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Abstract

The continuous growth of public sensitive data has increased the risk of breaking
the privacy of people or institutions in those datasets. This growing is, nowa-
days, even faster because of the expansion of the Internet. This fact makes very
important the assessment of the performance of all the methods used to pro-
tect those datasets. In order to check the performance there exist two kind of
measures: the information loss and the disclosure risk.

Another area where privacy has an increasing role is the one of social net-
works. They have become an essential ingredient of interpersonal communication
in the modern world. They enable users to express and share common interests,
comment upon everyday events with all the people with whom they are con-
nected. Indeed, the growth of social media has been rapid and has resulted in
the adoption of social networks to meet specific communities of interest.However,
this shared information space can prove to be dangerous in respect of user pri-
vacy issues. In addition to explicit ”posts” there is much implicit semantic
information that is not explicitly given in the posts that the user shares. For
these and other reasons, the protection of information pertaining to each user
needs to be supported.

This thesis shows some new approaches to face these problems. The main
contributions are:

• The development of an approach for protecting microdata datasets based
on evolutionary algorithms which seeks automatically for better protec-
tions in terms of information loss and disclosure risk.

• The development of an evolutionary approach to optimize the transition
matrices used in the Post-Randomization masking method which performs
better protections.

• The definition of an approach to deal with categorical microdata protection
based on a pre-clustering approach achieving protected data with better
utility.

• The definition of a way to extract both implicit and explicit information
from a real social network like Twitter as well as the development of a
protection method to deal with this information and some new measures
to evaluate the protection quality.

iii





Contents

Acknowledgements i

Abstract iii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 7
2.1 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Evolutionary Algorithms Basic Concepts . . . . . . . . . . 9
2.1.2 Evolutionary Algorithms Key Elements . . . . . . . . . . 10

2.2 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Individuals and Population Initialization Methods . . . . 16
2.2.2 Tree Structure’s Crossover and Mutation . . . . . . . . . 18

2.3 Microdata Protection Methods . . . . . . . . . . . . . . . . . . . 19
2.3.1 Post Randomization Method . . . . . . . . . . . . . . . . 20
2.3.2 Microaggregation . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Mondrian . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Rank Swapping . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.5 Global Recoding and Top/Bottom Coding . . . . . . . . . 26

2.4 Microdata Protections Evaluation Measures . . . . . . . . . . . . 26
2.4.1 Information Loss . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Disclosure Risk . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Clustering Partitions Similarity Measures . . . . . . . . . . . . . 31
2.6 Social Networks Users Privacy Protection Methods . . . . . . . . 32

2.6.1 Privacy Analysis Measures . . . . . . . . . . . . . . . . . 33
2.7 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Evolutionary Approach for Better Microdata Protections 37
3.1 General Evolutionary Protection . . . . . . . . . . . . . . . . . . 38
3.2 Genotype Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 40

v



3.4 Fitness Function and Selection . . . . . . . . . . . . . . . . . . . 42

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Evolutionary Seek for Better PRAM Matrices 59

4.1 General Evolutionary Approach for Better PRAM Matrices . . . 59

4.1.1 Genotype Encoding . . . . . . . . . . . . . . . . . . . . . 61

4.1.2 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . 62

4.1.3 Fitness Function and Selection . . . . . . . . . . . . . . . 63

4.1.4 Adding Invariance and Controlling Diagonal Values . . . 65

4.1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . 66

4.2 Genetic Programming Approach for Better PRAM Matrices Gen-
erator Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Population Representation and Initialization . . . . . . . 81

4.2.2 Mutation and Crossover Operators . . . . . . . . . . . . . 82

4.2.3 Fitness and Replacement . . . . . . . . . . . . . . . . . . 82

4.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . 85

5 Enhancing Protected Microdata Utility based on Pre-
Clustering approach 91

5.1 Algorithm Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 The c-Median Clustering Method . . . . . . . . . . . . . . . . . . 92

5.3 The Protection Methods . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Global Median-based k-Anonimity . . . . . . . . . . . . . 93

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 U.S. Housing Dataset Results . . . . . . . . . . . . . . . . 95

5.4.2 German Credit Dataset Results . . . . . . . . . . . . . . . 97

5.4.3 Clustering Information Loss Analysis . . . . . . . . . . . . 100

6 Social Network-extracted Graph Semantical Protection 103

6.1 Social Network-Extracted Graph Generation . . . . . . . . . . . 103

6.2 Social Graph’s Semantical Protection . . . . . . . . . . . . . . . . 106

6.2.1 Protection Algorithm Based on k-anonymity . . . . . . . 106

6.2.2 Microdata Dataset Extraction . . . . . . . . . . . . . . . . 111

6.3 Semantic Information Loss Measures . . . . . . . . . . . . . . . . 112

6.3.1 Attributes Adjacency Matrices Information Loss (AAMIL) 113

6.3.2 Categories Distribution Information Loss (CDIL) . . . . . 113

6.3.3 Distance-based Information Loss (DBIL) . . . . . . . . . . 115

6.3.4 Average Semantic Information Loss . . . . . . . . . . . . 115

6.4 Semantic Disclosure Risk Measure . . . . . . . . . . . . . . . . . 115

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5.1 Social Graph Protection Results . . . . . . . . . . . . . . 117

6.5.2 Extracted Microdata Protection Results . . . . . . . . . . 120

vi



7 Conclusions and Future Directions 123
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Our Contributions 128

Other References 130

vii





List of Figures

2.1 Tree structure initialization examples. . . . . . . . . . . . . . . . 17
2.2 Tree structure crossover example. . . . . . . . . . . . . . . . . . . 18
2.3 Tree structure mutations example. . . . . . . . . . . . . . . . . . 19
2.4 Visual example of Mondrian masking method with k = 2. . . . . 24
2.5 Social Graph Example . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Example of genotype encoding. . . . . . . . . . . . . . . . . . . . 41
3.2 Initial and Final Populations of all datasets for the First Experi-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Evolution of the population of the First Experiment for all datasets. 46
3.4 Evolution of the score for two di↵erent executions with each dataset. 47
3.5 Evolution of the mean score for the tests with Tarragona data set. 49
3.6 Dispersion plots of initial and final population information loss

and disclosure risk for each dataset using fitness Equation 3.2. . . 51
3.7 Evolution of the information loss and disclosure risk during the

execution of the evolutionary algorithm for each dataset using
fitness Equation 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Dispersion plots of initial and final population information loss
and disclosure risk for each dataset using fitness Equation 3.4. . . 54

3.9 Evolution of the information loss and disclosure risk during the
execution of the evolutionary algorithm for each dataset using
fitness Equation 3.4. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Dispersion plot of initial and final population information loss
and disclosure risk for the Flare dataset using fitness Equation
3.4 without the 5% best initial individuals. . . . . . . . . . . . . 56

3.11 Dispersion plot of initial and final population information loss
and disclosure risk for the Flare dataset using fitness Equation
3.4 without the 10% best initial individuals. . . . . . . . . . . . . 57

3.12 Evolution of the information loss and disclosure risk during the
execution of the evolutionary algorithm for the Flare dataset fit-
ness Equation 3.4 without the best 5% initial individuals. . . . . 57

3.13 Evolution of the information loss and disclosure risk during the
execution of the evolutionary algorithm for the Flare dataset fit-
ness Equation 3.4 without the best 10% initial individuals. . . . . 58

ix



4.1 Example of genotype encoding . . . . . . . . . . . . . . . . . . . 61
4.2 Example of mutating a transition matrix . . . . . . . . . . . . . . 62
4.3 Example of crossover in the transition matrix . . . . . . . . . . . 63
4.4 Evolution of the measures for the individual protection of the

three attributes BUILT, DEGREE and GRADE1 in U.S. Housing
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Results for the protection of all three attributes at the same time
in the U.S. Housing dataset . . . . . . . . . . . . . . . . . . . . . 69

4.6 Evolution of the measures for individual protection of the three at-
tributes EXISTACC, PRESEMPLOY, and SAVINGS in the Ger-
man dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Results for the protection of all three attributes EXISTACC,
PRESEMPLOY, and SAVINGS at the same time in the German
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Evolution of the measures for the individual protection of the
three attributes CLASS, LARGSPOT, and SPOTDIST in Solar
Flare dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Results for the protection of all three attributes CLASS,
LARGSPOT, and SPOTDIST at the same time in Solar Flare
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 DEGREE - METRO fitness function evolution. . . . . . . . . . . 74
4.11 DEGREE - SCH fitness function evolution. . . . . . . . . . . . . 75
4.12 Bivariates di↵erence comparison. . . . . . . . . . . . . . . . . . . 76
4.13 Relative absolute di↵erence in �2 statistics comparison. . . . . . 77
4.14 Postorden equation traversal example. . . . . . . . . . . . . . . . 84
4.15 Stack evolution when executing a postorden equation vector with

parameters a = 1 and b = 3. . . . . . . . . . . . . . . . . . . . . . 84
4.16 Best Equation’s Scores Evolution Using the Mean (left) and Max

(right) Fitness Function. . . . . . . . . . . . . . . . . . . . . . . . 85
4.17 Best Equation’s IL and DR Evolution for the German Credit

Dataset using the Mean (left) and Max (right) Fitness Function. 86
4.18 Best Equation’s IL and DR Evolution for the U.S. Housing

Dataset using the Mean (left) and Max (right) Fitness Function. 87
4.19 Best Equation’s IL and DR Evolution for the Solar Flare Dataset

using the Mean (left) and Max (right) Fitness Function. . . . . . 87
4.20 Scatter plot with the best protections for each PRAM method. . 89

5.1 Results of clustered microaggregation protections on U.S. housing
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Results of clustered global-median protections on U.S. housing
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Original microaggregation results for the U.S. housing dataset. . 96
5.4 Dispersion plot of the protections on U.S. housing dataset. . . . . 97
5.5 Results of clustered microaggregation protections on german

credit dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

x



5.6 Results of clustered global-median protections on german credit
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 Original microaggregation results for the German dataset. . . . . 98
5.8 Dispersion plot of the protections on the german credit dataset. . 99
5.9 Dispersion plot with clustering-based information loss for the ger-

man credit dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.10 Dispersion plot with clustering-based information loss for the U.S.

Housing dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Sample graph generated from the crawled users profiles. This
graph contains users (nodes) and connections between them rep-
resenting ”connections” between them. . . . . . . . . . . . . . . . 105

6.2 Hierarchy of location values . . . . . . . . . . . . . . . . . . . . . 108
6.3 Overview of topics of interest values aggregation . . . . . . . . . 111
6.4 Schematic diagram of microdata extraction process . . . . . . . . 112
6.5 Example of nodes information aggregation . . . . . . . . . . . . . 113
6.6 AAMIL calculation for Location attribute . . . . . . . . . . . . . 114
6.7 CDIL calculation for Topic 1 attribute . . . . . . . . . . . . . . . 114
6.8 DBIL calculation for User 2 . . . . . . . . . . . . . . . . . . . . . 115
6.9 Layout of the graphs extracted from Twitter . . . . . . . . . . . 117
6.10 Information loss results for the protection of the first graph . . . 118
6.11 Information loss results for the protection of the second graph . . 118
6.12 Disclosure risk results for the protection of the first graph . . . . 119
6.13 Disclosure Risk results for the protection of the second graph . . 120
6.14 Microdata protection results for the first dataset . . . . . . . . . 120
6.15 Microdata protection results for the second dataset . . . . . . . . 121

xi





List of Tables

2.1 Rank Swapping example with p = 2 . . . . . . . . . . . . . . . . 25
2.2 1993 U.S. Housing Dataset Attributes . . . . . . . . . . . . . . . 35
2.3 German Credit Dataset Attributes . . . . . . . . . . . . . . . . . 35
2.4 Solar Flare Dataset Attributes . . . . . . . . . . . . . . . . . . . 35
2.5 Adult Dataset Attributes . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Some Examples of Genome Representations. . . . . . . . . . . . . 39
3.2 Final Scores all data sets for the Experiment. . . . . . . . . . . . 48
3.3 Execution Time (CPU sec) for all data sets. . . . . . . . . . . . . 50

4.1 Initial PRAM matrix with p=0.5 for the attribute DEGREE in
the U.S. Housing Survey dataset . . . . . . . . . . . . . . . . . . 67

4.2 Frequencies of the DEGREE attribute in the U.S. Housing Survey
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Initial and final Scores for the protection of the three attributes
DEGREE, BUILT, GRADE1 in U.S. Housing dataset at the same
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Initial and final Scores for the protection of the three attributes
EXISTACC, PRESEMPLOY, and SAVINGS in the German
dataset at the same time . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Initial and final Scores for the protection of the three attributes
CLASS, LARGSPOT, and SPOTDIST at the same time in the
Solar Flare dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Final PRAM matrix with p=0.5 for DEGREE attribute corre-
sponding to U.S. Housing Survey dataset . . . . . . . . . . . . . 73

4.7 Initial and final categories frequencies in DEGREE attribute cor-
responding to U.S. Housing Survey dataset . . . . . . . . . . . . 73

4.8 Disclosure risk analysis results in the case of attributes DEGREE-
SCH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Disclosure risk analysis results in the case of attributes DEGREE-
METRO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 Summary of disclosure risk/data utility measures in the case of
DEGREE-SCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.11 Summary of disclosure risk/data utility measures in the case of
DEGREE-METRO . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xiii



4.12 Measures comparison between standard PRAM and the output
of our approach for the German Credit dataset. . . . . . . . . . . 88

4.13 Measures comparison between standard PRAM and the output
of our approach for the Solar Flare dataset. . . . . . . . . . . . . 88

4.14 Measures comparison between standard PRAM and the output
of our approach for the U.S. Housing dataset. . . . . . . . . . . . 88

4.15 Results with di↵erent limits on the depth of the equations tree
structures for all three datasets using Max(IL,DR) as fitness func-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Comparison of the best protections for the U.S. housing dataset . 97
5.2 Comparison of the best protections for the german credit dataset 99
5.3 Best Scores for all methods in the clustering-based experiment. . 101

6.1 Location types with their related abstraction level . . . . . . . . 110

xiv



Chapter 1

Introduction

1.1 Motivation

Data privacy became a very important issue since the first data publications
in order to preserve the disclosure of sensitive information about individuals or
institutions, but it has become even more important with the advances made
in technology during the last few decades. Nowadays the number of available
datasets for statistical studies is growing more and more so the amount of sen-
sitive data like the income and health illnesses is also growing. To avoid that
a data release causes the disclosure of sensitive information statistical agencies
and data owners need to be very careful. They must preserve the privacy of the
people involved on this data.

Most of available databases are defined in terms of microdata (records de-
scribed in terms of attributes). The two most popular type of attributes are
continuous and categorical. Continuous attributes are those that are numerical
and allow to perform arithmetic calculations with their values, for example the
income and the age. Categorical attributes are those that take values over a
finite range and standard arithmetic operations do not make sense, for example
the days of the week and the eyes color. Taking this into account it is easy to
see that categorical attributes are the most di�cult to protect.

In addition, recently it has appeared another place to be specially aware of the
privacy issues: the social networks. Social networks have been adopted massively
by people as a way to communicate between them and, as most sociologists
agree, this online interaction will not fade away. People use these networks
to share their feelings, emotions, and meet people with the same interests or
hobbies. As a result, social networks are plenty of sensitive information about
each user. Therefore, it is dangerous to collect this kind of data and publish it
without protection. However, this kind of information would be very valuable if
published. Usually, in social networks each user has its own public profile where
he shows information about himself. However, it should be noticed that there
is some information that is not given explicitly but can be inferred such as the
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user’s main topics of interest.
All these issues are studied in the Statistical Disclosure Control (SDC) discli-

pline. SDC is concerned with the anonymization of the statistical data containing
confidential information about individual entitites such as individuals or insiti-
tutions. The aim of SDC is to prevent third parties working from this data to
recognize individuals and disclosing confidential information about them. Here,
we understand third parties as the data users outside the statistical agencies
(e.g. policy makers, academic researchers and general public).

SDC researchers have been working in the development of several data mask-
ing methods having as a final objective the construction of a masked dataset or
a masked social graph able to be released mantaining the privacy of the data
respondents minimising the loose of information. Masking methods are not
enough. They also need a way to measure the performance of each masking
method as well as the quality of the protection of a dataset. There exists two
kind of measures to do this: the information loss and the disclosure risk.

Information loss measures check the quantity of harm inflected to the original
data by the masking method, that is, it measures the amount of original infor-
mation that has been lost during the masking process. There exist two di↵erent
families of information loss measures: general measures and specific measures.
General information loss measures roughly reflect the amount of information loss
for a reasonable range of data uses. On the other hand, specific information loss
measures evaluate the loss of statistical utility for a particular data analysis.
Normally, the first kind of measures are used to compare protection methods
and the second ones are used to evaluate in an accurate way the real e↵ect of a
protection method for a concrete statistical analysis.

Disclosure risk evaluates the privacy of the respondents against possible ma-
licious uses that third parties (sometimes called intruders) could do with the
released information. Disclosure risk measures evaluate the number of respon-
dents whose identity is revealed. Normally, these measures are computed in
several scenarios where the intruder has partial knowledge of the original data.
In order to compute the disclosure risk, general methods for re-identification are
used. These methods find relationships (i.e. links) between the protected data
and the partial knowledge which the intruder is assumed to have.

The problem here is that information loss and disclosure risk measures are
inversely related. That is, if we perform an aggressive protection we will obtain
a high information loss but a low disclosure risk. However, if we perform no
protection (or a very light protection) we will obtain a low information loss and
a high disclosure risk. Then, the requirement for a protection to be considered
a good protection is to have a balanced and minimised pair of values for both
measures.

1.2 Contributions

The work presented in this thesis contributes in two related lines of research.
The first contribution is in the area of statistical disclosure control methods,
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specifically in the set of methods dealing with categorical data. We introduce
two protection methods based on evolutionary algorithms to deal with statisti-
cal microdata datasets. Those methods are splitted in two groups, one working
directly with datasets and one dealing with category transition matrices used
in the Post-Randomization Method. The first group of methods show that it is
possible to come up with better protections just by embedding the microdata
dataset inside an evolutionary algorithm which alters the data. In the case of
the second group of methods, they show that it is also possible to improve the
performance of the Post-Randomization Method (so also improve the protection
quality of the masked dataset) just by embedding the transition matrix, that
this method is based on, in an evolutionary algorithm which keeps altering the
probability values inside data. Finally, we show that it is possible to add inter-
esting properties such as invariance to the transition matrices in the evolutionary
algorithm having then better data utility in the masked dataset.

The next contribution in the same area is the introduction a categorical
microdata protection approach based on a pre-clustering step. We also introduce
a new protection method based on the state-of-the-art protection method called
Mondrian. Finally, we show the performance of this approach in two di↵erent
use cases: standard statistical studies case, and clustering studies case.

The last contribution is in the area of user’s privacy in social networks. We
describe a set of techniques to deal with privacy for the information the users
have in their social netwoks profiles. In the profiles of the social networks’
users there are public fields containing explicit information like username and
location. However, we show that there exist also hidden implicit information that
can be extracted from the users posts. Furthermore, we propose a protection
method dealing with information inside the social graph’s nodes based on the
k-anonymity principle. To test the performance of our method we propose a set
of new analytical measures specifically developed to work with the data inside
the graph’s nodes. All this work is based on real samples that we extracted from
the Twitter social network using an ad-hoc method. With all of this we show
that it is possible to improve the privacy in social networks’ graphs.

1.3 Document Structure

This thesis is organized in three parts introducing some preliminaries and related
work in Chapter 2, showing our contributions in Chapters 3-6, and giving some
conlusions and future directions in Chapter 7.

Chapter 2. We introduce preliminar basic concepts and methods needed to
follow the content of the work presented afterwards. This chapter is divided
in five sections:

• Evolutionary Algorithms. The chapter starts explaining the back-
ground of evolutionary algorithms as well as the basic general con-
cepts like individual representations, di↵erent crossover and mutation
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operators, individual selection methods, termination criteria and how
to control the population evolution.

• Genetic Programming. We review a particular evolutive technique
which deals with a population of executable programs with the goal
of improving them under a certain environment. We review the main
type of algorithms used in this field, how to represent the programs,
how to alter them using genetic operators and other specific aspects
like how to control the selection, population evolution and termination
criteria.

• Microdata Protection Methods. We continue reviewing some of
the state-of-the-art protection methods for statisitical categorical mi-
crodata datasets like Microaggregation, Post-Randomization Method,
Mondrian, Rank Swapping, Global Recoding, Top Coding and Bot-
tom Coding.

• Microdata Evaluation Measures. We introduce the state-of-the-
art evaluation measures used in this thesis to evaluate the quality of
the protections. The explanation is splitted in two parts, one for the
information loss measures such as distance-based information loss,
contingency table-based information loss and entropy-based informa-
tion loss. The other part is for the disclosure risk measures with
the interval disclosure, distance-based record linkage and probabilis-
tic record linkage methods.

• Clustering Partitions Similarity Measures. We provide a review
of the indices we used in this thesis to compute similarity between
di↵erent clustering partitions.

• Social Networks Users Privacy Protection Methods and
Measures. We review state-of-the-art approaches to deal with pri-
vacy in the social networks. In addition we provide some existing
measures to deal with the information loss and disclosure risk in so-
cial networks.

• Datasets. We introduce the datasets used in the experiments shown
in this thesis.

Chapter 3. We describe a new approach to deal with microdata privacy
based on an evolutionary algorithm that seeks for better protections in
an automatic and autonomous way. We present an evolutionary approach
which works directly on the microdata dataset and it generates new better
protections for both categorical and contiuous data.

Chapter 4. We introduce evolutive approaches to improve the performance of
Post-Randomization Method protections by optimizing the matrices this
protection method is based on.

• General Evolutionary Approach for Better PRAM Matrices.
In the first section we introduce an evolutionary approach which works
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on the matrices used by the Post-Randomization Method when pro-
tecting a categorical microdata dataset. This method produces new
matrices that, used in the Post-Randomization Method, produces bet-
ter protections.

• Genetic Programming Approach for Better PRAM Matri-
ces Equations. In the second section we describe a genetic pro-
gramming approach which deals with analytical equations to create
Post-Randomization Method matrices and improve them in an evo-
lutive way. The new equations lead to better protections.

Chapter 5. We introduce a categorical microdata protection approach based
on performing clustering before protecting a dataset.

Chapter 6. We present a new approach to deal with user’s information in
social networks working from an extracted sample of Twitter real social
network. In addition we introduce some new privacy measures based on
user’s information to use in social graphs.

Chapter 7. We finish this thesis with some concluding remarks and we also
provide some future directions to continue the lines of research shown in
this work.
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Chapter 2

Preliminaries

This chapter introduces the basic concepts and methods used in the thesis.
In Section 2.1 we present the evolutionary algorihms explaining the history of
where these algorithms come from and their basic concepts. Next, in Section 2.3
we review some of the state-of-the-art categorical microdata protection meth-
ods. Section 2.4 shows the state-of-the-art measures to evaluate the protection
quality in statistical microdata. In Section 2.5 we review measures to perform
comparisons between clustering partitions. Then, in Section 2.6 we review state-
of-the-art protection and protection analysis method for social networks. Finally,
in Section 2.7 presents the datasets used in the experiments of this thesis.

2.1 Evolutionary Algorithms

Evolutionary Algorithms are based on the model of biological evolution that was
formulated for the first time by Charles Darwin.

The Darwinian theory of evolution explains the adaptive change of species by
the principle of natural selection. Under that principle, the species which have
better adaptation to their environment are favoured for survival and further
evolution. Darwin also explained that another important factor for evolution is
the occurrence of small, apparantly random and undirected variations between
the phenotypes, i.e., the manner of response and physical embodiment of parents
and their o↵spring. These mutations prevail through selection, if they prove their
worth in light of the current environment; otherwise, they perish. Population
size grows exponentially under advantageous environmental conditions. This
process is generally limited by finite resources. When resources are no longer
su�cient to support all the individuals of a population, those organisms are at
a selective advantage which exploit resources more e↵ectively.

This Darwinian theory is based on genes as transfer units of heredity which
are occasionally changed by mutations. Selection acts on the individual, which
expresses in its phenotype its total genetic information, as well as the interaction
of the genotype with the environment in determining the phenotype.
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In a biological context, the term adaptation denotes a general advantage in
ecological or physiological e�ciency of an individual over the one achieved by
other members of the population, and at the same time it denotes the process
of attaining this state. The overall meaning of adaptation is often used syn-
onymously with fitness. Furthermore, the term adaptation bears the question
”to what?”. Basically, the answer is to any major kind of environment or, in a
broader sense, an ecological niche.

In the evolutionary framework, the fitness of an individual is measured only
by its propensity to survive and reproduce in a particular environment. Fur-
thermore, natural selection is no active driving force, but di↵erential survival
and reproduction within a population makes up selection. Selection is simply
a name for the ability of those individuals that have outlasted the struggle for
existence to bring their genetic information to the next generation.

Putting all together, we can imagine an extremely complex, unknown func-
tional dependence which maps genomes to fitness measures judging phenotypical
expressions of genotypes. During evolution, genotypes producing phenotypes of
increasing biological fitness are created by means of the process of mutation and
recombination on the genotype and selection on the phenotype.

During the biological evolution, an optimization of the fitness takes place,
and even if we assume a constant adaptive surface that is not changed according
to the positions of individuals themselves, the combination of mutation and
recombination allows in principle for leaving a smaller hill of the landscape and
therefore prevents evolution from getting stuck on suboptimal hills.

The above point of view provides the basis for the idea to use a simulated
evolutionary process for the purpose of solving an optimization problem, where
the goal is to find a set of parameters (which might be interpreted as geno-
type as well as phenotype) such that a certain quality criterion is maximized or
minimized.

John Holland was the firt to use the term genetic algorithm. He authored
the book Adaptation in Natural and Artificial Systems in 1975 [Holland, 1975],
which was very important in creating a rich field of research and application
that goes much wider than the original genetic algorithm. These first evolu-
tionary algorithms were focused on mutation considering them as variation of
hill-climbing methods. However, Holland introduced a very innovative idea: the
idea of recombination. Nowadays, in order to cover the developments of the last
years in this field many people use the term evolutionary algorithms.

Holland’s influence in the development of the topic has been very important,
but several other scientists with di↵erent backgrounds were also involved in
developing similar ideas. Ingo Recherberg [Rechenberg, 1973] and Hans-Paul
Schwefel [Schwefel, 1977] developed the idea of Evolutionsstrategie (evolution
strategy) in the 1960s and Bremmerann, Fogel and others implemented their
idea what they called evolutionary programming.

1975 was a crucial year for the genetic algorithms development. During
that year Holland’s book was published and Ken De Jong, one of the Holland’s
graduate students, completed his doctoral thesis [De Jong and Kenneth, 1975].
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De Jong was the first to provide a thorough treatment of the genetic algorithms
capabilities in optimization.

After De Jong’s work, further studies were followed by others and David
Goldberg, another graduate student of Holland, produced the first thesis on the
application of genetic algorithms in the gas pipeline optimization. In addition,
he also published a very influential book called Genetic Algorithms in Search,
Optimization, and Machine Learning [Goldberg, 1989]. This was the final cat-
alyst in setting o↵ a sustained development of genetic algorithms theory and
applications.

In [De Jong and Kenneth, 1993] De Jong cautioned that optimization may
be misplaced. He said that genetic algorithms are not really function optimiz-
ers, and that this is in some ways incidental to the main theme of adaptation.
Nervertheless, using genetic algorithms for optimization is very popular, and
frequently successful in real applications.

It is interesting in this regard to compare some of the ideas being put forward
in the 1960s in the field of operational research (OR). OR workers begun to
develop techniques that seemed able to provide ’good’ solutions, even if the
quality was not provably optimal (or even near-optimal). Such methods became
known as heuristics. A popular technique was neighbourhood search. The basic
idea is to explore neighbours of an existing solution (i.e. these being defined as
solutions obtainable by a specified operation on the base solution). One of the
most influential papers in this context was the one published by Lin [Lin, 1965],
who found excellent solutions to the traveling salesman problem by investigating
neighbourhoods formed by breaking any 3 links of a tour and re-connecting them.

This was not the genetic algorithm developed by Holland, but there are
clear resonances. Much later, after genetic algorithms had become more widely
known, Lin’s ideas were re-discovered as multi-parent recombination and con-
sensus operators.

2.1.1 Evolutionary Algorithms Basic Concepts

Assume we have a discrete search space �, and a function f : � 7! R. The general
problem is to find min

x2�

f where x is a vector of decision variables, and f is the
objective function. We assume here that the problem is one of minimization,
but the modifications necessary for a maximization problem is obvious. Such a
problem is commonly called a discrete or combinatorial optimization problems
(COP).

One of the distinctive features of the genetic algorithm approach is to allow
the separation of the representation of the problem from the actual variables in
which it was originally formulated. In line with biological usage of the terms, it
has become customary to distinguish the genotype (the encoded representation
of the variables) from the phenotype (the set of variables themselves). That is,
the vector x is represented by a string s, of length l, made up of symbols drawn
from an alphabet A, using a mapping c : A0 7! �.

In practice, we may need to use a search space S ✓ A0 to reflect the fact that
some strings in the image of A0 under c may represent invalid solutions to the

9



original problem. The string length l depends on the dimensions of both � and
A, and the elements of the string correspond to ’genes’, and the values those
genes can take to ’alleles’. This is often designated as the genotype-phenotype
mapping. Thus the optimization probflem becomes one of finding min

s2S

g(s)
where the function g(s) = f(c(s)).

Biological analogy was the original motivation for the genetic algorithm ap-
proach where in the selective breeding of plants or animals o↵spring are sought
that have certain desirable characteristics which are determined at the genetic
level by the way the parents’ chromosomes combine. In the case of genetic algo-
rithms, a population of strings is used, and these strings are often referred to in
the genetic algorithms literature as chromosomes. The recombination of strings
is carried out using simple analogies of genetic crossover and mutation, and the
search is guided by the results of evaluating the objective function f (fitness
function) for each string in the population. Based on this evaluation, strings
that have higher fitness (i.e. represent better solutions) can be identified, and
these are given more opportunity to breed.

The optimization process can be described as the generic outline of an evo-
lutionary algorithm presented in Algorithm 1.

Algorithm 1 Outline of a Generic Evolutionary Algorithm

Input: P (0) = {X 0
i

} initial population.
Output: P (t) = {X 0

j

} generation t
t ( 0
evaluate(P (0))
while stopping(P (t)) 6= true; do

P
s

(t) ( select(P (t))
P (t+ 1) ( alter(P

s

(t))
evaluate(P (t+ 1))
t ( t+ 1

end while
return P (t)

2.1.2 Evolutionary Algorithms Key Elements

In the general algorithm there are several points to be customised in order to
adapt the algorithm to each problem needs: the individuals representation, the
termination criteria, the selection method, the crossover-mutation conditions,
the type of crossover and mutation to perform, and the way to construct the
new generation at the end of each one.

Individuals Representation
The way to represent the individuals inside the algorithm is a key point
because it will guide the way we perform operations and, having a proper
representation, will make our problem easier to deal with. There exist
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several kind of representations but here we discuss the most important
kind of problems to represent them.

The first one is a binary problem, this is a problem whose variables have
only two possible values. In this case it is clear that we can define a
solution as a binary string of length n. In this case there is no distinction
between genotype and phenotype. However, this kind of problems are
not necessarily easy to solve with a genetic algorithm and the presence of
constraints is likely to cause di�culties.

The second kind of problem to represent is a discrete but not binary prob-
lem. There are cases in which a discrete alphabet of higher cardinality
than 2 might be appropiate. In this case a k-ary coding is natural. A
solution is represented by a string of length n where each gene corresponds
to a variable and the alleles, drawn from 1, . . . , k, represent the di↵erent k
possible values for each variable.

Finally, the last kind of problem is a non-binary problem. This kind of
problem has integer or real-valued variables. In such cases, transformation
to a binary string is required first. Here values are not merely labels
like in the previous case, instead, they are meaningful as numbers. Such
problems assume firstly that we know the domain of each of our decision
variables, and secondly that we have some idea of the precision with which
we need to specify our eventual solution. Given these two ingredients, we
can determine the number of bits needed for each decision variable, and
then form a chromosome.

One well known technique used to deal with binary representations avoid-
ing abrupt value changes when altering bits is to use gray-coded values.
Gray code representation is a modification of the binary representation
where two successive values di↵er in only one bit. For example, the bi-
nary value 111000 represents the decimal number 56 and the same one
in Gray code representation represents the decimal value 47. Altering for
example the second bit on the left hand side leads to the value 101000
which in binary represents the decimal value 40, but in Gray code rep-
resents the decimal value 48. Discussion of gray coding can be found in
[Caruana and Scha↵er, 1988].

In addition, the authors in [Greiner et al., 2005] showed that the use of
Gray code in evolutionary algorithms allows to obtain faster and more
accurate solutions than regular binary representation.

The conversion of a binary number to a gray coded representation has
several steps. First of all, the most significant bit of the gray coded repre-
sentation is the same than in the binary number. Then, add using modulo
2 the next significant bit of the binary number to the next significant bit
of the binary number to obtain the next gray coded bit. Repeat this last
step until all bits of the binary have been converted.

On the other hand, to convert a Gray coded representation to a binary
number start by copying into the binary number the most significant bit

11



of the Gray coded value. Then, add using modulo 2 the next significant
bit of the binary number to the last bit in of the gray code. Repeat the
last step until all bits of the gray code have been converted.

To convert a binary number with b1, b2, . . . , bn�1, bn as the bit sequence to
its corresponding binary reflected Gray code, start at the right with the
bit b

n

. If the b
n�1 bit is 1, then g

n

is 1 � b
n

, otherwise, g
n

is b
n

. Then
proceed to b

n�1. Continue up to the first bit b1, which is kept unchanged
since b0 is assumed to be 0. The resulting number g1, . . . , gn is the Gray
code of the binary number.

Then, to convert a Gray code back to its represented binary number, start
again at the right with the nth digit and compute the expression shown in
the following expression.

[h!]⌃
n

⌘
n�1X

i=1

g
i

(mod 2) (2.1)

If ⌃
n

is 1, b
n

is 1 � g
n

; otherwise, b
n

is g
n

. Repeat this procedure for all
bits in Gray coded value and the resulting bits sequence b1, . . . , bn is the
binary number.

Termination
Unlike simple neighbourhood search methods that terminate when a local
optimum is reached, genetic algorithms are stochastic search methods that
could in principle run forever. In practice, a termination criteria is needed.
Common approaches are to set a limit on the number of fitness evaluations
or the computer clock time, to track the population’s diversity and stop
when this falls below a preset threshold, or to reach a certain level of fitness
in the population.

Selection
The basic idea of selection is that it should be related to fitness, and the
original scheme for its implementations is commonly known as the roulette-
weel method. It uses a probability distribution for selection in which the
selection probability of a given string is proportional to its fitness. Equa-
tion 2.2 shows this idea where f

i

represents the fitness evaluation value for
individual i.

p
i

=
f
iP

N

j=1 fj
(2.2)

Another technique is tournament selection in which a set of ⌧ chromo-
somes is randomly chosen and compared, the best one being selected for
parenthood. One potential advantage of tournament selection is that it
only needs a preference ordering between pairs or groups of strings, and it
can thus cope with situations where there is no formal objective function at
all (in other words, it can deal with purely subjective objective function).
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Crossover-Mutation Conditions
Given the stress on recombination in Holland’s original work, it might be
thought that crossover should be used in each generation, but in fact there
is no reason to suppose that it has to be so. Furthermore, there exist two
strategies to be followed to generate new o↵spring: the crossover-AND-
mutation and the crossover-OR-mutation.

In the first strategy both operators are tried to be applied to each individ-
ual trying first to apply crossover and then applying mutation. However, it
should be noticed that, as both operators need their respective rates in this
strategy, in some cases nothing happens at all because no operation has
been applied as the rates are not reached. However, the second strategy
always perform either crossover or mutation but not both.

The mechanism for implementing such choices is customarily a randomized
rule, whereby the operation is carried out if a uniform random generated
value passes a threshold value. In the case of crossover, this is often called
the crossover rate. For mutation, we have a choice between describing the
number of mutations per string, or per bit. This is often called mutation
rate.

In the -OR- case, there is further possibility of modifying the relative
proportions of crossover and mutation as the search progresses. Davis
[Davis and Mitchell, 1991] has argued that di↵erent rates are approapiate
at di↵erent times: high crossover at the start, high mutation as the popu-
lation converges. He has further suggested that the operator proportions
could be adapted online, in accordance with their track record in finding
new high-quality chromosomes.

Crossover Operator
Crossover simply consists on replacing some of the genes in one par-
ent by corresponding genes of the other. Suppose we have 2 strings
(a1, a2, a3, a4, a5, a6) and (b1, b2, b3, b4, b5, b6) each consisting of values for 6
variables which represent two possible solutions to a problem. In the one-
point crossover, one crossover point is selected among the whole string val-
ues. Then, the o↵spring are constructed taking the right hand side of each
parent and joining them with the left-hand side of the other parent. In our
case, if the crosspoint was 3, the o↵spring would be (a1, a2, a3, b4, b5, b6)
and (b1, b2, b3, a4, a5, a6).

Two-point crossover is very similar. Two crosspoints are chosen at ran-
dom and two new o↵spring are produced by combining the pieces of the
original parents. For instance, if the crosspoints were 2 and 4, the o↵spring
solutions would be (a1, a2, b3, b4, a5, a6) and (b1, b2, a3, a4, b5, b6). A similar
prescription can be given for m-point crossover where m > 1.

Eshelman et al. [Eshelman et al., 1989] provided an investigation of multi-
point crossovers examining the biasing e↵ect of traditional one-point
crossover, and considered a range of alternatives. He also stated that
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the one-point crossover limits the change of information between the par-
ents. In [Eshelman et al., 1989] the possibilities of changing these biases,
in particular by using multi-point crossover, were investigated and empir-
ical evidence strongly supported the suspicion that one-point crossover is
not the best option.

Another alternative is the so-called uniform crossover whichs removes any
bias by making the crossover process completely random. This can be seen
most easily by observing that the crossover operator itself can be written
as a binary string or mask like 110011 which represents the two-point
crossover used above. The 1’s means that the alleles are taken from the
first parent, while the 0’s means they come from the other parent. Then,
by generating the pattern of 0’s and 1’s stochastically using a Bernoulli
distribution we get the uniform crossover.

This idea was first used by Syswerda [Sywerda, 1989], who implic-
itly assumed the Bernoulli parameter p = 0.5. De Jong and Spears
[De Jong and Spears, 1992] produced a theoretical analysis that was able
to characterize the amount of disruption introduced by a given crossover
operator exactly. In particular, the amount of disruption in the uniform
crossover can be tuned by choosing di↵erent values of p.

Mutation Operator
The main idea behind mutation operator is to randomly select a subset of
genes and change their alleles. This concept is simpler than crossover, and
again, this can easily be represented as a bit-string. We generate a mask
such as 010001 using a Bernoulli distribution at each locus using a small
value of p. Then, the mask works like in the uniform crossover case.

However, there are di↵erent ways of implementing this simple idea. The
naive idea would be to draw a random number for every gene in the string
and compare it to the mutation rate, but this is potentially expensive in
terms of computation if the strings are long and the population is large. An
e�cient alternative is to draw a random variate from a Poisson distribution
with parameter �, where � is the average number of mutation per chromo-
some. A common value for � is 1 (in other words, if l is the string length,
the bit-wise mutation rate is 1/l), which in 1964 [Bremermann et al., 1966]
was shown to be in some sense an optimal mutation rate. Then, having
m mutations, we draw m random numbers without replacement uniformly
distributed between 1 and l in order to specify the location where mutation
has to take place.

In case of binary strings, mutation simply means complementing the chosen
bit(s). More generally, when there are several possible allele values for each
gene, if we decide to change a particular allele, we must provide some means
of deciding what its new value should be. This could be a random choice,
but if there is some ordinal relation between allele values, it may be more
sensible to restrict the choice to alleles that are close to the current value,
or at least to bias the probability distribution in their favour.
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Next Generation Selection
Holland’s original genetic algorithm assumed a generational approach: se-
lection, recombination and mutataion were applied to a population of M
chromosomes until a new set of M 0 individuals had been generated. This
set then becomes the new population. From an optimization point of view
this seems an odd thing to do, we may have spent considerable e↵ort
obtaining a good solution only to run the risk of throwing it away and
preventing it from taking part in further reproduction.

For this reason, De Jong [De Jong and Kenneth, 1975] introduced the con-
cepts of elitism and population overlaps. An elitism strategy ensures the
survival of the best individual so far by preserving it and replacing only
the M � 1 members of the population with new strings. Overlapping
populations take this a stage further by replacing only a fraction G (the
generation gap) of the population at each generation. Finally, taking this
to its logical conclusion produces the so-called steady-state or incremental
strategies, in which only one new chromosome (or sometimes a pair) is
generated at each stage.

One of the keys to have a good performance (in nature as well as in genetic
algorithms) is to mantain the diversity of the population as long as possible.
The e↵ect of selection is to reduce diversity, and some methods can reduce
diversity very quickly. This can be mitigated by having larger populations,
or by having greater mutation rates, but there are also other techniques
often employed.

A popular approach commonly linked with steady-state or in-
cremental genetic algorithms, is to use a no-duplicates policy
[Davis and Mitchell, 1991]. This means that the o↵spring are not allowed
into the population if they are merely clones of existing individuals.

2.2 Genetic Programming

The goal of having computers that automatically solve problems is central to
artificial intelligence, machine learning, and the broad area encompassed by
what Turing called ”machine intelligence” [Turing, 1948][Turing, 1950].

Genetic Programming (GP) is an evolutionary computation technique that
automatically solves problems without requiring the user to know or specify the
form or structure of the solution in advance. At the most abstract level, GP is a
systematic, domain-independent method for getting computers to solve problems
automatically starting from a high-level statement of what needs to be done.

GP stochastically transforms populations of programs into new, hopefully
better, populations of programs. It is a random process so it can never guarantee
results, like in the nature. However, this GP’s essential randomness can lead it
to escape traps which deterministic methods may be captured by and this has
been very successful at evolving novel and unexpected ways of solving problems.

15



The creation of the initial random population is performed so as to create
syntactically valid, executable programs. After the genetic operations are per-
formed on the current generation of the population, the population of o↵spring
replaces the old one. The tasks of measuring fitness, selection, and genetic op-
erations are then iteratively repeated over many generations. The computer
program resulting from this simulated process can be the solution to a given
problem or a sequence of instructions for constructing the solution.

There exist two main types of GP algorithms: the steady-state algorithm and
the generational algorithm. Steady-state GP algorithm is described in Algorithm
2. This first algorithm works by randomly selecting some individuals from the
population and then keeping the best of the selected for the next generation’s
population and replace the worst by the generated o↵spring under a certain
replacement conditions. This approach ensures that we are not going to loose a
good solution from the population.

Algorithm 2 Steady-State GP Algorithm.

Randomly create an initial population of programs from the available primi-
tives.
while an acceptable solution is found or some other stopping condition is met
do
Select a random subset of the population to take part in the tournament.
Execute each program in the subset to assess their fitness.
Select the winner(s) of the tournament using the selection algorithm.
Create new individual program(s) by applying genetic operations on the
winner(s).
Replace the loosers in the tournament by the new o↵spring.

end while
return the best-so-far individual.

Instead, generational GP algorithm (described in Algorithm 3) works by
generating an entirely new population at each generation. It substitutes the
old generation by the o↵spring obtained by applying genetic operators to each
existing individual. No individuals are retained between generations.

2.2.1 Individuals and Population Initialization Methods

Population contains analytically valid and executable programs. Here we explain
the state-of-the-art methods to initialize tree-based individuals and populations.

Recall that trees are built from basic units called functions and terminals. We
shall assume that the terminal and functions allowable in the program trees have
been selected already. There exist two di↵erent methods to initialize tree-based
structures in common use: grow and full.

Grow.
Grow produces trees of irregular shape because nodes are selected ran-
domly from the union of the function and terminal sets throughout the
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Algorithm 3 Generational GP Algorithm.

Randomly create an intial population of programs from the avaliable primi-
tives.
while an acceptable solution is found or some other stopping condition is met
do
Execute each program in the population to assess their fitness.
while new population is not fully populated do
Select an individual(s) from the population.
Create new individual program(s) by applying genetic operations.
Insert the new o↵spring into the new population

end while
Replace the old population by the new one.

end while
return the best-so-far individual.

entire tree (except the root node, which uses only the functional set).
Once a branch contains a terminal node, that branch has ended, even if
the maximum depth has not been reached (See left-hand draw in Figure
2.1 for a graphical example).

Full.
Full, instead, produces trees where each branch goes to the full maximum
depth. This is because, in this case, nodes are selected randomly only from
the functions set until a node is at maximum depth. Then it chooses only
terminals. (See right-hand draw in Figure 2.1 for a graphical example)

Figure 2.1: Tree structure initialization examples.

It should be noticed that having a function set too large enlarges the search
space and can, sometimes, make the search for a solution harder. In order to
have a good function set it should include arithmetic and logic operators, and,
all of them, must be able to handle all elements in the terminal set.

GP is very creative at taking simple functions and combining them creating
what it needs and it often ignores the more sophisticated functions in favor of
the primitives during the evolution.
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Diversity is valuable in GP populations. By itself, the above methods could
result in a uniform set of structures in the initial population because the routine
is the same for all individuals. To prevent this, the ”half-and-half” technique
has been devised [Koza, 1992].

Half-and-half method works as follow. Suppose the maximum depth pa-
rameter is depth

max

. The population is divided equally among individuals to
be initialized with trees having depths 1, . . . , depth

max

. For each depth group,
half of the trees are initialized with the full technique and half with the grow
technique.

2.2.2 Tree Structure’s Crossover and Mutation

Genetic programming is a particular kind of evolutionary algorithm. For that
reason, the general idea of its genetic operators is the same than the one ex-
plained in the previous section. Crossover operator combines the genetic mate-
rial of two parents and the mutation operator alters a part of a single individual’s
genetic material. However, these operators are implemented di↵erently than in
the other case.

The crossover operator for tree-based structures works by selecting a random
node in two graphs and then swapping the two subgraphs having these nodes as
roots. Figure 2.2 illustrates this idea.

Figure 2.2: Tree structure crossover example.

In the case of the mutation operator for tree-based structures there exist
several approaches to choose from.

Point mutation is the simplest one and works by randomly selecting a node
in a tree and changing it, also randomly, for another node of the same class.
That is, if the node is a functional node, its contained function is replaced by
another di↵erent function. On the other hand, if the node is a terminal node,
its contained value is replaced by another terminal value. It should be noticed
that this method does not change the tree structure but, at the same time, it
prevents to explore other tree structures that might be better.

Hoist mutation creates a new o↵spring individual which is copy of a randomly
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chosen subtree of the parent. Thus, the o↵spring will be smaller than the parent
and will have a di↵erent root node

Subtree mutation is the most widely used in GP and it works by randomly
selecting a node in a tree and it is changed by a new random subtree. It should
be noticed that the newly created random subtree must fulfill the restriction of
not exceeding the maximum individual depth when it is added to the mutated
tree (See Figure 2.3 for a graphical example).

(a) Subtree mutation (b) Collapse mutation

(c) Expansion mutation

Figure 2.3: Tree structure mutations example.

Collapse and Expansion mutations are two particular cases of the subtree
mutation. The first one changes a randomly selected subgraph by a randomly
selected terminal node. On the other hand, the second one does the inverse,
that is, replaces a randomly selected terminal node by a random subgraph (See
Figure 2.3 for a graphical example).

2.3 Microdata Protection Methods

This section is a review of the state-of-the-art masking methods for categorical
data. These masking methods are splitted in two main groups: the perturbative
methods, and the non-perturbative methods.

Perturbative masking methods are the ones that distort the data before being
published. In this way, unique combinations of scores in the original dataset may
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disappear and new unique combinations may appear in the perturbed dataset
obtaining a confusion that is beneficial for preserving statistical confidentiality.
The perturbation method should provide computed statistics in the perturbed
dataset that do not di↵er significantly from the statistics that would be obtained
on the original dataset.

In the non-perturbative masking methods case the data is not perturbed. In-
stead, they produce partial suppressions or reductions of detail (generalizations)
on the original dataset values.

In this section we review the most relevant protection methods for this thesis.
For the perturbative case we review the Microaggregation, Post Randomization
Method, Mondrian, and Rank Swapping methods. On the other hand, for the
non-perturbative case we review the Global Recoding, Top Coding, and Bottom
Coding methods.

2.3.1 Post Randomization Method

The Post Randomization method (PRAM) was introduced in
[Gouweleeuw et al., 1998] and [Kooiman et al., 1997] as a method for masking
categorical variables in microdata files. In [De Wolf and Van Gelder, 2004] and
[Wolf et al., 1998] the method and some of its implications were discussed in
more detail. However, the PRAMmethod is still one of the least used for protect-
ing microdata because of the di�culty in obtaining an optimal transition matrix
to perform safe protections whilst maintaining data utility. This was demon-
strated in the experiments carried out in [Domingo-Ferrer and Torra, 2001b]
where the PRAM method was shown to have the worst utility and protection
scores.

The PRAM method is as follows: Let t be the vector of frequencies and t/n
the vector of relative frequencies of a categorical variable having L categories
and n is the number of records in the microdata. Let P be a L⇥ L probability
transition matrix containing conditional probabilities: p

ij

= p(value
perturbed

=
j|value

original

= i). In each record of the data, the category of the variable is
changed or not changed according to the prescribed transition probabilities in
the matrix P and the result of a draw of a random multinomial variate u with
parameters p

ij

(j = 1, ..., L). If the j-th category is selected, category i is moved
to category j. When i = j, no change occurs.

There are di↵erent ways to define the Markov matrices in the literature. We
discuss here two of the approaches, which are the most commonly used. In the
discussion we understand p

kl

as the probability of changing a value k to a value
l. Then,

P
n

l=1 pkl = 1 , where n is the number of categories. We choosed two
types of matrices design to work. The first type is a fully-filled matrix with the
o↵-diagonal elements depending on the corresponding frequencies in the original
microdata file. This approach has been used in [De Wolf and Van Gelder, 2004].
Formally, the probability p

kl

for k 6= l is defined by

p
kl

=
(1� p

kk

)(
P

n

i=1 T⇠

(i)� T
⇠

(k)� T
⇠

(l)

(n� 2)(
P

n

i=1 T⇠

(i)� T
⇠

(k))
(2.3)
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where T
⇠

(i) is the frequency of the category i inside the original dataset for the
actual variable. In this approach p

kk

is left as constant, that is, p
kk

= p for all k.
The key point of this equation is that it assigns the higher exchange probabilities
to the categories with less frequency. In this way, the resultant dataset has more
confusion.

The second type is a fully-filled matrix with the diagonal elements depending
on the corresponding frequencies in the original microdata file. This approach
has been used in [Domingo-Ferrer and Torra, 2001b]. In this case the row values
are determined by the following expressions:

p
kk

= 1� (✓T
⇠

(K)/T
⇠

(k)) (2.4)

for k = 1, . . . , n and, then,

p
kl

=
1� p

kk

n� 1
(2.5)

for k 6= l, where T
⇠

(K) is the lower value frequency higher than zero, and ✓ is a
parameter in [0, 1].

2.3.2 Microaggregation

In the Microaggregation method the records are clustered into small aggregates
of groups of size k. Then, instead of publishing an original variable V

i

for a
given record, the average of the values of V

i

over the cluster to which the records
belongs to is published. This kind of protection introduced what afterwards was
called the k-anonymity concept. It says that a dataset is k-anonymised if for
each combination of quasi-identifiers values there are at least k registers with the
same combination. In this way, if an intruder try to link the protected data to a
external data, there will be always k equally probable matches making impossible
to know exactly which is the correct one. But to perform this protection without
loosing a big quantity of information, clusters should be as homogeneous as
possible.

In [Oganian and Domingo-Ferrer, 2001] it was shown that solving the multi-
variate Microaggregation problem is NP-Hard and it has been also proved that
in the univariate case the problem is polynomial [Hansen and Mukherjee, 2003].
So methods in the literature are heuristic and can be univariate or multivariate:

• Univariate methods deal with multivariate microdata sets by protecting
one variable at a time. This approach is known as individual ranking
or blurring [Defays and Nanopoulos, 1993] and, although it generates low
information loss, it can cause high disclosure risk.

• Multivariate methods either rank multivariate data by projecting them
onto a single axis [Defays and Nanopoulos, 1993] or dealing directly with
unprojected data [Domingo-Ferrer and Mateo-Sanz, 2002]. When working
with unprojected data, variables can be microaggregated by groups of n.
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There exist di↵erent heuristic Microaggregation implementations in the lit-
erature [Domingo-Ferrer and Mateo-Sanz, 2002]. However, the one used in
this thesis is the MDAV-generic (Maximum Distance to Average Vector)
[Domingo-Ferrer and Torra, 2005] implementation shown in Algorithm 4. A
good point for this algorithm is that it can work with any type of attribute,
aggregation operator and distance (contiuous, ordinal or nominal).

Implementation of MDAV-generic for a particular attribute type requires
specifying how the average record is computed and what distance is used. In
our case, we deal with categorical data (nominal and ordinal types of data). We
discuss below the ones used in this thesis.

The distance between two ordinal categories a and b of an attribute V
i

, with
a < b is

dist
ordinal

(a, b) =
|{i|a  i  b}|

|D(V
i

)| (2.6)

that is, the number of categories separating a and b divided by the number of
categories in the range of the attribute (the division is used to standardize the
distance between 0 and 1). Regarding the average operator for ordinal attributes,
we used the median. In terms of frequency, the median of a categories set S is
the one such that its predecessors and successors in the ordered S have equal
frequency.

Nominal attributes distance is defined using the equality predicate. Thus,
the distance between two values of a nominal attribute is 0 if they are equal and
1 if they are not (See Equation 2.7). The plurality rule (or mode) is used as the
average operator. This is, for a set S = a1, a2, . . . , an, the most frequent value
is selected as the average.

dist
nominal

(a, b) =

(
0, if a = b

1, if a 6= b
(2.7)

2.3.3 Mondrian

Mondrian is a greedy multidimensional recoding algorithm [LeFevre et al., 2006]
for categorical variables. Like in the Microaggregation case, this method relies
on the principle of k-anonymity, generating multidimensional partitions over
the whole dataset dimensions until each region have the minimum number of
elements � k. Then, the protected value of each attribute in a group is the
interval of values taken by all the individuals of the group.

To generate these partition, this method relies on checking the existence
of allowable cuts in any dimension. Consider a multiset P of points in d-
dimensional space. A cut perpendicular to axis X

a

at x
i

is allowable if and
only if Count(P.X

a

> x
i

) � k and Count(P.X
a

 x
i

) � k. This is, a cut is
allowable if there exist a value x

i

in the axis X
a

that separates the actual region
in two new ones where each one of them contains at least k points.
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Algorithm 4 MDAV-generic Algorithm

Input: X original dataset, k level of k-anonymity.
Output: X 0 partition of the original dataset records.
i ( 0
n ( |X|
C ( []
while n � 3k do
x̄ ( compute centroid of remaining records in X
x
r

( find the most distant record from x̄
x
s

( find the most distant record from x
r

Y
r

( find (k � 1)-nearest neighbours of x
r

Y
s

( find (k � 1)-nearest neighbours of x
r

c
i

( form cluster with the elements Y
r

and x
r

c(i+ 1) ( form cluster with the elements Y
s

and x
s

C ( add c
i

C ( add c(i+ 1)
remove records in c

i

from dataset X
remove records in c

j

from dataset X
n ( n� 2k
i ( i+ 2

end while
if n � 2k then
x̄ ( compute centroid of remaining records in X
x
r

( find the most distant record from x̄
Y
r

( find (k � 1)-nearest neighbours of x
r

c
i

( form cluster with the elements Y
r

and x
r

C ( add c
i

remove records in c
i

from dataset X
n ( n� k
i ( i+ 1

end if
if n > 0 then
c
i

( form cluster with the remaining elements in X
C ( add c

i

n ( n� n
i ( i+ 1

end if
A ( []
for c

i

in C do
a
i

( aggregate attribute values of records in c
i

end for
X 0 ( substitue attribute value in X by the aggregated ones in A
return X 0
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(a) Initial space (b) First cut

(c) Second cut

Figure 2.4: Visual example of Mondrian masking method with k = 2.

To illustrate the idea Figure 2.4 shows an example of achievent 2-anonymity
(k = 2). On the left-hand side we have the spatial representation of two at-
tributes (axis X and Y) with 3 and 4 categories in their domain. The points
represent the records in the dataset with certain combination of values for those
two attributes. The idea of the Mondrian method is to keep cutting all dimen-
sions space (one at a time) until there are no more allowable cuts remaining
in any dimension. In the middle of Figure 2.4 we show a spatial cut on the Y
dimension. It results in two regions each one containing at least k points. Then,
each region is treated independently and we try to cut both regions on the other
(X) dimension. However, there is only one allowable cut shown in the right-hand
side of Figure 2.4. With these two cuts we obtained three regions, and all of
them contain 2 points. Now the attribute values of each point in the same region
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are changed by the interval of values of all points in the region. For example, in
the case of the bottom point, its original values are {X = 2, Y = D} and the
masked values would be {X = [1, 2], Y = [C,D]}.

2.3.4 Rank Swapping

The Rank Swapping method is a perturbative masking method which was origi-
nally described for ordinal variables [Moore Jr., 1996] but it can be used for any
numerical variable.

Rank swapping with parameter p and with respect to an attribute V
j

(i.e.,
the jth column of the original dataset X) can be defined as follows: first, the
records of X are sorted in increasing order of the values x

ij

of the considered
attribute V

j

. For simplicity, assume that the records are already sorted, that is
x
ij

 x
lj

for all 1  i < l  n. Then, each value x
ij

is swapped with another
value x

lj

, randomly and uniformly chosen in the set of still unswapped values in
the limited range i < l  i+ p. Finally, the sorting step is undone.

Usually, when rank swapping is applied to a dataset, the algorithm explained
above is run for each attribute to be protected, in a sequential way. The param-
eter p is used to control the swap range. Normally, p is defined as a percent of
the total number n of records in X. Therefore, when p increases the di↵erence
between x

ij

and x
lj

may increase. This fact makes record linkage more di�cult,
but of course the information loss of the protected data is higher, decreasing in
this way its statistical utility.

Original Dataset Masked Dataset
V1 V2 V3 V 0

1 V 0
2 V 0

3

8 9 1 10 10 3
6 7 10 5 5 8
10 3 4 8 4 2
7 1 2 9 2 4
9 4 6 7 3 5
2 2 8 4 1 10
1 10 3 3 9 1
4 8 7 2 6 9
5 5 5 6 7 6
3 6 9 1 8 7

Table 2.1: Rank Swapping example with p = 2

Table 2.1 shows an example of using the Rank Swapping method. We take the
original dataset and apply Rank Swapping with p = 2 to the three attributes
independently obtaining the right-hand side masked dataset. For the sake of
simplicity records in original and masked dataset are equally sorted. However,
they could be sorted di↵erently in order to add even more uncertainty.
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2.3.5 Global Recoding and Top/Bottom Coding

Global Recoding [Hundepool et al., 1998] is a non-perturbative masking method
that can be seen as a function F over a categorical variable V

i

which is trans-
formed into a variable V 0

i

with |D(V 0
i

)| > |D(V
i

)|, where D(V
i

) is the domain
of the variable V

i

and || the cardinality operator. In other words, this method
combines several categories in order to form other new (less specific) categories.

This thesis uses a specific case of Global Recoding where only the p least
frequent categories of a variable V

i

are combined into a new category.

Top and Bottom Coding [Hundepool et al., 1998] are special cases of Global
Recoding. In this case of Top Coding only the p first categories allowed for a
variable V

i

are combined to form a new one. Similarlly, in Bottom Coding only
the p last categories allowed for an attribute V

i

are combined to form a new one.

It is easy to see that Top and Bottom Coding methods are only suitable for
ordinal attributes as they need to stablish an ordering of the categories to know
which ones are the first and which ones the last.

2.4 Microdata Protections Evaluation Measures

To determine the protection and quality of a microdata dataset there are two
main measures used in the microdata protection field: the information loss and
the disclosure risk.

Information loss is known as the quantity of harm that is inflicted to
the data by a given masking method. This measure is small when the ana-
lytic structure of the masked dataset is very similar to the structure of the
original dataset. Then, the motivation for preserving the structure of the
dataset is to ensure that the masked dataset will be analytically valid and
interesting. In this work we used the contingency table-based information
loss (CTBIL)[Domingo-Ferrer and Torra, 2001b], the distance-based informa-
tion loss (DBIL)[Domingo-Ferrer and Torra, 2001b], and the entropy-based in-
formation loss (EBIL)[Kooiman et al., 1997].

Assessment of the quality of a protection method cannot be limited to in-
formation loss because disclosure risk has also to be measured. Disclosure risk
measures the information that can be obtained about the individuals from the
protected data set. This measure is small when the masked dataset values are
very di↵erent to the original values. In this work we used the interval disclo-
sure (ID)[Domingo-Ferrer and Torra, 2001a], the distance-based record linkage
(DBRL)[Domingo-Ferrer and Torra, 2002], and the probabilistic record linkage
(PRL)[Domingo-Ferrer and Torra, 2002].

The problem here is that both measures are inversely related so the higher
information loss the lower disclosure risk, and the inverse. In order to perform
a good protection there must be a minimized and balanced combination of both
measures.
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2.4.1 Information Loss

When evaluating a masking method for being valid for statistical studies the
main thing that we want to mantain is the information stored in the original
dataset in order to be able to perform studies over the masked dataset obtaining
real original statistical information. So this property is evaluated with informa-
tion loss measures.

Information loss occurs when the data is distorted and is more di�cult to
extract useful information from them, that is, some information is lost. However,
this measure depends on how the protected data is going to be used, but there
exist several kind of usages and it can be di�cult to indentify all of them at the
moment to publish the data.

This measure can lead to a bad evaluation of the dataset because if a pro-
tected dataset has a high amount of information loss, this dataset will be useless
for any kind of statistical studies because the dataset has lost all its original
properties.

In order to assess the preservation of the original dataset’s structure we can
try several things:

• Compare the data in the original and the masked datasets. The more
similar the masking method to the identity function, the less impact (but
the higher disclosure risk).

• Compare some statistics computed on the original and the masked
datasets. Little information loss should translate to little di↵erences be-
tween the statistics.

• Analyze the behavior of the particular masking method used to measure
its impact on the structure of the original dataset.

In this chapter we present a review of the general measures used in this thesis
to evaluate the information loss of the protection methods in our experiments.
Those measures are the distance-based information loss (DBIL), the contingency
table-based information loss (CTBIL), and the entropy-based information loss
(EBIL).

Distance-Based Information Loss (DBIL)
The first way to evaluate the information distortion inflected by a data
protection method to a certain dataset is measuring the di↵erence between
the initial values in the original dataset and the final values in the masked
dataset [Torra and Domingo-Ferrer, 2001].

Then, the di↵erence between the original dataset X and the masked
dataset X 0 can be defined as the sum of the distances between each origi-
nal register r

X

and its correspondent protected register r
X

0 (see Equation
2.8), where the distance between two registers is the sum of the distances
between each original value and its correpondent masked value for all vari-
ables V

i

(see Equation 2.9).
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DIST (X,X 0) =
X

r2X

d(r
X

, r
X

0) (2.8)

d(r1, r2) =
X

Vi2V

distV alues
Vi(Vi

(r1), Vi

(r2)) (2.9)

It should be noticed that it is needed to define a distance function for the
two kind of variables when dealing with categorical data: ordinal variables
and nominal variables. In order to compute these distances we used the
distances described in Equations 2.6 and 2.7 of Section 2.3.

Contingency Table-Based Information Loss (CTBIL)
The second way to evaluate the information loss in a protected dataset is
by comparing all the contingency tables from 1 toK dimensions of the orig-
inal dataset and the protected dataset [Torra and Domingo-Ferrer, 2001].
In other words, given two datasets X and X 0 (original and protected re-
spectively) and a set of variables V , there will be generated as much con-
tingency tables as di↵erent possible combinations with up to K elements
are in V .

Then, the contingency table-based information loss can be defined as the
sum of the di↵erences between the same cell in both original and masked
contingency tables. Equation 2.10 formalizes this concept where X is the
original dataset, X 0 is the masked dataset, V is the set of variables, K is
the maximum number of dimensions for the tables, and at

i

is the value in
table t accessible by the indices i .

CTBIL(X,X 0;V,K) =
X

{Vj1...Vjt}✓V

|{Vj1...Vjt}|K

X

i1...it

|aX
i1...it

� aX
0

i1...it
| (2.10)

The main problem for this method is that the number of contingency tables
depends on the number of variables |V |, the number of categories for each
variable, and the dimension K. Because of this, it could be very di�cult to
compare the results in tables with large number of categories with tables
with only few categories, and the same would happen with the dimension
of these tables. To solve this, it was proposed a normalized version dividing
the CTBIL result by the total number of cells in all considered tables as
shown in Equation 2.11.

ACTBIL(X,X 0;V,K) =
CTBIL(X,X 0;V,K)P

{Vj1...Vjt}✓V

|{Vj1...Vjt}|K

|D(V
j1)| . . . |D(V

jt

)| (2.11)

In this thesis we used this normalized version of the contigency table-based
information loss to evaluate the method in the experiments part.
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Entropy-Based Information Loss (EBIL)
The last measure used to evaluate the information loss is based on mea-
suring the entropy of the protected data respect to the original data
[Torra and Domingo-Ferrer, 2001]. This approach interprets the masking
method as a noisy channel through where information is transmitted. With
this interpretation, the loss of information can be calculated as the quantity
of noise or disorder between the original dataset and the masked dataset.

Let V be a variable in the original dataset and V 0 be the corresponding
variable in the masked dataset, let P

V,V

0 = {p(V = i|V 0 = j)} be the
conditional probabilities matrix, and let S be the set of categories for the
variable V . Then the information loss for the variable V in a register r
would be

H(V |V 0 = j) = �
X

i,j2S

p(V = i|V 0 = j)logp(V = i|V 0 = j) (2.12)

Finally, the entropy-based information loss (EBIL) is obtained by accumu-
lating the results of expression 2.12 for all registers r in the masked dataset
X 0 as follows

EBIL(P
V,V

0 , X 0) =
X

r2X

0

H(V |V 0 = j
r

) (2.13)

It should be noticed that Expression 2.13 only calculates the information
loss for a single variable. In order to obtain the global information loss for
a set of variables, the result of each variable have to be added together.

2.4.2 Disclosure Risk

We presented above di↵erent ways of measuring he information loss caused by
microdada protection methods. However, the assessment of the quality of a
protection method cannot be limited to information loss; disclosure risk must
also be measured.

Disclosure risk is the measure to evaluate the protection degree of a masked
dataset, that is, it measures the quantity of original sensitive data that can be
obtained from the masked dataset.

Like in the case of information loss, this measure can also lead to a bad
evaluation of the dataset because if a protected dataset has a high amount of
disclosure risk means that there is almost no protection and most of the sensitive
information about the individuals can be either infered or linked to the users,
loosing then their privacy. However, it is necessary to find the optimum trade-
o↵ between information loss and disclosure risk. To understand the trade-o↵,
consider the two extreme cases between which masking methods lie:

• If a masking method alterates so much the original dataset, then most of
the original information is lost but no sensitive information is disclosed.
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• If a masking method do not alterate the original dataset, then the orig-
inal information is completely mantained but all sensitive information is
disclosed.

Then, in this chapter we present a review of the disclosure risk used in this
thesis to evaluate the disclosure risk of the protection methods in our experi-
ments. The reviewed methods are interval disclosure (ID), distance-based record
linkage (DBRL), probabilistic record linkage (PRL), and rank swapping record
linkage (RSRL).

Interval Disclosure
This first approach was described in [Domingo-Ferrer and Torra, 2001b]
and it only checks the quantity of individual original values that can be
discovered from the masked dataset.

Each variable is independently ranked and a rank interval is defined around
the value the variable takes on each record. The ranks of values within
the interval for a variable around record r should di↵er less than p percent
of the total number of records and the rank in the center of the interval
should correspond to the value of the variable in record r. If so, the
proportion of original values that fall into the interval centered around
their corresponding masked value is a measure of disclosure risk.

Distance-Based Record Linkage (DBRL)
This approach was described first in [Domingo-Ferrer and Torra, 2002] for
the specific case of microaggregation masking method with continuous data
using the Euclidean distance. It can be generalized, however, for any
method provided that a distance between the original and the masked
value can be defined.

It is assumed that an intruder has an external dataset containing as key
variables the same variables present in the released masked dataset. It is
also assumed that the intruder is trying to link the masked dataset with
the external dataset using the key variables.

The main idea of this measure is to compute the distance between a pro-
tected record and all the original records, getting the closest original record.
A record in the masked dataset is labeled as linked when this nearest record
in the original dataset turns out to be the corresponding original record.
Then, the percentage of linked records is a measure of disclosure risk.

Because of this thesis is focused on categorical microdata files it was needed
to define the distance between categorical values in this method. As it has
been used in the distance-based information loss, these distances have been
splitted in two types: one distance for ordinal variables and one distance
for nominal variables. In order to compute these distances we used the
distances described in Equations 2.7 and 2.6 of Section 2.3.

Probabilistic Record Linkage (PRL)
This method was described in [Domingo-Ferrer and Torra, 2002] having a
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matching algorithm which uses the linear sum assignment model to pair
records in the two files to be matched, original and masked datasets.

Although, this method is less simple than the explained in the previous
section, this approach is attractive because it requires the user to provide
only two probabilities as input: an upper bound of the probability of a false
match and an upper bound of the probabiltiy of a false non-match. Then,
a probabilistic index is computed for each pair or registers and having two
bounds it is decided if the pair of records is linked or not.

Finally, the percentage of correctly paired records is a measure of disclosure
risk.

2.5 Clustering Partitions Similarity Measures

There exist several techniques to deal with the problem of clustering partitions
comparison. In this thesis we use three well known indices which are focused on
checking whether two partitions contain the same number of clusters and each
cluster contains the same elements.

We consider that ⇧ = {⇡1, . . . ,⇡m

} and ⇧0 = {⇡0
1, . . . ,⇡

0
m

} are the resulting
partitions for the original and masked datasets. Then, we consider r, s, t, u and
np(⇧) as follows:

r is the number of pairs (a, b) where a and b are in the same cluster in ⇧ and
in ⇧0.

s is the number of pairs (a, b) where a and b are in the same cluster in ⇧ but
not in ⇧0.

t is the number of pairs (a, b) where a and b are in the same cluster in ⇧0 but
not in ⇧.

u is the number of pairs (a, b) where a and b are in di↵erent clusters in ⇧ and
in ⇧0

np(⇧) is the number of pairs within clusters in the partition ⇧

The measures we use are the Rand index [Rand, 1971], the Jaccard index
[Tan et al., 2005] and the Wallace index [Wallace, 1983], which using the above
parameters are defined as follows:

Rand index

RI(⇧,⇧0) =
r + u

r + s+ t+ u

Jaccard index

JI(⇧,⇧0) =
r

r + s+ t
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Wallace index

WI(⇧,⇧0) =
rp

np(⇧)np(⇧0)

2.6 Social Networks Users Privacy Protection
Methods

Social Networks can be thought as graphs where each of the nodes represents a
unique user and the links that join two nodes represents a relationship between
two users. In a scenario like that there are two main privacy issues to be con-
cerned about. The first one is the information contained by each node (user)
of the graph, and the second one is the relationships that each node has with
other nodes. Those two issues are the ones that are able to disclose the identity
of the people or institutions contained in the social graph. Figure 2.5 shows an
example of a tiny social network graph. The relations between nodes (people)
represents friendships, then, for example, it can be seen that Alice is friend of
everybody but Harry has only Alice as a friend.

Figure 2.5: Social Graph Example

In the literature there exist several protection methods to protect relation-
ships avoiding the disclosure of nodes identity. The idea here is that nodes that
look structurally similar may be indistinguishable to an adversary, in spite of
external information. A strong form of structural similarity between two nodes
is automorphic equivalence. Two nodes x, y 2 V are atomorphically equivalent
if there exist an isomorphism from the graph onto itself that maps x to y. Most
graphs have small automorphism classes, likely to be insu�cient for protection
against re-identification. However, in order to distinguish two nodes in di↵erent
automorphic equivalence classes it may be necessary to use complete information
about their position in the graph but adversaries are unlikely to have access to
such complete information. For example if a weaker adversary only knows the
degree (number of relationships) of targeted nodes (users), Carol and Bob nodes
of Figure 2.5 are indistinguishable.

The most important family of privacy methods dealing with graph structure
are the ones based on the k-anonymity principle. These methods try to add,
remove, or generalize edges in order to have at least k equal nodes or structures
in the graph.
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In [Stokes and Torra, 2012] we find a theoretical definition of the classical
k � anonymity adapted to graphs and they propose to create clusters of edges
and nodes in order to create superedges and supernodes (a single edge/node
representing all the elements in the cluster it belongs to). Another example
can be found in [Campan and Truta, 2009] where the authors describe a prac-
tical protection method which takes into account the information loss when
creating clusters (using the nodes information) and creates also superedges and
supernodes. In [Zhou and Pei, 2008] it can be found another more sophisticated
anonymization method which firstly generalizes vertex labels and secondly adds
edges with the precept of creating local topologies which are isomorphic with
other local topologies. Finally, in [Liu and Terzi, 2008] the authors propose a
defense method which produces k-degree anonymized degree sequences.

There is another family of methods wich rely on randomization when adding
and removing edges like in [Hay et al., 2007] where the authors describe a pro-
tection method which relies on adding and removing edges at random (first
removing n edges at random and afterwards adding n edges at random).

2.6.1 Privacy Analysis Measures

In order to assess the quality of the protections here there also exist a modified
approaches of the two kind of measures described in Section 2.4: information
loss and disclosure risk.

As information loss there are several di↵erent approaches used in the litera-
ture. In the case of structural information loss the most widely used measures
are common graph metrics such as clustering coe�cient, average path length
and degree distribution [Nettleton et al., 2011]. Comparing these measures of
the protected graph with the ones in the original graph gives us a hint of the
amount of structural information lost during the protection.

For the disclosure risk case almost all existing approaches are based on the
number of correct matches between nodes or structures in the original graph and
the ones in the protected graph. In [Hay et al., 2007] the authors also consider
the risk measure as the percentage of nodes whose equivalent candidate set falls
into one of a given set of buckets (1 node, 2-4 nodes, 5- 10 nodes, ...).

In [Shetty and Adibi, 2005] the authors present some concepts related to
graph entropy and the identification of important or interesting nodes. The
basic idea is to measure the e↵ect of removing a node from a graph, as the
di↵erence between the entropy of the graph before and after removing the given
node

2.7 Datasets

In this section we introduce the main datasets we used through most of the
experiments in this thesis.

The 1993 U.S. Housing Dataset
The first dataset is the 1993 U.S. Housing Survey dataset. This dataset was
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extracted from the U.S. Census Bureau [U.S. Census Bureau, 1993] and it
contains information about the size and the composition of the U.S. houses
inventory on 1993. This dataset consists on 1000 registers represented in
terms of 11 categorical attributes and 3 continuous attributes. Table 2.2
show the attributes in this dataset as well as the number of valid categories
for each one.

The German Credit Dataset
The second dataset is the 1994 German Credit Data dataset.
It was extracted from the UCI Machine Learning Respository
[Bache and Lichman, 2013] and it describes german people financial as-
pects. This dataset has 1000 registers with 7 numerical attributes and 13
categorical attributes. Table 2.3 show the attributes in this dataset as well
as the number of valid categories for each one.

The Solar Flare Dataset
The third dataset is the Solar Flare dataset and it was also extracted from
the UCI Machine Learning Repository [Bache and Lichman, 2013]. This
dataset contains information about 1389 di↵erent solar flares described
with 10 categorical attributes. Table 2.4 show the attributes in this dataset
as well as the number of valid categories for each one.

The Adult Dataset
The last dataset is the Adult dataset from the UCI Machine Learning
Repository [Bache and Lichman, 2013]. This dataset is also known as
”Census Income” dataset because it contains personal information about
people such as education, occupation and marital status. In addition it
also contains information about the income of this people. The dataset
consists on 48842 registers with 14 attributes each one (6 continuous and
8 categorical). Table 2.5 show the attributes in this dataset as well as the
number of valid categories for each one.
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Attribute Name Number of Categories

UNKNOWN Continuous
AGE Continuous
BUILT 24
DEGREE 7
GRADE1 20
METRO 9
SCH 6
SHP 6
SMSA Continuous
TRAN1 Continuous
WEIGHT Continuous
WFUEL 10
WHYMOVE 19
WHYTOH 13
WHYTON 13

Table 2.2: 1993 U.S. Housing
Dataset Attributes

Attribute Name Number of Categories

EXISTACC 5
DURATION Continuous
CREDHIST 6
PURPOSE 12
CREDAMOUNT Continuous
SAVINGS 6
PRESEMPLOY 6
INSTALRATE Continuous
STATSEX 6
OTHER 4
RESIDENCE Continuous
PROPERTY 5
AGE Continuous
OTHERPLANS 4
HOUSING 4
NUMCREDITS Continuous
JOB 5
PEOPLE Continuous
TELEPHONE 3
FOREIGN 3

Table 2.3: German Credit
Dataset Attributes

Attribute Name Number of Categories

CLASS 8
LARGSPOT 7
SPOTDIST 5
ACTIVITY 3
EVOLUTION 4
PREVFLARE 4
HISTOCOMP 3
SUNDISK 3
AREA 3
AREALARGSPOT 3
C-CLASS 10
M-CLASS 10
X-CLASS 10

Table 2.4: Solar Flare Dataset
Attributes

Attribute Name Number of Categories

AGE Continuous
WORKCLASS 9
FNLWGT Continuous
EDUCATION 17
EDUCATION-NUM Continuous
MARITAL-STATUS 8
OCCUPATION 15
RELATIONSHIP 7
RACE 6
SEX 3
CAPITAL-GAIN Continuous
CAPITAL-LOSS Continuous
HOURS-PER-WEEK Continuous
NATIVE-COUNTRY 42
INCOME Continuous

Table 2.5: Adult Dataset At-
tributes
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Chapter 3

Evolutionary Approach for
Better Microdata
Protections

This chapter explains how to see as an optimization problem the fact of seeking
for better microdata protections, and introduces some approaches to solve it
using evolutionary algorithms.

Seeking a good protection that has low information loss and low disclosure
risk is a di�cult task. There exist many protection methods, each of them
having di↵erent parameters to tweak. However, the protection process can be
thought as a function that takes the original data set and generates a new data
set which should be optimized with respect to the concept of good protection
(low information loss and low disclosure risk). Then, the protection process can
be modelized as an optimization problem and can be solved using state-of-the-
art optimization methods but, as the protection process is a very unknown and
di�cult task and the search space is large (the product of the domains size of
all atributes to protect), this optimization problem is not suitable to be solved
using analytical methods.

Evolutionary algorithms are a good choice in this case because, as explained
in Chapter 2, they work well in this kind of situations. In the following sections
we introduce a way to use an evolutionary algorithm to get better protections.
Section 3.1 describes the general algorithm. In Section 3.2 we show how to
perform the genotype encoding. Section 3.3 introduces the genetic operators.
Section 3.4 describes the fitness function used to guide the algorithm to evolve
towards a better protectisons. Finally, in Section 3.5 experimental results are
presented to show the performance of our approach.
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3.1 General Evolutionary Protection

In this section we present how to use an evolutionary algorithm as the protection
method. As said above, we are going to look at the protection problem as an
optimization problem using an evolutionary algorithm.

The main idea of this approach is to have an initial population of di↵erent
protections of the same original data set (using di↵erent state-of-the-art pro-
tection methods) and then keep optimizing them based on a fitness function
containing the integration of the information loss and the disclosure risk mea-
sures. Although in traditional evolutionary algorithms all genetic operators have
chances to be executed in each generation, in our case we decided to apply either
mutation or crossover in a single generation, not both. The reason for this is
that we do not want to harm the data too much in each generation and also
want the evolution to be smoother.

By doing this we are combining di↵erent parts of the same data but protected
with di↵erent methods. In addition, individuals also experience mutations which
tries to find new perturbations on the data that provides better fitness than the
ones done by the state-of-the-art protection methods.

The only open feature in this algorithm is the stopping criteria. This criteria
is up to the user and, for example, it could be to reach a maximum number of
generation, to achieve a certain level of improvement (in terms of fitness) for
the best individual... Then, after executing the algorithm, it returns the best
individual (protection) in the population based on the fitness of all individuals
(protections).

Pseudo-code summarizing the algorithm is provided in Algorithm 5 below.

Algorithm 5 Evolutionary Algorithm to Enhance Privacy.

Input: P (0) = {X 0
i

} initial population of protections for X.
Output: P (t) = {X 0

j

} generation t.
t ( 0
evaluate(P (0))
while stopping(P (t)) 6= true; do

alter ( randomly choose between mutation and cross
if alter by mutation then

i ( select(N)
X 0

j

( mutate(X 0
i

) evaluate(X 0
i

, X 0
j

)
else
{i1, i2} ( select(N

b

, N)
X 0

j1
, X 0

j2
( cross(X 0

i1
, X 0

i2
) evaluate(X 0

i1
, X 0

i2
, X 0

j1
, X 0

j2
)

end if
t ( t+ 1

end while
return best(P (t))

In the following sections we describe the key aspects of this algorithm such
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x0 x graycode(x0) graycode(x) genome(x0|x)
1500 1000 111 0011 0010 10 0001 1100 101 0010 1110
1500 1900 111 0011 0010 100 1101 1010 11 1110 1000
12 7 1010 100 1110
7 12 100 1010 1110

Table 3.1: Some Examples of Genome Representations.

as the genotype econding, the genetic operators, the fitness function, and the
selection criteria.

It should be noticed that this approach is suitable for both continuous and
categorical data. The only di↵erences are how the genotype is encoded and how
the mutation genetic operator is performed. Both cases are explained in each of
the following sections too.

3.2 Genotype Encoding

Our search of good individuals is in direct correspondence with the search of
perturbative masking protections o↵ering a good tradeo↵ between information
loss and disclosure risk.

In the case of continuous data encoding of an individual X 0 is done value
by value, relative to the corresponding values at the original data set X. For
each value x0 in the masked data set X 0, let x be its associated value in the
original data set X. Consider that graycode(x) and graycode(x0) represent the
Gray codes of x and x0 as in [Caruana and Scha↵er, 1988]. Then the genomic
representation of x0 given x is taken as the bitwise xor between the Gray codes,
graycode(x) and graycode(x0).

genome(x0|x) = xor(graycode(x0), graycode(x)) (3.1)

We have chosen to work with Gray-coded values because its hability to obtain
fast and more accurate solutions than regular binary representations as explained
in Section 2.1.

Recall that the representation of a value x0 is computed with respect to its
original version x, so what is encoded is the perturbation that changes each initial
value into its masked version. Interestingly enough, if there were no perturba-
tion at all for that specific value, so x0 = x, then the genomic representation
of x’ given x (defined by Equation 3.1) equals zero. In general, the length of
genome(x0|x) is directly proportional to the strength of the perturbation, so
weaker perturbations have lower lengths. Here length is understood as the po-
sition of the most significant bit. Figure 3.1 shows some examples of genome
representations.

An important property of this representation is that all decoded values are
feasible. When an evolutionary algorithm produces unfeasible solutions, an ad-
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ditional repairing step is usually added to the algorithm to obtain a feasible
version [Back et al., 2000]. All representations being feasible generally imply a
significant advantage of not requiring the repair algorithm step.

A complete file encoding example is shown in Figure 3.1. The example in-
cludes the original and the protected file as well as the genome file. All files
needed to construct the genome file are also included.

In the categorical data case the attribute values only have meaning in the
form of a string and, in addition, its meaning can only be modified by changing
the entire string, so partial modifications of the string can generate categories out
of our domain. For that reason we decided to deal with the original categories
directly without any type of encoding, this is, the chromosomes of method’s
population are just the protected data-files read and loaded into memory, where
the genes are the string values.

Regarding the space complexity of our approach, it will be determined by the
number of registers n in the data, the number of attributes a, and the number
of files loaded into memory f , obtaining a space complexity of O(n⇥ a⇥ f).

3.3 Genetic Operators

Our proposed algorithm uses two basic operators: crossover and muta-
tion [Holland, 1975].

Crossover operation is identical in both continuous and categorical cases.
The crossover of two masked data sets X 0 and Y 0 is performed by a 2-point
crossing as follows. Take a value position at random s as the first point, and
consider that the two values at this position are x0

s

2 X 0 and y0
s

2 Y 0. Take
another value position at random between the value taken before and the last
value position of the data set. Set r as this second point, and consider the two
values at this position to be x0

r

2 X 0 and y0
r

2 Y 0. When s = r there is only one
value selected, so only this value will be swapped obtaining two new o↵springs
Z 0
1 = {x0

1, . . . , x
0
s�1, y

0
s

, x0
s+1, . . . , x

0
n

} and Z 0
2 = {y01, . . . , y0s�1, x

0
s

, y0
s+1, . . . , y

0
n

}.
When s 6= r all values between the two positions have to be swapped obtaining
two new o↵springs Z 0

1 = {x0
1, . . . , x

0
s�1, y

0
s

, y0
s+1, . . . , y

0
r

, x0
r+1, . . . , x

0
n

} and Z 0
2 =

{y01, . . . , y0s�1, x
0
s

, x0
s+1, . . . , x

0
r

, y0
r+1, . . . , y

0
n

}.
Mutation consists on altering a single value in an individual and, as the

representation of continuous data is di↵erent than the one of categorical data,
we defined a specific mutation operator for each case.

For continuous data, the mutation operation is performed as follows: given
an individual X 0 (i.e. a protected data set), take a value position at random, and
consider that the value at this position is x0, with genome(x0) = b

s

b
s�1 . . . b1.

Choose a bit position k at random, such that 1  k  s. Then a new o↵spring is
obtained just by replacing the bit b

k

by its negation counterpart, b0
k

= not(b
k

).
In the categorical data case, values cannot be modified internally but we

also want to obtain a new o↵spring. In addition, we have also to deal with the
constraint of that each variable have a limited number of categories admitted
as a valid values, and we need to take it into account when altering them. So,
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1 3 1 5 9
5 2 2 6 7
4 8 3 4 9
1 6 5 8 2
4 7 2 1 2

Original file.

1 2 1 5 7
9 1 2 3 5
4 1 9 8 9
1 6 7 9 1
3 1 2 7 2

Protected file.

0001 0011 0001 0101 1001
0101 0010 0010 0110 0111
0100 1000 0011 0100 1001
0001 0110 0101 1000 0010
0100 0111 0010 0001 0010

Binary-coded original file.

0001 0010 0001 0101 0111
1001 0001 0010 0011 0101
0100 0001 1001 1000 1001
0001 0110 0111 1001 0001
0011 0001 0010 0111 0010

Binary-coded protected file.

0001 0010 0001 0111 1101
0111 0011 0011 0101 0100
0110 1100 0010 0110 1101
0001 0101 0111 1100 0011
0110 0100 0011 0001 0011

Gray-coded original file.

0001 0011 0001 0111 0100
1101 0001 0011 0010 0111
0110 0001 1101 1100 1101
0001 0101 0100 1101 0001
0010 0001 0011 0100 0011

Gray-coded protected file.

0000 0001 0000 0000 1001
1010 0010 0000 0111 0011
0000 1101 1111 1010 0000
0000 0000 0011 0001 0010
0100 0101 0000 0101 0000

Genomes file.

Figure 3.1: Example of genotype encoding.
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we decided to define the mutation operation as follows. Given an individual X 0

(i.e. a protected data set), it is mutated by randomly selecting a value x
i

and
changing it by a randomly selected value among all valid values for the specific
attribute v

i

.

3.4 Fitness Function and Selection

As explained in the previous chapter, the fitness function is the responsible of
guiding the evolutionary algorithm to keep optimizing the individuals in the
population. In our case we are dealing with a population of protections so there
are two measures to take into account when determining the protection quality:
the information loss (IL) and the disclosure risk (DR).

As we are dealing with two objective measures, the general protection prob-
lem is a multi-objective optimization problem. Then, fitness evaluation function
is based on the multi-objective optimization method of Objective Weighting with
1
2 as the weight for disclosure risk (DR) evaluation function and also for infor-
mation loss (IL) evaluation function, so the individual score can be obtained as
follows:

Score(X 0) =
DR(X 0) + IL(X 0)

2
(3.2)

Here DR(X 0) represents the disclosure risk of X 0 with respect to X as defined
by [Domingo-Ferrer and Torra, 2001b], and IL(X 0) represents the information
loss of X 0 with respect to X as defined by [Mateo-Sanz et al., 2005]. The closer
the fitness Score(X 0) is to zero, the better the protection provided by the masking
X 0.

Consider that the current population P (t) = {X 0
1, X

0
2, . . .} is sorted by the

score function, with Score(X 0
i

)  Score(X 0
j

) whenever i  j. Given a fixed
parameter N corresponding to the population size, the selection method of Al-
gorithm 5 filters the best N

b

individuals in terms of its score value, and selects
an individual X 0

i

with probability p(X 0
i

) as given by Equation 3.3.

p(X 0
i

) =
Score(X 0

i

)
P

N

j=1 Score(X
0
j

)
(3.3)

Expression 3.2 has been used in several papers
[Domingo-Ferrer and Torra, 2001b][Marés and Torra, 2010] . According to
this expression, the best protection is achieved with a minimum value for each
measure (i.e., IL=0 and DR=0). Nevertheless, given a particular score we prefer
to have the same value in both scores. That is, for a score of 20%, we prefer
IL=20 and DR=20 than IL=0 and DR=40. Expression 3.2 works fine in the
case of continuous data because the altered values in the individuals have less
impact on the information loss and disclosure risk as there is a large (sometimes
infinite) range of possible values to take by a continuous attribute. However, in
the categorical case the changes have much more impact because of the small
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quantity of valid categories in each attribute. Because of this, the changes tend
to go from a big disclosure risk and low information loss to a low disclosure risk
and big information loss so, a pair of values with score = 20 are much likely
to have IL = 30 and DR = 10 than to have IL = DR = 20 what would be
desirable.

To better represent our choices in the categorical case, we present an alter-
native function that penalizes such unbalanced trade-o↵s between information
loss and disclosure risk. The expression is the maximum of information loss and
disclosure risk as follow

Score(X) = max(IL(X), DR(X)) (3.4)

This second function penalizes a protected dataset that has a large unbalance
between disclosure risk and information loss. Note that just one bad value of IL
or DR leads to a bad score.

Regarding the individual(s) selection criteria, Equation 3.3 is characteristic
of a proportional selection strategy, where individuals are evaluated and selected
based on this fitness function [Back et al., 2000, Holland, 1975]. With propor-
tional selection, better individuals have a greater probability of being selected.

In the mutation case, an individual X 0
i

is chosen from the current population,
from which a potentially new individual is obtained (as described in Section 3.3
above). During the evaluation, an elitism replacement strategy is followed, which
means that the two individuals are compared and only the individual with the
best fitness value survives. The use of the elitism replacement strategy is to
guarantee that the next generation individual will be at least not worse than the
actual, then, it can prevent a loss of the best solution found.

In the crossover case, two individuals X 0
i1

and X 0
i2

are chosen. X 0
i1

is selected
from a leader group with the N

b

best scores. The second individual X 0
i2
is chosen

from the population. A recombination of these two individuals produce two
new individuals, X 0

j1
and X 0

j2
(as described in Section 2.1 above). In our case,

each newcomer X 0
jk

maintains a proximity relation with its parent X 0
ik
. During

the evaluation, an elitist niching method — known as Deterministic Crowding
(DC) [Dick, 2005, Mahfoud, 1992] — is followed such that only individuals with
the best fitness value in each pair (X 0

ik
, X 0

jk
) survive. Should be noticed that

this method is e↵ective in maintaining the diversity of the population in terms
of genotypic search space, but it does not necessarily guarantee the diversity of
maskings.

3.5 Experimental Results

In this section we show some experimental results in order to test the perfor-
mance of our approach. Although we are mainly focused on the protection of
categorical data, here we wanted to extend it to continuous data too. Then, we
present two di↵erent scenarios having in first place the experimental results for
the continuous data case and then presenting the ones for the categorical data
case.
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Continuous Data Case Results

To illustrate and empirically evaluate our proposed method we
have used four di↵erent data sets. The first data set is a Census
[Brand et al., 2002] extracted from the U.S. Current Population Survey
corresponding to 1995, and consists of 1080 records with 13 continuous
attributes. This particular data set is commonly used to empiri-
cally evaluate di↵erent privacy-protecting methods [Nin et al., 2008b,
Domingo-Ferrer and Torra, 2001b, Domingo-Ferrer and Torra, 2004,
Domingo-Ferrer and Torra, 2005, Yancey et al., 2002]. The second data
set is Tarragona which contains 834 records with 13 numerical attributes
corresponding to financial information on 834 companies located in
the area of Tarragona, Catalonia. This data set is also very common
used in this field like in [Domingo-Ferrer and Mateo-Sanz, 2002],
and [Laszlo and Mukherjee, 2005]. The third data set is EIA
[Brand et al., 2002] which is an electric utility data file that includes
utility level retail sales of electricity and associated revenues by end-use
sector, state, and reporting month, and consists of 4092 records with
10 continuous attributes, but we have only used 2000 records. Finally,
the fouth data set is Diabetes (UCI Machine Learning Repository,
[Bache and Lichman, 2013]), which contains information from diabetes
patients, and consists of 768 records with 8 continuous attributes.

Our proposed method a priori applies to any particular set of protection
masks, from which it starts searching new protected datasets by evolution
of the initial set. But of course it is better to start from a good set of
protections.

In our experiment we consider a leader group size N
b

= 2. For
the Census data set we take as initial population 50 masks in-
cluding rank swapping (RS) and microagregation protection methods.
This particular set of masks was obtained by means of the QJ al-
gorithm [Jiménez and Torra, 2009a, Jiménez and Torra, 2009b]. Details
about the QJ algorithm are not relevant for our experiment, except that it
provides a diversity of masks with di↵erent levels of protection, from which
we take the best 50 masks — in terms of its score — as initial individu-
als. Ranking protections of the Census data by its score, RS protections
achieved the highest position with a score equal to 20.68546, followed in
the score ranking by QJ and Microaggregation, that obtained similar re-
sults [Domingo-Ferrer et al., 2001, Jiménez and Torra, 2009a]. But these
scores have to be considered with caution because, recently, specific at-
tacks to RS and to Microaggregation were discovered that allow to estab-
lish more links than with the standard record-linkage techniques used to
compute disclosure risk [Nin et al., 2008a, Nin et al., 2008b]. In the case
of the Diabetes data set we take 16 masks including rank swapping and
microagregation methods. For the EIA data set we take 16 masks includ-
ing rank swapping and microagregation methods. Finally for Tarragona
data set we take 16 masks including rank swapping and microagregation

44



(a) Census dataset (b) Diabetes dataset

(c) EIA dataset (d) Tarragona dataset

Figure 3.2: Initial and Final Populations of all datasets for the First Experiment.

methods as well. For Diabetes, EIA and Tarragona data sets we have used
protections with parameters similar to the Census masks.

Figures 3.2a to 3.2d are R–U confidentiality maps [Duncan et al., 2001a,
Duncan et al., 2001b] of the evolution of protections for each data set. A
R-U map is nothing more than a two-dimensional Cartesian system where
the abscissa is the disclosure risk DR and the ordinate is the information
loss IL provided by each protection. Recall that the origin at the lower-left
corner corresponds to an ideal but unfeasible protection with score zero,
where there is no distortion (IL is zero) but also there is no disclosure risk
(DR is zero). For our experiment, the closer a point is to the origin, the
better is the protection it represents.

Initial and final population masks are represented by crosses and circles
respectively. It can be observed, first, that the overall set of masks im-
proves in terms of its score. Second, we can also visually appreciate that
diversity is maintained, while protections improve both in terms of infor-
mation loss (IL) and disclosure risk (DR). This was intentional because,
as we said in Section 3.4, our algorithm is based on Deterministic Crowd-
ing (DC), which is basically a diversity maintenance technique. This gives
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the flexibility of choosing between di↵erent protections with approximately
the same score but di↵erent levels of protection. Let us develop this point
further with an example. Consider three hypothetical protections with
DR-IL coordinates (30, 10), (20, 20) and (2, 38). These three protections
all have the same score 20 but di↵erent values of information loss (IL)
and disclosure risk (DR). The first point has the highest disclosure risk,
that might be excessive. The third has the highest information loss, that
might also be unacceptable for some users. Points in between represent a
balance between both DR and IL measures, which may be preferable for
some users. Finally, we observe at Figure 3.2a, Figure 3.2b and Figure 3.2d
masks that have achieved scores very close to zero, which is a very good
improvement because it means that those masks have low information loss
and low disclosure risk, that is almost the ideal result.

(a) Census dataset (b) Diabetes dataset

(c) EIA dataset (d) Tarragona dataset

Figure 3.3: Evolution of the population of the First Experiment for all datasets.

Figure 3.3a summarizes the evolution of scores for the experiment with
the Census data set, Figure 3.3b represents it for the Diabetes data set,
Figure 3.3c for the EIA data set, and Figure 3.3d for the Tarragona data
set. The three curves from top to bottom show, respectively, the maxi-
mum, average and minimum scores, as population evolved from generation
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to generation. The upper line shows the evolution of the maximum score,
which decreased at a very low pace. This is explained by the selection pro-
cess itself, that gives preference to best individuals, so worst protections
in terms of score have lowest probability to be selected. The line in the
middle shows how the score average decreased, which means that many
individual protections were enhanced in terms of information loss and dis-
closure risk. Then, in the Census data set, the lower line shows how the
minimum score drops from 20.0802 to 6.4298, decreasing by more than
three times the best score of the initial population after 1000 generations.
In the case of the Diabetes data set the minimum score evolution drops
from 20.7190 to 8.8885, which is a decrease of more than half. For EIA
data set minimum score evolution drops from 17.7906 to 10.8979 which is a
decrement of 38.74% of the initial minimum score, representing nearly the
ideal result. Finally, for Tarragona data set, the minimum score evolution
drops from 21.4104 to 5.5862 which is a decrement of 73, 91%.

It is important to recall here that a low information loss means that the
properties represented in the IL expression are kept. They are statistics
of the data as means and correlations. Other statistics or properties not
included in the expression for IL might be corrupted.

(a) Census dataset (b) Diabetes dataset

(c) EIA dataset (d) Tarragona dataset

Figure 3.4: Evolution of the score for two di↵erent executions with each dataset.
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Dataset Min Score Mean Score Max Score

Census
Execution 1 6.1238 16.2848 45.9179
Execution 2 6.4298 16.4577 45.9179

Diabetes
Execution 1 8.8885 23.4609 43.1845
Execution 2 6.1106 21.3981 43.1845

EIA
Execution 1 11.4812 14.7233 31.9693
Execution 2 10.8979 15.0532 31.9693

Tarragona
Execution 1 5.5862 17.7956 49.8576
Execution 2 7.1513 19.0316 49.8576

Table 3.2: Final Scores all data sets for the Experiment.

Recall also that our algorithm is stochastic in nature, so there is implicit
some randomness into the process. To observe di↵erences between two ex-
ecutions, two runs of the algorithm were considered. Evolutions of scores
through 1000 generations are represented for the Census data set in Fig-
ure 3.4a, for the Diabetes data set in Figure 3.4b, for EIA data set in
Figure 3.4c, and for the Tarragona data set in Figure 3.4d. So we see that
the two curves for each figure initiate from the same score. Final scores
are summarized in Table 3.2.

In this framework, our approach constitutes a valid alternative in two ways.
On the one hand, lower scores can be reached, as shown above. On the
other hand, the resulting data will overcome the specific attacks developed
in an ad-hoc way for RS and Microaggregation.

In order to be sure that our parameters value and our approach of per-
forming only one operation (mutation or crossover) in a single generation
were good choices we executed two tests. These tests were designed using
parameter values from the work done in [Scha↵er et al., 1989] which are
considered the optimals for genetic programming. Furthermore, the exe-
cution of both mutation and crossover in each generation (depending on
their corresponding probability) was allowed. The di↵erence between both
tests was in the mutation operator which in one experiment (test 1) was
applied to all values inside the matrix (also depending on its probability),
while in the other experiment (test 2) it was only applied to one single
value (depending on the probability too). Figure 3.5 shows the tests mean
score for the individuals at each generation. It is easy to see that during all
1000 generations the results obtained with our approach (see Figure 3.4d)
were better than those results obtained in the tests.

Our last experiment was conducted to estimate the relative time spent at
each generation computing DR and IL values. Table 3.3 summarizes the
time spent in CPU seconds (CPU sec) in a Dell Precision T7400 Desktop,
with an Intel Xeon Processor at 2.66 GHz and 4 GB of RAM, and oper-
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Figure 3.5: Evolution of the mean score for the tests with Tarragona data set.

ative system Microsoft Windows 7 x64. Results are segregated by genetic
operation type (mutation or crossover). First row corresponds to the time
for computing DR and IL values during the fitness evaluation of new indi-
viduals. Second row summarizes the remaining time spent to complete an
iteration.

As it can be seen, fitness evaluation consumes most of the time of the al-
gorithm in all cases. That is because it is the place where most of the work
is done. It needs to compute several measures to determine the quality of
the protection while the rest of the evolutionary algorithm consists only
of executing simple (and fast) instructions to select individuals, change a
single or few values in an individual and replace an individual inside the
population collection. In addition it can be seen that the execution time
when crossover is performed doubles the time obtained when a mutation
is performed. This is expected because in crossover the algorithm gener-
ates two new o↵spring and both of them must be evaluated in the fitness
function, while in the mutation the algorithm only produces one o↵spring.
The absolute times shown in Table 3.3 vary depending on the dataset size.
However, using the numbers obtained for our tested datasets we can say
that execution times go from 145.92 to 861.81 seconds for an iteration
where a crossover is performed, and from 75.07 to 443.55 seconds for an
iteration where a mutation is performed.

With those times it is easy to know how much time will take to find a good
individual. In our experiment we used 1000 generations, so in the case of
the Diabetes data set it has spent about 30 hours and 41 minutes, for EIA
data set 181 hours and 17 minutes, for Census data set 57 hours and 40
minutes, and for Tarragona data set 35 hours and 4 minutes.

Categorical Data Case Results
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crossover mutation
Dataset mean min max sd mean min max sd

Diabetes
Fitness 144.8 141.9 151.1 2.96 74.50 71.99 77.22 1.74
Other 1.12 1.03 1.54 0.19 0.57 0.52 1.05 0.14

EIA
Fitness 858.7 836.5 868.9 11.0 442.0 434.5 450.8 5.19
Other 3.11 3.04 3.18 0.05 1.55 1.48 1.59 0.03

Census
Fitness 271.6 267.7 273.7 2.24 140.4 137.3 142.6 2.43
Other 2.18 2.14 2.215 0.02 1.09 1.08 1.11 0.01

Tarragona
Fitness 167.4 163.1 171.7 2.33 82.85 78.85 85.84 2.07
Other 1.83 1.70 2.29 0.09 0.94 0.85 1,82 0.13

Table 3.3: Execution Time (CPU sec) for all data sets.

In the experiments for the case of categorical data we used the U.S. Housing
Survey of 1993, German Credit, Solar Flare and Adult datasets presented
in Section 2.7.

For each dataset we constructed a population of protections using the
state-of-the-art protection techniques: Microaggregation, Bottom Coding,
Top Coding, Global Recoding, Rank Swapping and, Post Randomization
Method (PRAM). For the first dataset we had a population of 110 protec-
tions (72 of Microaggregation, 6 of Bottom Coding, 6 of Top Coding, 6 of
Global Recoding, 11 of Rank Swapping and, 9 of PRAM). For the second
and third datasets we had a population with a 104 protections for each
one (72 of Microaggregation, 4 of Bottom Coding, 4 of Top Coding, 4 of
Global Recoding, 11 of Rank Swapping and, 9 of PRAM). The last dataset
had a population of 86 protections (48 of Microaggregation, 6 of Bottom
Coding, 6 of Top Coding, 6 of Global Recoding, 11 of Rank Swapping and,
9 of PRAM).

Regarding the attributes selected to protect in each dataset are as follows.
For the Housing dataset we protected three attributes: BUILT with 25
categories, DEGREE with 8 categories and, GRADE1 with 21 categories.
In the case of German dataset: EXISTACC with 5 categories, SAVINGS
with 6 categories, and PRESEMPLOY with 6 categories. Flare dataset
attributes are: CLASS with 8 categories, LARGSPOT with 7 categories,
and SPOTDIST with 5 categories. Finally, Adult dataset protected at-
tributes are: EDUCATION with 16 categories, MARITAL-STATUS with
7 categories, and OCCUPATION with 14 categories.

To test the performance of our approach we performed three di↵erent kind
of experiments. The first one consists of using the mean of information loss
and disclosure risk as a score. In our second experiment we use the max
value of both measures as a score. Finally, we present a final experiment
to prove the robustness of our approach when the best initial individuals
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are missing therefore, it is is supposed that it will be more di�cult for the
algorithm to reach the same level of protection quality because it starts
working with worse individuals than in the other experiments.

In the first experiment we applied our evolutionary algorithm using the
fitness function that uses the mean values of both information loss and
disclosure risk as a score shown in Equation 3.2 to all four dataset popu-
lations independently.

(a) Adult dataset (b) Housing dataset

(c) German dataset (d) Flare dataset

Figure 3.6: Dispersion plots of initial and final population information loss and
disclosure risk for each dataset using fitness Equation 3.2.

In order to evaluate the results of our experiment we splitted our analysis
into two parts. The first part of our analysis is focused on the initial and
final pairs of values (IL,DR) for all datasets shown in Figure 3.6a for the
Adult dataset, Figure 3.6b for the Housing dataset, Figure 3.6c for the
German dataset and, Figure 3.6d for the Flare dataset.

It can be noticed that, in all the cases, final population is more optimized
than the initial population because of the reduction of the values in the
tuples (IL,DR). However, there also exist individuals in the final population
that have reduced their score value but obtaining an individual with very
unbalanced measures. Recall that, according to our preferences, given
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a certain score, we prefer balanced information loss and disclosure risk.
Furthermore, this e↵ect does not appear in the same degree to all datasets.
It can be seen that the Flare and German datasets have more unbalanced
final individuals than the Housing and Adult datasets.

(a) Adult dataset (b) Housing dataset

(c) German dataset (d) Flare dataset

Figure 3.7: Evolution of the information loss and disclosure risk during the
execution of the evolutionary algorithm for each dataset using fitness Equation
3.2.

The second part of our analysis focuses on the evolution of the max, mean
and min score values of the population during all the generations shown
in Figure 3.7a for the Adult dataset, Figure 3.7b for the Housing dataset,
Figure 3.7c for the German dataset and, Figure 3.7d for the Flare dataset.

In these figures it can be seen that max score has few decrements but most
of them are quite abrupt, and this is because our selection policy gives few
opportunities to the individuals with bad score to be selected, and when
they are selected they almost always have a considerable improvement of
their score value using parts of other better individuals. The improve-
ments obtained for the max score are the following: in the case of the
Adult dataset we had a decrement from 41.95 to 36.6 (12.75% of improve-
ment), for the Housing dataset we obtained a decrement from 36.96 to
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36.14 (2.22% of improvement), for the German dataset it was from 36.59
to 31.74 (13.25% of improvement) and, for the Flare dataset this max score
decreased from 42.53 to 33.56 (21.09% of improvement).

Looking at the evolution of the mean score it can be seen that it has more
or less continuous decrement and this is what we expected because in al-
most every iteration there is a score improvement for an individual, so
the mean score of the entire population is also improved. Concretely, the
improvement obtained for the mean score in all datasets during this first
experiment is as follows: in the case of the Adult dataset we had a decre-
ment from 33.05 to 31.78 (3.84% of improvement), for the Housing dataset
the decrement was from 29.79 to 25.25 (15.24% of improvement), for the
German dataset it was from 29.37 to 28.91 (1.57% of improvement) and,
for the Flare dataset it was from 29.57 to 28.13 (4.87% of improvement).

The last score to analyze is the min score evolution. In this case it can be
noticed that the improvement is very small and the reason for this is that
it is very di�cult to improve a protected dataset that already has a good
score (in terms of the fitness function used) using other protected files with
a worse score. The improvements obtained for this min score are as follows:
for the Adult dataset we obtained a decrement from 29.68 to 29.61 (0.24%
of improvement), in the case of the Housing dataset there is a decrement
from 20.36 to 20.12 (1.18% of improvement), for the German dataset we
obtained a decrement from 26.68 to 26.54 (0.52% of improvement) and, for
the Flare dataset did not obtain any decrement.

To summarize the results found after the first experiment, we can say
that the fitness function shown in Equation 3.2 is not very appropriate
for categorical data because it does not permit to discriminate individuals
with a high unbalance and those with a low score in both measures. In
addition, unfortunately, the alteration of values in categorical datasets
produces quite high modifications in information loss and disclosure risk
values because of the limited number of available categories to use.

In this second experiment we wanted to try to improve the results obtained
in the first experiment by applying the same evolutionary algorithm but
using the fitness function shown in Equation 3.4 which takes as a score the
maximum value between information loss and disclosure risk.

In this experiment we also splitted our analysis into two parts. The first
part of our analysis is focused on the initial and final pairs of values (IL,DR)
for all datasets shown in Figure 3.8a for the Adult dataset, Figure 3.8b for
the Housing dataset, Figure 3.8c for the German dataset and, Figure 3.8d
for the Flare dataset.

It can be seen that final population is more concentrated (in general) to
pairs of (IL,DR) with more equal values than the original population (com-
pare with Figures 3.6a, 3.6b, 3.6c, and 3.6d of the first experiment). This
was the expected behavior because the fitness function requires to have
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(a) Adult dataset (b) Housing dataset

(c) German dataset (d) Flare dataset

Figure 3.8: Dispersion plots of initial and final population information loss and
disclosure risk for each dataset using fitness Equation 3.4.

low values in both measures in order to declare a new individual better
than the parent.

The second part of this second experiment analysis focuses on the evolution
of the max, mean and min score values of the population during all the
generations. This is shown in Figure 3.9a for the Adult dataset, Figure
3.9b for the Housing dataset, Figure 3.9c for the German dataset and,
Figure 3.9d for the Flare dataset.

It can be seen that max score decreases quite abruptly in some points for
all datasets and remain stable between those points because our selection
method gives more chances to the best individuals. The improvements ob-
tained for this max score are as follows: for the Adult dataset we obtained
a decrement from 72.19 to 64.38 (10.82% of improvement), in the case of
the Housing dataset there is a decrement from 72.65 to 69.63 (4.16% of im-
provement), for the German dataset we obtained a decrement from 65.87
to 44.85 (31.91% of improvement) and, for the Flare dataset it went from
76.17 to 50.22 (34.07% of improvement).

For the mean score evolution we have that it decreases at almost every
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(a) Adult dataset (b) Housing dataset

(c) German dataset (d) Flare dataset

Figure 3.9: Evolution of the information loss and disclosure risk during the
execution of the evolutionary algorithm for each dataset using fitness Equation
3.4.

generation in all cases and its value evolves towards the value of the min
score because most of the times the individuals are improved using the
one with minimum score, so they go close to this min score value. In this
case, the improvements obtained are as follows: for the Adult dataset we
obtained a decrement from 47.05 to 38.57 (18.02% of improvement), in
the case of the Housing dataset there is a decrement from 42.32 to 30.12
(28.83% of improvement), for the German dataset we obtained a decrement
from 40.76 to 33.42 (18.01% of improvement) and, for the Flare dataset it
went from 44.83 to 36.36 (18.89% of improvement).

Finally, the min score has little decrement in all the datasets because it
is di�cult to get a big improvement in this value using individuals with
worse score. The improvements obtained for the min score are as follows:
for the Adult dataset we obtained a decrement from 30.70 to 30.28 (1.34%
of improvement), in the case of the Housing dataset there is no decrement
for this score, for the German dataset we obtained a decrement from 29.18
to 28.05 (3.87% of improvement) and, for the Flare dataset it went from
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Figure 3.10: Dispersion plot of initial and final population information loss and
disclosure risk for the Flare dataset using fitness Equation 3.4 without the 5%
best initial individuals.

31.77 to 31.63 (0.44% of improvement).

After the first two experiments, we can see an interesting fact. We have
seen that, in this second experiment, in all the cases the final population is
grouped around the pairs of values (IL,DR) with more balanced values than
the ones in the first experiment. However, this is achieved in a di↵erent way
in the four datasets. An analysis of the total number of valid categories in
the attributes show that the larger the number of categories, the better the
equilibrium of values in both measures. Note that few categories supply a
small number of possible di↵erent registers. Then, altering some categories
increase one of the measures (information loss or disclosure risk) quite
abruptly and reduce the other one, and this makes di�cult to find an
equilibrium between both values.

In addition, we have seen that, using maximum in the fitness function
(Equation 3.4) performs better in the optimization than using mean in
the fitness function (Equation 3.2) because the final information loss and
disclosure risk measures are more balanced.

It also should be noticed that in all our experiments we obtained an aver-
age computation time of 120.34s for each entire generation with mutation
operation, and 242.48s for each entire generation with crossover operation.
However, most of the time is consumed by the fitness function (120.32s in
mutation generation and 242.46s in crossover generation) and a very small
amount of time is consumed by the rest of each generation (0.02s in both
cases).

Finally, to conclude our study, we applied to the Flare dataset our approach
using Equation 3.4 (the maximum value of the two measures is taken as the
score value) but in this case not including in the population the best 5%
and 10% individuals in terms of the fitness function score. This experiment
assesses the robustness of our method trying to achieve the best solutions
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Figure 3.11: Dispersion plot of initial and final population information loss and
disclosure risk for the Flare dataset using fitness Equation 3.4 without the 10%
best initial individuals.

Figure 3.12: Evolution of the information loss and disclosure risk during the
execution of the evolutionary algorithm for the Flare dataset fitness Equation
3.4 without the best 5% initial individuals.

starting from worse solutions.

After several generations we could see that initial and final populations
follow the same behavior than in the case with the entire population. In
addition, it can be seen that, compared with Figure 3.8d, the initial popu-
lation has a hole in the region with more balanced pairs of (IL,DR) which
where the ones removed from the population (Figures 3.10 and 3.11).

However, looking at the evolution of max, mean and min scores in Figures
3.12 and 3.13 we see that we almost reached the best min score obtained
without removing these solutions. In the case of removing the 5% of the
best initial protections we reached a minimum score of 32.96 what repre-
sents a di↵erence of 1.33 points from the minimum value obtained using
the entire population, and in the case of removing the 10% of the best
initial protections we reached a minimum score of 32.71 what represents a
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Figure 3.13: Evolution of the information loss and disclosure risk during the
execution of the evolutionary algorithm for the Flare dataset fitness Equation
3.4 without the best 10% initial individuals.

di↵erence of 1.08 points.

It should be noticed that the fact of having better results in the case of
removing the 10% of the best individuals than in the case of removing just
the 5% is produced because of the stochasticity of evolutionary algorithms.

So, looking at this behavior we can assess that our evolutionary approach
is robust enough to achieve good protections even when the best ones are
missing.
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Chapter 4

Evolutionary Seek for
Better PRAM Matrices

In the previous chapter we introduced a way to use evolutionary algorithms to
directly deal with a dataset in order to find better protections. In that case
the optimization problem was stated thinking with a protection process as a
function that takes an original dataset and generates a new protected dataset
which better preserves the privacy of its contenders.

In this chapter we go one step further and we introduce a new way to use
evolutionary algorithms to improve the privacy protection in a dataset but, in-
stead of dealing directly with the dataset, it optimizes a PRAM matrix in order
to use it inside the PRAM protection method allowing it to perform better pro-
tections. Then, in this case, optimization process is thought as a function that
takes a certain PRAM matrix and returns an optimized one, which, using it
inside the PRAM, optimizes the privacy quality of the method and results in a
better protected dataset.

Two di↵erent approaches are described in this chapter. The first one is
introduced in Section 4.1 and it is based on a generic evolutionary algorithm
dealing with the PRAM matrix probability values. The second one, shown
in Section 4.2, is based on a genetic programming algorithm which deals with
analytical equations to generate better PRAM matrices.

4.1 General Evolutionary Approach for Better
PRAM Matrices

In this section we continue with the idea of thinking about the protection pro-
cess as an optimization problem. However, in this case, instead of focusing on
optimizing the data protection itself by dealing directly with the data set in
the evolutionary algorithm, we focus on optimizing a state-of-the art protection
method to perform better protections.
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In particular we focus on the Post Randomization Method (PRAM) which
we introduced in Section 2.3. As we explained, this method is able to perform
the same protections provided by many other state-of-the-art methods only by
selecting the appropiate PRAM transition matrix. However, the di�culty of
getting a good matrix to perform good protections is also the reason why this
method is not widely used. Then, we can think that this matrix is the key point
of the PRAM and it has to be the thing to be optimized.

The proposed method’s algorithm is shown in Algorithm 6. In this case we
are dealing with an initial population P0 of PRAM matrices (one per attribute
to protect) where each one is treated independently, this is, data is not changed
across individuals, only inside the same individual. The reason for this is that
matrices are of di↵erent sizes because it depends on the size of each attribute’s
domain and it would not be possible to exchange rows (or ranges of values)
between a small matrix and a big one properly.

The di↵erent initial PRAM matrices X
i0 are being optimized through the

iterations of the evolutionary algorithm where at generation t we produce a
modified PRAM transition matrix represented by X

it . To produce the X
it+1

PRAM transition matrix at generation t+1, we generate an intermediate matrix
X 0

it
resulting from applying a genetic operator to the current matrix X

it . The
PRAM transition matrix X

it+1 at generation t + 1 will be the one with better
fitness (either X

it or X 0
it
) and the other discarded. This process is repeated at

each generation.

Algorithm 6 Proposed Evolutionary Algorithm to Enhance PRAM Transition
Matrices

Input: P0 = {X00 ...Xn0}, initial population of PRAM matrices
Output: P 0

t

= {X0t ...Xnt}, optimized PRAM matrices after t generations
t ( 0
fitness eval(P0)
while stopping(X

t

) 6= true; do
alter (randomly choose between mutation and cross
if alter by mutation then
X 0

it
( mutate(X

it)
else
X 0

it
( cross(X

it)
end if
if fitness eval(X 0

it
) < fitness eval(X

it) then
X

it+1 ( X 0
it

else
X

it+1 ( X
it

end if
t ( t+ 1

end while
return {X0t ...Xnt}
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0.185 0.283 0.532
0.609 0.089 0.302
0.002 0.277 0.721

PRAM transition matrix.

185 283 532
609 89 302
2 277 721

PRAM transition matrix in integers mode.

0010111001 0100011011 1000010100
1001100001 0001011001 0100101110
0000000010 0100010101 1011010001

Binary matrix.

0011100101 0110010110 1100011110
1101010001 0001110101 0110111001
0000000011 0110011111 1110111001

Gray-coded genome matrix.

Figure 4.1: Example of genotype encoding

The following subsections are mainly devoted to a description of the algo-
rithm that explains how an individual, i.e. the PRAM transition matrix is
represented, how the genetic operations are defined, and how the adaptability
of the individual through time is evaluated. Other parameters, such as the ini-
tial population, i.e. the original PRAM transition matrix, population size, or
crossover and mutation rates, are exemplified with a practical experiment.

4.1.1 Genotype Encoding

The initial probability transition matrix that we are trying to optimize contains
probabilities with several decimals so in order to simplify, all the probabilities
are multiplied by 1000 and only the integer part of the value is kept for the
encoding.

Encoding of the individual X is done value by value transforming them into
its Gray code representation. Recall that Gray-coded representation allows to
obtain fast and more accurate solutions than regular binary representations as
explained in Section 2.1.

A complete file encoding example is shown in Figure 4.1. The example in-
cludes all the steps required during the entire encoding process.
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0011100101 0110010110 1100011110
1101010001 0001110101 0110111001
0000000011 0110011111 1110111001

Gray-coded matrix.

0011100101 0110010110 1100011110
1101011001 0001110101 0110111001
0000000011 0110011111 1110111001

Mutated gray-coded matrix.

Figure 4.2: Example of mutating a transition matrix

4.1.2 Genetic Operators

The most common genetic operators in an evolutionary algorithm are mutation
and crossover. These operators are executed according to a specified rate. This
is done to simulate the species evolution where species evolve by being crossed
with another species or by being mutated during generations.

In this approach we decided (based on empirical tests) to use the value 0.5
for both the crossover rate and mutation rate in order to have approximately the
same number of operations performed by each operator. A random value (alter)
between 0 and 1 decides the operation to perform, using 0.5 as a delimiter.

Mutation
Recall that the main idea of mutation is to apply a slight random change
in an individual of the population (see Section 2.1). In our case, the
population consists only of a single individual (a gray-coded matrix) so
we will perform mutation by altering a single bit from a single gray-coded
number inside the transition matrix. To do that, both the bit and the
number are chosen randomly.

The mutation used in this approach is performed as follows: Take a random
value of the individual X and consider that the value at this position is x

i

with genome(x
i

) = b
j

b
j�1 . . . b1. Choose a bit position k at random, such

that 1  k  j. Then a new individual is obtained by replacing the bit b
k

by its negation counterpart, b0
k

= not(b
k

).

An example of the e↵ect of the mutation operator is shown in Figure 4.2.

Crossover
Recall that in crossover the general idea is to select two individuals from
the population and generate two new individuals by concatenating a part of
each one that is delimited by one or two crossing points chosen at random
(see Section 2.1). In our approach, we deal with a population with only
one individual so we modified this operator to pick two ranges of values
inside the individual, i.e. the PRAM transition matrix, delimited by two
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0011100101 0110010110 1100011110
1101010001 0001110101 0110111001
0000000011 0110011111 1110111001

Gray-coded matrix.

0011100101 0110010110 1100011110
0110011111 1110111001 0110111001
0000000011 1101010001 0001110101

Crossed gray-coded matrix.

Figure 4.3: Example of crossover in the transition matrix

crossing points selected at random, and then swapping those two ranges
inside the matrix to create a new matrix.

Formally, we define the crossover of the individual X is performed by
swapping two ranges of values within the individual as follows: Take two
value positions {s, r} at random, and consider that the two values at this
position are x

s

2 X and x
r

2 X. Generate a random number m to
indicate the length of the ranges. This number must be in the range
[0,min(length(X)�s, length(X)�r, |s�r|)], where length(X) is the total
number of values inside the individual X, and || is the absolute value
operator. Then the ranges [x

s

, x
s+m

] and [x
r

, x
r+m

] are swapped obtaining
a new individual. For example, having s < r andX = {x1, . . . , xn

} the new
individual will be X 0 = {x1, . . . , xr

, . . . , x
r+m

, . . . , x
s

, . . . , x
s+m

, . . . , x
n

}.
An example of the e↵ect of mutation operator is shown in Figure 4.3.

4.1.3 Fitness Function and Selection

As explained in Chapter 2, fitness function is the most important part of an
evolutionary algorithm. It controls the convergence of the algorithm to the
desired optimal solution, similar to the objective function in mathematical pro-
gramming. The main idea in our fitness function is to use the new probability
transition matrix obtained after mutation and crossover to perturb the origi-
nal data according to the PRAM method described in Section 2. The fitness
function for the new transition matrix is calculated on the perturbed data and
compared with the fitness of the perturbed data based on the current transition
matrix. The transition matrix resulting in the lowest score of the fitness function
(i.e. the one that provides better utility) is retained as the probability transition
matrix to use in the next generation.

In our case, the evaluation of PRAMmatrices need several steps before check-
ing their protection quality. First of all, these PRAM matrices values are in Gray
code representation so it is needed to restore them to floating point values. Then,
it is not possible to check the quality of the matrices just by taking a look at
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them so, as a second step, we use these matrices to perform the multivariate
PRAM protection on the original data obtaining a certain protected dataset.
After this second step we are finally able to check the protection quality using
the two measures described in Section 2.4: information loss and disclosure risk.

We used two di↵erent kind of fitness functions because we performed exe-
cutions based on di↵erent aspects. The first case is based on general purposes
information loss and disclosure risk measures. Recall that it can be considered
as a multi-objective optimization problem. To solve this we used the same ap-
proach than in Section 3.4 giving the same importance to both Disclosure Risk
(DR) and Information Loss (IL) measures, so both have 1

2 as a weight value.
If F is the original file and PRAM

multivariate

(F, {X1, . . . , Xn

}) is the func-
tion that performs multivariate PRAM protection in F with the set of PRAM
matrices {X 0

1, . . . , X
0
n

}, then, the score of the set of matrices {X1, . . . , Xn

} is
computed as follows

{X 0
1, . . . , X

0
n

} = restore({X1, . . . , Xn

}) (4.1)

F 0 = PRAM
multivariate

(F, {X 0
1, . . . , X

0
n

}) (4.2)

Score({X 0
1, . . . , X

0
n

}) = DR(F 0) + IL(F 0)

2
(4.3)

where DR() is the disclosure risk evaluation function and IL() is the information
loss evaluation function.

Because the PRAM method takes random decisions in the protection step,
the method can generate di↵erent protected files for the same Markov matrix,
and they will also have di↵erent scores. In order to have more robust results, we
compute 5 protected files for each candidate to be evaluated (i.e. each Markov
matrix) and the average of their scores is taken as the candidate’s final score. It
should be noticed that the number of executions to perform is not fixed and it
can be changed by the user. We used 5 executions because with it we obtained
enough robust results without penalizing too much the execution time. More
formally:

FinalScore({X1, . . . , Xn

}) =
P5

i=1 Score({X 0
1, . . . , X

0
n

})
5

(4.4)

The second kind of fitness function has been used to test the information gain
when adding the invariance property to the matrices. In this case to compute
the fitness function of a certain PRAM transition matrix generated by the evo-
lutionary algorithm we propose to use the di↵erence in bivariate counts of two
cross-classified categorical variables between the original data and the perturbed
data where one of the categorical variables is perturbed with PRAM and the
other categorical variable is not perturbed.

Formally, the fitness function is defined as follows

Fitness(R) =

P
ij

|counts
original

(x
i

, z
j

)� counts
perturbed

(x
i

, z
j

)|
2 ⇤#records

(4.5)
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where x
i

refers to the category i of attribute x, z
j

refers to category j of attribute
z, and || is the absolute value operator. It should be noted that only one of the
attributes (x or z) is protected, the other one must be unprotected.

The use of this fitness function shows the optimization of the transition
matrix in preserving the frequency distribution of two cross-classified categorical
variables in the perturbed data and whether it is similar to the distribution in
the original data given that one of the categorical variables has been perturbed.

Before calculating the fitness function on each new generation of the tran-
sition matrix, we first need to carry out a pre-processing stage to ensure that
the property of a probability transition matrix is fulfilled, i.e. each row of the
matrix must add to one. This property can easily be lost when altering values
with mutation and crossover. This is achieved normalizing the row by dividing
each element by the sum of the entire row.

4.1.4 Adding Invariance and Controlling Diagonal Values

A technique to boost the performance of probability transition matrices used for
PRAM is to include the property of invariance. This property ensures that the
su�cient statistics of the protected attributes are preserved in expectation in the
perturbed data and that the perturbed data is an unbiased moment estimator
of the original data. In addition, controlling for the diagonal probabilities of
the transition matrices ensures the desired level of perturbation according to
the standards and thresholds set by data providers and also guarantees that the
matrices can be inverted.

Placing the condition of invariance on the transition matrix P , i.e. tP = t
releases the users of the protected file of the extra e↵ort to obtain an unbiased
estimate of the original data, since t⇤ itself will be an unbiased estimate of t. This
is an important property to instill in the protected data since data providers will
generally not release the transition matrix P that is used to perturb the data.
The property of invariance means that the marginal distribution of the variable
being perturbed is preserved in expectation.

In this work, the invariance is computed by following the two stage algorithm
proposed in [Willenborg and Waal, 2000]. Let P be the PRAM matrix with
p
jk

= p(c0 = k|c = j) the probability of changing the value of category c equal
to j to a new category c0 equal to k. Now calculate the matrix Q using Bayes

formula by Q
kj

= p(c = j|c0 = k) = pjkp(c=j)P
l plkp(c=l) . We estimate the entries of

this matrix by pjkvjP
l plkvl

, where v
j

is the relative frequency of the category value

j. For R = PQ we obtain an invariant matrix where vR = vPQ = v since
r
ij

=
P

k

vjpikpjkP
l plkvl

and
P

i

v
i

r
ij

=
P

k

v
j

p
jk

= v
j

.

However, before making the transition matrix invariant, its diagonal domi-
nance must be checked, that is, the diagonal probability of each row must be
higher than the sum of all o↵-diagonal probabilities. That property is required
to ensure that we are able to invert the transition matrix.

With respect to the property of diagonal dominance in the transition matrix,
we also want to control the range of values that the diagonal of the matrix can
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have. This is because we do not want to have a very high probability of preserving
the same category since then the related attribute will not be protected enough.
On the other hand, we do not want to have a very low probability because it
would mean the information contained on that attribute would be totally lost.
For that reason we decided to force the diagonal values to be between 0.55 and
0.75. In addition, by preserving this range of perturbation through the diagonal
probabilities, we obtain transition matrices with similar levels of disclosure risk
and therefore can focus on maximizing the utility of the matrices towards the
optimization of the evolutionary algorithm generations.

If a transition matrix contains a diagonal element below 0.55 we apply the
same approach shown in Equation 4.6 to increase the value. On the other hand,
if a matrix contains a diagonal element over 0.75 we use the approach shown in
Equation 4.7 to reduce the value. However, the diagonal dominance could be
lost when reducing values. For that reason, after every execution of reducing
values we test again for diagonal dominance.

Then, in order to ensure that a matrix is diagonal dominant we use the
approach shown in [Shlomo and Young, 2008] where the diagonal values are in-
creased (and o↵ diagonal are decreased proportionally) according to a parameter
↵. Equation 4.6 shows this approach where R0 is the new PRAM matrix, I is
the identity matrix and ↵ is the control parameter. It should be noted that the
higher the value of ↵, the smaller the increment in the diagonal values.

R0 = ↵R+ (1� ↵)I (4.6)

� = 0.75/max(p
kk

)

p
ij

=

(
� ⇤ p

ij

, if i = j

(� ⇤ p
ij

) + 1��

length(rowi)
, if i 6= j

(4.7)

The invariance property is applied every time a new matrix is evaluated in
the Fitness function.

4.1.5 Experimental Results

In this section we present the results of the experiments done to test the
performance of our approach. These experiments were splitted in two parts.
The first part shows the results regarding the general information loss and
disclosure risk measures while in the second part shows the results regarding
the addition of the invariance property to the PRAM matrices.

General Measures Testing Results

In order to illustrate and empirically evaluate our proposed method we used
three di↵erent datasets to perform some experiments. The ones used in in this
experiments are the U.S. Housing Survey of 1993 from the U.S. Census Bureau,
the German Credit and the Solar Flare datasets.
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0.500 0.067 0.060 0.065 0.067 0.076 0.080 0.083
0.073 0.500 0.058 0.064 0.066 0.075 0.080 0.083
0.072 0.064 0.500 0.062 0.064 0.074 0.080 0.083
0.073 0.065 0.057 0.500 0.066 0.075 0.080 0.083
0.073 0.066 0.058 0.064 0.500 0.075 0.080 0.083
0.074 0.068 0.061 0.066 0.068 0.500 0.080 0.083
0.075 0.068 0.062 0.067 0.069 0.076 0.500 0.083
0.075 0.069 0.062 0.067 0.069 0.077 0.081 0.500

Table 4.1: Initial PRAM matrix with p=0.5 for the attribute DEGREE in the
U.S. Housing Survey dataset

Categories ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’9’ ’-’

Frequency 98 173 251 195 170 80 33 0

Table 4.2: Frequencies of the DEGREE attribute in the U.S. Housing Survey
dataset

In these experiments we chose p=0.5 as a parameter value to create the
initial Markov matrices. This value represents the quantity of original values
that are wanted to be kept after perturbation (in this case we want to keep
only 50% of the original values). Its value is up to the data user and, in this
work, we used this value to demonstrate the ability to find good matrices from
a bad one. As an example, Table 4.1 shows the initial Markov matrix for the
DEGREE attribute corresponding to the U.S. Housing Survey data set with 8
categories, and Table 4.2 shows the frequencies of the categories corresponding
to this attribute in the original data set. Note that the max values in each row
are highlighted.

It is easy to see that the higher o↵-diagonal values corresponds to the at-
tributes that have less frequency inside the original data set. This e↵ect makes
that, after the protection process, the frequencies of all categories are more bal-
anced in order to increase the uncertainty inside the data set. Then, the problem
here is to obtain a good PRAM matrix in order to achieve a better protection
minimizing the Information Loss and the Disclosure Risk.

Our proposed method a priori applies to any particular PRAM matrix, but
of course it is generally better to start from a good matrix because in this way
it starts from matrices with higher fitness value.

Each experiment is divided in two phases. In the first phase, some attributes
are going to be protected independently checking the performance of our method
when only one attribute is protected, while in the second phase all the previous
attributes are going to be protected together at the same time checking the
performance of our method when multi-attribute protection is performed.

In our first experiment we used the U.S. Housing Survey dataset considering
3 attributes to protect and their respective PRAM matrices. The first attribute
is named DEGREE and it has 8 di↵erent ordinal categories, the second one is
the BUILT attribute with 25 di↵erent ordinal categories, and finally, the third
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Figure 4.4: Evolution of the measures for the individual protection of the three
attributes BUILT, DEGREE and GRADE1 in U.S. Housing dataset

attribute is named GRADE1 with 21 di↵erent ordinal categories.

Starting with the first experiment, Figure 4.4 shows the results for the mea-
sures evolution for the individual protections of the three attributes (BUILT,
DEGREE, and GRADE1) during all the 1125 generations.

As it can be seen, Information Loss and Disclosure Risk are being adjusted
in order to reduce the Score value. It does not mean that all measures are
decreasing all the time (e.g. there is an increment of the Information Loss at
generation 200). Score is the only measure that is strictly decreasing its value
and never increases, so this implies that the result at any generation will be at
least as good as the previous one.

Looking at the decrement of the Score we can see that, during the optimiza-
tion approach that we propose, the measure has been reduced quite significantly
in all the cases. It means that the new PRAM matrix performs a much better
protection than the original one.

Once we know that our approach is working quite good when protecting
isolated attributes, a multi-attribute protection of these three attributes can
also be performed.

In Figure 4.5 we can find the evolution of the Information Loss, Disclosure
Risk and Score for this multi-attribute protection. During the evolutionary pro-
cess it can be seen that there is a progressive decrement until around generation
1100 of the Score value during all the process. Moreover, Disclosure Risk has
su↵ered a big decrement, so the combination of this decrement with the little
reduction of Information Loss has forced the Score value to be reduced. In this
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Figure 4.5: Results for the protection of all three attributes at the same time in
the U.S. Housing dataset

IL DR Score

Initial 63.14 31.08 47.11
Final 53.77 8.61 31.20

Table 4.3: Initial and final Scores for the protection of the three attributes
DEGREE, BUILT, GRADE1 in U.S. Housing dataset at the same time.

case, Score measure started with a value of 47.11% and, after the evolution-
ary process, it ended with a value of 31.20%. This represents a decrement of a
33.77%. Table 4.3 shows the initial and final results of the three measures.

In the second experiment we used the German dataset considering 3 at-
tributes to protect and their respective PRAM matrices. This dataset has at-
tributes with less categories than the dataset used in the first experiment. So,
with this second experiment we are going to proof that our approach works well
also with this kind of attributes. The first attribute is named EXISTACC with
5 di↵erent ordinal categories, the second one is PRESEMPLOY with 6 di↵erent
ordinal categories, and finally, the third attribute is named SAVINGS with 6
di↵erent ordinal categories.

The evolution of its Information Loss, Disclosure Risk and Score measures
of all the individual protections for the attributes are shown in Figure 4.6. It
can be seen that Disclosure Risk measures have been reduced so much (specially
in the case of PRESEMPLOY) with a big decrement in the first generations.
The decrement of the Information Loss measures is smaller but it also exhibits
the main decrement in the first generations like in the case of Disclosure Risk.
Moreover, the measures of Information Loss and Disclosure Risk are being ad-
justed in an irregular way (there are some increments and decrements of their
values while Score is being reduced).

It has been proved that our approach is working well in protecting one or-
dinal attribute with only few categories. Now in the last part of this second

69



Figure 4.6: Evolution of the measures for individual protection of the three
attributes EXISTACC, PRESEMPLOY, and SAVINGS in the German dataset

IL DR Score

Initial 80.36 25.63 52.99
Final 38.39 27.30 32.84

Table 4.4: Initial and final Scores for the protection of the three attributes
EXISTACC, PRESEMPLOY, and SAVINGS in the German dataset at the same
time

experiment all three attributes are going to be protected together in order to
test our approach in a multi-attribute protection for this kind of attributes.

Figure 4.7 shows the evolution of the Information Loss, Disclosure Risk and
Score for this multi-attribute protection. During the evolutionary process it can
be seen that there is a quite progressive decrement of the Score value during all
the process. Moreover the Disclosure Risk has increased instead of decreased,
but its final value is quite close to the initial one while the Information Loss
has su↵ered a big decrement, so the combination of the two measures forced to
reduce the Score value. In this case, the Score measure started with a value of
52.99% and after the evolutionary process it ended with a value of 32.84%. This
represents a decrement of a 38.03%. Table 4.4 shows the initial and final results
of the three measures.

Finally in our third experiment we used the Solar Flare dataset considering
3 attributes to protect with their respective PRAM matrices. The di↵erence
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Figure 4.7: Results for the protection of all three attributes EXISTACC, PRE-
SEMPLOY, and SAVINGS at the same time in the German dataset

IL DR Score

Initial 81.18 26.49 53.83
Final 34.91 31.41 33.16

Table 4.5: Initial and final Scores for the protection of the three attributes
CLASS, LARGSPOT, and SPOTDIST at the same time in the Solar Flare
dataset

of this dataset is that we are going to protect nominal attributes instead of
ordinal attributes like in the previous experiments in order to prove that our
approach works also well with this kind of attributes. The first attribute is named
CLASS with 8 di↵erent nominal categories, the second one is LARGSPOT with 7
di↵erent nominal categories, and finally, the third attribute is named SPOTDIST
with 5 di↵erent nominal categories.

First we protected each attribute independently obtaining the results shown
in Figure 4.8. In this case there is a slow decrement for the Information Loss
measures while Disclosure Risk is having a very big decrement in the first gen-
erations. Looking at the evolution of the Score measure, we see that it has a
quite regular and important decrement during all the process.

Next step is to protect all three attributes together in order to test our
approach in a multi-attribute protection for this kind of attributes.

Figure 4.9 shows the behavior of Information Loss, Disclosure Risk and Score
for this multi-attribute protection in this Solar Flare dataset. In this figure it
can be seen that all three measures have a fast stabilization around generation
600. Disclosure risk has increased a little but Information Loss has been su↵ered
a big decrement which causes an important reduction to the values of the Score
measure. In Table 4.5 we see that the Score measure has started the evolutionary
process with a value of 53.83% and after the evolutionary process it ended with
a value of 33.16%. This represents a decrement of a 38.40%.

71



Figure 4.8: Evolution of the measures for the individual protection of the three
attributes CLASS, LARGSPOT, and SPOTDIST in Solar Flare dataset

Figure 4.9: Results for the protection of all three attributes CLASS,
LARGSPOT, and SPOTDIST at the same time in Solar Flare dataset
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0.011 0.009 0.011 0.009 0.926 0.009 0.011 0.014
0.000 0.004 0.971 0.005 0.005 0.005 0.004 0.004
0.027 0.625 0.009 0.027 0.205 0.036 0.036 0.036
0.049 0.037 0.432 0.074 0.062 0.259 0.049 0.037
0.032 0.005 0.006 0.928 0.006 0.008 0.006 0.008
0.892 0.008 0.033 0.008 0.011 0.017 0.017 0.014
0.003 0.030 0.004 0.004 0.466 0.487 0.003 0.003
0.430 0.416 0.005 0.006 0.019 0.006 0.006 0.111

Table 4.6: Final PRAMmatrix with p=0.5 for DEGREE attribute corresponding
to U.S. Housing Survey dataset

Categories ’1’ ’2’ ’3’ ’4’ ’5’ ’6’ ’9’ ’-’

Initial Freq. 98 173 251 195 170 80 33 0
Final Freq. 96 171 250 181 181 81 17 23

Table 4.7: Initial and final categories frequencies in DEGREE attribute corre-
sponding to U.S. Housing Survey dataset

There is also another interesting point to discuss regarding the changes that
have been performed between the original matrices and the final ones. Table 4.6
shows the final matrix of the DEGREE attribute (initial matrix is shown in
Table 4.1). Note that, as in the initial matrix, the maximum values in each row
are highlighted.

It is easy to see that after the evolutionary process the new matrix has a lot
of changes, but the most remarkable one is that, in general, all the highest row
values (which are the ones corresponding to the category with highest probability
to substitute the original one) are outside of the diagonal, whereas in the initial
matrices, largest values were all in the diagonal.

Nevertheless, it is very di�cult to find a model of matrix or a general pattern
that is the best for all problems. That is so because the best matrices obtained
in the di↵erent evolutions have di↵erent structures and di↵erent probability dis-
tributions over the rows. To find such a model is an open problem.

Another fact that can be seen is that, in the final protected dataset, the
frequencies of the categories are more balanced than in the original dataset,
and the matrix also introduces more uncertainty to the protected dataset (i.e.
the final distribution entropy is bigger than the one of the initial distribution).
Table 4.7 shows the di↵erences between initial and final frequencies inside the
dataset after the protection.

Invariance Information Gain Testing Results

In order to test the performance of our proposed approach, we show
in this section analytical results obtained from a set of experiments made
on the U.S. Housing Survey of 1993 dataset from the U.S. Census Bureau
[U.S. Census Bureau, 1993]. We perturb the variable DEGREE (long-term aver-
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Invariant applying diagonal values
control.

Non invariant applying diagonal
values control.

Figure 4.10: DEGREE - METRO fitness function evolution.

age degree days) and calculated the fitness function under two scenarios: crossing
DEGREE with the unperturbed categorical variable SCH (schools adequate);
and crossing DEGREE with the unperturbed categorical variable METRO
(metropolitan areas). We chose these two scenarios because crossing DEGREE
with the variable SCH represents the case where the bivariate counts distribu-
tion is skewed and crossing DEGREE with the variable METRO represents the
case where the bivariate counts distribution is more uniform. This will test the
performance of our approach under two extreme scenarios.

For the initial probability transition matrix we decided to use a maximum
entropy matrix with a 0.6 value in the diagonal. The selection of the diagonal
value is dependent on the amount of information the data provider wants to
perturb. In our case, we wanted to show the ability of our algorithm to find
more optimal transition matrices starting from a matrix that perturbs a large
amount of data. Maximum entropy matrices ensure the maximum protection as
each value has the same probability to be changed to a di↵erent value regardless
of the number of individuals having that attribute.

Figures 4.10 and 4.11 show the evolution of the fitness function across 250
generations of protecting the categorical variable DEGREE and using the cate-
gorical variables METRO and SCH, respectively, to produce the bivariate counts
in the fitness function under each scenario. In each figure we show the evolu-
tion of the fitness function for the case where we control the diagonal and the
property of invariance and the case where we control the diagonal but do not
include the property of invariance. It can be seen that for both cases on each of
the figures according to METRO and SCH we experienced a decrement in the
di↵erence of bivariate frequency counts between the original and the perturbed
data based on the probability transition matrix that is computed in each gen-
eration. This demonstrates that the evolutionary algorithm is optimizing the
transition matrix in terms of the fitness function.

In general, adding the property of invariance to the evolutionary algorithm
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Invariant applying diagonal values
control.

Non invariant applying diagonal
values control.

Figure 4.11: DEGREE - SCH fitness function evolution.

makes it converge faster and we obtain better results with respect to the fitness
function, i.e. smaller di↵erences between bivariate counts. We think that this
is because the property of invariance is already an optimization method so, in
this case, adding this property to another optimization algorithm, such as the
evolutionary algorithm, we have a much faster rate of convergence and achieve
better results. Moreover, as we are dealing with an algorithm that is trying to
improve at each generation, we could achieve the optimization in terms of the
fitness function without the property of invariance if we let the algorithm run
for a longer time.

To evaluate the final optimal probability transition matrix obtained from the
evolutionary algorithm after 250 generations, we assess the data utility of the
perturbed data using two measures: the di↵erence in bivariate counts (which was
also the measure used as the fitness function to guide the evolutionary algorithm)
as shown in Equation 4.5 and the relative absolute di↵erence between the �2 test
statistic calculated on the original and perturbed bivariate counts as shown in
Equation 4.8. The �2 statistic tests the association between categorical variables
(see [DeGroot and Schervish, 2012]).

�2
AbsDiff

(perturbed, original) = 100 ⇤ abs(
�2
perturbed

� �2
original

�2
original

) (4.8)

The absolute relative di↵erence in the �2 statistic provides an indication
of attenuation of the association between the perturbed variable and the non-
perturbed variable and whether we are moving towards the assumption of inde-
pendence as a result of the perturbation.

Figure 4.12 shows the results of the percent di↵erence in the bivariate counts
as defined in Equation 3 between the original dataset and the dataset that was
perturbed using the final probability transition matrix for the categorical vari-
able DEGREE. Smaller percent di↵erences show better results for data utility.
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Figure 4.12: Bivariates di↵erence comparison.

The bivariate counts are produced by crossing the categorical variable DEGREE
with the non-perturbed categorical variables METRO and SCH, respectively. We
compare five perturbations, four of them with controls on the diagonal proba-
bilities and one without this control: the original probability transition matrix,
the original probability transition matrix with the property of invariance, the
evolved probability transition matrix with the property of invariance, the evolved
probability transition matrix without the property of invariance and the evolved
probability transition matrix representing the approach shown in the previous
section (without both invariance and diagonal values control). It can be seen
that in all cases the percent di↵erence in bivariate counts has been reduced com-
pared to using the original transition matrix to perturb DEGREE prior to the
evolutionary algorithm. The transition matrix obtained by the evolutionary al-
gorithm with the property of invariance is slightly outperforming the case where
the property of invariance is applied directly on the original transition matrix.
This shows that the optimization of the evolutionary algorithm is improving an
already optimizing feature embedded in the original transition matrix. The per-
cent di↵erence in bivariate counts varies more for the transition matrix obtained
by the evolutionary algorithm without the property of invariance. For the more
uniform bivariate counts obtained by crossing DEGREE and METRO, there
is only a slight improvement compared to perturbing DEGREE by the origi-
nal transition matrix, but there is a greater reduction in the percent di↵erence
of bivariate counts when crossing DEGREE and SCH which is a more skewed
distribution.

In general, the transition matrix obtained by the evolutionary algorithm
without the property of invariance does not perform as well as adding in the
property of invariance. This is because we are dealing with a stochastic evolu-
tionary algorithm and therefore it is more di�cult to continually improve when
we need to control the diagonal probabilities since the algorithm sometimes needs
to go through a non-valid state, i.e. a matrix with diagonal values out of range,
to reach a more optimal valid state afterwards.
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Figure 4.13: Relative absolute di↵erence in �2 statistics comparison.

The results of the relative absolute di↵erence in the �2 statistic are shown in
Figure 4.13. In this case, the height of each bar represents the percent absolute
di↵erence between the �2 test statistic calculated on the original data compared
to the perturbed data according to the same transition matrices evaluated above.
The lower the bar means that there is less di↵erence, i.e. the categories frequen-
cies are more similar in both datasets. It can be seen that perturbing the variable
DEGREE using the probability transition matrix obtained by the evolutionary
algorithm with the property of invariance outperforms the other transition ma-
trices, even in the case where the property of invariance is applied directly on
the original transition matrix. There is more of a di↵erence in the �2 test statis-
tic based on the uniform bivariate counts of DEGREE crossed with METRO
compared to the skewed bivariate counts of DEGREE crossed with SCH.

Based on the data utility measures, for the two cases of the evolutionary algo-
rithm, we see that executing the algorithm with invariance provides, in general,
probability transition matrices with better utility. In addition, our evolutionary
algorithm is able to reach close results even without using the property of invari-
ance. This is because of the use of the fitness function we have chosen. As we
have used the di↵erences between bivariate counts as the fitness function, this
implies an indirect control over the marginal frequencies of the perturbed vari-
able DEGREE, so ultimately we will have a similar e↵ect to the case of applying
the property of invariance. This fact proves that our evolutionary algorithm is
able to learn this behavior and to reach transition matrices with similar e↵ects
compared to using the original transition matrix with the property of invariance.

We next move to assessing disclosure risk. We use the disclosure risk measure
described in [Gouweleeuw et al., 1998] which is defined for each value (attribute)
of the categorical variable. This measure computes the ratio of the expected
number of records in the perturbed file with a value k equal to its value in the
original dataset divided by the expected number of records in the perturbed file
with a value k that arises from a di↵erent value in the original dataset. Hence,
the smaller the value of the expectation ratio, the more likely it is that a record in
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hhhhhhhhhhhhhhhProtections
DEGREE values

1 2 3 4 5 6

Initial Matrix 0.846 1.634 2.629 1.894 1.599 0.676
Only Invariance 0.981 2.356 4.838 2.911 2.287 0.740
Evol. Invariant Control 0.926 1.859 4.490 1.834 1.813 0.691
Evol. Non-Invariant Control 1.019 3.268 5.198 1.536 1.567 1.200
Evol. Non-Invariant No Control 0.586 4.028 4.885 5.226 4.244 1.850

Table 4.8: Disclosure risk analysis results in the case of attributes DEGREE-
SCH.

hhhhhhhhhhhhhhhProtections
DEGREE values

1 2 3 4 5 6

Initial Matrix 0.846 1.634 2.629 1.894 1.599 0.676
Only Invariance 0.981 2.356 4.838 2.911 2.287 0.740
Evol. Invariant Control 0.982 2.356 4.837 2.911 2.283 0.739
Evol. Non-Invariant Control 1.596 3.113 2.985 3.609 1.213 1.388
Evol. Non-Invariant No Control 0.943 1.327 10.205 5.181 1.240 0.866

Table 4.9: Disclosure risk analysis results in the case of attributes DEGREE-
METRO.

the perturbed file with value k did not originally belong to this category, and thus
the more protection in the perturbed file. Tables 4.8 and 4.9 show the results of
the disclosure risk analysis based on the two scenarios: crossing DEGREE and
SCH and crossing DEGREE and METRO, under the four probability transition
matrices described above.

The first two rows of 4.8 and 4.9 in the two tables are the same since we have
only one original probability transition matrix with and without the property
of invariance. The tables show that the resulting transition matrix from our
evolutionary algorithm with the property of invariance has lower disclosure risk
under the case of DEGREE-SCH and equal disclosure risk under the case of
DEGREE-METRO compared to the case of applying the property of invariance
on the original transition matrix. The disclosure risks vary for each category of
DEGREE for the cases of the probability transition matrix generated from the
evolutionary algorithm without the property of invariance.

To provide a disclosure risk-data utility summary and final assessment of the
di↵erent probability transition matrices used to perturb the variable DEGREE
in this experiment, Tables 4.10 and 4.11 show data utility and disclosure risk
measures. The data utility measure is the di↵erence in bivariate counts as shown
in Figure 4.12. To obtain the single disclosure risk measure, we calculated a
weighted average of the disclosure risk measures in Tables 4.8 and 4.9 by taking
into account the frequency of each possible value of DEGREE. The weighted
average is the ratio of original values in the perturbed data divided by the
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Matrix type Data Utility Weighted Avg Risk

Evol. Invariant Control 5.38 2.338
Evol. Non-Invariant Control 6.10 2.722

Only Invariance 6.41 2.827
Evol. Non Invariant No Control 5.84 4.001

Initial Matrix 8.99 1.780

Table 4.10: Summary of disclosure risk/data utility measures in the case of
DEGREE-SCH

number of values that were changed in the perturbed data across all categories
of DEGREE. As exemplified by the disclosure risk paradigm, higher data utility
is associated with higher disclosure risks whilst lower data utility is associated
with lower disclosure risks. The data provider needs to decide on the tolerable
disclosure risk threshold and release the data which has the highest data utility.

For the case of the skewed bivariate counts of DEGREE crossed with SCH
in Table 4.10, we can see that the transition matrix with the highest data utility
(selected with the smallest percent di↵erence in the bivariate counts) is the
matrix generated by the evolutionary algorithm with the property of invariance.
This increased the disclosure risk from 1.780 based on the original transition
matrix to 2.338, meaning that there are more values on average in the perturbed
data that were not changed. The original transition matrix with the property
of invariance had higher disclosure risk and lower data utility compared to the
matrix resulting from the evolutionary algorithm with the property of invariance.
In addition, the matrix obtained with the evolutionary approach without the
property of invariance nor the diagonal values control is the one with the worst
results (before the initial matrix).

For the case of the more uniform bivariate counts of DEGREE crossed with
METRO in Table 4.11, we again see that the transition matrix with the highest
data utility is the matrix generated by the evolutionary algorithm with the prop-
erty of invariance, but at higher disclosure risk compared to the bivariate counts
of DEGREE and SCH. From Table 4.11, the original matrix with the property
of invariance and the evolutionary algorithm with the property of invariance had
similar results with respect to disclosure risk and data utility. In this case, using
the matrix obtained with the evolutionary approach without the property of
invariance nor the diagonal values control, we obtained a similar behavior than
in the skewed bivariate counts showing that applying invariance property boosts
the performance of the evolutionary approach.

In conclusion from this experiment, if the data provider is willing to set the
tolerable risk threshold to an average of 1 changed value for every 2.8 original
values in the perturbed dataset (which is an acceptable threshold at statistical
agencies), it is clear that the evolutionary algorithm with the property of in-
variance (and controlled diagonals) provides an optimal probability transition
matrix in terms of data utility based on the di↵erence in bivariate counts as
well as the relative absolute di↵erence in the �2 statistic for both the uniform
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Matrix type Data Utility Weighted Avg Risk

Evol. Invariant Control 8.27 2.826
Only Invariance 8.69 2.827

Evol. Non Invariant No Control 8.01 4.316
Evol. Non-Invariant Control 11.74 2.549

Initial Matrix 12.00 1.780

Table 4.11: Summary of disclosure risk/data utility measures in the case of
DEGREE-METRO

and skewed bivariate distributions. In the case of the transition matrices ob-
tained when no invariance property is applied, we see that we need to rely on
the control of the diagonal probabilities in order to obtain disclosure risk results
similar to the transition matrices with the invariance property. In addition, we
can conclude that with only 250 generations of the evolutionary algorithm we
have been able to achieve transition matrices that behave similarly with the in-
variant transition matrices simply by choosing a good fitness function and that
it is possible to reach the levels of data utility if we had let the algorithm run
for many more generations.

4.2 Genetic Programming Approach for Better
PRAM Matrices Generator Equations

In this section we present our genetic programming algorithm used to seek for
analytical PRAMmatrices. This algorithm is based on the steady-state approach
because it ensures that a good solution in the actual population will be kept in
the next generation. Algorithm 7 shows our proposed approach.

It can be seen that it works with a population of pop
max

individuals where
each one is an equation to build a PRAM matrix. Then, in each generation, a
random subset of individuals is selected from the population and the selected
programs are evaluated. Using these fitness results, selected individuals are
splitted between winners (the half with higher fitness) and loosers (the other
half with lower fitness). Winners are the ones that are going to be crossed or
mutated in order to try to further improve their fitness, and loosers are the
ones that might be substituted in the population for the next generation. The
election between to cross or to mutate the winners is done randomly by drawing
a random number from a uniform distribution and comparing its value with the
crossover rate (cross

rate

) given by the user. Finally, after that, we compute
the fitness of the new o↵spring and then we check whether they are going to
replace the loosers in the next generation. When the algorithm finishes, the best
individual in the population in terms of fitness value is returned.

In the following sections we describe how to represent and initialize the pop-
ulation and how to compute the fitness of the individuals.
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Algorithm 7 GP Steady-State Algorithm for Seeking PRAM Matrices Analyt-
ically.

Input: X original dataset, pop
max

maximum number of programs in the pop-
ulation, gen

max

maximum number of generatons, cross
rate

crossover rate
Output: best

p

best PRAM matrix equation in final population
P ( initializePopulation(pop

max

)
t ( 0
while t < gen

max

do
S ( selectSubset(P

t

,sel
max

)
F
S

( computeFitness(S,X)
[Winners, Loosers] ( selectWinners(F

S

,S)
a ( randomNumberBetween(0,1)
if a < cross

rate

then
newInds ( cross(Winners)

else
newInds ( mutate(Winners)

end if
F
newInds

( computeFitness(newInds,X)
P
t+1 ( replace(Winners,Loosers,P

t

)
t ( t+ 1

end while
best

p

( selectBestProgram(P
t

)
return best

p

4.2.1 Population Representation and Initialization

In the problem of finding analytical PRAM matrices we have to deal with equa-
tions that are going to be used to build the transition matrices. Then, in our
genetic programming approach we have to initialize population with equations.
These equations are represented as tree structures following the approach de-
scribed in Section 2.2 based on a set of terminals and a set of functions.

In our case we decided to define the terminals set as T =
{N, freq

max

, freq
min

, freq
i

, freq
j

}. N represents the total number of records
in the dataset, freq

max

is the maximum from all catgories frequencies, freq
min

is the minimum of all categories frequencies, freq
i

is the frequency of the ith
original category, freq

j

is the frequency of the jth category that the ith category
can be changed to.

Regarding the functions set we decided to define it as F =
{sum, sub,mul, div} representing the sumation, the substraction, the multipli-
cation and the division arithmetic functions. This selection of functions was
driven by the fact described in Section 2.2, which states that having a function
set too large can make the search for a solution harder and that to have a good
function set it should only include arithmetic and logic operators. In our case,
logic operators do not make sense, so we decided to use only the basic arithmetic
operators.
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Once we had defined the terminals and functions sets, the population was
built using the half-and-half approach to ensure the diversity of individuals (See
Section 2.2.1).

4.2.2 Mutation and Crossover Operators

Like in the regular evolutionary approaches presented previously in this thesis,
the main genetic operators for genetic programming approaches are the mutation
and the crossover. Both are executed at a certain rate given as a parameter. In
our approach we decided (based on empirical tests) to use the value 0.5 for both
the crossover rate and mutation rate in order to have approximately the same
number of operations performed by each operator. A random value between 0
and 1 decides the operation to perform, using 0.5 as a delimiter.

In Section 2.2.2 we presented di↵erent ways to perform mutation on tree
structures. In this case we decided to use the subtree mutation method. The
election was based on the freedom this method gives to create new shapes for
the mutated trees, this is, mutating a tree at a node n

i

with a certain level l
ni

can produce a new subgraph with any level in the range [1, level
max

� l
ni ] and

each branch can have di↵erent length as well. Therefore, by applying subtree
mutation we allow the genetic programming algorithm be more creative when
altering known solutions to find new and better ones.

In the case of the crossover we used the same tree crossover approach pre-
sented in Section 2.2.2. To do that, we only added the following constraints
based on the selected nodes levels

level
n1i + subtreeDepth

n2j  level
max

level
n2i + subtreeDepth

n1j  level
max

where level
n2i is the level of the selected node in the second tree, level

n1j is the
level of the selected node in the first tree, subtreeDepth

x

is the maximum depth
of the subtree starting in node x and level

max

is the maximum number of levels
allowed in a tree.

4.2.3 Fitness and Replacement

In order to guide the improvement of the programs in the population we have
to define a fitness function to be applied on them. In our case, this function has
several steps to follow:

1. The program (equation) to evaluate has to be executed to form a real
PRAM matrix.

2. The obtained PRAM matrix has to be used to protect the original dataset.

3. Information loss and disclosure risk measures have to be applied on the
masked dataset.
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4. The fitness value for the given equation will be the maximum value between
both mesures.

In order to execute the programs we have to transform the tree structures
into a real executable programs. In our case, we have to add the tools to be able
to execute the equations to get their associated PRAM matrix. To do that, we
followed the approach described in Algorithm 8.

Algorithm 8 Tree Structure Equation Execution Algorithm.

INPUT: P tree-structured program, i, j PRAM matrix cell to compute indices
, F functions set, T terminals set
OUTPUT: v value after executing the program for the given cell
elements ( postOrdenTraversal(P)
S ( new Stack()
z ( 0
while z < size(elements) do
next ( elements.get(z)
if next 2 T then
s.push(next)

else
operand1 ( getValue(s.pop(),i,j)
operand2 ( getValue(s.pop(),i,j)
temp ( performOperation(operand1,operand2,next)
s.push(temp)

end if
z ( z + 1

end while
return s.pop()

In this approach we take the tree-structure equation and it is traversed us-
ing the postorden approach. By doing that we have that any function will be
preceded in the final list by its operands (See Figure 4.14). Then, we simply go
through this list of operands and operations saving terminal values in a stack
and when a function is found we take the two first elements from the stack to
use them in the function and the results is saved again in the stack. At the end,
we end up with only one element in the stack which is the final result of the
execution and it is returned. This approach is shown in Figure 4.15.

Next important point from the four steps to follow in the fitness function
shown above is the election of information loss and disclosure risk measures to
be used when evaluating the protected dataset. This point is a key one because
these measures are the ones that will guide our approach to evolve towards a
solution with better and minimized trade-o↵ between them.

In the case of information loss measures we decided to use the average of the
contingency table-based information loss (CTBIL), distance-based information
loss (DBIL) and entropy-based information loss (EBIL) introduced in Section
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Figure 4.14: Postorden equation traversal example.

Figure 4.15: Stack evolution when executing a postorden equation vector with
parameters a = 1 and b = 3.

2.4 (See Equation 4.9). On the other hand, as disclosure risk measure we used
the average of interval disclosure (ID) and the maximum between distance-based
record linkage (DBRL) and probabilistic record linkage (PRL) also introduced
in Section 2.4 (See Equation 4.10). Finally, we need to aggregate both measures
in order to have a single measure to be used as a single indicator of the quality
of each matrix. To aggregate the measures we used the two di↵erent approaches
also used in previous chapters in order to compare their behaviors. The first one
is to take the maximum of the two values as shown in Equation 4.11, and the
second one is to take the average of both values as shown in Equation 4.12. A
discussion on the di↵erence between Equations 4.11 and 4.12 has been presented
in Chapter 3.4;

IL(X) =
CTBIL(X) +DBIL(X) + EBIL(X)

3
(4.9)

DR(X) =
ID(X) +max(DBRL(X), PRL(X)

2
(4.10)

Score(X) = max(IL(X), DR(X)) (4.11)
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Score(X) =
IL(X) +DR(X)

2
(4.12)

At the end of the evaluation, we have to decide whether the new o↵spring will
be part of the population for the next generation. In our case, the replacement
is done by comparing the fitness score of the new o↵spring and the fitness of the
tournament loosers in the selection process. We keep taking the program inside
the loosers set which has the lowest fitness score and we replace it with the new
o↵spring with the highest score. This process continues with the other programs
until we have checked all new o↵spring programs.

4.2.4 Experimental Results

In this section we present the experimental results to show the performance of
our approach. To do that we used the U.S. Housing, German Credit and Solar
Flare datasets introduced in Section 2.7. In this case we performed a multi-
variate protection of three attributes in each dataset. For the U.S. Housing
dataset we protected the BUILT, DEGREE and GRADE1 attributes. For the
German Credit dataset we protected the EXISTACC, SAVINGS and PRESEM-
PLOY attributes. Finally, for the Solar Flare dataset we protected the CLASS,
LARGSPOT and SPOTDIST attributes.

The experiments consisted on running 1500 generations of the genetic pro-
gramming approach for each dataset several times with di↵erent configurations
in order to compare them. These configurations were the di↵erent combina-
tions of maximum depth of the tree-based equations in the population and the
two fitness measures we wanted to test. Regarding the maximum depth of the
tree-based equations we used trees of 5 levels at maximum in order to be able
to test simple and also complex generated equations. To have this variety of
levels in the population we initialized it using the half-and-half approach with a
population size of 6 equations.

Figure 4.16: Best Equation’s Scores Evolution Using the Mean (left) and Max
(right) Fitness Function.
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Figure 4.16 shows the evolution of the best solution’s score during the 1500
generations in all three datasets using the two di↵erent (max and mean) proposed
fitness functions. It can be seen that in all datasets we achieved an improvement
of the best solution’s score.

In the case of using the mean fitness function we can see that we got a
significant improvement for each of the datasets. The U.S. Housing dataset’s
best solution went from a score of 23.77 to a score of 20.45, the German Credit
dataset’s one went from 30.23 to 26.72 and the Solar Flare’s one from 33.09 to
26.10.

On the other hand, if we take a look at the results from the executions
using the max fitness function we can see that we had been able to improve
all datasets protections again. The U.S. Housing dataset’s best solution went
from a score of 39.96 to a score of 26.03, the German Credit dataset’s one went
from 37.18 to 34.33 and the Solar Flare’s one from 38.57 to 37.03. However,
in the cases of German Credit and Solar Flare datasets, we experimented much
less improvement than in the U.S. Housing one. The reason for that is that
this second fitness function is much more strict than the first one as it will
only improve if the maximum value between IL and DR is decreased, while in
the mean fitness function case it will improve when any change of their values
makes the average decrease (for example, if we have IL = 20 and DR = 30,
this function will think the individual improves if it goes to IL = 5, DR = 40).
This behavior then makes it more di�cult to improve the datasets with a small
number of avaliable categories per attribute like these two because changing a
category in these datasets causes more abrupt impact on IL and DR.

Figure 4.17: Best Equation’s IL and DR Evolution for the German Credit
Dataset using the Mean (left) and Max (right) Fitness Function.

It may seem that, after seeing the results of the score evolution, the mean
fitness function is the one that performs better protections. Figures 4.17, 4.18
and 4.19 show the evolution of the same executions presented above but de-
composing the score with the information loss and disclosure risk evolutions.
There, it can be seen that in all cases when using the mean fitness function we
obtained a very irregular behavior with a very distant values of information loss
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Figure 4.18: Best Equation’s IL and DR Evolution for the U.S. Housing Dataset
using the Mean (left) and Max (right) Fitness Function.

and disclosure risk. However, when using the max fitness function we got a very
di↵erent behavior having a more controlled evolution and a kind of converging
behavior of the two measures. Then, having into account that we want to achieve
protections with low and balanced values for both measures, we can say that the
max fitness function performs better protections than the mean fitness function.

Figure 4.19: Best Equation’s IL and DR Evolution for the Solar Flare Dataset
using the Mean (left) and Max (right) Fitness Function.

This fact of having better protections using the max fitness function can be
seen more detailed in Tables 4.12, 4.13 and 4.14 which show, for each dataset,
the best protections using the two most used state-of-the-art equations to build
PRAM matrices, and our genetic programming approach with the two di↵erent
fitness functions.

In the case of the German Credit dataset (Table 4.12) it can be seen that
using the uniform PRAM matrix results in a very bad protected dataset with
very unbalanced information loss and disclosure risk measures and that using
the frequency-based PRAM matrix results in a quite balanced measures val-
ues. However, our genetic programming approaches using max and mean fitness
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Protection IL DR SCORE
max

SCORE
mean

Freq PRAM 37.88 31.03 37.88 34.45
Unif PRAM 13.60 46.12 46.12 29.86

GP Max 30.39 34.33 34.33 32.36
GP Mean 19.11 34.33 34.33 26.72

Table 4.12: Measures comparison between standard PRAM and the output of
our approach for the German Credit dataset.

functions beated the performance of the state-of-the-art measures. This is, we
obtained better balanced and lower values in the genetic programming using
max fitness function than in the frequency-based state-of-the-art matrix case
and we also obtained more balanced and better trade-o↵ using the genetic pro-
gramming with mean fitness function than using the state-of-the-art uniform
PRAM matrix.

Protection IL DR SCORE
max

SCORE
mean

Freq PRAM 29.26 36.09 36.09 32.67
Unif PRAM 16.06 42.68 42.68 29.38

GP Max 37.03 28.25 37.03 32.64
GP Mean 0.03 52.19 52.19 26.10

Table 4.13: Measures comparison between standard PRAM and the output of
our approach for the Solar Flare dataset.

Table 4.13 shows the results of the Solar Flare dataset and we can observe a
similar behavior than in the previous dataset. However, in this case we obtained
very bad results in the case of using the mean fitness function in our genetic
programming approach because it generated a protection with a very unbalanced
measures values. This fact shows that, for this dataset, the mean fitness function
is not useful.

Protection IL DR SCORE
max

SCORE
mean

Freq PRAM 32.31 29.18 32.31 30.74
Unif PRAM 11.92 54.15 54.15 33.04

GP Max 26.03 21.10 26.03 23.57
GP Mean 40.84 0.09 40.84 20.45

Table 4.14: Measures comparison between standard PRAM and the output of
our approach for the U.S. Housing dataset.
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The results of the U.S. Housing dataset are shown in Table 4.14. For this last
case, the results follow the same pattern. We obtained a significant improvement
using the genetic programming approach with the max fitness function, and the
results show again that using the mean function is a bad idea because it leads
again to protections with bad trade-o↵ between measures.

(a) U.S. Housing dataset (b) German Credit dataset

(c) Solar Flare dataset

Figure 4.20: Scatter plot with the best protections for each PRAM method.

To wrap it up, Figure 4.20 shows, for each dataset, the position of the best
protections for each approach in the space of values for information loss and
disclosure risk. As said before, our goal is to obtain good protections and those
protections will be the ones with balanced and low pair of values for information
loss and disclosure risk. In these scatter plots, a good protection will be placed
close to the diagonal and close to the ideal point (but impossible) (0, 0) where
we would not have any information loss neither any disclosure risk. It can be
seen that in all cases the protections made by our genetic programming approach
using the max fitness function are located in this area of good protections and
it also beats the best state-of-the-art matrix: the frequency-based PRAM ma-
trix. Here it can be seen again that the protections generated by the genetic
programming using the mean fitness function are bad as they fall too far away
from the good protections region.
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Dataset IL DR Score

German
Depth = 3 34.32 34.52 34.52
Depth = 4 30.97 30.17 30.97
Depth = 5 30.39 34.33 34.33

Housing
Depth = 3 25.98 21.11 25.98
Depth = 4 19.22 34.57 34.57
Depth = 5 26.03 21.10 26.03

Flare
Depth = 3 38.27 27.55 38.27
Depth = 4 38.08 27.79 38.08
Depth = 5 40.84 0.09 40.84

Table 4.15: Results with di↵erent limits on the depth of the equations tree
structures for all three datasets using Max(IL,DR) as fitness function.

Finally, we wanted to perform one last experiment by checking the quality of
the protections when we limit the depth of the equation tree to di↵erent sizes.
Table 4.15 shows the results for this experiment.

Allowing the tree to have more space to adapt the equation would lead us to
a better equation than if we limit the tree to be shorter which could prevent the
equation to find a more larger one that better fits the problem. Having this into
account, we expected to obtain better score results as we allow the tree to be
deeper. However, we can see that this is not happening in our case. We think
this is because of our population is too small and there is not enough individuals
variety as the program keeps evolving. This reflects that this problem needs
further research to solve this issue.

90



Chapter 5

Enhancing Protected
Microdata Utility based on
Pre-Clustering approach

In this chapter we present a new approach to protect categorical attributes using
clustering techniques to create clusters before the protection and then protect
each cluster independently. In this way we achieve protections with lower and
more balanced data utility and identity disclosure.

There exist some approaches based on clustering like in
[Domingo-Ferrer and Úrsula González-Nicolás, 2010] where the authors create
clusters in order to generate a certain amount of synthetic data in each cluster
and get an hybrid masked dataset with original and synthetic data. The
di↵erence between this approach and the method proposed here is that we
generate perturbed (modified) data instead of generating whole new synthetic
data.

This chapter is organized as follows. Section 5.1 gives a brief description of
the whole protection algorithm. Section 5.2 presents the clustering technique
used in this work. Section 5.3 describes the two di↵erent protection methods
used to protect each cluster. Finally, the experimental results proving the per-
formance of our approach are shown in Section 5.4.

5.1 Algorithm Outline

In this section we introduce the outline of the algorithm to perform the
clustering-based protection. Details are given in Algorithm 9.

This algorithm consists on three di↵erent parts. The first part loads the
original data file into memory and applies a clustering technique. In this work
we used the c-median clustering method which we describe in Section 5.2. This
clustering algorithm requires the number of clusters as input. We denote this pa-

91



Algorithm 9 Clustering-Based Protection Algorithm

Input: X Original data file, k Level of k-anonymity, c Number of clusters.
Output: X 0 Protected data file.
Y ( copy(X)
clustered ( applyClustering(Y,c)
for all cluster 2 clustered do

regs ( getRecords(cluster)
regs ( protect(regs, k)
cluster( setRecords(cluster,regs)

end for
X 0 ( rebuldDataF ile(Y,clustered)
return X 0

rameter by c, and, because of that, this parameter will be one of the parameters
of the protection method.

The c-median clustering method is stochastic because it depends on the
choice of the initial centroids. To deal with that we perform 20 clustering par-
titions of the original dataset and we keep the one that minimizes the global
distance between each record and its related centroid.

Once we have the clustering result, the second part is started. In this case
the algorithm goes through all the clusters and protect each cluster using a given
parameter k as the level of k-anonymity to achieve.

Recall that, the k-anonymity concept says that a dataset is k-anonymous if
it has the property that each record is indistinguishable from at least k�1 other
records within the dataset.

In our work we used two di↵erent protection methods suitable for categorical
data: microaggregation, and Global median-based k-anonymity method. Those
methods are described in Section 5.3.

Finally, when all clusters are protected, the data file is rebuilt using the new
data, having as a result a cluster-based protected file.

5.2 The c-Median Clustering Method

The c-median is a variation of c-means [Jain and Dubes, 1988] where instead
of using the mean for each cluster when determining its centroid, it uses the
median. The goal is to find c centers such that the clusters formed by them are
the most compact. Formally, given a set of data points x

j

, the c centers c
i

are
to be chosen so as to minimize the sum of the distances from each x

j

to the
nearest c

i

. Algorithm 10 shows the outline of this method algorithm.
The categories distance measures are di↵erent when we are dealing with

nominal attributes than when we are dealing with ordinal attributes. Here we
use the distances introduced in Section 2.3;

The weak point of the c-median clustering method is the way to do the
initialization of the centroids. This is a very important issue when doing clus-
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Algorithm 10 Outline of c-median algorithm

Input: c number of clusters
Output: part partition of the data containing c clusters
Initialize the centroids (medians) m1,m2, . . . ,mc

while There is any change in centroids do
part ( Assign each sample to the group that has the closest centroid
Recalculate the positions of the c centroids

end while

tering because di↵erent executions of c-median can lead to di↵erent solutions
that depend on the initial centroids guess. In this work we use the dissimilar-
ity algorithm described in [Kennard and Stone, 1969] to initialize the centroids.
The main idea of this algorithm is to select a random sample from the dataset
as a first centroid and then keep picking samples that maximize the dissimilarity
with the set of centroids already taken. Algorithm 11 shows the outline of this
initialization method.

Algorithm 11 Outline of maximum dissimilarity algorithm

Input: c number of centroids to compute
Output: S centroids set
Select the first sample at random
Add the sample to the centroids set
while size(centroids) < c do

Calculate dissimilarity(remaining samples,centroids set)
Select the sample that is most dissimilar and add it to the centroids set S

end while

In order to be able to achieve k-anonymity in each cluster we need to end up
with all clusters containing m records, where m � k. To ensure this constraint,
if we obtain clusters with less than k records at the end of the partition we
iterate merging the two smallest clusters until all remaining clusters satisfy the
constraint.

5.3 The Protection Methods

In this section we present the two di↵erent protection methods we have used to
protect the clusters in our approach: The microaggregation, which we described
in Section 2.3, and the global median-based k-anonymity.

5.3.1 Global Median-based k-Anonimity

This method is based on the Mondrian protection method that was developed
in [LeFevre et al., 2006] and reviewd in Section 2.3 of this thesis. Recall that
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the Mondrian method is a greedy multidimensional recoding algorithm for cat-
egorical variables that relies on the principle of k-anonymity, generating multi-
dimensional partitions over the whole dataset dimensions until each region have
the minimum number of elements � k.

In this work we want the attribute values to be a single category instead of
an interval. To have the values of this form, the median category between the
two interval end point categories is taken as a value for the protected attribute.

The median category selection is done by taking all the valid categories in
the attribute’s domain between the two end categories of an interval and then
picking the one in the middle.

It should be noticed that in order to be able to perform this protection the
attribute must be ordinal.

5.4 Experimental Results

In this section we present the results of the experiments we made in order to
assess the correct behavior of our approach.

The experiments were run using U.S. Housing and the German Credit
datasets described in Section 2.7. Regarding the attributes selected to protect
in each dataset are as follows. For the Housing dataset we protected three at-
tributes: BUILT with 25 categories, DEGREE with 8 categories and, GRADE1
with 21 categories. In the case of German dataset the protected attributes are:
EXISTACC with 5 categories, SAVINGS with 6 categories, and PRESEMPLOY
with 6 categories.

Experiments shown here are based in two aspects. The first two subsections
present the analysis of our approach when data is used in typical statistical
studies. Then, the last subsection presents the analysis of our approach when
data is used for clustering studies.

To evaluate the experiments in each kind of analysis we used two di↵erent
information loss measures. However, disclosure risk is the same in both cases.

In the experiments for the general statistical microdata case the information
loss has been evaluated using the CTBIL, DBIL, and EBIL measures, and the
disclosure risk using the ID, DBRL, and PRL measures (See Section 2.4). How-
ever, in order to obtain a single information loss measure and a single disclosure
risk measure we have aggregated them using the approaches shown in Equations
5.1 and 5.2.

IL(X) =
CTBIL(X) +DBIL(X) + EBIL(X)

3
(5.1)

DR(X) =
ID(X) +max(DBRL(X), PRL(X))

2
(5.2)

In the experiments for the clustering data case, we defined a clustering-based
information loss by using the Rand, Wallace, and Jaccard indices introduced
in Section 2.5 and aggregating them as shown in Equation 5.3. We have to
take into account that information loss is expected to be an increasing function

94



with respect to the noise inflicted to the data. That is, information loss is
a distance function between the results obtained with the original data and
the ones obtained with the protected data. Nevertheless, the above mentioned
indices are similarity functions. Due to this, we use the complementaries of the
indices as such complementaries define distances (see Equation 5.3). Then, we
use the average of the complementaries as our overall information loss. Disclosure
risk is computed as in the previous case.

IL(p1, p2) =
(1�RI(p1, p2)) + (1� JI(p1, p2)) + (1�WI(p1, p2))

3
(5.3)

Finally, information loss and disclosure risk have also been aggregated into
a score measure in our usual way:

Score(X) =
IL(X) +DR(X)

2
(5.4)

5.4.1 U.S. Housing Dataset Results

Figures 5.1 and 5.2 show the results for the protections on the U.S. housing
dataset using both clustered microaggregation and clustered global-median pro-
tection methods. In addition, the results for the original microaggregation pro-
tection method are shown in Figure 5.3.

Figure 5.1: Results of clustered microaggregation protections on U.S. housing
dataset.

In the case of the clustered microaggregation protection it can be seen that
information loss decreases when the number of clusters increases and also when
the k decreases. This is the expected behavior because the more clusters we use,
the more specific the protection is and the less data is harmed. In addition, the
lower k, the weaker protection and the less data is harmed too.

In the case of disclosure risk it can be observed the inverse behavior. As
we introduced in Section 2.4, disclosure risk and information loss are inverse
measures. So, this is the behavior we expected. Then, disclosure risk decreases
when the number of clusters is small and when k is big.
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Figure 5.2: Results of clustered global-median protections on U.S. housing
dataset.

Figure 5.3: Original microaggregation results for the U.S. housing dataset.

In the case of the clustered global-median protection the obtained behavior
follows the same pattern we have observed in the clustered microaggregation
case but with a di↵erent speed of decrement in both k and number of clusters
axis. That is, in the clustered microaggregation case we obtained a fast change
of values on the number of clusters axis and a slow change of values on the k
value axis while in the clustered global-median case we obtain inverse results.

This behavior is because in the clustered global-median case we are intro-
ducing some points that are not part of the original dataset and this makes the
information loss higher when we want to achieve a big k-anonymity, while in the
clustered microaggregation case we are generating points that are already in the
original dataset what makes the information loss to be low. Furthermore this
can be extended to the disclosure risk but in the inverse case.

Figure 5.4 shows the dispersion plot for the clustered microaggregation, clus-
tered global-median, and original microaggregation protections of the U.S. hous-
ing dataset. Recall that, as we want to obtain good protections, and the quality
of these protections is described by two inverse related measures (information
loss and disclosure risk), the best protections will be the ones that are closer to

96



Figure 5.4: Dispersion plot of the protections on U.S. housing dataset.

Method Information Loss Disclosure Risk

Original Microaggregation 24.95 25.13
Clustered Microaggregation 25.63 27.92
Clustered Global-median 23.48 22.10

Table 5.1: Comparison of the best protections for the U.S. housing dataset

the (0,0) point and that are also closer to the dotted line indicating the perfect
balance of the measures. Having this into account, it can be seen that the clus-
tered global-median protection method can achieve some of the best protections,
improving also the original microaggregation protections.

Finally, Table 5.1 shows the best protection in all three cases: original mi-
croaggregation, clustered microaggregation and clustered global-median. It can
be seen that the best protection is the one using clustered global-median as the
values are more balanced and lower than in the other cases.

5.4.2 German Credit Dataset Results

The results for the protections using both clustered microaggregation and clus-
tered global-median methods on the german credit dataset are shown in Figures
5.5 and 5.6. In addition, the original microaggregation results are shown in
Figure 5.7.

In the clustered microaggregation case we obtained, as expected, the same
behavior as in the U.S. housing dataset case. However it can be seen that the
information loss and disclosure risk values change much faster. This fact happens
because of the reduced number of categories in this dataset attributes. Having
small number of available categories makes that altering a small part of a large
group of records lead to a higher information loss and a lower disclosure risk.
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Figure 5.5: Results of clustered microaggregation protections on german credit
dataset.

Figure 5.6: Results of clustered global-median protections on german credit
dataset.

Figure 5.7: Original microaggregation results for the German dataset.
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Figure 5.8: Dispersion plot of the protections on the german credit dataset.

Method Information Loss Disclosure Risk

Original Microaggregation 18.90 42.32
Clustered Microaggregation 31.90 31.67
Clustered Global-median 31.62 31.42

Table 5.2: Comparison of the best protections for the german credit dataset

Looking at the clustered global-median case it can be seen that information
loss is lower than in the clustered microaggregation case but disclosure risk is
a little bit higher. This fact occurs because of the behavior of the Mondrian
algorithm which is the base of the global-median method. In Mondrian, all
similar points are treated as a single point in the space, so all similar points
will always be modified in the same way, so having a small number of available
categories there will be a big number of similar records (i.e. there will be few
points in the space). Then protecting clusters with a large number of records
will alter less records than in the clustered microaggregation case, but this case
is still the worst case in terms of information loss.

Figure 5.8 shows the dispersion plot for the clustered microaggregation, clus-
tered global-median, and original microaggregation protections of the german
credit dataset. As in the case of the U.S. housing dataset, the best protections
will be the ones that are closer to the (0,0) point and that are also closer to
the dotted line indicating the perfect balance of the measures. Having this into
account, it can be seen that both clustered global-median and clustered microag-
gregation protection methods can achieve good protections, improving also the
original non-clustered microaggregation protections.

Table 5.2 shows the best protection in all three cases: original microaggrega-
tion, clustered microaggregation and clustered global-median. In this case, it can
be seen that the best protection is the one using the clustered microaggregation
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as the values are more balanced and lower than in the other cases.

5.4.3 Clustering Information Loss Analysis

After the analysis based on general information loss and disclosure risk mea-
sures we wanted to perform one last analysis to test whether our new protection
approaches would work better than the typical microaggregation when data is
used for clustering purposes.

The process is simply based on performing 20 clustring partitions of the
original dataset and take the one that minimizes the distance of each element
with its assigned centroid. Then, using the same initial centroids we perform a
clustering partition in the masked dataset. Finally we compare the two partitions
as explained above.

Figure 5.9: Dispersion plot with clustering-based information loss for the german
credit dataset.

Figure 5.9 shows the results obtained in the case of the german credit
dataset where each point represents a single parametereization of each protection
method. Recall that a good protection needs to have balanced pair of values for
informarion loss and disclosure risk, and that both should be low values. In this
case, classic microaggregation is far from obtaining balanced measures but both
protection methods we presented are able to obtain better ones. Then, in this
dataset we can say that both of our pre-clustering approaches perform better
than original microaggregation when data is used in clustering studies.

The results for the U.S. housing dataset are shown in Figure 5.10. In this
case, it can be seen that the performance boost provided by our pre-clustering
approaches is even higher. Classic microaggregation provides protections which
are too far from the optimal point (0,0), but our approaches are able to obtain
protections with much lower and balanced measures values. Specially in the case
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Figure 5.10: Dispersion plot with clustering-based information loss for the U.S.
Housing dataset.

of the clustered global median which obtains really good protections. Then, our
approaches have outperformed again the classical microaggregation in the case
of when data is used in clustering studies.

Dataset Orig Micro Clust Micro Clust Global Median

German credit
IL 19.62 30.51 28.71

DR 42.55 30.63 28.50

U.S. Housing
IL 28.20 27.35 12.99

DR 39.28 31.15 15.70

Table 5.3: Best Scores for all methods in the clustering-based experiment.

Finally, Table 5.3 presents the best solutions values for all methods in each
dataset. Again, it shows that the solutions obtained with our approaches out-
perform the ones obtained with the original microaggregation.
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Chapter 6

Social Network-extracted
Graph Semantical
Protection

In this chapter we present an approach wherein the extraction of implicit and
explicit information is derived from a small sample of a social social network
(Twitter) that seeks also to preserve user’s privacy whilst maintaining informa-
tion utility.

This chapter is splitted in four sections. Section 6.1 deals with the informa-
tion extraction from Twitter and the construction of the social graph with both
implicit and explicit information in the nodes. Section 6.2 describes the social
graph protection approach presenting also how to aggregate information in the
nodes. We also present new analytical measures to check the information loss
and disclosure risk based on the information in the nodes in Sections 6.3 and
6.4. Finally, Section 6.5 shows some experimental results.

6.1 Social Network-Extracted Graph Genera-
tion

The first step to take is to build a crawler
[Herrera-Joancomart́ı and Pérez-Solà, 2011] in order to get information
about connected users in the social network. Algorithm 12 shows the steps
followed by our crawler.

The algorithm is started with a given initial user id as the starting node
in the social network, a maximum number of users we want to get information
from, and a number of tweets we want to get from each user. Then, we use the
Twitter API [Twitter, 2013] to get user data such as location, hashtags, urls,
following users, and tweets posted by the user. Three lists are used: unvisited
contains the ids of the not yet crawled users connected to the already crawled
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Algorithm 12 Twitter Profiles Crawling Algorithm

Input: uID Initial user id, numUsers Maximum number of user to crawl,
numTweets Number of tweets to get from each user.
Output: Y List of public available data for each user.
id ( uID
actualUser ( getDataFromUser(id,numTweets)
unvisited( getFollowingUsers(actualUser)
visited ( [id]
Y ( [actualUser]
while (|unvisited| > 0) and (|visited| < numUsers) do

id ( getRandomId(unvisited)
actualUser ( getDataFromUser(id,numTweets)
unvisited.remove(id)
newRemaining ( getFollowingUsers(actualUser)
unvisited.add(newRemaining)
visited.add(id)
Y.add(actualUser)

end while
return Y

ones, visited contains the ids of the already crawled users, and Y contains the
data structures containing all the information about each crawled user.

This is executed in a loop until we reach the maximum number of users we
wanted to crawl or until we have no more users in the unvisited list.

After this step we have a collection of structures containing information about
each user

The second step to do is to use the data structures collected by the crawler
in order to get a profile for each user containing his location, his connected users
and his three most relevant topics of interest. In order to do this it should be
noticed that information is not always explicitly given in the social networks.
That is, using the Twitter API we can get the location but it is not possible
to get the topics that a user is interested about because they are not specified
nor described anywhere. However, these topics can be extracted using natural
language processing techniques on the text of the tweets shared by the user.

In order to process the information contained in the tweets we used Web
services provided by OpenCalais [Thomson Reuters, 2013], which allow for the
extraction of entities such as people, organizations or events and moreover as-
sign topics to a piece of text. In this work we only used the topic categoriza-
tion capacities of OpenCalais. The 18 possible topic output values are: Busi-
ness Finance, Disaster Accident, Education, Entertainment Culture, Environ-
ment, Health Medical Pharma, Hospitality Recreation, Human Interest, Labor,
Law Crime, Politics, Religion Belief, Social Issues, Sports, Technology Internet,
Weather, War Conflict and, Other.

Our first approach was to apply directly the OpenCalais Web services to
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Figure 6.1: Sample graph generated from the crawled users profiles. This graph
contains users (nodes) and connections between them representing ”connections”
between them.

the tweets text. However, as tweets are very short pieces of text (maximum of
140 characters) it was very di�cult to extract topics and we got a very high
percentage of users without any topic of interest found. Then, as a second
approach, we used the urls within the tweets texts to enhance their semantics
following the approach described in [Abel et al., 2011].

In this work, we do not use the hashtags because most of the times they
are written in a useless form such as #ToMyFutureKids. This forms do not
provide any information to us and therefore we decided to not use hashtags but
use the web pages shared in the tweets, which are much more rich semantically.

To do this, we executed two times the OpenCalais Web service to check the
topics found in the tweet text and also in the text of the website shared inside
the tweet. Then, the topics found in both executions were merged. At the end of
processing all the tweets from a given user, the three most frequent topics were
the ones taken as a result. This list of three topics is an ordered list according
to that frequency.

At the end of this profiles generation step we have a set of user profiles
containing the location of a user, the users who is connected with, and the three
major topics of interest. So, as a result we obtained profiles combining explicit
information given by the Twitter API calls and implicit information extracted
from the tweets shared by the user using natural language processing tools.

As a third step, after generating the users profiles, we generated the social
graph connecting all the users with the ones they are following in the real social
network. Figure 6.1 shows the resulting graph representing the relations between
users.

It can be seen that there are more density of edges in the center of the graph
than in the borders. This is because when we crawled the social network we
kept a list of remaining users to crawl which are connected to already crawled
users. This fact gives higher probabilities to the first crawled users to expand
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more their neighbors than to the last crawled users.
Then, as the initial user we crawled is represented in the center of the figure,

all the users near to him had much more attempts to expand their neighbors
than the users in the borders which are the newest ones.

6.2 Social Graph’s Semantical Protection

In order to obtain a protected graph able to be published, we developed a pro-
tection method that is based on a modified version of k-Anonymity for graphs
taking into account the information inside the nodes using two aggregation tech-
niques for locations and topics of interests.

Next subsections describe each part of this approach, as well as the evaluation
measures used to check the quality of the protections. The section ends up
showing some experimental results.

6.2.1 Protection Algorithm Based on k-anonymity

In order to protect the social graph we adapted the principle of k-anonymity to
the graphs taking into account the information contained in the nodes (which
represent users profiles).

The original principle of k-anonymity says that any record of a dataset must
be equal to other k � 1 records. By doing that we have k indistinguishable
records and then, the identity of the user/entity represented by these records is
preserved.

In the case of the social graph we have a set of linked nodes where each
node represents a user profile containing his location and his three preferred
topics of interest. Then, in order to protect the graph using k-anonymity, we
propose the Algorithm 13 which aggregates the information of at least k nodes
and then substitute the aggregated values into the original nodes maintaining
the structure of the whole social graph.

Algorithm 13 Social graph protection algorithm

Input: G social graph, k level of anonymity.
Output: G0 protected social graph.
G0 = copy(G)
clusters = createClusters(G0,k)
agg

values

= aggregateAttributes(clusters,G0)
G0 = substituteValues(clusters,agg

values

,G0)
return G’

There is some previous work on the field of protecting graphs by aggregat-
ing nodes [Campan and Truta, 2009]. However, most of the methods alter the
graph structure. This makes the graph to loose its structure and in social graphs
terms, it looses the communities structure and other possible interesting social
properties. For that reason we decided to just substitute the aggregated values
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Algorithm 14 Clustering algorithm

Input: G social graph, k level of anonymity.
Output: clusters set of clusters of size � k.
toV isit ( copy(G.nodes())
if number of nodes is multiple of k then
numClusters ( size(toV isit) / k
lastCluster ( 0

else
numClusters ( truncate(size(toV isit) / k) - 1
lastCluster ( 1

end if
allDists ( computeDistancesBetweenAllNodes(toV isit,G)
visited ( []
for i in [0..numClusters] do
actualNode ( random(toV isit - visited)
visited.append(actualNode)
index ( toV isit.getIndex(actualNode)
cluster ( getClosestNodes(allDists[index],index,toV isit,k,visited)
visited.append(cluster.nodes)
clusters.append(cluster)

end for
if lastCluster == 1 then

cluster ( []
for node in (toV isit - visited) do
cluster.append(node)

end for
clusters.append(cluster)

end if
return Y

in each of the corresponding original nodes, having at least k copies of the same
node. However, if the data owner wants to achieve a higher level of privacy, our
method can be easily combined with any existing method dealing with edges.
In addition, our approach deals with the case where the attacker know the at-
tributes of the users whereas in the case of protecting the graph structure deal
with atackers that know the relations between users.

Algorithm 14 shows the algorithm used to cluster the graph nodes. It just
recalculates the number of clusters to perform and then keep taking a random
unvisited node together with its k � 1 closest nodes to form a cluster. Then all
those nodes are marked as visited and the process iterates until all clusters are
fulfilled.

In the next subsections we present the approaches used to aggregate locations
and topics of interest, as well as the respective distances used to compare their
values.
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Figure 6.2: Hierarchy of location values

User’s Location Values Treatment

In this work we treated the possible locations values as a hierarchical tree
where the leafs of the tree contain the most specific values like neighbor-
hoods, natural parks, or cities. Then, going up in the tree these values can
be generalized to their respective provinces, states, countries, ... ending up
to the value world which is the maximum possible generalization for any
location value. Figure 6.2 shows an example of the generalization tree.

In order to build the generalization tree for all the locations in the dataset
we used the Google Maps Geocoding API [Google Inc., 2013] which, given
a location name, returns a structure containing all the generalized locations
from the original value to its country. Then, the continent and world values
are added afterwards. Algorithm 15 shows the steps taken to generate the
global hierarchy tree for the location values in the graph to protect.

This algorithm shows that first of all we take all the distinct locations
in the graph nodes to minimize the Google Maps Geocoding API calls.
Then for each location we compute the hierarchy from the original node to
the world value and we add this to the final hierarchy structure H

loc

. In
addition, in order to have a complete hierarchy, we check if all the values in
the computed hierarchy are already in the locationsList hierarchy to find
its own hierarchical set of values. If not, the missing values are inserted
into the locationsList. At the end of the algorithm we have a structure
having all possible generalizations for all the values in the generalization
tree.

It is worth mentioning that location values also have an associated type
indicating which kind of location is. In the example shown in the Figure 6.2
they can be seen below each location value. This will help us to compare
location values.

Having the locations hierarchy structure, now we can go through the val-
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Algorithm 15 Algorithm to build the locations hierarchy

Input: G social graph.
Output: H

loc

locations hierarchy.
locationsList ( []
H

loc

( {}
for each node n in G do

if n.location not in locationsList then
locationsList.append(n.location)

end if
end for
for loc in locationsList do
hie ( getFullHierarchy(loc)
for loc value in hie do
if loc value not in locationsList then
locationsList.append(loc value)

end if
H

loc

[loc] ( hie
end for

end for
return H

loc

ues aggregation. To do this, we take as the aggregated value the closest
common parent of all location values. For example, in the hierarchy shown
in Figure 6.2 if we would like to aggregate Brooklyn and WashingtonDC
we would take UnitedStates as the aggregated value, and, in the same
way, if we would like to aggregate Manhattan and CentralPark we would
take NewY orkCity as the aggregated value.

The last thing to discuss related to the location values is how to compute
the distance between two values. In this work we used the types of the
locations to compute this. Table 6.1 shows the di↵erent location types
used as well as its associated level of abstraction:

Then, the distance between two locations is computed as shown in Equa-
tion 6.1 where loc

i

represents a location and || represents the absolute value
operator. Locations have a type, and each type of location has an asso-
ciated hierarchy level value (Table 6.1 show all possible types and levels),
so loc

i

.type.level represents the associated level of the ith location’s type.
We also use the maximum level over all possible location types to normal-
ize the distance (it is represented by maxLevel(Locationtypes)). Finally,
branch(loc

i

) represents the path of going from the ith location to the top
level location in the hierachical locations tree like the one in Figure 6.2.
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Type Level

Route 0
Sublocality 0
Natural feature 0
Point of interest 0
Neighborhood 0
Locality 1
Colloquial area 1
Administrative area level 3 2
Administrative area level 2 3
Administrative area level 1 4
Country 5
Political 5
Continent 6
World 7

Table 6.1: Location types with their related abstraction level

d
loc

(loc1, loc2) =

(
1 if loc2 62 branch(loc1)

|loc1.type.level�loc2.type.level|
maxLevel(Locationtypes) if loc2 2 branch(loc1)

(6.1)

It can be seen that there are two di↵erent cases, one for the case when the
two locations are in di↵erent branches of the location hierarchy tree (i.e.
they have di↵erent paths from the location node to the root node), and
one when the two locations are in the same branch.

The distance for the first case is the maximum, which is one (distances
are normalized between zero and one). This is obvious because if the two
locations have no relation, the distance between them must be maximum.
Regarding the second case, we compute the distance between two locations
of the same branch in the hierarchy tree as the di↵erence of abstraction
levels of their types, divided by the maximum abstraction level in the
locations type list.

As an example, taking again the hierarchy shown in Figure 6.2 the distance
between New York City and Washington DC will be 1, and the distance
between Brooklyn and United States will be 0.714.

User’s Topics of Interest Treatment

In this case we consider that all possible topics of interest values are in-
dependent one from another, so, they are not related. Having this into
account, the distance between them is computed just by comparing the
two values checking if they are equal or di↵erent as shown in Equation

110



Figure 6.3: Overview of topics of interest values aggregation

6.2. Then, in the case that both values are equal, the distance will be
the minimum (i.e. zero), otherwise the distance will be the maximum (i.e.
one).

d
topics

(val1, val2) =

⇢
1 if val1 6= val2
0 if val1 = val2

(6.2)

It should be noticed that each user profile contains three attributes with
topics of interest values representing the most preferred topic of interest,
the second most preferred, and the third most preferred. Then, when
aggregating the information of several user profiles, we would like to ag-
gregate the values of the three attributes at the same time like when doing
a voting. To do this we used the Borda’s scoring rule [Borda, 1781] (which
was previously defined by Nicholas of Cusa on the 15th century) giving
weights to the values of the three attributes, then adding the weights of
each value taking into account all the user profiles to aggregate, and fi-
nally taking the three values with highest weight as the values for the
three aggregated attributes.

Figure 6.3 shows an example of topics of interest values aggregation where
we want to aggregate three user profiles. The weights given to the topics of
interest values are shown in gray color besides each value. The addition of
all weights for each value results in a table where each value has a related
global weight. Using this table we can then generate the aggregated profile
with the three most relevant values (in this case, technology, Politics and,
Sports).

6.2.2 Microdata Dataset Extraction

Once we have a protected social graph where each node has information about a
single user, and each user is connected to his real Twitter neighbors, it is possible
to extract all this information from the nodes and generate a microdata dataset.

In order to do this we extracted the information of each node placing it in a
single row of the dataset. Then, the resulting dataset file has one row per user
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and one column per attribute. In our case we used five attributes per user: the
degree of the user node, the location of the user, the main topic of interest, the
second main topic of interest, and the third main topic of interest. Figure 6.4
shows an example of microdata dataset construction from a graph with three
user profiles.

Figure 6.4: Schematic diagram of microdata extraction process

At the end of this step we have a real social network-extracted microdata
dataset with either explicit and implicit information about the users. Although
this kind of datasets would be very interesting for research purposes, they must
be protected before publishing. It may seem that microdata set carries less
information than the graph but adding the degree to the other node attributes
makes the microdata set to not fulfill the k-anonymity requirement (each record
must be equal to at least k-1 other records). Then, making the microdata set
k-anonymous provides better protection.

6.3 Semantic Information Loss Measures

In this section we present the measures developed in this work to assess the per-
formance of our protection approach. This performance has two di↵erent aspects
to take into account. The first one is that a protection method is considered a
good method if after protecting the social graph it still maintains the original
analytical information. However, on the other hand, a protection method also
needs to minimize the disclosure risk of the identity of the individuals contained
in the social graph.

It is easy to see that the two aspects are inversely related. That is, the more
aggressive protection method, the less disclosure risk but the more analytically
valid information is lost. Analogously, if we perform no protection we do not
loose any analytically valid information but the disclosure risk is very high. For
that reason we want to achieve a combination of low and balanced values for
both aspects.

In addition, we also describe the specific information loss and disclosure risk
measures used for evaluating the protection quality on the case of releasing
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Figure 6.5: Example of nodes information aggregation

microdata extracted from the social graph.
To calculate the loose of analytically valid information in the social graph

we used three di↵erent approaches that check di↵erent aspects: the attributes
adjacency matrices information loss (AAMIL), the categories distribution infor-
mation loss (CDIL) and, the distance-based information loss (DBIL).

6.3.1 Attributes Adjacency Matrices Information Loss
(AAMIL)

This measure checks whether the original relations between each node attribute
and the same attribute of its neighbors is maintained. For each attribute an
adjacency matrix is built containing the information about the relations of each
node attribute value and the values of its neighbors for the same attribute. Then,
the same adjacency matrix of the original and masked graphs are compared
adding the di↵erences in all cells as the resulting score for each attribute. Finally,
the average of all scores is taken as the final score for this measure. Figure 6.6
shows an example of computing this measure using the aggregated nodes shown
in Figure 6.5.

This distance can be described more formally like

AAMIL
graph

=

P
i2Attributes

AAMIL
attri

#Attributes
(6.3)

AAMIL
attri =

P
i,j2Dom(attri)

abs(x
ij

� x0
ij

)

2 ⇤
P

i,j2Dom(attri)
x
ij

(6.4)

where x
ij

is the number of links from the category i to the category j in the
current attribute on the original graph and, x0

ij

is the same in the case of the
masked graph.

6.3.2 Categories Distribution Information Loss (CDIL)

The CDIL measure focuses on the maintenance of the topics values distribution
on the entire social graph. In this case, two distributions are computed for each
attribute, one using the original graph and one using the masked graph. Then,
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the two distributions are compared and the normalized sum of all the values
frequency di↵erences is taken as a score for each attribute. Finally, the average
of all attributes score is taken as the final CDIL result. Figure 6.7 shows an
example of computing this measure using the aggregated nodes shown in Figure
6.5.

This distance can be described more formally like

CDIL
graph

=

P
i2Attributes

CDIL
attri

#Attributes
(6.5)

CDIL
attri =

P
j2Dom(attri)

abs(freq(j)� freq(j0))

2 ⇤
P

z2Dom(attri)
freq(z)

(6.6)

where freq(j) is the frequency of the value j in the original graph and, freq(j0)
is the frequency of the value j in the masked graph.
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Location Topic 1 Topic 2 Topic 3

User 2 United States Technology Sports Religion
Protected User 2 United States Technology Politics Sports

DBIL
user2 = 0+0+1+1

4 = 0.5

Figure 6.8: DBIL calculation for User 2

6.3.3 Distance-based Information Loss (DBIL)

The last information loss measure, DBIL, focuses on how much the attributes
values are modified in each node. To do this, for each node in the social graph, we
calculate the distance between each original value and its corresponding masked
value. The average of all normalized sums of the attributes di↵erences for all
nodes is taken as this measure result. In order to compute the distances, we used
the Equation 6.1 for the location values, and the Equation 6.2 for the topics of
interest values. Figure 6.8 shows an example of computing this measure using
the aggregated nodes shown in Figure 6.5.

This distance can be described more formally as

DBIL =

P
i2Attributes,j2Nodes

dist(x
ij

, x0
ij

)

#Attributes ⇤#Nodes
(6.7)

where # is the cardinality operator, x
ij

is the original value and, x0
ij

is the
masked value. Regarding the dist() function it depends on the attribute type.
To compute the distance in location and topicsofinterest attributes we used
the approaches described in Section 6.2.

6.3.4 Average Semantic Information Loss

In order to aggregate the three information loss measures into a single one we
used the mean of all three results as the average information loss. Equation 6.8
shows it more formally.

IL(X,X 0) =
AAMIL(X,X 0) + CDIL(X,X 0) +DBIL(X,X 0)

3
(6.8)

6.4 Semantic Disclosure Risk Measure

This second measure is needed in order to assess the level of privacy obtained
applying the protection method to the social graph.

Social network user’s identity is given by the information contained in its own
profile and the users they are connected with. However, taking into account that
during the protection process we are producing a protected graph that for each
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node there will be at least other k � 1 indistinguishable nodes, the first fact is
already solved. This is, there are no users with a unique combination of values in
their attributes, so it is not possible to uniquely identify a user by using only the
single node information because there are k nodes with the same combination
of values.

Then, the only way to identify a user is taking into account the information
about the neighbors surrounding him (only the ones directly connected to the
user). To do this, we decided to take the original subgraph S

orig

around the
original node n

root

and try to perform a matching in the entire masked graph. If
we find a masked subgraph S

mask

that has the same topology and the neighbors
have the same information than in the original graph we set the node n

root

as
matched.

Finally, the quantity of matched nodes normalized with the number of nodes
in the graph is taken as the disclosure risk final measure

DisclosureRisk(G,G0) =

P
i2G.nodes

match(G0, subgraph(i))

#G.nodes
(6.9)

where

match(G,S
i

) =

⇢
1 if S

i

2 G
0 otherwise

(6.10)

6.5 Experimental Results

In this section we present some experimental results in order to show the perfor-
mance of our approach. To do that we used two di↵erent graphs. The first graph
consists of 306 user profiles, with 342 edges, a diameter of 17 hops, a character-
istic path length of 8 hops, an average shortest path length of 7.597 hops and,
an average degree of 2. The second graph is much more complex. It has 1638
user profiles, 4622 edges between profiles, a diameter of 11 hops, a characteristic
path length of 4 hops, an average shortest path of 4.2595 hops and, an average
degree of 5. Both graphs have been extracted from the real-life social network
Twitter using the approach described in Section 6.1.

Figure 6.9 shows the layout of these graphs. It can be seen the di↵erence
between the two graphs in the number of links between nodes. That di↵erence
is also reflected in that the second graph has a reduced average shortest path,
diameter and, characteristic path length. In addition, it makes the nodes of the
second graph to have a higher average degree even though there are many more
nodes than in the first graph.

The aim of using these two graphs is to test the performance of our approach
in the case of these two very di↵erent cases: one graph with few nodes and edges,
and one with plenty of both.

Another fact that can be observed is that following our approach to build
the social graph we are able to maintain the ”small world” phenomenon which is
present in all social networks. This fact was introduced in [Milgram, 1967] and
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(a) First graph (b) Second graph

Figure 6.9: Layout of the graphs extracted from Twitter

it says that any two nodes in a network can be reached with a reduced number
of steps. It can be observed than in the second graph, even having 1638 nodes,
it has an average shortest path of 4.2595 hops, that is, any two nodes in the
graph are connected through 4.2595 nodes as average.

6.5.1 Social Graph Protection Results

In the case of protecting the social graph we performed several experiments with
di↵erent values for the parameter K (the level of k-anonymity). In addition, in
order to obtain more robust results, we performed five executions for each K
value and then we took the average of all executions as the final result for this
value of K.

Figure 6.10 shows the information loss results of the protection for the first
graph. The general behavior obtained is what was expected as the information
loss increases as the K value increases too. This fact is because as K increases,
the groups of records to aggregate are bigger and then the aggregated value will
be less similar to all records in the group than when there are only two records
to aggregate.

It can be seen that the categories distribution information loss (CDIL) is
the one that grows faster. This fact is caused by the low number of nodes in
the first graph because, as the value of K increases, the amount of registers to
aggregate represent a quite large percentage of the entire number of nodes and,
then, all their values are aggregated in the way that minimizes the distance of the
original and protected values, but this has a big impact on the entire categories
distribution of the graph. However, the other measures grow in a much lower
rate. This makes the average information loss to moderate its growing.

Taking a look at Figure 6.11 we can see the information loss results for the

117



Figure 6.10: Information loss results for the protection of the first graph

Figure 6.11: Information loss results for the protection of the second graph

second graph. In this case we obtained better results because the information
loss in all values of K is much lower. This occurs because this graph has a large
amount of nodes to work with, and their values aggregations are less aggressive
than in the case of the first graph.

It should also be noticed that our approach was able to preserve the neighbors
values for each node in order to preserve the information of the graph’s social
relations. This can be observed looking at the AAMIL results, which is the one
with the lowest values in almost all K values.

Regarding the disclosure risk results for the first graph, Figure 6.12 shows
what we obtained. The results are splitted into di↵erent cases to show the pro-
tection quality in the following scenarios: only focused on each single attribute,
focused on all the topics of interest but not on the location attribute, and tak-
ing into account all attributes. It can be seen that, as expected, disclosure risk
decreases in all cases as the value of K increases. The explanation for this is
that, as the K value increases, we have bigger groups of records to aggregate
and, then, there are more chances to have more dissimilar values to aggregate.
This makes the information to go far from the original and then the disclosure
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Figure 6.12: Disclosure risk results for the protection of the first graph

risk of the original information decreases.
It can also be seen that the attribute with the higher disclosure risk is the

first topic of interest, which represents the preferred topic for each user. This
is because when we aggregate values by doing voting aggregation the attributes
that have more chances to be preserved are the first topic of each user because
are the ones that obtain higher score. This is also the explanation of why the
second topic of interest is the next topic with more disclosure risk, and the last
one is the third topic of interest. Finally, in the case of the location attribute we
obtained a low disclosure risk results. This is because this attribute is almost
always generalized because there are a big number of possible categories and,
even when aggregating groups of two nodes, they are forced to be generalized in
order to be aggregated. These generalizations make the original locations hard
to be discovered from the protected graph.

However, when we take all the topics of interest attributes together, the
disclosure risk decreases much more and, when we take all attributes together,
it decreases even more.

The problem of having a high disclosure risk in the first topic of interest only
matters if we want to preserve the values disclosure of this specific attribute.
However, the identity of a user can only be determined by all the values of the
entire group of attributes, and all the values of their neighbors, so we can say
that the users identity is preserved.

Figure 6.13 shows the results for the second graph. In this case it can be
observed that we obtained the same behavior in all attributes and groups of
attributes than in the first graph case. However, all the disclosure risk values
are lower for this second graph. The reason for that is like in the case of the
information loss: the number of nodes in the graph. In this case we have a
much larger number of nodes and then, there are more chances to have the same
configuration for several nodes, so the disclosure risk is reduced.

Finally, looking at the results shown above, we can say that our method
provides a good trade-o↵ between data utility and privacy. However, the per-
formance varies depending on the amount of data in the social graph. For small
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Figure 6.13: Disclosure Risk results for the protection of the second graph

graphs such as the first graph, our approach works well for low values of k be-
cause the data utility is lost rapidly as k increases. In the case of large graphs
such as the second graph our approach works better and it allow to have very
good results for larger values of k.

6.5.2 Extracted Microdata Protection Results

This section presents the results of testing the privacy in the case of a user
wants to extract a microdata file from the protected graph. In this case we
should provide enough privacy to preserve the identity of each record (i.e. user)
as well as provide enough data utility in order to allow the use of this microdata
file in statistical studies.

Figure 6.14 shows the results of the average information loss and disclosure
risk for the first graph. As in the case of the social graph protection results, we
obtained the same behavior of decreasing disclosure risk and increasing informa-
tion loss as the value of K increases, as expected, for the same reasons than in
the other cases.

Figure 6.14: Microdata protection results for the first dataset

Apart from that, it can be seen that information loss does not experiment
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a very big increase, while disclosure risk decreases faster. This is good because
we are able to get more private microdata without loosing too much more valid
information contained in it.

Figure 6.15: Microdata protection results for the second dataset

For the second graph’s microdata, we show the obtained results in Figure
6.15. In this case, we obtained the same behavior than in the first graph mi-
crodata but getting a much lower values of information loss and disclosure risk.
This is, as in the case of social graph protection, because of the amount of nodes
contained in the graph. These nodes are transferred as records inside the mi-
crodata and that means that the second graph’s microdata contains much more
records than the first graph’s microdata. Because of this, there is much more
probability to obtain records having the same configuration of attributes val-
ues and it reduces the change to discover the identity of a user (i.e. record in
the microdata) what makes the disclosure risk to be lower. In addition, it also
makes the microdata to be more similar to the original one because the records
are aggregated as small portions of the entire dataset and then the aggregated
values are much more similar to the original ones.
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Chapter 7

Conclusions and Future
Directions

Several approaches to deal with data privacy in statistical microdata datasets
and in social networks have been presented in the preceeding chapters. In this
last chapter we start by reviewig all the contributions made in this thesis and
then we present some conclusions to wrap up all the results obtained in this
thesis. Finally, in the last section of this chapter, we introduce some future lines
of research.

7.1 Summary of Contributions

In this thesis we proposed di↵erent kind of evolutionary approaches to perform
better protections when dealing with microdata datasets. We also proposed a
way to get better protections following a pre-clustering approach. In addition,
a new way to extract and protect explicit and implicit information about the
users in social networks has been proposed as well as some new measures to test
the protection quality. Here we review each contribution shortly summarizing
its relevance.

Evolutionary Microdata Protections Contributions.
We started proposing an evolutionary algorithm that deals directly with
microdata datasets combining and altering them in order to generate better
protections. Inside this approach we defined how to represent data in the
population, we defined specific genetic operators, and we also introduced
how to integrate information loss and disclosure risk measures inside the
evolutionary algorithm to make it improve with respect to these measures.
Finally, we presented experimental results showing the e↵ectiveness of this
approach.

Evolutionary PRAM Matrices Enhancement Contributions.
We have proposed a variation of the previous evolutionary algorithm but
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this time it is used to optimize the Post-Randomization Method (PRAM)
Markov matrices in order to make the method more e↵ective when pro-
tecting. We presented how to represent PRAM matrices in the population
and how to operate on them using genetic operators. Regarding the fitness
testing we have shown how to integrate all the protection process itself in
the algorithm to guide its evolution towards obtaining better protections
in terms of information loss and disclosure risk. We also presented ex-
perimental results showing the gain of performance of the PRAM method
when using our approach.

In addition, we also proposed a genetic programming approach to deal with
PRAM matrices but working with the analytical equations that are used
to generate these matrices. We defined how to represent and manipulate
equations as individuals in the algorithm’s population. Furthermore, we
compared the use of two di↵erent fitness functions to check which one is
the most suitable for this problem. Finally, we presented experimental
results showing the performance of our approach.

Pre-clustering Microdata Protections Contributions.
We introduced an approach based on clustering to get better protections
(i.e. protections with more balanced and low information loss and disclo-
sure risk measures) when dealing with categorical data. We have shown
that by doing a clustering and then protecting each cluster independently
provides better protections than protecting the whole dataset at once. In
addition we presented a new protection method based on the Mondrian
method which performs better for this kind of protections. Finally, we
presented experimental results showing the performance of our approach
in the cases when data is used for typical statistical uses and when the
data is used for clustering studies.

Social Networks Users’ Information Protection Contributions.
We have shown that it is possible to extract both explicit and implicit
information about users’ profiles in social networks and build a social graph
with this information embedded in the nodes. Then, we presented an
approach to protect the social graph’s nodes information, based on the
k-anonymity principle. We also described how to aggregate location data
and how to aggregate rankings of topics of interest in a way that the
resulting aggregation has low information loss. In addition, we introduced
new measures to test the masked nodes information loss and disclosure
risk. We finally provided experimental results showing the performance of
our approach based on data extracted from the real social network Twitter.

7.2 Conclusions

In this thesis we have covered the fields of statistical microdata protection and
privacy of users’ information in social networks graphs. Although we have been
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focused more in the first one we provided a set of new methods and measures
for both cases in order to improve the data protection quality.

The work presented for the field of statistical microdata protection was di-
vided in two parts: di↵erent kind of evolutive protection methods and a pre-
clustering protection method.

From the work presented for the first part it can be concluded that evolutive
algorithms can be very helpful in improving the protection quality because it
is a di�cult task to obtain a good analytical method that works well in any
case/dataset. That protection’s quality improvement then, can be automatized
using an evolutionary algorithm, which guides the solutions in the algorithm’s
population towards the optimum one respect to the provided fitness function. In
addition we have seen that it is possible to use evoutionary algorithms to optimize
transition matrices for the PRAM protection method obtaining matrices that
perform better protections. It is di�cult to obtain good matrices analytically so
using the evolutionary algorithm it makes the task easier for us. Finally, we have
shown how to add additional properties to these PRAM matrices like invariance.
This property makes the evolutionary algorithm produce matrices that perform
protections with better data utility.

We have also shown a way to optimize the PRAM matrices by embedding
the analytical equations used to create these matrices in a genetic programming
algorithm. Although there is much work still to be done in this aspect, it can
be concluded that genetic programming can be a good approach to find new
and enhanced PRAM matrix equations. We compared two di↵erent aggregation
functions to compute the fitness (max and mean functions) and the best one
has been the max function as it generated equations that performed protections
with much better balance between information loss and disclosure risk, and with
lower values in these measures. It has also been proven that, in almost all cases,
our genetic programming approach has beated the performance of the two most
used state-of-the-art PRAM matrix equations.

In the case of the pre-clustering protection method we have seen that doing
a clustering partition and then protecting each cluster independently results in
protections with better trade-o↵ between information loss and disclosure risk.
Then, with this pre-clustering technique records are better aggregated together
in terms of similarity so, when they are protected, the loss of information is
lower. In addition, using our proposed global-median protection method we out-
performed the microaggregation method. This is becasue taking the aggregated
value from the attribute’s domain produces less information loss than taking it
from the selected records’ values. We also presented an experiment showing the
improvement that our approach provides when data is used in clustering studies.

In the work on the topic of users’ information in social networks we have
proven that not all information is explicitly given in the user’s profile. There is
also implicit information hidden in the user’s posts such as the user’s preferred
topics of interest. We extracted from Twitter the location and the ranking of
preferred topics of interest for several users generating two di↵erent social graphs
with di↵erent properties. In order to protect this information in the social graph
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we have seen that locations can be aggregated by using a hierarchical approach
and the ranking of topics of interest by using a voting approach. Following these
approaches, the data preserves more utility.

7.3 Future Directions

In all topics described in this dissertation there are some open lines of research
for future work. In this section we provide some ideas.

Evolutionary Optimization of PRAM Matrices.
In this thesis we presented two approaches that seeks for PRAM matrices,
one using an evolutionary algorithm also adding the interesting property
of invariance, and another using a genetic programming algorithm dealing
directly with the PRAM matrix equations.

In the case of general evolutionary algorithm for PRAM matrices there
are other interesting properties to be considered. One of them would be
to limit the range of categories where a certain attribute’s values can be
changed to. This property could be very useful in cases where there is
no sense to exchange a certain category to another which is too far. For
example, if the attribute ”age” has value 22, it would have sense to change
it in a range of +/-10 years, however it would not have any sense to change
it to 90 years. This kind of problems could be important when we want to
preserve original statistical information. We would like to add this kind of
properties in our evolutionary approach to get more robust protections.

The genetic programming approach has also several things to be improved.
In our approach we normalize the Markov matrices once they are created
using the equations found by the genetic programming algorithm. How-
ever, it would be very interesting to add analytical constraints in the gener-
ated equations such as creating them already normalized, that is, equations
which creates Markov matrices where each row sum is 1. Finally, there is
also some work to do in order to fix the behavior of our approach when
allowing to have larger equation trees to achieve better equations.

Clustering-based Microdata Protection Methods.
We have presented a method to protect categorical microdata based on a
pre-clustering approach which performs better protections based on sta-
tistical and clustering-based information loss and disclosure risk measures.
However, it would also be interesting to test the performance using other
clustering techniques, that would make our method more robust.

Social Networks Users’ Information Privacy.
In the case of privacy of users’ information in social graphs we presented a
way to protect the graph taking into account only the information in the
nodes, and skipping the links between nodes. This could also be a privacy
issue. Then, we would like to add links protection (using any of the several
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already existent methods for this kind of protection) in the same approach
in order to obtain a protected graph in both cases.
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