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Introducción

La noción de álgebra preproyectiva apareció por primera vez a finales de los años 70 de
la mano de Gelfand y Ponomarev en su trabajo [42] sobre teoŕıa de representación de
quivers finitos sin ciclos orientados. Esencialmente, dado un diagrama finito no orientado
∆, el álgebra preproyectiva asociada, usualmente denotada por P (∆), se define a partir del
álgebra de caminos obtenida al reemplazar cada uno de los ejes de ∆ por un par de flechas
opuestas e identificando, posteriormente, todos y cada uno de los ciclos de longitud 2 en un
mismo vértice. Derivado de su estudio surgieron las primeras aplicaciones en problemas
de clasificación de álgebras de tipo finito ([22],[23]) y se establecieron conexiones con
otros tipos de álgebras como las envolventes universales o las de conglomerado ([40], [41]).
Además, al margen de dicha rama, las álgebras preproyectivas están presentes en muchas
y distintas disciplinas de las Matemáticas. Entre otras, cabe destacar que desempeñan un
papel especial en la aproximación de haces perversos a grupos cuánticos de Lusztig ([60],
[61]) y que han servido como herramienta para abordar problemas de geometŕıa diferencial
[53] o estudiar deformaciones no conmutativas de singularidades de Klein [21].

Un hecho sobradamente conocido a d́ıa de hoy es que, cuando el cuerpo base K es
algebraicamente cerrado, el álgebra P (∆) es finito dimensional únicamente en el caso en
que ∆ es uno de los diagramas de Dynkin generalizados An, Dn, E6, E7, E8 ó Ln:

An : • • • · · · · · · • • (n ≥ 1)

Dn : •

• • · · · · · · • • (n ≥ 4)

•
•

En : • • • · · · · · · • • (n = 6, 7, 8)

Ln : • • • · · · · · · • • (n ≥ 1)

Históricamente, en el ámbito de las álgebras finito dimensionales, el operador sigicia,
ΩΛ, que asocia a cada Λ-módulo M el núcleo de su cubierta proyectiva PΛ(M) −→ M ,
ha supuesto una herramienta muy útil tanto para establecer relaciones entre los distintos
módulos como para obtener información sobre la estructura de la propia álgebra. Por

iii



iv Introducción

ejemplo, el hecho de que en un álgebra Λ todos sus módulos simples sean ΩΛ-periódicos
implica que ésta es autoinyectiva, es decir, que las clases de módulos proyectivos e inyec-
tivos coinciden. Por módulo ΩΛ- periódico entendemos cualquier Λ-módulo M para el que
existe un entero r > 0 tal que ΩrΛ(M) es isomorfo a M . En tal caso, llamamos periodo de
M al menor de los enteros positivos satisfaciendo la propiedad anterior. Dicho operador
pasa de ser útil a resultar fundamental en el estudio de un tipo concreto de álgebras finito
dimensionales contenidas en la clase de las autoinyectivas y conocidas como periódicas.
Se dice que un álgebra Λ que es periódica cuando lo es como módulo sobre su álgebra
envolvente Λe := Λ ⊗ Λop, o equivalentemente, vista como Λ-bimódulo. Una propiedad
común que poseen las álgebras preproyectivas de dimensión finita es que, salvo en el caso
de ∆ = A1,P (∆) es Ω- periódica de periodo a lo sumo 6.

En toda disciplina matemática resulta natural y habitual tratar de generalizar con-
ceptos de manera que se conserven las propiedades más relevantes. Con ese objetivo, K.
Erdmann y A. Skowroński introdujeron en [29] una nueva clase de álgebras asociadas a
Diagramas de Dynkin que contiene a las preproyecitvas finito dimensionales y que han
suscitado un gran interés en los últimos tiempos en el marco general de las álgebras de
dimensión finita. Las llamaron álgebras de malla m-fold y constituyen precisamente la
clase de álgebras autoinyectivas Λ para las que Ω3

Λ permuta las clases de isomorf́ıa de los
módulos simples. Tomando como referencia el citado trabajo, si ∆ es uno de los de quivers
de Dynkin Ar, Dr ó En (n = 6, 7, 8), un álgebra de malla m-fold de tipo ∆ es un cociente
B/G del álgebra de malla B = B(∆) de un quiver de translación Z∆ por un grupo G de
automorfismos débilmente admisibles de Z∆. Posteriormente, gracias a un resultado de
A. Dugas ([25] Teorema 3.1), se supo que las álgebras de malla m-fold son ciertamente las
álgebras de malla de quivers de translación que resultan ser finito dimensionales. También
es conocido que, además de a las álgebras preproyecivas finito dimensionales, esta clase
contiene a las álgebras estables de Auslander de todas las álgebras autoinyectivas estándar
de representación finita ([25]) y a las álgebras de Auslander-Reiten estables de varias sin-
gularidades de hipersuperficie. Además, por [14] [Sección 6] se sabe que estas álgebras son
periódicas.

A finales de los años 90, en su trabajo Triangulated categories and geometry, M. Kont-
sevich definió el concepto de dimensión de Calabi-Yau en el contexto de las catergoŕıas
trianguladas Hom−finitas, es decir, sobre K-categoŕıas trianguladas para las que el es-
pacio vectorial de morfismos entre dos objetos cualesquiera tiene dimensión finita. Bajo
estas hipótesis, decimos que la K-categoŕıa T con funtor de suspensión

∑
: T −→ T

es de Calabi-Yau si existe un cierto número natural n de manera que
∑n es un funtor

de Serre, o lo que es lo mismo, si existe un número natural n tal que DHomT (X,−)
y HomT (−,

∑nX) son naturalmente isomorfos como funtores cohomológicos T op −→
K −mod. De ser aśı, al menor número natural m satisfaciendo que

∑m es un funtor de
Serre se le llama dimensión de Calabi-Yau de T y escribimos CY-dim(T ) = m. Las ca-
tegoŕıas trianguladas de Calabi-Yau están presentes en muchos campos de la Matemática
y la F́ısica Teórica. En La Teoŕıa de la Representación de álgebras, la noción desempeña
un papel muy significativo en el estudio de las álgebras y las categoŕıas de conglomerado
([55]).
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Cuando Λ es un álgebra autoinyectiva finito dimensional y Λmod es su categoŕıa de
módulos estable, entonces el funtor sicigia ΩΛ : Λmod −→ Λmod es una equivalencia
de categoŕıas y Λmod tiene estructura de categoŕıa triangulada considerando Ω−1

Λ como
funtor de suspensión. La condición Calabi-Yau en esta categoŕıa ha sido profundamente
estudiada (ver p.e. [12], [25], [28], [35], [50], [51], ...) e igualmente se ha relacionado con
el concepto de álgebra de Calabi-Yau Frobenius, tal y como fue definido por C. Eu and T.
Schedler en [35]: se dice que el álgebra Λ es de Calabi-Yau Frobenius cuando Ω−r−1

Λe (Λ)
es isomorfa a D(Λ) = HomK(Λ,K) como Λ-bimódulos, para algún entero r ≥ 0. Nótese
que si el álgebra Λ es Calabi-Yau Frobenius, entonces se tiene que Λmod es de Calabi-
Yau. Además, habida cuenta de que Ω−r−1

Λe ⊗Λ? y Ω−r−1
Λ son naturalmente isomorfos

como funtores Λmod −→ Λmod, la dimensión de Calabi-Yau de la categoŕıa Λmod es
menor o igual que el menor de los enteros r ≥ 0 tal que Ω−r−1

Λe (Λ) ∼= D(Λ) como Λ-
bimódulos, número que llamaremos en lo que sigue dimensión de Calabi-Yau Frobenius
de Λ y denotaremos por CYF-dim(Λ). Sin embargo, en general, no se sab́ıa si éstos dos
números coinciden.

Posterior a las investigaciones realizadas en [12] y [28], las álgebras de Auslander
estables Λ de un álgebra autoinyectiva de tipo de representación finito cuya categoŕıa de
módulos estable Λmod es Calabi-Yau quedaron completamente determinadas en [25] y
[51] en función de su tipo. Inspirado por el trabajo de C. Riedtmann en [66], H. Asashiba
define en [6] el tipo del álgebra de Auslander estable de un álgebra autoinyectiva de tipo de
representación finito, que es invariante salvo equivalencia derivada, como la terna (∆, f, t)
donde ∆ es el diagrama de Dynkin asociado, f es la frecuencia y t es el orden de torsión.
En el primero de los trabajos mencionados ([25]), A. Dugas identifica tales álgebras cuando
t=1 ó 3 y en muchos de, pero no todos, los casos con t = 2. Los casos restantes cuando t = 2
han sido determinados muy recientemente por S.O.Ivanov-Y.V.Volkow en [51]. Por tanto,
teniendo en cuenta de que las álgebras de malla finito dimensionales son autoinyectivas,
de manera natural surgen entonces una serie de cuestiones:

Cuestión 1: ¿Cuáles son las álgebras de malla finito dimensionales cuya categoŕıa de
módulos estable es de Calabi-Yau? ¿Cuáles son Calabi-Yau Frobenius? Y finalmente,

¿ cuál es la relación entre ambas dimensiones?

En términos de bimódulos, un álgebra básica finito dimensional Λ es autoinyectiva jus-
tamente cuando existe un isomorfismo de Λ-bimódulos entre D(Λ) y el bimódulo torcido

1Λη, para algún automorfismo η de Λ. Dicho automorfismo está uńıvocamente determi-
nado, salvo automorfismo interior, y recibe el nombre de automorfismo de Nakayama de Λ.
Según esto, el problema de decidir cuándo Λ es Calabi-Yau Frobenius forma parte de un
problema más general que consiste en determinar bajo qué condiciones ΩrΛe(Λ) es isomorfa
a un bimódulo torcido 1Λϕ, para algún automorfismo ϕ de Λ, que quedará entonces de-
terminado salvo automorfismo interior. Por un resultado debido a Green-Snachall-Solberg
([44]), esta última condición sobre un álgebra finito dimensional fuerza a la misma a ser
autoinyectiva. Es más, observemos que cuando ϕ es la identidad, o un automorfismo inte-
rior, obtenemos precisamente la definición de álgebra periódica. Determinar las álgebras
autoinyectivas que son periódicas es una cuestión, a d́ıa de hoy, ampliamente abierta. No
obstante, hay un número considerable de trabajos en la literatura al respecto en donde



vi Introducción

varias álgebras periódicas, entre ellas las álgebras de malla finito dimensionales, han sido
identificadas (véase p.e. [14], [24], [29]). Sin embargo, aun incluso conociendo que un
álgebra es periódica, el cálculo expĺıcito de su periodo resulta, habitualmente, una tarea
dura y complicada. En el contexto de las álgebras de malla finito dimensionales se tienen
resultados sólo en un muy pocos casos. Más concretamente, de los art́ıculos [11], [32] y
[67] sabemos que el periodo es 6 para todas las álgebras preprojectivas de diagramas de
Dynking generalizados siempre que Char(K) 6= 2. Asimismo, en [25], se obtiene el periodo
del álgebra de Auslander estable de un álgebra autoinyectiva de tipo de representación
finito de tipo (∆, f, t) igual a (D4, f, 3), (Dn, f, 2) con n > 4 y f > 1 impar, ó (E6, f, 2).
De nuevo parece natural plantearse la siguiente cuestión:

Cuestión 2: ¿Cuál es exactamente el periodo de un álgebra de malla finito dimen-
sional?

Otro de los problemas que ha llamado especialmente la atención el ámbito de las
álgebras autoinyectivas finito dimensionales consiste en caracterizar aquellas que son si-
métricas o débilmente simétricas. Decimos que un álgebra Λ es simétrica cuando es iso-
morfa a D(Λ) como Λ-bimódulo. Ésto último equivale a decir que el funtor de Nakayama
DHomΛ(−,Λ) ∼= D(Λ) ⊗Λ − : Λ −Mod → Λ −Mod es naturalmente isomorfo al funtor
identidad. Si debilitamos la condición sobre dicho funtor a que únicamente conserve las
clases de isomorf́ıa de los módulos simples obtenemos precisamente la definición de álgebra
débilmente simétrica. Dirigimos nuestra mirada entonces a responder las siguientes pre-
guntas:

Cuestión 3: ¿Qué álgebras de malla finito dimensionales son débilmente simétricas?
¿Cuáles de ellas son a su vez simétricas?

Desde que fuera introducida por G. Hochschild en 1945 en su trabajo [47], la teoŕıa
de (co)homoloǵıa que recibe su propio nombre ha sido extensamente estudiada teniendo
una gran influencia, entre otros, en el campo de las álgebras finito dimensionales. Si Λ es
un álgebra finito dimensional, para cada i ≥ 0, llamamos i-ésimo grupo de cohomoloǵıa
de Hochschild al K-espacio vectorial HH i(Λ) := ExtiΛe(Λ,Λ). Ocurre entonces que, junto
con el producto de Yoneda, el K-espacio vectorial ⊕i≥0HH

i(Λ) admite estructura de
K-álgebra graduada-conmutativa comúnmente conocida como anillo de cohomoloǵıa de
Hochschild de Λ, usualmente denotado por HH∗(Λ). Los grados más bajos de este anillo
tienen interpretaciones estrechamente relacionadas con estructuras clásicas del álgebra y
también de la geometŕıa algebraica. De hecho, HH0(Λ) y HH1(Λ) coinciden con el centro
y el espacio de derivaciones exteriores del álgebra, respectivamente, mientras que HH2(Λ)
controla su teoŕıa de deformación: si éste es cero, entonces el álgebra Λ resulta ser ŕıgida.
En lo que respecta a su estructura multiplicativa, el anillo de cohomoloǵıa HH∗(Λ) de un
álgebra autoinyectiva y finito dimensional resulta tener un gran interés en conexión con
el estudio de variedades de módulos y con cuestiones sobre su relación con el álgebra de
Yoneda de Λ. Ésta se define como el álgebra graduada E(Λ) = Ext∗Λ(Λ/J,Λ/J) donde
J = J(Λ) denota el radical de Jacobson de Λ. De hecho, inspirados por la teoŕıa de
representación modular de grupos finitos donde, entre otros, Carlson ([18], [19]) y Ben-
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son [10] desarrollaron la teoŕıa de variedades de módulos, Snashall y Solberg ([68], véase
también [27]) iniciaron el estudio de variedades de módulos sobre álgebras finito dimen-
sionales arbitrarias, reemplazando el anillo de grupo de cohomoloǵıa HH∗(G,K) por el
anillo de cohomoloǵıa de Hochschild HH∗(Λ) del álgebra en cuestión. Para la nueva teoŕıa,
generalmente se requiere que Λ sea autoinyectiva y que satisfaga algunas condiciones de
generación finita, las cuales siempre se da cuando Λ es periódica. Sin embargo, poco más
sabe acerca del anillo de cohomoloǵıa de Hochschild HH∗(Λ) de un álgebra finito dimen-
sional Λ salvo que, siempre y cuando Λ sea periódica, existe un isomorfismo de álgebras
HH∗(Λ)/N ∼= K[x] donde N denota el ideal generado por los elementos nilpotentes y x es
un elemento homogéneo de HH∗(Λ) cuyo grado coincide precisamente con el periodo de
Λ. Esta propiedad aparece por primera vez enunciada expĺıcitamente en ([44], Proposición
1.1). Sin embargo se trata de una aplicación directa con A = Λ ⊗ Λop y M = Λ, cuando
Λ es periódica, de un resultado más general debido a Carlson [17]. Dicho resultado nos
dice que cuando A = KG es un álgebra de grupo siendo G finito, que es el prototipo de
álgebras autoinyectivas finito dimensionales, y M es un A-módulo periódico de periodo q,
entonces Ext∗A(M,M)/N ∼= K[x] donde x ∈ ExtqA(M.M) y N es el ideal de Ext∗A(M,M)
generado por los elementos nilpotentes. De hecho, el resultado es igualmente válido para
cualquier álgebra autoinyectiva finito dimensional.

Las cuestiones anteriores sugieren que encontrar patrones sobre el comportamiento
de las componentes homogéneas de HH∗(Λ) con respecto al producto de Yoneda, en
casos particulares donde la estructura multiplicativa de HH∗(Λ) sea computable, puede
ayudar a dar algunas claves acerca de cómo abordarlas. En lo que respecta a las álgebras
preprojectivas finito dimensionales, la estructura del anillo de cohomoloǵıa de Hochschild
es conocida en el caso de tipo An sobre un cuerpo de caracteŕıtica arbitraria ([30], [31]) y en
los casos Dn y E6 cuando el cuerpo tiene caracteŕıstica cero. Basándonos en el concepto de
tipo extendido (∆,m, t) de un álgebra de malla finito dimensional, definido en el Caṕıtulo
2 de esta memoria, resulta que las álgebras preproyectivas anteriores son, ciertamente, las
álgebras de malla de tipo extendido (∆, 1, 1) donde ∆ = An, Dn ó E6. Un paso hacia
adelante en esta dirección seŕıa considerar el caso en que Λ es un álgebra de malla de tipo
(∆, 1, t) con t > 1, las cuáles se corresponden con las conocidas en tiempos modernos como
álgebras preproyectivas generalizadas. En esta tesis abordaremos el caso ∆ = An.

Cuestión 4: ¿Cómo son los grupos de cohomoloǵıa de Hochschild HH i(Λ) de un
álgebra preproyectiva genereralizada Λ de tipo An? ¿Cuál es la estructura multiplicativa
del anillo de cohomoloǵıa asociado HH∗(Λ)?

Esta monograf́ıa se articula en 6 caṕıtulos relacionados entre śı y que proporcionan la
respuesta a cada una de las preguntas anteriormente formuladas.

Caṕıtulo 1

Este primer caṕıtulo, que bien podŕıa considerarse un caṕıtulo preliminar, constituye
la base fundamental para desarrollar los contenidos propios del estudio en lo que se refiere
a la primera parte de la tesis. Situados en el contexto general de las álgebras con sufi-
cientes idempotentes, los conceptos principales que se manejan son los de álgebra graduada
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pseudo-Frobenius y sus correspondientes forma y automorfismo de Nakayama, todos ellos
introducidos en la Sección 1.3 de este trabajo.

Diremos que un álgebra graduada con suficientes idempotentes, débilmente básica y
localmente finito dimensional es pseudo-Frobenius si los objetos proyectivos finitamente
generados y los inyectivos finitamente cogenerados coinciden en su categoŕıa de módulos
graduados. Entre otros resultados, cabe destacar la caracterización que presentamos de
dichas álgebras (Teorema 1.3.2). Las nociones pertinentes pueden encontrarse en dicha
sección.

TEOREMA. Sea A = ⊕h∈HAh un álgebra graduada débilmente básica con
suficientes idempotentes. Consideremos las siguientes afirmaciones:

1. Las categoŕıas de A-módulos graduados por la izquierda y por la derecha,
A−Gr y Gr −A, son Frobenius.

2. D(AA) y D(AA) son A-módulos graduados proyectivos.

3. A es pseudo-Frobenius.

4. Existe una forma graduada de Nakayama (−,−) : B ×B −→ K.

Entonces se verifica la siguiente cadena de implicaciones:

1) =⇒ 2) =⇒ 3)⇐⇒ 4).

Cuando A es localmente acotada graduada, se tiene además que 4) =⇒ 2).
Finalmente, si A es localmente graduada Noetheriana, las cuatro afirmaciones
son equivalentes.

Cuando el álgebra satisface la condición 1 del teorema anterior se dice que es Quasi-
Frobenius. Como se puede intuir, las álgebras pseudo-Frobenius son, en el marco de las
álgebras graduadas con suficientes idempotentes, o equivalentemente, de las K–categoŕıas
graduadas, el concepto análogo al que representan las álgebras autoinyectivas finito di-
mensionales en el contexto de las álgebras asociativas unitarias. Seŕıa entonces natural
preguntarse acerca de la existencia de un automorfismo del álgebra A que jugase un papel
similar al del automorfismo de Nakayama para álgebras finito dimensionales autoinyecti-
vas. En el siguiente resultado garantizamos dicha existencia ( Corolario 1.3.6):

COROLARIO. Sea A = ⊕h∈HAh un álgebra graduada pseudo-Frobenius y sea
(ei)i∈I una familia distinguida débilmente básica de idempotentes ortogonales.
Si A es localmente acotada(graduada), entonces se satisfacen las siguientes
condiciones:

1. Existe un automorfismo (no graduado) de álgebras η : A −→ A, que
permuta los idempotentes ei y conserva los elementos homogéneos tal que

1Aη es isomorfa a D(A) como A-bimódulos no graduados.
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2. Si la aplicación grado h : I −→ H asociada a la forma de Nakayama
(−,−) : A × A −→ K toma un valor constante h, entonces η se puede
elegir para que sea graduado y tal que D(A) sea isomorfo a 1Aη[h] como
A-bimódulos graduados.

El automorfismo η recibe el nombre de automorfismo de Nakayama de A.

A pesar de que no aportamos ideas genuinas en el proceso de pasar del contexto de las
álgebras asociativas unitarias a las graduadas con suficientes idempotentes conviene señalar
que, hasta donde sabemos, el concepto de álgebra pseudo-Forbenius y sus asociados, como
la forma de Nakayama y el automorfismo de Nakayama, no han sido desarrollados ante-
riormente y resultan claves para el resto de este trabajo.

En la Sección 1.4 revisamos la teoŕıa de cubrimientos desde el punto de vista de las
álgebras graduadas con suficientes idempotentes con especial énfasis en el caso particular
en el que el funtor cubrimiento es del tipo F : A −→ A/G donde A es un álgebra graduada
con suficientes idempotentes y G es un grupo de automorfismos de A de grado 0 que
permuta los idempotentes ei. En la segunda parte de dicha sección estudiamos bajo qué
condiciones podemos garantizar la conservación de la condición pseudo-Frobenius via el
funtor de cubrimiento. Como se enuncia a continuación (Proposición 1.4.3), ésto siempre
ocurre cuando la forma de Nakayama asociada al álgebra A en cuestión es lo que llamamos
G-invariante, es decir, cuando se satisface que (ag, bg) = (a, b) para cualesquiera a, b ∈ A
y g ∈ G.

PROPOSICIÓN. Sea A = ⊕h∈HAh un álgebra graduada localmente acotada
y básica (débilmente escindida), con (ei)i∈I como familia distinguida de idem-
potentes ortogonales homogéneos, y sea G un grupo que actúa sobre A como
automorfismos graduados que permutan los ei y que actúa libremente sobre los
objetos. Supongamos que A es pseudo-Frobenius graduada y que admite una
forma de Nakayama G-invariante (−,−) : A × A −→ K. Entonces Λ = A/G
es un álgebra graduada localmente acotada (débilmente escindida) y pseudo-
Frobenius cuya forma graduada de Nakayama viene inducida por (−,−).

De hecho, aprovechamos para finalizar la sección mostrando que, bajo las hipótesis de la
proposición anterior, el automorfismo de Nakayama η de A induce a su vez el autormofismo
de Nakayama η̄ de A/G (Corolario 1.4.5).

Caṕıtulo 2

El segundo caṕıtulo de esta memoria está dedicado a profundizar y obtener información
clave sobre algunos aspectos del álgebra de malla de un diagrama de Dynkin como es su
automorfismo de Nakayama. Si bien tal álgebra no es el objeto principal de estudio de
esta tesis, nuestro interés en la misma reside en que el hecho de que toda álgebra de malla
finito dimensional proviene en cierto sentido de un álgebra de este tipo.
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Al inicio de este caṕıtulo, concretamente en la Sección 2.2, recordamos la definición del
quiver de traslación Z∆ de un diagrama de Dynkin ∆. A continuación, en la Subsección
2.3.1, introducimos la noción de álgebra de malla B = B(∆). Dicha álgebra se define como
el álgebra cociente KZ∆/I, donde I es el ideal homogéneo generado por unas relaciones
conocidas como relaciones de malla. Asimismo, presentamos una breve lista de propiedades
esenciales y bien conocidas de B (Proposición 2.3.1). Además, cabe destacar el hecho de
que el álgebra B es un álgebra graduada con suficientes idempotentes que resulta ser
pseudo-Frobenius.

Seguidamente, en la Subsección 2.3.2, mostramos la lista de las álgebras de malla
finito dimensionales e introducimos la definición de tipo extendido para tales álgebras que
juega un papel fundamental en este trabajo. De hecho, todos los resultados principales
del Caṕıtulo 3 de esta memoria sobre álgebras de malla finito dimensionales están dados
en términos de su tipo extendido. Dicha noción está basada en el hecho de que cada
álgebra de malla finito dimensional Λ es isomorfa a un álgebra de órbitas B/G donde B
es el álgebra de malla asociada a un cierto diagrama de Dynkin ∆ y G es un grupo de
automorfismos débilmente admisibles de Z∆ vistos como automorfismos de B. Es más,
es bien conocido el hecho de que Λ admite como cubierta de Galois a su correspondiente
de malla algebra B. Con la idea de simplificar algunos de los cálculos , finalizamos la
Sección 2.3 modificando ligeramente las relaciones de malla orginales. Básicamente la idea
consiste en convertir cada una de las relaciones de malla, que inicialmente es una suma,
en una diferencia de caminos.

El resultado principal de este caṕıtulo, que aparece en la Sección 2.4, es el Teorema
2.4.2 donde definimos expĺıcitamente, para cualquier elección de (∆, G), un automorfismo
graduado de Nakayama η de B verificando la propiedad de ser G-invariante. Aqúı G-
invariante significa que η conmuta con los elementos de G. Como consecuencia de este
resultado se deriva una fórmula precisa para un automorfismo graduado de Nakayama de
cualquier álgera de malla finito dimensional.

He aqúı el Teorema mencionado:

TEOREMA. Sea ∆ un quiver de Dynkin y sea G =< ϕ > un grupo de
automorfismos débilmente admisibles de Z∆. Si η es el automorfismo graduado
de B que actúa como la permutación de Nakayama ν sobre los vértices y como
se indica en la siguiente lista sobre las flechas, entonces η es un automorfismo
de Nakayama de B tal que η ◦ g = g ◦ η, para todo g ∈ G.

1. Cuando ∆ = An y ϕ es arbitrario, η(α) = ν(α) para todo α ∈ (Z∆)1

2. Cuando ∆ = Dn+1:

(a) Si n+ 1 ≥ 4 y ϕ = τm entonces:

i. η(α) = −ν(α), siempre y cuando α : (k, i) −→ (k, i + 1) sea una
flecha hacia arriba con i ∈ {2, ..., n − 1}.

ii. η(α) = ν(α), siempre y cuando α : (k, i) −→ (k+1, i−1) sea una
flecha hacia abajo con i ∈ {3, ..., n}.
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iii. η(εi) = (−1)iν(εi), para la flecha εi : (k, 2) −→ (k, i) (i = 0, 1),

iv. η(ε′i) = (−1)i+1ν(ε′i), para la flecha ε′i : (k, i) −→ (k + 1, 2)
(i = 0, 1).

(b) Si n+ 1 > 4 y ϕ = ρτm entonces:

i. η(α) = −ν(α), siempre y cuando α sea una flecha hacia arriba
como las anteriores o α : (k, i) −→ (k + 1, i − 1) sea una flecha
hacia abajo como las anteriores tal que k ≡ −1 (mod m).

ii. η(α) = ν(α), siempre y cuando α : (k, i) −→ (k+1, i−1) sea una
flecha hacia abajo tal que k 6≡ −1 (mod m)

iii. Para las flechas restantes, si q y r son el cociente y el resto que
resultan al dividir k entre m, entonces
η(εi) = (−1)q+iν(εi) (i = 0, 1).
η(ε

′

i) = (−1)q+i+1ν(ε
′

i), cuando r 6= m−1, y η(ε
′

i) = (−1)q+iν(ε
′

i)
en otro caso.

(c) Si n+ 1 = 4 y ϕ = ρτm (véase el convenio 2.3.7), entonces:

i. η(εi) = ν(ǫi), siempre y cuando ǫi : (k, 2)→ (k, i) (i = 0, 1, 3)

ii. η(ε′i) = −ν(ε
′
i), siempre y cuando ǫ′i : (k, i)→ (k + 1, 2)

(i = 0, 1, 3).

3. Cuando ∆ = E6:

(a) Si ϕ = τm entonces:

i. η(α) = ν(α) y η(α
′
) = −ν(α

′
), donde α : (k, 1) → (k, 2) y α

′
:

(k, 2)→ (k + 1, 1).

ii. η(β) = ν(β) y η(β
′
) = −ν(β

′
), donde β : (k, 2) → (k, 3) y β

′
:

(k, 3)→ (k + 1, 2).

iii. η(γ) = ν(γ) y η(γ
′

) = −ν(γ
′

), donde γ : (k, 3) → (k, 4) y γ
′

:
(k, 4)→ (k + 1, 3).

iv. η(δ) = −ν(δ) y η(δ
′
) = ν(δ

′
), donde δ : (k, 4) → (k, 5) y δ

′
:

(k, 5)→ (k + 1, 4).

v. η(ε) = −ν(ε) y η(ε
′

) = ν(ε
′

), donde ε : (k, 3) → (k, 0) y ε
′

:
(k, 0)→ (k + 1, 3).

(b) Si ϕ = ρτm, (k, i) es el origen de la flecha considerada, q y r son el
cociente y el resto que resultan al dividir k entre m, entonces:

i. η(α) = ν(α).

ii. η(α
′

) = −ν(α
′

).

iii. η(β) = (−1)qν(β)

iv. η(β
′

) = (−1)q+1ν(β
′

)

v. η(γ) = (−1)qν(γ)

vi. η(γ
′

) = ν(γ
′

), donde ó q es impar y r 6= m − 1 ó q es par y
r = m− 1, y η(γ

′
) = −ν(γ

′
) en otro caso.

vii. η(δ) = −ν(δ)

viii. η(δ
′
) = ν(δ

′
).



xii Introducción

ix. η(ε) = −ν(ε)

x. η(ε
′
) = −ν(ε

′
), cuando r = m−1, and η(ε

′
) = ν(ε

′
) en otro caso.

4. Cuando ∆ = E7, ϕ = τm, y entonces:

i η(a) está definida como en 3.(a) para cualquier flecha a contenida en
la copia de E6.

ii η(ζ) = ν(ζ) y η(ζ
′
) = −ν(ζ

′
), donde ζ : (k, 5)→ (k, 6) y ζ

′
: (k, 6)→

(k + 1, 5).

5. Cuando ∆ = E8, ϕ = τm, y entonces:

i η(a) está definida como en 4 para cualquier flecha a contenida en la
copia de E7.

ii η(θ) = ν(θ) y η(θ
′
) = −ν(θ

′
), donde θ : (k, 6)→ (k, 7) y θ

′
: (k, 7)→

(k + 1, 6).

Caṕıtulo 3:

Los resultados de este caṕıtulo versan sobre las preguntas 1, 2 y 3. Comenzamos el
caṕıtulo presentando dos resultados claves. El primero de ellos (Lema 3.2.1) sirve para
determinar cuándo dos automorfismos graduados G-invariantes de un álgebra de malla B
inducen, salvo conjugación, el mismo automorfismo del álgebra de malla finito dimensional
Λ = B/G. El segundo (Proposición 3.2.2) identifica el subrupoH de los enteros s tales que
el automorfismo y la permutación de Nakayama de Λ, η̄ y ν̄ respectivamente, coinciden,
salvo automorfismo interior, en su s-ésima potencia. Es decir, H está formado por los
s ∈ Z tales que η̄sν̄−s es un automorfismo interior de Λ. El subgrupo H resulta crucial en
todas y cada una de las preguntas que se abordan en este caṕıtulo.

Con los dos resultados previos como herramientas principales, pasamos a la Sección
3.3 dedicada exclusivamente a responder la pregunta 3. El único teorema de dicha sección
identifica completamente las álgebras de malla finito dimensionales que son débilmente
simétricas o simétricas:

TEOREMA. Sea Λ un álgebra de malla m-fold de tipo extendido (∆,m, t),
siendo c∆ el número de Coxeter de Λ. Si Λ es débilmente simétrica, entonces
t = 1 ó t = 2 y, cuando char(K) = 2 ó ∆ = Ar, tal álgebra es además simétrica.
Es más, se verifican las siguientes afirmaciones:

1. Cuando t = 1, Λ es débilmente simétrica si, y sólo se, ∆ es D2r, E7 ó E8

y m es divisor de c∆
2 − 1. Cuando char(K) 6= 2, tal álgebra es simétrica

si, y sólo si, m es par.

2. Cuando t = 2 y ∆ 6= A2n, Λ es débilmente simétrica si, y sólo si, m
divide a c∆

2 − 1 y, además, el cociente de la división es impar, en el caso
∆ = A2n−1, y par, en el caso ∆ = D2r. Cuando char(K) 6= 2, tal álgebra
es simétrica si, y sólo si, ∆ = A2n−1 ó m es impar.

3. Cuando (∆,m, t) = (A2n,m, 2), i.e. Λ = L
(m)
n , el álgebra es (débilmente)

simétrica si, y sólo si, 2m− 1 divide a 2n− 1.
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La Sección 3.4 está destinada a la determinación del periodo y la dimensión de Calabi-
Yau de un álgebra de malla m-fold. En primer lugar, Subsección 3.4.1, calculamos la
parte inicial de una resolución proyectiva minimal y G-invariante de B como B-bimódulo
graduado (Proposición). En particular, probamos un hecho ciertamente relevante para
nuestros propósitos y es precisamente que Ω3

Be(B) es siempre isomorfa a µB1 para un
cierto automorfismo graduado µ de B que está en el centralizador de G y cuya fórmula
describimos expĺıcitamente (Proposición 3.4.3). Como consecuencia de la G-invarianza de
los resultados anteriores obtenemos que el automorfismo inducido µ̄ de Λ = B/G satisface
la propiedad de que Ω3

Λe(Λ) ∼= µ̄Λ1. Esta propiedad resulta ser fundamental tanto en el
desarrollo de los contenidos como en la obtención de los resultados.

Seguidamente, introducimos el concepto de automorfismo establemente interior que
se trata, en general, de una condición más débil que la de automorfismo interior. Con-
cretamente, decimos que un automorfismo σ de Λ es establemente interior si el funtor

σ(−) ∼=σ Λ1 ⊗Λ − : Λ −mod −→ Λ −mod es naturalmente isomorfo al funtor identidad.
Sin embargo, en lo que se refiere a las álgebras de malla m-fold, ambos conceptos coinciden
en una gran número de casos. Por ejemplo, ésto siempre sucede cuando Λ es un álgebra
de longitud de Loewy mayor o igual que 4 (véase el Lema 3.4.6).

Las respuestas a las cuestiones 1 y 2 planteadas en este caṕıtulo aparecen en las Sub-
secciones 3.4.3 y 3.4.4. En la primera de ellas se calcula de forma expĺıcita el periodo de
cualquier álgebra de malla m-fold Λ, es decir, el menor de los enteros positivos r tales que
Ω3
Λe(Λ) es isormofa a Λ como Λ-bimódulo. Distinguimos primeramente el caso ∆ = A2

(Proposición 3.4.8), donde el álgebra tiene longitud de Loewy 2:

PROPOSICIÓN. Sea Λ un álgebra autoinyectiva y conexa con longitud de
Loewy 2. Entonces se verifican las siguientes afirmaciones:

1. Si char(K) = 2 ó Λ = A
(m)
2 , i.e. |Q0| es par, entonces el periodo de Λ es

|Q0|.

2. Si char(K) 6= 2 y Λ = L
(m)
1 , i.e. |Q0| es impar, entonces el periodo de Λ

es 2|Q0|.

Los restantes casos se recogen en el Teorema 3.4.12, cuyo enunciado para caracteŕıstica
6= 2 dice:

TEOREMA. Sea Λ un álgebra de malla m-fold de tipo extendido (∆,m, t),
donde ∆ 6= A1,A2, denotemos por π = π(Λ) al periodo de Λ y, para cada
entero positivo k, denotemos por O2(k) al mayor número natural r tal que 2r

divide a k. Cuando char(K) 6= 2, el periodo de Λ viene dado como sigue:

1. Si t = 1 entonces:

(a) Cuando ∆ es Ar, D2r−1 ó E6, el periodo es π = 6m
mcd(m,c∆) .

(b) Cuando ∆ es D2r, E7 ó E8, el periodo es π = 3m
mcd(m,

c∆
2
)
, cuando m

es par, y π = 6m
mcd(m,

c∆
2
)
, cuando m es impar.
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2. Si t = 2 entonces:

(a) Cuando ∆ es A2n−1, D2r−1 ó E6, el periodo es 6m
mcd(2m,m+

c∆
2
)
, cuando

O2(m) 6= O2(
c∆
2 ), y π = 12m

mcd(2m,m+
c∆
2
)
en otro caso.

(b) Cuando ∆ = D2r, el periodo es 6m
mcd(2m,

c∆
2
)
= 6m

mcd(2m,2r−1) .

(c) Cuando ∆ = A2n, i.e. Λ = L
(m)
n , el periodo es π = 6(2m−1)

mcd(2m−1,2n+1)

3. Si t = 3 entonces π = 3m, cuando m es par, y 6m, cuando m es impar.

En la parte final del caṕıtulo, donde se estudian las dimensiones de Calabi-Yau, resalta-
mos dos resultados. Por una parte, combinando las siguientes proposiciones, se identifica
la relación precisa entre la dimensión estable de Calabi-Yau y la dimensión de Calabi-Yau
Frobenius de un álgebra de malla m-fold mostrando que ambas dimensiones pueden diferir
cuando ∆ = A2 pero siempre coinciden cuando ∆ 6= Ar, para r = 1, 2.

PROPOSICIÓN. Sea Λ un álgebra autoinyectiva con longitud de Loewy 2.
Entonces Λ es siempre establemente Calabi-Yau y se verifican las siguientes
igualdades:

1. Si char(K) = 2 ó Λ = A
(m)
2 , i.e. |Q0| es par, entonces CY − dim(Λ) =

CY F − dim(Λ) = 0.

2. Si char(K) 6= 2 y Λ = L
(m)
1 , i.e., |Q0| es impar, entonces CY −dim(Λ) = 0

y CY F − dim(Λ) = 2m− 1 = |Q0|.

PROPOSICIÓN. Sea Λ un álgebra de malla m-fold de tipo de Dynkin ∆
distinto de Ar, para r = 1, 2, 3. Entonces Λ es establemente Calabi-Yau si,
y sólo si, es Calabi-Yau Frobenius. En tal caso, se verifica la igualdad CY −
dim(Λ) = CY F − dim(Λ).

Para finalizar el caṕıtulo y lo que seŕıa la primera parte de esta tesis proporcionamos,
para las álgebras de malla m-fold, un criterio para determinar cuándo son establemente
Calabi-Yau, junto con una identificación en tal caso de la dimensión estable de Calabi-
Yau. El caso en el que K tiene caracteŕıstica 2 se trata en el Corolario 3.4.18. Cuando
char(K) 6= 2, el resultado dice:

TEOREMA. Supongamos que char(K) 6= 2 y que Λ es un álgebra de malla m-
fold de tipo extendido (∆,m, t), donde ∆ 6= A1,A2. Adoptamos la convención
de que si a, b, k son tres enteros fijados, entonces au ≡ b (mod k) significa que
u es el menor entero positivo satisfaciendo la congruencia. El álgebra es Calabi-
Yau Frobenius si, y sólo si, es establemente Calabi-Yau. Es más, tenemos que
CY F − dim(Λ) = CY − dim(Λ) y se verifican las siguientes afirmaciones:

1. Si t = 1 entonces

(a) Cuando ∆ es Ar, D2r−1 ó E6, el álgebra es establemente Calabi-Yau
si, y sólo si, mcd(m, c∆) = 1. Entonces CY −dim(Λ) = 6u+2, donde
c∆u ≡ −1 (mod m).
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(b) Cuando ∆ es D2r, E7 ó E8, el álgebra es establemente Calabi-Yau si,
y sólo si, mcd(m, c∆2 ) = 1. Entonces:

i. CY − dim(Λ) = 3u + 2, donde c∆
2 u ≡ −1 (mod m), siempre y

cuando m sea par;

ii. CY − dim(Λ) = 6u + 2, donde c∆u ≡ −1 (mod m), siempre y
cuando m sea impar;

2. Si t = 2 entonces

(a) Cuando ∆ es A2n−1, D2r−1 or E6, el álgebra es establemente Calabi-
Yau si, y sólo si, mcd(2m,m + c∆

2 ) = 1. Entonces CY − dim(Λ) =
3u+ 2, donde (m+ c∆

2 )u ≡ −1 (mod 2m).

(b) Cuando ∆ = D2r, el álgebra es establemente Calabi-Yau si, y sólo si,
mcd(m, 2r − 1) = 1 y m es impar. Entonces CY − dim(Λ) = 3u+ 2,
donde (2r − 1)u ≡ −1 (mod 2m).

(c) Cuando ∆ = A2n, el álgebra es establemente Calabi-Yau si, y sólo si,
mcd(2m − 1, 2n + 1) = 1. Entonces CY − dim(Λ) = 6u − 1, donde
(m+ n)(2u− 1) ≡ −1 (mod 2m− 1)

3. Si t = 3 entonces el álgebra no es establemente Calabi-Yau.

Los resultados de los Caṕıtulos 1, 2 y 3 aparecen en [5].

Caṕıtulo 4:

Los tres últimos caṕıtulos de esta memoria abordan la cuestión 4 mencionada más arri-
ba, es decir, el estudio del anillo de cohomoloǵıa de Hochschild de las álgebras de malla
m-fold de tipo extendido (A2n, 1, 2) y (A2n−1, 1, 2) conocidas como álgebras preproyectivas
generalizadas Ln y Bn, respectivamente. Comienza con un cuarto caṕıtulo introductorio
donde se presentan brevemente los conceptos y resultados necesarios para abordar tal
problema. Aśı, en una primera sección se recuerda una noción importante como es el
producto de Yoneda de extensiones y se define el concepto fundamental de anillo de coho-
moloǵıa de Hochschild de un álgebra Λ que se denotará por HH∗(Λ). En un principio, Λ
será un álgebra considerada sobre un anillo conmutativo R, que además, se supone proyec-
tiva como R-módulo. Más adelante, se asumirá que R es un cuerpo y, para enfatizar este
hecho, escribiremos R = K en tal caso. En la Sección 4.3 se introduce el anillo de coho-
moloǵıa de Hochschild estable de un R-álgebra Λ, que sea además Gorenstein proyectiva
como Λ-bimódulo, denotado por HH∗(Λ). Cuando el álgebra es simétrica, cosa que siem-
pre ocurre cuando Λ = Ln ó Λ = Bn con n par, obtenemos que HH∗(Λ) ∼= D(HH∗(Λ))
como HH∗(Λ)-módulos. Además, en la Sección 4.4 se prueba que, a parte de la gradua-
ción homológica canónica, en la que HHn(Λ) es la componente homogénea de grado n, el
anillo HH∗(Λ) hereda la graduación inducida por la longitud de caminos del álgebra de
caminos del quiver en cuestión, que se llamará en lo que sigue ”graduación por longitud”,
dotando a HH∗(Λ) de una estructura de R-álgebra bigraduada (= Z × Z graduada). La
Sección 4.5 está dedicada a las álgebras de Frobenius introducidas por Eu-Schedler en [35].
Merece la pena mencionar que cuando Λ es un álgebra de Frobenius, entonces el anillo de
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cohomoloǵıa estable HH∗(Λ) es graduado-conmutativo (Proposición 4.5.2), además de ser
una localización de su versión clásica (Proposición 4.5.6). Finalmente se incluye la Sección
4.6, dedicada espećıfcamente a las álgebras autoinyectivas. Muchos de los resultados de
este apartado son sencillas aplicaciones de los resultados obtenidos en el caṕıtulo 1 de esta
memoria sobre álgebras pseudo-Frobenius.

Caṕıtulo 5:

Los resultados de este caṕıtulo, que trata sobre el estudio del anillo de cohomoloǵıa
de Hochschild del álgebra preproyectiva generalizada Ln sobre un anillo conmutativo R,
aparecen publicados en [3] y [4] para los casos de caracteŕıstica distinta a 2 e igual a
2, respectivamente. Concretamente, describimos su estructura como álgebra bigraduada
con el producto de Yoneda mediante una presentación expĺıcita dada por generadores
homogéneos y relaciones. Resulta importante tener en cuenta dos aspectos en lo que se
refiere al caso Ln. Por una parte, nuestra estrategia para probar el resultado principal
consiste en abordar primero el caso en que R es un cuerpo y posteriormente deducir de
éste el resultado más general en el que R es un anillo conmutativo en el que 2 es invertible.
Por otra parte, conviene señalar que los resultados de este caṕıtulo fueron los primeros que
se obtuvieron y, por tanto, son anteriores al momento en que nos percatamos del cambio
de relaciones que facilitaba ciertos cálculos y que se presenta en la Subsección 2.3.3 de esta
memoria. Aśı, a lo largo de este caṕıtulo se consideraran las relaciones de malla originales,
que vienen dadas como sumas de caminos en lugar de diferencias.

Como suele ser habitual, se tratará separadamente el caso en el que el cuerpo tiene
caracteŕıstica igual a 2 (véase la Sección 5.5). La diferencia más notable entre ambos
casos es que, cuando la caracteŕıstica es distinta de dos, el álgebra Ln tiene periodo 6
mientras que en el caso contrario, el periodo es exactamente 3. Como se menciona en
la primera parte de la introducción, dicha periodicidad se traslada a su vez a los grupos
de cohomoloǵıa. En la Sección 5.2 proporcionamos los elementos necesarios para nuestros
cálculos: la sección se inicia con la definición del álgebra Ln mediante su quiver y relaciones
y, a continuación, se muestra una base dualizable de la misma, que será la utilizada, cuya
existencia está garantizada por el hecho de ser simétrica. Inmediatamente, se proporciona
una resolución proyectiva minimal del álgebra como bimódulo sobre śı misma que induce
a su vez el complejo de cocadena que se utiliza para calcular la cohomoloǵıa (Proposición
3.4.2).

Con la información obtenida en la sección anterior se procede al cálculo de las di-
mensiones de los espacios de cohomoloǵıa y homoloǵıa de Hochschild, aśı como las de los
espacios de homoloǵıa ćıclica en caracteŕıstica cero. En particular, tomando Λ := Ln,
se da una base canónica para cada HH i(Λ) formada por elementos homogéneos con res-
pecto a la graduación por longitud (Proposición 5.3.10). La técnica que se sigue consiste
en identificar previamente la estructura de cada HH i(Λ) como módulo sobre el centro
Z(Λ) = HH0(Λ).

El resultado principal de este caṕıtulo, que aparece en la Sección 5.4 y trata la es-
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tructura multiplicativa de HH∗(Λ) es el Teorema 5.4.1, a partir del cuál obtenemos una
presentación del anillo de cohomoloǵıa de Hochschild estable de Λ, HH∗(Λ), dada por
generadores y relaciones.

TEOREMA. Sea Λ = Ln el álgebra preprojectiva generalizada Ln sobre un
anillo conmutativo R en el que 2 es invertible. Se verifican las siguientes
afirmaciones para el anillo de cohomoloǵıa de Hochschild HH∗(Λ):

1. HH∗(Λ) es la R-álgebra bigraduada-conmutativa dada por

a) Generadores: x0, x1, . . . , xn, y, z1, . . . , zn, t1, t2, . . . tn−1, γ, h

b) Relaciones:

i) xiξ = 0 para cada i = 1, . . . , n y cada generador ξ.

ii) xn0 = y2 = x0zj = x0ti = yti = titk = 0, for j = 1, . . . , n i,
k = 1, . . . n− 1)

iii) zjzk = (−1)k−j+1(2j − 1)(n− k + 1)xn−1
0 γ, para 1 ≤ j ≤ k ≤ n.

iv) zjγ = (−1)j(n− j + 1)xn−1
0 h, para j = 1, ..., n

v) γ2 = z1h

vi) yzj = (2n + 1)
∑

1≤k≤j−1(−1)
j−k(j − k)tk + (−1)j−1(2j − 1)yz1,

para j = 2, ..., n

vii) zktj = δjkx
n−1
0 yγ, para k = 1, . . . , n j = 1 . . . , n − 1

viii) tjγ = δ1jx
n−1
0 yh, para j = 1, . . . , n− 1.

2. La graduación homológica en HH∗(Λ) viene determinada por las igual-
dades deg(xi) = 0, deg(y) = 1, deg(zj) = 2, deg(tk) = 3, deg(γ) = 4 y
deg(h) = 6.

3. La graduación por longitud en HH∗(Λ) viene determinada por las igual-
dades ldeg(x0) = 2, ldeg(xi) = 2n− 1, para i 6= 0, ldeg(y) = 0, ldeg(zj) =
−2, ldeg(tk) = −2, ldeg(γ) = −2n− 2 y ldeg(h) = −4n− 2.

4. La multiplicación por h induce un isomorfismo HH i(Λ)
∼=
−→ HH i+6(Λ),

para cada i > 0.

5. Cada HH i(Λ) es un R-módulo libre, siendo la siguiente una lista de las
correspondientes bases (see Proposition 5.3.10):

(a) Para HH0(Λ): {x0, x
2
0, . . . , x

n−1
0 , x1, . . . , xn}.

(b) Para HH1(Λ): {y, x0y, x
2
0y, . . . x

n−1
0 y}.

(c) Para HH2(Λ): {z1, . . . , zn}.

(d) Para HH3(Λ): {t1, . . . , tn−1, yz1}.

(e) Para HH4(Λ): {xn−1
0 γ, . . . , x0γ, γ}.

(f) Para HH5(Λ): {xn−1
0 yγ, . . . , x0yγ, yγ}.

(g) Para HH6(Λ): {h, x0h, . . . , x
n−1
0 h}.

En particular dim(HH0(Λ)) = 2n y dim(HH i(Λ)) = n, para todo i > 0,
donde dim(−) denota el rango como R-módulo libre.
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Finalizamos el caṕıtulo con la Sección 5.5 donde se presenta el resultado análogo al
anterior cuando el cuerpo K tiene caracteríıstica 2 (Teorema 5.5.1).

Caṕıtulo 6:

En el sexto y último caṕıtulo de esta memoria se completa la respuesta a la cuestión
4 mediante el estudio del anillo de cohomoloǵıa de Hochschild del álgebra preproyectiva
generalizada Bn sobre un cuerpo de caracteŕıstica distinta de 2. En tal caso, gracias al
Teorema 3.4.12 se sabe que Bn tiene periodo 6 y, por consiguiente, los espacios de co-
homoloǵıa también tienen periodo 6. La estrategia utilizada en este último caṕıtulo es
considerablemente distinta a la del anterior. A diferencia del caso Ln, donde el álgebra se
presentaba directamente mediante su quiver y relaciones sin atender a su relación con el
quiver de traslación ZA2n, Bn śı será considerada como el álgebra de órbitas ZA2n−1/〈ρτ〉
siendo τ y ρ la traslación de Auslander-Reiten y el automorfismo dado por la reflexión
natural de ZA2n−1, respectivamente, o equivalentemente, considerada como el álgebra de
malla finito dimensional de tipo extendido (A2n−1, 1, 2) (véase la Subsección 6.5.1). La
ventaja en este caso es que se pueden utilizar los resultados obtenidos en los tres primeros
caṕıtulos de esta memoria para conseguir información esencial para nuestros propósitos.
Aśı, en la Subsección 6.5.2 y usando el Teorema 6.5.3, se calcula la matriz de Cartan de
Bn. En la Subsección 6.5.4, y a partir de la resolución proyectiva del álgebra de malla
B = B(A2n−1) como B-bimódulo, se describe la de Bn que induce, como se presenta
en la Subsección 6.5.5, el complejo de cocadena que induce a su vez la cohomoloǵıa de
Hochschild. Se continúa con la Sección 6.6 en la que, considerando Λ = Bn, se identi-
fica la estructura de cada espacio de cohomoloǵıa HH i(Λ) como Z(Λ)-bimódulo y, como
herramienta necesaria, el ideal I = P(Λ,Λ) de Z(Λ) = EndΛe(Λ) formado por todos los
endomorfismos de Λ como bimódulo que se factorizan a través de un bimódulo proyectivo.
Dicha descripción depende de hecho de la paridad de n, lo cuál se debe principalmente a
que el automorfismo de Nakayama es la identidad cuando n es par y τ cuando n es impar.
Es decir, Λ es simétrica cuando n es par pero ni siquiera es débilmente simétrica cuando n
es impar. Para finalizar el caṕıtulo y por tanto esta memoria, a lo largo de la Sección 6.7
presentamos los dos resultados principales (para n impar y n par) que describen mediante
generadores y relaciones la estructura como álgebra bigraduada del anillo de cohomoloǵıa
de Hochschild HH∗(Λ) sobre un cuerpo de caracteŕıstica 6= 2.

El Teorema 6.7.1 trata el caso n impar:

TEOREMA. Sea n impar y sea Λ el álgebra preproyectiva generalizada Bn so-
bre un cuerpo de caracteŕıstica 6= 2 y véase a HH∗(Λ) como álgebra bigradua-
da, donde bideg(r) = (hdeg(r), ldeg(r)), para cualquier elemento homogéneo
r ∈ HH∗(Λ). Considérese los siguientes elementos de HH∗(Λ):

a) x =
∑

3≤i≤2n−3 ci ∈ HH
0(Λ) = Z(Λ), donde ci es el ciclo de longitud 4

en i;
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b) y ∈ HH1(Λ) representado por ỹ : ⊕a∈Q1Λei(a) ⊗ et(a)Λ −→ Λ, donde
ỹ(ei(a) ⊗ et(a)) = a, para todo a ∈ Q1;

c) h ∈ HH6(Λ) representado por la aplicación multiplicación ⊕i∈Q0Λei ⊗
eiΛ −→ Λ y

d) En caso que char(K) divida a n, el elemento v ∈ HH5(Λ) representado
por ṽ : ⊕i∈Q0Λeτ(i) ⊗ eiΛ −→ Λ, donde ṽ(eτ(i) ⊗ ei) = δinen, para todo
i ∈ Q0, siendo δin el śımbolo de Kronecker.

Entonces se tiene que bideg(x) = (0, 4), bideg(y) = (1, 0), bideg(h) = (6,−4n)
y bideg(v) = (5,−2n − 2) y se verifican las siguientes afirmaciones:

1. Si char(K) no divide a n, entonces HH∗(Λ) es el álgebra conmutativa con
generadores x, y, h, sujeta a las relaciones:

x
n+1
2 = 0, x

n−1
2 y = 0, x

n−1
2 h = 0 y y2 = 0.

2. Si char(K) divide a n, entonces HH∗(Λ) es el álgebra bigraduada con-
mutativa con generadores x, y, v, h, sujeta a las relaciones

x
n+1
2 = 0, x

n−1
2 y = 0, xv = 0, y2 = 0 yv = 0 y v2 = 0.

Para n par el resultado es el siguiente (Teorema 6.7.10)

TEOREMA. Sea n par, sea Λ el álgebra preproyectiva generalizada Bn sobre
un cuerpo de caracteŕıstica 6= 2 y véase a HH∗(Λ) como álgebra bigraduada,
donde bideg(r) = (hdeg(r), ldeg(r)), para cualquier elemento homogéneo r ∈
HH∗(Λ). Considérese los siguientes elementos de HH∗(Λ):

a) x, x1, ..., x2n−1 en HH0(Λ) = Z(Λ) dados como se sigue:

(a) x =
∑

3≤i≤2n−3 ci, donde ci es el ciclo no nulo de longitud 4 en i;

(b) {x1, ..., xn−2} donde x2k = ω2k y x2k−1 =
∑k

r=1 ω2r−1, para todo
0 < k < n

2 ;

(c) xn−1 =
∑

1≤k≤n
2
(ω2k−1−ω2n−2k+1), xn = ωn y xi = ωi+ω2n−i, para

todo n < i ≤ 2n − 1.

b) y ∈ HH1(Λ) representado por ỹ : ⊕a∈Q1Λei(a) ⊗ et(a)Λ −→ Λ, donde
ỹ(ei(a) ⊗ et(a)) = a;

c) z ∈ HH2(Λ) representado por z̃ : ⊕i∈Q0Λeτ(i)⊗eiΛ −→ Λ, donde z̃(eτ(i)⊗
ei) = δinen;

d) t ∈ HH3(Λ) representado por t̃ : ⊕i∈Q0Λeτ(i)⊗eiΛ −→ Λ, donde t̃(eτ(i)⊗
ei) = δinwn;

e) u ∈ HH4(Λ) representado por ũ = ⊕a∈Q1Λeτ(i(a)) ⊗ et(a)Λ −→ Λ, donde

ũ(eτ(i(a)) ⊗ et(a)) =
1
2(δa,αnαn − δa,βnβn−1);
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f) v1, ..., vn−2 ∈ HH
5(Λ), donde cada uno de los vj está representado por

ṽj = ⊕i∈Q0Λei ⊗ eiΛ −→ Λ, donde:

(a) ṽj(ei ⊗ ei) = (δij − δi,2n−j)ei, siempre y cuando j sea par;

(b) ṽj(ei ⊗ ei) = (δij − δi,j+2 − δi,2n−j + δi,2n−j−2)ei, siempre y cuando j
sea impar.

g) h ∈ HH6(Λ) representado por la aplicación multiplicación ⊕i∈Q0Λei ⊗
eiΛ −→ Λ.

Los grados de longitud de estos elementos son ldeg(x) = 4, ldeg(xi) = 2n− 2,
ldeg(y) = 0, ldeg(z) = ldeg(t) = −2, ldeg(u) = −2n, ldeg(vj) = −2n − 2 y
ldeg(h) = −4n.

Además, como álgebra, HH∗(Λ) está generada por estos elementos, sujeta a
las relaciones graduado-conmutativas con respecto a la graduación homológica
junto con las siguientes relaciones:

1. x
n
2 = xz = xt = xvi = 0

2. xiξ = 0, para cada generador ξ, excepto en el caso i ≤ n − 2 y ξ = vi ó
ξ = h

3. xivi = x
n
2
−1yu, para todo i ≤ n− 2.

4. y2 = yt = 0

5. yz = −nt

6. yv2k = 4nx2k−1h y yv2k−1 = −4nx2kh, para todo 1 ≤ k < n
2

7. z2 = −nx
n
2
−1u

8. zt = x
n
2
−1yu

9. zvj = 0, para todo j = 1, ..., n − 2

10. zu = 0

11. t2 = tu = tvj = 0, para todo j = 1, ..., n − 2

12. u2 = 0

13. uvj = 0, para todo j = 1, ..., n − 2

14. v2kvj = 4nδ2k−1,jx
n
2 uh, para todo 1 ≤ k < n

2 y j = 1, 2, ..., n − 2.

Los caṕıtulos 5 y 6 de la memoria muestran que se pueden observar diferencias en el
comportamiento del anillo de cohomoloǵıa de Hochschild HH∗(Λ) para Λ = Ln y Bn, y,
más aún, entre los casos n impar y n par de Bn. Por ejemplo, para Ln, HH

∗(Λ) es siempre
conmutativa, como también lo es para Bn, cuando n es impar. Sin embargo, para Bn con
n par, y salvo que Char(K) divida a n, la estructura conmutiativa de HH∗(Λ) se destruye
por completo.

Al final de la memoria hemos incluido una lista de las referencias bilbiográficas que
hemos manejado.
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The notion of preprojective algebra first appeared in the late 70s in the work of Gelfand
and Ponomarev [42] on the representation theory of finite quivers without oriented cycles.
Essentially, given a non-oriented graph ∆, the associated preprojective algebra, usually
denoted by P (∆), is obtained from ∆ by replacing each edge by a pair of two opposite
arrows and identifying, afterwards, all cycles of length 2 starting at the same vertex. They
found their first applications in classification problems of algebras of finite type ([22], [23])
and have been linked to universal enveloping algebras and cluster algebras ([40], [41]).
They also occur in very diverse parts of mathematics. For instance, they play a special
role in Lusztig’s perverse sheaf approach to quantum groups ([60], [61]) and have been used
to tackle differential geometry problems [53] or to study non-commutative deformations
of Kleinian singularities [21].

When R = K is an algebraically closed field, it is well known that P (∆) is finite
dimensional if and only if ∆ is a disjoint union of generalized Dynkin graphs, An, Dn, E6,
E7, E8 or Ln:

An : • • • · · · · · · • • (n ≥ 1)

Dn : •

• • · · · · · · • • (n ≥ 4)

•
•

En : • • • · · · · · · • • (n = 6, 7, 8)

Ln : • • • · · · · · · • • (n ≥ 1)

Historically, in the context of finite dimensional algebras, the syzygy operator, ΩΛ,
which assigns to every Λ-module M the kernel of its projective cover PΛ(M) −→M , has
become a very useful tool to connect modules as well as to obtain information about the
structure of the algebra itself. For instance, if all the simple modules are ΩΛ-periodic,
then Λ is a self-injective algebra, that is, the class of projective and injective modules
coincide. By an ΩΛ-periodic module we mean a module M satisfying that there exists an
integer r > 0 such that ΩrΛ(M) is isomorphic to M . In such case, the smallest natural

xxi
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number satisfying the previous property is called the period of M . This operator is not
only useful, but also fundamental, when studying a particular kind of finite dimensional
algebras contained in the class of self-injective algebras and known as periodic algebras.
An algebra Λ is called periodic when it is periodic as a module over its enveloping algebra
Λe = Λ ⊗ Λop, or equivalently, as a Λ-bimodule. An important common feature of the
preprojective algebras of generalized Dynkin type is that, except for ∆ = A1, P (∆) is
(Ω−)periodic of period at most 6.

In every mathematical discipline, it is natural and also usual to try to generalize
concepts in such a way that the most relevant properties are preserved. With this idea in
mind, K. Erdmann and S. Skowroński introduced in [29] a new class of algebras associated
to Dynkin diagrams which contains the preprojective algebras and which has deserved a
lot of attention in recent times in the general context of finite dimensional algebras. They
were called m-fold mesh algebras and are precisely the self-injective algebras Λ for which
Ω3
Λ permutes the isomorphism classes of simple modules. Following the aforementioned

work, if ∆ is one of the Dynkin quivers An, Dr or En (n = 6, 7, 8), an m-fold mesh algebra
of type ∆ is a quotient B/G of the mesh algebra B = B(∆) of a stable translation quiver
Z∆ by a weakly admissible group of automorphisms G of Z∆. Later, by a result of Dugas
([25] Theorem 3.1), it was known that the m-fold mesh algebras are precisely the mesh
algebras of stable translation quivers which are finite dimensional. This class of algebras
properly contains the stable Auslander algebras of all standard representation-finite self-
injective algebras (see [25]) and also the Auslander-Reiten algebras of several hypersurface
singularities (see [29][Section 8]). Moreover, by [14][Section 6], all the algebras in the class
are periodic.

In the late 90s, in his work entitled Triangulated categories and geometry, M. Kontse-
vich defined the notion of Calabi-Yau dimension for Hom finite triangulated K-categories,
that is, for triangulated K-categories for which the K-vector space of morphisms between
two any objects is finite dimensional. Under these hypotheses, the K-category T , with
suspension functor

∑
: T −→ T , is called Calabi-Yau, when there is a natural number

n such that
∑n is a Serre functor, or equivalently, when there exists a natural number n

such that DHomT (X,−)) and HomT (−,
∑nX) are naturally isomorphic as cohomologi-

cal functors T op −→ K−mod. In such case, the smallest natural number m such that
∑m

is a Serre functor is called the Calabi-Yau dimension of T and we write CY-dim(T ) = m.
Calabi-Yau triangulated categories appear in many fields of Mathematics and Theoretical
Physics. In Representation Theory of algebras, the concept plays an important role in the
study of cluster algebras and cluster categories (see [55]).

When Λ is a self-injective finite dimensional algebra and Λmod is its stable module
category, then the syzygy functor ΩΛ : Λmod −→ Λmod is an equivalence of categories
and Λmod has a structure of triangulated category with the inverse of the syzygy functor,
Ω−1
Λ , as suspension functor. The Calabi-Yau condition on this category has been deeply

studied (see, e.g., [28], [12], [35], [25], [50], [51],...) and it has been related with that
of Frobenius Calabi-Yau algebra, as defined by Eu and Schedler ([35]): the algebra Λ is
called Calabi-Yau Frobenius when Ω−r−1

Λe (Λ) is isomorphic to D(Λ) = HomK(Λ,K) as Λ-
bimodules, for some integer r ≥ 0. Notice that if the algebra Λ is Calabi-Yau Frobenius,



Introduction xxiii

then Λ − mod is Calabi-Yau. Also, taking into account that Ω−r−1
Λe ⊗Λ? and Ω−r−1

Λ are
naturally isomorphic functors Λmod −→ Λmod, the Calabi-Yau dimension of Λmod is
less or equal than the smallest integer r ≥ 0 such that Ω−r−1

Λe (Λ) is isomorphic to D(Λ)
as Λ-bimodules, a number which will be called from now on the Calabi-Yau Frobenius
dimension of Λ and will be denoted by CYF-dim(Λ). However, in general, it is not known
whether these two numbers are equal.

After earlier work in [12] and [28], the determination of the stable Auslander algebras
Λ of a representation-finite self-injective algebra such that Λmod is Calabi-Yau is done in
[25] and [51] in terms of its type. Inspired by the work of Riedtmann ([66]), H. Asashiba
defined in [6] the type of an stable Auslander algebra of a self-injective algebra of finite
representation type, which is invariant under derived equivalence, as the triple (∆, f, t)
where ∆ is the associated Dynkin diagram, f is the frequency and t is the torsion order.
In the first of these two papers [25], A. Dugas identifies such algebras when t is 1 or 3,
and also in many cases with t = 2. The remaining cases for t = 2 have been recently
settled by Ivanov-Volkow ([51]). Hence, bearing in mind that the m-fold mesh algebras
are self-injective, some natural questions arise:

Question 1: Which are the m-fold mesh algebras whose stable module category is
Calabi-Yau? Which are Calabi-Yau Frobenius? And finally, which is the relation between
both dimensions?

In terms of bimodules, a basic finite dimensional algebra Λ is self-injective precisely
when there is an isomorphism of Λ-bimodules between D(Λ) and the twisted bimodule

1Λη, for some automorphism η of Λ. This automorphism is uniquely determined up to
inner automorphism and is called the Nakayama automorphism of Λ. According to this,
the problem of deciding when Λ is Calabi-Yau Frobenius is part of a more general problem
which consists of determining under which conditions ΩrΛe(Λ) is isomorphic to a twisted
bimodule 1Λϕ, for some automorphism ϕ of Λ, which is then determined up to inner
automorphism. By a result of Green-Snashall-Solberg ([44]), this condition on a finite
dimensional algebra forces it to be self-injective. Moreover, observe that when ϕ is the
identity, or an inner automorphism, we precisely obtain the definition of periodic algebra.
The problem of determining the self-injective algebras which are periodic is, nowadays,
widely open. However, there is a lot of work in the literature where several classes of
periodic algebras, including the m-fold mesh algebras, have been identified (see, e.g.,
[14], [29], [24]). Nevertheless, even when an algebra Λ is known to be periodic, it is
usually difficult and hard to calculate explicitly its period. In the context of the m-fold
mesh algebras, the explicit calculation of their period has been done only in very few
cases. Concretely, from the papers [67], [32] and [11] we know that the period is 6 for all
preprojective algebras of generalized Dynkin type, whenever Char(K) 6= 2. In addition,
in [25], the period is calculated when Λ is the stable Auslander algebra of a standard
representation-finite self-injective algebra of type (∆, f, t) equal to (D4, f, 3), (Dn, f, 2),
with n > 4 and f > 1 odd, or (E6, f, 2). Again, a natural question arises:

Question 2: Which is the period of an m-fold mesh algebra?
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Another interesting problem that has attracted special attention in the context of self-
injective finite dimensional algebras is that of characterizing those which are symmetric or
weakly symmetric. We say that an algebra Λ is symmetric when it is isomorphic to D(Λ)
as Λ-bimodule. This is equivalent to saying that the Nakayama functor DHomΛ(−,Λ) ∼=
D(Λ) ⊗Λ − : Λ − Mod → Λ − Mod is naturally isomorphic to the identity functor. If
we weaken the condition imposed to the functor in order to preserve the isomorphism
classes of simple modules we obtain precisely the definition of weakly symmetric algebra.
Therefore, one could ask:

Question 3: Which of the m-fold mesh algebras are weakly symmetric? Which of
them are in turn symmetric?

Since it was introduced by G. Hochschild in 1945 in his work [47], the (co)homology
theory which is known by his own name has been study in depth having a marked influence,
among others, in the field of the finite dimensional algebras. Given a finite dimensional
algebra Λ, for each i ≥ 0, the K-vector space HH i(Λ) := ExtiΛe(Λ,Λ) is called the i-th
Hochschild cohomology group. It turns out then that, with the Yoneda product, the K-
vector space ⊕i≥0HH

i(Λ) admits a structure of graded-commutative K-algebra commonly
known as the Hochschild cohomology ring of Λ and usually denoted by HH∗(Λ). The
lowest degrees of this ring have very concrete interpretations closely related to classical
algebraic and geometric structures. For instance, HH0(Λ) and HH1(Λ) coincide with
the center and the space of outer derivations of the algebra, respectively, while HH2(Λ)
controls its deformation theory: if it is zero, then the algebra is rigid. Concerning the
multiplicative structure, the Hochschild cohomology ring HH∗(Λ) of a self-injective finite
dimensional algebra is of great interest in connection with the study of varieties of modules
and with questions about its relationship with the Yoneda algebra of Λ. This is the graded
algebra E(Λ) = Ext∗Λ(Λ/J,Λ/J), where J = J(Λ) denotes the Jacobson radical of Λ.
Indeed, with inspiration from modular representation theory of finite groups, where the
theory of varieties of modules had been developed by Carlson ([18], [19]), Benson ([10])
and others, Snashall and Solberg ([68], see also [27]) started the study of varieties of
modules over arbitrary finite dimensional algebras, replacing the group cohomology ring
HH∗(G,K) by the Hochschild cohomology ring HH∗(Λ) of the considered algebra Λ.
For the new theory, one generally requires Λ to be self-injective and HH∗(Λ) to satisfy
some finite generation conditions, which are always satisfied when Λ is periodic. However,
little else is known about the Hochschild cohomology ring HH∗(Λ) of a finite dimensional
algebra Λ but the fact that, whenever Λ is periodic, there exists an isomorphism of algebras
HH∗(Λ)/N ∼= K[x] where N is the ideal generated by the nilpotent elements and x is
an homogeneous element of HH∗(Λ) whose degree coincides with the period of Λ. This
property first appeared explicitly in ([44], Proposición 1.1). Nevertheless, it is just a direct
application with A = Λ⊗Λop and M = Λ, when Λ is periodic, of a more general result by
Carlson [17]. Such result states that when A = KG is a group algebra of a finite group G,
which is the prototypical example of self-injective finite dimensional algebras, and M is a
periodic A-module of period q, then Ext∗A(M,M)/N ∼= K[x] where x ∈ ExtqA(M.M) and
N is the ideal of Ext∗A(M,M) generated by the nilpotent elements. Indeed, the result is
equally valid for any self-injective finite dimensional algebra.
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The former questions suggest that finding patterns of behavior of the homogeneous
elements of HH∗(Λ) with respect to the Yoneda product, in particular cases where the
multiplicative structure of HH∗(Λ) is computable, can help to give some hints on how to
deal with them. Regarding the finite dimensional preprojective algebras, the structure of
the Hochschild cohomology ring, when R = K is a field, is known for type An in arbitrary
characteristic ([30], [31]) and, in the case of a field of characteristic zero, for types Dn
and E [33]. Following the notion of extended type (∆,m, t) of an m-fold mesh algebra,
introduced in Chapter 2, it turns out that the preprojective algebras mentioned before are
in fact the m-fold mesh algebras of extended type (∆, 1, 1) where ∆ = An,Dn or E6. A
step forward in that direction would be to consider the case when Λ is an m-fold mesh
algebra of extended type (∆, 1, t) with t > 1, which correspond to the algebras known
nowadays as generalized preprojective algebras. In this thesis we tackle the case ∆ = An.

Question 4: How are the Hochschild cohomology groups HH i(Λ) of a generalized
preprojective algebra Λ of type An? Which is the multiplicative structure of the associated
Hochschild cohomology ring HH∗(Λ)?

This thesis is organized in 6 chapters which are related between them and provide an
answer to the questions formulated above.

Chapter 1

This first chapter, which may be considered as a preliminary chapter, is the fundamen-
tal basis for developing the contents of the first part of this work. Placed in the general
context of algebras with enough idempotents, the main concepts we shall work with are
those of pseudo-Frobenius algebra and their associated Nakayama form and automorphism,
all of them introduced in Section 1.3.

We will say that a graded algebra with enough idempotents, weakly basic and locally
finite dimensional is pseudo-Frobenius if the finitely generated projective objects and the
finitely cogenerated injective objects coincide in its category of graded modules. Among
other results, it is worth mentioning the characterization presented of such algebras (The-
orem 1.3.2). The appropriated notions can be found in that section.

THEOREM. Let A = ⊕h∈HAh be a weakly basic graded algebra with enough
idempotents. Consider the following assertions:

1. A−Gr and Gr −A are Frobenius categories

2. D(AA) and D(AA) are projective graded A-modules

3. A is graded pseudo-Frobenius

4. There exists a graded Nakayama form (−,−) : B ×B −→ K.

Then the following chain of implications holds:

1) =⇒ 2) =⇒ 3)⇐⇒ 4).
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When A is graded locally bounded, also 4) =⇒ 2) holds. Finally, if A is graded
locally Noetherian, then the four assertions are equivalent.

When the algebra satisfies the condition 1 of the previous theorem, it is called Quasi-
Frobenius. As one can suspect, pseudo-Frobenius graded algebras with enough idempo-
tents are the analogue in the context of graded algebras with enough idempotents, or
equivalently graded K-categories, of what finite dimensional self-injective algebras are in
the context of associative unital algebras. Therefore, we may ask about the existence of
an automorphism of the algebra A playing a similar role to that of the Nakayama au-
tomorphism for self-injective finite dimensional algebras. The next result guarantees its
existence ( Corollary 1.3.6):

COROLLARY. Let A = ⊕h∈HAh be a graded pseudo-Frobenius algebra and
let (ei)i∈I be a weakly basic distinguished family of orthogonal idempotents.
If A is graded locally bounded, then following assertions hold:

1. There is an automorphism of (ungraded) algebras η : A −→ A, which
permutes the idempotents ei and maps homogeneous elements onto ho-
mogeneous elements, such that 1Aη is isomorphic to D(A) as an ungraded
A-bimodule.

2. If the degree map h : I −→ H associated to the Nakayama form (−,−) :
A× A −→ K takes constant value h, then η can be chosen to be graded
and such that D(A) is isomorphic to 1Aη [h] as graded A-bimodules.

The automorphism η is called the Nakayama automorphism of A.

Although there are no genuine new ideas in the process of passing from unital ungraded
algebras to graded algebras with enough idempotents, as far as we know, the concept of
pseudo-Frobenius algebras and its associated ones, like Nakayama form and Nakayama
automorphism, had not been developed before in such a generality and they are crucial
for the rest of the work.

In Section 1.4, we revisit covering theory from the point of view of graded algebras
with enough idempotents emphasizing the particular case where the covering functor is
of type F : A −→ A/G where A is a graded algebra with enough idempotents and G
is a group of automorphisms of A of degree 0 which permutes the idempotents ei. In
the second part of this section we study under which conditions we can guarantee the
preservation of the pseudo-Frobenius condition via the usual covering functor. As stated
below (Proposition 1.4.3), this always occurs when the associated Nakayama form of A is
what we call G-invariant, that is, when it satisfies that (ag, bg) = (a, b) for any a, b ∈ A
and g ∈ G.

PROPOSITION. Let A = ⊕h∈HAh be a (split weakly) basic graded locally
bounded algebra, with (ei)i∈I as distinguished family of orthogonal homoge-
neous idempotents, and let G be a group which acts on A as graded automor-
phisms which permute the ei and which acts freely on objects. Suppose that
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A is graded pseudo-Frobenius admitting a G-invariant graded Nakayama form
(−,−) : A×A −→ K. Then Λ = A/G is a (split weakly) basic graded locally
bounded pseudo-Frobenius algebra whose graded Nakayama form is induced
from (−,−).

Moreover, we end the section by showing that, under the hypothesis of the previous
proposition, the Nakayama automorphism η of A induces in turn the Nakayama automor-
phism η̄ de A/G (Corollary 1.4.5).

Chapter 2

The second chapter of this work is devoted to study in depth and obtain some useful
information about the mesh algebra of a Dynkin diagram as its Nakayama automorphism.
Despite of the fact that this algebra is not the main object of study of this thesis, our
interest lies in the fact that every m-fold mesh algebra arises in some sense from such an
algebra.

In the beginning of this chapter, concretely in Section 2.2, we recall the definition
of the stable translation quiver Z∆ of a Dynkin diagram ∆. Next, in Subsection 2.3.1,
we introduce the notion of the mesh algebra B = B(∆). This algebra is defined as the
quotient algebra KZ∆/I, where I is the homogeneous ideal generated by the so-called
mesh relations. In addition, we present a short list of well known essential properties of
B (Proposition 2.3.1). It is worth mentioning that the algebra B is a graded algebra with
enough idempotents which turns out to be pseudo-Frobenius.

Then, in Subsection 2.3.2, we provide the complete list of them-fold mesh algebras and
we introduce the definition of extended type for such algebras which plays a crucial role
throughout this work. Indeed, all our main results on m-fold mesh algebras in Chapter
3 are given in terms of their extended type. This notion is based in the fact that every
m-fold mesh algebra Λ is isomorphic to an orbit algebra B/G where B is the mesh algebra
associated to a Dynkin diagram ∆ and G is a weakly admissible group of automorphisms
of Z∆ viewed as automorphisms of B. Moreover, it is a well known fact that Λ admits as a
Galois cover its corresponding mesh algebra B. With the idea of simplifying calculations,
we end Section 2.3 by performing a change of relations which, roughly speaking, transforms
sums of paths of length 2 into differences.

The main result of this chapter, which appears in Section 2.4, is Theorem 2.4.2 where
we explicitly define, for any choice of (∆, G), a graded Nakayama automorphism η of B
satisfying the property of being G-invariant. Here G-invariant means that η commutes
with the elements in G. As a consequence, we derive a precise formula for the graded
Nakayama automorphism of any m-fold mesh algebra.

The aforemention Theorem is the following:

THEOREM. Let ∆ be a Dynkin quiver with the labeling of vertices and the
orientation of the arrows of Subsection 2.3.1, and let G =< ϕ > be a weakly
admissible automorphism of Z∆. If η is the graded automorphism of B which
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acts as the Nakayama permutation on the vertices and acts on the arrows as
indicated in the following list, then η is a Nakayama automorphism of B such
that η ◦ g = g ◦ η, for all g ∈ G.

1. When ∆ = An and ϕ is arbitrary, η(α) = ν(α) for all α ∈ (Z∆)1

2. When ∆ = Dn+1:

(a) If n+ 1 ≥ 4 and ϕ = τm then:

i. η(α) = −ν(α), whenever α : (k, i) −→ (k, i + 1) is an upward
arrow with i ∈ {2, ..., n − 1}.

ii. η(α) = ν(α), whenever α : (k, i) −→ (k + 1, i − 1) is downward
arrow with i ∈ {3, ..., n}.

iii. η(εi) = (−1)iν(εi), for the arrow εi : (k, 2) −→ (k, i) (i = 0, 1),

iv. η(ε′i) = (−1)i+1ν(ε′i), for the arrow ε′i : (k, i) −→ (k + 1, 2)
(i = 0, 1).

(b) If n+ 1 > 4 and ϕ = ρτm then:

i. η(α) = −ν(α), whenever α is an upward arrow as above or α :
(k, i) −→ (k + 1, i − 1) is downward arrow as above such that
k ≡ −1 (mod m).

ii. η(α) = ν(α), whenever α : (k, i) −→ (k + 1, i − 1) is downward
arrow such that k 6≡ −1 (mod m)

iii. For the remaining arrows, if q and r are the quotient and rest of
dividing k by m, then
η(εi) = (−1)q+iν(εi) (i = 0, 1).
η(ε

′

i) = (−1)q+i+1ν(ε
′

i), when r 6= m−1, and η(ε
′

i) = (−1)q+iν(ε
′

i)
otherwise

(c) If n+ 1 = 4 and ϕ = ρτm (see the convention 2.3.7), then:

i. η(εi) = ν(ǫi), whenever ǫi : (k, 2)→ (k, i) (i = 0, 1, 3)

ii. η(ε′i) = −ν(ε
′
i), whenever ǫ

′
i : (k, i)→ (k + 1, 2) (i = 0, 1, 3).

3. When ∆ = E6:

(a) If ϕ = τm then:

i. η(α) = ν(α) and η(α
′
) = −ν(α

′
), where α : (k, 1) → (k, 2) and

α
′
: (k, 2)→ (k + 1, 1).

ii. η(β) = ν(β) and η(β
′
) = −ν(β

′
), where β : (k, 2) → (k, 3) and

β
′
: (k, 3)→ (k + 1, 2).

iii. η(γ) = ν(γ) and η(γ
′
) = −ν(γ

′
), where γ : (k, 3) → (k, 4) and

γ
′
: (k, 4)→ (k + 1, 3).

iv. η(δ) = −ν(δ) and η(δ
′
) = ν(δ

′
), where δ : (k, 4) → (k, 5) and

δ
′
: (k, 5)→ (k + 1, 4).

v. η(ε) = −ν(ε) and η(ε
′
) = ν(ε

′
), where ε : (k, 3) → (k, 0) and

ε
′
: (k, 0)→ (k + 1, 3).

(b) If ϕ = ρτm, (k, i) is the origin of the given arrow, q and r are the
quotient and rest of dividing k by m, then:
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i. η(α) = ν(α).

ii. η(α
′

) = −ν(α
′

).

iii. η(β) = (−1)qν(β)

iv. η(β
′

) = (−1)q+1ν(β
′

)

v. η(γ) = (−1)qν(γ)

vi. η(γ
′
) = ν(γ

′
), when either q is odd and r 6= m − 1 or q is even

and r = m− 1, and η(γ
′

) = −ν(γ
′

) otherwise.

vii. η(δ) = −ν(δ)

viii. η(δ
′
) = ν(δ

′
).

ix. η(ε) = −ν(ε)

x. η(ε
′
) = −ν(ε

′
), when r = m− 1, and η(ε

′
) = ν(ε

′
) otherwise.

4. When ∆ = E7, ϕ = τm, and then:

i η(a) is given as in 3.(a) for any arrow a contained in the copy of E6.

ii η(ζ) = ν(ζ) and η(ζ
′
) = −ν(ζ

′
), where ζ : (k, 5) → (k, 6) and ζ

′
:

(k, 6) → (k + 1, 5).

5. When ∆ = E8, ϕ = τm, and then:

i η(a) is given as in 4 for any arrow a contained in the copy of E7.

ii η(θ) = ν(θ) and η(θ
′

) = −ν(θ
′

), where θ : (k, 6) → (k, 7) and θ
′

:
(k, 7) → (k + 1, 6).

Chapter 3:

The results in this chapter deal with questions 1, 2 and 3. We start the chapter by
proving two key results. The first of them (Lemma 3.2.1) determines in particular when
two G-invariant automorphisms of the mesh algebra B induce, up to conjugation, the
same automorphism of the m-fold mesh algebra Λ = B/G. The second one (Proposition
3.2.2) identifies the subgroup H consisting of the integers s such that the Nakayama
automorphism and the Nakayama permutation of Λ, η̄ and ν̄ respectively, coincide, up to
inner automorphism, in their s-th power. That is, H consists of the s ∈ Z such that η̄sν̄−s

is a inner automorphism of Λ. The subgroup H is crucial for our purposes in this chapter.

With all our tools in place, Section 3.3 is devoted to answer question 3. The only theo-
rem of this section identifies all symmetric and weakly symmetric m-fold mesh algebras:

THEOREM. Let Λ be an m-fold mesh algebra of extended type (∆,m, t) and
c∆ be the Coxeter number of ∆. If Λ is weakly symmetric then t = 1 or
t = 2 and, when char(K) = 2 or ∆ = Ar, such an algebra is also symmetric.
Moreover, the following assertions hold:

1. When t = 1, Λ is weakly symmetric if, and only if, ∆ is D2r, E7 or E8 and
m is a divisor of c∆2 −1. When char(K) 6= 2, such an algebra is symmetric
if, and only if, m is even.
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2. When t = 2 and ∆ 6= A2n, Λ is weakly symmetric if, and only if, m
divides c∆

2 − 1 and, moreover, the quotient of the division is odd, in case
∆ = A2n−1, and even, in case ∆ = D2r. When char(K) 6= 2, such an
algebra is symmetric if, and only if, ∆ = A2n−1 or m is odd.

3. When (∆,m, t) = (A2n,m, 2), i.e. Λ = L
(m)
n , the algebra is (weakly)

symmetric if, and only if, 2m− 1 divides 2n− 1.

In Section 3.4 we determine the period and the Calabi-Yau dimension of allm-fold mesh
algebras. First, in Subsection 3.4.1 we calculate explicitly the initial part of a ’G-invariant’
minimal projective resolution of B as a graded B-bimodule. We prove in particular that
Ω3
Be(B) is always isomorphic to µB1, for a graded automorphism µ of B which is in the

centralizer of G and which is explicitly calculated (Proposition 3.4.3). As a consequence
of the G-invariance of our previous results, we get that the induced automorphism µ̄ of
Λ = B/G has the property that Ω3

Λe(Λ) ∼= µ̄Λ1 and this is fundamental in the rest of the
work.

Next, we introduce the concept of stably inner automorphism which is, in general, a
weaker condition than the condition of inner automorphism. Concretely, we shall say that
an automorphism σ of Λ is stably inner if the functor σ(−) ∼=σ Λ1 ⊗Λ − : Λ −mod −→
Λ −mod is naturally isomorphic to the identity functor. However, regarding the m-fold
mesh algebras, both concepts coincide in many cases. For instance, when the algebra Λ
has Loewy length greater or equal than 4 (see Lemma 3.4.6).

We answer the questions 1 and 2 in Subsections 3.4.3 and 3.4.4. In the first one we
compute explicitly the period of every m-fold mesh algebra, that is, the smallest positive
integer r such that ΩrΛe(Λ) is isomorphic to Λ as a Λ-bimodule. We first distinguish the
case ∆ = A2 (Proposition 3.4.8), where the algebra has Lowey length 2:

PROPOSITION. Let Λ be a connected self-injective algebra of Loewy length 2.
The following assertions hold:

1. If char(K) = 2 or Λ = A
(m)
2 , i.e. |Q0| is even, then the period of Λ is |Q0|.

2. If char(K) 6= 2 and Λ = L
(m)
1 , i.e. |Q0| is odd, then the period of Λ is

2|Q0|.

We deal with the remaining cases in Theorem 3.4.12, whose statement in characteristic
6= 2 is the following:

THEOREM. Let Λ be an m-fold mesh algebra of extended type (∆,m, t),
where ∆ 6= A1,A2, let π = π(Λ) denote the period of Λ and, for each positive
integer k, denote by O2(k) the biggest of the natural numbers r such that 2r

divides k. When char(K) 6= 2, the period of Λ is given as follows:

1. If t = 1 then:

(a) When ∆ is Ar, D2r−1 or E6, the period is π = 6m
gcd(m,c∆) .
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(b) When ∆ is D2r, E7 or E8, the period is π = 3m
gcd(m,

c∆
2
)
, when m is

even, and π = 6m
gcd(m,

c∆
2
)
, when m is odd.

2. If t = 2 then:

(a) When ∆ is A2n−1, D2r−1 or E6, the period is 6m
gcd(2m,m+

c∆
2
)
, when

O2(m) 6= O2(
c∆
2 ), and π = 12m

gcd(2m,m+
c∆
2
)
otherwise.

(b) When ∆ = D2r, the period is 6m
gcd(2m,

c∆
2
)
= 6m

gcd(2m,2r−1) .

(c) When ∆ = A2n, i.e. Λ = L
(m)
n , the period is π = 6(2m−1)

gcd(2m−1,2n+1)

3. If t = 3 then π = 3m, when m is even, and 6m, when m is odd.

At the end of the chapter, where we study Calabi-Yau dimensions, we emphasize two
results. On one hand, combining the following propositions, we find the precise relation
between the stable Calabi-Yau and the Calabi-Yau Frobenius dimensions of an m-fold
mesh algebra showing that both dimensions may differ when ∆ = A2 but are always equal
when ∆ 6= Ar, for r = 1, 2.

PROPOSITION. Let Λ be a connected self-injective algebra of Loewy length
2. Then Λ is always a stably Calabi-Yau algebra and the following equalities
hold:

1. If char(K) = 2 or Λ = A
(m)
2 , i.e. |Q0| is even, then CY − dim(Λ) =

CY F − dim(Λ) = 0.

2. If char(K) 6= 2 and Λ = L
(m)
1 , i.e., |Q0| odd, then CY − dim(Λ) = 0 and

CY F − dim(Λ) = 2m− 1 = |Q0|.

PROPOSITION. Let Λ be an m-fold mesh algebra of Dynkin type ∆ different
from Ar, for r = 1, 2, 3. Then Λ is stably Calabi-Yau if, and only if, it is Calabi-
Yau Frobenius. In such case the equality CY −dim(Λ) = CY F−dim(Λ) holds.

To end this chapter and also the first part of this thesis, we provide for the class
of the m-fold mesh algebras, a criterion to determine when they are stably Calabi-Yau
together with an identification in such case of the stable Calabi-Yau dimension. Corollary
3.4.18 deals with the case when K has characteristic 2. When char(K) 6= 2, we have the
following:

THEOREM. Let us assume that char(K) 6= 2 and let Λ be the m-fold mesh
algebra of extended type (∆,m, t), where ∆ 6= A1,A2. We adopt the convention
that if a, b, k are fixed integers, then au ≡ b (mod k) means that u is the
smallest positive integer satisfying the congruence. The algebra is Calabi-
Yau Frobenius if, and only if, it is stably Calabi-Yau. Moreover, we have
CY F − dim(Λ) = CY − dim(Λ) and the following assertions hold:

1. If t = 1 then
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(a) When ∆ is Ar, D2r−1 or E6, the algebra is stably Calabi-Yau if, and
only if, gcd(m, c∆) = 1. Then CY −dim(Λ) = 6u+2, where c∆u ≡ −1
(mod m).

(b) When ∆ is D2r, E7 or E8, the algebra is stably Calabi-Yau if, and
only if, gcd(m, c∆2 ) = 1. Then:

i. CY − dim(Λ) = 3u+ 2, where c∆
2 u ≡ −1 (mod m), whenever m

is even;

ii. CY − dim(Λ) = 6u+ 2, where c∆u ≡ −1 (mod m), whenever m
is odd;

2. If t = 2 then

(a) When ∆ is A2n−1, D2r−1 or E6, the algebra is stably Calabi-Yau if,
and only if, gcd(2m,m + c∆

2 ) = 1. Then CY − dim(Λ) = 3u + 2,
where (m+ c∆

2 )u ≡ −1 (mod 2m).

(b) When ∆ = D2r, the algebra is stably Calabi-Yau if, and only if,
gcd(m, 2r−1) = 1 and m is odd. Then CY −dim(Λ) = 3u+2, where
(2r − 1)u ≡ −1 (mod 2m).

(c) When ∆ = A2n, the algebra is stably Calabi-Yau if, and only if,
gcd(2m − 1, 2n + 1) = 1. Then CY − dim(Λ) = 6u − 1, where
(m+ n)(2u− 1) ≡ −1 (mod 2m− 1)

3. If t = 3 then the algebra is not stably Calabi-Yau.

The results of Chapters 1, 2 and 3 appear in [5].

Chapter 4:

The three last chapters of this dissertation deal with the question 4 mentioned above,
that is, the study of the Hochschild cohomology ring of the m-fold mesh algebras of
extended type (A2n, 1, 2) and (A2n−1, 1, 2), known as the generalized preprojective algebras
Ln and Bn, respectively. We start with the introductory Chapter 4, where we briefly
present the notions and results needed to approach the problem. Hence, in the first section
we recall the notion of the Yoneda product of extensions and we define the fundamental
concept of the Hochschild cohomology ring of an algebra Λ which will be denoted by
HH∗(Λ). Initially, Λ will be an algebra over a commutative ring R that, in addition, it
is supposed to be projective as an R-module. Later in this work, we will assume that
R is a field and, in order to emphasize this fact, we will write R = K in such case. In
Section 4.3 we introduce the stable Hochschild cohomology ring of an R-algebra Λ, which
is also supposed to be Gorenstein projective as Λ-bimodule, denoted by HH∗(Λ). When
the algebra is symmetric, for instance, when Λ = Ln or Λ = Bn with n even, we obtain
that HH∗(Λ) ∼= D(HH∗(Λ)) as HH∗(Λ)-modules. Also, in Section 4.4 we show that,
apart from the homological grading in which HHn(Λ) is the homogeneous component of
degree n, the ring HH∗(Λ) inherits the grading by path length of Λ, making HH∗(Λ)
into a bigraded (= Z × Z graded) R-algebra . In Section 4.5 we review the notion and
essential properties of Frobenius algebras, as introduced by Eu-Schedler in [35]. It is worth
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mentioning that when Λ is a Frobenius algebra, then the stable Hochschild cohomology
ring HH∗(Λ) is graded-commutative (Proposition 4.5.2) and also a localization of its
classical version (Proposition 4.5.6). Finally, we include Section 4.6, which is devoted to
self-injective algebras. Most of the results given in this section are easy applications of the
results obtained in Chapter 1 on pseudo-Frobenius algebras.

Chapter 5:

The results in this chapter, concerning the study of the Hochschild cohomology ring of
the generalized preprojective algebra Ln over a commutative ring R, appear in [3] and [4]
for the cases when the characteristic is different and equal to 2, respectively. Specifically,
we describe its structure as a bigraded algebra under the Yoneda product by giving an
explicit presentation by homogeneous generators and relations. It is important to keep in
mind two considerations regarding the case Ln. On one hand, our approach to the proof
of the main theorem is to first prove it when R is a field, and then to deduce from this the
general statement when R is a commutative ring on which 2 is invertible. On the other
hand, we shall point out that the results of this chapter were obtained before we realized
about the change of relations that simplifies some calculations and which is presented in
Subsection 2.3.3 of this thesis. Thus, throughout this chapter we will consider the original
mesh relations, given as sums of paths instead of differences.

As usual, we separate the case when the field has characteristic 2 from the rest (see
Section 5.5). The most remarkable difference is that, when the characteristic is different
from 2, the algebra Ln has period 6 while, on the contrary, the period is exactly 3 when
Char 6= 2. As we mentioned in the first part of the introduction, this periodicity is
translated to the cohomology groups. In Section 5.2 we provide the elements needed for our
calculations: we begin the section by introducing the definition of the algebra Ln given by
its quiver and relations and then, since it is symmetric, we show the dualizable basis which
will be used. Next, we give the minimal projective resolution of the algebra as a graded
bimodule that induces the cochain complex calculating the cohomology (Proposition 3.4.2).

With all our tools in place, we proceed to calculate the dimensions of the Hochschild
(co)homology spaces, as well as the cyclic homology spaces in zero characteristic. In
particular, putting Λ := Ln, we give a canonical basis of each HH i(Λ) consisting of
homogeneous elements with respect to the length degree (Proposition 5.3.10). This is done
by identifying previously the structure of each HH i(Λ) as a module over Z(Λ) = HH0(Λ).

The main result of this chapter, given in Section 5.4 and which shows the multiplicative
structure of de HH∗(Λ), is Theorem 5.4.1, from which we obtain a presentation of the
stable Hochschild cohomology ring of Λ, HH∗(Λ), given by generators and relations.

THEOREM. Let Λ be the generalized preprojective algebra Ln over a commu-
tative ring R on which 2 is invertible. The following assertions hold for the
Hochschild cohomology ring HH∗(Λ):

1. HH∗(Λ) is the commutative bigraded R-algebra given by
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a) Generators: x0, x1, . . . , xn, y, z1, . . . , zn, t1, t2, . . . tn−1, γ, h

b) Relations:

i) xiξ = 0 for each i = 1, . . . , n and each generator ξ.

ii) xn0 = y2 = x0zj = x0ti = yti = titk = 0 , (j = 1, . . . , n i, k =
1, . . . n− 1)

iii) zjzk = (−1)k−j+1(2j − 1)(n − k + 1)xn−1
0 γ, for 1 ≤ j ≤ k ≤ n.

iv) zjγ = (−1)j(n − j + 1)xn−1
0 h, for j = 1, ..., n

v) γ2 = z1h

vi) yzj = (2n + 1)
∑

1≤k≤j−1(−1)
j−k(j − k)tk + (−1)j−1(2j − 1)yz1,

for j = 2, ..., n

vii) zktj = δjkx
n−1
0 yγ, for k = 1, . . . , n j = 1 . . . , n− 1

viii) tjγ = δ1jx
n−1
0 yh, for j = 1, . . . , n− 1.

2. The homological grading on HH∗(Λ) is determined by the equalities
deg(xi) = 0, deg(y) = 1, deg(zj) = 2, deg(tk) = 3, deg(γ) = 4 and
deg(h) = 6.

3. The length grading on HH∗(Λ) is determined by the equalities ldeg(x0) =
2, ldeg(xi) = 2n− 1, for i 6= 0, ldeg(y) = 0, ldeg(zj) = −2, ldeg(tk) = −2,
ldeg(γ) = −2n− 2 and ldeg(h) = −4n− 2.

4. Multiplication by h gives an isomorphism HH i(Λ)
∼=
−→ HH i+6(Λ), for

each i > 0.

5. All HH i(Λ) are free R-modules, and the following are bases for them (see
Proposition 5.3.10):

(a) For HH0(Λ): {x0, x
2
0, . . . , x

n−1
0 , x1, . . . , xn}.

(b) For HH1(Λ): {y, x0y, x
2
0y, . . . x

n−1
0 y}.

(c) For HH2(Λ): {z1, . . . , zn}.

(d) For HH3(Λ): {t1, . . . , tn−1, yz1}.

(e) For HH4(Λ): {xn−1
0 γ, . . . , x0γ, γ}.

(f) For HH5(Λ): {xn−1
0 yγ, . . . , x0yγ, yγ}.

(g) For HH6(Λ): {h, x0h, . . . , x
n−1
0 h}.

In particular dim(HH0(Λ)) = 2n and dim(HH i(Λ)) = n, for all i > 0,
where dim(−) denotes the rank as a free R-module.

We end the chapter with Section 5.5 where we present the analogous result to the
previous theorem when the field K has characteristic 2 (Theorem 5.5.1).

Chapter 6:

In this final chapter we complete the answer to question 4 by the study of the Hochschild
cohomology ring of the generalized preprojective algebra Bn over a field of characteristic
different from 2. In such case, due to Theorem 3.4.12 we know that Bn has period 6 and,
consequently, the cohomology spaces have also period 6. The strategy used in this last
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chapter is rather different from the previous one. Unlike the case Ln, where the algebra
was given by its quiver and relations with no mention to its relationship with the stable
translation quiver ZA2n, Bn will be considered as the orbit algebra ZA2n−1/〈ρτ〉 where τ
and ρ are the Auslander-Reiten translation and the automorphism given by the natural
reflection of ZA2n−1, respectively, or equivalently, considered as the m-fold mesh algebra
of extended type (A2n−1, 1, 2) (see Subsection 6.5.1). The advantage in this case is that
we can use the results obtained in the first three chapters in order to get relevant informa-
tion for our purposes. In Section 6.5.2 and using Theorem 6.5.3, we compute the Cartan
matrix of Bn. In Subsection 6.5.4, and from the projective resolution of the mesh algebra
B = B(A2n−1) as B-bimodule, we describe that of Bn which induces, as shown in Sub-
section 6.5.5, the cochain complex that induces in turn the Hochschild cohomology. We
continue with Section 6.6 where, putting Λ = Bn, we identify the structure of each coho-
mology space HH i(Λ) as Z(Λ)-bimodule and, as a necessary tool, the ideal I = P(Λ,Λ) of
Z(Λ) = EndΛe(Λ) consisting of all endomorphisms of Λ as a bimodule that factor through
a projective bimodule. This description depends on the parity of n, which is basically due
to the fact that the Nakayama automorphism is the identity when n is even and τ when n
is odd. That is, Λ is symmetric when n is even but it is not even weakly symmetric when
n is odd. To end the chapter, and therefore this thesis, throughout Section 6.7 we present
the two major results (for n odd and n even) which describe by means of generators and
relations the structure as a bigraded algebra of the Hochschild cohomology ring HH∗(Λ)
over a field of characteristic 6= 2.

Theorem 6.7.1 deals with the case n odd:

THEOREM. Let n be odd and let Λ be the generalized preprojective algebra
Bn over a field of characteristic 6= 2 and let view HH∗(Λ) as a bigraded algebra
(see Section 2). Consider the following elements of HH∗(Λ):

a) x =
∑

3≤i≤2n−3 ci ∈ HH0(Λ) = Z(Λ), where ci is the nonzero cycle of
length 4 at i;

b) y ∈ HH1(Λ) represented by ỹ : ⊕a∈Q1Λei(a)⊗et(a)Λ −→ Λ, where ỹ(ei(a)⊗
et(a)) = a, for all a ∈ Q1;

c) h ∈ HH6(Λ) represented by the multiplication map ⊕i∈Q0Λei⊗eiΛ −→ Λ;
and

d) In case char(K) divides n, the element v ∈ HH5(Λ) represented by ṽ :
⊕i∈Q0Λeη(i)⊗ eiΛ = ⊕i∈Q0Λeτ(i)⊗ eiΛ −→ Λ, where ṽ(eτ(i)⊗ ei) = δinen,
for all i ∈ Q0, and δin is the Kronecker symbol.

Then we have bideg(x) = (0, 4), bideg(y) = (1, 0), bideg(h) = (6,−4n) and
bideg(v) = (5,−2n − 2) and the following assertions hold:

1. If char(K) does not divide n, then HH∗(Λ) is the commutative bigraded
algebra with generators x, y, h, subject to the relations:
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x
n+1
2 = 0, x

n−1
2 y = 0, x

n−1
2 h = 0 and y2 = 0.

2. If char(K) divides n, then HH∗(Λ) is the commutative bigraded algebra
with generators x, y, v, h, subject to the relations

x
n+1
2 = 0, x

n−1
2 y = 0, xv = 0, y2 = 0, yv = 0 and v2 = 0.

When n is even, the result is the following (Theorem 6.7.10)

THEOREM. Let n be even, let Λ = Bn be the generalized preprojective
algebra over a field of characteristic 6= 2 and let view HH∗(Λ) as a bigraded
algebra (see Section 2). Consider the following elements of HH∗(Λ):

1) x, x1, ..., x2n−1 of HH0(Λ) = Z(Λ) given as follows:

(a) x =
∑

3≤i≤2n−3 ci, where ci is the nonzero cycle of length 4 at i;

(b) {x1, ..., xn−2} given by x2k = ω2k and x2k−1 =
∑k

r=1 ω2r−1, for all
0 < k < n

2 ;

(c) xn−1 =
∑

1≤k≤n
2
(ω2k−1 − ω2n−2k+1), xn = ωn and xi = ωi + ω2n−i,

for all n < i ≤ 2n− 1.

2) y ∈ HH1(Λ) represented by ỹ : ⊕a∈Q1Λei(a)⊗et(a)Λ −→ Λ, where ỹ(ei(a)⊗
et(a)) = a;

3) z ∈ HH2(Λ) represented by z̃ : ⊕i∈Q0Λeτ(i) ⊗ eiΛ −→ Λ, where z̃(eτ(i) ⊗
ei) = δinen;

4) t ∈ HH3(Λ) represented by t̃ : ⊕i∈Q0Λeτ(i) ⊗ eiΛ −→ Λ, where t̃(eτ(i) ⊗
ei) = δinwn;

5) u ∈ HH4(Λ) represented by ũ = ⊕a∈Q1Λeτ(i(a)) ⊗ et(a)Λ −→ Λ, where

ũ(eτ(i(a)) ⊗ et(a)) =
1
2δa,αnαn −

1
2δa,βnβn−1;

6) v1, ..., vn−2 ∈ HH
5(Λ), with each vj is represented by ṽj = ⊕i∈Q0Λei ⊗

eiΛ −→ Λ, where:

(a) ṽj(ei ⊗ ei) = (δij − δi,2n−j)ei, whenever j is even;

(b) ṽj(ei ⊗ ei) = (δij − δi,j+2 − δi,2n−j + δi,2n−j−2)ei, whenever j is odd.

7) h ∈ HH6(Λ) represented by the multiplication map h̃ : ⊕i∈Q0Λei ⊗
eiΛ −→ Λ.

The length degrees of these elements are ldeg(x) = 4, ldeg(xi) = 2n − 2,
ldeg(y) = 0, ldeg(z) = ldeg(t) = −2, ldeg(u) = −2n, ldeg(vj) = −2n − 2 and
ldeg(h) = −4n.

Moreover, as an algebra, HH∗(Λ) is generated by these elements, subject to
the graded commutativity relations with respect to the homological grading
plus the following relations:

a) x
n
2 = xz = xt = xvi = 0
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b) xiξ = 0, for each generator ξ, except in case i ≤ n−2 and ξ = vi or ξ = h

c) xivi = x
n
2
−1yu, for all i ≤ n− 2.

d) y2 = yt = 0

e) yz = −nt

f) yv2k = 4nx2k−1h and yv2k−1 = −4nx2kh, for all 1 ≤ k <
n
2

g) z2 = −nx
n
2
−1u

h) zt = x
n
2
−1yu

i) zvj = 0, for all j = 1, ..., n − 2

j) zu = 0

k) t2 = tu = tvj = 0, for all j = 1, ..., n − 2

l) u2 = 0

m) uvj = 0, for all j = 1, ..., n − 2

n) v2kvj = 4nδ2k−1,jx
n
2 uh, for all 1 ≤ k < n

2 and j = 1, 2, ..., n − 2.

Notice that Chapters 5 and 6 make clear differences in the behaviour of the Hochschild
cohomology ring HH∗(Λ) for Λ = Ln and Bn, and, moreover, between the cases n odd
and n even of Bn. For instance, for Ln, HH

∗(Λ) is always commutative, as it is for Bn,
when n is odd. However, for Bn with n even, and unless Char(K) divides n, the algebra
HH∗(Λ) is not commutative anymore.

We include at the end of this dissertation the reference list that we have used.
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Chapter 1

Pseudo-Frobenius graded algebras
with enough idempotents

1.1 Introduction

1.1.1 Motivation

As we mention in the introduction, any finite dimensional mesh algebra (i.e. m-fold mesh
algebra) comes from the mesh algebra of an infinite translation quiver, an algebra with
enough idempotents, which satisfies the property of being pseudo-Frobenius. It turns
out then that m-fold mesh algebras can be basically understood at the level of their
corresponding Galois covers. This motivates the study of the pseudo-Frobenius condition
on an algebra with enough idempotents, specially in the case when the algebra is also
endowed with a gradation.

1.1.2 Outline of the chapter

In Section 1.2 we establish some notation and we briefly review the notion of graded
algebra, recalling that it is in correspondence with that of small graded K-category. We
will not provide proofs, but we will give classical references where it can be found. In
Section 1.3 we introduce and develop the concept of pseudo-Frobenius graded algebra
with enough idempotents. We characterize such algebras and, in addition, we guarantee
the existence of the so-called Nakayama automorphism. Section 1.4 is devoted to the study
of the preservation of the pseudo-Frobenius condition via the usual covering functor. In
particular, we give a necessary condition on the Galois cover of any m-fold mesh algebra
so that the associated covering preserves the pseudo-Frobenius condition. Furthermore,
under the previous hypothesis, we show that the Nakayama automorphism of the m-fold
mesh algebra is induced by the Nakayama automorphism of its Galois cover.

1.1.3 Notation

Throughout this chapter,K is a field and the term ’algebra’ will mean always an associative
K-algebra. Recall that such an algebra A is said to be an algebra with enough idempotents,

1
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when there is a family (ei)i∈I of nonzero orthogonal idempotents such that ⊕i∈IeiA = A =
⊕i∈IAei. Any such family (ei)i∈I will be called a distinguished family. From now on in
this chapter A is an algebra with enough idempotents on which we fix a distinguished
family of orthogonal idempotents.

All considered (left or right) A-modules are supposed to be unital. For a left (resp.
right) A-module M , that means that AM = M (resp. MA = M) or, equivalently, that
M = ⊕i∈IeiM (resp. M = ⊕i∈IMei). We denote by A−Mod and Mod−A the categories
of left and right A-modules, respectively.

The enveloping algebra of A is the algebra Ae = A ⊗ Aop, where if a, b ∈ A we will
denote by a ⊗ bo the corresponding element of Ae. This is also an algebra with enough
idempotents. The distinguished family of orthogonal idempotents which we will work with
is the family (ei ⊗ e

o
j)(i,j)∈I×I . A left Ae-module M will be identified with an A-bimodule

by putting axb = (a ⊗ bo)x, for all x ∈ M and a, b ∈ A. Similarly, a right Ae-module is
identified with an A-bimodule by putting axb = x(b⊗ ao), for all x ∈M and a, b ∈ A. In
this way, we identify the three categories Ae−Mod, Mod−Ae and A−Mod−A, where the
last one is the category of unitary A-bimodules, which we will simply name ’bimodules’.

1.2 Preliminaries

1.2.1 Graded algebras with enough idempotents

We start by fixing some notation and basic definitions concerning graded algebras with
enough idempotents. Let H be an abelian group with additive notation, fixed throughout
this paragraph. An H-graded algebra with enough idempotents will be an algebra with
enough idempotents A, together with an H-grading A = ⊕h∈HAh, such that one can
choose a distinguished family of orthogonal idempotents which are homogeneous of degree
0. Such a family (ei)i∈I will be fixed from now on. We will denote by A − Gr (resp.
Gr − A) the category (H-)graded (always unital) left (resp. right) modules, where the
morphisms are the graded homomorphisms of degree 0. A locally finite dimensional left
(resp. right) graded A-module is a graded module M = ⊕h∈HMh such that, for each i ∈ I
and each h ∈ H, the vector space eiMh (resp. Mhei) is finite dimensional. Note that the
definition does not depend on the distinguished family (ei). We will denote by A− lfdgr
and lfdgr −A the categories of left and right locally finite dimensional graded modules.

Given a graded left A-moduleM , we denote by D(M) the subspace of the vector space
HomK(M,K) consisting of the linear forms f : M −→ K such that f(eiMh) = 0, for all
but finitely many (i, h) ∈ I ×H. The K-vector space D(M) has a canonical structure of
graded right A-module given as follows. The multiplication D(M) × A −→ D(M) takes
(f, a)  fa, where (fa)(x) = f(ax) for all x ∈ M . Note that then one has fei = 0,
for all but finitely many i ∈ I, and f =

∑
i∈I fei. Therefore D(M) is unital. On the

other hand, if we put D(M)h := {f ∈ D(M) : f(Mk) = 0, for all k ∈ H \ {−h}}, we get a
decomposition D(M) = ⊕h∈HD(M)h which makes D(M) into a graded right A-modules.
Note that D(M)hei can be identified with HomK(eiM−h,K), for all (i, h) ∈ I × H. We
will call D(M) the dual graded module of M .

Recall that if M is a graded A-module and k ∈ H is any element, then we get a graded
module M [k] having the same underlying ungraded A-module as M , but where M [k]h =
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Mk+h for each h ∈ H. If M and N are graded left A-modules, then HOMA(M,N) :=
⊕h∈HHomA−Gr(M,N [h]) has a structure of graded K-vector space, where the homoge-
neous component of degree h is precisely HOMA(M,N)h := HomA−Gr(M,N [h]), i.e.,
HOMA(M,N)h consists of the graded homomorphisms M −→ N of degree h. The follo-
wing is an analogue of classical results for associative rings with unit, whose proof can be
easily adapted (see, e.g., [8], Section II.3 and [65], Proposition I.2.14 et sqq.).

Proposition 1.2.1. The assignment M  D(M) extends to an exact contravariant K-
linear functor D : A − Gr −→ Gr − A (resp. D : Gr − A −→ A − Gr) satisfying the
following properties:

1. The maps σM : M −→ D2(M) := (D ◦ D)(M), where σM (m)(f) = f(m) for
all m ∈ M and f ∈ D(M), are all injective and give a natural transformation
σ : 1A−Gr −→ D2 := D ◦D (resp. σ : 1Gr−A −→ D2 := D ◦D)

2. If M is locally finite dimensional then σM is an isomorphism

3. The restrictions of D to the subcategories of locally finite dimensional graded A-

modules define mutually inverse dualities D : A− lfdgr
∼=op

←→ lfdgr −A : D.

4. If M and N are a left and a right graded A-module, respectively, then there is an
isomorphism of graded K-vector spaces

ηM,N : HOMA(M,D(N)) −→ D(N ⊗AM),

which is natural on both variables.

When A = ⊕h∈HAh and B = ⊕h∈HBh are graded algebras with enough idempotents,
the tensor algebra A ⊗ B inherits a structure of graded H-algebra, where (A ⊗ B)h =
⊕s+t=hAs ⊗ Bt. In particular, this applies to the enveloping algebra Ae and, as in the
ungraded case, we will identify the categories Ae −Gr (resp. Gr − Ae) and A −Gr − A
of graded left (resp. right) A-modules and graded A-bimodules. We will denote by A −
lfgr−A the full subcategory of A−Gr−A consisting of locally finite dimensional graded
A-bimodules.

Remark 1.2.2. If M is a graded A-bimodule and we denote by D(AM), D(MA) and
D(AMA), respectively, the duals of M as a left module, right module or bimodule, then
D(AMA) = D(AM) ∩D(MA) and, in general, D(AM) and D(MA) need not be the same
vector subspace of HomK(M,K). However, they are equal if the following two properties
hold:

1. For each (i, h) ∈ I ×H, there are only finitely many j ∈ I such that eiMhej 6= 0

2. For each (i, h) ∈ I ×H, there are only finitely many j ∈ I such that ejMhei 6= 0.

Remark 1.2.3. When H = 0, we have A−Gr = A−Mod and D(M) = {f :M −→ K :
f(eiM) = 0, for almost all i ∈ I}.
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Definition 1. Let A = ⊕h∈HAh be a graded algebra with enough idempotents. It will be
called locally finite dimensional when the regular bimodule AAA is locally finite dimen-
sional, i.e., when eiAhej is finite dimensional, for all (i, j, h) ∈ I × I ×H. Such a graded
algebra A will be called graded locally bounded when the following two conditions hold:

1. For each (i, h) ∈ I ×H, the set I(i,h) = {j ∈ I : eiAhej 6= 0} is finite

2. For each (i, h) ∈ I ×H, the set I(i,h) = {j ∈ I : ejAhei 6= 0} is finite.

Remark 1.2.4. For H = 0, the just defined concepts are the familiar ones of locally finite
dimensional and locally bounded, introduced in the language of K-categories by Gabriel
and collaborators (see, e.g., [13]).

1.2.2 Graded algebras with enough idempotents versus
graded K-categories

In this subsection we remind the reader that graded algebras with enough idempotents
can be looked at as small graded K-categories, and viceversa.

A category C is a K-category if C(X,Y ) is a K-vector space, for all objects X,Y ,
and the composition map C(Y,Z) × C(X,Y ) → C(X,Z) is K-bilinear, for all X,Y,Z ∈
Ob(C). If now H is a fixed additive abelian group, then C is a (H−) graded K-category
if C(X,Y ) = ⊕h∈HCh(X,Y ) is a graded K-vector space, for all X,Y ∈ Obj(C), and the
composition map restricts to a (K-bilinear) map

Ch(Y,Z)× Ck(X,Y )→ Ch+k(X,Z)

for any h, k ∈ H. There is an obvious definition of graded functor (of degree zero) between
graded K-categories, namely, an additive functor which induces morphisms of graded
K-vector spaces at the level of morphisms.

The prototypical example of graded K-category is (K,H)−GR = K−GR. Its objects
are the H-graded K-vector spaces and, for the morphisms, we define HomK−GR(V,W ) =
⊕h∈HHomK−Gr(V,W [h]), where HomK−Gr(V,W [h]) is the space of K-linear maps of de-
gree h from V toW . The grading on HomK−GR(V,W ) is given by putting, for each h ∈ H,
HomK−GR(V,W )h = HomK−Gr(V,W [h]).

If A = ⊕h∈HAh is a graded algebra with enough idempotents, on which we fix a
distinguished family (ei)i∈I of orthogonal idempotents of degree zero, then we can look at
it as a small graded K-category. Indeed we put Ob(A) = I, A(i, j) = eiAej and take as
composition map ejAek × eiAej −→ eiAek the antimultiplication: b ◦ a := ab.

Conversely, if C is a small graded K-category then R = ⊕X,Y ∈Ob(C)C(X,Y ) is a graded
K-algebra with enough idempotents, where the family of identity maps (1X)X∈Ob(C) is a
distinguished family of homogeneous elements of degree zero. We will call R the functor
algebra associated to C. Let GrFun(C,K − GR) denote the category of graded K-linear
covariant functors, with morphisms the K-linear natural transformations. To each object
F in this category, we canonically associate a graded left R-moduleM(F ) as follows. The
underlying graded K-vector space is M(F ) = ⊕C∈Ob(C)F (C). If f ∈ 1YR1X = C(X,Y )
and z ∈ F (Z), then we define f · z = δXZF (f)(x), where δXZ is the Kronecker symbol.
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Note that f ·x is an element of F (Y ), and if f and x are homogeneous elements, then f ·x
is homogeneous od degree deg(f) + deg(x).

Conversely, given a graded left R-module M , we can associate to it a graded functor
FM : C −→ K − GR as follows. We define FM (X) = 1XM , for each X ∈ Ob(C), and if
f ∈ C(X,Y ) = 1Y R1X is any morphism, then FM (f) : FM (X) −→ FM (Y ) maps x fx.

Given an object X of the graded K-category C, the associated representable functor is
the functor HomC(X,−) : C −→ K −GR which takes Y  C(X,Y ), for each Y ∈ Ob(C).
With an easy adaptation of the proof in the ungraded case (see, e.g., [37][Proposition
II.2]), we get:

Proposition 1.2.5. Let C be a small (H-)graded K- category and let R be its associa-
ted functor algebra. Then the assignments F  M(F ) and M  FM extend to mu-

tually quasi-inverse equivalences of categories GrFun(Cop,K − Gr)
∼=
←→ R − Gr. These

equivalences restrict to mutually quasi-inverse equivalences GrFun(Cop,K − lfdGR)
∼=
←→

R− lfdgr, where K − lfdGR denotes the full graded subcategory of K −GR consisting of
the locally finite dimensional graded K-vector spaces.

These equivalences identify the finitely generated projective R-modules with the direct
summands of representable functors.

Due to the contents of this subsection, we will freely move from the language of graded
algebras with enough idempotents to that of small graded K-categories and viceversa.
In particular, given graded algebras with enough idempotents A and B, we will say that
F : A −→ B is a graded functor if it so when we interpret A and B a small graded
K-categories.

1.3 Pseudo-Frobenius graded algebras

1.3.1 Definition and characterization

We still work with a fixed abelian additive group H and all gradings on algebras and
modules will be H-grading. For the convenience of the reader we start with the following
definition:

Definition 2. A locally finite dimensional graded algebra with enough idempotents A =
⊕h∈HAh will be called weakly basic when it has a distinguished family (ei)i∈I of orthogonal
homogeneous idempotents of degree 0 such that:

1. eiA0ei is a local algebra, for each i ∈ I

2. eiAej is contained in the graded Jacobson radical Jgr(A), for all i, j ∈ I, i 6= j.

It will be called basic when, in addition, eiAhei ⊆ J
gr(A), for all i ∈ I and h ∈ H \ {0}.

We will use also the term ’(weakly) basic’ to denote any distinguished family (ei)i∈I
of orthogonal idempotents satisfying the above conditions.

A weakly basic graded algebra with enough idempotents will be called split when
eiA0ei/eiJ(A0)ei ∼= K, for each i ∈ I.
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With the idea of extending the definition of finite dimensional self-injective algebras,
or more general, that of pseudo-Frobenius rings (cf. [36], V.24.32) to the present context,
it makes sense to define:

Recall that a graded module is finitely cogenerated when it is finitely generated and
its graded socle is essential as a graded submodule.

Definition 3. A weakly basic graded algebra with enough idempotents will be called
graded pseudo-Frobenius if the projective finitely generated objects and the injective
finitely cogenerated objects coincide in A−Gr (resp. Gr −A).

Once we have set a formal definition, it is natural to ask oneself if pseudo-Frobenius
graded algebras with enough idempotents behave similarly to finite dimensional self-
injective algebras. The answer is given throughout the rest of this subsection and, for-
tunately, as in the self-injective case, one can define and even guarantee the existence of
relevant notions as the Nakayama form and automorphism. We first need some prelimi-
naries.

Proposition 1.3.1. Let A = ⊕h∈HAh be a weakly basic locally finite dimensional algebra
with enough idempotents and let (ei) be a weakly basic distinguished family of orthogonal
idempotents. The following assertions hold:

1. Jgr(A)0 is the Jacobson radical of A0.

2. Each indecomposable finitely generated projective graded left A-module is isomorphic
to Aei[h], for some (i, h) ∈ I ×H. Moreover, if Aei[h] and Aej [k] are isomorphic in
A−Gr, then i = j and, in case A is basic, also h = k.

3. Each finitely generated projective graded left A-module is a finite direct sum of graded
modules of the form Aei[h], with (i, h) ∈ I ×H

4. Each finitely generated graded left A-module has a projective cover in the category
A−Gr

5. Each finitely generated projective graded left A-module is the projective cover of a
finite direct sum of graded-simple modules (=simple objects of the category A−Gr).

Moreover, the left-right symmetric versions of these assertions also hold.

Proof. 1) For each left ideal U of A0 one has AU ∩A0 = U . With this in mind, let m be
a maximal graded left ideal of A. Then m0 = A0 ∩m is a proper left ideal of A0 since
A0 contains all the ei. But if m0 ( U , for some proper left ideal U of A0, then AU +m

is a proper graded left ideal of A for its 0-homogeneous component is U +m0 = U . But
we have m ( UA+m, which contradicts the maximality of m. It follows that U cannot
exist, so that m0 is a maximal left ideal of A0. From the equality Jgr(A)0 = ∩mm0,
where m varies on the set of maximal graded left ideals of A, we derive that Jgr(A)0 is
an intersection of maximal left ideal of A0. It follows that J(A0) ⊆ J

gr(A)0.
We claim that this inclusion is actually an equality. Suppose not, so that we have

i, j ∈ I such that eiJ(A0)ej ( eiJ
gr(A)0ej . If i 6= j then, by definition 2, we have
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eiA0ej = eiJ
gr(A)0ej so that we have eiJ(A0)ej ( eiA0ej. As in the case of associative

unital algebras, this implies that A0ei ∼= A0ej or, equivalently, the existence of x ∈ eiA0ej
and y ∈ ejA0ei such that xy = ei and yx = ej . Then the maps ρx : Aei −→ Aej
and ρy : Aej −→ Aei are mutually inverse isomorphisms of graded left A-modules. This
contradicts assertion 2, which is proved below. Therefore we necessarily have i = j. But
then the fact that eiA0ei is a local algebra forces the equality eiJ

gr(A)0ei = eiA0ei, which
implies that Jgr(A) contains the homogeneous idempotent ei. This is clearly absurd.

The proof of the remaining assertions is entirely similar to the one for semiperfect
(ungraded) associative algebras with unit (see, e.g., [52]) and here we only summarize
the adaptation, leaving the details to the reader. For assertion 2), suppose that there is

an isomorphism f : Aei[h]
∼=
−→ Aej [k] in A − Gr, with (i, h), (j, k) ∈ I × H. The map

ρ : eiAk−hej −→ HomA−Gr(Aei[h], Aej [k]), given by ρ(x)(a) = ax, for all a ∈ Aei, is an
isomorphism of K-vector spaces, so that f = ρx, for a unique x ∈ eiAk−hej. Similarly,
there is a unique y ∈ ejAh−kei such that f−1 = ρy. We again get that yx = ei and xy = ej .
If i 6= j, this is a contradiction since eiAej + ejAei ⊆ Jgr(A). Therefore we necessarily
have i = j and, in case A is basic, we also have h = k for otherwise we would have that
yx = ei ∈ J

gr(A), which is absurd.
On the other hand, the map ρ : eiA0ei −→ EndA−Gr(Aei[h]) given above is an isomor-

phism of algebras. Therefore each Aei[h] has a local endomorphism algebra in A − Gr.
Since each finitely generated graded left A-module is an epimorphic image of a finite direct
sum of modules of the form Aei[h], we conclude that the category A−grproj of finitely ge-
nerated projective graded left A-module is a Krull-Schmidt one, with any indecomposable
object isomorphic to some Aei[h]. This proves assertion 2 and 3.

As in the ungraded case, the fact that EndA−Gr(Aei[h]) is a local algebra implies that
Jgr(A)ei[h] is the unique maximal graded submodule of Aei[h]. If Si := Aei/J

gr(A)ei,
then Si[h] is a graded-simple module, for each h ∈ H, and all graded-simple left modules
are of this form, up to isomorphism. Since the projection Aei[h] −→ Si[h] is a projective
cover in A−Gr we conclude that each graded-simple left A-module has a projective cover
in A−Gr. From this argument we immediately get assertion 5, while assertion 4 follows
as in the ungraded case.

Finally, the definition of weakly basic locally finite dimensional graded algebra is left-
right symmetric, so that the last statement of the proposition also follows.

We look at K as an H-graded algebra such that Kh = 0, for h 6= 0. If V = ⊕h∈HVh
is a graded K-vector space, then its dual D(V ) gets identified with the graded K-vector
space ⊕h∈HHomK(Vh,K), with D(V )h = HomK(V−h,K) for all h ∈ H.

Definition 4. Let V = ⊕h∈HVh and W = ⊕h∈HWh be graded K-vector spaces, where
the homogeneous components are finite dimensional, and let d ∈ H be any element. A
bilinear form (−,−) : V ×W −→ K is said to be of degree d if (Vh,Wk) 6= 0 implies that
h + k = d. Such a form will called nondegenerate when the induced maps W −→ D(V )
(w  (−, w))) and V −→ D(W ) (v  (v,−))) are bijective.

Note that, in the above situation, if (−,−) : V ×W −→ K is a nondegenerate bilinear
form of degree d, then the bijective map W −→ D(V ) ( resp V −→ D(W )) given above

gives an isomorphism of graded K-vector spaces W [d]
∼=
−→ D(V ) (resp. V [d]

∼=
−→ D(W )).
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The following concept is fundamental for us.

Definition 5. Let A = ⊕h∈HAh be a weakly basic graded algebra with enough idempo-
tents. A bilinear form (−,−) : A×A −→ K is said to be a graded Nakayama form when
the following assertions hold:

1. (ab, c) = (a, bc), for all a, b, c ∈ A

2. For each i ∈ I there is a unique ν(i) ∈ I such that (eiA,Aeν(i)) 6= 0 and the
assignment i ν(i) defines a bijection ν : I −→ I.

3. There is a map h : I −→ H such that the induced map (−,−) : eiAej × ejAeν(i) −→
K is a nondegenerated graded bilinear form degree hi = h(i), for all i, j ∈ I.

The bijection ν is called the Nakayama permutation and h will be called the degree map.
When h is a constant map and h(i) = h, we will say that (−,−) : A×A −→ K is a graded
Nakayama form of degree h.

Definition 6. A graded algebra with enough idempotents A = ⊕h∈HAh will be called left
(resp. right) locally Noetherian when Aei (resp. eiA) satisfies ACC on graded submodules,
for each i ∈ I. We will simply say that it is locally Noetherian when it is left and right
locally Noetherian.

Recall that a Quillen exact category E (e.g. an abelian category) is said to be a
Frobenius category when it has enough projectives and enough injectives and the projective
and the injective objects are the same in E .

The following result characterizes the pseudo-Frobenius graded algebras with enough
idempotents.

Theorem 1.3.2. Let A = ⊕h∈HAh be a weakly basic graded algebra with enough idempo-
tents. Consider the following assertions:

1. A−Gr and Gr −A are Frobenius categories

2. D(AA) and D(AA) are projective graded A-modules

3. A is graded pseudo-Frobenius

4. There exists a graded Nakayama form (−,−) : A×A −→ K.

Then the following chain of implications holds:

1) =⇒ 2) =⇒ 3)⇐⇒ 4).

When A is graded locally bounded, also 4) =⇒ 2) holds. Finally, if A is graded locally
Noetherian, then the four assertions are equivalent.

Proof. 1) =⇒ 2) By Proposition 1.2.1, we have a natural isomorphism
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HOMA(?,D(AA)) ∼= D(A⊗A?) : A−Gr −→ K −Gr,

and the second functor is exact. Then also the first is exact, which is equivalent to saying
that D(AA) is an injective object of A−Gr (see [65][Lemma I.2.4]). A symmetric argument
proves that D(AA) is injective in Gr−A. Then both D(AA) and D(AA) are projective in
A−Gr and Gr −A since these are Frobenius categories.

2) =⇒ 3) The duality D : A − lfdgr
∼=op

←→ lfdgr − A : D exchanges projective and
injective objects, and, also, simple objects on the left and on the right. Since A is locally
finite dimensional all finitely generated left or right graded A-modules are locally finite
dimensional. Moreover, our hypotheses guarantee that each finitely generated projective
graded A-module P is the projective cover of a finite direct sum of simple graded modules.
Then D(P ) is the injective envelope in A− lfdgr of a finite direct sum of simple objects.
We claim that each injective object E of A− lfdgr is an injective object of A−Gr. Indeed
if U is a graded left ideal of A, h ∈ H is any element and f : U [h] −→ E is morphism in
A − Gr, then we want to prove that f extends to A[h]. By an appropriate use of Zorn
Lemma, we can assume without loss of generality that there is no graded submodule V of
A[h] such that U [h] ( V and f is extendable to V . The task is then reduced to prove that
U = A. Suppose this is not the case, so that there exist i ∈ I and a homogeneous element
x ∈ Aei such that x 6∈ U . But then Ax + U/U is a locally finite dimensional graded
A-module since so is Ax. It follows that ExtA−lfdgr(

U+Ax
U [h], E) = 0, which implies that

f : U [h] −→ E can be extended to (U + Ax)[h], thus giving a contradiction. Now the
obvious graded version of Baer’s criterion (see [65][Lema I.2.4]) holds and E is injective in
A−Gr. In our situation, we conclude that D(P ) is a finitely cogenerated injective object
of A−Gr, for each finitely generated projective object P of Gr −A.

Conversely, if S is a simple graded right A-modules and p : P −→ D(S) is a projective
cover, then D(p) : S ∼= DD(S) −→ D(P ) is an injective envelope. This proves that the
injective envelope in A − Gr of any simple object, and hence any finitely cogenerated
injective object of A−Gr, is locally finite dimensional.

Let now E be any locally finite dimensional graded left A-module. We then get that
E is an injective finitely cogenerated object of A−Gr if, and only if, E ∼= D(P ) for some
finitely generated projective graded right A-module P . This implies that E is isomorphic
to a finite direct sum of graded modules of the form D(eiA[−hi]) ∼= D(eiA)[hi], where
hi ∈ H. We then assume, without loss of generality, that E = D(eiA)[h], for some i ∈ I
and h ∈ H. Since eiA[−h] is a direct summand of A[−h] in Gr−A, assertion 2 implies that
E is a projective object in A−Gr. Then E is isomorphic to a direct summand of a direct
sum of graded modules of the form Aei[hi]. From the fact that E has a finitely generated
essential graded socle we easily derive that E is a direct summand of ⊕1≤k≤rAeik [hik ],
for some indices ik ∈ I. Therefore each finitely cogenerated injective object of A−Gr is
finitely generated projective. The analogous fact is true for graded right A-modules.

On the other hand, if P is a finitely generated projective graded left A-module, then
D(P ) is a finitely cogenerated injective objet of Gr −A and, by the previous paragraph,
we know that D(P ) is finitely generated projective. We then get that P ∼= DD(P ) is
finitely cogenerated in A−Gr.

3) =⇒ 4) From assertion 3) we obtain its left-right symmetric statement by applying

the duality D : A− lfdgr
∼=op

←→ lfdgr −A : D, bearing in mind that an injective object in
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lfdgr−A is also injective in Gr−A. It follows that D(eiA) is an indecomposable finitely
generated projective left A-module, for each i ∈ I. We then get a unique index ν(i) ∈ I
and hi ∈ H such that D(eiA) ∼= Aeν(i)[hi]. We then have a map ν : I −→ I. Similarly,
for each i ∈ I, we choose one hi ∈ H such that D(eiA) ∼= Aeν(i)[hi] and, in this way, we
get the degree map h : I −→ H. By the same reason, given another j ∈ I, we have that
D(Aej) ∼= eµ(j)A[kj ], for a unique µ(j) ∈ I and some kj ∈ H. We then get

eiA ∼= DD(eiA) ∼= D(Aeν(i)[hi]) ∼= D(Aeν(i))[−hi] ∼= eµν(i)A[kν(i) − hi],

and, by Proposition 1.3.1, we conclude that µν(i) = i, for all i ∈ I. This and its symmetric
argument prove that the maps µ and ν are mutually inverse.

We fix an isomorphism of graded left A-modules fi : Aeν(i)[hi]
∼=
−→ D(eiA), for each

i ∈ I. Then we get a bilinear map

eiA×Aeν(i)
1×fi−→ eiA×D(eiA)

can
−→ K.

Note that we have (a, cb) = fi(cb)(a) = [cfi(b)](a) = fi(b)(ac) = (ac, b), for all (a, b) ∈
eiA×Aeν(i) and all c ∈ A. This bilinear form is clearly nondegenerate because eiA is locally
finite dimensional and, due to the duality D, the canonical bilinear form eiA×D(eiA) −→
K is nondegenerate, and actually graded of degree 0 since D(eiA)k = D(eiA−k) =
HomK(eiA−k,K), for each k ∈ H. On the other hand, if s, t ∈ H and a ∈ eiAs and
b ∈ Ateν(i) are homogeneous elements, then the degree of b in Aeν(i)[hi] is t− hi. We get
that (a, b) 6= 0 if, and only if, s + (t− hi) = 0. This shows that the given bilinear form is
graded of degree hi.

We then define an obvious bilinear form (−,−) : A×A −→ K such that (eiA,Aej) = 0,
whenever j 6= ν(i), and whose restriction to eiA × Aeν(i) is the graded bilinear form of
degree hi given above, for each i ∈ I. Since (a, b) =

∑
i,j∈I(eia, bej) =

∑
i∈I(eia, beν(i)),

we get that (ac, b) = (a, cb), for all a, b, c ∈ A, and, hence, that (−,−) : A×A −→ K is a
graded Nakayama form.

4) =⇒ 3) Let (−,−) : A×A −→ K be a graded Nakayama form and let ν : I −→ I and
h : I −→ H be the maps given in definition 5. We put h(i) = hi, for each i ∈ I. Since the
restriction of (−,−) : eiA×Aeν(i) −→ K is a nondegenerate graded bilinear form of degree
hi, we get induced isomorphisms of graded K-vector spaces fi : Aeν(i)[hi] −→ D(eiA) and
gi : eν−1(i)A[hi] −→ D(Aei), where fi(b) = (−, b) : x  (x, b) and gi(a) = (a,−) : y  
(a, y). The fact that (ac, b) = (a, cb), for all a, b, c ∈ A implies that fi is a morphism in
A−Gr and gi is a morphism in Gr−A. Therefore the projective finitely generated objects
and the injective finitely cogenerated objects coincide in A− lfdgr and lfdgr−A. By our
comments about the graded Baer criterion, assertion 3 follows immediately.

3), 4) =⇒ 2) We assume that A is graded locally bounded. The hypotheses imply
that the injective finitely cogenerated objects of A − Gr and Gr − A are locally finite
dimensional and they coincide with the finitely generated projective modules. But in this
case A is locally finite dimensional both as a left and as a right graded A-module. Indeed,
given i ∈ I, one has eiAh = ⊕j∈IeiAhej . By the graded locally bounded condition of A
almost all summands of this direct sum are zero. This gives that, for each (i, h) ∈ I ×H,
the vector spaces eiAh is finite dimensional, whence, that AA is in A− lfdgr. Similarly, we
get that AA ∈ A− lfdgr. It follows that D(AA) and D(AA) are locally finite dimensional.
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We claim that D(AA) is isomorphic to ⊕i∈ID(eiA) which, together with assertion 3, will
give that D(AA) is a projective graded left A-module. This plus its symmetric argument
will then finish the proof.

To prove our claim, note that, using the duality D, we know that D(AA) is the product
in the category A− lfdgr of the D(eiA). It is not clear in principle what this product is
since the category A − lfdgr is not closed under taking products in A − Gr. What we
shall do is to prove that there is an isomorphism of graded left A-modules

∏
i∈I D(eiA) ∼=

⊕i∈ID(eiA), where the product is taken in A − Gr. Note that, for each (j, h) ∈ I ×H,
we have that ej(⊕i∈ID(eiA))h = ⊕i∈IejD(eiA)h = ⊕i∈ID(eiA−hej), and this is a finite
dimensional vector space due to the graded locally bounded condition of A. It will follow
that ⊕i∈ID(eiA) is locally finite dimensional and is isomorphic to the product, both in
A−Gr and A− lfdgr, of the D(eiA). Our claim will be then settled.

The product of the D(eiA) in A−Mod is the largest unitary submodule of the carte-
sian product

∏
i∈I D(eiA). Therefore it is ⊕j∈I(ej

∏
i∈I D(eiA)) ∼= ⊕j∈I

∏
i∈I D(eiAej).

The product of the D(eiA) in A −Gr is then ⊕h∈H(⊕j∈I
∏
i∈I D(eiAej)h) ∼= ⊕h∈H ⊕j∈I∏

i∈I D(eiA−hej)). The graded locally bounded condition of A implies that this last vector
space coincides with ⊕h∈H ⊕j∈I ⊕i∈ID(eiA−hej)). This is exactly ⊕i∈ID(eiA), and so we
have an isomorphism

∏
i∈I D(eiA) ∼= ⊕i∈ID(eiA) in A−Gr.

3), 4) =⇒ 1) We assume that A is graded locally Noetherian. Then A−Gr and Gr−A
are locally Noetherian Grothendieck categories, i.e., the Noetherian objects form a set
and generate both categories. Then each injective object in A−Gr or Gr −A is a direct
sum of indecomposable injective objects and each direct sum of injective objects is again
injective (see [37][Proposition IV.6 and Theorem IV.2]). Since, by hypothesis, Aei and eiA
are injective objects in A−Gr and Gr −A, respectively, we deduce that each projective
object in any of these categories is injective.

On the other hand, Aei (resp. eiA) is a Noetherian object of A−Gr (resp. Gr −A),
which implies by duality that D(Aei) (resp. D(eiA)) is an artinian object of lfdgr − A
(resp. A − lfdgr), and hence also of Gr − A (resp. A − Gr). But we have D(Aei) ∼=
eν−1(i)A[hν−1(i)] (resp. D(eiA) ∼= Aeν(i)[hi]), where ν is the Nakayama permutation. By
the bijectivity of ν, we get that all Aej and ejA are Artinian (and Noetherian) objects,
whence they have finite length. Therefore A−Gr and Gr −A have a set of generators of
finite length, which easily implies that the graded socle of each object in these categories is
a graded essential submodule. In particular, each injective object in A−Gr (resp. Gr−A)
is the injective envelope of its graded socle. But if {St : t ∈ T} is a family of simple objects
of A − Gr (resp. Gr − A) and ιt : St  E(St) is an injective envelope in A − Gr (resp.
Gr −A), then the induced map ι := ⊕t∈T : ⊕t∈TSt ⊕t∈TE(St) is an injective envelope
in A−Gr (resp. Gr−A) since the direct sum of injectives is injective. Since each E(St) is
finitely cogenerated, whence projective by hypothesis, it follows that each injective object
in A−Gr (resp. Gr −A) is projective.

Definition 7. A weakly basic locally finite dimensional graded algebra satisfying condition
1 will be called graded Quasi-Frobenius.

Remark 1.3.3. The concepts of pseudo-Frobenius (PF) and Quasi-Frobenius (QF) asso-
ciative unital algebras (over a commutative ring and not just over a field) are classical (see,
e.g., [36], [58] and [69]). Such an algebra A is left PF when AA is an injective cogenerator
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of A−Mod while it is QF when A−Mod, or equivalently Mod−A, is what today is called
a Frobenius category. Pseudo-Frobenius algebras are the left and right PF algebras and
they are characterized by the fact that the finitely generated projective and the finitely
cogenerated injective objects coincide in A−Mod and Mod − A. Although not yet with
this name, pseudo-Frobenius algebras already appear in the original work of Morita ([64]).

Examples 1.3.4. The following are examples of graded pseudo-Frobenius algebras over
a field K:

1. When H = 0 and A = Λ is a finite dimensional self-injective algebra, which is
equivalent to saying that Λ is quasi-Frobenius.

2. When Λ is any finite dimensional split basic algebra and A = Λ̂ is its repetitive
algebra, in the terminology of [46], then A is a (trivially graded) quasi-Frobenius
algebra with enough idempotents (see op.cit.[Chapter II]).

3. The Z-graded algebra A = K[x, x−1, y, z]/(y2, z2), where deg(x) = deg(y) = deg(z) =
1. Given any integerm, we have a canonical basis Bm = {xm, xm−1y, xm−1z, xm−2yz}
of Am. Consider the graded bilinear form A × A −→ K of degree m identified by
the fact that if f ∈ An and g ∈ Am−n, then (f, g) is the coefficient of xm−2yz in the
expression of fg as a K-linear combination of the elements of Bm. Then (−,−) is a
graded Nakayama form for A, so that A is graded pseudo-Frobenius.

The following result complements Theorem 1.3.2 and gives a handy criterion, in the
locally Noetherian case, for A to be graded Quasi-Frobenius.

Corollary 1.3.5. Let A = ⊕h∈HAh be a weakly basic locally Noetherian graded algebra
with enough idempotents. The following assertions are equivalent:

1. The following two conditions hold:

(a) For each i ∈ I, Aei and eiA have a simple essential socle in A−Gr and Gr−A,
respectively

(b) There are bijective maps ν, ν ′ : I −→ I such that Socgr(eiA) ∼=
eν(i)A

eν(i)Jgr(A) [hi]

and Socgr(Aei) ∼=
Aeν′(i)

Jgr(A)eν′(i)
[h′i], for certain hi, h

′
i ∈ H

2. A is graded Quasi-Frobenius

Proof. We only need to prove 1) =⇒ 2). By definition of weakly basic, A is locally finite
dimensional, so that Aei and eiA are locally finite dimensional modules, for all i ∈ I.
It then follows by duality that D(eiA) is an Artinian object of A − Gr, for all i ∈ I.
By the same reason, we get that D(eiA) has a unique simple essential quotient, meaning
that D(eiA) has a unique maximal superfluous subobject. By a classical argument, it
follows that D(eiA) has a projective cover in A−Gr, which is an epimorphism of the form
p : Aej [h]։ D(eiA). It follows from this that D(eiA) is a Noetherian object, whence, an
object of finite length in A −Gr since it is a quotient of a Noetherian object. With this



1.3. Pseudo-Frobenius graded algebras 13

and its symmetric argument we get that all finitely cogenerated injective objects in A−Gr
and Gr − A have finite length, which implies by duality that also the finitely generated
projective objects have finite length.

The fact that Socgr(eiA) is simple-graded implies that the injective envelope of eiA in
A−Gr is of the form ι : eiA E ∼= D(Aej)[h], while the projective cover of E is of the form
p : ekA[h

′] ։ E. Then ι factors through p yielding a monomorphism u : eiA ekA[h
′].

But then the graded socles of eiA and ekA[h
′] are isomorphic. By condition 1.b) and the

weakly basic condition, this implies that i = k. By comparison of graded composition
lengths, we get that u is an isomorphism, which in turn implies that both p and ι are also
isomorphisms. Therefore all the eiA, and hence all finitely generated projective objects,
are finitely cogenerated injective objects of A−Gr. The left-right symmetry of assertion 1
implies that the analogous fact is true in Gr−A. Then, applying duality, we get that the
finitely generated projective objects and the finitely cogenerated injective objects coincide
in A−Gr and Gr−A. Then assertion 3 of Theorem 1.3.2 holds, which together with the
locally Noetherian hypothesis imply that A is graded Quasi-Frobenius.

Due to the previous characterization, we can derive the existence of an automorphism
η of the algebra A, not necessarily graded, which plays the role of the Nakayama auto-
morphism. That is, it satisfies the condition that D(A) ∼= 1Aη as A-bimodules. This
automorphism will be also called the Nakayama automorphism of A and it may be taken
to be graded under certain conditions, in which case, we will refer to it as the graded
Nakayama automorphism of A.

Corollary 1.3.6. Let A = ⊕h∈HAh be a graded pseudo-Frobenius algebra and let (ei)i∈I
be a weakly basic distinguished family of orthogonal idempotents. If A is graded locally
bounded, then the following assertions hold:

1. There is an automorphism of (ungraded) algebras η : A −→ A, which permutes the
idempotents ei and maps homogeneous elements onto homogeneous elements, such
that 1Aη is isomorphic to D(A) as an ungraded A-bimodule.

2. If the map h : I −→ H associated to the Nakayama form (−,−) : A × A −→ K
takes constant value h, then η can be chosen to be graded and such that D(A) is
isomorphic to 1Aη[h] as graded A-bimodules.

Proof. Let first note that, by Remark 1.2.2, we have D(AA) = D(AAA) = D(AA) in this
case.

1) Let us fix a graded Nakayama form (−,−) : A × A −→ K and associated maps
ν : I −→ I and h : I −→ H. The assignment b (−, b) gives an isomorphism of graded A-

modules Aeν(i)[hi]
∼=
−→ D(eiA), for each i ∈ I. By taking the direct sum of all these maps,

we get an isomorphism of ungraded left A-modules AA −→ ⊕i∈ID(eiA). But we have seen
in the proof of the implication 3), 4) =⇒ 2) in last theorem that D(A) ∼= ⊕i∈ID(eiA) in

A−Gr. Therefore the assignment b (−, b) actually gives an isomorphism AA
∼=
−→ D(A).

Symmetrically, the assignment a  (a,−) gives an isomorphism AA
∼=
−→ D(A). It then

follows that, given a ∈ A, there is a unique η(a) ∈ A such that (a,−) = (−, η(a)). This
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gives a K-linear map η : A −→ A which, by its own definition, is bijective. Moreover,
given a, b, x ∈ A, we get

(x, η(ab)) = (ab, x) = (a, bx) = (bx, η(a)) = (b, xη(a)) = (xη(a), η(b) = (x, η(a)η(b)),

which shows that η(ab) = η(a)η(b), for all a, b ∈ A. Therefore η is an automorphism of
A as an ungraded algebra. Moreover if 0 6= a ∈ eiAej , then (a,−) vanishes on all ei′Aej′

except in ejAeν(i). Therefore (−, η(a)) does the same. By definition of the Nakayama form,
we necessarily have η(a) ∈ eν(i)Aeν(j). We claim that if a ∈ eiAej is an element of degree
h, then η(a) is an element of degree h+hj−hi. Indeed, let h

′ ∈ H be such that η(a)h′ 6= 0.
Then the (−, η(a)h′) : ejAeν(i) −→ K is a nonzero linear form which vanishes on eiAkeν(i),
for all k 6= hj−h

′. Let us pick up x ∈ eiAhj−h′eν(i) such that (x, η(a)h′) 6= 0. Then we have
that (x, η(a)) = (x, η(a)h′) 6= 0, due to the fact that (−,−) : ejAeν(i) × eν(i)Aeν(j) −→ K
is a graded bilinear form of degree hj . We then get that 0 6= (x, η(a)) = (a, x), which
implies that h+ (hj − h

′) = hi, which implies that h′ = h+ (hj − hi). Then h
′ is uniquely

determined by a, so that η(a) is homogeneous of degree h+ hj − hi as desired.
Putting a = ei in the previous paragraph, we get that η(ei) ∈ eν(i)Aeν(i) has degree 0,

and then η(ei) is an idempotent element of the local algebra eν(i)A0eν(i). It follows that
η(ei) = eν(i), for each i ∈ I.

Finally, we consider the K-linear isomorphism f : A −→ D(A) which maps b  
(−, b) = (η−1(b),−). We readily see that f is a homomorphism of left A-modules. More-
over, we have equalities

(a, bη(b′)) = (ab, η(b′)) = (b′, ab) = (b′a, b) = [f(b)b′](a),

which shows that f is a homomorphism of right A-modules Aη −→ D(A). Then f is an

isomorphism 1Aη
∼=
−→ D(A).

2) The proof of assertion 1 shows that if h(i) = h, for all i ∈ I, then η is a graded

automorphism of degree 0. Moreover, the isomorphism f :1 Aη
∼=
−→ D(A) is the direct sum

of the isomorphisms of graded left A-modules fi : Aeν(i)[h]
∼=
−→ D(eiA) which map b  

(−, b). It then follows that f is an isomorphism of graded bimodules 1Aη[h]
∼=
−→ D(A).

To finish this subsection, we will see that if one knows that A is split graded pseudo-
Frobenius, then all possible graded Nakayama forms for A come in similar way. Recall
that if V = ⊕h∈HVh is a graded vector space, then its support, denoted Supp(V ), is the
set of h ∈ H such that Vh 6= 0.

Proposition 1.3.7. Let A be a split pseudo-Frobenius graded algebra and (ei)i∈I a weakly
basic distinguished family of orthogonal idempotents. The following assertions hold:

1. All graded Nakayama forms for A have the same Nakayama permutation. It assigns
to each i ∈ I the unique ν(i) ∈ I such that eiSocgr(A)eν(i) 6= 0.

2. If hi ∈ Supp(eiSocgr(A)), then dim(eiSocgr(A))hi) = 1

3. For a bilinear form (−,−) : A×A −→ K, the following statements are equivalent:
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(a) (−,−) is a graded Nakayama form for A

(b) There exists an element h = (hi) ∈
∏
i∈I Supp(eiSocgr(A)) and a basis Bi of

eiAhieν(i), for each i ∈ I, such that:

i. Bi contains a (unique) element wi of eiSocgr(A)hi
ii. If a, b ∈

⋃
i,j eiAej are homogeneous elements, then (eiAh, Akej) = 0 unless

j = ν(i) and h+ k = hi

iii. If (a, b) ∈ eiAh × Ahi−heν(i), then (a, b) is the coefficient of wi in the ex-
pression of ab as a linear combination of the elements of Bi.

Proof. 1) Let (−,−) : A×A −→ K be a graded Nakayama form for A. We have seen in the
proof of the implication 4) =⇒ 3) in Theorem 1.3.2 that then D(eiA) ∼= Aeν(i)[hi]. Due to
conditions satisfied by the ei, we get that ν(i) is independent of (−,−). Moreover, by dua-
lity, we get an isomorphism eiA ∼= D(Aeν(i))[−hi], which induces an isomorphism between
the graded socles. But the graded socle of D(Aej) is isomorphic to Sj := ejA/ejJ

gr(A),
for each j ∈ I. We then get that eiSoc

gr(A)ej [−h] ∼= HomA−Gr(Sj[h], eiSoc
gr(A)) = 0, for

all j 6= ν(i) and h ∈ H.
2) Let us fix hi ∈ Supp(eiSoc

gr(A))) and suppose that {x, y} is a linearly independent
subset of eiSoc

gr(A))hi . We then have xA = yA since eiSoc
gr(A)) is graded-simple. We

get from this that also xA0 = yA0. By Proposition 1.3.1, we know that J(A0) = Jgr(A)0
and the split hypothesis on A implies that A0 = J(A0) ⊕ (⊕j∈IKej). It follows that
Kx = x(⊕j∈IKej) = xA0 = yA0 = y(⊕j∈IKej) = Ky, which contradicts the linear
independence of {x, y}.

3) b) =⇒ a) By assertion 1), the Nakayama permutation is completely determined
by A. The given element h is then interpreted as a map I −→ H, which will be our
degree function. It only remains to check that (ab, c) = (a, bc), for all a, b, c. This easily
reduces to the case when a, b, c are homogeneous and there are indices i, j, k such that
a = eiaej , b = ejbek and c = ekceν(i). But in this case, we have (a, bc) = (ab, c) = 0 when
deg(a)+ deg(b) + deg(c) 6= hi. On the other hand, by condition b.iii), if deg(a) + deg(b) +
deg(c) = hi then (ab, c) and (a, bc) are both the coefficient of wi in the expression of abc
as linear combination of the elements of Bi. So the equality (ab, c) = (a, bc) holds, for all
a, b, c ∈ A.

a) =⇒ b) We first take a basis B0 of A0 such that B0 = {ei : i ∈ I} ∪ (B0 ∩ J(A0))
and B0 ⊆

⋃
i,j∈I eiA0ej . The graded Nakayama form gives by restriction a nondegenerate

bilinear map

(−,−) : eiA0ei × eiAhieν(i) −→ K.

We choose as Bi the basis of eiAhieν(i) which is right orthogonal to eiB
0ei with respect to

this form. As usual, if b ∈ eiB
0ei, we denote by b

∗ the element of Bi such that (c, b∗) = δbc,
where δbc is the Kronecker symbol. We then claim that wi := e∗i is in eiSocgr(A). This
will imply that hi ∈ Supp(Socgr(A)) and, due to assertion 2, we will get also that wi
is the only element of eiSocgr(A)hi in Bi. Indeed suppose that wi 6∈ eiSocgr(A). We
then have a ∈ Jgr(A) such that awi 6= 0. Without loss of generality, we assume that a
is homogeneous and that a = ejaei, for some j ∈ I. Then 0 6= awi ∈ ejAeν(i), which
implies the existence of a homogeneous element b ∈ eiAej such that (b, awi) 6= 0 since the
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induced graded bilinear form eiAej × ejAeν(i) −→ K is nondegenerate. But then we have
(ba,wi) 6= 0 and deg(ba) = 0 since the induced graded bilinear form eiAei×eiAeν(i) −→ K
is of degree hi. But ba ∈ eiJ

gr(A)0ei = eiJ(A0)ei and, by the choice of the basis B0, each
element of eiJ(A0)ei is a linear combination of the elements in B0 ∩ eiJ(A0)ei. By the
choice of wi, we have (c, wi) = 0, for all c ∈ B0∩eiJ(A0)ei. It then follows that (ba,wi) = 0,
which is a contradiction.

It is now clear that conditions b.i and b.ii hold. In order to prove b.iii, take (a, b) ∈
eiAh × Ahi−heν(i). We then have (a, b) = (ei, ab), where ab ∈ eiAhieν(i). Put ab =∑

c∈Bi
λcc, where λc ∈ K for each c ∈ Bi. We then get (a, b) = (ei,

∑
c λcc) =

∑
c λc(ei, c) =

λwi
, i.e., (a, b) is the coefficient of wi in the expression ab =

∑
c λcc.

Definition 8. Let A = ⊕h∈HAh be a split pseudo-Frobenius graded algebra, with (ei)i∈I
as weakly basic distinguished family of idempotents and ν : I −→ I as Nakayama permu-
tation. Given a pair (B,h) consisting of an element h = (hi)i∈I of

∏
i∈I Supp(eiSocgr(A))

and a family B = (Bi)i∈I , where Bi is a basis of eiAhieν(i) containing an element of
eiSocgr(A), for each i ∈ I, we call graded Nakayama form associated to (B,h) to the
bilinear form (−,−) : A × A −→ K determined by the conditions b.ii and b.iii of last
proposition. When h is constant, i.e. there is h ∈ H such that hi = h for all i ∈ I, we will
call (−,−) the graded Nakayama form of A of degree h associated to B.

1.3.2 Graded algebras given by quivers and relations

Recall that a quiver or oriented graph is a quadruple Q = (Q0, Q1, i, t), where Q0 and Q1

are sets, whose elements are called vertices and arrows respectively, and i, t : Q1 −→ Q0

are maps. If a ∈ Q1 then i(a) and t(a) are called the origin (or initial vertex) and the
terminus of a.

Given a quiver Q, a path in Q is a concatenation of arrows p = a1a2...ar such that
t(ak) = i(ak+1), for all k = 1, ..., r. In such case, we put i(p) = i(a1) and t(p) = t(ar) and
call them the origin and terminus of p. The number r is the length of p and we view the
vertices of Q as paths of length 0. The path algebra of Q, denoted by KQ, is the K-vector
space with basis the set of paths, where the multiplication extends by K-linearity the
multiplication of paths. This multiplication is defined as pq = 0, when t(p) 6= i(q), and pq
is the obvious concatenation path, when t(p) = i(q). The algebra KQ is an algebra with
enough idempotents, where Q0 is a a distinguished family of orthogonal idempotents. If
i ∈ Q0 is a vertex, we will write it as ei when we view it as an element of KQ.

Definition 9. Let H be an abelian group. An (H-)graded quiver is a pair (Q,deg), where
Q is a quiver and deg : Q1 −→ H is a map, called the degree or weight function. (Q,deg)
will be called locally finite dimensional when, for each (i, j, h) ∈ Q0 ×Q0 ×H, the set of
arrows a such that (i(a), t(a),deg(a)) = (i, j, h) is finite.

We will simply say that Q is an H-graded quiver, without mention to the degree
function which is implicitly understood. Each degree function on a quiver Q induces an
H-grading on the algebra KQ, where the degree of a path of positive length is defined as
the sum of the degrees of its arrows and deg(ei) = 0, for all i ∈ Q0. In the following result,
for each natural number n, we denote by KQ≥n the vector subspace of KQ generated by
the paths of length ≥ n. For each ideal I of an algebra, we put Iω =

⋂
n>0 I

n.
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Proposition 1.3.8. Let A = ⊕h∈HAh be a split basic locally finite dimensional graded
algebra with enough idempotents and let J = Jgr(A) be its graded Jacobson radical. There
is an H-graded locally finite dimensional quiver Q and a subset ρ ⊂

⋃
i,j∈Q0

eiKQ≥2ej ,
consisting of homogeneous elements with respect to the induced H-grading on KQ, such
that A/Jω is isomorphic to KQ/ < ρ >. Moreover Q is unique, up to isomorphism of
H-graded quivers.

Proof. It is an adaptation of the corresponding proof, in more restrictive situations, of the
ungraded case (see, e.g., [13][Section 2]). We give the general outline, leaving aside the
details.

Let (ei)i∈I be the basic distinguished family of orthogonal idempotents. The graded

quiver Q will have Q0 = I as its sets of vertices. Whenever h ∈ Supp(
eiJej
eiJ2ej

), we will

select a subset Q1(i, j)h of eiJhej whose image by the projection eiJhej ։
eiJhej

ei(J2)hej
gives a

basis of
eiJhej

ei(J2)hej
. We will take as arrows of degree h from i to j the elements of Q1(i, j)h,

and then Q1 =
⋃
i,j∈Q0;h∈H

Q1(i, j)h. The so-obtained graded quiver gives a grading on
KQ and there is an obvious homomorphism of graded algebras f : KQ −→ A which takes
ei  ei and a a, for all i ∈ Q0 and a ∈ Q1.

We claim that the composition KQ
f
−→ A

p
։ A/Jω is surjective or, equivalently,

that Im(f) + Jω = A. Due to the split basic condition of A, it is easy to see that
A = (

∑
i∈I Kei)⊕ J and the task is then reduced to prove the inclusion J ⊆ Im(f) + Jω.

Since eiAhej is finite dimensional, for each triple (i, h, j) ∈ I ×H × I, there is a smallest
natural number mij(h) such that ei(J

n)hej = ei(J
n+1)hej , for all n ≥ mij(h). We will

prove, by induction on k ≥ 0, that ei(J
mij(h)−k)hej ⊂ Im(f) + Jω, for all (i, h, j), and

then the inclusion J ⊆ Im(f) + Jω will follow. The case k = 0 is trivial, by the definition
of mij(h). So we assume that k > 0 in the sequel. Fix any triple (i, h, j) ∈ I ×H × I and
put n := mij(h)−k. If x ∈ ei(J

n)hej then x is a sum of products of the form x1x2 · ... ·xn,
where xr is a homogeneous element in ei′Jej′ , for some pair (i′, j′) ∈ I × I. So it is not
restrictive to assume that x = x1x2 · ... · xr is a product as indicated. By definition of the
arrows of Q, each xr admits a decomposition xr = yr+zr, where yr is a linear combination
of arrows (of the same degree) and zr ∈ J

2. It follows that x = y + z, where y is a linear
combination of paths of length n and z ∈ eiJ

n+1ej . Then y ∈ Im(f) and, by the induction
hypothesis, we know that z ∈ Im(f) + Jω.

Proving that Ker(p ◦ f) ⊆ KQ≥2 goes as in the ungraded case, as so does the proof of
the uniqueness of Q. We omit it.

A weakly basic locally finite dimensional algebra A will be called connected when, for
each pair (i, j) ∈ I × I there is a sequence i = i0, i1, ..., in = j of elements of I such that,
for each k = 1, ..., n, either eik−1

Aeik 6= 0 or eikAeik−1
6= 0. If Q is a graded quiver, we

say that Q is a connected graded quiver when, for each pair (i, j) ∈ Q0 × Q0, there is a
sequence i = i0, i1, ..., in = j of vertices such that there is an arrow ik−1 → ik or an arrow
ik → ik−1, for each k = 1, ..., n.

Corollary 1.3.9. Let A = ⊕n≥0An be a split basic locally finite dimensional positively
Z-graded. Then there exists a positively Z-graded quiver Q, uniquely determined up to
isomorphism of Z-graded quivers, such that A is isomorphic to KQ/I, for a homogeneous
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ideal I of KQ such that I ⊆ KQ≥2. If, moreover, A is connected locally bounded, with
A0 semisimple, and the equality An = A1· n... ·A1 holds for all n > 0, then the following
assertions are equivalent:

1. A is graded pseudo-Frobenius

2. There exists a graded Nakayama form (−,−) : A × A −→ K with constant degree
function.

In particular, the Nakayama automorphism η is always graded in this case.

Proof. The point here is that if x ∈ Jn is a homogeneous element, then deg(x) ≥ n, which
implies that Jω does not contain homogeneous elements and, hence, that Jω = 0. Then
the first part of the statement is a direct consequence of Proposition 1.3.8. Moreover, one
easily sees that the connectedness of A is equivalent in this case to the connectedness of
the quiver Q.

As for the second part, we only need to prove that if (−,−) : A×A −→ K is a graded
Nakayama form, then its associated degree function is constant. The argument is inspired
by [63][Proposition 3.2]. We consider that A = KQ/I, where Q is connected. The facts
that A0 is semisimple and An = A1· n... ·A1, for all n > 0, then translate into the fact that
the degree function deg : Q1 −→ Z takes constant value 1, so that the induced grading on
KQ is the one by path length.

Let now η : A −→ A be the Nakayama automorphism associated to (−,−). If a : i→ j
is any arrow in Q, then from Corollary 1.3.6 we get that η(a) is a homogeneous element
in eν(i)Jeν(j) = eν(i)Aeν(j). Since obviously deg(a) 6= 0, we get that deg(η(a)) ≥ deg(a),
which implies that deg(η(x)) ≥ deg(x), for each homogeneous element x ∈ A. Let again
a : i → j be an arrow and put x = η−1(a). We claim that x is homogeneous of degree 1.
Indeed, we have x = x1+x2+ ...+xn, with deg(xk) = k, so that a = η(x) = η(x1)+η(x

′),
where x′ =

∑
2≤k≤n xk and, hence, η(x

′) is a sum of homogeneous elements of degrees ≥ 2.
It follows that a = η(x1) and η(x

′) = 0, which, by the bijective condition of η, gives that
x′ = 0. Therefore x = x1 as desired.

The last paragraph implies that, for each pair (i, j) ∈ Q0 × Q0 such that there is an
arrow i → j in Q, there is a vector subspace Vij of eν−1(i)KQ1eν−1(j) such that η|Vij :

Vij −→ eiKQ1ej is a bijection. Let now Q̃ be the subquiver of Q with the same vertices

and with arrows those a ∈ Q1 such that deg(η(a)) = 1. Then Vij ⊆ eν−1(i)KQ̃eν−1(j)

and Ã = KQ̃+I
I is a subalgebra of A = KQ/I such that the image of the restriction map

η|Ã : Ã −→ A contains the vertices and the arrows (when viewed as elements of A in the

obvious way). Note that η|Ã is a homomorphism of graded algebras, which immediately

implies that it is surjective and, hence, bijective. But then necessarily Ã = A for η is
an injective map. We will derive from this that deg(η(a)) = deg(a), for each a ∈ Q1.
Indeed, if deg(η(a)) > 1, then η(a) = η(x), for some homogeneous element x ∈ Ã of
degree deg(x) = deg(η(a)). By the injective condition of η, we would get that a = x,
which is a contradiction.

If now h : Q0 −→ Z is the degree function associated to the graded Nakayama form, the
proof of Corollary 1.3.6 gives that hi(a) = ht(a), for each a ∈ Q1. Due to the connectedness
of Q, we conclude that h is a constant function.
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1.4 Covering theory and pseudo-Frobenius algebras

1.4.1 Covering theory of graded algebras

In this part we will present the basics of covering theory of graded categories or, equiva-
lently, of graded algebras with enough idempotents. It is an adaptation of the classical
theory (see [66], [39], [13]), where we incorporate more recent ideas of [20] and [7], where
some of the constraining hypotheses of the initial theory disappear.

Let A = ⊕h∈HAh and B = ⊕h∈HBh be two locally finite dimensional graded algebras
with enough idempotents, with (ei)i∈I and (ǫj)j∈J as respective distinguished families of
homogeneous orthogonal idempotents of degree 0. Suppose that F : A −→ B is a graded
functor and that it is surjective on objects, i.e., for each j ∈ J there exists i ∈ I such
that F (ei) = ǫj . To this functor one canonically associates the pullup or restriction of
scalars functor F ρ : B − Gr −→ A − Gr. If X is a graded left B-module, then we put
eiF

ρ(X) = ǫF (i)X, for all i ∈ I, and if a ∈
⋃
i,i′∈I eiAei′ and x ∈ F

ρ(X), then ax := F (a)x.
It has a left adjoint Fλ : A−Gr −→ B −Gr, called the pushdown functor, whose precise
definition will be given below in the case that we will need in this work.

The procedure of taking a weak skeleton gives rise to a graded functor as above. Indeed,
suppose that A is as above and consider the equivalence relation ∼ in I such that i ∼ i′ if,
and only if, Aei and Aei′ are isomorphic graded A-modules. If I0 is a set of representatives
under this relation, then we can consider the full graded subcategory of A having as objects
the elements of I0. This amounts to take the graded subalgebra B = ⊕i,i′∈I0eiAei′ , which
will be called the weak skeleton of A. If we denote by [i] the unique element of I0 such
that i ∼ [i], then there are elements ξi ∈ eiA0e[i] and ξ

−1
i ∈ e[i]A0ei such that ξiξ

−1
i = ei

and ξ−1
i ξi = e[i]. We fix ξi and ξ

−1
i from now on. By convention, we assume that ξ[i] = e[i],

for each [i] ∈ I0. Now we get a surjective on objects graded functor F : A −→ B which
takes i  [i] on objects and if a ∈ eiAei′ , then F (a) = ξ−1

i aξi′ . If we take P = ⊕i∈I0eiA
then P is an H-graded B − A−bimodule and the pullup functor is naturally isomorphic
to the ’unitarization’ of the graded Hom functor, AHOMB(P,−) : B − Gr −→ A − Gr
(see Subsection 1.2.1). It is an equivalence of categories and the pushdown functor Fλ
gets identified with P ⊗A − : A − Gr −→ B − Gr, which, up to isomorphism, takes
M  ⊕i∈I0eiM .

Definition 10. Let A and B be as above. A graded functor F : A −→ B will be called a
covering functor when it is surjective on objects and, for each (i, j, h) ∈ I × J ×H, the
induced maps

⊕i′∈F−1(j)eiAhei′ −→ eF (i)Bhej
⊕i′∈F−1(j)ei′Ahei −→ ejBheF (i)

are bijective.

We shall now present the paradigmatic example of covering functor, which is actually
the only one that we will need in our work. In the rest of this subsection, A = ⊕h∈HAh
will be a locally finite dimensional graded algebra with a distinguished family (ei)i∈I of
homogeneous orthogonal idempotents of degree 0, fixed from now on. We will assume that
G is a group acting on A as a group of graded automorphisms (of degree 0) which permutes
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the ei. That is, if Aut
gr(A) denotes the group of graded automorphisms of degree 0 which

permute the ei, then we have a group homomorphism ϕ : G −→ Autgr(A). We will write
ag = ϕ(g)(a), for each a ∈ A and g ∈ G. In such a case, the skew group algebra A ⋆G has
as elements the formal A-linear combinations

∑
g∈G ag ⋆ g, with ag ∈ A for all g ∈ G.

The multiplication extends by linearity the product (a ⋆ g)(b ⋆ g′) = abg ⋆ gg′, where
a, b ∈ A and g, g′ ∈ G. The new algebra inherits an H-grading from A by taking (A⋆G)h =
Ah ⋆ G = {

∑
g∈G ag ⋆ g ∈ A ⋆ G : ag ∈ Ah, for all g ∈ G}. Then A ⋆ G is a graded algebra

with enough idempotents for which we fix the family of orthogonal idempotents (ei ⋆1)i∈I
where 1 is the unit of G and, clearly, we have a canonical inclusion of H-graded algebras
ι : A →֒ A ⋆ G which maps a a ⋆ 1.

Proposition 1.4.1. In the situation above, let Λ be the weak skeleton of A ⋆ G and

F : A ⋆ G −→ Λ the corresponding functor. Then the composition A
ι
→֒ A ⋆ G

F
−→ Λ is

a covering functor. The corresponding pushdown functor Fλ ◦ ιλ : A −Gr −→ Λ −Gr is
exact and takes Aei  Λe[i], for each i ∈ I.

Proof. The pullup functor is the composition Λ−Gr
F ρ

−→ A⋆G−Gr
ιρ
−→ A−Gr, so that the

pushdown functor is Fλ◦ιλ. We know that Fλ is an equivalence of categories. On the other
hand ιλ is naturally isomorphic to A⋆G⊗A− : A−Gr −→ A⋆G−Gr since ιρ is the usual
restriction of scalars. The exactness of A⋆G⊗A− implies that of Fλ ◦ ιλ and the action of
this functor on projective objects takes Aei  (A⋆G)⊗AAei ∼= (A⋆G)ei  Fλ((A⋆G)ei).
But this latter graded Λ-module is isomorphic to Λe[i] by the explicit definition of the
pushdown functor when taking a weak skeleton.

In order to check that F ◦ ι is a covering functor we look at the definition of the weak
skeleton. In our case (A ⋆ G)ei ∼= (A ⋆ G)ej if, and only if, there are x ∈ ei(A ⋆ G)0ej =
⊕g∈GeiA0eg(j) ⋆g and y ∈ ej(A⋆G)0ei = ⊕g∈GejA0eg(i) ⋆g such that xy = ei and yx = ej .
This immediately implies that i and j are in the same G-orbit, i.e., that egi = ej , for some
g ∈ G. The converse is also true for we have equalities ei ⋆ g = (ei ⋆ 1)(ei ⋆ g)(eg−1(i) ⋆ 1)
and eg−1(i) ⋆ g

−1 = (eg−1(i) ⋆ 1)(eg−1(i) ⋆ g
−1)(ei ⋆ 1), and also (ei ⋆ g)(eg−1(i) ⋆ g

−1) = ei ⋆ 1
and (eg−1(i) ⋆ g

−1)(ei ⋆ g) = eg−1(i) ⋆ 1, which shows that (A ⋆ G)ei ∼= (A ⋆ G)eg−1(i) for all
g ∈ G and i ∈ I.

What we do now is to take exactly one index i ∈ I in each G-orbit and in that way
we get a subset I0 of I. Up to graded isomorphism, we have Λ = ⊕i,j∈I0ei(A ⋆ G)ej . For
the explicit definition of F , we put ξg(i) = eg(i) ⋆ g and ξ−1

g(i) = ei ⋆ g
−1, for each i ∈ I0 and

g ∈ G. If g, g′ ∈ G and i, j ∈ I0, then the map F : eg(i)(A⋆G)eg′(j) −→ eiΛej = ei(A⋆G)ej
takes x ξ−1

g(i)xξg′(j) = (ei ⋆ g
−1)x(eg′(j) ⋆ g

′). Then the composition

eg(i)Aeg′(j)
ι
−→ eg(i)(A ⋆ G)eg′(j)

F
−→ eiΛej = ei(A ⋆ G)ej

takes a (ei ⋆ g
−1)(a ⋆ 1)(eg′(j) ⋆ g

′) = ag
−1
⋆ g−1g′.

The proof that F ◦ ι is a covering functor gets then reduced to check that if i, j ∈ I0
and h ∈ H then the maps

⊕g∈Geg(i)Ahej −→ eiΛhej = ei(A ⋆ G)hej , (ag)g∈G  
∑

g∈G a
g−1

g ⋆ g−1

⊕g∈GeiAheg(j) −→ eiΛhej = ei(A ⋆ G)hej , (bg)g∈G  
∑

g∈G bg ⋆ g
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are both bijective. But this is clear since ⊕g∈G(eg(i)Ahej)
g−1

⋆ g−1 = ei(A ⋆ G)hej =
⊕g∈GeiAheg(j) ⋆ g.

Definition 11. If A = ⊕h∈HAh, G and Λ are as above, then the functor F ◦ ι : A −→ Λ
will be called a G-covering of Λ.

If A and G are as in the setting, we say that G acts freely on objects when g(i) 6= i,
for all i ∈ I and g ∈ G \ {1}. In such case we can form the orbit category A/G. The
objects of this category are the G-orbits [i] of indices i ∈ I and the morphisms from [i]
to [j] are formal sums

∑
g∈G[ag], where [ag] is the G-orbit of an element ag ∈ eiAeg(j).

This definition does not depend on i, j, but just on the orbits [i], [j]. The anticomposition
of morphisms extends by K-linearity the following rule. If a, b ∈

⋃
i,j∈I eiAej and [a], [b]

denote the G-orbits of a and b, then [a] · [b] = 0, in case [t(a)] 6= [i(b)], and [a] · [b] = [abg],
in case [t(a)] = [i(b)], where g is the unique element of G such that g(i(b)) = t(a). We
have an obvious canonical projection π : A −→ A/G with takes a [a]. The following is
the classical interpretation of Λ and is implicit in [7].

Corollary 1.4.2. Let A, G and Λ be as in Proposition 1.4.1 and suppose that G acts

freely on objects. There is an equivalence of categories Υ : Λ
∼=
−→ A/G such that Υ ◦F ◦ ι :

A −→ A/G is the canonical projection.

Proof. Let us fix a set I0 of representatives of the elements of I under the equivalence
relation ∼ given by: i ∼ j if, and only if, (A ⋆ G)ei ∼= (A ⋆ G)ej are isomorphic as graded
(A ⋆G)-modules. Then, by definition, Λ is the category having as objects the elements of
I0 and eiΛej = ei(A ⋆ G)ej = ⊕g∈G[eiAeg(j) ⋆ g] as space of morphisms from i to j. The
functor Υ : Λ −→ A/G is defined as Υ(i) = [i], for each i ∈ I0, and by Υ(a ⋆ g) = [a],
when g ∈ G and a ∈ eiAeg(j), with i, j ∈ I0.

The functor is clearly dense. On the other hand, if Υ(
∑

g∈G ag ⋆ g) = Υ(
∑

g∈G bg ⋆ g),
with ag, bg ∈ eiAeg(j) for some i, j ∈ I0, then we have an equality of formal finite sums
of orbits

∑
g∈G[ag] =

∑
g∈G[bg]. This implies that [ag] = [bg], for each g ∈ G, because if

there is an element σ ∈ G such that σ(ag) and bh have the same origin an terminus, for
some h ∈ H, then σ = id due to the free action on objects. But the equality [ag] = [bg]
also implies that ag = bg since i(ag) = i(bg) = i. Therefore Υ is a faithful functor. Finally,
the orbit of any homogeneous morphism a in A contains an element with origin, say i, in
I0. Then, in order to prove that Υ is full, we can assume that [a] is the orbit of an element
a ∈ eiAeg(j), for some i, j ∈ I0 and some g ∈ G. But then a ⋆ g ∈ ei(A ⋆ G)ej , and we
clearly have Υ(a ⋆ g) = [a].

The equality of functor Υ ◦ F ◦ ι = π is straightforward.

1.4.2 Preservation of the pseudo-Frobenius condition

We start with the notion of G-invariant Nakayama form.

Definition 12. Let A = ⊕h∈HAh be a graded pseudo-Frobenius algebra and G be a group
acting on A as graded automorphisms. A graded Nakayama form (−,−) : A × A −→ K
will be called G-invariant when (ag, bg) = (a, b), for all a, b ∈ A and all g ∈ G.
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The following result is most important for us. It shows that the pseudo-Frobenius
condition is preserved via the pushdown functor F : A −→ A/G, whenever the G-invariant
property is satisfied.

Proposition 1.4.3. Let A = ⊕h∈HAh be a (split weakly) basic graded locally bounded
algebra, with (ei)i∈I as distinguished family of orthogonal homogeneous idempotents, and
let G be a group which acts on A as graded automorphisms which permute the ei and which
acts freely on objects. Suppose that A is graded pseudo-Frobenius admitting a G-invariant
graded Nakayama form (−,−) : A × A −→ K. Then Λ = A/G is a (split weakly) basic
graded locally bounded pseudo-Frobenius algebra whose graded Nakayama form is induced
from (−,−).

Proof. We put π := F ◦ ι, where F and ι are as in Proposition 1.4.1. We then know that π
is surjective on objects and each (homogeneous) morphism in Λ is a sum of (homogeneous)
morphisms of the form π(a), with a ∈

⋃
i,j∈I eiAej . We will put π(i) = [i] and π(a) = [a],

for each i ∈ I and homogeneous element a ∈
⋃
i,j∈I eiAej . Note that [i] and [a] can be

identified with the G-orbits of i and a (see corollary 1.4.2).
We first check that Λ is weakly basic whenever A is so. The functor F , which is an

equivalence of categories, gives an isomorphism of algebras ei(A⋆G)0ei ∼= e[i]Λ0e[i], for each
i ∈ I. But we have ei(A⋆G)0ei = ⊕g∈GeiA0eg(i) ⋆g. This algebra is finite dimensional due
to the graded locally bounded condition of A and the fact that G acts freely on objects.
Then all nilpotent elements of ei(A ⋆ G)0ei belong to its Jacobson radical. It follows that
m := eiJ(A0)ei⊕ (⊕g 6=1eiA0eg(i) ⋆g) is contained in J(ei(A⋆G)0ei) since, due again to the
graded locally bounded condition of A and the free action of G, we know that m consists
of nilpotent elements. Since ei(A⋆G)0ei

m

∼= eiA0ei
eiJ(A0)ei

is a division algebra, we conclude that

m = J(ei(A ⋆ G)0ei) and that e[i]Λ0e[i] ∼= ei(A ⋆ G)0ei is a local algebra. Moreover, we

have that
e[i]Λ0e[i]

e[i]J(Λ0)e[i]
∼=

ei(A⋆G)0ei
eiJ((A⋆G)0)

∼= eiA0ei
eiJ(A0)ei

, so that Λ is split whenever A is so.

We next prove that e[i]Λhe[j] ⊂ Jgr(Λ) whenever [i] 6= [j]. But this amounts to prove
that ei(A ⋆ G)ej ⊂ Jgr(A ⋆ G) whenever [i] 6= [j] since F : A ⋆ G −→ Λ is an equivalence
of graded categories. Let us take x ∈ ei(A ⋆ G)hej . Recall that x ∈ Jgr(A ⋆ G) if, and
only if, ej − yx is invertible in ej(A ⋆ G)0ej , for each y ∈ ej(A ⋆ G)−hei. Let us fix such
an x and assume that x 6∈ Jgr(A ⋆ G). We then get y ∈ ej(A ⋆ G)−hei such that ej − yx
is not invertible in the algebra ej(A ⋆ G)0ej , which is local by the previous paragraph. It
follows that ej −yx ∈ J(ej(A⋆G)0ej), so that yx is invertible in ej(A⋆G)0ej . By suitable
replacement, without loss of generality, we can assume that yx = ej = ej ⋆ 1. We write
x =

∑
g∈G ag ⋆ g and y =

∑
g′ bg′ ⋆ g

′, where ag ∈ eiAheg(j) and bg′ ∈ ejA−heg′(i). From

yx = ei we get the equality
∑

g∈G bg−1ag
−1

g = ej in A. But bg−1 ∈ ejAeg−1(i) ⊆ Jgr(A)

because A is weakly basic and j 6= g−1(i). It then follows that ej ∈ J
gr(A), which is a

contradiction. Therefore Λ is weakly basic.
Suppose that A is basic, and let us prove that Λ is also basic. The argument of

the previous paragraph is valid, by taking i = j and assuming h 6= 1. Using the fact
that eiAheg−1(i) ⊂ Jgr(A) whenever g ∈ G and h ∈ H \ {1}, the argument proves that
e[i]Λhe[i] ⊂ J

gr(Λ) whenever h 6= 1.
We pass to define the graded Nakayama form for Λ. We will define first graded bilinear

forms < −,− >: e[i]Λe[j] × e[k]Λe[l] −→ K, for all objects [i], [j], [k] and [l] of Λ. When



1.4. Covering theory and pseudo-Frobenius algebras 23

[j] 6= [k] the bilinear form is zero. In case [j] = [k], we need to define < π(a), π(b) >
whenever a ∈ ⊕g,g′∈Geg(i)Aeg′(j) and b ∈ ⊕g,g′∈Geg(j)Aeg′(l). We define < π(a), π(b) >
when a, b ∈

⋃
i,l∈I eiAel, with [t(a)] = [i(b)] = [j] and then extend by K-bilinearity

to the general case. Indeed we define < [a], [b] >= (a, bg), where g ∈ G satisfies that
g(i(b)) = t(a). Note that g is unique since G acts freely on objects. It is routine to check
that < −,− >: e[i]Λe[j] × e[j]Λe[k] is well-defined. The graded bilinear form < −,− >:
Λ× Λ −→ K is defined as the ’direct sum’ of the just defined graded bilinear forms.

We next check that it satisfies all the conditions of definition 5. We first check condition
2 in that definition. Let x, y ∈

⋃
[i],[j] e[i]Λe[j] be such that < x, y > 6= 0. Then we know that

there is j ∈ I such that t(x) = [j] = i(y). Fix such index j ∈ I. Since the functor π : A −→

Λ is covering it gives bijections ⊕g∈Geg(i)Aej
∼=
−→ e[i]Λe[j] and ⊕g∈GejAeg(k)

∼=
−→ e[j]Λe[k],

for all G-orbits of indices [j] and [k]. We then put x =
∑

g∈G π(ag) and y =
∑

g∈G π(bg)
such that ag ∈ eg(i)Aej and bg ∈ ejAeg(k), for all g ∈ G. By definition of < −,− >, we
then have 0 6=< x, y >=

∑
g,g′∈G(ag, bg′), which implies that there are g, g′ ∈ G such that

(ag, bg′) 6= 0. This implies that g′(k) = ν(g(i)), where ν is the Nakayama permutation
associated to (−,−). But, due to the G-invariant condition of (−,−), we have that
ν(g(i)) = g(ν(i)). This shows that [k] = [ν(i)]. It follows that < e[i]Λ,Λe[k] > 6= 0
implies that [k] = [ν(i)]. Therefore assertion 2 of definition 5 holds, and the bijection

ν̄ : I/G
∼=
−→ I/G maps [i] [ν(i)].

The G-invariance of (−,−) also implies that if h : I −→ H is the degree function
associated to (−,−), then h(g(i)) = h(i) ∀i ∈ I. As a consequence, the graded bilinear
form < −,− >: e[i]Λ×Λe[ν(i)] −→ K is of degree hi := h(i), for each i ∈ I. Then the map
h̄ : I/G −→ H, [i] hi, is the degree function of < −,− >.

It remains to check that < xy, z >=< x, yz >, for all x, y, z ∈ Λ. For that, it is not
restrictive to assume that x = [a], y = [b] and z = [c], where a, b, c are homogeneous
elements in

⋃
i,j∈I eiAej . In such a case, note that if one member of the desired equality

< xy, z >=< x, yz > is nonzero, then t(x) = i(y) and t(y) = i(z) or, equivalently,
[t(a)] = [i(b)] and [t(b)] = [i(c)]. If this holds, then we have

< xy, z >=< [a][b], [c] >=< [abg], [c] >= (abg, cg
′

),

where g, g′ ∈ G are the elements such that g(i(b)) = t(a) and g′(i(c)) = g(t(b)). Note that
then (g−1g′)(i(c)) = t(b) and, hence, we also have

< x, yz >=< [a], [b][c] >=< [a], [bcg
−1g′ ] >= (a, (bcg

−1g′)g) = (a, bgcg
′

).

The equality < xy, z >=< x, yz > follows then from the fact that (−,−) : A× A −→ K
is a graded Nakayama form for A.

The following result completes the last proposition by showing how to construct G-
invariant graded Nakayama forms in the split case.

Corollary 1.4.4. Let A = ⊕h∈HAh be a split basic graded pseudo-Frobenius algebra and
let G be a group of graded automorphisms of A which permute the ei and acts freely on
objects. There exist an element h = (hi)i∈I ∈

∏
i∈I Supp(eiSocgr(A)) and basis Bi of

eiAhi, for each i ∈ I, satisfying the following properties:
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1. hi = hg(i), for all i ∈ I

2. g(Bi) = Bg(i) and Bi contains an element of eiSocgr(A), for all i ∈ I

In such case, letting B =
⋃
i∈I Bi, the graded Nakayama form associated to the pair (B,h)

(see definition 8) is G-invariant.

Proof. We fix a subset I0 ⊆ I which is a set of representatives of the G-orbits of objects.
Then the assignment i  [i] defines a bijection between I0 and the set of objects of Λ =
A/G. For each i ∈ I0, we fix an hi ∈ Supp(eiSocgr(A)) and a basis Bi of eiAhi containing
an element wi ∈ eiSocgr(A), for each i ∈ I0. Note that g(eiSocgr(A)) = eg(i)Socgr(A)
since G consists of graded automorphisms. It then follows that hi ∈ Supp(eg(i)Socgr(A)).
Given j ∈ I, the free action of G on objects implies that there are unique elements i ∈ I0
and g ∈ G such that g(i) = j. We then define hj = hi and Bj = g(Bi), whenever j = g(i),
with i ∈ I0. Note that Bj contains the element g(wi) of ejSocgr(A). It is now clear that
h = (hj)j∈I is in

∏
j∈I Supp(ejSocgr(A)) and that Bj is a basis of ejAhj containing an

element of ejSocgr(A), for each j ∈ I. It is also clear that if B :=
⋃
j∈I Bj then g(B) = B,

for all g ∈ G.
By definition of the graded Nakayama form (−,−) : A×A −→ K associated to (B,h)

(see definition 8) and the fact that wj = g(wj) = wg(j), for all g ∈ G and j ∈ I, we easily
conclude that (−,−) is G-invariant.

The following result states that, assuming that the Nakayama form of A is G-invariant,
the Nakayama automorphism of the algebra A/G is induced by the Nakayama automor-
phism of A. It is a direct consequence of Proposition 1.4.3, its proof and the definition of
the Nakayama automorphism.

Corollary 1.4.5. Let A = ⊕h∈HAh be a weakly basic graded pseudo-Frobenius algebra and
let (−,−) : A × A −→ K be a G-invariant graded Nakayama. The following assertions
hold:

1. If η : A −→ A is the Nakayama automorphism associated to (−,−), then η◦g = g◦η,
for all g ∈ G

2. Let < −,− >: Λ× Λ −→ K be the graded Nakayama form induced from (−,−) and
let η̄ : Λ −→ Λ be the associated Nakayama automorphism. Then η̄([a]) = [η(a)] for
each a ∈

⋃
i,j eiAej .
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The mesh algebra of a Dynkin
diagram

2.1 Introduction

2.1.1 Motivation

The relevance of the Nakayama automorphism η of a finite dimensional self-injective al-
gebra Λ becomes clear, at least, in questions related to the symmetry and the Calabi-Yau
condition, due to the existence of the isomorphism of Λ-bimodules D(Λ) ∼= 1Λη. Despite
of the fact that we are actually interested in the class of the m-fold mesh algebras, we
approach the problem of determining the Nakayama automorphism of any algebra in this
class by investigating that of the corresponding universal Galois cover. In view of Lemma
1.4.5 and, in order to establish a suitable relationship between the associated Nakayama
automorphisms, the G-invariant condition has to be required. This turns out to be the
main reason for studying in depth the mesh algebra of a Dynkin diagram.

2.1.2 Outline of the chapter

In Section 2.2 we recall the general definition of a stable translation quiver paying special
attention to the most interesting example for our purposes, namely, the stable translation
quiver Z∆ associated to a Dynkin diagram ∆. Concerning Section 2.3, we first introduce
the notion and essential properties of the mesh algebra of a Dynkin diagram which is, by
definition, related to the stable translation quiver Z∆, for some Dynkin quiver ∆. Next, we
exhibit the list of the m-fold mesh algebras, which arise as the orbit algebras of the mesh
algebras of Dynkin diagrams by factoring out a weakly admissible group of automorphisms
G and, for such class of algebras, we introduce the notion of extended type. Finally, we end
the section by performing a change of relations which, roughly speaking, transforms sums
of paths of length 2 into differences. In Section 2.4 we give the explicit formula, for any
choice (∆, G), of a G-invariant Nakayama automorphism of the mesh algebra associated
to ∆.
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2.1.3 Notation

Throughout this chapter K will be a fixed field, ∆ will be one of the Dynkin quivers An,
Dn+1 (n ≥ 3) or En (n = 6, 7, 8), and Z∆ will be the associated translation quiver. Its
path algebra will be denoted by KZ∆ and we will put B = K(Z∆) for the mesh algebra.
The Nakayama automorphism of B will be denoted by η.

2.2 Stable translation quivers

This section is devoted, only and exclusively, to introduce the notion of a stable translation
quiver and its associated mesh algebra.

We recall that a stable translation quiver is a pair (Γ, τ), where Γ is a locally finite
quiver (i.e. given any vertex, there are only finite arrows having it as origin or terminus)
and τ : Γ0 → Γ0 is a bijective map such that for any x, y ∈ Γ0, the number of arrows
from x to y is equal to the number of arrows from τ(y) to x. The map τ will be called
the Auslander-Reiten translation. Throughout the rest of the work, whenever we have a
stable translation quiver, we will also fix a bijection σ : Γ1(x, y) → Γ1(τ(y), x) called a
polarization of (Γ, τ). Note that, from the definition of σ, one gets that τ can be extended
to a graph automorphism of Γ by setting τ(α) = σ2(α) ∀α ∈ Γ1. If KΓ denotes the path
algebra of Γ, then the mesh algebra of Γ is K(Γ) = KΓ/I, where I is the ideal of KΓ
generated by the so-called mesh relations rx, where rx =

∑
a∈Γ1, t(a)=x

σ(a)a, for each
x ∈ Γ0. Note that, when Γ is viewed as a Z-graded quiver with all arrows having degree
1, then I is homogeneous with respect to the induced grading on KΓ. Therefore K(Γ)
is canonically a positively (Z-)graded algebra with enough idempotents and τ becomes a
graded automorphism of K(Γ).

The typical example of stable translation quiver is the following. Given a locally finite
quiver ∆, the stable translation quiver Z∆ will have as set of vertices (Z∆)0 = Z ×∆0.
Moreover, for each arrow α : x → y in ∆1, we have arrows (n, α) : (n, x) → (n, y) and
(n, α)′ : (n, y) → (n + 1, x) in (Z∆)1. Finally, we define τ(n, x) = (n − 1, x), for each
(n, x) ∈ (Z∆)0, and σ(n, α) = (n− 1, α)′ and σ[(n, α)′] = (n, α).

In general, different quivers ∆ and ∆′ with the same underlying graph give non-
isomorphic translation quivers Z∆ and Z∆′. However, when ∆ is a tree, e.g., when ∆
is any of the Dykin quivers An,Dn+1,E6,E7,E8, the isoclass of the translation quiver Z∆
does not depend on the orientation of the arrows.

A group of automorphism G of a stable translation quiver (Γ, τ) is a group of automor-
phisms of Γ which commute with τ and σ. Such a group is called weakly admissible when
x+ ∩ (gx)+ = ∅, for each x ∈ Γ0 and g ∈ G\{1}, where x+ := {y ∈ Γ0 : Γ1(x, y) 6= ∅}.
In such a case, when G acts freely on objects, the orbit quiver Γ/G inherits a structure
of stable translation quiver, with the AR translation τ̄ mapping [x]  [τ(x)], for each
x ∈ Γ0 ∪ Γ1. Moreover, the group G can be interpreted as a group of graded automor-
phisms of the mesh algebra K(Γ) and K(Γ)/G is canonically isomorphic to the mesh
algebra of Γ/G.
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2.3 The mesh algebra of a Dynkin diagram

2.3.1 Definition and basic properties

Definition 13. Given a Dynkin diagram ∆, we will say that B = B(∆) is the mesh
algebra of the Dynkin diagram ∆ if it is the mesh algebra of the stable translation quiver
Z∆.

When ∆ = A2n−1, E6 or Dn+1, with n > 3, the underlying unoriented graph admits a
canonical automorphism ρ of order 2. Similarly, D4 admits an automorphism of order 3.
In each case, the automorphism ρ extends to an automorphism of Z∆ with the same order.
In the case of A2n the canonical automorphism of order 2 of the underlying graph extends
to an automorphism of Z∆, but this automorphism has infinite order. It is still denoted
by ρ and it plays, in some sense, a role similar to the other cases. This automorphism of
ZA2n is obtained by applying the symmetry with respect to the horizontal line and moving
half a unit to the right. Note that we have ρ2 = τ−1. On the contrary, when ∆ = E7 or
E8 there is no automorphism ρ defined.

Although the orientation in ∆ does not change the isomorphism type of Z∆, in order
to numbering the vertices of Z∆ we need to fix an orientation in ∆. Below we fix such
an orientation, and then give the corresponding definition of the automorphism ρ of Z∆
mentioned above.

1. If ∆ = A2n :

1 // 2 // · · · // 2n ,

then ρ(k, i) = (k + i− n, 2n + 1− i)

2. If ∆ = A2n−1 :

1 // 2 // · · · // 2n− 1 ,

then ρ(k, i) = (k + i− n, 2n − i)

3. ∆ = Dn+1:

0

2 //

^^❃❃❃❃❃❃❃❃

����
��
��
��

· · · // n

1

with n > 3, then ρ(k, 0) = (k, 1), ρ(k, 1) = (k, 0) and ρ fixes all vertices (k, i), with
i 6= 0, 1.

4. If ∆ = D4:
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0

2 //

^^❃❃❃❃❃❃❃❃

����
��
��
��

3

1

then ρ fixes the vertices (k, 2) and, for k fixed, it applies the 3-cycle (013) to the
second component of each vertex (k, i).

5. If ∆ = E6:

0

5 4oo 3oo

OO

2oo 1oo

then ρ(k, i) = (k + i− 3, 6 − i) for all i 6= 0 and ρ(k, 0) = (k, 0)

6. If ∆ = E7:

0

6 5oo 4oo 3oo

OO

2oo 1oo

7. If ∆ = E8:

0

7 6oo 5oo 4oo 3oo

OO

2oo 1oo

Following the definition of mesh algebra given in the previous section, we give bellow
the quiver and relations of the mesh algebra B = B(∆) associated to the stable translation
quiver Z∆, for ∆ = An,Dn+1 and E6.

a) If ∆ = An, then ZAn has quiver:
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Letting pi : i → i + 1 → i for i = 0, . . . , n − 1 and qi : i → i − 1 → i for i = 1, . . . , n,
the relations are given by

p0 = 0 = qn

pi + qi = 0 for i = 1, . . . , n− 1

b) If ∆ = Dn+1, then ZDn+1 has quiver:
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;;✈✈✈✈✈✈
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1
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1
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1

;;✈✈✈✈✈✈

We put u : 2 −→ 0 −→ 2, v : 2 −→ 1 −→ 2, w : 2 −→ 3 −→ 2, p0 : 0 −→ 2 −→ 0, and
p1 : 1 −→ 2 −→ 1.

Then, the relations are:

qn = 0 = p0 = p1

pi + qi = 0 ∀i = 3, . . . n− 1

u2 = 0 = v2

u+ v + w = 0
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c) If ∆ = E6, then ZE6 has quiver
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@@✁✁✁✁✁
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We put u : 3 −→ 0 −→ 3, v : 3 −→ 4 −→ 3, w : 3 −→ 2 −→ 3, and p0 : 0 −→ 3 −→ 0.

Then, we have relations

p0 = p1 = 0 = q5

pi + qi = 0 ∀i = 2, 4

u+ v + w = 0

d) If ∆ = E7, then ZE7 has quiver
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We put u : 3 −→ 0 −→ 3, v : 3 −→ 4 −→ 3, w : 3 −→ 2 −→ 3, and p0 : 0 −→ 3 −→ 0.

Then, we have relations

p0 = p1 = 0 = q6

pi + qi = 0 ∀i = 2, 4, 5

u+ v + w = 0

e) If ∆ = E8, then ZE8 has quiver
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2
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❂❂

❂❂
2

@@✁✁✁✁✁
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❂❂

❂❂
2

@@✁✁✁✁✁

��❂
❂❂

❂❂
2

@@✁✁✁✁✁

��❂
❂❂

❂❂
2

@@✁✁✁✁✁

��❂
❂❂

❂❂
2

1

@@✁✁✁✁✁
1

@@✁✁✁✁✁
1

@@✁✁✁✁✁
1

@@✁✁✁✁✁
1

@@✁✁✁✁✁

We put u : 3 −→ 0 −→ 3, v : 3 −→ 4 −→ 3, w : 3 −→ 2 −→ 3, and p0 : 0 −→ 3 −→ 0.

Then, we have relations

p0 = p1 = 0 = q7

pi + qi = 0 ∀i = 2, 4, 5, 6

u+ v + w = 0

Dynkin diagrams are fundamental in the classification of simple Lie algebras (see [49]).
The Weyl group of such an algebra is the subgroup of the isometry group of its root
system generated by the simple reflections. The product of these simple reflections is then
an element of the Weyl group which is uniquely determined, up to conjugacy. The order
of this element is called the Coxeter number of the corresponding Dynkin diagram. We
will not need to go through the theory of Lie algebras in this work, but we will need the
precise value c∆ of the Coxeter number, for each Dynkin diagram ∆ = Ar, Dn+1, E6, E7

or E8. It is included in the next result.
The following facts are well-known (cf. [15][Section 1.1] and [43][Section 6.5]).

Proposition 2.3.1. Let ∆ be a Dynkin quiver, ∆̄ be its associated graph, c∆ be its Coxeter
number and B = K(Z∆) be the mesh algebra of the translation quiver Z∆. The following
assertions hold:

1. Each path of length > c∆ − 2 in Z∆ is zero in B.

2. For each (k, i) ∈ (Z∆)0, there is a unique vertex ν(k, i) ∈ (Z∆)0 for which there is a
path (k, i) → ...→ ν(k, i) in Z∆ of length c∆ − 2 which is nonzero in B. This path
is unique, up to sign in B.

3. If (k, i)→ ...→ (m, j) is a nonzero path then there is a path q : (m, j)→ ...→ ν(k, i)
such that pq is a nonzero path (of length c∆ − 2)

4. The assignment (k, i)  ν(k, i) gives a bijection ν : (Z∆)0 −→ (Z∆)0, called the
Nakayama permutation.
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5. The vertex ν(k, i) is given as follows:

(a) If ∆ = Ar, with r = 2n or 2n − 1, (hence c∆ = r + 1), then ν(k, i) =
ρτ1−n(k, i) = (k + i− 1, r + 1− i)

(b) If ∆ = Dn+1 (hence c∆ = 2n), then

i. ν(k, i) = τ1−n(k, i) = (k + n− 1, i), in case n+ 1 is even

ii. ν(k, i) = ρτ1−n(k, i), in case n+ 1 is odd.

(c) If ∆ = E6 (hence c∆=12), then ν(k, i) = ρτ−5(k, i).

(d) If ∆̄ = E7 (hence c∆ = 18), with any orientation, then ν(k, i) = τ−8(k, i) =
(k + 8, i)

(e) If ∆̄ = E8 (hence c∆ = 30), with any orientation, then ν(k, i) = τ−14(k, i) =
(k + 14, i).

In the following result we prove that mesh algebra B is not only a pseudo-Frobenius
graded algebra, but also a Quasi-Frobenius graded algebra. This means, in particular,
that it admits a Nakayama automorphism being graded.

Corollary 2.3.2. B is a split basic graded Quasi-Frobenius algebra admitting a graded
Nakayama form whose associate degree function takes constant value l = c∆ − 2.

Proof. By last proposition, we know that Be(k,i) and e(k,i)B are finite dimensional graded
B-modules. In particular, both are Noetherian, so that B is a locally Noetherian graded
algebra. Note that e(k,i)Be(k,i) ∼= K, for each vertex (k, i) ∈ Γ0, and that Jgr(B) = J(B)
is the vector subspace generated by the paths of length > 0. Therefore B is clearly split
basic. On the other hand, if ν es the Nakayama permutation and we fix a nonzero path
w(k,i) : (k, i) → ... → ν(k, i) of length l = c∆ − 2, then last proposition says that w(k,i) is
in the (graded and ungraded) socle of e(k,i)B.

By conditions 2 and 3 of Proposition 2.3.1, we have that dim(Soc(e(k,i)B)) = 1 and
that Soc(e(k,i)B) is an essential (graded and ungraded) submodule of e(k,i)B). Note that
Bop is the mesh algebra of the opposite Dynkin quiver ∆op, which is again Dynkin of the
same type. Then also Be(k,i) has essential simple (graded and ungraded) socle, which is
isomorphic to Sν−1(k,i)[l ] as graded left B-module. Then all conditions of Corollary 1.3.5
are satisfied, with ν ′ = ν−1.

By Corollary 1.3.9, we know that B admits a graded Nakayama form with constant
degree function and, by Proposition 1.3.7 and its proof, we have a unique choice, namely
h(k, i) = l for all (k, i) ∈ Γ0, because the support of Socgr(e(k,i)B) is {l}.

2.3.2 m-fold mesh algebras

With all our tools in place, we are ready to describe the class of the m-fold mesh algebras.
When Γ = Z∆, with ∆ a Dynkin quiver, it is known that each weakly admissible automor-
phism is infinite cyclic (see [66], [1]) and below is the list of the resulting stable translation
quivers Z∆/G that appear, where a generator of G is given in each case (see [25]). In each
case, the following automorphism ρ is always that of the list preceding Proposition 2.3.1:
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• ∆(m) = Z∆/〈τm〉, for ∆ = An,Dn,En.

• B
(m)
n = ZA2n−1/〈ρτ

m〉.

• C
(m)
n = ZDn+1/〈ρτ

m〉.

• F
(m)
4 = ZE6/〈ρτ

m〉.

• G
(m)
2 = ZD4/〈ρτ

m〉.

• L
(m)
n = ZA2n/〈ρτ

m〉.

As shown by Dugas (see [25][Section 3]), they are the only translation quivers with
finite dimensional mesh algebras. These mesh algebras are isomorphic to Λ = B/G in
each case, where B is the mesh algebra of Z∆. Abusing of notation, we will simply write
Λ = Z∆/ < ϕ >. These algebras are called m-fold mesh algebras and are known to be
self-injective, a fact that can be easily seen by applying Proposition 1.4.3 since the cyclic
group G acts freely on the objects, i.e., on (Z∆)0. They are also periodic (see [14]).

Note that, except for L
(m)
n , each generator of the group G in the above list is of the

form ρτm, where ρ is an automorphism of order 1 (i.e. ρ = idZ∆), 2 or 3. This leads us to
introduce the following concept, which will be used later on in this work.

Definition 14. Let Λ = Z∆/ < ρτm > be an m-fold mesh algebra of a Dynkin quiver,
possibly with ρ = idZ∆. The extended type of Λ will be the triple (∆,m, t), where t is the

order of ρ, in case Λ 6= L
(m)
n , and t = 2 when Λ = L

(m)
n .

It is well-known that the stable Auslander algebra of any representation-finite self-
injective finite dimensional algebra is an m-fold mesh algebra, but the converse is not true
(see [25] and [51]). The reader is warned that the commonly used type of such an stable
Auslander algebra (see [6], [25],[51]) does not coincide with the here defined extended type.

Examples 2.3.3. The following are the quivers of the m-fold mesh algebras of extended
type (∆, 1, 2) or (D4, 1, 3), usually called generalized preprojective algebras.

Bn :

n+ 1

||①①
①①
①①
①①

// n+ 2 //

��✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞

· · · // 2n − 2 // 2n− 1

��☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎

n

<<①①①①①①①①

""❋
❋❋

❋❋
❋❋

❋

n− 1

bb❋❋❋❋❋❋❋❋
// n− 2

[[✼✼✼✼✼✼✼✼✼✼✼✼✼✼✼
// · · · // 2 // 1

\\✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿
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Cn :

0

��❂
❂❂

❂❂
❂❂

❂

2
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��✁✁
✁✁
✁✁
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3 //oo 4oo n− 1

//
noo

1
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����
��
��
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5

��✏✏
✏✏
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✏✏
✏✏
✏✏
✏✏

0
//
3oo

@@��������

��❃
❃❃

❃❃
❃❃

❃

2 //

^^❃❃❃❃❃❃❃❃
1

WW✳✳✳✳✳✳✳✳✳✳✳✳✳✳

G2 :

1

����
��
��
��

0
//
3oo

@@��������

��❃
❃❃

❃❃
❃❃

❃

2

^^❃❃❃❃❃❃❃❃

Ln:

199
//
2

//oo 3oo n− 1
//
noo

2.3.3 A change of presentation

For calculation purposes, it is convenient to modify the mesh relations. We want that if
(k, i) ∈ (Z∆)0 is a vertex which is the end of exactly two arrows, then the corresponding
mesh relation changes from a sum to a difference. When ∆ = Dn+1 and we consider the
three paths (k, 2) → (k, i) → (k + 1, 2) (i = 0, 1, 3), we want that the path going through
(k, 3) is the sum of the other two. Finally, when ∆ = En (n = 6, 7, 8) and we consider
the three paths (k, 3) → (k, i) → (k + 1, 3) (i = 0, 4) and (k, 3) → (k + 1, 2) → (k + 1, 3),
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we want that the one going through (k, 0) is the sum of the other two. This can be done
by selecting an appropriate subset X ⊂ (Z∆)1 and applying the automorphism of KZ∆
which fixes the vertices and all the arrows not in X and change the sign of the arrows
in X. But we want the same phenomena to pass from B to Λ = B/G, for any weakly
admissible group of automorphisms G of Z∆. This forces us to impose the condition that
X is G-invariant, i.e., that g(X) = X for each g ∈ G.

Proposition 2.3.4. Let ∆ be a Dynkin quiver, KZ∆ be the path algebra of Z∆, let I be
the ideal of KZ∆ generated by the mesh relations and let Ĝ be the group of automorphisms
of Z∆ generated by ρ and τ , whenever ρ exists, and just by τ otherwise. Let X ⊂ (Z∆)1
be the set of arrows constructed as follows:

1. If ∆ 6= A2n−1,D4 and X ′ is the set of arrows given in the following list, then X is
the union of the Ĝ-orbits of elements of X ′:

(a) When ∆ = A2n, X
′ = {(0, i) → (0, i + 1) : 1 ≤ i ≤ n− 1 and i 6≡ n (mod 2)}.

(b) When ∆ = Dn+1, with n > 3, X ′ = {(0, i) → (0, i+1) : 2 ≤ i ≤ n−2 and i ≡ 0
(mod 2)}.

(c) When ∆ = E6, X
′ = {(0, 2)→ (0, 3)}.

(d) When ∆ = En (n = 7, 8), X ′ = {(0, 2) → (0, 3), (0, 4) → (1, 3), (0, 6) →
(1, 5)}.

2. If ∆ = D4 and G =< τm >, then X is the union of the < τ >-orbits of the arrows
(0, 2) → (0, 3)

3. If ∆ = A2n−1 and we denote by < − > the ’subgroup generated by’, then:

(a) When G =< τm >, X is the union of the < τ >-orbits of arrows in the set
X ′ = {(0, i) → (0, i + 1) : 1 ≤ i ≤ 2n− 3 and i 6≡ 0 (mod 2)}.

(b) When G =< ρτm >, with m odd, X is the union of all < ρτ >-orbits of arrows
in the set X ′ = {(0, i)→ (0, i + 1) : 1 ≤ i ≤ n− 1}.

(c) When G =< ρτm >, with m even, X is the union of the < ρ, τ2 >-orbits of
arrows in the set X ′

1 = {(0, i) → (0, i + 1) : 1 ≤ i ≤ n− 2} and the G-orbits of
arrows in the set X ′

2 = {(2r, i) → (2r, i + 1) : 0 ≤ 2r < m and i = n− 1, n}.

When ∆ 6= A2n−1,D4, the given set X is G-invariant, for all choices of the weakly ad-
missible group of automorphisms G. When ∆ = A2n−1, X is G-invariant for the respective
group G.

Moreover, let s : X −→ Z2 be the signature map, where s(a) = 1 exactly when a ∈ X,
and let ϕ : KZ∆ −→ KZ∆ be the unique graded algebra automorphism which fixes the
vertices and maps a  (−1)s(a)a, for each a ∈ (Z∆)1. Then ϕ(I) is the ideal of KZ∆
generated by the relations mentioned in the paragraph preceding this proposition.

Proof. The G-invariance of X is clear. In order to prove that ϕ(I) is as indicated, note
that the mesh relation

∑
t(a)=(k,i) σ(a)a is mapped onto

∑
t(a)=(k,i)(−1)

s(σ(a)a)σ(a)a, with
the signature s(p) of a path defined as the sum of the signature of its arrows. The result
will follow from the verification of the following facts, which are routine:
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i) If (k, i) is the terminus of exactly two arrows a and b, then the setX∩{a, b, σ(a), σ(b)}
has only one element.

ii) When ∆ = Dn+1, with n > 3, and a : (k − 1, 3) → (k, 2), b : (k − 1, 0) →
(k, 2) and c : (k − 1, 1) → (k, 2) are the three arrows ending at (k, 2), then X ∩
{a, b, c, σ(a), σ(b), σ(c)} = {σ(a)}

iii) When ∆ = En (n = 6, 7, 8) and a : (k, 2) → (k, 3), b : (k − 1, 0) → (k, 3) and
c : (k − 1, 4) → (k, 3) are the three arrows ending at (k, 2), then s(σ(b)b) 6= 1 =
s(σ(a)a) = s(σ(c)c).

Corollary 2.3.5. With the terminology of the previous proposition, the mesh algebra is
isomorphic as a graded algebra to B′ := KZ∆/ϕ(I) and, in each case, the ideal ϕ(I) is
G-invariant. In particular, G may be viewed as group of graded automorphisms of B′ and

ϕ induces an isomorphism B/G
∼=
−→ B′/G.

Proof. Since ϕ is a graded automorphism of the path algebra KZ∆ it induces an isomor-

phism B = KZ∆/I
∼=
−→ KZ∆/ϕ(I) = B′. If we view G as a group of graded automor-

phisms of KZ∆, then the fact that X is G-invariant implies that ϕ ◦ g = g ◦ ϕ, for each
g ∈ G. From this remark the rest of the Corollary is clear.

Remark 2.3.6. When ∆ = D4 and G =< ρτm >, one cannot find a G-invariant set of
arrows X as in the above proposition guaranteeing that, each k ∈ Z, the path (k−1, 2)→
(k − 1, 3) → (k, 2) is the sum of the other two paths from (k − 1, 2) to (k, 2). This is the
reason for the following convention.

Convention 2.3.7. From now on in this dissertation, the term ’mesh algebra’ will denote
the algebra KZ∆/ϕ(I) given by Corollary 2.3.5, or just KZD4/I in case (∆, G) = (D4, <
ρτm >). This ’new’ mesh algebra will be still denoted by B.

2.4 The Nakayama automorphism

In this section we focus our attention on the Nakayama automorphism of the mesh algebra
B. This is given by the only automorphism η of B satisfying that (a, b) = (b, η(a)), for all
a, b ∈ B, where (−,−) denotes the graded Nakayama form associated to B.

First notice that the quiver Z∆ does not have double arrows and, hence, if a : x→ y
is an arrow, then there exists exactly one arrow ν(x) → ν(y), where ν is the Nakayama
permutation. This allows us to extend ν to an automorphism of the translation quiver
Z∆ and, hence, also to an automorphism of the path algebra KZ∆. Moreover, due to the
(new) mesh relations (see Proposition 2.3.4 and the paragraph preceding it), we easily see
that if I ′ is the ideal of KZ∆ generated by those mesh relations, then ν(I ′) = I ′. Note also
from Proposition 2.3.1 that, as an automorphism of the quiver Z∆, we have that ν = τk

or ν = ρτk, for a suitable natural number k. It follows that if G is any weakly admissible
automorphism of Z∆, then ν ◦ g = g ◦ ν for all g ∈ G. All these comments prove:



2.4. The Nakayama automorphism 37

Lemma 2.4.1. Let ∆ be a Dykin quiver, B be its associated mesh algebra and G be a
weakly admissible automorphism of Z∆. The Nakayama permutation ν extends to a graded
automorphism ν : B −→ B such that ν ◦ g = g ◦ ν, for all g ∈ G.

The following result, which provides an explicit formula for a G-invariant graded
Nakayama automorphism of any mesh algebra, is fundamental for us.

Theorem 2.4.2. Let ∆ be a Dynkin quiver with the labeling of vertices and the orientation
of the arrows of Subsection 2.3.1, and let G =< ϕ > be a weakly admissible automorphism
of Z∆. If η is the graded automorphism of B which acts as the Nakayama permutation on
the vertices and acts on the arrows as indicated in the following list, then η is a Nakayama
automorphism of B such that η ◦ g = g ◦ η, for all g ∈ G.

1. When ∆ = An and ϕ is arbitrary, η(α) = ν(α) for all α ∈ (Z∆)1

2. When ∆ = Dn+1:

(a) If n+ 1 ≥ 4 and ϕ = τm then:

i. η(α) = −ν(α), whenever α : (k, i) −→ (k, i + 1) is an upward arrow with
i ∈ {2, ..., n − 1}.

ii. η(α) = ν(α), whenever α : (k, i) −→ (k + 1, i − 1) is downward arrow with
i ∈ {3, ..., n}.

iii. η(εi) = (−1)iν(εi), for the arrow εi : (k, 2) −→ (k, i) (i = 0, 1),

iv. η(ε′i) = (−1)i+1ν(ε′i), for the arrow ε′i : (k, i) −→ (k + 1, 2) (i = 0, 1).

(b) If n+ 1 > 4 and ϕ = ρτm then:

i. η(α) = −ν(α), whenever α is an upward arrow as above or α : (k, i) −→
(k + 1, i − 1) is downward arrow as above such that k ≡ −1 (mod m).

ii. η(α) = ν(α), whenever α : (k, i) −→ (k + 1, i− 1) is downward arrow such
that k 6≡ −1 (mod m)

iii. For the remaining arrows, if q and r are the quotient and remainder of
dividing k by m, then
η(εi) = (−1)q+iν(εi) (i = 0, 1).
η(ε

′

i) = (−1)q+i+1ν(ε
′

i), when r 6= m − 1, and η(ε
′

i) = (−1)q+iν(ε
′

i) other-
wise

(c) If n+ 1 = 4 and ϕ = ρτm (see the convention 2.3.7), then:

i. η(εi) = ν(εi), whenever εi : (k, 2)→ (k, i) (i = 0, 1, 3)

ii. η(ε′i) = −ν(ε
′
i), whenever ε

′
i : (k, i)→ (k + 1, 2) (i = 0, 1, 3).

3. When ∆ = E6:

(a) If ϕ = τm then:

i. η(α) = ν(α) and η(α
′

) = −ν(α
′

), where α : (k, 1)→ (k, 2) and α
′

: (k, 2)→
(k + 1, 1).
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ii. η(β) = ν(β) and η(β
′
) = −ν(β

′
), where β : (k, 2)→ (k, 3) and β

′
: (k, 3)→

(k + 1, 2).

iii. η(γ) = ν(γ) and η(γ
′
) = −ν(γ

′
), where γ : (k, 3)→ (k, 4) and γ

′
: (k, 4)→

(k + 1, 3).

iv. η(δ) = −ν(δ) and η(δ
′

) = ν(δ
′

), where δ : (k, 4) → (k, 5) and δ
′

: (k, 5) →
(k + 1, 4).

v. η(ε) = −ν(ε) and η(ε
′
) = ν(ε

′
), where ε : (k, 3) → (k, 0) and ε

′
: (k, 0) →

(k + 1, 3).

(b) If ϕ = ρτm, (k, i) is the origin of the given arrow, q and r are the quotient and
remainder of dividing k by m, then:

i. η(α) = ν(α).

ii. η(α
′
) = −ν(α

′
).

iii. η(β) = (−1)qν(β)

iv. η(β
′
) = (−1)q+1ν(β

′
)

v. η(γ) = (−1)qν(γ)

vi. η(γ
′

) = ν(γ
′

), when either q is odd and r 6= m−1 or q is even and r = m−1,
and η(γ

′
) = −ν(γ

′
) otherwise.

vii. η(δ) = −ν(δ)

viii. η(δ
′
) = ν(δ

′
).

ix. η(ε) = −ν(ε)

x. η(ε
′
) = −ν(ε

′
), when r = m− 1, and η(ε

′
) = ν(ε

′
) otherwise.

4. When ∆ = E7, ϕ = τm, and then:

i η(a) is given as in 3.(a) for any arrow a contained in the copy of E6.

ii η(ζ) = ν(ζ) and η(ζ
′

) = −ν(ζ
′

), where ζ : (k, 5) → (k, 6) and ζ
′

: (k, 6) →
(k + 1, 5).

5. When ∆ = E8, ϕ = τm, and then:

i η(a) is given as in 4 for any arrow a contained in the copy of E7.

ii η(θ) = ν(θ) and η(θ
′

) = −ν(θ
′

), where θ : (k, 6) → (k, 7) and θ
′

: (k, 7) →
(k + 1, 6).

Proof. Let ν be the Nakayama permutation of the Z∆ (see Proposition 2.3.1). By Corolla-
ry 2.3.2, we know that Socgr(e(k,i)B) = Soc(e(k,i)B) is one-dimensional and concentrated in
degree l = c∆−2, for each (k, i) ∈ Z∆0. By applying Corollary 1.4.4, after taking a nonzero
element w(k,i) ∈ e(k,i)Socgr(B), for each (k, i) ∈ (Z∆)0, we can take the graded Nakayama
form (−,−) : B×B −→ K of degree l associated to B = (B(k,i))(k,i)∈Z∆0

(see definition 8),
where B(k,i) = {w(k,i)} is a basis of e(k,i)Bleν(k,i), for each (k, i) ∈ Z∆0. It is clear that the
so obtained graded Nakayama form will be G-invariant whenever B =

⋃
(k,i)∈Z∆0

B(k,i) is
G-invariant. Moreover, in such case the associated Nakayama automorphism η will satisfy
that η ◦ g = g ◦ η, for all g ∈ G (see Corollary 1.4.5). The canonical way of constructing
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such a G-invariant basis B is given in the proof of Corollary 1.4.4. Namely, we select a set
I ′ of representatives of the G-orbits of vertices and a element 0 6= w(k,i) ∈ e(k,i)Socgr(B),
for each (k, i) ∈ I ′. Then B = {g(w(k,i)) : g ∈ G, (k, i) ∈ I ′} is a G-invariant basis as
desired. However, note that if we choose B to be τ -invariant, then it is G-invariant for
G =< τm >. So, in order to construct B, we will only need to consider the cases ϕ = τ
and ϕ = ρτm

To construct B when ∆ = An has no problem, for all paths of length l = c∆ − 2 from
(k, i) to ν(k, i) are equal in B. So in this case the choice of w(k,i) will be the element
of B represented by a path from (k, i) to ν(k, i) and B = {w(k,i) : (k, i) ∈ (Z∆)0} is
G-invariant for any choice of ϕ. So, on what concerns the calculation of B, we assume
in the sequel that ∆ is either Dn+1 or Er (r = 6, 7, 8). For these cases, if ϕ = τ we will
take I ′ = S, where S := {(0, i) : i ∈ ∆0} is the canonical slice. The desired elements
w(0,i) ∈ e(0,i)Socgr(B) are the paths given below. If ϕ = ρτm and ∆ = Dn+1, with n > 3,

we will take I ′ = {(k, i) : i ∈ ∆0 and 0 ≤ k < m} and we will put w(k,i) = τ−k(w(0,i)),
for each (k, i) ∈ I ′. On the other hand, if ϕ = ρτm and ∆ = E6 we will consider
the slice T = {(0, i) : i = 0, 3, 4, 5} ∪ {(1, 2), (2, 1)}, which is ρ-invariant, and then take
I ′ = {τ−k(r, i) : (r, i) ∈ T and 0 ≤ k < m}. The paths w(0,i) (i = 0, 3, 4, 5) will be as in
the case ϕ = τ , and we will define below the paths w(1,2) and w(2,1) below. Then we will

take wτ−k(r,j) = τ−k(w(r,j)), for all (r, j) ∈ T and 0 ≤ k < m.
When ∆ = D4 and ϕ = ρτm (see the convention 2.3.7), we slightly divert from the

previous paragraph. We take w(0,0) = ε′0ε1ε
′
1ε0 and w(0,2) = ε0ε

′
0ε1ε

′
1. Due to the fact that

all nonzero paths from (0, 2) to ν(0, 2) = (2, 2) are equal, up to sign, in B we know that
the action < ρ > on those paths is trivial. The base B will be the union of the orbits of
w(0,0) and w(0,2) under the action of the group of automorphisms generated by ρ and τ .

Suppose that ∆ = Dn+1, with n > 3 in case ϕ = ρτm. To simplify the notation, we
shall denote by u, v and w, respectively, each of the paths of length 2

(r, 2)→ (r, 0)→ (r + 1, 2)
(r, 2)→ (r, 1)→ (r + 1, 2)
(r, 2) → (r, 3)→ (r + 1, 2),

with no mention to r. Then a composition of those paths (r, 2)→ (r+1, 2)→ ...→ (r+i, 2)
will be denoted as a (noncommutative) monomials in the u, v, w.

We will need also to name the paths that we will use. Concretely:

1. γ(k,i) is the downward path (k, i) → ... → (k + i − 2, 2), with the convention that
γ(k,2) = e(k,2).

2. δ(m,j) is the upward path (m, 2) → ... → (m, j), with the convention that δ(m,2) =
e(m,2).

3. ε(k,j) is the arrow (k, 2) −→ (k, j) and ε
′

(k,j) is the arrow (k, j) −→ (k + 1, 2), for
j = 0, 1.

Our choice of the w(0,i) is then the following:

(a) w(0,i) = γ(0,i)uvuv...δ(n−1,i) whenever i = 2, ..., n.
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(b) w(0,0) = ε′(0,0)vuvu...εν(0,0)

(c) w(0,1) = ε′(0,1)uvuv...εν(0,1)

(note that, for j = 0, 1, the vertex ν(0, j) depends on whether n+ 1 is even or odd).

If ∆ = En with n = 6, 7, 8, we name the paths from (k, 3) to (k + 1, 3) as follows:

u : (k, 3)→ (k, 0)→ (k + 1, 3)

v : (k, 3)→ (k, 4)→ (k + 1, 3)

w : (k, 3)→ (k + 1, 2)→ (k + 1, 3).

Then any path (k, 3) → ... → (k + r, 3) is equal in B to a monomial in u, v, w, with the
obvious sense of ’monomial’. With the abuse of notation of omitting k when showing a
vertex (k, i) in the diagrams below, we then take:

1. When ∆ = E6

(a) w(0,3) is the path

3
vwvwv // 3

(b) w(0,0) is the path

0 // 3
vwvw // 3 // 0

(c) w(0,2), in case ϕ = τ , and w(1,2), in case ϕ = ρτm, is the path

4

3
vwvw // 3

@@��������

2

@@��������

,

(d) w(0,4) is the path

4

��❃
❃❃

❃❃
❃❃

❃

3
wvwv // 3

��❃
❃❃

❃❃
❃❃

❃

2
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(e) w(0,1), in case ϕ = τ , and w(2,1), in case ϕ = ρτm, is the path

5

4

@@��������

3
v2w // 3

@@��������

2

@@��������

1

@@��������

(f) w(0,5) is the path

5

��❃
❃❃

❃❃
❃❃

❃

4

��❃
❃❃

❃❃
❃❃

❃

3
w2v // 3

��❃
❃❃

❃❃
❃❃

❃

2

��❃
❃❃

❃❃
❃❃

❃

1

,

2. When ∆ = E7

(a) w(0,3) is the path

3
vwvwvwvw // 3

(b) w(0,0) is the path

0 // 3
vwvwvwv // 3 // 0

(c) w(0,1) is the path
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3
v2wvwv // 3

��❃
❃❃

❃❃
❃❃

❃

2

@@��������
2

��❃
❃❃

❃❃
❃❃

❃

1

@@��������
1

(d) w(0,2) is the path

3
vwvwvwv // 3

��❃
❃❃

❃❃
❃❃

❃

2

@@��������
2

(e) w(0,4) is the path

4

��❃
❃❃

❃❃
❃❃

❃ 4

3
wvwvwvw // 3

@@��������

(f) w(0,5) is the path

5

��❃
❃❃

❃❃
❃❃

❃ 5

4

��❃
❃❃

❃❃
❃❃

❃ 4

@@��������

3
w2vwvw // 3

@@��������

(g) w(0,6) is the path

6

��❃
❃❃

❃❃
❃❃

❃ 6

5

��❃
❃❃

❃❃
❃❃

❃ 5

@@��������

4

��❃
❃❃

❃❃
❃❃

❃ 4

@@��������

3
w2vw2

// 3

@@��������

3. When ∆ = E8
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(a) w(0,3) is the path

3
(vw)7 // 3

(b) w(0,0) is the path

0 // 3
(vw)6v // 3 // 0

(c) w(0,1) is the path

3
v2(wv)5 // 3

��❃
❃❃

❃❃
❃❃

❃

2

@@��������
2

��❃
❃❃

❃❃
❃❃

❃

1

@@��������
1

(d) w(0,2) is the path

3
(vw)6v // 3

��❃
❃❃

❃❃
❃❃

❃

2

@@��������
2

(e) w(0,4) is the path

4

��❃
❃❃

❃❃
❃❃

❃ 4

3
(wv)6w // 3

@@��������

(f) w(0,5) is the path

5

��❃
❃❃

❃❃
❃❃

❃ 5

4

��❃
❃❃

❃❃
❃❃

❃ 4

@@��������

3
w2(vw)5 // 3

@@��������

(g) w(0,6) is the path
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6

��❃
❃❃

❃❃
❃❃

❃ 6

5

��❃
❃❃

❃❃
❃❃

❃ 5

@@��������

4

��❃
❃❃

❃❃
❃❃

❃ 4

@@��������

3
w2(vw)3vw2

// 3

@@��������

(h) w(0,7) is the path

7

��❃
❃❃

❃❃
❃❃

❃ 7

6

��❃
❃❃

❃❃
❃❃

❃ 6

@@��������

5

��❃
❃❃

❃❃
❃❃

❃ 5

@@��������

4

��❃
❃❃

❃❃
❃❃

❃ 4

@@��������

3
wv4wv2w2

// 3

@@��������

Once the G-invariant basis B of Socgr(B) = Soc(B) has been described, the strategy
to identify the action of the associated Nakayama automorphism η on the arrows is very
simple. Given an arrow α, we take a path q : t(α) → ... → ν(i(α)) of length l − 1 such
that αq is a nonzero path. Then we have αq = (−1)u(α)wi(α), so that, by definition of

the graded Nakayama form associated to B, we have an equality (α, q) = (−1)u(α). Since
the quiver Z∆ does not have double arrows we know that η(α) = λ(α)ν(α), for some
λ(α) ∈ K∗. In particular we know that qν(α) is a nonzero path (of length l) because
(q, η(α)) = (α, q) 6= 0. If we have an equality qν(α) = (−1)v(α)wt(α) in B, then it

follows that (−1)u(α) = (α, q) = (q, η(α)) = λ(α)(q, ν(α)) = λ(α)(−1)v(α) . Then we get
λ(α) = (−1)u(α)−v(α) and the task is reduced to calculate the exponents u(α) and v(α) in
each case. Taking into account that we have η ◦ g = g ◦ η, for each g ∈ G, it is enough to
calculate u(α) and v(α) just for the arrows starting at a vertex of I ′.

We pass to consider the situation for each of the three Dynkin quivers:

1) ∆ = An: This is trivial and we have η(α) = ν(α), for each α ∈ (Z∆)1.
2) ∆ = Dn+1:
We still use γ(k,i), δ(m,j), ε(k,j) and ε

′
(k,j) with the same meaning as above. We will use

the letter α to denote un upward arrow (k, i) → (k, i + 1), with i = 2, ..., n − 1, and the
letter β to denote a downward arrow (k, i) → (k + 1, i− 1) with i = 3, ..., n. We will also
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consider the arrows εj := ε(k,j) : (k, 2) → (k, j) and ε′j := ε′(k,j) : (k, j) → (k + 1, 2), for

j = 0, 1. In all cases we consider that the origin of each arrow is a vertex of I ′. We will
now create a table, where, for each of these arrows a, the path pa will be a path of length
l − 1 from t(a) to ν(i(a)) such that apa 6= 0 in B. Then, a routine verification shows that
u(a), v(a) will be elements of Z2 such that apa = (−1)u(a)wi(a) and paν(a) = (−1)v(a)wt(a).

a) For the cases when ϕ = τm, it is enough to consider that m = 1, for if η ◦ τ = τ ◦ η,
then η ◦ τm = τm ◦ η, for all m ≥ 1. For ϕ = τ :

a pa u(a) v(a)

α : (0, i) → (0, i+ 1) γ(0,i+1)vuvu...δ(n−1,i) 0 1

β : (0, i)→ (1, i− 1) γ(1,i−1)uvuv...δ(n−1,i) 0 0

ε′0 : (0, 0)→ (1, 2) vuvu...εν(0,0) 0 1

ε′1 : (0, 1)→ (1, 2) uvuv...εν(0,1)) 0 0

ε0 : (0, 2)→ (1, 0) ε′0vuv... 0 0

ε1 : (0, 2)→ (0, 1) ε′1uvu... 1 0

and assertion 2.a follows.
b) When ϕ = ρτm and n > 3, for the arrows a starting and ending at a vertex of I ′,

we take pa as in the table above and u(a) and v(a) take the same values as in that table.
In the corresponding table for this case, it is enough to give only the data for the arrows
which start at a vertex of I ′ but end at one not in I ′:

a pa u(a) v(a)

β : (m− 1, i)→ (m, i− 1) γ(m,i−1)uvuv...δ(m+n−2,i) 0 1

ε′0 : (m− 1, 0)→ (m, 2) vuvu...εν(m−1,0) 0 0

ε′1 : (m− 1, 1)→ (m, 2) uvuv...εν(m−1,1)) 0 1

These values come from the fact that w(m,i) = ρτ−m(w(0,i)) = γ(m,i)vuvu...δ(m+n−1,i),
for each i = 2, ..., n. It is now clear that assertions 2.b.i and 2.b.ii hold. As for 2.b.iii,
put I ′(q) = {(k, i) : qm ≤ k < (q + 1)m and i ∈∈ ∆0}, i.e., the set of vertices (k, i) such
that the quotient of dividing k by m is q. If ε0 : (k, 2) −→ (k, 0) has origin (and end) in
I ′(q), then ρτ−m(ε0) = ε1 : (k+m, 1)→ (k+m, 2). The symmetric equality is true when
exchanging the roles of 0 and 1. It follows that η(ε0) = ν(ε0) (resp. η(ε1) = −ν(ε0)) when
the origin of ε0 (resp. ε1) is in I

′(q), with q even, and η(ε0) = −ν(ε0) (resp. η(ε1) = ν(ε1))
otherwise. That is, we have η(εi) = (−1)q+iν(εi).

A similar argument shows that if k 6≡ 1 (mod m) and ε′j : (k, j) → (k + 1, 2), then we

have η(ε′j) = (−1)q+j+1ν(ε′j). Finally, if ε
′
j : ((q + 1)m− 1, j)→ ((q + 1)m, 2) we get that

η(ε′j) = (−1)q+jν(ε′j), which shows that the equalities in 2.b.iii also hold.
c) Suppose now that ∆ = D4 and ϕ = ρτm, where the mesh arrows are the original

ones r(k,i) =
∑

t(a)=(k,i) σ(a)a. Note that if εi : (k, 2)→ (k, i) and ε′i : (k, i)→ (k+1, 2), for

i = 0, 1, 3, then we have w(k,i) = ε′iερ(i)ε
′
ρ(i)εi and w(k,2) = εiε

′
iερ(i)ε

′
ρ(i) = −ερ(i)ε

′
ρ(i)εiε

′
i,

for all i = 0, 1, 3. The corresponding table is then given as

a pa u(a) v(a)

ε′i ερ(i)ε
′
ρ(i)εi 0 1

εi ε′iερ(i)ε
′
ρ(i) 0 0
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3) ∆ = En (n = 6, 7, 8):
For the sake of simplicity, we will write any path as a composition of arrows in

{α,α
′

, β, β
′

, γ, γ
′

, δ, δ
′

, ζ, ζ ′, θ, θ′ε, ε
′

} whenever they exist and assuming that each arrow
is considered in the appropriate slice so that the composition makes sense.

Also, we denote by u, w and v, respectively, each of the paths of length 2

(r, 3) −→ (r, 0) −→ (r + 1, 3)
(r, 3) −→ (r + 1, 2) −→ (r + 1, 3)
(r, 3) −→ (r, 4) −→ (r + 1, 3)

with no mention to r. Then β
′

β = w, γγ
′

= v and εε
′

= u. It is important to keep in
mind that u = v+w . Also notice that, as with Dn+1, for the case when ϕ = τm it is not
restrictive to assume that m = 1. Then I ′ = {(0, i) : i ∈ ∆0}.

1. If ∆ = E6, using the mesh relations, one gets, among others, the equalities u2 =
w3 = v3 = 0, vwv = wvw, vw2v = −vwv2 − v2wv and vwvwv = −wvwvw.

Then, if ϕ = τm, the table is the following:

a pa u(a) v(a)

α : (0, 1) → (0, 2) βv2wγδ 0 0

β : (0, 2) → (0, 3) vwvwγ 0 0

γ : (0, 3)→ (0, 4) γ′wvwv 0 0

δ : (0, 4)→ (0, 5) δ′γ′w2vβ′ 1 0

ε : (0, 3) → (0, 0) ε′vwvw 1 0

α′ : (0, 2)→ (1, 1) αβv2wγ 1 0

β′ : (0, 3)→ (1, 2) βvwvw 1 0

γ′ : (0, 4)→ (1, 3) wvwvβ′ 0 1

δ′ : (0, 5)→ (1, 4) γ′w2vβ′α′ 0 0

ε′ : (0, 0)→ (1, 3) vwvwε 0 0

From this table the equalities in 3.a follow.

Suppose now that ϕ = ρτm and recall that in this case we take I ′ = {τ−k(r, i) =
(k+r, i) : (r, i) ∈ T and 0 ≤ k < m}, where T = {(0, i) : i = 0, 3, 4, 5}∪{(1, 2), (2, 1)}.
Arguing as in the case of Dn+1, we see that the values u(a) and v(a) are the ones in
the last table, when i(a), t(a) ∈ I ′. We then need only to give those values for the
arrows a with origin in I ′ and terminus not in I ′. We have the table:

a pa u(a) v(a)

α : (m+ 1, 1)→ (m+ 1, 2) βv2wγδ 0 0

β : (m, 2)→ (m, 3) vwvwγ 0 1

γ′ : (m− 1, 4)→ (m, 3) wvwvβ′ 0 0

δ′ : (m− 1, 5)→ (m, 4) γ′w2vβ′α′ 0 0

ε′ : (m− 1, 0)→ (m, 3) vwvwε 0 1
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We have used in the construction of this table the fact that w(k,2) = βvwvwγ and
w(k,4) = γ′wvwvβ′, for all k ∈ Z, while w(2r,3) = vwvwv and w(2r+1,3) = wvwvw.

Note that, with the labeling of vertices that we are using, we have that ρ(k, i) =
(k + i − 3, 6 − i) for each i 6= 0 and ρ(k, 0) = (k, 0). For each q ∈ Z, we put
I ′(q) := (ρτ−m)q(I ′). When passing from a piece I ′(q) to I ′(q + 1) by applying
ρτ−m, an arrow α is transformed in an arrow δ′ and an arrow δ′ in an arrow α.
From the last two tables we then get that η(α) = ν(α) and η(δ′) = ν(δ′), for all
arrows of the type α or δ′ in Z∆.

The argument of the previous paragraph can be applied to the pair of arrows (γ, β′)
instead of (α, δ′) and we get from the last two tables that η(γ) = ν(γ) (resp. η(β′) =
−ν(β′)) when γ (resp. β′) has its origin in I ′(q), with q even, and η(γ) = −ν(γ)
(resp. η(β′) = ν(β′)) otherwise. From this the formulas in 3.b concerning γ and β′

are clear.

We apply the argument next to the pair or arrows (δ, α′) and get that η(δ) = −ν(δ)
(resp. η(α′) = −ν(α′)), for all arrows of type δ or α′ in Z∆.

An arrow of type ε (resp. ε′) is transformed on one of the same type when applying
ρτ−m. It then follows that η(ε) = −ν(ε), for any arrow of type ε. It also follows
that η(ε′) = −ν(ε′), when the origin of ε′ is (k, 0) with k ≡ −1 (mod m), and
η(ε′) = ν(ε′) otherwise.

We finally apply the argument to the pair of arrows (β, γ′). If we look at the two
pieces I ′(0) and I ′(1), then from the last two tables we see that if β : (k, 2)→ (k, 3),
with (k, 3) ∈ I ′(0) ∪ I ′(1), then η(β) = ν(β), when k ∈ {1, 2, ...,m − 1, 2m}, and
η(β) = −ν(β), when k ∈ {m,m+1, ..., 2m−1}. We then get that η(β) = (−1)qν(β),
where q is the quotient of dividing k by m. By doing the same with γ′ : (k, 4) →
(k + 1, 3), we see that η(γ′) = −ν(γ′), when k ∈ {0, 1, ...,m − 2, 2m − 1}, and
η(γ′) = ν(γ′), when k ∈ {m− 1,m, ..., 2m − 2}. If now k ∈ Z is arbitrary, then that
η(γ′) = ν(γ′) if, and only if, k 6∈

⋃
t∈Z(2tm − 2, (2t + 1)m − 1). Equivalently, when

q is odd and r 6= m− 1 or q is even and r = m− 1.

2. If ∆ = E7, then we have, among others, the equalities u2 = w3 = v4 = 0, vwv =
wvw − v3, and vwvwv = −wvwvw. Since ϕ = τm, we get the following table:
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a pa u(a) v(a)

α : (0, 1)→ (0, 2) βv2wvwvβ′α′ 0 0

β : (0, 2)→ (0, 3) vwvwvwvβ′ 0 0

γ : (0, 3)→ (0, 4) γ′wvwvwvw 0 0

δ : (0, 4) → (0, 5) δ′γ′wv2wvwγ 0 1

ζ : (0, 5)→ (0, 6) ζ ′δ′γ′wv3wγδ 0 0

ε : (0, 3)→ (0, 0) ε′wvwvwvw 0 1

α′ : (0, 2) → (1, 1) αβvwvwv2β′ 0 1

β′ : (0, 3) → (1, 2) βvwvwvwv 1 0

γ′ : (0, 4) → (1, 3) wvwvwvwγ 0 1

δ′ : (0, 5)→ (1, 4) γ′w2vwvwγδ 0 0

ζ ′ : (0, 6) → (1, 5) δ′γ′w2vw2γδζ 0 1

ε′ : (0, 0) → (1, 3) vwvwvwvε 0 0

From this table the equalities in 4 follow.

3. If ∆ = E8, as in the previous case, ϕ = τm and, considering the equalities u2 =
w3 = v5 = 0, vwv = wvw − v3, (vw)3 = (wv)3 + vwv4 − v4wv, (vw)6 = (wv)6 +
(wv)3vwv4 − v4wv2wv4, and (vw)7 = −(wv)7, we obtain the table below:

a pa u(a) v(a)

α : (0, 1)→ (0, 2) βv2(wv)5β′α′ 0 0

β : (0, 2) → (0, 3) (vw)6vβ′ 0 0

γ : (0, 3) → (0, 4) γ′w(vw)6 0 0

δ : (0, 4)→ (0, 5) δ′γ′wv2(wv)4wγ 0 1

ζ : (0, 5)→ (0, 6) ζ ′δ′γ′wv3(wv)3wγδ 0 0

θ : (0, 6)→ (0, 7) θ′ζ ′δ′γ′wv4wv2w2γδζ 0 0

ε : (0, 3) → (0, 0) ε′w(vw)6 0 1

α′ : (0, 2)→ (1, 1) αβ(vw)5v2β′ 0 1

β′ : (0, 3)→ (1, 2) β(vw)6v 1 0

γ′ : (0, 4)→ (1, 3) (wv)6wγ 0 1

δ′ : (0, 5)→ (1, 4) γ′w2(vw)5γδ 0 0

ζ ′ : (0, 6)→ (1, 5) δ′γ′w2(vw)4wγδζ 0 1

θ′ : (0, 7)→ (1, 6) ζ ′δ′γ′wv4wv2w2γδζθ 0 1

ε′ : (0, 0)→ (1, 3) (vw)6vε 0 0

From this table the equalities in 5 follow.

Remark 2.4.3. When ∆ = E6 and ϕ = ρτ , then q = k and r = 0 in 3.b of the last propo-
sition. The explicit definition of η(γ′) should be clarified. A follow-up of our arguments
shows that η(γ′) = (−1)kν(γ′) in that case.
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m-fold mesh algebras

3.1 Introduction

3.1.1 Motivation

The study of the Calabi-Yau condition on a finite dimensional self-injective algebra has
become very popular in recent years (see e.g. [28], [12], [35], [25], [50], [51], ...). So far,
concerning the class of m-fold mesh algebras, the problem of determining those which
are Calabi-Yau has been solved only for the class of the stable Auslander algebras of a
representation-finite self-injective algebra (see [25] and [51]). Related to the Calabi-Yau
property, Eu and Schedler defined the notion of Frobenius Calabi-Yau algebra ([35]). It is
well known that any Frobenius Calabi-Yau algebra is always Calabi-Yau and, moreover,
the Calabi-Yau dimension is always less or equal than the Calabi-Yau Frobenius dimension.
However, it is not known, in general, if the equality holds.

On the other hand, although there are many examples of periodic algebras in the
literature, the explicit computation of the period turns out to be, in most of the cases,
a very hard task. Such was the case that, regarding the class of m-fold algebras, the
period has only been calculated for some of the stable Auslander algebras of a standard
representation-finite self-injective algebra.

Another homological property that is worth studying when dealing with finite dimen-
sional self-injective algebras is that of being symmetric or weakly symmetric.

The goal of this chapter is to give, for the class of m-fold mesh algebras, an answer to
the previous questions. Concretely, we provide:

1. An identification of all weakly symmetric and symmetric algebras in the class (Theo-
rem 3.3.1);

2. An explicit formula for the period of any algebra in the class (Proposition 3.4.8,
when ∆ = A2, and Theorem 3.4.12 for all the other cases).

3. An identification of the precise relation between the stable Calabi-Yau dimension
and the Calabi-Yau Frobenius dimension of an m-fold algebra, showing that both
dimensions may differ when ∆ = A2, but are always equal when ∆ 6= Ar, for r = 1, 2
(Propositions 3.4.13 and 3.4.14)
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4. A criterion for an m-fold mesh algebra to be stably Calabi-Yau, together with the
identification in such case of the stable Calabi-Yau dimension (Proposition 3.4.7, for
the case ∆ = A2, Corollary 3.4.18, for characteristic 2, and Theorem 3.4.19 for all
other cases).

3.1.2 Outline of the chapter

In Section 3.2 we include two auxiliary results that will be frequently used in the rest of
the chapter. In Section 3.3 we identify all the symmetric and the weakly symmetricm-fold
mesh algebras. We start Section 3.4 by computing the initial part of a G-invariant minimal
projective resolution of B as B-bimodule from which we can deduce, in particular, that the
third syzygy of Λ as Λ-bimodule, Ω3

Λe(Λ), is isomorphic to a twisted bimodule of Λ, µ̄Λ1,
induced by a an automorphism µ̄ whose formula we determine precisely. The role played
by the third syzygy turns out to be essential for the two major purposes of the last section.
Next we introduce the definition of stably inner automorphism and we proof that, in most
of the cases, the notions of inner and stably inner coincide. We then compute the period
of any m-fold mesh algebra. We shall distinguish the algebras having Loewy length 2 from
the rest. Finally, we deal with the question on Calabi-Yau dimensions. As in the previous
question, we first consider the algebras having Loewy length 2, which is actually the only
case where the stable and Frobenius Calabi-Yau dimensions do not coincide. Otherwise,
we show that both notions are equivalent, and moreover, their respective Calabi-Yau
dimensions are equal. We end the chapter by computing the stable Calabi-Yau dimension,
and hence, the Frobenius Calabi-Yau dimension, of any m-fold mesh algebra with Loewy
length different from 2.

3.1.3 Notation

Besides the notation fixed in the previous chapters, we still need to establish the following.

Given an algebra A and an automorphism σ ∈ Aut(A), it is well known that each
A-module M admits a twisted version σM , where the underlying R-module is M and the
multiplication by elements of A is given by a ·m = σ(a)m, for all a ∈ A and m ∈M . It is
also well-known that the assignment M 7→ σM defines an equivalence of categories acting

as the identity on morphisms AMod
∼=
−→ AMod with quasi-inverse taking M to σ−1M .

Suppose now that σ, τ ∈ Aut(A). Then we get an automorphism of the enveloping
algebra, σ ⊗ τ o : A ⊗ Λop −→ A ⊗ Aop, which takes a ⊗ bo to σ(a) ⊗ τ(b)o. If M is a
A-bimodule, which we view as a left Ae-module, the previous paragraph gives a new left
Ae-module σ⊗τoM . In the usual way, we interpret it as a A-bimodule σMτ , and then the
multiplications by elements of A are given by a · m · b = σ(a)mτ(b). In particular, the

assignment M 7→ σMτ underlies an equivalence of categories AModA
∼=
−→ AModA.

In addition, whenever G is a weakly admissible group of automorphisms of a mesh
algebra B and f is a G-invariant morphism of B, we will always write f̄ for the induced
morphism of Λ = B/G via the pushdown functor.

All the results on m-fold mesh algebras will be given in terms of its extended type as
defined in 14.
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3.2 Two important auxiliary results

In this first section we present two results that will be very useful and will simplify our
task in the subsequent sections. Before, we remind the definition of an acyclic character
of a quiver.

Recall that a walk in a quiver Q between the vertices i and j is a finite sequence
i = i0 ↔ i1 ↔ ...ir−1 ↔ ir = j, where each edge ik−1 ↔ ik is either an arrow ik−1 → ik or
an arrow ik → ik−1. We write such a walk as αǫ11 ...α

ǫr
r , where αi are arrows and ǫi is 1 or

−1, depending on whether the corresponding edge is an arrow pointing to the right or to
the left.

We will need the following concept from [45]:

Definition 15. Let Q be a (not necessarily finite) quiver. An acyclic character of Q

(over the field K) is a map χ : Q1 −→ K∗ such that if p = αǫ11 ...α
ǫr
r and q = β

ǫ′1
1 ...β

ǫ′s
s

are two walks of length > 0 between any given vertices i and j, then
∏

1≤i≤r χ(αi)
ǫi =

∏
1≤j≤s χ(βj)

ǫ′j .

The following general result is the first of the two auxiliary lemmas. In particular, it
gives us a criterion to determine when two morphisms of the mesh algebra B induce, up
to conjugation, the same morphism of the m-fold mesh algebra Λ = B/G.

If A is a graded algebra with enough idempotents with the fixed family of orthogonal
idempotents (ei)i∈I , then, whenever a ∈ eiAej , we will write i(a) = i and t(a) = j.

Lemma 3.2.1. Let A = ⊕n≥0An be a basic positively Z-graded pseudo-Frobenius algebra
with enough idempotents such that eiA0ei ∼= K, for each i ∈ I, let G be a group of graded
automorphisms of A acting freely on objects such that Λ = A/G is finite dimensional and
let f, h : A −→ A be graded automorphisms satisfying the following three conditions:

i) f and h permute the idempotents ei

ii) f(ei) = h(ei), for all i ∈ I

iii) f ◦ g = g ◦ f and h ◦ g = g ◦ h, for all g ∈ G.

Then the following assertions hold:

1. The assignment [a]  [f(a)], with a ∈
⋃
i,j∈I eiAej , determines a graded automor-

phism f̄ of Λ = A/G, and analogously for h.

2. For f̄ and h̄ as in assertion 1, the following assertions are equivalent:

(a) f̄−1h̄ is an inner automorphism of Λ

(b) There is a map λ : I −→ K∗ such that h(a) = λ(f(i(a)))−1λ(f(t(a)))f(a) (resp.
f(a) = λ(i(a))−1λ(t(a))h(a)), for all a ∈

⋃
i,j∈I eiAej , and λ ◦ g|I = λ, for all

g ∈ G
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Proof. Assertion 1 is clear. We then prove assertion 2:
a) =⇒ b) Let λ : I −→ K∗ be any map and ψ : A −→ A be any graded automorphism.

If χλ : A −→ A is the (graded) automorphism which is the identity on objects and
maps a  λ(i(a))−1λ(t(a))a, for each a ∈

⋃
i,j eiAej , then the composition χλ ◦ ψ (resp.

ψ ◦ χλ) acts as ψ on objects and maps a  λ(ψ(i(a)))−1λ(ψ(t(a)))ψ(a) (resp. a  
λ(i(a))−1λ(t(a))ψ(a)), for each a ∈

⋃
i,j eiAej , with the obvious interpretation of ψ as

permutation of the set I.
If now f and h are as in the statement, the goal is to find a map λ as in the previous

paragraph such that χλ ◦h = f (resp. h◦χλ = f) and λ◦g|I = λ, for all g ∈ G. Replacing
f by f ◦ h−1 (resp. h−1 ◦ f) if necessary, we can assume, without loss of generality, that
h = idA and that f acts as the identity on objects. The task is hence reduced to check
that if f̄ : Λ −→ Λ is inner, then there is a map λ : I −→ K∗ such that f = χλ and
λ ◦ g|I = λ, for all g ∈ G.

We know from Proposition 1.4.3 that Λ is a split basic graded algebra. So it is given
by a finite graded quiver with relations whose set of vertices is (in bijection with) the set
I/G = {[i] : i ∈ I} of G-orbits of elements of I. From [45][Proposition 10 and Theorem 12]
we get a map λ̄ : I/G −→ K∗ such that the assignment [a] λ̄([i(a)])−1λ̄([t(a)])[a], where
a ∈

⋃
i,j∈I eiAej , is a (graded) inner automorphism u of Λ such that u−1 ◦ f̄ is the inner

automorphism ι = ι1−x of Λ defined by an element of the form 1 − x, where x ∈ J(Λ).
In our situation, the equality J(Λ) = ⊕n>0Λn holds, so that x is a sum of homogeneous
elements of degree > 0. But ι = u ◦ f̄ is also a graded automorphism, so that we have
that ι(Λn) = (1− x)Λn(1 − x)

−1 = Λn. If y ∈ Λn then the n-th homogeneous component
of (1−x)y(1− x)−1 is y. It follows that ι is the identity on An, for each n ≥ 0. Therefore
we have ι = idΛ, so that f̄ = u.

Let now π : A −→ Λ = A/G be the G-covering functor and let λ be the composition

map I
π
−→ I/G

λ̄
−→ K∗. By definition, we have that λ ◦ g = λ, for all g ∈ G. As a

consequence, the associated automorphism χλ : A −→ A defined above has the property
that [χλ(a)] = u([a]) = f̄([a]) = [f(a)], for each a ∈

⋃
i,j eiAej . Since f is the identity on

objects we immediately get that f = χλ as desired.
b) =⇒ a) The map λ of the hypothesis satisfies that χλ ◦ h = f . It then follows that

χ̄λ ◦ h̄ = f̄ , where χ̄λ : Λ −→ Λ maps [a]  λ(i(a))−1λ(t(a))[a], for each a ∈
⋃
i,j eiAej .

Note that χ̄λ is well-defined because λ ◦ g = λ, for all g ∈ G. It turns out that χ̄λ is the
inner automorphism of Λ defined by the element

∑
[i]∈I/G λ(i)

−1e[i].

The second result consists of an identification of a subgroup of the integers which is
crucial for our purposes.

Proposition 3.2.2. Let Λ be the m-fold mesh algebra of extended type (∆,m, t) and let
H(∆,m, t) be the set of integers s such that η̄sν̄−s is an inner automorphism of Λ. Then
H(∆,m, t) is a subgroup of Z and the following assertions hold:

1. If char(K) = 2 or ∆ = Ar then H(∆,m, t) = Z

2. If char(K) 6= 2 and ∆ 6= Ar, then H(∆,m, t) = Z, when m + t is odd, and
H(∆,m, t) = 2Z otherwise.
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Proof. The fact that H(∆,m, t) is a subgroup of Z is clear since the subgroup Inn(Λ) of
inner automorphisms is normal in Aut(Λ). For the explicit identification of this subgroup,
we use the G-invariant graded Nakayama form of the mesh algebra B given by Theorem
2.4.2 and follow the notation of this theorem to name the arrows. For each integer s > 0,
there is a map λ : Z∆0 −→ K∗ such that ηs(a) = λ−1

i(a)λt(a)ν
s(a), for each a ∈ Z∆1.

This map is uniquely determined up to multiplication by an element of K∗. According to
Lemma 3.2.1, the integer s will be in H(∆,m, t) if, and only if, the equality λ ◦ g|Z∆0

= λ
holds, for all g ∈ G.

If char(K) = 2 or ∆ = Ar Theorem 2.4.2 says that η = ν is a graded Nakayama
form, and the result is clear in this case. We suppose in the sequel that char(K) 6= 2 and
∆ 6= Ar.

1) Suppose first that t = 1. Theorem 2.4.2 gives a formula η(a) = (−1)u(a)ν(a), where
u(a) ∈ Z2 for each a ∈ Z∆1. A careful examination of the u(a) shows that the following
properties hold in all cases:

i) u(σ(a)) 6= u(a);

ii) If v(a) := u(a) + u(ν(a)) then v(σ(a)) = v(a),

for all a ∈ Z∆1. Let now λ : Z∆0 −→ K∗ be the map mentioned above for s = 1. Then
we have λ−1

i(a)λt(a) = (−1)u(a), for all a ∈ Z∆1. Together with property i) above, we then

get that λτ(k,i) = −λ(k,i), for all (k, i) ∈ Z∆0. This implies that λτm(k,i) = (−1)mλ(k,i).
Then s = 1 is in H(∆,m, t) if, and only if, m is even.

On the other hand, we have that η2(a) = η((−1)u(a)ν(a)) = (−1)u(a)+u(ν(a))ν2(a) =
(−1)v(a) ν2(a), for each a ∈ Z∆1. Let now λ : Z∆0 −→ K∗ be a map such that η2(a) =
λ−1
i(a)λt(a)ν

2(a), for all a ∈ Z∆1. We then get that λ−1
i(a)λt(a) = (−1)v(a). Together with

property ii) above, we get that λτ(k,i) = λ(k,i), and so λτm(k,i) = λ(k,i), for all (k, i) ∈ Z∆0.
It follows that s = 2 is in H(∆,m, t), which proves that H(∆,m, t) = 2Z when m is odd.

2)Suppose that (∆, t) = (∆ = Dn+1, 2). For any integer k, we define the element
c(k) ∈ Z2 to be 0, when k 6≡ −1 (mod m), and 1 otherwise. Theorem 2.4.2 gives that
η(a) = −ν(a), when a : (k, i) → (k, i + 1) is an upward arrow, and η(a) = (−1)c(k)ν(a),
when a : (k, i) → (k + 1, i − 1) (i = 3, ..., n) is a downward arrow. If λ : Z∆0 −→ K∗

is the map considered in the first paragraph of this proof for s = 1, then we get that
λ(k+1,i) = (−1)c(k)+1λ(k,i), for each i 6= 0, 1. It follows from this that λρτ−m(k,i) =

λ(k+m,i) = (−1)γ(k)+m, where γ(k) =
∑

0≤j<m c(k + j). But γ(k) = 1 since there is

exactly one summand which is nonzero. We then have λρτ−m(k,i) = (−1)m+1λ(k,i). This
shows that if s = 1 is in H(Dn+1,m, 2) then m is necessarily odd. We claim that the
converse is also true, so that H(Dn+1,m, 2) = Z in this case. Indeed from Theorem 2.4.2
we get equalities η(εi) = (−1)q+iν(εi) and η(ε′i) = (−1)q+i+1+c(k)ν(ε′i), for i = 0, 1. De-
noting by q(k) and q(k + 1) the quotients of dividing k and k + 1 by m, we then get that
λk+1,i = (−1)ψ(k)λk,i, where ψ(k) = q(k) + i+1+ c(k) + q(k+1)+ i. Let us view ψ(k) as
an element of Z2 and bear in mind that q(k+1) = q(k), unless k ≡ −1 (mod m), in which
case q(k + 1) = q(k) + 1. We then see that, for k arbitrary, we always have ψ(k) = 1. It
then follows:
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λρτ−m(k,i) = λρ(k+m,i) = −λ(k+m,i) = −(−1)
mλ(k,i) = (−1)m+1λ(k,i) = λ(k,i)

since m is odd. Therefore the equality λρτ−m(k,i) = λ(k,i) holds, for all (k, i) ∈ Z∆0, so
that λ ◦ g|Z∆0

= λ for all g ∈ G.
Still with the case ∆ = Dn+1, suppose now that m is even. Note that we have

η2(a) = ν2(a), for each upward arrow. Let a : (k, i)→ (k+1, i−1) be any downward arrow.
The arrows a and ν(a) have origins in the slices k and k+ (n− 1), respectively. It follows
that η2(a) = (−1)c(k)+c(k+(n−1))ν2(a). If now λ : Z∆0 −→ K∗ is the usual map for s = 2,
then we get that λ(k+1,i) = (−1)c(k)+c(k+(n−1))λ(k,i), for each i = 2, 3, ..., n. It follows that

λρτ−m(k,i) = λ(k+m,i) = (−1)ξ(k), where ξ(k) =
∑

0≤j<m[c(k + j) + c(k + j + (n − 1))] =
γ(k) + γ(k + (n − 1)), which is zero in Z2. This shows that λρτ−m(k,i) = λ(k,i) whenever
i = 2, 3, ..., n. On the other hand, taking into account the definition of ν (see Proposition
2.3.1), if i = 0, 1 we have:

1. When n+ 1 is even: η2(εi) = η((−1)q(k)+iν(εi)) = (−1)q(k)+i+q(k+(n−1))+iν2(εi) =

(−1)q(k)+q(k+(n−1))ν2(εi);

2. when n+ 1 is odd: η2(εi) = η((−1)q(k)+iν(εi)) = (−1)q(k)+i+q(k+(n−1))+i+1ν2(εi) =

(−1)q(k)+q(k+(n−1))+1ν2(εi),

We then get λ(k,i) = (−1)u(k,i)λ(k,2) , where u(k, i) = q(k) + q(k + (n − 1) in the first
case and u(k, i) = q(k) + q(k + (n − 1) + 1 in the second case. In both cases, we get that
λ(k,0) = λ(k,1). Suppose now that η2(ε′i) = (−1)v(k,i)ν2(ε′i). Then we will have λ(k+1,2) =

(−1)u(k,i)+v(k,i)λ(k,2) which, together with the equality λ(k+1,2) = (−1)c(k)+c(k+(n−1))λ(k,2)
seen above, proves the equality in Z2: v(k, i) = u(k, i)+ c(k)+ c(k+(n−1)). We then get
λ(k+1,i) = (−1)v(k,i)(−1)u(k+1,i)λ(k,i) = (−1)χ(k,i)λ(k,i), where χ(k, i) = u(k, i)+u(k+1, i)+

c(k)+c(k+(n−1)). It follows from this that λρτ−m(k,i) = λ(k+m,i) = (−1)σ(k,i)λ(k,i), where
σ(k, i) =

∑
0≤j<m χ(k + j, i) =

∑
0≤j<m[c(k + j) + c(k + j + (n− 1))] +

∑
0≤j<m[u(k, i) +

u(k+1, i)]. The first summand in the last member of this equality has already been shown
to be even. But we have an equality in Z2:

∑
0≤j<m[u(k + j, i) + u(k + j + 1, i)] =∑

0≤j<m[q(k + j) + q(k + j + (n− 1))] +
∑

0≤j<m[q(k + 1+ j) + q(k + 1+ j + (n− 1))] =∑
0≤j<m[q(k + j) + q(k + 1 + j)] +

∑
0≤j<m[q(k + j + (n− 1)) + q(k + 1 + j + (n− 1))].

As has already been noted, the equality q(k + r) = q(k + 1 + r) holds, except when
k+ r ≡ −1 (mod m), in which case q(k+1+ r) = q(k+ r)+1. This comment proves that
each summand of the last member in the centered equality is equal to 1 in Z2. It follows
that σ(k, i) = 0 in Z2 and, hence, that λρτ−m(k,i) = λ(k,i), for all (k, i) ∈ Z∆0. By the first
paragraph of this proof, we conclude that H(Dn+1,m, 2) = 2Z whenever m is even.

c) Suppose next that (∆, t) = (E6, 2). If s > 0 is any integer, then, by Theorem 2.4.2,
we have ηs(a) = νs(a), when a ∈ {α, δ′}, and ηs(a) = (−1)sνs(a), when a ∈ {α′, δ}. If
λ : Z∆0 −→ K∗ is a map such that ηs(a) = λ−i(a)λt(a)ν

s(a), for each a ∈ Z∆1, we then get

equalities: λ(k,2) = λ(k,1), λ(k+1,4) = λ(k,5), λ(k+1,1) = (−1)sλ(k,2) and λ(k,5) = (−1)sλ(k,4).
It follows that λ(k+1,i) = (−1)sλ(k,i), for each (k, i) ∈ Z∆0 such that i = 1, 2, 4, 5.
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Note that we have η(ε′) = (−1)c(k)ν(ǫ′), where c(k) is defined as in the case (∆, t) =
(Dn+1, 2). We then have that η2(ε′) = (−1)c(k)+c(k+5)ν2(ε′). Since we also have ηs(ε) =
(−1)sνs(ε) we get:

1. When s = 1, λ(k+1,i) = (−1)c(k)+1λ(k,i);

2. When s = 2, λ(k+1,i) = (−1)c(k)+c(k+5)λ(k,i)

for i = 0, 3. We also have:

1. When s = 1, η(γ) = (−1)qν(γ) and η(β′) = (−1)q+1ν(β′), where q = q(k) is the
quotient of dividing k by m;

2. When s = 2, η2(γ) = (−1)q(k)+q(k+5)+1ν2(γ) and η2(β′) = (−1)q(k)+q(k+5)+1ν2(β′).

It follows from this that, in case s = 1, we have λ(k,4) = (−1)qλ(k,3) and λ(k+1,2) =
(−1)q+1λ(k,3) and, hence, λ(k,4) = −λ(k+1,2). This, together with the equalities in the
previous paragraph, show that λρ(k,i) = −λ(k,i), for all i = 1, 2, 4, 5. Therefore, when
s = 1, we get:

λρτ−m(k,i) = −λ(k+m,i) = −(−1)
mλ(k,i) = (−1)m+1λ(k,i), for i 6= 0, 3,

and

λρτ−m(k,i) = λ(k+m,i) = (−1)γ(k)+mλ(k,i) = (−1)m+1λ(k,i), for i = 0, 3, since
γ(k) =

∑
0≤j<m c(k + j) = 1.

By the first paragraph of this proof, we get that s = 1 is an element of H(E6,m, 2) if, and
only if, m is odd.

Suppose now thatm is even and that s = 2. Then for the corresponding map λ we have
that λ(k,4) = (−1)q(k)+q(k+5)+1λ(k,3) and λ(k+1,2) = (−1)q(k)+q(k+5)+1λ(k,3), from which we
get that λρ(k,i) = λ(k,i), for all i ∈ ∆0. From the fact that λ(k+1,i) = λ(k,i), for i 6= 0, 3,

and λ(k+1,i) = (−1)c(k)+c(k+5)λ(k,i), for i = 0, 3, we get:

λρτ−m(k,i) = λ(k+m,i) = λ(k,i), for i 6= 0, 3,

and

λρτ−m(k,i) = λ(k+m,i) = (−1)γ(k)+γ(k+5)λ(k,i) = (−1)2λ(k,i) = λ(k,i), for i = 0, 3,

because γ(k) =
∑

0≤j<m c(k+ j) = 1 for each integer k. Therefore, when m is even, s = 2
is an element of H(E6,m, 2), thus showing that this group is 2Z in such case.

d) Suppose finally that (∆, t) = (D4, 3). If s > 0 is an integer then ηs(εi) = νs(ǫi)

and ηs(ε′i) = (−1)sνs(ε′i) since ν = τ−2 in this case. If λ : Z∆0 −→ K∗ is the map such
that ηs(a) = λ−1

i(a)λt(a)ν
s(a), for each a ∈ Z∆1, then we easily get that λρ(k,i) = λ(k,i)

and λ(k+1,i) = (−1)sλ(k,i), so that λ(ρτm)−1(k,i) = λρ2τ−m(k,i) = λ(k+m,i) = (−1)smλ(k,i). It
follows that s = 1 is in H(D4,m, 3) if, and only if, m is even. On the other hand, when m
is odd, we have that 2 ∈ H(D4,m, 3).
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3.3 Symmetric and weakly symmetric m-fold mesh algebras

The only result of this subsection identifies all the symmetric and weakly symmetricm-fold
mesh algebras. Recall that an algebra is weakly symmetric if, and only if, its Nakayama
automorphism acts as the identity on vertices. A weakly symmetric algebra is in addition
symmetric if, and only if, its Nakayama automorphism is inner.

Theorem 3.3.1. Let Λ be an m-fold mesh algebra of extended type (∆,m, t). If Λ is
weakly symmetric then t = 1 or t = 2 and, when char(K) = 2 or ∆ = Ar, such an algebra
is also symmetric. Moreover, the following assertions hold:

1. When t = 1, Λ is weakly symmetric if, and only if, ∆ is D2r, E7 or E8 and m is a
divisor of c∆

2 − 1. When char(K) 6= 2, such an algebra is symmetric if, and only if,
m is even.

2. When t = 2 and ∆ 6= A2n, Λ is weakly symmetric if, and only if, m divides c∆
2 − 1

and, moreover, the quotient of the division is odd, in case ∆ = A2n−1, and even, in
case ∆ = D2r. When char(K) 6= 2, such an algebra is symmetric if, and only if,
∆ = A2n−1 or m is odd.

3. When (∆,m, t) = (A2n,m, 2), i.e. Λ = L
(m)
n , the algebra is (weakly) symmetric if,

and only if, 2m− 1 divides 2n− 1.

Proof. The algebra Λ is weakly symmetric if, and only if, the automorphism ν̄ : Λ −→ Λ
induced by ν is the identity on vertices. We identify the vertices of the quiver of Λ as
G-orbits of vertices of Z∆0, where G is the weakly admissible group of automorphism
considered in each case. If we take care to choose a vertex (k, i) which is not fixed by
ρ, then the equality ν̄([(k, i)]) = [(k, i)] holds exactly when there is a g ∈ G such that
ν(k, i) = g(k, i). But if Ĝ denotes the group of automorphisms generated by ρ and τ , then
Ĝ acts freely on the vertices not fixed by ρ. Since G ⊂ Ĝ and ν ∈ Ĝ (see Proposition
2.3.1) the equality ν(k, i) = g(k, i) implies that ν = g. Therefore the algebra Λ is weakly
symmetric if, and only if, ν belongs to G.

On the other hand, Λ is symmetric if, and only if, η̄ : Λ −→ Λ is an inner automorphism.
By Lemma 3.2.1, this is equivalent to saying that Λ is weakly symmetric and η̄ ◦ ν̄−1

is an inner automorphism of Λ. That is, Λ is symmetric if, and only if, Λ is weakly
symmetric and H(∆,m, t) = Z. As a consequence, once the weakly symmetric m-fold
mesh algebras have been identified, the part of the theorem referring to symmetric algebras
follows directly from Proposition 3.2.2.

If t = 3 then ∆ = D4, G =< ρτm >, with ρ acting on vertices as the 3-cycle (013),
and ν = τ−2. It is impossible to have τ−2 ∈ G and therefore Λ is never weakly symmetric
in this case.

If t = 1 then G =< τm >. If we assume that ∆ 6= D2r,E7,E8 then ν = ρτ1−n, for some
integer n. Again it is impossible that ν ∈ G and, hence, Λ cannot be weakly symmetric.
On the contrary, suppose that ∆ is one of D2r,E7,E8. Then ν = τ1−n, with n = c∆

2 ,
and ν belongs to G if, and only if, there is an integer r such that τ1−n = (τm)r, which
is equivalent to saying that n − 1 = −mr since τ has infinite order. Then Λ is weakly
symmetric in this case if, and only if, m divides n− 1.
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Suppose now that t = 2 and ∆ 6= A2n. Then G =< ρτm > and, except when ∆ = D2r,
we have that ν = ρτ1−n, where n = c∆

2 . Assume that ∆ 6= D2r. Then ν is in G if, and only
if, there is an integer r such that ρτ1−n = (ρτm)r. Note that then r is necessarily odd. If
follows that Λ is weakly symmetric if, and only if, m divides n − 1 and the quotient n−1

m
is an odd number. But the condition that n−1

m be odd is superfluous when ∆ = D2r+1 or
E6 because n is even in both cases.

Consider now the case in which (∆, t) = (D2r, 2). Then ν = τ1−n, where n = c∆
2 =

2r− 1. Then ν is in G if, and only if, there is an integer s such that τ1−n = (ρτm)s. This
forces s to be even. We then get that Λ is weakly symmetric if, and only if, m divides
n− 1 and the quotient n−1

m is even.

Finally, let us consider the case when the extended type is (A2n,m, 2). In this case
ρ2 = τ−1 and ν = ρτ1−n. Then ν is in G if, and only if, there is an integer r such
that ρτ1−n = (ρτm)r. This forces r = 2s + 1 to be odd, and then ρτ−s+m(2s+1) =
(ρτm)2s+1 = ρτ1−n. Then Λ is weakly symmetric if, and only if, there is an integer s such
that (2m − 1)s = 1 −m − n. That is, if and only if 2m − 1 divides m + n − 1, which is
equivalent to saying that 2m− 1 divides 2(m+ n− 1)− (2m− 1) = 2n− 1.

3.4 The period and the stable Calabi-Yau dimension of an

m-fold mesh algebra

3.4.1 The minimal projective resolution of the regular bimodule

We start this section by pointing out that, for any m-fold mesh algebra Λ = B/G, we can
always guarantee the existence of a basis of its corresponding mesh algebra B inducing,
via the pushdown functor, a basis of Λ.

Lemma 3.4.1. Let ∆ be a Dynkin quiver and B be its associated mesh algebra. For any
weakly admissible group of automorphisms G of Z∆, there is a basis B of B consisting of
paths which is G-invariant (i.e. g(B) = B for all g ∈ G).

Proof. The way of constructing the basis B is entirely analogous to the way in which a
G-invariant basis of Soc(B) was constructed (see the initial paragraphs of the proof of
Theorem 2.4.2). The task is then reduced to find, for each vertex (k, i) in the chosen slice,
S or T , a basis of e(k,i)B consisting of paths. Since the existence of this basis is clear the
result follows.

Suppose that (−,−) : B × B −→ K is a G-invariant graded Nakayama form for B.
Given a basis B as in last lemma, its (right) dual basis with respect to (−,−) will be the
basis B∗ =

⋃
(k,i)∈(Z∆)0

B∗eν(k,i), where B
∗eν(k,i), is the (right) dual basis of e(k,i)B with

respect to the induced graded bilinear form (−,−) : e(k,i)B × Beν(k,i) −→ K. By the
graded condition of this bilinear form, B∗ consists of homogeneous elements. By the G-
invariance of (−,−) and B, we immediately get that B∗ is G-invariant. On what concerns
the minimal projective resolution of B as a bimodule, we will need to fix a basis B as given
by last lemma and use it and its dual basis to give the desired resolution.
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Proposition 3.4.2. Let ∆ be a Dynkin quiver, let X ⊆ (Z∆)1 be the set of arrows given
by Proposition 2.3.4, which we assume to be the empty set when (∆, G) = (D4, < ρτm >),
and let s : (Z∆)1 −→ Z2 be the associated signature map. Denote by τ ′ the graded
automorphism of B which acts as τ on vertices and maps a  (−1)s(a)+s(τ(a))τ(a), for
each a ∈ Z∆)1. Up to isomorphism, the initial part of the minimal graded projective
resolution of B as a B-bimodule is given by

Q−2 R
−→ Q−1 δ

−→ Q0 u
−→ B → 0,

where:

1. The graded projective B-bimodules are Q0 = (⊕(k,i)∈(Z∆)0Be(k,i) ⊗ e(k,i)B)[0],

Q−1 = (⊕a∈(Z∆)1Bei(a)⊗ et(a)B)[−1] and Q−2 = (⊕(k,i)∈(Z∆)0Beτ(k,i)⊗ e(k,i)B)[−2];

2. u is the multiplication map;

3. δ is the only homomorphism of B-bimodules such that, for all a ∈ (Z∆)1,

δ(ei(a) ⊗ et(a)) = a⊗ et(a) − ei(a) ⊗ a;

4. R is the only homomorphism of B-bimodules such that, for all (k, i) ∈ (Z∆)0,

R(eτ(k,i) ⊗ e(k,i)) =
∑

t(a)=(k,i)

(−1)s(σ(a)a) [σ(a) ⊗ e(k,i) + eτ(k,i) ⊗ a]

where the signature of a path is the sum of the signatures of its arrows.

Moreover, if for each (k, i) ∈ (Z∆)0 we consider the homogeneous elements of Q−2

given by

ξ′(k,i) =
∑

x∈e(k,i)B

(−1)deg(x)τ ′(x)⊗ x∗,

then, ⊕(k,i)∈Z∆0
Bξ′(k,i) = Ker(R) = ⊕(k,i)∈Z∆0

ξ′(k,i)B.

Proof. Let B′ be the original mesh algebra, i.e., KZ∆/I, where I is the ideal generated by
r(k,i) =

∑
t(a)=(k,i) σ(a)a, with (k, i) ∈ Z∆0. By classical argument for unital algebras, also

valid here (see, e.g., [11] or [25]), we know that the initial part of the minimal projective
resolution of B′ as a bimodule is

P−2 R′

−→ P−1 δ′
−→ P 0 u′

−→ B′ → 0,

where:

1. The graded projective B′-bimodules are P 0 = (⊕(k,i)∈(Z∆)0B
′e(k,i) ⊗ e(k,i)B

′)[0],
P−1 = (⊕a∈(Z∆)1B

′ei(a)⊗et(a)B
′)[−1] and P−2 = (⊕(k,i)∈(Z∆)0B

′eτ(k,i)⊗e(k,i)B
′)[−2];

2. u′ is the multiplication map;
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3. δ′ is the only homomorphism of B′-bimodules such that, for all a ∈ (Z∆)1,

δ′(ei(a) ⊗ et(a)) = a⊗ et(a) − ei(a) ⊗ a;

4. R′ is the only homomorphism of B′-bimodules such that, for all (k, i) ∈ (Z∆)0,

R′(eτ(k,i) ⊗ e(k,i)) =
∑

t(a)=(k,i)

(σ(a) ⊗ e(k,i) + eτ(k,i) ⊗ a)

Consider now the canonical algebra isomorphism ϕ = ϕ−1 : KZ∆
∼=
−→ KZ∆, given in

Proposition 2.3.4, and denote by h the induced isomorphism of graded algebras B
∼=
−→ B′

and by f its inverse. We put B′ = h(B), where B is the G-invariant basis of B given
by the previous lemma. The mentioned classical arguments also show that the elements
ξ(k,i) =

∑
x∈e(k,i)B′(−1)deg(x)τ(x) ⊗ x∗, with (k, i) ∈ (Z∆)0, are in Ker(R′). Note that

the argument which proves for unital algebras that the ξ(k,i) generate Ker(R′) cannot be
adapted in a straightforward way.

If (k, i), (m, j) ∈ (Z∆)0 are any vertices then the induced map f ⊗ f : B′e(k,i) ⊗
e(m,j)B

′ −→ Be(k,i) ⊗ e(m,j)B gives an isomorphism of (graded projective) B-bimodules

h(B
′e(k,i) ⊗ e(m,j)B

′)h
∼=
−→ Be(k,i) ⊗ e(m,j)B. It follows that if χ′ : B′e(k,i) ⊗ e(m,j)B

′ −→
B′e(r,u)⊗e(t,v)B

′ is a morphism of graded projective B′-bimodules, then the corresponding
morphism of graded projective B-bimodules χ : Be(k,i)⊗e(m,j)B −→ Be(r,u)⊗e(t,v)B takes
a⊗ b (f ⊗ f)(χ′(f−1(a)⊗ f−1(b))). From these considerations it easily follows that, up
to isomorphism, the initial part of the minimal projective resolution of B as a B-bimodule
is:

Q−2 R′′

−→ Q−1 δ′′
−→ Q0 u

−→ B′ → 0,

where:

1. The Qi are as indicated in the statement

2. u is the multiplication map;

3. δ′′ is the only homomorphism of B-bimodules such that, for all a ∈ (Z∆)1,

δ(ei(a) ⊗ et(a)) = (−1)s(a)(a⊗ et(a) − ei(a) ⊗ a);

4. R′′ is the only homomorphism of B-bimodules such that, for all (k, i) ∈ (Z∆)0,

R′′(eτ(k,i) ⊗ e(k,i)) =
∑

t(a)=(k,i)

[(−1)s(σ(a))σ(a)⊗ e(k,i) + (−1)s(a)eτ(k,i) ⊗ a]

Let ψ : ⊕a∈(Z∆)1Bei(a)⊗et(a)B −→ ⊕a∈(Z∆)1Bei(a)⊗et(a)B the only homomorphism of

B-bimodules mapping ei(a) ⊗ et(a)  (−1)s(a)ei(a) ⊗ et(a), for each a ∈ (Z∆)1. It is clearly
an isomorphism and we have equalities δ ◦ ψ = δ′′ and ψ ◦R′′ = R. Then
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Q−2 R
−→ Q−1 δ

−→ Q0 u
−→ B′ → 0,

is also the initial part of the minimal projective resolution of B as a B-bimodule and
we have L := Ker(R) = Ker(R′′). Moreover from the equalities f(τ(x)) = τ ′(f(x)) and
f(x∗) = f(x)∗, for all x ∈ B′, and the fact that f(B′) = B we immediately get that
ξ′(k,i) = f(ξ(k,i)) =

∑
y∈e(k,i)B

(−1)deg(y)τ ′(y)⊗ y∗. Therefore the ξ′(k,i) are elements of L.

If S(m,j) = Be(m,j)/J(B)e(m,j) is the simple graded left module concentrated in degree
zero associated to the vertex (m, j), then the induced sequence

Q−2 ⊗B S(m,j)
R⊗1
−→ Q−1 ⊗B S(m,j)

δ⊗1
−→ Q0 ⊗B S(m,j) −→ S(m,j) → 0

is the initial part of the minimal projective resolution of S(m,j). It is easy to see that the
pushdown functor Fλ : B − Gr −→ Λ − Gr preserves and reflects simple objects When
applied to the last resolution, we then get the minimal projective resolution of the simple
Λ-module S[(m,j)], where Λ is viewed as the orbit category B/G (see Corollary 1.4.2) and
where [(m, j)] denotes the G-orbit of (m, j). But we know that Ω3

Λ(S[(m,j)]) is a simple
Λ-module (see, e.g., [25]). It follows that Ω3

B(S(m,j)) is a graded simple left B-module.
But we have an isomorphism Q−2 ⊗B S(m,j) ∼= Beτ(m,j)[−2] in B − Gr. By definition of
the Nakayama permutation, we have that Socgr(Beτ(m,j)) ∼= Sν−1τ(m,j)[−c∆ + 2]. Then
we have an isomorphism Ω3

B(S(m,j))
∼= Sν−1τ(m,j)[−c∆], for all (m, j) ∈ Z∆0. Considering

the decomposition B/J(B) = ⊕(m,j)∈Z∆0
S(m,j), we then get that L/LJ(B) ∼= L ⊗B

B
J(B)

is isomorphic to B/J(B)[−c∆] as a graded left B-module. Due to the fact that J(B) =
Jgr(B) is nilpotent, we know that every left or right graded B-module has a projective
cover. By taking projective covers in B −Gr and bearing in mind that L is projective on
the left and on the right, we then get that LB ∼= BB[−c∆]. With a symmetric argument,
one also gets that BL ∼= BB[−c∆]. In particular, BL = BΩ

3
Be(B) (resp. LB = Ω3

Be(B)B)
decomposes as a direct sum of indecomposable projective graded B-modules, all of them
with multiplicity 1.

Note now that we have equalities eτν−1(k,i)ξ
′
ν−1(k,i) = ξ′ν−1(k,i) = ξ′ν−1(k,i)e(k,i), for

all (k, i) ∈ Z∆0. This gives surjective homomorphisms Beτν−1(k,i)[−c∆]
ρ
։ Bξ′ν−1(k,i)

and e(k,i)B[−c∆]
λ
։ ξ′ν−1(k,i)B of graded left and right B-modules given by right and

left multiplication by ξ′ν−1(k,i). But ρ and λ do not vanish on Socgr(Beτν−1(k,i)) and

Socgr(e(k,i)B), which are simple graded modules, respectively. It follows that ρ and λ are
injective and, hence, they are isomorphisms. We then get that N := ⊕(k,i)∈Z∆0

Bξ′ν−1(k,i) =

⊕(k,i)∈Z∆0
Bξ′(k,i) is a graded submodule of BL isomorphic to BB ∼= BL and, hence, it is

injective in B − Gr since this category is Frobenius. We then get that N is a direct
summand of BL which is isomorphic to BL. Since EndB−Gr(Be(k,i)) ∼= K for each vertex
(k, i), Azumaya’s theorem applies (see [2][Theorem 12.6]) and we can conclude that L =
N = ⊕(k,i)∈Z∆0

Bξ′(k,i) for otherwise the decomposition of BL ∼= BB as a direct sum
of indecomposables would contain summands with multiplicity > 1. By a symmetric
argument, we get that L = ⊕(k,i)∈Z∆0

ξ′(k,i)B.
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Proposition 3.4.3. Let ∆ be a Dynkin quiver, let G be a weakly admissible group of auto-
morphism of B and fix a G-invariant graded Nakayama form and its associated Nakayama
automorphism η (see Theorem 2.4.2). Assume that X is the G-invariant set of arrows
given in Proposition 2.3.4, which we assume to be the emptyset when (∆, G) = (D4, <
ρτm >) and with respect to which we calculate the signature of arrows. Finally, let κ and
ϑ be the graded automorphisms of B which fix the vertices and act on arrows as:

1. κ(a) = −a

2. ϑ(a) = (−1)s(τ
−1(a))+s(a)a,

for all a ∈ (Z∆)1. Let us consider µ = κ ◦ η ◦ τ−1 ◦ ϑ, for any (∆, G), or µ = η ◦ τ−1 ◦ ϑ
whenever (∆, G) 6= (A2n, < ρτm >). Then µ ◦ g = g ◦ µ, for all g ∈ G, and there exists an
isomorphism of graded B-bimodules Ω3

Be(B) ∼= µB1[−c∆].

Proof. We first put µ = κ ◦ η ◦ τ−1 ◦ ϑ in all the cases and will prove that Ω3
Be(B) ∼=

µB1[−c∆], for any choice of (∆, G). At the end, we will see that κ can be ’deleted’ when
(∆, G) 6= (A2n, < ρτm >). Note that, for any of the choices of the set X, the sum
s(σ−1(a))+ s(σ(a))+ s(τ−1(a))+ s(a) in Z2 is constant when a varies on the set of arrows
ending at a given vertex (k, i) ∈ (Z∆)0. This implies that ϑ either preserves the relation∑

t(a)=(k,i)(−1)
s(σ(a)a)σ(a)a or multiplies it by −1. Then ϑ is a well-defined automorphism

of B. Moreover, the G-invariant condition of the set of arrows X implies that the sum
s(τ−1(a)) + s(a) in Z2 is G-invariant. This shows that ϑ ◦ g = g ◦ ϑ, for all g ∈ G. This
implies that µ ◦ g = g ◦ µ since we have κ ◦ g = g ◦ κ, for all g ∈ G.

All throughout the rest of the proof, a G-invariant basis B of B consisting of paths
in Z∆ is fixed, with respect to which the ξ′(k,i) are calculated. We shall prove that

aξ′τ−1(t(a)) = ξ′τ−1(i(a))µ(a), for all a ∈ (Z∆)1. Once this is proved, one easily shows

by induction on deg(b) that if b ∈
⋃

(k,i),(m,j)∈(Z∆)0
e(k,i)Be(m,j) is a homogeneous ele-

ment with respect to the length grading, then the equality bξ′τ−1(t(b)) = ξ′τ−1(i(b))µ(b)

holds. It follows from this that the assignment b  bξ′τ−1(t(b)) extends to an isomor-

phism of B-bimodules 1Bµ−1

∼=
−→ L, which actually induces an isomorphism of graded

B-bimodules µB1[−c∆] ∼= Ω3
Be(B), when we view Ω3

Be(B) as a graded sub-bimodule of
Q−2 = (⊗(k,i)∈(Z∆)0Beτ(k,i) ⊗ e(k,i)B)[−2].

We have an equality:

aξ′τ−1(t(a)) =
∑

x∈eτ−1(t(a))B
(−1)deg(x)aτ ′(x)⊗ x∗.

But we have τ ′(τ−1(a)) = (−1)s(τ
−1(a))+s(a)a, so that

aτ ′(x) = (−1)s(τ
−1(a))+s(a)τ ′(τ−1(a))τ ′(x) = (−1)s(τ

−1(a))+s(a)τ ′(τ−1(a)x).

Note that we have τ−1(a)x =
∑

y∈eτ−1(i(a))B
(τ−1(a)x, y∗)y from which we get the equality

aξ′τ−1(t(a)) =
∑

x∈e
τ−1(t(a))B

∑
y∈e

τ−1(i(a))B
(−1)deg(x)(−1)s(τ

−1(a))+s(a)(τ−1(a)x, y∗)τ ′(y)⊗x∗

(!)
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On the other hand, a direct calculation shows that, for each a ∈ (Z∆)1, µ(a) =
(−1)1+s(τ

−1(a))+s(a)(η ◦ τ−1)(a). Then we have another equality

ξ′τ−1(i(a))µ(a) =
∑

y∈eτ−1(i(a))B
′(−1)deg(y)(−1)s(τ

−1(a))+s(a)+1τ ′(y)⊗ y∗(η ◦ τ−1)(a).

But we have an equality

y∗(η ◦ τ−1)(a) =
∑

x∈e
τ−1(t(a))B

(x, y∗(η ◦ τ−1)(a))x∗ =
∑

x∈e
τ−1(t(a))B

(xy∗, η(τ−1(a)))x∗ =
∑

x∈e
τ−1(t(a))B

(τ−1(a), xy∗)x∗ =
∑

x∈e
τ−1(t(a))B

(τ−1(a)x, y∗)x∗,

using that (−,−) is a graded Nakayama form and that η is its associated Nakayama
automorphism. We then get

ξ′τ−1(i(a))µ(a) =∑
y∈e

τ−1(i(a))B
′

∑
x∈e

τ−1(t(a))B
′(−1)deg(y)(−1)s(τ

−1(a))+s(a)+1(τ−1(a)x, y∗)τ ′(y)⊗ x∗

(!!)

Bearing in mind that deg(y) = deg(τ−1(a)x) = deg(x) + 1 whenever (τ−1(a)x, y∗) 6= 0 we
readily see that the second members of the equalities (!) and (!!) are equal. We then get
aξ′τ−1(t(a)) = ξ′τ−1(i(a))µ(a), as desired.

Finally, suppose that (∆, G) 6= (A2n, < ρτm >) we put µ′ := η ◦ τ−1 ◦ ϑ and we

shall define an isomorphism of bimodules ψ : µ′B1
∼=
−→ µB1. To do that, note that it is

always possible to choose a map λ : (Z∆)0 −→ K∗, taking values in {−1, 1}, such that
λi(a) = −λt(a), for all a ∈ (Z∆)1 and λ ◦ gZ∆0 = λ, for all g ∈ G. Indeed, when ∆ 6= Dn+1,
we define λ(k, i) = (−1)i for each (k, i) ∈ (Z∆)0. When ∆ = Dn+1, we put λ(k, i) = (−1)i,
when i 6= 0, and λ(k, 0) = −1. With this map at hand, the map ψ : B −→ B taking
b  λi(b)b, for any homogeneous element b ∈

⋃
(k,i),(m,j)∈(Z∆)0

e(k,i)Be(m,j), defines the

desired isomorphism ψ : µ′B1
∼=
−→ µB1. It is clearly an isomorphism of right B-modules

and the verification that it is also a morphism of left B-modules reduces to check that
ψ(µ′(a)b) = µ(a)ψ(b), for all homogeneous elements a, b ∈

⋃
(k,i),(m,j)∈(Z∆)0

e(k,i)Be(m,j).

We use the fact that λt(a) = (−1)deg(a)λi(a) and µ(a) = (−1)deg(a)µ′(a), for any such a.
Assuming that ν(t(a)) = i(b), which is the only case that we need to consider, we get:

ψ(µ′(a)b) = λν(i(a))µ
′(a)b = (−1)deg(a)λν(t(a))µ

′(a)b = (−1)deg(a)λi(b)µ
′(a)b =

[(−1)deg(a)µ′(a)] · [λi(b)b] = µ(a)ψ(b),

and the proof is finished.

Remark 3.4.4. Note that, except when (∆, G) = (A2n−1, ρτ
m), the automorphism ϑ of

last proposition is the identity since X = τ(X).

Crucial for our goals is that what has been done in the last two propositions is ’G-
invariant’. As a consequence, we obtain the aforementioned identification of the third
syzygy.
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Corollary 3.4.5. Let ∆ be a Dynkin quiver, B the corresponding mesh algebra, G a
weakly admissible group of automorphisms of Z∆ and let Λ = B/G be the associated m-
fold mesh algebra. If µ is the graded automorphism of B of the previous proposition and
µ̄ : Λ −→ Λ is the induced graded automorphism of Λ, then there is an isomorphism of
graded Λ-bimodules Ω3

Λe(Λ) ∼= µ̄Λ1[−c∆], where c∆ is the Coxeter number.

Proof. We fix a G-invariant basis of B as in Lemma 3.4.1 and a G-invariant graded
Nakayama form (−,−) : B × B −→ K. If we interpret Λ = B/G as the orbit cate-
gory and [x] denotes the G-orbit of x, for each x ∈

⋃
(k,i),(m,j) e(k,i)Be(m,j), note that

the G-orbits of elements of B form a basis B̄ of Λ consisting of homogeneous elements in⋃
[(k,i)],[(m,j)]∈Z∆0/G

e[(k,i)]Λe[(m,j)]. Moreover, if B∗ is the right dual basis of B with respect

(−,−), then B̄∗ = {[x∗] : [x] ∈ B̄} is the right dual basis of B̄ with respect to the graded
Nakayama form < −,− >: Λ × Λ −→ K induced from (−,−) (see Proposition 1.4.3 and
its proof).

By taking into account the change of presentation of Λ and [25][Section 4], we see that
the initial part of the minimal projective resolution of Λ as a graded Λ-bimodule is of the
form

P−2 R̄
−→ P−1 −→ P 0 −→ Λ→ 0,

where P−2 = ⊕[(k,i)]∈Z∆0/Ge[τ(k,i)]Λe[(k,i)] and we have equalities ⊕[(k,i)]∈Z∆0/GΛξ̄
′
[(k,i)] =

Ker(R̄) = ⊕[(k,i)]∈Z∆0/Gξ̄
′
[(k,i)]Λ, where ξ̄′[(k,i)] =

∑
[x]∈e[(k,i)]B̄

(−1)deg(x)[τ ′(x)] ⊗ [x∗], for

each [(k, i)] ∈ Z∆0/G.

On the other hand, since µ ◦ g = g ◦ µ, for all g ∈ G, we get an induced graded
automorphism µ̄ : Λ −→ Λ which maps [x]  [µ(x)]. In case µ = k ◦ η ◦ τ−1 ◦ ϑ,
we get the equality [b]ξ̄′[τ ′(i(b))] = ξ̄′[τ−1(i(b))]µ̄([b]), for each homogeneous element [b] ∈⋃

[(k,i)],[(m,j)]∈Z∆0/G
e[(k,i)]Λe[(m,j)] from the corresponding equality in the proof of the pre-

vious proposition, just by replacing the homogeneous elements of B by their orbits. It then
follows that the assignment [b] [b]ξ̄′[τ ′(i(b))] gives an isomorphism of graded Λ-bimodules

Ω3
Λe(Λ) ∼= 1Λµ̄−1 [−c∆] ∼= µ̄Λ1[−c∆].
When (∆, G) 6= (A2n, < ρτm >) and we take µ′ = η ◦ τ−1 ◦ ϑ, we have seen in

the proof of the last proposition that there is a map λ : Z∆0 −→ K∗ such that λ ◦
gZ∆0 = λ, for all g ∈ G, and such that µ(a) = λ−1

i(a)λt(a)µ
′(a), for all homogeneous

elements a ∈
⋃

(k,i),(m,j) e(k,i)Be(m,j). We then get from Lemma 3.2.1 that µ̄−1µ̄′ is an

inner automorphism of Λ, so that also Ω3
Λe(Λ) ∼= µ̄′Λ1.

3.4.2 Inner and stably inner automorphisms

Recall from [51] that an automorphism σ of Λ is stably inner if the functor σ(−) ∼=

σΛ1 ⊗Λ − : Λ − mod −→ Λ − mod is naturally isomorphic to the identity functor. In
particular, each inner automorphism is stably inner.

Lemma 3.4.6. Let Λ = KQ/I be a finite dimensional self-injective algebra, where I is
a homogeneous ideal of KQ with respect to the grading by path length, and consider the
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induced grading on Λ. Suppose that the Loewy length of Λ is greater or equal than 4. A
graded automorphism of Λ is inner if, and only if, it is stably inner.

Proof. Let ϕ be a stably inner graded automorphism of Λ. Let l be the Loewy length of
Λ. If J = J(Λ) = Jgr(Λ) is the Jacobson radical and Socn(Λ) = Socngr(Λ) is the n-socle

of Λ (i.e. Soc0(Λ) = 0 and Socn+1(Λ)/Socn(Λ) is the socle of Λ/Socn(Λ), for all n ≥ 0),
then we have Jn = Socl−n(Λ) = ⊕k≥nΛk, for all n ≥ 0.

We then have Soc2(Λ) ⊆ J2 since l ≥ 4. By Corollary 2.11 of [51], we have a map
λ : Q0 −→ K∗ such that ϕ(a)−λ−1

i(a)λt(a)a ∈ J(A)
2, for all a ∈ Q1. If we define χλ : Λ −→ Λ

as in the proof of Lemma 3.2.1, we get that χλ is an inner automorphism of Λ such that
(ϕ ◦ χ−1

λ )(a) − a ∈ J(A)2, for all a ∈ Q1. But ϕ ◦ χ−1
λ is a graded automorphism since

so are ϕ and χλ. It then follows that (ϕ ◦ χλ)(a) = a, for all a ∈ Q1, which implies that
ϕ ◦ χλ = idΛ, and so ϕ = χλ is inner.

Recall that Λ is a Nakayama algebra if each left or right indecomposable projective
Λ-module is uniserial. We will need the following properties of self-injective algebras of
Loewy length 2.

Proposition 3.4.7. Let Λ = KQ/KQ≥2 be a self-injective algebra such that J(Λ)2 = 0
and suppose that Λ does not have any semisimple summand as an algebra. The following
assertions hold:

1. Λ is a Nakayama algebra and Q is a disjoint union of oriented cycles, with relations
all the paths of length 2.

2. Λ is a finite direct product of m-fold mesh algebras of Dynkin graph ∆ = A2.

3. A graded automorphism ϕ of Λ is stably inner if, and only if, it fixes the vertices.

4. ϕ is inner if, and only if, it fixes the vertices and if ϕ(a) = χ(a)a, for each arrow
a ∈ Q1, with χ(a) ∈ K

∗, then the induced map χ : Q1 −→ K∗ is an acyclic character
of Q.

5. If the quiver Q is connected with n vertices (whence an oriented cycle with Q0 = Zn),
then ΩΛe(Λ) is isomorphic to the Λ-bimodule µ̄Λ1, where µ̄ is the automorphism
acting on vertices as the n-cycle (12...n) and on arrows as µ̄(ai) = −ai+1, where
ai : i→ i+ 1 for each i ∈ Zn.

Proof. Assertion 1 is folklore. But A
(m)
2 = ZA2/ < τm > is the connected Nakayama

algebra of Loewy length 2 with 2m vertices while L
(m)
1 = ZA2/ < ρτm > is the one with

2m− 1 vertices. Then assertion 2 is clear.

The only indecomposable objects in the stable category Λ−mod are the simple modu-
les, all of which have endomorphism algebra isomorphic to K. It follows that each additive

self-equivalence F : Λ −mod
∼=
−→ Λ −mod such that F (S) ∼= S, for each simple module

S, is naturally isomorphic to the identity. Since each automorphism ϕ of Λ induces the
self-equivalence F = ϕ(−), assertion 3 is clear.
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Assertion 4 follows directly from [45][Theorem 12], taking into account that the only
inner graded automorphism induced by an element 1− x, with x ∈ J , is the identity (see
the proof of Lemma 3.2.1).

Suppose now that Q is connected and has n vertices, so that Λ is an m-fold mesh

algebra of type A
(m)
2 , and then n = 2m, or L

(m)
1 , and then n = 2m − 1. By the explicit

definition of the minimal projective resolution of Λ as a bimodule (see [25]), we get that
ΩΛe(Λ) is generated as a Λ-bimodule by the elements xi = ai⊗ei+1−ei⊗ai (i ∈ Zn). But
we have ⊕i∈ZnΛxi = ΩΛe(Λ) = ⊕i∈ZnxiΛ. Moreover, if µ̄ is the automorphism mentioned
in assertion 5 and x =

∑
i∈Zn

xi, then we have yx = xµ̄(y), whenever y is either a vertex or
an arrow. It then follows that the assignment y  yx gives an isomorphism of Λ-bimodules

1Λµ̄−1

∼=
−→ ΩΛe(Λ).

3.4.3 The period of an m-fold mesh algebra

This section is devoted to compute the Ω-period of an m-fold mesh algebra Λ. That is, the
smallest of the positive integers r such that ΩrΛe(Λ) is isomorphic to Λ as a Λ-bimodule.
We need to separate the case of Loewy length 2 from the rest.

Proposition 3.4.8. Let Λ be a connected self-injective algebra of Loewy length 2. The
following assertions hold:

1. If char(K) = 2 or Λ = A
(m)
2 , i.e. |Q0| is even, then the period of Λ is |Q0|.

2. If char(K) 6= 2 and Λ = L
(m)
1 , i.e. |Q0| is odd, then the period of Λ is 2|Q0|.

Proof. By Proposition 3.4.7, we know that ΩΛe(Λ) ∼= µ̄Λ1, where µ̄ is the automorphism
which acts on vertices as the n-cycle (12...n) and on arrows by ai  −ai+1. The period
of Λ is then the smallest of the integers r > 0 such that µ̄r is inner. But since inner
automorphisms fix the vertices each such r is multiple of n = |Q0|. When char(K) = 2 or
n is even, we have that µ̄n fixes the vertices an maps ai  (−1)nai = ai, for each i ∈ Q0.
Then µ̄n = idΛ and the period of Λ is n. However, when char(K) 6= 2 and n is odd, we

have that µ̄n is not inner, because the map Q1
χ
−→ K∗ which takes constant value −1 is

not an acyclic character of Q, but µ̄2n = idΛ. It follows that the period of Λ is 2n in this
case.

We will need the following:

Lemma 3.4.9. Let Λ = B/G be an m-fold mesh algebra, with ∆ 6= A1,A2, and let r ≥ 0
be an integer. The following assertions hold:

1. dim(ΩrΛe(Λ)) = dim(Λ) if, and only if, r ∈ 3Z.

2. If η is a G-invariant graded Nakayama automorphism of B, then η̄ ◦ τ̄−1 ◦ η̄−1 ◦ τ̄ is
an inner automorphism of Λ.
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Proof. 1) The ’if’ part follows from the fact that Ω3
Λe(Λ) ∼= µ̄Λ1, and hence, Ω3r

Λe(Λ) ∼= µ̄rΛ1,
as Λ-bimodules. For the ’only if’ part, note that we have the following formulas for the
dimensions of the syzygies:

1. dim(ΩrΛe(Λ)) = dim(⊕i∈Q0Λei ⊗ eiΛ) − dim(Λ) =
∑

i∈Q0
dim(Λei)(dim(eiΛ) − 1),

whenever r ≡ 1 (mod 3)

2. dim(ΩrΛe(Λ)) = dim(⊕i∈Q0Λeτ(i)⊗eiΛ)−dim(µ̄Λ1) =
∑

i∈Q0
dim(Λeτ(i))(dim(eiΛ)−

1) =
∑

i∈Q0
dim(Λei)(dim(eiΛ)− 1), whenever r ≡ 2 (mod 3)

For r ≡ 1, 2 (mod 3) the equality dim(ΩrΛe(Λ)) = dim(Λ) can occur if, and only if,
dim(eiΛ) = 2, for each i ∈ Q0. But this can only happen when the Loewy length is
2, which is discarded (see Proposition 3.4.7).

2) There is no loss of generality in assuming that η is the G-invariant graded Nakayama
automorphism of B given by Theorem 2.4.2. On the other hand, since ν is either τ r or
ρτ r, for some integer r, we know that ν ◦ g = g ◦ ν, for all g ∈ G. Moreover, there is a
unique map u : Z∆1 −→ K∗ such that χ(a) = (−1)u(a)a, for all a ∈ Z∆1, and η = ν ◦ χ.
It then follows that χ ◦ g = g ◦ χ or, equivalently, u(ag) = u(a), for all g ∈ G.

Assertion 2 states that the images of η̄ and τ̄−1 by the canonical projection Aut(Λ)։

Out(Λ) = Aut(Λ)
Inn(Λ) commute. Proposition 3.2.2 tells us that η̄ and ν̄ have the same image

by this projection, whenever char(K) = 2, ∆ = Ar or m + t is odd, where (∆,m, t) is
the extended type of Λ. So in these cases the assertion follows immediately since ν and τ
commute.

In order to prove the assertion in the remaining cases, it is enough to prove that χ̄◦ τ̄−1

and τ̄−1 ◦ χ̄ are equal, up to composition by an inner automorphism of Λ, because ν and
τ−1 commute. Note that η(a) = (ν ◦ χ)(a) = (−1)u(a)ν(a), for each a ∈ (Z∆)1, and
hence the exponents u(a) are those of Theorem 2.4.2. We now apply Lemma 3.2.1, with
f = χ ◦ τ−1 and h = τ−1 ◦ χ, using the fact that both automorphisms of B act as τ
on vertices. We have f(a) = (−1)u(τ

−1(a))τ−1(a) and h(a) = (−1)u(a)τ−1(a), for each
a ∈ Z∆1. If λ : Z∆0 −→ K∗ is a map such that f(a) = λ−1

i(a)λt(a)h(a), for all a ∈ Z∆1,

then we have that λt(a) = (−1)u(a)+u(τ
−1(a))λi(a). When t = 1 or t = 3, we have that

u(a) = u(τ−1(a)), so that λt(a) = λi(a), for all a ∈ Z∆1. It follows that λ is a constant
map and it clearly satisfies that λ ◦ g|Z∆0

= λ, for all g ∈ G. So we assume that t = 2, m
is even, and also that ∆ 6= Ar in the sequel.

Consider first the case when ∆ = Dn+1. Directly from Theorem 2.4.2 we get the
formulas in Z2:

1. u(a) + u(τ−1)(a) = 1 + 1 = 0, whenever a : (k, i)→ (k, i+ 1) is an upward arrow;

2. u(a) + u(τ−1(a)) = 0 + 0 = 0, whenever a : (k, i) → (k + 1, i − 1) is a downward
arrow, with k 6≡ −2,−1 (mod m), and u(a)+u(τ−1(a)) = 1, for any other downward
arrow.

3. If i ∈ {0, 1}, εi : (k, 2) → (k, i) and q is the quotient of dividing k by m, then
u(εi) + u(τ−1(εi)) is equal to:

(a) (q + i) + (q + i) = 0, when k 6≡ −1 (mod m),
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(b) (q + i) + (q + 1 + i) = 1, when k ≡ −1 (mod m) since q + 1 is the quotient of
dividing k + 1 by m

4. If i ∈ {0, 1}, ε′i : (k, i) → (k + 1, 2) and q is the quotient of dividing k by m, then
u(ε′i) + u(τ−1(ε′i)) is equal to:

(a) (q + i+ 1) + (q + i+ 1) = 0, whenever k 6≡ −2,−1 (mod m);

(b) (q + i+ 1) + (q + i) = 1, whenever k ≡ −2 (mod m);

(c) (q + i) + (q + 1 + i + 1) = 0, whenever k ≡ −1 (mod m) since q + 1 is the
quotient of dividing k + 1 by m.

We then get that if i ∈ {2, 3, ..., n} then λ(k+1,i) = λ(k,i), when k 6≡ −2,−1 (mod m), and
λ(k+1,i) = −λ(k,i), when k ≡ −2,−1 (mod m). For i = 0, 1 we have that λρ(k,i) = λ(k,i)
since the formula for u(εi)+u(τ

−1(εi)) does not depend on i. Moreover, from the equality
λ(k+1,i) = λ−1

i(ε′i)
λt(ε′i)λ

−1
i(εi)

λt(εi)λ(k,i) and the equalities 3 and 4 in the above list it follows

λ(k+1,i) = λ(k,i), whenever i = 0, 1. We then get λρτm(k,i) = λ(k+m,i) = λ(k,i), for all
(k, i) ∈ Z∆0, which shows that λ ◦ g|Z∆0

= λ, for all g ∈ G.
Let finally assume that ∆ = E6. The value u(a) is constant on the τ -orbit of the arrow

a whenever a ∈ {α,α′, δ, δ′, ε}. Then u(a) + u(τ−1(a)) = 0 in Z2 for any of these arrows.
We easily derived from this that λ(k+i,i) = λ(k,i), whenever i 6= 0, 3. On the other hand, if
we take ε′ : (k, 0)→ (k+1, 3), then u(ε′)+u(τ−1(ε′)) = 0, when k 6≡ −2,−1 (mod m), and
u(ε′)+u(τ−1(ε′)) = 1, when k ≡ −2 or−1 (mod m). This together with the formula for ε
imply that, for i = 0, 3, the equality λ(k+1,i) = λ(k,i) holds whenever k 6≡ −2,−1 (mod m),
and λ(k+1,i) = −λ(k,i) otherwise. On the other hand, we have that u(γ) + u(τ−1(γ)) is
equal to q + q = 0, when k 6≡ −1 (mod m), and is equal to q + (q + 1) = 1, when k ≡ −1
(mod m). We also have that u(β′) + u(τ−1(β′)) is equal to (q + 1) + (q + 1) = 0, when
k 6≡ −1 (mod m), and is equal to (q + 1) + (q + 1 + 1) = 1, when k ≡ −1 (mod m). It
follows that there is a exponent e(k) ∈ {0, 1} such that λ(k,4) = (−1)e(k)λ(k,3) = λ(k+1,2),
which shows that λ(k,4) = λρ(k,4). We easily derive from this and the earlier formulas that
λρ(k,i) = λ(k,i), for all (k, i) ∈ Z∆0. We then get that λρτ−m(k,i) = λ(k+m,i) = λ(k,i), for all
(k, i) ∈ Z∆0, so that λ ◦ g|Z∆0

= λ, for all g ∈ G.

By the previous lemma, we know that dim(ΩrΛe(Λ)) 6= dim(Λ) whenever r 6∈ 3Z.
Due to the existence of an automorphism µ̄ of Λ satisfying that Ω3

Λe(Λ) ∼=µ̄ Λ1 as Λ-
bimodules (see Proposition 3.4.3), in order to calculate the (Ω-)period of Λ, we just need
to control the positive integers r such that µ̄r is inner. For the sake of simplicity, we shall
divide the problem into two steps. We begin by identifying the smallest u ∈ N such that
(ν̄ ◦ τ̄−1)u = IdΛ , that is, the smallest u such that µ̄u acts as the identity on vertices.
This is the content of the next result.

Lemma 3.4.10. Let Λ = Z∆/ < ϕ > be an m-fold mesh algebra of extended type (∆,m, t)
and let us put u := min{r ∈ Z+ | (ν̄ ◦ τ̄−1)r = IdΛ}. The following assertions hold:

1. If t = 1 then:

(a) u = 2m
gcd(m,c∆) , whenever ∆ is Ar, D2r−1 or E6;
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(b) u = m
gcd(m,

c∆
2
)
, whenever ∆ is D2r, E7 or E8.

2. If t = 2 then:

(a) u = 2m
gcd(2m,m+

c∆
2
)
, whenever ∆ is A2n−1, D2r−1 or E6;

(b) u = 2m
gcd(2m,

c∆
2
)
, whenever ∆ is D2r;

(c) u = 2m−1
gcd(2m−1,2n+1) , when ∆ = A2n

3. If t = 3 (hence Λ = ZD4/ < ρτm >), then u = m.

Proof. The argument that we did for ν in the first paragraph of the proof of Theorem
3.3.1 is also valid for (ν ◦ τ−1)r. Then (ν̄ ◦ τ̄−1)r = idΛ if, and only if, (ν ◦ τ−1)r ∈ G.

When ∆ is A2n−1, Dn+1, with n + 1 odd, or E6, the Nakayama permutation is ν =
ρτ1−n, where n = c∆

2 . Then (ντ−1)r = ρrτ−nr. If t = 1 this automorphism is in G

if, and only if, r = 2r′ is even and τ−nr = τ−2nr′ is equal to (τm)v = τmv , for some
v ∈ Z. This happens exactly when 2nr′ ∈ mZ and the smallest r′ satisfying this is
u′ = m

gcd(m,2n) . We then get that u = 2u′ = 2m
gcd(m,2n) = 2m

gcd(m,c∆) . Suppose that t = 2.

Then (ντ−1)r = ρrτ−nr is in G =< ρτm > if, and only if, there is v ∈ Z such that
v ≡ r (mod 2) and −nr = mv. This is equivalent to saying that there is k ∈ Z such that
−nr = m(r + 2k) or, equivalently, that (m + n)r ∈ 2mZ. The smallest r satisfying this
property is u = 2m

gcd(2m,m+n) = 2m
gcd(2m,m+

c∆
2
)
. This proves 1.a, except for ∆ = A2n, and

2.a.

Suppose next that ∆ is Dn+1, with n+1 even, E7 or E8. Then ν = τ1−n, where n = c∆
2 ,

so that (ντ−1)r = τ−nr. When t = 1, this automorphism is in G =< τm > if, and only if,
nr ∈ mZ. The smallest r satisfying this property is u = m

gcd(m,n) =
m

gcd(m,
c∆
2
)
. On the other

hand, if t = 2 then τ−nr is in G =< ρτm > if, and only if, there is v = 2v′ ∈ 2Z such that
−nr = mv = 2mv′. The smallest r satisfying this property is u = 2m

gcd(2m,n) = 2m
gcd(2m,

c∆
2
)
.

This proves 1.b and 2.b.

Let now take ∆ = A2n. Then ν = ρτ1−n, so that (ντ−1)r = ρrτ−nr. If t = 1,
this automorphism is in G =< τm > if, and only if, r = 2r′ is even and there exists
v ∈ Z such that ρ2r

′
τ−2nr′ = τ−(2n+1)r′ is equal to τmv. This is equivalent to saying that

(2n + 1)r′ ∈ mZ. The smallest r′ satisfying this property is u′ = m
gcd(m,2n+1) . We then

get u = 2m
gcd(m,2n+1) = 2m

gcd(m,c∆) , which completes 1.a. When t = 2, the automorphism

ρrτ−nr is in G =< ρτm > if, and only if, there exists v ∈ Z such that v ≡ r (mod 2)
and ρrτ−nr = ρvτmv. This is in turn equivalent to the existence of an integer k such that
ρrτ−nr = ρr+2kτm(r+2k) = ρrτ−kτmr+2mk. That is, if and only if −nr = (2m− 1)k +mr.
This happens exactly when (m+n)r ∈ (2m− 1)Z. The smallest r satisfying this property
is u = 2m−1

gcd(m+n,2m−1) . But we have that gcd(m+n, 2m− 1) = gcd(2m− 1, 2n+1), so that
2.c holds.

Finally, if t = 3, and hence ∆ = D4, then ν = τ−2, so that (ντ−1)r = τ−3r is in
G =< ρτm > if, and only if, there is v = 3v′ ∈ 3Z such that −3r = 3mv′. This happens
exactly when r ∈ mZ, which implies that u = m in this case.
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Lemma 3.4.11. Let Λ be an m-fold algebra of extended type (Ar,m, 2) and let T be the
subgroup of Z consisting of the integers s such that µ̄s and (ν̄ ◦ τ̄−1)s are equal, up to
composition by an inner automorphism of Λ. Then T = 2Z, when char(K) 6= 2, and
T = Z, when char(K) = 2.

Proof. We fix s > 0 all throughout the proof and will use Lemma 3.2.1, with f = µs and
h = (ν ◦ τ−1)s.

Suppose first that ∆ = A2n and let λ : Z∆0 −→ K∗ be any map such that µs(a) =
λ−1
i(a)λt(a)(ν ◦ τ

−1)s(a). In this case µ = κ ◦ ν ◦ τ−1, where κ is as in Proposition 3.4.3

(see Remark 3.4.4), and this implies that µs(a) = (−1)s(ν ◦ τ−1)s(a), for each a ∈ Z∆1.
We then get that λ−1

i(a)λt(a) = (−1)s. It follows that λ(k,i) = (−1)sλ(k,j), whenever i 6≡ j

(mod 2), and that λτ(k,i) = λ(k+1,i) = (−1)2sλ(k,i) = λ(k,i), for all (k, i) ∈ Z∆0. We then
get that λρτm(k,i) = λρ(k−m,i) = λ(k−m+i−n,2n+1−i) = (−1)sλ(k−m+i−n,i) = (−1)sλ(k,i). As
a consequence the equality λ ◦ g|Z∆0

= λ holds, for all g ∈ G =< ρτm >, if and only if
s ∈ 2Z. That is, we have T = 2Z in this case.

Suppose next that ∆ = A2n−1, we have η = ν = ρτ1−n and µ = η◦τ−1◦ϑ = ν◦τ−1◦ϑ =
ρ ◦ τ−n ◦ϑ. We also have (ν ◦ τ−1)s = νs ◦ τ−s = (ρτ1−n)sτ−s = ρs ◦ τ−ns. Let us fix from
now on a map λ : Z∆0 −→ K∗ such that (ρτ−nϑ)s(a) = λ−1

i(a)λt(a)ρ
sτ−ns(a).

We first consider the case when m is odd. By the choice of the set X which defines the
signature of the arrows (see Proposition 2.3.4), we know that s(ρτ(a)) = s(a), for each a ∈
(Z∆1). On the other hand, we have an equality s(τ−1(a)) + s(a) = s(τ−2(a)) + s(τ−1(a))
in Z2. These two facts imply that ϑ commute both with ρτ−1 and τ−1. Therefore
we have µs = (ρτ−nϑ)s = ρsτ−nsϑs. It follows that (−1)s[s(a)+s(τ

−1(a))]ρsτ−ns(a) =
(ρsτ−nsϑs)(a) = µs(a) = λ−1

i(a)λt(a)ρ
sτ−ns(a), so that λt(a) = (−1)s[s(a)+s(τ

−1(a))]λi(a),

for all a ∈ Z∆1. If (k, i) ∈ Z∆0 and a is any arrow such that i(a) = (k, i), then
λ(k+1,i) = (−1)s[s(a)+s(τ

−1(a))+s(σ−1(a))+s(τ−1σ−1(a))]λ(k,i) = (−1)sλ(k,i) since, by the choice
of X, we have s(a) + s(τ−1(a)) + s(σ−1(a)) + s(τ−1σ−1(a)) = 1, for any a ∈ Z∆1. More-
over, for each arrow a which is either upward in the ’north hemisphere’ or downward in the
’south hemisphere’, we have that s(a)+s(τ−1(a)) = 0, and this implies that λ(k,n) = λ(k,i),
for all i ≥ n, and λ(k+j,n−j) = λ(k,n), for each 0 ≤ j < n. It follows that λρ(k,i) = λ(k,i),
for all (k, i) ∈ Z∆0. We then get that λρτ−m(k,i) = λ(k+m,i) = (−1)smλ(k,i). The equality
λ ◦ g|Z∆0

= λ, for all g ∈ G, holds in this case if, and only if, s is even. That is, when m
is odd, we have T = 2Z.

Suppose now that m is even. Due to the choice of the set of arrows X which defines
the signature map (see Proposition 2.3.4), if Y denotes the set of arrows a such that
i(a) 6= (k, n) and t(a) 6= (k, n), for all k ∈ Z, then we know that s(a) = s(τ−2(a)) and
s(a) = s(ρ(a)), for all a ∈ Y . As a consequence, for all a ∈ Y , we have equalities

(τ−1 ◦ ϑ)(a) = (−1)s(a)+s(τ
−1(a))τ−1(a) = (−1)s(τ

−1(a))+s(τ−2(a))τ−1(a) = (ϑ ◦ τ−1)(a);
(ρ ◦ ϑ)(a) = (−1)s(a)+s(τ

−1(a))ρ(a) = (−1)s(ρ(a))+s(τ
−1(ρ(a))ρ(a) = (ϑ ◦ ρ)(a),

It then follows that

µs(a) = (ρsτ−nsϑs)(a) = (−1)s[s(a)+s(τ
−1(a))](ρsτ−ns(a)) = (−1)s[s(a)+s(τ

−1(a))](ν◦τ−1)s(a),

for each a ∈ Y . We then get that, for all a ∈ Y , λt(a) = (−1)s[s(a)+s(τ
−1(a))]λi(a).

If (k, i) is a vertex, with i 6= n, and a ∈ Y is any arrow having (k, i) as its origin,
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then λ(k+1,i) = (−1)s[s(a)+s(τ
−1(a))+s(σ−1(a))+s(τ−1σ−1(a))]λ(k,i) = (−1)sλ(k,i) since s(a) +

s(τ−1(a)) + s(σ−1(a)) + s(τ−1σ−1(a)) = 1 in Z2, for any arrow a ∈ Y .
In order to deal with the vertices (k, n), it is convenient to introduce some terminology.

The k-th node will consist of the vertex (k, n) and the four arrows having it as origin or
terminus. As usual, we will denote by q and r the quotient and rest of dividing k by m.
Note that if k is odd, then none of the four arrows in the node is in X. On the contrary,
if k is even either the two upward arrows are in X or the two downward ones are in X,
and exactly one of these two possibilities occurs. One then sees that if a has origin (k, n),
then s(a) + s(τ−1(a)) + s(σ−1(a)) + s(τ−1σ−1(a)) = 1, unless k ≡ −2 (mod m), a case in
which s(a)+ s(τ−1(a))+ s(σ−1(a))+ s(τ−1σ−1(a)) = 0. This implies that if we take s = 1
and λ is the associated map in this case, then λ(k+1,n) = −λ(k,n), when k 6≡ −2 (mod m),
and λ(k+1,n) = λ(k,n) otherwise. It follows then that λρτm(k,n) = λτm(k,n) = λ(k−m,n) =
(−1)m−1λ(k,n) = −λ(k,n) and hence 1 is not in the subgroup T .

If s = 2 and a is again an arrow in the k-th node, it is convenient to rewrite the formula
for ϑ(a) as follows:

i) ϑ(a) = (−1)q+1a, if a is upward and k 6≡ −1 (mod m) or a is downward and k ≡ −1
(mod m).

ii) ϑ(a) = (−1)qa, if a is upward and k ≡ −1 (mod m) or a is downward and k 6≡ −1
(mod m).

From these equalities we then get:

iii) (ρτ−nϑ)(a) = (−1)q+1(ρτ−n)(a), if a is upward and k 6≡ −1 (mod m) or a is down-
ward and k ≡ −1 (mod m).

iv) (ρτ−nϑ)(a) = (−1)q(ρτ−n)(a), if a is upward and k ≡ −1 (mod m) or a is downward
and k 6≡ −1 (mod m).

In order to calculate the (ρτ−nϑ)2(a), for any integer r, we will denote by q(r) the
quotient of dividing r by m. We also put c(r) = 0, when r 6≡ −1 (mod m), and c(r) = 1,
when r ≡ −1 (mod m). Direct calculation, using the formulas iii) and iv) above, gives
that µ2(a) = (ρτ−nϑ)2(a) = (−1)e(a)(ρτ−n)2(a) = (−1)e(a)(ν ◦ τ−1)2(a), where:

v) e(a) = (q(k)+1)+q(k+n)+c(k)+c(k+n), when a is upward and k 6≡ −1 (mod m)
or a is downward and k ≡ −1 (mod m).

vi) e(a) = (q(k) + (q(k + n) + 1) + c(k) + c(k + n), when a is downward and k 6≡ −1
(mod m) or a is upward and k ≡ −1 (mod m).

Therefore the exponent e(a) only depends on k and we put e(k) = e(a). We then get that
(ρτ−nθ)2(a) = (−1)e(k)τ−2n(a), for all arrows a in the k-th node. If λ : Z∆0 −→ K∗ is
the associated map for s = 2, we get that λ(k+1,n) = (−1)e(k)+e(k+1)λ(k,n), for each k ∈ Z.
Note that e(k) + e(k+1) = [q(k) + q(k+n)+ q(k+1)+ q(k+1+n)] + [c(k) + c(k+n) +
c(k + 1) + c(k + 1 + n)] + 2 and that, for each integer r, one has

∑
0≤j<m c(r + j) = 1.

It follows that
∑

0≤j<m[e(k + j) + e(k + j + 1)] =
∑

0≤j<m[q(k + j) + q(k + 1 + j)] +
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∑
0≤j<m[q(k + j + n) + q(k + 1 + j + n)] in Z2. But we always have q(r) = q(r + 1),

unless r ≡ −1 (mod m), a case in which q(r + 1) = q(r) + 1. It follows that the equality∑
0≤j<m[q(k+ j)+ q(k+1+ j)] = 1 =

∑
0≤j<m[q(k+ j+n)+ q(k+1+ j+n)], and hence

also
∑

0≤j<m[e(k + j) + e(k + j + 1)] = 0, is true in Z2. As a consequence, we have that

λρτ−m(k,n) = λ(k+m,n) = (−1)
∑

0≤j<m[e(k+j)+e(k+j+1)]λ(k,n) = λ(k,n). It follows that λ is a
constant map, so that the equality λ ◦ gZ∆0 = λ holds, for all g ∈ G. Therefore s = 2 is in
the subgroup T .

We are now ready to describe explicitly the period of any m-fold mesh algebra.

Theorem 3.4.12. Let Λ be an m-fold mesh algebra of extended type (∆,m, t), where
∆ 6= A1,A2, let π = π(Λ) denote the period of Λ and, for each positive integer k, denote
by O2(k) the biggest of the natural numbers r such that 2r divides k. If char(K) = 2 then
π = 3u, where u is the positive integer of Lemma 3.4.10. When char(K) 6= 2, the period
of Λ is given as follows:

1. If t = 1 then:

(a) When ∆ is Ar, D2r−1 or E6, the period is π = 6m
gcd(m,c∆) .

(b) When ∆ is D2r, E7 or E8, the period is π = 3m
gcd(m,

c∆
2
)
, when m is even, and

π = 6m
gcd(m,

c∆
2
)
, when m is odd.

2. If t = 2 then:

(a) When ∆ is A2n−1, D2r−1 or E6, the period is 6m
gcd(2m,m+

c∆
2
)
, when O2(m) 6=

O2(
c∆
2 ), and π = 12m

gcd(2m,m+
c∆
2
)
otherwise.

(b) When ∆ = D2r, the period is 6m
gcd(2m,

c∆
2

)
= 6m

gcd(2m,2r−1) .

(c) When ∆ = A2n, i.e. Λ = L
(m)
n , the period is π = 6(2m−1)

gcd(2m−1,2n+1)

3. If t = 3 then π = 3m, when m is even, and 6m, when m is odd.

Proof. Let u > 0 be the integer of Lemma 3.4.10. Then uZ consists of the integers r
such that ν̄r = τ̄ r, or equivalently (ν̄ ◦ τ̄−1)r = idΛ, as automorphisms of Λ. If π is the
period of Λ, then, by Lemma 3.4.9, we know that π = 3v, where v is the smallest of the
positive integers s such that µ̄s ∈ Inn(Λ). These integers s obviously form a subgroup
S = S(∆,m, t) of Z, and then vZ = S. This subgroup is the intersection of uZ with
the subgroup T consisting of the integers r such that µ̄r and (ν̄ ◦ τ̄−1)r are equal, up to
composition by an inner automorphism of Λ. When (∆,m, t) = (Ar,m, 2), by Lemma
3.4.11, we get that vZ = uZ ∩ 2Z, when char(K) 6= 2, and vZ = uZ ∩ Z = uZ, when
char(K) = 2. This automatically gives 2.c and the part of characteristic 2 in this case.
We claim that it also gives the formula in 2.a for ∆ = A2n−1. Indeed, by Lemma 3.4.10,
we have u = 2m

gcd(2m,m+n) in this case. But the biggest power of 2 which divides 2m is a
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divisor of gcd(2m,m+n) if, and only if, O2(m) = O2(n). Then the equality 2.a for A2n−1

follows automatically.
When (∆,m, t) 6= (Ar,m, 2), by Proposition 3.4.3 and the subsequent remark, we can

take µ̄ = η̄ ◦ τ̄−1. Then condition 2 of Lemma 3.4.9 implies that S consists of the integers
s such that η̄s and τ̄ s are equal, up to composition by an inner automorphism of Λ. We
then get that S = uZ ∩ H(∆,m, t) (see Proposition 3.2.2). Therefore Proposition 3.2.2
tells us that v = u, when either H(∆,m, t) = Z or u is even, and v = 2u otherwise. We
next check that this fact together with Proposition 3.2.2 give all the remaining formulas
of the theorem and, obviously, it completes the assertion for characteristic 2.

For the quivers ∆ in 1.a we always have that H(∆,m, t) = Z when ∆ = Ar, and also
in the other two cases when m is even. But if m is odd then automatically u = 2m

gcd(m,c∆)
is even.

For the quivers in 1.b, we always have that n = c∆
2 is odd. Therefore u is even exactly

when m is even.
For the quivers in 2.a which are not A2n−1, we have that H(∆,m, t) = Z exactly when

m is odd. But c∆
2 is even, so that O2(m) 6= O2(

c∆
2 ) in that case. As we did above in the

case (∆,m, t) = (A2n−1,m, 2), in case m even, we have that u = 2m
gcd(2m,m+

c∆
2
)
is odd if,

and only if, O2(m) = O2(
c∆
2 ). Then the formula in 2.a is true also for the cases different

from A2n−1.
For 2.b, we have that c∆

2 is odd, which implies that u is always even, and then the
formula in 2.b is true.

Finally, when t = 3, we have that H(∆,m, t) = Z, exactly when m is even, and then
the formula in 3) is automatic.

3.4.4 The stable Calabi-Yau dimension of an m-fold mesh algebra

In case Λ is a self-injective algebra, the Auslander formula (see [8], Chapter IV, Section
4) says that one has a natural isomorphism DHomΛ(X,−)

∼= Ext1Λ(−, τX), where τ :Λ
mod −→Λ mod is the Auslander-Reiten (AR) translation. Moreover, τ = Ω2N , where
N = DHomΛ(−,Λ) ∼= D(Λ) ⊗Λ − : Λmod −→ Λmod is the Nakayama functor (see [8]).
Due to the fact that Ext1Λ(−, Y ) and HomΛ(Ω(−), Y ) are naturally isomorphic functors

Λmod −→ Λmod we have that DHomΛ(X,−)
∼= HomΛ(−,ΩN (X)). Since Σ = Ω−1 is

the translation functor of Λmod as a triangulated category we conclude that Σn = Ω−n

is a Serre functor for Λmod if, and only if, HomΛ(−,ΩN (X)) ∼= HomΛ(−,Ω
−n(X)). By

Yoneda’s Lemma, this is in turn equivalent to saying that N (X) ∼= Ω−(n+1)(X), via
isomorphisms which are natural on X. Bearing in mind that N ∼= D(Λ)⊗Λ− ∼= η̄−1Λ1⊗Λ

− ∼= η̄−1(−) as shown in [28], we derive that the stable category Λmod has CY-dimension

m if and only if m is the smallest natural number such that Ω−m−1
Λ

∼= N ∼= η̄−1(−)

(equivalently, Ωm+1
Λ

∼= η̄(−)) as triangulated functors Λmod −→ Λmod, where η̄ is the
Nakayama automorphism of Λ. We shall say that Λ is stably Calabi-Yau when Λ −mod
is a Calabi-Yau triangulated category. The minimal number m mentioned above will be
then called the stable Calabi-Yau dimension of Λ and denoted CY − dim(Λ).

Due to the fact the functor ΩdΛ : Λ−mod −→ Λ−mod is naturally isomorphic to the
functor ΩdΛe(Λ) ⊗Λ −, for all integers d, a sufficient condition for Λ to be stably Calabi-
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Yau is that Ωd+1
Λe (Λ) ∼= η̄Λ1 as Λ-bimodules. An algebra satisfying this last condition is

called Calabi-Yau Frobenius in [35] and the minimal d satisfying this property is called
the Calabi-Yau Frobenius dimension of Λ. We will denote it here by CY F − dim(Λ). We
always have CY − dim(Λ) ≤ CY F − dim(Λ), but, in general, it is not known if equality
holds. We discuss now this problem for m-fold mesh algebras.

Note that, by [51][Theorem 1.8], the functor Ωk+1
Λ : Λ−mod −→ Λ−mod is naturally

isomorphic to η̄(−) : Λ−mod −→ Λ−mod if, and only if, Ωk+1
Λe (Λ) and ϕη̄Λ1 are isomorphic

Λ-bimodules, for some stably inner automorphism ϕ of Λ.

We are now able to calculate the stable and Frobenius Calabi-Yau dimension of self-
injective algebras of Loewy length 2.

Proposition 3.4.13. Let Λ be a connected self-injective algebra of Loewy length 2. Then
Λ is always a stably Calabi-Yau algebra and the following equalities hold:

1. If char(K) = 2 or Λ = A
(m)
2 , i.e. |Q0| is even, then CY −dim(Λ) = CY F−dim(Λ) =

0.

2. If char(K) 6= 2 and Λ = L
(m)
1 , i.e., |Q0| odd, then CY − dim(Λ) = 0 and CY F −

dim(Λ) = 2m− 1 = |Q0|.

Proof. By Proposition 3.4.7, we know that Ωk+1
Λe (Λ) is isomorphic to µ̄k+1Λ1, for each

k ≥ 0. Then CY − dim(Λ) is the smallest of the natural numbers k such that µ̄k+1η̄−1

is stably inner, which is equivalent to saying that µ̄k+1η̄−1 fixes the vertices. Similarly,
CY F − dim(Λ) is the smallest of the k such that µ̄k+1η̄−1 is inner. Due to the fact
that Λ is an m-fold mesh algebra of type A2, a (graded) Nakayama automorphism of
Λ is ν = ρτ1−1 = ρ (see Theorem 2.4.2 and Proposition 2.3.1). It follows that the
graded Nakayama automorphism η̄ of Λ maps i i+ 1 and ai  ai+1, when we identify
Q0 = Zn. It follows that µ̄η̄

−1 fixes the vertices and, hence, it is stably inner. This shows
that CY − dim(Λ) = 0.

More generally, µ̄k+1η̄−1 fixes the vertices if, and only if, i + k + 1 ≡ i + 1 (mod n),
for each i ∈ Zn. That is, if and only if k ∈ nZ. Suppose that this property holds
and consider the map χ : Q1 −→ K∗ taking constant value (−1)k+1. We clearly have
µ̄k+1η̄−1(ai) = (−1)k+1ai = χ(ai)ai, for each i ∈ Zn. But χ is an acyclic character if,
and only if, either char(K) = 2 or

∏
1≤i≤n χ(ai) = (−1)(k+1)n is equal to 1. So, when

char(K) = 2, the automorphism µ̄k+1η̄−1 is inner for any value of k. In particular,
CY F − dim(Λ) = 0 in such case.

Suppose that char(K) 6= 2. By Proposition 3.4.7, we get that µ̄k+1η̄−1 is an inner
automorphism if, and only if, (k + 1)n is even. This is always the case when n is even,
and in such case CY F − dim(Λ) = 0. If n = 2m− 1 is odd then k+1 should be even and
the smallest k ∈ nZ satisfying this property is k = n. Then CY F − dim(Λ) = n = 2m− 1
in this case.

As regards the algebras with Loewy length greater o equal than 4, we also have:
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Proposition 3.4.14. Let Λ be an m-fold mesh algebra of Dynkin type ∆ different from
Ar, for r = 1, 2, 3. Then Λ is stably Calabi-Yau if, and only if, it is Calabi-Yau Frobenius.
In such case the equality CY − dim(Λ) = CY F − dim(Λ) holds.

Proof. By Corollary 2.3.2, we know that the Loewy length of Λ is c∆ − 1, where c∆ is the
Coxeter number. The Dynkin graphs ∆ = Ar, with r = 1, 2, 3, are the only ones for which
c∆ − 1 ≤ 3. So Λ has Loewy length ≥ 4 in our case. Note that if Ωk+1

Λe (Λ) is isomorphic

to a twisted bimodule ϕΛ1, then we have dim(Ωk+1
Λe (Λ)) = dim(Λ). By Lemma 3.4.9, we

know that then k + 1 ∈ 3Z.

If there is a k such that Ωk+1
Λe (Λ) ∼= ϕη̄Λ1, for some inner or stably inner automorphism

ϕ, then k = 3s − 1, for some integer s > 0. But we know that Ω3
Λe(Λ) ∼= µ̄Λ1, where

µ̄ is a graded automorphism of Λ. We then have that Ω3s
Λe(Λ) ∼= ϕη̄Λ1, for some stably

inner (resp. inner) automorphism ϕ if, and only if, µ̄sη̄−1 is a stably inner (resp. inner)
automorphism of Λ. The proof is finished using Lemma 3.4.6 since µ̄sη̄−1 is a graded
automorphism.

The proof of last proposition shows that if Λ is not of type Ar (r = 1, 2), then the
algebra Λ will be stably Calabi-Yau (resp. Calabi-Yau Frobenius) if, and only if, there
exists an integer s > 0 such that µ̄sη̄−1 is stably inner (resp. inner). A necessary condition
for this is that µ̄sη̄−1 fixes the vertices. So, as a first step to characterize the stably Calabi-
Yau (resp. Calabi-Yau Frobenius) condition of Λ, we shall identify the positive integers s
such that µ̄s and η̄ have the same action on vertices.

Definition 16. Let Λ be an m-fold mesh algebra of type ∆ 6= A1,A2, with quiver Q. We
will define the following sets of positive integers:

1. NCY (Λ) consists of the integers s > 0 such that µ̄s and η̄ have the same action on
vertices.

2. N̂CY (Λ) consists of the integers s > 0 such that µ̄sη̄−1 is an inner automorphism.
Equivalently, it is the set of integers s > 0 such that Ω3s

Λe(Λ) is isomorphic to η̄Λ1 as
a Λ-bimodule.

Remark 3.4.15. Under the hypotheses of last definition, we clearly have N̂CY (Λ) ⊆
NCY (Λ). Moreover Λ is Calabi-Yau Frobenius if, and only if, N̂CY (Λ) 6= ∅. In this latter
case we have CY F − dim(Λ) = 3r − 1, where r = min(N̂CY (Λ)), and this number is
equal to CY − dim(Λ) when ∆ 6= A3. Note also that if N̂CY (Λ) = NCY (Λ) 6= ∅ then
CY − dim(Λ) = CY F − dim(Λ) since the fact that µ̄sη̄−1 be stably inner implies that
s ∈ NCY (Λ).

We first identify NCY (Λ) for any m-fold mesh algebra of Loewy length > 2.

Proposition 3.4.16. Let Λ be an m-fold mesh algebra of extended type (∆,m, t), where
∆ 6= A1,A2. The following assertions hold:

1. When t = 1, the set NCY (Λ) is nonempty if, and only if, the following condition is
true in each case:
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(a) gcd(m, c∆) = 1, when ∆ is Ar, D2r−1 or E6. Then NCY (Λ) = {s = 2s′+1, s′ >
0 : c∆s

′ ≡ −1 (mod m)}

(b) gcd(m, c∆2 ) = 1, when ∆ is D2r, E7 or E8. Then NCY (Λ) = {s > 0 : c∆2 (s−1) ≡
−1 (mod m)}.

2. When t = 2, the set NCY (Λ) is nonempty if, and only if, the following condition is
true in each case:

(a) gcd(2m,m+ c∆
2 ) = 1, when ∆ is A2n−1, D2r−1 or E6. Then NCY (Λ) = {s > 0 :

(m+ c∆
2 )(s − 1) ≡ −1 (mod 2m)}, and this set consists of even numbers.

(b) gcd(m, c∆2 ) = gcd(m, , 2r − 1) = 1, when ∆ = D2r. Then NCY (Λ) = {s > 0 :
(2r − 1)(s − 1) ≡ −1 (mod 2m)} and this set consists of even numbers.

(c) gcd(2m− 1, 2n+1) = 1, when ∆ = A2n. Then NCY (Λ) = {s > 0 : (m+ n)(s−
1) ≡ −1 (mod 2m− 1)}.

3. If t = 3 (and hence ∆ = D4), then NCY (Λ) = ∅.

Proof. Note that µ̄ acts on vertices as ν̄τ̄−1, where ν is the Nakayama permutation and τ
the Auslander-Reiten translation of B. Viewing the vertices of the quiver of Λ as G-orbits
of vertices in Z∆, we get that s is in NCY (Λ) if, and only if, (ν̄τ̄−1)s([(k, i)]) = ν̄([(k, i)]),
equivalently ν̄s−1τ̄−s([(k, i)]) = [(k, i)], for each G-orbit [(k, i)]. Now the argument in the
first paragraph of the proof of Theorem 3.3.1 can be applied to the automorphism νs−1τ−s.
We then get that s ∈ NCY (Λ) if, and only if, νs−1τ−s ∈ G. We use this to identify the set
NCY (Λ) for all possible extended types, and the result will be derived from that.

If t = 3 and so ∆ = D4, then we know that ν = τ−2. It follows that s ∈ NCY (Λ) if,
and only if, τ−2(s−1)τ−s = (ρτm)q, for some q ∈ Z, where ρ is the automorphism of order
3 of D4. By the free action of the group < ρ, τ > on vertices not fixed by ρ, necessarily
q ∈ 3Z and 2− 3s = mq, which is absurd. Then assertion 3 follows.

Suppose first that ∆ 6= A2n. If ∆ is A2n−1, D2r−1 or E6, then ν = ρτ1−n, where
n = c∆

2 . Then νs−1τ−s = ρs−1τ (1−n)(s−1)τ−s = ρs−1τ−[n(s−1)+1]. When t = 1, we have
that G =< τm > and, hence, the automorphism νs−1τ−s is in G if, and only if, there is
q ∈ Z such that ρs−1τ−[n(s−1)+1] = (τm)q. This happens if, and only if, s− 1 = 2s′ is even
and there is q ∈ Z such that −2ns′− 1 = −n(s− 1)− 1 is equal to mq. Therefore s exists
if, and only if, gcd(m, c∆) = gcd(m, 2n) = 1. In this case NCY (Λ) = {s = 2s′ + 1 > 0 :
2ns′ ≡ −1 (mod m)} = {s = 2s′ + 1 : c∆s

′ ≡ −1 (mod m))}, which gives 1.a, except
for the case ∆ = A2n. On the other hand, if t = 2, and hence G =< ρτm >, then the
automorphism νs−1τ−s is in G if, and only if, there is an integer q such that q ≡ s − 1
(mod 2) and ρs−1τ−[n(s−1)+1] = ρqτmq or, equivalently, −n(s − 1) − 1 = mq. But this
happens if, and only if, there is k ∈ Z such that −n(s − 1) − 1 = m(s − 1 + 2k), which
is equivalent to saying that (m + n)(s − 1) + 2mk + 1 = 0. Therefore s exists if, and
only if, gcd(2m,m + c∆

2 ) = gcd(2m,m + n) = 1. In this case NCY (Λ) = {s > 0 :
(m+ c∆

2 )(s− 1) ≡ −1 (mod 2m)} and this proves 2.a.
Suppose next that ∆ is D2r, E7 or E8, so that ν = τ1−n, where n = c∆

2 . Then

νs−1τ−s = τ (1−n)(s−1)τ−s = τ−[n(s−1)+1]. When t = 1, this automorphism is in G =<
τm > if, and only if, there is q ∈ Z such that −n(s − 1) − 1 = mq. Then s exists if, and
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only if, gcd(m, c∆2 ) = gcd(m,n) = 1. In this case NCY (Λ) = {s > 0 : c∆
2 (s − 1) ≡ −1

(mod m), which proves 1.b. When t = 2, whence ∆ = D2r, the automorphism νs−1τ−s is in
G =< ρτm > if, and only if, there is an even integer q = 2q′ such that −n(s−1)−1 = 2mq′.
Then s exists if, and only if, gcd(2m,n) = 1. But n = 2r − 1 is odd in this case. Then
gcd(2m,n) = 1 if, and only if, gcd(m, 2r − 1) = gcd(m,n) = 1. On the other hand, note
that s− 1 is necessarily odd, which implies that NCY (Λ) ⊂ 2Z. This completes the proof
of 2.b.

Suppose now that ∆ = A2n, so that ρ2 = τ−1. Here ν = ρτ1−n and νs−1τ−s =
ρs−1τ (1−n)(s−1)−s = ρs−1τ−[n(s−1)+1]. When t = 1, this automorphism is in G =< τm >
if, and only if, s − 1 = 2s′ is even and τ−s

′
τ−(2ns′+1) = (τm)q, for some integer q. That

is, s exists if, and only if, there are s′ ≥ 0 and q ∈ Z such that mq + (2n + 1)s′ + 1 = 0.
Therefore s exists if, and only if, gcd(m, c∆) = gcd(m, 2n+1) = 1. In this case s = 2s′+1,
where s′ ≥ 0 and c∆s

′ = (2n + 1)s′ ≡ −1 (mod m). This completes 1.a. When t = 2 the
automorphism νs−1τ−s is in G =< ρτm > if, and only if, there is q ∈ Z such that q ≡ s−1
(mod 2) and ρs−1τ−[n(s−1)+1] = ρqτmq. This is equivalent to the existence of an integer k
such that ρs−1τ−[n(s−1)+1] = ρs−1+2kτm(s−1+2k). Canceling ρs−1, we see that the condition
is equivalent to the existence of an integer k such that −n(s−1)−1 = m(s−1)+(2m−1)k
or, equivalently, such that (m+ n)(s− 1) + (2m− 1)k + 1 = 0. Then s exists if, and only
if, gcd(m+n, 2m−1) = 1, which is turn equivalent to saying that gcd(2m−1, 2n+1) = 1
since (2m− 1) + (2n + 1) = 2(m+ n). This proves 2.c and the proof is complete.

We now want to identify N̂CY (Λ). The following is our crucial tool.

Lemma 3.4.17. Let ∆ be a Dynkin quiver different from A1,A2, B be its associated mesh
algebra, Λ = B/G be an m-fold mesh algebra of extended type (∆,m, t) and let η be a
G-invariant graded Nakayama automorphism of B. If s is an integer in NCY (Λ), then the
following assertions are equivalent:

1. s is in N̂CY (Λ) (see definition 16).

2. There is a map λ : Z∆0 −→ K∗ such that:

(a) µs(a) = λ−1
i(a)λt(a)η(ν

s−1τ−s(a)), for all a ∈ (Z∆)1, where µ is the graded auto-
morphism of Proposition 3.4.3.

(b) λ ◦ g|Z∆0
= λ, for all g ∈ G.

If (∆,m, t) 6= (A2n−1,m, 2), then these conditions are also equivalent to:

3. There is a map λ : Z∆0 −→ K∗ satisfying condition 2.b and such that (−1)sηs−1(a) =
λ−1
i(a)λt(a)ν

s−1(a), for all a ∈ (Z∆)1.

If (∆, t) 6= (Ar, 2) then the conditions are also equivalent to

4. s− 1 is in H(∆,m, t) (see Proposition 3.2.2).

Proof. The first paragraph of the proof of Proposition 3.4.16 says that s ∈ NCY (Λ) if,
and only if, νs−1τ−s ∈ G. The goal is to give necessary and sufficient conditions on
such an integer s so that µ̄s and η̄ = ηνs−1τ−s are equal, up to composition by an inner
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automorphism of Λ. But the actions of µs = (k ◦ η ◦ τ−1 ◦ϑ)s and η ◦ νs−1 ◦ τ−s on (Z∆)0
are equal. By Lemma 3.2.1, we then get that assertions 1 and 2 are equivalent.

When (∆,m, t) 6= (A2n−1,m, 2), what we know is that ϑ = idB and, by Lemma
3.4.9, we know that η̄ and τ̄−1 commute, up to composition by an inner automorphism
of Λ. Then s is in N̂CY (Λ) if, and only if, k̄sη̄sτ̄−s and η̄ν̄s−1τ̄−s are equal up to
composition by an inner automorphism of Λ. By Lemma 3.2.1, this last condition is
equivalent to saying that there is a map λ : Z∆0 −→ K∗ satisfying 2.b such that
(−1)sηs(τ−s(a)) = λ−1

i(a)λt(a)η(ν
s−1τ−s(a)), for each a ∈ (Z∆)1. Putting b = τ−s(a)

and defining λ̃ : (Z∆)0 −→ K∗ by the rule λ̃(i) = λ(τ s(i)), we get that (−1)sηs−1(b) =
λ̃−1
i(b)λ̃t(b)ν

s−1(b), for all b ∈ (Z∆)1. Then assertions 2 and 3 are equivalent.

Finally, when (∆, t) 6= (Ar, 2), Proposition 3.4.3 says that we can choose µ = η ◦ τ−1

since ϑ is the identity map. Then the proof of the equivalence of assertions 2 and 3, taken
for κ = idB , shows that assertion 2 holds if, and only if, there is a map λ : Z∆0 −→ K∗

satisfying condition 2.b and such that ηs−1(b) = λ−1
i(b)λt(b)ν

s−1(b), for all b ∈ (Z∆)1. This

equivalent to saying that s− 1 ∈ H(∆,m, t).

The following is now a consequence of Proposition 3.4.16 and the foregoing lemma.

Corollary 3.4.18. Let Λ be an m-fold mesh algebra over a field of characteristic 2, with
∆ 6= A1. The algebra is stably Calabi-Yau if, and only if, it is Calabi-Yau Frobenius. When
in addition ∆ 6= A2, this is in turn equivalent to saying that NCY (Λ) 6= ∅. Moreover, the
following assertions hold:

1. When the Loewy length of Λ is ≤ 2, i.e. ∆ = A2, the algebra is always Calabi-Yau
Frobenius and CY − dim(Λ) = CY F − dim(Λ) = 0.

2. When ∆ 6= A2, we have CY − dim(Λ) = CY F − dim(Λ) = 3m − 1, where m =
min(NCY (Λ)) (see Proposition 3.4.16).

Proof. The case of Loewy length 2 is covered by Proposition 3.4.13. So we assume ∆ 6= A2

in the sequel. If Λ is stably Calabi-Yau, then NCY (Λ) 6= ∅. But, when char(K) = 2, the
G-invariant graded Nakayama automorphism of Theorem 2.4.2 is η = ν. In addition, the
automorphisms ϑ and κ of Proposition 3.4.3 are the identity. Then, in order to prove the
equality N̂CY (Λ) = NCY (Λ), one only need to prove that if s ∈ NCY (Λ) then condition 2
of last lemma holds. But this is clear, by taking as λ any constant map.

We are now ready to give, for Char(K) 6= 2, the precise criterion for an m-fold mesh
algebra to be stably Calabi-Yau, and to calculate CY − dim(Λ) in that case.

Theorem 3.4.19. Let us assume that char(K) 6= 2 and let Λ be the m-fold mesh algebra
of extended type (∆,m, t), where ∆ 6= A1,A2. We adopt the convention that if a, b, k are
fixed integers, then au ≡ b (mod k) means that u is the smallest positive integer satisfying
the congruence. The algebra is Calabi-Yau Frobenius if, and only if, it is stably Calabi-
Yau. Moreover, we have CY F − dim(Λ) = CY − dim(Λ) and the following assertions
hold:

1. If t = 1 then



78 Chapter 3

(a) When ∆ is Ar, D2r−1 or E6, the algebra is stably Calabi-Yau if, and only if,
gcd(m, c∆) = 1. Then CY − dim(Λ) = 6u+ 2, where c∆u ≡ −1 (mod m).

(b) When ∆ is D2r, E7 or E8, the algebra is stably Calabi-Yau if, and only if,
gcd(m, c∆2 ) = 1. Then:

i. CY − dim(Λ) = 3u+ 2, where c∆
2 u ≡ −1 (mod m), whenever m is even;

ii. CY − dim(Λ) = 6u+ 2, where c∆u ≡ −1 (mod m), whenever m is odd;

2. If t = 2 then

(a) When ∆ is A2n−1, D2r−1 or E6, the algebra is stably Calabi-Yau if, and only
if, gcd(2m,m+ c∆

2 ) = 1. Then CY − dim(Λ) = 3u+ 2, where (m+ c∆
2 )u ≡ −1

(mod 2m).

(b) When ∆ = D2r, the algebra is stably Calabi-Yau if, and only if, gcd(m, 2r−1) =
1 and m is odd. Then CY −dim(Λ) = 3u+2, where (2r−1)u ≡ −1 (mod 2m).

(c) When ∆ = A2n, the algebra is stably Calabi-Yau if, and only if, gcd(2m−1, 2n+
1) = 1. Then CY −dim(Λ) = 6u−1, where (m+n)(2u−1) ≡ −1 (mod 2m−1)

3. If t = 3 then the algebra is not stably Calabi-Yau.

Proof. By Proposition 3.4.14, we know that, when ∆ 6= A3, the algebra Λ is stably Calabi-
Yau if, and only if, it is Calabi-Yau Frobenius and the corresponding dimensions are
equal. From our arguments below it will follow that, when ∆ = A3, we always have
N̂CY (Λ) = NCY (Λ), and then CY − dim(Λ) = CY F − dim(Λ) also in this case (see
Remark 3.4.15).

Our arguments will give an explicit identification of N̂CY (Λ) in terms of NCY (Λ). Then
CY − dim(Λ) will be 3v − 1, where v = min(N̂CY (Λ)).

From Propositions 3.4.16 and 3.4.14, we know that, when t = 3, the algebra is never
stably Calabi-Yau. So we assume in the sequel that t 6= 3.

Suppose first that (∆,m, t) 6= (Ar,m, 2). Then Lemma 3.4.17 tells us that N̂CY (Λ) =
NCY (Λ) ∩ (H(∆,m, t) + 1), where H(∆,m, t) + 1 = {s ∈ Z : s − 1 ∈ H := H(∆,m, t)}.
By Proposition 3.2.2, we get in these cases that the equality N̂CY (Λ) = NCY (Λ) holds
whenever m+ t is odd. We now examine the different cases:

1.a) If ∆ = Ar then H = Z. When ∆ is D2r−1 or E6, the Coxeter number c∆ is even.
If NCY (Λ) 6= ∅ then gcd(m, c∆) = 1, so that m is odd and H = 2Z. But then N̂CY (Λ) =
NCY (Λ) ∩ (2Z + 1), which is equal to NCY (Λ) due to Proposition 3.4.16. So Λ is stably
Calabi-Yau if, and only if, gcd(m, c∆) = 1. Then CY − dim(Λ) = 3(2u+ 1)− 1 = 6u+ 2,
where 2u+ 1 = min(NCY (Λ)).

1.b) We need to consider the case when m is odd. In this case N̂CY (Λ) = NCY (Λ) ∩
(2Z + 1) is properly contained in NCY (Λ). However, we claim that if NCY (Λ) 6= ∅ then
N̂CY (Λ) 6= ∅, which will prove that Λ is stably Calabi-Yau if, and only if, gcd(m, c∆2 ) = 1
using Proposition 3.4.16. Indeed, we need to prove that if gcd(m, c∆2 ) = 1, then there is
an integer u′ ≥ 0 such that 2u′ + 1 ∈ NCY (Λ) or, equivalently, that

c∆
2 (2u′ + 1− 1) ≡ −1

(mod m). But this is clear for if m is odd then also gcd(m, c∆) = 1. Now the formulas in
1.b.i) an 1.b.ii) come directly from putting s = u+1 and s = 2u+1 and use the fact that
c∆
2 (s− 1) ≡ −1 (mod m).
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2.a) Suppose first that ∆ is D2r−1 or E6. In this case c∆
2 is even. Then gcd(2m,m +

c∆
2 ) = 1 implies that m is odd and, hence, that H = Z. So in this case N̂CY (Λ) = NCY (Λ)
and the formula for CY − dim(Λ) comes from putting s = 1 + u, where (m+ c∆

2 )u ≡ −1
(mod 2m).

Suppose next that (∆,m, t) = (A2n−1,m, 2), i.e. Λ = B
(m)
n . Here η = ν. Then

condition 2 of Lemma 3.4.17 can be rephrased by saying that µ̄s and (ν̄◦τ̄−1)s are equal, up
to composition by an inner automorphism of Λ. This proves that N̂CY (Λ) = NCY (Λ)∩ 2Z
due to Lemma 3.4.11. But Proposition 3.4.16 tells us that then N̂CY (Λ) = NCY (Λ). The
formula for CY − dim(Λ) is calculated as in the other two quivers of 2.a.

2.b) If NCY (Λ) 6= ∅ then gcd(m, 2r − 1) = 1. If m is odd then H = Z. If m is even,
then H = 2Z which implies that N̂CY (Λ) = NCY (Λ) ∩ (2Z + 1). But this is the empty
set due to Proposition 3.4.16. The formula for CY − dim(Λ) in the case when m is odd
follows again from putting s− 1 = u and (2r − 1)u ≡ −1 (mod 2m).

2.c) It remains to consider the case (∆,m, t) = (A2n,m, 2), i.e. Λ = L
(m)
n . We use

condition 3 of Lemma 3.4.17. If λ : Z∆0 −→ K∗ is any map such that (−1)sηs−1(a) =
λ−1
i(a)λt(a)ν

s−1(a), then λ−1
i(a)λt(a) = (−1)s since ηs−1(a) = νs−1(a), for all a ∈ (Z∆)1. It

follows that λ(k,i) = (−1)sλ(k,j), whenever i 6≡ j (mod 2), and that λτ(k,i) = λ(k+1,i) =
(−1)2sλ(k,i) = λ(k,i), for all (k, i) ∈ Z∆0. We then get that λρτm(k,i) = λρ(k+m,i) =
λ(k+m+i−n,2n+1−i) = (−1)sλ(k,i). As a consequence the equality λ◦g|Z∆0

= λ holds, for all

g ∈ G =< ρτm >, if and only if s ∈ 2Z. It follows that N̂CY (Λ) = NCY (Λ)∩2Z. We claim
that if NCY (Λ) 6= ∅ then N̂CY (Λ) 6= ∅, which implies that Λ is stably Calabi-Yau exactly
when gcd(2m−1, 2n+1) = 1, using Proposition 3.4.16. Indeed, using the description of this
last proposition, we need to see that the diophantic equation (m+n)(2x−1)+(2m−1)y+1
has a solution. But this is clear since gcd(2(m + n), 2m − 1) = 1. The formula for
CY − dim(Λ) is now clear.
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Chapter 4

Hochschild cohomology of finite
dimensional self-injective algebras

4.1 Introduction

4.1.1 Motivation

The aim of this chapter is to gather the background on algebras over a commutative
ring and finite dimensional self-injective algebras that will be needed in the subsequent
chapters. Some of the contents concerning self-injective finite dimensional algebras can be
directly derived from the results given in Chapter 1 for pseudo-Frobenius graded algebras
by considering the grading group H = 0. Also, we introduce the notion and essential
properties of the Hochschild cohomology ring.

4.1.2 Outline of the chapter

In Section 4.2 we remind the definition of the Yoneda product of extensions and, parti-
cularly, we introduce the notion of the Hochschild cohomology ring, denoted by HH∗(Λ),
of an algebra Λ over a commutative ring R. Then, in Section 4.3, and whenever the
algebra is in addition Gorenstein projective as Λ-bimodule, we include the definition of
the stable Hochschild cohomology ring, HH∗(Λ). In Section 4.4 we describe the structure
as a bigraded (Z×Z-graded) algebra induced by the canonical homological grading as well
as by what we call the length grading on Λ. As regards Section 4.5, we show that if Λ is
a periodic Frobenius algebra, in the sense of [35], then the stable Hochschild cohomology
ring is a graded-commutative which turns out to be a localization of the classical one.
Finally, in Section 4.6 we revisit some results concerning self-injective finite dimensional
algebras and we also introduce the concept of dualizable basis and give conditions for its
existence.

4.1.3 Notation

Throughout this chapter we fix a commutative ground ring R and all algebras are taken
over R. For simplicity, we will assume in addition that these algebras are projective as

81
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R-modules, although this assumption is not necessary in some of the statements. Later in
the chapter R will be a field and, in order to emphasize that, we will put R = K in that
case.

The prototypical example of algebras that we should keep in mind is that of an algebra
given by quiver and relations. Suppose that Q is a quiver. If Q0 is finite, then the
associated path algebra RQ is unital and it is free as an R-module. We are interested
in quotients Λ = RQ/I where I is a two-sided ideal of RQ contained in the (free) R-
submodule RQ≥2 of RQ generated by the paths of length ≥ 1, and having a direct sum
complement in RQ as an R-module. We shall only consider quotients of path algebras of
this form. Note that 1 =

∑
i∈Q0

ei, where ei is the idempotent associated to i.

The convention and notation of the Subsection 1.1.3 are also followed here, but with
K replaced by R. In particular, unadorned tensor products are taken over R.

4.2 The Yoneda product of extensions

For the convenience of the reader we recall the definition of HH∗(Λ) and of the Yoneda
product. By the classical theory of derived functors, for each pairM,N of Λ-modules, one
can compute the R-module ExtnΛ(M,N) as the n-th cohomology R-module of the complex
HomΛ(P

•, N), where

P • : ...P−n−1 d
−n−1

−→ P−n −→ ... −→ P−1 d−1

−→ P 0
։M → 0

is a projective resolution of M .

Suppose that L,M,N are Λ-modules, that P • and Q• are projective resolutions of
L and M , respectively, and that m,n are natural numbers. If δ ∈ ExtnΛ(L,M) and
ǫ ∈ ExtmΛ (M,N), then we can choose a δ̃ ∈ HomΛ(P

−n,M), belonging to the kernel of
the transpose map (d−n−1)∗ : HomΛ(P

−n,M) −→ HomΛ(P
−n−1,M) of the differential

d−n−1 : P−n−1 −→ P−n of P •, which represents δ. Similarly, we can choose an ǫ̃ ∈
HomΛ(Qm, N) which represents ǫ. Due to the projectivity of the P i, there is a (non-
unique) sequence of morphisms of Λ-modules δ−k : P−n−k −→ Q−k (k = 0, 1, ...,) making
the following diagram commute:

· · · // P−n−k //

δ−k

��

· · · // P−n−1 //

δ−1

��

P−n //

δ0

��

δ̃

!!❈
❈❈

❈❈
❈❈

❈❈
· · · // P 0 // L // 0

· · · // Q−k // · · · // Q−1 // Q0 //M // 0

Then the composition ǫ̃ ◦ δ−m : P−m−n −→ N is in the kernel of (d−m−n)∗ and, thus,
it represents an element of Extm+n

Λ (L,N). This element is denoted by ǫδ and does not
depend on the choices made. It is called the Yoneda product of ǫ and δ. It is well-known
that the map

ExtmΛ (M,N)× ExtnΛ(L,M) −→ Extm+n
Λ (L,N) ((ǫ, δ) 7→ ǫδ)
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is R-bilinear.
When M = N in the above setting, the R-module Ext∗Λ(M,M) = ⊕i≥0Ext

i
Λ(M,M)

inherits a structure of graded R-algebra, where the multiplication of homogeneous elements
is the Yoneda product. In this thesis we are interested in the particular case where Λ is
replaced by Λe and M is replaced by Λ, viewed as Λe-module (i.e. as a Λ-bimodule).
Then HH i(Λ) := ExtiΛe(Λ,Λ) is called the i-th Hochschild cohomology R-module, for each
i ≥ 0. The corresponding graded algebra Ext∗Λe(Λ,Λ) is denoted by HH∗(Λ) and called
the Hochschild cohomology ring (or algebra) of Λ. By a celebrated result of Gerstenhaber
([43]), we know that HH∗(Λ) is graded commutative. That is, if ǫ ∈ HH i(Λ) and δ ∈
HHj(Λ) are homogeneous elements, then ǫδ = (−1)ijδǫ.

4.3 Stable and absolute Hochschild (co)homology

In this section, we recall some concepts which allow us to extend Hochschild homology
and cohomology to negative degrees.

Definition 17. Let A be an algebra and let CA denote the category of (cochain) complexes
of A-modules. An object X• of CA is called a totally acyclic complex when it is acyclic
and the complex of R-modules HomA(X

•, Q) is acyclic, for each projective A-module Q.
An A-module M is said to be Gorenstein projective (see [26]) when there is a totally

acyclic complex

P • : · · · −→ P−2 d−2

−→ P−1 d−1

−→ P 0 d0
−→ P 1 d1

−→ P 2 −→ · · ·

in CA such that each Pn is a projective A-module and Z1 := Ker(d1) = M . In that case
P • is a called a complete projective resolution of M and its module of (1 − n)-cocycles
Z1−n will be called the Gorenstein n-syzygy of M and denoted by ΩnA(M), for each n ∈ Z.
It is uniquely determined, up to isomorphism, in the stable category modulo projectives
and, for n ≥ 0, it coincides with the usual syzygy.

We summarize in the following proposition a few known properties of Gorenstein pro-
jective modules (see [9][Section 4]).

Proposition 4.3.1. Let A be an algebra. The following assertions hold:

1. The complete projective resolution of a Gorenstein projective A-module is unique, up
to isomorphism, in the homotopy category HA

2. The full subcategory A− GProj of AMod consisting of the Gorenstein projective A-
modules is a Frobenius exact category (in the sense of Quillen) on which the injective
(=projective) objects are the projective A-modules

3. The stable category A − GProj = A−GProj

AProj
is a triangulated category on which the

suspension functor takes M to Ω−1
A M .

4. Assigning to each M ∈ A−GProj its complete projective resolution induces a fully
faithful triangulated functor A−GProj −→ HA.
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Definition 18. LetM,N be left A-modules andX be a right A-module, and suppose that
M is Gorenstein projective, with P • as complete projective resolution. For each i ∈ Z, we
put

1. ExtiA(M,N) = H i(HomA(P
•, N))

2. TorAi (X,M) = H−i(X ⊗A P
•),

where H i(−) denotes the i-th homology R-module of the given complex.
We call ExtiA(−,−) and TorAi (−,−) the stable Ext and the stable Tor, respectively.

Their definition does not depend on the complete resolution P • that we choose.

We clearly have ExtiA(M,N) = ExtiA(M,N) and TorAi (X,M) = TorAi (X,M), for all
i > 0. In particular, we have canonical homomorphisms of graded R-modules

Ext∗A(M,N) = ⊕i≥0Ext
i
A(M,N)

λM,N
−→ ⊕i∈ZExt

i
A(M,N) =: Ext∗A(M,N)

and

TorA∗ (X,M) = ⊕i∈ZTor
A
i (X,M)

µX,M
−→ ⊕i≥0Tor

A
i (X,M) = TorA∗ (X,M)

where Ker(λM,N ) and Coker(µM,N ) are concentrated in degree 0. Actually, Ker(λM,N ) =
P(M,N) = {f ∈ HomA(M,N) = Ext0A(M,N) | f factors through a projective A-module}
and Coker(µX,N ) is isomorphic to the image of the morphism 1X ⊗ jM : X ⊗ M −→
X ⊗A P

1, where j :M = Z1 −→ P 1 is the inclusion of 1-cocycles into 1-cochains. Finally,
note that ExtiA(M,N) ∼= HomA(Ω

i
A(M), N) for all i ∈ Z where HomA(?, ?) denotes the

Hom bifunctor in A−Mod. In particular, for M = N we get a structure of graded algebra
on Ext∗A(M,M) induced from that of ⊕i∈ZHomA(Ω

i
A(M),M), which is defined by the rule

g · f = g ◦ΩiA(f),

whenever f ∈ HomA(Ω
j
A(M),M) and g ∈ HomA(Ω

i
A(M),M). In particular, the multi-

plication on Ext∗A(M,M) extends the Yoneda product defined in Section 4.2. Then, the
next result follows in a straightforward way.

Proposition 4.3.2. Let M,N be left A-modules and suppose that M is Gorenstein pro-
jective. The R-module Ext∗A(M,M) has a canonical structure of graded algebra over which
Ext∗A(M,N) is a graded right module. Moreover, the map

λM,M : Ext∗A(M,M) −→ Ext∗A(M,M)

is a homomorphism of graded algebras, and the following diagram is commutative, where
the horizontal arrows are the multiplication maps:

Ext∗A(M,N)⊗ Ext∗A(M,M)
Y oneda//

λM,N⊗λM,M

��

Ext∗A(M,N)

λM,N

��
Ext∗A(M,N)⊗ Ext∗A(M,M) // Ext∗A(M,N)
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Consider the graded R-module TorA−∗(X,M) which has the same underlying R-module
as TorA∗ (X,M) but with the grading inverted. If now P = P • is a fixed totally complete
projective resolution of M , then P is canonically a differential graded (dg) A-module,
i.e., an object in CdgA, using the terminology of [54]. Then B = EndCdgA(P ) is a dg
algebra which acts on X ⊗A P in the obvious way, making X ⊗A P into a dg left B-
module. As a consequence, H∗(X ⊗A P ) = TorA−∗(X,M) is a graded left module over the
cohomology algebra H∗B = ⊕n∈ZHomHA(P,P [n]), where HA is the homotopy category
of A (see [54]). But, due to Proposition 4.3.1(4), we have canonical isomorphisms of
graded algebras H∗B ∼= ⊕n∈ZHomA(M,Ω−n

A M) ∼= Ext∗A(M,M). It, then, follows that
TorA−∗(X,M) has the structure of a graded left Ext∗A(M,M)-module, as desired.

If we now take the non-negatively graded subalgebra

Ext≥0
A (M,M) := ⊕n≥0Ext

n
A(M,M),

of Ext∗A(M,M), then

Tor−>0(X,M) = ⊕j<0Torj(X,M)

is a graded Ext≥0(M,M)-submodule of TorA−∗(X,M), and the quotient
TorA−∗(X,M)

TorA
−(>0)

(X,M)
,

which is isomorphic to TorA−(≤0)(X,M) as a gradedR-module, is a graded left Ext≥0
A (M,M)-

module. That is, ⊕i≥0Tor
A
i (X,M) has a canonical structure of graded left Ext≥0

A (M,M)-
module, where TorAi (X,M) is the component of degree −i, for all i ≥ 0. Since we have a
surjective morphism of graded algebras Ext∗A(M,M)։ Ext≥0

A (M,M), we get a structure
of graded left Ext∗A(M,M)-module on TorA−(≤0)(X,M).

We can now provide TorA−∗(X,M) (i.e., just TorA∗ (X,M), but with TorAi (X,M) in
degree −i, for all i ≥ 0) with a structure of graded left Ext∗A(M,M)-module of which
TorA−(≤0)(X,M) is a graded submodule. Indeed, we have that the product ExtiA(M,M) ·

TorA−(−j)(X,M) = ExtiA(M,M) · TorA−(−j)(X,M) is given by the preceding product using

the isomorphism TorAj (−,−)
∼= TorAj (−,−) when j > 0 and i ≤ j, together with the

natural map TorAj−i(−,−) → TorAj−i(−,−). If i > j, this product is zero. For j = 0 we
put

ExtiA(M,M) · TorA0 (X,M) = 0 if i > 0,

and for i = 0 the multiplication is given by the following diagram,

Ext0A(M,M)× TorA0 (X,M) //

q

��

TorA0 (X,M)

q

��
EndA(M)× (X ⊗AM) // X ⊗AM,

where the bottom horizontal arrow is the canonical map (f, x⊗m) 7→ x⊗ f(m).
These comments prove the following analogue of Proposition 4.3.2 for Tor.

Proposition 4.3.3. Let X and M be a right and a left A-modules, respectively, and
suppose that M is Gorenstein projective. Then TorA−∗(X,M) (resp. TorA−∗(X,M)) has a
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canonical structure of graded left Ext∗A(M,M)- (resp. Ext∗A(M,M)-)module. Moreover,
the following diagram is commutative:

Ext∗A(M,M)×TorA−∗(X,M) Ext∗A(M,M) ×TorA−∗(X,M) TorA−∗(X,M)

Ext∗A(M,M)×TorA−∗(X,M) TorA−∗(X,M)

λM,M × 1 mult.

1× µX,M µX,M

mult.

✲ ✲

❄❄

✲

We are especially interested in the particular case of the two previous propositions
in which A = Λe = Λ ⊗ Λop, where Λ is an R-algebra which is Gorenstein projective
as Λ-bimodule and M = Λ viewed as Λe-module. In that case, we put HHn(Λ, N) =
ExtnΛe(Λ, N) and HHn(Λ, N) = TorΛ

e

n (Λ, N) and call them the n-th stable Hochschild
cohomology and homology R-modules of Λ with coefficients in N , respectively. Putting
HH∗(Λ, N) = ⊕n∈ZHH

n(Λ, N), HH∗(Λ) = HH∗(Λ,Λ), HH∗(Λ, N) = ⊕n∈ZHHn(Λ, N),
and HH∗(Λ) = HH∗(Λ,Λ), we have the following straightforward consequence of Propo-
sitions 4.3.2 and 4.3.3.

Corollary 4.3.4. In the situation above, HH∗(Λ) (resp. HH∗(Λ)) has a canonical
structure of graded algebra over which HH∗(Λ, N) (resp. HH∗(Λ, N)) is a graded right
module and HH−∗(Λ, N) (resp. HH−∗(Λ, N)) is a graded left module. Moreover, the
graded algebra structure on HH∗(Λ) and the graded module structures on HH∗(Λ, N) and
HH−∗(Λ, N) are determined by their stable analogues, except in degree zero.

4.4 Bigrading on the stable and absolute
Hochschild (co)homology

Suppose that A admits a positive grading A = ⊕n≥0An such that each An is finitely
generated (projective) as an R-module. We denote by A−Gr the category of (Z-)graded
modules and, for each n ∈ Z and each M ∈ A − Gr, we denote by M [n] the graded
A-module which has the same underlying A-module as M , but with grading given by
M [n]i =Mn+i, for all i ∈ Z.

With the obvious adaptation, recall from Subsection 1.2.1 that if M and N are ob-
jects of A − Gr, then HOMA(M,N) = ⊕n∈ZHomA−Gr(M,N [n]) is a graded R-module
and we have an inclusion HOMA(M,N) ⊆ HomA(M,N). This inclusion is an equali-
ty when M is finitely generated (see [65], Section I.2). We then get an induced functor
HomA(−, N) : A− gr −→ R−Gr, where A− gr denotes the full subcategory of A−Gr
whose objects are the finitely generated graded modules. Note that we have an isomor-
phism HomA(M [−n], N) ∼= HomA(M,N)[n] in R−Gr.
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If we assume that M has a projective resolution P • in A − Gr consisting of finitely
generated terms (e.g. if A and M are finitely generated projective as R-modules), then
HomA(P

−r, N) is a graded R-module, for each r ≥ 0, and the differentials of the complex
HomA(P

•, N) are morphisms of graded R-modules. As a consequence, ExtrA(M,N) inhe-
rits a structure of graded R-module. Then Ext∗A(M,N) becomes canonically a bigraded (=
Z×Z-graded) R-module where the homogeneous component of bidegree (m,n) is precisely
ExtmA (M,N)n.

We call a complex of projective graded A-modules P • totally acyclic when it is totally
acyclic as a complex of ungraded A-modules. Then a complete graded projective resolution
of M ∈ A−Gr is just a totally acyclic complex P • of graded projective A-modules such
that Z1 = M . The scheme of the preceding paragraph can be essentially copied so that,
when M,N ∈ A−Gr and M admits a complete graded projective resolution consisting of
finitely generated terms, the R-module Ext∗A(M,N) is bigraded.

It is not hard to see that when M,N, T are graded A-modules and M and N admit
(complete) projective resolutions with finitely generated terms, then the Yoneda products

Ext∗A(N,T )× Ext∗A(M,N) −→ Ext∗A(M,T ) and

Ext∗A(N,T )× Ext∗A(M,N) −→ Ext∗A(M,T )

are compatible with the bigrading, i.e., if bideg(ǫ) = (m,n) and bideg(δ) = (p, q), then
bideg(ǫδ) = (m+ p, n + q) whenever ǫδ 6= 0, where bideg denotes the bidegree. It follows
that the algebras Ext∗A(M,M) and Ext∗A(M,M) are bigraded and that Ext∗A(M,N) and
Ext∗A(M,N) are bigraded right modules over them, respectively.

The particular case that is most interesting for us is the one in which A = Λe = Λ⊗Λop

is the enveloping algebra of a graded algebra Λ = ⊕n≥0Λn which admits a complete
projective resolution as a graded Λ-bimodule whose terms are finitely generated, with
Λ>0 = ⊕n≥0Λn nilpotent and Λ0 isomorphic as an algebra to a finite direct product of
copies of R. In that case A = Λe inherits a grading An = ⊕r+s=nΛr ⊗ Λops satisfying
the requirements of the preceding paragraphs. Now taking M = Λ, with its canonical
structure of left Λe-module, we see that it is graded. We conclude that HH∗(Λ) and
HH∗(Λ) are bigraded algebras and that, whenever N is a graded Λ-bimodule, HH∗(Λ, N)
and HH∗(Λ, N) are bigraded right modules over them, respectively.

If Q is a finite quiver, then its path algebra RQ has a natural grading, where the
degree of each path is its length. If in the above setting Λ = RQ/I is a quotient of a path
algebra, where I is homogeneous with respect to this grading of RQ, then the induced
grading on Λ will be called the length grading and the same term will be used to name the
induced grading onHH∗(Λ) or on each HHn(Λ) (resp. on HH∗(Λ) or HHn(Λ), when Λ is
also Frobenius). Sometimes we use the term homological grading for the canonical grading
HH∗(Λ) = ⊕n≥0HH

n(Λ) (resp. HH∗(Λ) = ⊕n∈ZHH
n(Λ)) in order to distinguish it from

the length grading.

4.5 Frobenius algebras (following Eu and Schedler)

In this section we introduce a class of algebras studied by Eu and Schedler [35], which
generalize the class of self-injective finite dimensional algebras and to which, with the
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suitable adaptation, one can apply some of the results of chapter 1. We will give a brief
account of the results of [op.cit] which are more useful to us in this paper.

Definition 19. An algebra A is a Frobenius algebra if it is finitely generated projective as
an R-module and admits a nondegenerate R-bilinear form (−,−) : A×A −→ R satisfying:

i) (a, bc) = (ab, c), for all a, b, c ∈ A

ii) The map A −→ D(A) := HomR(A,R), b→ (−, b), is bijective.

In such a case, if P • = (P •, d•) is any acyclic complex of finitely generated projective
A-modules with the property that each map P i −→ Im(di) is a retraction (=split epi-
morphism) of R-modules, then it is totally acyclic. Each finitely generated A-module M
which is projective as an R-module is the module of 1-cocycles of such an acyclic complex,
and, hence, it is Gorenstein projective (see [35]).

In the particular case when R = K is a field, a Frobenius algebra is just a self-injective
finite dimensional algebra (see Example 4.5.1 below), and then ’acyclic’ and ’totally acyclic’
are synonymous terms for complexes of (arbitrary) projective A-modules. Each A-module
is Gorenstein projective in this case.

When Λ is a Frobenius algebra, it is of common use to denote by Λ − mod (resp.
mod − Λ) the category of left (resp. right) Λ which are finitely generated projective as
R-modules. These modules turn out to be Gorenstein projective, so that the homological
theory of the previous subsections apply to them. The category Λ − mod is Frobenius
exact category, although it need not be abelian. By [46], Chapter I, we then know that
the associated stable category Λ−mod is a triangulated category with the cosyzygy functor
Ω−1
Λ : Λ−mod −→ Λ−mod as suspension. The contravariant functor HomR(−, R) clearly

induces an ’involutive’ duality D : Λ−mod
∼=op

←→ mod− Λ.

Example 4.5.1. If R = K is a field, then one easily sees, using Theorem 1.3.2 with the
grading group H = 0, that the following assertions are equivalent for a K-algebra Λ:

1. Λ is a Frobenius K-algebra in the sense of [35]

2. Λ is Quasi-Frobenius

3. Λ is pseudo-Frobenius and finite dimensional

4. Λ is self-injective and finite dimensional

In such case Λ−mod is the category of all finitely generated Λ-modules.

As shown by Eu and Schedler, many developments of Chapter 1 apply to Frobenius
algebras. If (−,−) : Λ × Λ −→ R is an R-bilinear form as in Definition 3, which we will
call Nakayama form in the sequel, then there is a unique automorphism η of Λ, called
the Nakayama automorphism, such that (a, b) = (b, η(a)) for all a, b ∈ Λ, and hence D(Λ)

is isomorphic to 1Λη as Λ-bimodule. Conversely, any isomorphism f : 1Λη
∼=
−→ D(Λ) of

Λ-bimodules, where η is an automorphism of Λ, gives rise to a Nakayama form for Λ given
by (a, b) = f(b)(a), for all (a, b) ∈ Λ× Λ.
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An important consequence of Definition 19 is that if A and B are Frobenius algebras,
then also A ⊗ B is a Frobenius algebra. Indeed it is clear that A ⊗ B is projetive as an
R-module. Moreover, if (−,−)A : A×A −→ R and (−,−)B : B⊗B −→ R are Nakayama
forms, then the map < −,− >: (A ⊗ B) × (A ⊗ B) −→ R identified by the equality
< a ⊗ b, a′ ⊗ b′ >= (a, a′) · (b, b′) is a Nakayama form for A ⊗ B. In particular, if Λ is
our Frobenius algebra, then its enveloping algebra Λe = Λ ⊗ Λop is a Frobenius algebra
and, since Λ is finitely generated and projective over R, we have that Λ is Gorenstein-
projective. In particular, the stable Hochschild cohomology ring HH∗(Λ) is well-defined.
The following fact was proved in [Eu-Schedler, Theorem 2.1.15] and gives the ’missing
point’ of Corollary 4.3.4.

Proposition 4.5.2. If Λ is a Frobenius algebra, then HH∗(Λ) is graded-commutative.

In the context of Frobenius algebras, some of the concepts studied in chapters 2 and
3 for the m-fold mesh algebras or for arbitrary self-injective finite dimensional algebras
are similarly defined. For instance Λ is said to be periodic when ΩmΛe(Λ) is isomorphic
to Λ as a Λ-bimodule, for some integer m > 0, and the smallest of these m is called the
period of m. When Λ − mod is Calabi-Yau, we will say that Λ is stably Calabi-Yau (of
CY-dimension m) when Λ−mod is a Calabi-Yau triangulated category (of dimension m).
We will say that Λ is Calabi-Yau Frobenius (of dimension m) when there is an integer
r > 0 such that Ω−r−1

Λe (Λ) is isomorphic to D(Λ) in the stable category Λe − mod (and
m is the smallest such r). For our purposes it is worth noting that if Λ is a symmetric
periodic Frobenius algebra of period m, then it is Calabi-Yau of CY-dimension ≤ m− 1.

Remark 4.5.3. The definition of Calabi-Yau Frobenius algebra given above is the one
given in [35]. In caseK = R is a field, so that Λ is a self-injective finite dimensional algebra,
the category Λe −mod = Λ−mod− Λ of finitely generated Λ-bimodule is Krull-Schmidt
(i.e., each object is a finite direct sum of objects with local endomorphism rings). Moreover,
each object has a minimal (complete) projective resolution. It follows that Ω−r−1

Λe (Λ) is
uniquely determined in Λ−mod−Λ, up to isomorphism, when using the minimal projective
resolution of Λ. As a consequence, whenever Λ does not have semisimple direct summands,
there is an isomorphism Ω−r−1

Λe (Λ) ∼= D(Λ) in Λ−mod−Λ if, and only if, that isomorphism
exists in the stable category Λe −mod. Therefore the concept of Calabi-Yau Frobenius
algebra agrees with the one that we have used in Chapter 3.

Remark 4.5.4. If B = ⊕i∈ZBi is a graded commutative algebra, then any graded left
B-module V = ⊕i∈ZVi may be viewed as a graded right B-module by defining vb =
(−1)deg(b)deg(v)bv, for all homogeneous elements b ∈ B and v ∈ V . In particular, we shall
view in this way HH−∗(Λ,M) as graded right HH∗(Λ)-module, for each Λ-bimodule M .
We proceed similarly with HH−∗(Λ,M) over HH∗(Λ).

Remark 4.5.5. The following holds, for each Λ-bimodule M in the latter subcategory:

1. HH−∗(Λ,M) ∼= D(HH∗(Λ,D(M))) as graded HH∗(Λ)-modules.

2. HH−∗(Λ,M) ∼= D(HH∗(Λ,D(M))) as graded HH∗(Λ)-modules.
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Indeed, note that if Q and M are a projective and an arbitrary Λ-bimodule, then
D(Q ⊗Λe M) ∼= HomΛe(Q,D(M)) by adjunction. If now P = P • is a complete pro-
jective resolution of Λ as a bimodule (equivalently, as a right Λe-module) which consists
of finitely generated terms, then we have an isomorphism of complexes D(P ⊗Λe M) ∼=
HomΛe(P,D(M)) = HomCdgΛe(P,D(M)), using the convention that D(T )i = D(T−i) for
each complex (or each graded R-module) T and each i ∈ Z. It is straightforward to see
that the last isomorphism preserves the structures of right dg modules over the dg algebra
B := EndCdgΛe(P,P ).

In the following definition ΛModΛ = ΛModΛ
ΛProjΛ

denotes the stable category modulo pro-
jectives of the category of Λ-bimodules.

In case H is a graded commutative ring and f ∈ H is a homogeneous element which is
not nilpotent, we will denote byH(f) the localization ofH with respect to the multiplicative
subset {1, f, f2, . . . }. It is a graded commutative ring where deg( g

fn ) = deg(g)−n ·deg(f),
for all homogeneous elements g ∈ H and all n ≥ 0. If M is a graded H-module, we will
denote by M(f) the localization of M at {1, f, f2, . . . }.

Proposition 4.5.6. Let us assume that 2 is invertible in R, let Λ be a Frobenius R-
algebra which is periodic of period s and let h ∈ HHs(Λ) be any element represented by an
isomorphism ΩsΛe(Λ)

∼
−→ Λ in ΛModΛ. Suppose that M is a Λ-bimodule. The following

assertions hold:

1. HH∗(Λ,M) ∼= HH∗(Λ,M)[s] and HH−∗(Λ,M) ∼= HH−∗(Λ,M)[s] as graded

HH∗(Λ)-modules.

2. h is an element of HH∗(Λ) which is not nilpotent and HH∗(Λ) is isomorphic, as a
graded algebra, to HH∗(Λ)(h).

3. HH∗(Λ,M) is isomorphic to HH∗(Λ,M)(h) as a graded HH∗(Λ)-module.

Proof. We have already seen in the previous comments that HH∗(Λ) is isomorphic to the
graded algebra ⊕n∈ZHomΛe(ΩnΛe(Λ,Λ)), where the multiplication of homogeneous elements

on this algebra is given by g · f = g ◦ ΩnΛe(f). If now ĥ : ΩsΛe(Λ)
∼
−→ Λ is an isomorphism

representing h, then Ω−s
Λe (ĥ−1) : Ω−s

Λe (Λ) −→ Λ represents an element h′ ∈ HH−s(Λ).

But then h′ · h = 1 since h′ · h is represented by Ω−s
Λe (ĥ−1) ◦ Ω−s

Λe (ĥ) = Ω−s
Λe (ĥ−1ĥ) =

Ω−s
Λe (1Ωs

Λe (Λ)) = 1Λ.
The above paragraph shows that h is invertible (of degree s) in HH∗(Λ), from which

it follows that the multiplication by h gives an isomorphism Y
∼
−→ Y [s], for each graded

HH∗(Λ)-module Y (here we have used that, when HH0(Λ) = Z(Λ)/P(Λ,Λ) is a ring of
characteristic 6= 2, in particular when 2 is invertible in R, the period s is even, cf. [35]
Theorem 2.3.47]).

Since the multiplication of homogeneous elements of degree > 0 is the same in HH∗(Λ)
and in HH∗(Λ) and h in invertible in the latter algebra, it follows that h is not nilpotent
in HH∗(Λ). On the other hand, the universal property of the module of quotients gives a
unique morphism of graded HH∗(Λ)-modules

Φ : HH∗(Λ,M)(h) −→ HH∗(Λ,M)
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which takes the fraction η
hn to h′nη, where h′ is the inverse of h in HH∗(Λ). It is clear

that the homogeneous elements of degree ≥ 0 are in the image of Φ. On the other hand,
if ξ ∈ HH−j(Λ), with j > 0, then there is a k > 0 such that ks > j. Fixing such a
k, we have that η := hkξ ∈ HHks−j(Λ,M) = HHks−j(Λ,M) and, clearly, the equality
Φ( η

hk
) = ξ holds. Therefore Φ is surjective. Moreover, Ker(Φ) consists of those fractions

η
hn such that h′nη = 0 in HH∗(Λ,M). This is, in turn, equivalent to saying that η = 0
in HH∗(Λ,M) for h′ is invertible in HH∗(Λ). That is, η is in the kernel of the canonical
map λΛ,M : HH∗(Λ,M) −→ HH∗(Λ,M). Hence, we get that η ∈ P(Λ,M) = {f ∈
HomΛ(Λ,M) : f factors through a projective Λ-module}, which implies that hη = 0 in
HH∗(Λ,M). It follows that η

hn = hη
hn+1 = 0, and so Φ is also injective. Finally, in case

Λ =M , the map Φ is a homomorphism of graded algebras, and the proof is complete.

The following is a result by Eu and Schedler ([35], Theorem 2.3.27):

Theorem 4.5.7. (Eu-Schedler) Let Λ be a Calabi-Yau Frobenius algebra of dimension m
and let M be any Λ-bimodule. There are isomorphisms of graded right HH∗(Λ)-modules:

1. HH−∗(Λ,M)[−m] ∼= HH∗(Λ,M)

2. HH∗(Λ,M) ∼= D(HH∗(Λ,D(M)))[−m] = D(HH∗(Λ,D(M))[m])

3. HH∗(Λ) ∼= D(HH∗(Λ))[−2m − 1] = D(HH∗(Λ)[2m + 1])

In particular HH∗(Λ) is a pseudo-Frobenius graded algebra.

Note that, if Λ is symmetric, then Λ is periodic of period s exactly when it is (s− 1)-
Calabi-Yau Frobenius. However, we remind the reader that, with the convention of [35],
when Λ is symmetric but not periodic, it is said to be (−1)-Calabi-Yau Frobenius.

Corollary 4.5.8. If Λ is a symmetric periodic algebra of period s and M is a Λ-bimodule,
then:

1. The multiplicative structure of HH∗(Λ) is determined by that of HH∗(Λ).

2. The structures of HH∗(Λ,M) and HH−∗(Λ,M) as graded HH∗(Λ)-modules and the
structure of HH−∗(Λ,M) as graded HH∗(Λ)-module are determined by the structure
of HH∗(Λ,M) as graded HH∗(Λ)-module.

Proof. Since Λ is CY Frobenius, the two assertions are a direct consequence of the theorem
and of Proposition 4.5.6.

The following result was given in [35] for A = HH∗(Λ), when Λ was a the (classical)
preprojective algebra of a Dynkin quiver, i.e., a m-fold mesh algebra of extended type
(∆, 1, 1). According to Theorem 4.5.7 it also applies to the stable Hochschild cohomology
ring of any Calabi-Yau Frobenius algebra over a field.

Lemma 4.5.9. Let A = ⊕n∈ZAn be a connected Z-graded pseudo-Frobenius algebra over a
field admitting a graded Nakayama form (−,−) : A×A −→ K of constant degree function
m. Suppose that A is graded commutative and let a, b, c ∈ A be any homogeneous elements.
The following equalities hold:
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(ab, c) = (−1)deg(b)deg(c)(ac, b) = (−1)deg(a)[deg(b)+deg(c)](bc, a).

Proof. Note that since A is connected and graded commutative the only nonzero homo-
geneous idempotent is 1. Then we have {1} as distinguished family of orthogonal homo-
geneous idempotents in the sense of subsection 1.2. Suppose now that x, y ∈ A are two
homogeneous elements such that deg(x) + deg(y) = m. Then, using the properties of the
graded Nakayama form and the graded commutativity of A, we have an equality

(x, y) = (1, xy) = (1, (−1)deg(x)deg(y)yx) = (−1)deg(x)deg(y)(1, yx) = (−1)deg(x)deg(y)(y, x).

When deg(a) + deg(b) + deg(c) 6= m, the three terms in the proposed equalities are
zero and there is nothing to prove. We then assume that deg(a) + deg(b) + deg(c) = m.
We then have equalities:

(ab, c) = (a, bc) = (a, (−1)deg(b)deg(c)cb) = (−1)deg(b)deg(c)(a, cb) = (−1)deg(b)deg(c)(ac, b)
and

(ab, c) = (a, bc) = (−1)deg(a)deg(bc)(bc, a) = (−1)deg(a)[deg(b)+deg(c)](bc, a).

4.6 Some facts on self-injective algebras

Throughout this Section we will assume that R = K is a field and, for simplicity, we will
assume that the algebra Λ = KQ/I is a finite dimensional quotient of the path algebra
of a finite quiver Q, with I ⊆ KQ≥2. By Example 4.5.1, we can apply to Λ the results
about Frobenius algebras from the previous subsection and also the results of chapter 1
on graded pseudo-Frobenius algebras, simply by assuming that the grading abelian group
is H = 0.

Given a Nakayama form (−,−) : Λ × Λ −→ K and any basis B of Λ, one obtains a
right (resp. left) dual basis B∗ = {b∗ : b ∈ B} (resp. ∗B = {∗b : b ∈ B}) identified by the
property that (b, c∗) = δbc (resp. (c

∗, b) = δcb), for all b, c ∈ B, where δbc is the Kronecker
symbol.

Taking H = 0 and I = Q0, the following is a straightforward consequence of Proposi-
tion 1.3.7:

Proposition 4.6.1. Let Λ be a self-injective algebra which contains no nonzero semisimple
summand as an algebra, and let (−,−) : Λ × Λ −→ K be a bilinear form. The following
assertions are equivalent:

1. (−,−) is a Nakayama form

2. There is a basis B =
⋃
i,j∈Q0

eiBej of Λ which contains the vertices and also contains
a basis {ωi : i ∈ Q0} of Soc(Λ) such that (x, y) =

∑
i∈Q0

λi for all x, y ∈ Λ, where λi
is the coefficient of ωi in the expression of xy as a linear combination of the elements
of B.
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Given a basis B ⊆
⋃
i,j∈Q0

containing the idempotents ei and an socle element wi ∈
Soc(eiΛ), for each i ∈ Q0, adapting the terminology from chapter 1, the bilinear form
given by condition 2 in last proposition is called the Nakayama form associated to B

Definition 20. A basis B as above is called dualizable when its associated Nakayama
form is symmetric.

We look now at the case when I is a homogeneous ideal ofKQ with respect to the length
grading on KQ and consider the induced length grading Λ = ⊕n≥0Λn. The following
lemma gives a handy criterion for a basis to be dualizable.

Lemma 4.6.2. Let Λ = KQ
I be a length graded self-injective algebra such that its Nakayama

permutation is the identity. Let B be a basis of Λ consisting of paths and negatives of paths
and which contains the vertices and also contains a basis {ωi : i ∈ Q0} of Soc(Λ), with
wi ∈ eiΛ for each i ∈ Q0. If (−,−) : Λ×Λ −→ K is the Nakayama form associated to B,
consider the following assertions:

1) a∗a = ωt(a), for all a ∈ Q1.

2) b∗∗ = b, for each b ∈ B.

3) (−,−) is symmetric, i.e., B is a dualizable basis.

Then 2) and 3) are equivalent and they always imply 1). Moreover, if we have that
dim(eiΛnej) ≤ 1, for all i, j ∈ Q0 and all natural numbers n, then the three conditions are
equivalent.

Proof. 2) ⇐⇒ 3)) Given any finite basis B for a vector space V with a nondegenerate
bilinear form, then the form is symmetric if, and only if, (b′, b∗) = (b∗, b′) for all b, b′ ∈ B.
But the latter condition is equivalent to b = b∗∗ for all b ∈ B and thus, 2⇐⇒ 3 =⇒ 1).

1) =⇒ 2) To show that 1) implies 2), assume that dim(eiΛnej) ≤ 1, for all i, j ∈ Q0

and all natural numbers n.

First observe that our hypotheses guarantee that the nonzero homogeneous elements
in

⋃
i,j∈Q0

eiΛej are precisely the scalar multiples of the elements of B. We denote by H
the set of these nonzero homogeneous elements. Therefore, an alternative description of
b∗ is that it is the unique element of H such that bb∗ = ωi(b). We can extend (−)∗ to a
bijective map (−)∗ : H −→ H so that h∗ is the unique element of H such that hh∗ = ωi(h).
It is then clear that (λh)∗ = λ−1h∗, for all h ∈ H and λ ∈ K∗.

Observe that if h1, h2 ∈ H are such that h1h2(h1h2)
∗ = ωi(h1), then h2(h1h2)

∗ = h∗1.

We next prove that if a ∈ Q1 and h ∈ H are such that ah 6= 0, then (ah)∗a = h∗.
We proceed by induction on deg(h). The case deg(h) = 0 is a direct consequence of the
hypothesis. Since h is a scalar multiple of an element of B, we can assume without loss of
generality that h is a path in Q, say, h = α1 · · ·αr. Then we have

h[(ah)∗a] = α1 · · ·αr(aα1 · · ·αr)
∗a = α1 · · ·αr−1[αr(aα1 · · ·αr−1αr)

∗]a =

α1 · · ·αr−1(aα1 · · ·αr−1)
∗a
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By the induction hypothesis, the last term is equal to α1 · · ·αr−1(α1 · · ·αr−1)
∗ = ωi(h).

It follows that (ah)∗a = h∗.
We finally prove by induction on deg(h) that h∗h = ωt(h) for all h ∈ H which implies

that h∗∗ = h for all h ∈ H. This will complete the proof. The cases of deg(h) = 0, 1
are clear. So we assume that deg(h) > 1 and, again, assume that h = α1 · · ·αr is a path
(r > 1). Then

h∗h = [α1(α2 · · ·αr)]
∗α1α2 · · ·αr = (α2 · · ·αr)

∗α2 · · ·αr,

and, by the induction hypothesis, the last term is equal to ωt(αr) = ωt(h).
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The Hochschild cohomology ring
of Ln

5.1 Introduction

5.1.1 Motivation

As mentioned in detail in the introduction, the Hochschild cohomology ring HH∗(Λ) of a
self-injective finite dimensional algebra Λ is of great interest in connection with the study
of varieties of modules and with questions about its relationship with the Yoneda algebra
of Λ. Also, a related intriguing open problem is that of determining whether Ω-periodicity
of Λ/J as a Λ-module, where J denotes the Jacobson radical of Λ, implies the periodicity
of Λ.

The aim of this chapter is to determine the structure of the classical and stable
Hochschild cohomology rings of the generalized preprojective algebra Ln over any com-
mutative ring where 2 is invertible, as well as the structure of the classical and stable
Hochschild homology groups as graded modules over the respective Hochschild cohomo-
logy rings. We warn the reader that the algebra Ln is also known as the preprojective
algebra of generalized Dynkin type Ln. A very well-known fact, which is proved in fact in
Theorem 3.4.12, is that Ln has (Ω−) period 6 (here Ω denotes Heller’s syzygy operator)
and, consequently, the Hochschild cohomology spaces also have period 6. Our approach to
the proof of the main theorem is to first prove it when R is a field, and then to deduce from
this the general statement. Also, let us point out that the results given here were obtained
before the first part of this thesis and, hence, we use the original mesh relations as defined
in Chapter 2, Section 2.2. The results in this chapter appear in [3] and [4] for the cases
when the characteristic of the field K is different from 2 or equal to 2, respectively.

5.1.2 Outline of the chapter

We start with Section 5.2 where we study the generalized preprojective algebra Λ = Ln
over a filed K. By Theorem 3.3.1, we know that Λ is symmetric. We explicitly give a
dualizable basis of Λ. We then give a minimal projective resolution of Λ as a Λ-bimodule
which induces in turn the concrete cochain complex of graded K-vector spaces which

95
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computes the Hochschild cohomology. In Section 5.3 we explicitly calculate the dimensions
of the Hochschild cohomology and homology spaces and also those of the cyclic homology
spaces in characteristic zero. We finally give a canonical basis of each HH i(Λ) consisting
of homogeneous elements with respect to the length grading. This is done by identifying
previously the structure of each HH i(Λ) as a module over Z(Λ). Section 5.4 studies the
multiplication inHH∗(Λ) and, at the end of it, we give the proof of the main theorem , first
over a field of characteristic 6= 2 and then in the general case. We also derive a presentation
of the stable Hochschild cohomology ring of Λ, HH∗(Λ), by generators and relations. In
the final Section 5.5 we deal with the case when the base field is of characteristic = 2.

Remark 5.1.1. After we had developed the contents of this chapter, we learnt about the
preprint [34], where the multiplicative and the Batalin-Vilkovisky structure of HH∗(Λ) is
calculated over a field of characteristic zero (actually over the complex numbers). Note
that Eu uses the term ’type T ’ instead of ’type L’. We do not look at the Gerstenhaber
bracket in this chapter. Regarding the multiplicative structure, in the case of a ground
field, the techniques used in our work are valid for all characteristics 6= 2 and detect
a subtle difference of behavior between the cases when Char(K) divides 2n + 1 or not,
where n is the number of vertices. We will comment throughout the text on similarities
and dissimilarities between our work and [34].

5.1.3 Notation

In this chapter, unless otherwise stated, Λ will be the generalized preprojective algebra
Ln over a field K. We will follow the notation and terminology given in Chapter 4.

5.2 The generalized preprojective algebra Ln

generalized preprojective algebra

5.2.1 Definition

We start by defining explicitly the generalized preprojective algebra Ln. Recall that it was
already introduced in Chapter 2, Subsection 2.3.2 as an orbit algebra of the mesh algebra
associated to the Dynkin diagram A2n. The quiver quiver Q of Ln is

ǫ 1
a1

a1

2
a2

a2

3 . . .
an−1

an−1

n

and the relations are ǫ2+a1ā1 = 0, aiāi+ āi−1ai−1 = 0 (i = 2, ..., n−1) and ān−1an−1 = 0.
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5.2.2 A dualizable basis

In [11] the authors used the fact that Λ is self-injective to prove that Λ is a periodic
algebra. Note that the path algebra KQ admits an obvious involutive anti-isomorphism
(−)− : KQ −→ KQ (x 7→ x̄) which fixes the vertices and the arrow ǫ and maps ai to āi
and āi to ai, for all i = 1, ..., n − 1. It clearly preserves the relations for Λ, and hence, it
induces another involutive anti-isomorphism (−)− : Λ −→ Λ. We shall call it the canonical
(involutive) antiautomorphism of Λ. The next proposition shows that we can apply to Λ
the results of the previous chapter. It also fixes the basis of Λ, with which we shall work
throughout the chapter.

Proposition 5.2.1. Let Λ be the generalized preprojective algebra Ln and put B =⋃
i,j eiBej, where

a) e1Be1 = {e1, ǫ, ǫ
2, . . . , ǫ2n−1}

b) e1Bej = {a1 · · · aj−1, ǫa1 · · · aj−1, ǫ
2a1 · · · aj−1, . . . , ǫ

2(n−j)+1a1 · · · aj−1} in case j 6= 1

c) eiBej = {ai · · · aj−1, ai · · · aj āj , . . . , ai · · · an−1ān−1 · · · āj}
⋃

{āi−1 · · · ā1ǫa1 · · · aj−1, āi−1 · · · ā1ǫ
3a1 · · · aj−1, . . . ,

(−1)sij āi−1 · · · ā1ǫ
2(n−j)+1a1 · · · aj−1}

where sij = 0 for i 6= j and sii =
i(i−1)

2 , whenever 1 < i ≤ j ≤ n (here adopt the
convention that ai...aj−1 = ei in case i = j).

d) eiBej = {b̄ : b ∈ ejBei} in case i > j,

Then B is a dualizable basis of Λ.

Proof. Note that eiBej contains, at most, one element of a given degree. In order to
see that B is a basis we just need to prove that all paths in eiBej are nonzero and that
they generate eiΛej as a K-vector space. If so, we will get that dim(eiΛkej) ≤ 1, for all
i, j ∈ Q0 and all natural numbers k, and Lemma 4.6.2 can be applied. Let then assume
that i, j ∈ Q0 and i ≤ j. The antiautomorphism (−)− given before guarantees that if
eiBej is a basis of eiΛej , then a basis ejBei of ejΛei is obtained by adding bars to the
monomials in eiBej.

Observe that for each vertex i 6= 1 we have, up to sign, a unique cycle of minimum
length, namely aiāi. However for the vertex i = 1 we do not only have the cycle a1ā1 = −ǫ2,
but also the loop ǫ.

Let 0 6= b be a monomial of a fixed length starting at i and ending at i + s. The
previous comment tells us that b contains either an even number or an odd number of
arrows of type ǫ.

In the first case, the equality (āi−1ai−1)ai · · · ai+s−1 = (−1)sai · · · ai+s−1(ai+sāi+s)
shows that b has at most n − i non-bar letters and n − (s + i) bar letters. Thus we can
set as a basis element the non-zero path b = ai · · · ai+s+j āi+s+j · · · āi+s (j ≤ n− 1− i− s),
that is, where all the bar letters are to the right.

On the contrary, if b contains and odd number of ǫ-arrows, we have that
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b = (aiāi)(āi−1 · · · ā1ǫ
2t−1a1 · · · ai+s−1) = (−1)i(āi−1 · · · ā1ǫ

2t+1a1 · · · ai+s−1)

which is, up to sign, equal to

āi−1 · · · ā1ǫ(a1 · · · atāt · · · ā1a1 · · · ai+s−1)

But notice that the arrows between brackets form a path with an even number of ǫ arrows
which is in time, up to sign, equal to a1 · · · at+i+s−1āt+i+s−1 · · · āi+s . Hence, we can
conclude that āi−1 · · · ā1ǫ

2t+1a1 · · · ai+s−1 is a nonzero path if and only if 0 ≤ t ≤ n−(s+i).
Thus, the sets given in the statement are in fact a basis of Λ.

It remains to prove that B is a dualizable basis. This task is reduced to prove that
a∗a = ωt(a), for each a ∈ Q1. We have ωi(ǫ) = ǫ2n−1, hence ǫ∗ = ǫ2n−2 and we clearly have
ǫ∗ǫ = ωi(ǫ).

For ai (i=1, . . . , n-1) we have

ai[āi · · · ā1ǫ
2(n−i−1)+1a1 · · · ai−1] = (−1)iāi−1 · · · ā1ǫ

2(n−i)+1a1 · · · ai−1 =

(−1)i(−1)
i(i−1)

2 ωi = (−1)
i(i+1)

2 ωi = (−1)
i(i+1)

2 ωi(ai).

Then a∗i = (−1)
i(i+1)

2 āi · · · ā1ǫ
2(n−i−1)+1a1 · · · ai−1 and therefore

a∗i ai = (−1)
i(i+1)

2 āi · · · ā1ǫ
2(n−i−1)+1a1 · · · ai−1ai = ωi+1 = ωt(ai)

The argument is symmetric for the arrows āi and, therefore, the basis B is dualizable.

Remark 5.2.2. Notice that if one modifies the basis B of Proposition 5.2.1, by putting
ωi = āi−1 · · · ā1ǫ

2(n−i)+1 a1 · · · ai−1, for all i = 1, . . . , n, then the resulting basis is no
longer dualizable. Indeed, the proof of the lemma shows that, in the new situation,
a∗i = (−1)iāiāi−1 · · · ā1ǫ

2(n−i−1)+1a1 · · · ai−1, and then a∗i ai = (−1)iωi+1.

By [11] (see also Corollary 3.4.5), we know that the third syzygy of Λ as a bimodule is
isomorphic to 1Λµ, for some µ ∈ Aut(Λ) such that µ2 = idΛ. Our emphasis on choosing
a dualizable basis on Λ comes from the fact that it allows a very precise determination of
µ. In fact, combining results of [11] and [32], we know that if B is a dualizable basis, then
the initial part of the minimal projective resolution of Λ as a bimodule is:

0 −→ N
ι
→֒ P

R
−→ Q

δ
−→ P

u
−→ Λ→ 0,

where P = ⊕i∈Q0Λei ⊗ eiΛ, Q = ⊕a∈Q1Λei(a) ⊗ et(a)Λ and N = ⊕i∈Q0Λξi = ⊕i∈Q0ξiΛ,

where ξi =
∑

x∈eiB
(−1)deg(x)x ⊗ x∗, where B is any given basis of Λ consisting of paths

and negative of paths which contains the vertices, the arrows and a basis of Soc(Λ). Here
ι is the inclusion, u is the multiplication map and R and δ are as in Proposition 5.2.7
below.

The following result was proved in [11].
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Lemma 5.2.3 (see [11], Proposition 2.3). Let B be a dualizable basis of Λ, let N be the
Λ-bimodule mentioned above and let µ ∈ Aut(Λ) be the only automorphism of Λ such that
µ(ei) = ei and µ(a) = −a, for all i ∈ Q0 and a ∈ Q1. There is an isomorphism of

Λ-bimodules φ : 1Λµ
∼=
−→ N mapping ei to ξi, for each i ∈ Q0.

Remark 5.2.4. The dualizable basis hypothesis does not appear in the statement of
Proposition 2.3 in [11]. However, it is implicitly used in the proof of [11][Lemma 2.4].
From our work with examples it seems that, without that extra hypothesis, the element∑

x∈eiB
(−1)deg(x)x⊗ x∗ need not be in Ker(R).

The dualizable hypothesis seems to be implicitly used also in the argument of [34], Sec-
tion 7.1, where the corresponding result (with the automorphism µ conveniently modified)
is proved. In both cases, the crucial point is to guarantee that if x ∈ B is a homogeneous
element of the basis B of degree > 0, then, for any arrow a ∈ Q1, the element ax∗ (resp.
x∗a) should again be of the form y∗, for some y ∈ B, whenever the product is nonzero.
This follows immediately in case one has a(ya)∗ = y∗ and (ay)∗a = y, for all y ∈ B
and a ∈ Q1. This is precisely the statement of Lemma 2.4 in [11] and is implicit in the
argument of [34][Section 7.1].

Essentially, by the proof of our Lemma 4.6.2, we see that the mentioned crucial point
is tantamount to require that B is a dualizable basis and that (−,−) is its associated
Nakayama form. If, as in the spirit of [34][Section 6.3], one has a symmetric Nakayama form
(−,−) from the very beginning and finds a basis B consisting of homogeneous elements
which contains the vertices and has the property that the dual elements {ωi := e∗i : i ∈ Q0}
(in B∗) belong to B ∩ Soc(Λ), then one readily sees that B is dualizable and (−,−) is its
associated Nakayama form.

In the rest of the chapter, the basis B will always be that of Proposition 5.2.1. The
following properties can be derived in a routine way. We will omit the proof.

Recall that the Cartan matrix of a finite dimensional algebra A is given by the Q0×Q0

matrix CA := (cij), where cij = dimk(eiAej).

Corollary 5.2.5. Let i, j ∈ Q0 be vertices. The following holds:

1. The set of degrees of the elements in eiBej is

{j − i, j − i+ 2, j − i+ 4, . . . , j − i+ 2(n − j) = 2n− (i+ j)}
⋃
{j + i− 1, j + i+ 1, j + i+ 3, . . . , j + i+ 2(n−max(i, j)) − 1}

2. If āi−1 · · · ā1ǫ
2ka1 · · · aj−1 is a nonzero element of Λ, then k ≤ n− i− j + 1.

3. a1 · · · aj−1āj−1 · · · ā1 = (−1)
j(j−1)

2 ǫ2(j−1) for j = 2, . . . , n.

4. a1 · · · aj−1āj−1 = (−1)j−1ǫ2a1 · · · aj−2

5. āiai...aj = (−1)j−i+1ai+1...aj+1āj+1 whenever i ≤ j < n (using the convention that
an = 0).
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6. dim (HomΛe(P,Λ)) =
∑n

i=1 dim (eiΛei) =
∑n

i=1[2(n − i) + 2] = n2 + n

7. dim (HomΛe(Q,Λ)) = dim (e1Λe1)+2
∑n−1

i=1 (eiΛei+1) = 2n+2
∑n−1

i=1 [2(n− i− 1)+
1] = 2n2

8. The Cartan matrix of Λ is given by:

CLn =




2n 2(n-1) 2(n-2) · · · 2

2(n-1)
... CLn−1

2




where

CL2 =

(
4 2
2 2

)

Its determinant is det(CLn) = 2n (see Remark 3.3 in [48]).

5.2.3 The minimal projective resolution

As we will do in Chapter 6 with Bn, this projective resolution can be derived from Propo-
sitions 3.4.2 and 3.4.3. However, due to the fact that we are using the original mesh
relations in this chapter, we prefer to give the explicit argument adapted to this case.

Let us first denote by Fτ : ΛModΛ
∼=
−→Λ ModΛ the equivalence taking M to 1Mτ . We

will need an alternative description of the self-equivalence of categories induced by Fτ on
the full subcategory ΛProjΛ of ΛModΛ consisting of the projective Λ-bimodules. We still

denote by Fτ : ΛProjΛ
∼=
−→ ΛProjΛ the mentioned self-equivalence.

Lemma 5.2.6. Let Λ = RQ/I be a quotient of path algebra, let τ ∈ Aut(Λ) be an automor-
phism which fixes the vertices, and consider the R-linear functor Gτ : ΛProjΛ −→ ΛProjΛ
identified by the following data:

1. Gτ (P ) = P , for each projective Λ-bimodule P

2. Gτ preserves coproducts

3. If f : Λei ⊗ ejΛ −→ Λek ⊗ elΛ is a morphism in ΛProjΛ, then fτ := Gτ (f) is
the only morphism of Λ-bimodules fτ : Λei ⊗ ejΛ −→ Λek ⊗ elΛ taking ei ⊗ ej
to
∑

1≤r≤m ar ⊗ τ
−1(br), where f(ei ⊗ ej) =

∑
1≤k≤r ar ⊗ br.

Then Gτ is naturally isomorphic to the self-equivalence Fτ = 1(−)τ : ΛProjΛ −→ ΛProjΛ.

Proof. Due to the fact that each projective Λ-bimodule is isomorphic to a direct summand
of a coproduct of bimodules of the form Λei ⊗ ejΛ, the given conditions determine a
unique R-linear functor Gτ : ΛProjΛ −→ ΛProjΛ. In order to give the desired natural
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isomorphism ψ : Gτ
∼=
−→ Fτ , it will be enough to define it on Λ-bimodules of the form

P = Λei ⊗ ejΛ. Indeed, for such a P , we define ψP : Gτ (P ) = P −→ 1Pτ = Fτ (P ) by the
rule ψP (a⊗ b) = a⊗ τ(b). It is clear that ψP is an isomorphism of Λ-bimodules. Finally,
it is straightforward to verify that, if f : P = Λei⊗ ejΛ −→ Q = Λek ⊗ elΛ is a morphism
of Λ-bimodules, then

Fτ (f) ◦ ψP = f ◦ ψP = ψQ ◦ fτ = ψQ ◦Gτ (f),

which shows that the ψP define a natural isomorphism ψ : Gτ
∼=
−→ Fτ as desired.

We are now ready to give all the modules and maps of the minimal projective resolution
Λ = Ln as a length-graded bimodule. We remark that the automorphism µ is involutive,
which implies that µΛ1

∼= 1Λµ. Recall from Section 4.4 the definition of the shifted graded
module M [n], which is used in the next result.

Proposition 5.2.7. Let Λ be the generalized preprojective algebra Ln, let B be the duali-
zable basis of Proposition 5.2.1 and let µ ∈ Aut(Λ) be the algebra automorphism that fixes

the vertices and satisfies that µ(a) = −a, for all a ∈ Q1. The chain complex . . . P−2 d−2

−→

P−1 d−1

−→ P 0 u
−→ Λ −→ 0 identified by the following properties is a minimal projective

resolution of Λ as a length-graded bimodule:

a) P−r = Q :=
⊕

a∈Q1
Λei(a) ⊗ et(a)Λ if r ≡ 1 (mod 3) and P−r = P :=

⊕
i∈Q0

Λei ⊗ eiΛ
otherwise, as ungraded Λ-bimodules.

b) u is the multiplication map, dm = (dr)µ whenever m − r = ±3 and the initial diffe-
rentials d−1 =: δ, d−2 =: R and d−3 =: k are the only homomorphisms of Λ-bimodules
satisfying:

i) δ(ei(a) ⊗ et(a)) = a⊗ et(a) − ei(a) ⊗ a

ii) R(ei ⊗ ei) =
∑

a∈Q1i(a)=i
ei(a) ⊗ ā+ a⊗ ei(a)

iii) k(ei ⊗ ei) =
∑

x∈eiB
(−1)deg(x)x⊗ x∗

for all a ∈ Q1 and i ∈ Q0.

c) When P and Q are given their canonical length grading, then, as graded Λ-bimodules,
the equalities P−3k−t = P [−(2n+1)k−t], for t = 0, 2, and P−3k−1 = Q[−(2n+1)k−1],
hold for all k ≥ 0.

Proof. By Lemma 5.2.3 (see [11], Prop. 2.3), we have an exact sequence of Λ-bimodules:

0 −→ 1Λµ
j
−→ P

R
−→ Q

δ
−→ P

u
−→ Λ −→ 0,

where the map j satisfies that j(ei) =
∑

x∈eiB
(−1)deg(x)x⊗ x∗ for each i ∈ Q0.

Applying the self-equivalence Fµ : ΛModΛ −→ ΛModΛ, which acts as the identity on
morphisms, and bearing in mind that µ2 = 1Λ, we get an exact sequence

0 −→ Λ
j
−→ 1Pµ

R
−→ 1Qµ

δ
−→ 1Pδ

u
−→ 1Λµ −→ 0
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By Lemma 5.2.6, we then get an exact sequence of Λ-bimodules

0 −→ Λ
j̃
−→ P

Rµ
−→ Q

δµ
−→ P

ũ
−→ 1Λµ −→ 0,

where, if ψ : Gµ
∼=
−→ Fµ denotes the natural isomorphism of Lemma 5.2.6, then ũ =

u ◦ ψP : a⊗ b 7→ aµ(b) and j̃ = ψ−1
P ◦ j which takes ei to −

∑
x∈eiB

x⊗ x∗.

The composition P
ũ
−→1 Λµ

j
−→ P takes ei ⊗ ei

∑
x∈eiB

(−1)deg(x)x ⊗ x∗ and, hence,

coincides with the morphism k given in the statement. Finally, the composition P
u
−→

Λ
j̃
−→ P takes ei ⊗ ei to −

∑
x∈eiB

x ⊗ x∗ =
∑

x∈eiB
(−1)deg(x)x ⊗ µ(x∗) = kµ(ei ⊗ ei).

Therefore we have the equality j̃ ◦ u = kµ, from which the exactness of the cochain
complex P • follows.

We finally see that P • can be made into a (minimal) projective resolution in the
category of length-graded Λ-bimodules, using the grading determined by condition c) in
the statement. Indeed, when considering each P−r with its canonical length grading, the
differential d−r is a graded morphism of degree 1, when r ≡ 1, 2 (mod 3), and of degree
2n-1, when r ≡ 0 (mod 3). It follows that if we shift the gradings and put P−3k−t =
P [−(2n + 1)k − t], for t = 0, 2, and P−3k−1 = Q[−(2n + 1) − 1], for all k ≥ 0, then all
the differentials in P • become graded maps of degree 0, i.e. morphisms in the category
of graded Λ-bimodules. It follows that the resulting complex is a (minimal) projective
resolution of Λ in this category.

Remark 5.2.8. The action of δµ, Rµ and kµ is given as follows:

i) δµ(ei(a) ⊗ et(a)) = a⊗ et(a) + ei(a) ⊗ a

ii) Rµ(ei ⊗ ei) =
∑

a∈Q1i(a)=i
(a⊗ ei(a) − ei(a) ⊗ ā)

iii) kµ(ei ⊗ ei) = −
∑

x∈eiB
x⊗ x∗

for all a ∈ Q1 and i ∈ Q0.

5.2.4 A cochain complex giving the Hochschild cohomology

Note that ifM is a graded Λ-bimodule and r is any integer, then we have an isomorphism of
graded K-vector spaces HomΛe(M [−r],Λ) ∼= HomΛe(M,Λ)[r] (see Section 4.4 for further
details). In the particular case that M = Λei ⊗ ejΛ, the grading on eiΛej derived from
the isomorphism HomΛe(Λei⊗ejΛ,Λ) ∼= eiΛej and the length grading on Λei⊗ejΛ is just
the usual length grading.

If f : ⊕ms=1Λeis ⊗ ejsΛ[−r] −→ ⊕
p
t=1Λekt ⊗ eltΛ[−m] (is, js, kt, lt ∈ Q0) is a morphism

of projective graded Λ-bimodules, an application of the contravariant functor HomΛe(,Λ) :

ΛModΛ −→ kMod gives a morphism of graded K-vector spaces

f∗ : HomΛe(⊕pt=1Λekt ⊗ elt ,Λ)[m] −→ HomΛe(⊕ms=1Λeis ⊗ ejsΛ,Λ)[r].

Using the isomorphism mentioned in the previous paragraph, we get an induced morphism,
still denoted the same f∗ : ⊕pt=1ektΛelt [m] −→ ⊕ms=1eisΛejs [r].

As usual, we will also denote by J = J(Λ) the Jacobson radical of Λ. With this
terminology, we get:
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Proposition 5.2.9. Let Λ be taken with its length grading and consider the complex of
K-vector spaces

V • : · · · 0 −→ ⊕i∈Q0eiΛei
δ∗
−→ ⊕a∈Q1ei(a)Λet(a)

R∗

−→ ⊕i∈Q0eiΛei
k∗
−→ ⊕i∈Q0eiΛei

δ∗µ
−→ ⊕a∈Q1ei(a)Λet(a)

R∗
µ
−→ ⊕i∈Q0eiΛei

k∗µ
−→ ⊕i∈Q0eiΛei

δ∗
−→ ⊕a∈Q1ei(a)Λet(a) · · ·

where V 0 =
∑

i∈Q0
eiΛei and V

n = 0 ∀n < 0. We view V • as a complex of graded K-

vector spaces by putting V 3k+t = ⊕i∈Q0eiΛei[(2n + 1)k + t], when t = 0, 2, and V 3k+1 =
⊕a∈Q1ei(a)Λet(a)[(2n+1)k+1], for all k ≥ 0. Then HHn(Λ) is the n-th cohomology graded
K-vector space of V •, for each n ≥ 0.

Moreover, viewing ⊕i∈Q0eiΛei and ⊕a∈Q1ei(a)Λet(a) as subspaces of Λ, the differentials
of V • act as follows, for each oriented cycle c at i and each path p : i(a)→ · · · → t(a) :

a) δ∗(c) = ai−1c− cāi−1 + āic− cai

b) R∗(p) = pā+ āp

c) k∗(c) = 0 (i.e. k∗ is the zero map)

d) δ∗µ(c) = ai−1c+ cāi−1 + āic+ cai

e) R∗
µ(p) = pā− āp

f) k∗µ(c) = 0 if c ∈ eiJei, and k
∗
µ(ei) = −

∑
j∈Q0

dim (eiΛej)ωj

using the convention that a0 = ā0 = ǫ and an = ān = 0

Proof. HHn(Λ) is the n-th cohomology graded space of the complex obtained by applying
HomΛe( −,Λ) to the minimal projective resolution of Λ as a graded Λ-bimodule. The
graded K-vector spaces of that complex are precisely those of V • (see the comments
preceding this proposition) and the only nontrivial part is the explicit definition of its
differentials.

We have two canonical isomorphisms of k-vector spaces:

⊕j∈Q0ejΛej
∼
−→ HomΛe(⊕j∈Q0Λej ⊗ ejΛ,Λ)

⊕a∈Q1ei(a)Λet(a)
∼
−→ HomΛe(⊕a∈Q1Λei(a) ⊗ et(a)Λ,Λ)

The first one identifies a nonzero oriented cycle c at i with the morphism of Λ-bimodules

⊕j∈Q0Λej ⊗ ejΛ
c̃
−→ Λ taking ej ⊗ ej to δijc, where δ is the Kronecker symbol. Similarly,

a nonzero path p : i(a) → · · · → t(a) is identified by the second isomorphism with the
morphism of Λ-bimodules ⊕b∈Q1Λei(b)⊗et(b)Λ −→ Λ taking ei(b)⊗et(b) to δabp. Using these
identifications, it is straightforward to verify that the given formulas for the differentials
are correct. We only give a few sample computations:
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a) δ∗(c) is the element of ⊕b∈Q1ei(b)Λet(b) identified with c̃ ◦ δ ∈ HomΛe(⊕b∈Q1Λei(b) ⊗
et(b)Λ,Λ). Then

δ∗(c) =
∑

b∈Q1

(c̃ ◦ δ)(ei(b) ⊗ et(b)) =
∑

b∈Q1

c̃(b⊗ et(b) − ei(b) ⊗ b) =

∑

b∈Q1

[bc̃(et(b) ⊗ et(b))− c̃(et(b) ⊗ ei(b))b] =
∑

b∈Q1,t(b)=i

bc −
∑

b∈Q1,i(b)=i

cb =

ai−1c+ āic− cai − cāi−1

c) k∗(c) is the element of ⊕j∈Q0ejΛej identified with c̃◦k ∈ HomΛe(⊕j∈Q0Λej⊗ejΛ,Λ).
Then

k∗(c) =
∑

j∈Q0

(c̃ ◦ k)(ej ⊗ ej) =
∑

j∈Q0

c̃(
∑

x∈ejB

(−1)deg(x)x⊗ x∗) =
∑

j∈Q0

∑

x∈ejBei

(−1)deg(x)xcx∗

But xcx∗ = 0 in case deg(c) > 0 because then deg(xcx∗) > 2n−1 = c∆−2. In case c = ej
we have k∗(ej) =

∑
j∈Q0

∑
x∈ejBei

(−1)deg(x)xx∗. Bearing in mind that xx∗ = ωj for each
x ∈ ejBei and that the number of elements in ejBei with even degree is the same as the
number of those with odd degree, we conclude that also k∗(ei) = 0. Since k∗ vanishes on
all nonzero oriented cycles it follows that k∗ = 0.

f) Arguing similarly with k∗µ we get that
k∗µ(c) = 0 if deg(c) > 0 and
k∗µ(ei) = −

∑
j∈Q0

∑
x∈ejBei

xx∗ = −
∑

j∈Q0
dim (ejΛei)ωj

Remark 5.2.10. With the adequate change of presentation of the algebra, the complex
V • should correspond to the sequence of morphisms in [34][Section 7.4], although the
differentials defined there do not seem to make it into a complex.

Corollary 5.2.11. Λ is a symmetric periodic algebra of period 6 and P(Λ,Λ) = Soc(Λ)
when we view the isomorphism HH0(Λ) ∼= Z(Λ) as an identification.

Proof. By Proposition 3.3.1, we know that Λ is symmetric, and, by Proposition 3.4.12, Λ
is periodic of period 6.

To see that the isomorphism HH0(Λ) ∼= Z(Λ) identifies P(Λ,Λ) with Soc(Λ) =
Soc(Z(Λ)), note that from Proposition 5.2.7, with the same terminology, one obtains a
complete projective resolution of Λ as a length-graded Λ-bimodule, by putting P−3k−t =
P [−(2n + 1)k − t], if t = 0, 2, and P−3k−1 = Q[−(2n+ 1)k − 1], for all k ∈ Z,

· · ·P−2 −→ P−1 d−1

−→ P 0 d0
−→ P 1 d1

−→ P 2 −→ · · · ,

and the differentials are given by dm = (dn)µ whenever m ≡ n (mod 3) and d−1 = δ,
d−2 = R and d−3 = k. It follows that HH∗(Λ) is the cohomology of the complex

· · · V −2 R∗
µ
−→ V −1 k∗µ

−→ V 0 δ∗
−→ V 1 R∗

−→ V 2 −→ · · · ,
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where V i = V i+6, for all i ∈ Z. In particular, we have HH0(Λ) = Ker(δ∗)
Im(k∗µ)

. But Ker(δ∗) =

HH0(Λ) = Z(Λ) while Im(k∗µ) = Soc(Λ) since the Cartan matrix of Λ is invertible. Note
that the isomorphism Z(Λ) ∼= EndΛe(Λ) identifies Im(k∗µ) with P(Λ,Λ).

Corollary 5.2.12. There are isomorphisms of graded HH∗(Λ)-modules:

HH∗(Λ) ∼= HH∗(Λ)[6]

HH−∗(Λ)
∼= D(HH∗(Λ)) ∼= HH∗(Λ)[5]

and isomorphisms of graded HH∗(Λ)-modules HH−∗(Λ) ∼= D(HH∗(Λ)).

Moreover, HH∗(Λ) is a pseudo-Frobenius graded algebra admitting a graded Nakayama
form of constant degree function equal to 5.

Proof. HH∗(Λ) ∼= HH∗(Λ)[6] since Λ is periodic of period 6. On the other hand, Λ is
5-CY Frobenius and, by Theorem 4.5.7, we have

D(HH∗(Λ)) ∼= HH∗(Λ)[11]

HH−∗(Λ)
∼= HH∗(Λ)[5]

Then, the isomorphisms in the statement follow. The graded pseudo-Frobenius condi-
tion of HH∗(Λ) also follows from Theorem 4.5.7 and the isomorphism D(HH∗(Λ)) ∼=
HH∗(Λ)[5] imply that we can choose a graded Nakayama form for HH∗(Λ) of constant
degree function equal to 5.

On the other hand, due to Remark 4.5.5 and the fact that D(Λ) ∼= Λ, we have an
isomorphism HH−∗(Λ) ∼= D(HH∗(Λ,D(Λ))) ∼= D(HH∗(Λ)).

5.3 The Hochschild cohomology spaces

Except in the last section, we assume that Char(K) 6= 2.

In this section we will use the complex V • of Proposition 5.2.9 to calculate the dimen-
sion and an appropriate basis of each space HH i(Λ). In the proof of the following lemma
and in the rest of the chapter, the matrix of a linear map is always written by columns.

Lemma 5.3.1. The equality Im(R∗) = ⊕i∈Q0eiJei holds and Im(R∗
µ) is a subspace of

codimension n in ⊕i∈Q0eiJei. In particular, we have:

dim (Im(R∗)) = n2

dim (Im(R∗
µ)) = n2 − n.
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Proof. We put V = ⊕a∈Q1ei(a)Λet(a) and W = ⊕i∈Q0eiJei for simplicity and view R∗ and
R∗
µ as K-linear maps V −→ W . For each 0 ≤ k < 2n we denote by Vk (resp. Wk) the

vector subspace consisting of the elements of degree k. Since both R∗ and R∗
µ are graded

maps of degree 1 we have induced K-linear maps

R∗, R∗
µ : Vk−1 −→Wk

for k = 1, . . . , 2n− 1.

It is important now to notice that the canonical anti-automorphism of Λ, x 7→ x̄, is the
identity onW . Moreover, we have equalities R∗(p̄) = R∗(p) and R∗

µ(p̄) = −R
∗
µ(p). We then

get R∗(p̄) = R∗(p) and R∗
µ(p̄) = −R

∗
µ(p). This tells us that the images of the maps R∗, R∗

µ :

V −→W are the same as those of their restrictions to V + = V
⋂
(⊕n−1

j=0 ei(aj )Λet(aj )) (using
the convention that a0 = ǫ). Those images are in turn the direct sum of the images of the
induced maps

R∗, R∗
µ : V +

k−1 −→Wk (k = 1, . . . 2n − 1).

These are the ones that we shall calculate.

Let us denote by bti the only element in eiBei of degree t.

We start by considering the case when k = 2m is even (1 ≤ m ≤ n − 1). In
that situation, a basis of W2m is given by {b2m1 , b2m2 , . . . , b2mn−m} while a basis of V +

2m−1

is {vǫ, va1 , . . . , van−m} where vǫ = ǫ2m−1 and vai = ai · · · ai+m−1āi+m−1 · · · āi+1 for i =
1, . . . , n −m. In particular dim (V +

2m−1) = n −m + 1 and dim (W2m) = n −m. Direct
computation, using Remark 5.2.5, shows that

i) R∗(vǫ) = 2b2m1 , R∗
µ(vǫ) = 0

ii) R∗(va1) = (−1)
(m+1)m

2 b2m1 + (−1)mb2m2

R∗
µ(va1) = (−1)

(m+1)m
2 b2m1 + (−1)m+1b2m2

iii) R∗(vai) = b2mi + (−1)mb2mi+1

R∗
µ(vai) = b2mi + (−1)m+1b2mi+1

(using the convention that b2mj = 0 if j > n−m)

Then in the matrices of R∗ and R∗
µ with respect to the given bases of V +

2m−1 and W2m,

which are both of size (n−m)×(n−m+1), the columns from the 2nd to the (n−m+1)−th
are linearly independent. Therefore, we get that the maps R∗, R∗

µ : V2m−1 −→ W2m are
both surjective for each m = 1, . . . n− 1.

We now deal with the case when k = 2m − 1 is odd, in which case a basis of W2m−1

is {b2m−1
1 , . . . b2m−1

m }. On the other hand, a basis of V +
2m−2 is given by {v′ǫ, v

′
a1 , . . . v

′
am−1
},

where v′ǫ = ǫ2m−2 and v′ai = āi−1 · · · ā1ǫ
2(m−i)−1a1 · · · ai for i = 1, . . . ,m − 1. Direct

calculation, using again Remark 5.2.5, shows the following:

i) R∗(v′ǫ) = 2b2m−1
1 , R∗

µ(v
′
ǫ) = 0
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ii) If m 6= n then

R∗(v′ai) = (−1)ib2m−1
i + b2m−1

i+1

R∗
µ(v

′
ai) = (−1)ib2m−1

i − b2m−1
i+1

iii) If m = n then

R∗(v′ai) = (−1)
(i+1)i

2 b2n−1
i + (−1)

(i+1)i
2 b2n−1

i+1 = (−1)
(i+1)i

2 (ωi + ωi+1)

R∗
µ(v

′
ai) = (−1)

(i+1)i
2 b2n−1

i − (−1)
(i+1)i

2 b2n−1
i+1 = (−1)

(i+1)i
2 (ωi − ωi+1)

Therefore, the square matrices of R∗ and R∗
µ with respect to the given bases of V +

2m−2 and
W2m−1 are upper triangular. In the case of R∗ all its diagonal entries are nonzero while
in the case of R∗

µ only the entry (1, 1) is zero. It follows:

a) The map R∗ : V2m−2 −→W2m−1 is surjective for all m = 1, . . . n.

b) The image of the map R∗
µ : V2m−2 −→ W2m−1 has codimension 1 in W2m−2 for all

m = 1, . . . , n.

The final conclusion is that the map R∗ : V −→ W is surjective while the image of
R∗
µ : V −→ W has codimension exactly the number of odd numbers in {1, 2, . . . 2n − 1}.

That is, dim (W )− dim (Im(R∗
µ)) = n.

Remark 5.3.2. The proof of Lemma 5.3.1 gives that if ωj is viewed as an element of
Ker(k∗µ) ∀j ∈ Q0, then ωj − ωj+1 ∈ Im(R∗

µ) ∀j = 1, 2, . . . , n− 1.

The following result describes the structure of the center Z(Λ) of Λ, .

Proposition 5.3.3. The center of Λ is isomorphic to K[x0,x1,...xn]
I , where I is the ideal of

K[x0, x1, . . . xn] generated by xn0 and all the products xixj with (i, j) 6= (0, 0). In particular,
dim (HH0(Λ)) = 2n.

Proof. It is well-known that Z(Λ) ⊆ ⊕i∈Q0eiΛei, that J(Z(Λ)) = Z(Λ)
⋂
J(Λ) and Z(Λ)

J(Λ) =

K · 1 = K(e1 + · · · en). Since Λ is graded, one readily sees that the grading on Λ gives by
restriction a grading on Z(Λ).

We claim that if z ∈ Z(Λ)2m−1 is an element of odd degree 2m−1, then m = n and z is
a linear combination of the socle elements ω1, . . . , ωn. Indeed, we have z =

∑r
i=1 λib

2m−1
i ,

with λr 6= 0, for some integer 1 ≤ r ≤ m. If r < n then λrb
2m−1
r ar = zar = arz = 0, and

hence 0 = b2m−1
r ar = ār−1 · · · ā1ǫ

2(m−r)+1a1 · · · ar−1ar. This only happens when m = n,
in which case b2m−1

r = b2n−1
r = ωr. On the other hand, if r = n then n = m and we are

also over in this case.

The previous paragraph shows that Z(Λ)odd := ⊕m>0Z(Λ)2m−1 =
∑

i∈Q0
Kωi =

Soc(Λ) since ωi ∈ Z(Λ)2n−1 for each i ∈ Q0. We now want to identify Z(Λ)+even :=
⊕m>0Z(Λ)2m. One easily checks that x0 =

∑n−1
i=1 (−1)

iaiāi = b21 +
∑n−1

i=2 (−1)
ib2i is an

element of Z(Λ)2. Moreover, (b2i )
m 6= 0 if and only if 1 ≤ i ≤ n −m and m < n. In this

case we necessarily have an equality (b2i )
m = (−1)tib2mi , for some integer exponent ti. In

particular xm0 6= 0 and xm0 =
∑n−m

i=0 λib
2m
i , with scalars λi all nonzero. We claim that if
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0 6= z ∈ Z(Λ)2m and we write it as a K-linear combination z =
∑n−m

i=1 µib
2m
i , then µi 6= 0

for all i = 1, . . . , n−m. Suppose that it is not the case. We first prove that if µj = 0 then
µi = 0 for each i ≤ j. For that purpose, we can assume j > 1 and then we have

0 = µjaj−1b
2m
j = aj−1z = zaj−1 = µj−1b

2m
j−1aj−1

But b2mj−1aj−1 6= 0 since j ≤ n−m ≤ n− 1 and so j − 1 < n−m. It follows that µj−1 = 0
and, by iterating the process, that µi = 0 ∀i ≤ j.

We can then write z =
∑n−m

i=r µib
2m
i for some 1 ≤ r ≤ n − m and µi 6= 0 ∀i =

r, . . . , n−m. We prove that r = 1 and our claim will be settled. Indeed, if r > 1 then we
have

µrar−1b
2m
r = ar−1z = zar−1 = 0

which implies that µr = 0 since ar−1b
2m
r 6= 0. This is a contradiction.

Once we know that if z ∈ Z(Λ)2m\0} and z =
∑n−m

i=1 µib
2m
i then µi 6= 0 ∀i = 1, . . . n−

m, we easily conclude that any such z is a scalar multiple of xm0 . Then Z(Λ)2m = Kxm0 ,
for each m > 0.

Putting now xi = ωi ∀i = 1, . . . , n we clearly have that x0, x1, . . . xn generate Z(Λ) as
an algebra and they are subject to the relations xn0 = 0 and xixj = 0 for (i, j) 6= (0, 0).

We are now ready to prove the main result of this section which provides the dimension
of each Hochschild cohomology space HH i(Λ) as a K-vector space:

Theorem 5.3.4. Let us assume that Char(K) 6= 2 and let Λ be the generalized preprojec-
tive algebra Ln over K. Then dim (HH0(Λ)) = dim (HH0(Λ)) = 2n and dim (HH i(Λ)) =
dim (HHi(Λ)) = n for all i > 0.

Proof. By the isomorphism HH−∗(Λ) ∼= D(HH∗(Λ)) (see Remark 4.5.5), it is enough to
calculate the dimensions of the Hochschild cohomology spaces.

On the other hand, by Corollary 5.2.12, we have and isomorphismHH∗(Λ) ∼= HH∗(Λ)[6].
We then get isomorphisms of K-vector spaces

HH6k(Λ) ∼= HH0(Λ) = HH0(Λ)
P(Λ,Λ) = Z(Λ)

Soc(Λ)

HH6k+i(Λ) ∼= HH i(Λ),

for all k > 0 and i = 1, 2, 3, 4, 5.

By the same corollary, we have an isomorphismD(HH∗(Λ)) ∼= HH∗(Λ)[5], which gives
isomorphisms of K-vector spaces:

D(HH0(Λ)) ∼= HH5(Λ)

D(HH1(Λ)) ∼= HH4(Λ)

D(HH2(Λ)) ∼= HH3(Λ).

Bearing in mind Lemma 4.3, the proof is reduced to check that

dim ( Z(Λ)
Soc(Λ)) = dim (HH1(Λ)) = dim (HH2(Λ)) = n.
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That dim ( Z(Λ)
Soc(Λ)) = n follows directly from Proposition 5.3.3 and its proof. Moreover,

we have two exact sequences

0 −→ Ker(R∗) →֒ ⊕a∈Q1ei(a)Λet(a)
R∗

−→ ⊕i∈Q0eiJei −→ 0

0 −→ Z(Λ) →֒ ⊕i∈Q=eiΛei −→ Im(δ∗) −→ 0

From the first one we get dim (Ker(R∗)) = 2n2 − n2 = n2, using Lemma 5.3.1 and
Corollary 5.2.5. From the second sequence we get dim (Im(δ∗)) = (n2+n)− 2n = n2−n,
using Lemma 5.3.3. It follows that dim (HH1(Λ)) = n.

We also have that HH2(Λ) ∼= Coker(R∗) since k∗ = 0. But Im(R∗) = ⊕i∈Q0eiJei by
Lemma 5.3.1. It follows that dim (HH2(Λ)) = dim (⊕i∈Q0

eiΛei
eiJei

) = n.

Once we have computed the dimensions of the Hochschild (co)homology spaces of Λ, we
can do the same for its cyclic homology spaces in characteristic zero, denoted by HCi(Λ)
following the notation used in [59]. We start by recalling the following fact about graded
algebras.

Proposition 5.3.5. Suppose Char(K) = 0 and let A = ⊕i≥0Ai be a positively graded
algebra such that A0 is a semisimple algebra. The following assertions hold:

1. As K-vector spaces, HCi(A0) ∼=

{
0 if i is odd
A0 if i is even

2. Connes’ boundary map B induces an exact sequence

0 −→ A0 −→ HH0(A)
B
−→ HH1(A)

B
−→ HH2(A) −→ · · ·

such that the image of B : HHi(A) −→ HHi+1(A) is isomorphic to HCi(A)
HCi(A0)

, for all
n ≥ 0.

Proof. Assertion 1 is well-known, and is a direct consequence of Connes’ periodicity exact
sequence ([59], Theorem 2.2.1) and the fact that HHi(A0) = 0, for all i > 0.

On the other hand, by [59], Theorem 4.1.13, we know that Connes’ periodicity exact
sequence gives exact sequences:

0 −→
HCi−1(A)

HCi−1(A0)

B
−→

HHi(A)

HHi(A0)

I
−→

HCi(A)

HCi(A0)
−→ 0

for all i ≥ 0. Since HHi(A0) = 0, for i > 0, we get an induced K-linear map B ◦ I :

HHi(A) −→ HHi+1(A) such that Im(B ◦ I) = Im(B) ∼=
HCi(A)
HCi(A0)

.

Corollary 5.3.6. If Λ is the generalized preprojective algebra Ln, then

dim HCi(Λ) =

{
0 if i is odd

2n if i is even
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Proof. Put Bi := Im(HHi(Λ)
B
−→ HHi+1(Λ)) whereB is Connes’ map. From the previous

theorem, we have

dim (B0) = dim HH0(Λ)− dim (KQ0) = 2n− n = n

and

dim (Bi) = dim HHi(Λ)− dim (Bi−1) = n− dim (Bi−1),

for all i > 0.

It follows that dim (Bi) = n, when i is even and zero otherwise.
Then we have

dim HCi(Λ)− dim HCi(KQ0) =

{
n if i is even
0 if i is odd

From this the result follows using the foregoing proposition.

Remark 5.3.7. In [34][Section 7.5] the author calculates the reduced cyclic homology
spaces HCi(Λ) using Connes’ sequence (see Proposition 5.3.5(2)) and, as a byproduct, he
also calculates the absolute cyclic homology spaces. However, he states that the equality
HCi(Λ) = HCi(Λ) holds, for all i > 0. This is not true since HCi(Λ) =

HCi(Λ)
HCi(Λ0)

, for all

i > 0. Therefore, the description of the HCi(Λ) in [34], page 22, is not correct.

Remark 5.3.8. Due to the fact that Λ is a Λe- Z(Λ)-bimodule, for each Λ-bimodule M ,
the K-vector space HomΛe(M,Λ) inherits a structure of Z(Λ)-module. In particular, via
the isomorphisms,

⊕i∈Q0eiΛei
∼
−→ HomΛe(P,Λ)

⊕a∈Q1ei(a)Λet(a)
∼
−→ HomΛe(Q,Λ)

both ⊕i∈Q0eiΛei and ⊕a∈Q1ei(a)Λet(a) have a structure of Z(Λ)-modules. It is easy to see
that these structures are given by the multiplication in Λ and that the differentials of the
complex V • in Proposition 5.2.9 are all morphisms of Z(Λ)-modules.

Next, we identify the structure of each HH i(Λ) as a module over the center of Λ.

Lemma 5.3.9. We view Soc(Λ) as an ideal of Z(Λ). The following assertions hold.

1) Soc(Λ)HHj(Λ) = 0 for all j > 0.

2) HHj(Λ) is a semisimple Z(Λ)-module for all j ≡ 2, 3 (mod 6)

3) HHj(Λ) is isomorphic to Z(Λ)
Soc(Λ) as a Z(Λ)-module for all j > 0, j 6≡ 2, 3 (mod 6)

Proof. 1) is a direct consequence of the fact that P(Λ,Λ) = Soc(Λ) and HHj(Λ) ∼=
HomΛe(Ω

j
Λe(Λ),Λ) for all j > 0.



5.3. The Hochschild cohomology spaces 111

2) If x0 =
∑n−1

i=0 (−1)
iaiāi as in Proposition 5.3.3, then x0HH

j(Λ) = x0 · (⊕
eiΛei
eiJei

) = 0

when j ≡ 2 (mod 6) and x0HH
j(Λ) = x0 · Soc(Λ) = 0 when j ≡ 3 (mod 6).

3) We clearly have an isomorphism HHj(Λ) ∼= HHj+6(Λ) for all j > 0, so we only need
to prove the claim for j = 1, 4, 5, 6.

From Corollary 5.2.12 and the fact that HomK(
Z(Λ)
Soc(Λ) ,K) ∼=

Z(Λ)
Soc(Λ) as Z(Λ)-modules

we get

HH5(Λ) = HH5(Λ) ∼= D(HH0(Λ)) ∼= D(HH6(Λ))

HH4(Λ) = HH4(Λ) ∼= D(HH1(Λ)) ∼= D(HH1(Λ))

Then, the proof reduces to check the cases j = 1, 6.

For j = 6, we take h = 1 + Im(k∗µ) ∈
Ker(δ∗)
Im(k∗µ)

= Z(Λ)
Soc(Λ) and one obviously has that

Z(Λ)h = Z(Λ)
Soc(Λ) = HH6(Λ).

For j = 1 we take the element ŷ =
∑

a∈Q1
a ∈ ⊕a∈Q1ei(a)Λet(a). In a routine way, one

can check that R∗(ŷ) = 0. We then get an element y = ŷ+Im(δ∗) ∈ HH1(Λ) = Ker(R∗)
Im(δ∗) .

We now take the induced morphism of Z(Λ)-modules

K[x0]

(xn0 )
∼=

Z(Λ)

Soc(Λ)
−→ Z(Λ)y

x̄ 7→ xy

Its kernel is an ideal of K[x0]
(xn0 )

, and, hence, it is of the form
(xk0)
(xn0 )

, for some k ≤ n.

We claim that if k < n then xk0y 6= 0. That will imply that K[x0]
(xn0 )

∼= Z(Λ)y so that

Z(Λ)y = HH1(Λ) by a dimension argument.

Suppose that k < n and yxk0 = 0. Then ŷxk0 ∈ Im(δ∗). Since δ∗ is a graded map of
degree 1 (with respect to length grading) we will have an element x =

∑n−k
i=1 µib

2k
i of

length-degree 2k in ⊕i∈Q0eiΛei such that δ∗(x) = ŷxk0 . Since this element belongs to
⊕a∈Q1ei(a)Λet(a) we can look at its ǫ-component:

δ∗(x)ǫ = ǫx− ǫx = µ1ǫb
2k
1 − µ1b

2k
1 ǫ = 0

(ŷxk0)ǫ = λ1ǫb
2k
1 ,

where λ1 is the coefficient of b2ki in the expression xk0 =
∑n−k

i=1 λib
2k
i . We know from

the proof of Proposition 5.3.3 that λ1 6= 0, which gives a contradiction since ǫb2k1 =
ǫ2k+1 6= 0.
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The following result is now a consequence of Corollary 5.2.12 and Lemma 4.5.9

If

...P−i d−i

−→ P−i+1 −→ ... −→ P−1 d−1

−→ P 0 u
−→ Λ→ 0

is the minimal projective resolution of Λ (see Proposition 5.2.7) then, by definition, we

have HH i(Λ) = Ker((d−i−1)∗)
Im((d−i)∗)

⊆ (P−i)∗

Im((d−i)∗)
for each i > 0. Thus, any element η ∈ HH i(Λ)

is of the form η = η̃ + Im((d−i)∗), for some η̃ ∈ HomΛe(P−i,Λ) such that η̃ ◦ d−i−1 = 0.
We will say that η̃ represents η or that η is represented by η̃.

In the statement of the following result we denote by ldeg(−) the length-degree of any
element in HH i(Λ).

Proposition 5.3.10. The following are bases of the HH i(Λ) consisting of homogeneous
elements with respect to the length grading, for each i = 0, 1, ..., 6:

1. For HH0(Λ) = Z(Λ): {x0, x
2
0, . . . , x

n−1
0 , x1, . . . , xn}, where x0 =

∑n−1
i=1 (−1)

iaiāi
and xi = ωi, with ldeg(x0) = 2 and ldeg(xi) = 2n− 1, for all i = 1, . . . n.

2. For HH1(Λ) = Ker(R∗)
Im(δ∗) : {y, x0y, x

2
0y, . . . x

n−1
0 y}, where y =

∑
a∈Q1

a + Im(δ∗)

and ldeg(y) = 0.

The element y is represented by the only morphism ỹ : Q −→ Λ such that, for each
a ∈ Q1, ỹ(ei(a) ⊗ et(a)) = a .

3. For HH2(Λ) = Ker(k∗)
Im(R∗) : {z1, . . . , zn}, where zk = ek+Im(R∗) and ldeg(zk) = −2,

for each k ∈ Q0.

The element zk is represented by the only morphism z̃k : P −→ Λ such that, for each
i ∈ Q0, z̃k(ei ⊗ ei) = δikek.

4. For HH3(Λ) =
Ker(δ∗µ)

Im(k∗) = Ker(δ∗µ): {t1, . . . , tn}, where tk = ωk and ldeg(tk) = −2,
for each k ∈ Q0.

The element tk is represented by the only morphism t̃k : P −→ Λ such that, for each
i ∈ Q0, t̃k(ei ⊗ ei) = δkiωk.

5. For HH4(Λ) =
Ker(R∗

µ)

Im(δ∗µ)
: {xn−1

0 γ, . . . , x0γ, γ}, where γ = e1+Im(δ∗µ) and ldeg(γ) =

−2n− 2.

The element γ is represented by the only morphism γ̃ : Q −→ Λ such that, for each
a ∈ Q1, γ̃(ei(a) ⊗ et(a)) = δǫae1.

6. For HH5(Λ) =
Ker(k∗µ)

Im(R∗
µ)
: {xn−1

0 yγ, . . . , x0yγ, yγ}.

7. For HH6(Λ) = Ker(δ∗)
Im(k∗µ)

: {h, x0h, . . . , x
n−1
0 h}, where h = 1+Im(k∗µ) and ldeg(h) =

−4n− 2.

The element h is represented by the multiplication map h̃ = u : ⊕i∈Q0Λei⊗eiΛ −→ Λ.
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Proof. We leave for the end the part of the assertions concerning the length degree. Omi-
tting that part, we have that assertion 1 follows from Proposition 5.3.3 and its proof.
Assertions 2 and 7 follow from the proof of Lemma 5.3.9. Assertion 3 follows from Lemma
5.3.1 and the fact that k∗ = 0 (see Proposition 5.2.9). Assertion 4 follows from the fact
that Soc(Λ) ⊆ Ker(δµ∗) and dimHH3(Λ) = n = dim(Soc(Λ)) (see Theorem 5.3.4).

To check that in assertion 5 the given set is a basis ofHH4(Λ), note that R∗
µ(e1) = e1ǫ−

ǫe1 = 0 and that δ∗µ(c) = δ∗µ(c), which implies that δ∗µ(x) = δ∗µ(x) for x ∈ ⊕i∈Q0eiΛei. We

proceed as in the proof of the case j = 1 of Lemma 5.3.9, and check that if xk0e1 ∈ Im(δ∗µ)

and k ≤ n then k = n. Indeed, if xk0e1 = ǫ2k ∈ Im(δ∗µ) then there is 1 ≤ r ≤ k and

µ1, . . . , µr ∈ K, with µr 6= 0, such that δ∗µ(
∑r

i=1 µib
2k−1
i ) = ǫ2k. We look now at the ar-

component of both members of the equality (i.e. at their image by applying the projection
⊕a∈Q1ei(a)Λet(a) −→ ei(ar)Λet(ar)). Therefore, we get b2k−1

r ar = 0, which is only possible
in case r = n, and hence k = n. As in the proof of Lemma 5.3.9, we conclude that

HH4(Λ) =
Ker(R∗

µ)

Im(δ∗µ)
= Z(Λ)γ, where γ := e1 + Im(δ∗µ). Then {γ, x0γ, . . . , x

n−1
0 γ} is a basis

of HH4(Λ).

We will prove now that the map ϕy : HH4(Λ) −→ HH5(Λ), given by f → yf , is
bijective. This will imply that the set of assertion 6 is a basis of HH5(Λ). We just
need to check ϕy is injective since dimHH4(Λ) = dimHH5(Λ). Note that HH0(Λ) =
Z(Λ)
Soc(Λ) has {xk0 : k = 0, 1, ..., n − 1} as a basis. Fix now any graded Nakayama form

HH∗(Λ)×HH∗(Λ)
(−,−)
−→ K of constant degree function equal to 5. If now f ∈ HH4(Λ),

then, using Lemma 4.5.9 and the relation between the multiplications in HH∗(Λ) and
HH∗(Λ) (see Section 2.1.3), we have that yf = 0 if and only if 0 = (yf, xk0) = (xk0y, f),
for all k = 0, 1, ..., n − 1. From assertion 2 and the nondegeneracy of (−,−) we conclude
that f = 0 and, hence, ϕy is injective.

It remains to calculate the length-degrees of the given elements. For that, we look at
their explicit definition and take into account the gradings of the V r in the complex V •

of Proposition 5.2.9. Just as a sample, note that each a ∈ Q1 is an element of degree 0
in V 1 = ⊕a∈Q1ei(a)Λet(a)[1], which implies that ldeg(y) = 0. Similarly each socle element
wk has degree −2 in V 3 = ⊕i∈Q0eiΛei[2n+ 1], which implies that ldeg(tk) = −2, for each
k = 1, 2, ..., n. It is routine to check the remaining cases.

The bases of the HH i(Λ) given in the above proposition will be called canonical bases.

Remark 5.3.11. In [34] the author uses the length grading on Λ and looks at the minimal
projective resolution of Λ in the category of graded Λ-bimodules. Then, he calculates
this graded structure in terms of three seminal graded vector spaces R, U and K (see
Theorems 4.0.13 and 4.0.14 in [34]). In our terminology, R = KQ0 (concentrated in

degree 0), U = Z(Λ)
Soc(Λ) [2] (with the length grading on Z(Λ)

Soc(Λ)) and K = HH2(Λ)[2], which

is concentrated in degree 0 since HH2(Λ) is concentrated in degree −2.

His strategy to prove the mentioned theorems is based on the use of Connes’ exact
sequence (see Proposition 5.3.5(2)) and the description of the graded structure of each
HHi(Λ) and, using dualities between the Hochschild homology and cohomology graded
spaces obtained in [35], the author also gets the graded structure of each HH i(Λ).
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Due to the fact that the dimension of R, U and K is n, the dimensions of the HHi(Λ)
and the HH i(Λ) can be read off from the mentioned Theorems 4.0.13 and 4.0.14 of [34],
even if they were not explicitly stated in a proposition or corollary. After that and before
calculating the ring structure of HH∗(Λ), Eu gives explicit bases of the HH i(Λ) using the
corresponding of our complex V • (see Section 8 in [34]).

Recall from Proposition 1.3.7 and Definition 8 that the graded Nakayama form of
HH∗(Λ) associated to the basis B5 = {xn−1

0 yγ, . . . , xyγ, yγ} of HH5(Λ) acts on pairs of
homogeneous elements as follows:

Proposition 5.3.12. The basis {1, x0, ..., x
n−1
0 } of HH0(Λ) and the bases of the HH i(Λ) =

HH i(Λ) given in Proposition 5.3.10, for i 6= 0, are orthogonal by pairs with respect to the
restrictions

(−,−) : HH i(Λ)×HH5−i(Λ) −→ K

of the graded Nakayama form. More specifically, we have:

(xk0 , x
n−1−j
0 yγ) = (xk0y, x

n−1−j
0 γ) = (zk, tj) = δkj,

where δkj is the Kronecker symbol.

Proof. If we have i = 6m+j, with j ∈ {0, 1, ..., 5}, then the pairingHH i(Λ)×HH5−i(Λ) −→
K is completely determined by the corresponding pairing with i replaced by j. Due to this
and the graded commutativity of HH∗(Λ), the proof is reduced to check the equalities in
the statement. By our definition of the graded Nakayama form, it is clear that we have
(xk0 , x

n−1−j
0 yγ) = (xk0y, x

n−1−j
0 γ) = δkj, for all k, j = 0, 1, ..., n − 1.

It only remains to check that zktj = δkjx
n−1
0 yγ, for all k, j = 1, ..., n. Consider

the projective Λ-bimodules P and Q of Proposition 5.2.7(a). We consider the following
morphisms of Λ-bimodules:

a) gj = t̂j : P −→ P , identified by the equality gj(ei⊗ ei) =
1
2δij(ωj ⊗ ej + ej ⊗ωj), for

all i, j ∈ Q0.

b) fj : Q −→ Q, identified by the following rules:

In case (j, a) 6= (1, ǫ), we have:

fj(ei(a) ⊗ et(a)) =





0 if j 6∈ {i(a), t(a)}

1
2ei(a) ⊗ ωt(a) if j = t(a)

−1
2ωi(a) ⊗ et(a) if j = i(a)

and, for (j, a) = (1, ǫ), we have:

f1(ei(ǫ) ⊗ et(ǫ)) =
1

2
(ei(ǫ) ⊗ ωt(ǫ) − ωi(ǫ) ⊗ et(ǫ))
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c) z̃k : P −→ Λ as in Proposition 5.3.10.

It is easy to check that the following diagram is commutative:

P
Rµ //

gj
��

Q
δµ //

fj
��

P

t̂j
��

P
R

// Q
δ

// P

It follows that the element zktj ∈ HH
5(Λ) is represented by the composition

P
gj
−→ P

z̃k−→ Λ

Due to the fact that gj(ei⊗ei) = 0 for i 6= j and gj(Λej⊗ejΛ) ⊆ Λej⊗ejΛ, we readily
see that z̃k ◦ gj = 0 when j 6= k. Moreover, in case j = k, we have

(z̃j ◦ gj)(ei ⊗ ei) =
1

2
δij(ωj + ωj) = δijωj

From Remark 5.3.2 we know that, when we view ωj as an element of Ker(k∗µ) = Soc(Λ),
we have ωj + Im(R∗

µ) = ω1 + Im(R∗
µ) = ǫ2n−1 + Im(R∗

µ) for all j = 2, . . . , n− 1. Therefore
we have that zktj = δkj(ǫ

2n−1 + Im(R∗
µ)).

We now check the equality xn−1
0 yγ = ǫ2n−1 + Im(R∗

µ) in HH5(Λ) which will end
the proof. Note that if γ̃ : Q −→ Λ is as in Proposition 5.3.10, then a lifting of it is
the morphism of Λ-bimodules γ̂ : Q −→ P taking ei(a) ⊗ et(a) → δaǫe1 ⊗ e1. If now
g : P −→ Q is the morphism of Λ-bimodules which vanishes on all ei ⊗ ei, for i 6= 0, and
takes e1⊗e1 → ei(ǫ)⊗et(ǫ), we readily see that γ̂ ◦Rµ = δ◦g, where Rµ and δ are the maps
in the minimal projective resolution of Λ (see Proposition 5.2.7). The definition of the
Yoneda product implies that the element yγ of HH5(Λ) is represented by the composition

P
g
−→ P

ỹ
−→ Λ. This composition vanishes on ei⊗ei, for i 6= 1, and takes e1⊗e1 → ǫ. Then

we have yγ = ǫ+ Im(R∗
µ), and hence xn−1

0 yγ = xn−1
0 (ǫ+ Im(R∗

µ)) = ǫ2n−2(ǫ+ Im(R∗
µ)) =

ǫ2n−1 + Im(R∗
µ).

5.4 The ring structure of the Hochschild cohomology ring

The main result of the chapter is the following, from which we deduce the structure of all
other objects of interest, namely, the stable Hochschild cohomology as well as the stable
and classical Hochschild homology (see Corollaries 5.2.12 and 5.4.9 and Remark 5.4.10).

Theorem 5.4.1. Let Λ be the generalized preprojective algebra Ln over a commutative ring
R on which 2 is invertible. The following assertions hold for the Hochschild cohomology
ring HH∗(Λ):

1. HH∗(Λ) is the commutative bigraded R-algebra given by

a) Generators: x0, x1, . . . , xn, y, z1, . . . , zn, t1, t2, . . . tn−1, γ, h
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b) Relations:

i) xiξ = 0 for each i = 1, . . . , n and each generator ξ.

ii) xn0 = y2 = x0zj = x0ti = yti = titk = 0 , (j = 1, . . . , n i, k = 1, . . . n− 1)

iii) zjzk = (−1)k−j+1(2j − 1)(n − k + 1)xn−1
0 γ, for 1 ≤ j ≤ k ≤ n.

iv) zjγ = (−1)j(n− j + 1)xn−1
0 h, for j = 1, ..., n

v) γ2 = z1h

vi) yzj = (2n+1)
∑

1≤k≤j−1(−1)
j−k(j−k)tk+(−1)j−1(2j−1)yz1, for j = 2, ..., n

vii) zktj = δjkx
n−1
0 yγ, for k = 1, . . . , n j = 1 . . . , n− 1

viii) tjγ = δ1jx
n−1
0 yh, for j = 1, . . . , n− 1.

2. The homological grading on HH∗(Λ) is determined by the equalities deg(xi) = 0,
deg(y) = 1, deg(zj) = 2, deg(tk) = 3, deg(γ) = 4 and deg(h) = 6.

3. The length grading on HH∗(Λ) is determined by the equalities ldeg(x0) = 2, ldeg(xi) =
2n − 1, for i 6= 0, ldeg(y) = 0, ldeg(zj) = −2, ldeg(tk) = −2, ldeg(γ) = −2n − 2 and
ldeg(h) = −4n− 2.

4. Multiplication by h gives an isomorphism HH i(Λ)
∼=
−→ HH i+6(Λ), for each i > 0.

5. All HH i(Λ) are free R-modules, and the following are bases for them (see Proposition
5.3.10):

(a) For HH0(Λ): {x0, x
2
0, . . . , x

n−1
0 , x1, . . . , xn}.

(b) For HH1(Λ): {y, x0y, x
2
0y, . . . x

n−1
0 y}.

(c) For HH2(Λ): {z1, . . . , zn}.

(d) For HH3(Λ): {t1, . . . , tn−1, yz1}.

(e) For HH4(Λ): {xn−1
0 γ, . . . , x0γ, γ}.

(f) For HH5(Λ): {xn−1
0 yγ, . . . , x0yγ, yγ}.

(g) For HH6(Λ): {h, x0h, . . . , x
n−1
0 h}.

In particular dim(HH0(Λ)) = 2n and dim(HH i(Λ)) = n, for all i > 0, where dim(−)
denotes the rank as a free R-module.

Remark 5.4.2. Note that if R is a field (of characteristic 6= 2) in the above theorem, then
2n+1 is either zero or an invertible element. If R is a commutative ring as in the theorem
satisfying either of these two conditions, the description of HH∗(Λ) by generators and
relations simplifies. First, if char(R) divides 2n+ 1 then the relations vi) become

vi’) yzj = (−1)j−1(2j − 1)yz1, for j = 2, ..., n.

If 2(2n + 1) is invertible in R, then we can express each ti (i = 1, ..., n − 1) as a R-
linear combination of the yzj , using the relations vi). Then the following is an immediate
consequence of the theorem.
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Corollary 5.4.3. Let R be a commutative ring on which 2(2n + 1) is invertible. If Λ is
the generalized preprojective R-algebra Ln, then HH

∗(Λ) is the commutative algebra given
by

a) Generators: x0, x1, . . . xn, y, z1, . . . , zn, γ, h with

b) Relations:

i) xiξ = 0, for each i = 1, . . . , n and each generator ξ.

ii) xn0 = y2 = x0zj = 0 (j = 1, . . . , n)

iii) zjzk = (−1)k−j+1(2j − 1)(n − k + 1)xn−1
0 γ for 1 ≤ j ≤ k ≤ n.

iv) zjγ = (−1)j(n− j + 1)xn−1
0 h (j = 1, . . . , n)

v) γ2 = z1h

on which the homological grading is determined by the equalities deg(xi) = 0, deg(y) = 1,
deg(zj) = 2, deg(γ) = 4 and deg(h) = 6, while the length grading is determined by the
equalities ldeg(x0) = 2, ldeg(xi) = 2n − 1 (i 6= 0), ldeg(y) = 0, ldeg(zj) = −2, ldeg(γ) =
−2n− 2 and ldeg(h) = −4n− 2

The rest of the chapter, except the last section, is devoted to give a proof of the theorem
stated above.

5.4.1 When the ground commutative ring is a field

Throughout this subsection, we assume that the ground commutative ring is a field K of
odd characteristic.

We start by studying the map φy : HH2(Λ) −→ HH3(Λ) given by φy(u) = yu for all
u ∈ HH2(Λ)

Lemma 5.4.4. If C = (Ckj) is the matrix of φy with respect to the canonical bases of
HH2(Λ) and HH3(Λ), then the following conditions hold:

1) C is a symmetric integer matrix.

2) Cjk = (−1)k−j+1(2j − 1)(n − k + 1) whenever 1 ≤ j ≤ k ≤ n.

3) rank(C) = n, when Char(K) does not divide 2n+ 1, and rank(C) = 1, when Char(K)
divides 2n + 1.

Proof. Let x = α1 · · ·αr (r > 0) be any path in ejKQek which does not belong to the
ideal I. We put

hx = α1 · · ·αr−1 ⊗ x
∗ + α1 · · ·αr−2 ⊗ αrx

∗ + · · ·+ ej ⊗ α2 · · ·αrx
∗,

which is an element of ⊕a∈Q1Λei(a) ⊗ et(a)Λ. In case j = k we put hej = 0 and if

pj = āj−1...ā1ǫ
2(n−j)+1a1...aj−1 we also define hωj

= (−1)
j(j−1)

2 hpj (recall that ωj =

(−1)
j(j−1)

2 pj). In this way, we have defined hx for each x ∈ ejBek and for all j, k ∈ Q0.



118 Chapter 5

Direct calculation shows that δ(hx) = x⊗ x∗ − ej ⊗ ωj, and hence

δ(
∑

x∈ejBek

(−1)deg(x)hx) =
∑

x∈ejBek

(−1)deg(x)(x⊗ x∗ − ej ⊗ ωj) =
∑

x∈ejBek

(−1)deg(x)x⊗ x∗,

bearing in mind that in ejBek, there are exactly the same number of elements of odd and
even length-degree.

Now consider z̃k : P −→ Λ as in Proposition 5.3.10. It is clear that the morphism of
Λ-bimodules ẑk : P −→ P determined by the rule ẑk(ei ⊗ ei) = δikek ⊗ ek is a lifting of z̃k
(i.e. z̃k = u ◦ ẑk).

If now fk : P −→ Q is the morphism of Λ-bimodules determined by the rule fk(ej ⊗
ej) =

∑
x∈ejBek

(−1)deg(x)hx, then we have a commutative diagram

P
k //

fk
��

P

ẑk
��

Q
δ // P

and hence yzk is represented by the morphism

ỹ ◦ fk : P −→ Λ, (ej ⊗ ej 7→
∑

x∈ejBek

(−1)deg(x)deg(x)ωj .

That means that if we put Cjk =
∑

x∈ejBek
(−1)deg(x)deg(x) for all j, k ∈ Q0, then we

have yzk =
∑

j∈Q0
Cjktj (notation as in Proposition 5.3.10). Therefore, C := (Cjk) is the

matrix of φy : HH2(Λ) −→ HH3(Λ) with respect to the canonical bases of HH2(Λ) and
HH3(Λ).

That C is a symmetric integer matrix is clear since the anti-isomorphism x 7→ x̄ gives
a bijection between ejBek and ekBej, which preserves the term (−1)deg(x)deg(x). We then
proceed to calculate the entries of this matrix. To do that, we should recall the possible
degrees of elements in ejBek (see Remark 5.2.5), for 1 ≤ j ≤ k ≤ n. There are two
possibilities.

i) k ≡ j (mod 2): Then the sum of even degrees is [(k−j)+(k−j)+2(n−k)](n−k+1)
2 = (n −

j)(n− k + 1), while the sum of odd degrees is [(k+j−1)+(k+j−1)+2(n−k)](n−k+1)
2 = (n+

j−1)(n−k+1). Therefore, we have Cjk = (n−j)(n−k+1)−(n+j−1)(n−k+1) =
(1− 2j)(n − k + 1)

ii) k 6≡ j (mod 2): In this case Cjk is the negative of the number above, i.e., Cjk =
(2j − 1)(n − k + 1).

It finally remains to calculate rank(C). We view each n × n matrix as a n-tuple,
whose components are its rows. By elementary row transformation one passes from C =
(C1, . . . , Cn) to

C ′ = (C1, C2 + 3C1, . . . , Cj + (−1)j(2j − 1)C1, . . . , Cn + (−1)n(2n − 1)C1)
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so that rank(C) = rank(C ′). We look at the j-th row C ′
j = Cj + (−1)j(2j − 1)C1 of C ′.

It is straightforward to check that for j ≤ k, one has C ′
jk = 0, and for j > k, one has

C ′
jk = (−1)j−k+1(k − j)(2n + 1).
Therefore, in case Char(K) divides 2n+1, all rows of C ′ except the first one are zero.

On the other hand, we have C ′
1n = C1n = (−1)n−1+1(2 · 1 − 1)(n − n + 1) = (−1)n. It

follows that rank(C) = 1 in case Char(K)/2n+1. In case Char(K) does not divide 2n+1,
if we apply the n-cycle (1 n n − 1 · · · 2) to the rows of C ′, we obtain a lower triangular
matrix with diagonal entries C ′

21, C
′
32, . . . , C

′
n,n−1, C

′
1n.

We have C ′
k+1,k = (−1)(k+1)−k+1(k− (k+1))(2n+1) = −(2n+1) for k = 2, . . . , n and

C ′
1n = (−1)n. It follows that det(C) = det(C ′) = (−1)2n−1(2n + 1)n−1 6= 0. Therefore,

rank(C) = n in this case.

Remark 5.4.5. Given a graph Γ without double edges, its adjacency matrix D = DΓ is
the symmetric matrix D = (dij)i,j∈Γ0 having dij = 1, in case there is an edge i — j, and
dij = 0 otherwise. In particular, for the graph Ln, one has d11 = 1, di,i+1 = di+1,i = 1
for i = 1, ..., n − 1, and dij = 0 otherwise. Direct computation shows that the matrix
C of Lemma 5.4.4 satisfies the equality −C(2In + D) = (2n + 1)In, where In is the
identity n × n matrix. Therefore, when char(K) does not divide 2n + 1, an alternative
description of the matrix C is C = −(2n + 1)(2In + D)−1. Up to signs forced by the
different presentation of Λ and the different choice of the exceptional vertex of Ln, the
last equality is that of [34][Proposition 9.3.1] (see also [34][Theorem 4.0.16]).

Taking into account also the case when Char(K) divides 2n+1 is fundamental for the
difference of presentations in our two main theorems and is the part of our work where
the arguments of [34] cannot be applied.

Lemma 5.4.6. The following equalities hold in the ring HH∗(Λ):

1. HH2r+1(Λ) ·HH2s+1(Λ) = 0, for all integers r, s

2. tjγ = δ1jx
n−1
0 yh, where δ1j is the Kronecker symbol

3. γ2 = z1h

4. zjγ = (−1)j(n− j + 1)xn−1
0 h.

Proof. 1) From Eu-Schedler formula (see Lemma 4.5.9), using the nondegenerancy of
(−,−) : HH∗(Λ) × HH∗(Λ) −→ K, we get that HH i(Λ) · HHj(Λ) = 0 if, and only
if, HH i(Λ) · HH5−i−j(Λ) = 0. This gives that HH1(Λ) · HH1(Λ) = 0 if, and only if,
HH1(Λ) · HH3(Λ) = 0. Similarly, it gives that HH3(Λ) · HH3(Λ) = 0 if, and only if,
HH3(Λ) · HH−1(Λ) = 0 which, by the 6-periodicity of HH∗(Λ), is equivalent to saying
that HH3(Λ) · HH5(Λ) = 0. But, by Proposition 5.3.10, we have an equality HH1(Λ) ·
HH4(Λ) = HH5(Λ). These considerations together with the fact that HH∗(Λ) is periodic
of period 6 imply that, in order to prove assertion 1, we just need to check that HH1(Λ) ·
HH1(Λ) = 0, for which it is enough to see that y2 = 0. But this follows by considering
length-degrees since the length-degree of any nonzero homogeneous element of HH2(Λ) is
−2 while ldeg(y2) = 0.

2) We consider the following diagram, for each j ∈ Q0:
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Q
δ //

lj
��

P
kµ //

hj
��

P
Rµ //

gj
��

Q
δµ //

fj
��

P

t̂j
��

Q
δµ

// P
k

// P
R

// Q
δ

// P

where fj and gj = t̂ are as in the proof of Proposition 5.3.12 and hj and lj are the only
morphisms of Λ-bimodules satisfying the following properties:

a) hj(ei ⊗ ei) =
1
2δij(ej ⊗ ωj − ωj ⊗ ej)

b) In case (j, a) 6= (1, ǫ) we have

lj(ei(a) ⊗ et(a)) =





0 if j 6∈ {i(a), t(a)}

1
2ei(a) ⊗ ωt(a) if j = t(a)

1
2ωi(a) ⊗ et(a) if j = i(a)

and, in case (j, a) = (1, ǫ), we have:

l1(ei(ǫ) ⊗ et(ǫ)) =
1

2
(ei(ǫ) ⊗ ωt(ǫ) + ωi(ǫ) ⊗ et(ǫ))

It is routine to check that the two squares on the left of the diagram are commutative,
which will imply that the whole diagram is commutative.

Graded commutativity of HH∗(Λ) gives that tjγ = γtj and the element γtj ∈ HH
7(Λ)

is represented by the composition

Q
lj
−→ Q

γ̃
−→ Λ.

Note that lj(ei(a) ⊗ et(a)) ∈ Λei(a) ⊗ et(a)Λ, from which we deduce that γ̃ ◦ lj = 0 for
j ∈ Q0/{1}. And for j = 1 we have

(γ̃ ◦ l1)(ei(a) ⊗ et(a)) =





0 if a 6= ǫ

1
2(ω1 + ω1) = ω1 = ǫ2n−1 if a = ǫ

But, due to the identification HH1(Λ) = HH7(Λ), which is just multiplication by h, and
the proof of Proposition 5.3.12, we know that xn−1

0 yh is precisely the element ǫ2n−1 +

Im(δ∗) ∈ Ker(R∗)
Im(δ∗) . Therefore, we get tjγ = γtj = δ1jx

n−1
0 yh, for all j ∈ Q0.

3) By Lemma 4.5.9, we have (γ2, tjh
−1) = (γtjh

−1, γ)). By the equality 2 and the
graded commutativity of HH∗(Λ), we then have

(γ2, tjh
−1) = δ1j(x

n−1
0 yhh−1, γ) = δ1j(x

n−1
0 y, γ).
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By definition of (−,−) and by Proposition 5.3.12, we then have (γ2, tjh
−1) = δ1j =

(z1, tj) = (z1h, tjh
−1), for all j = 1, ..., n. It follows that γ2 = z1h since {tjh

−1 : j =
1, ..., n} is a basis of HH−3(Λ) and the form (−,−) is nondegenerate.

4) By Lemma 4.5.9, we have that (zjγ, x
r
0yγh

−1) = (xr0yγ
2h−1, zj), using also the

graded commutativity of HH∗(Λ). Now, by the equality 3, we get that (zjγ, x
r
0yγh

−1) =
(xr0yz1hh

−1, zj) = (xr0yz1, zj)). Note that xr0yz1 = 0, for r > 0, because HH3(Λ) is a
semisimple Z(Λ)-module (see Lemma 5.3.9). On the other hand, by Lemma 5.4.4, we
have yz1 =

∑n
k=1 ck1tk and, by Proposition 5.3.12, we get an equality (zjγ, yγh

−1) =∑n
k=1 ck1(tk, zj) =

∑n
k=1 δkjck1 = cj1 = (−1)j(n − j + 1). Therefore (zjγ, x

r
0yγh

−1) = 0,
when r > 0, and (zjγ, yγh

−1) = (−1)j(n − j + 1).

On the other hand, by definition of (−,−), we also have the equality

xr+n−1
0 yγ = (xn−1

0 h, xr0yγh
−1)xn−1

0 yγ, for all r = 0, 1, ..., n − 1.

This shows that (xn−1
0 h, xr0yγh

−1) = 0, for r > 0, and (xn−1
0 h, yγh−1) = 1. Taking into

account that {xr0yγh
−1 : r = 0, 1, ..., n − 1} is a basis of HH−1(Λ), the nondegeneracy of

(−,−) gives that zjγ = (−1)j(n− j + 1)xn−1
0 h.

We are now ready to give:

PROOF OF THEOREM 5.4.1 WHEN R = K IS A FIELD:

Assertion 4 follows from Corollary 5.2.12 and assertions 2, 3 and 5 follow from Propo-
sition 5.3.10.

To prove assertion 1, note that any graded commutative algebra admitting, apart from
the graded commutativity ones, the given list of relations, is necessarily commutative since
the product of generators of odd degree is always zero.

With the notation used until now, we know from Proposition 5.3.10 that the set

{x0, x1, . . . , xn, y, z1, . . . , zn, t1, . . . tn, γ, h}

generates HH∗(Λ) as an algebra.

We now look at Lemma 5.4.4. The coordinate vector of yzj with respect to the canoni-
cal basis {t1, ..., tn} of HH

3(Λ) is precisely the j-th column of the matrix C = (ckj). It fo-
llows in particular that {t1, ..., tn−1, yz1} is a basis of HH3(Λ) because cn1 = c1n = (−1)n.
Therefore, we can delete tn from the given list of generators.

On the other hand, bearing in mind that C is symmetric, we also get from the proof
of Lemma 5.4.4 that the coordinate vector of yzj + (−1)j(2j − 1)yz1 with respect to the
canonical basis is the j-th column of the transpose C ′T of the matrix C ′ considered there,
for each j = 2, ..., n. But that column is precisely the j-th row of C ′, which has entry
c′jk = 0, for k ≥ j, and c′jk = (−1)j−k+1(k− j)(2n+1) = (−1)j−k(j−k)(2n+1), for k < j.
Then, for each j > 1, we get an equality

yzj + (−1)j(2j − 1)yz1 = (2n + 1)
∑

1≤k≤j−1(−1)
j−k(j − k)tk.
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from which the relations vi) follow.

From the fact that Soc(Λ)HHj(Λ) = 0 ∀j > 0 one readily obtains the relations in i).
From lemmas 5.3.3, 5.3.9 and 5.4.6(1) we obtain all the relations in ii).

The relations in iv), v) and viii) are included in lemma 5.4.6.

From the equalities in Proposition 5.3.12 and the definition of the Nakayama form
(−,−) the relations vii) follow. We use them to prove that also the relations in iii)
hold. Note that the proof of Proposition 5.3.10 gives an isomorphism of Z(Λ)-modules
ϕy : HH

4(Λ)
∼
−→ HH5(Λ) (f 7→ yf). What we shall prove is the equality

zj(yzk) = (−1)k−j+1(2j − 1)(n − k + 1)xn−1
0 yγ,

from which the desired equality will follow.

Indeed, by Lemma 5.4.4, we have that yzk =
∑n

l=1 clktl and hence zj(yzk) =
∑n

l=1 clkzjtl.
Now, using the relations vii), we get

zj(yzk) = cjkzjtj = (−1)k−j+1(2j − 1)(n − k + 1)xn−1
0 yγ

The previous paragraphs show that there is a surjective homomorphism of bigraded
algebras from the commutative algebra given by the mentioned generators and relations
to the algebra HH∗(Λ). By looking at the dimensions in each homological degree, it is
not difficult to see that the homomorphism is actually an isomorphism.

Remark 5.4.7. In [34][Section 9] the graded ring structure of HH∗(Λ) was calculated
taking C as ground field. However, the arguments and calculations appear to be valid
whenever Char(K) 6= 2 and Char(K) does not divide 2n + 1. Then, with the suitable
changes derived from the different presentations of the algebra, Corollary 5.4.3 could be
derived from Eu’s work.

Eu’s methods use sometimes direct calculation of the products HH i(Λ) · HHj(Λ),
other times the graded condition of the minimal projective resolution of Λ (see 9.2) and,
on other occasions, the matrix Hilbert series HΛ(t) (see Definition 2.5.2) together with the
equality HΛ(t) = (1 + t2n+1)((1 + t2)In −Dt)

−1 proved in [62], where D is the adjacency
matrix of Ln (see the proof of Lemma 9.3.3 and Section 6.2 in [34]).

We have not used the matrix Hilbert series in this work. We have directly calculated all
products HH i(Λ) ·HHj(Λ), using Lemma 4.5.9 and working with the bases of Proposition
5.3.10, in which some products have already been included.

5.4.2 The general case

In this final subsection, we assume that R is any ground commutative ring on which 2 is
invertible. We shall derive the main theorem from the particular case when R is a field,
which was done in the previous subsection. The crucial point is the following result of
Commutative Algebra.

Lemma 5.4.8. Let R be a reduced commutative ring, M be a finitely generated R module,
B = {x1, ..., xr} be a finite set of elements of M and, for each p ∈ Spec(R), denote by
k(p) the residue field at p. The following assertions hold:
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1. If the image of B by the map fp : M −→ M ⊗R k(p), m → m⊗ 1, is k(p)-linearly
independent inM⊗Rk(p), for each p ∈ Spec(R), then B is an R-linearly independent
subset of M .

2. B generates M as an R-module if, and only if, fp(B) generates M ⊗R k(p) as a
k(p)-vector space, for each p ∈ Spec(R).

3. B is a basis of M as a free R-module if, and only if, fp(B) is a basis of M ⊗R k(p)
as a k(p)-vector space, for each p ∈ Spec(R).

Proof. 1) If a1, ..., ar ∈ R are elements such that
∑

1≤i≤r aixi = 0, then the hypothesis
says that the image of each ai by the canonical ring homomorphism up : R −→ k(p) is
zero, for each p ∈ Spec(R). Fix i and put a := ai to simplify the notation. When the
tensor functor ?⊗R k(p) is applied to the exact sequence

0→ Ra −→ R −→ R/Ra→ 0,

we get an exact sequence

Ra⊗R k(p)
0
−→ k(p) −→ R/Ra⊗R k(p)→ 0.

This shows that the support of R/Ra, which is V (Ra) = {p ∈ Spec(R) | Ra ⊆ P}, is all
Spec(R). Thus is equivalent to saying that Ra is contained

⋂
p∈Spec(R) p or, equivalently,

that a is nilpotent (see [57][Propositions III.4.6 and I.4.5]). By the reduced condition of
R, we get a = 0. Therefore, B is R-linearly independent.

2) The ’only if’ part of the assertion is clear. For the ’if’ part, note that if N =∑
1≤i≤r Rxi and ι : N −→ M is the inclusion, then the hypothesis implies that map

ι ⊗ 1k(p) : N ⊗R k(p) −→ M ⊗R k(p) is surjective or, equivalently, that M
N ⊗R k(p) = 0,

for all p ∈ Spec(R). Then, the support of M/N is empty and, hence, we have M/N = 0.

3) This assertion follows from 1) and 2).

PROOF OF THEOREM 5.4.1: We first prove that if R = Z[12 ] is the localization of
Z at the multiplicative subset {2k : k = 0, 1, ...}, and Λ = Ln is the associated R-algebra,
then the following conditions hold:

a) The subset B of Proposition 5.2.1 is a basis of Λ as an R-module

b) The complex P • of Proposition 5.2.7 is still a graded projective resolution of Λ
and the canonical map P−i −→ ΩiΛe(Λ) is a retraction (=split epimorphism) in the
category of R-modules

c) The complex V • of Proposition 5.2.9 has as cohomology R-modules the HH i(Λ).
Moreover the kernels of its differentials and the HH i(Λ) are free R-modules of finite
rank.

Condition a) follows immediately from the previous lemma and, as a consequence, Λei,
ejΛ and eiΛej are free R-modules of finite rank, for all i, j ∈ Q0.
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To prove b), note that the differentials make sense over R, and then it immediately
follows that P • is again a complex. Now we put P 1 = Λ and prove, by decreasing induction
on i ≤ 1, that the complex is exact at P i and that the surjective map P i−1 −→ Ker(di)
splits as a morphism of R-modules. Indeed, in the pass from i+1 to i, one has the R-split
exact sequence

0→ Ker(di) −→ P i −→ Ker(di+1)→ 0,

which implies Ker(di) is finitely generated projective as an R-module and that, for each
p ∈ Spec(R), the kernel of the differential di ⊗ 1 : P i ⊗R k(p) −→ P i+1 ⊗R k(p) is

Ker(di) ⊗ k(p). From that it easily follows that Ker(di)
Im(di−1)

⊗R k(p) ∼=
Ker(di⊗1k(p))

Im(di−1⊗1k(p))
, which

is zero since, by Proposition 5.2.7, we know that P • ⊗R k(p) is the minimal projective
resolution of Λ ⊗R k(p). It follows that Ker(di)/Im(di−1) is finitely generated R-module
with empty support and, hence, it is zero.

c) If P is a finitely generated projective Λ-bimodule, then HomΛe(P,Λ) is projective
as an R-module and, as a consequence, the canonical map

HomΛe(P,Λ)⊗R k(p) −→ Hom(Λ⊗Rk(p))e(P ⊗R k(p),Λ⊗R k(p))

is bijective, for all p ∈ Spec(R). Note that the complex V • of Proposition 5.2.9 is also
isomorphic to HomΛe(P •,Λ) in our case, where P • is as in Proposition 5.2.7. Therefore
H i(V •) ∼= HH i(Λ) (resp. H i(V • ⊗R k(p)) ∼= HH i(Λ ⊗R k(p))) as a graded R-module
(resp. k(p)-vector space), for each i ≥ 0.

On the other hand, according to condition b, the canonical epimorphism πi : P
−i −→

ΩiΛe(Λ) = Ker(d−i+1) is a retraction in the category of R-modules. It follows that the
induced map HomΛe( ΩiΛe(Λ),Λ) −→ HomΛe(P−i,Λ) is a section (=split monomorphism)
in the category of R-modules. This implies that the kernel of each differential δi : V i −→
V i+1 of the complex V • is a direct summand of V i, thus finitely generated projective, as an
R-module. It follows that each HH i(Λ) is a finitely generated R-module, and Lemma 5.4.8
can be applied. Moreover, the application of the functor ?⊗R k(p) gives an isomorphism
HH i(Λ)⊗R k(p) ∼= HH i(Λ⊗R k(p)) due to the fact that this functor keeps exact all the
(R-split) exact sequences

0→ Ker(δi) −→ V i −→ Im(δi)→ 0.

Using Proposition 5.3.10 and lemma 5.4.8, we then get that all the HH i(Λ) are free
R-modules with bases as indicated in that proposition.

We finally prove that the relations i)-viii) of Theorem 5.4.1 also hold over R. Indeed,
each prime ideal of R is of the form pR and its residue field is k(p) = R/pR ∼= Fp,
where p 6= 2 is a prime integer. This implies that if v ∈ HH i(Λ) is in the kernel of the
canonical map HH i(Λ) −→ HH i(Λ ⊗R k(p)) ∼= HH i(Λ) ⊗R k(p), for all p ∈ Spec(R),
then v ∈

⋂
p 6=2 pHH

i(Λ). But this implies that v = 0 since HH i(Λ) is a free R-module of
finite rank. We apply this argument to each relator (=substraction of the two members
of a relation) in the list i)-viii).

The last paragraph provides a morphism of bigraded R-algebras g : H −→ HH∗(Λ),
where H is the algebra given by generators and relations as in the statement of Theorem
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5.4.1. Moreover g ⊗ 1k(p) : H ⊗R k(p)
∼=
−→ HH∗(Λ) ⊗R k(p) ∼= HH∗(Λ ⊗R k(p)) is an

isomorphism, for each p ∈ Spec(R), because the statement of the theorem is true for
fields. It follows that g is an isomorphism of graded R-algebras since the homogeneous
components with respect to the homological grading, H i and HH i(Λ), are both finitely
generated, and HH i(Λ) is free, as R-modules.

We finally consider the general case, in which R is an arbitrary commutative ring on
which 2 is invertible. Then we have a structural ring homomorphism Z[12 ] −→ R making
R into a Z[12 ]-module. But conditions a), b) and c) proved above for Z[12 ] are kept when
applying the functor ?⊗Z[ 1

2
] R. Denoting now by ΛZ[ 1

2
] and ΛR the respective generalized

preprojective algebras of type L, we have an isomorphism ΛZ[ 1
2
] ⊗Z[ 1

2
] R
∼= ΛR, which

induces an isomorphism of graded algebras HH∗(ΛZ[ 1
2
]) ⊗Z[ 1

2
] R
∼= HH∗(ΛR). It follows

that the presentation by generators and relations is also valid for ΛR.

Corollary 5.4.9. Let us fix the presentation of HH∗(Λ) given by Theorem 5.4.1. A
presentation of HH∗(Λ) is obtained from it by doing the following:

1. Replace the generators x1, ..., xn by a new generator h′ of degree −6

2. Replace the relations i) in the list by a new relation hh′ = 1.

3. Leave the remaining generators and relations unchanged.

Proof. It is clear that the commutative algebra given by the just described generators and
relations is isomorphic to HH∗(Λ)(h), therefore isomorphic to HH∗(Λ) (see Proposition
4.5.6).

Remark 5.4.10. Using a process of passing from a ground field of Char(K) 6= 2 to
a ground commutative R on which 2 is invertible, similar to the one used in the proof
Theorem 5.4.1, it follows that Corollary 5.2.12 is also true over such a ring R. In particular
all HHi(Λ) and HH i(Λ) are free R-modules and the formulas of Theorem 5.3.4 still hold,
where dim(−) denotes the rank as free R-module.

5.5 Case when char(K) = 2

In this final section we complete the results given in the previous section by dealing with the
classical and stable Hochschild cohomology ring of the generalized preprojective algebra
Ln over a field of characteristic 2. We also study the structure as graded modules over it
of the classical and stable Hochschild homology.

Throughout this section, K will be an algebraically closed field of characteristic 2. and
Λ will be the generalized preprojective algebra Ln over K.

All the desired structures are obtained from the following main result:

Theorem 5.5.1. Let us assume that Char(K) = 2 and Λ = Ln. Then HH∗(Λ) is the
commutative bigraded algebra, given by:

a) Generators: x0, x1, . . . , xn, y0, y1, z2, . . . , zn, h.
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b) Relations (given in ascending degree):

i) xn0 = xixj = 0 (i, j = 0, . . . , n and (i, j) 6= (0, 0))

ii) xiy0 = δi1x
n−1
0 y1

xiy1 = 0

iii) xizk = δikx
n−1
0 y0y1

x0y
2
0 = 0 = y21

iv) y30 = nxn−1
0 h

y20y1 =
∑n

j=1(n− j + 1)xjh

y0zk = (n− k + 1)xn−1
0 h

y1zk =
∑n

j=1(n−max(j, k) + 1)xjh

v) zkzl = (n−max(l, k) + 1)xn−1
0 y0h,

where i = 1, ..., n and k, l = 2, ..., n in the relations ii)-v).

c) The homological grading on HH∗(Λ) is determined by the equalities deg(xi) = 0,
deg(yj) = 1, deg(zk) = 2 and deg(h) = 3.

d) The length grading on HH∗(Λ) is determined by the equalities ldeg(x0) = 2, ldeg(xi) =
2n− 1, for i 6= 0, ldeg(y0) = −1, ldeg(y1) = 0, ldeg(zk) = −2 and ldeg(h) = −2n− 1.

5.5.1 Preliminaries

We will follow the notation used in the previous sections. For the convenience of the reader
we restate the needed results with the shape they take in characteristic 2.

The following is a re-statement of Proposition 5.2.1. It fixes the basis of Λ with which
we shall work throughout this section.

Proposition 5.5.2. Let Λ be the generalized preprojective algebra Ln and put B =⋃
i,j eiBej, where

a) e1Be1 = {e1, ǫ, ǫ
2, . . . , ǫ2n−1}

b) e1Bej = {a1 · · · aj−1, ǫa1 · · · aj−1, ǫ
2a1 · · · aj−1, . . . , ǫ

2(n−j)+1a1 · · · aj−1} in case j 6= 1

c) eiBej = {ai · · · aj−1, ai · · · aj āj, . . . , ai · · · an−1ān−1 · · · āj}
⋃

{āi−1 · · · ā1ǫa1 · · · aj−1, āi−1 · · · ā1ǫ
3a1 · · · aj−1, . . . , āi−1 · · · ā1ǫ

2(n−j)+1a1 · · · aj−1}
(here we convene that ai...aj−1 = ei in case i = j).

d) eiBej = {b̄ : b ∈ ejBei} in case i > j,

then B is a basis of Λ such that B = B∗ and b∗∗ = b, for all b ∈ B.

Using the above basis and adapting the statement of Proposition 5.2.7, we have the
following description of a minimal projective resolution of Λ as a bimodule.
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Proposition 5.5.3. Let B be the basis of Proposition 5.5.2. The chain complex . . . P−2 d−2

−→

P−1 d−1

−→ P0
u
−→ Λ −→ 0 identified by the following properties is a minimal projective res-

olution of Λ as a length-graded bimodule:

a) P−k = Q :=
⊕

a∈Q1
Λei(a)⊗et(a)Λ if k ≡ −1 (mod 3) and P−k = P :=

⊕
i∈Q0

Λei⊗eiΛ
otherwise.

b) u is the multiplication map, dm = dn whenever m ≡ n (mod 3) and the initial diffe-
rentials d−1 =: δ, d−2 =: R and d−3 =: k are the only homomorphisms of Λ-bimodules
satisfying:

i) δ(ei(a) ⊗ et(a)) = a⊗ et(a) + ei(a) ⊗ a

ii) R(ei ⊗ ei) =
∑

a∈Q1i(a)=i
ei(a) ⊗ ā+ a⊗ ei(a)

iii) k(ei ⊗ ei) =
∑

x∈eiB
x⊗ x∗

for all a ∈ Q1 and i ∈ Q0.

c) When P and Q are given their canonical length grading, then, as graded Λ-bimodules,
the equalities P−3k−t = P [−(2n+1)k−t], for t = 0, 2, and P−3k−1 = Q[−(2n+1)k−1],
hold for all k ≥ 0.

Finally, we re-state Proposition 5.2.9:

Proposition 5.5.4. Let Λ be taken with its length grading and consider the complex of
K-vector spaces

V • : · · · 0 −→ ⊕i∈Q0eiΛei
δ∗
−→ ⊕a∈Q1ei(a)Λet(a)

R∗

−→ ⊕i∈Q0eiΛei
k∗
−→ ⊕i∈Q0eiΛei

δ∗
−→ ⊕a∈Q1ei(a)Λet(a)

R∗

−→ ⊕i∈Q0eiΛei
k∗
−→ ⊕i∈Q0eiΛei

δ∗
−→ ⊕a∈Q1ei(a)Λet(a) · · ·

where V 0 =
∑

i∈Q0
eiΛei and V

n = 0 ∀n < 0. We view V • as a complex of graded K-

vector spaces by putting V 3k+t = ⊕i∈Q0eiΛei[(2n + 1)k + t], when t = 0, 2, and V 3k+1 =
⊕a∈Q1ei(a)Λet(a)[(2n+1)k+1], for all k ≥ 0. Then the space HHn(Λ) is isomorphic, as a
(length)graded K-vector space, to the n-th cohomology space of the complex V •, for each
n ≥ 0.

Moreover, viewing ⊕i∈Q=0eiΛei and ⊕a∈Q1ei(a)Λet(a) as subspaces of Λ, the differentials
of V • act as follows for each oriented cycle c at i and each path p : i(a)→ · · · → t(a) :

a) δ∗(c) = ai−1c+ cāi−1 + āic+ cai

b) R∗(p) = pā+ āp

c) k∗(c) = 0 (i.e. k∗ is the zero map)

where we convene that a0 = ā0 = ǫ and an = ān = 0
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As a consequence we get that HH i+3(Λ) ∼= HH i(Λ) ∀i ≥ 0 via an isomorphism
h : Ω3

Λe(Λ)
∼
−→ Λ. Note that the isomorphism HH0(Λ) ∼= HH3(Λ) is due to the fact

that k∗ = 0 and hence HH3(Λ) = Ker(δ∗) = HH0(Λ). This is contrast to the case of
Char(K) 6= 2, where HH0(Λ) 6∼= HH6(Λ).

The following result gives us the description of the structure of the classical and stable
Hochschild in terms of the Hochschild cohomology.

Corollary 5.5.5. There are isomorphisms of graded HH∗(Λ)-modules:

HH∗(Λ) ∼= HH∗(Λ)[3]

HH−∗(Λ)
∼= D(HH∗(Λ))

and isomorphisms of graded HH∗(Λ)-modules HH−∗(Λ) ∼= D(HH∗(Λ)).

Proof. HH∗(Λ) ∼= HH∗(Λ)[3] since Λ is periodic of period 3. On the other hand, Λ is
2-CY Frobenius and using a result by Eu and Schedler (see [35] and also Theorem 4.5.7
of this thesis), we have

D(HH∗(Λ)) ∼= HH∗(Λ)[5]

HH−∗(Λ)
∼= HH∗(Λ)[2]

Then the isomorphisms in the statement follow. The graded Frobenius condition of
HH∗(Λ) follows from the theorem mentioned before.

On the other hand, due to the fact thatD(Λ) ∼= Λ, we have an isomorphismHH−∗(Λ) ∼=
D(HH∗(Λ,D(Λ))) ∼= D(HH∗(Λ)) .

5.5.2 The ring structure of HH∗(Λ)

In this subsection we determine explicitly the dimension and appropriate basis of each
space HH i(Λ) using the complex V • given above. We start with two lemmas which are the
correspondents of Lemma 5.3.1 and Proposition 5.3.3 for the case when Char(K) = 2. The
proof is identical, with the suitable adaptation. For instance R∗

µ = R∗ and x0 =
∑n−1

i=0 aiāi
in the new situation.

Lemma 5.5.6. Im(R∗) is a subspace of codimension n in ⊕i∈Q0eiJei. In particular, we
have:

dim(Im(R∗)) = n2 − n.

Proposition 5.5.7. The center of Λ is isomorphic to K[x0,x1,...xn]
I , where I is the ideal of

K[x0, x1, . . . xn] generated by xn0 and all the products xixj with (i, j) 6= (0, 0). In particular,
dim(HH0(Λ)) = 2n.

We are now ready to give the dimension of all cohomology spaces. Note the difference
with respect to case of characteristic 6= 2.
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Proposition 5.5.8. The equality dim(HH i(Λ)) = dim(HHi(Λ)) = dim(HHj(Λ)) =
dim(HHj(Λ)) = 2n holds for all i ≥ 0 and j ∈ Z.

Proof. Using Corollary 5.5.5, the computation of the dimensions of the Hochschild homo-
logy spaces can be directly deduced from the computation of the Hochschild cohomology
spaces.

On the other hand, the proof of Corollary 5.2.11, which is still valid in characteristic 2,
shows that P (Λ,Λ) = Im(k∗µ). Since k

∗
µ = k∗ = 0 in our case, we conclude that P (Λ,Λ) = 0

and hence HH i(Λ) = HH i(Λ) for every i ≥ 0. Since HH i(Λ) = HHi+3(Λ), for every
integer i ∈ Z, it is enough to prove that dim(HH i(Λ)) = 2n, for i = 0, 1, 2.

By the previous lemma, dim(HH0(Λ)) = 2n. To deal with HH1(Λ) we consider

0 −→ Ker(R∗) −→ ⊕a∈Q1ei(a)Λet(a)
R∗

−→ Im(R∗) −→ 0

0 −→ Z(Λ) →֒ ⊕i∈Q0eiΛei −→ Im(δ∗) −→ 0

Since HH1(Λ) ∼=
Ker(R∗)
Im(δ∗) , we then get that dim(HH1(Λ)) = dim(⊕a∈Q1ei(a)Λet(a)) −

dim(Im(R∗)) − (dim(⊕i∈Q0eiΛei) − dim(Z(Λ))) = [2n2 − (n2 − n)] − [(n2 + n) − 2n] =
(n2 + n) − (n2 − n) = 2n, using Corollary 5.2.5 for the formulas for the dimensions of
HomΛe(P,Λ) and HomΛe(Q,Λ) which are still valid here.

Finally, HH2(Λ) ∼= Coker(R∗) ∼=
⊕i∈Q0

eiΛei
Im(R∗) and thus dim(HH2(Λ)) = n2 + n− (n2 −

n) = 2n.

We next identify the structure of the HH i(Λ) as Z(Λ)-modules. In the statement and
proof the elements xi which appear are as in Proposition 5.5.7.

Proposition 5.5.9. As Z(Λ)-modules, HHj(Λ) is isomorphic to HHj+3(Λ) for all j ≥ 0.
In particular HH3k(Λ) is a free Z(Λ)-module of rank 1, for all k ≥ 0. Moreover:

1. The Z(Λ)-module HH1(Λ) has two generators y0 and y1, subject to the relations
x1y0 = xn−1

0 y1 and xiyj = 0, for i = 1, ..., n, j = 0, 1 and (i, j) 6= (1, 0).

2. The Z(Λ)-module HH2(Λ) has n + 1 generators z, z1, ..., zn subject to the relations
xiz = 0, x0zi = 0 and xjzi = δijx

n−1
0 z, for all i, j = 1, ..., n (here δij is the Kronecker

symbol).

Proof. The initial statement is a direct consequence of Proposition 5.5.4 and the equality
HH0(Λ) = Z(Λ).

In order to prove assertion 1, we put y0 = e1 + Im(δ∗), y1 = ǫ + Im(δ∗) ∈ HH1(Λ).
Viewing Soc(Λ) as an ideal of Z(Λ), we have Soc(Λ)y1 = 0 (equivalently xiy1 = 0 for all
i = 1, ..., n) since Soc(Λ)ǫ = 0. Then the assignment a ay1 gives a surjective morphism
K[x0]
(xn0 )

∼=
Z(Λ)
Soc(Λ) ։ Z(Λ)y1 of Z(Λ)-modules. We shall prove that it is injective. Note that

the equality xk0y1 = 0 is equivalent to saying that ǫ2k+1 ∈ Im(δ∗). So the injectivity will
follow from something more general that we shall prove, namely that ei(ǫ)Λet(ǫ)∩ Im(δ∗) =

0. Indeed take the projection ⊕a∈Q1ei(a)Λet(a)
πǫ−→ ei(ǫ)Λet(ǫ) and consider the composition
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⊕i∈Q0eiΛei
δ∗
−→ ⊕a∈Q1ei(a)Λet(a)

πǫ−→ ei(ǫ)Λet(ǫ)

This map vanishes on eiΛei, for i 6= 1, and takes c ǫc+ cǫ, for each cycle at 1. But
ǫc+ cǫ = 0 since e1Λe1 is a commutative algebra and Char(K) = 2.

On the other hand, since xi = wi we readily get that xiy0 = 0 for i 6= 1. As for
i = 1 we have x1y0 = ǫ2n−1 + Im(δ∗) = xn−1

0 y1. It follows that the Z(Λ)y0 + Z(Λ)y1
is generated as a K-vector space by B := {y0, x0y0, . . . , x

n−1
0 y0} ∪ {y1, x0y1, . . . x

n−1
0 y1}.

But if
∑

0≤k<n λkx
k
0y0 +

∑
0≤l<n µlx

l
0y1 = 0, with λk, µl ∈ K, then

∑
0≤k<n λkǫ

2k +∑
0≤l<n µlǫ

2l+1 ∈ Im(δ∗) and the previous paragraph shows that then
∑

0≤k<n λkǫ
2k +∑

0≤l<n µlǫ
2l+1 = 0. This can only happen if λk = 0 = µl, for all 0 ≤ k, l < n. It

follows that B is a basis of Z(Λ)y0 + Z(Λ)y1 and, by Proposition 5.5.8, we then have
Z(Λ)y0 + Z(Λ)y1 = HH1(Λ).

We finally prove assertion 2. We freely use the part of the proof of Lemma 5.3.1
concerning R∗

µ, which is valid here for R∗ since R∗ = R∗
µ in characteristic 2. By Lemma

5.5.6, we have a chain

Im(R∗) ( ⊕i∈Q0eiJei ( ⊕i∈Q0eiΛei,

with each term of codimension n in the next. This implies that a basis of HH2(Λ) =
Ker(k∗)
Im(R∗) =

⊕i∈Q0
eiΛei

Im(R∗) is given by B′ = {ei + Im(R∗) : i ∈ Q0} ∪ B
′′, where B′′ is a basis of

⊕i∈Q0
eiJei

Im(R∗) .
By looking at the proof of Lemma 5.3.1, we know that the matrix of the induced

map R∗ = R∗
µ : V +

2m−2 −→ W2m−1 with respect to the there given bases is an upper
triangular square matrix whose first column is zero. This implies that ǫ2m−1 6∈ Im(R∗),
for all m = 1, ..., n. Furthermore, due to the fact that R∗ is a graded map, it implies that

{ǫ+ Im(R∗), ǫ3 + Im(R∗), ..., ǫ2n−1 + Im(R∗)} =: B′′ is a basis of
⊕i∈Q0

eiJei
Im(R∗) .

We now put z = ǫ+Im(R∗), and then ǫ2m−1+Im(R∗) = xm0 z in HH2(Λ). We also put
zi = ei + Im(R∗). Then B′ = {z1, ..., zn} ∪ {z, x0z, ..., x

n−1
0 z} is a basis of HH2(Λ). We

immediately get that xiz = 0 since wiǫ = 0 in Λ. On the other hand xjzi = wjei+Im(R∗) =
0, unless j = i, a case in which we have xjzj = wj+Im(R∗) = w1+Im(R∗) = ǫ2n−1+Im(R∗)
(see Remark 3.2 of [1]). But we have ǫ2n−1+Im(R∗) = xn−1

0 z so that xjzi = δijx
n−1
0 z, for

all i, j ∈ {1, ..., n}.
Finally, the induced map R∗ = R∗

µ : V2k−1 −→ W2k is surjective, for all k > 0, which

implies that xk0zi = (aiāi)
k + Im(R∗) = 0+ Im(R∗), and hence xk0zi = 0, for all i = 1, ..., n

and k > 0.

Remark 5.5.10. The following diagrams depict the structure of HH1(Λ) and HH2(Λ)
as Z(Λ)-modules:
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HH1(Λ):

y0

·x1

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
y1

x0y0 x0y1

...
...

xn−1
0 y0 xn−1

0 y1

HH2(Λ):

z

❈❈
❈❈

❈❈
❈❈

x0z

❆❆
❆❆

❆❆
❆❆

. . .

❈❈
❈❈

❈❈
❈❈

❈ z1

·x1

z2

·x2⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

· · · zn

·xn
❥❥❥❥

❥❥❥❥
❥❥❥❥

❥❥❥❥
❥❥❥❥

❥❥❥

xn−1
0 z

We have now the following correspondent of Proposition 5.3.10, which is an immediate
consequence of the proof of the previous lemma:

Proposition 5.5.11. The following are bases for the HH i(Λ) (i = 0, 1, 2):

1. For HH0(Λ) = Z(Λ): {1, x0, ..., x
n−1
0 } ∪ {x1, ..., xn}, where x0 =

∑n−1
i=0 aiāi and

xk = wk, for all k = 1, ..., n.

2. For HH1(Λ) = Ker(R∗)
Im(δ∗) : {y0, x0y0, ..., x

n−1
0 y0}∪{y1, x0y1, ..., x

n−1
0 y1}, where yk =

ǫk + Im(δ∗) (convening that ǫ0 = e1).

The element yk is represented by the only morphism of Λ-bimodules ỹk : Q −→ Λ
such that ỹk(ei(a) ⊗ et(a)) = δaǫǫ

k.

3. For HH2(Λ) = Ker(k∗)
Im(R∗) : {z, x0z, ..., x

n−1
0 z} ∪ {z1, ..., zn}, where the zk = ek +

Im(R∗) (k = 1, ..., n) and z = ǫ+ Im(R∗). In this case:

(a) The element zk is represented by the only morphism z̃k : P −→ Λ such that
z̃k(ei ⊗ ei) = δikek, for all i ∈ Q0.
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(b) The element z is represented by the only morphism z̃ : P −→ Λ such that
z̃(ei ⊗ ei) = δ1iǫ, for all i ∈ Q0.

The above bases will be called the canonical bases of the HHj(Λ), for j = 0, 1, 2.
Given the ’equality’ HH3(Λ) = HH0(Λ) = Z(Λ), we denote 1 ∈ Z(Λ) by h when view it
as an element of HH3(Λ). With that notation, multiplication by hk in HH∗(Λ) gives an

isomorphism HHj(Λ)
∼=
−→ HH3k+j(Λ) for j = 0, 1, 2. The canonical basis of HH3k+j will

be, by definition, the image of the canonical basis of HHj(Λ) by this isomorphism.

Lemma 5.5.12. In the algebra HH∗(Λ), we have equalities

y20 = z1 y0y1 = z y21 = 0.

Moreover, multiplication by y1 gives an epimorphism of Z(Λ)-modules ρ : Z(Λ)y0 ։ Z(Λ)z
whose kernel is Kx1y0.

Proof. The morphism ŷk : ⊕a∈Q1Λei(a) ⊗ et(a)Λ −→ ⊕i∈Q0Λei ⊗ eiΛ determined by the

rule ŷk(ei(a) ⊗ et(a)) = δǫaǫ
k ⊗ e1 satisfies that u ◦ ŷk = ỹk, for k = 0, 1. The equalities in

the statement will follow from commutativity of the next diagram:

P
R //

αk

��

Q

ŷk
��

Q
δ

// P

,

where αk : ⊕i∈Q0Λei ⊗ eiΛ −→ ⊕a∈Q1Λei(a) ⊗ et(a)Λ is the only morphism of Λ-bimodules

which takes ei ⊗ ei to δi1ǫ
k ⊗ e1. Then y

2
0 is represented by the composition

⊕i∈Q0Λei ⊗ eiΛ
α0−→ ⊕a∈Q1Λei(a) ⊗ et(a)Λ

ỹ0
−→ Λ.

But we have ỹ0 ◦ α0(ei ⊗ ei) = δi1e1 = z̃1(ei ⊗ ei), for each i ∈ Q0, and so y20 = z1.

Similarly we get that y1y0 is represented by morphism of Λ-bimodules ỹ1 ◦ α0 :
⊕i∈Q0Λei ⊗ eiΛ −→ Λ, which acts as ỹ1 ◦ α0(ei ⊗ ei) = ỹ1(δi1(e1 ⊗ e1)) = δi1ǫ while
y21 is represented by the only morphism ỹ1 ◦ α1 : ⊕i∈Q0Λei ⊗ eiΛ −→ Λ which acts as
ỹ1 ◦ α1(ei ⊗ ei) = ỹ1δi1ǫ(ei ⊗ ei) = δi1ǫ

2. The first one is clearly represents z ∈ HH2(Λ),
so that y1y0 = z, while y21 = 0 since ǫ2 ∈ Im(R∗) by the proof of Lemma 5.3.1.

The existence of the epimorphism ρ of the final statement follows from the equality
y0y1 = z. From the proof of Lemma 5.5.9 we know that dim(Z(Λ)z) = n while a basis
of Z(Λ)y0 as K-vector space is {y0, x0y0, ..., x

n−1
0 y0, x1y0}. Since ρ(x1y0) = ρ(xn−1

0 y1) =
xn−1
0 y21 = 0 it follows that Ker(ρ) = Kx1y0.

Lemma 5.5.13. The following equalities hold in the ring HH∗(Λ):

y0z =
n∑

j=1

(n− j + 1)xjh y0zk = (n− k + 1)xn−1
0 h y1zk =

n∑

j=1

(n−max(k, j) + 1)xjh.
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Proof. The morphism ẑk : ⊕i∈Q0Λei ⊗ eiΛ −→ ⊕i∈Q0Λei ⊗ eiΛ given by ẑk(ei ⊗ ei) =
δik(ek ⊗ ek) satisfies that u ◦ ẑk = z̃k, for k = 1, ..., n. Bearing in mind that Char(K) = 2,
the proof of Lemma 5.3.9 gives a commutative diagram:

P
k //

fk
��

P

ẑk
��

Q
δ

// P

,

where fk(ei ⊗ ei) =
∑

x∈eiBek
hx for all k, i ∈ Q0, where hei = 0, for all i ∈ Q0. Here the

hx are as in the proof of Lemma 5.4.4

Since ỹ0 is a graded map of degree 0 we get that ỹ0 ◦ fk(ei⊗ ei) is a linear combination
of elements of degree 2n − 2 in eiΛei. This implies that ỹ0 ◦ fk(ei ⊗ ei) = 0 ∀i 6= 1. On
the contrary, for i = 1 we note that if x = ǫja1...ak−1 ∈ e1Bek, then ỹ0(hx) = jǫ2n−2. It
follows that

ỹ0fk(e1 ⊗ e1) = ỹ0(
∑

x∈e1Bek

hx) =
∑

x∈e1Bek

ỹ0(hx) =

2(n−k)+1∑

j=1

jǫ2(n−2)

= (n− k + 1)[2(n − k) + 1]ǫ2(n−2) = (n − k + 1)ǫ2(n−2).

If we now consider ỹ1, it is clear that for each x ∈ eiBek, ỹ1(hx) = mωi where m is
the number of times that ǫ appears in x. On one hand, if i = 1 then, arguing as in the
foregoing paragraph, we have

∑
x∈e1Bek

ỹ1(hx) = (n − k + 1)ω1. On the other hand, if
i 6= 1, then

∑

x∈eiBek

ỹ1(hx) =

n−max(i,k)∑

t=0

ỹ1(hāi−1···ā1ǫ
2t+1a1 · · · ak−1) =

n−max(i,k)∑

t=0

(2t+ 1)ωi =

(n−max(i, k) + 1)ωi.

Therefore we conclude that

y0zk = (n− k + 1)xn−1
0 h and y1zk =

n∑

i=1

(n−max(i, k) + 1)xih.

Finally, the lat equality together with Lemma 5.5.12 give

y0z = y20y1 = z1y1 = y1z1 =

n∑

i=1

(n − i+ 1)xih.

We are now ready to prove the main theorem of the paper.
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PROOF OF THE THEOREM 5.5.1: Proceeding as in the last paragraph of Proposition
5.3.10, one easily sees that the length degrees of the proposed generators are as indicated.
On the other hand, ”graded commutativity” and ”commutativity” are synonymous in
characteristic 2. Moreover, since Λ is periodic of period 3 it follows that HH∗(Λ) is
generated as an algebra by (

⋃
0≤i≤2HH

i(Λ)) ∪ {h}, where h ∈ HH3(Λ) is the element

given by a fixed isomorphism Ω3
Λ2(Λ)

∼=
−→ Λ. From these comments and Proposition

5.5.9 we get that {x0, x1, ..., xn, y0, y1, z, z1, ..., zn, h} is a set of homogeneous generators of
HH∗(Λ) as an algebra. But, due to Lemma 5.5.12, we can drop z and z1 from the list. In
that way, one gets the set of generators and their degrees as in the statement.

By Proposition 5.5.7 and Proposition 5.5.9, the generators satisfy the relations in i)
and ii). Also Proposition 5.5.9 and Lemma 5.5.12 give the relations in iii). On the other
hand, using this latter lemma and Lemma 5.5.13, we see that

y30 = z1y0 = nxn−1
0 h

and

y20y1 = z1y1 = y1z1 =
∑

1≤j≤n

(n− j + 1)xjh.

The other two relations in iv) follow from Lemma 5.5.13.
It remains to check the relations in v), the rest of the proof is routine. From Lemma

5.5.9, we easily get that Soc(HH1(Λ)) = Kxn−1
0 y0+Kx

n−1
0 y1 = Kxn−1

0 y0+Kx1y0 (socle as
Z(Λ)-module). This implies that Soc(HH4(Λ)) = Kxn−1

0 y0h+Kx1y0h. We claim that this
socle contains every product zkzl, for which it will be enough to see that xizkzl = 0 for all
indices i, k, l. This is a direct consequence of Proposition 5.5.9 except, perhaps, for the case
i = k = l. But in this case, this same proposition gives xkzkzk = xn−1

0 zzk = xn−1
0 zkz = 0.

We put N =
∑

2≤k,l≤nKzkzl. We shall prove that (N+Kxn−1
0 y0h)∩Kx1y0h = 0. For

that we need to give a morphism of Λ-bimodules representing each product zkzl ∈ HH
4(Λ).

Following the notation of the proof of Lemma 5.5.13, we consider the commutative diagram

Q
δ //

gk
��

P
k //

fk
��

P

ẑk
��

P
R

// Q
δ

// P

that is needed to compute zlzk. Although we do not know gk explicitly, recall that fk(ei⊗
ei) =

∑
x∈eiBek

hx, so that fk is a graded map of degree 2n − 2. Since δ and R are both
graded maps of degree 1 and the left square is required to be commutative we can choose
gk to be graded of degree 2n− 2, so that gk(ei(a)⊗ et(a)) =

∑n
j=1 γj ⊗µj where γj ∈ ei(a)Λ

and µj ∈ Λet(a) are elements such that deg(γj) + deg(µj) = 2n− 2.
Since the product zlzk will be represented by the composition

⊕a∈Q1Λei(a) ⊗ et(a)Λ
gk−→ ⊕i∈Q0Λei ⊗ eiΛ

z̃l−→ Λ

we have z̃l ◦ gk(ei(a) ⊗ et(a)) =
∑n

j=1 γj z̃l(et(γj ) ⊗ ei(µj ))µj, which is a linear combination
of paths of length 2n − 2 in ei(a)Λet(a). Therefore, it is zero whenever a 6= ǫ. Putting
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vkl = (z̃l ◦ gk)(ei(ǫ) ⊗ et(ǫ)), which is an element of degree 2n − 2 of e1Λe1, we get the
equality ∑

2≤k,l≤n

λklzkzl + λxn−1
0 y0h =

∑

2≤k,l≤n

λklvkl + λǫ2n−2 + Im(δ∗)

in Ker(R∗)
Im(δ∗) = HH4(Λ), for all λkl and λ in K. That implies that

∑
2≤k,l≤n λklzkzl +

λxn−1
0 y0h = v + Im(δ∗), for some element v ∈ e1Λe1 of degree 2n − 2.
On the other hand, for any µ ∈ K, we have µx1y0h = µǫ2n−1 + Im(δ∗). If we have an

equality ∑

1≤k,l≤n

λklzkzl + λxn−1
0 y0h = µx1y0h,

then the element v − µǫ2n−1 ∈ Im(δ∗). Since δ∗ is a graded map and v and µǫ2n−1 are
homogeneous elements of different length degree it follows that v ∈ Im(δ∗) and µǫ2n−1 ∈
Im(δ∗). The latter is equivalent to saying that µx1y0h = 0 in HH4(Λ), which can only
happens if µ = 0. This proves the desired equality (N +Kxn−1

0 y0h) ∩Kx1y0h = 0.
The last two paragraphs together with Lemma 5.5.12 and the canonical isomorphism

HH1(Λ)
∼=
−→ HH4(Λ) show that if ρ : Z(Λ)y0h ։ Z(Λ)zh is the epimorphism of Z(Λ)-

modules given by u y1u, then the composition

ρ̃ : N +Kxn−1
0 y0h →֒ Z(Λ)y0h

ρ
։ Z(Λ)zh

is a monomorphism. But, using the commutativity of HH∗(Λ), Lemma 5.5.13 and Propo-
sition 5.5.9, we have an equality

ρ̃(zkzl − (n−max(k, l) + 1)xn−1
0 y0h) = y1zkzl − (n−max(k, l) + 1)xn−1

0 y0y1h

=
∑

1≤j≤n

(n−max(j, k) + 1)xjhzl − (n−max(k, l) + 1)xn−1
0 zh

=
∑

1≤j≤n

(n−max(j, k) + 1)xjzlh− (n−max(k, l) + 1)xn−1
0 zh

= (n−max(l, k) + 1)xn−1
0 zh− (n −max(k, l) + 1)xn−1

0 zh = 0.

It follows that zkzl− (n−max(k, l) + 1)xn−1
0 y0h = 0, for all k, l = 1, ..., n, from which the

relations v) in the statement follow.

Corollary 5.5.14. Let us fix the presentation of HH∗(Λ) given by Theorem 5.5.1. A
presentation of HH∗(Λ) is obtaining from it by doing the following:

1. Add a new generator h′ of degree −3 and the relation hh′ = 1.

2. Leave all the other generators and relations unchanged.

Proof. It is immediately seen that the graded commutative algebra given by the just
described generators and relations is isomorphic to HH∗(Λ)(h), whence isomorphic to
HH∗(Λ) (see Proposition 4.5.6, which is also valid when Char(K) = 2).
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Chapter 6

The Hochschild cohomology ring
of Bn

6.1 Introduction

6.2 Motivation

We conclude this dissertation by describing the multiplicative structure of the Hochschild
cohomology ring HH∗(Λ) of the generalized preprojective algebra Λ = Bn over a field of
characteristic 6= 2. This algebra together with the algebra Ln, studied in the previous
chapter, form the generalized preprojective algebras of type An. Thus, the results in
the present chapter complete the problem of determining the multiplicative structure of
HH∗(Λ) for the preprojective and generalized preprojective algebras Λ of type An.

As for Ln, it is known and follows from Theorem 3.4.12 that Bn has (Ω -)period 6 and,
hence, the Hochschild cohomology spaces also have period 6.

Our results show the surprisingly different behavior of HH∗(Λ) when n is odd and
when n is even. In case n is odd, many Hochschild cohomology groups vanish and, when
char(K) does not divide n, the ring HH∗(Λ) can be generated by just three elements.
The situation is rather different in case n is even, where a minimal set of generators of
HH∗(Λ) involves all the degrees from 0 to 6. Moreover, when n is odd, HH∗(Λ) is always
commutative, while, when n is even, it is only commutative when char(K) divides n.

6.3 Outline of the chapter

The organization of this chapter is similar to that of Chapter 5. However, unlike the
previous chapter, we will use here the full strength of covering theory and the results
from Chapters 1-3. In Section 6.5 we look at the generalized preprojective algebra Bn.
We begin this section by providing some more information of the mesh algebra B of the
stable translation quiver ZA2n−1. Specifically, we provide a combinatorial criterion to
determine when e(k,i)Be(m,j) 6= 0, for any two given vertices (k, i) and (m, j) of ZA2n−1.
In the rest of this section we study the algebra Λ = Bn and, in particular, we provide the
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cochain complex of graded K-vector spaces which is later used to compute the Hochschild
cohomology of Bn. In Section 6.6 we give the structure of the Hochschild cohomology
spaces HH i(Λ) as modules over Z(Λ) = HH0(Λ). Finally, Section 6.7 is devoted to
compute the structure of the Hochschild cohomology ring HH∗(Λ) as a bigraded algebra
over a field of characteristic 6= 2 by means of generators and relations, distinguishing the
cases when n is either even or odd.

6.4 Notation

In this chapter, unless otherwise stated, Λ will be the generalized preprojective algebra
Bn over a field K with characteristic 6= 2. We will follow the notation and terminology
given in Chapter 4.

6.5 The generalized preprojective algebra Bn

6.5.1 The mesh algebra B of ZA2n−1

In this section we present some results on the Galois cover of Bn, that is, the mesh algebra
B of the stable translation quiver ZA2n−1. For its definition and basic properties the reader
is referred to Chapter 2, Section 2.3. We also point out that in this chapter we will use the
change of relations given in Chapter 2, Section 2.3.3. Then, the mesh algebra B of ZA2n−1

is given by the stable translation quiver ZA2n−1 and, for each vertex (k, i) ∈ (ZA2n−1)0,
we have a relation r(k,i) where

r(k, i) =
∑

t(a)=(k,i)

(−1)s(σ(a)a)σ(a)a

and s is the corresponding signature map (see Chapter 2, Section 2.3.3) From now on in
this chapter these r(k, i) will be the mesh relations for us. Our next goal is to identify
those pairs [(k, i), (m, j)] of vertices of ZA2n−1 for which e(k,i)Be(m,j) 6= 0, identifying the
dimension of this space. Notice that when (k, i), (m, j) ∈ (ZA2n−1)0 are any two vertices,
if there are any paths between them, they all go in just one direction and have the same
length. For that reason, it is appropriate to call distance between the two vertices, denoted
d[(k, i), (m, j)], to the common length of those paths, when they exist. In what follows,
the orientation of the arrows is the one given in Subsection 2.3.1. That is, the canonical
k-slice of ZA2n−1 is (k, 1) −→ (k, 2) −→ · · · −→ (k, 2n − 1).

Proposition 6.5.1. Suppose that (k, i), (m, j) are any two vertices in ZA2n−1. Then,
there is a path (k, i) → ... → (m, j) in ZA2n−1 if, and only if, max{0, i − j} ≤ m − k.
Moreover, in this case, d[(k, i), (m, j)] = 2(m− k) + (j − i).

Proof. Let p = (k, i) → ... → (m, j) be a path in ZA2n−1. We prove by induction on its
length l that max{0, i − j} ≤ m − k. For l = 0 it is clear, so we assume that l > 0.
Since there are at most two arrows starting at (k, i), namely (k, i) −→ (k, i + 1) and
(k, i)→ (k+1, i−1), we can consider that there are either a path (k, i+1) → ...→ (m, j)
or a path (k+ 1, i− 1)→ ...→ (m, j), each one of length l − 1. The induction hypothesis
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says that max{0, i+ 1− j} ≤ m− k, in the first case, and max{0, i− 1− j} ≤ m− k − 1,
in the second one. From both of them it follows that max{0, i − j} ≤ m − k, and hence
this inequality follows from the existence of the path p.

Conversely, the inequality max{0, i − j} ≤ m− k is equivalent to say that k ≤ m and
either i ≤ j or i > j and i − j ≤ m − k. We then assume that k ≤ m. If i ≤ j then we
have an obvious path (k, i) −→ ... → (k, j) → ... → (m, j). If i > j and i − j ≤ m − k,
then we have a path (k, i) → (k + 1, i − 1) → ... → (k + i − j, j) → ... → (m, j), because
k+ i− j ≤ m. Moreover, either one of these two paths has length 2(m− k) + (j − i) and,
hence, this is the distance between (k, i) and (m, j).

Definition 21. Let us look at ∆ = A2n−1 as a subquiver of A∝
∝ : ...→ −1→ 0→ 1→ ...

and, hence, at Z∆ as a subquiver of ZA∝
∝. Given (k, i), (m, j) ∈ (Z∆)0 such that there is a

path in Z∆ from (k, i) to (m, j) (i.e. max{0, i− j} ≤ m− k), we call imaginary rectangle
based on (k, i) and (m, j) to the rectangle in ZA∝

∝ with vertices (k, i), (m,k−m+i), (m, j)
and (k,m− k+ j). We will say that the top (resp. bottom) of the rectangle can be built in
ZA2n−1 when the vertex (k,m− k+ j) (resp, (m,k−m+ i)) is in ZA2n−1. That is, when
m − k + j ≤ n (resp. k −m + i ≥ 1). We will say that the rectangle can be constructed
within ZA2n−1 when the top and the bottom of the imaginary triangle can be built in
ZA2n−1.

The following lemma admits a symmetric one. Both proofs are very easy and we will
omit them.

Lemma 6.5.2. Let q : (k, i)→ (k+1, i−1) → ...→ (m,k−m+i) and p : (m,k−m+i) →
... → (m, j) paths in Γ = ZA2n−1 of positive length consisting of downward arrows and
upward arrows, respectively. The following assertions are equivalent:

1. The product qp is nonzero in the mesh algebra B = KΓ/I

2. The top of the rectangle based on (k, i) and (m, j) can be built in ZA2n−1

In that case, all paths from (k, i) to (m, j) in Γ are equal modulo the mesh relations.

The following result is a criterion to determine when there exists a path between any
two given vertices in B. Moreover, in such case, the path is unique up to sign, in B.

Theorem 6.5.3. Let ∆ = A2n−1, let Γ = Z∆ its associated translation quiver and B the
associated mesh algebra. Let (k, i) and (m, j) be vertices in Γ. Then, the space e(k,i)Be(m,j)
is nonzero if, and only if, max{0, i − j} ≤ m − k ≤ min{i − 1, 2n − 1 − j}. In this case
one has dim(e(k,i)Be(m,j) = 1.

Proof. Given any two vertices (k, i), (m, j) ∈ Γ0, any path from (k, i) to (m, j) in Z∆ is a
product of paths q1p1...qrpr, where the qj consist only of downward arrows, the pi consist
only of upward arrows, and one has length(pi) > 0, for i = 1, ..., r− 1, and length(qj) > 0,
for j = 2, ..., r. If such a path exists then, by Proposition 6.5.1, max{0, i − j} ≤ m − k.
On the other hand, by using the previous lemma and its symmetric, we see that if the
path is nonzero in B then the imaginary rectangle based on (k, i) and (m, j) can be built



140 Chapter 6

in ZA2n−1. Then we have m− k + j ≤ 2n − 1 and k −m+ i ≥ 1, which is equivalent to
say that m− k ≤ min{i− 1, 2n − 1− j}. Therefore we get that max{0, i − j} ≤ m− k ≤
min{i− 1, 2n − 1− j}.

Conversely, if max{0, i − j} ≤ m − k ≤ min{i − 1, 2n − 1 − j} then we have a path
(k, i) → ... → (m, j) in Z∆, due to Proposition 6.5.1. Moreover, by definition 21, the
imaginary rectangle based on (k, i) and (m, j) can be built in ZA2n−1. By Lemma 6.5.2,
we get a path (k, i)→ ...→ (m, j) which is nonzero in B and is unique modulo the mesh
relations.

6.5.2 Definition of Bn

In the sequel, Λ will be generalized preprojective algebra Bn over a field K of characte-
ristic different from 2, and Q0 and Q1 will denote the sets of vertices and arrows in Λ,
respectively. We will see Λ as the orbit algebra Λ = B/ < ρτ > where B, ρ and τ are the
mesh algebra and the automorphisms of ZA2n−1 described in Chapter 2, Section 2.3.1.
We will divert from the notation in [25] and we will put i = [(1, i)], for n ≤ i ≤ 2n − 1,
and i = [(1+n− i, i)], for 1 ≤ i ≤ n, where [(k, i)] denotes the ρτ -orbit of the vertex (k, i).
Then, the generalized preprojective algebra Bn is the finite dimensional algebra given, up
to isomorphism, by the quiver

n+ 1

βn−1||①①
①①
①①
①①

αn+1 // n+ 2 //

βn+1

��✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞✞
✞

· · · // 2n− 2
α2n−2 // 2n− 1

β2n−2

��☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎
☎☎

n

αn

<<①①①①①①①①

αn−1

""❋
❋❋

❋❋
❋❋

❋

n− 1
βn

bb❋❋❋❋❋❋❋❋

αn−2

// n− 2

βn−2

[[✼✼✼✼✼✼✼✼✼✼✼✼✼✼✼
// · · · // 2 α1

// 1

β1

\\✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

and subject to all the commutativity relations and the monomial relations of length 2
ending at the extreme vertices 1 and 2n − 1.

Recall from [25] that the quiver Q of Λ is also a translation quiver whose AR translation
and polarization are induced from those of ZA2n−1. Precisely, the action of the Auslander-
Reiten translation of Λ, also denoted by τ , is given by τ(i) = 2n − i for all i ∈ Q0. As
for the arrows, it is given by τ(αi) = α2n−1−i and τ(βi) = β2n−1−i for all i ∈ Q0. In
regard to the polarization σ, we have that σ(αi) = βi and σ(βi) = α2n−1−i for all i ∈ Q0.
Observe then that the equality σ2(a) = τ(a) holds for each arrow a ∈ Q1. Also note that
if X ⊆ (ZA2n−1)1 is the set of arrows defining the signature map, then its image X̄ by the
pushdown functor B −→ Λ consists of the arrows in Q that appear in the ’crossing path’

2n − 1→ 2→ 2n − 3→ · · · → n− 1→ n when n is odd

and

1→ 2n− 2→ 3→ · · · → n− 1→ n when n is even
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However, for unification purposes (see for instance Lemma 6.5.9 and Proposition 6.5.10),
whenever n is even we will consider τ(X) instead of X and, in such case, X̄ consists of
the arrows appearing in the following path

2n− 1→ 2→ 2n− 3→ · · · → n+ 1→ n

Notice that, also for the new considered X̄, the relations for Λ are those of the form∑
t(a)=i(−1)

s(σ(a)a)σ(a)a. Up to sign, they are exactly the commutativity relations plus
the zero relations β2n−2α2n−2 and β1α1. For the sake of simplicity, the arrows βi will be
called crossing arrows and the arrows αi will be called noncrossing arrows.

Recall from Proposition 3.4.3 and Corollary 3.4.5 that, with their canonical gradings,
both B and Λ are graded pseudo-Frobenius and we have isomorphisms of graded bimo-
dules D(B) ∼= 1Bη[2n − 2] and D(Λ) ∼= 1Λη[2n − 2], where η is the respective Nakayama
automorphism in each case. In particular, we get:

Remark 6.5.4. In the above setting, if A is either B or Λ, then the duality isomorphism
D(A) ∼= 1Aη[2n− 2] gives an isomorphism of K-vector spaces

eiA2n−2−deη(j) ∼= ei (1Aη[2n− 2])−d ej
∼= eiD(A)−dej ∼= D(ejAdei),

for all vertices i, j ∈ Γ0 and natural number d.

6.5.3 The Cartan matrix

Due to the fact that B is the universal Galois covering of Λ, if (k, i) and (m, j) are vertices
of ZA2n−1 and d is a natural number, then e[(k,i)]Λde[(m,j)] 6= 0 if, and only if, there is a
(unique) integer r such that d[(ρτ)r(k, i), (m, j)] = d and e(ρτ)r(k,i)Be(m,j) 6= 0. We then
introduce the following rather useful sets of integers.

Definition 22. Let i, j ∈ Q0 be vertices. If i, j ≥ n, the set X+(i, j) (resp. X−(i, j)) will
consist of the integers s such that e(ρτ)2s(1,i)Be(1,j) 6= 0 (resp. e(ρτ)2s+1(1,i)Be(1,j) 6= 0).

Similarly, if i ≥ n ≥ j then Z+(i, j) (resp. Z−(i, j)) will denote the set of integers s
such that e(ρτ)2s(1,i)Be(1+n−j,j) 6= 0 (resp. e(ρτ)2s+1(1,i)Be(1+n−j,j) 6= 0).

Lemma 6.5.5. Let i, j ∈ Q0 be vertices and d be a natural number. The following asser-
tions hold:

1. When i, j ≥ n, the inequality eiΛdej 6= 0 holds if, and only if, d = 4s + (j − i), for
some integer s ∈ X+(i, j), or d = 4s+2+ (j − i), for some integer s ∈ X−(i, j). In
particular, the dimension of eiΛej is |X+(i, j)| + |X−(i, j)|, where | − | denotes the
cardinal of a set.

2. When i ≥ n ≥ j, the inequality eiΛdej 6= 0 holds if, and only if, d = 4s+(2n− i− j),
for some integer s ∈ Z+(i, j), or d = 4s+2+(2n−i−j), for some integer s ∈ Z−(i, j).
In particular the dimension of eiΛej is |Z+(i, j)| + |Z−(i, j)|.

Proof. Recall that we have the equality ρτ(k, i) = (k+ i−n− 1, 2n− i). Bearing in mind
that (ρτ)2s = τ2s, we readily check the following two formulas:
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(ρτ)2s(k, i) = (k − 2s, i)

and (ρτ)2s+1(k, i) = (k + i− 2s− n− 1, 2n − i),

for all s ∈ Z.

A direct calculation shows that we have the following formulas for the distance between
two vertices of ZA2n−1, whenever there is a path in ZA2n−1 between the indicated vertices
(see Proposition 6.5.1). If i, j ≥ n then d[ρτ)r(1, i), (1, j)] = 2r + (j − i), and if i ≥ n ≥ j
then d[ρτ)r(1, i), (1 + n− j, j)] = 2(n + r)− (i+ j).

For assertion 1, suppose that i, j ≥ n, so that we have i = [(1, i)] and j = [(1, j)]. Then
eiΛdej 6= 0 if, and only if, there is an integer r ∈ Z such that e(ρτ)r(1,i)Be(1,j) 6= 0 and
d[ρτ)r(1, i), (1, j)] = d. But e(ρτ)r(1,i)Be(1,j) 6= 0 if, and only if, r ∈ 2X+(i, j)∪(2X−(i, j)+
1).

2) Bearing in mind that j = [(1+n− j, j)], whenever j ≤ n, a similar argument works
when i ≥ n ≥ j, replacing X+(i, j) and X−(i, j) by Z+(i, j) and Z−(i, j), respectively.

For the formulas of the dimensions of eiΛej , note that if (k, i), (m, j) ∈ ZA2n−1 are
any two vertices then dim(e(ρτ)r(k,i)Be(m,j) is either 0 or 1 since all paths from (ρτ)r(k, i)
to (m, j) are equal modulo the mesh relations. If now [(k, i)] and [(m, j)] denote their ρτ -
orbits, viewed as vertices of Q, then dim(e[(k,i)])Λde[(m,j)]) is 1 or 0, depending on whether
there exists an integer r such that e(ρτ)r(k,i)Be(m,j) 6= 0 and d[(ρτ)r(k, i), (m, j)] = d, or
not. The formula for dim(eiΛej) is now clear.

We next include a technical lemma which will be very useful.

Lemma 6.5.6. The following assertions hold:

1. If i, j ≥ n then:

(a) s is in X+(i, j) if, and only if, max{0, i−j2 } ≤ s ≤ n−
j+1
2 ;

(b) s is in X−(i, j) if, and only if, i−n−1
2 ≤ s ≤ min{n−2

2 , n−2+i−j
2 }.

2. If i ≥ n ≥ j then:

(a) s is in Z+(i, j) if, and only if, i−n
2 ≤ s ≤ min{ i+j−n−1

2 , n−1
2 };

(b) s is in Z−(i, j) if, and only if, max{−1
2 ,

i+j−2n−1
2 } ≤ s ≤ j−2

2 .

Proof. We use the formulas for (ρτ)r(k, i) given in the first paragraph of the proof of
Lemma 6.5.5. Also, we will denote by ν the Nakayama permutation of ZA2n−1 (see
Proposition 2.3.1).

1) By Theorem 6.5.3, we have the following chain of double implications for an integer
s:

s ∈ X+(i, j) ⇐⇒ e(1−2s,i)Be(1,j) 6= 0 ⇐⇒

max{0, i− j} ≤ 2s ≤ min{i− 1, 2n− 1− j} = 2n− 1− j ⇐⇒ max{0, i−j2 } ≤ s ≤ n−
j+1
2 ,

and similarly, by using the formula of (ρτ)2s+1 and the duality D of B (see Remark 6.5.4),
we get:
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s ∈ X−(i, j) ⇐⇒ e(i−2s−n,2n−i)Be(1,j) 6= 0 ⇐⇒ e(1,j)Beν(i−2s−n,2n−i) 6= 0 ⇐⇒
e(1,j)Be(n−2s−1,i) 6= 0 ⇐⇒ max{0, j − i} ≤ n− 2s− 2 ≤ min{j− 1, 2n− 1− i} = 2n− 1− i

⇐⇒ min{n− 2, i − j + n− 2} ≥ 2s ≥ i− 1− n ⇐⇒ i−n−1
2 ≤ s ≤ min{n−2

2 , n−2+i−j
2 }.

2) We use an analogous argument. We have a chain of double implications:

s ∈ Z+(i, j) ⇐⇒ e(1−2s,i)Be(1+n−j,j) 6= 0 ⇐⇒
i− j = max{0, i − j} ≤ n+ 2s − j ≤ min{i− 1, 2n − 1− j} ⇐⇒

i− n ≤ 2s ≤ min{i+ j − n− 1, n− 1} ⇐⇒ i−n
2 ≤ s ≤ min{ i+j−n−1

2 , n−1
2 },

and similarly:

s ∈ Z−(i, j) ⇐⇒ e(ρτ)2s+1(1,i)Be(1+n−j,j) 6= 0 ⇐⇒ e(i−2s−n,2n−i)Be(1+n−j,j) 6= 0 ⇐⇒
e(1+n−j,j)Beν(i−2s−n,2n−i) 6= 0 ⇐⇒ e(1+n−j,j)Be(n−2s−1,i) 6= 0 ⇐⇒

0 = max{0, j − i} ≤ j − 2s − 2 ≤ min{j − 1, 2n − 1− i} ⇐⇒
j − 2 ≥ 2s ≥ max{−1, i+ j − 2n− 1} ⇐⇒ max{−1

2 ,
i+j−2n−1

2 } ≤ s ≤ j−2
2 .

We conclude this section by describing the Cartan matrix CΛ of Λ. This is the
|Q0| × |Q0| matrix whose entry (i, j) is cij := dimK(HomΛ(Λei,Λej)) = dimK(eiΛej).
To describe CΛ in an easy-to-remember way, given a vertex i ∈ Q0, the distance to the
extremes of i will be the number d(i) = min{i, 2n − i}.

Proposition 6.5.7. The Cartan matrix CΛ = (cij) of Λ is given as follows:

1. If n is even, then:

(a) cij = min{d(i), d(j)}, if either i or j is even;

(b) cij = min{d(i), d(j)} − 1, if both i and j are odd and exactly one of i, j is < n;

(c) cij = min{d(i), d(j)} + 1 otherwise.

In this case the rank of CΛ is n+ 1.

2. If n is odd and ξ : Q0 × Q0 −→ Q0 × Q0 is the bijection given by (i, j)  (j, 2n −
i), then CΛ is the only integer (2n − 1) × (2n − 1)-matrix satisfying the following
conditions:

(a) cij = cj,2n−i, for all i, j ∈ Q0

(b) cij = min{d(i), d(j)}, when i and j are either both even or both odd

(c) cij = min{d(i), d(j)} + 1, whenever (i, j) ∈
⋃
r∈N ξ

r(X), where X consists of
those pairs (k, l) such that k is even, l is odd and n ≤ k ≤ l

(d) cij = min{d(i), d(j)} − 1 otherwise.
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Proof. First step: We calculate the entry cij = dim(eiΛej), for each pair (i, j) ∈ Q0 ×Q0

such that i, j ≥ n.
Note that once this is done, we will have calculated all the entries of CΛ, in case

n is odd, and all the entries cij with the property that either i, j ≥ n or i, j ≤ n, in
case n is even. For the case of n being even, this is clear since we have an equality
cij = dim(eiΛej) = dim(τ(eiΛej)) = dim(eτ(i)Λeτ(j)) = c2n−i,2n−j. Let then assume that
n is odd in the rest of the paragraph. By applying the successive powers of the bijection
ξ(i, j) = (j, 2n − i) to the set Y = {(i, j) ∈ Q0 × Q0: i, j ≥ n}, we get the whole set
Q0 ×Q0. The Nakayama automorphism is η = τ (see Proposition 6.5.10), which acts on
vertices as τ(i) = 2n− i. Therefore, by applying the duality D, we get an equality

cij = dim(eiΛej) = dim(D(eiΛej)) = dim(ejΛe2n−i) = cj,2n−i,

and an iteration of this formula starting with a pair (i, j) ∈ Y gives all the entries of
C := CΛ.

By Lemma 6.5.5, we know that cij = |X
+(i, j)| + |X−(i, j)|. Then, by using Lemma

6.5.6, we get the following two tables, distinguishing the case when n ≤ i ≤ j (and n
arbitrary) from the case when n is odd and n ≤ j ≤ i.

Case n ≤ i ≤ j |X+(i, j)| |X−(i, j)| cij
i ≡ n (mod 2); j odd n− j−1

2 n− j+1
2 2n-j

i ≡ n (mod 2); j even n− j
2 n− j

2 2n-j

i 6≡ n (mod 2); j odd n− j−1
2 n− j−1

2 2n-j+1

i 6≡ n (mod 2); j even n− j
2 n− j

2 2n-j

Case (n odd; n ≤ j ≤ i) |X+(i, j)| |X−(i, j)| cij
i, j even n− i

2 n− i
2 2n-i

i odd; j even n− i+1
2 n− i+1

2 2n-i-1

i even; j odd n− i
2 n− i

2 2n-i

i, j odd n− i−1
2 n− i+1

2 2n-i

From the first table we get that if n is even and n ≤ i ≤ j, then cij = cji = 2n − j =
min{d(i), d(j)}, except in the case when i and j are both odd. In this latter case, one has
cij = cji = min{d(i), d(j)}+1. Note that cij = dim(eiΛej) = dim[τ(eiΛej)] = e2n−iΛe2n−j
and that d(2n − i) = d(i) for every i ∈ Q0. We conclude that if n is even and either
i, j ≥ n or i, j ≤ n, then cij = min{d(i), d(j)}, when at least one of i and j is even, and
cij = min{d(i), d(j)} + 1, when i and j are both odd.

For the case in which n is odd, the first table says that if n ≤ i ≤ j, then cij =
min{d(i), d(j)}, except when i is even and j is odd. In this latter case, one has cij =
min{d(i), d(j)} + 1. On the other hand, the second table says that, when n is odd and
n ≤ j ≤ i, the entry cij is equal to 2n − i = min{d(i), d(j)}, except when i is odd and j
is even. In this latter case cij = min{d(i), d(j)} − 1. This complete the identification of
cij , for all pairs (i, j) ∈ Y , and, by the comments above, also the identification of all the
entries of C in case n is odd. It is an easy exercise to check that C is the unique integer
(2n − 1)× (2n− 1)-matrix satisfying the conditions of assertion 2.

Second step: calculation, for n even, of the entries cij , for i ≥ n ≥ j:
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Note that once this step is completed, using the equality cij = c2n−i,2n−j , we will have
identified all the entries of C for the case in which n is even. Here we have i = [(1, i)] and
j = [(1 + n− j, j)] = [(1− j, j)] and it is enough to calculate cij when j ≥ 2n− i (so that
min{d(i), d(j)} = 2n − i). Indeed, if j < 2n − i then the symmetric condition of C gives
an equality cij = c2n−i,2n−j = c2n−j,2n−i, and the pair (2n − j, 2n − i) has the property
that 2n− j ≥ n ≥ 2n− i and 2n − i ≥ 2n− (2n − j).

So, from now on in this second step, we assume that i ≥ n ≥ j and j ≥ 2n − i. We
know from Lemma 6.5.5 that cij = |Z

+(i, j)|+ |Z−(i, j)|. Using now Lemma 6.5.6, we get
the following table

Case (n even; j ≥ 2n− i) |Z+(i, j)| |Z−(i, j)| cij
i, j even n− i

2 n− i
2 2n-i

i even; j odd n− i
2 n− i

2 2n-i

i odd; j even n− i+1
2 n− i−1

2 2n-i

i, j odd n− i+1
2 n− i+1

2 2n-i-1

Then cij = 2n− i = min{d(i), d(j)}, except when i and j are both odd. In this latter case
cij = min{d(i), d(j)} − 1. Considering the first and second step for n even, we see that C
is the matrix given in assertion 1.

Third step: calculation of the rank of C in case n is even:

Let S2n−1 be the symmetric group on 2n − 1 indices and, by considering its action
on vertices, let us interpret the AR translation τ as an element of S2n−1. Then τ is the
product of the transpositions (i, 2n − i) (i = 1, ..., n − 1). Let P = Pτ be the associated
permutation matrix, i.e., we have piτ(i) = 1 and pij = 0, for j 6= τ(i). The fact that
cij = c(2n−i,2n−j) = cτ(i)τ(j), for all i, j ∈ Q0, implies that PC = CP . For simplicity, let
us denote by f (resp. g) the K-linear map V := K2n−1 −→ V which takes a column-
vector v to Cv (resp. Pv). If B = {v1, ..., v2n−1} is the canonical basis of V , then
{v1 + v2n−1, ..., vn−1 + vn+1, vn} and {v1− v2n−1, ..., vn−1− vn+1} are linearly independent
sets of eigenvectors of g associated to the eigenvalues 1 and −1, respectively. Then we
have a decomposition V = Ker(g−1V )⊕Ker(g+1V ), where both summands are invariant
by f due to the equality g ◦ f = f ◦ g.

We then get a decomposition Ker(f) = (Ker(f)∩Ker(g−1V ))⊕(Ker(f)∩Ker(g−1V )).
We claim that Ker(f)∩Ker(g−1V ) = 0. Indeed, let us take v ∈ Ker(f)∩Ker(g−1V ), so that
we have scalars a1, ..., an ∈ K such that v = a1(v1+v2n−1)+ ...+an−1(vn−1+vn+1)+anvn.
We apply f to this equality and get an equality of column-vectors

a1(C
1 + C2n−1) + ...+ an−1(C

n−1 + Cn+1) + anC
n = 0, (*)

where Cj denotes the j-th column of C. Note that if i, j ≤ n then assertion 1 gives that
cij = ci,2n−j = min{d(i), d(j)}, in case either i or j is even, and that {cij , ci,2n−j} =
{min{d(i), d(j)} + 1,min{d(i), d(j)} − 1}, when i and j are odd. It follows that if we put
mij = min{d(i), d(j)}, then we always have cij + ci,2n−j = 2mij. For later use, note also
that if i, j ≤ n then cij − ci,2n−j = 0, when either i or j is even, and cij − ci,2n−j = 2
otherwise.
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Taking the i-th component of the vector equality (*), for each i = 1, 2, ..., n we get an
equality

∑
1≤j≤n−1 2mijaj + ian = 0. It follows that the column-vector (a1, ...., an−1, an)

T

is a solution of the homogeneous system of linear equations with associated n× n-matrix

Xn =




2 2 2 . . . 2 1
2 4 4 . . . 4 2
2 4 6 . . . 6 3
. . . . . . . .
. . . . . . . .
. . . . . . . .
2 4 6 . . . 2(n− 1) n− 1
2 4 6 . . . 2(n− 1) n




By substracting the first row from all the others, we get a block decomposition of the

form

(
2 ∗
0 Xn−1

)
, from which we get that det(Xn) = 2det(Xn−1) and, by induction, that

det(Xn) = 2n−1. It follows that Xn is invertible and, hence, that (a1, ..., an) = (0, ..., 0)
and that v = 0. This proves our claim.

We then have Ker(f) = Ker(f) ∩ Ker(g + 1V ). In particular, each v ∈ Ker(f) can
be written in the form v = b1(v1 − v2n−1) + ... + bn−1(vn−1 − v2n−1), with bj ∈ K for
j = 1, ..., n− 1. By applying f to this equality, we get a second equality of column-vectors

b1(C
1 − C2n−1) + ...+ bn−1(C

n−1 − Cn+1) = 0. (**)

When taking the i-th component and the (2n − i)-th component in this equality, we see
that the first members of the two equalities are equal up to sign. It follows that Ker(f)
is isomorphic to the subspace of Kn−1 consisting of those (n− 1)-tuples (b1, ..., bn−1) such
that

∑
1≤j<n bj(cij − ci,2n−j), for i = 1, 2, ..., n. By comments made above about the

difference cij−ci,2n−j, these (n−1)-tuples are precisely the ones which satisfy the equality

2b1 + 2b3 + ...+ 2bn−1 = 0,

which form a hyperplane in Kn−1. It follows that dim(Ker(f)) = n− 2, and so rank(C) =
(2n − 1)− (n− 2) = n+ 1.

Remark 6.5.8. The calculation of rank(C) in the proof of last proposition also gives an
explicit basis of Ker(f), namely {v2k − v2n−2k: k = 1, ..., n2 − 1} ∪ {v2k−1 − v2n−2k+1 −
v2k+1 + v2n−2k−1: k = 1, ..., n2 − 1}.

6.5.4 The minimal projective resolution

In Theorem 2.4.2 we explicitly gave a graded Nakayama automorphism ηB of the mesh
algebra B = KZA2n−1 such that ηB ◦ g = g ◦ ηB , for all g ∈ G =< ρτ >. Also, in
Proposition 3.4.3, we gave a graded automorphism µB of B such that Ω3

Be(B) ∼=µB B1

and µB ◦ g = g ◦ µB , for all g ∈ G =< ρτ >. Since Λ may be viewed as the orbit
category of B under the action of the group G, we then get induced graded automorphisms
η := η̄B : Λ = B/G −→ B/G = Λ and µ := µ̄B : Λ = B/G −→ B/G = Λ. The first one is
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a graded Nakayama automorphism of Λ and the second one has the property that Ω3
Λe(Λ)

is isomorphic to µΛ1 as a bimodule.

Lemma 6.5.9. The following assertions identify η and µ:

1. When n is even, η is the identity map. In this case, the automorphism µ acts as τ
on vertices and crossing arrows, and maps a  −τ(a), for each noncrossing arrow
a ∈ Q1.

2. When n is odd, we have η = τ . In this case, the automorphism µ fixes the vertices
and the crossing arrows, and changes the sign of the noncrossing arrows.

Proof. We start by considering the change of signs given by the original set of arrows X̄.
Since G =< ρτB > it follows that ρ and τB induce the same automorphism ρ̄ = τ̄B : Λ −→
Λ. Clearly, this automorphism is induced by the canonical symmetry of the quiver Q. We
will denote it also by τ .

By Theorem 2.4.2, we have that ηB = ν, where ν = ρτ1−nB . When n is even, we have
ρτ1−nB = (ρτB)

1−n ∈ G and then η = idΛ since it acts as the identity on G-orbits. When
n is odd ρτ1−nB = ρ(ρτB)

1−n. This automorphism acts as ρ̄ = τ̄B on G-orbits and, hence,
we have η = τ in this case.

On the other hand, by Proposition 3.4.3, if ϑ : B −→ B is the automorphism which fixes
the vertices and acts on arrows as ϑ(a) = (−1)s(τ

−1
B (a))+s(a)a, and κ is the automorphism of

B which fixes the vertices and changes the sign of the arrows, then µB = κ ◦ ηB ◦ τ
−1
B ◦ ϑ.

Bearing in mind that τ2 = idΛ, we easily get that µ acts as ητ−1 = ητ on vertices,
and maps a  (−1)1+s(τ(a))+s(a)(η ◦ τ)(a), for each a ∈ Q1. Here the signature map
s : Q1 −→ Z2 is the one induced by the set X̄ (see Subsection 2.3.3). It is then clear that
the sum 1 + s(τ(a)) + s(a) is zero in Z2 if, and only if, the arrow a is crossing.

Finally, observe that the arguments given above also follows when considering the set
X̄ as fixed in the beginning of Subsection 6.5.2.

We are ready to give the minimal projective resolution of Λ as a graded bimodule. To
do that, we fix a basis B of Λ consisting of paths, and wi will denote the only nonzero path
from i to ν(i), which is an element of B. Recall that Soc(eiΛ) = Kwi and we have a graded
Nakayama form (−,−) : Λ× Λ −→ K of degree 2n − 2 defined as follows. It vanishes on
eiΛej × erΛes, whenever either j 6= r or s 6= ν(i), and the induced graded bilinear map
(−,−) : eiΛej × ejΛeν(i) −→ K vanishes on all pairs (a, b) of homogeneous elements such
deg(a)+deg(b) 6= 2n− 2. If instead (a, b) ∈ eiΛej × ejΛeν(i) and deg(a)+deg(b) = 2n− 2,
then one has (a, b)wi = ab. We will denote by B∗ the right dual basis with respect to
this Nakayama form. Note that if x ∈ B is any element, then the number on noncrossing
arrows in any path in Q which represents x only depends on x.

In the following result we derive a minimal projective resolution of Λ as a Λ-bimodule
from that of B as a B-bimodule.

Proposition 6.5.10. The minimal projective resolution of Λ as a graded bimodule has
the property that Ω6

Λe(Λ) is isomorphic to Λ[−4n] as a graded Λ-bimodule. Its initial part
is given by:
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...⊕i∈Q0 Λei ⊗ eiΛ[−4n]
µk
−→ ⊕i∈Q0Λeη(i) ⊗ eiΛ[−2n− 2]

µR
−→

⊕a∈Q1Λeµ(i(a)) ⊗ et(a)Λ[−2n− 1]
µδ
−→ ⊕i∈Q0Λeµ(i) ⊗ eiΛ[−2n]

k
−→

⊕i∈Q0Λeτ(i) ⊗ eiΛ[−2]
R
−→ ⊕a∈Q1Λei(a) ⊗ et(a)Λ[−1]

δ
−→ ⊕i∈Q0Λei ⊗ eiΛ

u
−→ Λ→ 0,

where the maps are the only morphisms of graded Λ-bimodules determined by the following
facts:

1. u is the multiplication map;

2. δ(ei(a) ⊗ et(a)) = a⊗ et(a) − ei(a) ⊗ a;

3. R(eτ(i) ⊗ ei) =
∑

t(a)=i(−1)
s(σ(a)a) [σ(a)⊗ ei + eτ(i) ⊗ a];

4. k(eµ(i) ⊗ ei) =
∑

x∈eη(i)B
(−1)c(x)τ(x)⊗ x∗, where c(x) is the number of noncrossing

arrows in x;

5. µδ(eµ(i(a)) ⊗ et(a)) = µ(a)⊗ et(a) − eµ(i(a)) ⊗ a;

6. µR(eη(i) ⊗ ei) =
∑

t(a)=i(−1)
s(σ(a)a) [µ(σ(a)) ⊗ ei + eη(i) ⊗ a];

7. µk(ei ⊗ ei) =
∑

x∈eη(i)B
η(x)⊗ x∗.

Proof. The minimal projective resolution of Λ as a graded bimodule is obtained from that
of B by replacing elements of B by G-orbits, as indicated in the proof of Corollary 3.4.5.
Let us also point out that, regarding this resolution, the only difference when considering
the new set X̄ instead of the original one is that the map R (and hence the map µR)
becomes −R (resp. −µR) which is a fact that certainly can be ignored.

Alternatively, one can adapt the argument in [25][Section 4], bearing in mind the
change of relations. In either way, one gets that the initial part of the minimal graded

projective resolution of Λ is P−2 R
−→ P−1 δ

−→ P 0 u
−→ Λ → 0, where the graded modules

are P 0 = ⊕i∈Q0Λei⊗eiΛ, P
−1 = ⊕a∈Q1Λei(a)⊗et(a)Λ[−1] and P

−2 = ⊕i∈Q0Λeτ(i)⊗eiΛ[−2]
and the maps are given as in the statement of this proposition.

From Subsection 3.4.1 we see that Ω3
Λe(Λ) = Ker(R) is generated, both as a left and as a

right Λ-module, by the elements ξ′i =
∑

x∈eiB
(−1)deg(x)τ ′(x)⊗x∗, where τ ′ : Λ −→ Λ is the

graded automorphism acting as τ on vertices and mapping a (−1)s(τ
−1(a))+s(a)τ(a), for

each a ∈ Q1. Then τ
′(a) = τ(a), when a is a noncrossing arrow, while τ ′(a) = −τ(a), when

a is a crossing one. If x ∈ B, then the number of crossing arrows in (any path representing)
x is exactly deg(x) − c(x). It then follows that ξ′i =

∑
x∈eiB

(−1)c(x)τ(x) ⊗ x∗, for each
i ∈ Q0. It was also proved in Corollary 3.4.5. that the assignment b bξ′τ−1(t(b)) gives an

isomorphism of graded bimodules 1Λµ−1 [−2n]
∼=
−→ Ω3

Λe(Λ). This in turn implies that the

assignment a  µ−1(a)ξ′τ−1µ−1(t(a)) gives an isomorphism h : µΛ1[−2n]
∼=
−→ Ω3

Λe(Λ). But

note that τ−1µ−1(i) = η−1(i) = η(i), for all i ∈ Q0, because µ
2 = idΛ = η2. Due to this

involutive condition of µ, there is a unique morphism of graded Λ-bimodules ⊕i∈Q0Λeµ(i)⊗
eiΛ[−2n] −→ µΛ1[−2n] which maps eµ(i)⊗ ei  ei. Composing this morphism with h, we
get a morphism of graded Λ-bimodules k : ⊕i∈Q0Λeµ(i) ⊗ eiΛ[−2n] −→ ⊕i∈Q0Λeτ(i) ⊗ eiΛ,
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which maps eµ(i) ⊗ ei  ξ′η(i) =
∑

x∈eη(i)B
(−1)c(x)τ(x)⊗ x∗ and whose image is Ker(R) =

Ω3
Λe(Λ).
Once the differentials δ, R and k are known, one easily obtain the differentials µδ

and µR, by applying the canonical equivalence µ(−)1 : ΛGrΛ
∼=
−→ ΛGrΛ, where ΛGrΛ

is the category of graded Λ-bimodules, and taking into account that, for all i, j ∈ Q0,

we have an isomorphism Λeµ(i) ⊗ ejΛ
∼=
−→ µ(Λei ⊗ ejΛ)1 of graded Λ-bimodules which

maps a ⊗ b  µ(a) ⊗ b. We can apply the same argument to obtain µk from k, but it is
convenient to use the formula k(eµ(i)⊗ei) =

∑
x∈eη(i)B

(−1)deg(x)τ ′(x)⊗x∗ which is another

form of expressing the element ξ′η(i). Indeed from the equality µB = κ ◦ ηB ◦ τ
−1
B ◦ ϑ of

automorphisms of B one obtains the equality µ◦τ ′ = κ̄◦η◦τ ′◦τ ′ = κ̄◦η of automorphisms
of Λ, where κ̄ is the identity on vertices and changes the sign of all arrows of Q. It then
follows that (−1)deg(x)µτ ′(x) = (−1)deg(x)(κ̄ ◦ η(x)) = (−1)deg(x)+deg(η(x))η(x) = η(x).
With this in mind one easily gets the desired formula µk(ei ⊗ ei) =

∑
x∈eη(i)B

η(x)⊗ x∗.

6.5.5 The complex which calculates the Hochschild cohomology

Proposition 6.5.11. Consider the complex V · of graded K-vector spaces, concentrated
in degrees ≥ 0, given as follows:

1. For each i ≥ 0, the differential V i+6 −→ V i+7 is obtained from the differential
V i −→ V i+1 by applying the shift equivalence ?[4n] : K −Gr −→ K −Gr.

2. The initial part of the complex is:

...0→ ⊕i∈Q0eiΛei
δ∗
−→ ⊕a∈Q1ei(a)Λet(a)[1]

R∗

−→ ⊕i∈Q0eτ(i)Λei[2]
k∗
−→

⊕i∈Q0eµ(i)Λei[2n]
µδ∗

−→ ⊕a∈Q1eµ(i(a))Λet(a)[2n+ 1]
µR∗

−→ ⊕i∈Q0eη(i)Λei[2n+ 2]
µk∗

−→

⊕i∈Q0eiΛei[4n]
δ∗
−→ ...,

where the differentials are:

(a) If c is a cycle at i, then δ∗(c) =
∑

t(a)=i ac−
∑

i(a)=i ca

(b) If p : i(a)→ t(a) is a path, then

R∗(p) = (−1)s(σ(a)a)σ(a)p + (−1)s(aσ
−1(a))pσ−1(a)

(c) When n is even, k∗ is the zero map. When n is odd, k∗(en) = wn and k∗

vanishes on (⊕i 6=neτ(i)Λei)⊕ enJ(Λ)en

(d) If p : µ(i)→ i is a path, then µδ
∗(p) =

∑
t(a)=i µ(a)p −

∑
i(a)=i pa

(e) If p : µ(i(a))→ t(a) is a path, then

µR
∗(p) = (−1)s(σ(a)a)µ(σ(a))p + (−1)s(aσ

−1(a))pσ−1(a)

(f) The map µk
∗ satisfies the following properties:

i. When n is even, µk
∗(ej) =

∑
i∈Q0

dim(eiΛej)wi, for each j ∈ Q0, and µk
∗

vanishes on ⊕i∈Q0eiJ(Λ)ei.
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ii. When n is odd, µk
∗(en) = nwn and µk

∗ vanishes on (⊕i 6=neη(i)Λei) ⊕
enJ(Λ)en

Then HHn(Λ) is isomorphic, as a (length-)graded K-vector space, to the n-th cohomology
space of the complex V ·, for each integer n ≥ 0. Moreover, V · is a complex of Z(Λ)-
modules.

Proof. Except for k∗ and µk
∗, the formulas for the other differentials are easily derived

by applying the contravariant functor HomΛe(−,Λ) : ΛGrΛ −→ K − Gr to the minimal
projective resolution of Λ given in Proposition 6.5.10, and by using the isomorphism of

graded K-vector spaces HomΛe(Λei ⊗ ejΛ[−k],Λ)
∼=
−→ eiΛej [k] (f  f(ei ⊗ ej)), for all

i, j ∈ Q0 and k ∈ Z.

Applying the same contravariant functor to k, we see that if p : τ(j)→ j is any path,
then k∗(p) =

∑
i∈Q0

∑
x∈eη(i)Bej

(−1)c(x)τ(x)px∗. Whenever length(p) > 0 the product

τ(x)px∗ is zero for its length degree exceeds 2n − 2 = c∆ − 2. But if length(p) = 0, then
τ(j) = j and, hence, necessarily j = n. On the other hand, if x ∈ eη(i)Ben, p = en
and the product τ(x)px∗ = τ(x)x∗ is nonzero, then necessarily i = n, which shows that
k∗(en) =

∑
x∈enBen

(−1)c(x)τ(x)x∗ =
∑

x∈enBen
(−1)c(x)xx∗ = (

∑
x∈enBen

(−1)c(x))wn. By
Lemma 6.5.5, we know that the elements of enBen have even degrees 0, 2, ..., 2n− 2. Since
each element of enBen is a power of the cycle of length 2 at n we get that c(x) = 1

2deg(x),

for each x ∈ enBen. The sum (
∑

x∈enBen
(−1)c(x)) is then 0 or 1, depending on whether n

is even or odd.

A procedure similar to that of the previous paragraph is followed for µk
∗. If p : η(j)→ j

is any nonzero path, then, by the usual method, we get µk
∗(p) =

∑
i∈Q0

∑
x∈eη(i)Bej

η(x)px∗.

We clearly have µk
∗(p) = 0 when length(p) > 0. On the other hand, if length(p) = 0 then

we necessarily have η(j) = j. When n is odd, this implies that j = n, while j can be
arbitrary when n is even (see Proposition 6.5.10). We distinguish the two situations:

a) When n is odd, the comments above show that µk
∗ vanishes on (⊕i 6=neη(i)Λei) ⊕

enJ(Λ)en. On the other hand, we have µk
∗(en) =

∑
i∈Q0

∑
x∈eη(i)Ben

η(x)x∗. As for k∗, we

see that if the product η(x)x∗ is nonzero, then i = n and so µk
∗(en) =

∑
x∈enBen

η(x)x∗.
But we have η(x) = τ(x) = x, for each x ∈ enBen, and this implies that µk

∗(en) =∑
x∈enBen

xx∗ = dim(enΛen)wn = nwn (see Proposition 6.5.7).

b) When n is even, we have η = idΛ. Then, when p = ej is of zero length, we have:

µk
∗(ej) =

∑
i∈Q0

∑
x∈eη(i)Bej

xx∗ =
∑

i∈Q0

∑
x∈eiBej

xx∗ =
∑

i∈Q0
dim(eiΛej)wi.

Finally, bearing in mind that Λ is a Λe − Z(Λ)-module, we have that, for each Λ-
module M , the K-vector space HomΛe(M,Λ) is in fact a Z(Λ)-module. Now, using the
isomorphism eiΛej ∼= HomΛe(Λei ⊗ ejΛ,Λ), it is clear that, ∀i, j ∈ Q0, eiΛej has a
structure of Z(Λ)-module given by the multiplication in Λ. But then, it is easy to check
that the differentials involved in the complex V · are also morphisms of Z(Λ)-modules.
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6.6 The Hochschild cohomology spaces

With all our tools in place, we move on to study the structure as a Z(Λ)-module of each
cohomology space HH i(Λ). Note that each term of the complex of Proposition 6.5.11 is
a graded vector subspace of Λ, when this algebra is considered with its canonical length
grading. Given a natural number d and any term V r of the mentioned complex, we will
need to calculate the dimension of the homogeneous component V r

d . The following is a
first result in this direction.

Proposition 6.6.1. Let d ∈ N be a natural number. There exists a vertex i ∈ Q0 such
that eiΛdei 6= 0 if, and only if, d is even and d ≤ 2n − 2. In such a case the following
holds:

1. If d ≡ 0 (mod 4), then dim(⊕i∈Q0eiΛdei) = 2n− d− 1.

2. If d ≡ 2 (mod 4), then dim(⊕i∈Q0eiΛdei) = d+ 1.

In particular, the dimension of ⊕i∈Q0eiΛdei is n
2 + n, when n is even, and n2, when n is

odd.

Proof. Since the maximal length of a nonzero path is 2n−2, if eiΛdei 6= 0, for some i ∈ Q0,
then d ≤ 2n − 2. By Lemma 6.5.5, we also know that d is even. Conversely, consider an
even natural number d ≤ 2n − 2. Then either d = 4s, with s ≤ n−1

2 , or d = 4s + 2, with
s ≤ n−2

2 . Due to Lemma 6.5.6, we know that in the first case s ∈ X+(n, n), while in the
second case s ∈ X−(n, n). Then, Lemma 6.5.5 tells us that enΛden 6= 0 in both cases.

In the rest of the proof we assume that d ≤ 2n−2 is an even natural number. Suppose
first that d ≡ 0 (mod 4) and put d = 4s, with s ∈ N. Given a vertex i ≥ n, the Lemmas
6.5.6 and 6.5.5 give the following chain of double implications

eiΛdei 6= 0 ⇐⇒ s ∈ X+(i, i) ⇐⇒ s ≤ n− i+1
2 ⇐⇒ i ≤ 2n − 2s− 1.

By applying the symmetry τ , we conclude that eiΛdei 6= 0 if, and only if, 2s + 1 ≤ i ≤
2n − 2s − 1. There are exactly 2(n − 2s − 1) + 1 = 2n − 4s − 1 = 2n − d − 1 vertices in
this list, and that is precisely the dimension of ⊕i∈Q0eiΛdei.

Suppose now that d ≡ 2 (mod 4) and put d = 4s + 2, with s ∈ N and s ≤ n−2
2 . The

two mentioned lemmas yield a chain of double implications for a vertex i ≥ n:

eiΛdei 6= 0 ⇐⇒ s ∈ X−(i, i) ⇐⇒ i−n−1
2 ≤ s ⇐⇒ i ≤ n+ 2s+ 1.

Arguing as in the other case, we get that dim(⊕i∈Q0eiΛdei) = 2(2s + 1) + 1 = d+ 1.
For the global formulas, we put δr = dim(⊕d≡r (mod 4) ⊕i∈Q0 eiΛdei), for r = 0, 2. In

case n is even, we have that 2n − 2 ≡ 2 (mod 4) and then {d ∈ N : d ≤ 2n− 2 and d ≡ 0
(mod 4)} = {0, 4, ..., 2n − 4} = {4s : 0 ≤ s ≤ n

2 − 1}, while {d ∈ N : d ≤ 2n− 2 and d ≡ 2
(mod 4)} = {2, 6, ..., 2n − 2} = {4s + 2 : 0 ≤ s ≤ n

2 − 1}. We then get equalities:

δ0 =
∑

0≤s≤n
2
−1(2n− 1− 4s) = (2n− 1)n2 − 4

∑
0≤s≤n

2
−1 s =

n(n+1)
2

and
δ2 =

∑
0≤s≤n

2
−1(4s+ 3) = 3n2 + 4

∑
0≤s≤n

2
−1 s =

n(n+1)
2 .
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It follows that dim(⊕i∈Q0eiΛei) = δ0 + δ2 = n2 + n.
In case n is odd, we have that 2n−2 ≡ 0 (mod 4), so that {d ∈ N : d ≤ 2n−2 and d ≡ 0

(mod 4)} = {0, 4, ..., 2n − 2} = {4s : 0 ≤ s ≤ n−1
2 }, while {d ∈ N : d ≤ 2n − 2 and d ≡ 2

(mod 4)} = {2, 6, ..., 2n − 4} = {4s + 2 : 0 ≤ s ≤ n−3
2 }. We then get:

δ0 =
∑

0≤s≤n−1
2
(2n− 1− 4s) = (2n − 1)n+1

2 − 4
∑

0≤s≤n−1
2
s = n(n+1)

2

and
δ2 =

∑
0≤s≤n−3

2
(4s+ 3) = 3n−1

2 + 4
∑

0≤s≤n−3
2
s = n(n−1)

2 .

Therefore we have dim(⊕i∈Q0eiΛei) = δ0 + δ2 = n2 in this case.

We are ready to identify the center of Λ.

Proposition 6.6.2. Let us consider Λ = Bn. For each i ∈ Q0, let wi be a nonzero element
in Soc(eiΛ), and let us put x =

∑
3≤i≤2n−3 ci, where ci is the (unique up to relations) cycle

of length 4 at i. The following assertions hold:

1. If n is odd then the center Z(Λ) is the subalgebra of Λ generated by x and it is

isomorphic to K[x]/(x
n+1
2 ). In particular, the dimension of Z(Λ) is n+1

2 .

2. If n is even, then Z(Λ) is the subalgebra generated by x and the wi. It is isomorphic
to the commutative algebra with generators x, y1, ..., y2n−1 subject to the relations:

(a) x
n
2 = 0

(b) xyi = 0, for i = 1, 2, ..., 2n − 1

(c) yiyj = 0, for all i, j = 1, 2, ..., 2n − 1.

In particular, the dimension of Z(Λ) is 5n
2 − 1.

Proof. When n = 2, we have ci = 0, for each i ∈ Q0, and hence x = 0. Then, the result
in this case is that Z(Λ) = K ⊕ Soc(Λ).

We assume in the sequel that n > 2. Let i ∈ Q0 be such that n ≤ i ≤ 2n − 3. By
Lemma 6.5.5, we have eiΛ4ei 6= 0 because s = 1 ∈ X+(i, i) (see Lemma 6.5.6). Then, up
to relations, there is a unique nonzero cycle of length 4 at i. By applying τ , the same is
true for each i ∈ Q0 such that 3 ≤ i ≤ n.

We next claim that the following sets of arrows in Q coincide:

(i) The set U of arrows a such that ei(a)Λ5et(a) 6= 0

(ii) The set V of arrows a such that 3 ≤ i(a), t(a) ≤ 2n− 3.

To check our claim we distinguish the noncrossing and the crossing arrows. Let first
do the noncrossing ones. Note that, due to the symmetry τ , it is enough to check that the
arrows αi : i → i+ 1, with i ≥ n, which are in U coincide with those in V . This amount
to prove, for a vertex i ≥ n, that eiΛ5ei+1 6= 0 if, and only if, i ≤ 2n − 4. By Lemma
6.5.5, the inequality eiΛ5ei+1 6= 0 holds if, and only if, 1 ∈ X+(i, i+ 1). By Lemma 6.5.6,
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we know that 1 ∈ X+(i, i+ 1) if, and only if, 1 ≤ n− i+2
2 , which is equivalent to say that

i ≤ 2n− 4.

We next check our claim for crossing arrows. Again, by the symmetry τ , we can
assume that i(a) ≥ n. Then our task consists in proving that if i ≥ n then the inequa-
lity eiΛ5e2n−i+1 6= 0 holds if, and only if, i ≤ 2n − 3. By Lemma 6.5.5, we have that
eiΛ5e2n−i+1 6= 0 holds if, and only if, 1 ∈ Z−(i, 2n− i+1). By Lemma 6.5.6 this happens
exactly when 1 ≤ 2n−1−i

2 or, equivalently, when i ≤ 2n− 3. So our claim is settled.

Once we know that the sets of arrows U and V coincide, we easily see that x =∑
3≤i≤2n−3 ci is in Z(Λ). Note that we just need to prove that xa = ax, for each a ∈ Q1.

Indeed we have that xa = 0 if, and only if, a 6∈ U = V if, and only if, ax = 0. By
negation, we have that xa 6= 0 if, and only if, ax 6= 0. But xa = ci(a)a and ax = act(a) are
then nonzero elements of ei(a)Λ5et(a). They are both equal in Λ since all paths of a given
length between two vertices are the same modulo relations. It follows that xa = ax, for
all a ∈ Q1.

Note now that xt =
∑

3≤i≤2n−3 c
t
i, for each integer t > 0. It follows that xt 6= 0 if, and

only if, 4t ≤ 2n − 2. This is because ctn is a cycle at n of length ≤ length(wn) = 2n − 2.
Then the subalgebra of Λ generated by x is isomorphic to K[x]/(xm), where m = n+1

2 , in
case n is odd, and m = n

2 , in case n is even.

We denote by A the subalgebra of Λ generated by x. We shall prove that each homo-
geneous element in Z(Λ) of degree 4t is a scalar multiple of a power of x. We first claim
that cti 6= 0 if, and only if, 2t+ 1 ≤ i ≤ 2n− 2t− 1. Note that, due to the symmetry τ , it
is enough to prove that if i ≥ n then cti 6= 0 exactly when i ≤ 2n− 2t− 1. Using Lemmas
6.5.5 and 6.5.6, we get the following chain of double implications:

cti 6= 0 ⇐⇒ eiΛ4tei 6= 0 ⇐⇒ t ∈ X+(i, i) ⇐⇒ t ≤ n− i+1
2 ⇐⇒ i ≤ 2n− 2t− 1

and the claim is settled.

We then get that any element in Z(Λ)4t can be written as a linear combination of the
form y =

∑
2t+1≤i≤2n−2t−1 λic

t
i, with λi ∈ K for all i. We have cti−1 6= 0 6= cti. We claim

that then cti−1αi 6= 0 6= αi−1c
t
i, for which we just need to prove that ei−1Λ4t+1ei 6= 0. But

this is a consequence of Lemma 6.5.5 and the fact that t ∈ X+(i−1, i) (see Lemma 6.5.6).

Since y is in the center we have an equality

λi−1c
t
i−1αi−1 = yαi−1 = αi−1y = λiαi−1c

t
i,

from which we get that λi−1 = λi. It follows that λn = λn+1 = ... = λ2n−2t−1 and,
by applying the symmetry τ , also that λ2t+1 = ... = λn−1 = λn. We then get that
y = λ

∑
2t+1≤i≤2n−2t−1 c

t
i = λxt, for some λ ∈ K.

Since the degrees of homogeneous elements in ⊕i∈Q0eiΛei are all even, in order to finish
de proof, it will be enough to check that if 4t + 2 < 2n − 2 then Z(Λ)4t+2 = 0. Indeed,
if this is proved then the case in which n is odd will be settled, because 2n − 2 ∈ 4Z
and then we will have Z(Λ) = ⊕t≥0Z(Λ)4t. By the previous paragraph, we conclude
that Z(Λ) is the subalgebra of Λ generated by x. On the other hand, if n is even, then
⊕i∈Q0eiΛ2n−2ei = Soc(Λ) ⊆ Z(Λ), thus showing that Z(Λ) = Soc(Λ) ⊕ (⊕t≥0Z(Λ)4t).
From the previous paragraphs assertion 2 of the theorem follows easily by taking yi = wi,
for all i ∈ Q0.
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Let us finally prove that if 4t + 2 < 2n − 2 then Z(Λ)4t+2 = 0. Given a vertex i ≥ n,
by Lemma 6.5.5 and Lemma 6.5.6, we have the following chain of double implications:

eiΛ4t+2ei 6= 0 ⇐⇒ t ∈ X−(i, i) ⇐⇒ i−n−1
2 ≤ t ≤ n−2

2 ⇐⇒ i ≤ n+ 2t+ 1.

The last double implication is due to the fact that we are assuming that 4t+ 2 < 2n− 2,
i.e., that t < n−2

2 . By using the symmetry τ , if i ≤ n then we get that eiΛ4t+2ei 6= 0 if,
and only if, i ≥ n− 2t− 1. So we get, for any vertex i ∈ Q0:

eiΛ4t+2ei 6= 0 ⇐⇒ n− 2t− 1 ≤ i ≤ n+ 2t+ 1.

For any such vertex i, we fix a nonzero cycle zi at i of length 4t+2. Then any element of
Z(Λ)4t+2 will be a linear combination of the form z =

∑
n−2t−1≤i≤n+2t+1 λizi, with the λi

in K. Suppose that there is a vertex n ≤ j ≤ n+ 2t+ 1 such that λj 6= 0 and choose this
j to be maximal. Note that n+2t+1 < 2n− 1 because we are assuming 4t+2 < 2n− 2.
This implies that the arrow αj : j → j + 1 exists and we have λjzjαj = zαj = αjz = 0.
But the fact that 4t + 2 < 2n − 2 implies that 4t + 2 ≤ 2n − 4 or, equivalently, that
t ≤ n−3

2 . It follows that t ∈ X−(j, j + 1) (see Lemma 6.5.6) and, by Lemma 6.5.5, we get
that ejΛ4t+3ej+1 6= 0. As a consequence, we have that zjαj 6= 0 and, hence, that λj = 0.
This contradicts our choice of j.

We now continue with the calculation of the dimensions of the spaces V r of Proposition
6.5.11.

Proposition 6.6.3. Let d ∈ N be a natural number. There is an arrow a ∈ Q1 such that
ei(a)Λdet(a) 6= 0 if, and only if, d < 2n − 2 and d is odd. In such a case, the following
holds:

1. If d ≡ 1 (mod 4) then dim(⊕a∈Q1ei(a)Λdet(a)) = 4n − 2d− 2;

2. If d ≡ 3 (mod 4) then dim(⊕a∈Q1ei(a)Λdet(a)) = 2d+ 2.

In particular, the dimension of ⊕a∈Q1ei(a)Λet(a) is equal to 2(n2−n), when n is even, and
to 2(n2 − 1), when n is odd.

Proof. We first prove the last assertion, assuming that the formulas for the dimensions
of the space ⊕a∈Q1ei(a)Λdet(a) are correct. For simplification, call a natural number d
efficient when ei(a)Λdet(a) 6= 0, for some a ∈ Q1. Suppose first that n is even. Then we
have 2n− 3 ≡ 1 (mod 4), so that {1, 5, ..., 2n− 3} is the set of efficient natural numbers d
such that d ≡ 1 (mod 4). Then we have an equality, putting in the last part d = 4s + 1:

d1 :=
∑

d≡1 (mod 4),a∈Q1
dim(ei(a)Λdet(a)) =

∑
d≡1 (mod 4),1≤d≤2n−3(4n − 2d− 2) =∑

0≤s≤n
2
−1(4n − 8s− 4) = n2.

On the other hand, if d is efficient and d ≡ 3 (mod 4) then d ≤ 2n−5, and so {3, 7, ..., 2n−
5} is the set of these efficient natural numbers. Then we have an equality:

d3 :=
∑

d≡3 (mod 4),a∈Q1
dim(ei(a)Λdet(a)) =

∑
d≡3 (mod 4),3≤d≤2n−5(2d+ 2) =

8 + 16 + ...+ (4n − 8) = 8[1 + 2 + ...+ (n2 − 1)] = n2 − 2n.



6.6. The Hochschild cohomology spaces 155

It follows that dim(⊕a∈Q1ei(a)Λet(a)) = 2(n2 − n) in case n is even.
Suppose next that n is odd. Then 2n−3 ≡ 3 (mod 4). It follows that a natural number

d such that d ≡ 1 (mod 4) is efficient if, and only if, it is in the set {1, 5, ..., 2n − 5}. The
formula for d1 in this case is:

d1 :=
∑

d≡1 (mod 4),a∈Q1
dim(ei(a)Λdet(a)) =

∑
d≡1 (mod 4),1≤d≤2n−5(4n − 2d− 2) =∑

0≤s≤n−3
2
(4n − 8s− 4) = n2 − 1.

On the other hand, {3, 7, ..., 2n − 3} is the set of efficient natural numbers d such that
d ≡ 3 (mod 4). The formula for d3 is in this case:

d3 :=
∑

d≡3 (mod 4),a∈Q1
dim(ei(a)Λdet(a)) =

∑
d≡3 (mod 4),3≤d≤2n−3(2d+ 2) =

8 + 16 + ...+ (4n − 4) = 8[1 + 2 + ...+ (n−1
2 )] = n2 − 1.

It follows that dim(⊕a∈Q1ei(a)Λet(a)) = 2(n2 − 1) in case n is odd.
We now pass to prove the initial part of the proposition. Due to the symmetry τ ,

one readily sees that a natural number d is efficient if, and only if, d ≤ 2n − 2 and
eiΛdei+1 6= 0, for some vertex i ≥ n, or eiΛde2n−i+1 6= 0, for some i > n. But due to
Lemma 6.5.5, we know that in such a case d is odd and, as a consequence, d < 2n−2. From
the same lemma we get that enΛden+1 6= 0 if, and only if, either d ∈ 4X+(n, n+1) + 1 or
d ∈ 4X−(n, n+ 1) + 3. Looking at Lemma 6.5.6, we see that:

1. 4X+(n, n + 1) + 1 = {1, 5, ..., 2n − 3}, when n is even, and 4X+(n, n + 1) + 1 =
{1, 5, ..., 2n − 5}, when n is odd;

2. 4X−(n, n + 1) + 3 = {3, 7, ..., 2n − 5}, when n is even, and 4X−(n, n + 1) + 3 =
{3, 7, ..., 2n − 3}, when n is odd.

We then see that each natural number d < 2n − 2 is efficient, which proves the first
assertion of the proposition.

Let us now fix an efficient natural number of the form d = 4s + 1. Note that we
have that dim(⊕a∈Q1ei(a)Λdet(a)) is equal to the number of elements in the set {a ∈ Q1 :
ei(a)Λdet(a) 6= 0}. Using the symmetry τ and Lemma 6.5.5, we then have:

dim(⊕a∈Q1ei(a)Λdet(a)) = 2|As|+ 2|Bs|,

where As = {i ≥ n : eiΛ4s+1ei+1 6= 0} = {i ≥ n : s ∈ X+(i, i + 1)} and Bs = {i > n :
eiΛ4s+1e2n−i+1 6= 0} = {i > n : s ∈ Z−(i, 2n − i + 1)}. Using Lemma 6.5.6, we see that,
for i ≥ n, one has that i ∈ As if, and only if, i ≤ 2n− 2s− 2. Similarly, for i > n, one has
that i ∈ Bs if, and only if, i ≤ 2n−2s−1. It follows that |As| = |Bs| = n−2s−1, so that

dim(⊕a∈Q1ei(a)Λdet(a)) = 4(n− 2s− 1) = 4n− 8s − 4 = 4n− 2d− 2.

Suppose now that d is an efficient natural number of the form d = 4s+3. An argument
analogous to that of the previous paragraph shows that if i ≥ n then eiΛ4s+3ei+1 6= 0 if,
and only if, s ∈ X−(i, i + 1), while if i > n then eiΛ4s+3e2n−i+1 6= 0 if, and only if,
s+1 ∈ Z+(i, 2n− i+1). Putting Cs = {i ≥ n : s ∈ X−(i, i+1)} and Ds = {i > n : s+1 ∈
Z+(i, 2n−i+1)} and applying Lemma 6.5.6, we readily see that Cs = {n, n+1, ..., n+2s+1}
and Ds = {n+ 1, n + 2, ..., n + 2s+ 2}. It follows that
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dim(⊕a∈Q1ei(a)Λdet(a)) = dim(⊕a∈Q1ei(a)Λ4s+3et(a)) = 2(|Cs|+ |Ds|) =
2[(2s + 2) + (2s + 2)] = 2(4s + 4) = 2d+ 2.

Proposition 6.6.4. Let d ∈ N be a natural number. There is a vertex i ∈ Q0 such that
eτ(i)Λdei 6= 0 if, and only if, d ≤ 2n− 2 and d is even. In such a case, the following holds:

1. If d ≡ 0 (mod 4) then dim(⊕i∈Q0eτ(i)Λdei) = d+ 1;

2. If d ≡ 2 (mod 4) then dim(⊕i∈Q0eτ(i)Λdei) = 2n− d− 1.

In particular, the dimension of ⊕i∈Q0eτ(i)Λei is equal to n2 − n, when n is even, and to
n2, when n is odd.

Proof. The proof goes along the lines of that of the foregoing proposition. We readily see
that eτ(n)Λden = enΛden 6= 0, for each even number 0 ≤ d ≤ 2n− 2. Bearing in mind that
τ(i) = 2n− i ≡ i (mod 2), the first assertion of the proposition follows now directly from
Lemma 6.5.5.

Let us fix an even natural number 0 ≤ d ≤ 2n − 2 in the rest of the proof. If i ≥ n
and d = 4s then, by Lemma 6.5.5 again, we know that eiΛdeτ−1(i) = eiΛde2n−i 6= 0 if, and
only if, s ∈ Z+(i, 2n − i). Then we have:

{i ≥ n : eiΛdeτ−1(i) 6= 0} = {n, n + 1, ..., n + 2s},

which implies, by applying the symmetry τ , that {i ∈ Q0 : eiΛdeτ−1(i) 6= 0} = {n −
2s, ..., n − 1, n, n + 1, ..., n + 2s}. It follows that

dim(⊕i∈Q0eτ(i)Λdei) = 4s + 1 = d+ 1.

On the other hand, if i ≥ n and d = 4s + 2 then, by Lemma 6.5.5, we get that
eiΛde2n−i 6= 0 if, and only if, s ∈ Z−(i, 2n − i). Then we have:

{i ≥ n : eiΛdeτ−1(i) 6= 0} = {n, n + 1, ..., 2n − 2s− 2}.

An argument similar to the one in the previous paragraph shows that then

dim(⊕i∈Q0eτ(i)Λdei) = 2(n − 2s− 2) + 1 = 2n− d− 1.

When n is odd, using Remark 6.5.4 and Lemma 6.5.9, we get that D(eτ(i)Λdei) ∼=
eiΛ2n−2−dei. Then the formula for dim(⊕i∈Q0)eτ(i)Λei) follows from Proposition 6.6.1 in
this case. Suppose that n is even in the rest of the proof. We have 2n− 2 ≡ 2 (mod 4) so
that we have the following equalities of sets:

{d ∈ N : eτ(i)Λdei 6= 0, for some i ∈ Q0 and d ≡ 0
(mod 4)} = {0, 4, ..., 2n − 4} = {d ∈ N : d = 4s, with 0 ≤ s ≤ n

2 − 1}
and

{d ∈ N : eτ(i)Λdei 6= 0, for some i ∈ Q0 and d ≡ 2 (mod 4)} = {2, 6, ..., 2n − 2}.

It follows that
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dim(⊕i∈Q0,d≡0 (mod 4)eτ(i)Λdei) =
∑

0≤s≤n
2
−1(4s + 1) = n2−n

2

and
dim(⊕i∈Q0,d≡2 (mod 4)eτ(i)Λdei) = (2n−3)+(2n−7)+...+5+1 =

∑
0≤t≤n

2
−1(4t+1) = n2−n

2 .

Therefore, when n is even, we have dim(⊕i∈Q0eτ(i)Λei) = n2 − n.

Remark 6.6.5. The global formulas given in Propositions 6.6.3 and 6.6.4, that is, the
formulas for dim(⊕a∈Q1ei(a)Λet(a)) and dim(⊕i∈Q0eτ(i)Λei) can be alternatively obtained
from the Cartan matrix, which has been identified in Proposition 6.5.7.

The dimension of the last space of codimensions in V · that we need to calculate is the
following.

Proposition 6.6.6. Let n be even and let d be an odd natural number such that 0 < d <
2n− 2. The following assertions hold:

1. If d ≡ 1 (mod 4) then dim(⊕a∈Q1eτ(i(a))Λdet(a)) = 2d+ 2

2. If d ≡ 3 (mod 4) then dim(⊕a∈Q1eτ(i(a))Λdet(a)) = 4n − 2d− 2.

In particular, the dimension of ⊕a∈Q1eτ(i(a))Λet(a) is 2(n2 − n).

Proof. Throughout the proof, fix an odd natural number d such that 0 < d < 2n − 2. If
i < n and a = αi, then τ(i(a)) = τ(i+ 1) = 2n− i− 1 while t(a) = i. But, using Remark
6.5.4, we get that e2n−i−1Λdei 6= 0 ⇐⇒ eiΛ2n−d−2e2n−i−1 6= 0.

Note that i = i(β2n−i−1) and 2n − i − 1 = t(β2n−i−1) and that β2n−i−1 = σ−1(αi).
Let us denote by Q+

1 and Q−
1 the subsets of Q1 consisting of the non-crossing arrows and

of the crossing arrows, respectively. The previous comments together with an application
of the symmetry τ shows that the bijection σ−1 : Q+

1 −→ Q−
1 has the property that

eτ(i(a))Λdet(a) 6= 0 if, and only if, ei(σ−1(a))Λ2n−2−det(σ−1(a)) 6= 0.
On the other hand, if i ≥ n and a = βi then τ(i(a)) = i + 1 = t(αi) = t(σ−1(a))

and t(a) = i = i(σ−1(a)). An argument as in the previous paragraph shows that also
the bijection σ−1 : Q−

1 −→ Q+
1 has the property that eτ(i(a))Λdet(a) 6= 0 if, and only if,

ei(σ−1(a))Λ2n−2−det(σ−1(a)) 6= 0.
Frow the two last paragraphs and Proposition 6.6.3 the result follows immediately.

We are ready to calculate the dimension of the kernel and image of R∗ in each degree.

Proposition 6.6.7. Let d be an odd natural number such that d ≤ 2n− 3. The following
assertions hold:

a) If f : ⊕a∈Q1ei(a)Λdet(a) −→ ⊕i∈Q0eτ(i)Λd+1ei is either the restriction of R∗ or, when
n is odd, the restriction of µR

∗, then f is surjective.

b) If n is even, d ≡ 1 (mod 4) and h : ⊕a∈Q1eτ(i(a))Λdet(a) −→ ⊕i∈Q0eiΛd+1ei is the
restriction of µR

∗, then Im(h) has codimension 1 in its codomain.

Moreover, the following formulae hold:
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1. If d ≡ 1 (mod 4), then dim(Ker(f)) = 2n− d

2. If d ≡ 3 (mod 4), then dim(Ker(f)) = d

3. If n is even and d ≡ 1 (mod 4), then dim(Ker(h)) = d+ 1.

In particular, we have Im(R∗) = enJ(Λ)en ⊕ (⊕i 6=neτ(i)Λei) and, when n is odd, also
Im(µR

∗) = enJ(Λ)en ⊕ (⊕i 6=neτ(i)Λei).

Proof. If f is surjective then the two formulae for the dimension of Ker(f) follow from
Propositions 6.6.3 and 6.6.4. On the other hand, we have that enJ(Λ)en⊕(⊕i 6=neτ(i)Λei) =
⊕1≤d≤2n−3, d odd(⊕i∈Q0eτ(i)Λd+1ei). From the surjectivity of f , we get that enJ(Λ)en ⊕
(⊕i 6=neτ(i)Λei) ⊆ Im(R∗) and, when n is odd, that enJ(Λ)en ⊕ (⊕i 6=neτ(i)Λei) ⊆ Im(µR

∗).
The converse inclusions are clear. On the other hand, if Im(h) has codimension 1 in its
codomain, then the equality dim(Ker(h)) = d+1 follows from Propositions 6.6.1 and 6.6.6.

We next prove that f is surjective. Suppose first that d ≡ 1 (mod 4) and put d = 4s+1,
with s ∈ N. From the proof of Proposition 6.6.3 we get that ei(a)Λdet(a) 6= 0 if, and only
if, a = αi or a = βi, for some index i such that 2s + 1 ≤ i ≤ 2n − 2s − 2. On the
other hand, from the proof of Proposition 6.6.4 we get that eτ(i)Λd+1ei 6= 0 if, and only if
2s+ 2 ≤ i ≤ 2n − 2s− 2.

When d ≡ 3 (mod 4), and hence d = 4s + 3, we get corresponding conclusions to
those in the last paragraph. Concretely, from the proof of Proposition 6.6.3 we get that
ei(a)Λdet(a) 6= 0 if, and only if, a = αi or a = βi, for some index i such that n − 2s − 2 ≤
i ≤ n+2s+1. Bearing in mind that d+1 = 4(s+1), we get from the proof of 6.6.4 that
eτ(i)Λd+1ei 6= 0 if, and only if, n− 2s− 2 ≤ i ≤ n+ 2s+ 2.

We fix d < 2n − 2 odd in the sequel. Whenever ei(a)Λdet(a) 6= 0, we fix a path pa of
length d from i(a) to t(a), so that ei(a)Λdet(a) = Kpa. Analogously, if eτ(i)Λd+1ei 6= 0 we
fix a path qi of length d+1 from τ(i) to i, so that eτ(i)Λd+1ei = Kqi. We now look at the

action of f on the pa. Note that if a ∈ Q1 then (−1)s(σ(a)a) and (−1)s(aσ
−1(a)) are equal,

when a is crossing, and are opposite to each other when a is noncrossing. Since changing
the sign of a column in a matrix does not alter the rank of the matrix we can assume,
without loss of generality, that:

1. When f is the restriction of R∗: i) f(pa) = σ(a)pa + paσ
−1(a) = qt(a) + qτ(i(a)),

when a is crossing; ii) f(pa) = σ(a)pa − paσ
−1(a) = qt(a) − qτ(i(a)), when a is

noncrossing.

2. When n is odd and f is the restriction of µR
∗, then f(a) = σ(a)pa − paσ

−1(a) =
qt(a) − qτ(i(a)), for all a ∈ Q1.

Suppose first that d = 4s + 1 ≡ 1 (mod 4). For each j = 2s + 1, ..., 2n − 2s − 2,
the induced map f̃ : ⊕2s+1≤i≤2n−2s−2Kpβi −→ ⊕2s+2≤i≤2n−2s−2Kqi = eτ(i)Λei takes

pβj  qj + qj+1, when f̃ is the restriction of R∗, and, with an appropriate change of signs

if necessary, it maps pβj  qj − qj+1, when f̃ is the restriction of µR
∗. Here we adopt the

convention that q2s+1 = 0 = q2n−2s−1. The matrix of f̃ with respect to the obvious bases
of its domain and codomain is then of size m × (m + 1), where m = 2(2n − 2s − 2) + 1.
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The submatrix obtained from it by deleting the first column is lower triangular with 1 in
all its diagonal entries. Therefore f̃ , and hence f , is surjective in this case.

Suppose now that d = 4s+3 ≡ 3 (mod 4). We consider V = (⊕n−2s−2≤i≤n+2s+1Kpβi)⊕
Kpαn−2s−2 and denote by g : V −→ ⊕n−2s−2≤i≤n+2s+2Kqi = eτ(i)Λd+1ei the restriction of
f . The matrix of g, denoted (λij) in the sequel, is now of size r×r, where r = 2(2s+2)+1.
Suppose that 1 ≤ j < r and let us look at its j-th column. When f is the restriction of
R∗, we have λjj = λj+1,j = 1 and λij = 0, for i 6= j, j + 1. When f is the restriction of

µR
∗, after changing the sign of the column if necessary, we have λjj = −λj+1,j = 1 and

λij = 0, for i 6= j, j + 1. Finally, both when f is the restriction of R∗ and when it is the
restriction of µR

∗, we have that f(pαn−2s−2) = qn−2s−2 − qn+2s+1, so that the last column
has λ1r = 1, λr−1,r = −1 and λij = 0, for all i 6= 1, r− 1. Direct calculation using the fact
that r is odd, shows that the determinant of this matrix is 2. Therefore g, and hence, f
is also surjective in this case.

It remains to check that Im(h) has codimension 1 in its codomain. Put d = 4s + 1.
From the proof of Proposition 6.6.6, for any arrow a, we have that eτ(i(a))Λdet(a) 6= 0 if,
and only if, ei(σ−1(a))Λ2n−2−det(σ−1(a)) 6= 0. Putting t := n

2 −s−1 and looking at the proof
of Proposition 6.6.3, we then get:

eτ(i(a))Λdet(a) 6= 0 ⇐⇒ ei(σ−1(a))Λ4t+1et(σ−1(a)) 6= 0 ⇐⇒ σ−1(a) ∈ {αi, βi :
2t+ 1 ≤ i ≤ 2n− 2t− 2} ⇐⇒ a ∈ {αi, βi : 2t+ 1 ≤ i ≤ 2n− 2t− 2} ⇐⇒ a ∈ {αi, βi :

n− 2s− 2 ≤ i ≤ n+ 2s+ 1}.

On the other hand, by the proof of Proposition 6.6.1, we know that eiΛd+1ei 6= 0 if, and
only if, n− 2s− 1 ≤ i ≤ n+ 2s+ 1.

For any arrow a ∈ {αi, βi : n − 2s − 2 ≤ i ≤ n + 2s + 1}, denote by ua a path
of length d from τ(i(a)) to t(a), and, for any vertex n − 2s − 1 ≤ i ≤ n + 2s + 1,
denote by ci a cycle of length d + 1 at i. We then have that V := ⊕a∈Q1eτ(i(a))Λdet(a) =
⊕n−2s−2≤i≤n+2s+1(Kuαi

⊕ Kuβi) and W := ⊕i∈Q0eiΛd+1ei = ⊕n−2s−1≤i≤n+2s+1Kci are
the domain and codomain of h, respectively.

Arguing as in the case of f , we can assume without loss of generality that h(ua) =
τ(σ(a))ua − uaσ

−1(a) = ct(a) − cτ(i(a)). This gives:

1. h(uαi
) = ci+1 − c2n−i, when i ≥ n, and h(uαi

) = ci − c2n−i−1, when i < n;

2. h(uβi) = ci − ci+1, when i ≥ n, and h(uβi) = ci+1 − ci, when i < n.

It follows from this that all the cycles ci (n − 2s − 1 ≤ i ≤ n+ 2s + 1) are equal modulo
Im(h), but none of them is in Im(h). Hence Im(h) has codimension 1 in W .

Lemma 6.6.8. Let d < 2n − 2 be an even natural number and let us consider that
f : ⊕i∈Q0eµ(i)Λdei −→ ⊕a∈Q1eµ(i(a))Λd+1et(a) is the restriction of µδ

∗. Then f is injective
and Ker(µδ

∗) = Soc(Λ) ∩ (⊕i∈Q0eµ(i)Λei) = Kwn.

Proof. Note first that if n is even, then µ(i) = τ(i), for all i ∈ Q0, and then Soc(Λ) ∩
(⊕i∈Q0eµ(i)Λei) = Soc(Λ) ∩ (⊕i∈Q0eτ(i)Λei) = Kwn. On the other hand, if n is odd then
µ(i) = i, for all i ∈ Q0, and then Soc(Λ)∩(⊕i∈Q0eµ(i)Λei) = Soc(Λ)∩(⊕i∈Q0eiΛei) = Kwn.

We have an exact sequence of Λ-bimodules
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⊕a∈Q1Λeµ(i(a)) ⊗ et(a)Λ
µδ
−→ ⊕i∈Q0Λeµ(i) ⊗ eiΛ −→ µΛ1 → 0.

By applying the contravariant functor HomΛe(−,Λ), we get that Ker(µδ
∗) ∼= HomΛe(µΛ1,Λ).

But this is a graded vector space isomorphic to W := {x ∈ ⊕i∈Q0eµ(i)Λei : µ
−1(a)x =

xa for all a ∈ Q1} = {x ∈ ⊕i∈Q0eµ(i)Λei : µ(a)x = xa for all a ∈ Q1}. Let then
x ∈ ⊕i∈Q0eµ(i)Λdei, where d < 2n − 2 is an even natural number. We have that
x =

∑
i∈Q0

λici, where, for all i ∈ Q0, λi ∈ K and ci is either the (possibly zero) cy-
cle at i of length d when n is odd, or the (possibly zero) path τ(i) −→ · · · −→ i of length
d when n is even. We get that xa = λi(a)ci(a)a = λi(a)pa, where pa is either the (po-
ssibly zero) path of length d + 1 from i(a) to t(a) when n is odd, or the (possibly zero)
path of length d + 1 from τ(i(a)) to t(a) when n is even. By Lemma 6.5.9, we also have
µ(a)x = λt(a)pa, when a is a crossing arrow, and µ(a)x = −λt(a)pa, when a is noncrossing.
It follows that if pa 6= 0 or, equivalently, if eµ(i(a))Λd+1et(a) 6= 0, then λi(a) = λt(a), when a
is crossing, and λi(a) = −λt(a), when a is noncrossing.

Note that, regardless of whether n is either even or odd, for a ∈ {αn−1, βn}, we know
that pa 6= 0 . It follows that λn = λi(αn−1) = −λn−1 = −λt(αn−1) while λn = λt(βn) =
λn−1 = λi(βn). It then follows that λn = λn−1 = 0 and, by an easy induction argument,
one gets that λi = 0 for all i such that ci 6= 0. Hence, we get that Ker(f) = 0.

Due to Propositions 6.6.1 and 6.6.4, the previous paragraph shows that Ker(µδ
∗) lives

in (length) degree 2n− 2. But we have ⊕i∈Q0eµ(i)Λ2n−2ei = Kwn and µδ
∗(wn) = 0.

We are now able to give the structure of the Hochschild cohomology spaces as modules
over Z(Λ) = HH0(Λ). Recall that, due to the 6-periodicity of Λ, we have that HH6k(Λ) ∼=

HH0(Λ) = HH0(Λ)
Im(µk∗)

, for all k > 0, and HH6k+i(Λ) ∼= HH i(Λ), for all i > 0 and k ≥ 0.

Remark 6.6.9. We will adopt the following convention. Suppose that di : V i −→ V i+1

is the differential of the complex V · of Proposition 6.5.11. Considering Λ with its usual
grading and looking at V i as a graded subspace of Λ, for each d ∈ N, we denote by Ker(di)d

the kernel of the restriction of di to V i
d and put HH i(Λ)d =

Ker(di)d
Ker(di)d∩Im(di−1)

. The reader

is warned that, generally, an element x ∈ HH i(Λ)d does not have length degree equal to
d.

Theorem 6.6.10. Let Λ be the generalized preprojective algebra Bn over a field K with
char(K) 6= 2. The following assertions hold:

1. When n is even, we have isomorphisms of Z(Λ)-modules:

(a) HH i(Λ) ∼= Z(Λ)/I, for all i > 0 and i ≡ 0 (mod 6), where I is the subspace
of Z(Λ) generated by the set {wi + w2n−i : 1 ≤ i < n} ∪ {wn} ∪ {v}, with
v =

∑
1≤k≤n

2
(w2k−1 − w2n−2k+1);

(b) HH i(Λ) ∼= Z(Λ)/Soc(Λ), for all i ≡ 1 or 4 (mod 6);

(c) HH i(Λ) ∼= Z(Λ)/J(Z(Λ)) = K, for all i ≡ 2 or 3 (mod 6);

(d) HH i(Λ) ∼= D(Z(Λ)/I), for all i ≡ 5 (mod 6);

2. When n is odd, we have isomorphisms of Z(Λ)-modules:
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(a) If char (K) does not divide n, then:

i. HH i(Λ) ∼=
Z(Λ)

Soc(Λ)∩Z(Λ) , for all i > 0 and i ≡ 0 or 1 (mod 6);

ii. HH i(Λ) = 0 otherwise.

(b) If char (K) divides n, then:

i. HH i(Λ) ∼= Z(Λ), for all i ≡ 0 (mod 6);

ii. HH i(Λ) ∼=
Z(Λ)

Soc(Λ)∩Z(Λ) , for all i ≡ 1 (mod 6);

iii. HH i(Λ) ∼= Z(Λ)/J(Z(Λ)) = K, for all i ≡ 5 (mod 6);

iv. HH i(Λ) = 0 otherwise.

Proof. If HH∗(Λ) is the stable Hochschild cohomology ring then, in case n is even, we
know from Eu-Schedler [35] that we have a correspondent of Corollary 5.2.12 and, hence,
that there is an isomorphism of graded HH∗(Λ)-modules D(HH∗(Λ)) ∼= HH∗(Λ)[5]. This
and the 6-periodicity of Λ yield isomorphisms of modules over HH0(Λ) = Z(Λ)

HH6(Λ) ∼= HH0(Λ)

D(HH0(Λ)) ∼= HH5(Λ)

D(HH1(Λ)) ∼= HH4(Λ)

D(HH2(Λ)) ∼= HH3(Λ).

On the other hand, the Z(Λ)-module Z(Λ)/Soc(Λ) is isomorphic to K[x]/(x
n
2 ), with

the terminology of Proposition 6.6.2. Then we have an isomorphism D(Z(Λ)/Soc(Λ)) ∼=
Z(Λ)/Soc(Λ) and, of course, we have another one D(Z(Λ)/J(Z(Λ))) ∼= Z(Λ)/J(Z(Λ))

since Z(Λ)
J(Z(Λ))

∼= K. Then, in order to prove assertion 1, we just need to prove 1.a and, in
1.b and 1.c, just the cases i = 1 and i = 2, respectively.

We know that if i > 0 and i ≡ 0 (mod 6), then there is an isomorphism of Z(Λ)-

modules HH i(Λ) ∼= HH0(Λ) = Z(Λ)
P(Λ,Λ) . Since Λ ∼= Ω6

Λe(Λ), we readily get that P(Λ,Λ) =

Im(µk
∗). In case n is odd, Proposition 6.5.11 gives that P(Λ,Λ) = Kwn when char(K)

does not divide n and that P(Λ,Λ) = 0, when char(K) divides n. Then the formulas 2.a.i
and 2.b.i, when i ≡ 0 (mod 6), are automatic since Z(Λ) ∩ Soc(Λ) = Kwn in this case.

In case n is even, using again Proposition 6.5.11, we can assume without loss of ge-
nerality that µk

∗ is a map KQ0 −→ Soc(Λ) whose associated matrix with respect to the
canonical bases of KQ0 and Soc(Λ) is the Cartan matrix CΛ. Following the calculation
of rank(CΛ) done in the proof of Proposition 6.5.7, we put f = µk

∗ and V = KQ0 for
simplicity. It was shown in that proof that the induced map Ker(τ − 1V ) −→ Ker(τ − 1V )
is bijective. Then {wi + w2n−i : 1 ≤ i < n} ∪ {wn} is a basis of f(Ker(τ − 1V )).

On the other hand, also in the proof of Proposition 6.5.7, it is shown that the restriction
of f to Ker(τ + 1V ) has a kernel of codimension 1 in Ker(τ + 1V ). Then f(Ker(τ + 1V ))
has dimension 1. From the mentioned proof it follows that f(e2k−1) − f(e2n−2k+1) =
f(e1)− f(e2n−1), for all k = 1, ..., n2 , because (e1 − e2n−1)− (e2k−1 − e2n−2k+1) is always
in the kernel of f (see Remark 6.5.8). But f(e1)− f(e2n−1) =

∑
1≤i≤2n−1(ci1− ci,2n−1)wi,

and by Proposition 6.5.7 we have
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ci1 − ci,2n−1 =





0 if i is even
2 if i is odd and i ≤ n
−2 if i is odd and i > n

It follows that f(e1) − f(e2n−1) = 2
∑

1≤k≤n
2
(w2k−1 − w2n−2k+1). From this and the

previous paragraph we get 1.a.
We next find the structure as a Z(Λ)-module of the space HH1(Λ). For that we

consider HH1(Λ) as a graded vector space, by using length degrees, and look at the exact
sequence

0→ Z(Λ)d −→ ⊕i∈Q0eiΛdei −→ Im(δ∗)d+1 → 0,

for any even degree 0 ≤ d < 2n−2. Recall from the proof of Proposition 6.6.2 that if d ≡ 2
(mod 4) then Z(Λ)d = 0, which implies that dim(Im(δ∗)d+1) = dim(⊕i∈Q0eiΛdei) = d+ 1
(see Proposition 6.6.1). On the other hand, by Proposition 6.6.7 we get dim(Ker(R∗)d+1) =
d+ 1. It follows that HH1(Λ)e = 0 whenever 0 < e < 2n− 2 and e ≡ 3 (mod 4).

When 0 ≤ d < 2n−2 and d ≡ 0 (mod 4), we know from the proof of Proposition 6.6.2
that dim(Z(Λ)d) = 1. It then follows that dim(Im(δ∗)d+1) = dim(⊕i∈Q0eiΛdei)−1 = (2n−
d− 1)− 1 = 2n− d− 2. Moreover, from Proposition 6.6.7 we get that dim(Ker(R∗)d+1) =
2n − (d + 1) = 2n − d − 1. It follows that dim(HH1(Λ)e) = 1 whenever 0 < e < 2n − 2
and e ≡ 1 (mod 4). We will now pick up an element 0 6= y ∈ HH1(Λ)1 and will prove
that the induced morphism of Z(Λ)-modules Z(Λ) −→ HH1(Λ) (a  ay) vanishes on

Z(Λ) ∩ Soc(Λ) and induces an isomorphism of Z(Λ)-modules Z(Λ)
Z(Λ)∩Soc(Λ)

∼=
−→ HH1(Λ).

The formula 1.b for i ≡ 1 (mod 6) and the formula 2.b.ii will immediately follow from
this.

Fix a natural number d such that d ≡ 0 (mod 4) and d < 2n − 2. Extending the
notation of the proof of Proposition 6.6.7, we denote by pa the possibly zero (unique up to
relations) path of length d+ 1 from i(a) to t(a). Note that the element vd+1 =

∑
a∈Q1

pa

is in Ker(R∗). Indeed R∗(vd+1) =
∑

a∈Q1
[(−1)s(σ(a)a)σ(a)pa + (−1)s(aσ

−1(a))paσ
−1(a)].

Let now i ∈ Q0 and i > n be any vertex such that eτ(i)Λd+2ei 6= 0 and denote by
qi the (unique up to relations) nonzero path of length d + 2 from τ(i) to i. Due to
the equalities qi = βi−1pαi−1 = pβi−1

αi−1 = pα2n−i−1βi = α2n−i−1pβi and the fact that
s(a) = 0, for each noncrossing arrow a, we see that qi in the last summatory appears
with coefficient [(−1)s(βi−1αi−1) + (−1)s(βi−1αi−1) + (−1)s(α2n−i−1βi) + (−1)s(α2n−i−1βi)] =
[(−1)s(βi−1) + (−1)s(βi−1) + (−1)s(βi) + (−1)s(βi). This coefficient is zero because exactly
one of the arrows βi−1, βi is in X̃ and, hence, s(βi−1) 6= s(βi). A similar argument shows
that qn appears with coefficient (−1)s(βn−1)+ (−1)s(βn−1)+ (−1)s(βn)+(−1)s(βn) = 0 and,
by application of the symmetry τ , we conclude that the coefficient of qi in the summatory
is zero, for all i ∈ Q0 such that eτ(i)Λd+2ei 6= 0. Therefore we have R∗(vd+1) = 0.

On the other hand, we claim that vd+1 6∈ Im(δ). To see that, note that the proof of
Proposition 6.6.1 shows that if ci denotes the cycle of length d at i, for each i ∈ Q0, then
{ci : 2s + 1 ≤ i ≤ 2n − 2s − 1} is a basis of ⊕i∈Q0eiΛdei, where 4s = d. If vd+1 ∈ Im(δ∗)
then there is a linear combination u =

∑
2s+1≤i≤2n−2s−1 λici such that δ∗(u) = vd+1.

Note that the arrows a such that pa 6= 0, equivalently those for which ei(a)Λd+1et(a) 6= 0,
are precisely the ones such that i(a), t(a) ∈ {i ∈ Q0 : 2s + 1 ≤ i ≤ 2n − 2s − 1} (see
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the proof of Proposition 6.6.3). Denoting this set of arrows by H, we readily see that
δ∗(u) =

∑
a∈H(λt(a) − λi(a))pa. The equality δ

∗(u) = vd+1 gives that the coefficient of pαn

in this expression is λn+1 − λn = 1 while the coefficient of pβn−1 is λn − λn+1 = 1. This is
absurd.

We write v̄d+1 = vd+1 + Im(δ∗) ∈ HH1(Λ)d+1 and put y = v̄1 ∈ HH
1(Λ)1. Taking

the element x ∈ Z(Λ) as in Proposition 6.6.2 and putting d = 4s, we readily see that
the equality v̄d+1 = xsy holds in HH1(Λ) since the multiplication by elements of Z(Λ) is
induced by the multiplication in Λ. It then follows that [Z(Λ)y]d = HH1(Λ)d+1, for all
natural number d ≡ 0 (mod 4). But then we have HH1(Λ) = Z(Λ)y since HH1(Λ) =
⊕d≡0 (mod 4)HH

1(Λ)d+1. It is clear that Soc(Λ) ∩ Z(Λ) ⊆ annZ(Λ)(y), so that HH1(Λ)

has a canonical structure of module over Z(Λ) = Z(Λ)
Soc(Λ)∩Z(Λ) . But Z(Λ) is isomorphic

to K[x]/(x
n
2 ) or K[x]/(x

n−1
2 ), depending on whether n is even or odd. If s is a natural

number such that s < n−1
2 then, both when n is even and when n is odd, we have that

xsy = v̄4s+1, which is nonzero since 4s + 1 ≤ 2n − 3. It follows that the morphism

Z(Λ) −→ HH1(Λ) which takes a ay gives an isomorphism Z(Λ)
Soc(Λ)

⋂
Z(Λ)

∼= HH1(Λ), as
desired.

From Propositions 6.5.11 and 6.6.7 we immediately get the formula in 1.c and the fact
that HH2(Λ) = 0 when n is odd.

Since the proof of assertion 1 is now complete, we assume in the rest of the proof
that n is odd. Then combining both Lemma 6.6.8 and Proposition 6.5.11, we then have
Ker(µδ

∗) = Im(k∗) and so HH3(Λ) = 0.
Lemma 6.6.8 shows that, if d < 2n − 2, the induced map µδ

∗ : ⊕i∈Q0eiΛdei =
⊕i∈Q0eµ(i)Λdei −→ ⊕a∈Q1ei(a)Λd+1et(a) = ⊕a∈Q1eµ(i(a))Λd+1et(a) is injective. Putting r =
d + 1 and using Proposition 6.6.1, we then have that dim(Im(µδ

∗)r) = dim(⊕i∈Q0eiΛdei)
is equal to 2n − d − 1 = 2n − r, when r ≡ 1 (mod 4), and equal to d + 1 = r, when
r ≡ 3 (mod 4). By Proposition 6.6.7, we conclude that Ker(µR

∗)r = Im(µδ
∗)r, for all odd

natural number r ≤ 2n − 3. We then get HH4(Λ) = 0.
Finally, from Propositions 6.5.11 and 6.6.7, we easily get that HH5(Λ) = 0, when

char(K) does not divide n, and HH5(Λ) is 1-dimensional when char(K) divides n. Then
the proof is complete.

As a straightforward consequence, we get:

Corollary 6.6.11. The following are the dimensions of the HH i(Λ) as K-vector spaces:

1. When n is even:

(a) dim(HH0(Λ)) = 5n
2 − 1.

(b) dim(HH i(Λ)) = 3n
2 − 2 for all i > 0 and i ≡ 0 or 5 (mod 6).

(c) dim(HH i(Λ)) = n
2 for all i > 0 and i ≡ 1 or 4 (mod 6).

(d) dim(HH i(Λ)) = 1 for all i > 0 and i ≡ 2 or 3 (mod 6).

2. When n is odd, dim(HH0(Λ)) = n+1
2 and, for i > 0, we have

(a) If Char(K) does not divide n, then:
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i. dim(HH i(Λ)) = n−1
2 , when i ≡ 0 or 1 (mod 6).

ii. dim(HH i(Λ)) = 0 otherwise.

(b) If Char(K) divides n, then:

i. dim(HH i(Λ)) = n+1
2 for all i ≡ 0 (mod 6).

ii. dim(HH i(Λ)) = n−1
2 for all i ≡ 1 (mod 6).

iii. dim(HH i(Λ)) = 1 for all i ≡ 5 (mod 6).

iv. dim(HH i(Λ)) = 0 otherwise.

6.7 The ring structure of the Hochschild cohomology ring

Finally, in this section we compute the structure of the Hochschild cohomology ring
HH∗(Λ) of the generalized preprojective algebra Λ = Bn as a bigraded algebra over a
field of characteristic different from 2. As done in Chapter 4, we will follow a convention
for the statements of the two main theorems. Let us denote by P · : ...P−n → ...→ P−1 →
P 0 → Λ→ 0 the minimal projective resolution of Λ as a graded bimodule (see Proposition
6.5.10). In the statement of the theorems, if a generator g is in HHn(Λ), we will give
a morphism of Λ-bimodules g̃ : P−n −→ Λ such that g̃ is in the kernel of the transpose
map (d−n−1)∗ : HomΛe(P−n,Λ) = (P−n)∗ −→ (P−n−1)∗ = HomΛe(P−n−1,Λ) and g is the
image of g̃ by the canonical projection Ker(d−n−1)∗ ։ HHn(Λ). We will say that g is
represented by g̃ and g̃ will be identified simply by its action on the canonical generators
ei ⊗ ej of P

−n.
We start with the simplest case: when n is odd.

6.7.1 When n is odd

Theorem 6.7.1. Let n be odd and let Λ be the generalized preprojective algebra Bn over
a field of characteristic 6= 2 and let view HH∗(Λ) as a bigraded algebra (see Section 2).
Consider the following elements of HH∗(Λ):

a) x =
∑

3≤i≤2n−3 ci ∈ HH
0(Λ) = Z(Λ), where ci is the cycle of length 4 at i;

b) y ∈ HH1(Λ) represented by ỹ : ⊕a∈Q1Λei(a)⊗et(a)Λ −→ Λ, where ỹ(ei(a)⊗et(a)) = a,
for all a ∈ Q1;

c) h ∈ HH6(Λ) represented by the multiplication map ⊕i∈Q0Λei ⊗ eiΛ −→ Λ; and

d) In case char(K) divides n, the element v ∈ HH5(Λ) represented by ṽ : ⊕i∈Q0Λeη(i)⊗
eiΛ = ⊕i∈Q0Λeτ(i) ⊗ eiΛ −→ Λ, where ṽ(eτ(i) ⊗ ei) = δinen, for all i ∈ Q0, and δin
is the Kronecker symbol.

Then we have bideg(x) = (0, 4), bideg(y) = (1, 0), bideg(h) = (6,−4n) and bideg(v) =
(5,−2n − 2) and the following assertions hold:

1. If char(K) does not divide n, then HH∗(Λ) is the commutative bigraded algebra with
generators x, y, h, subject to the relations:
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x
n+1
2 = 0, x

n−1
2 y = 0, x

n−1
2 h = 0 and y2 = 0.

2. If char(K) divides n, then HH∗(Λ) is the commutative bigraded algebra with gene-
rators x, y, v, h, subject to the relations

x
n+1
2 = 0, x

n−1
2 y = 0, xv = 0, y2 = 0, yv = 0 and v2 = 0.

Proof. We know that y is the image of
∑

a∈Q1
a by the projection Ker(R∗) ։ HH1(Λ).

But the length degree of
∑

a∈Q1
a in ⊕a∈Q1ei(a)Λet(a)[1] is equal to 0, so that bideg(y) =

(1, 0). On the other hand h is the image of 1 by the projection Ker(δ∗)։ HH6(Λ). But the
length degree of 1 in ⊕i∈Q0eiΛei[4n] is −4n, so that bideg(h) = (6,−4n). When char(K)
divides n, we have that v is the image of en by the projection Ker(µk

∗)։ HH5(Λ). But
the length degree of en in ⊕η(i)Λei[2n + 2] is −2n− 2, so that bideg(v) = (5,−2n − 2).

By the multiplicative structure of the center (see Proposition 6.6.2), we know that

x
n+1
2 = 0. By Theorem 6.6.10 and its proof, we know that the map Z(Λ) −→ HH1(Λ)

(a ay) is surjective with kernel Soc(Λ) ∩Z(Λ), which is the ideal of Z(Λ) generated by

wn = x
n−1
2 . We also know that the map Z(Λ) −→ HH6(Λ) (a  ah) is surjective, with

zero kernel in case char(K) divides n, and with kernel Soc(Λ)∩Z(Λ) = Kx
n−1
2 otherwise.

Moreover, we have y2 = 0 because HH2(Λ) = 0. When char(K) does not divide n, this
together with periodicity and the fact that HH3(Λ) = 0 = HH5(Λ) imply that HH∗(Λ)
is a commutative algebra since all products of homogeneous elements of odd homological
degree are zero. We conclude that, when char(K) does not divide n, the bigraded algebra
HH∗(Λ) is given by generators and relations as indicated in the statement of the theorem.

Suppose in the rest of the proof that char(K) divides n. Then v2 = 0 since v2 ∈
HH10(Λ) = 0. That xv = 0 follows easily from taking bidegrees. Indeed HH5(Λ) is 1-
dimensional and its nonzero elements are all scalar multiples of v, thus of bidgree (5,−2n−
2), while if we had xv 6= 0 we would have bideg(xv) = (0, 4)+ (5,−2n− 2) = (5,−2n+2).
Note that we cannot apply an analogous argument to prove that yv = 0 since bideg(yv) =

bideg(x
n−1
2 h) and x

n−1
2 h 6= 0. Instead, given i ∈ Q0 and a nonzero element 0 6= z ∈

eτ(i)Λen which is equal in Λ to a path from τ(i) to n, we fix such a path, say a1a2...ar,
where the ai are arrows. We now imitate an argument used in the proof of Lemma 5.4.4
and take the element

ξz = τ(a1)...τ(ar−1)⊗ z
∗ + τ(a1)...τ(ar−2)⊗ τ(ar)z

∗ + ...+ τ(a1)⊗ τ(a3)...τ(ar)z
∗ + ei ⊗

τ(a2)...τ(ar)z
∗.

Note that ξz is an element of ⊕a∈Q1Λei(a) ⊗ et(a)Λ which depends on the path chosen to
represent z. However, direct computation shows that δ(ξz) = τ(z)⊗ z∗ − ei ⊗ τ(z)z

∗, and
this element does not depend on that choice. When i 6= n, we always have τ(z)z∗ = 0 in
Λ, so that δ(ξz) = τ(z) ⊗ z∗. Fixing now a basis eτ(i)Ben of eτ(i)Λen consisting of paths,
we get that δ(

∑
z∈eτ(i)Ben

ξz) =
∑

z∈eτ(i)Ben
τ(z) ⊗ z∗. But for i = n, with the convention

that ξen = 0 and so δ(ξen) = en ⊗ wn − en ⊗ wn, we also get:

δ(
∑

z∈eτ(n)Ben
ξz) =

∑
z∈enBen

[τ(z) ⊗ z∗ − en ⊗ wn] = (
∑

z∈enBen
τ(z)⊗ z∗)−

dim(enΛen)(en ⊗ wn) = (
∑

z∈enBen
τ(z)⊗ z∗)− n(en ⊗ wn) =

∑
z∈enBen

τ(z)⊗ z∗,
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because dim(enΛen) = n (see Proposition 6.5.7) and char(K) divides n.
We now explicitly calculate the product yv inHH∗(Λ). The morphism ṽ : ⊕i∈Q0Λeτ(i)⊗

eiΛ −→ Λ, which represents v, admits an obvious lifting v̂ : ⊕i∈Q0Λeτ(i) ⊗ eiΛ −→
⊕i∈Q0Λei ⊗ eiΛ, which is the unique morphism of Λ-bimodules which maps eτ(i) ⊗ ei  
δinen ⊗ en. Bearing in mind that η = τ in this case, we then get

(v̂ ◦ µk)(ei ⊗ ei) = v̂(
∑

z∈eτ(i)B
τ(z)⊗ z∗) =

∑
z∈eτ(i)Ben

τ(z) ⊗ z∗ = δ(
∑

z∈eτ(i)Ben
ξz).

This implies that if we take the unique morphism ⊕i∈Q0eiΛei
f
−→ ⊕a∈Q1Λei(a) ⊗ et(a)Λ of

Λ-bimodules which maps ei ⊗ ei  
∑

z∈eτ(i)Ben
ξz, then the composition ⊕i∈Q0eiΛei

f
−→

⊕a∈Q1Λei(a)⊗et(a)Λ
ỹ
−→ Λ represents the product yv. One readily sees that (ỹ◦f)(ei⊗ei) =

0, for all vertices i 6= n. On the other hand, if z ∈ enBen then ỹ(ξz) = length(z)τ(z)z∗ =
length(z)wn. It follows that

(ỹ ◦f)(en⊗ en) =
∑

z∈enBen
length(z)wn = (0+2+4+ ...+(2n−2))wn = n(n−1)wn = 0.

Then we have yv = 0 in HH∗(Λ).

6.7.2 When n is even

In the rest of the thesis, we assume that n is even. We will adopt the convention of Remark
6.6.9.

Lemma 6.7.2. Let n be even and d be an odd natural number such that 0 < d <
2n − 2. Then HH4(Λ)d 6= 0 if, and only if, d ≡ 1 (mod 4). In such a case one has
dim(HH4(Λ)d) = 1.

Proof. By Proposition 6.6.7, we know that the kernel of the map µR
∗ : ⊕a∈Q1eτ(i(a))Λdet(a)

−→ ⊕i∈Q0eiΛd+1ei has dimension d + 1. On the other hand, from Lemma 6.6.8 we
know that µδ

∗ : ⊕i∈Q0eτ(i)Λd−1ei −→ ⊕a∈Q1eτ(i(a))Λdet(a) is injective. Then we have the
equalities dim(Im(µδ

∗)) = dim(⊕i∈Q0eτ(i)Λd−1ei) = d (see Proposition 6.6.4). It follows
that dimHH∗(Λ)d = 1. Using Corollary 6.6.11, we then get:

n

2
= dim(HH4(Λ)) ≥

∑

d<2n−2,d≡1 (mod 4)

dim(HH4(Λ)d) =
n

2

From this the result follows immediately.

Lemma 6.7.3. For each i, j ∈ Q0, let Gij be the set of natural numbers d such that
eiΛdej 6= 0 and put Υij =

∑
d∈Gij

d−
∑

e∈Gi,2n−j
e. The following assertions hold:

1. If i, j ≤ n then:

(a) If either i = n or j = n or i and j are both even, then Υij = 0

(b) If both i and j are odd, then Υij = 2n − 2

(c) If i is odd and j is even, then:



6.7. The ring structure of the Hochschild cohomology ring 167

i. Υij = −2j, when i > j

ii. Υij = 2(n − j), when i < j

2. The following relations hold:

(a) Υij = Υ2n−i,2n−j

(b) −Υi,2n−j = Υij = −Υ2n−i,j

(c) Υij = −Υji whenever i or j is even

(d) Υij = 4n− 4−Υji whenever i and j are both odd and smaller than n.

Proof. We first prove assertion 2). The equality 2.a follows from the fact that, due to the
symmetry τ , one has that Gij = G2n−i,2n−j. By definition of Υij and Υi,2n−j, we get that
Υij = −Υi,2n−j. But then, using 2.a, we get that Υij = −Υ2n−i,j and so 2.b follows.

We next prove 2.c and 2.d at once. By Remark 6.5.4, we have that d ∈ Gij if, and
only if, 2n − 2− d ∈ Gji. This together with the equality of sets G2n−j,i = Gj,2n−i gives:

Υij =
∑

d∈Gij
d−

∑
e∈Gi,2n−j

e =
∑

d′∈Gji
(2n − 2− d′)−

∑
e′∈G2n−j,i

(2n− 2− e′) =

(2n− 2)|Gji| − (2n− 2)|Gj,2n−i| −Υji = (2n− 2)(cji − cj,2n−i)−Υji.

From Proposition 6.5.7 and its proof we know that cji − cj,2n−i = 0, when i or j is even,
and cji − cj,2n−i = 2, when i and j are both odd and smaller than n.

We clearly have that Υin = 0, and from 2.c we also get Υni = 0. In order to prove the
rest of assertion 1, let us note that, by Lemma 6.5.5, we have the formula:

Υij =
∑

s∈X+(i,j)[4s+ (j − i)] +
∑

s∈X−(i,j)[4s + 2 + (j − i)]−
∑

t∈Z+(i,2n−j)[4t+ (j −
i)]−

∑
t∈Z−(i,2n−j)[4t+ 2 + (j − i)] = 4aij + 4bij + 2uij + (j − i)vij ,

where aij =
∑

s∈X+(i,j) s −
∑

t∈Z−(i,2n−j) t, bij =
∑

s∈X−(i,j) s −
∑

t∈Z+(i,2n−j) t, uij =

|X−(i, j)| − |Z−(i, 2n − j)| and vij = cij − ci,2n−j . Here CΛ = (cij) is the Cartan matrix.
In order to exploit the formula above, let us recall (cf. Lemma 6.5.6), that if i, j > n then
we have set equalities:

X+(i, j) = {s ∈ N : max(0, i−j2 ) ≤ s ≤ n− j+1
2 }

Z−(i, 2n − j) = {t ∈ N : max(0, i−j−1
2 ) ≤ t ≤ n− j+2

2 }

X−(i, j) = {s ∈ N : i−n−1
2 ≤ s ≤ min(n−2

2 , n+i−j−2
2 )}

Z+(i, 2n − j) = {∈ N : i−n2 ≤ t ≤ min(
n−1
2 , n+i−j−1

2 ))}.

Using these equalities and Proposition 6.5.7, we then get the following table, whenever
n < i ≤ j:

Condition aij bij uij vij
i and j even 0 0 (n− j

2 )− (n− j
2) = 0 0

i and j odd n− j+1
2

i−n−1
2 (n− j−1

2 )− (n− j+1
2 ) = 1 2

i odd, j even 0 −|X−(i, j)| = −(n− j
2) (n− j

2 )− (n− j
2) = 0 0

i even, j odd n− j+1
2 −n+i−j−1

2 (n− j+1
2 )− (n− j+1

2 ) = 0 0
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From this table, using 2.a, we get immediately 1.a and 1.b. Finally note that, by 2.a
again, proving 1.c is equivalent to proving that if i, j ≥ n, with i odd and j even, then
Υij = −2(2n− j), when i < j, and Υij = −2(n− j), when i > j. The first equality follows
immediately from the pre-last row of the table. The second formula follows from the last
row of the table, by using 2.c.

Notation 6.7.4. Given vertices i, j ∈ Q0, we shall denote by N(j, i) the set of natural
numbers d such that ejΛdeτ(i) 6= 0 6= eiΛ2n−2−dej or, equivalently, such that ejΛdeτ(i) 6=

0 6= ejΛdei. We then put B̃ =
⋃
i,j∈Q0

ejB̃eτ(i), where ejB̃eτ(i) denotes the subset of
ejΛeτ(i) consisting of the classes x modulo relations of paths from j to τ(i) such that

deg(x) ∈ N(j, i). Finally, for each x ∈ ejB̃eτ(i), we shall denote by x⋄ the class modulo
relations of any path from i to j of length 2n− 2− deg(x).

In the following lemma, for each j ∈ Q0, we shall denote by x(j) and y(j) the shortest
paths from j to n and from n to j, respectively, which we view as elements of Λ. Note
that both of them have length |n− j|.

Lemma 6.7.5. Let i, j ∈ Q0 be any vertices. The following assertions hold:

1. N(j, i) = N(j, 2n − i) = N(2n − j, i) = N(2n − j, 2n − i) and the assignment

d 2n− 2− d defines a bijection N(j, i)
∼=
−→ N(i, j).

2. If i, j ≥ n the set N(j, i) is nonempty exactly when i + j ≤ 3n − 1. In such case
ejB̃eτ(i) = {x(j)c

ry(τ(i)) : 0 ≤ r ≤ 3n − 1 − (i + j)}, where c is the cycle of length
2 at n.

3. If j 6= n then, for each pair (0, 0) 6= (λ, µ) ∈ (K × {0}) ∪ ({0} × K), there is a
unique map h : ejB̃ −→ K such that (h(x(j)), h(x(j)αn−1)) = (λ, µ) and h satisfies
the following three conditions, for each x ∈ ejB̃:

(a) h(xa) = h(x), whenever a is a crossing arrow 6= βn−1 and xa ∈ ejB̃

(b) h(xa) = −h(x), whenever a is a noncrossing arrow 6= αn−1 and xa ∈ ejB̃

(c) If a ∈ {αn−1, βn−1} and xa ∈ ejB̃, then exactly one of the values h(x) and
h(xa) is nonzero.

4. If j 6= n, h : ejB̃ −→ K is the map satisfying the conditions 3.a-c) and x, xc ∈ ejB̃,
then exactly one of h(x) and h(xc) is nonzero. If, in addition, also xc2 is in ejB̃,
then h(x) = h(xc2).

Proof. 1) This assertion is a direct consequence of the definition of N(j, i) and of the
isomorphisms D(ejΛdek) ∼= D(ekΛ2n−2−dej) and ejΛdek ∼= e2n−jΛde2n−k, which hold for
all j, k ∈ Q0.

2) Let d be any natural number. From Lemma 6.5.5 we know that ejΛde2n−i 6= 0
(resp. ejΛdei 6= 0) if, and only if, there is a s ∈ Z+(j, 2n − i) (resp. x ∈ X+(j, i))
such that d = 4s + i − j or there is a s ∈ Z−(j, 2n − i) (resp. x ∈ X−(j, i)) such that
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d = 4s + 2 + i − j. It follows that d ∈ N(j, i) if, and only if, either d = 4s + i − j, with
s ∈ X+(j, i) ∩ Z+(j, 2n − i), or d = 4s + 2 + i− j, with s ∈ X−(j, i) ∩ Z−(j, 2n − i). By
Lemma 6.5.6, we have the following set equalities:

X+(j, i) ∩ Z+(j, 2n − i) = {s ∈ N : j−n2 ≤ s ≤ n−
i+1
2 }

X−(j, i) ∩ Z−(j, 2n − i) = {s ∈ N : j−n−1
2 ≤ s ≤ n− i+2

2 }.

It follows that N(j, i) consists of the natural numbers d such that d ≡ i− j or d ≡ i− j+2
(mod 4) and i + j − 2n ≤ d ≤ 4n − 2 − (i + j). This set is nonempty precisely when
i+ j − 2n ≤ 4n− 2− (i+ j), which is equivalent to saying that i+ j ≤ 3n− 1.

Note that we have actually proved that N(j, i) = {i + j − 2n + 2r : r = 0, 1, ..., 3n −
1− i− j}. But the elements of this set are precisely the lengths of the paths x(j)cry(τ(i)),
which proves that ejB̃eτ(i) = {x(j)c

ry(τ(i)) : 0 ≤ r ≤ 3n− 1− (i+ j)}.

3) We first suppose that µ = 0. By assertions 1 and 2, each x ∈ ejB̃ can be written in
the form x = x(j)cry(i), for uniquely determined vertices i, j ∈ Q0 and natural number
r, where r is bounded above by a formula depending on i, j (e.g. if i, j ≥ n then 0 ≤ r ≤
3n− 1− (i+ j)). We define the map h : ejB̃ −→ K as follows:

i) If either i ≥ n and r is odd or i < n and r is even, we put h(x) = 0;

ii) If i ≥ n and r is even, we put h(x) = (−1)i−nλ;

iii) If i < n and r is odd, we put h(x) = (−1)i−n+1λ.

Let us check that this map satisfies the required conditions. On one hand, we clearly
have (h(x(j)), h(x(j)αn−1) = (λ, 0) = (λ, µ). On the other hand, let a be a noncrossing
arrow, with a 6= αn−1, such that also xa ∈ ejB̃. Then we have i(a) = i. If i ≥ n then
a = αi and y(i)a = y(i + 1), so that xa = x(j)cry(i + 1). It follows from this that
h(xa) = −h(x) and a similar argument works in case i < n.

Suppose that a is a crossing arrow such that xa ∈ ejB̃. We do the case when i > n,
leaving to the reader the case i < n. We then get that a = β2n−i and, by the relations,
we have an equality y(i)β2n−i = cαn−1...α2n−i+1 = cy(2n − i + 1). We then get xa =
x(j)cr+1y(2n − i+ 1). By the definition of h, if r is odd then we have h(x) = 0 = h(xa).
If r is even then h(x) = (−1)i−nλ, while h(xa) = (−1)[n−(2n−i+1)]+1λ. It follows that
h(xa) = h(x).

If xαn−1 ∈ ejB̃, which implies that i = n and x = x(j)cr , then h(xαn−1) is equal to 0
or λ, depending on wether r is even or r is odd. But in the first case h(x) 6= 0 while in the
second case h(x) = 0. It then follows that exactly one of h(x) and h(xαn−1) is nonzero.
Suppose finally that xβn−1 ∈ ejB̃, which implies that i = n + 1 and x = x(j)crαn. Note
that then xβn−1 = x(j)cr+1. If r is even,then we have h(x) = −h(x(j)cr) = −λ 6= 0 =
h(xβn−1) = h(x(j)cr+1). On the contrary, if r is odd then we have h(x) = −h(x(j)cr) =
0 6= h(x(j)cr+1) = h(xβn−1). We then have that exactly one of h(x) and h(xβn−1) is
nonzero.

We now prove that h is unique. Indeed, suppose that h′ : ejB̃ −→ K is a map such
that h′ 6= h and h′ satisfies the requirements. Note that ejB̃ admits the divisibility partial
order. That is, x ≤ y if and only if there is a homogeneous element z ∈ Λ such that xz = y.
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We choose x0 ∈ ejB̃ such that h′(x0) 6= h(x0) and x0 is minimal with this property. By the
properties of h and h′, we know that x0 6∈ {x(j), x(j)αn−1}. But, due to the relations, any
element in ejB̃ \ {x(j), x(j)αn−1} can be written in the form xa, where x ∈ ejB̃ and a is
an arrow different from αn−1 and βn−1. In particular, we can write x0 = xa. We then get
h(x) = h(xa) 6= h′(xa) = h′(x), when a is crossing, and h(x) = −h(xa) 6= −h′(xa) = h′(x),
when a is noncrossing. In both cases, we get that h(x) 6= h′(x), which is a contradiction
since x < x0.

With a very similar argument, the reader will have no difficulty in checking that if
(λ, µ) = (0, µ), then the desired map h is given as follows:

i) If either i ≥ n and r is even or i < n and r is odd, then h(x) = 0;

ii) If i ≥ n and r is odd, then h(x) = (−1)i−nµ;

iii) If i < n and r is even, then h(x) = (−1)i−n+1µ.

4) This assertion follows immediately from the explicit definition of h given in the
proof of assertion 3.

Definition 23. Let us put B̃ =
⋃
j∈Q0

ejB̃. Then we call the coefficient map, denoted in

what follows by h, the map h : B̃ −→ K identified by its restriction to the ejB̃ as follows:

1. If x ∈ enB̃ = enB and we put x = cry(i), where y(i) denotes the shortest path from

n to i, then h(x) = (−1)deg(y(i))

4 , when i ≥ n, and h(x) = (−1)deg(y(i))−1

4 , when i < n.

2. When either j > n and j is odd or j < n and j is even, h|ej B̃ : ejB̃ −→ K is the

unique map such that (h(x(j), h(x(j)αn−1)) = (0, 12) and satisfies conditions 3.a-c of
Lemma 6.7.5 ;

3. When either j < n and j is odd or j > n and j is even, h|ej B̃ is the unique map such

that (h(x(j), h(x(j)αn−1)) = (12 , 0) and satisfies conditions 3.a-c of Lemma 6.7.5

Lemma 6.7.6. Let a and j be an arrow and a vertex in Q, respectively, and let us denote
by x(j) and y(j) the shortest paths from j to n and from to n to j, respectively. Then the
following assertions hold:

1. If x ∈ ejB̃eτ(t(a)) is such that xσ(a) ⊗ x⋄ 6= 0, then x⋄ ∈ σ−1(a)Λ unless a = βi,
x⋄ = x(t(a))y(j) and one of the following three conditions is satisfied:

(a) j = n

(b) i is odd and either i, j > n or i < n < j

(c) i is even and either i, j < n or j < n ≤ i

Moreover, in the last two cases and whenever i 6= n, the coefficient map satisfies that
h(x) = 0.
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2. If y ∈ ejB̃ei(a) is such that y ⊗ σ−1(a)y⋄ 6= 0, then y ∈ Λσ(a) unless a = αi,
y = x(j)y(i(a)) and one of the following three conditions is satisfied:

(a) j = n

(b) j is odd and either i, j ≥ n or i, j < n

(c) j is even and either i < n < j or j < n ≤ i

Moreover, in the last two cases and whenever i 6= n− 1, the coefficient map satisfies
h(y) = 0.

Proof. We shall deal with the last statement of both assertions 1) and 2) at the end of the
proof. We then begin with the first part of each of them.

1) We know from Lemma 6.7.5 that x⋄ = x(t(a))csy(j) where s ∈ N. Due to the
symmetry τ , there is no loss of generality in assuming that either a = αi−1 : i − 1 −→ i
with i ≥ n+ 1 or a = βi : 2n− i− 1 −→ i with i ≥ n.

Suppose first that a = αi−1 with i ≥ n + 1, so that, x⋄ = x(i)csy(j). But then, it is
clear that the first arrow of x(i) is precisely β2n−i = σ−1(αi−1) and we immediately get
that x⋄ ∈ σ−1(a)Λ.

Suppose next that a = βi : 2n − i − 1 −→ i with i > n. Then x⋄ = x(i)csy(j) where
x(i) = β2n−iβi−2 · · · βn−2βn if i is even and x(i) = β2n−iβi−2 · · · βn+1βn−1 if i is odd. Note
that if i is even we get that x(i)c = β2n−iβi−2 · · · βn−2βnαnβn−1 = αiβ2n−i−1 · · · βn+1

while if i is odd we obtain that x(i)c = β2n−iβi−2 · · · βn+1βn−1αn−1βn = αiβ2n−i−1 · · · βn.
Therefore x⋄ ∈ σ−1(βi)Λ = αiΛ whenever s ≥ 1. We know assume that s = 0, that
is, x⋄ = x(i)y(j). It is clear that if j = n, since y(j) = ej , we have that x⋄ = x(i) 6∈
αiΛ. Now suppose that j 6= n. Following the description of x(i) we distinguish two
cases. First, let us assume that i is odd. Then, if j > n we have that x(i)y(j) =
β2n−iβi−2 · · · βn+1βn−1αn−1 · · ·αj = αiβ2n−i−1 · · · βn−2αn−2 · · ·αj which belongs to αiΛ.
The result for the case when i is even is very similar to that of when i is odd so it is left
to the reader. For the case when i = n and, consequently, x⋄ = y(j), we obviously have
that the first arrow of y(j) is σ−1(βn) = αn if, and only if, j > n.

2) We proceed similarly to assertion 1). Once again, due to Lemma 6.7.5 we know
that y = x(j)csy(i(a)) for some s ∈ N and that we can assume without loss of generality
that either a = αi : i −→ i+ 1 with i ≥ n or a = βi : 2n − i− 1 −→ i with i ≥ n.

We first suppose that a = βi : 2n−i−1 −→ i with i ≥ n and then, y = x(j)csy(2n−i−1)
with i ≥ n and Λσ(a) = Λα2n−i−1. This is equivalent to saying that y = x(j)csy(i) with
i < n and Λσ(a) = Λαi. But notice that y(i) = αn−1αn−2 · · ·αi ∈ Λαi, so we are done.

Finally suppose that a = αi −→ i + 1 with i ≥ n and hence, y = x(j)csy(i) for
some s ∈ N. Since i ≥ n, we get that y(i) = αn · · ·αi−1 (here αn · · ·αi−1 = ei in case
i = n) which implies that cy(i) = αn−1βnαn · · ·αi−1 = αn−1 · · ·α2n−i−1βi ∈ Λσ(αi) = Λβi.
Therefore we can assume that s = 0, in which case, y = x(j)y(i). If j = n we obviously
obtain that y = y(i) 6∈ Λβi. So, from now on, assume that j 6= n. Note that the last arrow
of x(j) is βn−1 if, and only if, either j < n and j is even or j > n and j is odd. Otherwise,
the last arrow of x(j) is the arrow βn. But, since y(i) ∈ αnΛ if i 6= n and y(i) = ei if i = n
we clearly have that y = x(j)y(i) 6∈ Λβi if, and only if, the last arrow of x(j) is βn−1, or
equivalently, if, and only if, either j < n and j is even or j > n and j is odd.
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It only remains to deal with the statements involving the coefficient map h. We first
look at the one given in assertion 2). Using definition 23 and the explicit definition of
h|ejB̃ given in the proof of Lemma 6.7.5, we readily see that if j 6= n and y = x(j)cry(i) is

an element of ejB̃ei, then coefficient map vanishes on y if, and only if, the triple (i, r, j)
satisfies one of the conditions of the following table:

i r j

≥ n even odd > n or even < n

≥ n odd odd < n or even > n

< n even odd < n or even > n

< n odd odd > n or even < n

Taking now a = αi with i 6= n− 1, the reader will have no difficulty in deducing from
this table that if y = x(j)y(i(a)) satisfies conditions 2(b) and 2(c), then h vanishes on y.
This finishes assertion 2).

On the other hand, note that if x = x(j)cr(i,j)y(τ(i)) is an element of ejB̃ such that
x⋄ = x(i)y(j), then the equality deg(x) + deg(x⋄) = 2n − 2 gives that r(i, j) = n − 1 −
|j − n| − |i − n| which is clearly congruent with i + j + 1 (mod 2). If now a ∈ Q1 is any
arrow and x = x(j)cr(j,t(a))y(τ(t(a))), then we deduce from the last table that h vanishes
on x exactly when one of the conditions in the following table holds:

j t(a)

> n even ≤ n

> n odd > n

< n even > n

< n odd < n

If now a = βi is a crossing arrow with i 6= n and x is such that x⋄ = x(t(a))y(j) with
j 6= n and satisfying one of the conditions 1(b) or 1(c), then a simple verification shows
that it satisfies some of the conditions in the last table and, hence, h(x) = 0. This finishes
the proof.

Lemma 6.7.7. The following diagrams of morphisms of Λ-bimodules are commutative:

1.

⊕i∈Q0Λei ⊗ eiΛ
µk //

ξ

��

⊕i∈Q0Λei ⊗ eiΛ
µR //

η

��

⊕a∈Q1Λeτ(i(a)) ⊗ et(a)Λ

û

��
⊕i∈Q0Λeτ(i) ⊗ eiΛ R

// ⊕a∈Q1Λei(a) ⊗ et(a)Λ δ
// ⊕i∈Q0Λei ⊗ eiΛ

2.

⊕i∈Q0Λeτ(i) ⊗ eiΛ
k //

g

��

⊕i∈Q0Λeτ(i) ⊗ eiΛ
R //

f

��

⊕a∈Q1Λei(a) ⊗ et(a)Λ

ŷ

��
⊕i∈Q0Λeτ(i) ⊗ eiΛ R

// ⊕a∈Q1Λei(a) ⊗ et(a)Λ δ
// ⊕i∈Q0Λei ⊗ eiΛ
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3.

⊕i∈Q0Λei ⊗ eiΛ
µR //

ψ

��

⊕a∈Q1Λeτ(i(a)) ⊗ et(a)Λ
µδ //

ϕ

��

⊕i∈Q0Λeτ(i) ⊗ eiΛ

t̂
��

⊕i∈Q0Λeτ(i) ⊗ eiΛ R
// ⊕a∈Q1Λei(a) ⊗ et(a)Λ δ

// ⊕i∈Q0Λei ⊗ eiΛ

,

where the vertical morphisms are determined by their action on the generators of the
domain as follows:

1. û(eτ(i(a)) ⊗ et(a)) =
1
2(δa,αnen⊗αn− δα,βnβn−1⊗ en), η(ei⊗ ei) =

1
2δin(en⊗βn+

αn−1⊗ en) and ξ(ej ⊗ ej) =
∑

x∈ejB̃
h(x)x⊗ x⋄, where h : B̃ −→ K is the coefficient

map;

2. ŷ(ei(a)⊗et(a)) =
1
2 (a⊗et(a)+ei(a)⊗a), f(eτ(i)⊗ei) = −

1
2

∑
t(a)=i(−1)

s(σ(a)a)(σ(a)⊗

ei − eτ(i) ⊗ a) and g(eτ(i) ⊗ ei) =
∑

x∈eiB
(−1)c(x)deg(x)τ(x)⊗ x∗, where c(x)

denotes the number of noncrossing arrows in x;

3. t̂(eτ(i)⊗ei) = δinen⊗wn, ϕ(eτ(i(a))⊗et(a)) = (δa,βn +δa,βn−1)eτ(i(a))⊗wn and
ψ(ei ⊗ ei) = δinen ⊗wn.

Proof. 1) We first prove that δ ◦ η = û ◦ µR. An easy direct computation shows that
(δ◦η)(ei⊗ei) =

1
2(αn−1βn⊗en−en⊗αn−1βn). It will be convenient to write µR(ei⊗ei) =∑

a∈Q1
xa(i), with xa(i) ∈ Λeτ(i(a)) ⊗ et(a)Λ, for all a ∈ Q1. One readily sees from the

definition of µR that xa(i) = (−1)s(σ(a)a)µ(σ(a)) ⊗ et(a), when t(a) = i, that xa(i) =

(−1)s(aσ
−1(a))eτ(i(a)) ⊗ σ

−1(a), when i(a) = τ(i), and that xa(i) = 0 otherwise. But, due
to the fact that û vanishes on Λeτ(i(a))⊗et(a)Λ, for a 6= αn, βn, we get that (û◦µR)(ei⊗ei) =∑

a∈Q1
û(xa(i)) = û(xαn(i)) + û(xβn(i)). But one has {t(αn), t(βn)} = {n + 1, n} while

{i ∈ Q0 : τ(i) ∈ {i(αn), i(βn)}} = {n, n + 1}. It follows that (û ◦ µR)(ei ⊗ ei) = 0, for all
vertices i 6= n, n+ 1.

For i = n+1, we have xαn(n+1) = (−1)s(σ(αn)αn)µ(σ(αn))⊗ et(αn) = τ(βn)⊗ en+1 =

βn−1⊗en+1 and xβn(n+1) = (−1)s(βnσ
−1(βn))eτ(i(βn))⊗σ

−1(βn) = en+1⊗αn, using Lemma
6.5.9 and the fact that s(αn) = s(βn) = 0. It follows that

(û ◦ µR)(en+1 ⊗ en+1) = û(βn−1 ⊗ en+1) + û(en+1 ⊗ αn) =
1
2βn−1 ⊗ αn −

1
2βn−1 ⊗ αn = 0.

On the other hand, we have the equality xαn(n) = (−1)s(αnσ−1(αn))eτ(i(αn)) ⊗ σ
−1(αn) =

(−1)s(αnβn−1)en ⊗ βn−1 = −en ⊗ βn−1, while xβn(n) = (−1)s(σ(βn)βn)µ(σ(βn)) ⊗ et(βn) =

(−1)s(αn−1βn)[−τ(αn−1) ⊗ en = −αn ⊗ en, using again Lemma 6.5.9 and the fact that
0 = s(αn) = s(αn−1) = s(βn) 6= s(βn−1). We then get

(û ◦ µR)(en ⊗ en) = −û(αn ⊗ en)− û(en ⊗ βn−1) =
1
2αnβn−1 ⊗ en −

1
2en ⊗ αnβn−1.

This proves the desired equality δ ◦ η = û ◦ µR since αnβn−1 = αn−1βn in Λ.

We next prove the equality η ◦ µk = R ◦ ξ. Again, an easy direct computation shows
that (η ◦ µk)(ej ⊗ ej) =

1
2

∑
x∈ejBen

(x⊗ βnx
∗ + xαn−1⊗ x

∗). On the other hand, we have:
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(R ◦ ξ)(ej ⊗ ej) = R(
∑

i∈Q0

∑
x∈ejB̃

h(x)x⊗ x⋄) =
∑

x∈ejB̃eτ(i)
h(x)x[

∑
t(a)=i(−1)

s(σ(a)a)(σ(a)⊗ ei + eτ(i) ⊗ a)]x
⋄ =

∑
a∈Q1

∑
x∈ejB̃eτ(t(a))

(−1)s(σ(a)a)h(x)(xσ(a) ⊗ x⋄ + x⊗ ax⋄).

This is an element of ⊗a∈Q1Λei(a) ⊗ et(a)Λ. Given b ∈ Q1, the component of this element
along the summand Λei(b) ⊗ et(b)Λ is

Ψb(j) :=
∑

x∈ejB̃eτ(t(b))
(−1)s(σ(b)b)h(x)xσ(b) ⊗ x⋄ +

∑
y∈ej B̃ei(b)

(−1)s(bσ
−1(b))h(y)y ⊗ σ−1(b). (*)

Note that if x ∈ ejB̃eτ(t(b)), then xσ(b) ⊗ x
⋄ ∈ ejΛd+1eτ(i(b)) ⊗ et(b)Λ2n−2−dej , where

d = deg(x). If xσ(b)⊗x⋄ 6= 0 is such that x⋄ ∈ σ−1(b)Λ, we will have that x⋄ = σ−1(b)z, for
some nonzero path z from τ(i(b)) to j. But, putting y := xσ(b), we necessarily have that
y⋄ = z, so that xσ(b)⊗x⋄ = y⊗σ−1(b)y⋄. This means that xσ(b)⊗x⋄ appears in the second
summation Ψb(j), although with coefficient h(xσ(b)). A symmetric argument shows that
if y ⊗ σ−1(b)y⋄ 6= 0 is such that y ∈ Λσ(b), then y ⊗ σ−1(b)y⋄ also appears in the first
summation of the expression. So, under these hypothesis, the coefficient of xσ(b) ⊗ x⋄ =
(xσ(b)) ⊗ σ−1(b)(xσ(b))⋄ in Ψb(j) will be (−1)s(σ(b)b)h(x) + (−1)s(bσ

−1(b))h(xσ(b)) (**).
Moreover, notice that (−1)s(σ(b)b) and (−1)s(bσ

−1(b)) are equal, when b is a crossing arrow,
and opposite to each other, when b is noncrossing. Then , whenever b 6= αn−1, βn, the
expression is zero, because the map h satisfies the conditions 3.a and 3.b of Lemma 6.7.5,
even when j = n.

We claim that Ψb(j) = 0 for all j ∈ Q0 and b ∈ Q1\{αn−1, βn}. Assume first that b
is a noncrossing arrow 6= αn−1 in the formula (*). Then Lemma 6.7.6 tells us that the
argument of the last paragraph works for any element x ∈ ejB̃eτ(t(b)) and any element

y ∈ ejB̃ei(b) except when y = x(j)y(i(b)) and one of the three conditions 2(a), 2(b) or
2(c) in Lemma 6.7.6 is satisfied. Note that when j = n, we have that y = y(i(b)) and
y⊗σ−1(b)(y)⋄ = 0 since σ−1(b)(y)⋄ = 0. Hence, also in this case it is true that any nonzero
term of the form y ⊗ σ−1(b)y⋄, with y ∈ enB̃ei(b), is equal to one of the form xσ(b) ⊗ x⋄.
But, if we assume that j 6= n and y = x(j)y(i(b)) 6= 0 satisfies one of the conditions 2(b)
or 2(c) then, using Lemma 6.7.6 (2), we have in both cases that h(y) = 0. This means
that the summand h(y)y ⊗ σ−1(b)y⋄ is zero and hence it follows that Ψb(j) = 0 for any
j ∈ Q0 and any noncrossing arrow b different from αn−1.

Suppose next that b is a crossing arrow 6= βn in the formula (*). Then, by Lemma
6.7.6, we know that each nonzero term y⊗σ−1(b)y⋄ in the formula of Ψb(j) is of the form
xσ(b)⊗x⋄. Proceeding as in the previous paragraph, we see that the only case in which a
term xσ(b)⊗x⋄ is not of the form y⊗σ−1(b)y⋄ is precisely when x⋄ = x(t(a))y(j) and one
of the conditions 1(b) or 1(c) is satisfied. But then Lemma 6.7.6 tells us that h(x) = 0.
Therefore we also have Ψb(j) = 0 in this case.

We next deal with the cases b = αn−1 and b = βn. Let us consider first that b = αn−1

and assume that j 6= n. Given x ∈ ejB̃en+1 such that xσ(αn−1) ⊗ x
⋄ 6= 0, we will need

to know the pair (h(x), h(xσ(αn−1)) = (h(x), h(xβn−1). Putting x = x(j)crαn+1, we have
that xβn−1 = x(j)cr+1. Looking at definition 23 and the explicit definition of h|ejB̃ given
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in the proof of Lemma 6.7.5, and putting a := s(βn−1αn−1) and b := s(αn−1βn),we have
the following table:

Condition r (h(x), h(xβn−1) (−1)ah(x) + (−1)bh(xβn−1))

j > n odd or j < n even even (0, 12 )
1
2

j > n odd or j < n even odd (−1
2 , 0)

1
2

j < n odd or j > n even odd (0, 12 )
1
2

j < n odd or j > n even even (−1
2 , 0)

1
2

By Lemma 6.7.6, we know that any nonzero summand in (*) of the form xσ(αn−1)⊗x
⋄

with x ∈ ejB̃en+1 is of the form y ⊗ σ−1(αn)y
⋄ = y ⊗ βny

∗ for some y ∈ ejB̃en. That
summand appears then with coefficient (−1)s(βn−1αn−1)h(x) + (−1)s(αn−1βn)h(xβn−1) =

1
2

in Ψαn−1(j). However, if y = x(j) and one of the conditions 2.a or 2.b in Lemma 6.7.6 is
satisfied, then the summand y⊗σ−1(αn−1)y

⋄ is not of the form xσ(αn−1)⊗x
⋄. Note that in

this case either j < n and j odd or j > n and j even, which implies that h(y) = h(x(j)) =
1
2 , by definition 23. We then conclude that Ψαn−1(j) = 1

2

∑
y∈ejB̃en

y ⊗ σ−1(αn−1)y
⋄ =

1
2

∑
y∈ejBen

y ⊗ βny
∗.

To finish the case when b = αn−1, suppose finally that j = n. If y = x(n) = en, which
is not in Λβn−1, then en⊗σ

−1(αn−1)e
⋄
n = en⊗βnwn = 0 and there is nothing left to prove.

On the contrary, any xσ(αn−1) ⊗ x
⋄ with x ∈ enB̃en+1 is of the form y ⊗ σ−1(αn−1)y

⋄

for some y ∈ enB̃en, and viceversa. So we can write x = crαn and xβn−1 = cr+1 and the
definition of h implies that (h(x), h(xβn−1)) = (−1

4 ,
1
4). It follows that if y ∈ enBen \{en},

then we always have a decomposition y = xβn−1, with x ∈ enB̃en+1, and the coefficient of
y⊗σ−1(αn−1)y

∗ = xσ(αn−1)⊗x
⋄ in the expression of Ψαn−1(n) is −h(x)+h(xβn−1) =

1
2 .

Then we have Ψαn−1(n) =
1
2

∑
y∈enBen

y ⊗ βny
∗.

Finally suppose that b = βn and consider that j 6= n. By Lemma 6.7.6, we know that if
y ∈ ejB̃en−1 and the tensor y⊗σ−1(βn−1)y

⋄ = y⊗αn−1y
⋄ is nonzero, then we always have

y = xσ(βn) = xαn−1, for some x ∈ ejBen. It follows that the term y ⊗ σ−1(βn)y
⋄ of the

formula (*) is equal to one of the form xσ(βn)⊗ x
⋄. Lemma 6.7.6 says that the converse

is also true, except in case x⋄ = x(t(a))y(j) = x(n)y(j) = y(j) and conditions 1.b or 1(c)
in the mentioned lemma are satisfied. But condition 1(b) is discarded since n is even and,
hence, this exceptional situation appears exactly when j < n and x⋄ = y(j). We next put
x = x(j)cr , and so xσ(βn) = x(j)crαn−1. Using the explicit definition of h and putting
c := s(αn−1βn) and d := s(βnαn), we have the following table in the non-exceptional cases,
when j 6= n:

Condition r (h(x), h(xαn−1) (−1)ch(x) + (−1)dh(xαn−1))

j > n odd or j < n even even (0, 12 )
1
2

j > n odd or j < n even odd (12 , 0)
1
2

j < n odd or j > n even odd (0, 12 )
1
2

j < n odd or j > n even even (12 , 0)
1
2

which shows that, except for the case when j < n and x⋄ = y(j), the coefficient of
xσ(βn) ⊗ x

⋄ in Ψβn(j) is 1
2 . But, when x⋄ = y(j) and j < n, we have that x = x(j)cr,

where r = n − 1 − |n − j|. It is clear that r ≡ j + 1 (mod 2). Looking again at the
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explicit definition of h, we get that h(x) = 1
2 in this case. It follows that Ψβn(j) =

1
2

∑
x∈ejBeτ(t(βn))

xσ(βn)⊗ x
⋄ = 1

2

∑
x∈ejBen

xαn−1 ⊗ x
∗.

Still with b = βn, suppose now that j = n. Each nonzero term y ⊗ σ−1(βn)y
⋄ in

Ψβn(n) is of the form xσ(βn) ⊗ x
⋄. The converse is also true because the only possible

exceptional case would be when x⋄ = y(n) = en, in which case xσ(βn) = wnαn−1 = 0.
Then the coefficient of a nonzero tensor xσ(βn) ⊗ x

⋄ is h(x) + h(xαn−1). Note that we
have x = cr and xσ(βn) = crαn−1, where 0 ≤ r < n − 1. By definition 23, we have
that (h(x), h(xαn−1) = (14 ,

1
4), for each x ∈ enB \ {wn}. We then get that Ψβn(n) =

1
2

∑
x∈enBen

xαn−1 ⊗ x
∗.

From all the previous paragraphs we get that, for any j ∈ Q0, the following equality
holds:

(R ◦ ξ)(ej ⊗ ej) =
∑

b∈Q1
Ψb(j) = Ψαn−1(j) + Ψβn(j) =

1
2

∑
x∈ejBen

x⊗ βnx
∗ + 1

2

∑
x∈ejBen

xαn−1 ⊗ x
∗ = (η ◦ µk)(ej ⊗ ej).

This ends the proof of the commutativity of the first diagram in the statement.

2) It is easy to check the commutativity of the right square in the second diagram. For
the left square, note that we have:

(f ◦ k)(eτ(i) ⊗ ei) =
∑

j∈Q0

∑
x∈eiBej

(−1)c(x)τ(x)f(eτ(j) ⊗ ej)x
∗ =

−1
2

∑
j∈Q0

∑
x∈eiBej

(−1)c(x)τ(x)[
∑

t(a)=j(−1)
s(σ(a)a)(σ(a) ⊗ ej − eτ(j) ⊗ a)]x

∗ =

−1
2(
∑

a∈Q1
S+(i, a)−

∑
a∈Q1

S−(i, a)) = −1
2

∑
a∈Q1

[S+(i, a) − S−(i, σ−1(a)],

where

S+(i, a) =
∑

x∈eiBet(a)
(−1)c(x)+s(σ(a)a)τ(x)σ(a) ⊗ x∗

S−(i, a) =
∑

x∈eiBet(a)
(−1)c(x)+s(σ(a)a)τ(x)⊗ ax∗,

for each i ∈ Q0 and a ∈ Q1. Let us fix a ∈ Q1 and let x ∈ eiBet(a) be an element
such that τ(x)σ(a) ⊗ x∗ 6= 0. If we put y = xσ−1a then σ−1(a)y∗ = x∗ and we have
τ(y)⊗σ−1(a)y∗ = τ(x)σ(a)⊗x∗. This element appears then with nonzero coefficient both
as a summand of S+(i, a) and as a summand of S−(i, σ−1(a)). It then follows that

S+(i, a)− S−(i, σ−1(a)) =∑
x∈eiBet(a)

[(−1)c(x)+s(σ(a)a) − (−1)c(xσ
−1(a))+s(aσ−1(a))]τ(x)σ(a) ⊗ x∗,

and hence

(f ◦ k)(eτ(i) ⊗ ei) =

−1
2

∑
a∈Q1

∑
x∈eiBet(a)

[(−1)c(x)+s(σ(a)a) − (−1)c(xσ
−1(a))+s(aσ−1(a))]τ(x)σ(a) ⊗ x∗.

We use the definition of c(x) and the fact that s(σ(a)a) = s(aσ−1(a)), for a crossing,
and s(σ(a)a) 6= s(aσ−1(a)), when a is noncrossing, to see that (−1)c(x)+s(σ(a)a) and
(−1)c(xσ

−1(a))+s(aσ−1(a)) always have opposite signs. Then we get:

(f ◦ k)(eτ(i) ⊗ ei) = −
∑

a∈Q1

∑
x∈eiBet(a)

[(−1)c(x)+s(σ(a)a)τ(x)σ(a) ⊗ x∗.
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On the other hand, we have

(R ◦ g)(eτ(i) ⊗ ei) =
∑

j∈Q0

∑

x∈eiBej

(−1)c(x)deg(x)τ(x)R(eτ(j) ⊗ ej)x
∗ =

∑

j∈Q0

∑

x∈eiBej

(−1)c(x)deg(x)τ(x)[
∑

t(a)=j

(−1)s(σ(a)a)(σ(a) ⊗ ej + eτ(j) ⊗ a)]x
∗ =

∑

a∈Q1

T+(i, a) +
∑

a∈Q1

T−(i, a) =
∑

a∈Q1

(T+(i, a) + T−(i, σ−1(a)),

where

T+(i, a) =
∑

x∈eiBet(a)
(−1)c(x)+s(σ(a)a)deg(x)τ(x)σ(a) ⊗ x∗

T−(i, a) =
∑

x∈eiBet(a)
(−1)c(x)+s(σ(a)a)deg(x)τ(x) ⊗ ax∗.

Proceeding as in the case of the S(i, a), we get

T+(i, a) + T−(i, σ−1(a)) =∑
x∈eiBet(a)

[(−1)c(x)+s(σ(a)a)deg(x) + (−1)c(xσ
−1(a))+s(aσ−1(a))deg(xσ−1(a))]τ(x)σ(a) ⊗ x∗

=
∑

x∈eiBet(a)
[(−1)c(x)+s(σ(a)a)deg(x)+(−1)c(xσ

−1(a))+s(aσ−1(a))(deg(x)+1)]τ(x)σ(a)⊗x∗ =

=
∑

x∈eiBet(a)
(−1)c(xσ

−1(a))+s(aσ−1(a))τ(x)σ(a) ⊗ x∗,

because (−1)c(x)+s(σ(a)a) and (−1)c(xσ
−1(a))+s(aσ−1(a)) have opposite signs. But this same

reason proves the equality

(R ◦ g)(eτ(i) ⊗ ei) =
∑

a∈Q1
(T+(i, a) + T−(i, σ−1(a)) =

∑
a∈Q1

∑
x∈eiBet(a)

(−1)c(xσ
−1(a))+s(aσ−1(a))τ(x)σ(a) ⊗ x∗ =

−
∑

a∈Q1

∑
x∈eiBet(a)

[(−1)c(x)+s(σ(a)a)τ(x)σ(a) ⊗ x∗ = (f ◦ k)(eτ(i) ⊗ ei),

which gives the desired commutativity of the left square of the diagram.

3) In order to prove the commutativity of the third diagram, note that (t̂◦µδ)(eτ(i(a))⊗

et(a)) = t̂(µ(a) ⊗ et(a)) − t̂(eτ(i(a)) ⊗ a) has its second summand equal to zero, due to the

definition of t̂. Then (t̂◦µδ)(eτ(i(a))⊗et(a)) 6= 0 implies that t(a) = n, whence, that a = βn
or a = βn−1. An easy computation shows that (t̂ ◦ µδ)(eτ(i(βn)) ⊗ et(βn)) = βn−1 ⊗ wn
while (t̂ ◦ µδ)(eτ(i(βn−1)) ⊗ et(βn−1)) = βn ⊗ wn. On the other hand, by definition of ϕ,
we know that δ ◦ ϕ vanishes on eτ(i(a)) ⊗ et(a), for all arrows a 6= βn, βn−1. Moreover,
(δ◦ϕ)((eτ(i(βn ))⊗et(βn)) = δ(en+1⊗wn) = (βn−1⊗et(βn−1)−ei(βn−1)⊗βn−1)wn = βn−1⊗wn.
An analogous argument for βn−1 shows that (δ ◦ϕ)((eτ(i(βn−1))⊗ et(βn−1)) = βn ⊗wn and,
hence, the right square of the diagram above is commutative.

For the commutativity of the left square, note that ϕ ◦ µR vanishes on ei ⊗ ei, for
i 6= n, and an easy computation using Lemma 6.5.9 shows that (ϕ ◦ µR)(en ⊗ en) =
−αn ⊗wn + αn−1 ⊗wn. On the other hand, R ◦ψ also vanishes on all ei ⊗ ei, with i 6= n,
and we have an equality
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(R ◦ ψ)(en ⊗ en) = R(en ⊗ wn) = R(eτ(n) ⊗ en)wn = [
∑

t(a)=n(−1)
s(σ(a)a)(σ(a)⊗ en) +

en ⊗ a)]wn = (−1)s(αn−1βn)αn−1 ⊗ wn + (−1)s(αnβn−1)αn ⊗wn = αn−1 ⊗ wn − αn ⊗ wn.

From our results given in Chapter 4, we know that HH∗(Λ) is a graded pseudo-
Frobenius algebra admitting a graded Nakayama form whose degree function takes cons-
tant value 5.

In Proposition 1.3.7 there was given an explicit form of constructing a graded Nakayama
form for HH∗(Λ). Note that, due to the graded commutativity, the only nonzero idempo-
tent of HH∗(Λ) is 1 and so we apply the mentioned proposition of [op.cit.] with I = {1}
and ν = idI . Let B5 be a basis of HH

5(Λ) = HH5(Λ) containing a nonzero element, say ω,
of Socgr(HH

∗(Λ))5, the homogeneous component of (homological) degree 5 of the graded
socle of Socgr(HH

∗(Λ)). Then the graded Nakayama form associated to B5 is the graded
bilinear form (−,−) : HH∗(Λ) × HH∗(Λ) −→ K which acts on pairs of homogeneous
elements as follows:

1. (f, g) = 0 whenever deg(f) + deg(g) 6= 5

2. (f, g) is the coefficient of w in the expression of fg as a K-linear combination of the
elements of B5, whenever deg(f) + deg(g) = 5.

Lemma 6.7.8. Let us put x̂ = x + Im(µR
∗), for each x ∈ ⊕i∈Q0eiΛei. The following

assertions hold:

1. If c is the cycle of length 2 at the vertex n and x is as in Proposition 6.6.2, then
c ∈ Ker(µk

∗) and x
n
2
−1ĉ = ŵi 6= 0 in HH5(Λ), for all i ∈ Q0. If this element is

denoted by ŵ then Socgr(HH
∗(Λ))5 = Kŵ.

2. Let us consider the elements

(a) v2k = ê2k − ê2n−2k

(b) v2k−1 = ê2k−1 − ê2k+1 − ê2n−2k+1 + ê2n−2k−1,

for all 0 < k < n
2 . Then vj ∈ HH5(Λ), for all j = 1, ..., n − 2, and B5 =

{x
n
2
−1ĉ, ..., xĉ, ĉ, v1, ..., vn−2} is a basis of HH5(Λ).

3. Let us put x2k = w2k + I and x2k−1 =
∑

1≤r≤k w2r−1 + I, for all 0 < k < n
2 , and

let (−,−) : HH∗(Λ) ×HH∗(Λ) −→ K be the graded Nakayama form associated to
B5. Then B̄0 = {1, x, ..., x

n
2
−1, x1, ..., xn−2} is a basis of HH0(Λ) = Z(Λ)/I which is

dual of B5 with respect to restriction of (−,−) to HH0(Λ)×HH5(Λ).

Proof. 1) and 2): By Proposition 6.5.11, we know that c ∈ Ker(µk
∗), and then x

n
2
−1ĉ = ŵn

since multiplication by elements of Z(Λ) is done as in Λ. Bearing in mind that ωi = ci is
the cycle of length 2n−2 at i, in the last part of the proof of Proposition 6.6.7 it has been
proved that ωi − ωj ∈ Im(µR

∗), for all i, j ∈ Q0, and that none of the wi is in Im(µR
∗).

Note that we have proved also that xr ĉ 6= 0 in HH5(Λ), for each integer 0 ≤ r < n
2 .
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On the other hand, we have µk
∗(e2k− e2n−2k) =

∑
i∈Q0

ci,2k− ci,2n−2k, where cij is the
(i, j)-entry of the Cartan matrix of Λ. By Proposition 6.5.7, we know that e2k − e2n−2k ∈
Ker(µk

∗). On the other hand, as mentioned in the proof of the same proposition, we have
that ci,2k−1 − ci,2n−2k+1 = 2, for all i ∈ Q0 and 0 < k < n

2 . We then get µk
∗(e2k−1 −

e2k+1 − e2n−2k+11 + e2n−2k−1) =
∑

i∈Q0
(ci,2k−1 − ci,2k+1 − ci,2n−2k+1 + ci,2n−2k−1) = 0.

Then the vj (j = 1, 2, ..., n − 2) are well-defined elements of HH5(Λ).
Note now that the degrees of c and ej as elements of the graded vector space ⊕i∈Q0eiΛei

[2n+2] are −2n and −2n−2, respectively. Then, with respect to the induced length degree
in HH∗(Λ), we get that ldeg(xr ĉ) = 4r − 2n, for all 0 ≤ r < n

2 , and ldeg(vj) = −2n − 2,
for all 1 ≤ j ≤ n − 2. Since these degrees are all different, in order to prove the linear
independence of B5 it is enough to prove that {v1, ..., vn−2} is linearly independent. But
this is clear since Im(µR

∗) ⊆ ⊕i∈Q0eiJ(Λ)ei and non-trivial linear combination of the ei
can be in J(Λ). That B5 is a basis of HH5(Λ) follows then from Corollary 6.6.11.

3) That B̄0 is a basis of HH0(Λ) follows directly from theorem 6.6.10 and proposition
6.6.2. On the other hand, the length degrees of xrvj and xjx

r ĉ do not coincide with the
length degrees of the elements of B5, which implies that xrvj = 0 = xjx

r ĉ, and hence that
(xr, vj) = 0 = (xj , x

r ĉ) due to the definition of the graded Nakayama form associated to
B5 (see the lines preceding this lemma). Moreover, if 0 ≤ r, s < n

2 then the coefficient of

ŵ = x
n
2
−1ĉ in the expression of xr(xsĉ) = xr+sĉ as a linear combination of the elements

of B5 is the Kronecker symbol δr,n
2
−1−s, which shows that (xr, xsĉ) = δr,n

2
−1−s.

In order to end the proof, we just need to check that (xi, vj) = δij , for which it is enough
to check that xivj = 0, when i 6= j, and xjvj = ŵ for all j = 1, ..., n−2. Since multiplication
by elements of Z(Λ) (and in particular by elements of Soc(Λ)) is done as in Λ, we clearly
have that xivj = 0, when i and j are neither both odd nor both even. Moreover, if i
and j are even, then we have xivj = δijŵj = δijŵ. Finally, the product x2k−1v2t−1 is
clearly zero when t 6= k, k − 1. Moreover, we have x2k−1v2k−3 = ŵ2k−3 − ŵ2k−1 = 0 and
x2k−1v2k−1 = ŵ2k−1 = ŵ.

In the sequel, we just use the graded Nakayama form associated to the basis B5 given
by last lemma. As shown in Lemma 4.5.9, the following result holds.

Lemma 6.7.9. Let f , g and h be homogeneous elements of HH∗(Λ) such that their
homological degrees satisfy that deg(f) + deg(g) + deg(h) = 5. Then the following formula
holds:

(fg, h) = (−1)deg(g)deg(h)(fh, g) = (−1)deg(f)(deg(g)+deg(h))(gh, f).

We are ready to give the multiplicative structure of HH∗(Λ) when n is even.

Theorem 6.7.10. Let n be even, let Λ be the generalized preprojective algebra Bn over a
field of characteristic 6= 2 and let view HH∗(Λ) as a bigraded algebra (see Section 2). Let
wi be the cycle of length 2n − 2 at i, viewed as an element of Soc(eiΛ), for each i ∈ Q0,
and consider the following elements of HH∗(Λ):

1) x, x1, ..., x2n−1 of HH0(Λ) = Z(Λ) given as follows:
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(a) x =
∑

3≤i≤2n−3 ci, where ci is the nonzero cycle of length 4 at i;

(b) x2k = w2k and x2k−1 =
∑

1≤r≤k w2r−1, for all 0 < k < n
2 ;

(c) {xn−1, xn, ..., x2n−1} is any basis of the subspace I of Λ generated by {wi+w2n−i :
1 ≤ i < n} ∪ {wn} ∪ {v}, with v =

∑
1≤k≤n

2
(w2k−1 − w2n−2k+1).

2) y ∈ HH1(Λ) represented by ỹ : ⊕a∈Q1Λei(a) ⊗ et(a)Λ −→ Λ, where ỹ(ei(a) ⊗ et(a)) = a;

3) z ∈ HH2(Λ) represented by z̃ : ⊕i∈Q0Λeτ(i) ⊗ eiΛ −→ Λ, where z̃(eτ(i) ⊗ ei) = δinen;

4) t ∈ HH3(Λ) represented by t̃ : ⊕i∈Q0Λeτ(i) ⊗ eiΛ −→ Λ, where t̃(eτ(i) ⊗ ei) = δinwn;

5) u ∈ HH4(Λ) represented by ũ = ⊕a∈Q1Λeτ(i(a))⊗et(a)Λ −→ Λ, where ũ(eτ(i(a))⊗et(a)) =
1
2δa,αnαn −

1
2δa,βnβn−1;

6) v1, ..., vn−2 ∈∈ HH
5(Λ), with each vj is represented by ṽj = ⊕i∈Q0Λei ⊗ eiΛ −→ Λ,

where:

(a) ṽj(ei ⊗ ei) = (δij − δi,2n−j)ei, whenever j is even;

(b) ṽj(ei ⊗ ei) = (δij − δi,j+2 − δi,2n−j + δi,2n−j−2)ei, whenever j is odd.

7) h ∈ HH6(Λ) represented by the multiplication map h̃ : ⊕i∈Q0Λei ⊗ eiΛ −→ Λ.

The length degrees of these elements are ldeg(x) = 4, ldeg(xi) = 2n − 2, ldeg(y) = 0,
ldeg(z) = ldeg(t) = −2, ldeg(u) = −2n, ldeg(vj) = −2n− 2 and ldeg(h) = −4n.

Moreover, as an algebra, HH∗(Λ) is generated by these elements, subject to the graded
commutativity relations with respect to the homological grading plus the following relations:

a) x
n
2 = xz = xt = xvi = 0

b) xiξ = 0, for each generator ξ, except in case i ≤ n− 2 and ξ = vi or ξ = h

c) xivi = x
n
2
−1yu, for all i ≤ n− 2.

d) y2 = yt = 0

e) yz = −nt

f) yv2k = 4nx2k−1h and yv2k−1 = −4nx2kh, for all 1 ≤ k < n
2

g) z2 = −nx
n
2
−1u

h) zt = x
n
2
−1yu

i) zvj = 0, for all j = 1, ..., n − 2

j) zu = 0

k) t2 = tu = tvj = 0, for all j = 1, ..., n − 2

l) u2 = 0
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m) uvj = 0, for all j = 1, ..., n − 2

n) v2kvj = 4nδ2k−1,jx
n
2 uh, for all 1 ≤ k < n

2 and j = 1, 2, ..., n − 2.

Proof. Let P · be the minimal graded projective resolution of Λ. One gets the zero map
when composing any of the morphisms ỹ, z̃, t̃, ṽi (i = 1, ..., n − 2) and h̃ with the corres-
ponding differential of P ·. Then y, z, t, vi (i = 1, ..., n−2) and h are well-defined elements
of HH∗(Λ), which are easily seen to be nonzero. As for u, note that αn ∈ eµ(i(αn))Λet(αn)

while βn−1 ∈ eµ(i(βn))Λet(βn), so that αn − βn−1 ∈ ⊕a∈Q1eµ(i(a))Λ1et(a). We then have:

µR
∗(
1

2
(αn − βn−1)) =

1
2 [(−1)

s(βnαn)µ(βn)αn + (−1)s(αnβn−1)αnβn−1−

(−1)s(αn−1βn)µ(αn−1βn−1)− (−1)s(βnαn)βn−1αn] =

1

2
[βn−1αn − αnβn−1]−

1

2
[−αnβn−1 + βn−1αn] = 0

Then 1
2(αn−βn−1) ∈ Ker(µR

∗) and so 1
2(αn−βn−1)+Im(µδ

∗) is an element ofHH4(Λ)1,
which clearly coincides with u. Moreover, it is a nonzero element since, by definition of µδ

∗

(see Proposition 6.5.11), the image of the induced map µδ
∗ : ⊕i∈Q0eτ(i)Λ0ei = Ken −→

⊕a∈Q1eτ(i(a))Λ1et(a) is the vector space generated by µδ
∗(en) = µ(βn−1) + µ(βn) − αn −

αn−1 = βn−1 + βn − αn − αn−1, which does not contain 1
2 (αn − βn−1).

Arguing as in the initial part of the proof of Theorem 6.7.1, one easily gets that the
length degrees of the proposed generators are as indicated. In order to see that they
generate HH∗(Λ) as an algebra, we first give a canonical basis Bi for each space HH i(Λ)
(i = 0, 1, ..., 6):

1. B0 = {1, x, ..., x
n
2
−1, x1, ..., x2n−1}

2. B1 = {x
ky : k = 0, 1, ..., n2 − 1}

3. B2 = {z}

4. B3 = {t}

5. B4 = {x
n
2
−1u, . . . , xu, u}

6. B5 = {x
n
2
−1ĉ, . . . , xĉ, ĉ} ∪ {v1, ..., vn−2}, where ĉ = c+ Im(µR

∗) and c is the cycle of
length 2 at n

7. B6 = {x
kh : k = 0, 1, ..., n2 − 1} ∪ {xih : i = 1, ..., n − 2}.

Indeed, by Proposition 6.6.2, we know that B0 is a basis of HH0(Λ) and, by lemma ,
that B5 is a basis of HH5(Λ) since the vi are exactly those in that lemma. From this

same lemma and the isomorphism HH0(Λ)
∼=
−→ HH6(Λ) given by multiplication by h, we

also get that B6 is a basis of HH6(Λ). That B1, B2 and B3 are bases of the respective
spaces follows from Theorem 6.6.10 and its proof. On the other hand, once we know that
u ∈ HH4(Λ)1, this same theorem plus Lemma 6.7.2 give that B4 is a basis of HH4(Λ).
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Once we have the bases Bi at hand, the 6-periodicity of HH∗(Λ) implies that {x, x1, ....,
x2n−1, y, z, u, v1, ..., vn−2, ĉ, h} is a set of homogeneous generators of HH∗(Λ) as a bigraded
algebra. We claim that ĉ = yu, and this will prove that the proposed set of generators
given in the statement is a valid one. Indeed, by the commutativity of the diagram
in 6.7.7(1), we get that the element yu of HH5(Λ) is represented by the composition

⊕i∈Q0Λei ⊗ eiΛ
η
−→ ⊕a∈Q0Λei(a) ⊗ et(a)Λ

ỹ
−→ Λ. Clearly, ỹ ◦ η vanishes on all ei ⊗ ei, for

i 6= n, and takes en ⊗ en  αn−1βn = c. It then follows that yu = ĉ, as claimed.

We are now in a position to verify the relations. Note that B5 = {x
n
2
−1yu, ...xyu, yu, v1,

..., vn−2}.
Relations in a), b) and c):

Since the xi are linear combinations of the socle elements {w1, ..., wn−2}, the relations
in b) follow immediately. As for the relations in a), the equality x

n
2 = 0 follows from

Proposition 6.6.2 and xt = 0 is clear. On the other hand, we have xz = cn + Im(R∗),
where cn is the cycle of length 4 at n. By Proposition 6.6.7, we get that xz = 0 in HH2(Λ).
Moreover, by the condition of dual bases of B̄0 and B5 (see Lemma 6.7.2), we immediately
get that xvi = 0 and that xivi = x

n
2
−1yu, for all i = 1, ..., n − 2.

Relations in d), k) and l): All follow by taking length degrees. Indeed, in all cases the
length degree of the element in the first member of the desired equality is different of the
length degrees of the elements in the basis Bi of the corresponding HH i(Λ).

Relation in e): From the commutative diagram in 6.7.7(2) we get that yz = zy is

represented by the composition ⊕i∈Q0Λeτ(i) ⊗ eiΛ
g
−→ ⊕i∈Q0Λeτ(i) ⊗ eiΛ

z̃
−→ Λ, where g

is as in that diagram.

Then we have

(z̃ ◦ g)(eτ(i) ⊗ ei) = z̃(
∑

j∈Q0

∑
x∈eiBej

(−1)c(x)deg(x)τ(x)⊗ x∗) =
∑

x∈eiBen
(−1)c(x)deg(x)τ(x)z̃(en ⊗ en)x

∗ =
∑

x∈eiBen
(−1)c(x)deg(x)τ(x)x∗

since z̃(eτ(j) ⊗ ej) = 0, for all j 6= n. We then get (z̃ ◦ g)(eτ(i) ⊗ ei) = 0, for i 6= n,

and (z̃ ◦g)(eτ(n)⊗en) =
∑

x∈enBen
(−1)c(x)deg(x)xx∗ = (

∑
x∈enBen

(−1)c(x)deg(x))wn since
τ(x) = x, for each x ∈ enBen. Note that each x ∈ enBen is a power of the cycle of
length 2 at n, which implies that c(x) = 1

2deg(x) and, hence, that c(x) ≡ 0 (mod 2), when
deg(x) ≡ 0 (mod 4), and c(x) ≡ 1 (mod 2), when deg(x) ≡ 2 (mod 4). We then get:

(z̃ ◦ g)(en ⊗ en) = (
∑

0≤k<n
2
(4k) −

∑
0≤k<n

2
(4k + 2))wn = −2n2wn = −nwn.

This gives the relation e).

Relations in f) and n): We put them together because the relations n) follow from
those in f). To see that, let us calculate the products vivj . Due to length grading, we
have vivj = λijx

n
2
−1uh, for some λij ∈ K. On the other hand, we have (x

n
2
−1u, y) = 1

since x
n
2
−1yu = ŵ (see Lemma 6.7.2 and the proof of the relations in c)). Then, in case

the relations in f) are assumed to be true, the graded Nakayama form of HH∗(Λ) and
Eu-Schedler formula (see Lemma 6.7.9) give:

λ2k,j = (λ2k,jx
n
2
−1u, y) = (λ2k,jx

n
2
−1uh, h−1y) = (v2kvj , h

−1y) = −(v2kh
−1y, vj) =

(yv2kh
−1, vj) = (4nx2k−1hh

−1, vj) = 4n(x2k−1, vj) = 4nδ2k−1,j
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We then prove the relations in f). Let us consider the only morphism of Λ-bimodules
ṽ2k : ⊕i∈Q0Λei ⊗ eiΛ −→ Λ identified by the fact that ṽ2k(ei ⊗ ei) = (δi,2k − δi,2n−2k)ei,
where δrs denotes the Kronecker symbol. It represents v2k and an obvious lifting of it
is the morphism v̂2k : ⊕i∈Q0Λei ⊗ eiΛ −→ ⊕i∈Q0Λei ⊗ eiΛ such that v̂2k(ei ⊗ ei) =
(δi,2k − δi,2n−2k)ei ⊗ ei.

As in the proof of ([3], Lemma 5.1), we consider, for each path x = a1...ar with origin
i = i(x), the element hx ∈ ⊕a∈Q1Λei(a) ⊗ et(a)Λ given by

hx = a1...ar−1 ⊗ x
∗ + a1...ar−2 ⊗ ar−1x

∗ + ...+ ei ⊗ a2...arx
∗.

By fixing a path representing each x ∈ eiB, we consider the only morphism of Λ-bimodules
ϕ2k : ⊕i∈Q0Λei ⊗ eiΛ −→ ⊕a∈Q1Λei(a) ⊗ et(a)Λ such that ϕ2k(ei ⊗ ei) =

∑
x∈eiBe2k

hx −∑
z∈eiBe2n−2k

hz. It is easy to see that δ(hx) = x⊗ x∗ − ei ⊗ ei and from this and the fact
that ci,2k = ci,2n−k, one readily sees that v̂2k ◦ µk = δ ◦ ϕ2k. Then the element yv2k of

HH6(Λ) is represented by the morphism ⊕i∈Q0Λei ⊗ eiΛ
ϕ2k−→ ⊕a∈Q1Λei(a) ⊗ et(a)Λ

ỹ
−→ Λ.

Note that ỹ(hx) = deg(x)xx∗ = deg(x)wi(x) and, hence, we get that (ỹ ◦ ϕ2k)(ei ⊗ ei) =
(
∑

x∈eiBe2k
deg(x))wi − (

∑
z∈eiBe2n−2k

deg(z))wi = Υi,2kwi.

Multiplication by h gives an isomorphism of Z(Λ)-modules Z(Λ)/I
∼=
−→ HH6(Λ). The

last paragraph says that yv2k =
∑

i∈Q0
Υi,2kw̄ih, where w̄i = wi + I. By Lemmas 6.7.3

and 6.7.2, we then have

yv2k =
∑

1≤r≤n
2
Υ2r−1,2k(w̄2r−1 − w̄2n−2r+1)h =∑

1≤r≤k 2(n− 2k)(w̄2r−1 − w̄2n−2r+1)h+
∑

k+1≤r≤n
2
2(−2k)(w̄2r−1 − w̄2n−2r+1)h =

(2n− 4k)h
∑

1≤r≤k(w̄2r−1 − w̄2n−2r+1)− 4kh
∑

k+1≤r≤n
2
(w̄2r−1 − w̄2n−2r+1).

Bearing in mind that
∑

1≤k≤n
2
(w2k−1 − w2n−2k−1) ∈ I, we get:

yv2k = (2n − 4k)h
∑

1≤r≤k(w̄2r−1 − w̄2n−2r+1) + 4kh
∑

1≤r≤k(w̄2r−1 − w̄2n−2r+1) =
2nh

∑
1≤r≤k(w̄2r−1 − w̄2n−2r+1).

But we have that w̄2r−1 = −w̄2n−2r+1, because w2r−1+w2n−2r+1 ∈ I (see Theorem 6.6.10).
Then, by the definition of x2k−1, we get the desired equality:

yv2k = 2nh
∑

1≤r≤k(2w̄2r−1) = 4nh
∑

1≤r≤k w̄2r−1 = 4nhx2k−1 = 4nx2k−1h.

We next calculate yv2k−1, where 1 ≤ k < n
2 . The proof follows the lines of the

calculation of yv2k. In this case the morphism ṽ2k−1 : ⊕i∈Q0Λei ⊗ eiΛ −→ Λ is identified
by the fact that ṽ2k−1(ei ⊗ ei) = (δi,2k−1 − δi,2n−2k+1 − δi,2k+1 + δi,2n−2k−1)ei, so that the
obvious lifting ⊕i∈Q0Λei ⊗ eiΛ −→ ⊕i∈Q0Λei ⊗ eiΛ maps ei ⊗ ei  (δi,2k−1 − δi,2n−2k+1 −
δi,2k+1 + δi,2n−2k−1)ei ⊗ ei. Then the role of ϕ2k in the case of yv2k will be played here by
the morphism ψ2k−1 : ⊕i∈Q0Λei⊗ eiΛ −→ ⊕a∈Q1Λei(a)⊗ et(a)Λ, identified by the equality:

ψ2k−1(ei⊗ ei) =
∑

x∈eiBe2k−1
hx−

∑
x∈eiBe2n−2k+1

hx−
∑

x∈eiBe2k+1
hx+

∑
x∈eiBe2n−2k−1

hx.
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Then we have that the element yv2k−1 is represented by the composition ⊕i∈Q0Λei ⊗

eiΛ
ψ2k−1
−→ ⊕a∈Q1Λei(a) ⊗ et(a)Λ

ỹ
−→ Λ, which maps ei ⊗ ei  (Υi,2k−1 −Υi,2k+1)wi. Using

2.b of Lemma 6.7.3, it follows that yv2k−1 =
∑

1≤r<n
2
(Υ2r,2k−1−Υ2r,2k+1)(w̄2r− w̄2n−2r)h

since Υi,2k−1−Υi,2k+1 = 0 when i is odd. The fact that w̄2r = −w̄2n−2r in Z(Λ)/I implies
that yv2k−1 =

∑
1≤r<n

2
2(Υ2r,2k−1 −Υ2r,2k+1)w̄2rh.

We look now at the term Υ2r,2k−1−Υ2r,2k+1. By Lemma 6.7.3, we know that Υ2r,2k−1 =
−Υ2k−1,2r. This is equal to 2r, when 2r < 2k − 1, and to −2(n − 2r), when 2r > 2k − 1.
Similarly, we have Υ2r,2k+1 = 2r, when 2r < 2k+1 and Υ2r,2k+1 = −2(n−2r). We then get
that Υ2r,2k−1−Υ2r,2k+1 = 0, except for r = k. In this case we have Υ2k,2k−1−Υ2k,2k+1 =
−Υ2k−1,2k +Υ2k+1,2k = −2(n− 2k)− 2(2k) = −2n. From this and the definition of x2k it
follows that yv2k−1 = −4nw̄2kh = −4nx2kh.

Relations in g) and h): The relation in g) follows from those in e) and h). Indeed, the

length degree of z2 is −4 which is also the length degree of x
n
2
−1u, and this is a the only

element in B4 with that length degree. Then one gets z2 = λx
n
2
−1u, for some λ ∈ K. On

the other hand, by the relations in e) and h), we get that −nx
n
2
−1yu = −ntz = yz2 =

λx
n
2
−1yu, which implies that λ = −n since x

n
2
−1yu 6= 0.

We then prove the relation in h). Using the commutative diagram in Lemma 6.7.7(3),
we get that the element zt of HH5(Λ) is represented by the composition ⊕i∈Q0Λei ⊗

eiΛ
ψ
−→ ⊕i∈Q0Λeτ(i) ⊗ eiΛ

z̃
−→ Λ where ψ is as in that diagram. This composition maps

ei ⊗ ei  δinwn, which proves that zt = wn + Im(µR
∗) = ŵ = x

n
2
−1yu.

It remains to prove the relations i), j) and m), for which it is enough to check j).

Indeed, if we had zvj 6= 0, we would have that ldeg(zvj) = ldeg(x
n
2
−1yh) = −2n − 4 and

there is no other element in the basis {xryh : r = 0, 1, ..., n2 − 1} of HH7(Λ) with length
degree −4n − 2. It follows that, for each j = 1, ..., n − 2, there is a unique λj ∈ K such
that zvj = λjx

n
2
−1yh. Then Eu-Schedler formula gives the equality:

(uvj , h
−1z) = (vjh

−1z, u) = (zvjh
−1, u) = (λjx

n
2
−1yhh−1, u) = λj(x

n
2
−1y, u) = λj ,

from which we get that uvj = λjth, bearing in mind that ldeg(th) = −4n− 2 = ldeg(uvj).
Finally, we have ldeg(zu) = −2n − 2 = ldeg(xjh), for all j = 1, ..., n − 2, and there is
no other element in B6 of length degree −2n − 2. It follows that zu =

∑
1≤j≤n−2 µjxjh.

Using Eu-Schedler formula, we then get:

λj = (λjx
n
2 yhh−1, u) = (zvjh

−1, u) = (h−1zu, vj) = (
∑

1≤i≤n−2 µixihh
−1, vj) =∑

1≤i≤n−2 µi(xi, vj) = µj.

It follows that zu =
∑

1≤j≤n−2 λjxjh. If we prove the relation in j) it will follow that
λj = 0, for all j = 1, ..., n− 2, and then the relations in i) and m) will come automatically.

In order to calculate zu, we use the first commutative diagram of Lemma 6.7.7 and the

fact that multiplication by h yields an isomorphism of Z(Λ)-modules HH0(Λ) = Z(Λ)
I

∼=
−→

HH6(Λ). By the mentioned diagram, we know that the element zu is represented by

morphism of Λ-bimodules ⊕i∈Q0Λei ⊗ eiΛ
ξ
−→ ⊕i∈Q0Λeτ(i) ⊗ eiΛ

z̃
−→ Λ. Since z̃ vanishes

on each summand Λeτ(i) ⊗ eiΛ, with i 6= n, we get that
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(z̃ ◦ ξ)(ej ⊗ ej) =
∑

x∈ejB̃en
h(x)xx⋄ =

∑
x∈ejBen

h(x)xx∗ = (
∑

x∈ejBen
h(x))wj ,

for all j ∈ Q0. Note that wn ∈ I, and so we only need to deal with the cases when
j 6= n. Note also that any element x ∈ ejBen is of the form x = x(j)cr, where x(j) is
the shortest path from j to n and r ∈ N. By looking at the explicit definition of h (see
definition 23), we see that if j > n then h(x(j)cr) = 1

2 , when r + j ≡ 0 (mod 2), and
h(x(j)cr) = 0 otherwise. Similarly, if j < n, then h(x(j)cr) = 1

2 , when r+ j 6≡ 0 (mod 2),
and h(x(j)cr) = 0 otherwise. Bearing in mind that 0 ≤ r ≤ 3n− 1− (n+ j) = 2n− 1− j,
when j > n, and that 0 ≤ r ≤ 3n − 1 − [(2n − j) + n] = j − 1, when j < n, we get the
following table:

Condition Value of
∑

x∈ejBen
h(x)

j > n and j even n
2 −

j
4

j > n and j odd n
2 −

j+1
4

j < n and j even j
4

j < n and j odd j+1
4

Suppose that j < n in the rest of the proof. Recall that wj +w2n−j ∈ I, for all j < n.
Denoting w̄ = w + I, for any socle element w, we see that zu =

∑
1≤j<n µjw̄jh, where

µj = j
4 − [n2 −

2n−j
4 ] = 0, when j is even, and µj = j+1

4 − [n2 −
2n−j+1

4 ] = 2
4 = 1

2 , when
j is odd. But we also have that w̄n−1 = −

∑
1≤k<n

2
w̄2k−1 (see Lemma 6.7.2), so that

zu = 1
2(
∑

1≤k≤n
2
w̄2k−1)h = 0.

What we have done so far proves that if A = ⊕(m,n)∈Z×ZA(m,n) is the bigraded algebra
given by homogeneous generators and relations as indicated in the statement, we have a
canonical surjective homomorphism of bigraded algebras A ։ HH∗(Λ). It is easy to see
that the homogeneous components have the same dimension, so that A and HH∗(Λ) are
isomorphic.

As a final consequence of the two main theorems of this section, we get:

Corollary 6.7.11. Let n > 1 be an integer, put Λ = Bn and suppose that char(K) 6= 2.
The algebra HH∗(Λ) is commutative if, and only if, either i) n is odd; or ii) n is even
and char(K) divides n.

Proof. By Theorem 6.7.1, we know that HH∗(Λ) is commutative when n is odd. On the
other hand, by the graded commutativity relations and the relations f) and n) of Theorem
6.7.10, we know that, when n is even, the algebra HH∗(Λ) is commutative exactly when
n = 0 in K.
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