
Escola d’Enginyeria
Departament d’Arquitectura de

Computadors i Sistemes Operatius

Vulnerability Assessment for Complex

Middleware Interrelationships in Distributed

Systems

Tesis doctoral presentada por Jairo
D. Serrano Latorre para optar al
grado de Doctor por la Universitat
Aut�onoma de Barcelona, bajo la
direcci�on de Dr. Elisa Heymann, y
Dr. Eduardo C�esar.

Bellaterra, September 30, 2013

Vulnerability Assessment for Complex
Middleware Interrelationships in Distributed
Systems

Tesis doctoral presentada por Jairo David Serrano Latorre para optar al grado
de Doctor por la Universitat Aut�onoma de Barcelona. Trabajo realizado en el
Departament d'Arquitectura de Computadors i Sistemes Operatius de la Escola
d'Enginyeria de la Universitat Aut�onoma de Barcelona, dentro del Programa de
\Computaci�on de Altas Prestaciones", bajo la direcci�on de Dr. Elisa Heymann,
y Dr. Eduardo C�esar.

Bellaterra, September 30, 2013

Directores: Autor:

Dr. Elisa Heymann, Dr. Eduardo C�esar Jairo D. Serrano Latorre

Aknowledgment

To my Mom, grandparents, and beloved relatives, friends, and some foes. To
my advisors, Elisa and Eduardo, for their tolerance and patience. To Emilio and
Lola for their con�dence and teaching.

”M. Csikszentmihalyi explica en su libro ”Fluir” que no importa la actividad
que elijamos para disfrutar ni tampoco determina el nivel de placer de la
actividad, el sexo, la cultura, la clase social o la edad. Lo que realmente importa
es cómo nos sentimos mientras hacemos esa actividad. Parece que la capacidad
de disfrutar requiere de las mismas caracteŕısticas psicológicas para todo el
mundo. Algunos requisitos de la actividad para que nos haga disfrutar son que
tengamos posibilidades de éxito al realizar la tarea, ser capaces de concentrarnos
en ella, tener unas metas claras y obtener información inmediata de si las
conseguimos o no, actuar con tanta involucración que nos olvidemos de lo
cotidiano, ser capaces de olvidarnos hasta de nosotros mismos mientras la
realizamos, y que el sentido del tiempo se vea alterado, las horas pasan volando y
los minutos parecen horas mientras estamos inmersos en ella”

Abstract

The fast adaptation of Cloud computing has led to an increased speedy rate
of novel information technology threats. The targets of these new threats involve
from large scale distributed system, such as the Large Hadron Collider by the
CERN, up to industrial (nuclear, electricity, oil, etc.) distributed systems, i.e.
SCADA networked systems.

The use of automated tools for vulnerability assessment is quite attractive,
but while these tools can �nd common problems in a program's source code,
they miss a signi�cant number of critical and complex vulnerabilities. In
addition, frequently middleware systems of distributed systems base their
security on mechanisms such as authentication, authorization, and delegation.
While these mechanisms have been studied in depth and might have control over
key resources, they are not enough to assure that all application's resources are
safe. Therefore, security of distributed systems have been placed under the
watchful eye of security practitioners in government, academia, and industry. To
tackle the problem of assessing the security of critical middleware systems, we
propose a new automated vulnerability assessment methodology, called Attack
Vector Analyzer for Complex Middleware Interrelationships(AvA4cmi), which is
able to automatically hint which middleware components should be assessed and
why.

AvA4cmi is based on automatizing part of the First Principles Vulnerability
Assessment, an innovative analystic-centric (manual) methodology, which has
been used successfully to evaluate several known middleware systems.
AvA4cmi's results are language-independent, provide a comprehensive
assessment of every possible attack vector in the middleware, and it is based on
the Common Weakness Enumeration (CWE) system, a formal list for describing
security weaknesses. Our results are contrasted against previous manual
vulnerability assessment of the CrossBroker and gLite WMS middleware, and
corroborate which middleware components should be assessed and why.

Contents

1 Overview 1

2 Introduction 7

2.1 Grid . 8

2.1.1 Grid Architecture . 9

2.1.2 Grid Security . 11

2.2 Cloud . 14

2.2.1 Cloud Architecture . 15

2.2.2 Cloud Security . 18

2.3 Supervisory Control And Data Acquisition 21

2.4 Vulnerability Assessment . 22

2.4.1 Microsoft Threat Modeling 25

2.4.2 OCTAVE . 26

2.4.3 OSSTM . 27

2.4.4 FPVA . 28

2.4.5 The 7 Pernicious Kingdoms 29

2.4.6 CLASP . 30

2.4.7 OWASP Top 10 . 31

2.4.8 Common Weakness Enumeration (CWE) 32

2.5 Contributions . 33

2.6 Conclusions . 34

3 FPVA & CWE: Foundations 35

3.1 First Principles Vulnerability Assessment 35

3.1.1 FPVA Methodology Steps 37

3.1.2 FPVA Accomplishments . 44

3.2 Common Weakness Enumeration 45

3.2.1 Common Weakness Scoring System (CWSS) 56

ix

x CONTENTS

3.3 Conclusions . 67

4 Vulnerability Assessment for Complex Middleware
Interrelationships 69

Introduction to AvA4cmi methodology. 70

4.1 Attack Vectors Graphs . 70

4.2 Knowledge Base . 73

4.2.1 System Attributes . 73

4.2.2 Relationship between System Attributes & Weaknesses . . 78

4.2.3 Rules . 81

4.3 An Algorithm for the AvA4cmi methodology 88

4.4 Security Alerts . 94

4.5 Conclusions . 95

5 AvA4cmi Experimental Evaluation 97

5.1 CrossBroker & FPVA . 97

5.1.1 CrossBroker-2009-0001 . 98

5.1.2 CrossBroker-2009-0002 . 99

5.1.3 CrossBroker-2009-0003 . 99

5.1.4 CrossBroker-2009-0004 . 100

5.2 CrossBroker & AvA4cmi . 101

5.2.1 Attack vector I . 102

5.2.2 Attack vector II . 121

5.2.3 Attack vector III . 122

5.2.4 Attack vector IV . 122

5.2.5 Attack vector VI . 123

5.2.6 Attack vector VIII . 123

5.2.7 Attack vector IX . 124

5.2.8 Attack vector X . 124

5.3 gLite WMS & FPVA . 125

5.4 gLite WMS& AvA4cmi . 125

5.4.1 CWE-118 Security Alerts 126

5.4.2 CWE-330 Security Alerts 127

5.4.3 CWE-435 Security Alerts 127

5.4.4 CWE-664 Security Alerts 128

5.4.5 CWE-682 Security Alerts 128

5.4.6 CWE-691 Security Alerts 129

5.4.7 CWE-693 Security Alerts 129

5.4.8 CWE-697 Security Alerts 130

5.4.9 CWE-703 Security Alerts 130

5.4.10 CWE-707 Security Alerts 131

5.4.11 CWE-710 Security Alerts 131

CONTENTS xi

5.5 Conclusions . 132

6 Conclusions and Future Work 133
6.1 Future Work . 136

List of Figures

2.1 Grid Architecture . 10

2.2 Grid Ecosystem . 11

2.3 Cloud Architecture . 17

2.4 Cloud Service Management . 18

2.5 SCADA architecture . 22

2.6 Gartner SAST Magic Quadrant 2013 23

3.1 FPVA Architecture Diagram of CrossBroker 38

3.2 FPVA Architecture Diagram of gLite WMS 39

3.3 FPVA Resources Diagram of CrossBroker 40

3.4 FPVA Resources Diagram of gLite WMS 40

3.5 FPVA Vulnerability Report of CrossBroker 42

3.6 FPVA Vulnerability Report of gLite CREAM 42

3.7 CWE Weakness details example, taken from [81] 46

3.8 CWE Development View Hierarchy 48

3.9 CWE Research View Hierarchy . 49

4.1 Attack Vector graph: CrossBroker example 71

4.2 Knowledge Base architecture in AvA4cmi 74

4.3 Algorithm architecture in AvA4cmi 88

4.4 Simpli�ed Attack Vector graph . 89

5.1 Attack Vector graph: CrossBroker 101

5.2 Attack Vector I for CrossBroker . 103

5.3 Distribution of weaknesses for CWE-664 Security Alerts in attack
vector I. 105

5.4 Distribution of weaknesses for CWE-693 Security Alerts in attack
vector I. 108

5.5 Weaknesses-Vulnerabilities Relationship for Attack Vector I 121

xiii

xiv LIST OF FIGURES

5.6 Weaknesses-Vulnerabilities Relationship for Attack Vector II 121
5.7 Weaknesses-Vulnerabilities Relationship for Attack Vector III . . . 122
5.8 Weaknesses-Vulnerabilities Relationship for Attack Vector IV . . . 122
5.9 Weaknesses-Vulnerabilities Relationship for Attack Vector VI . . . 123
5.10 Weaknesses-Vulnerabilities Relationship for Attack Vector VIII . . 123
5.11 Weaknesses-Vulnerabilities Relationship for Attack Vector IX . . . 124
5.12 Weaknesses-Vulnerabilities Relationship for Attack Vector X 124
5.13 Attack Vector graph: gLite WMS 125
5.14 Distribution average of the CWE-118 security alerts for gLite WMS 126
5.15 Distribution average of the CWE-330 security alerts for gLite WMS 127
5.16 Distribution average of the CWE-435 security alerts for gLite WMS 127
5.17 Distribution average of the CWE-664 security alerts for gLite WMS 128
5.18 Distribution average of the CWE-682 security alerts for gLite WMS 128
5.19 Distribution average of the CWE-691 security alerts for gLite WMS 129
5.20 Distribution average of the CWE-693 security alerts for gLite WMS 129
5.21 Distribution average of the CWE-697 security alerts for gLite WMS 130
5.22 Distribution average of the CWE-703 security alerts for gLite WMS 130
5.23 Distribution average of the CWE-707 security alerts for gLite WMS 131
5.24 Distribution average of the CWE-710 security alerts for gLite WMS 131

List of Tables

3.1 FPVA Experience. 43

3.2 CWSS Technical Impact Set of Values 57

3.3 CWSS Acquired Privilege Set of Values. 57

3.4 CWSS Acquired Privilege Layer Set of Values. 58

3.5 CWSS Internal Control E�ectiveness Set of Values. 58

3.6 CWSS Finding Con�dence Set of Values. 59

3.7 CWSS Required Privilege Set of Values 60

3.8 CWSS Required Privilege Layer Set of Values 60

3.9 CWSS Attack Vector Set of Values 61

3.10 CWSS Authentication Strength Set of Values 61

3.11 CWSS Authentication Instances Set of Values 61

3.12 CWSS Level of Interaction Set of Values 62

3.13 CWSS Deployment Scope Set of Values 62

3.14 CWSS Business Impact Set of Values 63

3.15 CWSS Likelihood of Discovery Set of Values 64

3.16 CWSS Likelihood of Exploit Set of Values 64

3.17 CWSS External Control E�ectiveness Set of Values 65

3.18 CWSS Remediation E�ort Set of Values 65

3.19 CWSS Prevalence Set of Values . 66

3.20 CWSS factors common values. 66

4.1 Custom CWSS Metric groups . 82

4.2 System Attributes & CWSS factors correlation 84

4.3 CWSS customized scores for Owner Attribute 85

4.4 CWSS customized scores for User attribute 85

4.5 CWSS customized scores for UAI attribute 86

4.6 CWSS customized scores for Sanitize attribute 86

4.7 CWSS customized scores for Transform attribute 86

xv

xvi LIST OF TABLES

4.8 CWSS customized scores for Transfer attribute 86
4.9 CWSS customized scores for Trust attribute 86
4.10 CWSS customized scores for Server attribute 86
4.11 CWSS customized scores for Timeout attribute 86
4.12 CWSS customized scores for Max-Min attribute 87
4.13 CWSS customized scores for Third-party attribute 87
4.14 CWSS customized scores for Spoo�ng attribute 87
4.15 CWSS customized scores for Tampering attribute 87
4.16 CWSS customized scores for Encryption attribute 87
4.17 CWSS customized scores for Attachment attribute 87
4.18 CWSS customized scores for Error & Exception handling attribute 87
4.19 CWSS customized scores for Client-Server Installation attribute . . 88
4.20 CWSS customized scores for Web attribute 88
4.21 Example of individual scores for A0, A1, and A2 90
4.22 Weighting levels for CWE-118 . 91
4.23 Weighting levels for CWE-330 . 91
4.24 Weighting levels for CWE-435 . 91
4.25 Weighting levels for CWE-664 . 92
4.26 Weighting levels for CWE-682 . 92
4.27 Weighting levels for CWE-691 . 92
4.28 Weighting levels for CWE-693 . 92
4.29 Weighting levels for CWE-697 . 93
4.30 Weighting levels for CWE-703 . 93
4.31 Weighting levels for CWE-707 . 93
4.32 Weighting levels for CWE-710 . 93

CHAPTER 1

Overview

The rapidly changing information society has led to an increasing rate of

novel information technology threats, even more with the fast adaptation of

Cloud computing and the hundreds of thousands gigabytes of sensitive

information being shared and distributed over computer networks. The targets

of these new threats range from large scale distributed system, such as the Large

Hadron Collider by the CERN, to industrial (water, power, electricity, oil, gas,

etc.) distributed systems, i.e. SCADA systems. Consequently, security of

distributed systems have been placed under the watchful eye of security

practitioners in government, academia, and industry. This is because, on one

hand, automated tools can �nd basic security errors in source code, but overlook

a signi�cant number of critical and complex vulnerabilities, and, on the other

hand, current security mechanisms of distributed systems - authentication,

authorization, certi�cation, and delegation usually are not in accordance with a

systematic vulnerability assessment process, which is an afterthough even during

the software development life cycle (SDLC).

In addition, conducting a comprehensive vulnerability assessment can be very

expensive and complicated, due to several factors such as the complexity and size

of the systems to be evaluated. Consequently, it would be very helpful to develop

techniques and tools that help the analyst focus on the systems' high value assets.

1

2 CHAPTER 1. OVERVIEW

The consequences of this lack of vulnerability assessment are distributed

systems that can be compromised and exploited cleverly. This work focuses on

the guidance towards a more comprehensive and accurate vulnerability

assessment, characterized by considering the high interoperability between

middleware components for systematically hinting where and why to deploy an

assessment. In vulnerability assessment, security practitioners' goals are both to

uncover as quickly as possible the most likely vulnerabilities, i.e., to be one step

ahead of the attackers, and to provide the developers full details of

vulnerabilities found, i.e., vulnerability reports, including suggested �xes.

The deployment of comprehensive and accurate vulnerability assessment of

critical middleware systems involves a great number of issues. In particular, this

work deals with four of them:

• Selecting and applying a vulnerability assessment methodology, from the

various existing methodologies, needed for focusing the analyst's attention

on the parts of the middleware and its resources that are mostvaluable, and

which are the vulnerabilities they are more likely su�er.

• Selecting and applying a security error classi�cation system, from the

di�erent existing systems, needed for improving analyst's vulnerability

assessment obtaining quality accomplishments during source code

inspection, following the previously selected methodology.

• Reducing the false positive and false negative rates, produced when an

automated vulnerability assessment of an application is performed, such as

when using automated tools, so security analysts have to face hundreds or

thousands of individual bug reports for weaknesses that were discovered or

not really. Forcing the analysts into a situation in which they must

prioritize which issues they should investigate and �x �rst.

• The absence of a formal method that attempts to both systematically use

and connect the information gathered by the vulnerability assessment

methodologies, and the knowledge found on the security error classi�cation

systems.

Throughout this work, workload management systems have been assessed

because most common and frequently used high-end service �t into this kind of

3

critical middleware. In these middlewares, there are several components with

complex interrelationships across di�erent hosts machines, providing lots of large

distributed systems, which mean a signi�cant number of computing resources,

which make them attractive targets for attackers.

In order to perform a comprehensive and accurate vulnerability assessment

for critical middlewares, a methodology is needed. Thus, we considered several

vulnerability assessment approaches and security error classi�cation systems,

from which the First Principle Vulnerability Assessment (FPVA) [42] was

choosen along with the Common Weakness Enumeration (CWE) system [77].

This was decided, on the one hand, not only because FPVA has been

successfully applied to several large and widely-used middleware systems, but

also because a thorough vulnerability assessment requires a systematic approach

that focuses on the key resources to be protected, and allowing detailed analysis

of those parts of the code related to those resources and their trust relationships.

While FPVA was designed to address these requirements, other approaches

are based on lists of known threats, developer team interactions, single

component code analysis, implementation during the whole development

lifecycle; and could lead to a biased analysis, where known vulnerabilities may

be detected only, but may not refer to high value assets, and may result in

critical threats going undetected.

On the other hand, CWE is a widely-used labeling system of security errors,

and because CWE was created to serve as a common language for describing

software security errors; serve as a standard measuring stick for software security

tools targeting these erros; and to provide a common baseline standard for

weakness identi�cation, mitigation, and prevention e�orts.

The methodology presented in this work do vulnerability assessment for

distributed systems, which uses knowledge about the system, consisting on

components and resources obtained with FPVA, and the expertise codi�ed in

CWE for focusing the analyst attention on the most likely attacks on the

highest value system assets. It does not need either access the middleware

source code or meet the developer teams, and does not have to be deployed

during the whole lifecycle. It works by automating part of FPVA, using CWE

for systematically codi�ed security practitioner's expertise in order to be able to

automatically hint which middleware components should be assessed, and why.

4 CHAPTER 1. OVERVIEW

In this work we:

• Use the information gathered at the initial FPVA analysis stages, that is, the

outcome information (the FPVA diagrams) on the middleware architecture,

resources, and privileges analysis.

• Use the impact surface de�nition derived from several vulnerability

assessments conducted by MIST research group [51], along with the well

known attack vector and attack surface de�nitions.

• Use codi�ed rules derived from CWE to connect initial analysis with the

middleware component analysis through our customized version of the CWE

scoring system.

And we obtain a list of security alerts for every attack vector traversed

during the middleware assessment, which are clustered in accordance to the

CWE hierarchical structure chosen, and arranged by the maximum score

obtained.

Therefore from the initial stages of FPVA: the architectural analysis stage

produces a document that diagrams the structure of the system and the

interactions amongst the di�erent components and with the end users. With

this diagrams, the Attack Surface of the system was derived, the Attack Surface

is the set of coordinates from which an attack (interaction user-system) might

start.

Then, the resource analysis stage produces a document that describes for

each resource its value as an end target (such as a database with personnel or

proprietary information) or as an intermediate target (such as a �le that stores

access-permissions). These resources are the target of an exploit. From this

stage, we derived the Impact Surface, as the set of coordinates where exploits or

vulnerabilities might be possible.

Finally, the diagrams produced by the privilege analysis step is a further

labeling of the previous documents with trust levels and labeling of interactions

with delegation information. In this diagrams the Attack Vectors were derived.

An Attack Vector is the sequence of transformations that allows control

ow-data to go from a point in the attack surface to a point in the impact

surface. At a later stage of this work we will introduce in depth the derived

5

elements, how they are depicted in a graph, and we will propose an algorithm to

use all of them for generating the security hints automatically.

We apply AvA4cmi (Attack vector analyzer for complex middleware

interrelationships) methodology to two di�erent workload management systems,

namely, CrossBroker [18] and gLite WMS [8], those systems were previously

assessed manually using FPVA. The AvA4cmi methodology was implemented

and evaluated on both middlewares, with results that showed that the proposed

methodology correlates previous manually found vulnerabilities with several

attack vectors, and corroborates which middleware components should be

assessed and why. These results are not sensitive to source code analysis, which

make they independent from the middleware language programming.

This thesis is organized as follows:

Chapter 2: presents a general introduction to distributed systems, the

architecture and security requirements of grid, cloud, and SCADA

paradigms are outlined, and a review of relevant related work in

vulnerability assessment topic is given.

Chapter 3: describes the First Principles Vulnerability Assessment, which

corresponds to the vulnerability assessment methodology considered

throughout this work. Later, it summarizes the Common Weakness

Enumeration, and its weakness scoring framework used in this work.

Chapter 4: contains the proposed AvA4cmi methodology, its main elements

(i.e., attack vector graphs, knowledge base, system attributes, rules), the

algorithm to support and connect the codi�ed expert knowledge within

AvA4cmi, the results produced by the methodology, and its

implementation details.

Chapter 5: �rst introduces the middleware CrossBroker, and gLite WMS.

Then, it shows the assessment outcomes of both middleware with FPVA.

Finally, a deep comparision is made of the results obtained when these two

middlewares were assessed with the AvA4cmi methodology.

Chapter 6: summarizes the main conclusions derived from this thesis, outlining,

in addition, current and future work.

CHAPTER 2

Introduction

Distributed systems belong to the rapidly changing �eld of computer

sciences, nowadays, they have become more popular given the emergence of

on{demand computing paradigm Cloud, along with the computing paradigm

Grid, as well as due to the SCADA industrial systems. However, although

governmental, commercial, and academic research organizations might have

collaborative or economical reasons to let users share CPU cycles, data, and

resources across geographical and organizational boundaries, still they are

unlikely to fully rely and trust such a distributed infrastructure until they can

rely on the con�dentiality, the integrity, the availability, and the privacy of its

communications, data, resources, and the user information.

Traditional security measures concentrate on isolating systems and protecting

resources with restrictive user policies. For instance, most organizations today

deploy �rewalls, intrusion detection systems, antivirus, and so on, around their

computer networks to protect their sensitive and proprietary data. But security

challenges in distributed systems { authentication, authorization, certi�cation,

and delegation { have not been exempt of issues at all, because distributed systems

security is a multidimensional problem, and most existing projects in grid and

cloud either lack or insu�ciently addressed vulnerability assessment tasks, and

7

8 CHAPTER 2. INTRODUCTION

usually it is an afterthought, even for well funded projects.

In Section 2.1 we introduce most important Grid concepts. Following this,

Section 2.2 presents some Cloud concepts. In Section 2.3, we present a brief

introduction to industrial distributed systems (SCADA) concepts. In section 2.4

we give an overview of the current status of the vulnerability asssessment projects.

Finally, we will review the main contributions of this thesis in Section 2.5.

2.1 Grid

In the middle of 1990s the Grid computing [25] term was proposed for an

analogous infrastructure of wide-area parallel and distributed computing,

inspired by the electrical power grid's pervasiveness, ease of use, and reliability.

A grid enables the sharing, selection, and aggregation of a wide variety of

geographically distributed resources including supercomputers, storage systems,

data sources, and specialized devices owned by di�erent organizations for solving

large-scale resource intensive problems in science, engineering, and commerce.

Generally, for a system to be considered as a grid, it must meet the following

criteria [22]:

(1) “A grid coordinates resources that are not subject to centralized control and

at the same time addresses the issues of security, policy, payment,

membership, and so forth that arise in these settings.”

(2) “A grid must use standard, open, general-purpose protocols and interfaces.

These protocols address fundamental issues such as authentication,

authorization, resource discovery, and resource access.”

(3) “A grid delivers nontrivial quality service, i.e. it is able to meet complex

user demands (e.g. response time, throughput, availability, security, etc.).”

The development of the grid infrastructure has become the focus of a large

community of researchers. The grid systems need to solve several challenges

originating from inherent features of the grid [25]:

• “Multiple administrative domains and autonomy. Grid resources are

geographically distributed across multiple administrative domains and

2.1. GRID 9

owned by different organizations. The autonomy of resource owners needs

to be honored along with their local resource management and usage

policies.”

• “Heterogeneity. A grid involves a multiplicity of resources that are

heterogeneous in nature and will encompass a vast range of technologies.”

• “Scalability. A grid might grow from a few integrated resources to millions.

This raises the problem of potential performance degradation as the size of

the grid increases. Consequently, applications that require a large number of

geographically located resources must be designed to be latency and bandwidth

tolerant.”

• “Dynamicity or adaptability. In a grid, resource failure is the rule rather

than the exception. In fact, with so many resources in a grid, the probability

of some resource failing is high. Resource managers or applications must

tailor their behavior dynamically to use the available resources and services

efficiently and effectively.”

The grid goes further than simply sharing resources and data. A grid enables

new scienti�c collaboration methods, termed e-Science [34], that tackle large

scale scienti�c problems. e-Science enables massively distributed computation,

the sharing of huge data sets almost immediately, and cooperative scienti�c

work to gather new results.

2.1.1 Grid Architecture

Typically, grid architectures are arranged into layers [3], where each layer builds on

the services o�ered by the lower layer, in addition to interacting and co-operating

with components at the same level. Figure 2.1 shows the architecture stack of a

grid proposed by Foster et al. in \The Anatomy of the Grid" . It consists of �ve

layers, fabric, connectivity, resource, collective, and application [27]:

10 CHAPTER 2. INTRODUCTION

Figure 2.1: Grid Architecture[27]

• “Fabric: The fabric layer defines the interface to local resources, which may

be shared. These resources include computational resources, data storage,

networks, catalogs, software modules, and other system resources.”

• “Connectivity: The connectivity layer defines the basic communication and

authentication protocols required for grid–specific networking–service

transactions.”

• “Resource: This layer uses the communication and security protocols

(defined by the connectivity layer) to control secure negotiation, initiation,

monitoring, accounting, and payment for the sharing of functions among

individual resources. The resource layer calls the fabric layer functions to

access and control local resources. This layer only handles individual

resources, ignoring global states and atomic actions across the resource

collection pool, which are the responsibility of the collective layer.”

• “Collective: While the resource layer manages an individual resource, the

collective layer is responsible for all global resource management and

interaction with collections of resources. This protocol layer implements a

wide variety of sharing behaviors using a small number of resource-layer

and connectivity-layer protocols.”

• “Application: The application layer enables the use of resources in a grid

environment through various collaboration and resource access protocols.”

2.1. GRID 11

Grid Middleware

In order to take advantage from all the grid architecture, a Grid middleware is

required, which provides the services needed to support a common set of

applications in a grid ecosystem such as the one in the Figure 2.2. It hides the

underlying infrastructure details and o�ers transparent access to the distributed

resources, allowing collaborative e�orts between organizations.

The middleware sits between the fabric and application layers of the grid

architecture, keeping them loosely-coupled with a set of interfaces and protocols.

In the bottom of the middleware is the myriad of underlying resources upon which

the services are built (local operating systems, networks, �le systems, etc.), and

the top is where the applications are located.

Between the most commonly used grid middleware [15] are the Globus Toolkit

[24], CONDOR [29], and gLite [70], which are in continuous development together

with the most known grid infrastructure projects, EGI-EMI [40], OSG [55], and

so on.

Figure 2.2: Grid Ecosystem [16]

2.1.2 Grid Security

Independently from the grid middleware or grid architecture implemented, one

of the grid computing goals is making \virtual organizations" across one or more

physical organizations (or \administrative domains"). These virtual organizations

require common solutions for resource management, data management and access,

application development environments, and information services.

One of the most signi�cant challenge for Grid computing is to develop a

12 CHAPTER 2. INTRODUCTION

comprehensive set of mechanisms and policies for securing the Grid; where users

need to know if they are interacting with the \right" piece of software or human,

and that their messages will not be modi�ed or stolen as they traverse the

virtual organization. Also, where users will often require the ability to prevent

others from reading data that they have stored in the virtual organization.

In addition, while the virtual organization certainly could de�ne some common

security mechanisms and policies across the entire virtual organization, a site that

provides resources to a Grid might now have to consider opening some access

points that were closed in the process of securing the host or site so that the

resource can be utilized by non-local members of the virtual organization. In short,

users must trust the software infrastructure of the Grid to su�ciently prevent

malicious activities, and viceversa.

The Grid security requirements [36, 35, 30, 23] can be grouped into several

broad categories each with its own challenges:

Naming and authentication

The assignment of some identi�er to a unique person, resource or other entity is

called Naming, hence it can be used for authorization and auditing. Hence, it is

taken some thought for de�ning a global Grid identi�er. The X.509 names,

derived from the X.500 standard, are commonly used by Grid software to

provide global names for users and hosts [82]. Authentication in a computer

environment is the process of associating a real world identity with a request to

a machine. Authentication takes place when the connecting entity provides a

unique-id and the authenticating agent can verify that the id legitimately

represents the connecting entity.

In Grids, authentication across many domains is possible due to a loosely

coupled approach, the Public Key Infrastructure (PKI) technology. The most

common public key authentication protocol in use in Grids today is the Transport

Layer Security (TLS) protocol [14], that was derived from the Secure Sockets Layer

(SSL) v3 protocol [28]. TLS uses an X.509 public key certi�cate [82], which binds

a multi-component meaningful name, called a Distinguished Name (DN), to a

public key.

2.1. GRID 13

Communication

A secure communication requires the ability of two or more entities to establish

a conversation with con�dentiality, and integrity. To address this the parties

in the communication have to authenticate each other, and the corresponding

communication channel have to support integrity checking, and of course the

con�dentiality. So, integrity is typically provided using standard hash algorithms,

and con�dentiality is provided using encryption.

Di�erent mechanisms exist for securing communication channels. Today, the

most common way is the usage of asymmetric cryptography, instead of sharing

a secret key. If the parties wish to communicate, they can publish their \public

keys" in a place accessible for the other parties, so they can retrieve the \public

keys" for using in asymmetric cryptography. In the Grid systems, the only public

key published is from the Certi�cation Authority (CA) that signed the individual

public keys. This becomes a root of trust for identity in the PKI. Any public key

signed by the trusted CA is trusted to represent a unique individual or entity.

These keys can be used by protocols such as TLS or IPSec [31] to establish a

symmetric session key that is known by both ends of the authenticated connection

and used in all subsequent communications. On top of the TLS protocol is built

the Grid Security Infrastructure (GSI), the principles of GSI are described in

[26, 7].

Trust management

To have con�dence that a party will behave in an expected manner even in the

absence of ability to monitor or control it, is named Trust. The management

of trust is the process of deciding what parties are to be trusted to do what

actions. Trust management consists of de�ning the sources of authority for user

identi�cation, attribute assignment and possibly policy creation.

According by the GGF Grid Policy research group [30], a policy is a set of

principals or rules that regulate the behavior of a system. External representations

of a policy are highly desirable, in order to achieve
exibility, transparency and

scalability of a system. Policies related to security may regulate trust, including

delegation of trust, authentication, authorization, and levels of message or data

integrity and con�dentiality.

14 CHAPTER 2. INTRODUCTION

Delegation

In the di�erent Grid usage scenarios is required that an agent impersonates a

principal. When a user ask to a service to perform some operation on her behalf,

the conventional approach is to grant unlimited delegation, which is to

unconditionally grant the service the ability to act on behalf of the user.

Into general-purpose computational Grids, the services can not be wholly

trusted by the users who wish to invoke them. This is a not reasonable approach

for general-purpose Grids, and it is clearly not scalable.

The crucial issue for Grid delegation, is the determination of those privileges

that should be granted by the user to the service and the circumstances under

which those privileges are valid. It is clear that delegating too many privileges

could lead to abuse, while delegating too few privileges could prevent a task to

be completed.

Grid security requirements make it clear that vulnerability assessment does

not belong to their potential. Despite being numerous articles in the literature

on mechanisms and protocols (i.e., PKI, X.509, etc.) extensively studied, which

implement Grid security requirements, they are not enough to fully protect Grid

resources and services from both malicious users and actions. Proof of this are the

reports of vulnerabilities found by the MIST group [51], in di�erent well-known

Grid middlewares.

2.2 Cloud

Security practitioners and researchers are continuously aware with news, and

literature about the trends of information technologies. Many of these trends are

not arriving alone, not to say all of them, so new trends also imply novel

information technology threats. Cloud computing is one of these new trends.

Cloud is “a catch-all term that describes the evolutionary development of many

existing technologies and approaches to computing that, at its most basic,

separates application and information resources from the underlying

infrastructure and mechanisms used to deliver them with the addition of elastic

scale and the utility model of allocation” [2].

Cloud enhances collaboration, agility, scale, availability and provides the

potential for cost reduction through optimized and e�cient computing. More

2.2. CLOUD 15

speci�cally, cloud describes the use of a collection of distributed services,

applications, information and infrastructure comprised of pools of compute,

network, information and storage resources. These components can be rapidly

orchestrated, provisioned, implemented and decommissioned using an

on-demand utility-like model of allocation and consumption [54]. Cloud services

are most often, but not always, utilized in conjunction with and enabled by

virtualization technologies to provide dynamic integration, provisioning,

orchestration, mobility and scale.

This model is architecturally similar to grid computing, but where grids are

used for loosely coupled technical research computing applications, this new

cloud model has been applied to Internet services [31]. Understanding how

Cloud Computing architecture impacts security requires an understanding of

cloud's principal characteristics, the manner in which cloud providers deliver

and deploy services, how they are consumed and ultimately how they need to be

safeguarded.

2.2.1 Cloud Architecture

Cloud services are based upon �ve principal characteristics that demonstrate their

relation to, and di�erences from, traditional computing approaches [2]:

• “Abstraction of Infrastructure: The compute, network and storage

infrastructure resources are abstracted from the application and

information resources as a function of service delivery. Where and by what

physical resource that data is processed, transmitted, and stored on becomes

largely opaque from the perspective of an application or services ability to

deliver it. Infrastructure resources are generally pooled in order to deliver

service regardless of the tenancy model employed – shared or dedicated.

This abstraction is generally provided by means of high levels of

virtualization at the chipset and operating system levels or enabled at the

higher levels by heavily customized file systems, operating systems or

communication protocols.”

• “Resource Democratization: The abstraction of infrastructure yields the

notion of resource democratization – whether infrastructure, applications,

or information – and provides the capability for pooled resources to be

16 CHAPTER 2. INTRODUCTION

made available and accessible to anyone or anything authorized to utilize

them using standardized methods for doing so.”

• “Services Oriented Architecture: As the abstraction of infrastructure from

application and information yields well-defined and loosely-coupled resource

democratization, the notion of utilizing these components in whole or part,

alone or with integration, provides a services oriented architecture where

resources may be accessed and utilized in a standard way. In this model,

the focus is on the delivery of service and not the management of

infrastructure.”

• “Elasticity – Dynamism: The on-demand model of Cloud provisioning

coupled with high levels of automation, virtualization, and ubiquitous,

reliable and high-speed connectivity provides for the capability to rapidly

expand or contract resource allocation to service definition and

requirements using a self-service model that scales to as-needed capacity.

Since resources are pooled, better utilization and service levels can be

achieved.”

• “Utility Model of Consumption & Allocation: The abstracted, democratized,

service-oriented and elastic nature of Cloud combined with tight automation,

orchestration, provisioning and self-service allows for dynamic allocation of

resources based on any number of governing input parameters. Given the

visibility at an atomic level, the consumption of resources can then be used to

provide an “all-you-can-eat” but “pay-by-the-bite” metered utility-cost and

usage model. This facilitates greater cost efficiencies and scale as well as

manageable and predictive costs.”

Cloud service delivery models:

Three archetypal models and the derivative combinations thereof generally

describe cloud service delivery. The three individual models are often referred to

as the \SPI Model", where \SPI" refers to Software, Platform and

Infrastructure (as a service) respectively and are de�ned thusly [46]:

Software as a Service (SaaS): “The capability provided to the consumer is to

use the provider’s applications running on a cloud infrastructure and

2.2. CLOUD 17

accessible from various client devices through a thin client interface such

as a Web browser (e.g., web-based email). The consumer does not manage

or control the underlying cloud infrastructure, network, servers, operating

systems, storage, or even individual application capabilities, with the

possible exception of limited user-specific application configuration

settings”.

Platform as a Service (PaaS): “The capability provided to the consumer is

to deploy onto the cloud infrastructure consumer-created applications using

programming languages and tools supported by the provider (e.g., java,

python, .Net). The consumer does not manage or control the underlying

cloud infrastructure, network, servers, operating systems, or storage, but

the consumer has control over the deployed applications and possibly

application hosting environment configurations”.

Figure 2.3: Cloud Architecture [84]

Infrastructure as a Service (IaaS): “The capability provided to the consumer

is to rent processing, storage, networks, and other fundamental computing

resources where the consumer is able to deploy and run arbitrary software,

which can include operating systems and applications. The consumer does

not manage or control the underlying cloud infrastructure but has control

over operating systems, storage, deployed applications, and possibly select

networking components (e.g., firewalls, load balancers)”.

18 CHAPTER 2. INTRODUCTION

Understanding the relationship and dependencies between these models is

critical. IaaS is the foundation of all Cloud services with PaaS building upon

IaaS, and SaaS – in turn – building upon PaaS (see Figure 2.3). Narrowing the

scope or specific capabilities and functionality within each of the *aaS offerings

or employing the functional coupling of services and capabilities across them

may yield derivative classifications. For example “ Storage as a Service” is a

specific sub-offering within the IaaS family, “ Database as a Service” may be seen

as a derivative of PaaS, etc.

2.2.2 Cloud Security

According to a recent IDC cloud research [37], it shows that worldwide revenue

from public IT cloud services exceeded $21.5 billion in 2010 and will reach $72.9

billion in 2015, representing a compound annual growth rate of 27.6%. This

rapid growth rate is over four times the projected growth for the worldwide IT

market as a whole (6.7%). Also, because of the need to reduce costs and enable IT

responsiveness to business change is driving more and more applications, including

critical ones, such as in the CERN [20], to various types of cloud platforms. From

a security point of view, the cloud’ s economies of scale and flexibility are both a

friend and a foe, due that massive concentrations of resources and data, so them

present a more attractive target for the attackers.

Whether adopted in public, private or hybrid form, or delivered as IaaS, PaaS

or SaaS, the cloud imposes unique and stringent security requirements. These

security requirements are responsible for describing: Who manages it?, Who owns

it?, Where it’ s located?, Who has access to it?, and How it’ s accessed? [44].

Figure 2.4 illustrates the summarization of these points.

Figure 2.4: Cloud Service Management [44]

2.2. CLOUD 19

In accordance with [5, 33, 39, 2, 48], Cloud security requirements can be

grouped into several broad categories each with its own challenges.

Robust security

Providing robust security { means moving beyond a traditional perimeter-based

approach to a layered model that ensures the proper isolation of data, even in a

shared, multitenant cloud. This includes content protection at di�erent layers in

the cloud infrastructure, such as at the storage, hypervisor, virtual machine and

database layers. It also requires mechanisms to provide con�dentiality and access

control. These may include encryption, obfuscation and key management, as well

as isolation and containment, robust log management and an audit infrastructure.

Trust and assurance

To provide trust and assurance, the user (or company) needs to have con�dence

in the integrity of the complete cloud environment. This includes the physical

data centers, hardware, software, people and processes employed by the provider.

The service provider needs to establish an evidence-based trust architecture and

control of the cloud environment, through adequate monitoring and reporting

capabilities to ensure the customer of transparency around security events. This

should include audit trails that help the customer meet internal and external

demands for provable security, as well as automated noti�cation and alerts that

support the user's existing problem or incident management protocols so it can

manage its total security pro�le. Collectively, these capabilities can assure the

user of the operational quality and security of the cloud provider. Companies also

need to take an active role in governing their cloud implementations and taking

action on the information delivered by the provider.

Monitoring and governance

Monitoring and governance { provide utilities that allow users to monitor the

environment for security, as well as ensure compliance with other KPIs, such as

performance and reliability. Using these utilities, customers should be able to

perform these activities almost as well as they could in their own data centers.

Just as importantly, these utilities allow users to take appropriate action based

20 CHAPTER 2. INTRODUCTION

on the security information received from the provider. These actions might

include shutting down an application that appears to be under attack or forcing

the provider to tighten its procedures if critical updates or patches are not being

applied on time.

Isolation

To ensure isolation within a multitenant environment, service providers often

employ multiple virtual data centers, each on its own virtual LAN, to maintain

customer data separation. For further security, each virtual data center can be

con�gured into one or more trust clusters (each including, for example, separate

Web servers, application servers and database zones), separated by demilitarized

zones (DMZs) and virtual �rewalls to ensure multitenancy security.

Confidentiality

Con�dentiality is provided by encryption and/or obfuscation based on business

requirements. Encryption might seem like the most complete and foolproof

protection, but by completely obscuring the characteristics of the data, it can

defeat indexing and search capabilities and increase the expense of �ltering,

querying or consolidation. Obfuscation retains enough properties of the data to

allow these operations, as well as any other that relies on the semantics of data,

while obscuring the data su�ciently to destroy its value if compromised. While

obfuscation has traditionally been used as a one-way (nonreversible) masking

technology, using obfuscation in the cloud to protect data requires the use of

new architectures and approaches (such as tokenization) that enables access to

the original non-obfuscated data as needed under tight security control.

Access control

Identity management and provisioning platforms ensure that only authorized

users can see the appropriate applications and data. This needs to be backed by

compliance and audit and log management, so that companies have a record of

which users accessed (or tried to access) which resources, and when. In a cloud

environment, access and identity management (which proves users are who they

claim to be) is often provided through federated identity management that

2.3. SUPERVISORY CONTROL AND DATA ACQUISITION 21

allows users to use their existing IT management systems in the cloud.

Authentication, authorization and validation processes also help to ensure access

and identity control. Providers may also need to ensure the integrity of data and

messages (whether in transit or resident in the cloud) through strong

authentication or other means to make sure data has not been compromised in

transit.

So far, despite Cloud security requirements appear to be improved over Grid

security requirements, they are not still fully aware about a thorough vulnerability

assessment. Moreover, both Cloud and Grid share similiar security features, such

as the PKI framework, and so on.

2.3 Supervisory Control And Data Acquisition

Nowadays, Supervisory Control And Data Acquisition (SCADA) systems, such

as energy, oil, gas, water, chemical, and nuclear facilities has become very

important, not only because they are vital for operating these critical

infrastructures, but also because they are in the mirror of specialized attackers,

which have been hired for some governments, due to the interest for �ghting in

most cases against countries which suppose are supporting worldwide terrorism

groups. As a consequence, distributed and networked generation of SCADA

systems (�gure 2.5) are now being exposed to threats and vulnerabilities they

have never been exposed to before, and to a much greater extent than earlier,

despite the fact SCADA have been in use more than 40 years. SCADA

development started before the widespread use of Internet, when the need for

computer security mostly consisted of protecting the physical access to the

system. In the last ten years, the number of connections to SCADA systems and

the use of internet-based techniques have increased rapidly. SCADA systems

have also moved from using proprietary protocols and software to using the

same standards and solutions as administrative IT systems.

It is sometimes stated that while the prioritization in traditional information

security is CIA (Con�dently, Integrity, and Availability) the prioritization for

SCADA systems is typically AIC (Availability, Integrity, Con�dently) [73].

Moreover, many times is argued that SCADA system security is di�erent from

traditional IT security because of the environment the SCADA systems are used

22 CHAPTER 2. INTRODUCTION

Figure 2.5: SCADA architecture[19]

within, and the requirements placed on them. As a consequence, a large number

of recommendations, guidelines and regulations [6, 50, 53] that describe matters

speci�cally related to SCADA security has been developed.

These standards (i.e. recommendations, guidelines and regulations) provide

elaborate descriptions in terms of requirements that are placed on the system.

For example, performance requirements: control systems are time-critical and

real-time whereas information technology systems only require consistent

response times and are not real-time [17]. Therefore, these general purpose

security standards are used as basis for policies and practices applied to SCADA

systems. And moreover, there has been no comprehensive analysis of how

recommendations given in SCADA standards can encourage a vulnerability

assessment process, and thus avoid new threats and attacks.

2.4 Vulnerability Assessment

As security has become almost imperative requirement today, with many

computing projects deploying its own security features (but low standard

compliance rates), which range from smartphones bank applications, to complex

LHC Computing Grid middleware, vulnerability assessment is needed to protect

most valuable assets of a system.

In traditional IT security, many de�nitions about what a vulnerability is can

2.4. VULNERABILITY ASSESSMENT 23

be found on [71, 38, 72], this thesis follows the NIST de�nition [72]:

\A flaw or weakness in system security procedures, design,

implementation, or internal controls that could be exercised

(accidentally triggered or intentionally exploited) and result in a

security breach or a violation of the system’s security policy."

Therefore, following the NIST criteria, a vulnerability assessment is:

\The process by which we evaluate the susceptibility or risk factor of

a component or system as a whole, to be totally or partially damaged

by the impact of a threat."

On the one hand, this process can be achieved by automated tools, which is quite

attractive, due to vulnerability assessment is a repetitive, expensive, and time

consuming task. But also, it requires quali�ed practitioner's knowledge to know

how interpreting the tool's outcomes, because “a fool with a tool is still a fool”

(Booch, Jacobson and Rumbaugh, developers of the Uni�ed Modeling Language).

Figure 2.6: Gartner SAST Magic Quadrant 2013

24 CHAPTER 2. INTRODUCTION

The behaviour of the tools is to analyze an application from the \inside out"

in a nonrunning state, �nding common problems, analyzing application source

code, byte code and binaries for coding and design conditions that are indicative

of security vulnerabilities, matching it against either a list or a database of well

known software security errors (vulnerability taxonomies will be discussed later

in this section).

Eventually, these tools can add a sense of security during the software

development life cycle (SDLC), but at the end overlook critical and complex

vulnerabilities, even the best of these tools (�gure 2.6) �nd only a small

percentage of the serious critical and complex vulnerabilities [41]. That means,

both open source and commercial automated tools for vulnerability assessment

su�er from false negatives and false positives. A false positive is, a reported

security vulnerability in a program that is not indeed a vulnerability. The

problem with the false positives is that a great number can induce to many

issues, e.g. if a developer faced with a long list of false positives he could miss

out important data hidden in the list. Also, other problem with false positives is

that project managers and team developers are more bowed to think that the

tools are not useful and, therefore, they will not use them.

In any case, false negatives are worse, as in many other disciplines related

with uncertainty. A false negative is de�ned as a vulnerability in the code which

is not detected by the tool. The penalization associated with a false positive is the

quantity of time used to check the results of the tool. The penalization associated

with a false negative is much greater because, in this case, the vulnerability will

remain in the code. If a tool does not �nd a concrete vulnerability (false negative),

�nding it by any other method is more di�cult than discarding false positives.

On the other hand, vulnerability assessment also can be achieved throughout

manual approach methodologies, which in turn can be used to reduce false

negatives, and avoid false positives. Between the common methodologies are the

Microsoft's threat modeling [74], the operationally critical threat, assess, and

vulnerability evaluation (OCTAVE) [1] by the Carnegie Mellon University, the

open source security testing methodology from the ISECOM institute [21], and

the �rst principles vulnerability assessment (FPVA) [42] jointly developed by the

University of Wisconsin-Madison & Universidad Aut�onoma de Barcelona. Below

we present a brief description of the mentioned methodologies.

2.4. VULNERABILITY ASSESSMENT 25

2.4.1 Microsoft Threat Modeling

Threat Modeling is a core element of the Microsoft security development

lifecycle (SSDL)[74]. As part of the design phase of the SDL, it allows software

architects to identify and mitigate potential security issues early, when they are

relatively easy and cost-e�ective to resolve. Therefore, it helps reduce the total

cost of development. Basically, the threat modeling allows you to systematically

identify and rate the threats that are most likely to a�ect your system. By

identifying and rating threats based on a solid understanding of the architecture

and implementation of your application, you can address threats with

appropriate countermeasures in a logical order, starting with the threats that

present the greatest risk.

The Microsoft threat modeling process is composed by the following steps:

(1) Identify the valuable assets that your systems must protect.

(2) Use simple diagrams and tables to document the architecture of your

application, including subsystems, trust boundaries, and data
ow.

(3) Decompose the architecture of your application, including the underlying

network and host infrastructure design, to create a security pro�le for the

application. The aim of the security pro�le is to uncover vulnerabilities in

the design, implementation, or deployment con�guration of your application.

(4) Keeping the goals of an attacker in mind, and with knowledge of the

architecture and potential vulnerabilities of your application, identify the

threats that could a�ect the application. Two approaches are proposed for

that: (a) STRIDE is the Microsoft acronym to categorize di�erent threat

types. STRIDE stands for Spoo�ng (using a false identity to gain access to

the system), Tampering (unauthorized modi�cation of data), Repudiation

(denial of performed operations), Information disclosure (unwanted

exposure of private data), Denial of service (make the application

unavailable), and Elevation of privilege (gain privileged access to the

application). (b) To use categorized threat lists for network, host and

application threats.

(5) Document each threat using a common threat template that de�nes a core

set of attributes to capture for each threat.

26 CHAPTER 2. INTRODUCTION

(6) Rate the threats to prioritize and address the most signi�cant threats �rst.

These threats present the biggest risk. The rating process weighs the

probability of the threat against damage that could result should an attack

occur. It might turn out that certain threats do not warrant any action

when you compare the risk posed by the threat with the resulting

mitigation costs.

There are some issues with Microsoft's methodology, after developing the

architectural overview of the application, it applies a list of pre-de�ned and

known possible threats, and tries to see if the application is vulnerable to these

threats. As a consequence only known vulnerabilities may be detected, and the

vulnerabilities detected may not refer to high value assets. And, additionaly

Microsoft's threats identi�cation suggest a brainstorming with the developers

and test teams. These interactions could lead to a biased analysis and may

result in threats going undetected.

2.4.2 OCTAVE

The Operationally Critical Threat, Asset, and Vulnerability Evaluation, de�ne

the essential components of a comprehensive, systematic, context-driven

information security risk evaluation [1]. By following the OCTAVE Method, an

organization can make information protection decisions based on risks to the

CIA (Con�dently, Integrity, and Availability) of critical information technology

assets. The operational or business units and the IT department work together

to address the information security needs of the enterprise. Using a three-phase

approach, OCTAVE examines organizational and technology issues to assemble

a comprehensive picture of the information security needs of the enterprise.

The Phases of OCTAVE are:

• Build Asset-Based Threat Pro�les: This is an organizational evaluation.

Key areas of expertise within the organization are examined to identify

important information assets, the threats to those assets, the security

requirements of the assets, what the organization is currently doing to

protect its information assets (protection strategy practices), and

weaknesses in organizational policies and practice (organizational

vulnerabilities).

2.4. VULNERABILITY ASSESSMENT 27

• Identify Infrastructure Vulnerabilities: This is an evaluation of the

information infrastructure. The key operational components of the

information technology infrastructure are examined for weaknesses

(technology vulnerabilities) that can lead to unauthorized action.

• Develop Security Strategy and Plans: Risks are analyzed in this phase. The

information generated by the organizational and information infrastructure

evaluations (Phases 1 and 2) are analyzed to identify risks to the enterprise

and to evaluate the risks based on their impact to the organization's mission.

In addition, a protection strategy for the organization and mitigation plans

addressing the highest priority risks is developed.

Like Microsoft, OCTAVE integrates people from di�erent areas to the analysis,

and thus the results may be biased too. And being a methodology focused on the

assets that are important for an organization, like information, systems, software,

hardware and people, makes it more general methodology in scope.

2.4.3 OSSTM

The Open Source Security Testing Methodology is provided by the ISECOM

institute [21], it is an open source methodology, and a peer-reviewed

methodology for performing security tests and metrics. OSSTMM encompasses

any interaction, with any asset within the whole operating security environment,

including the physical components of security measures as well. The

methodology mandates that all the threats must be considered possible, even if

not probable. The methodology scope is organized in three channels: COMSEC

(communications security), PHYSSEC (physical security), and SPECSEC

(spectrum security). Channels are the means of interacting with assets, where

an asset is de�ned as anything of value to the owner. The three main channels

are split into 5 sub-channels: human, physical, wireless communication, data

networks, and telecommunications. The OSSTM follows a four point process to

perform security tests:

(1) Induction: What can we tell about the target from its environment? How

does it behave in that environment? If the target is not in
uenced by its

environment, that's interesting too.

28 CHAPTER 2. INTRODUCTION

(2) Inquest: What signals (emanations) does the target give o�? Investigate

any tracks or indicators of those emanations. A system or process generally

leaves a signature of interactions with its environment.

(3) Interaction: What happens when you poke it? This point calls for echo

tests, including expected and unexpected interactions with the target, to

trigger responses.

(4) Intervention: How far will it bend before it breaks? Intervene with the

resources the target needs, like electricity, or meddle with its interactions

with other systems to understand the extremes under which it can continue

operating.

OSSTMM describes 17 modules to analyze each of the sub-channels.

Consequently, the tester has to perform 17*5 = 85 analyses before being able to

write the �nal report. And being considered not a corporative but an

operational methodology, it does not explain how security tests should be

performed. It its more focused on which items need to be tested, what to do

before, during, and after a security test, and how to measure the results.

2.4.4 FPVA

First Principles Vulnerability Assessment [42] is a primarily analyst-centric

(manual) approach to assessment, whose aim is to focus the analyst's attention

on the parts of the software system and its resources that are mostly likely to

contain vulnerabilities that would provide access to high-value assets. FPVA

proceeds in �ve steps:

(1) Architecture analysis: identi�es key structural components in a middleware

system, including modules, threads, processes, and hosts.

(2) Resource analysis: identi�es the key resources accessed by each component,

and the operations supported on those resources.

(3) Privilege and Trust analysis: identi�es the trust assumptions about each

component, answering such questions as how are they protected or who can

access them.

2.4. VULNERABILITY ASSESSMENT 29

(4) Component analysis: examines each component in depth. This step is

guided by information obtained in the �rst three steps, helping to

prioritize the work.

(5) Results Dissemination: includes reporting the vulnerabilities to the

development team. After the vulnerabilities are �xed FPVA suggests that

notice of vulnerabilities be released in an abbreviated form when the new

version of the software is released.

This approach has a couple of advantages. First, it allows us to �nd new

vulnerabilities, not just exploits based on those that were previously discovered.

Second, when a vulnerability is discovered, it is likely to be a serious one whose

remediation is of high priority. The above are a twofold reason quite signi�cant,

whereby we have considered FPVA to develop this work, and it will be detailed

later in the next chapter.

Revised both the tools and the methodologies, we introduce the vulnerability

taxonomies. The aim of de�ning a vulnerability taxonomy is to organize sets of

security rules that can be used to help software developers and security

practitioners understand the kinds of errors that have an impact on security.

Because today developers are not yet half aware of the several ways they can

introduce security problems into their work, thus vulnerability taxonomies

should provide tangible bene�ts to the computer security community. In the

following subsections we reviewed the most used taxonomies in vulnerability

assessment, in order to achieve the goals of this research work.

2.4.5 The 7 Pernicious Kingdoms

McGraw et al. [45] developed a taxonomy based on speci�c type of coding errors

(i.e. a phylum that is for example a illegal pointer value) and a collection of phyla

called a kingdom that share a common theme (for example input validation). The

7 Pernicious Kingdoms taxonomy has the following classi�cation:

• Input Validation and Representation

• Api Abuse

• Security Features

30 CHAPTER 2. INTRODUCTION

• Time and State

• Errors

• Code Quality

• Encapsulation

• Environment

For example under input validation and representation you might have bu�er

over
ows, cross site scripting (XSS), SQL injection and many others, under API

abuse you might have unsafe string manipulation APIs, under time and state

you might have TOCTOU (time to check time to execute), etc. The �rst seven

kingdoms are associated with security defects in source code, while the last one

describes security issues outside the actual code.

The McGraw classi�cation does not aim to be stringent from the classi�cation

point of view but rather to be useful. According to McGraw the classi�cation is

not theoretically complete and can change but also points out that can serve well

a classi�cation for errors (i.e. security
aws) to be part of both a manual and

automatic code review (i.e. static code parsers).

2.4.6 CLASP

The \Comprehensive, Lightweight Application Security Process" [83] is a root

cause and a high-level classi�cation, it identi�es 104 underlying problem types

that form the basis of security vulnerabilities in application source code, providing

a well organized and structured approach for moving security concerns into the

early stages of the software development life cycle (SDLC), whenever possible.

This taxonomy has three perspectives: How(genesis) the problem entered the

system, When(time of introduction) the problem entered the system, and Where

(location) the problem manifested, and depending the point of introduction into

the SDLC, CLASP can be classi�ed in a hierarchical view:

• Level 1: Identify Range and Type of Errors. Part of level 1 you might have

bu�er over
ows (introduced during Requirements, Design and

Implementation), Command Injection (design and implementation), and

Double Free (implementation).

2.4. VULNERABILITY ASSESSMENT 31

Level 1.1: Identify Environment Problems. Part of level 1.1 you might

have resource exhaustion (design and implementation).

Level 1.2: Identify Synchronization and timing errors, TOCTOU, and

race conditions (design and implementation).

Level 1.3: Identify Protocol Errors. Misuse of cryptography (design).

Level 1.4: Identify Generic logic Errors. Performing a chroot without a

chdir (implementation).

CLASP is e�ective in determining root causes of security
aws with emphasis

when in the SDLC is actually might originate helping architects and developers

to build security into the SDLC. CLASP taxonomy struggles to provide a reliable

lexicon for security
aws classi�cation but some of the issues in the taxonomy

cannot be actually classi�ed as security problems.

2.4.7 OWASP Top 10

The OWASP [68] Top 10 is determined by the Open Web Application Security

Project (OWASP), it represents a broad consensus on the most critical web

application security
aws. The errors on the top 10 occur frequently in web

applications, are often easy to �nd, and easy to exploit. The current 2013 top 10

is as follows:

• A1 Injection [58].

• A2 Broken Authentication and Session Management [60].

• A3 Cross-Site Scripting (XSS) [61].

• A4 Insecure Direct Object References [62].

• A5 Security Miscon�guration [63].

• A6 Sensitive Data Exposure [64].

• A7 Missing Function Level Access Control [65].

• A8 Cross-Site Request Forgery (CSRF) [66].

• A9 Using Components with Known Vulnerabilities [67].

32 CHAPTER 2. INTRODUCTION

• A10 Unvalidated Redirects and Forwards [59].

The latest top 10 (2013) is based on 8 datasets from 7 �rms specialized in

application security (4 consulting companies and 3 tool/SaaS vendors). This

datasets span over 500,000 vulnerabilities across hundreds of organizations and

thousands of applications. The top 10 items are selected and prioritized according

to this prevalence data, in combination with consensus estimates of exploitability,

detectability, and impact estimates.

Such as the other taxonomies, the OWASP Top 10 has never looked

substantially di�erent. There is not much di�erence between the 2003 and 2013

list, usually one category is added, one category is removed, and a few categories

are repositioned. Thus, despite web applications are becoming more common

components from middlewares, a top 10 classi�cation is not enough for the

purposes of this work.

2.4.8 Common Weakness Enumeration (CWE)

The CWE [77] is a list of common software weaknesses. In this context security

weaknesses are
aws, faults, bugs, vulnerabilities, and other errors in any stage

of SDLC that if left unaddressed could result in computers and networks being

vulnerable to attack. CWE could be roughly described as a three tiered

taxonomy, the tier one consist of the full CWE List (hundreds of nodes); the tier

two consists of descriptive a�nity groupings of individual CWEs, which is called

the Development View; and the tier three consists of high level groupings

(pillars) of the intermediate nodes to de�ne strategic classes of vulnerabilities,

which is called the Research View.

CWE encompass a large portion of the CVE [76] list's (15,000 CVE names),

it also includes detail, and classi�cation structure from a diverse set of other

industry and academic clasi�cations including the McGraw/Fortify \7

Kingdoms" taxonomy; OWASP \Top 10"; and Secure Software's CLASP

project, among others. Due to which gives CWE a substantial weight to be

chosen as our taxonomy, more speci�cally the CWE Research View approach is

used in this research work. To further support our decision, we quote the words

of McGraw:

“Christey’s and Martin’s put vulnerability taxonomy at the other end

2.5. CONTRIBUTIONS 33

of the ambiguity spectrum – the vulnerability categories are much

more specific than in any of the other taxonomies. An attempt to

draw parallels between theoretical attacks and vulnerabilities known in

practice is an important contribution and a big step forward from

most of the earlier taxonomies.”

In addition, considering when a vulnerability assessment is performed over

a system and because of the high volume of weaknesses reported, a method for

identifying which of these dangerous weaknesses would be most harmful to a

particular organization is needed, given the intended use of a speci�c piece of the

system within that organization. To address this need, in this work we use a

modi�ed version of the Common Weakness Scoring System (CWSS) [78], which

is provided as part of the CWE project.

CWE and CWSS will be described in detail in the next chapter.

2.5 Contributions

The developing of a vulnerability assessment in a distributed system arises from

a set of challenges that have not been addressed completely before. Most of the

vulnerability assessment tools and techniques are devoted to source code review

and/or application during the development life cycle. The high interoperability

between middleware components is not addressed by current tools or techniques

for systematically hinting where, and why to deploy an assessment. In this work

we propose a comprehensive solution that deals with both the high interoperability

between middleware components and focusing the analyst attention on the most

likely attacks on the highest value middleware assets. The main contributions of

this work are the following:

(1) The de�nition of a methodology AvA4cmi focusing on the guidance

towards a more comprehensive and accurate vulnerability assessment. This

methodology deals with the high interoperability between middleware

components for sistematically hinting where, and why to deploy an

assessment.

(2) The de�nition and design of attack vector graphs that allow both the

insertion and use of the derived element by \MIST research group" (i.e.,

34 CHAPTER 2. INTRODUCTION

impact surface), as well as the well known terms attack surface and attack

vector, conforming to the proposed methodology. The attack vectors

graphs are depicted as an extension of GraphML, an XML-based �le

format for graphs.

(3) An algorithm (formal method) that traverse attack vectors using knowledge

about the middleware, generated with the application of FPVA, and the

expertise codi�ed in CWE for focusing the analyst attention on the most

likely attacks on the highest value system assets.

(4) An experimental study where we compare the bene�ts of the proposed

methodology against previous manual vulnerability assessment in

distributed systems. We also deliver the outcomes of the study as

prioritized and hierarchized list of likely weaknesses, which can lead to

exploitable vulnerabilities.

2.6 Conclusions

In this chapter we have introduced the background material which is required to

read the remainder of this work. Cloud and Grid computing are important

platforms for the next generation of either scienti�c or commercial applications,

where new threats arise due to the large number of highest value assets.

Additionally, we introduced the distributed and networked generation of

SCADA systems, where these critical infrastructures are in the mirror of

specialized attackers. The vulnerability assessment is an essential part for the

security of distributed systems, which is not a de-facto standar for their current

security mechanisms.

Vulnerability assessment has become almost imperative requirement today

with most recent projects deploying its own security features. We outlined some

of the methodologies in vulnerability assessment and we reviewed the di�erent

approaches for vulnerability classi�cation. Among these we found FPVA and

CWE, a methodology and clasi�cation approach on which this work is based.

CHAPTER 3

FPVA & CWE: Foundations

In this chapter, we make a depth presentation of the vulnerability assessment

methodology, and the vulnerability classi�cation system followed in work. In

Section 3.1., we present First Principles Vulnerability Assessment (FPVA), the

step by step methodology to perform a vulnerability assessment, a summary of

results achieved by FPVA, and its key accomplishments. Then, Section 3.2

presents the Common Weakness Enumeration (CWE), and its scoring

framework, the Common Weakness Scoring System (CWSS).

3.1 First Principles Vulnerability Assessment

The approach called First Principles Vulnerability Assessment (FPVA) was

developed by the Middleware Security and Testing (MIST) [51] research group,

conformed by the Computer Sciences Departments of the University of

Wisconsin and the Universidad Aut�onoma de Barcelona.

FPVA evaluates the security of a system in depth. Rather than working from

common vulnerabilities, the starting point for FPVA is to identify high value

assets in a system, such as components (e.g., processes or parts of processes) and

resources (e.g., con�guration �les, databases, connections, and devices) whose

35

36 CHAPTER 3. FPVA & CWE: FOUNDATIONS

exploitation o�er the greatest potential for damage by an attacker. From these

components and resources, FPVA works outwards to discover execution paths

through the code that might exploit them. As we have mentioned before, this

approach has a couple of advantages. First, it allows us to �nd new vulnerabilities,

not just vulnerabilities based on those that were previously discovered. Second,

when a vulnerability is discovered, it is likely to be a serious one whose remediation

is of high priority.

As it is explained in [42], FPVA starts with an architectural analysis of the

source code, identifying the key components in a distributed system. It then

goes on to identify the resources associated with each component, the privilege

level of each component, the value of each resource, how the components interact,

and how trust is delegated between components. The results of these steps are

documented in clear diagrams that provide a roadmap for the last stage of the

analysis, the manual code inspection. In addition, the results of this step can

also form the basis for a risk assessment of the system, identifying which parts

of the system are most immediately in need of evaluation. After these steps,

FPVA uses code inspection techniques on the critical parts of the code. The

FPVA analysis strategy targets the high value assets in a system and focuses

attention on the parts of the system that are vulnerable to not only unauthorized

entry, but unauthorized entry that can be exploited. In addition to the analysis

task, there needs to be a way to integrate the detection and repair of security

aws into the SDLC and release process. The SDLC process must now include

vulnerability reporting, release integration, and a policy on public dissemination

of the vulnerabilities.

FPVA have been successfully applied to several large and widely-used

middleware systems, such as Condor [52], a high-throughput scheduling system;

Storage Resource Broker (SRB) [9], a data grid management system;

Crossbroker [18], a Grid resource management for interactive and parallel

applications; the gLite WMS [8], a workload management system, among others.

In these analyses, signi�cant vulnerabilities were found, software development

teams were educated to the key issues, and the resulting software was made

more resistant to attacks.

When evaluating a methodology such as FPVA, the big question arises: Why

not use automated vulnerability assessment tools? To addres the question, in

3.1. FIRST PRINCIPLES VULNERABILITY ASSESSMENT 37

2009, the MIST group surveyed security practitioners in academia, industry, and

government laboratories to identify which tools were consider \best of breed"

in automated vulnerability assessment. Repeatedly, two commercials software

packages were named, Coverity Prevent [12] and Fortify Source Code Analyzer

[11].

To evaluate the power of these tools and better understand the FPVA

approach, MIST group compared the results of the largest assessment activity

(on Condor) to the results gathered from applying these automated tools [41].

As a result of these studies, MIST group demonstrated that the automated tools

found few of the vulnerabilities that FPVA had identi�ed in Condor (i.e., had

signi�cant false negatives) and identi�ed many problems that were either not

exploitable vulnerabilities (i.e., had many false positives).

Current FPVA and MIST group e�ort is just the beginning of a longer term

research to develop more e�ective assessment techniques. MIST is using the

experiences with these techniques to help design tools that will simplify the task

of manual assessment. In addition, MIST is working to develop a formal

characterization of the vulnerabilities FPVA have found in an attempt to

develop improved automated detection algorithms that would include most of

these vulnerabilities.

3.1.1 FPVA Methodology Steps

First Principles Vulnerability Assessment can characterize the steps of

architectural, resource, privilege, and interaction analysis as a narrowing

processing that produces a focused code analysis. These analysis steps can help

to identify more complex vulnerabilities that are based on the interaction of

multiple system components and are not amenable to local code analysis.

FPVA have found several vulnerabilities that are caused because a component

(process) is allowed to write a �le that will be later read by another component.

The read or write operation by itself does not appear harmful, but how the data

was created or used in another part of the code could allow an exploit to occur.

Without a more global view of the analysis, such problems are di�cult to �nd.

There was nothing to indicate that this was a problem at the time the �le was

created, but it became dangerous at the time (and place) it was used.

FPVA is divided in �ve main steps:

38 CHAPTER 3. FPVA & CWE: FOUNDATIONS

Architectural Analysis

The �rst step is to identify the major structural components of the system,

including modules, threads, processes, and hosts. For each of these components,

it then identi�es the way in which they interact, both with each other and with

users. Interactions are particularly important as they can provide a basis for

understand how trust is delegated through the system. The artifact produced at

this stage is a document that diagrams the structure of the system and the

interactions amongst the di�erent components, and with the end users.

Figure 3.1 and Figure 3.2 show the architectural analysis diagrams for the

middlewares CrossBroker and gLite WMS.

CrossBroker server

CrossBroker client

U. A. M. Information Index

RLS 4. 1. LDAP Query

2. input.fl

Submit Scheduling Agent Resource Searcher
3. Matchmaking

1. Connect

Application Launcher
Information Servers

Interactive shadow 5. queue.fl3.1 Query

Logging and Bookeeping

Condor‐G

6. Submit
6.1. Register

1.1. Register

I/O Forwarding MySql

Worker Node

LRMS

Computing Element

condor_startd

7. Claim
worker

8. start job OS P i il
Job

i

8. start job OS Privileges

edguser & root
Interactive Agent user & grid user

mysql

Figure 3.1: FPVA Architecture Diagram of CrossBroker

Resource Analysis

The second step is to identify the key resources accessed by each component, and

the operations supported on those resources. Resources include elements such

as hosts, �les, databases, logs, and devices. These resources are often the target

of an exploit. For each resource, it describes its value as an end target (such

as a database with personnel or proprietary information) or as an intermediate

3.1. FIRST PRINCIPLES VULNERABILITY ASSESSMENT 39

Workload Manager System (WMS) 3.3.5 Architecture

WMS Host
User Host CE Host

GridFTP

CREAM
WM Proxy
ServerSOAP/

LB
DataBase

LRMSUser
Interface

Apache

SOAP/
HTTPS

LB Proxy

WN HostWorkload
Manager

Logger
(InterLogd)

VOMS Host

VOMS

WN job

IS Host

Job Controller –
Condor G

Server

CE Host
OS privileges

Information
Service

Log Monitor

ICE

user External
ComponentrootLB Host

DB i il

Proxy Renewal

LB Server
DB privileges

LB_Admin

Figure 3.2: FPVA Architecture Diagram of gLite WMS

target (such as a �le that stores access-permissions). The artifact produced at this

stage is an annotation of the architectural diagrams with resource descriptions.

Figure 3.3 and Figure 3.4 show the resource analysis diagrams for the middlewares

CrossBroker and gLite WMS.

Privilege and Trust Analysis

The third step identi�es the trust assumptions about each component,

answering such questions as how are they protected and who can access them?

For example, a code component running on a client's computer is completely

open to modi�cation, while a component running in a locked computer room has

a higher degree of trust. Trust evaluation is also based on the hardware and

software security surrounding the component. Associated with trust is

describing the privilege level at which each executable component runs. The

privilege levels control the extent of access for each component and, in the case

of exploitation, the extent of damage that it can accomplish directly. A complex

but crucial part of trust and privilege analysis is evaluating trust delegation. By

combining the information from the �rst two steps, FPVA determines what

40 CHAPTER 3. FPVA & CWE: FOUNDATIONS

CrossBroker server

Xbroker Daemons OS Privileges

rootroot
user & grid user
edguser

l

MySql DB

Configuration queue and logbinaries and lib

/opt/i2g/
etc /var/i2gwl/opt/i2g /var/i2gwl/

Sandbox

mysql

Configuration
files

queue and log
files

binaries and lib
files

operational files

Worker nodeCrossBroker client

Submit Job

globus‐url‐copy

/users

User’s Files

/gridhome

Job Execution
DirectoryDirectory

Figure 3.3: FPVA Resources Diagram of CrossBroker

WMS 3.3.4 Resources

WMS Host

WMS

/etc/
glite-wms

logsTRUSTED_CA /etc/
grid_security LB

DataBase
Job SandBox

host
has key

signed,

hostcert
.pem

hostkey
.pem

certificatesglite_wms.conf glite_wms_
wmproxy.gacl

glite_wms_wmproxy
_httpd.conf

wmproxy_
logrotate.conf

Readable

Owner

OS privileges

daemon

DB privileges

LB AdminOwner
World root

LB_Admin

Figure 3.4: FPVA Resources Diagram of gLite WMS

3.1. FIRST PRINCIPLES VULNERABILITY ASSESSMENT 41

operations a component will execute on behalf of another component. The

artifact produced at this stage is a further labeling of the basic diagrams with

trust levels and labeling of interactions with delegation information. For the

sake of simplicity, the Privilege and Trust diagrams for CrossBroker and gLite

WMS coincide with the diagrams in the �rst two steps.

Component Analysis

The fourth step is to examine each component in depth. For large systems, a line

by line manual examination of the code is infeasible, even for a well-funded e�ort.

A key aspect of FPVA technique is that this step is guided by information obtained

in the �rst three steps, helping to prioritize the work so that high value assets are

evaluated �rst. The work in this step can be accelerated by automated scanning

tools. While these tools can provide valuable information, they are subject to false

positives, and even when they indicate real
aws, they often cannot tell whether

the
aw is exploitable and, even if it is, whether it will allow serious damage.

In addition, these tools typically work most e�ectively on a local basis, so
aws

based on inappropriate trust boundaries or delegation of authority are not likely

to be found. Therefore, these tools work best in the context of a vulnerability

analysis process. The artifacts produced by this step are vulnerability reports,

perhaps with suggested �xes, to be provided to the software developers. Figure 3.5

and Figure 3.6 show examples of the vulnerability reports for the middlewares

CrossBroker and gLite CREAM.

Dissemination of Results

Once vulnerabilities are reported, the obvious next step is for the developers to �x

them. However, once �xed, they are confronted with some questions that can be

di�cult to answer in a collaborative and often open source world. Some questions

are: How do we integrate the update into our release stream? (Do we put out a

special release or part of an upcoming one?) When do we announce the existence

of the vulnerability? How much detail do we provide initially? If the project is

open source, how do we deal with groups that are slow to update? Should there

be some community-wide mechanism to time announcements and releases?

In the following Table 3.1 derived from [69], we present the entire analisys by

the MIST group, and their corresponding expertise and results with FPVA:

42 CHAPTER 3. FPVA & CWE: FOUNDATIONS

Figure 3.5: FPVA Vulnerability Report of CrossBroker

Figure 3.6: FPVA Vulnerability Report of gLite CREAM

3.1. FIRST PRINCIPLES VULNERABILITY ASSESSMENT 43

Condor University of Wisconsin

Batch queuing workload management system

15 Vulnerabilities, 600KLOC of C/C++

SRB San Diego Supercomputing Center

Storage Resource Broker - data grid

5 Vulnerabilities, 280KLOC of C

MyProxy National Center for Supercomputing Applications

Credential management system

5 Vulnerabilities, 25KLOC of C

glExec Nikhef

Identity mapping service

5 Vulnerabilities, 48KLOC of C

Gratia Condor Probe FNAL and Open Science Grid

Feeds Condor usage into Gratia accounting system

3 Vulnerabilities, 1.7KLOC of Perl/Bash

Condor Quill University of Wisconsin

DBMS Storage of Condor operational and historical data

6 Vulnerabilities, 7.9KLOC of C/C++

Wireshark Wireshark.org

Network protocol analyzer

2 Vulnerabilities, 2400KLOC of C

Condor PrivSep University of Wisconsin

Restricted identity switching module

2 Vulnerabilities, 21KLOC of C/C++

gLite CREAM INFN

Computing Resource Execution And Management

5 Vulnerabilities, 35KLOC of C/C++

CrossBroker Universidad Autónoma de Barcelona

Workload management for parallel and interactive jobs

4 Vulnerabilities, 97KLOC of C/C++/Python

gLite WMS INFN

gLite Workload management system

0 Vulnerabilities,728KLOC of C/C++/Python

Argus HIP, INFN, Nikhef, SWITCH

gLite authorization service

0 Vulnerabilities, 42KLOC of Java/C

VOMS Core INFN

Virtual organization management system

1 Vulnerability, 161KLOC of C/C++

iRODS DICE

Data management system

9 Vulnerabilities, 285KLOC of C/C++

Google Chrome Google

Web browser

In progess, 2396KLOC of C/C++

Table 3.1: FPVA Experience.

44 CHAPTER 3. FPVA & CWE: FOUNDATIONS

3.1.2 FPVA Accomplishments

In summary, the key accomplishments for FPVA include:

• An architecture and resource{based analysis that is not dependent on known

vulnerabilities.

• A clear reminder that assessment must be an independent activity, done

by analysts separate from the software development team. In addition,

assessment must be part of the normal software development lifecycle.

• A demonstration of the strengths and weaknesses of automated assessment

tools by comparing their results against those of a thorough FPVA study

(and not just comparing the automated tools against each other).

• Several assessment activities of key middleware systems, resulting in

signi�cant improvements in the security of these systems, and similar

improvements by creating a security aware atmosphere among the software

developers.

• A foundation and new approach for future research into improved automated

vulnerability assessment tools.

Despite all the experience gathered and the vulnerabilities found with FPVA,

we realized for all FPVA{analyzed middlewares that there is a gap between the

three initial steps and the manual source code inspection. The security

practitioner should provide certain expertise about the kind of security problems

that the systems may present during the component analysis step (e.g.

depending on the language used the analyst should look for di�erent kind of

vulnerabilities), and be creative enough as to discover new vulnerabilities.

Hence, this gap directly a�ects the quality of the vulnerability assessment,

because security
aws may be overlooked due to either incomplete analyst

knowledge or insu�cient time for an in-depth analysis. This gap has been

addressed by the AvA4cmi methodology proposed in this work.

After presenting FPVA, we proceed with the presentation of CWE.

3.2. COMMON WEAKNESS ENUMERATION 45

3.2 Common Weakness Enumeration

The Common Weakness Enumeration (CWE) [77], developed by Christey and

Martin, supported by multiple stakeholders, and currently maintained by the

MITRE Corporation under the sponsorship of the National Cyber Security

Division of the Department of Homeland Security (DHS{USA), provides a

standard language for discussing, �nding and dealing with the causes of software

security vulnerabilities as they are found in code, design, or system architecture.

Also, CWE can be de�ned as a community{developed formal list of common

software weaknesses, which serves as a common language for describing software

security weaknesses, a standard measuring stick for software security tools

targeting these vulnerabilities, and as a baseline standard for weakness

identi�cation, mitigation, and prevention e�orts. Leveraging the diverse

thinking on this topic from academia, the commercial sector, and government,

CWE unites the most valuable breadth and depth of content and structure to

serve as a uni�ed standard.

As it is explained in [77], each individual CWE represents a single vulnerability

type, and includes a list of associated details. An example of a single CWE

weakness and its details are depicted in Figure 3.7.

From these CWE details, and other not included in the example, such as an

extended description, references, consequence scope, consequence notes, and

time of introduction, we gathered the most useful information to build our

methodology, which will be discussed in the next chapter.

All individual CWEs (over 714 separate weaknesses) are held within a

hierarchical structure from two main organizational views that allows for

multiple levels of abstraction. CWEs located at higher levels of the structure

(i.e. Con�guration) provide a broad overview of a vulnerability type and can

have many children CWEs associated with them. CWEs at deeper levels in the

structure (i.e. Cross Site Scripting) provide a �ner granularity and usually have

fewer or no children CWEs.

CWE has a glossary of terms, in order to better understand the organizational

views we introduce some of them:

• View : a subset of CWE entries that provides a way of examining CWE

content. The two main view structures are Slices (
at lists) and Graphs

46 CHAPTER 3. FPVA & CWE: FOUNDATIONS

Figure 3.7: CWE Weakness details example, taken from [81]

3.2. COMMON WEAKNESS ENUMERATION 47

(containing relationships between entries).

• Category : a CWE entry that contains a set of other entries that share a

common characteristic.

• Weakness: a type of mistake in software that, in proper conditions, could

contribute to the introduction of vulnerabilities within that software. This

term applies to mistakes regardless of whether they occur in implementation,

design, or other phases of the SDLC.

• Compound Element : an Entry that closely associates two or more CWE

entries. The CWE team's research has shown that vulnerabilities often can

be described in terms of the interaction or co-occurrence of two or more

weaknesses.

• Chain : a Compound Element that is a sequence of two or more separate

weaknesses that can be closely linked together within software. One

weakness, X, can directly create the conditions that are necessary to cause

another weakness, Y, to enter a vulnerable condition.

• Composite : a Compound Element that consists of two or more distinct

weaknesses, in which all weaknesses must be present at the same time in

order for a potential vulnerability to arise.

• Pillar : a top-level entry, equivalent to \kingdoms" in Seven Pernicious

Kingdoms [45].

The two main organizational views of CWE are:

Development View

The Development View organizes weaknesses around concepts that are frequently

used or encountered in software development. Thus, this view can align closely

with the perspectives of developers, educators, and assessment vendors. Some

goals for the Development View include
exible navigation (useful categories),

familiarity (similarity to other taxonomies), and coverage (identifying all low-level

CWE weaknesses).

The higher level nodes in the Development View (Figure 3.8) borrow heavily

from the structure used by Seven Pernicious Kingdoms, the categories of errors in

48 CHAPTER 3. FPVA & CWE: FOUNDATIONS

CLASP, etc., in order to achieve familiarity. As a result, the Development view

can be readily understood by users who are already familiar with any of these

taxonomies.

Figure 3.8: CWE Development View Hierarchy, taken from [80]

Regarding to navigation, these taxonomies and ongoing CWE have

introduced a variety of di�erent categories for weaknesses. This provides a

mechanism for CWE users to navigate through the large number of weaknesses

that are covered, from a variety of perspectives. Many of these categories de�ne

groups of weaknesses based on common attributes such as language, resource, or

consequence. Categories include pointer issues, mobile code issues, error

handling, data handling, time and state, temporary �le problems, weaknesses in

J2EE and ASP environments, web problems, and so on.

Resarch View

The Research View was developed to address the need of a view based solely on

weaknesses and their abstractions, to provide a more formal mechanism for

classifying weaknesses, and performing vulnerability research. It classi�es

weaknesses in a way that largely ignores how they can be detected, where they

3.2. COMMON WEAKNESS ENUMERATION 49

appear in code, and when they are introduced in the SDLC. Accordingly, it

avoids capturing relationships based on speci�c language, environment,

technology, framework, frequency of occurrence, impact, and mitigation; since

these relationships are convenient for many users, they are captured in

Development View. By doing so, Research View has been able to concentrate on

canonical factors that make each weakness unique.

The Research view is mainly organized (Figure 3.9) accordingly to abstractions

of software behaviors and the resources that are manipulated by those behaviors,

which aligns with MITRE's research into vulnerability theory. In addition to

classi�cation, the Research view explicitly models the interdependencies between

weaknesses, which have not been a formal part of past classi�cation e�orts. The

main examples are chains and composites.

Figure 3.9: CWE Research View Hierarchy, taken from [80]

The Research View uses multiple (11 to be precise) deep hierarchies as its

organization structure, with more levels of abstraction than other classi�cation

schemes. Ideally, the abstraction is only on weakness to weakness relationships,

with minimal overlap and no categories. Thus, weaknesses would be presented

from the lowest levels all the way to roots of the tree, and each member weakness

would cover a single error. The top-level entries of each of the hierarchies are

50 CHAPTER 3. FPVA & CWE: FOUNDATIONS

called Pillars.

Because of their relevance to this work, as it is explained in [79], the eleven

(11) pillars of the Research view, and their details are depicted below:

CWE–118: Improper Access of Indexable Resource (Range Error)

• Description: The software does not restrict or incorrectly restricts

operations within the boundaries of a resource that is accessed using an

index or pointer, such as memory or �les.

• Time of Introduction: Architecture and Design, Implementation, and

Operation.

• Languages: All

• Common Consequences

Scope: Other.

Technical Impact: Varies by context.

• Relationship: Parent of CWE{119

CWE–330: Use of Insufficiently Random Values

• Description: The software may use insu�ciently random numbers or values

in a security context that depends on unpredictable numbers

• Extended Description: When software generates predictable values in a

context requiring unpredictability, it may be possible for an attacker to

guess the next value that will be generated, and use this guess to

impersonate another user or access sensitive information

• Time of Introduction: Architecture and Design, and Implementation

• Languages: All

• Common Consequences

Scope: Con�dentiality, Access Control

Technical Impact: Bypass protection mechanism, Gain

privileges/assume identity

http://cwe.mitre.org/data/definitions/119.html

3.2. COMMON WEAKNESS ENUMERATION 51

• Likelihood of Exploit: Medium → High

• Observed Examples: CVE-2009-3278, CVE-2009-3238, CVE-2009-2367

• Relationship: Parent of CWE{329, CWE{331, CWE{334, etc.

CWE–435: Interaction Error

• Description: An interaction error occurs when two entities work correctly

when running independently, but they interact in unexpected ways when

they are run together.

• Extended Description: This could apply to products, systems, components,

etc.

• Time of Introduction: Architecture and Design, Implementation, and

Operation.

• Languages: All

• Common Consequences

Scope: Integrity

Technical Impact: Unexpected state, Varies by context

• Relationship: Parent of CWE{188, CWE{436, CWE{439, etc.

CWE–664: Improper Control of a Resource Through its Lifetime

• Description: The software does not maintain or incorrectly maintains control

over a resource throughout its lifetime of creation, use, and release.

• Extended Description: Resources often have explicit instructions on how

to be created, used and destroyed. When software does not follow these

instructions, it can lead to unexpected behaviors and potentially exploitable

states.

• Time of Introduction: Implementation

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3278
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3238
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2367
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/331.html
http://cwe.mitre.org/data/definitions/334.html
http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/436.html
http://cwe.mitre.org/data/definitions/439.html

52 CHAPTER 3. FPVA & CWE: FOUNDATIONS

• Common Consequences

Scope: Other

Technical Impact: Other

• Relationship Parent of CWE{221, CWE{284, CWE{400, etc.

CWE–682: Incorrect Calculation

• Description: The software performs a calculation that generates incorrect

or unintended results that are later used in security-critical decisions or

resource management.

• Extended Description: When software performs a security-critical

calculation incorrectly, it might lead to incorrect resource allocations,

incorrect privilege assignments, or failed comparisons among other things.

Many of the direct results of an incorrect calculation can lead to even

larger problems such as failed protection mechanisms or even arbitrary

code execution.

• Time of Introduction: Architecture, Design, and Implementation.

• Languages: All

• Common Consequences

Scope: Availability, Integrity, Con�dentiality, Access Control

Technical Impact: DoS: crash / exit / restart, Bypass protection

mechanism, Gain privileges / assume identity

• Likelihood of Exploit: High.

• Relationship: Parent of CWE{128, CWE{131, CWE{190, etc.

CWE–691: Insufficient Control Flow Management

• Description: The code does not su�ciently manage its control
ow during

execution, creating conditions in which the control
ow can be modi�ed in

unexpected ways.

• Time of Introduction: Architecture, Design, and Implementation.

http://cwe.mitre.org/data/definitions/221.html
http://cwe.mitre.org/data/definitions/284.html
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/128.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/190.html

3.2. COMMON WEAKNESS ENUMERATION 53

• Languages: All

• Common Consequences

Scope: Other

Technical Impact: Alter execution logic.

• Relationship: Parent of CWE{94, CWE{362, CWE{430, etc.

CWE–693: Protection Mechanism Failure

• Description: The product does not use or incorrectly uses a protection

mechanism that provides su�cient defense against directed attacks against

the product.

• Extended Description: This weakness covers three distinct situations. A

missing protection mechanism occurs when the application does not de�ne

any mechanism against a certain class of attack. An insu�cient protection

mechanism might provide some defenses - for example, against the most

common attacks - but it does not protect against everything that is intended.

Finally, an ignored mechanism occurs when a mechanism is available and in

active use within the product, but the developer has not applied it in some

code path.

• Time of Introduction: Architecture, Design, Implementation, and

Operation.

• Languages: All

• Common Consequences

Scope: Access Control

Technical Impact: Bypass protection mechanism.

• Relationship: Parent of CWE{20, CWE{183, CWE{345, etc.

CWE–697: Insufficient Comparison

• Description: The software compares two entities in a security-relevant

context, but the comparison is insu�cient, which may lead to resultant

weaknesses.

http://cwe.mitre.org/data/definitions/94.html
http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/430.html
http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/183.html
http://cwe.mitre.org/data/definitions/345.html

54 CHAPTER 3. FPVA & CWE: FOUNDATIONS

• Extended Description: This weakness class covers several possibilities, the

comparison checks one factor incorrectly; the comparison should consider

multiple factors, but it does not check some of those factors at all.

• Time of Introduction: Implementation

• Common Consequences

Scope: Other

Technical Impact: Other

• Relationship: Parent of CWE{185, CWE{478, CWE{184, etc.

CWE–703: Improper Check or Handling of Exceptional Conditions

• Description: The software does not properly anticipate or handle exceptional

conditions that rarely occur during normal operation of the software.

• Time of Introduction: Architecture, Design, Implementation, and

Operation.

• Language: All

• Common Consequences

Scope: Con�dentiality, Availability, Integrity

Technical Impact: Read application data; DoS: crash / exit / restart;

Unexpected state

• Relationship: Parent of CWE{393, CWE{274, CWE{167, etc.

CWE–707: Improper Enforcement of Message or Data Structure

• Description: The software does not enforce or incorrectly enforces that

structured messages or data are well-formed before being read from an

upstream component or sent to a downstream component.

• Extended Description: If a message is malformed it may cause the message

to be incorrectly interpreted. This weakness typically applies in cases where

the product prepares a control message that another process must act on,

http://cwe.mitre.org/data/definitions/185.html
http://cwe.mitre.org/data/definitions/478.html
http://cwe.mitre.org/data/definitions/184.html
http://cwe.mitre.org/data/definitions/393.html
http://cwe.mitre.org/data/definitions/274.html
http://cwe.mitre.org/data/definitions/167.html

3.2. COMMON WEAKNESS ENUMERATION 55

such as a command or query, and malicious input that was intended as data,

can enter the control plane instead. However, this weakness also applies to

more general cases where there are not always control implications.

• Time of Introduction: Architecture, Design, and Implementation.

• Language: All

• Common Consequences

Scope: Other

Technical Impact: Other

• Relationship: Parent of CWE{116, CWE{138, CWE{170, etc.

CWE–710: Coding Standards Violation

• Description: The software does not follow certain coding rules for

development, which can lead to resultant weaknesses or increase the

severity of the associated vulnerabilities.

• Time of Introduction: Architecture, Design, and Implementation.

• Language: All

• Common Consequences

Scope: Other

Technical Impact: Other

• Relationship: Parent of CWE{657, CWE{912, CWE{758, etc.

With the taxonomy described, and due to the high volume of reported

weaknesses when a vulnerability assessment is performed, it is needed to provide

a standard method for identifying which of these dangerous weaknesses would be

most harmful to a particular organization, given the intended use of a speci�c

piece of software within that organization. To address this need, the CWE

project provided the Common Weakness Scoring System.

http://cwe.mitre.org/data/definitions/116.html
http://cwe.mitre.org/data/definitions/138.html
http://cwe.mitre.org/data/definitions/170.html
http://cwe.mitre.org/data/definitions/657.html
http://cwe.mitre.org/data/definitions/912.html
http://cwe.mitre.org/data/definitions/758.html

56 CHAPTER 3. FPVA & CWE: FOUNDATIONS

3.2.1 Common Weakness Scoring System (CWSS)

CWSS [78] is the mechanism provided by the CWE project for scoring

weaknesses “in a particular piece of software in a consistent, flexible, open

manner while incorporating knowledge of the context of the software’s use in the

particular business and reflecting the impacts of weaknesses against that

context”. CWSS is being developed as a collaborative, community-based e�ort

so that it addresses the needs of stakeholders across government, academia, and

industry. It is aimed at providing a consistent approach for tools and services

prioritizing their static and dynamic analysis �ndings

In the current version of the CWSS, as it is explained in [78], a weakness score

can be calculated across three metric groups, along with their 18 di�erent factors,

each one with di�erent values and weight:

The Base Finding group

It captures the inherent risk of the weakness, con�dence in the accuracy of the

�nding, and strength of controls. The Base Finding metric group consists of the

following factors:

• Technical Impact (TI)

• Acquired Privilege (AP)

• Acquired Privilege Layer (AL)

• Internal Control E�ectiveness (IC)

• Finding Con�dence (FC)

The Technical Impact is the potential result that can be produced by the

weakness, assuming that the weakness can be successfully reached and

exploited. This is expressed in terms that are more �ne-grained than

con�dentiality, integrity, and availability.

Its corresponding values and weights are described in Table 3.2:

3.2. COMMON WEAKNESS ENUMERATION 57

Value Weight Value Weight

Critical 1.0 High 0.9

Medium 0.6 Low 0.3

None 0.0 Default 0.6

Unknown 0.5 Not Applicable 1.0

Quanti�ed

Table 3.2: CWSS Technical Impact Set of Values

For example, a Critical value for Technical Impact factor means complete

control over the software, the data it processes, and the environment in which

it runs (e.g. the host system), to the point where operations cannot take place.

Default is the median of the weights for Critical, High, Medium, Low, and None.

The Acquired Privilege The Acquired Privilege identi�es the type of

privileges that are obtained by an entity who can successfully exploit the

weakness. In some cases, the acquired privileges may be the same as the

required privileges, which implies either \horizontal" privilege escalation

(e.g. from one unprivileged user to another), or privilege escalation within

a sandbox, such as an virtual machine user who can escape to the host

machine.

Its corresponding values and weights are described in Table 3.3:

Value Weight Value Weight

Administrator 1.0 Partially Privileged User 0.9

Regular User 0.7 Guest 0.6

None 0.1 Default 0.7

Unknown 1.0 Not Applicable 1.0

Table 3.3: CWSS Acquired Privilege Set of Values.

For example, an Administrator value for the Acquired Privilege factor means

the entity has administrator, root, SYSTEM, or equivalent privileges that imply

full control over the software or the underlying OS.

The Acquired Privilege Layer identi�es the operational layer to which the

entity gains access if the weakness can be successfully exploited.

58 CHAPTER 3. FPVA & CWE: FOUNDATIONS

Its corresponding values and weights are described in Table 3.4:

Value Weight Value Weight

Application 1.0 System 0.9

Network 0.7 Enterprise 1.0

None 0.1 Default 0.9

Unknown 0.5 Not Applicable 1.0

Table 3.4: CWSS Acquired Privilege Layer Set of Values.

For example, an Application value for the Acquired Privilege Layer factor

means the entity must be able to have access to an a�ected application.

The Internal Control Effectiveness is a control, protection mechanism, or

mitigation that has been explicitly built into the software (whether

through architecture, design, or implementation). Internal Control

E�ectiveness measures the ability of the control to render the weakness

unable to be exploited by an attacker. For example, an input validation

routine that restricts input length to 15 characters might be moderately

e�ective against XSS attacks by reducing the size of the XSS exploit that

can be attempted.

Its corresponding values and weights are described in Table 3.5:

Value Weight Value Weight

None 1.0 Limited 0.9

Moderate 0.7 Indirect 0.5

Best Available 0.3 Complete 0.0

Default 0.6 Unknown 0.5

Not Applicable 1.0

Table 3.5: CWSS Internal Control E�ectiveness Set of Values.

For example, a None value for the Internal Control E�ectiveness factor means

No controls exist.

The Finding Confidence is the con�dence that the reported issue: (1) is a

weakness, and (2) can be triggered or utilized by an attacker.

3.2. COMMON WEAKNESS ENUMERATION 59

Its corresponding values and weights are described in Table 3.6:

Value Weight Value Weight

Proven True 1.0 Proven Locally True 0.8

Proven False 0.0 Default 0.8

Unknown 0.5 Not Applicable 1.0

Quanti�ed

Table 3.6: CWSS Finding Con�dence Set of Values.

For example, a Proven True value for the Finding Con�dence factor means

the weakness is reachable by the attacker.

The Attack Surface group

It captures the barriers that an attacker must cross in order to exploit the

weakness. The Attack Surface metric group consists of the following factors:

• Required Privilege (RP)

• Required Privilege Layer (RL)

• Access Vector (AV)

• Authentication Strength (AS)

• Authentication Instances (AI)

• Level of Interaction (IN)

• Deployment Scope (SC)

The Required Privilege identi�es the type of privileges required for an entity

to reach the code/functionality that contains the weakness.

Its corresponding values and weights are described in Table 3.7:

60 CHAPTER 3. FPVA & CWE: FOUNDATIONS

Value Weight Value Weight

None 1.0 Guest 0.9

Regular User 0.7 Partially-Privileged User 0.6

Administrator 0.1 Default 0.7

Unknown 0.5 Not Applicable 1.0

Table 3.7: CWSS Required Privilege Set of Values

For example, a None value for the Required Privilege factor means No

privileges are required, i.e., a web-based search engine may not require any

privileges for an entity to enter a search term and view results.

The Required Privilege Layer identi�es the type of privileges required for an

entity to reach the code/functionality that contains the weakness.

Its corresponding values and weights are described in Table 3.8:

Value Weight Value Weight

System 0.9 Application 1.0

Network 0.7 Enterprise 1.0

Default 0.9 Unknown 0.5

Not Applicable 1.0

Table 3.8: CWSS Required Privilege Layer Set of Values

For example, a System value for the Required Privilege Layer factor means

the entity must have access to, or control of, a system or physical host.

The Access Vector identi�es the channel through which an entity must

communicate to reach the code or functionality that contains the

weakness.

Its corresponding values and weights are described in Table 3.9:

3.2. COMMON WEAKNESS ENUMERATION 61

Value Weight Value Weight

Internet 1.0 Intranet 0.8

Private Network 0.8 Adjacent Network 0.7

Local 0.5 Physical 0.2

Default 0.75 Unknown 0.5

Table 3.9: CWSS Attack Vector Set of Values

For example, an Internet value for the Attack Vector factor means an attacker

must have access to the Internet to reach the weakness.

The Authentication Strength overs the strength of the authentication

routine that protects the code/functionality that contains the weakness.

Its corresponding values and weights are described in Table 3.10:

Value Weight Value Weight

Strong 0.7 Moderate 0.8

Weak 0.9 None 1.0

Default 0.85 Unknown 0.5

Not Applicable 1.0

Table 3.10: CWSS Authentication Strength Set of Values

For example, a Strong value for the Authentication Strength factor means the

weakness requires strongest-available methods to tie the entity to a real-world

identity, such as hardward-based tokens, and/or multi-factor authentication.

The Authentication Instances covers the number of distinct instances of

authentication that an entity must perform to reach the weakness.

Its corresponding values and weights are described in Table 3.11:

Value Weight Value Weight

None 1.0 Single 0.8

Multiple 0.5 Default 0.8

Unknown 0.5 Not Applicable 1.0

Table 3.11: CWSS Authentication Instances Set of Values

62 CHAPTER 3. FPVA & CWE: FOUNDATIONS

For example, a None value for the Authentication Instances factor means No

authentication is required.

The Level of Interaction covers the actions that are required by the human

victim(s) to enable a successful attack to take place.

Its corresponding values and weights are described in Table 3.12:

Value Weight Value Weight

Automated 1.0 Limited/Typical 0.9

Moderate 0.8 Opportunistic 0.3

High 0.1 No interaction 0.0

Default 0.55 Unknown 0.5

Not Applicable 1.0

Table 3.12: CWSS Level of Interaction Set of Values

For example, an Automated value for the Level of Interaction factor means

No human interaction is required.

The Deployment Scope identi�es whether the weakness is present in all

deployable instances of the software, or if it is limited to a subset of

platforms and/or con�gurations.

Its corresponding values and weights are described in Table 3.13:

Value Weight Value Weight

All 1.0 Moderate 0.9

Rare 0.5 Potentially Reachable 0.1

Default 0.7 Unknown 0.5

Not Applicable 1.0 Quanti�ed

Table 3.13: CWSS Deployment Scope Set of Values

For example, an All value for the Deployment Scope factor means it is Present

in all platforms or con�gurations.

3.2. COMMON WEAKNESS ENUMERATION 63

The Environmental group

It includes factors that may be speci�c to a particular operational context, such

as business impact, likelihood of exploit, and existence of external controls. The

Environmental metric group consistes of the following factors:

• Business Impact (BI)

• Likelihood of Discovery (DI)

• Likelihood of Exploit (EX)

• External Control E�ectiveness (EC)

• Remediation E�ort (RE)

• Prevalence (P)

The Business Impact describes the potential impact to the business or mission

if the weakness can be successfully exploited.

Its corresponding values and weights are described in Table 3.14:

Value Weight Value Weight

Critical 1.0 High 0.9

Medium 0.6 Low 0.3

None 0.0 Default 0.6

Unknown 0.5 Not Applicable 1.0

Quanti�ed

Table 3.14: CWSS Business Impact Set of Values

For example, a Medium value for the Business Impact factor means the

business/mission would be a�ected, but without extensive damage to regular

operations.

The Likelihood of Discovery is the likelihood that an attacker can discover

the weakness.

64 CHAPTER 3. FPVA & CWE: FOUNDATIONS

Its corresponding values and weights are described in Table 3.15:

Value Weight Value Weight

High 1.0 Medium 0.6

Low 0.2 Default 0.6

Unknown 0.5 Not Applicable 1.0

Quanti�ed

Table 3.15: CWSS Likelihood of Discovery Set of Values

For example, a High value for the Likelihood of Discovery factor means it

is very likely that an attacker can discover the weakness quickly and with little

e�ort using simple techniques, without access to source code or other artifacts

that simplify weakness detection.

The Likelihood of Exploit is the likelihood that, if the weakness is discovered,

an attacker with the required privileges/authentication/access would be able

to successfully exploit it.

Its corresponding values and weights are described in Table 3.16:

Value Weight Value Weight

High 1.0 Medium 0.6

Low 0.2 None 0.0

Default 0.6 Unknown 0.5

Not Applicable 1.0 Quanti�ed

Table 3.16: CWSS Likelihood of Exploit Set of Values

For example, a High value for the Likelihood of Exploit factor means it is

highly likely that an attacker would target this weakness successfully, with a

reliable exploit that is easy to develop.

The External Control Effectiveness is the capability of controls or

mitigations outside of the software that may render the weakness unable

to be reached or triggered by an attacker.

3.2. COMMON WEAKNESS ENUMERATION 65

Its corresponding values and weights are described in Table 3.17:

Value Weight Value Weight

None 1.0 Limited 0.9

Moderate 0.7 Indirect 0.5

Best-Available 0.3 Complete 0.1

Default 0.6 Unknown 0.5

Not Applicable 1.0

Table 3.17: CWSS External Control E�ectiveness Set of Values

For example, a Moderate value for the External Control E�ectiveness factor

means the protection mechanism is commonly used but has known limitations

that might be bypassed with some e�ort by a knowledgeable attacker.

The Remediation Effort is the amount of e�ort required to remediate the

weakness so that it no longer poses a security risk to the software.

Its corresponding values and weights are described in Table 3.18:

Value Weight Value Weight

Extensive 1.0 Moderate 0.9

Limited 0.8 Default 0.9

Unknown 0.5 Not Applicable 1.0

Quanti�ed

Table 3.18: CWSS Remediation E�ort Set of Values

For example, an Extensive value for the Remediation E�ort factor means it

Requires signi�cant labor or time to address, possibly requiring modi�cations

to design or architecture; available remediations will otherwise break legitimate

functionality; etc.

The Prevalence of a �nding identi�es how frequently this type of weakness

appears in software.

Its corresponding values and weights are described in Table 3.19:

66 CHAPTER 3. FPVA & CWE: FOUNDATIONS

Value Weight Value Weight

Widespread 1.0 High 0.9

Common 0.8 Limited 0.7

Default 0.85 Unknown 0.5

Not Applicable 1.0 Quanti�ed

Table 3.19: CWSS Prevalence Set of Values

For example, a Widespread value for the Prevalence factor means the weakness

is found in most or all software in the associated environment, and may occur

multiple times within the same software package.

Unknown The use of "Unknown" emphasizes that the score is incomplete

or estimated, and further analysis may be necessary. This makes

it easier to model incomplete information, and for the Business

Value Context to in
uence �nal scores that were generated using

incomplete information. The weight for this value is 0.5 for all

factors, which generally produces a lower score; the addition of

new information (i.e., changing some factors from "Unknown" to

another value) will then adjust the score upward or downward based

on the new information.

Not Applicable The factor is being explicitly ignored in the score calculation.

This e�ectively allows the Business Value Context to dictate

whether a factor is relevant to the �nal score. For example,

a customer-focused CWSS scoring method might ignore the

remediation e�ort, and a high assurance environment might require

investigation of all reported �ndings, even if there is low con�dence

in their accuracy.

Quantified The factor can be weighted using a quanti�ed, continuous range

of 0.0 through 1.0, instead of the factor's de�ned set of discrete

values. Not all factors are quanti�able in this way, but it allows for

additional customization of the metric.

Default The factor's weight can be set to a default value. Labeling the factor

as a default allows for investigation and possible modi�cation at a

later time.

Table 3.20: CWSS factors common values.

CWSS can be used in cases where there is not enough information of the

weakness at �rst, but the quality of information can improve over time. It is

expected that in many use cases, the CWSS score for an individual weakness

�nding may change, as more information is discovered. Most factors have three

values in common, unknown, not applicable, and default, which are described in

3.3. CONCLUSIONS 67

Table 3.20, but also can be quanti�ed.

In order to calculate the scoring \S" of a weakness a formula is applied using

the 18 factors and their values, which are represented by the Formula (I). The

formula \S" is calculated as the multiplication between the individual scores of

each metric group.

S = Base F inding ∗ Attack Surface ∗ Environmental (I)

The Base Finding \BF" score is calculated as the Formula (II):

BF = [(10 ∗ Technical Impact + 5 ∗ (Acquired Privilege +

Acquired Privilege Layer) + 5 ∗ Finding Confidence) ∗

f(Technical Impact) ∗ Internal Control Effectiveness] ∗ 4.0

(II)

The function f(Technical Impact) will be 0 if Technical Impact equal 0; otherwise

f(Technical Impact) equal 1.

The Attack Surface \AS" score is calculated as the Formula (III):

AS = [20 ∗ (Required Privilege + Required Privilege Layer + Access V ector)

+ 20 ∗ Deployment Scope + 10 ∗ Level Interaction +

5 ∗ (Authentication Strength + Authentication Instances)] / 100

(III)

The Environmental \ENV" score is calculated as the Formula (IV):

ENV = [(10 ∗ Business Impact + 3 ∗ (Likelihood Of Discovery + Likelihood

Of Exploit) + 3 ∗ Prevalence + Remediation Effort) ∗

f(Business Impact) ∗ External Control Effectiveness] / 20.0

(IV)

The function f(Bussiness Impact) will be 0 if Bussiness Impact equal 0; otherwise

f(Bussiness Impact) equal 1.

3.3 Conclusions

A thorough presentation of the First Principal Vulnerability Assessment for

distributed systems has been done in this chapter. The methodology steps for

this approach were presented next. This methodology de�nes �ve steps:

Architecture analysis, Resources Analysis, Trust and Privileges analysis,

68 CHAPTER 3. FPVA & CWE: FOUNDATIONS

Component Analysis, and Dissemination of results. A set of key

accomplishments were depicted, derived from the application of FPVA to several

large and widely-used middleware systems. For all the middlewares analyzed

with FPVA, we have realized that there is a gap between the three initial steps

and the component code analysis. This gap directly a�ects the quality of the

vulnerability assessment, because security
aws may be overlooked due to

insu�cient either analyst knowledge or time for an in{depth analysis. Then, the

Common Weakness Enumeration for vulnerability classi�cation was presented.

A list of CWE details allow the actual classi�cation of such vulnerability types.

We have presented the two CWE organizational views, the Development View

(CWE-699) and the Research View (CWE-1000), which held within hierarchical

structures over 714 weaknesses, from which we chosen the Research View

because explicitly models the interdependencies between weaknesses, allowing

the matching to FPVA information.

The Common Weakness Scoring System is responsible of prioritizing static

and dynamic analysis �ndings, providing a mechanism for scoring weaknesses

in a particular piece of software in a consistent, and
exible manner, through

three metrics groups (Base Finding, Attack Surface, and Environmental) with

18 di�erent factors. The combination of some elements from FPVA, CWE, and

CWSS allowed to develop a methodology, AvA4cmi, which constitutes the essence

of this work, and becomes a way to systematically �ll the gap found in FPVA,

connecting the information gathered by the initial analysis, and knowledge found

on the classi�cation of weaknesses.

The details of design and implementation of AvA4cmi methodology will be

given in the next chapter.

CHAPTER 4

Vulnerability Assessment for

Complex Middleware

Interrelationships

In this chapter we propose “AvA4cmi”, a vulnerability assessment methodology

for complex middleware interrelationships in distributed systems. In the �rst

section we describe the attack vectors graph, a key element for the proposed

methodology. In Section 4.2, we present the system attributes, our customized

version of the CWSS scoring system, and how they are used to build the set of

rules that constitute the knowledge base of the methodology. In addition, we

introduce the way how it generates a relationship between system attributes and

CWE weaknesses, in order to assist rules applicability. In Section 4.3, we

describe the algorithm that allows the assessment of such complex middleware

interrelationships (depicted in the attack vector graphs) using the codi�ed

knowledge within “AvA4cmi”. Finally, Section 4.4 presents the security alerts

generated by the assessment process.

69

70 CHAPTER 4. AVA4CMI: METHODOLOGY

Introduction to AvA4cmi

The methodology called \Attack vector analyzer for complex middleware

interrelationships (AvA4cmi)" focuses on the guidance towards a more

comprehensive and accurate vulnerability assessment, characterized by

considering the high interoperability between middleware components for

systematically hinting where and why to deploy code assessment. The starting

point for AvA4cmi is to build most likely attack vectors. From these attack

vectors, AvA4cmi works applying codi�ed knowledge through an algorithm,

which is in charge of evaluates and scores the components and their

attributes-weaknesses relationship, and how they in
uence other components

that belong to the same attack vector being assessed. Lastly, AvA4cmi

generates for each attack vector, security alerts containing hierarchized lists of

weaknesses (following the CWE taxonomy, and sorted by maximum score), with

which the methodology provides to the security practitioner enough information

to decide where and why deploy code assessment.

4.1 Attack Vectors Graphs

The �rst step of (“AvA4cmi”) is to automatically determine \what to look for at

each component" in the FPVA diagrams derived from the architectural, resource,

and privilege analysis; and then develop a suitable data representation for all

this gathered information, to support the asessment process in the methodology.

Currently, the security practitioner decides which middleware components are

critical, based on his experience.

Hence, the diagrams generated from the �rst FPVA analysis steps frequently

describe particular functionalities of the application (e.g., submitting and

canceling jobs, or retrieving job outcomes), such as in the architecture diagrams

of CrossBroker and WMS (introduced in the previous chapter), and given that

starting (an attack surface point) and ending (impact surface point) components

of the diagrams can be clearly identi�ed, they can be viewed as graphs

describing how the middleware being assessed works.

In order to represent all these initial FPVA outcomes (diagrams) in a suitable,

useful, and uni�ed diagram, we de�ned a structure called Attack Vector Graph.

4.1. ATTACK VECTORS GRAPHS 71

An attack vector graph is aimed to depict the sequence of transformations that

allows control
ow to go from a point in the attack surface to a point in the impact

surface.

Figure 4.1: Attack Vector graph: CrossBroker example

With this structure, AvA4cmi systematically determines all the attack vectors

(complex interrelationships) between middleware components and resources, such

as those can be found in the �gure 4.1 The order in which an attack vector graph is

built is also quite clear because every edge in the FPVA diagrams is labeled with

a number indicating when the interaction represented by the edge takes place,

and also indicating if a node in the diagrams belong either to the attack or the

impact surface.

We decided to represent the attack vector graphs with the GraphML format

[32], for further use in Ava4cmi. GraphML has the advantage over other graph

representations, that provides a mechanism to add data to the structural elements

(e.g. graph's, node's, edge's, etc.), which help parsers to process a document more

e�ciently.

Basically, an attack vector graph represented in GraphML format (e.g., Code

4.1, is an XML �le composed by the information gathered from the FPVA

diagrams, which also includes the relevant system attributes information about

72 CHAPTER 4. AVA4CMI: METHODOLOGY

the middleware components. Systems attributes will be introduced in

subsection 4.2.1.

<?xml v e r s i o n =”1.0” ?>

<graphml x s i : schemaLocation=” http :// graphml . graphdrawing . org /xmlns”

xmlns : x s i=” http ://www. w3 . org /2001/XMLSchema−i n s t ance ”

xmlns=” http :// graphml . graphdrawing . org /xmlns”>

<!−−System Att r ibute s D e f i n i t i o n−−>
<key id=”CSI” f o r=”node” a t t r . type=” s t r i n g ”

a t t r . name=” Cl ient−Server I n s t a l l a t i o n ”/>

<key id=”Timeout” f o r=”node” a t t r . type=” boolean ”

a t t r . name=”Timeout Operat ions ”/>

<key id=” id ” f o r=”node” a t t r . type=” i n t ” a t t r . name=” id ”/>

. . .

<!−− Graph i n s t a n t i a t i o n−−>
<graph id=” CrossBroker ” edgede f au l t=” d i r e c t e d ”>

<!−− Attack ve c to r s statement−−>
<data key=” a t t a c k v e c t o r s ”>

1 , 2 , 3 , 4 , 5 , 6 , 1 1 , 1 2 ; 1 , 2 , 3 , 4 , 1 1 , 1 2 ; 1 , 1 1 , 1 2 ; 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ;

1 , 2 , 3 , 4 , 1 1 , 6 , 7 , 8 , 9 , 1 0 ; 1 , 1 5 , 1 0 ; 1 , 1 1 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ;

1 ,11 ,6 , 7 , 8 , 9 , 10</ data>

<!−− Component a t t r i b u t e s statement−−>
<node id=”10”>

<data key=” p r e d e c e s s o r s ”>9</ data>

<data key=” s u c e s s o r s ”>11</ data>

<data key=” id ”>12</ data>

<data key=”name”>MySQL</ data>

<data key=”owner”>P a r t i a l l y−P r i v i l e g e d User</ data>

<data key=” language ”>C++</ data>

<data key=” timeoutOperat ions ”>Yes</ data>

<data key=” c l i e n t S e r v e r ”>Server</ data>

<data key=” at tackSur f ace ”>no</ data>

<data key=” impactSur face ”>Yes</ data> </node>

. . .

<!−− Component or Resource r e l a t i o n s h i p s−−>
<edge id=”10” t a r g e t=”47” source=”12” d i r e c t e d=” true ”/>

<edge id=”20” t a r g e t=”19” source=”17” d i r e c t e d=” true ”/>

<edge id=”22” t a r g e t=”10” source=”19” d i r e c t e d=” true ”/>

. . .

</graph>

</graphml>

Code 4.1: Attack Vector GraphML example

4.2. KNOWLEDGE BASE 73

Currently, the attack vector graphs are built with an FPVA Graph Editor tool,

which belong to the work developed within the MIST group to support the

proposed methodology.

4.2 Knowledge Base

We understand that security practitioner knowledge is similar to the one recorded

on several available vulnerability classi�cations, such as the Common Weakness

Enumeration [77], The Seven Pernicious Kingdoms [45], the OWASP Top Ten

[68], the Comprehensive, Lightweight Application Security Process [83], and the

Microsoft SDL [74], and that it can be codi�ed in the form of rules, metrics, and

scores.

Thus, the following steps in the AvA4cmi methodology is to build a

Knowledge Base (KB) based on rules, which allow to be applied systematically

when traversing attack vector graphs.

Our KB is based on three elements:

• The most updated knowledge about weaknesses, the CWE community e�ort.

• A customized weakness scoring system (metrics and scores) based on the

CWSS community e�ort.

• And the most common middleware System Attributes.

All this elements, the CWE weaknesses, the CWSS scoring system, and the

system attributes are depicted in �gure 4.2, among them there is a synapsis

(explained in the following subsections), that is used for building the set of rules

that will guide the vulnerability assessment of a target system.

In the next subsection, we introduce the system attributes.

4.2.1 System Attributes

The System Attributes (SA) have been de�ned in a large research and re�ning

process, extracted from the experience using FPVA, and where the MIST group

survey to security practitioners was extended to identify those attributes from

middleware components that are and should be remarkable when performing a

vulnerability assessment.

74 CHAPTER 4. AVA4CMI: METHODOLOGY

Figure 4.2: Knowledge Base architecture in AvA4cmi

System attributes are built with the information provided by several FPVA

diagrams, developer team interviews, user and admin documentation, as well as

the API documentation. Below, we describe each one of the system attributes we

consider.

Owner: The owner attribute is unique, it is an abstraction that

denotes a logical entity for assignment of ownership and

operation privileges over the system. Due that the owner of

the component is capable to assign privileges levels to users

who want to interact with it, this attribute allows to know

how compromised the component and the system could be in

case of a vulnerability exists.

User: The user attribute may correspond to a real world person, but

also a type of system operation, which have some operation

privileges over the system, such as read, write, and execution.

The user attribute allows to know the impact of that component

being attacked.

UAI: This attribute shows if the component belong to the user or the

administrator interface. Thus, the conditions for the attacker to

achieve its goal would increase or not, if the component belong

to the user or administrator interface (UAI).

4.2. KNOWLEDGE BASE 75

Sanitize: Sanitizing operations are one of the most critical tasks in

security. If the component performs some sanitizing operation

over the data
ow, then the sanitize attribute determine if the

exploitability of a vulnerability may be mitigated or not. That

means that the conditions are more or less favorable for the

attacker to achieve its goal.

Transform: This attribute shows if the component performs transforming

operations over the data
ow, whereby an attacker could

expect the data
ow is converted or behaves in an

inappropriate manner. A transforming operation is for

example, when a job description �le is then packaged into a

wrapper script to be execute later.

Transfer: This attribute shows if the component performs transfering

operations with the data
ow, whereby an attacker could

expect the data
ow behaves in an inappropriate manner when

arrives to other components. A transfering operation is for

example, when the wrapper script is submitted from the

resource manager to an available compute node, to �nally be

execute.

Trust: The trust attribute shows if the component performs

trustworthy operations, such as authentication and

authorization of user and server credentials, when users or

communication process try to interact to the component.

Usually, this operations often happen in the �rst components

of a middleware, so insider attackers can have more favorable

conditions to achieve its goal.

Server Interaction: This attribute shows if a component performs or not

server operations, such as queries against a database, LDAP,

NFS, Web server or any other type of server query. If the

middleware components perform several di�erent queries,

attackers can have more favorable conditions to achieve its

goal. For query we mean read, write, and execute operations.

76 CHAPTER 4. AVA4CMI: METHODOLOGY

Timeout: A critical task in security is to control timeout answers. If a

component does not implement timeout answer for its

operations, an attacker is able to perform brute force attacks,

or worst denial of service attacks. Thus, this attribute shows if

the component controls or not timeout operations.

Max-Min: The operations to control length, size, volume, or bounds are a

great concern for security practitioners, due that they are one

of the most used points by attackers to trigger and execute

arbitrary code. The max-min attribute determines if the

component performs or not control operations over data
ow

length, size, volume, or bounds.

Third-party: This attribute determines if the component performs or not

operations with third parties, such as interact locally o remotelly

with services or components outside of the middleware scope.

Spoofing: This attribute shows if the component performs or not

operations against spoo�ng attacks, a situation in which one

person or program act on behalf of another by falsifying data

and thereby gaining an illegitimate advantage. This is

especially attractive for attackers in distributed systems, e.g.,

once they have sni�ed certi�cates for single sign on, they can

impersonate another to gain delegation of rights to other

entities.

Tampering: Tampering involves the deliberate altering or adulteration of

data
ow, a component, or system. Some attacks just may want

to alter or destroy sensitive data, in order to avoid exposing

or using them in critical business operations. The tampering

attribute shows if the component provides or not tamper proof

operations.

Encryption: This attribute shows if the component has or not an abstract

or concrete protocol that performs a security related function

and applies encryption methods, which are designed to provide

4.2. KNOWLEDGE BASE 77

communication security. But today attackers may not be too

worried about it1.

Attachment: The capability to attach any �le type becomes a potential

threat for the whole middleware, no matter the environment

circumstances. It is di�cult to detect if the attachment is per

se the real threat. This attribute shows if the component

provides or not attachment operations.

EEH: This attribute shows if the component performs or not error

and exception handling strategies to deal with anomalous,

exceptional events, or processing, that often change the

normal
ow of program execution. An attacker may take

advantage of lack of error and exception handling to trigger an

event that is controlled at will.

Client-Server: The client-server (CSI) attribute determines if the component

is installed on the client side or the server side of the middleware.

Similarly to UAI attribute, to be installed at the client or server

side makes more easy or di�cult the task for an attacker to

achieve its goal. But, it is worth to state that the client side will

be always under control of the user, and anything can happen

there.

Web: Web technologies have ventured strongly in every computing

area, and nowadays middleware systems are not the exception.

Along with them speci�c threats arise, which allow attackers

to have bigger attack surfaces. This attribute shows if the

component is using or not a Web technology.

Logging-Backup: The logging and backup (LogBak) attribute determines

if the component performs loggin and/or backup tasks. They

seem to be two simple tasks without any risk, on the other hand

these tasks may contain too much information that an attacker

can exploit.

1http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

http://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

78 CHAPTER 4. AVA4CMI: METHODOLOGY

Attack surface: This attribute determine if the component is a point in the

attack surface. It is included to support the building of the

attack vectors, and it is only re
ected in the graphml �le when

traversing the attack vector graphs.

Impact surface: This attribute determine if the component is a point in the

impact surface. As well as the attack surface attribute, the

impact surface attribute is included to support the building of

the attack vectors, and it is only re
ected in the graphml �le

when traversing the attack vector graphs.

Most of system attributes have boolean values (i.e., yes or no), in order to

avoid generate decision problems, or what is the same, uncertainty, when creating

the attack vector graphs, and when applying the AvA4cmi methodology.

Only the owner and user attributes can have di�erent values (i.e.,

Administrator, Partially-Privileged User, Regular User, Guest, None, Default,

Unknown, or Not Applicable). If a system attribute can not be derived, the

attribute is deemed not controlled, in other words a pessimistic approach is used.

In the next subsection, we introduce the relationship between system

attributes and CWE weaknesses.

4.2.2 Relationship between System Attributes & Weaknesses

In order to get the synapsis between system attributes and CWE weaknesses that

assist the rules applicability, we studied comprehensively the CWE taxonomy,

and analyzed all the information it provides. From this study, we understand

that not all the information provided by CWE is relevant for the purposes in the

relationship we looked for; also, not all the weaknesses provide information for

speci�c details, such as real examples of the weakness in the CVE database [76].

Therefore, we proposed a two-step approach to �nd out an accurate

relationship:

(1) The �rst thing needed is to gather the most useful information from the

CWE source; We proposed 12 di�erent elements, which provide the most

relevant details of a weakness. They are acquired through a public XML

�le supplied by the CWE community [75]. The 12 elements are: 1) a

4.2. KNOWLEDGE BASE 79

weakness identi�cator, 2) a weakness name, 3) a description, 4) an

extended description, 5) the programming language, 6) the consequence

scope, 7) the consequence technical impact, 8) the consequence notes, 9)

the mitigation description, 10) the mapped node names, 11) the

relationships, and 12) the observed example description.

(2) For the second step, AvA4cmi runs a comprehensive searching of words and

synonyms related to each of 19 system attributes over the twelve elements,

and conducted carefully on the 714 weaknesses to �nd the accurate set of

CWE weaknesses.

For the sake of understanding, we describe the 12 elements using a real example

of a CWE weakness [10]:

(1) The weakness identi�cator: CWE-20.

(2) The weakness name: Improper Input Validation.

(3) The weakness description: The product does not validate or incorrectly

validates input that can affect the control flow or data flow of a program.

(4) The weakness extended description: When software does not validate input

properly, an attacker is able to craft the input in a form that is not expected

by the rest of the application. This will lead to parts of the system receiving

unintended input, which may result in altered control flow, arbitrary control

of a resource, or arbitrary code execution.

(5) The programming language in which the weakness may occur:

Language-independent.

(6) The consequence scope, which identi�es an individual consequence that may

be associated to the weakness: Availability, Confidentiality, Integrity.

(7) The consequence technical impact, which describes the technical impacts

that can arise if an attacker attempts to exploit the weakness: DoS: crash

/ exit / restart; DoS: resource consumption (CPU); DoS: resource

consumption (memory); Read memory; Read files or directories; Modify

memory; Execute unauthorized code or commands.

80 CHAPTER 4. AVA4CMI: METHODOLOGY

(8) The consequence notes, which provides additional commentary about its

consequence: An attacker could provide unexpected values and cause a

program crash or excessive consumption of resources, such as memory and

CPU; An attacker could read confidential data if they are able to control

resource references; An attacker could use malicious input to modify data

or possibly alter control flow in unexpected ways, including arbitrary

command execution.

(9) The mitigation description, which contains a single method for mitigating

the weakness: Use an input validation framework such as Struts or the

OWASP ESAPI Validation API; Understand all the potential areas where

untrusted inputs can enter your software: parameters or arguments,

cookies, anything read from the network, environment variables, reverse

DNS lookups, query results, request headers, URL components, e-mail,

files, filenames, databases, and any external systems that provide data to

the application. Remember that such inputs may be obtained indirectly

through API calls; Assume all input is malicious.

(10) The mapped node names, which identi�es the name of the entry to which

this weakness is being mapped in other taxonomies or classi�cations: Input

validation and representation; Unvalidated Input; Improper Input Handling.

(11) The relationship, which contains a note regarding the relationships

between CWE entries: Child Of 19: Data Handling; Child Of 693:

Protection Mechanism Failure; Parent Of 77: Improper Neutralization of

Special Elements used in a Command (’Command Injection’); Parent Of

79: Improper Neutralization of Input During Web Page Generation

(’Cross-site Scripting’); Parent Of 89: Improper Neutralization of Special

Elements used in an SQL Command (’SQL Injection’); etc..

(12) The observed example description, which presents an unambiguous

correlation between the example being described and the weakness which

it is meant to exemplify: CVE-2008-3843: Insufficient validation enables

XSS; CVE-2008-1303: Missing parameter leads to crash; CVE-2008-3494:

Security bypass via an extra header, etc..

For example, the synapsys for the system attribute “User” is produced after

4.2. KNOWLEDGE BASE 81

a search for the words:

• root, admin, sysadmin, administrator(s), owner, ownership,

actor(s), username, attacker(s), account(s), sudo, user(s),

domain(s), superuser, and supervisor.

As a result, 150 di�erent related weaknesses were found. Among these search

results, show up the weakness “CWE–282: Improper Ownership Management”.

In a nutshell, it says “The software assigns the wrong ownership, or does not

properly verify the ownership, of an object or resource”. Thus, for each of the

remaining system attributes the step two of the appraoch is repeated, and show

up between 20 to 150 relationships with CWE weaknesses.

With the system attributes and CWE weaknesses relationship stated, we

present in the next subsection the rules.

4.2.3 Rules

The next step in the AvA4cmi methodology is de�ne the logical propositions,

or what is the same, the knowledge base of rules. The rules' function consist of

essentially to obtain a quantitative measurement for each one of the 19 system

attributes of the middleware components.

More precisely, the rules evaluate the current value of each system attribute

against metric groups and their factors from a customized version of the CWSS

scoring system. Below we illustrate by way of seudo-code two di�erent example

of the rules:

• Example I. Rule for the Owner attribute

If Owner == Administrator then:

TI == Critical, AP == Administrator

AL == Enterprise, AV == Private Network

• Example II. Rule for the User-Admin Interface attribute

If User-Admin Interface == Yes then:

TI == High, AV == Local, IN == Automated

DI == High, EX == High, AS == Moderate

82 CHAPTER 4. AVA4CMI: METHODOLOGY

Legend: Technical Impact (TI), Acquired Privilege (AP), Acquired Privilege

Layer (AL), Access Vector (AV), Level of Interaction (IN), Authentication

Strength (AS), Likelihood of Discovery (DI), Likelihood of Exploit (EX).

It can be appreciated in both examples that the \Owner" and the \User-Admin

Interface" attributes are related with particular CWSS factors such as the TI

factor, which will be measured according to the corresponding values.

In the �rst example, the TI factor answers with the \Critical" value when the

\Owner" attribute corresponds with the \Administrator" value.

For the \User{Admin Interface" rule example, the TI factor assumes a \High"

value, because the component being assessed is part of the attack surface, but not

necessarily have to be considered harnessed by an attacker to get \Critical".

All the rules are derived similarly to the two examples, taking into account

the correlation between respective attributes and factors, and they are re
ected

in the implementation repository [43] of the methodology.

The Table 4.1 shows the metric groups and their factors for our own customized

version of the CWSS system used to build the rules.

Base Finding Attack Surface Environment

Technical Impact (TI) Required Privilege (RP) Business Impact (BI)

Acquired Privilege (AP) Required Privilege Layer (RL) Likelihood of Discovery (DI)

Acquired Privilege Layer (AL) Access Vector (AV) Likelihood of Exploit (EX)

Internal Control E�ectiveness (IC) Authentication Strength (AS) External Control E�ectiveness (EC)

{ Authentication Instances (AI) Prevalence (P)

{ Level of Interaction (IN) {

{ Deployment Scope (SC) {

Table 4.1: Custom CWSS Metric groups

This customized version of CWSS is characterized by setup values in terms

of the system attributes, e.g., the Internal Control (IC) factor have the same

weight (1) for the \Owner" and \User" attributes, because there is no protection

mechanism to prevent all possible attacks that either malicious user or owner could

make. And, our customized CWSS systems is also characterized by removing some

4.2. KNOWLEDGE BASE 83

factors from the original Base Finding and Environment group metrics, such as

the Finding Con�dence, and the Remediation E�ort. Because, on one hand,

AvA4cmi does neither claim that a vulnerability exist nor that it does not exist,

whereby we can not consider the �nding con�dence factor in the methodology,

because this factor assumes a vulnerability exists, and can be triggered or utilized

by an attacker.

On the other hand, the remediation e�ort factor re
ects a bias that weaknesses

that are more expensive to �x will have higher scores than the same types of

weaknesses that are less expensive to �x, and due that the AvA4cmi methodology

does not remediate issues, this factor is out of scope. Thus, the score formulas

were correctly balanced, taking into account the elements removed.

In order to complete the rules building, we proposed a correlation between the

system attributes and the factors, which is depicted in Table 4.2. Some of the

factors are perfectly correlated attributes, scoreed with an X in Table 4.2. Others

can be correlated to a lesser extent, which are labeled by default, using a D in

the table. And other factors are not possible to correlate, which are scoreed NA

in the table. The latter does not necessarily mean that provide zero score, on the

contrary to not know the relationship may score higher.

With this correlation, we proposed di�erent weights for the factors values,

which are depicted in Tables 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12,

4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19, and 4.20.

Legend: X = Applicable, NA = Not applicable, D = Default

84 CHAPTER 4. AVA4CMI: METHODOLOGY

Attributes
Base Finding Attack Surface Environment

TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

Owner X X X NA NA X X NA NA NA NA X D D NA NA

User X NA X NA X X X X X NA NA X D D NA NA

UAI X NA NA D NA X X X X X X X X X NA NA

Sanitize X NA NA X NA X NA NA NA NA NA X X X NA NA

Transform X NA NA X NA X NA NA NA NA NA X D D NA NA

Transfer X NA NA X NA X NA NA NA NA NA X D D NA NA

Trust X NA NA X NA X NA X X NA NA X D D NA NA

Server Int X NA X D X X X X X X NA X X X D NA

Timeout X NA NA X NA X NA NA NA NA NA X X X D NA

Max-Min X NA NA X NA X NA NA NA NA NA X X X D NA

3rd-Party X NA NA D X X X X X X NA X NA NA X NA

Spoo�ng X NA NA X NA X NA NA NA NA NA X X X NA NA

Tampering X NA NA X NA X NA NA NA NA NA X X X NA NA

Encryption X NA NA X NA X NA NA NA NA NA X X X NA NA

Attachment X NA NA X NA X NA NA NA X NA X X X NA NA

EEH X NA NA X NA X NA NA NA NA NA X X X NA NA

CSI X NA X NA NA X X NA NA NA NA X X X NA NA

Web X NA X NA NA X X NA NA NA NA X X X NA NA

LogBak X NA X NA NA X X NA NA NA NA X X X NA NA

Table 4.2: System attributes & CWSS factors correlation in AvA4cmi

4.2. KNOWLEDGE BASE 85

Therefore, with the knowledge base of rules stated, and the obtained

quantitative measurements, we proceed to use them further in the coming step

of the methodology, when the complex middleware interrelationships come into

play.

Owner TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

ADM 1 1 1 1 0,1 1 0,8 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

PPU 0,9 0,9 0,9 1 0,1 1 0,8 0,5 0,5 0,1 0,1 0,9 0,6 0,6 0,1 0,5

RU 0,6 0,7 0,7 1 0,1 1 0,5 0,5 0,5 0,1 0,1 0,6 0,6 0,6 0,1 0,5

GU 0,3 0,6 0,5 1 0,1 1 0,5 0,5 0,5 0,1 0,1 0,3 0,6 0,6 0,1 0,5

NU 0 0,1 0,5 1 0,1 1 0,5 0,5 0,5 0,1 0,1 0 0,6 0,6 0,1 0,5

DU 0,6 0,7 0,9 1 0,1 1 0,5 0,5 0,5 0,1 0,1 0,6 0,6 0,6 0,1 0,5

UU 0,5 1 0,5 1 0,1 1 0,5 0,5 0,5 0,1 0,1 0,5 0,6 0,6 0,1 0,5

NA 0,3 0,1 0,5 1 0,1 1 0,5 0,5 0,5 0,1 0,1 0,3 0,6 0,6 0,1 0,5

Table 4.3: CWSS customized scores for Owner Attribute

User TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

ADM 1 0,1 1 1 0,1 1 0,8 0,8 0,8 0,1 0,1 1 0,6 0,6 0,1 0,5

PPU 0,9 0,1 0,9 1 0,6 1 0,8 0,8 0,8 0,1 0,1 0,9 0,6 0,6 0,1 0,5

RU 0,6 0,1 0,7 1 0,7 1 0,5 0,8 0,8 0,1 0,1 0,6 0,6 0,6 0,1 0,5

GU 0,3 0,1 0,5 1 0,9 1 0,5 0,8 0,5 0,1 0,1 0,3 0,6 0,6 0,1 0,5

NU 0 0,1 0,5 1 1 1 0,5 0,8 0,5 0,1 0,1 0 0,6 0,6 0,1 0,5

DU 0,6 0,1 0,9 1 0,7 1 0,5 0,8 0,5 0,1 0,1 0,6 0,6 0,6 0,1 0,5

UU 0,5 0,1 0,5 1 0,5 1 0,5 0,8 0,5 0,1 0,1 0,5 0,6 0,6 0,1 0,5

NA 0,3 0,1 0,5 1 0,1 1 0,5 0,5 0,5 0,1 0,1 0,3 0,6 0,6 0,1 0,5

Table 4.4: CWSS customized scores for User attribute

Legend: ADM = Administrator, PPU = Partially-Privileged user, RU = Regular

user, GU = Guest user, NU = None, DU = Default user, UU = Unknown

user, NA = Not applicable

86 CHAPTER 4. AVA4CMI: METHODOLOGY

UAI TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 1 0,1 0,5 0,6 0,1 1 0,5 0,8 0,8 1 0,7 1 0,6 0,6 0,1 0,5

NO 0,9 0,1 0,5 0,6 0,1 1 0,8 0,7 0,8 0,1 0,7 0,9 0,6 0,6 0,1 0,5

Table 4.5: CWSS customized scores for UAI attribute

Sanitize TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 0,6 0,1 0,5 0,7 0,1 1 0,75 0,5 0,5 0,1 0,1 0,6 0,6 0,6 0,1 0,5

NO 1 0,1 0,5 0,9 0,1 1 0,75 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

Table 4.6: CWSS customized scores for Sanitize attribute

Transform TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 1 0,1 0,5 0,7 0,1 1 0,75 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

NO 0,3 0,1 0,5 0,9 0,1 1 0,75 0,5 0,5 0,1 0,1 0,3 0,6 0,6 0,1 0,5

Table 4.7: CWSS customized scores for Transform attribute

Transfer TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 1 0,1 0,5 0,7 0,1 1 0,75 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

NO 0,3 0,1 0,5 0,9 0,1 1 0,75 0,5 0,5 0,1 0,1 0,3 0,6 0,6 0,1 0,5

Table 4.8: CWSS customized scores for Transfer attribute

Trust TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 0,6 0,1 0,5 0,7 0,1 1 0,2 0,9 0,8 0,1 0,1 0,6 0,6 0,6 0,1 0,5

NO 1 0,1 0,5 0,9 0,1 1 0,2 0,8 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

Table 4.9: CWSS customized scores for Trust attribute

Server TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 1 0,7 0,9 0,6 0,6 1 0,8 0,85 0,8 0,55 0,1 1 0,6 0,6 0,1 0,5

NO 0,3 0,7 0,9 0,6 0,1 1 0,2 0,85 0,8 0,55 0,1 0,3 0,6 0,6 0,1 0,5

Table 4.10: CWSS customized scores for Server attribute

Timeout TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 1 0,1 0,5 0,6 0,1 1 0,2 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

NO 0,3 0,1 0,5 0,6 0,1 1 0,2 0,5 0,5 0,1 0,1 0,3 0,6 0,6 0,1 0,5

Table 4.11: CWSS customized scores for Timeout attribute

4.2. KNOWLEDGE BASE 87

Max-Min TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 1 0,1 0,5 0,6 0,1 1 0,2 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

NO 0,3 0,1 0,5 0,6 0,1 1 0,2 0,5 0,5 0,1 0,1 0,3 0,6 0,6 0,1 0,5

Table 4.12: CWSS customized scores for Max-Min attribute

3rd-Party TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 1 0,1 0,5 0,6 0,6 1 0,8 0,85 0,8 0,55 0,1 1 0,6 0,6 0,1 0,5

NO 0,3 0,1 0,5 0,6 0,1 1 0,2 0,85 0,8 0,55 0,1 0,3 0,6 0,6 0,1 0,5

Table 4.13: CWSS customized scores for Third-party attribute

Spoo�ng TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 0,3 0,1 0,5 0,5 0,1 1 0,2 0,5 0,5 0,1 0,1 0,3 0,2 0,2 0,1 0,5

NO 1 0,1 0,5 0,9 0,1 1 0,2 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

Table 4.14: CWSS customized scores for Spoo�ng attribute

Spoo�ng TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 0,3 0,1 0,5 0,5 0,1 1 0,2 0,5 0,5 0,1 0,1 0,3 0,2 0,2 0,1 0,5

NO 1 0,1 0,5 0,9 0,1 1 0,2 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

Table 4.15: CWSS customized scores for Tampering attribute

Encryption TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 0,3 0,1 0,5 0,5 0,1 1 0,2 0,5 0,5 0,1 0,1 0,3 0,2 0,2 0,1 0,5

NO 1 0,1 0,5 0,9 0,1 1 0,2 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

Table 4.16: CWSS customized scores for Encryption attribute

Encryption TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 1 0,1 0,5 0,7 0,1 1 0,2 0,5 0,5 1 0,1 1 0,6 0,6 0,1 0,5

NO 0,3 0,1 0,5 0,5 0,1 1 0,2 0,5 0,5 0,1 0,1 0,3 0,2 0,2 0,1 0,5

Table 4.17: CWSS customized scores for Attachment attribute

EEH TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 0,3 0,1 0,5 0,5 0,1 1 0,2 0,5 0,5 0,1 0,1 0,3 0,6 0,6 0,1 0,5

NO 1 0,1 0,5 0,7 0,1 1 0,2 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

Table 4.18: CWSS customized scores for Error & Exception handling attribute

88 CHAPTER 4. AVA4CMI: METHODOLOGY

CSI TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 0,6 0,1 1 0,3 0,1 1 0,5 0,5 0,5 0,1 0,1 0,6 0,6 0,6 0,1 0,5

NO 1 0,1 1 0,3 0,1 1 0,8 0,5 0,5 0,1 0,1 1 0,2 0,2 0,1 0,5

Table 4.19: CWSS customized scores for Client-Server Installation attribute

Web TI AP AL IC RP RL AV AS AI IN SC BI DI EX EC P

YES 1 0,1 1 0,3 0,1 1 1 0,5 0,5 0,1 0,1 1 0,6 0,6 0,1 0,5

NO 0,3 0,1 0,5 0,3 0,1 1 0,5 0,5 0,5 0,1 0,1 0,3 0,2 0,2 0,1 0,5

Table 4.20: CWSS customized scores for Web attribute

4.3 An Algorithm for the Evaluation of

interrelationships in Attack Vector graphs

This step of the AvA4cmi methodology describes the algorithm (a formal

method) that systematically apply the instantiated knowledge base when

traversing the attack vector graphs, and assesses complex middleware

interrelationships, in order to generate a list of hierarchized security alerts,

which hint where and why middleware components should be assessed.

Figure 4.3: Algorithm architecture in AvA4cmi

4.3. AN ALGORITHM FOR THE AVA4CMI METHODOLOGY 89

Figure 4.3 describes the architecture proposed for the algorithm engine, in

which the external black arrow represents the connection to the instantiated

knowledge (Section 4.2); the left icon represents the attack vector graph

(Section 4.1), and the right icon represents the outcomes produce by the

algorithm, the security alerts.

The �rst element read is the attack vector graph, from which the algorithm

identi�es and loads the attack vectors, the components of the middleware being

assessed, and their corresponding system attributes. Secondly, the algorithm

read the knowledge base, in order to load both the stated rules and the stated

relationships between the CWE weaknesses and the system attributes.

Once all the codi�ed knowledge required is ready, the algorithm follows the

next steps:

Step 0. The algorithm starts traversing each attack vector, component by

component. For each component, its system attributes are fetched from

the graph �le, and then assessed according to the current stated rules.

Hence, the weaknesses related with these system attributes are assessed

too, according to the relationship proposed in 4.2.2. As a result, an

individual score is obtained for each attribute associated with every

weakness, for each component on the attack vector being traversed.

It is worth to state if the weakness belong to the Top 25 of CWE

Weaknesses, we evaluated the Likelihood of Discovery (DI), and the

Likelihood of Exploit (EX) factors with the \High" value.

Figure 4.4: Simpli�ed Attack Vector graph

90 CHAPTER 4. AVA4CMI: METHODOLOGY

CWE-X
`````````````̀Component

Attribute
A0 A1 A2

C0 0, 1 0, 2 0, 3

C1 0, 4 0, 5 0, 6

C2 0, 7 0, 8 0, 9

Table 4.21: Example of individual scores for A0, A1, and A2

For example, in the Figure 4.4, after applying the stage zero of the algorithm,

the attack vector comprising the components zero (C0), one (C1), and two (C2),

obtains the scores shown in Table 4.21, for their system attributes A0, A1, and

A2. And, therefore the weakness CWE-X with associated attributes A0, A1, and

A2 gets several scores.

Step 1. We realized the several scores (obtained in the previous stage) associated

to the weaknesses can be summarized in a single score. We proposed to

assign to each attribute the minimum score obtained by any component of

the attack vector. We have choosen the minimun value because it means in

that component at least, a weakness mitigation has been implemented.

Following with the example of Table 4.21, the minimum score of

attribute A0 related to the weakness CWE-X, will be the minimum value

between 0, 1,0, 4, and 0, 7, that is, 0, 1. Respectively, for the attributesA1,

and A2, the minimun scores will be 0, 2 and 0, 3.

Step 2. After the minimum scores for the weaknesses are computed, then the

algorithm proceeds to weigh them according to the relevance of the system

attribute for every of the 11 top-level entries (pillars) in the taxonomy

followed in this work (the CWE Research View). We proposed this

weighing, because we realized the system attributes might impact di�erent

for each weakness depending of one pillar or another.

i.e., a system attribute such as owner has a high weight regarding the

\CWE{693 Protection Mechanism Failure" pillar, while the encryption

attribute has a low weight. On the contrary, for the \CWE{330 Use of



4.3. AN ALGORITHM FOR THE AVA4CMI METHODOLOGY 91

Insu�ciently Random Values" pillar the encryption attribute has a high

weight, while the owner has a low weight.

We de�ned three levels of relevance according to the top-level pillars, in level

1 the attributes are very relevant for the weakness, in level 2 the attributes are

enough relevant, and level 3 the attributes are a bit relevant.

The di�erent top-entries levels are depicted in

Tables 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28, 4.29, 4.30, 4.31, and 4.32.

CWE-118 Improper Access of Indexable Resource ('Range Error')

Level 1. Max-Min,EEH,Trust,UAI

Level 2. Attachment,Timeout,Sanitize,LogBak,CSI,Owner,User,Server

Level 3. Encryption,Spoo�ng,Tampering,Web,3rd-party,Transformation,Transfering

Table 4.22: Weighting levels for CWE-118

CWE-330 Use of Insu�ciently Random Values

Level 1. Encryption,Timeout

Level 2. Owner,User,UAI,Spoo�ng,Max-Min,Trust,EEH,Web

Level 3. Tampering,Sanitize,Transformation,Transfering,Server,Attachment,3rd-party,CSI,LogBak

Table 4.23: Weighting levels for CWE-330

CWE-435 Interaction Error

Level 1. UAI,Sanitize,Attachment,EEH

Level 2. Web,Trust,Owner,User,Transformation,Transfering,Server,3rd-party,TimeOut,Max-Min,CSI

Level 3. Spoo�ng,Tampering,Encryption,LogBak

Table 4.24: Weighting levels for CWE-435



92 CHAPTER 4. AVA4CMI: METHODOLOGY

CWE-664 Improper Control of a Resource Through its Lifetime

Level 1. TimeOut,Transfering

Level 2. LogBak,Owner,User,Attachment,Web,3rd-party,Server,EEh,Tampering,Max-Min,Trust

Level 3. UAI,Spoo�ng,Encryption,Sanitize,Transformation,CSI

Table 4.25: Weighting levels for CWE-664

CWE-682 Incorrect Calculation

Level 1. Transformation,EEH,Trust

Level 2. Max-Min,Transfering,Owner,User,TimeOut,Server,3rd-party, Sanitize,CSI,Attachment

Level 3. UAI,Web,LogBak,Spoo�ng,Tampering,Encryption

Table 4.26: Weighting levels for CWE-682

CWE-691 Insu�cient Control Flow Management

Level 1. UAI,Sanitize,Transfering

Level 2. TimeOut,Max-Min,Owner,User,Transformation,Attachment,3rd-party,EEH,Trust,Server,CSI,Web

Level 3. Spoo�ng,Tampering,Encryption,LogBak

Table 4.27: Weighting levels for CWE-691

CWE-693 Protection Mechanism Failure

Level 1. Owner,User,UAI,Sanitize,Spoo�ng,Tampering,Encryption,Trust

Level 2. Transformation,Transfering,Attachment,3rd-party,Server,EEH,CSI,Web,LogBak

Level 3. TimeOut,Max-Min

Table 4.28: Weighting levels for CWE-693



4.3. AN ALGORITHM FOR THE AVA4CMI METHODOLOGY 93

CWE-697 Insu�cient Comparison

Level 1. Attachment

Level 2. Transformation,3rd-party,Owner,User,TimeOut,Max-Min,UAI,Sanitize,Trust,Server

Level 3. Spoo�ng,Tampering,Encryption,Transfering,CSI,Web,LogBak

Table 4.29: Weighting levels for CWE-697

CWE-703 Improper Check or Handling of Exceptional Conditions

Level 1. EEH,Owner,User

Level 2.
UAI,Sanitize,Trust,Server,Spoo�ng,Tampering,Encryption,Attachment,

3rd-party,Transformation,Transfering,TimeOut,Max-Min

Level 3. CSI,Web,LogBak

Table 4.30: Weighting levels for CWE-703

CWE-707 Improper Enforcement of Message or Data Structure

Level 1. Sanitize,Web,Attachment

Level 2.
Owner,User,UAI,Spoo�ng,Tampering,Encryption,3rd-party,

Trust,Server,Max-Min,EEH,CSI,Transformation,Transfering

Level 3. TimeOut,LogBak

Table 4.31: Weighting levels for CWE-707

CWE-710 Coding Standards Violation

Level 1. Owner,User,Server,3rd-party

Level 2. UAI,Transformation,Transfering,TimeOut,Max-Min,EEH,CSI,Encryption,Attachment,Trust

Level 3. Spoo�ng,Tampering,Web,LogBak,Sanitize

Table 4.32: Weighting levels for CWE-710



94 CHAPTER 4. AVA4CMI: METHODOLOGY

Step 3. Once the scores are weighed, the algorithm computes a maximum score for

the weakness. We considered that the maximum score have to take into

account how was the score of its child weaknesses. It means that child

weaknesses provide their weigh information to the top-level weaknesses.

For example, the weakness CWE-X got a weigh score A, and its only

child weakness CWE-Y got a weigh score B, and score A < B, so the

weakness parent CWE-X is more likely to be a�ected by its child weakness

CWE-Y, hence the maximum score for the weakness CWE-X will be B

instead of A.

4.4 Security Alerts

Once all the maximum scores for the weaknesses are processed, the last

algorithm step is to present for each assessed attack vector, the security alerts as

a hierarchical list of weighed weaknesses, for each one of the 11 top-levels entries

(the pillars of the taxonomy followed in this work) the CWE Research View.

The security alerts are sorted with respect to their maximum weighed scores,

like in the Code 4.2., where the own score obtained for the weakness is

represented by Sp , and the score the weakness can inherited from a child

weakness is represented by Max .

CWE−PILLAR: A Top l e v e l entry weakness

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−A: The weakness with the h i ghe s t s co r e : Sp= 0 .9 Max= 0 .9

|
−−−> CWE−B: A weakness c h i l d o f ”A” with lower s co r e :

Sp= 0.7875 Max= 0.7875

2 . CWE−C: The weakness with the second h ighe s t s co r e i n h e r i t e d :

Sp= 0.7875 Max= 0 .8

|
−−−>CWE−D: A weakness c h i l d o f ”C” with h igher s co r e :

Sp= 0 .8 Max= 0 .8

|
−−−>CWE−E: A weakness c h i l d o f ”D” with lower s co r e :

Sp= 0 .6 Max= 0 .6



4.5. CONCLUSIONS 95

3 . CWE−F: Another weakness in the P i l l a r with the th i rd h i ghe s t s co r e :

Sp= 0 .7 Max= 0 .7

Code 4.2: Security alert example

With this type of security alerts proposed, AvA4cmi systematically provides

comprehensive information to the security practitioner, pointing out not only

which weaknesses should be analyzed, but also why we should pay attention to

them in the assessed attack vector.

Below is depicted the whole algorithm of the AvA4cmi methodology:

Algorithm 1 Pseudo-code of AvA4cmi algorithm

1. Read the Attack Vector graph
2. Load the Attack Vector paths
3. Read the Knowledge Base
4. Load the Rules
5. Load the Relationships
6. For each Attack Vector
7. For each Component
8. Fetch the system attributes
9. Apply Rules to the system attributes

10. Assess the weaknesses related
11. For each Weakness
12. Compute the minimum score components
13. Weigh the computed score for the weakness
14. Compute the maximum score based on child weaknesses
15. For each Pillar at the CWE research view
16. Sort weaknesses in order of maximum score
17. Write the sorted security alerts to plot graphical representation

4.5 Conclusions

A new methodology for guidance of vulnerability assessment of complex

middleware interrelationships in distributed systems has been presented in this

chapter. The Attack Vector graph for the methodology was presented. This

graph de�nes the complex middleware interrelationships: the attack vectors and

their components. Di�erent elements allow the building of the current

Knowledge Base of the methodology:



96 CHAPTER 4. AVA4CMI: METHODOLOGY

• The System Attributes identify those attributes from the middleware

components that are remarkable when performing a vulnerability

assessment, they were extracted from the experience using FPVA.

• The proposed approach to �nd out an accurate relationship between system

attributes and weaknesses.

• The Rules are logical propositions to obtain a quantitative measurement for

each one of the 19 system attributes of the middleware components, using

a proposed customized version of the CWSS.

We also have presented an Algorithm that allows to systematically apply the

instantiated codi�ed knowledge when traversing the attack vector graphs, it is in

charge of evaluates and scores the components and their attributes-weaknesses

relationship. The results of traversing the attack vectors and applying the

algorithm to them for hinting where and why to deploy code assessment were

shown as the Security Alerts.



CHAPTER 5

AvA4cmi Experimental

Evaluation

In this Chapter, we report on the di�erent assessments performed in order to

show the bene�ts of the AvA4cmi methodology, and the contrast against

previous manual FPVA vulnerability assessment of CrossBroker and gLite WMS

middlewares.

In Section 5.1 we present the manual results after apply FPVA vulnerability

assessment guidelines on CrossBroker. Section 5.2 presents the security alerts for

CrossBroker using the AvA4cmi methodology. Section 5.3 presents the manual

results after apply FPVA vulnerability assessment guidelines on gLite WMS.

Finally, Section 5.4 presents the security alerts for gLite WMS using the

AvA4cmi methodology.

5.1 CrossBroker & FPVA

CrossBroker [18] is a Grid resource management system for interactive and parallel

appplications. It was used in various european projects, including Crossgrid [56],

the Interactive European Grid [57], and it was used also at the origins of the

97



98 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

Spanish Grid Initiative [13]. CrossBroker was built by extending the functionality

provided in LCG [4] and gLite WMS [8] 3.0 version.

Being able to access the real production system and the human resources of

CrossBroker, and being developed at the Universidad Aut�onoma de Barcelona,

encouraged us and facilitated to perform the vulnerability assessment following

the FPVA approach.

FPVA identi�ed serious and complex vulnerabilities a�ecting high value assets

in the selected 0.5.35 version of CrossBroker. Below, we describe the publicly

available vulnerabilities for CrossBroker after applied FPVA:

5.1.1 CrossBroker-2009-0001

• Summary: If CrossBroker is used in an environment where the user can

control certain attributes of the JDL submission �le, but the executable to

run must be selected from a white list of valid executables, then there exists

a 
aw that allows the user to run arbitrary code as the execute user beyond

the white listed executables.

• Vulnerable Versions: 0 - 0.5.35

• Components: i2g-job-submit, i2g-wl-ns daemon

• Access Required: This vulnerability requires the user to be able to submit

jobs to CrossBroker.

• E�ort Required: Low. Exploiting this vulnerability requires the user to be

able to control certain attributes of the job submissions �le and to specify

carefully crafted values for these attributes.

• Impact/Consequences: Low. In a typical con�guration the impact will be

low since the code will be executed as an unprivileged execute user. If the

batch system, uses common shared execute accounts for distinct submission

users, then the consequences could be much higher as this could allow a

malicious user to attack other user's jobs.

• Cause: Code injection, Improper data validation



5.1. CROSSBROKER & FPVA 99

5.1.2 CrossBroker-2009-0002

• Summary: Certain types of user's job submitted to CrossBroker are not

protected from manipulation from other user's jobs.

• Vulnerable Versions: 0 - 0.5.35

• Components: i2g-wl-workload manager

• Access Required: This vulnerability requires the user to be able to submit

jobs to CrossBroker.

• E�ort Required: Low.

To be able to exploit this vulnerability only requires that an attacker

be able to submit a job to CrossBroker of a certain type that contains a

malicious payload.

• Impact/Consequences: Medium. The consequence of this vulnerability is

that an attacker can manipulate the victim's process and data �les, if the

attacker and victim are scheduled on the same host concurrently. The

attacker can only manipulate the victim's �les that were placed on the

host by CrossBroker as the victim is run under a di�erent account than

their own.

• Cause: Incorrect privileges, Multiple unique privilege domains

5.1.3 CrossBroker-2009-0003

• Summary: Remote resources (worker nodes on grid sites) are prone to a

hijacking through Crossbroker. If Computing Elements use a �rewall/NAT

traversal solution to allow access to grid site elements, attackers will build

an independent high throughput computing system without Crossbroker

interactions and restrictions.

• Vulnerable Versions: 0 - 0.5.35

• Components: i2g-wl-workload manager, LRMS (GCB) Library

• Access Required: This vulnerability requires the user to be able to submit

jobs to CrossBroker.



100 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

• E�ort Required: High. Exploiting this vulnerability requires the user to be

able to write a shell script, to have knowledge of the condor con�g

con�guration �le, to pack the accurate condor daemons, to be able to

build their own Condor system, and to know about �rewall/NAT network

parameters.

• Impact/Consequences: High. If the attacker is successful, any worker node

on the grid site could be used in�nitely without having to use CrossBroker

to submit new jobs to these resources. Then worker nodes can be used at

any time by the attacker. The worker nodes will belong to a new High

Throughput Computing system controlled by the user. Then any program

can be run on behalf of a local user on those worker nodes even if blacklist

programs is de�ned. Finally impact/consequences severity depends on the

speci�c grid sites security policies

• Cause: Incorrect privileges, Incorrect authorization

5.1.4 CrossBroker-2009-0004

• Summary: The Crossbroker is prone to a Denial of Service vulnerability. As

a result of this attack, Crossbroker will not be able to process the submission

of the user jobs, being necessary to stop and restart the Crossbroker host.

• Vulnerable Versions: 0 - 0.5.35

• Components: i2g-job-submit, i2g-wl-ns daemon, i2g-wl-bkserverd

• Access Required: This vulnerability requires the user to be able to submit

jobs to CrossBroker.

• E�ort Required: Low.

Exploiting this vulnerability requires the user to be able to write and

submit a job with a big string (≥ 64Kb) as the \Arguments" value in the

JDL �le.

• Impact/Consequences: High.

If the attacker is successful, any other job who arrives to the Crossbroker

will not be processed and therefore will not be submitted to the grid world.



5.2. CROSSBROKER & AVA4CMI 101

Moreover the Crossbroker host should be stopped and restarted to gain the

services work correctly, it means a lot of jobs will be stopped and may lost

their results, and should be necessary that jobs submitted before the attack

have to submit again.

• Cause: Improper error handling, Inability to handle missing �eld or value,

Inability to handle invalid �eld or value

Up to now, the security practitioners who applied FPVA on several

middleware provided their own expertise and creativity about di�erent kind of

security problems over the key structural components identi�ed on FPVA

diagrams, without further guidance or information.

5.2 CrossBroker & AvA4cmi

In this section, we present the security alerts produced for the attack vectors

after the assessment process performed to CrossBroker following the AvA4cmi

guidelines. Figure 5.1 shows the attack vector graph of CrossBroker, from which

Figure 5.1: Attack Vector graph: CrossBroker

the most likely attack vectors were depicted in its corresponding graphml format.



102 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

It is worth to state that the number of attack vectors not only depends on the

number of attack and impact surfaces components, but also in the security analyst

conditions to consider strongly that a component is part of either attack or impact

surface.

In order to carry out the assessment process, a prototype tool was implemented

in Python, which is available in a GIT repository [43].

For the sake of simplicity, in this experimental evaluation, we introduce one

attack vector of CrossBroker, with all the analysis of their security alerts. For the

CrossBroker attack vectors II, III, IV, VI, VIII, IX, and X, we summarized their

complete security alerts in a graphical representation, which are available too at

the GIT repository.

For the attack vectors V and VII, the security alerts could not be derived

into any of the known vulnerabilities found with FPVA, �rstly, due that FPVA

did not �nd vulnerabilities related to these attack vectors, and secondly, there

are no relationships between the FPVA vulnerabilities and the impact surface of

the attack vectors V and VII. But despite not exist relationship, security analyst

must consider the security alerts reported, in the case of a new analysis will be

performed, because some of them belong to the Top 25 of dangerous weaknesses,

and they are scored the highest.

5.2.1 Attack vector I

The attack vector I is composed by 10 components (shown in Figure 5.2),

starting with the submit component which belong to the attack surface, passing

through the network server (UAM), input queue (input fl), scheduling

agent (SA), output queue (output fl), application launcher (AL),

condor daemon (Condor-G), local resource management system

(LRMS), condor daemon (condor startd), until achieve its impact surface

the job component.

The security alerts for this attack vector are presented below.

Security Alerts for CWE-664

For the pillar CWE-664, we illustrate the �rst 15 high score security alerts in the

Code 5.1.



5.2. CROSSBROKER & AVA4CMI 103

Figure 5.2: Attack Vector I for CrossBroker

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−664: Improper Control o f a Resource Through i t s L i f e t ime

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−863 I n c o r r e c t Author i zat ion :

(Sp= 1 . 4 5 5 ; Max= 1 . 4 5 5 ; )

2 . CWE−862 Miss ing Author i zat ion :

(Sp= 1 . 4 5 5 ; Max= 1 .455 )

|
−−>CWE−638 Not Using Complete Mediation :

(Sp= 0 . 5 5 5 ; Max= 0 .7825)

|
−−>CWE−424 Improper Protec t i on o f Al te rnate Path :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

|
−−>CWE−639 Author i zat ion Bypass Through User−Contro l l ed Key :

(Sp= 0 . 6 5 ; Max= 0 . 6 5 )

3 . CWE−732 I n c o r r e c t Permiss ion Assignment f o r C r i t i c a l Resource :

(Sp= 1 . 4 5 5 ; Max= 1 .455 )

|
−−>CWE−281 Improper Pre s e rvat i on o f Permiss ions :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

|



104 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

−−>CWE−276 I n c o r r e c t Defau l t Permiss ions :

(Sp= 0 . 5 1 2 5 ; Max= 0 .5125)

|
−−>CWE−279 I n c o r r e c t Execution−Assigned Permiss ions :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

|
−−>CWE−278 In s e cu r e Preserved I n h e r i t e d Permiss ions :

(Sp= 0 . 6 3 6 6 ; Max= 0 .6366)

|
−−>CWE−277 In s e cu r e I n h e r i t e d Permiss ions :

(Sp= 0 . 6 3 6 ; Max= 0 .636 )

4 . CWE−306 Miss ing Authent i cat ion f o r C r i t i c a l Function :

(Sp= 1 . 4 5 5 ; Max= 1 .455 )

5 . CWE−782 Exposed IOCTL with I n s u f f i c i e n t Access Control :

(Sp= 1 . 1 6 5 ; Max= 1 .165 )

6 . CWE−307 Improper R e s t r i c t i o n o f Exces s ive Authent icat ion Attempts :

(Sp= 1 . 0 5 5 ; Max= 1 .055 )

7 . CWE−250 Execution with Unnecessary P r i v i l e g e s :

(Sp= 0 .865625 ; Max= 0.865625)

8 . CWE−558 Use o f g e t l o g i n ( ) in Mult i threaded

Appl i ca t ion : (Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

9 . CWE−543 Use o f S ing l e ton Pattern Without Synchron izat ion in a

Mult i threaded Context : (Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

10 . CWE−708 I n c o r r e c t Ownership Assignment :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

11 . CWE−648 I n c o r r e c t Use o f P r i v i l e g e d APIs :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

12 . CWE−62 UNIX Hard Link :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

13 . CWE−424 Improper Protec t i on o f Al te rnate Path :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

14 . CWE−305 Authent icat ion Bypass by Primary Weakness :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

15 . CWE−289 Authent icat ion Bypass by Al te rnate Name :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

Code 5.1: Partial list of CWE-664's Security Alerts

From the whole security alerts, we understand that around the 20% of 150

weaknesses that compose the \CWE-664" pillar, can derive into one vulnerability

manually found with FPVA, and reviewing the �rst 15 weaknesses with the highest

scores, we found the next relationships:



5.2. CROSSBROKER & AVA4CMI 105

• For \CrossBroker-2009-0001": CWE-648.

• For \CrossBroker-2009-0002": CWE-863, CWE-732, CWE-306, CWE-250,

and CWE-708.

• And, for \CrossBroker-2009-0003": CWE-862, CWE-424, and CWE-305.

For the group comprised between the 15th and 90th weakness, 20 weaknesses

with lower scores can derive into one of the vulnerabilities found with FPVA,

but their contributions are not enough to be considered remarkable; and for the

rest of weaknesses no matches were found for this attack vector. The Figure 5.3

represents this distribution.

Figure 5.3: Distribution of weaknesses for CWE-664 Security Alerts in attack
vector I.

For example, reviewing the weakness in �rst position with the highest score,

the \CWE-862: Missing Authorization", whose description is “The software does

not perform an authorization check when an actor attempts to access a resource

or perform an action”, and reviewing again the CrossBroker vulnerabilities

manually found with FPVA, along with the description for the CWE-664

pillar,“The software does not maintain or incorrectly maintains control over a

resource throughout its lifetime of creation, use, and release”, it can be seen the



106 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

straight relationship between the weakness-pillar and the

\CrossBroker-2009-0003" vulnerability regarding to the authentication and

authorization underlying mechanisms for the components in the attack vector.

In summary, from this CWE-664 security alerts, 11 weaknesses are related

with the vulnerability \CrossBroker-2009-0003", 17 weaknesses are related with

the vulnerability \CrossBroker-2009-0002", and one weakness is related with the

vulnerability \CrossBroker-2009-0001". For these security alerts there are no

matches for \CrossBroker-2009-0004" in this attack vector, due that its underlying

cause belong to other middleware components.

Security Alerts for CWE-693

For the pillar CWE-693, we illustrate the the whole security alerts in the Code

5.2.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−693: Protec t i on Mechanism Fa i l u r e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−863 I n c o r r e c t Author i zat ion :

(Sp= 1 . 9 3 2 5 ; Max= 1 .9325)

2 . CWE−862 Miss ing Author i zat ion :

(Sp= 1 . 9 3 2 5 ; Max= 1 .9325)

|
−−>CWE−638 Not Using Complete Mediation :

(Sp= 0 . 8 4 9 ; Max= 1 .173 )

|
−−>CWE−424 Improper Protec t i on o f Al te rnate Path :

(Sp= 1 . 1 7 3 ; Max= 1 .173 )

|
−−>CWE−639 Author i zat ion Bypass Through User−Contro l l ed

Key : (Sp= 1 . 1 6 7 5 ; Max= 1.1675)

3 . CWE−732 I n c o r r e c t Permiss ion Assignment f o r C r i t i c a l

Resource : (Sp= 1 . 9 3 2 5 ; Max= 1 .9325)

|
−−>CWE−281 Improper Pre s e rvat i on o f Permiss ions :

(Sp= 1 . 1 7 3 ; Max= 1 .173 )

|
−−>CWE−276 I n c o r r e c t Defau l t Permiss ions :

(Sp= 0 . 9 2 5 ; Max= 0 .925 )

|



5.2. CROSSBROKER & AVA4CMI 107

−−>CWE−279 I n c o r r e c t Execution−Assigned Permiss ions :

(Sp= 1 . 1 7 3 ; Max= 1 .173 )

|
−−>CWE−278 In s e cu r e Preserved I n h e r i t e d Permiss ions :

(Sp= 0 . 9 5 5 ; Max= 0 .955 )

|
−−>CWE−277 In s e cu r e I n h e r i t e d Permiss ions :

(Sp= 0 . 9 5 5 ; Max= 0 .955 )

4 . CWE−306 Miss ing Authent i cat ion f o r C r i t i c a l Function :

(Sp= 1 . 9 3 2 5 ; Max= 1 .9325)

5 . CWE−250 Execution with Unnecessary P r i v i l e g e s :

(Sp= 1 . 3 5 5 ; Max= 1 .355 )

6 . CWE−307 Improper R e s t r i c t i o n o f Exces s ive Authent icat ion

Attempts : (Sp= 1 . 3 1 6 ; Max= 1 .316 )

7 . CWE−708 I n c o r r e c t Ownership Assignment :

(Sp= 1 .17375 ; Max= 1.17375)

8 . CWE−655 I n s u f f i c i e n t Psycho l og i c a l A c c e p t a b i l i t y :

(Sp= 1 .17375 ; Max= 1.17375)

9 . CWE−648 I n c o r r e c t Use o f P r i v i l e g e d APIs :

(Sp= 1 .17375 ; Max= 1.17375)

10 . CWE−424 Improper Protec t i on o f Al te rnate Path :

(Sp= 1 .17375 ; Max= 1.17375)

11 . CWE−305 Authent icat ion Bypass by Primary Weakness :

(Sp= 1 .17375 ; Max= 1.17375)

12 . CWE−289 Authent icat ion Bypass by Al te rnate Name :

(Sp= 1 .17375 ; Max= 1.17375)

13 . CWE−281 Improper Pre s e rvat i on o f Permiss ions :

(Sp= 1 .17375 ; Max= 1.17375)

14 . CWE−279 I n c o r r e c t Execution−Assigned Permiss ions :

(Sp= 1 .17375 ; Max= 1.17375)

15 . CWE−274 Improper Handling o f I n s u f f i c i e n t P r i v i l e g e s :

(Sp= 1 .17375 ; Max= 1.17375)

Code 5.2: List of CWE-693's Security Alerts

From the whole security alerts, we understand that around the 17% of 97

weaknesses that compose the \CWE-693" pillar, can derive into one vulnerability

manually found with FPVA, and reviewing the �rst 15 weaknesses with the highest

scores, we found the next relationships:

• For \CrossBroker-2009-0001": CWE-648.

• For \CrossBroker-2009-0002": CWE-863, CWE-732, CWE-306, CWE-250,



108 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

CWE-281, CWE-279, and CWE-708.

• And, for \CrossBroker-2009-0003": CWE-862, CWE-424, CWE-305, and

CWE-655.

For the group comprised between the 15th and 97th weakness, 4 weaknesses with

lower scores can derive into one of the vulnerabilities found with FPVA, but

their contributions are not enough to be considered remarkable. The Figure 5.4

represents this distribution.

Figure 5.4: Distribution of weaknesses for CWE-693 Security Alerts in attack
vector I.

For example, reviewing the weakness in �rst position with the highest score,

the \CWE-306: Missing Authentication for Critical Function", whose

description is “The software does not perform any authentication for

functionality that requires a provable user identity or consumes a significant

amount of resources.”, and reviewing again the CrossBroker vulnerabilities

manually found with FPVA, along with the description for the CWE-693

pillar,“The product does not use or incorrectly uses a protection mechanism that

provides sufficient defense against directed attacks against the product.”, it can

be seen the straight relationship between the weakness-pillar and the



5.2. CROSSBROKER & AVA4CMI 109

\CrossBroker-2009-0002" vulnerability regarding to the \missing, insu�cient or

ignored" protection underlying mechanisms for the components in the attack

vector.

In summary, from this CWE-693 security alerts, 6 weaknesses are related

with the vulnerability \CrossBroker-2009-0003", 9 weaknesses are related with

the vulnerability \CrossBroker-2009-0002", and one weakness is related with the

vulnerability \CrossBroker-2009-0001". For these security alerts there are no

matches for \CrossBroker-2009-0004" in this attack vector, due that its underlying

cause belong to other middleware components.

Security Alerts for CWE-118

For the pillar CWE-118, we illustrate the the whole security alerts in the Code

5.3.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−118: Improper Access o f Indexable Resource ( ’ Range Error ’ )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−120 Buf f e r Copy without Checking S i z e o f Input

( ’ C l a s s i c Buf f e r Overflow ’ ) : (Sp= 1 . 5 6 3 ; Max= 1 .563 )

|
−−>CWE−785 Use o f Path Manipulation Function without

Maximum−s i z e d Buf f e r : (Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

2 . CWE−805 Buf f e r Access with I n c o r r e c t Length Value :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

3 . CWE−785 Use o f Path Manipulation Function without

Maximum−s i z e d Buf f e r : (Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

4 . CWE−127 Buf f e r Under−read :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

5 . CWE−126 Buf f e r Over−read :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

6 . CWE−125 Out−of−bounds Read :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

|
−−>CWE−126 Buf f e r Over−read :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

|
−−>CWE−127 Buf f e r Under−read :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

7 . CWE−124 Buf f e r Underwrite ( ’ Buf f e r Underflow ’ ) :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)



110 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

8 . CWE−123 Write−what−where Condit ion :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

9 . CWE−122 Heap−based Buf f e r Overflow :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

10 . CWE−121 Stack−based Buf f e r Overflow :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

11 . CWE−119 Improper R e s t r i c t i o n o f Operat ions with in the

Bounds o f a Memory Buf f e r : (Sp= 0 . 7 8 7 5 ; Max= 1.56333333333)

|
−−>CWE−805 Buf f e r Access with I n c o r r e c t Length Value :

(Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

|
−−>CWE−120 Buf f e r Copy without Checking S i z e o f Input

( ’ C l a s s i c Buf f e r Overflow ’ ) : (Sp= 1 . 5 6 3 ; Max= 1 .563 )

|
−−>CWE−785 Use o f Path Manipulation Function without

Maximum−s i z e d Buf f e r : (Sp= 0 . 7 8 7 5 ; Max= 0 .7875)

|
−−>CWE−123 Write−what−where Condit ion :

(Sp= 0 . 7 8 7 5 ; Max= 0 . 7 8 7 5 ; Meg= 0 .7875)

|
−−>CWE−125 Out−of−bounds Read :

(Sp= 0 . 7 8 7 5 ; Max= 0 . 7 8 7 5 ; Meg= 0 .7875)

Code 5.3: List of CWE-118's Security Alerts

From the 11 weaknesses that compose the \CWE-118" pillar, we understand

that it is likely to exist problems in this attack vector regarding to \Range

Errors" and more speci�cally to the classic bu�er over
ow, and despite of it can

not be seen an straight relationship between the weaknesses-pillar and the

vulnerabilities \CrossBroker-2009-0001, 0002, and 0003" manually found with

FPVA, the security analyst must take into account due that belong to the Top

25 of dangerous weaknesses, and it is scored the highest. On the contrary, these

weaknesses-pillar shown a relationship with vulnerability

\CrossBroker-2009-0004", but its underlying causes does not belong to the

attack vector I.

Security Alerts for CWE-330

For the pillar CWE-330, we illustrate the the whole security alerts in the Code

5.4.



5.2. CROSSBROKER & AVA4CMI 111

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−330: Use o f I n s u f f i c i e n t l y Random Values

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−798 Use o f Hard−coded Creden t i a l s :

(Sp= 0 . 6 4 0 ; Max= 0 .640 )

|
−−>CWE−259 Use o f Hard−coded Password :

(Sp= 0 . 5 5 9 ; Max= 0 .559 )

|
−−>CWE−321 Use o f Hard−coded Cryptographic

Key : (Sp= 0 . 1 1 2 5 ; Max= 0.1125)

2 . CWE−259 Use o f Hard−coded Password :

(Sp= 0 . 5 5 9 ; Max= 0 .559 )

3 . CWE−343 Pred i c t ab l e Value Range from Previous

Values : (Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

4 . CWE−342 Pred i c t ab l e Exact Value from Previous

Values : (Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

5 . CWE−339 Small Seed Space in PRNG:

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

6 . CWE−338 Use o f Cryptograph i ca l ly Weak PRNG:

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

7 . CWE−337 Pred i c t ab l e Seed in PRNG:

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

8 . CWE−336 Same Seed in PRNG:

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

9 . CWE−335 PRNG Seed Error :

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

|
−−>CWE−339 Small Seed Space in PRNG:

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

|
−−>CWE−336 Same Seed in PRNG:

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

|
−−>CWE−337 Pred i c t ab l e Seed in PRNG:

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

10 . CWE−334 Small Space o f Random Values :

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

11 . CWE−333 Improper Handling o f I n s u f f i c i e n t Entropy

in TRNG: (Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

12 . CWE−332 I n s u f f i c i e n t Entropy in PRNG:

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)



112 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

13 . CWE−331 I n s u f f i c i e n t Entropy :

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

|
−−>CWE−333 Improper Handling o f I n s u f f i c i e n t Entropy in TRNG:

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

|
−−>CWE−332 I n s u f f i c i e n t Entropy in PRNG:

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

14 . CWE−329 Not Using a Random IV with CBC Mode :

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

15 . CWE−323 Reusing a Nonce Key Pair in Encryption :

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

16 . CWE−321 Use o f Hard−coded Cryptographic Key :

(Sp= 0 . 1 1 2 5 ; Max= 0 .1125)

Code 5.4: List of CWE-330's Security Alerts

From the 16 weaknesses that compose the \CWE-330" pillar, we understand

that it is likely to exist problems in this attack vector regarding to \Random

Values" and more speci�cally to the Use of Hard-coded Credentials. By the

moment FPVA was applied to CrossBroker, vulnerabilities regarding to the use

of credentials were not found. Since then, several vulnerabilities have been found

caused by processing of X.509 certi�cates. If CrossBroker were used at the present

time, it would be imperative to the security analyst review again the related code

functionality for the use of Credentials.

Security Alerts for CWE-435

For the pillar CWE-435, we illustrate the the whole security alerts in the Code

5.5.

−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−435: I n t e r a c t i o n Error

−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−115 M i s i n t e r p r e t a t i o n o f Input :

(Sp= 0 . 8 3 5 ; Max= 0 .835 )

2 . CWE−436 I n t e r p r e t a t i o n C o n f l i c t :

(Sp= 0 . 7 5 ; Max= 0 .835 )

|
−−>CWE−115 M i s i n t e r p r e t a t i o n o f Input :

(Sp= 0 . 8 3 5 ; Max= 0 .835 )



5.2. CROSSBROKER & AVA4CMI 113

3 . CWE−14 Compiler Removal o f Code to Clear Bu f f e r s :

(Sp= 0 . 2 6 ; Max= 0 . 2 6 )

4 . CWE−198 Use o f I n c o r r e c t Byte Ordering :

(Sp= 0 . 2 5 7 5 ; Max= 0 .2575)

5 . CWE−733 Compiler Optimizat ion Removal or Mod i f i ca t i on

o f Secur i ty−c r i t i c a l Code : (Sp= 0 . 1 6 ; Max= 0 .2 6 )

|
−−>CWE−14 Compiler Removal o f Code to Clear Bu f f e r s :

(Sp= 0 . 2 6 ; Max= 0 . 2 6 )

Code 5.5: List of CWE-435's Security Alerts

From the whole security alerts that compose the \CWE-435" pillar, we

understand that the �rst two high score weaknesses CWE-115, and CWE-436,

can derive into vulnerability \CrossBroker-2009-0001". Also, the weakness

CWE-198 can derive into vulnerability \CrossBroker-2009-0004", but its

underlying causes does not belong to the attack vector I; and for the rest of the

weaknesses no matches were found.

Security Alerts for CWE-682

For the pillar CWE-682, we illustrate the the whole security alerts in the Code

5.6.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−682: I n c o r r e c t Ca l cu l a t i on

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−131 I n c o r r e c t Ca l cu l a t i on o f Buf f e r S i z e :

(Sp= 1 . 6 1 ; Max= 1 . 6 1 )

2 . CWE−190 I n t e g e r Overflow or Wraparound :

(Sp= 1 . 1 7 ; Max= 1 . 1 7 )

3 . CWE−191 I n t e g e r Underflow (Wrap or Wraparound ) :

(Sp= 0 . 5 2 5 ; Max= 0 .525 )

4 . CWE−135 I n c o r r e c t Ca l cu l a t i on o f Multi−Byte St r ing

Length : (Sp= 0 . 4 7 ; Max= 0 .4 7 )

5 . CWE−128 Wrap−around Error :

(Sp= 0 . 3 4 5 ; Max= 0 .345 )

6 . CWE−193 Off−by−one Error :

(Sp= 0 . 1 4 7 5 ; Max= 0 .1475)

Code 5.6: List of CWE-682's Security Alerts



114 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

From the six weaknesses that compose the \CWE-682" pillar, we understand

that it is likely to exist problems in this attack vector regarding to \Incorrect

Calculation" and more speci�cally to bu�er size, and despite of it can not be

seen an straight relationship between the weaknesses-pillar and the

vulnerabilities \CrossBroker-2009-0001, 0002, and 0003" manually found with

FPVA, the security analyst must take into account due that belong to the Top

25 of dangerous weaknesses, and it is scored the highest. On the contrary, these

weaknesses-pillar shown a relationship with vulnerability

\CrossBroker-2009-0004", but its underlying causes does not belong to the

attack vector I.

Security Alerts for CWE-691

For the pillar CWE-691, we illustrate the the whole security alerts in the Code

5.7.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−691: I n s u f f i c i e n t Control Flow Management

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−782 Exposed IOCTL with I n s u f f i c i e n t Access Control :

(Sp= 1 . 1 6 5 ; Max= 1 .165 )

2 . CWE−307 Improper R e s t r i c t i o n o f Exces s ive Authent icat ion

Attempts : (Sp= 1 . 0 2 6 ; Max= 1 .026 )

3 . CWE−837 Improper Enforcement o f a S i n g l e Unique Action :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

4 . CWE−799 Improper Control o f I n t e r a c t i o n Frequency :

(Sp= 0 . 5 6 5 ; Max= 1 .026 )

|
−−>CWE−307 Improper R e s t r i c t i o n o f Exces s ive Authent icat ion Attempts :

(Sp= 1 . 0 2 6 ; Max= 1 .026 )

|
−−>CWE−837 Improper Enforcement o f a S i n g l e Unique Action :

(Sp= 0 . 7 8 2 5 ; Max= 0 .7825)

5 . CWE−421 Race Condit ion During Access to Al te rnate Channel :

(Sp= 0 . 5 6 5 ; Max= 0 .565 )

6 . CWE−558 Use o f g e t l o g i n ( ) in Mult i threaded Appl i ca t ion :

(Sp= 0 . 5 2 5 ; Max= 0 .525 )

7 . CWE−543 Use o f S ing l e ton Pattern Without Synchron izat ion

in a Mult i threaded Context : (Sp= 0 . 5 2 5 ; Max= 0 .525 )



5.2. CROSSBROKER & AVA4CMI 115

8 . CWE−366 Race Condit ion with in a Thread :

(Sp= 0 . 5 2 5 ; Max= 0 .525 )

9 . CWE−365 Race Condit ion in Switch :

(Sp= 0 . 5 2 5 ; Max= 0 .525 )

10 . CWE−364 S igna l Handler Race Condit ion :

(Sp= 0 . 5 2 5 ; Max= 0 .525 )

|
−−>CWE−432 Dangerous S i gna l Handler not Disabled During S e n s i t i v e

Operat ions : (Sp= 0 . 1 3 ; Max= 0 .1 3 )

11 . CWE−96 Improper N e u t r a l i z a t i o n o f D i r e c t i v e s in S t a t i c a l l y

Saved Code ( ’ S t a t i c Code I n j e c t i o n ’ ) : (Sp= 0 .42416 ; Max= 0.42416)

12 . CWE−179 I n c o r r e c t Behavior Order : Early Va l idat i on :

(Sp= 0 . 2 6 ; Max= 0 . 2 6 )

13 . CWE−705 I n c o r r e c t Control Flow Scoping :

(Sp= 0 . 2 ; Max= 0 . 2 )

|
−−>CWE−455 Non−e x i t on Fa i l ed I n i t i a l i z a t i o n :

(Sp= 0 . 1 1 ; Max= 0 . 1 1 )

|
−−>CWE−248 Uncaught Exception :

(Sp= 0 . 1 5 5 ; Max= 0 .155 )

14 . CWE−367 Time−of−check Time−of−use (TOCTOU) Race

Condit ion : (Sp= 0 .17083 ; Max= 0 .525 )

|
−−>CWE−365 Race Condit ion in Switch :

(Sp= 0 . 5 2 5 ; Max= 0 .525 )

|
−−>CWE−363 Race Condit ion Enabling Link Fol lowing :

(Sp= 0 . 1 3 ; Max= 0 . 1 3 )

15 . CWE−248 Uncaught Exception :

(Sp= 0 . 1 5 5 ; Max= 0 .155 )

Code 5.7: List of CWE-691's Security Alerts

From the whole weaknesses that compose the \CWE-691" pillar, we

understand that it is likely to exist problems in this attack vector regarding to

\Insu�cient Control Flow Management", in particular the weaknesses

CWE-837, and CWE-705, can derive into vulnerability

\CrossBroker-2009-0003". Also, the weakness CWE-96 can derive into

vulnerability \CrossBroker-2009-0001". On the contrary, the weaknesses

CWE-248 can derive into vulnerability \CrossBroker-2009-0004", but its



116 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

underlying causes does not belong to the attack vector I.

Security Alerts for CWE-697

For the pillar CWE-697, we illustrate the the whole security alerts in the Code

5.8.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−697: I n s u f f i c i e n t Comparison

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−184 Incomplete B l a c k l i s t :

(Sp= 0 . 7 7 8 ; Max= 0 .778 )

2 . CWE−183 Permiss ive Whi t e l i s t :

(Sp= 0 . 7 7 8 ; Max= 0 .778 )

3 . CWE−186 Overly R e s t r i c t i v e Regular Express ion :

(Sp= 0 . 4 1 5 ; Max= 0 .415 )

4 . CWE−185 I n c o r r e c t Regular Express ion :

(Sp= 0 . 4 1 5 ; Max= 0 .415 )

|
−−>CWE−186 Overly R e s t r i c t i v e Regular Express ion :

(Sp= 0 . 4 1 5 ; Max= 0 .415 )

Code 5.8: List of CWE-697's Security Alerts

From the whole weaknesses that compose the \CWE-697" pillar, we

understand that it is likely to exist problems in this attack vector regarding to

\Insu�cient Comparison", in particular the weaknesses CWE-184, and

CWE-183, can derive into vulnerability CrossBroker-2009-0003.

Security Alerts for CWE-703

For the pillar CWE-703, we illustrate the the whole security alerts in the Code

5.9.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−703: Improper Check or Handling o f Except iona l Condit ions

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−274 Improper Handling o f I n s u f f i c i e n t P r i v i l e g e s :

(Sp= 1 . 1 7 3 ; Max= 1 .173 )

2 . CWE−273 Improper Check f o r Dropped P r i v i l e g e s :

(Sp= 1 .17375 ; Max= 1.17375)

3 . CWE−280 Improper Handling o f I n s u f f i c i e n t Permiss ions

or P r i v i l e g e s : (Sp= 0 . 8 1 5 ; Max= 0 .815 )



5.2. CROSSBROKER & AVA4CMI 117

4 . CWE−236 Improper Handling o f Undefined Parameters :

(Sp= 0 . 4 1 5 ; Max= 0 .415 )

5 . CWE−235 Improper Handling o f Extra Parameters :

(Sp= 0 . 4 1 5 ; Max= 0 .415 )

6 . CWE−234 Fa i l u r e to Handle Miss ing Parameter :

(Sp= 0 . 4 1 5 ; Max= 0 .415 )

7 . CWE−232 Improper Handling o f Undefined Values :

(Sp= 0 . 4 1 5 ; Max= 0 .415 )

8 . CWE−231 Improper Handling o f Extra Values :

(Sp= 0 . 4 1 5 ; Max= 0 .415 )

9 . CWE−168 Improper Handling o f I n c o n s i s t e n t S p e c i a l Elements :

(Sp= 0 . 4 1 5 ; Max= 0 .415 )

10 . CWE−167 Improper Handling o f Addi t iona l S p e c i a l Element :

(Sp= 0 . 3 8 ; Max= 0 . 3 8 )

11 . CWE−166 Improper Handling o f Miss ing S p e c i a l Element :

(Sp= 0 . 3 8 ; Max= 0 . 3 8 )

12 . CWE−370 Miss ing Check f o r C e r t i f i c a t e Revocation a f t e r

I n i t i a l Check : (Sp= 0 . 3 4 5 ; Max= 0 .345 )

13 . CWE−299 Improper Check f o r C e r t i f i c a t e Revocation :

(Sp= 0 . 3 4 5 ; Max= 0 .345 )

|
−−>CWE−370 Miss ing Check f o r C e r t i f i c a t e Revocation

a f t e r I n i t i a l Check : (Sp= 0 . 3 4 5 ; Max= 0 .345 )

14 . CWE−298 Improper Va l idat i on o f C e r t i f i c a t e Expi rat ion :

(Sp= 0 . 3 4 5 ; Max= 0 .345 )

15 . CWE−296 Improper Fol lowing o f Chain o f Trust f o r

C e r t i f i c a t e Va l idat i on : (Sp= 0 . 3 4 5 ; Max= 0 .345 )

Code 5.9: List of CWE-703's Security Alerts

From the whole weaknesses that compose the \CWE-703" pillar, we

understand that around the 35% of 31 weaknesses that compose the \CWE-703"

pillar, can derive into one vulnerability manually found with FPVA , and

reviewing the �rst 15 weaknesses with the highest scores, we found the next

relationships:

• For \CrossBroker-2009-0001": CWE-236, CWE-235, CWE-234, CWE-232,

CWE-231, CWE-168, CWE-167, CWE-166

• For \CrossBroker-2009-0002": CWE-274, CWE-273, and CWE-280

• And, for \CrossBroker-2009-0003" no matches.



118 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

Security Alerts for CWE-707

For the pillar CWE-707, we illustrate the the whole security alerts in the Code

5.10.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−707: Improper Enforcement o f Message or Data St ruc ture

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−134 Uncontro l l ed Format St r ing :

(Sp= 1 . 3 3 1 ; Max= 1 .331 )

2 . CWE−78 Improper N e u t r a l i z a t i o n o f S p e c i a l Elements used in an

OS Command ( ’OS Command I n j e c t i o n ’ ) : ( Sp= 0 . 8 8 2 ; Max= 0 .882 )

3 . CWE−89 Improper N e u t r a l i z a t i o n o f S p e c i a l Elements used in an

SQL Command ( ’SQL I n j e c t i o n ’ ) : (Sp= 0 . 8 0 5 ; Max= 0 .805 )

4 . CWE−641 Improper R e s t r i c t i o n o f Names f o r F i l e s and Other

Resources : (Sp= 0 . 7 7 8 ; Max= 0 .778 )

5 . CWE−76 Improper N e u t r a l i z a t i o n o f Equiva lent S p e c i a l Elements :

(Sp= 0 . 6 2 2 5 ; Max= 0 .6225)

6 . CWE−75 Fa i l u r e to S a n i t i z e S p e c i a l Elements in to a D i f f e r e n t

Plane ( S p e c i a l Element I n j e c t i o n ) : (Sp= 0 . 6 2 2 5 ; Max= 0.6225)

|
−−>CWE−76 Improper N e u t r a l i z a t i o n o f Equiva lent S p e c i a l

Elements : (Sp= 0 . 6 2 2 5 ; Max= 0.6225)

7 . CWE−56 Path Equivalence : ’ f i l e d i r ∗ ’ ( Wildcard ) :

(Sp= 0 . 6 2 2 5 ; Max= 0 .6225)

8 . CWE−54 Path Equivalence : ’ f i l e d i r ’ ( T r a i l i n g Backslash ) :

(Sp= 0 . 6 2 2 5 ; Max= 0 .6225)

9 . CWE−53 Path Equivalence : ’ mu l t ip l e i n t e r n a l backs la sh ’ :

(Sp= 0 . 6 2 2 5 ; Max= 0 .6225)

10 . CWE−52 Path Equivalence : ’ / mu l t ip l e / t r a i l i n g / s l a s h // ’ :

(Sp= 0 . 6 2 2 5 ; Max= 0 .6225)

11 . CWE−50 Path Equivalence : ’ // mu l t ip l e / l e ad ing / s l a s h ’ :

(Sp= 0 . 6 2 2 5 ; Max= 0 .6225)

12 . CWE−49 Path Equivalence : ’ f i l ename / ’ ( T r a i l i n g S lash ) :

(Sp= 0 . 6 2 2 5 ; Max= 0 .6225)

13 . CWE−46 Path Equivalence : ’ f i l ename ’ ( T r a i l i n g Space ) :

(Sp= 0 . 6 2 2 5 ; Max= 0 .6225)

14 . CWE−45 Path Equivalence : ’ f i l e . . . name ’ ( Mult ip l e I n t e r n a l Dot ) :

(Sp= 0 . 6 2 2 5 ; Max= 0 .6225)

15 . CWE−43 Path Equivalence : ’ f i l ename . . . . ’ ( Mult ip l e T r a i l i n g Dot ) :

(Sp= 0 . 6 2 2 5 ; Max= 0 .6225)

Code 5.10: List of CWE-707's Security Alerts



5.2. CROSSBROKER & AVA4CMI 119

From the whole weaknesses that compose the \CWE-707" pillar, we

understand that it is likely to exist problems in this attack vector regarding to

\Improper Enforcement of Message or Data Structure", in particular the

weaknesses CWE-75, CWE-76, CWE-78, and CWE-89, can derive into

vulnerability CrossBroker-2009-0001. The security analyst must take them into

account due that belong to the Top 25 of dangerous weaknesses, and they are

scored the highest.

Security Alerts for CWE-710

For the pillar CWE-710, we illustrate the the whole security alerts in the Code

5.11.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CWE−710: Coding Standards V io l a t i on

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 . CWE−250 Execution with Unnecessary P r i v i l e g e s :

(Sp= 1 . 2 4 2 5 ; Max= 1 .2425)

2 . CWE−655 I n s u f f i c i e n t Psycho l og i c a l A c c e p t a b i l i t y :

(Sp= 1 . 1 7 3 ; Max= 1 .173 )

3 . CWE−648 I n c o r r e c t Use o f P r i v i l e g e d APIs :

(Sp= 1 . 1 7 3 ; Max= 1 .173 )

4 . CWE−637 Unnecessary Complexity in Protec t i on Mechanism

( Not Using ’Economy o f Mechanism ’ ) : (Sp= 1 . 1 7 3 ; Max= 1 .173 )

5 . CWE−424 Improper Protec t i on o f Al te rnate Path :

(Sp= 1 . 1 7 3 ; Max= 1 .173 )

6 . CWE−511 Logic /Time Bomb:

(Sp= 1 . 0 3 9 ; Max= 1 .039 )

7 . CWE−449 The UI Performs the Wrong Action :

(Sp= 1 . 0 3 9 ; Max= 1 .039 )

8 . CWE−448 Obsolete Feature in UI :

(Sp= 1 . 0 3 9 ; Max= 1 .039 )

9 . CWE−447 Unimplemented or Unsupported Feature in UI :

(Sp= 1 . 0 3 9 ; Max= 1 .039 )

10 . CWE−308 Use o f S ing le−f a c t o r Authent icat ion :

(Sp= 0 . 8 9 ; Max= 0 . 8 )

11 . CWE−798 Use o f Hard−coded Creden t i a l s :

(Sp= 0 . 8 8 7 ; Max= 0 .887 )

|
−−>CWE−259 Use o f Hard−coded Password :

(Sp= 0 . 8 0 7 5 ; Max= 0 .8075)



120 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

|
−−>CWE−321 Use o f Hard−coded Cryptographic Key :

(Sp= 0 . 0 7 5 ; Max= 0 .075 )

12 . CWE−446 UI Discrepancy f o r Secur i ty Feature :

(Sp= 0 . 8 6 5 ; Max= 1 .039 )

|
−−>CWE−449 The UI Performs the Wrong Action :

(Sp= 1 . 0 3 9 ; Max= 1 .039 )

|
−−>CWE−448 Obsolete Feature in UI :

(Sp= 1 . 0 3 9 ; Max= 1 .039 )

|
−−>CWE−447 Unimplemented or Unsupported Feature in UI :

(Sp= 1 . 0 3 9 ; Max= 1 .0391)

13 . CWE−638 Not Using Complete Mediation :

(Sp= 0 . 8 4 9 ; Max= 1 .173 )

|
−−>CWE−424 Improper Protec t i on o f Al te rnate Path :

(Sp= 1 . 1 7 3 ; Max= 1 .173 )

14 . CWE−259 Use o f Hard−coded Password :

(Sp= 0 . 8 0 7 5 ; Max= 0 .8075)

15 . CWE−309 Use o f Password System f o r Primary

Authent i cat ion : (Sp= 0 . 7 9 8 ; Max= 0 .798 )

Code 5.11: List of CWE-710's Security Alerts

From the whole weaknesses that compose the \CWE-710" pillar, we

understand that it is likely to exist problems in this attack vector regarding to

\Coding Standards Violation", and reviewing the �rst 15 weaknesses with the

highest scores, we found the next relationships:

• For \CrossBroker-2009-0001": CWE-648

• For \CrossBroker-2009-0002": CWE-250

• And, for \CrossBroker-2009-0003": CWE-655, CWE-424, and CWE-308.

In summary, by inspecting the whole security alerts for the attack vector I,

the AvA4cmi assesment process hinted a total of 70 weaknesses strongly related

with the vulnerabilities manually found with FPVA , which are distributed as

follows: 25 weaknesses related with the vulnerability \CrossBroker-2009-0003",

27 weaknesses related with the vulnerability \CrossBroker-2009-0002", and 18



5.2. CROSSBROKER & AVA4CMI 121

Figure 5.5: Weaknesses-Vulnerabilities Relationship for Attack Vector I

weaknesses related with the vulnerability \CrossBroker-2009-0001". The

Figure 5.5 represents this distribution.

5.2.2 Attack vector II

Just like in the attack vector I, the analysis process was carried out over the attack

vector II, and it is summarized in the Figure 5.6.

Figure 5.6: Weaknesses-Vulnerabilities Relationship for Attack Vector II



122 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

5.2.3 Attack vector III

Just like in the attack vector I, the analysis process was carried out over the attack

vector III, and it is summarized in the Figure 5.7.

Figure 5.7: Weaknesses-Vulnerabilities Relationship for Attack Vector III

5.2.4 Attack vector IV

Just like in the attack vector I, the analysis process was carried out over the attack

vector IV, and it is summarized in the Figure 5.8.

Figure 5.8: Weaknesses-Vulnerabilities Relationship for Attack Vector IV



5.2. CROSSBROKER & AVA4CMI 123

5.2.5 Attack vector VI

Just like in the attack vector I, the analysis process was carried out over the attack

vector VI, and it is summarized in the Figure 5.9.

Figure 5.9: Weaknesses-Vulnerabilities Relationship for Attack Vector VI

5.2.6 Attack vector VIII

Just like in the attack vector I, the analysis process was carried out over the attack

vector VIII, and it is summarized in the Figure 5.10.

Figure 5.10: Weaknesses-Vulnerabilities Relationship for Attack Vector VIII



124 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

5.2.7 Attack vector IX

Just like in the attack vector I, the analysis process was carried out over the attack

vector IX, and it is summarized in the Figure 5.11.

Figure 5.11: Weaknesses-Vulnerabilities Relationship for Attack Vector IX

5.2.8 Attack vector X

Finally, just like in the attack vector I, the analysis process was carried out over

the attack vector X, and it is summarized in the Figure 5.12.

Figure 5.12: Weaknesses-Vulnerabilities Relationship for Attack Vector X



5.3. GLITE WMS & FPVA 125

5.3 gLite WMS & FPVA

The Workload Management System [8] is the gLite component that provides a

service responsible for the distribution and management of task across Grid

resources, in such a way that applications are conveniently, e�ciently, and

e�ectively executed. It is currently used by the European Grid Infrastructure

(EGI) [49]. In order to perform the vulnerability assessment following the FPVA

approach, a virtualized environment was built by MIST members, and therefore

proceed to install the gLite WMS 3.3.5 version.

The MIST members who conducted the FPVA assessment did not identi�ed

any serious security problem in gLite WMS, nor did see any security problem with

the architecture and implementation.

5.4 gLite WMS& AvA4cmi

Figure 5.13: Attack Vector graph: gLite WMS

In this section, we present the security alerts produced for the attack vectors

after the assessment process performed to gLite WMS following the AvA4cmi



126 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

guidelines.

Indeed, during conversation with the members that conducted the FPVA

analysis on gLite WMS, they identi�ed the same attack vectors that the

AvA4cmi methodology had identi�ed, but without results.

Figure 5.13 shows the attack vector graph of gLite WMS, from which the most

likely attack vectors were depicted in its corresponding graphml format. The total

number of attack vectors depicted is 17.

As already have presented the whole analysis for an attack vector in

CrossBroker, and due that there are no vulnerabilities to make contrast with our

results, we summarize the most remarkable security alerts according to the

CWE top-level entries (pillars) for the whole gLite WMS attack vectors in a

graphical representation.

5.4.1 CWE-118 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-118 are summarized in Figure 5.14.

Figure 5.14: Distribution average of the CWE-118 security alerts for gLite WMS



5.4. GLITE WMS& AVA4CMI 127

5.4.2 CWE-330 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-330 are summarized in Figure 5.15.

Figure 5.15: Distribution average of the CWE-330 security alerts for gLite WMS

5.4.3 CWE-435 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-435 are summarized in Figure 5.16.

Figure 5.16: Distribution average of the CWE-435 security alerts for gLite WMS



128 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

5.4.4 CWE-664 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-664 are summarized in Figure 5.17.

Figure 5.17: Distribution average of the CWE-664 security alerts for gLite WMS

5.4.5 CWE-682 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-682 are summarized in Figure 5.18.

Figure 5.18: Distribution average of the CWE-682 security alerts for gLite WMS



5.4. GLITE WMS& AVA4CMI 129

5.4.6 CWE-691 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-691 are summarized in Figure 5.19.

Figure 5.19: Distribution average of the CWE-691 security alerts for gLite WMS

5.4.7 CWE-693 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-693 are summarized in Figure 5.20.

Figure 5.20: Distribution average of the CWE-693 security alerts for gLite WMS



130 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

5.4.8 CWE-697 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-697 are summarized in Figure 5.21.

Figure 5.21: Distribution average of the CWE-697 security alerts for gLite WMS

5.4.9 CWE-703 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-703 are summarized in Figure 5.22.

Figure 5.22: Distribution average of the CWE-703 security alerts for gLite WMS



5.4. GLITE WMS& AVA4CMI 131

5.4.10 CWE-707 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-707 are summarized in Figure 5.23.

Figure 5.23: Distribution average of the CWE-707 security alerts for gLite WMS

5.4.11 CWE-710 Security Alerts

From the analysis of the attack vectors, the most remarkable security alerts for

the top-level entry CWE-710 are summarized in Figure 5.24.

Figure 5.24: Distribution average of the CWE-710 security alerts for gLite WMS



132 CHAPTER 5. AVA4CMI EXPERIMENTAL EVALUATION

5.5 Conclusions

In this Chapter we have presented an experimental evaluation of the AvA4cmi

methodology. We have shown the security alerts derived by our prototype system.

In order to evaluate the bene�ts for the AvA4cmi methodology, we assessed

the CrossBroker and the gLite WMS middlewares using the AvA4cmi prototype

tool.

The security alerts derived by the assessment of CrossBroker hinted the

weaknesses with highest scores, in the attack vectors where the vulnerabilities

manually found with FPVA are strongly related. The most outstanding security

alerts show that CrossBroker problems are more related to the pillars

"`Improper Control of a Resource Through its Lifetime"', and "`Protection

Mechanism Failure"', that is, for the corresponding attack vectors, the

weaknesses with the highest scores can derive into the known vulnerabilities

"`CrossBroker-2009-0001"', "`CrossBroker-2009-0002"', and

"`CrossBroker-2009-0003"'. From the other pillars, it was possible to relate the

weaknesses that would lead to the vulnerability "`CrossBroker-2009-0004"' in

the corresponding attack vector.

We have also shown the security alerts for the assessment of gLite WMS, which

present a close behaviour to CrossBroker, i.e., systems attributes and components

are almost the same, and whereby, it is worth to state that gLite WMS problems

share the same CrossBroker problems for the pillars "`Improper Control of a

Resource Through its Lifetime"', and "`Protection Mechanism Failure"'. The

most outstanding security alerts were summarized for each pillar in a graphical

representation, hinting which weaknesses for the attack vectors must be considered

�rst by the security analyst during a code inspection.



CHAPTER 6

Conclusions and Future Work

In this work we have studied the problem of performing a vulnerability assessment

of complex middleware interrelationships in distributed systems. In this Chapter

we review the main conclusions and present the new lines of research opened by

this work.

Security in distributed computing (e.g., Grid, Cloud, and SCADA networked

systems) provides di�erent protection mechanisms, ranging from the use of

certi�cates issued by trusted certi�cation authorities, to encrypted channels of

communications. To date, current security mechanisms of distributed systems -

authentication, authorization, certi�cation, and delegation are not enough to

assure that all application's resources are safe. Moreover, they are not in

accordance with a systematic process for vulnerability assessment. In addition,

novel threats have arisen, with the fast adaptation of cloud computing. This

introduces the necessity of providing a guidance for comprehensive and more

accurate vulnerability assessment, taking into account the complex middleware

relationships.

We proposed a novel methodology that address the challenges for

vulnerability assessment in distributed systems. It is called \Attack Vector

Analysis for Complex Middleware Interrelationships (AvA4cmi)". This

133



134 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

methodology (AvA4cmi) de�nes a set of components to support and provide

systematically guidance to where and why to deploy code assessment:

• The Attack Vector Graphs represent in a suitable, useful, and uni�ed

diagram all the initial FPVA analysis outcomes. An attack vector graph is

aimed to depict the sequence of transformations that allows control 
ow to

go from a point in the attack surface to a point in the impact surface. It

allows the speci�cation of the attack vectors conforming to the proposed

methodology by extending the graphml language.

• The Knowledge Base is responsible for provide codi�ed knowledge, which is

used for building the set of rules that will guide the vulnerability assessment

of a target system. The knowledge base is based on three elements: the

most updated knowledge about weaknesses, the CWE community e�ort; a

customized weakness scoring system based on the CWSS community e�ort;

and the most common middleware System Attributes.

• The AvA4cmi Algorithm manages the stated knowledge base, when

traversing the attack vector graphs, and assesses complex middleware

interrelationships, in order to generate a list of hierarchized security alerts.

We also presented a synapsis between System Attributes and CWE

weaknesses to allow the applicability of rules conforming to the proposed

methodology by gathering the most useful information from the CWE taxonomy.

The proposed methodology has been implemented in a prototype tool, developed

using the programming language Python. It abstracts the low-level details and

heterogeneity of middleware components from the security analyst responsibility.

We performed an experimental evaluation of our methodology. We assessed

the middlewares CrossBroker, and gLite WMS. The assessment performed by

our methodology demonstrates e�ectiveness to correlate vulnerabilities found

manually using FPVA, with several security alerts (i.e., weaknesses) in the

CrossBroker case, while in gLite WMS case, where FPVA did not �nd

vulnerabilities, the remarkable security alerts hint where and why the security

practitioner must consider to do a new code inspection.

Additionally, the AvA4cmi methodology demonstrates e�ectiveness for �lling

the gap between di�erent steps of the FPVA methodology, provides signi�cant



135

guidance for security practitioners when performing code inspection, and

positively impact the quality and accuracy of its vulnerability assessment.

This methodology (AvA4cmi) has produced several key accomplishments that

distinguish it from formal related vulnerability assessment works:

• It has the important characteristic that it focuses on complex

interrelationships among components, and not only on single components.

• The development of a well de�ned knowledge base of rules, which allows to

match system attributes into multiple weaknesses, and quantifying attack

vector weaknesses according to complex component interrelationships.

• A systematic guidance provided for the last FPVA analysis stage, automated

by a software tool.

• The AvA4cmi results provide signi�cant guidance to security practitioner.

These results are not sensitive to source code analysis, which makes results

language independent.

The main contributions of this work can be found in the following publications:

CEDI - Jornadas 2010 J. D. Serrano Latorre, E. Heymann, and E. Cesar,

\Manual vs automated vulnerability assessment on grid middleware", 2010.

CLCAR 2010 J. D. Serrano Latorre, E. Heymann, and E. Cesar,

\Developing new automatic vulnerability strategies for hpc systems" in

Latinamerican Conference on High Performance Computing - CLCAR, pp.

166-173, 2010.

IBERGRID 2011 J. D. Serrano Latorre, E. Heymann, E. Cesar, and B.

Miller, \Vulnerability assessment enhancement for middleware" in 5th Iberian

Grid Infrastructure Conference (IBERGRID), 2011.

COMPUTING AND INFORMATICS 2012 J. D. Serrano Latorre, E.

Heymann, E. Cesar, and B. Miller, \Vulnerability assessment enhancement for

middleware for Computing and Informatics" in Computing and Informatics

Journal, ISSN: 1335-9150, Vol. 31, 2012, No. 1, pp. 103{118, 2012.

ISPEC 2013 J. D. Serrano Latorre, E. Heymann, E. Cesar, and B. Miller,

\Increasing Automated Vulnerability Assessment Accuracy on Cloud and Grid

Middleware", 9th International Conference on Information Security Practice and

Experience (ISPEC), LNCS, pp 278-294, 2013.



136 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Future Work

Although the proposed methodology and the AvA4cmi implementation has been

tested in well known middlewares, and o�ers a fully operational guidance for

vulnerability assessment in distributed systems, open lines of research remain to

be explored.

• Our Attack Vector graph implementation is static, where the system

attributes of the middleware components used are the ones con�gured by

the installation package. While there could be enough information of the

system attributes, this information may di�er during a real time execution.

Creating attack vector graphs dynamically would avoid di�erences in the

system attributes at the moment of assessing the middleware components.

It will involve considering \Self-Propelled Instrumentation" [47], an

execution monitoring technique that dynamically injects a fragment of

code, the agent, into an application process on demand. The agent inserts

instrumentation ahead of the control 
ow within the process and

propagates into other processes, following communication events, crossing

host boundaries, and collecting a distributed function-level trace of the

execution.

• The Rules of the knowledge base are manually built, based on the

experience gathered from several vulnerability assessment with FPVA, and

the security practitioners experience. The update or creation of new rules

can be cumbersome. The �ne adjustment of the rules could be

accomplished in an automatic way. It will involve considering the use of

machine learning techniques for improvements of the whole knowledge

base architecture, where rules could change in function of new acquired

data at middleware runtime executions.



Bibliography

[1] C.J. Alberts and A.J. Dorofee. Managing Information Security Risks: The

Octave Approach. SEI series. ADDISON WESLEY Publishing Company

Incorporated, 2002.

[2] Cloud Security Alliance. Security guidance for critical areas of focus in cloud

computing, version 3. https://cloudsecurityalliance.org/research/

security-guidance/#_v3, November 2011.

[3] Mark Baker, Rajkumar Buyya, and Domenico Laforenza. Grids and grid

technologies for wide-area distributed computing. SOFTWARE: PRACTICE

AND EXPERIENCE, 32:1437{1466, 2002.

[4] Jean-Philippe B. Baud, James Caey, Sophie Lemaitre, Caitriana Nicholson,

David Smith, and Graeme Stewart. Lcg data management: From edg to

egee. http://ppewww.ph.gla.ac.uk/preprints/2005/06/, 2005.

[5] A. Behl. Emerging security challenges in cloud computing: An insight

to cloud security challenges and their mitigation. In Information and

Communication Technologies (WICT), 2011 World Congress on, pages

217{222, 2011.

[6] United States. President's Critical Infrastructure Protection Board and

United States. Dept. of Energy. 21 steps to improve cyber security of scada

networks, 2002.

137

https://cloudsecurityalliance.org/research/security-guidance/#_v3
https://cloudsecurityalliance.org/research/security-guidance/#_v3
http://ppewww.ph.gla.ac.uk/preprints/2005/06/


138 BIBLIOGRAPHY

[7] Randy Butler, Von Welch, Douglas Engert, Ian Foster, Steven Tuecke, John

Volmer, and Carl Kesselman. A national-scale authentication infrastructure.

Computer, 33(12):60{66, 2000.

[8] Marco Cecchi, Capannini Fabio, Alvise Dorigo, Antonia Ghiselli, Francesco

Giacomini, Alessandro Maraschini, Moreno Marzolla, Salvatore Monforte,

Fabrizio Pacini, Luca Petronzio, and Francesco Prelz. The glite workload

management system. In GPC, volume 5529 of Lecture Notes in Computer

Science, pages 256{268. Springer, 2009.

[9] San Diego Supercomputer Center. Storage Resource Broker. http://www.

sdsc.edu/srb/, March 2013.

[10] The Common Weakness Enumeration. Cwe-20: Improper input validation.

http://cwe.mitre.org/data/definitions/20, June 2013.

[11] Hewlett Packard Development Company. Fortify Source Code Analyzer.

http://www8.hp.com/us/en/software-solutions/software.html?

compURI=1338812, July 2013.

[12] Inc. Coverity. Coverity Prevent. http://www.coverity.com, July 2013.

[13] Ministerio de Ciencia e Innovaci�on (MICINN), CSIC, and IFCA. Iniciativa

grid nacional espa~nola (es-ngi). http://www.es-ngi.es/, 2013.

[14] T. Dierks and E. Rescorla. The transport layer security (tls) protocol. In

IETF RFC 4346, 2006.

[15] e sciencecity.org. Grid cafe. http://www.gridcafe.org/, June 2013.

[16] Giorgio Emidio and EGEE-II. Middleware overview. http:

//agenda.ct.infn.it/materialDisplay.py?contribId=2&sessionId=

0&materialId=slides&confId=48, April 2008.

[17] J. Falco, J. Gilsinn, and K. Stou�er. It security for industrial control systems:

Requirements speci�cation and performance testing. NDIA Homeland

Security Symposium & Exhibition, 2004.

[18] E. Fernandez del Castillo. Scheduling for Interactive and Parallel

Applications on Grid. PhD thesis, Universitat Aut�onoma de Barcelona, 2008.

http://www.sdsc.edu/srb/
http://www.sdsc.edu/srb/
http://cwe.mitre.org/data/definitions/20
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1338812
http://www8.hp.com/us/en/software-solutions/software.html?compURI=1338812
http://www.coverity.com
http://www.es-ngi.es/
http://www.gridcafe.org/
http://agenda.ct.infn.it/materialDisplay.py?contribId=2&sessionId=0&materialId=slides&confId=48
http://agenda.ct.infn.it/materialDisplay.py?contribId=2&sessionId=0&materialId=slides&confId=48
http://agenda.ct.infn.it/materialDisplay.py?contribId=2&sessionId=0&materialId=slides&confId=48


BIBLIOGRAPHY 139

[19] European Organization for Nuclear Research. Cern openlab welcomes

siemens as latest partner. http://cerncourier.com/cws/article/cnl/

36787, 2013.

[20] European Organization for Nuclear Research. Rackspace and

cern openlab collaborate to deliver \big bang" with hybrid

cloud. http://openlab.web.cern.ch/resources/press_release/

rackspace-and-cern-openlab-collaborate-deliver-‘‘big-bang’

’-hybrid-cloud, 2013.

[21] Institute for Security and Open Methodologies. Institute for security and

open methodologies. http://http://www.isecom.org/, 2013.

[22] Ian Foster. What is the grid? a three point checklist. June 2002.

[23] Ian Foster, Carl Kessekan, Gene Tsudik, and Steven Tueckel. A Security

Architecture for Computational Grids. Proceedings of ACM Conference

Computer and Communications Security, pages 83{92, 1998.

[24] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure

toolkit. International Journal of Supercomputer Applications, 11:115{128,

1996.

[25] Ian Foster and Carl Kesselman. The grid 2: Blueprint for a new computing

infrastructure. 2003.

[26] Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security

architecture for computational grids. In Proceedings of the 5th ACM

conference on Computer and communications security, CCS '98, pages 83{92,

New York, NY, USA, 1998. ACM.

[27] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid -

enabling scalable virtual organizations. CoRR, cs.AR/0103025, 2001.

[28] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The ssl protocol

| version 3.0. Internet Draft, Transport Layer Security Working Group,

November 1996.

http://cerncourier.com/cws/article/cnl/36787
http://cerncourier.com/cws/article/cnl/36787
http://openlab.web.cern.ch/resources/press_release/rackspace-and-cern-openlab-collaborate-deliver-``big-bang''-hybrid-cloud
http://openlab.web.cern.ch/resources/press_release/rackspace-and-cern-openlab-collaborate-deliver-``big-bang''-hybrid-cloud
http://openlab.web.cern.ch/resources/press_release/rackspace-and-cern-openlab-collaborate-deliver-``big-bang''-hybrid-cloud
http://http://www.isecom.org/


140 BIBLIOGRAPHY

[29] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steve Tuecke.

Condor-G: A computation management agent for multi-institutional grids.

Proceedings of the 10th IEEE International Symposium on High Performance

Distributed Computing (HPDC-10), 5:7{9, 2001.

[30] Grid Policy Research Group (GGF). Grid policy. https://forge.

gridforum.org/projects/policy-rg/, May 2013.

[31] George Gilder. The information factories. http://www.wired.com/wired/

archive/14.10/cloudware.html, October 2006.

[32] graphdrawing.org. The GraphML File Format. http://graphml.

graphdrawing.org, June 2013.

[33] Kevin Hemalen, Murat Kantarcioglu, Latifur Khan, and Bhavani

Thuraisingham. Security issues for cloud computing. International Journal

of Information Security and Privacy., June 2010.

[34] Tony Hey and Anne E. Trefethen. The uk e-science core programme and the

grid. Future Generation Computer Systems, 18:1017{1031, 2002.

[35] M. Humphrey and M.R. Thompson. Security implications of typical grid

computing usage scenarios. In High Performance Distributed Computing,

2001. Proceedings. 10th IEEE International Symposium on, pages 95{103,

2001.

[36] Marty Humphrey and Mary R. Thompson. Security implications of typical

grid computing usage scenarios. Cluster Computing, 5(3):257{264, July 2002.

[37] International Data Corporation (IDC). Idc cloud research. http://www.

idc.com/prodserv/idc_cloud.jsp, March 2013.

[38] ISO/IEC. ISO/IEC 27005 Information technology - Security Techniques -

Information security risk management. Technical report, jun 2008.

[39] Nagaraju Kilari and Rajagopal Sridaran. A survey on security threats

for cloud computing. International Journal of Engineering Research &

Technology (IJERT), September 2012.

https://forge.gridforum.org/projects/policy-rg/
https://forge.gridforum.org/projects/policy-rg/
http://www.wired.com/wired/archive/14.10/cloudware.html
http://www.wired.com/wired/archive/14.10/cloudware.html
http://graphml.graphdrawing.org
http://graphml.graphdrawing.org
http://www.idc.com/prodserv/idc_cloud.jsp
http://www.idc.com/prodserv/idc_cloud.jsp


BIBLIOGRAPHY 141

[40] B K�onya, C Aiftimiei, M Cecchi, L Field, P Fuhrmann, J K Nilsen, and

J White. Consolidation and development roadmap of the emi middleware.

Journal of Physics: Conference Series, 396(3):032062, 2012.

[41] J. Kupsch and B. Miller. Manual vs. automated vulnerability assessment: A

case study. International Workshop on Managing Insider Security Threats,

469:83{97, June 2009.

[42] J. Kupsch, B. Miller, E. Heymann, and E. Cesar. First principles vulnerability

assessment, mist project. Technical report, UAB & UW, September 2009.

[43] Jairo David Serrano Latorre. Ava4cmi git repository. https://github.com/

ava4cmi/PythonApplication1.git, 2013.

[44] Tim Mather, Subra Kumaraswamy, and Shahed Latif. Cloud Security and

Privacy: An Enterprise Perspective on Risks and Compliance. O'Reilly

Media, Inc., 2009.

[45] G. McGraw, K. Tsipenyuk, and B. Chess. Seven pernicious kingdoms: A

taxonomy of software security errors. IEEE Security and Privacy, 3:81{84,

2005.

[46] Peter Mell and Tim Grance. The NIST De�nition of Cloud

Computing. http://csrc.nist.gov/publications/nistpubs/800-145/

SP800-145.pdf, June 2009.

[47] Alexander V. Mirgorodskiy and Barton P. Miller. Diagnosing distributed

systems with self-propelled instrumentation. In Proceedings of the 9th

ACM/IFIP/USENIX International Conference on Middleware, Middleware

'08, pages 82{103, New York, NY, USA, 2008. Springer-Verlag New York,

Inc.

[48] European Network and Information Security Agency (ENISA). Cloud

computing: Bene�ts, risks and recommendations for information

security. http://www.enisa.europa.eu/act/rm/files/deliverables/

cloud-computing-risk-assessment/at_download/fullReport,

November 2009.

https://github.com/ava4cmi/PythonApplication1.git
https://github.com/ava4cmi/PythonApplication1.git
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.enisa.europa.eu/act/rm/files/deliverables/ cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/ cloud-computing-risk-assessment/at_download/fullReport


142 BIBLIOGRAPHY

[49] National Grid Initiatives (NGIs) and European International

Research Organisations (EIROs). European grid infrastructure.

http://www.egi.eu/, February 2013.

[50] National Institute of Standards & Technology. System protection pro�le {

industrial control systems, 2004.

[51] University of Wisconsin and Universitat Autonoma de Barcelona. The

middleware security and testing group. http://www.cs.wisc.edu/mist,

2013.

[52] University of Wisconsin-Madison. Condor project. http://www.cs.wisc.

edu/condor, March 2013.

[53] United States. General Accounting O�ce. Technology assessment:

Cybersecurity for critical infrastructure protection, 2004.

[54] Cloud Standards Organization. Cloud standards organization. http://www.

cloud-standards.org/, February 2013.

[55] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain

Roy, Paul Avery, Kent Blackburn, Torre Wenaus, Frank Warthwein, Ian

Foster, Rob Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob

Quick. The open science grid. Journal of Physics: Conference Series,

78(1):012057, 2007.

[56] European Union (EU) Information Society Technologies (IST) Programme.

Crossgrid EU Project. https://www.cesga.es/es/investigacion/

proyectos/Proyecto?id=39/, February 2009.

[57] European Union (EU) Information Society Technologies (IST) Programme.

Interactive European Grid Project. https://www.cesga.es/es/

investigacion/proyectos/Proyecto?id=108, February 2009.

[58] The Open Web Application Security Project. A1 injection. https://www.

owasp.org/index.php/Top_10_2013-A1-Injection, July 2013.

[59] The Open Web Application Security Project. A10 unvalidated

redirects and forwards. https://www.owasp.org/index.php/Top_10_

2013-A10-Unvalidated_Redirects_and_Forwards, July 2013.

http://www.egi.eu/
http://www.cs.wisc.edu/mist
http://www.cs.wisc.edu/condor
http://www.cs.wisc.edu/condor
http://www.cloud-standards.org/
http://www.cloud-standards.org/
https://www.cesga.es/es/investigacion/proyectos/Proyecto?id=39/
https://www.cesga.es/es/investigacion/proyectos/Proyecto?id=39/
https://www.cesga.es/es/investigacion/proyectos/Proyecto?id=108
https://www.cesga.es/es/investigacion/proyectos/Proyecto?id=108
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards


BIBLIOGRAPHY 143

[60] The Open Web Application Security Project. A2 broken authentication

and session management. https://www.owasp.org/index.php/Top_10_

2013-A2-Broken_Authentication_and_Session_Management, July 2013.

[61] The Open Web Application Security Project. A3 cross-site scripting

(xss). https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_

Scripting_(XSS), July 2013.

[62] The Open Web Application Security Project. A4 insecure direct

object references. https://www.owasp.org/index.php/Top_10_

2013-A4-Insecure_Direct_Object_References, July 2013.

[63] The Open Web Application Security Project. A5 security miscon�guration.

https://www.owasp.org/index.php/Top_10_2013-A5-Security_

Misconfiguration, July 2013.

[64] The Open Web Application Security Project. A6 sensitive data exposure.

https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_

Exposure, July 2013.

[65] The Open Web Application Security Project. A7 missing function level access

control. https://www.owasp.org/index.php/Top_10_2013-A7-Missing_

Function_Level_Access_Control, July 2013.

[66] The Open Web Application Security Project. A8 cross-site

request forgery (csrf). https://www.owasp.org/index.php/Top_10_

2013-A8-Cross-Site_Request_Forgery_(CSRF), July 2013.

[67] The Open Web Application Security Project. A9 using components

with known vulnerabilities. https://www.owasp.org/index.php/Top_10_

2013-A9-Using_Components_with_Known_Vulnerabilities, July 2013.

[68] The Open Web Application Security Project. The open web application

security project. https://www.owasp.org/, 2013.

[69] The Middleware Security and Testing Group. Secure coding practices

for middleware. http://research.cs.wisc.edu/mist/presentations/

CondorWeek-2012-Secure-Program-Tutorial.pdf, February 2012.

https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/
http://research.cs.wisc.edu/mist/presentations/CondorWeek-2012-Secure-Program-Tutorial.pdf
http://research.cs.wisc.edu/mist/presentations/CondorWeek-2012-Secure-Program-Tutorial.pdf


144 BIBLIOGRAPHY

[70] Massimo Sgaravatto, P. Andreetto, S. Borgia, A. Dorigo, A. Gianelle,

M. Mordacchini, L. Zangrando, S. Andreozzi, V. Ciaschini, C. Di Giusto,

F. Giacomini, V. Medici, E. Ronchieri, V. Venturi, G. Avellino, S. Beco,

A. Maraschini, F. Pacini, A. Guarise, G. Patania, D. Kou�ril, A. K�renek,

L. Matyska, M. Mula�c, J. Posp���sil, Ruda, J. Sitera, J. �skrabal, M. Voc�u,

V. Martelli, M. Mezzadri, F. Prelz, D. Rebatto, S. Monforte, and

M. Pappalardo. Practical approaches to grid workload and resource

management in the egee project. Proceedings of the International Computing

in High Energy and Nuclear Physics, pages 899{902, 2004.

[71] R. Shirey. RFC 2828 - Internet Security Glossary. may 2000.

[72] Gary Stoneburner, Alice Y. Goguen, and Alexis Feringa. Sp 800-30. risk

management guide for information technology systems. Technical report,

Gaithersburg, MD, United States, 2002.

[73] Keith Stou�er, Joe Falco, and Karen Scarfone. Guide to Industrial Control

Systems (ICS) Security Recommendations of the National Institute of

Standards and Technology. Technical report, 2008.

[74] F. Swiderski and W. Snyder. Threat Modeling. Microsoft professional.

Microsoft Press, 2004.

[75] The MITRE Community. Cwe research view xml �le. http://cwe.mitre.

org/data/xml/views/1000.xml.zip, March 2013.

[76] The MITRE Corporation. The Common Vulnerability and Exposure. http:

//cve.mitre.org/, 2013.

[77] The MITRE Corporation. The Common Weakness Enumeration. http:

//cwe.mitre.org/, 2013.

[78] The MITRE Corporation. The Common Weakness Scoring System. http:

//cwe.mitre.org/cwss/index.html, 2013.

[79] The MITRE Corporation. Cwe-1000: Research concepts. http://cwe.

mitre.org/data/definitions/1000.html, June 2013.

[80] The MITRE Corporation. Cwe-699: Development concepts. http://cwe.

mitre.org/data/definitions/699.html, June 2013.

http://cwe.mitre.org/data/xml/views/1000.xml.zip
http://cwe.mitre.org/data/xml/views/1000.xml.zip
http://cve.mitre.org/
http://cve.mitre.org/
http://cwe.mitre.org/
http://cwe.mitre.org/
http://cwe.mitre.org/cwss/index.html
http://cwe.mitre.org/cwss/index.html
http://cwe.mitre.org/data/definitions/1000.html
http://cwe.mitre.org/data/definitions/1000.html
http://cwe.mitre.org/data/definitions/699.html
http://cwe.mitre.org/data/definitions/699.html


BIBLIOGRAPHY 145

[81] The MITRE Corporation. Cwe introductory brochure. http://

makingsecuritymeasurable.mitre.org/docs/cwe-intro-handout.pdf,

June 2013.

[82] International Telecommunication Union. Itu-t x.509 : Information technology

- open systems interconnection - the directory: Public-key and attribute

certi�cate frameworks, 1997.

[83] John Viega. Building security requirements with clasp. In Proceedings

of the 2005 workshop on Software engineering for secure systems–building

trustworthy applications, SESS '05, pages 1{7, New York, NY, USA, 2005.

ACM.

[84] Wikipedia. Cloud computing. http://en.wikipedia.org/wiki/Cloud_

computing, June 2013.

http://makingsecuritymeasurable.mitre.org/docs/cwe-intro-handout.pdf
http://makingsecuritymeasurable.mitre.org/docs/cwe-intro-handout.pdf
http://en.wikipedia.org/wiki/Cloud_computing
http://en.wikipedia.org/wiki/Cloud_computing

	Overview
	Introduction
	Grid
	Grid Architecture
	Grid Security

	Cloud
	Cloud Architecture

	Supervisory Control And Data Acquisition
	Vulnerability Assessment
	Microsoft Threat Modeling
	OCTAVE
	OSSTM
	FPVA
	The 7 Pernicious Kingdoms
	CLASP
	OWASP Top 10
	Common Weakness Enumeration (CWE)

	Contributions
	Conclusions

	FPVA & CWE: Foundations
	First Principles Vulnerability Assessment
	FPVA Methodology Steps
	FPVA Accomplishments

	Common Weakness Enumeration
	Common Weakness Scoring System (CWSS)

	Conclusions

	Vulnerability Assessment for Complex Middleware Interrelationships
	
	Attack Vectors Graphs
	Knowledge Base
	System Attributes
	Relationship between System Attributes & Weaknesses
	Rules

	An Algorithm for the AvA4cmi methodology
	Security Alerts
	Conclusions

	AvA4cmi Experimental Evaluation
	CrossBroker & FPVA
	CrossBroker-2009-0001
	CrossBroker-2009-0002
	CrossBroker-2009-0003
	CrossBroker-2009-0004

	CrossBroker & AvA4cmi
	Attack vector I
	Attack vector II
	Attack vector III
	Attack vector IV
	Attack vector VI
	Attack vector VIII
	Attack vector IX
	Attack vector X

	gLite WMS & FPVA
	gLite WMS& AvA4cmi
	CWE-118 Security Alerts
	CWE-330 Security Alerts
	CWE-435 Security Alerts
	CWE-664 Security Alerts
	CWE-682 Security Alerts
	CWE-691 Security Alerts
	CWE-693 Security Alerts
	CWE-697 Security Alerts
	CWE-703 Security Alerts
	CWE-707 Security Alerts
	CWE-710 Security Alerts

	Conclusions

	Conclusions and Future Work
	Future Work




