility during the vehicle-

selection process. This could be the case, for example, when the company can rent one

or two vehicles, or when it owns extra vehicles of different capacities. Despite its

relevance for real-life applications, there is a lack of sensitivity-analysis studies in the

HVRP literature and this work aims at providing some insight in the issue.
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Fig. 6.6 shows a 3D scatterplot representing the average gap associated with each

of the 6 fleet configurations considered in this article. In other words, for each fleet

rule, the fifteen gaps with respect to the homogeneous BKS —one per base instance—

have been averaged. Additionally, Fig. 6.7 shows an ANOVA output for the differences

among average gaps associated with each fleet configuration. The corresponding p-value

is almost zero, which means that there are, in fact, significant differences among these

average gaps. As it can be derived from Fig. 6.7, average gaps associated with fleet

rules 90–90 and 90–80 are positive but quite moderated, i.e., changing two ‘standard’

vehicles by two other vehicles with a somewhat smaller capacity does not seem to

affect the expected routing costs in a noticeable way. In fact, Fig. 6.7 shows that

these differences are not statistically significant. On the contrary, it can be observed

in both figures that the average gaps associated with fleet rules 150–125 and 125–125

are not only negative but also significantly different from the homogeneous case 100–

100. In other words, important reductions in average routing costs can be achieved by

simply employing two vehicles with somewhat larger capacities. In summary, it seems

reasonable to state that using a homogeneous fleet of vehicles is not a good business

strategy, and that significant reductions in expected routing costs can be attained by

introducing some degree of flexibility in the fleet configuration.

Finally, Fig. 6.8 shows a multiple box-plot of gaps. That is, for each fleet rule a

box-plot is constructed from the fifteen gaps between the OBS and the homogeneous

BKS. The multiple box-plot contributes to reinforce the idea that large negative gaps

(up to 13%) can be attained when using a pair of vehicles with larger-than-standard

capacities. Likewise, using two vehicles with smaller-than-standard capacities has the

contrary effect, although the gaps seem not to be so notable —in part due to the

asymmetry in the design of the fleet rules, which tries to avoid severe feasibility issues.

Notice also how the variability in the gaps is much higher for the 150–125 and 125–125

fleet configurations, i.e., increasing the capacity of two vehicles in the homogeneous

fleet will induce negative gaps, but the size of these gaps can vary in a sensible manner

depending upon the specific instance being considered.
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Figure 6.6: Surface Plot of Average Gap vs. Fleet Configuration.

Figure 6.7: ANOVA output for Average Gap vs. Fleet Configuration.

6.7 Chapter Conclusions

So far, we have appreciated the potential of biased randomization of classical heuristic.

They can be adapted to many specific VRP such as the HVRP and HVRPM. Biased

randomized versions of the CWS have been used to solve theoretical and real-life data

benchmarks considering different combinations of constraints. We present a real vehicle
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Figure 6.8: Multiple Boxplot of Gap vs. Fleet Configuration.

routing problem of a distribution company in the Northeast of Spain. The company

distributes products daily to around 400 stores. One of the main differences of this

application with respect to other VRP studies is the presence of a HVRPM, in which

some are allowed to perform multiple trips on a single day. We use a biased-randomized

heuristic approach combined with three local search processes for solving a real-life

VRP. One of the advantages of this method is its easy implementation with no complex

fine-tuning required. This makes it very suitable for companies. The results we obtained

reduced the company distribution costs significantly with little computational effort,

as solutions were obtained in just few seconds with two objective functions.

In the last part of this chapter, a Successive Approximations Method (SAM) for

solving the HVRP is presented. The main idea behind SAM is to transform (decom-

pose) the challenge of solving a HVRP into the challenge of solving a series of related

Homogeneous VRPs (CVRPs). This decomposition approach allows solving complex

HVRP variants —including time windows, stochastic demands, two-dimensional load-

ing, asymmetric costs, multi-depot, etc.— by simply combining SAM with any efficient

algorithm already developed for the corresponding CVRP variant. We have general-

ized some classical CVRP benchmarks in order to perform a sensitivity analysis on the
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fleet composition. In other words, we have computed the variations in the distribution

(distance-based) costs due to variations in the configuration of the vehicles fleet. In

fact, the computational results show how it is possible to obtain pronounced differences

in average and individual routing costs by varying the loading capacity of just two ve-

hicles in an initially homogeneous fleet. This information can be extremely valuable

to decision-makers, since it allows them to estimate variations in average routing costs

due to small adjustments in the configuration of their fleet.

The VRPs inspired in real-life situations still represent a challenge for the research

community. There is a wide set of constraints combinations in enterprise scenarios

as we have seen in the two real applications presented. However, to create a tailored

adaptation for an specific VRP is still a hard task. In fact, it takes time for each

adaptation even when we consider deterministic scenarios. On the next chapter, we

will study tailored approaches for other real types of VRPs such the AVRP and HAVRP.

94



7

Heterogeneous and Asymmetric

VRPs

Parts of this chapter have been taken from the co-authored publications:

Cáceres-Cruz, Riera, Buil, Juan, and Herrero (2013) in Proceedings of

ICORES; Cáceres-Cruz, Riera, Buil, and Juan (2013b) in Proceedings

of ICAOR; Herrero, Rodŕıguez, Cáceres-Cruz, and Juan (2014), Int. J.

of Advanced Operations Management.

In this chapter, we will present a randomized tailored-purpose approach for realistic

variants of the VRP (AVRP and HAVRP). There is a more frequent interest on ad-

dressing real cases. The Rich VRP (RV RP ) is a generalized variant of the VRP where

several constraints, aspects or objectives functions are considered at the same time. So

the challenge for researchers is to solve the larger set of problems with a single approach.

On the group of constraints considered for the RVRP could be multi-depot, periodic

visits to clients, open routes, multi-products, time windows, etc. (Drexl, 2012). Mostly,

these real case studies has considered the heterogeneous capacity of vehicles inside of

the combinatorial problem addressing other constraints. As we do, in some studies

like Bolduc et al. (2006); Irnich (2008); Oppen et al. (2010); Prescott-Gagnon et al.

(2010); Prins (2002); Rieck and Zimmermann (2010); Vallejo et al. (2012) the variable

and fixed costs are ignored when are combined with other routing features. Notice

that the problem to solve is still NP −Hard. Notice that most of these just include
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the heterogeneous capacity of vehicles and not the related costs to each vehicle. There

are cases where the companies count with their own heterogeneous fleet of vehicles, so

there are not renting extra costs; and also it just consider the high-quality-customer

perspective so the variable costs are ignored. Therefore, there is not a single way to

include the HVRP feature in a RVRP.

In the V RP is also common to handle a cost matrix between pair of locations.

This matrix can be evaluated in time, speed, money cost, and/or fuel consumption.

In any case, it is usually a function based on the distance. There is the possibility of

calculating the Euclidean distance between each pair locations. However, this distance

may not correspond to the real distance between two locations which are connected by

a transport network or highway. The real distance of the shortest path that connects

two points in a road network is always equal or higher than the Euclidean distance.

Therefore, it depends on the location of the nodes in the territory and the structure

of the road network that communicates them. For this purpose, it is also important

to consider an asymmetric distance matrix (Rodŕıguez and Ruiz, 2012). However, the

combination of the commented two restrictions, Heterogeneous Fleet and Asymmetric

cost matrix, is not frequent in the literature. Although in realistic scenarios like inside

and between cities, it is more appropriate to consider a distribution planning with

asymmetric costs due to congestion issues and to the structure of the transportation

network. In conclusion it is a real life scenario of a Rich Vehicle Routing Problem.

7.1 Literature Review

In the literature, few variants of the AV RP have been studied. Many techniques have

been focused on solving the symmetric CV RP , some of which can be adapted to solve

the asymmetric case. In Laporte et al. (1986) presents an exact algorithm. In Fischetti

et al. (1994) present a branch-and-bound algorithm and its practical application to a

real case of pharmaceutical distribution in a city of Italy. In Vigo (1996), it discusses

the extension to the AV RP of two of the most important and successful techniques:

savings algorithm of Clarke and Wright (1964), and the optimization method of Fisher

and Jaikumar (1981). The author states that the solutions found using the proposed

asymmetric version of the CWS quickly evolves to worse values as the number of cus-

tomers increases, in addition to the inconvenience of the parameter combination for
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the parametric saving function. Other studies are presented in Alonso et al. (2007);

Azi et al. (2010a,b); Battarra et al. (2009); Hernandez et al. (2011); Salhi and Petch

(2007).

More recently, there are two promising techniques that have been shown to work

well in both cases of symmetrical and asymmetrical CV RP . The first is the generic

approach proposed by Pisinger and Ropke (2007) which is the result of an unified

heuristic for several variants of V RP using the Adaptive LNS (ALNS). The second is

a Memetic Algorithm described in Nagata (2007).

So far, we could not find previous studies related to the HAVRP. Even considering

the realistic condition of the HAVRP for urban transportation. The most approximated

ones are presented in Marmion et al. (2010); Pessoa et al. (2008). In the first study,

the authors analyze the sensitivity of two classical neighbourhood methods for the

HAVRP. Thus, they simulate a heterogeneous fleet assigning different variable costs to

each vehicle but the capacity remains unchanged. On the second work, the authors

developed a set of robust Branch-Cut-and-Price algorithms for several VRPs. Some

promising experiments are presented but with an unjustified change on the capacity of

fleets. The original fleet has a capacity of 1000, then they execute the same experiments

but with other general capacity values (500, 250 and 150).

7.2 Proposed Approach

The algorithm we propose is based on a randomized version of the Clarke and Wright

(1964) Savings heuristic (CWS). It uses the concept of savings associated with each

arc for merging routes. At each step, the arc with the greatest savings is selected if and

only if the two corresponding routes can be combined into a new feasible route and if

the selected arc is composed of nodes that are directly connected with the depot. We

address the AVRP and HAVRP without considering an extensive asymmetric saving

list —i.e., a list including two directed arcs for each pair of customers. Instead we

consider a weighted savings list considering just one arc for each pair of customers.

Also, we consider the direction of the resulting route after each merging.

Fig. 7.1 shows a flowchart diagram offering a high-level view of our algorithm. Our

approach starts solving the problem as proposed in the CWS heuristic —i.e.: comput-

ing a dummy solution assigning one round-trip route from the depot to each customer.
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Compute initial dummy 
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Is savingsList empty?
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Figure 7.1: Overview of our HAVRP approach.
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Then the algorithm computes the weighted savings list using an auxiliary parameter

(beta). At this point the CWS heuristics is combined with Monte-Carlo Simulation

(MCS). We use a pseudo-geometric distribution to assign a biased randomization

probability to each edge not used in the dummy solution (alpha). Moreover, this selec-

tion probability is coherent with the weighted saving value associated with each edge,

i.e., edges with higher savings will be more likely to be selected from the list than those

with lower savings. Therefore, each combination of edges has a chance of being selected

and merged with previously built routes. Then, a multi-start process is initiated and

controlled by a time parameter (maxTime). At each iteration of this process, different

edges are selected using the aforementioned biased probability distribution. This allows

obtaining different outputs at each iteration. After merging, we improve the merged

route applying two promising local search processes. At the end, we apply a general

local search to the whole solution which is explained in the next section.

The validation of the capacity constraint in a heterogeneous fleet is addressed as an

assignment problem. For this, an effective method based on CWS is proposed in Prins

(2002). The list of vehicles and the list of routes are sorted decreasingly by capacity

and accumulated demands respectively; after that, a temporary assignment between

the two lists is searched. If a successful match —including all previously routes plus the

new merged one— is found, then the capacity constraint is satisfied and the temporary

assignment becomes final. Otherwise, the merge becomes unfeasible. If a situation

arises in which the number of routes is greater than the number of vehicles, then

new fictitious vehicles are assigned to the remaining routes. Notice that this vehicle

assignment validation is made for each possible saving, increasing the computational

operations. The author also imposes an assumption that the largest demand cannot

exceed the capacity of the smallest vehicle.

One important contribution of our approach is the fact that we consider a weighted

savings list merging two routes without taking into account directions at this initial

stage. See an example in Fig. 7.2. The application of a local search will help to define

the best direction. The weighted saving associated with an arc connecting customers i

and j is defined as:

Ŝij = β ∗max{Sij , Sji}+ (1− β) ∗min{Sij , Sji}

where β ∈ [0.5, 1] and Sij = c0i + c0j − cij .
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Figure 7.2: Merging example.

The disregard of orientation is important given that an asymmetric savings list

could avoid choosing some arcs which do not match the orientation established, i.e.,

that reduces the solution space. This worsens the general solution; even some obtained

solutions are using a greater number of vehicles.

Given that the orientations are not considered, an original local search for the

asymmetric context was created exploring the near solution space with few steps. It

represents another important contribution of our approach.

7.2.1 Asymmetric Local Searches

Once a merged route is obtained, two local searches are applied in order to explore the

solution space with few steps. The first local search procedure is the so called Reversing

Routes local search. This procedure intends to find an improvement in the order and

orientation of the nodes. Given a merged route, we first try to sort the nodes in a more

efficient way. If a route is composed by more than four nodes, then we take each four

nodes —i.e., (i, j, k, l)— and try to determine if a swapping of two middle-nodes could

improve the cost —i.e., (i, k, j, l). After that, we try to reverse the order in which nodes

are traversed.

A second local search, originally described in Juan et al. (2011e), is focused on

checking if a given set of nodes already exists in a memory but with a better order of

the nodes. The basic idea of this learning mechanism is to store in a cache memory

the best-know order to travel among the nodes that constitute one route. This cache is

constantly updated whenever a better order with a lower cost is found for a given set of

100



7.3 Computational Results

nodes. At the same time, the routes contained in this cache are re-used whenever possi-

ble to improve newly merged routes. Notice that this procedure does not search a new

vehicle assignment. The previously assigned vehicle to each route remains unchanged

during this process.

Finally, once all edges in the saving list have been considered, the resulting solution

is improved through a Splitting local search method proposed in Juan et al. (2011e).

The current solution is divided into disjoint subsets of routes together with their pre-

viously assigned vehicles; then, each of these subsets are solved applying the same

methodology described before during a given number of iterations (maxSplitter). This

tries to apply a “divide and conquer” approach since smaller instances could be easier

to solve. So a new set of routes could be created on each partition with the previously

assigned vehicles.

7.3 Computational Results

The most commonly-used methodology to compare the performance of different algo-

rithms for solving VRPs consists in running these algorithms over a set of well—defined

benchmark instances. In the case of the CVRP or the AVRP, several benchmark sets

are available through open-access websites, so that researchers worldwide can use them.

Usually, these data sets contain complete information, including not just the instance

inputs and the best-known value for the objective function, but also a complete de-

scription of the corresponding solution —i.e., the specific composition of each route in

the best-known solution. In the case of the HAVRP, however, there is not a commonly-

accepted set of instances to test algorithms, since the HAVRP have been not quite

considered on the community.

For the AVRP, some researchers have used a set of real instances related to Fischetti

et al. (1994) which are available on demand. In our case, we have selected 20 public

AVRP instances from http://soa.iti.es/files/Instances_CVRP.7z generated and

analyzed by Rodŕıguez and Ruiz (2012). These instances have been generated with a

realistic perspective and mathematical justification. The selection was made at random

among the set of medium- and large-size instances (in terms of number of nodes). They

have 50 or 100 customers and are designed to employ an homogeneous fleet from 2 to
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7 vehicles. These instances consider great demand and vehicle capacity, and random

location of the nodes within intra-city area.

Therefore, they has a higher number of stops, and are assuming asymmetric trans-

portation in city distribution, so it challenges routing algorithms. The depot may be

in the center of the area, those with ‘C’ in the second letter of the name, or a random

position, those with ‘A’. They are based on real problems. The intra-city instances

were chosen given that they represent a higher asymmetry degree, Rodŕıguez and Ruiz

(2012) conclude that these instances affects in a statistically significant way the CPU

time needed by some algorithms and deteriorates the quality of the solutions obtained.

For more information, the reader can visit http://soa.iti.es/files/Instances_

CVRP_explanation.txt.

A very important factor, not related with the AVRP instances, is the state-of-the-

art algorithms. We have selected the following AV RP methods in order to compare

with:

� General heuristic of Pisinger and Ropke (2007). It is a unified heuristic that

works for several variants of routing problems and that uses an Adaptive Large

Neighborhood Search (ALNS). It is a very capable and robust method.

� Memetic algorithm of Nagata (2007) (MA). Similar to ALNS, MA is a very pow-

erful and recent AV RP metaheuristic.

The previous algorithms have been selected by their performance and recognition. We

have strived for a balance between simple classical techniques and current and state-

of-the-art methods. Algorithms NA and ALNS were run from the original code which

was kindly provided by their respective authors. No code modification was carried out

and the methods were run according to their recommendations.

For the HAVRP, as commented before some preliminary experiments are based on

a set of real instances related to AVRP of Fischetti et al. (1994). Likely, Marmion

et al. (2010) simulates the heterogeneous fleet over a range of values for testing some

operators on different algorithms. However, the proposed studies have only considered

the effect of variable cost on vehicles selection by ignoring the different capacities,

i.e., the vehicles have the same capacity. Also Pessoa et al. (2008) have used this

benchmarks modifying the capacity of original fleets and then running the experiments
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with homogeneous fleets. The original fleet has a capacity of 1000, then they execute

the same experiments but with other general capacity values (500, 250 and 150).

Therefore, we propose to use exactly the same nodes of AVRP, including their

asymmetric costs and demands, and the same number of vehicles. We then consider

a heterogeneous fleet composed of standard vehicles —i.e., vehicles with the capacity

defined in the AVRP instances— and non−standard vehicles with modified capacities.

In our opinion, this is a natural way to adapt the homogeneous-capacity instances, since

it allows the decision-maker to answer sensitivity-analysis questions such as: “How

would my routing costs be changed if we could employ one or two trucks with a different

capacity?”. Thus, in order to test our approach, a total of twenty classical AVRP

instances were selected and adapted as base HAVRP instances. Finally, the design of

experiments proposed in the previous section will be repeated with the selected AVRP

instances.

7.3.1 AVRP

Aiming to validate our algorithm, we first present the results of a homogeneous case of

AVRP. For this, we compare regarding the Memetic algorithm of Nagata (2007) and the

Adaptive Large Neighbourhood Search (ALNS) of Pisinger and Ropke (2007). Finally,

we developed some experiments for the HAVRP. The algorithm described in this study

has been implemented as a Java application. At the core of this implementation, we

included the SSJ library provided in L’Ecuyer et al. (2002) and, in particular, the

LFSR113 pseudo-random number generator. An Intel QuadCore i5 at 3.2 GHz and 4

GB RAM was used to perform all tests, which were run over Windows XP.

For the 20 AVRP instances, we have used 10 random seeds (10 replicas), an elapsed

time of 1 minute (maxTime) for each seed, and 60 iterations for splitting technique

(maxSplitter). In order to perform a biased randomization of the weighted savings

list, a quasi-geometric distribution with parameter α ∈ {0.5, 0.1} was used; and the

value chosen for the weighted saving was β = 0.6. Nagata algorithm was executed

with a parameter setting: Npop = 100, Nch = 30, 10 trials and 2 parents. Also ten

runs with elapsed time of 1 minute were executed for each instance. For the ALNS,

only one run was executed for each instance without time limit. Both algorithms

were run from the original code which was kindly provided by their respective authors.
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Instance n M MA (1) ALNS (2) Gap (1-2) time (s) OBS (3) Gap (1-3)

G-A-CAA0501 50 2 370.26 370.26 0.00 % 17.83 370.26 0.00 %

G-A-CAA0502 50 3 414.44 414.44 0.00 % 13.30 414.44 0.00 %

G-A-CAA0503 50 4 444.69 444.69 0.00 % 10.48 444.69 0.00 %

G-A-CAA0504 50 2 362.01 362.01 0.00 % 17.95 362.01 0.00 %

G-A-CAA0505 50 3 395.78 395.78 0.00 % 15.59 398.47 0.68 %

G-A-CAA1001 100 5 661.88 664.53 0.40 % 43.03 675.31 2.03 %

G-A-CAA1002 100 5 621.06 622.67 0.26 % 39.36 625.82 0.77 %

G-A-CAA1003 100 5 627.29 627.29 0.00 % 42.23 627.29 0.00 %

G-A-CAA1004 100 6 681.89 681.89 0.00 % 34.84 686.25 0.64 %

G-A-CAA1005 100 7 810.97 810.97 0.00 % 29.03 820.56 1.18 %

G-C-CAA0501 50 2 376.62 376.62 0.00 % 17.70 376.62 0.00 %

G-C-CAA0502 50 3 372.48 372.48 0.00 % 13.31 372.48 0.00 %

G-C-CAA0503 50 4 404.30 404.30 0.00 % 10.36 404.30 0.00 %

G-C-CAA0504 50 2 361.74 361.74 0.00 % 17.84 361.74 0.00 %

G-C-CAA0505 50 3 386.73 386.73 0.00 % 13.80 386.73 0.00 %

G-C-CAA1001 100 5 596.54 596.86 0.05 % 40.83 600.35 0.64 %

G-C-CAA1002 100 5 578.15 578.15 0.00 % 38.61 583.39 0.90 %

G-C-CAA1003 100 5 561.08 561.08 0.00 % 41.13 566.10 0.89 %

G-C-CAA1004 100 6 660.81 660.81 0.00 % 35.19 664.14 0.50 %

G-C-CAA1005 100 7 652.08 652.18 0.02 % 28.63 652.42 0.05 %

Average 0.04 % 0.41 %

Table 7.1: Comparison of results for AVRP instances.

No code modification was carried out and the methods were run according to their

recommendations.

The results of these tests are summarized in Table 7.1, which contains the following

information for each instance: name of instance; number of nodes; number of vehicles;

the best solution of 10 replicas of Nagata algorithm (MA), (1); the ALNS solution, (2);

gap, expressed as a percentage value, between columns (1) and (2); the time used for

ALNS in seconds; our best solution found, OBS (3); and gap between columns (1) and

(3).

Notice that our approach seems to be quite competitive, showing gaps quasi-lower

2% for all instances, with respect to Nagata (2007) which obtains the best results. Our

approach also found the same solution for 10 of the 20 instances.
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Homogeneous Case Heterogeneous Case

Instance n M OBS (1) Fleet Rule (%) OBS (2) (m1,m2,ms) Gap (1-2)

G-A-CAA0501 50 2 370.26

150–125 368.83 (1,1,0) -0.39 %

125–125 368.83 (1,1,0) -0.39 %

125–80 378.11 (1,1,0) 2.12 %

90–90 384.20 (1,1,1)* 3.77 %

90–80 388.65 (1,1,1)* 4.97 %

G-A-CAA0502 50 3 414.44

150–125 372.18 *(1,1,0) -10.20 %

125–125 383.22 *(1,1,0) -7.53 %

125–80 398.93 (1,1,1) -3.74 %

90–90 414.44 (1,1,1) 0.00 %

90–80 414.44 (1,1,1) 0.00 %

G-A-CAA0503 50 4 444.69

150–125 404.26 *(1,1,1) -9.09 %

125–125 426.96 (1,1,2) -3.99 %

125–80 432.41 (1,1,2) -2.76 %

90–90 452.60 (1,1,2) 1.78 %

90–80 459.58 (1,1,2) 3.35 %

G-A-CAA0504 50 2 362.01

150–125 363.54 (1,1,0) 0.42 %

125–125 359.15 (1,1,0) -0.79 %

125–80 360.21 (1,1,0) -0.50 %

90–90 377.80 (1,1,1)* 4.36 %

90–80 379.38 (1,1,1)* 4.80 %

G-A-CAA0505 50 3 398.47

150–125 378.35 *(1,1,0) -5.05 %

125–125 380.18 *(1,1,0) -4.59 %

125–80 382.43 *(1,1,0) -4.03 %

90–90 404.16 (1,1,1) 1.43 %

90–80 402.23 (1,1,1) 0.94 %

Table 7.2: Experimental results for small-size instances with different fleet configurations.

7.3.2 HAVRP

Finally, in order to test our approach, these twenty AVRP instances were adapted

as ‘base’ HAVRP instances. For each base instance, six different fleet typologies were

defined —see section “Experimental Design” in the previous chapter of HVRP for more

details. Thus, 120 different instances were considered in total.

Tables 7.2, 7.3, 7.4 and 7.5 contain, for each base instance, the following information:

name of instance; number of nodes; number of vehicles; the best known solution for the

homogeneous case, BKS (1); different fleet rules for the heterogeneous case, each of them

defining a new routing instance; our best solution found for the heterogeneous case,
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Homogeneous Case Heterogeneous Case

Instance n M OBS (1) Fleet Rule (%) OBS (2) (m1,m2,ms) Gap (1-2)

G-C-CAA0501 50 2 376.62

150–125 367.70 (1,1,0) -2.37 %

125–125 367.70 (1,1,0) -2.37 %

125–80 367.70 (1,1,0) -2.37 %

90–90 384.93 (1,1,1)* 2.21 %

90–80 384.93 (1,1,1)* 2.21 %

G-C-CAA0502 50 3 372.48

150–125 358.01 *(1,1,0) -3.88 %

125–125 359.32 *(1,1,0) -3.53 %

125–80 372.48 (1,1,1) 0.00 %

90–90 372.48 (1,1,1) 0.00 %

90–80 372.48 (1,1,1) 0.00 %

G-C-CAA0503 50 4 404.30

150–125 379.88 *(1,1,1) -6.04 %

125–125 397.43 (1,1,2) -1.70 %

125–80 398.02 (1,1,2) -1.55 %

90–90 405.12 (1,1,2) 0.20 %

90–80 414.64 (1,1,3)* 2.56 %

G-C-CAA0504 50 2 361.74

150–125 356.35 (1,1,0) -1.49 %

125–125 357.22 (1,1,0) -1.25 %

125–80 358.82 (1,1,0) -0.81 %

90–90 381.99 (1,1,1)* 5.60 %

90–80 381.99 (1,1,1)* 5.60 %

G-C-CAA0505 50 3 386.73

150–125 374.05 *(1,1,0) -3.28 %

125–125 374.05 *(1,1,0) -3.28 %

125–80 374.05 *(1,1,0) -3.28 %

90–90 386.73 (1,1,1) 0.00 %

90–80 386.73 (1,1,1) 0.00 %

Table 7.3: Experimental results for small-size instances with different fleet configurations

(continuation).
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Homogeneous Case Heterogeneous Case

Instance n M OBS (1) Fleet Rule (%) OBS (2) (m1,m2,ms) Gap (1-2)

G-A-CAA1001 100 5 675.31

150–125 634.14 *(1,1,2) -6.10 %

125–125 634.75 *(1,1,2) -6.01 %

125–80 649.35 *(1,1,2) -3.84 %

90–90 683.22 (1,1,3) 1.17 %

90–80 683.22 (1,1,3) 1.17 %

G-A-CAA1002 100 5 625.82

150–125 583.82 *(1,1,2) -6.71 %

125–125 603.27 *(1,1,2) -3.60 %

125–80 612.55 (1,1,3) -2.12 %

90–90 626.28 (1,1,3) 0.07 %

90–80 626.28 (1,1,3) 0.07 %

G-A-CAA1003 100 5 627.29

150–125 605.83 *(1,1,2) -3.42 %

125–125 620.88 *(1,1,2) -1.02 %

125–80 622.52 *(1,1,2) -0.76 %

90–90 643.89 (1,1,3) 2.65 %

90–80 643.08 (1,1,3) 2.52 %

G-A-CAA1004 100 6 686.25

150–125 654.07 *(1,1,3) -4.69 %

125–125 659.95 *(1,1,3) -3.83 %

125–80 664.56 *(1,1,3) -3.16 %

90–90 689.19 (1,1,4) 0.43 %

90–80 694.97 (1,1,4) 1.27 %

G-A-CAA1005 100 7 820.56

150–125 776.32 (1,1,5) -5.39 %

125–125 799.07 (1,1,5) -2.62 %

125–80 814.77 (1,1,5) -0.71 %

90–90 846.25 (1,1,6)* 3.13 %

90–80 847.80 (1,1,6)* 3.32 %

Table 7.4: Experimental results for medium-size instances with different fleet configura-

tions.
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Homogeneous Case Heterogeneous Case

Instance n M OBS (1) Fleet Rule (%) OBS (2) (m1,m2,ms) Gap (1-2)

G-C-CAA1001 100 5 600.35

150–125 585.12 *(1,1,2) -2.54 %

125–125 586.22 *(1,1,2) -2.35 %

125–80 588.74 *(1,1,2) -1.93 %

90–90 604.70 (1,1,3) 0.72 %

90–80 604.24 (1,1,3) 0.65 %

G-C-CAA1002 100 5 583.39

150–125 562.81 *(1,1,2) -3.53 %

125–125 562.66 *(1,1,2) -3.55 %

125–80 579.05 (1,1,3) -0.74 %

90–90 588.20 (1,1,3) 0.82 %

90–80 587.20 (1,1,3) 0.65 %

G-C-CAA1003 100 5 566.10

150–125 543.78 *(1,1,2) -3.94 %

125–125 549.96 *(1,1,2) -2.85 %

125–80 552.63 *(1,1,2) -2.38 %

90–90 565.01 (1,1,3) -0.19 %

90–80 567.90 (1,1,3) 0.32 %

G-C-CAA1004 100 6 664.14

150–125 633.03 *(1,1,3) -4.68 %

125–125 635.76 *(1,1,3) -4.27 %

125–80 647.01 *(1,1,3) -2.58 %

90–90 667.83 (1,1,4) 0.56 %

90–80 672.17 (1,1,4) 1.21 %

G-C-CAA1005 100 7 652.42

150–125 635.25 (1,1,5) -2.63 %

125–125 640.44 (1,1,5) -1.84 %

125–80 648.60 (1,1,5) -0.59 %

90–90 668.16 (1,1,6)* 2.41 %

90–80 672.15 (1,1,6)* 3.02 %

Table 7.5: Experimental results for medium-size instances with different fleet configura-

tions (continuation).
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Figure 7.3: Surface Plot of Average Gap vs. Fleet Configuration.

OBS (3); the obtained number of vehicles for the fleet configuration; and percentage

gap between the BKS for the homogeneous case and the OBS for the heterogeneous

case. Instances are distributed in both tables according to their sizes.

Observe that star (*) highlights different number of vehicles. For example, (1,1,1)*

of the fifth row remarks that this heterogeneous solution is using one more vehicle than

the homogeneous solution. It uses one vehicle of 90% of capacity, one vehicle of 80%

and one standard vehicle. Instead, *(1,1,0) of the sixth row remarks that this solution

is using one less standard vehicle.

Fig. 7.3 shows a 3D scatterplot representing the average gap associated with each

of the 6 fleet configurations considered in this article. In other words, for each fleet

rule, the twenty gaps with respect to the homogeneous OBS —one per base instance—

have been averaged. From these results, it can be noticed the following:

� Just by employing two large vehicles (fleet 150–125) instead of two standard

vehicles (fleet 100–100), it is possible to obtain noticeable costs reductions that

can go up to 10% in some instances (e.g., G-A-CAA0502).
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� Likewise, when using two small vehicles (fleet 90–80) instead of two ‘standard’

vehicles, costs can suffer an increase of about 5% for some instances (e.g., G-C-

CAA0504).

Therefore, it can be concluded that routing costs can be in fact quite sensitive to

small variations in the fleet configuration. This justifies the necessity for employing

new approaches in real-life routing applications, i.e., algorithms which are able to deal

with both asymmetric costs as well as heterogeneous fleets.

7.4 Real Case II: HAVRP with Extra Constraints

With the analysis based on Baldacci et al. (2008); Marmion et al. (2010); Pessoa et al.

(2008), we have identified standard individual benchmarks for the ACVRP and HVRP.

But this is not the case for the combination of these two. As a case of study, we used the

information of a food distribution company located in Barcelona, Spain. The company

has provided us with the delivery address of their customers in six independent days

along with their demands for those days. The transportation limits are defined inside

of the city borders (urban distribution).

The main interest of the company is to apply the proposed approach to bigger

datasets using a web information tool. For this reason, the company just compile the

information during a short period (as a sample) in order to produce a preliminary result.

In addition, the compiling process represented an important investment of resources

considering the size of the company. Therefore on a daily basis, this company receives

requests from around 50 customers. Everyday, this information serves as input to

manually design the company’s routing planning.

According to the size of the company it is not possible to employ a person specialized

in mathematical software in order to apply exact methods. Therefore they prefer to

have an approximated solution algorithm embed in a web tool which could be used to

give automatic solution in little time. There is a specific constraint: each vehicle must

visit all customers of a route in a maximum period of 180 minutes. This route length

restriction must to include the travelling time and the service time. The service time is

the period of time that the vehicle needs to unload/load for delivering product. So far,

the company uses two types of vehicles, which are described in Table 7.6. The columns

of this table show the capacity (Qk) and quantity (mk) of available vehicles for each
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k Qk mk

1 20 2

2 30 2

Table 7.6: Composition of the current company fleet.

type (k). Actually the company used four vehicles, but they needed to determine if it

is possible to reduce the total routing costs and also execute the same deliveries with

fewer routes.

We have used a map-location service, like Google Maps to generate the asymmetric

cost matrix between every pair of nodes (51 x 51 maximum cells). Even when this kind

of routing considers all possible streets of the city, the cost matrix will only represent

the best traveling time between each two nodes.

The main features of given six data instances are summarized in Table 7.7. On the

first column, we present the identification of each instance that represents a day. The

second column shows the number of customers with demands. Third column is the

total demand. And the last column represents the total service time of all the nodes

on the instance.

As commented before, the company provides us with the historic data of some of

their service times and routes. But some fields were incomplete. So we have randomly

generated the respective values for the instances, using simulation theory (Monte-Carlo

Simulation) and the provided data. Then, we have defined that the service time for

each client follows a triangular distribution with min = 1, max = 12 and mode = 3

minutes. This distribution is often used to represent time in general simulation models.

However, the routes used differ among all days. Notice that the company did not save

exact information of all their routes, even within a whole day. Likely they do not

apply any specific routing method. A person in charge, who tries to assign routes to

all drivers, designs the routing planning.

7.4.1 Proposed Approach

For this problem, the previously method was simplified. The savings construction is

modified for being applied to the HAVRP, because the inversed edges are also considered

in the set of options (multiplying the original quantity on the symmetric version by
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Instance (day) n Total Requested Demand Total Service Time

A 40 53 163

B 50 75 213

C 40 60 163

D 39 54 159

E 40 57 162

F 18 28 75

Table 7.7: General features of real instances.

two), i.e., for two different nodes i and j: Sav(i, j) = ci0 + c0j − cij and also Sav(j, i) =

c0i + cj0 − cji. Therefore, all savings will be competing to be taken in the biased

randomized process, and those with higher savings will define the orientation of routes.

Likely the route construction process will consider the direction of savings edges. Once

a route takes a direction then all considered candidate routes to be merged with the

first one must follow the same direction. Finally, we have used only one local search,

the Cache memory, for improving routing cost.

7.4.2 Computational Results

Our algorithm was implemented as a Java application and used to run the six instances

described above on an Intel Xeon E5603 at 1.60 Ghz and 8 GB of RAM. For each

instance, a single run with a total maximum time of 500 seconds was employed. The

limitation in computing time is due to the fact that we wanted to obtain results in

a ‘reasonable’ amount of time. We employ the Random Number Generator (RNG)

library for Stochastic Simulation developed by researchers of the Montreal University

(http://www.iro.umontreal.ca/~simardr/ssj/).

Table 7.8 shows the results obtained in experiments. The first column shows the

instance id; the second, the number of routes defined in the solution; the third column,

the total travelling times of routes; the fourth column, the total routing costs consid-

ering the travelling times plus the service times of the instance; and the last column,

the computational time needed to find the best solution.

The travelling costs on instances B and E represent the higher values obtained.

Both of them travelling costs are bigger than the previously commented restriction

of 180 minutes. However, this restriction is applied to the route duration and also it

112

http://www.iro.umontreal.ca/~simardr/ssj/


7.4 Real Case II: HAVRP with Extra Constraints

Instance M Total Traveling Total Routing Time

(day) Cost (min) Cost (min) (sec)

A 2 173 336 1.14

B 3 189 402 114.76

C 2 170 333 137.52

D 2 172 331 275.90

E 2 186 348 253.42

F 2 116 191 0.25

Average 2.17 167.67 323.50 130.50

Table 7.8: Results of Best Solutions after 500 seconds running.

considers the service time on each node. On these two instances, the average total

routing cost of routes has to be considered. For this, the total routing cost is divided

by the number of routes on the solution producing 134 and 174 minutes respectively.

Notice that even when the running time is set to a maximum limit of 500 seconds, the

average time for finding the best solutions is less than 131 seconds.

In order to validate the solution quality of our approach, we have compared our

results against an approximated value of the current total routing costs. As we said

before, the company does not have the exact values of routing costs. However, they

tend to use all four vehicles as an attempt to reduce delivery times, in an intuitive way.

Therefore we have forced our algorithm to use four vehicles in order to produce a near

value of current company solutions. The output represents the best solution found in

500 seconds. We delivered the forced four-route solution to the company in order to

validate it with the real planning, and we obtained a positive confirmation. Table 7.9

presents the traveling times for each scenario and the gap between these two solutions.

The difference between the approximated company solutions and our approach re-

sults is around 13%. In the next two images, we have illustrated both routing solutions

of the approximated planning (Fig. 7.4), and the new proposed solution (Fig. 7.5) for

the instance B, where the number of routes was reduced to 3. Notice that the average

number of routes of our approach is around 2 which represents a considerable reduction

of the amount of routes.

113



7. HETEROGENEOUS AND ASYMMETRIC VRPS

Instance Best Costs Best Costs Gap

(day) using 4 routes (min) (2) (min) (1) (2-1)

A 192 173 -9.90%

B 205 189 -7.80%

C 206 170 -17.48%

D 190 172 -9.47%

E 211 186 -11.85%

F 153 116 -24.18%

Average 192.83 167.67 -13.45%

Table 7.9: Comparison with extreme case using whole fleet (four vehicles).

Figure 7.4: Approximated routing planning of the company for instance B, using Google

Maps.

114



7.4 Real Case II: HAVRP with Extra Constraints

Figure 7.5: Designed routes in the proposed solution for instance B, using Google Maps.

7.4.3 Sub-case: New Extra Constraints

After previous results, the distribution company wants to continue considering other

constraints like equally balanced loads between routes and optionally allow open routes.

The first constraint tries to apply an equality criteria of route construction between

drivers. While the second create some flexibility on the ending point of routes. For some

enterprises these constraints could be interesting depending on the business nature. The

company is mainly interested in building a set of alternative routing solutions. These

solutions can include a subset of the previously specified restrictions. The restrictions

can be separated as mandatory for all scenarios (asymmetric cost matrix, heterogeneous

fleet of vehicles, service times at customers and limited routes length) and optional

(open routes, and balanced loads). These last constraints create new scenarios for

routing planning which are the main contributions of this study. In fact, the company

is especially interested in the open routes option because their drivers can take delivery

vehicles with them. So the time for going to the parking place and going to the depot

point (on the next day) is not counted for the delivery process. Therefore it creates
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some flexibility on selecting the ending point of routes (Li et al., 2007b). For other

part, the balanced loads constraint represents an equally working condition between

drivers.

We did so small changes in the decision steps of the algorithm to implement the

new two features: an initial distinction regarding the open routes requirement is made.

If it is the case, we set to 0 the cost of all edges going to the depot. The purpose of

this is to ignore returning edges in the route construction process including the dummy

solution. The consideration of returning edges will also affect the savings concept as it

will be explained next. The savings construction is modified for being applied to both

contexts the asymmetric and open routes contexts. First, the inversed edges must be

also considered in the set of eligible options (multiplying the original quantity on the

symmetric version by two), i.e., for two different nodes i and j: Sav(i, j) = ci0+c0j−cij
as well as for Sav(j, i). Then the commented asymmetric savings concept for the open

routes case will be Sav(i, j) = c0j − cij . The edge for going to the depot is excluded

from the merging or construction of routes. Therefore, all savings will be competing to

be taken in the biased randomized process, and those with higher savings will define the

orientation of routes. Once a saving edge is selected and successfully used to merge to

given routes, the opposite edge must be also removed from the savings edge list, in order

to save computational time. Likely the routes construction process will consider the

direction of savings edges. Once a route takes a direction then all considered candidate

routes to be merged with the first one must follow the same direction. In Fig. 7.6,

a simplified example is depicted in order to give an idea of the route construction

process under the given routing constraints. In this directed graph, we have two open

routes and two possible savings edges to be considered (A and B). Then it is easy to

appreciate that the savings value related to B is better than A. So the new route will

be made considering saving edge B since this is more probably to be selected in the

biased-randomized process. Notice that resulting routes will tend to join routes where

the first customer of one route is near to the last visit of other route.

Second, for considering the balanced loads in routes, we add another validation

aspect in the merging step of the CWS process. Once the inputs are read, a maximum

load limit per route is estimated using the total requested demand on the instance as

well as a number of desirable routes indicated as a new parameter. This last parameter

can be set to two in order to try to find the minimum number of routes with balanced
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Figure 7.6: Example of saving edge merging decision in an open routes context.

Scenario M Distance Total % of Used Load Time

Cost (min) Cost (min) Capacity per Route (sec)

Current 4.00 192.83 348.67 54.50% 13.63 NA

Best 2.17 167.67 323.50 85.63% 25.17 130.50

Open 2.83 144.83 300.67 70.07% 18.94 174.98

Balanced 3 routes 3.17 182.00 337.83 65.00% 17.13 129.81

Open-Balanced 3 routes 3.67 147.50 303.33 59.25% 15.60 248.65

Balanced 2 routes 2.17 168.83 324.67 85.63% 25.17 162.34

Open-Balanced 2 routes 3.00 144.67 300.50 68.13% 18.17 232.76

Table 7.10: Averages results on different solution scenarios combining constraints.

loads, as we did. This load limit is then adjusted with a percentage range in order to

allow a flexible criterion in the route construction. This value will serve as a basic limit

for checking capacity when two routes are merged (see CWS heuristic).

So with this new version, we repeat the 500 seconds running for each instance.

Table 7.10 presents the average information for comparing several scenarios: (a) Current

company solutions; (b) previously generated Best found solutions of Table 7.9; (c)

solutions allowing only Open routes; (d) solutions only balancing the total load to 3

routes; (e) solutions balancing the total load to 3 routes and also allowing open routes;

(f) solutions only balancing the total load to 2 routes; and (g) solutions balancing the

total load to 2 routes and also allowing open routes. For each of these, we present the

average number of routes, the average distance-time cost (minutes), the average total

cost (minutes), average percentage of used capacity in assigned vehicles, average load

per route, and average CPU time until the solution is found (seconds).

As it can be appreciated, the Best scenario generated in the first experiments reduces
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Figure 7.7: Open designed routes in the proposed solution for instance B, using Google

Maps.

total costs as well as routes, where the used percentage of vehicle capacities is the higher

obtained value. The Open scenario (cheapest) reduce even more total costs because

the returning path to the depot is not being considered. However the average number

of routes slightly increases. Although the balancing scenarios are focused on creating

solutions with an equality criteria on route loads, the cost tends to increase. The

algorithm finds better solutions when balancing to the smallest number of routes which

is near to the Best scenario. For instance, when we mix the balance and open criteria,

the best total cost is found with an average balance of loads. Notice that all generated

solutions have better values for the percentage of used capacities of vehicles than the

Current scenario. However, longer CPU times are needed to find solutions combining

open and balancing constraints. In Fig. 7.7 and 7.8 it can be appreciated the routing

planning for both the Open and Balanced to two routes scenarios.
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Figure 7.8: Balanced designed routes in the proposed solution for instance B, using

Google Maps.
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7.5 Chapter Conclusions

In this chapter, a biased randomization of classical heuristic for solving a different

branch of VRPs have been proposed. Biased randomized algorithms have been used

to solve theoretical and real-life data benchmarks considering different combinations

of constraints. The VRPs inspired in real-life situations still represent a challenge for

the research community (Bochtis and Sörensen, 2009). Despite the fact that most

real-life fleets of vehicles are heterogeneous and that real-life distances are frequently

asymmetric —especially in urban transportation—, there is a lack of works consider-

ing both situations simultaneously. Accordingly, we have presented a hybrid algorithm

for solving the HAVRP. This algorithm combines a randomized savings heuristic with

three local search processes specifically adapted to the asymmetric nature of costs in

real-life scenarios. A complete set of AVRP and HAVRP tests have been performed to

illustrate the methodology and analyze its efficiency when compared with two state-of-

the-art algorithms. The results show that our approach is able to produce competitive

results for the AVRP while, at the same time, it is much simpler to implement and

requires less parameters —and fine-tuning efforts— than current state-of-the-art algo-

rithms. Moreover, since our methodology can also consider heterogeneous fleets, a set of

benchmarks for the HAVRP have been developed and a sensitivity analysis on the fleet

composition has been performed. This last experiment shows how decision-makers can

benefit from our approach when deciding the actual composition of their heterogeneous

fleets. Also we present a case study that support a food distribution company to: (a)

realize the current situation with quantitative methods; and (b) improve their routing

planning with a simple approach. We used Monte-Carlo Simulation to complete the

missing data from the company, and obtain the information required for testing. On

the next chapter, other biased-randomized heuristic example for a different VRP family

is explained.
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VRPs with Time Windows

Parts of this chapter have been taken from the co-authored publication:

Cáceres-Cruz, Riera, Juan, and Padrón (2013) in Proceedings of MAEB.

In last decades, optimization routing problems have been the target of many studies

(Golden et al., 2008). The Vehicle Routing Problem with Time Windows (VRPTW)

is probably one of the most developed research lines inside of the classical Vehicle

Routing Problem (Potvin and Bengio, 1996; Potvin et al., 1996). On this problem,

a set of vehicles must deliver the goods to a set of customers. Unlike the original

problem, VRPTW must respect some delivery time windows on each customer and

considering arrival, waiting and service times among others. The objective of this

chapter is to adapt one of the popular VRPTW heuristics proposed in Solomon (1987).

This heuristic is known as Insertion and basically consists on the iterative construction

routes with the insertion of appropriate customers. Therefore our main idea is to apply

the randomization concepts presented before in order to generate a new promising

metaheuristic algorithm.

8.1 Definition

In VRPTW, the objective function is the same than CVRP but some delivery time

windows must be considered. So the traveling time between a pair of customers (tij)

is an important element on this study. The scheduling constraint is denoted by a

predefined time interval, given as an earliest start time (ei) and latest start time (li)
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at the customer i. The vehicles leave the depot, at time e0, at the earliest and must

return to the depot by time l0, at the latest. There is also a given service duration time

(fi) on each customer of a route for considering unloading time of goods. Therefore

vehicles must arrive at the customers not later than the latest start time. If vehicles

arrive earlier than the earliest start time, then a waiting occurs. So after the routing

planning is defined, an effective delivery service at customer i begins at a given time

(bi) within the defined customer time window. In Eq. 8.1 and 8.2 we define the basic

relations of time windows and sequential customers’ visits using commented variables.

ei ≤ bi ≤ li, ∀i ∈ Ω∗ (8.1)

bj = Max[ej , bi + fi + tij ], ∀i ∈ Ω,∀j ∈ Ω∗, i 6= j (8.2)

8.2 Literature Review

One of the most studied VRP is the VRPTW. Different approaches to the VRPTW

have been explored during the last decades (Cordeau et al., 2001a). These approaches

range from the use of pure optimization methods, such as linear programming, for

solving small-size problems with relatively simple constraints to the use of heuristics and

meta-heuristics that provide near-optimal solutions for medium and large-size problems.

One of the most promising frameworks is presented in Cordeau et al. (2001b, 2004)

which is based on a Tabu Search technique. Notice that this framework combines

the time windows constraint with other routing restrictions. Another Tabu Search

algorithm is parallelized in Badeau et al. (1997). A guided local search is proposed by

Kilby et al. (1999). An interesting hybrid local search is developed by Bent and Van-

Hentenryck (2004a). Some greedy approaches have been presented in Ioannou et al.

(2001); Kontoravdis and Bard (1995). Comprehensible recent surveys of algorithms and

metaheuristics for the VRPTW can be found in Bräysy and Gendreau (2005a,b). Also

several variants of this problem have been studied: VRPTW minimizing route duration

(Savelsbergh, 1992), dial-a-ride problems with time windows (Diana and Dessouky,

2004), VRPTW with a limited vehicle fleet (Lau et al., 2003), robust VRPTW (Agra

et al., 2013), real waste collection with time windows (Kim et al., 2006), among others.

Since other approaches could generate better results (Hu et al., 2013), they are also

certainly more complex to implement and understand. Therefore the main advantage

122



8.3 Proposed Approach

of the approach proposed on this study is its simplicity. Our method is focused to

randomize a well-known heuristic.

Particularly, Solomon (1987) proposes six heuristics for the VRPTW. In between,

we can find three sequential building heuristics based on the insertion of clients. These

Insertion heuristics have been widely used in the research community (Berger and

Barkaoui, 2004; Campbell and Savelsbergh, 2004b; Diana and Dessouky, 2004; Tan

et al., 2001). In fact, Potvin and Rousseau (1993) propose a parallel version of the first

insertion heuristic. Likely, the work of Ioannou et al. (2001) is based on Solomon’s In-

sertion heuristic Framework for solving theoretical instances and a real-life case inspired

in a Food Company.

8.3 Proposed Approach

Here we focus on the Insertion Solomon heuristic so called I3. On this, the author

initializes every route construction using one sorting criteria of a set to be described

later. After initializing a current route, the method uses two criteria, Sc1(i, u, j) and

Sc2(i, u, j), to iteratively insert a new customer u into the current partial route, between

two adjacent customers i and j on the route. One by one, until time windows and

capacity constraints do not allow to add more clients. For each unrouted customer, we

first compute its best feasible insertion place in the emerging route (Sc1). Next, the

best unrouted customer to be inserted in the route is selected as the one for which Sc2 is

optimum and feasible. When no more customers with feasible insertions can be found,

the method starts a new route, unless it has already routed all customers. As the same

author states: ““this class of heuristics is a generalization of the time-oriented, nearest-

neighbour heuristic, in that we allow insertion of an unrouted customer in any feasible

location between a pair of customers on the route, rather than only at the end of the

route”.” Formally, the value criteria that Solomon proposes for the I3 are presented

next (Eq. 8.3 to 8.8). In summary, these criteria consist in a weighted addition of sub-

elements where each represents an important routing-scheduling feature. Using four

parameter values (µ;α1;α2;α3), each feature is then related in the next expression of

Sc1(i, u, j).

Sc1(i, u, j) = α1 · Sc11(i, u, j) + α2 · Sc12(i, u, j) + α3 · Sc13(i, u, j) (8.3)
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subject to:

Sc11(i, u, j) = diu + duj − µ · dij , µ ≥ 0 (8.4)

Sc12(i, u, j) = bju − bj ; (8.5)

Sc13(i, u, j) = lu − bu; (8.6)

α1 + α2 + α3 = 1, α1 ≥ 0, α2 ≥ 0, α3 ≥ 0 (8.7)

Sc2(i, u, j) = Sc1(i, u, j) (8.8)

Where bju is the new start time for service at customer j, given than u is on the route.

Our algorithm is implemented as described next (see Pseudo-code 6). We propose

to randomize in two points of the algorithm the original I3 of (Solomon, 1987). First,

we apply a uniform randomization over the selection of the sorting criteria for the list

of customers (explained in the next section). On each iteration, the combined effect

of sorting with different criteria will create an intensive and promising search guide

inside of the solution space. Second, a geometric (biased) distribution is used to pick

up the next client over the sorted list. Thus, the clients at the top of the list will be

more likely to be selected than others. This kind of double randomization has been

previously applied in González-Mart́ın et al. (2012) with good results.
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Algorithm 6 General pseudocode for RandI3.

1: procedure RandI3(inputs, µ, α1, α2, α3, β)

2: nodes← computeSolomonInitialCriteria(µ, α1, α2, α3)

3: while stopping criterion is not satisfied do . time or iterations

4: route← createNewRoute()

5: while there are unrouted clients on the list do

6: sortCriteria ← selectSortCriteria(nodes) . Use a uniform ran-

domization for selecting 1 of 4 sorting criteria of customers list

7: unroutedClientsList← sortClients(nodes, sortCriteria)

8: client ← selectNextClient(unroutedClientsList, β) . Use a bi-

ased randomization for selecting next customer to be included in the route, Sc2

9: unroutedClientsList← removeClient(unroutedClientsList, client)

10: positionCandidates← computePositionsInRoute(route, client, µ, α1, α2, α3)

. Sc1, Considering capacity and time windows

11: if positionCandidates is empty then

12: solution← addRoute(solution, route)

13: route← createNewRoute(client)

14: else

15: positionCandidates← sortPositions(positionCandidates)

16: route← insertClientInBestPosition(route, client)

17: end if

18: end while

19: end while

20: return solution

21: end procedure

8.4 Computational Results

Our algorithm RandI3 was implemented as a Java application and used to run instances

on an Intel Xeon E5603 at 1.60 Ghz and 8 GB RAM. The implementation uses some

state-of-the-art pseudo-random number generator. In particular, some classes from

the SSJ library (L’ecuyer and Buist, 2005) were implemented. For preliminary experi-

ments, we use a 100-customers test-bed also proposed by Solomon (1987). All instances

are represented by Euclidean distance, and the speed of all vehicles is assumed to be

equivalent to the travel unit.
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As in the original work, we have used the same four initialization sorting criteria

and the parameters values for Solomon criteria values. The parameters values are

(µ;α1;α2;α3) = {(1; 0.5; 0.5; 0), (1; 0.4; 0.4; 0.2), (1; 0; 1; 0)}. The uniformly selected

initialization sorting criteria: (a) the farthest unrouted customer, (b) the unrouted

customer with the earliest deadline, (c) the unrouted customer with the minimum

equally weighted combination of direct route-time and distance, and (d) actual heuristic

criterion value. For each set of values (µ;α1;α2;α3), 900 iterations per each instance

were executed —i.e., 2,700 total iterations per each instance— which selects the best

one. The biased random selection of customer is done using a Geometric distribution

with β = 0.1.

Table shows the routes and costs in the Best Known Solution (BKS) from Tan

et al. (2001); the routes and costs using the original I3; the routes and costs obtained

using our approach RandI3, and finally the gaps between our approach and commented

benchmarks. The I3 solutions were obtained with a Java implementation following

indications on original article (Solomon, 1987). In general, the solutions are obtained

in less than 5 minutes per each instance.

Our approach outperforms the original version of the heuristics with an average

improvement of around 14% [column ‘Gap (2-3)’]. Notice that some BKS are found.

However, there is still a positive average gap of almost 10% with the BKS [column ‘Gap

(1-3)’] that can be improved.

8.5 Future lines

The first point of randomization proposed on our approach could be complemented

with a learning approach. As we have appreciated in previous chapters, the selection

of a sorting criteria could be naturally improved if we use a biased randomization

instead of a uniform selection. The proposed learning approach consist on evaluate the

quality of solutions generated by each criteria. Then this information could be used for

selecting the criteria with a preference criteria. A biased randomization of this ranking

of successful criteria where the best ones would tend to be at the top, will provide a

learning approach over the proposed approach.
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BKS I3 RandI3

Instance Routes Cost (1) Routes Cost (2) Routes Cost (3) Gap (2-3) Gap (1-3)

c101-100 10 829 10 855 10 829 -3.04% 0.00%

c102-100 10 827 11 1376 10 971 -29.43% 17.41%

c103-100 10 828.06 11 1162 10 969 -16.61% 17.02%

c104-100 10 824.78 11 1290 11 958 -25.74% 16.15%

c105-100 10 829 10 855 10 829 -3.04% 0.00%

c106-100 10 827 10 910 10 861 -5.38% 4.11%

c107-100 10 829 10 1027 10 830 -19.18% 0.12%

c108-100 10 827 10 993 10 865 -12.89% 4.59%

c109-100 10 829 10 1063 10 911 -14.30% 9.89%

Average 1059 891.44 -14.40% 7.70%

c201-100 3 590 3 590 3 590 0.00% 0.00%

c202-100 3 590 4 840 3 638 -24.05% 8.14%

c203-100 3 591.55 4 1109 3 727 -34.45% 22.90%

c204-100 3 590.6 4 1158 3 707 -38.95% 19.71%

c205-100 3 589 3 657 3 612 -6.85% 3.90%

c206-100 3 588 3 660 3 634 -3.94% 7.82%

c207-100 3 588 3 727 3 617 -15.13% 4.93%

c208-100 3 588 3 662 3 635 -4.08% 7.99%

Average 800.38 645 -15.93% 9.42%

Table 8.1: Preliminary results.

127



8. VRPS WITH TIME WINDOWS

8.6 Chapter Conclusions

Again, we have applied a biased randomization of classical heuristic for solving a differ-

ent branch of VRPs. Biased randomized algorithms have became useful and powerful

tools to solve theoretical and real problems. The preliminary results show that our

approach is able to produce good results for the VRPTW using a classical heuristic.

Although the proposed approach is quite promising, it needs to combine with other

approaches for addressing more difficult problems. In next chapters, some tailored

approaches for the stochastic scenarios will be studied.
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Simheuristics

Parts of this chapter have been taken from the co-authored publication:

Juan, Faulin, Jorba, Cáceres-Cruz, and Marques (2013a), Annals of

Operations Research.

As we explain in chapter 5, the Combinatorial Optimization Problems (COPs)

represent a wide set of real-complex situations. Inside of this huge group, we can find

the stochastic COP where the non-deterministic variables are included. In this kind of

problem a random element is considered inside of the possible decision actions proper

of the COP. On these problems, a random variable is then considered related to the

uncertainty of real-life scenarios. Therefore the probability theory is used for assigning

a probability distribution representation to internal variables or parameters (Law and

McComas, 2002). After more than 20 years, the simulation-based optimization field

is still a promising research line. Several studies have been done on this matter for

different purposes (Glover et al., 1996, 1999). In fact, the complexity of COPs used to

be also related to the size of the problems and not only to the relation and representation

of variables (Azadivar, 1999). So large-scale problems are one of the main targets to

be optimized. For this complex large-scale problems, some parallel and distributed

computing techniques can also be applied.

Several studies have combined simulation and optimization approaches to find orig-

inal resolution procedures to complex real problems. The supply chain process has

been a popular target for this type of techniques. Likely, the work of Eskandari et al.
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(2010) is focused on channel coordination on the supply chain process. This study

highlights the sensitive influence of stochastic demands in supplier and retailer perspec-

tives. Then a decision support tool based on simulation-optimization is proposed. The

authors state that unlike traditional mathematical techniques, the use of simulation-

optimization modelling helps to deal with more realistic-complex scenarios. For in-

stance, the scheduling problem in complex assembly lines is studied in Angelidis et al.

(2012). The authors proposed a decentralized heuristic based on simulation. Also the

particular inventory problem has been addressed using simulation-optimization tech-

niques. Alizadeh et al. (2011) use models with deteriorating items, stochastic lead

times, and Poisson demands. The authors are focused on minimizing long-run total

expected costs allowing shortages. On this, three stochastic parameters are included

in their simulation model: item life time, demands, and lead time. Some other exam-

ples of the application of simulation-based optimization can be found in: scheduling

(Kim and Kim, 1994), supply-chain (Ding et al., 2004, 2006; Truong and Azadivar,

2003; Zhang and Li, 2004), telecommunication networks (Cabrera et al., 2009; Khan-

dani et al., 2005; Lin and Shroff, 2006; Xiang et al., 1999), city logistics (Barceló et al.,

2007; Teklu et al., 2007), among others. The main goal of this chapter is to present a

hybrid scheme which combines biased-randomized classical heuristics with Monte-Carlo

Simulation, called Simheuristic (Juan and Rabe, 2013). As it will be discussed later,

this hybrid scheme represents an efficient, relatively simple, parallelizable, and flexible

way to deal with several COPs in different fields, even when considering realistic and

non− trivial constraints as well as uncertainty values. In the last part of this chapter,

the distribution and parallelization of the Simheuristic methodology is discussed.

9.1 Background

The potential of simulation technology based on mathematical basis have been widely

proven (Carson and Maria, 1997). In fact, the stochastic behaviour in real systems

used to be addressed using simulation. A stochastic system is a set of dynamic-

interdependent components where some values of its variables change randomly. As

real systems, these require to be also optimized in order to provide better quality of so-

lutions. Therefore simulation-based optimization is a research field that emerges from

the combination of optimization and simulation (Deng, 2007). In Fig. 9.1, we can
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appreciate the basic interaction of these two research lines. From the simulation, it is

analyzed by the optimization procedure. Then this process is repeated until a certain

stopping condition is satisfied (Glover et al., 1996). Plus, the global economy competi-

tion has promoted a great interest in large-scale problems for different types of business.

However the natural complexity of this type of systems has delayed the creation of new

methodologies. There are many challenges surrounding the optimization of stochastic

systems. Simulation-based optimization and even more the proposed Simheuristics can

provide some useful answers.

Figure 9.1: General process of Simulated-based Optimization methods.

On this type of stochastic COP, the corresponding objective function is a mea-

surement of an experimental simulation. Due to the complexity of the simulation, the

objective function may be expensive to evaluate. Moreover, the evaluation difficulty of

the objective function can complicate the optimization process itself (Gosavi, 2003). In

fact, this type of research is also related to discrete-event simulation. The reader can

find comprehensible surveys on the subject of simulation-based optimization methods,

such as Andradóttir (1998); Fu (1994, 2002); Fu et al. (2005). In general, the design of

the experiments with stochastic variables needs at least the next basic components:

1. Selection of the random behaviour of a specific variable in the COP which can

follows an uniform or non-uniform distribution. This distribution must represent

the natural generation of values inside of the random variable. The non-uniform

distributions (Geometric, Triangular, LogNormal, etc.) used to represent quite

proper the conduct of real-life variables than the uniform selections.

2. Once the probability distribution is defined, several parameters must be setted.

There are two universal parameters for this type of approach. The first parameter
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is the Expected Value of the random variable. This value can be generated from

using the corresponding mean or average. After many trials, the average value of

a random variable can be found with the sum of all values between the number

of trials.

3. The second parameter is the standard deviation which completes the basic infor-

mation about the random variable. This value represent the variation or disper-

sion from the expected value. Then a low variation indicates that the generated

values are close to the mean; while a high variance increases the range size of

possible generated values, as can be appreciated in Fig. 9.2. On this, all curves

have zero as average, and the range of possible values increase from the top to

the lowest curve.

Figure 9.2: Variance examples in a normal distribution (full line, low variance; segmented

line, medium variance; dotted line, high variance).

Heuristic methods have proven to be widely useful in many real-world applications

(Cordeau et al., 2002; Gendreau et al., 2008; Laporte et al., 2000). In general, they

are fast and easy to understand and implement. On simulation-based optimization,

the three most popular heuristic methods are: genetic algorithms, tabu search and

simulated annealing. In the line of VRP, some Simheuristics have been proposed by

Fauĺın et al. (2008); Hu et al. (2008); Koskosidis et al. (1992) showing good results.

We propose a methodology called Simheuristic which consists in the combination of

biased-randomized heuristics and Monte-Carlo simulation for addressing complex real-

life problems with uncertainty variables. Previous works has proven that this method-

ology can be easily applied in many research areas like vehicle routing. For instance, the

Stochastic Vehicle Routing Problem (SVRP) is a family of well-known vehicle routing

132



9.2 Building a Simheuristic

problems characterized by the randomness of at least one of their parameters or struc-

tural variables (Bastian and Rinnooy-Kan, 1992). This uncertainty is usually modelled

by means of suitable random variables which, in most cases, are assumed to be indepen-

dent. A related problem having only one route is the Stochastic Travelling Salesman

Problem (Balaprakash et al., 2010). The Vehicle Routing Problem with Stochastic De-

mands (VRPSD) is among the most popular routing problems within the SVRP family.

There are two other classical problems belonging to that family: the Vehicle Rout-

ing Problem with Stochastic Customers (VRPSC) (Bent and Van-Hentenryck, 2004b;

Jézéquel, 1985) which was solved by Gendreau et al. (1996b) using an adapted Tabu

Search, and the Vehicle Routing Problem with Stochastic Times (VRPST) (Verweij

et al., 2003), but their applications are rather limited in comparison with the VRPSD.

A good review of all the cases for the SVRP is done by Gendreau et al. (1996a).

Using Simheuristics, the interaction presented in Fig. 9.1 can be translated to

a simple routing problem where the random values are integrated at the end of the

optimization process. In Fig. 9.3, the routing values (costs) are preliminary defined

using a randomized CWS algorithm. Then a simulation of random demands is executed

(under a some specific conditions). Notice that this simulation can affect the previous

results. So the idea is to define how this routing costs have changed under certain

conditions. The creation of this relation depends on the studied problem and the

proposed algorithm. In fact, this basic model is used and explained by Juan et al.

(2011d).

9.2 Building a Simheuristic

The key aspect for creating a Simheuristic is focused on promoting the interaction be-

tween the simulation and the heuristic. On this way, the sequential number of decision

steps in the general optimization process harnesses the fast times of the heuristic for

producing added-value information. Plus, classical heuristics for solving COPs employs

an iterative process in order to construct a feasible —and hopefully good— solution.

So this added-value information can improve the decision-making process. The heuris-

tic process can be executed with a set of promising values assigned to the stochastic

variables. Perhaps ‘simple’ problems will require few interaction points with the simu-

lation for the generation of new values. However this is not restrictive. Other problems
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Figure 9.3: Simheuristic example with a single simulation point after the heuristic pro-

cedure.

may require several points inside of the process for generate proper information for the

decision-making process to be optimized. Therefore the optimization procedure can be

considered as repetitive calls to the biased-randomized heuristics for creating a general

purpose procedures. Thus, it is possible to identify the following steps when creating

a new Simheuristic algorithm by means of biased randomization:

1. Given a COP, select a biased-randomized heuristic inside of a multi-start-like

approach for generating fast and useful information for the general optimization

process.

2. Once the base heuristic is selected, the most proper generation point of values

must be defined in the general optimization procedure. Maybe it is just necessary

one generation simulation at the beginning of the heuristic process. Most complex

problems will probably require several simulation outputs in order to recreate the

most proper behavior of stochastic variables inside of optimization process.

3. Define a set of scenarios to be studied where each one is related to a probability

distribution, mean, and level of uncertainty. There are three basic stochastic levels

that could be considered in order to represent the most appropriated variance of

the variable: low (25%), medium (50%) or high (75%).
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4. Optionally, the simulated values can be related to a specific set of policies or char-

acteristics of the COP. This will allow a post biased-randomization of obtained

results. The built solution can be associated to the specific used characteristic and

compared with others in order to create a rank of characteristics in a sorted set.

The main advantage of this process is to generate a set of alternatives scenarios

for finding the best solution in a given uncertainty level.

Plus, the general optimization procedure described above is able to quickly generate

several feasible solutions with different characteristics and under specific probabilistic

conditions. Therefore, a list containing the top ‘best-found’ solutions —each of them

having different properties— can be saved and considered by the decision maker.

9.3 Benefits

As said in chapter 5, the desirable features of a metaheuristic, described by Cordeau

et al. (2002), are the main evaluation aspects —i.e., accuracy, speed, simplicity, and

flexibility. In general, the two first features are quite popular for measuring the per-

formance of a solution method. The quality of solutions used to be represented by the

numerical cost obtained in a given period of execution time. However, the simplicity

aspect is an important factor that is focused on an easy implementation and parame-

terization. Finally, the flexibility is focused on the adaptation of a given method to be

modified for a different problem or constraint set. The natural adaptation to different

realistic scenarios is a feature quite demanded between the solution methods.

Having in mind these measured attributes, we list the main benefits of Simheuristic

over other related approaches:

� The ever-increasing complexity of systems can be considered, like the real-natural

representation of variants in mathematical models (e.g., stochasticity). Complex

relations and real variables can be modelled in a comprehensible way.

� The use of different probabilistic properties (e.g., uncertainty levels) in stochastic

variables offers a more natural and efficient way to select the most proper so-

lution in different realistic scenarios. This offers a well-known starting point to

conditionate the execution of any Simheuristic (parameterization).
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� The generation of internal added-value information from simulation allows to

intensify the search in the solution space in the promising regions. In fact, it

can produce a set of solutions with different properties in order to offer different

solution-scenarios to the decision maker.

� Being based on well-tested heuristics, they are relatively simple and easy to imple-

ment methods, which can be adapted to account for new constraints (flexibility).

Plus, the general performance of heuristics used to be quite fast.

� The natural and easy parallelization of this general process combined with multi-

start-like approaches and different probabilistic properties.

9.4 Cooperative and Distributed Approaches

Many small- and medium-enterprises (SMEs) could employ this type of methodology

(Simheuristic) for solver complex real problems. Furthermore, the performance of these

methods can be improved with some Parallel and Distributed Computing Systems

(PDCS) in order to save time and money on implementation projects. Usually, SMEs

in the logistics business lack technical expertise and high-tech computational resources.

It is not likely that they can afford buying expensive software or powerful computer

systems to solve their complex routing problems in real time. In such scenarios, two

alternative PDCS approaches are possible: (a) to use thirdparty resources on demand,

i.e., a cloud system; or (b) to employ idle computing capabilities of SME’s desktop

computers. As described in Armbrust et al. (2010), cloud computing systems are data

centers that make available they hardware and software to the general public in a

pay-as-you-go manner. Amazon’s Elastic Compute Cloud (http://aws.amazon.com/

ec2) and Microsoft’s Azure Services Platform (www.microsoft.com/windowsazure)

are examples of this kind of systems. Cloud users have complete control on rented

resources presented as virtual machines. However, many SMEs may not like this model

for data-privacy issues, i.e., they might want to avoid running and storing sensitive and

confidential information of their business in servers located in an external company. In

addition, pricing may be too expensive for some SMEs, although this factor might be

less important than the previous one since current prices of these cloud services are

quite affordable.
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The second option, to use idle enterprise resources, is based on the aggregation of

unused resources from existing computers in a SME in order to concurrently execute

thousands of clones or instances of an algorithm. This way, pseudo-optimal solutions

for large and complex real-life problems might be obtained in nearly real time at an

inexpensive monetary cost. This approach has some similarities with the so-called

“volunteer computing” or “contributory computing” model of distributed computing.

In this model, computer owners donate their computing resources to some scientific

or academic projects. In effect, a standard SME owns a number of commodity com-

puters distributed among its different departments and/or facilities. Most of these

personal computers offer more computing capabilities than required to complete their

daily activities, which in most cases involve using word processors, spreadsheets, e-mail,

etc. Moreover, they happen to be underutilized or idle during nightly hours. Thus,

it makes sense to spare resources from each computer and aggregate those resources

into a computational environment where hundreds or even thousands of instances of a

parallelizable algorithm, like the one presented here, can be run simultaneously. As Fig.

9.4 shows, resources from a SME may be federated with resources from other SMEs,

therefore resulting in an even larger PDCS. To avoid interferences with the current

tasks executed in each computer, contributed resources could be provided through the

use of virtual machines. Therefore, whenever a user in a SME needs to solve a com-

putationally intensive problem, it sends a query to the Directory-of-resources service,

which keeps updated information about available computing resources in the federated

network.

Resources might be provided as virtual machines running over real computers or by

a middleware. Once the Directory service has provided the user with a list of available

resources, it can submit the task (a VRP instance, for example) to be executed (solved)

by them. As more computational resources become available, more agents (algorithm’s

instances) will be concurrently executed, thus increasing the chances of finding pseudo-

optimal solutions in a reduced time-period.

The idea of aggregating computational resources from different machines in a net-

work has been successfully explored in several works and real-life applications. In par-

ticular, the Volunteer Computing platforms (Anderson, 2004; Marques et al., 2007) ag-

gregate computing capacities from the edges of the Internet. Those platforms offer tools
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Figure 9.4: A distributed computing approach.

to create adhoc communities that perform massive computation by aggregating the re-

sources of their participants. Amongst others, networks such as Seti@HOME (http://

setiathome.berkeley.edu), Distributed.net (http://www.distributed.net) or Prime.net

(http://www.mersenne.org/prime.htm) are examples of those communities. In par-

ticular, the Berkeley Open Infrastructure for Network Computing (BOINC) is a middle-

ware that offers the functionalities to build up a volunteer computing network (Ander-

son, 2004). Each client (computing node) is linked to one or more servers (application

specific entry nodes). When tasks are submitted for execution to the community they

are replicated for redundancy and distributed amongst clients. Results are collected

and validated before being delivered to the final user. Finally, it is interesting to

notice that these large-scale volunteer-computing systems open interesting challenges

to the Operations Research/Computer Science community. For instance, in order to

be efficient, these systems need to consider some issues related to the Reliability and

Availability (R&A) levels of their nodes and the services they offer. These systems are

usually characterized by extremely dynamic and heterogeneous environments, where

nodes offering different computer capabilities and features can enter or leave freely.
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This dynamism and heterogeneity introduce uncertainty which, in turn, makes it diffi-

cult to develop accurate models to predict the temporal evolution of the RA levels in

distributed environments. In addition to that, most of the applications to be executed

in these contributory systems have different components with different roles that have

to be scheduled in a way that satisfies the overall reliability.

9.4.1 Related work of PDCS for VRP

As in most other COPs, instances of interest in the VRP arena are becoming larger

in size as well as in complexity in terms of constraints and objective functions, includ-

ing multi-objective and non-smooth functions (Crainic, 2008; Talbi, 2009, 2012). In

particular, most researchers are focused on specific versions of metaheuristics applied

to different VRP variants, such as the CVRP, the VRPTW, the VRPSD, etc. Some

of these VRP versions might present dynamic (time-varying) conditions or multiple

scenarios which require a high computational efficiency without decreasing solution

quality. Normally, parallel and distributed methods in VRP are used based on: (a)

how the global search is conducted, i.e., either by a unique process or by a coordinated

set of processes; (b) the type of communication and synchronization patterns during the

global search, which might require different amounts of data exchange; and (c) whether

or not the synchronization steps are rigid. Typically, another point of interest is the

set of initial parameters of the search, which can be used to find one particular solution

from a set of solutions with different constraints or different objective functions, thus

generating multiple analysis scenarios. Furthermore, algorithm parallelization can be

done in different ways depending on the problem and the hardware/software computing

platform being employed.

Several parallel and distributed computing approaches have been already applied

to different VRP variants. Generally speaking, one common resource is to use a paral-

lel/distributed ‘master-slave’ approach, where the master (coordinator) processor can

take a sequential-based search and dispatch intensive computations to a set of slave

computation processors or workers (Fig. 9.5).

Alternatively, the master processor can also take a combination of initial parame-

ters/ constraints or a set of alternative scenarios, and distribute those scenarios among

the slave processors for a concurrent execution. Information sharing at global level can

be then used as a way to improve the local searches/scenarios. Some of the simplest
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Figure 9.5: A typical master-slave schema in a distributed system.

applications of parallel and distributed models do not involve shared information but

rather attempt to use as much parallel computation as possible. Jeevan-Madhu and

Saxena (1998) review some initial attempts of applying parallel techniques to solve dif-

ferent VRPTW instances. For example, one of the approaches they describe consists

on the use of parallel techniques to find minimum-cost routes between pairs of nodes,

so that both the time employed to serve all locations and the sum of waiting times are

minimized. All these parallelization techniques are based on: (a) the idea of subdivid-

ing the direct acyclic graph associated with the VRP instance into several subgraphs,

which are then assigned to the available processors in each interaction; and (b) the use

of composition operations to allow sharing global information in each step. They use

Parallel-shared RAM (PRAM) memory models of computation to evaluate algorithms

of high complexity. Intuitively, this conceptual model corresponds to the programmers’
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view of a particular kind of parallel computers (one with a shared-memory multipro-

cessor), but it ignores lower-level architectural constraints and some other important

details, such as memory access contention and overheads, synchronization overheads,

interconnection network throughput, connectivity, speed limits and link bandwidths,

etc. Those parameters, in fact, limit the performance obtained by parallel or distributed

implementations and are not appropriately considered in most parallel approaches to

VRPs.

Protonotarios et al. (2000) propose an approach based on Genetic Algorithms (GAs)

to the VRP with time windows and stochastic demands. These authors use HPC tech-

niques to score each chromosome’s fitness in a parallel way. Hence, it is possible to

consider larger problems. They try to reduce the amount of communication between

processes by replicating the genetic part in each process and maintaining, during the

evolution, the evaluation process spliced between processors. This helps to balance

computation efforts as each processor has a similar number of chromosomes. Synchro-

nization phases are then carried out to communicate the scores of all the population.

They have developed an experimental test-bed based on the use of multi-computers

in a LAN environment, as well as some shared-memory trials, which obtained the

best-known results due to the shared-chromosomes population scores. In a similar

way, Berger and Barkaoui (2004) propose solving the VRPTW by employing a hybrid

strategy based on the use of GAs in a master-slave structure, which is implemented

using the message-passing paradigm. In their approach, parallel slaves evolve into

two populations to concurrently try to minimize total traveled distance and temporal

constraint violations. Rego (2001) uses a network of multi-computers, with message

passing implementation to explore the parallelization of a Tabu Search strategy for

the VRP with capacity and distance restrictions. The parallel Tabu Search algorithm

follows a master-slave model, where each slave executes a complete Tabu Search algo-

rithm with a different set of parameters, starting with the initial solution provided by

the Clarke and Wright (1964) heuristic. Then, the algorithm collects the best-known

local solution from each slave and retransmits it to all slaves for the next iteration.

Ghiani et al. (2003) review different parallel strategies related to both Tabu Search

and dynamic/stochastic VRPs, where an initial effort is needed to obtain a starting

near-optimal solution and then recalculations are done based on dynamic demands.

Their paper experiments with some masterslave strategies running over an affordable
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network of computers (cluster computing). Their approach uses data-domain decom-

position. Le-Bouthillier and Crainic (2005) propose a functional parallelism where

different hybrid metaheuristics are executed concurrently. Particularly, these authors

use an evolutionary algorithm and a Tabu Search with a central point of communication

called the solution warehouse, where the partial solutions are stored. The metaheuris-

tics processes do not have inter-communications, thus making the cooperation design

simple and allowing them to test different metaheuristics without changing the main

collaboration design.

Other recent approaches are focused in less studied variants of VRP. For exam-

ple, Mitra (2007) has researched VRPs with split deliveries/pickups allowed in each

location. To solve this problem, he proposes a parallel-clustering technique, which em-

ploys a fixed number of clusters equal to the minimum number of vehicles to fulfill the

demands. He uses different steps to assign elements to the clusters, thus minimizing

the distances among the elements in each cluster. Once the clusters are consolidated,

the only remaining step is to schedule the vehicle routes within each cluster inde-

pendently, which can be done through a general route-construction heuristic. This

approach allows for data-parallel domain decomposition and, later, for a parallel route-

construction. Subramanian et al. (2010) examine the VRP with Simultaneous Pickup

and Delivery (VRPSPD). In their work, a parallel algorithm is used to start a multi-

heuristics local search in a master-slave structure. Some of the experiments are per-

formed with clusters of multi-core processors (in a HPC environment), which allows for

analyzing the algorithm scalability as more CPU cores are added. In fact, in a hybrid

multiprocessor/multi-computer environment using Message Passing Interface (MPI) to

communicate master and slaves processes, a scale of 256 cores is used as a test-bed.

One particularly interesting aspect of this paper is that the authors have tested and

studied some of the performance bottlenecks in their implementation, some of which

are related to communication overheads in the message-passing parallel paradigm, and

its implications in algorithmic efficiency with their hardware platform.

In addition to the preceding parallel approaches, advances in hardware parallel ar-

chitectures (Kirk and Wen-mei, 2010) have created new opportunities to study some

of the unexplored computational areas for VRPs and other combinatorial optimization

problems. In particular, computational paradigms like shared memory can now uti-

lize a new form of computation available by combining multiple computation-dedicated
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cores or CPU units. In some cases, several cores are present in multi-core generic pur-

pose CPUs, currently between 2 and 12 cores per chip die. Multi-core solutions can

also be found in current Graphic Processing Units (GPUs). These GPUs are based

on simplified core architectures making available hundreds of cores for computation

in new programming models like Nvidia CUDA and OpenCL (Sanders and Kandrot,

2010). Notice, however, that not all the metaheuristics and combinatorial optimiza-

tion problems will adapt well to these new parallelization models. For example, when

using multi-cores with multiple communicating agents or tasks several synchronization-

contention problems must be addressed in order to avoid performance bottlenecks. In

other cases, such as in GPU multi-cores, the restrictions of local memory available

(only some small number of KBytes per core in current hardware models), and the

many systematic levels of memory, create a massive and inefficient movement of com-

putation data during the algorithm execution. Thus, it might be very difficult to make

efficient implementations for some algorithms or, in most cases, to be able to provide

performance gains in comparison to their counterpart serial implementations. However,

these new parallel architectures are a promising new computational background to be

explored that may lead to a new generation of combinatorial-optimization algorithms.

As said before, DPCS offer the possibility of accelerating computations. Several

surveys could be found in Crainic (2008); Crainic and Toulouse (2003); Talbi (2012).

The method consists in a combination of search efforts of different sub-methods. How-

ever, classical parallel approaches, based on functional or data decomposition, do not

significantly modify the search trajectories of metaheuristics. Thus, they cannot im-

prove the quality of the solution, nor do they enhance the robustness of the search when

faced with different problem instances than those which were originally calibrated and

applied. Consequently, in recent years, multi-search (or multi-thread) metaheuristics,

with varying degrees of cooperation, have increasingly been used for difficult combi-

natorial problems and have been shown to both speed up the search and dramatically

improve the robustness and the quality of the solutions obtained (Le-Bouthillier and

Crainic, 2005). The complexity of this research line could rise high because the prob-

lem for the researcher is centered in determining the information to be exchanged, the

exchange points in the algorithm, the moment where it happens (synchronized or asyn-

chronized), and how each agent or thread uses this information. On this research line,
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Crainic has developed a large path of achievements. As the authors of Crainic and

Toulouse (2003) state:

“the first goal is to solve larger problem instances in reasonable computing

times. In appropriate settings, such as co-operative multi-thread strategies,

parallel meta-heuristics also prove to be much more robust than sequential

versions in dealing with differences in problem types and characteristics.

They also require less extensive, and expensive, parameter calibration ef-

forts”.

In the paper Le-Bouthillier and Crainic (2005), the authors have proposed a new co-

operative parallel metaheuristic for the VRP with time windows. It is based on the

solution warehouse strategy, in which several independent search threads cooperate

by asynchronously exchanging information on the best solutions identified. The logic

within each process consists in the implementation of a different metaheuristic —i.e.,

an Evolutionary Algorithm or a TS procedure, without any particular calibration of pa-

rameters and methods. In addition, construction and improvement heuristics were also

included to generate an initial set of solutions in order to perform post-optimization.

The proposed metaheuristic displays good performance in terms of solution quality and

computational effort. It was tested with a set of instances in the range of 200 and 1000

customers. The authors stated that the cooperative framework is simple to implement

and expand to other problems.

The article of Crainic et al. (2009a,b) proposes a self-adaptive meta-heuristic, called

Integrative Concurrent Evolutionary Method (ICEM). ICEM is focused on the decom-

position of a given VRP along subgroups of attributes and the concurrent evolution

of heterogeneous populations. The concurrent evolution is based on the cooperative

metaheuristic paradigm, which proposes the parallel execution of the methods using

some degree of communication. They apply their method to a Rich VRP model that

includes duration and capacity constraints as well as time windows, multiple periods

and multiple depots. They proposed future tests and the creation of benchmarks for

this type of problems. On the line of using LNS, Bartodziej et al. (2010) propose a

parallelizable framework to address the VRP with pickup and delivery and time win-

dows. They have tests different scenarios with LNS sub-heuristics using (Li and Lim,

2003) instances of 200 customers. For instance, Yu and Zhen-Yang (2011) propose a
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coarse-grained parallel Ant Colony Optimization algorithm. In the community is quite

natural to propose a parallel variant of a promising technique. For example, a paral-

lel version of the Unified Tabu Search approach (Cordeau and Laporte, 2003; Cordeau

et al., 1997, 2001b, 2004) has been proposed later by Cordeau and Maischberger (2012).

9.5 Chapter Conclusions

In this chapter, we have described an emerging approach based on the combination

of MCS and randomized classical heuristics. As complex scenarios, approaches for

stochastic VRPs can consider to include some other promising techniques, like MCS.

Nowadays, the combination of complementary techniques is getting quite popular in

the research community —e.g., Matheuristics (Doerner and Schmid, 2010). The uncer-

tainty modelling feature of MCS mixed with efficient and fast VRP heuristics can create

interesting approaches for real-life problems. Even more, the advantages of Simheuris-

tics can increase using distributed and parallel techniques. The role of parallel and

distributed computing systems for solving combinatorial optimization problems and,

in particular, vehicle routing problems, has been discussed. A literature review shows

that the use of parallel strategies is a well-established and increasingly relevant topic

in combinatorial optimization. Potential applications of distributed computing to solve

large-size VRPs with real-life constraints have also been pointed out. In next two chap-

ters, we will present the application of this methodology for solving the VRPSD and

the IRPSD (see Fig. 9.6).

 

Figure 9.6: VRPs studied in this dissertation using Simheuristics.
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VRPs with Stochastic Demands

Parts of this chapter have been taken from the co-authored publication:

Juan, Faulin, Jorba, Cáceres-Cruz, and Marques (2013a), Annals of

Operations Research.

In a broad sense, which includes also variants and extensions, Vehicle Routing Prob-

lems (VRPs) comprise a popular family of combinatorial-optimization problems which

is a natural area of application for PDCS. This is especially the case when consid-

ering complex scenarios given by large-size instances, real-life constraints (e.g., time

windows, maximum route length, service priorities, etc.), dynamic conditions, intangi-

ble costs (e.g., environmental costs due to pollution), or uncertainty conditions (e.g.,

stochastic or fuzzy demands). VRPs constitute a relevant topic for current researchers

and practitioners. In fact, according to Eksioglu et al. (2009), the number of VRP-

related articles published in refereed journals has experienced an exponential growth

in the last 50 years. One of the most challenging vehicle routing problems is the VRP

with Stochastic Demands (VRPSD). The VRPSD is a NP-hard problem in which a set

of customers with random or stochastic demands must be served by a fleet of homo-

geneous vehicles departing from a depot, which initially holds all available resources.

There are some tangible costs associated with the distribution of these resources from

the depot to the customers. In particular, it is usual for the model to explicitly consider

costs due to moving a vehicle from one node, customer or depot, to another. These

costs are often related to the total distance travelled, but they can also include other
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factors such as number of vehicles employed, service times for each customer, etc. The

classical goal here consists of determining the optimal solution (set of routes) that min-

imizes those tangible costs subject to the following constraints: (i) all routes begin and

end at the depot; (ii) each vehicle has a maximum load capacity, which is considered to

be the same for all vehicles; (iii) all (stochastic) customer demands must be satisfied;

(iv) each customer is supplied by a single vehicle; and (v) a vehicle cannot stop twice

at the same customer without incurring penalty costs. The main difference between

the classical CVRP and the VRPSD is that in the first one all customer demands are

known beforehand, while in the second one the actual demand of each customer has a

stochastic nature, i.e., its probability distribution is known beforehand, but its exact

value is revealed only when the vehicle reaches the customer. For the CVRP, a large

set of efficient optimization methods, heuristics, and metaheuristics have been already

developed (Golden et al., 2008; Laporte, 2007). However, this is not yet the case for the

VRPSD, which is a more complex problem due to the uncertainty introduced by the

random behaviour of customer demands. Therefore, as suggested by Novoa and Storer

(2009), there is a real necessity for developing more efficient and flexible approaches

for the VRPSD. On one hand, these approaches should be efficient in the sense that

they should provide optimal or near-optimal solutions to small and medium VRPSD

instances in reasonable computing time. On the other hand, they should be flexible in

the sense that no further assumptions need to be made concerning the random variables

used to model customer demands, e.g., these variables should not be assumed to be

discrete neither to follow any particular distribution.

To the best of our knowledge, most of the existing approaches to the VRPSD do

not satisfy the aforementioned efficiency and flexibility requirements. Therefore, one

of the major contributions of this chapter is the application of an efficient and flexible

methodology that combines Monte-Carlo simulation and parallel-computing to provide

real-time solutions to the VRPSD (Simheuristics).

10.1 Definition

Consider a complete network constituted by n + 1 nodes, Ω = {0, 1, . . . , n}, where

node 0 symbolizes the central depot and Ω∗ = Ω/{0} is the set of nodes or vertices

representing the n customers. The costs associated with travelling from node i to
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node j are denoted by cij , ∀i, j ∈ Ω, where the following assumptions hold true: (i)

cij = cji (i.e., costs are usually assumed to be symmetric, although this assumption

could be relaxed if necessary); (ii) cii = 0, and (iii) cij ≤ ciu + cuj ,∀u ∈ Ω (i.e.,

the triangle inequality is satisfied). These costs are usually expressed in terms of

travelled distances, travelling and service times or a combination of both distances and

times. Let the maximum capacity of each vehicle be VMC � Maxi∈Ω∗, {Di}, where

{Di} ≥ 0 (∀i ∈ Ω∗) are the independent random variables that describe customer

demands (it is assumed that the depot has zero demand). This capacity constraint

implies that the random demand value will never be larger than the VMC, which

allows us an adequate performance of our procedure. For each customer, the exact

value of its demand is not known in advance; it is revealed when the vehicle visits the

node. No further assumptions are made on these random variables other than that they

follow a well-known theoretical or empirical probability distribution, either discrete or

continuous, with existing mean denoted by E[Di]. In this context, the classical goal

is to find a feasible solution (set of routes) that minimizes the expected delivery costs

while satisfying all customer demands and vehicle capacity constraints. Even when

these are the most typical restrictions, other constraints and factors are sometimes

considered, e.g., maximum number of vehicles, maximum allowable costs for a route,

costs associated with each delivery, time windows for visiting each customer, solution

attractiveness or balance, environmental costs, and other externalities.

10.2 Literature review

The study of the VRPSD is within the current popularity of introducing randomness

into combinatorial problems as a way of describing new real problems in which most of

the information and data cannot be known beforehand. This tendency can be observed

in Van-Hentenryck and Bent (2009), which provides an interesting review of many

traditional combinatorial problems with stochastic parameters. Thus, those authors

studied Stochastic Scheduling, Stochastic Reservations and Stochastic Routing in or-

der to make decisions on line, i.e., to re-optimize solutions when their initial conditions

have changed and, therefore, are no longer optimal. This type of analysis has designed

the Online VRP in which re-optimization is needed apart from a previous situation.
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This set of routing problems seems to be well analyzed with the use of stochastic hy-

pothesis in their definitions Bent and Van-Hentenryck (2007) providing more reality in

their formulation. Another routing field in which randomness has also been developed

is the resolution of inventory routing problems where the product usage is stochastic

(Hemmelmayr et al., 2010). Bianchi et al. (2009) have written an interesting survey

of the appropriate metaheuristics to solve a wide class of combinatorial optimization

problems under uncertainty. This survey is a good reference for obtaining an appro-

priate list of articles regarding the use of metaheuristics in VRPSD and other related

problems.

The random behaviour of customer demands could cause an expected feasible so-

lution to become infeasible if the final demand of any route exceeds the actual vehicle

capacity. This situation is referred to as “route failure”, and when it occurs some

corrective actions must be introduced to obtain a new feasible solution. For example,

after a route failure, the associated vehicle might be forced to return to the depot in

order to reload and resume the distribution at the last visited customer. Of course, it is

also possible to consider preventive vehicle reloads even before the actual route failure

occurs, e.g., when the expected demand of the next customer exceeds the current load

of the vehicle. Some authors have already focused on modelling the costs associated

with these route failures (Tan et al., 2007). Our methodology proposes the construction

of routes in which the associated expected demand will be somewhat lower than the

vehicle capacity. Particularly, the idea is to keep a certain amount of surplus vehicle

capacity (safety stock or buffer) while designing the routes so that if the final routes’

demands exceed their expected values up to a certain limit, they can be satisfied with-

out incurring a route failure. The idea itself is not new in the literature. Sungur et al.

(2008), for instance, built a robust solution approach for the VRPSD using adequate

management of the remaining vehicle capacity compared to a uniform and non-uniform

distribution of that slack over all the considered vehicles. However, while their goal is

to find a robust solution “that optimizes the worst case value over all data uncertainty”,

our goal is to find robust solutions with optimal or pseudo-optimal total expected costs

for a given uncertainty scenario. Moreover, we plan to do that in ‘real-time’ by devel-

oping a simple, flexible, efficient and parameter-free algorithm that can benefit from

current trends in parallel and distributed computing. Precisely, the focus on the par-

allel and distributed computing approach is one of the main differences between this
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work and the paper of Juan et al. (2011d). Another fundamental difference resides

in the core algorithm. On one hand, the algorithm proposed in the aforementioned

reference uses a two-stage approach where the deterministic and the simulation stages

are employed in a sequential way, i.e., the simulation is only executed once the deter-

ministic stage has finished. This implies that the simulation stage is only applied to

the best-found deterministic solution. On the other hand, the algorithm presented in

this study integrates the simulation inside the deterministic stage, which implies that

the simulation process will now be executed each time a ‘promising’ solution for the

deterministic problem is generated. As expected, the numerical tests performed show

that the integrated approach provides better results than the sequential one. Finally,

by incorporating the parallel computing approach, computing times are significantly

reduced to provide ‘real-time’ solutions.

10.3 Proposed Approach

As introduced before, our approach deals with uncertainty in the customer demands

by considering a safety stock in the vehicle load, i.e., a certain percentage of the vehicle

maximum capacity is not accounted for when designing the routes. Instead, this per-

centage is reserved to deal with potential emergency situations caused by unexpected

demands. Using safety stocks not only contributes to reduce variable costs due to

route failures but, related to that, it also increases the reliability or robustness of the

planned routes, i.e., as safety stock levels increase, the probability of suffering a route

failure diminishes. Notice, however, that employing safety stocks also increases fixed

costs associated with aprioristic routing design, since more vehicles and more routes

are needed when larger buffers are considered. Therefore, when minimizing the total

expected cost a trade-off exists between its two components, fixed costs and expected

variable costs. Thus, the challenge relies in the selection of the appropriate buffer size.

As Fig. 10.1 shows, given a VRPSD instance, our approach considers different levels of

this buffer size and then solves the resulting scenarios in parallel by assigning each to

a different processing unit. This is performed by employing a modified version of the

algorithm introduced in Juan et al. (2011d). As it will be explained later with more

detail, in this modified version a Monte-Carlo simulation stage is integrated inside the

multi-start process, which allows estimating the variable costs associated with each
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candidate solution. Thus, among the multiple solutions generated for each scenario,

the ones with lowest total expected costs are stored as the best-found result associated

with the corresponding safety-stocks level. Once the concurrent execution of the dif-

ferent scenarios ends, the corresponding solutions are compared to each other and the

one with the lowest total expected costs is selected as the best-found routing plan.

Once a general overview of the multiple-scenario approach has been given, it is

time to explain how the SR-GCWS-CS algorithm (Juan et al., 2011e), a randomized

algorithm which was originally designed to solve deterministic CVRP instances, has

been modified to deal with VRPSD instances. Notice, however, that even when a

general overview of the algorithm will be given next, it is not the goal of this study to

explain the SR-GCWS-CS algorithm in detail since it has been extensively described

and tested in the aforementioned reference. Instead, this section focuses on how a

Monte-Carlo Simulation stage has been integrated into the multi-start constructive

process defined in the original algorithm in order to obtain, for each generated solution,

estimates of its expected variable costs.

During its multi-start construction stage, the SR-GCWS-CS algorithm introduces

a biased random behaviour within the CWS heuristic in order to generate alternative

starting solutions satisfying the problem constraints. Each of these feasible solutions

consist of a set of round-trip routes from the depot that, altogether, satisfy all demands

of the nodes by visiting and serving all of them exactly once. While the classical CWS

heuristic always chooses the edge with the largest savings value at each step, the SR-

GCWS-CS uses a pseudo-geometric distribution to assign a selection probability to

each edge in the savings list. Therefore, for each potential edge its probability of be-

ing selected is coherent with its savings value, i.e., edges with greater savings will be

more likely to be selected from the list than those with smaller savings. By iterating

this solution-construction process, different randomized CWS solutions, some of them

outperforming the original CWS solution, can be obtained in just a few milliseconds

for most small- and mid-size instances. Each time a new randomized CWS solution

is generated it is compared against the original CWS solution. If the new randomized

solution outperforms the CWS one, then a local search process is applied to the new

solution in order to further improve it. This local search process uses: (a) a cache

or memory-based stage that allows to quickly substitute specific routes in the current

solution by previously found routes covering the same set of customers in a less costly
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Figure 10.1: A multiple scenario approach based on the safety stocks level.
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order; and (b) a splitting or divide-and-conquer stage that allows to reduce the combi-

natorial complexity of the instance being solved. Pseudo-code 7 shows the logic flow of

this main procedure. The algorithm receives as input, the nodes to be served, the set

of constraints, the costs matrix, and the algorithm parameters, including the random

number generator (RNG), the number of best solutions to save (nSols), and the num-

ber of first- and second-level iterations to run (nIter and nIterPerSplit, respectively).

Then, the savings matrix is calculated and a savings list is constructed and sorted.

The resulting list contains the potential edges to be selected sorted by their associated

savings. Later, an initial solution is obtained applying the CWS heuristics.

Algorithm 7 Main procedure of the modified SR-GCWS-CS algorithm.

1: procedure SR-GCWS-CS(vrpNodes, vrpConsts, algParam, cMatrix) .

vrpNodes includes customers’ coordinates and demands; vrpConsts includes ve-

hicle available capacity constraint (considering safety stocks); algParam includes

rng, nSols, nIter and nIterSplitting; and vrpSol represents a given solution for the

deterministic VRP.

2: savList← makeSavingsList(vrpNodes, cMatrix)

3: cwsSol← constructCWSSol(vrpNodes, cMatrix, savList, vrpConsts)

4: while stopping criterion is not satisfied do . It depends on nIter

5: vrpSol← constructRandomSol(vrpNodes, cMatrix, savList, vrpConsts, rng)

6: vrpSol← improveSolWithRoutesCache(vrpSol, cMatrix)

7: if vrpSol outperforms cwsSol then

8: vrpSol← sppliting(vrpSol, cMatrix, savList, vrpConsts, algParam, rCache)

9: calcExpectedCosts(vrpNodes, vrpConsts, vrpSol)

10: bestSols← updateBestSolsList(vrpSol, bestSols, nSols)

11: end if

12: end while

13: return bestSols

14: end procedure

The costs associated with this solution will be used as an upper bound limit for

the costs of what we will consider a good solution. It is at this point when we start

the first-level iterative process to generate new solutions outperforming the CWS. At

each first-level iteration, a new solution is constructed by using the randomized CWS

heuristic (Pseudo-codes 8 and 9); then this new randomized solution is processed by
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the cache procedure, which uses cache best results from previous iterations to improve,

if possible, the current randomized solution. If the resulting solution outperforms the

CWS heuristic, it is considered a promising solution and it is then processed by the

splitting procedure; this splitting procedure tries to improve it by first considering

different subsets of routes (i.e., by reducing the problem dimension), and then applying

a second-level iterative process over each of these subsets.

Algorithm 8 Randomized CWS procedure to generate a random initial solution.

1: procedure constructRandomSol(nodes, cMatrix, sList, rng)

2: effList← copyList(sList)

3: sol← constructInitialSol(nodes, cMatrix)

4: while effList contains edges do . It depends on nIter

5: e← selectEdgeAtRandom(effList, rng)

6: iNode← getOrigin(e)

7: jNode← getEnd(e)

8: iR← getRoute(iNode, sol)

9: jR← getRoute(jNode, sol)

10: if all CWS route − merging conditions are satisfied then . see

constraints

11: sol ← mergeRoutesUsingEdge(e, iR, jR, sol) . see CWS heuris-

tic

12: end if

13: deleteEdgeFromList(e, effList)

14: end while

15: return sol

16: end procedure

At the end of each first-level iteration, the resulting solution goes through a Monte-

Carlo simulation procedure which provides estimates of its associated expected variable

costs (see Pseudo-code 10). These estimates are obtained by iteratively sampling the

random variables characterizing customer demands in each route. This way, whenever

a random route failure occurs, we account for its associated costs, i.e., the ones due to

performing an extra trip to the depot to reload the vehicle before resuming the delivery

of goods among the remaining customers. After several iterations, estimates for the

expected variable costs are obtained by averaging route-failure costs. Finally, the total
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Algorithm 9 Randomized edge-selection procedure.

1: procedure selectEdgeAtRandom(list, rng)

2: beta← generateRandomNumber(rng, a, b) . e.g.: a=0.05 and b=0.25

3: randomV alue← generateRandomNumber(rng, 0, 1)

4: pos← floor(log(randomV alue/log(1− beta))) . random from a geomet-

ric dist.

5: pos← pos mod listSize . random position from the list.

6: return getEdgeAtPosition(pos)

7: end procedure

expected cost of the resulting solution is used to determine if it should be stored or not

in a sorted array of best solutions found so far.

It is important to notice here that the SR-GCWS-CS algorithm is a probabilistic

process. This means that it will provide slightly different results each time it is run

with a different seed of the random number generator. Therefore, as it will be described

in the experimental section, it is possible to concurrently launch different instances of

the algorithm, each one using a different initial seed, by using a multi-thread approach

in a multi-core CPU to speed up further the local search process.

10.4 Computational Results

In the CVRP literature, there exists a classical set of very well-known benchmarks

commonly used to test their algorithm. However, as noticed by Bianchi et al. (2006),

there are no commonly used benchmarks in the VRPSD literature and, therefore, each

paper presents a different set of randomly generated benchmarks which, in our opinion,

reveals the immatureness of the VRPSD knowledge area when compared with the

CVRP area. Unfortunately, most authors only provide details regarding the parameters

used to randomly generate their instances, but they do not provide the exact coordinates

of the nodes, which are necessary to calculate the travelling costs. Similarly, the exact

parameters of the distributions that model customer demands are not usually provided.

This situation makes it extremely difficult to compare the performance of different

approaches. Consequently, we decided to employ a natural generalization of several

classical CVRP instances by using random demands instead of constant ones. This

approach has at least three advantages: (1) all data details, including nodes coordinates
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Algorithm 10 MCS procedure to obtain variable costs and reliability estimates.

1: procedure calcExpectedCosts(vrpNodes, vrpConstraints, vrpSol)

2: solExpectedCosts← 0 . 1. Reset solution expected costs.

3: for each route r in vrpSol do . 2. For each route r in the given solution...

4: rExpectedCosts← 0

5: for iter = 1 to (iter − nIter) do

6: rCosts← getCosts(r) . fixed costs for r

7: rAccumDemand← 0

8: for each customer c in r do

9: newDemand← generateRandomDemand(c)

10: rAccumDemand← newDemand

11: if rAccumDemand > vehicleCapacity then

12: rCosts← rCosts+ roundTripCosts(c, depot)

13: rAccumDemand← newDemand

14: end if

15: end for

16: rExpectedCosts← rExpectedCosts+ rCosts

17: end for

18: rExpectedCosts← rExpectedCosts/nIter

19: solExpectedCosts← solExpectedCosts+ rExpectedCosts

20: end for

21: return solExpectedCosts . 3. Return expected costs for the given so-

lution

22: end procedure
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and random demands, are given, so that other authors can use the same data sets for

verifying and benchmarking purposes; (2) we are using a well-known set of instances

which includes a diversity of clustered and disperse problems of different sizes; and

(3) our CVRPSD results for each instance can be compared with the corresponding

CVRP best known solution (BKS) and, ideally, our results should converge to the

CVRP BKS as variances in customers’ demands tend to zero. In order to test our

methodology, we generalized a set of 55 classical CVRP instances, which details (in

terms of nodes coordinates, deterministic demands, and vehicle capacity), can be found

at http://www.branchandcut.org. So, for each instance, while we decided to keep all

node coordinates and vehicle capacities, we changed di, the deterministic demands of

client i (∀i ∈ Ω∗) to stochastic demands Di with E[Di] = di. In other words, we

considered the demand of each client as a random variable following a well-known

probability distribution with a given mean and a given variance (e.g., V ar[Di] = 0.25 ·

di as ‘low’ variance). To illustrate this, we selected an Exponential distribution for

modelling demands, although any other distribution with a known mean could have

been used instead. In fact, in a real-world problem historical data would be used

to model each client’s demands by a different probability distribution, which can be

naturally supported by our simulation-based approach.

A multi-thread version of the previously described algorithm was implemented in

Java and executed under Windows 7 Professional on a 2 GHz E5504 IntelR Quad-Core

XeonR CPU with 4 GB. Each thread was an instance of our algorithm using a different

stream of the LFSR113 pseudo-random number generator (L’ecuyer and Buist, 2005).

In our tests, four threads —one per core— were running on the aforementioned CPU.

All threads shared a common memory (a cache of routes). Notice that no fine-tuning

process was carried out, since one of our goals was to prove that our algorithm is robust

and can provide efficient solutions to any VRPSD problem without any initial adjust-

ments. As discussed in the previous section, another major goal of our approach was

to allow ‘realtime’ decision-making by parallelizing the execution of multiple scenarios,

the ones defined by considering different safety-stocks levels. In order to test this goal,

a limit of 10 seconds was set as the maximum computing time allowed per scenario.

Each scenario was defined by using a different level of safety-stocks during the design

stage. Thus, safety-stocks were ranging from 0% to 20% of the vehicle real capacity.
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Tables 10.1 and 10.2 show the complete results obtained for all 55 classical in-

stances we generalized and tested. First column in each table contains the name of

each instance, which includes the number of nodes and also the number of routes of the

‘standard’ solution, e.g., B-n78-k10 is an instance of class B with 78 nodes and able to

be solved with a 10-route solution. Columns 2 to 4 are related to solutions obtained

by our algorithm when a 100% of the vehicle maximum capacity is considered during

the design stage. Notice that this strategy always provides pseudo-optimal solutions in

terms of fixed costs (column 2), since they can be directly compared with the CVRP

BKS. However, since no safety stock is used, there is a chance that these solutions can

suffer from route failures. In turn, route failures might imply high expected variable

costs (estimated in column 3 by Monte-Carlo simulation), thus increasing the total

expected costs, which is estimated in column 4. Here is where using safety stocks can

be of value: by not necessarily using all vehicle maximum capacity during the design

stage, some route failures can be avoided. Hopefully, this might lead to new solutions

with slightly higher fixed costs but also with lower expected variable costs. At the end,

these alternative solutions might present lower total expected costs, which are the ones

to be minimized. On one hand, columns 5 to 9 show the results obtained with the algo-

rithm presented in Juan et al. (2011d), which applies simulation once the local search

process that solves the deterministic VRP has finished. On the other hand, columns

10 to 14 show the results obtained with the algorithm proposed in this study, in which

simulation is integrated, and applied several times, throughout the local search process.

Notice that fixed costs in columns 7 and 12 are always higher or equal to those in col-

umn 2. However, total expected costs in columns 9 and 13 are always lower or equal to

those in column 4. Notice also that sometimes the best-found strategy (for this set of

benchmarks) is to use a 100% of the vehicle maximum capacity (i.e., no safety stocks

at all) when designing the routes (columns 5 and 10).

However, in other occasions it pays off to design the routes using a safety stock,

e.g., for the P-n101-k4, the best-found solution has been obtained by using only 85%

of the vehicle maximum capacity, even when that solution contains five routes, one

more than strictly necessary as denoted by its “k4” term. Finally, the respective gaps

between total expected costs are shown in columns 9 and 14. Notice that, even when

in most cases this gap is small, sometimes it can be above 3%, which means that

using the correct safety-stocks level can sensibly reduce the total expected costs when
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Without using safety stocks Using safety stocks (used capacity = p% of vehicle capacity)

(used capacity = 100%)

Simulation applied after the local search Simulation integrated inside the local search

Instance Fixed Expected Expected Used M Fixed Expected Gap Used M Fixed Expected Gap Gap

name costs variable total capacity costs total (1-2) capacity costs total (1-3) (2-3)

costs costs (1) costs (2) costs (3)

A-n32-k5 787.1 231.7 1,018.80 95% 5 797.5 1,006.70 -1.2% 100% 5 787.1 993.2 -2.5% -1.3%

A-n33-k5 662.1 179.9 842 97% 5 676.1 830.1 -1.4% 100% 5 674.1 815.4 -3.2% -1.8%

A-n33-k6 742.7 176.5 919.1 100% 6 742.7 919.1 0.00% 100% 6 744.6 912.6 -0.7% -0.7%

A-n37-k5 672.5 127.1 799.6 100% 5 672.5 799.6 0.00% 99% 5 672.5 795 -0.6% -0.6%

A-n38-k5 733.9 181.4 915.3 96% 6 753.2 886.1 -3.2% 97% 6 753.2 885.1 -3.3% -0.1%

A-n39-k6 833.2 216.9 1,050.10 98% 6 835.3 1,029.90 -1.9% 100% 6 842.9 1,010.60 -3.8% -1.9%

A-n45-k6 952.2 257.7 1,209.90 96% 7 972.7 1,190.60 -1.6% 100% 7 972.2 1,184.30 -2.1% -0.5%

A-n45-k7 1,147.40 396 1,543.40 96% 7 1,155.80 1,527.80 -1.0% 98% 7 1,155.20 1,502.00 -2.7% -1.7%

A-n55-k9 1,074.50 343.7 1,418.20 100% 9 1,074.50 1,418.20 0.00% 100% 9 1,086.40 1,408.40 -0.7% -0.7%

A-n60-k9 1,360.60 472.7 1,833.30 99% 9 1,361.30 1,820.80 -0.7% 100% 9 1,360.60 1,795.70 -2.1% -1.4%

A-n61-k9 1,040.30 339.2 1,379.50 98% 10 1,058.40 1,340.80 -2.8% 97% 10 1,065.10 1,330.60 -3.5% -0.8%

A-n63-k9 1,633.70 573 2,206.70 100% 9 1,633.70 2,206.70 0.00% 100% 10 1,649.60 2,203.70 -0.1% -0.1%

A-n65-k9 1,184.70 394.7 1,579.40 94% 10 1,241.70 1,564.10 -1.0% 100% 9 1,185.90 1,555.30 -1.5% -0.6%

A-n80-k10 1,776.20 609.2 2,385.30 90% 11 1,867.40 2,328.40 -2.4% 90% 11 1,867.40 2,328.40 -2.4% 0.00%

B-n31-k5 676.1 189.8 865.9 95% 5 681 862 -0.5% 100% 5 684.7 855.7 -1.2% -0.7%

B-n35-k5 958.9 296.3 1,255.20 100% 5 958.9 1,255.20 0.00% 100% 5 958.9 1,255.50 0.00% 0.00%

B-n39-k5 553.2 165.7 718.9 99% 5 557.4 701.8 -2.4% 96% 5 563.2 695.9 -3.2% -0.9%

B-n41-k6 835.8 279.7 1,115.50 91% 7 907.5 1,108.00 -0.7% 97% 7 899.7 1,103.20 -1.1% -0.4%

B-n45-k5 754 174.8 928.8 96% 6 763.8 908 -2.2% 91% 6 764.3 904.6 -2.6% -0.4%

B-n50-k7 744.2 227.5 971.8 92% 7 756.8 949.3 -2.3% 91% 7 757.8 945.8 -2.7% -0.4%

B-n52-k7 754.5 224 978.5 99% 7 756.7 953.1 -2.6% 99% 7 770 944.4 -3.5% -0.9%

B-n56-k7 716.4 215.1 931.5 86% 8 765.7 928.1 -0.4% 98% 7 728.6 920 -1.2% -0.9%

B-n57-k9 1,602.30 623.8 2,226.00 98% 9 1,619.60 2,199.70 -1.2% 98% 9 1,619.60 2,199.70 -1.2% 0.00%

B-n64-k9 868.3 312.9 1,181.20 94% 10 903.3 1,180.00 -0.1% 100% 10 916.3 1,179.60 -0.1% 0.00%

B-n67-k10 1,042.30 402.6 1,444.80 93% 11 1,105.30 1,409.10 -2.5% 97% 11 1,099.10 1,404.50 -2.8% -0.3%

B-n68-k9 1,300.20 487.6 1,787.80 96% 9 1,308.20 1,770.60 -1.0% 97% 9 1,313.60 1,754.70 -1.9% -0.9%

B-n78-k10 1,250.60 432.9 1,683.50 95% 11 1,305.70 1,668.00 -0.9% 100% 10 1,254.80 1,659.60 -1.4% -0.5%

Average 987.3 316 1,303.30 96% 8 1,008.60 1,287.50 -1.3% 98% 8 1,005.50 1,279.40 -1.9% -0.7%

Table 10.1: Results for instances A and B using an exponential with E[Di] = di (using

10 seconds per scenario).

compared with the best-found solution without using safety stocks. Finally, notice

also that column 15 shows the gap between the two discussed stochastic approaches,

i.e., applying simulation only once after the local search and integrating simulation

throughout the local search. According to this column it seems clear that the integrated

approach presented in this study provides always equal or slightly superior results to

the one which applies simulation only after the deterministic VRP has been solved.

In order to analyze how expected total costs provided by the algorithm depend

upon the variables ‘computing time’ and ‘parallelization level’, a final experiment was

designed. The experiment consisted in choosing some of the largest VRPSD instances

considered in this study, and then running them in a cluster of computers under different

scenarios. The instances selected were the following ones: E-n76-k14, A-n80-k10, P-

n101-k4, M-n101-k10, M-n121-k7, and F-n135-k7. Each of the aforementioned scenarios
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Without using safety stocks Using safety stocks (used capacity = p% of vehicle capacity)

(used capacity = 100%)

Simulation applied after the local search Simulation integrated inside the local search

Instance Fixed Expected Expected Used M Fixed Expected Gap Used M Fixed Expected Gap Gap

name costs variable total capacity costs total (1-2) capacity costs total (1-3) (2-3)

costs costs (1) costs (2) costs (3)

E-n22-k4 375.3 107.7 482.9 97% 4 383.9 479.1 -0.8% 100% 4 383.5 468.3 -3.0% -2.2%

E-n30-k3 505 96.3 601.3 91% 4 505 599.7 -0.3% 98% 4 506.1 589.8 -1.9% -1.6%

E-n33-k4 837.7 276 1,113.70 94% 4 851.2 1,106.50 -0.6% 94% 4 851.2 1,085.40 -2.5% -1.9%

E-n51-k5 524.6 86.8 611.5 100% 5 524.6 611.5 0.00% 100% 5 524.6 611.5 0.00% 0.00%

E-n76-k7 692.7 113.2 805.9 92% 7 702.3 792.5 -1.7% 100% 7 698.9 790 -2.0% -0.3%

E-n76-k10 841.3 229.8 1,071.10 93% 11 870.1 1,044.50 -2.5% 93% 11 870.1 1,044.50 -2.5% 0.00%

E-n76-k14 982.7 307.6 1,290.30 100% 15 982.7 1,290.30 0.00% 100% 15 982.7 1,290.30 0.00% 0.00%

F-n45-k4 727.7 121.5 849.2 99% 5 730 826.8 -2.6% 99% 5 730 824.9 -2.9% -0.2%

F-n72-k4 244.1 41.6 285.7 100% 4 244.1 285.7 0.00% 99% 4 248.7 283.8 -0.7% -0.7%

F-n135-k7 1,183.80 325.4 1,509.30 100% 7 1,183.80 1,509.30 0.00% 100% 7 1,183.80 1,509.30 0.00% 0.00%

M-n101-k10 819.6 221.7 1,041.30 100% 10 819.6 1,041.30 0.00% 100% 10 825.6 1,034.70 -0.6% -0.6%

M-n121-k7 1,047.60 296 1,343.70 100% 7 1,047.60 1,343.70 0.00% 100% 7 1,047.60 1,343.70 0.00% 0.00%

P-n19-k2 212.7 40.9 253.6 94% 3 220.6 253.1 -0.2% 99% 3 220.6 252.2 -0.5% -0.4%

P-n20-k2 217.4 42.7 260.1 98% 2 218.3 258.9 -0.5% 100% 2 218.3 257.5 -1.0% -0.5%

P-n22-k2 217.9 41.9 259.8 100% 2 217.9 259.8 0.00% 100% 2 217.9 255 -1.8% -1.8%

P-n22-k8 588.8 216 804.8 99% 9 589.4 801.7 -0.4% 100% 9 588.8 787.3 -2.2% -1.8%

P-n40-k5 461.7 76.7 538.4 100% 5 461.7 538.4 0.00% 99% 5 466.3 537.9 -0.1% -0.1%

P-n50-k8 632.7 180.4 813.1 91% 9 652.4 794.5 -2.3% 100% 9 641.9 790.5 -2.8% -0.5%

P-n50-k10 700.7 212.5 913.1 99% 10 700.7 908.9 -0.5% 100% 10 704.9 903.7 -1.0% -0.6%

P-n51-k10 741.5 219.3 960.8 100% 10 741.5 960.8 0.00% 100% 10 741.5 958.2 -0.3% -0.3%

P-n55-k7 574.5 120.6 695.1 91% 7 588.1 674.3 -3.0% 91% 7 588.1 672.2 -3.3% -0.3%

P-n55-k15 952.1 355.5 1,307.60 98% 16 965.5 1,301.50 -0.5% 99% 16 955 1,267.50 -3.1% -2.6%

P-n60-k10 756.3 215.2 971.6 96% 10 763.2 955.2 -1.7% 100% 10 756.9 947 -2.5% -0.9%

P-n65-k10 807 206.7 1,013.60 97% 10 812.9 1,011.70 -0.2% 97% 11 817.7 1,005.10 -0.8% -0.7%

P-n70-k10 839.1 208.6 1,047.70 97% 11 858.8 1,043.80 -0.4% 99% 11 848.2 1,043.30 -0.4% 0.00%

P-n76-k4 615.5 60.9 676.4 87% 5 628.9 662.3 -2.1% 87% 5 628.9 662.3 -2.1% 0.00%

P-n76-k5 642.7 88.1 730.8 87% 6 664.6 716.6 -1.9% 97% 6 663 716.3 -2.0% 0.00%

P-n101-k4 718.8 46.1 764.9 85% 5 729.8 754 -1.4% 85% 5 729.8 754 -1.4% 0.00%

Average 659.3 162.7 822 96% 7 666.4 815.2 -0.8% 98% 7 665.7 810.2 -1.5% -0.6%

Table 10.2: Results for instances E, F, M and P using an exponential with E[Di] = di

(using 10 seconds per scenario).
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is defined by a particular combination of the parameters ‘computing time’ (1, 2, 5, 10,

15, 20, and 30 seconds), and ‘number of agents’ (algorithm instances) running in parallel

(1, 2, 4, 8, 16, 32, and 64 parallel instances). We carried out this experiment using a

heterogeneous cluster environment composed of 16 multi-core nodes (with Intel Xeon

Series 54xx/55xx and AMD Quad Opteron 23xx CPUs). Notice that the described

execution testbed is just one possible example of a PDCS, but a similar testbed could

be proposed by using alternative computing nodes, i.e., several cores in a multi-core

CPU environment, networked PCs with mono-core CPUs, or even nodes in a volunteer

computing or cloud computing environment.

Fig. 10.2, 10.3 and 10.4 show the resulting 3D scatterplots representing expected

total costs versus computing time (in seconds) and number of agents running in parallel.

As it can be noticed in every scatterplot, costs always diminish very fast as the number

of parallel agents increases, even when considering just one or two seconds of computing

time. Of course, noticeable cost reductions can also be attained by considering longer

execution times of 30 seconds, even for just one or two agents. However, the interesting

thing to notice here is that, being based on a probabilistic algorithm, our approach

largely benefits from using a PDCS environment. In fact, according to the obtained

results, it seems that near-optimal solutions can be obtained for small- and medium-

sized VRPSD instances in just a few seconds when several instances of the algorithm

are concurrently executed in a relatively affordable PDCS. This might be due to the

diversification obtained by using different initial randomized solutions, which increases

the chances of starting the search process in the vicinity of a pseudo-optimal solution

even without a long ‘warm-up’ period.
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10.4 Computational Results

Figure 10.2: Scatterplots for expected total costs vs. time and number of agents of

E-n76-k14 and A-n80-k10 instances.

Figure 10.3: Scatterplots for expected total costs vs. time and number of agents of

P-n101-k4 and M-n101-k10 instances.
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Figure 10.4: Scatterplots for expected total costs vs. time and number of agents of

M-n121-k7 and F-n135-k7.

10.5 Chapter Conclusions

So far, we have have appreciated the application of the proposed Simheuristic method-

ology for solving the VRPSD. A multiple-scenario approach is designed. This ap-

proach combines parallel computation, Monte-Carlo simulation, a well-tested random-

ized heuristic, and the use of safety stocks to offer a flexible as well as efficient algorithm.

Parallelization techniques are used at two different levels: first, a parallel-execution en-

vironment is designed to deal with the multiple-scenario analysis; secondly, several

concurrent threads sharing a common memory or, alternatively, several concurrent

processes are considered during the algorithm execution for each scenario. Among the

special characteristics of this approach it is important to highlight that it has pro-

vided ‘real-time’ competitive solutions to most small- and medium-tested instances,

that it does not need any complex fine-tuning process, and that it does assume any

particular probability distribution for modelling customers’ demands. Furthermore,

the proposed Simheuristic approach in this chapter points out the potentials of paral-

lelization techniques. The use of DPCS can quite improve the computational execution

of optimization procedures. In the next chapter, we will apply the Simheuristic idea

to a different stochastic problem called Inventory Routing Problem with Stochastic

Demands.
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Inventory Routing Problem with

Stochastic Demands

Parts of this chapter have been taken from the co-authored publication:

Cáceres-Cruz, Juan, Grasman, Bektas, and Faulin (2012b) in Proceed-

ings of WSC.

Transportation and inventory decisions are traditionally made sequentially, which

lacks collaboration between the participants and does not allow the close cooperation

that optimizes supply chain performance. Today, one of the most important concepts in

supply chain management is replacing sequential decision making with global decision

making, where all parties in the supply chain determine the best policy for the entire

system; whereas in sequentially optimized supply chains, each party determines its own

course of action independent of the benefit to the entire membership.

Inventory and transportation systems are good examples of sequential decision mak-

ing. However, driven by business practices such as vendor managed inventory (VMI),

integrated inventory and transportation systems have received much recent attention

(Kaipia et al., 2002). VMI is a supply chain centralized control initiative where the

supplier is authorized to manage inventories of the retailers and to make decisions such

as when and how much inventory to ship to the retailer. VMI is seen as an effec-

tive means of managing inventory through the strategic use of Internet technologies,

leverages advanced technology and trading-partner relationships to enable the flow of
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information and inventory throughout the entire supply chain. Despite the potential

benefits, and probably due to its complexity, only a relatively small number of works

have analytically approached the issue of integrating inventory and transportation (ve-

hicle routing) decisions. This issue is known in the literature as the Inventory Routing

Problem or IRP (Campbell et al., 1998). Therefore, model formulations with exact or

approximate solution procedures are still needed to assist with the widespread adoption

of VMI and use of synchronized inventory and transportation systems.

In this chapter, we consider a single-period IRP consisting of multiple retailer cen-

ters with stochastic demands and a single distribution depot. Since final demands at the

retailer centers are assumed to be random variables, potential stock-outs are considered

in our model. In a decentralized version of this problem, each retailer would utilize the

inventory policy that either minimizes its own expected costs or achieves a prescribed

service level. Supply requests would then be transferred to the distribution depot, so

that it can design the corresponding delivery routes. On the contrary, in the centralized

version that we are addressing, no assumption is made about the inventory policy at

an individual retailer. The distribution depot will analyze the inventory position of the

retailers and make joint inventory and routing decisions aiming at minimizing the total

cost to the system.

Another aspect to notice is that most of the existing literature has considered the

IRP as a long-term, multi-period problem (Campbell et al., 2001). This is especially

the case when the final demands at the retailer centers are assumed to be determin-

istic. However, we consider that it is worthy to also study the single-period problem,

particularly in those scenarios characterized by: (a) information and communication

tools, which are able to efficiently monitor and report retailers’ stocks levels at the end

of each period, and (b) random demands with a high variability, which make it difficult

to forecast future inventory levels. Under those conditions —which seem quite common

among real-life IRP applications—, long-run planning could be a much more inefficient

policy than just solving the problem with updated data at the end of each period. In

Fig. 11.1 we present an example to illustrate a simple solution of the studied context.

Each RC owns an inventory, which is managed by the central depot. For each

RC, the inventory level at the end of a period depends on the initial stock level and

also on the end-clients’ demands during that period. These end-clients’ demands are

stochastic in nature. In our approach, we will assume that, for each RC, it has been
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Figure 11.1: Scheme of the IRP with stochastic demands.
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possible to use historical data to model end-clients’ demands through a theoretical or

empirical probability distribution. Notice that no particular assumption is made on

the type of distribution used to model these demands —as long as it has an associated

mean value. Therefore, at the end of each period there may be costs associated with

inventory holding and inventory stock-outs. These costs should be incorporated to

the decision-making process and integrated with (added to) the distribution or routing

costs, which are usually based on travelling distances and/or times. At the end of each

period, inventory levels are registered by the RC and updated in the central depot, so

that a new routing strategy is defined for the new period taking into account the new

data. Our goal is to minimize total expected costs —distribution costs plus expected

inventory-related costs— in each single-period scenario. As explained earlier, we focus

on the single-period scenario since we assume stochastic demands with high variability,

which makes it difficult to forecast the evolution of stocks with time.

Accordingly, in this chapter we describe a biased-randomized hybrid algorithm for

solving the single-period IRP with stochastic demands and stock-outs. Our approach is

hybrid in the sense that it combines Monte-Carlo simulation with a multi-start biased

randomization of a classical routing heuristic (Simheuristic). First, the algorithm con-

siders a discrete set of different potential inventory policies for each retailer center, and

estimates through simulation the inventory costs associated with each retailer-policy

combination. Then, the algorithm considers the routing plan with the highest possible

cost, i.e., the one in which all retailers are filled up to their maximum inventory levels.

Using this ‘worst-case scenario’ as a reference, a fast heuristic is employed to estimate

the marginal savings in routing costs associated with each retailer-policy combination

—i.e., varying just the policy at that retailer while keeping the remaining policies un-

altered. That way, for each retailer it is possible to rank its potential inventory policies

according to their (estimated) total costs, i.e., both inventory and routing costs. Once

the inventory policies have been ranked by total cost in a list, a multi-start process is

used to iteratively construct a set of promising solutions for the IRP. At each itera-

tion of this multi-start process, a new set of policies is selected by performing a biased

randomization on the ranked list. This biased randomization is driven by the use of

some non-symmetric (biased) probability distribution. Thus, assuming the less costly

policies are located at the top of the ranked list, the higher the position of a policy the

higher its probability of being selected during the random-selection process.
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The approach presented in this chapter has similarities with some previous work,

especially with those considering stochastic demands, stock-outs, and rollout periods.

Probably the most closely related works are that of Bertazzi et al. (2013); Hvattum et al.

(2009). However, our approach shows some significant differences with them: (a) we

consider several replenishment policies —personalized for each retail center— instead

of just an order-to-level policy; (b) we use a hybrid algorithm combining simulation

with a metaheuristic, which allows us to obtain ‘good’ solutions to large-size instances

in a reasonable time; (c) we promote the use of biased randomization of heuristics (e.g.,

using biased probability distributions) as a more efficient method than using non-biased

randomization (e.g., using the uniform distribution); and (d) we propose a completely

described set of instances (not a randomly generated one), which can be employed by

other researchers as well-defined benchmarks.

11.1 Definition

The single-period Stochastic IRP that is considered in this chapter can be described

as follows: consider a Capacitated Vehicle Routing Problem (CVRP) with n interme-

diate customers or retail centers (RC), plus the depot (node 0). Using a more formal

description, the IRP is defined on a complete and undirected graph G = (Ω, A), where

Ω∗ = {1, 2, . . . , n} is the set of RC nodes, Ω = Ω ∗ ∪{0} (depot), and A = {(i, j) ∈
ΩxΩ/i < j} is the set of arcs connecting those nodes. The parameters of the problem

can be summarized as follows:

� For each RCi ∈ Ω∗, both the current inventory level Li = 0, as well as the

maximum allowable inventory level L̂i > 0, are known.

� For each RCi ∈ Ω∗, i has to serve several customers for whom the aggregated

demand is a random variable, Di = 0 following a known probability distribution

with E[Di] = di > 0.

� A fleet of k homogeneous vehicles is used to perform the routing, each vehicle with

a maximum capacity Q > 0 (also known). It will be assumed that Q = Di∀i ∈ Ω.

� For each (i, j) ∈ A, the cost of travelling from node i to node j, cij > 0, is known.

Moreover, a symmetric cost matrix is assumed, i.e., cij = cji.
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A decentralized-policy would dictate that inventory decisions would be made first by

each RC in order to minimize their own expected inventory costs. Once desired inven-

tory levels are fixed, routing decisions would be made by the depot in order to serve the

individual orders. In other words, each RC would choose to have an inventory level, L∗i

(decision variable), which minimizes its expected inventory costs —i.e., without con-

sidering routing costs. Therefore, the quantity of product it would request to the depot

is given by qi = L∗i − Li if L∗i > Li and 0 otherwise. Once these qi values are for each

RC, they would be considered as parameter inputs for the associated vehicle routing

problem.

The centralized approach assumed in this study aims at jointly determining the

amount of inventory each RCi ∈ Ω∗ is supplied with, which we denote by and the

routing plan in order to minimize the total expected costs of combining routing and

inventory decisions, i.e., the sum of the routing costs and the expected inventory costs.

The latter is calculated by summing f(qi)∀i ∈ Ω∗, each of which is the inventory cost

for the RCi written as a function of the decision variables qi. Without loss of generality,

this study assumes the following structure for the inventory cost function:

f(qi) =

{
λ · si if si ≥ 0
2 · c0i if si < 0

(11.1)

where λ ≥ 0 represents the cost of holding a unit of product in stock at the end of

the period (assumed to be known) and si represents the total surplus at the end of the

period, i.e.: si = Li + qi −Di,∀i ∈ Ω∗. Notice that if a stock-out occurs in RCi, then

the inventory cost is modelled as the cost of sending a new vehicle from the depot to i

(round-trip).

It is possible to formulate this problem as a mixed-integer stochastic program, a

class of formulations known to be difficult to solve. Even when demands qi are known,

the model becomes that of a VRP, a NP-Hard problem Augerat et al. (1995), and the

fact that these are decision variables in our model add another layer of complexity. It is

for this reason that we develop a hybrid solution algorithm combining simulation and

heuristics. This algorithm is described in the following section.
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11.2 Literature review

In the past years, several approaches have been proposed for different variants of the

Inventory Routing Problem. Probably the main factors to take into account when

classifying the different works are: (a) whether they consider deterministic or stochastic

demands; (b) whether they consider single- or multiple-periods (including an infinite

horizon); (c) whether they allow inventory shortages or not; (d) whether they consider

single- or multiple-products; (e) whether they use the same refill policy for all nodes

or personalized replenishment policies for each node; and (f) whether they use exact

or approximate methods to solve the problem. We have divided our literature review

according to the first —and probably most relevant— criteria, i.e., whether the demands

are considered to have a deterministic or a stochastic nature.

11.2.1 IRP with deterministic demands

Regarding the IRP with deterministic demands, Chien et al. (1989) discuss the impor-

tance of considering both the inventory allocation and the vehicle routing when making

logistical decisions. These authors formulate the integrated problem as a mixed inte-

ger program and develop an approach based on Lagrangian relaxation to obtain upper

bounds for several randomly-generated instances with up to 30 nodes. In their paper,

Anily and Federgruen (1990) address an integrated inventory-routing problem with in-

finite horizon and deterministic demands, and describe a class of heuristics which allow

them to obtain ‘good’ solutions for problems varying from 100 to 10,000 nodes. They

assume that the depot cannot keep inventories itself. In Anily and Federgruen (1993),

the authors extend their previous analysis to the case where central inventories might

be kept at the depot. Kohli and Park (1994) examine joint order policies for multiple

products over a planning horizon where each product has an independent price. Bramel

and Simchi-Levi (1995) develop a location-based heuristic for solving general routing

problems, including the IRP with deterministic demands. In their approach, however,

inventory shortages are not allowed. One of the first works using the term “Inven-

tory Routing Problem” is that of Campbell et al. (1998). In this chapter, the authors

give a general description of the problem, analyze the one- and two-customer cases,

and propose two solution approaches based on integer and dynamic programming, re-

spectively. Chan et al. (1998) study the IRP with infinite horizon and deterministic
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demands. They propose an algorithm based on fixed partition policies, which create a

partition of the set retailers into a number of regions such that each region is served sep-

arately and independently from all other regions. In Campbell et al. (2001), the authors

undertake some practical issues related to problems with deterministic demands and

long-term planning horizons. They propose an integer programming model and discuss

the quality of the solution it generates over commonly used rules-of-thumb. Bertazzi

et al. (2002) study a multi-period IRP with deterministic demands. They propose a

two-stage constructive heuristic algorithm, which is tested against a set of randomly

generated instances with up to 50 customers and 30 periods. One of the first Tabu

Search (TS) algorithms for solving the IRP is that from Cousineau-Ouimet (2002).

However, the detailed pseudo-code of the TS algorithm is not provided. The author

also generated some well-documented instances for the multi-period and determinis-

tic problem “...to overcome the lack of appropriate case studies in the literature”. In

Campbell and Savelsbergh (2004c), a two-phase approach is presented. The approach

first generates a delivery schedule using integer programming and then generates the

routing plan using heuristics. Interestingly, the authors support the use of GRASP-like

randomization (non-biased in nature) “as a powerful tool to improve the performance

of insertion heuristics”. Campbell and Savelsbergh (2004a) also studied the impact

of incorporating complex constraints on insertion heuristics for routing and scheduling

problems. In fact, Campbell and Savelsbergh (2004d) considered optimizing the maxi-

mum volume deliverable to the customers in a given instant and under time windows

constraints. The authors have considered four main serving policies: as early as pos-

sible, as late as possible, as greedy as possible, and always serve to the customer with

the maximum usage rate.

11.2.2 IRP with stochastic demands

One of the first works on the IRP with stochastic demands is due to Federgruen and Zip-

kin (1984a). They address the single-period combined problem of “allocating a scarce

resource available at some central depot among several locations, each experiencing a

random demand pattern, and planning deliveries using a fleet of vehicles”. Transporta-

tion, holding, and shortage costs are considered, and the authors define this problem as

“an extension of the standard vehicle routing problem”. These authors provide several

examples of potential applications, including: (a) deliveries of fuel oil to automotive
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service stations; (b) periodic replenishment of gas tanks at customer locations; or (c)

coordinated allocation and supply to various locations of a perishable product such as

blood. They propose a mathematical model and design a modified interchange heuris-

tic as well as an exact algorithm to solve some randomly generated instances with up

to 75 nodes. Replenishment policies with a reorder point s and an order level S are

called (s, S) policies. In Federgruen and Zipkin (1984b), the authors prove the fast

convergence to ‘good’ solutions, under standard assumptions of (s, S) policies, using a

policy-iteration algorithm. They have tested their approach with 4 sets of 192 instances

varying the mean and variance of demand distribution —one for each set. Good re-

sults are obtained in a reasonable computing time. Trudeau and Dror (1992) address

a multi-period version of the IRP with stochastic demands in which stock-outs are

also allowed. In their computational experiments, they consider 12 weekly periods and

2,077 customers, making use of simulation to randomly generate their demands. It is

assumed that each customer’s random demand is not reported until the customer is

visited by a vehicle, which leads to the possibility of route failures. Barnes-Schuster

and Bassok (1997) address an infinite-horizon scenario in which demands are stochastic.

From the computational results, they conclude that direct shipping (one truck deliver-

ing one retailer and then returning to the depot) can be a simple yet effective strategy

whenever the capacity of the truck is close to the customer’s average demand. In Bard

et al. (1998), the authors study the IRP with satellite facilities (depots geographically

scattered throughout the service area, which permit drivers to refill their vehicles with

commodity during a shift). Interestingly, the authors use a randomized version of the

classical Clarke and Wright (1964) Savings (CWS) heuristic to solve routing instances

with up to 500 nodes in about two hours. They show that this randomized heuristic

outperforms other algorithms, including a GRASP. While the randomness process they

propose is based on a uniform (non-biased) distribution, in this chapter, we make use of

a biased distribution to randomize the aforementioned routing heuristic. Reiman et al.

(1999) consider an IRP with stochastic demands and one vehicle covering a region com-

posed of several customers, i.e., they assume that a previous process has been carried

out in which customers have been assigned to different regions, each region covered by

a single vehicle. Then they compare three strategies, the first one based on the direct

shipping; the second one based on the pre-specified tour (i.e., a Traveling Salesman
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Problem) and the third one based on dynamic choice between the TSP and direct ship-

ping options, concluding that the direct shipping strategy is the preferred strategy in

most situations. In Kleywegt et al. (2002) the authors address the IRP with stochastic

demands over an infinite horizon. They formulate the aforementioned problem as a

discrete time Markov decision process and propose several approximation methods to

solve it. Berman and Larson (2001) focus on the problem associated with the distribu-

tion of industrial gases to replenish customer tanks. They model customers’ demands

as random processes and propose four dynamic-programming algorithms for solving

the associated problem. In Kleywegt et al. (2004), the authors extend their previous

work with a Markov process considering multiple resources for improving safety and

reduce contamination between products on transportation and storage phases. Then,

approximate methods are proposed to solve instances with up to 20 nodes in reasonable

computing times. This is one of the few articles that provides complete information

(e.g., nodes coordinates) on the tested instances. The work of Jaillet et al. (2002) has

noticeable similarities with our IRP model: these authors support the convenience of

considering a short-time rolling horizon framework when dealing with the stochastic

IRP. In their words:

“For typical IRPs, a customer’s consumption rate is difficult to predict with

certainty and can only be represented at best by a random variable with

known probability distribution... Planning the entire annual distribution

scheme in advance would, however, be unreliable and prone to many needed

adjustments”.

Also, they assume the possibility of stock-outs; in particular “...as soon as the [cus-

tomer’s] tank becomes empty, an immediate, and thus costly, special delivery is made”.

However, they also assume that the central depot cannot monitor the inventory levels

and that these are only revealed after each customer is visited by a truck. Thus, delivery

strategies based upon end-of-period inventory levels are not considered in their work,

while they are a fundamental part of our approach. They also propose several replen-

ishment strategies for a finite horizon. Gaur and Fisher (2004) describe an application

to a real-life IRP with stochastic demands and heterogeneous fleet. In order to simplify

their problem, they split the set of customers into several disjoint regions. Originally,

only partitions with at most two customers are allowed, but once the partitions are
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created, they try to improve them by using a heuristic. However, they do not really

consider inventory costs, since in their case the relevant costs are the routing ones.

Adelman (2004) uses linear programming and Markov processes for solving the IRP

with stochastic demands and infinite horizon. However, the largest instances included

in the experimental section, which have been randomly generated, contain no more

than 40 customers. In Yu et al. (2006), the authors analyze the multi-period stochastic

IRP with split delivery. Their approach aims at transforming the stochastic model

into a deterministic one and then using Lagrangian relaxation to decompose this latter

model into inventory and rouging subproblems. Using this approach, they solve some

randomly generated instances with up to 100 nodes in reasonable computing times.

Another real-life IRP application is presented by Custódio and Oliveira (2006). After

discussing the different strategies commonly employed in the literature (fixed partition,

direct shipping, and ratios of integers), they propose a classical heuristic for solving the

case study. In Jarugumilli et al. (2006), the authors make use of a modified version

of the A* algorithm to solve the stochastic IRP with a single vehicle. Hvattum et al.

(2009) address the stochastic IRP with infinite horizon as a Markov process. They

formulate a scenario tree in order to examine a finite horizon as a good approximation

to the infinite horizon model. Again, since solving the Markov process is unpractical

for all but the smallest instances, they employ a GRASP heuristic, which can be con-

sidered as a non-biased randomized algorithm. Finally, Bertazzi et al. (2013) undertake

a stochastic IRP with stock-out and finite horizon. They assume an order-to-level pol-

icy, i.e., “the quantity sent to each retailer is such that its inventory level reaches the

maximum level whenever the retailer is served”. They present a dynamic programming

model and propose a hybrid roll-out algorithm. In order to validate their approach,

they use a randomly generated set of instances with up to 50 nodes and 6 periods.

11.3 Proposed Approach

Our approach focuses on solving the single-period IRP with stochastic demands and

possible stock-outs. As explained before, we consider a rolling horizon with just one

period ahead, and we assume that update information on current inventory levels is

obtained at the end of each period. Notice that these end-of-period inventory levels
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might be very difficult to forecast, especially when the probability distributions mod-

elling the random demands are characterized by high variances. Thus, we believe that

under these realistic conditions it might make sense to follow a plan-one-step-ahead

policy, i.e., plan just one period ahead and then update the current inventory levels

before planning again.

In this context, we propose a hybrid approach that combines Monte-Carlo Simu-

lation (MCS) with an efficient CVRP heuristic (see Fig. 11.2). MCS can be defined

as a set of techniques that make use of random numbers and statistical distributions

to solve certain stochastic and deterministic problems (Law, 2007). When properly

combined with heuristic techniques, MCS has proven to be extremely useful for solving

stochastic vehicle routing problems (Juan et al., 2011d,e). Our approach is also based

on the SR-GCWS randomized algorithm proposed by Juan et al. (2010) for solving

the CVRP. This algorithm makes use of a pseudo-geometric distribution to induce a

biased randomization process into the CWS heuristic (Clarke and Wright, 1964). The

algorithm also employs memory-based local search and a divide-and-conquer strategy.

Our approach starts by considering a discrete number of p centralized refill policies

for each intermediate customer (retail center). For instance, given a retail center we

could consider the following natural policies: (a) no refill; (b) refill up to one quarter of

its capacity (1
4 -refill policy); (c) refill up to half of its capacity (1

2 -refill policy); (d) refill

up to three quarters of its capacity (3
4 -refill policy); (e) full refill; and (f) refill up to

the optimal inventory level —this policy is related to a decentralized strategy in which

each retailer center decides its refill level without considering routing costs. Note that

our methodology could consider more intermediate policies if necessary, which makes

it quite flexible. Of course, considering more intermediate policies —i.e., by using a

higher granularity level— could lead to slightly better solutions, but will also increase

the computational effort. For each retailer-policy combination, MCS is used to obtain

estimates of the inventory costs associated with it —including both surplus and shortage

costs. Then, the ‘worst possible’ routing scenario is considered (i.e., serving all retailers

up to their capacity limits), and the associated routing costs are quickly estimated using

the savings heuristic proposed by Clarke and Wright (1964). Next, marginal savings

in routing costs associated with each retailer-policy combination are estimated using

the same routing heuristic. In other words, for each retailer-policy combination, we

compute the new routing costs due to using the new retailer-policy combination while
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11.3 Proposed Approach

Figure 11.2: Flowchart scheme of our approach.
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ith-retailer Inventory Costs Marginal Savings Total Costs Final

Policy (estimated, MCS) (estimated, heuristic) (estimated) Rank

1 550 0 550 7

2 600 -150 450 3

. . . . . . . . . . . . . . .

pth 450 -25 425 1

Table 11.1: Example of policy ranking for the ith retailer.

keeping the ‘fill-up-to-the-top’ policy for the remaining retailers. The difference between

the ‘worse-case’ routing cost and the new routing cost determines the marginal savings

in routing associated with the current retailer-policy combination. For each of these

combinations, its marginal savings can be then combined with its inventory costs in

order to obtain an estimate of its total costs. These total costs are used to sort the

service policies related to each retailer (see Table 11.1).

Logically, for each RC those service policies with a lower total costs will be preferred

to those others with a higher total costs. Once the inventory policies have been ranked

for each customer, a multi-start process is used to iteratively construct a set of promising

solutions for the IRP. At each iteration of this multi-start process, a new set of policies

is selected by performing a biased randomization on the list of service policies —i.e.,

as closer to the top of the list a policy is, the more probable is that it can be selected.

As any other approximate approach, this method does not guarantee to obtain an

optimal solution, but it can produce feasible and ‘good’ solutions to the stochastic

IRP in a reasonable amount of time, which is not a trivial task if one considers the

complexity of the problem.

In order to facilitate the actual implementation of the proposed methodology, we

provide a pseudo-code version of our algorithm (Pseudo-code 11 and 12), which is

described next as a five-step procedure. First (lines 3 to 7 of Pseudo-code 11), for

each retailer, the expected inventory costs associated with each eligible policy is esti-

mated throughout Monte-Carlo simulation —using the corresponding probability dis-

tributions which model end-customers’ demands. Here, both potential surplus and

shortages (stock-outs) are considered for each of the refill policies described in the pre-

vious section. In the second step of the procedure (lines 9 to 14), we consider the

worst-case scenario from a distribution point of view, i.e., all retailers receive a full

refill. In this scenario, the CWS heuristic is used to obtain a ‘good’ solution for the

178
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associated CVRP. This solution will provide an estimate of the total distribution costs

under the full-refill policy. In the third step (lines 16 to 27), we estimate for each re-

tailer the routing “marginal savings”, i.e., the reduction in distribution costs associated

with each non-full-refill policy. In order to do this, the CWS heuristic is used to solve

a large set of CVRPs. A fast heuristic is employed here since this step implies solving

one CVRP for each customer-policy combination, i.e., for each retailer and for each

non-full-refill policy. Once these marginal costs have been estimated, for each RC, an

approximated value for the total costs associated with each eligible policy can be ob-

tained by simply adding up estimated routing and inventory costs (Table 11.1). Thus,

for each retailer, the associated eligible policies can be sorted from lower to higher total

costs, consequently defining a priority policy rank. In the fourth step (lines 3 to 11 of

Pseudo-code 12), the ‘top’ policy for each RC (i.e., the one showing the lowest total cost)

is selected, and a pseudo-optimal solution is obtained for the corresponding CVRP by

using the SR-GCWS-CS algorithm (Juan et al., 2011e). Finally, in the fifth step (lines

13 to 24), a multi-start process is started. At each iteration of this multi-start process,

a new policy is randomly selected for each retailer and, in a similar manner as in the

previous step, a new pseudo-optimal solution is obtained for the corresponding CVRP.

Notice, however, that the random selection process is not uniform but biased, i.e., a

biased distribution like the Geometric one is used instead of a symmetric distribution.

By using a biased distribution, we aim at giving greater probability of being selected

to those policies that are located at the top positions of each retailer’s rank of poli-

cies. Thus, we are continuously generating different promising scenarios by randomly

selecting refill policies which are likely to provide a good balance between routing and

inventory costs. Of course, during the multi-start process, the best solution found so

far is recorded. Using a multi-start approach makes it difficult for the algorithm to get

trapped in a local minimum.
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Algorithm 11 Pseudo-code for the proposed hybrid algorithm.

1: procedure Solve-IRPSD(nodes, vehicles)

2:

3: for each retailing center i do . 1. Use MCS to estimate expected

inventory costs for each center-policy.

4: for each policy k do . Simulation

5: EICi,k ← Expected Inventory Cost for center i using policy k

6: end for

7: end for

8:

9: for each retailing center i do . 2. Solve VRP with full-refill policy for

all centers (routing worst-case)

10: qi,full ← L̂i − Li . Demand requested by center i with a full-refill

policy.

11: q ← add qi,full to the list of demands q

12: end for

13: π ← CWS − heuristic(q) . Solve VRP using the fast CWS heuristic

14: DCfull ← Distribution (routing) costs associated with π

15:

16: for each retailing center i do . 3. Sort the list of policies associated

with each center by using both inventory costs and marginal savings in routing.

17: for each policy k(k 6= full refill) do

18: qi,k ←Max{0, Li,k−Li} . Compute new demand for center i with

policy k

19: q′ ← update q by temporarily substituting qi,full for qi,k

20: π′ ← CWS − heuristic(q′)
21: DCi,k ← Distribution (routing) costs from π′

22: MSi,k ← DCfull −DCi,k . Compute Marginal Savings in routing

23: CCi,k ← EICi,k −MSi,k . Combined (inventory + routing) costs

24: Pi ← update and sort list of policies of center i according to CCi,k

25: q ← recover original list by substituting qi,k for qi,full

26: end for

27: end for

28: end procedure
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Algorithm 12 Pseudo-code for the proposed hybrid algorithm (continuation).

1: procedure Solve-IRPSD(nodes, vehicles)

2:

3: q ← reset list of demands q . 4. Use a metaheuristic to solve VRP

considering the ‘top’ policy at each center.

4: for each retailing center i do

5: EICi,k ← select thepolicy at the top of Pi

6: EICi,k ← Max{0, Li,k′ − Li} . Compute demand for center i with

policy k’

7: EICi,k ← add qi,k′ to the list of demandsq

8: end for

9: πtop ← SRGCWSCSmetaheuristic(q) . Solve VRP using the SR-

GCWS-CS

10: DCtop ← Distribution (routing) Costs associated with πtop

11: TECtop ← DCtop + Sum{EICi,top} . Total Expected Costs using top

policies

12:

13: while ending condition not meet do . 5. Use a metaheuristic to solve

VRP considering randomly selected policies at each center.

14: q ← reset list of demandsq

15: for each retailing center i do

16: k′ ← randomly select a policy from Pi using a geometric distribution

17: qi,k′ ←Max{0, Li,k′ − Li}
18: q ← add qi,k′ to the list of demands q

19: end for

20: πrand ← SRGCWSCSmetaheuristic(q)

21: DCrand ← Distribution (routing) Costs associated with πrand

22: TECrand ← DCrand+Sum{EICi,rand} . Total Expected Costs using

random policies

23: πbest ← update best solution consideringπtop and πrand

24: end while

25: return πbest

26: end procedure
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11.4 Experimental Design

In the CVRP literature, there exists a classical set of well-known benchmarks commonly

used to test new CVRP algorithms. As noticed in the previous “Literature Review”

section, this might be also true for some deterministic versions of the IRP. However,

this is not the case for the single-period IRP with stochastic demands and stock-outs,

the one discussed in this study. In fact, for this and other IRP versions it is a usual

practice that each paper presents a different set of randomly generated benchmarks

—i.e., without providing the exact values obtained during the randomization process,

which makes it impossible to reproduce the exact results and which makes it difficult

to perform direct and fair comparisons among different approaches. Moreover, in some

other cases the proposed set of instances is no longer available, as it happens with the

expired link presented in Campbell et al. (1998).

For those reasons, and with the goal of providing complete information about the

set of benchmarks employed so that other researchers can use them, we have de-

veloped our own set of data by generalizing the well-known datasets A and B from

the CVRP literature (Augerat et al., 1995). These datasets consist of 27 small- and

medium-size test instances. The full test set used in this study is available at http:

//www.branchandcut.org/VRP. A natural generalization has been carried out by us-

ing random, instead of deterministic, demands. So, for each instance, while we decided

to keep all node coordinates and vehicle capacities, we changed di, the deterministic

demand of retailer i (∀i = 1, 2, . . . , n) to the probabilistic demand Di with E[Di] = di.

Since we use MCS, these random demands can follow any probability distribution as

far as it has a mean. In particular, for the numerical experiments of this study we will

assume that Di will follow a LogNormal distribution with E[Di] = di. The LogNormal

distribution has been chosen because it should be preferred over the Normal distri-

bution when modelling positive demands. Notice, however, that our simulation-based

approach also supports any other distribution, such as the Weibull or the Gamma ones.

We will also consider three different levels of variance, i.e., V ar[Di] = 0.25·di (‘low’ vari-

ance scenario), V ar[Di] = 0.50 ·di (‘medium’ variance scenario), and V ar[Di] = 0.75 ·di
(‘high’ variance scenario).

Regarding the inventory part of the problem, the following assumptions are made

in order to define a numerical example to experiment with —notice that these are not
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11.4 Experimental Design

model assumptions, but just assumptions to define a numerical example so that we can

illustrate the potential of our approach with some benchmarks:

� For each RC i, its maximum inventory capacity is defined as L̂i = 2 · di. As it

usually happens in real-life, retailers with higher expected demands will also have

higher inventory capacities.

� In correspondence with the distribution policies considered, the quantity that

can be delivered to each RC, qi, can only take a discrete number of values, i.e.,

according to the policies described above, qi can only take values in the set 0, 0.5 ·
di, di, 1.5 · di, 2 · di.

� Trying to imitate a realistic scenario, in which it is likely that different retailers

will present different starting stock levels, initial inventory level at retailer i, Li,

is assigned according to the following expression:

Li =


0 if i is odd and multiple of 3 (e.g., L3, L9, L15, . . .)

di/2 if i is odd and not multiple of 3 (e.g., L1, L5, L7, . . .)
di if i is even and multiple of 4 (e.g., L4, L8, L12, . . .)

(3 · di)/2 if i is even and not multiple of 4 (e.g., L2, L6, L10, . . .)
(11.2)

Notice that instead of using these pre-defined values as initial inventory levels, we

could simply have selected these initial values at random. But then, it could not be

possible to reproduce the computational experiment with exactly the same data.

Finally, regarding the inventory costs, these must be of a similar order of magnitude

as the routing costs. Thus, it might make sense not to serve some retailers under certain

conditions, e.g., high inventory levels and low stock-out costs. In order to attain this

goal, we have used in our experiments the previously explained expression for defining

the inventory costs associated with each retailer. On this we propose to use a parameter

(λ) in order to relate inventory and routing costs. Notice that λ represents the cost

per unit of stock at the end of the period. Also, notice that whenever a stock-out

occurs, a ‘penalty’ cost incurred since a new vehicle must be sent from the depot to the

retailer to solve the shortage issue. In our numerical experiments, we have used values

of λ ∈ {0.01, 0.05}. These values were chosen inside a reasonable range such that it

might not be worth serving some of the retailers. In particular, we might decide not

to serve retailers with a low probability of suffering a stock-out —e.g., those in which
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the expected demand is much lower than the current inventory levels—, and also those

with low penalty costs in case they suffer from a stock-out —e.g., those closer to the

depot. Of course, different values of λ could be considered instead as far as the resulting

inventory costs have the same order of magnitude as the routing costs —otherwise the

problem would basically reduce to a routing one or to an inventory one. Notice that

we are defining an inventory cost function for computational purposes only. Of course

other functions or specific values for the parameters are possible

11.5 Computational Results

Our algorithm was implemented as a Java application and used to run the 27 instances

described above on an Intel Xeon E5603 at 1.60 Ghz and 8 GB of RAM. For each

instance, a single run with a total maximum time of 15 minutes was employed for each

value of λ ∈ {0.01, 0.05} and three different levels of variance (low, medium, and high).

The limitation in computing time is due to the fact that we wanted to obtain results in

a ‘reasonable’ amount of time. The selection of the λ values is due to the fact that we

wanted inventory costs to be of a similar order of magnitude as the routing costs. The

selection of biased-randomized policies is done with an alpha random value between

0.8 and 0.99. Tables 11.2, 11.3, 11.4, 11.5 show the summary results obtained in our

experiments for the following policies:

a) No-refill policy, i.e., no retailer was served in advance, and only those retailers

suffering a stock-out were served with a direct vehicle from the depot —notice

that this is an extreme and very expensive policy.

b) 1
4 -refill policy, i.e., all retailers are served up to one quarter of its maximum capacity

—those retailers which already have that inventory level are not served.

c) 1
2 -refill policy, i.e., all retailers are served up to half of its maximum capacity —those

retailers which already have that inventory level are not served.

d) 3
4 -refill policy, i.e., all retailers are served up to three quarters of its maximum

capacity —those retailers which already have that inventory level are not served.

e) Full-refill policy, i.e., all retailers are served up to its maximum capacity.
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11.5 Computational Results

f) Decentralized or kth policy, i.e., all retailers are served up to the level which opti-

mizes its inventory costs —without considering routing costs.

g) Top individual inventory-routing policy, i.e., each retailers is served according to

the ‘best’ or top policy in its sorted priority list of policies —notice that this top

policy could imply that the retailers does not need to be served if its inventory

level is appropriate enough.

h) Biased-randomized policy, i.e., each retailers is served according to a policy which

has been biased-randomly selected from its sorted policies list.

Additionally, Tables 11.3 and 11.5 also show the percentage gaps between the so-

lution obtained using each policy and our best solution —i.e., the one obtained with

the biased-randomized process— considering each variance level. Positive gaps imply

that the total cost obtained with the biased-randomized process is lower (and therefore

better) than the total cost obtained with the alternative method. In the Tables 11.6 to

11.17, the detailed results for each instance are depicted.
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11.5 Computational Results
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11. INVENTORY ROUTING PROBLEM WITH STOCHASTIC
DEMANDS
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11.5 Computational Results
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11.5 Computational Results
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11.5 Computational Results
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11. INVENTORY ROUTING PROBLEM WITH STOCHASTIC
DEMANDS

N
O

-R
E

F
IL

L
P

O
L

IC
Y

(1
)

1/
4-

R
E

F
IL

L
P

O
L

IC
Y

(2
)

1/
2-

R
E

F
IL

L
P

O
L

IC
Y

(3
)

3/
4-

R
E

F
IL

L
P

O
L

IC
Y

(4
)

F
U

L
L

-R
E

F
IL

L
P

O
L

IC
Y

(5
)

In
st

an
ce

n
In

ve
n
to

ry
T

ot
al

M
R

ou
ti

n
g

In
ve

n
to

ry
T

ot
al

M
R

ou
ti

n
g

In
ve

n
to

ry
T

o
ta

l
M

R
o
u
ti

n
g

In
ve

n
to

ry
T

ot
a
l

M
R

ou
ti

n
g

In
ve

n
to

ry
T

o
ta

l

A
-n

32
-k

5
32

21
53

.9
8

21
53

.9
8

3
56

3.
64

86
2.

51
14

26
.1

5
4

74
5.

95
10

4.
27

8
50

.2
2

6
8
99

.8
9

25
.0

6
92

4
.9

5
6

95
4.

9
8

26
.9

6
9
81

.9
4

A
-n

33
-k

5
33

15
41

.8
1

15
41

.8
1

3
50

5.
86

60
0.

14
11

05
.9

9
4

62
2.

53
75

.5
1

6
98

.0
4

6
7
20

.3
2

22
.0

7
74

2
.3

9
6

75
4.

6
4

24
.1

4
7
78

.7
8

A
-n

33
-k

6
33

13
81

.4
9

13
81

.4
9

3
54

6.
36

62
8.

03
11

74
.3

9
5

70
2.

23
88

.5
9

7
90

.8
3

7
79

7.
2

27
.3

4
82

4
.5

4
7

81
2.

3
1

29
.0

9
84

1
.4

A
-n

37
-k

5
37

13
07

.1
8

13
07

.1
8

3
56

3.
32

42
9.

98
99

3.
3

4
62

3.
81

66
.2

69
0.

0
1

5
6
94

.7
1

39
.4

3
73

4
.1

4
5

7
06

.1
31

.7
9

7
37

.8
8

A
-n

38
-k

5
38

18
00

.6
1

18
00

.6
1

3
55

0.
46

62
3.

96
11

74
.4

2
5

70
0.

63
82

.9
9

7
83

.6
2

6
7
71

.3
8

28
.6

7
80

0
.0

6
6

78
3.

4
7

28
.6

6
8
12

.1
3

A
-n

39
-k

6
39

17
58

.2
17

58
.2

3
63

0.
6

66
1.

01
12

91
.6

5
75

1.
95

90
.7

6
8
42

.7
1

7
8
60

.1
2

28
.5

5
88

8
.6

7
7

87
9.

7
8

30
.2

6
9
10

.0
4

A
-n

45
-k

6
45

22
42

.9
2

22
42

.9
2

3
66

9.
56

98
1.

88
16

51
.4

3
6

90
3.

12
12

8.
74

1
03

1.
8
6

7
10

18
.0

8
31

.0
4

10
49

.1
2

8
10

7
2.

0
1

32
.0

1
1
,1

04
.0

1

A
-n

45
-k

7
45

31
14

.1
6

31
14

.1
6

4
76

9.
5

10
75

.4
9

18
44

.9
9

6
10

55
.7

5
12

6.
28

1
18

2.
0
3

8
13

05
.9

4
36

.1
3

13
42

.0
7

8
13

4
4.

1
9

37
.0

9
1
,3

81
.2

8

A
-n

55
-k

9
55

24
73

.1
7

24
73

.1
7

5
76

1.
39

10
63

.2
7

18
24

.6
6

8
99

3.
22

14
0.

82
1
13

4.
0
3

11
12

32
.0

9
3
7.

7
7

12
6
9.

8
6

11
13

0
2.

96
43

.4
5

1
,3

46
.4

1

A
-n

60
-k

9
60

32
08

.3
3

32
08

.3
3

5
88

5.
27

14
07

.7
8

22
93

.0
5

8
12

52
.6

9
19

0.
92

1
44

3.
6
1

10
15

09
.3

7
4
9.

4
8

15
5
8.

8
5

11
16

4
9.

71
50

.7
3

1
,7

00
.4

4

A
-n

61
-k

9
61

22
54

.2
1

22
54

.2
1

5
73

4.
03

80
0.

63
15

34
.6

6
8

92
8.

54
11

7.
09

1
04

5.
6
3

10
10

79
.6

2
4
6.

6
5

11
2
6.

2
7

11
11

0
6.

76
46

.6
6

1
,1

53
.4

2

A
-n

63
-k

9
63

41
99

.5
9

41
99

.5
9

5
10

37
.0

3
18

46
.9

2
28

83
.9

5
8

14
78

.7
1

23
7.

37
1
71

6.
0
8

10
17

50
.3

6
4
6.

9
1

17
9
7.

2
7

11
18

83
.2

50
.8

4
1
,9

34
.0

4

A
-n

65
-k

9
65

24
95

.9
8

24
95

.9
8

5
81

7.
05

95
7.

82
17

74
.8

7
8

10
75

.0
8

14
6.

7
1
22

1.
7
8

10
12

66
.7

4
51

.8
13

18
.5

4
11

13
1
1.

92
52

.7
9

1
,3

64
.7

0

A
-n

80
-k

10
80

53
30

.5
7

53
30

.5
7

5
11

52
.1

3
21

63
.5

9
33

15
.7

2
9

16
03

.1
1

30
1.

37
1
90

4.
4
8

11
19

27
.0

3
8
0.

7
7

20
07

.8
12

20
7
1.

27
67

.9
3

2
,1

39
.2

1

B
-n

31
-k

5
31

18
18

.8
7

18
18

.8
7

3
45

4.
28

73
3.

19
11

87
.4

7
4

59
5.

89
96

.2
7

6
92

.1
6

5
7
01

.2
1

22
.2

72
3.

4
6

7
85

.8
22

.0
9

8
07

.8
9

B
-n

35
-k

5
35

23
55

.5
8

23
55

.5
8

3
58

7.
88

99
8.

5
15

86
.3

8
4

80
5.

3
15

1.
99

9
57

.2
9

5
10

37
.9

5
31

.8
3

10
69

.7
8

6
10

9
2.

6
2

30
.9

3
1
,1

23
.5

5

B
-n

39
-k

5
39

16
53

.2
4

16
53

.2
4

3
37

3.
15

71
1.

29
10

84
.4

3
4

51
5.

9
11

0.
61

6
26

.5
1

5
5
88

.2
4

37
.7

2
62

5
.9

6
6

60
2.

7
7

35
.1

4
6
37

.9
1

B
-n

41
-k

6
41

20
03

.9
8

20
03

.9
8

3
52

0.
57

71
3.

41
12

33
.9

8
6

79
4.

61
88

.4
9

88
3.

1
7

8
61

.9
7

27
.2

2
88

9.
2

8
92

2.
8
7

29
.3

5
9
52

.2
2

B
-n

45
-k

5
45

17
81

.5
4

17
81

.5
4

3
54

2.
83

79
9.

78
13

42
.6

1
5

68
6.

97
11

7.
23

80
4.

2
6

8
10

.9
6

34
.3

9
84

5
.3

5
7

86
1.

8
2

37
.2

4
8
99

.0
6

B
-n

50
-k

7
50

20
46

.1
2

20
46

.1
2

4
49

6.
33

79
0.

58
12

86
.9

1
6

63
6.

84
10

2.
72

7
39

.5
5

7
8
24

.8
6

32
.9

8
57

.7
6

8
8
56

.4
33

.9
7

8
90

.3
7

B
-n

52
-k

7
52

24
12

.6
2

24
12

.6
2

4
54

5.
07

10
72

.4
7

16
17

.5
4

6
66

1.
59

13
8.

03
7
99

.6
2

8
8
73

.5
6

39
.4

1
91

2
.9

7
8

90
0.

8
6

37
.9

6
9
38

.8
2

B
-n

56
-k

7
56

19
83

.8
4

19
83

.8
4

4
52

2.
63

73
9.

7
12

62
.3

2
6

60
9.

26
97

.2
8

7
06

.5
4

8
6
61

.9
8

34
.9

8
69

6
.9

6
8

67
9.

1
3

37
.2

9
7
16

.4
1

B
-n

57
-k

9
57

45
77

.8
8

45
77

.8
8

5
96

9.
42

18
20

.7
27

90
.1

2
8

14
80

.4
3

22
9.

46
1
70

9.
8
9

10
17

60
.0

9
46

.2
1
80

6.
3

10
18

5
1.

48
46

.4
9

1
,8

97
.9

7

B
-n

64
-k

9
64

23
69

.7
7

23
69

.7
7

5
57

7.
2

98
7.

23
15

64
.4

3
9

80
0.

84
13

9.
49

9
40

.3
3

11
1
00

1.
4

5
0.

0
4

10
5
1.

4
4

12
10

3
7.

36
50

.2
1

1
,0

87
.5

7

B
-n

67
-k

10
67

26
56

.2
26

56
.2

5
71

4.
24

10
39

.0
7

17
53

.3
1

9
95

7.
25

13
7.

88
1
09

5.
1
3

12
11

65
.2

3
5
0.

0
1

12
1
5.

2
5

12
12

5
9.

61
53

.6
1,

31
3
.2

1

B
-n

68
-k

9
68

36
48

.5
4

36
48

.5
4

5
78

5.
45

13
73

.3
21

58
.7

5
8

11
20

.8
8

18
1.

27
1
30

2.
1
5

10
13

84
.5

4
5
5.

9
1

14
4
0.

4
4

11
14

7
5.

73
50

.9
3

1
,5

26
.6

5

B
-n

78
-k

10
78

32
64

.3
1

32
64

.3
1

5
82

5.
79

14
51

.1
5

22
76

.9
4

9
10

78
.4

2
21

5.
95

1
29

4.
3
7

11
13

41
.3

9
5
4.

7
4

13
9
6.

1
3

12
14

0
8.

94
59

.1
2

1
,4

68
.0

6

T
a
b

le
1
1
.1

6
:

R
es

u
lt

s
fo

r
N

o-
re

fi
ll

,
1 4
-r

efi
ll

,
1 2
-r

efi
ll

,
3 4
-r

efi
ll

,
a
n

d
F

u
ll

-r
efi

ll
p

o
li

ci
es

(λ
=

0.
0
5
,

h
ig

h
va

ri
a
n

ce
le

v
el

,
m

a
x
.

co
m

p
u

ta
ti

o
n

ti
m

e
=

15
m

in
u

te
s)

.

198



11.5 Computational Results
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11. INVENTORY ROUTING PROBLEM WITH STOCHASTIC
DEMANDS

Figure 11.3: Comparison of routing and inventory costs for each refill policy (λ = 0.01).

From the average gaps in Tables 11.3 and 11.5 it can be derived that the best results

are the ones obtained using our biased-randomization approach, i.e., using a different

refill strategy for each node according to different factors such as: distance from the

depot, current inventory level, expected demand, demand variability, etc. Also, notice

that using the top strategy for each node —as proposed in an intermediate stage of our

approach— provides a quite competitive solution for most instances. Even the solution

with the lowest inventory costs (decentralized policy) has higher costs than the top

and biased-randomized solutions. However, using non-personalized refill strategies —

i.e., using the same refill strategy for all the customers as proposed in most existing

articles— is a quite poor strategy, since it provides considerably higher costs.

Fig. 11.3 summarizes average routing and inventory costs associated with each pol-

icy. Notice that the two personalized (node-dependent) refill policies proposed in our

approach are far superior to any other standard refill policy. Also, notice how these per-

sonalized policies tend to minimize both routing and inventory costs while minimizing

total costs.

The average percentages of served retailers for each refill policy are depicted in

Fig. 11.4. Notice that our customer-dependent policies show similar numbers in both

statistics, i.e., about 65% of retailers will be served, implying an average number of
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11.5 Computational Results

Figure 11.4: Comparison of the average number of served retailers for each refill policy

(λ = 0.01).

routes close to 4. The average number of routes for each policy is depicted in Fig. 11.5.

As the variance increase, the number of served nodes and the number of routes also

rises in the Top and Biased-Randomized solutions.

Fig. 11.6 compares, for different configurations of the variance (uncertainty) level

and the λ parameter, the average gaps between each policy and the best solution

obtained with our methodology. Notice that our approach outperforms any other policy,

either centralized or not. Also, observe that the quality of each policy seems to be

quite robust against changes in the variance level as well as against changes in the λ

parameter. Finally, notice that the decentralized policy —each retailer minimizing its

inventory costs— can outperform other centralized (but more ‘rigid’) policies.

Finally, Fig. 11.7 illustrates four different solutions obtained with the four differ-

ent refill policies proposed in our algorithm (‘full’, ‘decentralized’, ‘top’ and ‘biased-

randomization’) for the B-n35-k5 instance. Squares (�) represent customers receiving

a full-refill. Diamonds (�) show customers receiving a 3
4 -refill. Triangles (4) rep-

resent customers receiving a 1
2 -refill. Circles (◦) represent customers receiving a 1

4 -

refill. Finally, stars (∗) represent non-served customers. The first routing planning

shows the worst case scenario using a ‘full’ refill policy for all nodes. The second so-

lution proposes the application of a decentralized policy where the inventory cost is
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11. INVENTORY ROUTING PROBLEM WITH STOCHASTIC
DEMANDS

Figure 11.5: Comparison of the average number of routes for each refill policy (λ = 0.01).

Figure 11.6: Average gaps between each proposed policy and our biased-randomized

solution.
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11.6 Chapter Conclusions

the only variable considered. On this, some nodes are non-served because this is the

cheapest inventory option for them. The top policy solution proposes to visit some

nodes with different inventory refill strategies and a routing configuration, while the

asymmetrically-randomized policy applies some other inventory policies to some nodes.

Thus the subset of served nodes between the top and biased-randomized solutions are

distinct. Both solutions propose two alternative compositions thanks to the application

of distinct refill policies to each node. The asymmetrically-randomized policy allows to

find better and balanced configurations with individual policies for each node.

11.6 Chapter Conclusions

In this chapter, we have reviewed the second application example of Simheuristics.

The IRPSD is a challenging research area because it introduces random behaviour into

a problem combining two steps of supply chain management, inventory control and

distribution planning. The proposed approach integrates Monte-Carlo simulation into

different key phases of a heuristic approach. By doing so, it allows solving both the

routing and the inventory problems in an integrated way. One of the main contributions

of our methodology is that it can consider personalized refill policies for each retailer

center, which contributes to significantly reduce total costs over other approaches us-

ing standard refill policies. Another important contribution is that our approach can

be used with any probability distribution, which means that positive demands in re-

tail centers are not assumed to follow a normal distribution —which is an unrealistic

assumption usually employed in the existing literature. A set of benchmarks for the

IRPSD were developed and a realistic expression to model inventory costs was also pro-

posed. A complete set of tests has been performed to illustrate the methodology and

analyze its efficiency as well as its potential benefits. So far, the uncertainty modelling

feature of MCS mixed with a specific biased-randomized heuristic has created inter-

esting approaches for the VRPSD and IRPSD. In the next block of chapters, we will

study generic approaches for Rich VRPs and also propose a new methodology based

on combining biased-randomized heuristics and constraint programming.
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11. INVENTORY ROUTING PROBLEM WITH STOCHASTIC
DEMANDS

Figure 11.7: Solutions for the B-n35-k5 using a low variance level and different refill

policies.
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12

Generic Methodology for Rich

VRPs

The design of software tools that can assist in the routing planning process is quite de-

manding (Drexl, 2012). The interest on this kind of support-decision tools has created a

variety of algorithms (Partyka and Hall, 2012). In the Operation Research optimization

field, few studies regarding the generic Rich VRP (RVRP) have been proposed. As we

have commented before, the RVRP is a research line focused on the study of realistic

routing planning problems. The challenge of RVRP is to consider several constraints

at the same time where the main goal is to develop ‘generic’ techniques that can solve

any given combination of constraints. In fact, commercial routing software usually of-

fers a wide set of constraints but either some special adaptations for each client are

done or the model does not exactly represent the real problem (Drexl, 2012). How-

ever in the academic literature, few studies have been suggested as generic approaches.

For instance, Ropke and Pisinger (2006a,b) propose a heuristic based on LNS. Their

approach is a unified heuristic with an adaptative layer. They are focused on the Back-

hauls VRP (BVRP) with time windows, pickup-and-delivery and multi-depots. They

propose a model transformation of the BVRP to solve the simultaneous pickup-and-

delivery. Nine data sets are used to test several configurations of the proposed heuristic,

where more than 50% of the best known solutions for those instances are improved.

Later, the same authors (Pisinger and Ropke, 2007) developed an Adaptative Large

Neighbourhood Search (ALNS) framework for addressing the capacitated, time win-

dows, multi-depot, split-deliveries and open routes constraints. They use several sets
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12. GENERIC METHODOLOGY FOR RICH VRPS

of instances with up to 1000 customers, and improve 183 best known solutions out of 486

benchmark tests. Other authors are also focused on the solution of Real VRPs. Likely

Hasle and Kloster (2007); Hasle et al. (2005) present a generic approach centered on its

modelling flexibility for addressing several routing constraints. The authors present a

generic solver based on an unified algorithmic approach which is a combined operation

of Local Search (LS) and Metaheuristics (Variable Neighbourhood Descent, VND; and

Iterated Local Search, ILS). An initial solution is generated using the parallel version

of CWS, then other methods are applied. They address the capacitated constraint,

the distance limitation, the pickup-and-delivery, the fleet size and mix problem as well

as the time windows. They present the possibility to extend it for multi-depot and

site-dependent problems. Some authors promote the extension properties of optimiza-

tion models to solve other problems. Irnich (2008) takes advantage of strong modelling

capabilities and proposes an Unified Modelling and Heuristic Solution framework. The

author highlights the potential of k− edge exchange neighbourhoods. This approach is

intended to support efficient local search procedures for addressing all standard types

of VRPs. The author proposes to integrate the efficient search blocks into different

metaheuristics. Some promising results are presented for VRPTW and MDVRPTW

combining a VNS with LNS strategies.

Other highlighted generic Rich solvers have been proposed in the literature. First,

Cordeau and Laporte (2003); Cordeau and Maischberger (2012); Cordeau et al. (1997,

2001b, 2004) propose an Unified Tabu Search (TS) approach for VRPs with time win-

dows, multi-period, multi-depot and site-dependent. Several real and theoretical bench-

marks have been used to test the performance of this approach. Some ILS approaches

are proposed by Hashimoto et al. (2006, 2008); Ibaraki et al. (2005, 2008). In fact,

Subramanian (2012) proposes a combination among ILS, Mixed Integer Programming

(MIP) and Set Partitioning (SP) aspects for solving some Rich VRP variants. Sec-

ond, Baldacci and Mingozzi (2009); Baldacci et al. (2010, 2011a,b) introduce an exact

solution framework based on Set Partitioning (IPSP) modelling for solving several in-

dividual types of VRPs. A Column-and-Cut Generation algorithm is combined with

the use of valid inequalities into the SP formulation. Some experiments are done with

classical instances related to the CVRP, the VRPTW, the PDPTW, all types of HVRP,

the MDVRP, and the PVRP. The results outperform all the other exact methods pub-

lished so far and also solve several previously unsolved test instances. Last, another
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Papers Involved Applied Method Number of Addressed

Constraints

(Vidal et al., 2012b, 2013) UHGS 19

(Penna et al., 2013; Subramanian, 2012; Subramanian et al., 2012) ILS-MIP-SP 14

(Baldacci and Mingozzi, 2009; Baldacci et al., 2010, 2011a,b) Exact method-based on SP 14

(Irnich, 2008) LS-based metaheuristics 16

(Pisinger and Ropke, 2007; Ropke and Pisinger, 2006a,b) ALNS Heuristic 14

(Hasle and Kloster, 2007) VND-ILS 12

(Hashimoto et al., 2006, 2008; Ibaraki et al., 2005, 2008) ILS 9

(Cordeau and Laporte, 2003; Cordeau et al., 1997, 2001b, 2004) Unified TS 11

Table 12.1: State-of-the-art of Rich VRP methods.

approach is presented in Vidal et al. (2012b). This consists of a Unified Hybrid Genetic

Search (UHGS) for several types of Rich VRP. The Framework uses efficient generic

local search and genetic operators. The authors present interesting computational re-

sults using 39 benchmarks over 26 different Rich VRP. Furthermore, the authors apply

their method combined with diversity management mechanisms to different large scale

instances of Rich Time-constrained VRPs (Vidal et al., 2013). The proposed framework

outperforms all current state-of-the-art approaches. The approach is addressed to any

combination of periodic, multi-depot, site-dependent, and duration-constrained VRP

with time windows. The used instances involve up to 1000 customers. The represen-

tation of giant-tour solution and local search of Prins (2004) has proven its efficiency

in several other studies (Labadi et al., 2008; Ngueveu et al., 2010; Prins, 2009). Table

12.1 shows the summary of proposed approaches for addressing several VRP variants

with the same logic core. The number of addressed constraints is derived from Table

4.2 presented in chapter 4.

In this chapter, we focus on the development of a general-purpose methodology

for solving several variants of VRPs. The real-world routing planning demands for

generic tools to be adapted to any problem without a great effort in the process. After

defining a set of tailored solutions for different VRPs, we propose the combination of

randomized heuristics and constraint programming as a flexible technique for addressing

combinatorial optimization problems like the VRP. Some previous studies are discussed

on the next section, and the design of a new generic methodology based in heuristics

and CP is detailed.
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12. GENERIC METHODOLOGY FOR RICH VRPS

12.1 Background

Several separated approaches have been used to solve specific VRP variants (Laporte

et al., 2000; Toth and Vigo, 2001). However, a given methodology could be extended

to solve other problems types. Regarding the current approaches, we have found that

Constraint Programming is often used for solving routing problems. Some of the first

studies can be found in De-Backer et al. (1997); Pesant et al. (1997, 1998); Shaw (1998).

CP is a paradigm able to represent and solve several combinatorial problems (F. Rossi

and Walsh, 2006). The main advantage of this approach is centered on its flexibility

for addressing hard combinatorial problems. Depending on the enterprise technological

environment, the main advantage of this approach is centered on the next features: fast

coding development, easy maintenance and global efficient execution performance.

In general CP applications, the problems are represented using three components

forming a ‘model’: variables, their associated natural domains, and finally the constraints

relating them. Constraints represent logical relations among several unknowns (or

variables), where each takes a value from the allowed domain of accepted values.

Domains can be a range defined by minimum and maximum bounds or a discrete

list of numbers. These problems, defined by variables, domains and constraints are

known as Constraint Satisfaction Problems (CSPs) and are related to constraint prop-

agation solving techniques. This feature makes it a very useful tool for modelling

decision-making problems. Particularly, this natural representation helps to develop

short and simple techniques easily to be adapted for changing addressed problems. For

finding the best representation of a problem in CP, several models can be tested in a

fast way by the programmer. The CP core is embedded in programming languages,

such as Prolog. In that case, it is known as Constraint Logic Programming (CLP).

Also it can be integrated in classical imperative languages like C/C+ and Java. All

CLP languages join two basic elements: a) logic to define a set of possibilities to be

explored using simple search methods as backtracking (incrementally find candidates

as solution, where a candidate is abandoned as soon as it determines that it does not

converge to a valid ‘answer’); and b) constraints to simplify the search by eliminating

non-desirable alternatives in advance by the use of consistency techniques.

Thus, CP combines reasoning and search; the proposed constraints are used to

restrict and guide the search during the exploration of the solution space. Since CP

208



12.1 Background

gives a high importance to constraints (requirements) for solving problems, it is can be

used to validate the satisfaction of all given constraints for a set of values (i.e. given

built solutions).

For more details, a complete CP formulation for the VRP is presented in Guimarans

(2012) which is based on Kilby and Shaw (2006). This formulation has been imple-

mented into a ‘CP-RVRP Library’ (Riera et al., 2009) in order to overcome some

limitations of the formulation and the emerging hybrid methodologies, such as the one

we propose on this dissertation. It should be noticed that this CP formulation may

be considered as a first step on the implementation of the CP-RVRP Library, able to

cope with rich VRP variants and flexible enough to accept new constraints based on

real applications. This library was first introduced by Riera et al. (2009).

The creation of hybrid methodologies based on CP for solving VRP variants has

been tried in literature. The complementary effect of CP has been structured in studies

like Backer et al. (2000); Kilby and Shaw (2006); Kilby et al. (2000), as we also propose.

However, here we want to highlight that our approach can be applied to a wide range

of routing combinatorial problems with few adaptation steps.

The VRPTW is the most studied VRP variant in the literature. Several papers

propose to use CP techniques to solve the VRPTW, like Bent and Van-Hentenryck

(2004a, 2006); Rousseau et al. (2002). In fact, Guimarans (2012) has also addressed

the VRPTW using hybrid methodologies based on a ‘CP Library’. Originally, this

library was implemented using ECLiPSe (Apt and Wallace, 2006) and has considered

the validation of capacity, length route limit, and time windows constraints. However,

the library has been evolved in order to include more realistic constraints.

We have studied a large set of optimization routing papers and its considered re-

strictions. More than 30 involved routing conditions were found. We have structured

and classified them for defining an unique point of comparison and framework. Then

a summary of remarkable routing constraints is presented in Table 4.3 in chapter 4,

while Table 12.2 highlights already implemented constraints in the ‘CP-RVRP Library’.

These restrictions were obtained from Table 4.2 —also in chapter 4— which shows the

detailed relationship of each studied paper and the defined restrictions. For solving

several routing problems, the key element of our approach is the combined interaction

of modeling and validation centralization for a better maintenance of new constraints,
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as well as a randomized generation of solutions with well − known heuristics. There-

fore our proposal is based on the use of the commented validation CP library and

biased-randomized classical heuristics.

12.2 Applying a CP Validation approach

For the Rich VRP, we propose a generic hybrid methodology based on the joined

work of a randomized heuristic and the validation task of CP. As we discussed in

previous chapters, the development of heuristics is wide popular in the VRP research

community. In fact, there is a set of known classical heuristics (Golden et al., 2008;

Laporte et al., 2000; Toth and Vigo, 2001). In general, once a heuristic is proposed then

new adaptations or combinations with other methods emerge. Therefore we propose

to extend lifetime of the heuristic with a randomization of its inner decision steps, and

then combine it with a CP validator. In fact, the heuristic could work together with

local search methods for improving the solution values.

The key aspect of our approach is to use the CP-RVRP library as a black box

for evaluating complete or partial solutions generated by the selected heuristic. The

full evaluation of CP will determine which of the generated solutions by the heuristic

fulfil all the constraints. This may happen because the heuristic solution construction

is based only in a partial set of constraints —e.g., CWS is based on vehicle capac-

ity; I3 is based on both capacity and time windows—, while CP contains the whole

model, validating then all the problem aspects. The biased-randomized process creates

a promising set of solutions, and then CP checks the satisfaction of all desired restric-

tions. Notice that a specification for the communication is required in order to properly

exchange information between the heuristic and the validator.

The challenge of this methodology is to find a balance point between: (a) a tailored

biased-randomized heuristic (with or without the help of local search methods), and (b)

the use of CP as a solutions validator. So as a starting point, we propose just to validate

the solutions generated by a randomized classical heuristic for a specific combinatorial

optimization problem. The biased-randomized heuristic helps to perform a diversified

exploration of the solution space while the CP is focused only on the validation. So the

integration point is important to determine the useful feedback the solutions generation

process requires. From this, we can generate a good number of promising alternative
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Code/Id Constraint Description Implemented on CP Library

CP Multi-Products

CD Multi-Dimensional capacity
√

C Vehicle Capacity
√

FO Homogeneous Fleet of Vehicles
√

FE Heterogeneous Fleet of Vehicles
√

VU Unfixed Fleet of Vehicles
√

VF Fixed Fleet of Vehicles
√

FC Fixed Cost per Vehicle
√

VC Variable Cost of Vehicle
√

MT Multi-Trips

DS Vehicle Site Dependent
√

DR Vehicle Road Dependent

L Duration Constraints/Lenght
√

D Driver Shifts/Working Regulations
√

BR Balanced Routes
√

CS Symmetric Cost Matrix
√

CA Asymmetric Cost Matrix
√

IR Intra-route replenishments

TD Time Dependent/Dynamic/Stochastic times

S Stochastic Demands/Dynamic

WT Time Windows
√

WM Multiple Time Windows
√

PD Pick-up & Delivery
√

SP Simultaneous Pick-up & Delivery

B Backhauls
√

MV Multiple Visits/Splitted deliveries

MP Multi-Period/Periodic

I Inventory Levels Controls

CC Customer Capacity

MD Multi-Depot

WD Time Windows for the Depot
√

O Different end locations/Open Routes
√

DA Different start and end locations
√

DD Departure from different locations
√

PC Precedence constraints
√

MO Multi-Objectives
√

Table 12.2: Rich VRP restrictions Implemented on CP library so far.
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routing plans. We may also keep a memory of valid routes, and then find out a general

plans to cover all customers, then we can build several routing solutions from the

combinations of previously generated routes.

The main advantage of this methodology is that it avoids the waste of large devel-

oping of tailored evaluation methods. As a matter of fact, if a new constraint appears

in the problem, CP allows a fast inclusion in the model and the methodology with-

out needing to modify the search algorithm. Since generation of unfeasible solutions

is common on VRP techniques, we prefer to invest that time exploring the solutions

space in a natural and ‘promising’ way. Instead of applying complementary methods

to evaluate solutions, CP —with an extremely fast computation— guarantees an im-

mediate validation of given solutions. Furthermore, implemented components —both

heuristics and CP restrictions— can be progressively built for addressing different types

of routing problems. Depending on the type of routing problem, a constructive criteria

will be used —e.g., CWS for only vehicle capacity, I3 heuristic for time windows, etc.

In Fig. 12.1, the overview of the structure of the methodology is depicted. A heuris-

tic is taken from a database of biased-randomized heuristics. Then a multi-start-like

process is executed, where a CP integration is done. The integration can be focused

on complete solutions at the end of the process (point ‘B’ in Fig. 12.1) or could be

done inside of the generation process where partial solutions are handled (point ‘A’ in

Fig. 12.1). Routing solutions are instantiations of the variables of a CP model. This

model is built using a library with all the necessary routing constraints to be evaluated

in each route. For solving any VRP variant, the library should include a large set of

represented rules. The response of the CP solver is used in the solutions generation

process in order to continue with it or start a new construction iteration. Notice that

including the checking in point ‘A’ is much more efficient than in point ‘B’. In Fig.

12.2, a solution space inspired in a tree-search —from CP operation— is depicted in

order to give an intuitive view/approximation to ‘early’ feedbacks using both points.

There are remarkable savings in the solution space exploration using integration point

‘A’, but these are out of the scope of this work.

Thus, it is possible to identify the following steps when creating a generic routing

algorithm by using the CP-RVRP library-based methodology:

1. Given a routing problem, select a biased-randomized heuristic and include it
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Figure 12.1: Relation of basic components in proposed hybrid methodology.

Figure 12.2: Exploration of solution space using commented points ’A’ and ’B’.

inside of a multi-start-like approach for generating a diversified set of solutions

in a fast iterated process.

2. Once the base heuristic has been selected, the most appropriate validation point

of complete or partial solutions must be defined inside the optimization procedure.
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The simplest way is to allocate it at the end of the solution building process, but

it is the less efficient. Thus, an internal validation point of partial solutions also

helps the generation process in a more efficient way with a proper feedback of

solutions feasibility.

3. The constraints considered in the routing problem are included (if they existed

previously) or implemented (if they are new) from/in the CP-RVRP Library.

Therefore, a CP model is built.

4. After the generation of a total or partial solution, the CP validation results help

the heuristic in the search process.

12.3 Benefits

Regarding the diversified set of approaches for generic Rich VRPs, the main benefits

of combining randomized heuristics with CP techniques over other related approaches

are:

� The idea can be applied to a wide set of combinatorial problems thanks to the

versatile role of randomized heuristics combined with CP modelling power. Since

it is focused on this CP modelling power, any combinatorial problems can be

addressed.

� Given a specific combinatorial problem, the selection and randomization of an

adequate heuristic can be executed in a few steps (see chapter 5). On the other

hand, the validation model is built using the CP library for the corresponding

problem.

� A set of randomized classical heuristics can be saved in a database. This allows

to explore the solution space in different promising ways. The selection of a

proper heuristic depends on the nature of the problem and the inner heuristic

construction constraints —e.g., CWS is not useful for addressing VRP with time

constraints, but I3 heuristic is.

� Depending on the integration level of CP within the heuristic, the proper feedback

can save a remarkable number of computational steps. It can validate complete
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or partial solutions in order to identify the most promising solutions in the con-

struction process.

� A distributed computation deployment of the methodology can be applied into

network services. This may be useful for improving times and maintenance. The

general CP validation process and heuristics execution can be located in different

agents or computers.

12.4 Chapter Conclusions

In this chapter, a biased-randomized classical heuristics with Constraint Programming

is proposed in order to solve several variants of VRPs with few (or no) adaptation

steps. The key core of the approach is focused on the combination of promising solu-

tions generation with biased randomization of classical heuristics and the flexibility of

constraint programming techniques. The integration of these two methods can produce

useful feedback in different points of the algorithm. Additionally, a set of implemented

randomized heuristics can be stored in order to be used with the appropriate problems’

instances.

In the next chapter, some example applications are presented in order to test the

performance of the proposed hybrid approach. However, these are preliminary tests

since our purpose is not to computationally compare with tailored methods because, as

expected, they get better results quality by minimizing modelling flexibility. Therefore,

the main objective is to produce generic solutions to some routing problems just to

illustrate the use of proposed methodology. For this, we apply this methodology to two

deterministic variants: DCVRP and HVRP (see Fig. 12.3).
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Deterministic VRPs

HVRP

DCVRP

Figure 12.3: VRP Problems studied on this dissertation using randomized heuristics and

CP.
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Applying a Generic Methodology

The benefits of the general methodology proposed in the previous chapter have been

tested with different VRPs in order to measure its performance. We have applied it

in some basic VRP variants —like the DCVRP and HVRP instances— in order to

preliminary test its usefulness. As explained in the previous chapter, first, we have

chosen appropriate constructive heuristics —e.g. Clarke-and-Wright Savings. In gen-

eral, classical heuristics are designed to address a specific combinatorial optimization

problem. However, some may be used for multiple types of problems when embedded

in the proposed methodology. Thus, we will use CWS over a wide set of benchmarks.

For testing the proposed methodology, instances for each individual routing problem

have been used. The idea is to appreciate the complementary potential of constraint

programming to model and check any possible routing constraints at the same time that

no extra development is needed. For this, we will use the CP-RVRP library introduced

in the previous chapter.

13.1 From CVRP to DCVRP

As a first experiment, we have used a biased-randomized version of the CWS heuristic

(Clarke and Wright, 1964) proposed by Juan et al. (2010) which targets the CVRP.

This heuristic is based on the construction of routes using a savings concept. During

the construction process, the capacity restriction is the only one validated —as it is

the main target of the CVRP. Then we have integrated the previously commented CP-

RVRP Library to the algorithm in order to check the solutions generated. Thus, any
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new extra constraints can be included with no extra effort. In the CVRP, the route

distance is often validated (Distance-Constrained VRP, DCVRP). So we can use the

algorithm to generate random solutions with different configurations, and validate the

satisfaction of this extra restriction. After building a complete routing solution, we

validate the satisfaction of all the constraints (corresponding to integration point ‘B’

in the overview of this methodology from the previous chapter).

13.1.1 Computational Results

The methodology has been implemented as a Java application. We run instances in

an Intel Xeon E5603 at 1.60 Ghz and 8 GB RAM. For preliminary experiments, we

use a test-bed of eight ‘big’ instances with a number of customers between 200 and

480, proposed by Golden et al. (1998). Each has a specific maximum distance limit.

All instances are represented by Euclidian distances. First, we have tested the basic

case, that is, checking all the solutions generated by the tailored procedure and no

additional constraints. Thus, the heuristic procedure considers only vehicle capacity

for each route. As expected, we got a 100% of valid solutions. So far, this helps to

validate the proper connection and operations of components. Second, we have run the

same experiment, but activating the maximum distance limit validation only in CP.

Table 13.1 presents the number of generated solutions and the number of positively

validated by the algorithm after 60 seconds running each instance. The idea is to

present the number of solutions generated by a constructive procedure and then see

how many solutions get invalid by adding just one constraint. The first three columns

are from the tailored CVRP heuristic, which produces CVRP feasible solutions. The

second results (last three columns) are related to the heuristic generation and the CP

validation. In these, the ratio of feasibility descends remarkably when a new routing

condition is included. This first experiment also helps to see how sensitive is a tailored

approach when the addressed problem gets just a little more constrained.

13.2 HVRP

As seen in Chapter 6, we have proposed an algorithm based on a biased-randomization

of CWS combined with a vehicle assignment originally proposed by Prins (2002). The

process starts from a dummy solution (the most expensive possible), then these basic
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Tailored CVRP Heuristic Generic CVRP-DCVRP Heuristic

Instance Generated Valid Feasibility Generated Valid Feasibility

Solutions Solutions Ratio Solutions Solutions Ratio

Kelly1 2870 2870 100.00% 2991 0 0.00%

Kelly2 2037 2037 100.00% 2378 0 0.00%

Kelly3 1456 1456 100.00% 1501 0 0.00%

Kelly4 1120 1120 100.00% 1133 0 0.00%

Kelly5 3467 3467 100.00% 3624 12 0.34%

Kelly6 1779 1779 100.00% 2549 0 0.00%

Kelly7 1902 1902 100.00% 2071 0 0.00%

Kelly8 1327 1327 100.00% 1275 0 0.00%

Table 13.1: Results of CVRP-DCVRP algorithms after checking generated solutions with

CP.

routes are merged using the savings list. For the HVRP, the vehicle assignment process

consists in, first, sorting all given vehicles and routes demands —created so far— in a

decreasing way. Then, vehicles are assigned to each route top-down. Given the case,

if there are more clients than available vehicles, some fictitious vehicles will be needed.

The heterogeneous fleet is a routing feature which appears in many real cases —as we

have studied in two real cases in this thesis. So as the previous experiment, we have

integrated the CP-RVRP library with a tailored algorithm in order to measure the

number of feasible solutions. In this time, it is just focused on the Heterogeneous fixed

fleet VRP (HVRP) —studied before.

13.2.1 Computational Results

As for the previous case, the algorithm was implemented as a Java application. We

run instances in an Intel Xeon E5603 at 1.60 Ghz and 8 GB RAM. For testing HVRP

approaches, a well-known dataset, wide used by the research community, proposed by

Golden et al. (1984) and later modified by Taillard (1999) has been used. The number

of customers in these instances, originally proposed by Christofides and Eilon (1969),

is between 50 and 100. All instances are represented with Euclidian distances.

Table 13.2 presents the number of generated and validated solutions using the al-

gorithm after 60 seconds of search for each instance. The first values are from the
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Instance Generated Valid Feasibility

Solutions Solutions Ratio

GT13 5154 7 0.14%

GT14 4569 4569 100.00%

GT15 5393 1934 35.86%

GT16 5460 2675 48.99%

GT17 5055 4637 91.73%

GT18 4940 559 11.32%

GT19 4837 4837 100.00%

GT20 4623 3825 82.74%

Average 5003.88 2880.38 58.85%

Table 13.2: Results of Tailored HVRP algorithm after checking generated solutions with

CP.

tailored HVRP heuristic. Notice that this methodology produces a certain number of

unfeasible solutions. This is because there are some instances where the total demand

to be delivered and the total vehicle capacity are very close. Thus CP detects if the

solutions found fulfils or not the complete model. Of course, as expected, to complete

the methodology some research should be made on how to move this checkings into the

search loop to take advantage of the infeasibility detection before completing solutions.

But this falls out of the scope of this thesis.

13.3 Future lines

After analysing these first results, we have detected that the use of CP support should

be included in the inner steps of the constructive heuristic. At the moment, we evaluate

only complete solutions, but it is interesting to study how a complete method as CP

could help heuristics during the construction phase. This is something quite complex

because if CP is included in the construction loop, it must check partial solutions,

which requires some research to be done in the appropriate way. Once the integration

is done, synergies will increase and the time spent creating unfeasible solutions should

decrease dramatically. Until now we have been using only a few constraints from the

library but many other VRPs can be modelled and solved.
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This type of generic methodology can be applied to a wide set of optimization

problems. The combination of different types of constraints represent a challenging

target for the OR area. Without leaving the routing area, there are a number of

tradeoffs that could be studied, like, for instance, the environmental impact of routing.

Thus, ‘green’ aspects can be included in the VRP, as (Erdoğan and Miller-Hooks,

2012; McKinnon et al., 2012; Sbihi and Eglese, 2007) suggest. Likely there are some

emerging problem definitions like the Pollution Routing Problem (Bektas and Laporte,

2011; Demir et al., 2012a,b). The particular feature of this VRP extension is that the

objective function include an extra variable for the greenhouse emissions. In addition to

the Green and Pollution VRP, there are some other variants focused in green logistics

for reducing CO2 emissions (Demir et al., 2011; Fagerholt et al., 2009; Figliozzi, 2011;

Jabali et al., 2012).

13.4 Chapter Conclusions

In this chapter, we have proposed to combine randomized classical heuristics with

constraint programming in order to solve several Rich VRPs. In real-life routing en-

terprises, there is a wide necessity of creating generic tools that allow to address any

combination of constraints. There are some few works on this research line. For this, we

have introductory proposed and tested a new methodology. Finally, some conclusions

and comments related to this dissertation will be presented in the next chapter.
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Conclusions and Future Work

This thesis dealt with several approaches for the Rich VRPs. These approaches are

focused on three main axes: biased-randomized heuristics, integration of randomized

heuristics with simulation, and also the combination of biased-randomized heuristics

with constraint programming. One of the sub-objectives was to present the state-of-the-

art of each VRP family addressed here. Some of them can be classified as deterministic

contexts —i.e., HVRP, HVRP-V, HVRPM, AVRP, HAVRP, VRPTW, and DCVRP—

while others can be considered as stochastic natures —i.e., VRPSD and IRPSD. In

fact, few studies have addressed both types of problems. Thus an extensive literature

review was carried out, focusing on describing the evolution of main contributions of

previous works. By the substantial number of publications made on each VRP family,

this optimization line is indeed an area of intense and continuous research in the fields

of operational research and computer science.

On the deterministic context, two Rich VRPs inspired on real-life distribution com-

panies were addressed with biased-randomized heuristics. First, an enterprise with

almost 400 stores in Spain proposes to solve both cases of HVRP and HVRPM. Sec-

ond, an intra-urban distribution company of around 50 customers in Barcelona propose

an HAVRP with some extra constraints —like optionally open and/or balanced routes.

On those case studies, we obtained a remarkable improvement on their routing plan-

ning which represent savings on their logistic activities. Also some promising results

were generated on experiments using theoretical instances of HVRP, HVRP-V, AVRP,

VRPTW, and also DCVRP. In fact, we have addressed a promising emerging family

as it is the Heterogeneous Asymmetric VRP. In general, the biased-randomization of
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heuristics offers a natural understanding and implementation way to generate a diver-

sified set of solutions for the decision-making process.

On the stochastic side, two popular problems (VRPSD and IRPSD) were addressed

with the combination of biased-randomized heuristics and Monte-Carlo simulation (so

called Simheuristics). Several routing solutions were created under specific assump-

tions of the random behavior of demands. First, for the VRPSD, a safety stock in

trucks is proposed to face the stochasticity on customer demands on some simulation

executions. In this study, the potential of parallel and distributed computing is high-

lighted for speeding up the computations without to represent a remarkable invest for

enterprises. Second, for the single period IRPSD, an integrated approach is proposed to

relate the inventory and routing costs on retail centers in a centralized vendor-managed

inventory context. Also in one of the addressed real-life case studies, simulation tech-

niques were used to generate information of service times in customers from incomplete

data.

One step further have been done in order to design a generic approach to be applied

for several variants of Rich VRPs. For this, a complementary library based on constraint

programming (CP) was integrated to some biased randomized algorithms for addressing

the DCVRP and HVRP. Some preliminary results were obtained to show the usefulness

of this promising approach. However, a major integration of the CP inside of the

heuristic will be required and then more experiments should be executed to prove its

true potential.

14.1 Future Research

As we have appreciate in previous chapters, the biased-randomization of heuristics

combined with other techniques (e.g., simulation, parallel and distributed computing,

constraint programming) have been useful for addressing a large set of Rich VRPs. The

research community is proposing even more hybrid approaches as a relevant direction

(Doerner and Schmid, 2010). In fact, the randomization of heuristics can easily har-

ness DPCS approaches for a better performance. This could be quite interesting for

SME which can not afford specialized computer solutions. Some other works propose a

decomposition or transformation of one proposed model problem into other equivalent
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in order to solve other Rich VRPs —see (Hasle and Kloster, 2007). This could be par-

ticularly useful on some cases where a general optimization model have been proposed

to be transformed into other problem.

As for future work, the following lines of research are suggested: (i) since all pro-

posed algorithms are based on a biased-randomized selection of elements inside of

heuristics, other biased (non-symmetric) probabilistic distributions could be used to

measure its performance and its impact on results (sensibility); (ii) due to the common

nature of combinatorial optimization problems, the proposed algorithms could be ap-

plied to efficiently solve other problem scopes like arc routing (González-Mart́ın et al.,

2012), scheduling (Juan and Rabe, 2013; Montoya-Torres et al., 2012), flowshop (Juan

et al., 2012b, 2013b), clustering (Muñoz-Villamizar et al., 2013) or green computing

(Cabrera et al., 2013); (iii) the implementation and deployment of proposed methodolo-

gies in real enterprise environments in order to offer a day-to-day optimization routing

planning —including more real constraints into it; (iv) explore other practical ways to

apply some parallel and distributed techniques on proposed algorithms that allows to

reuse the computing platform of an enterprise; (v) investigation of alternative forms of

hybridization between heuristic and exact approaches for VRPs.

There are also some emerging research lines in the routing community that we

could consider to adapt our approaches. The combination of routing and environmental

aspects represent and promising and interesting trade-off to be studied. The ecological

footprint and energy consumption are having an important place in national regulations

impacting distribution planning (Ahn and Rakha, 2008; Dekker et al., 2012; Eglese and

Black, 2010; Erdoğan and Miller-Hooks, 2012; Fagerholt et al., 2009; Srivastava, 2007).

In (Erdoğan and Miller-Hooks, 2012; McKinnon et al., 2012; Sbihi and Eglese, 2007)

some preliminary definitions and state-of-the-art for the so called “Green VRP”. While

in (Bektas and Laporte, 2011; Demir et al., 2012a,b) the “Pollution VRP” is described

in detail with some resolution approaches. Specific techniques are proposed in (Demir

et al., 2012a; Erdoğan and Miller-Hooks, 2012; Jabali et al., 2012; Kuo, 2010; Lera-

López et al., 2012). Some real applications are presented in (Bauer et al., 2009; Faulin

et al., 2011; Figliozzi, 2011; Ubeda et al., 2011). Therefore there is still a long path

for creating algorithm solutions for a broad green routing problem. Randomized and

hybrid approaches offer a potential framework to address this type of problem.
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Publications & Presentations

derived from this Thesis

The generated publications so far related to this thesis are considered as part of the

main contributions of this work. Thus in this chapter, we present the accepted publi-

cations, the in− process− of − reviewing publications, some dissemination activities

developed in last three years, and finally there are some extra contributions related to

the objectives of this dissertation that it must be pointed out.

15.1 Publications

First, some partial parts of this thesis have been accepted for publication in the following

articles in ISI-JCR or Elsevier-Scopus journals after a peer − reviewing process:

� Juan, Faulin, Jorba, Cáceres-Cruz, and Marques (2013a): “Using parallel & dis-

tributed computing for real-time solving of vehicle routing problems with stochas-

tic demands”. Annals of Operations Research, 207: 43-65 (indexed in ISI SCI,

2012 IF = 1.029, Q2).

� Juan, Faulin, Cáceres-Cruz, Barrios, and Mart́ınez (2014b): “A Successive Ap-

proximations Method for the Heterogeneous Vehicle Routing Problem: analyzing

different fleet configurations”. European J. of Industrial Engineering (indexed in

ISI SCI, 2012 IF = 1.596, Q1).
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� Grasas, Cáceres-Cruz, Lourenço, Juan, and Roca (2013): “Vehicle routing in

a Spanish distribution company: Saving using a savings-based heuristic”. OR

Insight (indexed in UK ABS, Grade 1).

� Herrero, Rodŕıguez, Cáceres-Cruz, and Juan (2014): “Solving Vehicle Routing

Problems with Asymmetric Costs and Heterogeneous Fleets”. Int. J. of Advanced

Operations Management (indexed in DBLP).

Second, there are some conference papers associated to ISI-WOS or Elsevier-Scopus

journals which were accepted after a peer − reviewing process:

� Cáceres-Cruz, Juan, Grasman, Bektas, and Faulin (2012b): “Combining Monte-

Carlo Simulation with Heuristics for solving the Inventory Routing Problem

with Stochastic Demands”. In Proceedings of the Winter Simulation Confer-

ence (WSC), pp. 1–9. Berlin, Germany, December 9–12 (indexed in ISI Web of

Science and Scopus, 2011 SJR = 0.372, Q2).

� Muñoz-Villamizar, Montoya-Torres, Juan, and Cáceres-Cruz (2013): “A Simulation-

based Algorithm for the Integrated Location and Routing Problem in Urban

Logistics”. In Proceedings of the Winter Simulation Conference (WSC), Wash-

ington, USA, December 8–11 (indexed in ISI Web of Science and Scopus, 2011

SJR = 0.372, Q2).

� Cáceres-Cruz, Riera, Buil, Juan, and Herrero (2013): “Multi-start Approach for

Solving an Asymmetric Heterogeneous Vehicle Routing Problem in a Real Urban

Context”. In Proceedings of the 2nd International Conference on Operations

Research and Enterprise Systems (ICORES), pp. 168–174, Barcelona, Spain.

February 16–18 (indexed in Scopus, see Appendix Fig. 16.1).

Third, there is a research chapter book accepted after a peer − reviewing process:

� Juan, Cáceres-Cruz, González-Mart́ın, Riera, and Barrios (2014a): “Biased Ran-

domization of Classical Heuristics”. In: J. Wang (ed), Encyclopedia of Business

Analytics and Optimization. IGI Global. USA.

Also there are other conference papers accepted after a peer − reviewing process:
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� Cáceres-Cruz, Grasas, Lourenço, Juan, and Roca (2012a): “Aplicación de un

Algoritmo Randomizado a un Problema Real de Enrutamiento de Veh́ıculos Het-

erogéneos”. In Proceedings of the VIII Congreso Español sobre Metaheursticas,

Algoritmos Evolutivos y Bioinspirados (MAEB), Albacete, Spain, February 8–10.

� Cáceres-Cruz, Riera, Juan, and Padrón (2013): “Hybrid Approach combining

Insertion Heuristic and Biased Random Sampling for the Vehicle Routing Prob-

lem with Time Windows”. In Proceedings of the IX Congreso Español sobre

Metaheuŕısticas, Algoritmos Evolutivos y Bioinspirados (MAEB), Madrid, Spain,

September 17–20.

� Cáceres-Cruz, Riera, Buil, and Juan (2013b): “Applying a Savings Algorithm for

solving a Rich Vehicle Routing Problem in a Real Urban Context”. In Proceedings

of 5th International Conference on Applied Operational Research (ICAOR) -

Lecture Notes in Management Science, vol. 5, pp. 84–92, July 29–31, Lisbon,

Portugal.

Finally, other parts of this thesis have been submitted to a peer−reviewing process.

For instance, the first paper in the list is in a second step of the process:

� Juan, Grasman, Cáceres-Cruz, and Bektas (?): “A Hybrid Algorithm for the

Single-Period Stochastic Inventory Routing Problem with Stock-outs”.

� Lourenço, Juan, Cáceres-Cruz, Grasas and Roca (?): “A Savings-based Random-

ized Heuristic for the Heterogeneous Fleet Multitrip Vehicle Routing Problem”.

� Garćıa-Garćıa, Mart́ınez-Juste and Cáceres-Cruz (?): “Using Genetic Algorithm-

based Software on a Rich Vehicle Routing Problem: a Spanish Case Study”.

15.2 Presentations

Some parts of this work have also been presented in several international Congress-

Conferences-Workshops and published in the following activities:

� Juan, Fauĺın, Jorba, Cáceres-Cruz, and Marques (2011b), “A Simulation-based

algorithm for solving the Vehicle Routing Problem with Stochastic Demands”. In

Proceedings of the 2011 ALIO/EURO Workshop, Porto, Portugal, May 4–6.
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� González-Mart́ın, Juan, Riera, and Cáceres-Cruz (2011), “A Hybrid Algorithm

Combining Path Scanning and Biased Random Sampling for the Arc Routing

Problem”. In Proceedings of the 18th Knowledge Representation & Automated

Reasoning Workshop (RCRA), Barcelona, Spain, July 17–18.

� Juan, Fauĺın, Cáceres-Cruz, and González-Mart́ın (2011a), “Combining Random-

ized Heuristics, Monte Carlo Simulation and Parallel Computing to Solve the

Stochastic Vehicle Routing Problem”. Abstract in Proceedings of the Interna-

tional Conference on Optimization, Theory, Algorithms and Applications in Eco-

nomics (OPT), Barcelona, Spain, October 24–28.

� Lourenço, Cáceres-Cruz, Grasas, Juan, and Roca (2012), “A Randomized Hybrid

Algorithm based on Savings and Vehicle Assignment Policies for the Heteroge-

neous Vehicle Routing Problem”. Abstract in Proceedings of the 1st EURO-

VeRoLog Conference, Bologna, Italy, June 18–20.

� Cáceres-Cruz, Juan, Riera, and Lourenço (2012), “A Randomized Algorithm for

the Heterogeneous Fixed Fleet Vehicle Routing Problem”. Abstract in Proceed-

ings of 25th EURO Conference, Vilnius, Lithuania, July 8–11.

� Juan, Fauĺın, Agust́ın, and Cáceres-Cruz (2012a), “A Multi-Round Simulation

Method which Analyzes Fleet Designs to Solve the Heterogeneous Vehicle Rout-

ing Problem”. Abstract in Proceedings of the International Symposium on Com-

binatorial Optimization (CO), Oxford, UK, September 17–19.

� Cáceres-Cruz, Juan, Grasman, Bektas (2012), “A Hybrid Approach for the In-

ventory Routing Problem with Stochastic Demands”. Abstract in Proceedings of

the 2012 IN3-HAROSA International Workshop. Barcelona, Spain, June 13–15.

� Cáceres-Cruz, Juan, Riera, Lourenço (2012), “Hybrid Algorithms for solving the

Rich VRP”. Abstract in Proceedings of the 2012 IN3-HAROSA International

Workshop for Junior Researchers, July 12–13. Barcelona, Spain.

� Cáceres-Cruz, Riera, Buil, Juan (2012), “Applying a Hybrid Approach to an

Asymmetric Heterogeneous Vehicle Routing Problem”. Abstract in Proceed-

ings of the 2012 CYTED-HAROSA International Workshop. Valparaiso, Chile,

November 12–13.
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� Riera, Guimarans, Arias, Cáceres-Cruz, Juan (2012), “Solving the R2V RP (Real

Rich VRP)”. Abstract in Proceedings of the 2012 CYTED-HAROSA Interna-

tional Workshop. Valparaiso, Chile, November 12–13.

� Cáceres-Cruz, Juan, Riera, Lourenço, Grasas, and Buil (2013a), “Rich and Real-

life Vehicle Routing Problems: cases of study in Spain”. Abstract in Proceedings

of the 2nd EURO-VeRoLog Conference, Southampton, UK, July 7–10.

15.3 Other Contributions

During the thesis period, we have participated in several meetings in particular with

three enterprises, as well as in some private sector conferences which allowed to gather

the current situation of routing distribution in Spain. On this process, an exchange of

information has took place between the responsible persons of routing in enterprises

and the academic sector. All comments were oriented to point out the common concern

to develop more efficient and generic tools. In fact, the academic sector could provide

a remarkable assistance to design advanced solution techniques. Likely, some collab-

orations have been done with the next institutions for implement knowledge-transfer

tools related with the used algorithms in this dissertation:

� “One Big Robot Company” for the creation of a web site routing game http:

//www.onebigrobot.com/beta/uoc/viu_la_recerca/rutes/#. This game il-

lustrate the resolution power of advanced routing techniques. For this we used a

simple version of CWS heuristic algorithm which minimizes the time taken by a

fleet of vehicles with certain load capacity to serve a set of customers in a given

area. The main idea of the algorithm is, from an initial very expensive solution,

in small steps to improve it. In fact, this has been applied to solve some problems

of SMEs in Spain –as we have appreciated on this thesis–, notably improving its

logistics.

� “Pompeu Fabra University” for the creation of a web site http://www.econ.upf.

edu/~ramalhin/VRP-UPF/default.php for public consumption of CWS heuristic

algorithm. Dr. Helena R. Lourenço, as one its main promoter explains: “this will

served to enterprise to show them how easy and effective could be to use advance

techniques on their day-to-day routing planning”.
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Also there was a guidance in two UOC academic career projects during 2011: (a)

that of Juan Ramon Pons called (in catalan) “Desenvolupament d’eines software per

millorar la gestió d’inputs i outputs en problemes de Vehicle Routing i Scheduling”.

This project search to integrate external geo-locational tools (like Google Maps) to

advanced routing techniques. Also (b) that of León Monzón in the project “Optimiza-

tion of SR-GCWS-CS algorithm using TSP process in petals of routes” which tries

to improve the performance of the Cache-memory-local-search technique used on this

dissertation. Additionally, the participation on the organization of several scientific

events in order to create spaces where these routing optimization ideas could be dis-

cussed between experts and practicioners, like: 2011 IN3-HAROSA (Barcelona), 2012

IN3-HAROSA (Barcelona), 2012 IN3-HAROSA for Junior Researchers (Barcelona),

2013 ICSO-HAROSA (Barcelona).
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S. Andradóttir. A review of simulation optimization techniques. In Simulation Conference Proceedings, 1998.

Winter, volume 1, pages 151–158, 1998. doi: 10.1109/WSC.1998.744910. 131

E. Angelidis, D. Bohn, and O. Rose. A simulation-based optimization heuristic using self-organization for

complex assembly lines. In Proceedings of the Winter Simulation Conference, WSC ’12, pages 276:1–276:10.

Winter Simulation Conference, 2012. URL http://dl.acm.org/citation.cfm?id=2429759.2430131. 130

S. Anily and A. Federgruen. One warehouse multiple retailer systems with vehicle routing costs. Management

Science, 36(1):92–114, 1990. 171

S. Anily and A. Federgruen. Two-echelon distribution systems with vehicle routing costs and central inventories.

Operations Research, 41(1):37–47, 1993. 171

K.R. Apt and M. Wallace. Constraint logic programming using ECLiPSe. Cambridge University Press, 2006.

209

233

http://www.sciencedirect.com/science/article/pii/S0305054812002134
http://www.sciencedirect.com/science/article/pii/S1361920908000047
http://dx.doi.org/10.1007/s11750-012-0266-4
http://dl.acm.org/citation.cfm?id=2429759.2430131


REFERENCES AND BIBLIOGRAPHY

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, and

I. Stoica. A view of cloud computing. Communications of the ACM, 53(4):50–58, 2010. 136

P. Augerat, J.M. Belenguer, E. Benavent, A. Corberán, D. Naddef, and G. Rinaldi. Computational results with

a branch and cut code for the capacitated vehicle routing problem. Technical report, Research Report 949-M,
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O. Bräysy and M. Gendreau. Vehicle routing problem with time windows, part i: Route construction and local

search algorithms. Transportation science, 39(1):104–118, 2005a. 122
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M. Gendreau, G. Laporte, and R. Séguin. Stochastic vehicle routing. European Journal of Operational Research,

88(1):3–12, 1996a. ISSN 0377-2217. doi: 10.1016/0377-2217(95)00050-X. URL http://www.sciencedirect.

com/science/article/pii/037722179500050X. 133
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H. Lourenço, J. Cáceres-Cruz, A. Grasas, A. Juan, and M. Roca. A randomized hybrid algorithm based on

savings and vehicle assignment policies for the heterogeneous vehicle routing problem. In Proceedings of the

VeRoLog Conference 2012, Bologna, Italy, June 2012. 230

H.R. Lourenço, O.C. Martin, and T. Stützle. Iterated local search: Framework and applications. In M. Gendreau

and J.Y. Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series in Operations

Research & Management Science, pages 363–397. Springer US, 2010. ISBN 978-1-4419-1663-1. doi: 10.1007/

978-1-4419-1665-5 12. URL http://dx.doi.org/10.1007/978-1-4419-1665-5_12. 45
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K. Sörensen, M. Sevaux, W. Habenicht, and M.J. Geiger, editors, Metaheuristics in the Service Indus-

try, volume 624 of Lecture Notes in Economics and Mathematical Systems, pages 155–171. Springer Berlin

Heidelberg, 2009. ISBN 978-3-642-00938-9. doi: 10.1007/978-3-642-00939-6 9. URL http://dx.doi.org/

10.1007/978-3-642-00939-6_9. 81

254

http://www.sciencedirect.com/science/article/pii/S0305054803001588
http://www.sciencedirect.com/science/article/pii/S0305054803001588
http://dx.doi.org/10.1016/j.engappai.2008.10.006
http://dx.doi.org/10.1016/j.engappai.2008.10.006
http://dx.doi.org/10.1007/3-540-45492-6_47
http://dx.doi.org/10.1007/978-1-4419-1665-5_5
http://dx.doi.org/10.1007/978-1-4419-1665-5_5
http://www.sciencedirect.com/science/article/pii/S0167819100001022
http://www.sciencedirect.com/science/article/pii/S0167819100001022
http://dx.doi.org/10.1007/s10100-006-0163-8
http://www.sciencedirect.com/science/article/pii/S0377221701002375
http://dx.doi.org/10.1007/978-1-4419-1665-5_10
http://dx.doi.org/10.1007/978-1-4419-1665-5_10
http://dx.doi.org/10.1007/978-3-642-00939-6_9
http://dx.doi.org/10.1007/978-3-642-00939-6_9


REFERENCES AND BIBLIOGRAPHY

J. Rieck and J. Zimmermann. A new mixed integer linear model for a rich vehicle routing problem with

docking constraints. Annals of Operations Research, 181:337–358, 2010. ISSN 0254-5330. doi: 10.1007/

s10479-010-0748-4. URL http://dx.doi.org/10.1007/s10479-010-0748-4. 25, 30, 35, 39, 95

D. Riera, A. Juan, D. Guimarans, and E. Pagans. A constraint programming-based library for the vehicle

routing problem. In 21st European Modeling and Simulation Symposium, pages 105–110, Santa Cruz de

Tenerife: Universidad de La Laguna - Canary Islands, Spain, september 2009. ISBN 9788469254141. 209

A.E. Rizzoli, R. Montemanni, E. Lucibello, and L.M. Gambardella. Ant colony optimization for real-world vehicle

routing problems. Swarm Intelligence, 1:135–151, 2007. ISSN 1935-3812. doi: 10.1007/s11721-007-0005-x.

URL http://dx.doi.org/10.1007/s11721-007-0005-x. 29, 35, 39
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Vera Coelho 

ICORES 2013 Secretariat 
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Heuristics 
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Sergio González-Martín, IN3-Open University of Catalonia, Spain 

Daniel Riera, IN3-Open University of Catalonia, Spain 

Barry B. Barrios, IN3-Open University of Catalonia, Spain 
 
 
INTRODUCTION 

In the context of combinatorial optimization problems, this chapter discusses how to randomize classical 

heuristics in order to transform these deterministic procedures into more efficient probabilistic algorithms.  
This randomization process can be performed by using a uniform probability distribution or, even more 

interesting, by using a non-symmetric distribution.   
Combinatorial Optimization Problems (COPs) have posed numerous challenges to the human mind 

throughout the past decades.  From a theoretical perspective, they have a well-structured definition 

consisting of an objective function that needs to be minimized or maximized, and a series of constraints 

that must be satisfied.  From a theoretical point of view, these problems have an interest on their own due 

to the mathematics involved in their modeling, analysis and solution.  However, the main reason for 
which they have been so actively investigated is the tremendous amount of real-life applications that can 
be successfully modeled as a COP.  Thus, for example, decision-making processes in fields such as 

logistics, transportation, and manufacturing contain plentiful hard challenges that can be expressed as 

COPs (Faulin et al., 2012; Montoya et al., 2011).  Accordingly, researchers from different areas –e.g. 

Applied Mathematics, Operations Research, Computer Science, and Artificial Intelligence– have directed 
their efforts to conceive techniques to model, analyze, and solve COPs.  

A considerable number of methods and algorithms for searching optimal or near-optimal solutions 
inside the solution space have been developed.  In some small-sized problems, the solution space can be 

exhaustively explored.  For those instances, efficient exact methods can usually provide the optimal 

solution in a reasonable time.  Unfortunately, the solution space in most COPs is exponentially 
astronomical. Thus, in medium- or large-size problems, the solution space is too large and finding the 

optimum in a reasonable amount of time is not a feasible task.  An exhaustive method that checks every 
single candidate in the solution space would be of very little help in these cases, since it would take 

exponential time.  Therefore, a large amount of heuristics and metaheuristics have been developed in 

order to obtain near-optimal solutions, in reasonable computing times, for medium- and large-size 
problems, some of them even considering realistic constraints.   

The main goal of this chapter is to present a hybrid scheme which combines classical heuristics with 
biased-randomization processes.  As it will be discussed later, this hybrid scheme represents an efficient, 
relatively simple, and flexible way to deal with several COPs in different fields, even when considering 

realistic constraints.   
 

BACKGROUND  

In the context of this chapter, we will refer to any algorithm which makes use of pseudo-random numbers 
to perform ‘random’ choices during the exploration of the solution space by the term randomized search 
method, or simply randomized algorithm.  This includes most current metaheurisics and stochastic local-

search processes.  Thus, since it does not follow a determinist path, even for the same input, a randomized 

Figure 16.2: Front page of publication Juan et al. (2014a).
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Figure 16.3: Front page of publication Grasas et al. (2013).
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MAEB 2012 Albacete, 8-10 de Febrero de 2012

 

Resumen—La problemática del enrutamiento de vehículos 

cobra cada vez más importancia en el plano empresarial y 

estatal. Esta área de estudio ha experimentado grandes 

avances teóricos, pero se ha mantenido a cierta distancia de la 

práctica. La mejora en las técnicas para obtener soluciones 

factibles y de calidad está permitiendo aplicar resultados 

teóricos en la resolución de escenarios reales. En este estudio, 

se presenta la resolución de un problema de enrutamiento de 

vehículos con una flota heterogénea utilizando un algoritmo 

que combina una heurística clásica con un factor aleatorio y 

una memoria temporal de las mejores rutas encontradas. El 

experimento se ha ejecutado con los datos de una empresa 

española de distribución con más de 370 tiendas en el noreste 

de España. Los resultados reflejan mejoras con respecto al 

plan de rutas concebido de forma manual por los expertos de 

la empresa. 

 

Palabras clave—Problema de Enrutamiento de Vehículos 

Heterogéneos, Algoritmos Randomizados, Heurísticas. 

I. INTRODUCCIÓN 

En los últimos años, las empresas de logística y 

transporte se están enfrentando a situaciones cada 

vez más exigentes y con menos recursos 

disponibles, producto de la inestabilidad de los 

mercados y el competitivo contexto empresarial. El 

transporte por carretera representa el principal 

medio para el intercambio de bienes en Europa y 

otras partes del mundo. Desde el año 2000, el 

impacto económico y ambiental asociado al 

transporte terrestre ha ido incrementando. Los 

gobiernos y empresas de todo el mundo han posado 

su atención en la optimización de los procesos 

logísticos y de distribución terrestres. Dicha 

optimización se ha hecho necesaria en todo tipo de 

empresa (grande, mediana, o pequeña) para 

beneficiar la calidad del servicio, la satisfacción del 

cliente, y la reducción de costes. 

Distintas áreas del conocimiento han enfocado 

sus esfuerzos para concebir técnicas útiles para este 

tipo de problemática. La optimización de procesos 

parece, a simple vista, un marco natural para las 

Matemáticas Aplicadas y la Investigación 

Operativa. A este grupo de disciplinas, se le suma la 

Ciencia de la Computación que, con sus continuos 

avances tecnológicos, colabora en el desarrollo de 

                                                           
1
 E-mail: jcaceresc@uoc.edu  

2
 E-mail: alex.grasas@upf.edu  

3
 E-mail: helena.ramalhinho@upf.edu  
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 E-mail: ajuanp@uoc.edu  

5
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 E-mail: rosa.colome@esci.upf.edu  

algoritmos de optimización eficientes y  

personalizables a cada problemática concreta. A 

esto hay que sumar, además, el progresivo aumento 

en la capacidad de cómputo que ofrecen los 

procesadores modernos, así como las técnicas de 

paralelización que se pueden emplear en entornos 

multi-core, cluster, o grid.  

Este estudio presenta la aplicación de un 

algoritmo híbrido para la resolución de un caso real 

en una empresa de distribución de alimentos 

española. Las siguientes secciones describen el 

marco teórico y algunos trabajos relacionados con el 

problema de optimización de rutas, el contexto 

actual de planificación de rutas de la empresa 

considerada, la metodología de resolución aplicada, 

algunos resultados preliminares y, finalmente, las 

conclusiones. 

II. TRABAJOS PREVIOS 

El Problema de Enrutamiento de Vehículos 

(VRP) se ha estudiado durante más de 50 años 

(Laporte, 2009). Su versión más simple es conocida 

como el Problema de Enrutamiento de Vehículos 

con Capacidades limitadas (CVRP), definido por 

Datzing & Ramser (1959). Este problema consiste 

en definir un conjunto de rutas para servir a un 

conjunto de clientes con una flota de vehículos 

desde un almacén o nodo central. Cada vehículo 

tiene la misma capacidad (flota homogénea) y cada 

cliente tiene una cierta demanda conocida que debe 

ser satisfecha. Además, existe un coste asociado al 

traslado de un vehículo desde un nodo a otro, que 

bien podría representar las distancias, el tiempo de 

viaje o algún otro coste en particular. El objetivo es 

definir las rutas que minimicen el coste total, la 

distancia recorrida, o el tiempo empleado, de 

manera que la demanda de cada nodo cliente sea 

satisfecha y que la capacidad máxima de cada 

camión  sea respetada. 

En las últimas décadas, diferentes enfoques para 

el CVRP han sido explorados (Toth y Vigo 2002, 

Golden et al. 2008, Juan et al. 2011a, Faulin y 

Juan 2008). Estos enfoques tienen un amplio 

espectro que se inicia con el uso de métodos de 

optimización pura, como la programación lineal, 

para resolver problemas de tamaño pequeño con 

restricciones relativamente simples, hasta el uso de 

heurísticas y metaheurísticas que ofrecen soluciones 

casi óptimas para los problemas de mediano y gran 

Aplicación de un algoritmo randomizado a un problema 

real de enrutamiento de vehículos heterogéneos 

 

José Cáceres1, Alex Grasas2, Helena R. Lourenço3, Angel A. Juan 4, Mercè Roca5, Rosa Colomé6 
(1,4) Universitat Oberta de Catalunya, Barcelona, España. (2,3) Universitat Pompeu Fabra, Barcelona, España. (5,6)ESCi, Barcelona, España. 
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Abstract: In this paper, we propose a relatively simple-to-implement procedure 
for solving the heterogeneous-fleet vehicle routing problem (HeVRP), in which 
different types of vehicle loading capacities are considered. Our approach is 
based on the so called successive approximations method (SAM), which is a 
multi-round process. At each round, a new subset of nodes and a new type of 
vehicle are selected following some specific criteria. Then, assuming an 
unlimited fleet of vehicles of this type, the associated homogeneous-fleet 
vehicle routing problem (HoVRP) is solved. After several rounds, a global 
solution for the HeVRP is obtained by merging routes from different HoVRP 
solutions. In the first part of the paper, we analyse how distance-based costs 
vary when slight deviations from the homogeneous fleet assumption are 
considered. In the second part of the article, the SAM approach is adapted so it 
can simultaneously deal with both fixed and variable costs in HeVRPs. An 
experimental comparison is then made with other HeVRP algorithms. 
[Received: November 12, 2012; Revised: March 25, 2013; Revised: June 29, 
2013; Accepted: July 5, 2013] 
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Solving Vehicle Routing Problems with Asymmetric
Costs and Heterogeneous Fleets

Rosa Herrero
Telecommunications and Systems Engineering Dept., Autonomous
University of Barcelona, Spain

Alejandro Rodríguez

Departamento de Organización de Empresas, Universitat Politècnica de
València, València, Spain

José Cáceres-Cruz, Angel A. Juan

Computer Science Dept., IN3-Open University of Catalonia, Barcelona,
Spain

Abstract: The Vehicle Routing Problem (VRP) is a flourishing research area
with clear applications to real-life distribution companies. However, most VRP-
related academic articles assume the existence of a homogeneous fleet of vehicles
and/or a symmetric cost matrix. These assumptions are not always reasonable in
real-life scenarios. To contribute closing this gap between theory and practice, we
propose a hybrid methodology for solving the Asymmetric and Heterogeneous
Vehicle Routing Problem (AHVRP). In our approach we consider: (i) different
types of vehicle loading capacities (heterogeneous fleets), and (ii) asymmetric
distance-based costs. The proposed approach combines a randomized version of
a well-known savings heuristic with several local searches specifically adapted to
deal with the asymmetric nature of costs. A computational experiment allows us to
discuss the efficiency of our approach and also to analyze how routing costs vary
when slight departures from the homogeneous fleet assumption are considered.

Keywords: Real-Life Vehicle Routing Problem; Heterogeneous Fleets;
Asymmetric Costs; Randomized Algorithms.

1 Introduction

Vehicle Routing Problems (VRPs) deal with the physical distribution of goods from a central
depot to customers, see for instance ? and ?. The best-known VRP variant is the so-called
Capacitated Vehicle Routing Problem (CV RP ). In the CVRP it is assumed the existence
of a homogeneous fleet of vehicles with limited capacity. Another frequent assumption is
that distance-based costs associated with traveling from one node i (customer or depot) to
another node j, cij , are symmetric, i.e., cij = cji for all pair of nodes. A wide number of
VRP variants have been developed during the last years, each of them considering different

Copyright © 2009 Inderscience Enterprises Ltd.

Figure 16.6: Front page of publication Herrero et al. (2014).
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Algorithms, Heuristics. 

Abstract: Urban transportation is a strategic domain that has become an important issue for client satisfaction in 

distribution companies. In academic literature, this problem is categorized as a Vehicle Routing Problem, a 

popular research stream that has undergone significant theoretical advances but has remained far from 

practice implementations. Most Vehicle Routing Problems usually assume homogenous fleets, that is, all 

vehicles are considered of the same type and size. In reality, this is usually not the case as most companies 

use different types of trucks to distribute their products. Also, researchers consider symmetric distances 

between customers. However, in intra-urban distribution it is more appropriate to consider asymmetric 

costs. In this study, we address the Heterogeneous Fixed Fleet Vehicle Routing Problem with some 

additional constraints: (a) Asymmetric Cost matrix, (b) Service Times and (c) Routes Length restrictions. 

Our objective function is to reduce the total routing costs. We present an approach using a multi-start 

algorithm that combines a randomized Clarke & Wright!s Savings heuristic and a local search procedure. 

We execute our algorithm with data from a company that distributes food to more than 50 customers in 

Barcelona. The results reveal promising improvements when compared to an approximation of the 

company!s route planning. 

1 INTRODUCTION 

In the last years, logistics and transportation 

companies are facing growingly demanding 

situations with fewer available resources. Market 

instability and the competitive business environment 

have caused an increasing optimization of logistic 

processes. Several fields of research have directed 

their efforts to conceive techniques to fulfil this 

purpose, like applied mathematics, operations 

management and computer sciences. The main 

challenge for these theoretical domains is the 

consideration of real contexts including real 

constraints into their approaches. 

Vehicle routing is a complex logistics 

management problem and represents a key phase for 

the logistic optimization. There are many variations 

for the routing problem. Particularly, we have 

considered a special variant where several 

restrictions are considered at the same time. The set 

of defined constraints are taken from a real case 

provided by a food distribution company located in 

Barcelona, Spain. The distribution inside cities has 

special conditions like little time for delivery, 

congestion, traffic lights, and different types of 

vehicles related to the size and velocity issues. Also, 

there are many possible configurations (routes) to 

visit a customer because the street direction creates a 

special network of available arcs. The purpose of 

this study is to develop and apply a randomized 

multi-start algorithm based on a Clarke & Wright 

savings heuristic for the Asymmetric Heterogeneous 

Fleet Vehicle Routing Problem (AHVRP) with 

service times and routes length restrictions. The 

main advantage of the proposed approach is to 

design a simple algorithm that does not need any 

special fine-tuning. 

The paper is organized as follows: Section 2 

describes the theoretical background and previous 

works. In Section 3 we develop the details of the 

proposed algorithm. Section 4 presents the data 

instances from the distribution company. Section 5 

shows the results of applying the proposed 

methodology to a real context case. To conclude, 

Section 6 summarizes with some final remarks and

Figure 16.7: Front page of publication Cáceres-Cruz et al. (2013).
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Abstract. Nowadays urban transportation is a strategic domain for distribution companies. 
In academic literature, this problem is categorized as a Vehicle Routing Problem, a popular 
research stream that has undergone significant theoretical advances but has remained far 
from practice implementations. In fact, a general combinatorial routing problem has 

emerged as Rich Vehicle Routing Problem for considering problems inspired in real situations. 
Intra-urban distribution required a special combination of routing characteristics. In this 
study, we consider a routing problem with asymmetric cost matrix, heterogeneous fleet of 
vehicles, service times, limited routes length, open routes, and balanced loads in routes’ 
restrictions. Our objective function is to reduce the total traveling time. We present an algorithm 
based on a randomized Clarke & Wright’s Savings heuristic. We execute our algorithm 
with data from a company that distributes prepared food to more than 50 customers in 
Barcelona. The results reveal promising improvements in different scenarios. 

Keywords: rich vehicle routing problem; clarke and wright; heuristics 

 

Introduction 

Vehicle routing is a complex logistics management problem and represents a key 

phase for the logistic optimization. We have considered a variant where several 

restrictions are considered at the same time. The set of defined constraints are taken 
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Abstract This paper focuses on the Vehicle Routing Problem with Stochastic Demands

(VRPSD) and discusses how Parallel and Distributed Computing Systems can be employed

to efficiently solve the VRPSD. Our approach deals with uncertainty in the customer de-

mands by considering safety stocks, i.e. when designing the routes, part of the vehicle capac-

ity is reserved to deal with potential emergency situations caused by unexpected demands.

Thus, for a given VRPSD instance, our algorithm considers different levels of safety stocks.

For each of these levels, a different scenario is defined. Then, the algorithm solves each

scenario by integrating Monte Carlo simulation inside a heuristic-randomization process.

This way, expected variable costs due to route failures can be naturally estimated even when

customers’ demands follow a non-normal probability distribution. Use of parallelization

strategies is then considered to run multiple instances of the algorithm in a concurrent way.

The resulting concurrent solutions are then compared and the one with the minimum total

costs is selected. Two numerical experiments allow analyzing the algorithm’s performance

under different parallelization schemas.
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ABSTRACT 

In this paper, we introduce a simulation-based algorithm for solving the single-period Inventory Routing 

Problem (IRP) with stochastic demands.  Our approach, which combines simulation with heuristics, con-

siders different potential inventory policies for each customer, computes their associated inventory costs 

according to the expected demand in the period, and then estimates the marginal routing savings associat-

ed with each customer-policy entity.  That way, for each customer it is possible to rank each inventory 

policy by estimating its total costs, i.e., both inventory and routing costs.  Finally, a multi-start process is 

used to iteratively construct a set of promising solutions for the IRP.  At each iteration of this multi-start 

process, a new set of policies is selected by performing an asymmetric randomization on the list of policy 

ranks.  Some numerical experiments illustrate the potential of our approach. 

1 INTRODUCTION 

Today, one of the most important concepts in supply chain management is that of replacing sequential de-

cision making with global decision making, where all parties in the supply chain determine the best policy 

for the entire system. Inventory and transportation systems are good examples of sequential decision mak-

ing.  However, driven by business practices such as vendor managed inventory (VMI), integrated invento-

ry and transportation systems have received much recent attention (Kleywegt et al. 2004).  VMI is a sup-

ply chain centralized control initiative where the supplier is authorized to manage inventories of the 

retailers and to make decisions such as when and how much inventory to ship to the retailer.  VMI is seen 

as an effective means of managing inventory through the strategic use of technologies which enable the 

flow of information throughout the entire supply chain.  Despite the potential benefits, and probably due 

to its complexity, only a relatively small number of articles have analytically approached the issue of in-

tegrating decisions.  This issue is known in the literature as the Inventory Routing Problem or IRP 

(Campbell et al. 2002). Therefore, model formulations with exact or approximate solution procedures are 

still needed to assist with the widespread adoption of VMI and use of synchronized inventory and trans-

portation systems.  

In this paper, a hybrid approach is proposed. Our approach combines Monte Carlo simulation (MCS) 

with a multi-start asymmetric randomization of a classical routing heuristic.  We consider a single-period 

978-1-4673-4781-5/12/$31.00 ©2012 IEEE
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ABSTRACT 

In most medium and large sized cities around the world, freight transportation operations might have a 

noticeable impact on urban traffic mobility as well as on city commercial activities.  In order to reduce 

both traffic congestion and pollution levels, several initiatives have been traditionally implemented.  One 
of the most common strategies concerns the allocation of urban distribution warehouses near the city cen-

ter in order to consolidate freight delivery services.  This paper considers the integrated problem of locat-

ing distribution centers in urban areas and the corresponding freight distribution (vehicle routing).  The 

combined problem is solved by using a hybrid algorithm which employs Monte Carlo simulation to in-

duce biased randomness into several stages of the optimization procedure.  The approach is then validated 

using real-life data and comparing our results with results from other works already available in the exist-

ing literature. 

1 INTRODUCTION 

The idea of implementing freight consolidation platforms within urban areas is known in the academic 

literature as Urban Distribution Centers (UDC) (Taniguchi et al. 1999).  The general goal of this research 

area is to solve –or at least to reduce– traffic problems within urban areas, considering some extra vari-

ables like environmental pollution and excessive energy consumption.  According to Muñuzuri et al. 

(2012), this is a critical issue in most large sized European cities.  In effect, due to their inherited radial 

structure these cities tend to show a high concentration of shopping areas, restaurants, and other social at-

traction poles in the city center, which not only influence mobility and commercial activities but also im-

pose a series of restrictions in flows of freight deliveries.  Thus, most urban centers in these cities contain 

narrow streets with no parking lots or back alleys, which are not well designed to support asymmetric 
flows of people going to work, shop, eat, or visit tourist attractions (Ligocki and Zonn 1984).  In addition, 

according to several authors (Topp and Pharoah 1994; Muñuzuri et al. 2005; Geroliminis and Daganzo 

2006; Delaître 2008), infrastructure investments in these cities have often been implemented in order to 

promote environmental sustainability, such as bike lanes, underground and tram systems, more efficient 

bus systems and the enlargement of pedestrian areas (Daganzo 2010).  Despite the clear advantages of 

these policies, they also led to larger and stricter restrictions regarding freight deliveries. 

 Among the advantages described by Taniguchi et al. (1999), creating UDCs allows the implementa-
tion of a much more efficient urban logistics system, with the same capacity of service than conventional 

systems but with lower environmental impact.  Thus, several cities have decided to put into practice these 

UDCs in order to take advantage of some of the benefits they offer, including: 

• The use of electric vehicles, whose limited autonomy prevents them from travelling long dis-

tances. 
 

Figure 16.12: Front page of publication Muñoz-Villamizar et al. (2013).
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