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Abstract

Animals excel in skilled motor behavior, especially when compared to arti�cial
systems. Several adaptive and predictive motor control frameworks have been
proposed to account for such performance, but the underlying biological imple-
mentation remains elusive. In vertebrates, the cerebellum is the most promising
candidate locus where adaptive and predictive motor control primitives might be
implemented. Indeed, several motor learning paradigms indicate that the cerebel-
lum can drive anticipatory and well-timed coordinated motor actions. The most
widely employed of such paradigms, classical conditioning of the eyelid re�ex (eye-
blink conditioning), has a well-de�ned circuitry blueprint as well as known in-
put and output pathways. However, the underlying physiological mechanisms are
not fully understood, and neither is it clear whether cerebellar function in eye-
blink conditioning can be extrapolated to more general anticipatory actions. This
dissertation addresses these two questions relying on computational, robotic and
neuro-prosthetic approaches, following the hypothesis that the cerebellum, working
as an adaptive feedforward �lter, interacts with a reactive layer of feedback con-
trol. First, we show that GABAergic slow inhibitory currents provide a biologically
grounded mechanism accounting for the representation of time in the cerebellar
cortex. Based on such assumption, we build a computational model of the cerebel-
lum that successfully controls robots in avoidance learning tasks and replaces the
learning function of an inactivated rat cerebellum using a neuro-prosthetic implan-
tation. Thus, we provide a biologically grounded explanation of the mechanisms
underlying the acquisition of anticipatory responses by the cerebellum, that is fully
functional in both robotic and neuro-prosthetic scenarios. Altogether, this work
advances our understanding of the mechanisms at the basis of coordinated motor
control in animals, and through this, it takes a step towards developing equivalent
motor capabilities in arti�cial systems.
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Resum

Els animals assoleixen unes habilitats motores que superen de llarg la dels sistemes
arti�cials actuals. S'ha proposat que diferents marcs de control adaptatiu i pre-
dictiu estan a la base d'aquest acompliment, pero la seva implementació biològica
roman desconeguda. En el cas dels vertebrats, és el cerèvel l'estructura cerebral on
més probablement s'implementen aquestes primitives adaptatives i predictives. De
fet, multiples paradigmes d'aprenentatge motor indiquen que el cerevel es capaç
de controlar l'adquisició de accions motores anticipatòries i executar-les amb gran
precisió temporal. El paradigma més estudiat, el condicionament clássic del parpe-
lleig, té una anatomia ben de�nida així com també un circuits d'entrada i sortida
coneguts. Tanmateix, els mecanismes a la base d'aquest tipus d'aprenentatge no es
coneixen com tampoc es sap si la funció del cérevel al condicionament del parpelleig
es pot generalitzar a altres tipus d'accions anticipatòries. Aquesta disertació adreça
aquestes dues qüestion i ho fa mitjaçant estudis computacionals, robotics i neuro-
prostètics, on apliquem l'hipòtesi que el cerevel actúa com a un �ltre adaptatiu que
complementa la funció d'una capa de control reactiva. En primer lloc, demostrem
que les corrents inhibitories per versament proporcionen un sustrat �siològic per a
la represtació del temps en l'escorça del cerevel. Basant-nos en aquesta assumpció,
desarrotlem un model computacional que es capaç de controlar un robot en un
tasca de prevenció de colisions i que, implementat en un implant neuro-prostètic,
també pot reemplaçar funcionalment el cerevel farmacologicament inactivat d'una
rata. D'aquesta manera, donem un explicació biologicament plausible per als me-
canismes que permeten l'aquisició de respostes anticipatories al cerevel, que a més a
més es funcional tant en l'àmbit de la robòtica com en el de les neuro-pròtesis. Tot
plegat, aquesta feina avança el coneixement relatiu als mecanismes que a la base del
control motor en animals, i mitjançant això dòna un pas vers el desenvolupament
de sistemes arti�cials amb capacitats equivalents.
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CHAPTER 1
Introduction

Originally developed as a means for studying a simple form of associative

learning in animals, the classical conditioning of the eye-blink response,

has become a very useful tool for studying cerebellar function (Freeman

& Steinmetz, 2011; Thompson & Steinmetz, 2009; Christian & Thomp-

son, 2003; Hesslow & Yeo, 2002). In the eye-blink conditioning paradigm

a neutral Conditioning Stimulus (CS), e.g., a tone, precedes by a �xed

Inter Stimulus Interval (ISI) an innately aversive Unconditioned Stim-

ulus (US), e.g., an airpu�. Prior to any training, the latter triggers a

protective re�ex-like eye-blink, the Unconditioned Response (UR). After

a number of paired CS-US stimulation trials, an animal develops also a

motor response to the CS, the Conditioned Response (CR), namely, an

eye-blink that coincides with the expected arrival of the US. It is now

well established that this form of learning depends on the cerebellum.

Moreover, in the simplest eye-blink conditioning paradigm, when both

the CS and US overlap in time and the ISI is below 1 second, learning

within the cerebellum is su�cient for the acquisition of CRs.

The behavioral hallmark of eye-blink conditioning is that the animal

acquires an anticipatory response that is speci�c both in space �which

1



2 CHAPTER 1. INTRODUCTION

muscles are activated� and in time �when are they activated�. Here

we focus on the when aspect of the task, i.e., the cerebellum's ability

to acquire adaptively-timed responses, as the mechanisms that achieve

such a temporal speci�city are not yet well understood. This is the �rst

question addressed in this dissertation. Our response contributes to the

state of the art by providing a parsimonious solution that refers to an

idiosyncratic trait of the physiology of the cerebellar cortex, namely, the

prevalence of the spillover inhibitory currents.

Once we have provided such a mechanism for generating a representation

of the passage of time in the cerebellar cortex, we asses how our solution

a�ects the learning dynamics of a computational model of the cerebellum.

However, since we frame these tests in the context of avoidance learning,

we address at the same time a more general issue. That is, how does our

knowledge of the role of the cerebellum in classical conditioning generalize

to avoidance learning? This issue, from our point of view, has not yet

been su�ciently addressed in the �eld and it is pivotal for allowing to

elaborate, departing from classical conditioning, a general theory about

the cerebellar control of anticipatory actions. In relation to this, our

contribution proofs that the adaptive and reactive layers of control can

cooperate during avoidance behavior in a graded manner. Our proposal

introduces the novelty that, instead of totally replacing the reactive by

the anticipatory responses, we argue that the goal of cerebellar learning

in anticipatory actions is to merge predictive feed-forward with reactive

feedback control.

Next, we study whether an e�ect reported in the eye-blink conditioning

can be functional in avoidance learning. For this, employing a robotic

setup, we suggest that an experimental �nding from the classical condi-

tioning paradigm, that links the intensity of a predictive stimulus with

the latency of an anticipatory response, can be operationally interpreted

in behavioral terms. More precisely, we propose that a robot that learns

to navigate a track at a slow velocity, can afterwards reproduce the same



3

skill at higher ones, and that this generalization, via a shaping-like pro-

cess allows the robot to traverse the track at speeds that initially were

beyond its reach. In short, with this interpretation, we aim to turn a sin-

gle stimulus-response association into a sensorimotor contingency linking

a family of stimuli with their appropriately modulated responses.

The �nal contribution of this dissertation uses a di�erent approach to

the validation of our computational theory of cerebellar learning. Indeed,

despite having demonstrated that our computational models can replicate

the behavior of a cerebellar microcircuit, the achievement was reached

using synthetic signals acquired by a robot instead of noisy brain activity.

Thus, in order to provide evidence that our model is developed along

principles that are still valid in the biological context, we aim to deploy

the model in a biological context. For this, we interface a synthetic

cerebellum with the brain of a rat whose cerebellum has been inactivated

by anesthesia with the goal of reproducing the normal acquisition of

conditioned responses in a healthy animal. The result is a pioneering

study that shows for the �rst time that a neuro-prosthesis in closed-loop

with the central nervous system allows for the recovery of a lost learning

function.

We have brie�y summarized the main four contributions of this thesis.

Now, before addressing each of them in detail in the following chapters,

we will provide the necessary background in the remaining of the cur-

rent one. We �rst quickly introduce remarkable aspects of the cerebellar

anatomy. Afterwards we review the theories of cerebellar function. It

follows a gross introduction of the cerebellar anatomy and physiology

and, �nally, a short review on the computational theories of cerebellar

function.
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Figure 1.1: Longitudinal section of the cerebellar cortex. Illustration
from Thomas (1911) after a drawing by Ramón y Cajal.

1.1 A �rst glance at the cerebellum

The cerebellum is a brain structure that sits in the ventral-posterior

part of the head, below the occipital lobe and above the brain stem. Its

placement is optimal for mediating the communication between the mind

(embodied in the higher brain areas) and the body (that both receives

downstream commands and carries upstream perceptions via the spinal

cord). In numbers, the cerebellum occupies one-�fth of the volume of the

central nervous systems and hosts half of its total number of neurons.

From an anatomical standpoint, the cerebellum is a very remarkable

structure both quantitatively and qualitatively. It contains from the tiny

and structurally simple granule cells, to the big and complex Purkinje

cells. In the beautiful planar dendritic trees of the Purkinje cells we

�nd, at the same time, the highest convergence of input �bers to a single

cell observed in the brain, >105 parallel �ber impinging each Purkinje

cell, and the lowest possible, the one-to-one strong connection between

a climbing �ber and a Purkinje cell.

The most prominent anatomical feature of the cerebellum is found in

the cerebellar cortex: its lattice-like regular arrangement, which as de-
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scribed in Braitenberg & Atwood (1958), can be obtained through the

bidimensional translation of a cubic building-block. This cytoarchitec-

ture, that is repeated all through the cerebellar cortex, clearly de�nes

preferred directions for the propagation of information and induces or-

thogonal arrangements at multiple stages of this structure. For instance,

the dendritic trees of Purkinje cells are contained in planes perpendicular

to the parallel �bers, planes that also contain the axons of the inferior

olivary cells and their end rami�cations, the climbing �bers. Macroscop-

ically, the structure itself, the cerebellar cortex, is folded only along one

direction, like an accordion, with medio-lateral grooves, the folia. An

unfolded hemisphere of a human cerebellum would cover an ellipsoidal

surface with an antero-posterior extent of two meters and a medio-lateral

width of 0.15 m (Braitenberg et al., 1997). For a comparison, a �attened

hemisphere of human cerebral cortex is roughly circular with a 0.3 m

diameter. The macroscopic and microscopical arrangements relate as

follows: if we slice the cerebellum perpendicular to the surface and along

the folia (longitudinal section, Fig. 1.1), we will section both Purkinje

cell's dendritic trees and the axons the inferior olive cells capturing en-

tire parallel �bers, whereas if we slice perpendicular the folia (transverse

section, Fig. 1.2), we will preserve entire Purkinje cells and section the

parallel �bers.

This impressionistic anatomical preamble is worth because from the per-

spective of a computational scientist, the main the motivation for study-

ing of the cerebellum stems from its fascinating architecture. Its crystal-

like arrangement of cells eloquently delineates the �ow of information,

and to a great extent, seems to indicate the underlying computational

operations, such that it appears feasible to elucidate the cerebellar algo-

rithm. Moreover, since the same structure is maintained through all the

cerebellar tissue, arguably it is only necessary to solve the algorithm for

a tiny piece of tissue to be able to describe the algorithm of the whole

cerebellum (Apps & Garwicz, 2005). These hopes might be naive, but
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Figure 1.2: Transverse section of the cerebellar cortex. Illustration
from Thomas (1911) after a drawing by Ramón y Cajal.

they have nonetheless been shared by the researchers that more promi-

nently contributed to our understanding of the cerebellum: Eccles, Ito,

Marr, Albus, Braitenberg, etc.

Indeed, the works that conform this dissertation constitute complemen-

tary e�orts in a same endeavor: the deciphering of the cerebellar algo-

rithm that supports the acquisition of adaptive re�exes, and through this

the understanding of the basis of cerebellar motor control. But this goal,

besides being an end in itself, is also a tractable means to solve the more

general problem of unveiling the general cerebellar algorithm that makes

the cerebellum such a successful product of evolution.
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1.2 Cerebellar function

1.2.1 Cerebellar role in motor control

The concept of �cerebellar function� is subject to an endless debate

(Thach, 2013; Glickstein, 2007; Thomas, 1912). The prevailing view

states that the function of the cerebellum is the (�ne) coordination of

motor commands. It was �rst formulated in the XIX century by Flourens

based on lesion studies in animals (Flourens, 1842). Quoting (page XII):

�[...] dans le cervelet réside une propriété dont rien ne donnait encore

l'idée en physiologie, et qui consiste à coordoner les mouvements voulus

par certaines parties du système nerveux [...]� 1. It is still customary to

introduce the cerebellum as a brain structure dedicated to motor control.

Evidence for this role has been accumulating through the decades in the

clinical domain (Glickstein, 1994; Thomas, 1912) and in experimental

psychology, with electrophysiological recording in animals and functional

magnetic resonance studies in humans (Yamamoto et al., 2007; Shidara,

1993; Ojakangas & Ebner, 1992; Gilbert & Thach, 1977).

At this point, even though it is evident that the cerebellum is necessary

for �ne motor control, the debate is whether the cerebellar function is

motor control or a more general function necessary for motor control.

For instance, it has been suggested that the main function of the cere-

bellum is the processing of sensory information (Bower, 1997a,b; Paulin,

1993). According to this view, the cerebellum extracts relevant features

from the sensory signal (Angelaki et al., 2004), or subtracts noise (Gao

et al., 1996). Then, being able to extract information from the sensory

domain is necessary for accurate motor control, but it is also necessary

for cognitive tasks that do not require the performance of any motor

action.

1translation: �within the cerebellum we �nd a property that was not yet pre-
dicted by the physiology, and that consists in the coordination of the movements
commanded by other regions of the nervous system�
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Another more specialized view links cerebellar function to motor control

through the implementation of forward models (Bastian, 2006; Paulin,

1993; Miall et al., 1993). In this case, the cerebellum anticipates sensory

signals to feedback controllers. This framework enables inverse feedback

controllers to not depend on delayed feedback, what minimizes the e�ort

and increases the stability of the control.

Two additional theories of cerebellar function make it an organ neces-

sary for, but not restricted to, motor control. First, the presence of the

long parallel �bers in the cerebellar cortex suggested to Braitenberg that

the cerebellar function may consist in the detection and generation of

sequences (Braitenberg et al., 1997).

On the other hand, and based on clinical and experimental evidence, it is

suggested that the cerebellum might act as an internal clock. Cerebellar

patients are speci�cally impaired in tasks requiring to perform explicit-

timing (Spencer et al., 2003). If a subject has to tap with a �nger on a

table every second while remain motionless in the intervals, it is necessary

to internally generate a code for the passage of time, i.e., to generate

an explicit representation of time. This can be avoided if the subject

continuously moves the �nger between taps, e.g., drawing a circle in the

air. In the latter case, the passage of time can be implicitly coded in the

dynamics of the ongoing movement. Cerebellar patients are selectively

impaired only in explicit-timing tasks. Moreover, since cerebellar patients

are also impaired in the perception of time, it has been proposed that

the cerebellum can act as a general internal time-keeping mechanism that

is employed both by motor or perceptual systems (Ivry & Keele, 1989).

We emphasize this distinction between explicit- and implicit-timing tasks

because eye-blink conditioning, the task we focus in, is an explicit-timing

task. That is, the CS stimulus has no dynamics that could convey time-

related information for which the timing information has to be internally

generated in the cerebellum.
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So far, we have presented theories of cerebellar function that related in-

timately to motor control and that are elaborated, with the exception

of Braitenberg's view, based on correlational evidence: lesion, clinical,

electro-physiological or imaging studies that link observed behavior with

neural activity or brain damage. In what follows we will introduce two

lines of evidence that relate the (human) cerebellum with functions that,

again, go beyond motor control but do so from evolutionary and phylo-

genetical perspectives.

1.2.2 Evolutionary perspective

Citing Sir Eccles, �With each further evolutionary development of the

brain, the cerebellum seemed to be a necessary adjunct, presumably be-

cause it possessed some unique mode of processing information� (Eccles

et al., 1967). We �nd a concrete example of this during the increase in

encephalization that preceded the advent of the Mammalia order. Then,

the increase on brain mass relative to body mass resulted from the ex-

pansion of the somatosensory and motor cortices, together with the cere-

bellum (Rowe et al., 2011). Congruently with the motor-centered view

of cerebellar function, this evolutionary development was putatively as-

sociated with improved tactile and motor coordination in pre-mammals.

The brain of the Hominoids (namely, geni Orangutan, Gorilla, Chim-

panzee and Homo) provides another example. In that case, a remarkable

increase in encephalization quotient caused an enlargement of all brain

areas, but the size of the cerebellum increased even more than expected

for the sheer enlargement of the cerebral cortices (Rilling, 2006).

The ratio between the cerebellum and the rest of the brain is far from

being constant across species, and in the case of the evolution of modern

humans, the history is specially telling. The evolutionary pulse that lead

to bigger brains in our Homo ancestors (Cro-Magnon and Neandertal)

a�ected more the cerebral cortices than the cerebellum, but the last evo-

lutionary leap towards the Homo Sapiens saw a reversal of the trend and,
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proportionally, our cerebellum occupies a bigger portion of our brain vol-

ume compared to our ancestors (Weaver, 2005). Two conclusions can be

drawn from this picture. First, recent evidence con�rms Eccles remark,

and indeed the cerebellum co-developed with other brain areas through-

out evolution (Barton & Harvey, 2000). And secondly, in the light of the

evolution of the cerebellum in the Homo genus, the vision of cerebellar

function as a purely motor one seems unlikely.

Indeed, compared to our human ancestors, modern humans stand out by

the complexity of their social environment, the linguistic communication

and abstract reasoning skills, and by the ability to use tools (technology).

In general, these capabilities, except, arguably, the use of technology, go

beyond motor control, so, why would recent evolution have resulted in

such an enlarged cerebellum in humans? It is been suggested that the

mechanisms that allow for the control of sequences of complex motor

actions (as in tool making) are the basis over which syntax, and therefore

the language ability, evolved (Sterelny, 2012; Fitch, 2011), and that these

mechanisms are grounded in the cortico-cerebellar system (Barton, 2012).

Then, to summarize, from an evolutionary perspective, we can interpret

that even though the main role of the cerebellum in primates might be

the control of complex motor sequences, allowing for �ne motor control,

in humans, the same computational facilities provided by the cortico-

cerebellar system sub-serve, in addition to motor control tasks, also cog-

nitive operations.

1.2.3 Phylogenesis and comparative anatomy of

the cerebellum

All vertebrates have a cerebellum and the majority of them have ad-

ditional cerebellum-like structures (Bell, 2002). Alike the cerebellum,

cerebellum-like structures have an histological division in their tissue,

the molecular layer, that presents a lattice-like arrangement of parallel
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�bers, originating from granule cells, which contact the spiny dendritic

trees of the principal cells (Bell et al., 2008). The main structural di-

vergence between cerebellum-like structures and the cerebellum is the

absence of the climbing �bers in the former ones (Devor, 2000). The

principal cells of the cerebellum-like structures, that are analogous to

the cerebellar Purkinje cells, lack the hyper-speci�c 1-to-1 innervation

provided the climbing �bers. However, both structures share the same

pattern of high convergence of non-speci�c information through an input

pathway (namely, through the parallel �bers in both cases) in contrast

with a much more speci�c information coming from a separated pathway

(through the climbing �bers in the case of the cerebellum and through

a�erent �bers in the case of the cerebellum-like structures).

The only exception to the presence of the cerebellum in vertebrates is

raised by their most ancient living lineage, lampreys, where such a pres-

ence is debated (Bell et al., 2008; Northcutt, 2002). However lampreys

and their evolutionary ancestors do have cerebellum-like structures, what

suggests that cerebellum-like structures might be the evolutionary ances-

tors of the cerebellum (Montgomery et al., 2012; Bell et al., 2008). Inter-

estingly, since cerebellum and cerebellum-like structures coexist in most

vertebrates (including all mammals), it has been proposed that the cere-

bellum appeared by duplication of the cerebellum-like structures, that

then was subsumed in the already existing brain architecture (Mont-

gomery et al., 2012). Considering that the general plan of the vertebrate

central nervous system, including spinal cord, basal ganglia, thalamus

and a primitive cerebral cortex, namely the pallium, is already present in

lampreys (Grillner et al., 2005), we may come to the surprising conclusion

that the cerebellum is a late add-on to such a general plan.

In any case, independently of the evolutionary origin of the cerebel-

lum, the already-mentioned structural similarity between cerebellum and

cerebellar-like structures by itself already suggests that, given the anal-

ogous cyto-architectural design, both structures could perform similar
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computations or have an analogous function (Bell et al., 2008; Devor,

2000). The previous is a relevant argument because whereas the func-

tion of the cerebellum is subject to debate, it is agreed that �cerebellum-

like structures remove predictable features from the sensory �ow� (quoted

from (Bell, 2002)). This is, they subtract from the signal coming through

the peripheral a�erents the components that can be predicted based on

the information that reaches through the parallel �bers. Sources of such

information can be e�erence copy of motor commands, propioception and

signals from other sensory modalities.

In a similar vein, Paulin (1993) has shown that across species the size

of the di�erent cerebellar lobes is related to the sensory complexity, and

not to the motor complexity, of the limbs or organs that they are puta-

tively connected to. For instance, the small echo-locating bats are among

the most agile �ying animals, what requires very �ne motor coordination

capabilities, but they posses a relatively small cerebellum for a mam-

malian. Indeed, the only expanded regions of the cerebellum in small

bats are related to the echo-location sense, the same ones enlarged in

marine echo-locating mammals, and not to the control of the fore-limbs,

i.e., the wings. Another example is given by the platypus. Platypus are

very idiosyncratic beaked mammals that live in Australia. Their beak is

a very a sophisticated sensory organ, carrying an array of electrosensory

and mechanosensory receptors, but from a motor control perspective, it

is a simple structure. It results that Platypus have an unusually enlarged

cerebellum, where the cerebellar lobe that receives sensory e�erents from

its beak greatly expanded.

In conclusion, two lines of evidence, phylogenetic and comparative anatomy,

favor a sensory-centered view of cerebellar function instead of the more

motor-centered one.
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1.2.4 Other functions and summary

To complete the review on the theories of cerebellar function, we intro-

duce two additional views, that inhabit opposite ends on the cognitive

scale: its involvement in a�ective processing and the control of antici-

patory re�exes. Clinical evidence summarized in Schmahmann & Sher-

man (1998) links cerebellar lesions with cognitive-a�ective de�cits, the

so-called cerebellar cognitive-a�ective syndrome.

Moreover, clinical (Clark & Squire, 1998), lesion (McCormick & Thomp-

son, 1984), electrophysiological (Jirenhed et al., 2007) and imaging (Cheng

et al., 2008) studies have shown that the cerebellum is crucial for the ac-

quisition of anticipatory re�exes in the context of the eyeblink response.

We will return to the latter function since it is the focus of this thesis.

In summary, we have provided a comprehensive review on the current

views on cerebellar function. These theories have in common that they

were developed without considering the internal structure of the cere-

bellum. At most, considerations regarding the cerebellar anatomy were

limited to the appearance of its most external layer. At this point, we

may ask why is there such a controversy and diversity on the interpre-

tation regarding cerebellar function. Indeed, the problem may reside

directly on the question and not in the answers. Why should there be a

uni�ed cerebellar function? There is no dispute regarding what the func-

tion of the cerebral cortex is because it is obvious that di�erent parts of

the cortex serve di�erent functions: processing of visual stimuli, genera-

tion of motor commands, etc. It is beyond the scope of this dissertation

to address what are the di�erences between both structures that dis-

qualify such a question for the cerebral cortex but make it still possible

to defend that the cerebellum has a single function. However, we can

nonetheless mention the fact that whereas the cortical tissue of the cere-

bellum is remarkably uniform, there is a clear histological di�erentiation

in the cerebral cortical structure. However, even if we assume that, based
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on the homogeneity of its tissue, all cerebellar regions perform the same

operations it still is a mistake to conclude that the cerebellum can only

perform one function. Indeed, homogeneity of structure and function

are statements that refer to di�erent levels of analysis: algorithmic and

functional.

1.3 Anatomy and physiology of the

cerebellum

This section introduces a brief summary of the cerebellar anatomy and

physiology. More than 45 years after its publication, Eccles et al. (1967)

is still the best source where to �nd an exhaustive description of the

anatomy of the cerebellum. In terms of the microcircuit design imple-

mented in this dissertation, almost of all its elements can be traced back

to Eccles' book. However, in what regards to the physiology we will base

our models on �ndings that are posterior to that publication, such as

the discovery of cerebellar long term depression (Ito et al., 1982), the re-

cently demonstrated cumulative e�ect of glomerular spillover inhibition

(Crowley et al., 2009), etc. The rest of the relevant literature for the

speci�cs of each computational model is introduced in each chapter.

1.3.1 The cerebellar cortex

Histologically, the cerebellar cortex has three layers. From more exter-

nal to more internal these are the molecular, Purkinje cell and granular

layers. From a computational perspective one can simplify this division

by adding the Purkinje cell layer to the molecular one.

Granular layer

The granular layer is exclusively an input layer where the information

coming through the mossy �ber pathway reaches the cerebellar cortex.
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Mossy �bers originate in the pontine nuclei where they can collect infor-

mation coming from the rest of the brain. Their terminations, boutons,

have excitatory synapses with the granule and Golgi cells. These two are

the only cell types found in the granular layer.

Granule cells Granule cells are tiny excitatory cells with a very simple

dendritic structure, having only from three to six branches, each branch

contacting a single mossy �ber bouton. They receive excitatory input

only from the mossy �bers and are inhibited by Golgi cells. Each granule

cell has a unique ascending axon that reaches the molecular layer where it

bifurcates into two opposite parallel branches, forming a so-called parallel

�ber. Cerebellar granule cells are extremely numerous. Their estimated

count in the humans (>1010) makes up for more than one half of the

total number of neurons in the whole brain.

Golgi cells The other cell bodies found in the granular layer corre-

spond to Golgi cells. These are gabaergic inhibitory interneurons that

contact granule cells. The dendritic tree of Golgi cells has two sepa-

rate apical and basal rami�cations. The basal dendrites are contacted

by mossy �bers whereas the apical ones enter the molecular layer where

they are synapsed by granule cells axons, be it in the parallel �ber or in

the ascending section of the axon. Golgi cell activation results mainly

in the inhibition of granule cells but also in the reciprocal inhibition

of other Golgi cells. From the perspective of granule cells, Golgi cells

implement two di�erent inhibitory circuits. First, through the basal den-

drites, mossy �ber activation that results in direct excitation of granule

cells, recruits di-synaptic inhibition as well, thereby establishing a feed-

forward inhibitory circuit. Second, granule cell activity activates Golgi

cells through the apical dendrites, recruiting feedback inhibition of the

granule cells. These are the two hypothesized mechanisms by which

Golgi cells control the excitability of granule cells, thereby regulating the

amount of input reaching the molecular layer.



16 CHAPTER 1. INTRODUCTION

Glomeruli In the granular layer we �nd an important non-cellular

structure, the glomeruli. The glomeruli are myelinated aggregations of

synapses. They are formed around single mossy �ber boutons, and in-

clude the dendrites of granule and Golgi cells and the axonal terminations

of Golgi cells. In other words, they delimit the space for synaptic trans-

mission in the granular layer. Such a tight glial encapsulation limits

the neurotransmitter di�usion at these synapses, introducing an array

of exotic dynamics to the synaptic transmission between mossy �bers,

granule and Golgi cells, such as presynaptic cross-talk (Mitchell & Silver,

2000b,a) and spillover transmission (Crowley et al., 2009; Hamann et al.,

2002).

Molecular layer

The molecular is the only output layer of the cerebellar cortex. It receives

inputs from the mossy �ber pathway �via the parallel �bers and ascend-

ing axons of granule cells� and from the climbing �ber pathway. The

molecular layer contains only inhibitory cells: the so-called Molecular

Layer Interneurons (MLIs), namely the basket and stellate cells, and the

Purkinje cells. The latter ones are the only output cells of the cerebellar

cortex sending inhibitory axons down to the cerebellar nuclei.

Parallel �bers Parallel �bers excite MLIs and Purkinje cells, and

MLIs inhibit Purkinje cells. In other words, relaying information from

the mossy �bers that has already been pre-processed in the granular layer,

parallel �bers establish a feed-forward circuit with direct mono-synaptic

excitation and an indirect di-synpatic inhibition to Purkinje cells. As a

result of this, the output of a granule cell can either (direcly) excite or

(indirectly) inhibit a Purkinje cell. From a computational perspective,

this will allow us to model the granule cell's e�ect on a Purkinje cell by

a single gain factor that can take either positive or negative values.
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Figure 1.3: Purkinje cell. Drawing by Ramón y Cajal.

Climbing �bers Cells from the molecular layer also receive input from

the climbing �ber pathway. Since the times of Ramon y Cajal it is known

that each Purkinje cell is contacted by a single climbing �ber. Indeed, the

synapse between climbing �bers and Purkinje cell has been described as

the more powerful synaptic contact of the central nervous system. Each

climbing �ber action potential induces a spike into the post-synpatic

Purkinje cell, that, due to its distinctive features, is referred to as a

complex spike (Eccles et al., 1966a; Thach, 1967). In contrast with the

regular simple spikes produced by the Purkinje cells, that re�ect the in-

tegration of activity form the parallel �ber pathway (Häusser & Clark,

1997; Eccles et al., 1966b), complex spikes contain multiple spikelets (lit-

tle spikes) usually followed by a pause response, this is, a short cessation

of the simple spike �ring. Crucially, climbing �bers also innervate MLIs

(Sugihara et al., 1999), even though in a more modest manner.
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Purkinje cells The Purkinje cells are the Ei�el tower of the cerebel-

lum: its more distinct and recognizable feature, with an elaborate and

beautiful architecture (Fig. 1.3). A Purkinje cell has a massive and pla-

nar dendritic tree that is traversed, and potentially contacted, by over

a hundred thousand parallel �bers, and a long axon that reaching the

cerebellar nuclei provides the only output of the cerebellum. From a

computational perspective, this arrangement endows Purkinje cells with

the capability of storing vast amounts of information. Importantly, it is

now long established that the synapses from parallel �bers to Purkinje

cells are plastic, and that their gain can be modulated by the coincidence

of parallel �ber and climbing �ber activity (Linden & Connor, 1991; Ito

et al., 1982). In other words, patterns of parallel �ber activity modify

the synaptic con�guration of Purkinje cells according to their coincidence

with climbing �ber spikes. This particular feature of the cerebellar phys-

iology was, initially as an hypothesis, and still is, as an experimental

�nding, the central tenet of the classical theory of cerebellar learning.

1.3.2 Cerebellar nuclei and inferior olive

Clearly, the most distinctive trait of the cerebellum is the anatomy and

physiology of the cerebellar cortex, however, it is agreed that a functional

unit of cerebellar computation is distributed among the cerebellar cortex,

cerebellar nuclei and inferior olive (Apps & Garwicz, 2005). Such compu-

tational units, often referred to as cerebellar microcircuits or cerebellar

microcomplexes, constitute parallel negative-feedback loops (Chaumont

et al., 2013; Hofstotter et al., 2004).

Cerebellar nuclei All output leaves the cerebellum through the cere-

bellar nuclei. The cerebellar nuclei, or deep cerebellar nuclei, contain

excitatory and inhibitory cells. Excitatory projections from the cerebel-

lar nuclei reach brain stem structures and thalamus, and from there their

information can propagate to the rest of the brain. In contrast, inhibitory
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projections target the inferior olive, thus having an e�ect that remains

local to the cerebello-olivary system. The last projection is known as

nucleo-olivary inhibition. Knowledge regarding the anatomy and physi-

ology of these nuclei is rather poor (Uusisaari & De Schutter, 2011). For

this dissertation, it su�ces to know that through the cerebellar nuclei

Purkinje cell activity can excite extra-cerebellar structures and inhibit

the inferior olive.

Inferior olive The inferior olive is a brainstem structure populated

by cells that project only to the cerebellum. The physiology of the infe-

rior olive is very idiosyncratic, i.e., olivary cells are electrically coupled

through gap junctions and have a very low level of background activity,

around 1 Hz. They project to the cerebellar nuclei and to the molec-

ular layer of the cerebellar cortex, being the only source of the above-

mentioned climbing �bers. In the classical cerebellar learning theory, the

inferior olive has the important role of providing the teaching signal to

the cerebellar cortex, and it is still an open question how their particular

physiology interacts with such a role.

1.4 Computational theories of cerebellar

information processing

The �rst complete description of the cerebellar anatomy and physiology

provided by Eccles et al. (1967) coincided in time with the early peak

of popularity of the Perceptron (Rosenblatt, 1958). The structural anal-

ogy between the Purkinje cell anatomy and the Perceptron design was

so strikingly obvious that very rapidly cerebellar computation was inter-

preted on terms of learning in arti�cial neural networks (Brindley, 1964;

Marr, 1969; Albus, 1971; Ito, 1972). This gave rise to what it is referred

to as the classical theory of cerebellar learning or Marr-Albus-Ito theory.

In a nutshell, the theory's main posit is that the climbing �bers provide
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each Purkinje cell with a teaching signal that determines the informa-

tion stored at the synapses between parallel �bers and Purkinje cells.

This theory found strong experimental support in Ito et al. (1982), when

it was shown that conjunctive parallel �ber and climbing �ber stimula-

tion introduced a speci�c depression in the Purkinje cell response to the

parallel �ber input.

However, Marr and Albus described the cerebellum as a pattern storing

device that acquired a mapping between discrete inputs and discrete

outputs. Fujita (1982) proposed instead that the cerebellum worked as

an adaptive �lter, acquiring a mapping of continuous input signals into a

continuous output signal. Essentially, Fujita's contribution was to frame

the function of the granular layer in dynamic, instead of static, terms.

Whereas Marr and Albus used the concept of pattern separation as the

goal of granular layer computation, Fujita suggested that the granular

layer decomposed the input signals into di�erent components, very much

as a Fourier or a Laplace transform does in an engineering application.

More recently, this theory has been re�ned into the adaptive �lter theory

of cerebellar computation (Dean et al., 2013). According to this theory

the cerebellum acts as an analysis-synthesis adaptive �lter that uses a de-

correlation learning rule to acquire a given input-output mapping. The

adaptive �lter theory can be seen as an evolution of the classical cerebellar

learning theory. Thus, by implementing an adaptive �lter model of the

cerebellum in this thesis we are, in substance, adhering to the updated

classical theory or cerebellar learning.



CHAPTER 2
A model for the

representation of time in the

cerebellar cortex based on

slow inhibitory currents

We begin by addressing a problem that is implicit in the control of antici-

patory actions, that is, how are anticipatory actions timed. We study this

in the context of the classical conditioning of the eye-blink response, since

the responses acquired in such a paradigm are well-timed. At the phys-

iological level, behavioral responses are triggered an adaptively-timed

depression of the �ring of Purkinje cells. Thus, the question of how

the timing of this anticipatory action is acquired is reduced to where do

Purkinje cells �nd the information to time their responses. Here our view

is that such information is coded in the granular layer of the cerebellar

cortex.

More precisely, we depart from previous work from our group (Verschure

& Mintz, 2001), where it was assumed that the timing information was

coded, at the level of the cerebellar cortex, as a decaying activity trace.

21
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Now we re�ne such solution from a perspective that borrows from the

adaptive �lter theory (Dean et al., 2010). This is, we assume that a

cerebellar Purkinje cell has access to multiple decaying traces with dif-

ferent temporal dynamics, not just one, and that by combining them, a

Purkinje cell is able to produce an arbitrary response. Note that such an

output curve incorporates not only the timing information but also the

amplitude one. In other words, from this perspective, we assume that

timing information and amplitude information are not dissociated.

We complete our modeling hypothesis by suggesting that the slow spillover

inhibitory currents that dominate the integration of information in the

cerebellar glomeruli provide the mechanism that governs the temporal

dynamics of the granule cells.

This chapter reproduces a manuscript in preparation entitled �Slow in-

hibitory currents as a substrate for the representation of time in the

cerebellar cortex�. The abstract reads:

Experimental research using the eye-blink conditioning par-

adigm has demonstrated that the cerebellar cortex is able to

build associative memories between a conditioned (CS) and

an unconditioned stimulus (US), and to generate well-timed

conditioned responses (CR). Several computational models

assume that the parallel �bers �the axons of granule cells�

encode the elapsed Time Since Onset (TSO) of the CS. The

plausibility and nature of this encoding is under debate. Here

we show that the TSO can be encoded by the granule cells

�ring rate modulated by spillover inhibition. Namely, by the

build-up of slow inhibitory currents produced by the interac-

tion between Golgi and granule cells. Adding the assumption

that the molecular layer acts as a linear adaptive �lter, we

demonstrate that our integrated computational model of the

cerebellar cortex can trigger adaptively timed CRs, repro-
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ducing the over-expectation result and CS-intensity e�ect.

Moreover, the model con�rms the crucial computational role

of the intrinsically-driven spontaneous activity of Purkinje

cells. Our results demonstrate that the granule cell dynam-

ics provides a precise representation of time that can be ex-

ploited by Purkinje cells for the adaptive timing of deep nu-

clear responses.

2.1 Introduction

Classical conditioning of the eye-blink is widely used to study timing in

the cerebellum because of the simplicity of the experimental paradigm

and because of its dependence on the intact cerebellum (Yeo & Hesslow,

1998) (see Figure 2.1). It has been shown that the cerebellar cortex is

necessary for the acquisition and retention of well-timed Conditioning

Responses (CRs) (Hesslow & Yeo, 2002; Christian & Thompson, 2003)

but the mechanisms that underlie this capacity are still not well under-

stood.

The elucidation of the neural pathways of the US and CS (Figure 2.2)

corroborated that in essence, the involvement of the cerebellar cortex in

eye blink conditioning is in agreement with the Marr-Albus theory of

learning in the cerebellum (Albus, 1971; Marr, 1969): The US, acting as

the teaching signal, reaches the cerebellar cortex through the climbing

�ber (CF) pathway. CF signals converge with the CS information con-

veyed by the parallel �bers (PFs). At the level of single Purkinje cells

(PCs), the repeated coincidence of CS-evoked PF activity patterns and

US-induced �ring of the CF induces a depression of the PC response to

the CS. This response causes the closure of the eyelid (Hesslow, 1994).

Furthermore, experiments with decerebrated ferrets have shown that for

Inter Stimulus Intervals (ISI) up to 1 second the cerebellar cortex can

solve the problem of generating well-timed CRs (Jirenhed et al., 2007).
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Tone (CS)

Air puff (US)

Eyelid closure before 
conditioning (UR)

Eyelid closure after 
conditioning (CR)

ISI

Figure 2.1: Eye-blink conditioning. In eye-blink conditioning an
Unconditioned Stimulus (US), e.g. an airpu� to the eye, triggers
an innate defensive eye-blink re�ex or Unconditioned Response (UR).
Through repetitive pairings of the US with an initially neutral Condi-
tioned Stimulus (CS), like a tone, the subject develops a Conditioned
Response (CR) similar to the UR (Gormezano et al., 1987; Kehoe &
Macrae, 2002a). During conditioning the CS precedes the US by a
�xed Inter Stimulus Interval (ISI). Crucially, the acquired CR peaks
at the expected time of the US, thus matching the ISI.

Within the cerebelar cortex, the granular layer has been previously pro-

posed as the generator of a Time Since Onset (TSO) code. Recent models

rely on random connectivity in the granular layer (Medina & Mauk, 2000;

Yamazaki & Tanaka, 2007a), where the apparently chaotic response of

the granule cell population to the CS provides the substrate of the TSO

code. However, the complex �ring dynamics of the GrCs given sustained

stimulation that these models predict have so far not been observed in

vivo.

Here we describe a novel solution to the problem of the representation

of time in the granular layer of cerebellar cortex, proposing that slow in-

hibitory currents are the biological mechanism underlying TSO encoding.

The solution builds on our previous work in cerebellar modeling (Ver-

schure & Mintz, 2001; Hofstotter et al., 2002, 2004), where we assumed

that TSO was coded by a decaying trace at the GrC to PC synapse.

With this study we provide a concrete implementation of such trace by
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Figure 2.2: Scheme of cerebellar cortex anatomy. Histologically
the cerebellar cortex is divided in three layers ranging from the deep
granular layer to the Purkinje cell (PC) layer and the super�cial molec-
ular layer. It receives two input pathways [MFs and climbing �bers
(cfs)] and projects to its target structures (the deep cerebellar nuclei)
only through the Purkinje Cell (PC) axons. MFs originating in the
Pons terminate in the granular layer, where they form glutamatergic
synaptic contacts with the GrCs and the GABAergic GoCs. These
contacts are formed in complex anatomical structures, the so-called
glomeruli. A glomerulus is a structure encapsulated by a glial shell,
that besides the mossy �ber boutons and GrC and GoC dendritic ter-
minations also contains the axon terminals of the GoCs.

means of the decaying activity of GrCs, produced by the accumulation

of slow inhibitory currents of the Golgi cells.

To test this hypothesis, we model the granular layer paying special at-

tention to the time dynamics of the synaptic currents. Next, we use

an abstract model of the molecular layer to validate the granular layer

model in the context of eye-blink conditioning and to identify the im-
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plications of the TSO code, particularly its generalization to di�erent

stimulus properties.

2.2 Methods

2.2.1 Computational model of the granular layer

Architecture Our model contains two neuronal populations, Golgi

and granule cells, of Integrate-and-Fire cells (modelled as in (Shadlen &

Newsome, 1998)), and a third population of cells, Pontine nuclei neurons,

whose output is simulated as poissonian spike trains (Figure 2.3). The

neurons of all the populations are distributed in rectangular lattices. The

population sizes are listed in Table 2.1. We include excitatory connec-

tions from MF to GrCs and GoCs, and from GrCs to GoCs. Inhibitory

contacts from GoCs to GrCs are modelled by two di�erent connection

types, fast and slow. We implemented the model in IQR, a large scale

neural-network simulator (Bernardet et al., 2002).

Figure 2.3: Granular Layer model. Excitatory connections are de-
picted in black, inhibitory in gray.
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τ (ms) ρ Firing rate σ (s−1) Population Size
Golgi 20 2 10 4× 5
Granule 6 1 15 40× 25
Pontine (MF) - - 12 or 60 20× 5

Table 2.1: Neuron properties and population sizes. τ Time con-
stant of the membrane decay. ρ Refractory period. Firing rate mean
�ring rate, pontine cells have two values, the �rst for the spontaneous
activity; the second for CS evoked activity. Population size: Size of
the rectangular lattice containing the cells.

[C] [D] R τr (ms) τd (ms) max(A)
MF - GrC 5 50 2 0 5 0.145
MF - GoC 20 4 3 0 5 0.008
GrC - GoC 30 0.3 10 0 5 0.003
GoC - GrC (fast) 4 200 2 0 10 0.04
GoC - GrC (slow) 8 400 3 20 750 0.007

Table 2.2: Connectivity parameters. [C] Mean convergence: aver-
age number of pre-synaptic cells contacting a post-synaptic cell. [D]
Mean divergence: average number of post-synaptic cells contacted by
a pre-synaptic cell. R Connection radius: radius of the gaussian distri-
bution generating the connections measured in the pre-synaptic pop-
ulation. τr: time constant for the exponential rise. τd: time constant
for the exponential decay. max A: maximum amplitude of the evoked
potential in the post-synaptic cell (arbitrary units).

Connections Connections are generated randomly according to a bi-

dimensional Gaussian probability distribution. The parameters of the

model connectivity are summarized in Table 2.2.

Neuron models To match the di�erent neuron populations we used a

neuron model (Shadlen & Newsome, 1998) with two parameters: the time

constant for the decay of the membrane potential, τ , and the refractory

time, ρ (see table 2.1). The subthreshold state of each cell is described

by the time of the last spike s(t) and the membrane potential v(t). The
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membrane potential is de�ned in arbitrary units ranging from 0 to 1,

where 0 is the resting potential and 1 the spiking threshold. Such abstract

membrane potential v(t) can be remapped to a physiological value (V (t))

using V (t) = v(t)(Vth − Vres) + Vres, where Vres is the resting potential

(approx. −70mV ) and Vth the spiking threshold (approx −50mV ).

After each time step, the new membrane potential is updated according

to the decay factor δ (δ<1), plus the excitatory input e(t) minus the

inhibitory input i(t):

v(t) = [v(t− 1)δ + e(t)− i(t)]+

where,

[x]+ = max(0, x) (2.1)

For each neuron population the value of δ depends on time constant

parameter τ and the simulation time-step size. With τ expressed in

milliseconds and a time step of 1 ms, we have δ = eτ
−1

.

As indicated in equation 2.1 the minimum value of v(t) was bound to 0,

setting a limit to the e�ect of inhibitory currents. This re�ects the fact

that, generally, synaptic inhibition do not hyperpolarize cells below their

resting potential as the reversal potential for inhibitory synaptic currents

is close to the resting potential (Coombs et al., 1955).

A neuron's output, o(t), is de�ned such that a spike is generated when

v(t) reaches 1:

o(t) =

{
1 if v(t) >= 1

0 otherwise
(2.2)

After each spike we update the time of the last spike, s(t), and maintain

v(t) at 0 for the duration of the refractory period:

v(t) = 0 if t < s(t) + ρ

where s(t) contains the time of the last spike at time t and ρ is the neuron

refractory period.
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Synaptic currents We describe the post-synaptic current y(t) pro-

duced by a pre-synaptic action potential at time t = 0 as the di�erence

of two exponentials.

y(t) =
1

Z
(e−t/τr − e−t/τd)

where τr and τd are the time constants for the rise and the decay of the

current, respectively, and Z is a normalizing factor. We can compute the

di�erence of exponentials using two coupled linear ordinary di�erential

equations:

τdẏ(t) = −y(t) + g(t)

τrġ(t) = −g(t) + o(t)

where o(t) is the output of a pre-synaptic neuron, de�ned as in equation

2.2.

For our simulation, we approximate the two di�erential equations using

the forward Euler method with time step of 1 ms.

Slow currents We employ a phenomenological model to simulate the

e�ect of inhibitory spill-over currents onto GrCs. For this we assume

that for the GoC spikes to evoke a slow Inhibitory Post-Synaptic Cur-

rent (IPSC) in a GrC, the extra-synaptic concentration of GABA neuro-

transmitter, ye(t), has to reach a certain threshold value Θs (Rossi et al.,

2003). Once ye(t) exceeds Θs, the magnitude of the slow IPSC, yi(t), is

de�ned by:

yi(t) = [ye(t)−Θs]
+

We set Θs such that during baseline yi(t) is 0, implying that spill-over

inhibition only a�ects the cell �ring during the CS presentation. More-

over, we simulate the evolution of the GABA concentration again as a

di�erence of exponentials, with a raise constant of 10 ms and a decay

constant of 750 ms (Rossi & Hamann, 1998; Rossi et al., 2003).
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Intrinsic currents Inhibitory neurons of the cerebellar cortex display

intrinsic activity (Häusser & Clark, 1997). To model such currents phe-

nomenologically we added spontaneous currents generated by the addi-

tion of poisson processes with a constant frequency such that we obtained

a constant input with bound variability.

Simulation stability For each cell population type, we constrained

our model to display anactivity similar to the one reported in literature;

namely a �ring rate of 15s−1 for GrC (Jörntell & Ekerot, 2006) and of

10s−1 for GoCs (van Kan et al., 1993). Since the complex architecture of

the system does not allow us to �nd an analytical solution for setting the

synaptic weights, we use optimization to achieve this goal. Concretely,

we implemented a homeostatic mechanism to automatically adjust the

baseline �ring rate of the single neurons. For every neuron j at time t we

control an internal excitability value εj(t), that acts as a multiplicative

factor of the excitatory input. During the optimization we update εj(t)

to minimize the di�erence between the estimated �ring rate σ̂j(t) of each

neuron and a target �ring rate σ. We estimate σ̂j(t) over large temporal

window according to:

σ̂(t) =

∫ t

0

φ(t− x)oj(x)dx (2.3)

where the �lter φ is a normalized alpha function with a time constant of

5 seconds and oj(t) is the output of neuron j (equation 2.2). Informally,

the result of the integration in equation 2.3 is an estimation of the mean

�ring rate in a 5 seconds interval before time t.

Therefore, after the estimation of σ̂(t) at every time step, the excitability

factor εj(t) is updated according to the di�erence between the estimated

and the desired �ring rates:

ε̇j = αε(t)(σ − σ̂j(t))



2.3. RESULTS 31

where αε controls the rate of change of the excitability, epsilonj(t).

Therefore, to get the �nal epsilonj that would approximate the desired

�ring rates during baseline activity we apply this optimization process

for 60 seconds of simulated time. During period the only input to the

system, the PN cells, �re with baseline activity (12s−1). Applying this

method by the end of the optimization process he mean �ring rates of

the cell populations where less than a 5% away of the desired value, σ.

Simulated eye-blink conditioning In the simulation a CS is sig-

naled as an increase of activity in a subset of MFs. Namely, a bundle

of 3 × 4 mossy �bers increments their �ring rate from 12 spikes/s to 60

spikes/s citepfreeman1999neuronal.

2.3 Results

In this series of simulations, we have addressed the physiological validity

of the �ring dynamics of the modeled cells, the generation of an encoding

of the TSO in the granule cell population and, using a setup mimicking

delay eye-blink conditioning with the goal of triggering well-timed CRs,

we have tested the performance of a linear readout applied to this TSO

code. Moreover, we have analysed the contribution of the CS-excited cells

to the TSO code and the generalization of the whole cerebellar model to

the CS-e�ect and over-expectation paradigm in classical conditioning.

Granule and Golgi cells response to a CS We �rst assess the

physiological validity of the activity dynamics of the neurons in our

model. After the optimization process (see Methods), cells in our simu-

lation display baseline activity and coe�cients of variation (CV) resem-

bling data from in vivo experiments (Jörntell & Ekerot, 2006; Bengtsson

& Jörntell, 2009a; van Kan et al., 1993). Namely, the distribution of

mean �ring rates for the GrCs is 10.0 ± 1.7 spikes/s with a CV of 1.02.

For the GoCs the results are 16.5± 2.7 spikes/s with a CV of 0.67.



32 CHAPTER 2. THE REPRESENTATION OF TIME

Next, we examine the TSO encoding at the level of single cells during a

CS presentation. We �rst analyze a CS-driven GrC (Figure 2.4A). The

cell receives increased excitation and inhibition during the CS period.

However, while the excitation remains constant during the CS, the inhi-

bition gradually builds due to the e�ect of the slow spill-over currents.

In consequence, the cell �res strongly at stimulus onset and falls through

quiescence later in the presentation (Figure 2.4A, raster plot and instant

�ring rate). Thus, the gradual increase in slow inhibition in the GrCs

constitutes an analog trace of the TSO that modulates their �ring rate.
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Figure 2.4: Single trial response of modelled cells. A Granule
Cell. From top to bottom: EPSCs (black) and IPSCs (dark gray).
Spike trace. Instantaneous �ring rate using a 25 ms sliding window.
The bar indicates the duration of the CS signal. Time scale indicated in
the top inset. B Golgi Cell. From top to bottom: Membrane potential
(light gray). EPSCs (black). Spike trace. Instantaneous �ring rate.
The bar. CS signal. Time scale as in B

We next examine a GoC from the simulation. In the absence of stimu-
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lation the cell receives excitatory input from MFs and PFs, and a con-

stant drive of excitation that simulates the e�ects of intrinsic currents

(see (Häusser & Clark, 1997) and Methods). During the CS a constant

amount of excitation adds to such baseline level, leading to an elevated

�ring rate that is maintained for the entire stimulus duration (Figure

2.4B).
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Figure 2.5: Modelled cells response over repeated CS presen-

tations. A Raster plot of the same cell as in 2.4A during 200 presen-
tations of a 1200 ms CS (above). PSTH obtained from the raster plot
(below). B Raster plot of the same Golgi cell as in 2.4B during 200
presentations of the same stimulus (above). PSTH obtained from the
raster plot (below); response to the CS (solid bars) and during baseline
(outlined bars).

Examining the response of the same GrC and GoC to multiple repetitions

of the CS we see that the GrC displays a decrease in its �ring activity

during the stimulus presentation (Figure 2.5A), whereas the GoC main-
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tains the same level of activity during the entire presentation (Figure

2.5B).

Summing up the results so far, the large integration time provided by the

slow inhibitory currents turns the sustained change in GoC activity into

a representation of time at the level of the GrCs (Figure 2.4A, inhibition

trace). Such inhibition causes a gradual variation in the �ring rate of the

GrCs that can code the TSO. From now on, since the �ring rate of the

GrC depends on the TSO of the CS, we refer to the characterization of

a GrC response to a sustained stimulus as its TSO tuning curve.

Dynamics of the population of Granule cells After analyzing a

single GrC, we examine the mean activity of the GrCs during a stimulus

presentation (Figure 2.6). We observe that only a subset of GrCs in-

crease their �ring rate during the stimulus presentation (only 130 GrCs

at least doubled their �ring rate at the stimulus onset; approximately

1/4 of the population) whereas after the CS o�set most of the GrCs �re

below their baseline level, what indicates that CS recruited inhibition

a�ects more GrCs than excitation. Therefore, as expected from the con-

nectivity de�ned in table 2.2, a stimulus produces local excitation and

global inhibition.

Importantly, due to the random generation of synaptic contacts (exci-

tatory and inhibitory), and to the di�erent excitability values yielded

by the optimization process (see methods), di�erent GrCs display un-

even response pro�les. Closely inspecting the cells excited by the CS,

we observe that they present di�erent TSO tuning curves (Figure 2.6C).

From this we can interpret that individual GrCs jointly code stimulus

identity and time, in agreement with the hypothesis that the function

of the granular layer is to increase the representational capacity of the

cerebellar cortex by producing combinatorial codes (Marr, 1969; Albus,

1971; Mapelli et al., 2010).

In addition, some of the GrCs increase their mean activity during the
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Figure 2.6: Population response of the modelled GrCs to the

CS. A. Raster plot displaying the average response of 120 GrCs during
200 repetitions of a 1200 ms CS (middle, black horizontal bar). Darker
colours represent higher �ring rates (maximum 110 spikes/s). B: PSTH
of 500 GrCs, including the 120 displayed above. Both graphs use 5 ms
time bins. C. Relative raster plot of 100 GrCs increasing their �ring
rate to the CS presentation. The gray scale of each GrC is scaled to
its maximum �ring rate.

CS to 10 times their average baseline level. Considering that in our

simulation CS-related mossy �bers augment their activity by a factor 5

to baseline (from 12 to 60 spikes/s) then, informally, the granular layer

model increases the signal to noise level of the CS signal. This result is

consistent with data regarding granular layer transduction obtained in

vivo (Bengtsson & Jörntell, 2009a; Chadderton et al., 2004).

Thus, our GrC model yields an expanded representation of the MF sig-

nal, as predicted by the Marr-Albus theory (Marr, 1969; Albus, 1971),

while increasing the signal to noise ratio as proposed by some experimen-

talists (Bengtsson & Jörntell, 2009a; Rossi et al., 2003)

Read out of the TSO We want to assess whether the GrC popu-

lation provides a TSO that can be read out by a linear �lter. Several
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authors have likened the molecular layer computation (or the PC compu-

tation) to a �lter combining linearly the PF input (Walter & Khodakhah,

2006, 2009; Dean et al., 2010; Porrill & Dean, 2008; Brunel et al., 2004).

Moreover, the adaptive-�lter theory proposes that given a decorrelation

learning rule, the molecular layer can obtain a linear readout of the GrC

population such that it minimizes the di�erence between the molecular

layer output and a desired output function (Fujita, 1982). Based on this

our computational model for the molecular layer is a weighted summa-

tion obtained by least-squares optimization. Likewise, we use the set of

TSO curves as the basis for the generation of output functions alike in

shape to the CR response. Precisley, CRs are modelled as rectangular

pulses lasting 100 ms. The position of the response is determined by an

ISI parameter, starting 100 ms before the expected US. For this, we �rst

de�ne a function, g(t, tCS), that produces a single CR-like response:

g(t, tCS) =

{
1 if tCS + ISI − 100 ≤ t < tCS + ISI

0 otherwise

where tCS is the onset time of a CS. If we let TCS be a list with all the

CS onset times, then we can de�ne the desired output as superposition

of all CRs:

b(t) =
∑

tCS∈TCS

g(t, tCS) (2.4)

It is important to note that b(t) is also de�ned outside of the CS period,

where the desired output is 0.

Next, we de�ne the following linear system:

Gw = b+ γ (2.5)

where G is a matrix with the output of 500 granule cells during 200 trials

using 25 ms time bins. Importantly, the matrix contains a continuous

recording activity where the CSs were delivered at the times stored in
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TCS. b is a column vector with b(t) read out each 25 ms and γ is the

error term. w is a column vector with the linear weights of the 500 GrCs.

Our goal is to �nd a the value of w that minimizes the norm of the error

term, γ. We denote this optimal solution by ŵ.
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Figure 2.7: Read-out of the time representation by linear com-

bination. A. Result of mapping the output of 500 cells during 200
trials to three di�erent CRs: 300 ms (blue), 500 ms (red) and 700 ms
(green). Mean and standard deviations. Insets. Output probability
for within CR period (solid) and outside it (dashed) B. Same as in A
but setting as target a pause response. C. Same as in B but adding a
constant input bias.

Once we obtain ŵ we evaluate the resulting mapping Gŵ. Examining

the results for three di�erent ISIs, we see that for each ISI the mapping

produces a mean response that peaks at the middle of the desired CR,

thus correctly preceding the onset of the expected US (Figure 2.7A).

Moreover, since the variability during the baseline is small compared to

the mean change between baseline and CR, ensuring a good decodability

of the signal. We assess this with the Uncertainty Coe�cient (UC) (Theil,

1972). For this, we consider the whole system as a noisy channel, where

the information to be transmitted is b and the output signal is Gŵ. If

we evaluate this measure for the 500 ms ISI we obtain an UC of 0.61

(see the output probability distribution for the 500 ms ISI in Figure

2.7 inset). This implies that our cerebellar model, containing only 500

GrCs, provides 60% of the information needed in order to encode CRs

with 100% precision. Indeed if we evaluate the model using a simple
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maximum likelihood classi�er we see that, respectively, 91% of the CRs

and 95% of the non-CRs are correctly read-out. Therefore, we conclude

that the quality of the TSO code provided by the GrC population can be

read-out by linear combination, allowing for the generation of adaptively-

timed CR-like responses.

At this point, we aim for a behaviorally valid output from our model

of the molecular layer. For this we mimic the PC response after eye-

blink conditioning (the PC-CR) that consists of a diminution or total

cessation of the spiking output. To obtain an output b with such a shape

we rede�ne b(t):

b(t) = 1−
∑

tCS∈TCS

g(t, tCS) (2.6)

where individual CR responses provided by g(t) have a subtractive e�ect

on a constant baseline output of 1. With this de�nition of b we get the

new ŵ. As desired, Gŵ produces responses that reach their minimum in

the middle of the target interval, but now the trial to trial variability is

greatly increased (Figure 2.7B). Consequently, if we consider the same

500 ms ISI, the UC drops to 0.1, meaning a loss of 80% of the infor-

mation if we compare to the previous result (Figure 2.7A). How can we

explain such a drop in performance? The system described in equation

2.5 requires non-null values in G to produce a non-null output. Hence,

having 1 as the default output requires to constantly weight the values

in G to produce it. This explains the worst performance in Figure 2.7B

compared to Figure 2.7A; informally, whereas in the �rst case the system

solves just one task, namely generation of well-timed CRs, in the second

it is solving two: CR generation plus maintaining a constant non-null

output. Moreover, from a physiological perspective, if we consider Gw as

a model of the molecular layer, it makes a wrong modeling assumption,

implying that PCs need GrCs activity to produce any output. Instead it

is known that PCs in a slice �re action potentials even with excitatory

transmission blocked (Häusser & Clark, 1997). Put it di�erently, with
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equation 2.6 we have constrained the output to be more ecologically valid,

without having constrained the model accordingly. We correct this by

expanding G with an additional column of 1s and adding an extra weight

wβ.

[G1]

[
w

wβ

]
= b+ γ (2.7)

where the added vector of 1s acts as an independent source of activity.

This system can be rewritten as Gw+wβ = b+γ, where we see explicitly

that wβ acts as an output bias setting the default output (or a sponta-

neous level of activity). With equation 2.7 we can solve together for the

synaptic weights (the original vector w) and the output bias (wβ). From

a mathematical perspective, the latter system is a multi-linear regressor

with a constant term whereas the system in equation 2.5 has no constant

term. The Gŵ mapping obtained (Figure 2.7C) is a mirror version of the

�rst result in Figure 2.7A. Quantitatively the results are almost identi-

cal. Namely, for the 500 ms ISI we get again a UC of 0.5. Furthermore,

the value wβ is 0.98 and the mean output during baseline is 0.99, entail-

ing that in our model the contribution of spontaneous GrC �ring to the

spontaneous output of the molecular layer is only of 1%. Concluding, if

the molecular layer acts as a linear �lter of the activity of our model GrC

population, a good approximation of the desired output requires an in-

dependent source of input, allowing to decouple spontaneous PC output

from spontaneous GrC activity.

From now on we will analyze the properties of the cerebellar cortex model

comprising the detailed granular layer implementation, and the molecular

layer with the input bias (equation 2.7) where the output is a PC-CR

(equation 2.6).

Labeled line code A fundamental aspect of the TSO representation

is whether the timing information for a given stimulus-response associ-

ation is local (restricted to GrCs activated by the stimulus) or global
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(involving the whole population). The latter possibility exists since CS-

recruited inhibition also reaches GrCs that do not receive CS-recruited

excitation (Figure 2.6). To answer this question we obtain a new map-

ping using only the one third of cells with the greater increase in their

�ring rate at the CS onset (namely, the cells that respond to the CS with

at least a 2.5-fold increased discharge). The resulting map produces an

output comparable to the one obtained with the whole population (Fig-

ure 2.8). Using the 500 ms ISI as our benchmark, we obtain a UC of

0.54 (vs. a UC of 0.61 with the whole population), meaning that with

only a third of the cells we retain 89% of the information. In conse-

quence, GrCs that are not strongly excited by the CS contribute only

marginally to the CR generation. This implies that, �rst, if di�erent

stimuli excite non-overlapping sets of PF their read-outs can be be ac-

quired independently, which favors the stability of learned associations.

Secondly, if only strongly excited cells participate in the read-out the

learning mechanism can be gated to synapses with high frequency activ-

ity. This last condition is congruent with the requisites of PF→PC LTD

and LTP (Wang et al., 2000), and likely with long term plasticity at the

PF→MLI synapse (Jörntell & Hansel, 2006) as well.

Generalization to other conditioning paradigms Drawing an

analogy with the adaptive �lter theory of the cerebellar cortex, in our

model the granular layer implements an analysis step decomposing the

signal in multiple components (the TSO tuning curves), and the molec-

ular layer implements the synthesis step recombining the components to

obtain the desired output. Notably, in our model, the components gen-

erated in the analysis step have particular dynamics. For instance, the

TSO curve of a GrC depends on the MF intensity, and via Golgi-released

inhibition, it can be additionally modulated by the activity in distant

GrCs (see Figure 2.13A & B). Here we address the question whether

these dynamics are su�cient to reproduce two benchmarks of classical

conditioning: (1) the CS intensity e�ect (Pavlov & Anrep, 1927; Svens-
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Figure 2.8: Labeled-line code. Result of mapping the output of all
500 cells to a timed pause response (thick solid line) compared to the
response obtained only with the 33% of most active cells (thick dashed
line). The thin lines indicate the standard deviation (sd). A. 300 ms
ISI. B. 500 ms ISI. C. 700 ms ISI.

son et al., 2000) and (2) the over-expectation e�ect (Pavlov & Anrep,

1927; Kehoe & White, 2004).

Both experimental paradigms have in common that the subjects are

tested with CSs similar but not equal than the one(s) used for training.

Thereby, these paradigms study generalization of the learned response

to unseen stimuli. To map this contingency to our model we introduce a

simplifying notation. We denote with G(CS1) the response of the gran-

ular layer to the stimulus CS1, and ŵ1 is the least-squares solution of

the system G(CS1)w = b+ γ, where b is the desired output de�ned as in

equation 2.6. Then, once the cerebellar model has been trained with CS1,

we check its response to an unseen CS2 by producing G(CS2)ŵ1. Notice

that since the readout stays constant, any variation in the response relies

on the dynamics of the Golgi-granule system.

CS intensity e�ect The CS-intensity e�ect is observed when a sub-

ject is conditioned with a stimulus of a given intensity (e.g.: a tone of 65

dB) and then tested with the same stimulus with an increased intensity

(e.g.: an increased loudness). Under such circumstances the latency of
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the CR relative to the CS onset shortens and the response likelihood and

amplitude increase. Notably, this result has been reproduced at the level

of PC-CRs, using MF-stimulation as a CS and mapping the increased

stimulus intensity to a greater charge injection (Svensson et al., 2000).
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Figure 2.9: CS-intensity. Mean response for the normal intensity
CS (thick line), higher intensity CS (dashed line) and lower intensity
CS (dash-point line). The horizontal black line indicates the CS pre-
sentation and the grey vertical region indicates the PC-CR used for
training. A. 300 ms ISI. B. 500 ms ISI. C. 700 ms ISI.

To reproduce the CS-intensity e�ect in our set-up we map di�erent in-

tensities as di�erent �ring rates of the set of MFs coding the CS. The CS

sub-indexes indicate the rate of these MFs in spikes per second: namely

CS45, CS60 and CS90. After getting the response of the granular layer to

200 repetitions of each separate stimulus, we �nd the optimal mapping

for the stimulus of medium intensity, ŵ60. Next, we check the output

this mapping produces when applied to the lower and higher intensity

stimuli; namely, G(CS45)ŵ60 and G(CS90)ŵ60. The result agrees with

the physiological data: the response to the CS of higher intensity displays

a shift in the peak timing and a modulation of the amplitude, with an

earlier and deeper drop compared to the original response (Figure 2.9),

whereas the response to the lower intensity CS produces a delayed and

shallower decrease. In summary, the model reproduces the results of the
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CS-intensity e�ect both in amplitude and latency modulation (Figure

2.11A).

Over-expectation The over-expectation e�ect is obtained when the

subject is conditioned using two di�erent CSs that have an association

with the same US (Pavlov & Anrep, 1927; Kehoe &White, 2004). During

training, trials with CSa and CSb are interleaved such that the subject

produces CRs to each individual stimulus. Once performance is stabi-

lized the subject is presented a compound stimulus comprising both CSs

(CSc). In a �rst phase, the result is similar to the CS intensity; the

likelihood of the response to the compound CS increases. However, if the

presentation of the compound stimulus is sustained for a su�cient num-

ber of trials (or sessions) the earlier responses are (partially) extinguished

whereas the response to the compound stimulus is stabilized (Kehoe &

White, 2004). Since literature regarding the over-expectation in eye-blink

conditioning has only reported the results in terms of response likelihood,

it is unclear the e�ect in terms of latency modulation. However the mea-

sures of responding in eye-blink conditioning covariate (Garcia et al.,

2003), and there is an inverse relation between amplitude and latency

during acquisition, extinction and generalization. For this, it is likely

that also in over-expectation an increase in the response amplitude may

be accompanied by a shortening of its latency.

To reproduce the over-expectation e�ect we perform two experiments.

With the �rst we check the model's response to the compound stimu-

lus (CSc) after separate acquisition of both CS-US associations (CSa

and CSb)
1. We refer to this experiment as the S→C stage of the over-

expectation. Now, the response to the compound stimulus (G(CSc)ŵa,b)

1Namely, to simulate the separate acquisition we solve the system[
G(CSa)
G(CSb)

]
w =

[
b
b

]
+ γ
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Figure 2.10: Over-expectation. Mean response for single CSs (thin
dashed lines) and the compound CS (thick line) after acquisition with
the single CSs. A. 300 ms ISI. B. 500 ms ISI. C. 700 ms ISI. Mean re-
sponse for single CSs (thin dashed lines) and the compound CS (thick
line) after acquisition with the compound CS. D. 300 ms ISI. E. 500
ms ISI. F. 500 ms ISI. The horizontal black line indicates the CS pre-
sentation and the grey vertical region indicates the PC-CR used for
training.

displays an increased amplitude and shortened latency (Figure 2.10A,B

and C).

For the second stage of the over-expectation we should have employed an

incremental learning algorithm to properly reproduce the gradual extinc-

tion of the response of the single CS due to training with the compound

stimulus. However, for the sake of simplicity, we approximate this re-

sult by checking the responses to CSa and CSb after having performed

acquisition with the compound CS. Consquently, we make the simplify-
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ing assumption that given extensive training with a compound stimulus,

the result is independent of the earlier single CS associations. We refer

to this experiment as the C→S stage of the over-expectation. The re-

sults show that G(CSa)ŵc and G(CSb)ŵc display shallower responses.

In both cases, the modulation is greater than for CS intensity result,

and, notably, for the longer ISI, the responses to the individual CSs are

completely gone (Figure 2.10D,E and F). Indeed, the suppression of the

single CS responses is so pronounced that it is not possible to quantify

their latency (see Figure 2.10D,E and F and Figure 2.11C). Summing up,

the results regarding the two phases of the over-expectation paradigm

correctly reproduce the response amplitude modulation and predict a

latency e�ect (Figure 2.11B & C).

Di�erent substrates of the amplitude and latency e�ects The

CS-intensity e�ect and the over-expectation paradigm allow us to �nd a

qualitative di�erence among the molecular layer models with and without

input bias. With standard classical conditioning both models yielded an

equal response pattern, with a well-timed drop in the mean response, and

only the performance decreased, albeit by a 80% (see Figure 2.6B and

C). However, in the CS-intensity and over-expectation setups the results

of the model without input bias are correct only as long as the latency

modulation is concerned, but not in terms of the amplitude modulation.

Brie�y, stronger CSs do not yield a CR of increased amplitude, despite

shortening the latency of the response (Figure 2.12).

On the one hand, in the light of these results, we can explain the modula-

tion of the response latency by the dynamics of the spillover currents. In

short, manipulations of the stimuli yielding higher discharge of the MFs

cause an increased accumulation of inhibition released by GoCs, which

anticipates the decay in activity of the GrCs (Figure 2.13A & B). The

individual dynamics of the GrCs TSO tuning curves are transferred to

any response built by their combination. In Figure 2.13C we display a
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Figure 2.11: Summary of amplitude and latency e�ects. CS-

intensity. A1 Peak amplitude of the CR (mean). Each line corresponds
to low (dashed-point), medium (solid line) and high (dash) stimulus
intensity. Model tested with 5 di�erent ISIs. A1 Mean latency to the
peak amplitude of the CR and US latency (dotted line). Same stimuli
as in panel A1. Over-expectation B1 Stage S→C. Peak amplitude
of the CR (mean) for the single CS (mean of both CRs) and for the
compound CS (thick line). B2 Latency e�ect for the same stimuli in
B1. C Stage S→C. Same stimuli as in B1. In panels A1 to C the
arrows indicate the sense of the generalization (from trained to unseen
stimuli). D Range of the modulation of the CR, computed for the 500
ms ISI using the responses marked with a star in the upper panels.

response produced by the combination of two cell outputs where we ob-

serve an inverse relation between the stimulus intensity and the latency

of the downwards de�ection.

On the other hand, these results suggest a necessary role for the input bias

in the reproduction of the amplitude modulation. Note that in Figure
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Figure 2.12: Summary of amplitude and latency e�ects in ab-

sence without the input-bias term. Results from the same exper-
iments as in Figure 2.11 plotted for the model without bias term. For
comparison, the outputs of the model with bias appear in light gray.

2.13C the amplitude increases when we increase the stimulus intensity. If

we consider that such response is added to a default output level, then it

is clear how the amplitude e�ect is obtained in the model with input bias

(see Figure 2.13D). Namely, given that the discharge of the GrCs is pro-

portional to the stimulation intensity and given the modulatory role of

their output, then the more the stimulus intensity the more the modula-

tion, what yields a higher response amplitude. On the contrary, if GrCs

instead of modulating build the whole PC output, then increasing the

stimulus intensity will increase the entire PC response curve (see Figure

2.13E for an explanation). In this case, if we compute the amplitude of

the response relative to the baseline output level, a higher stimulation re-

sults in a lower PC response amplitude. We will return to this argument
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Figure 2.13: Explanation of the modulation and latency e�ects.
A & B. Response of single GrCs to stimuli of di�erent intensities: low
(thin line), medium and high (thick line). The onset of the downwards
de�ection in the discharge is marked with an arrow. C. Response
built by a linear combination output of the two previous cells. The
coe�cients are computed such that the minimum of the response to
the stimulus of medium intensity is at -1. D & E. Schema of the
output of the molecular layer to stimuli of di�erent intensities in a
model where the output of the GrCs has a modulatory e�ect on the
discharge rate of the PCs (D) vs a model where they sustain the whole
discharge (E). The vertical doted line indicates the amplitude of the
response to the stimulus of higher intensity. In all panels the stimulus
intensity is represented as in A. The horizontal bar on the top of each
panel signals the presentation of the CS.

in the discussion.
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2.4 Discussion

We have addressed the question how the TSO can be represented in the

cerebellum in order to support its learning capabilities. We have demon-

strated that the slow inhibitory currents arising from the spill-over of

the neurotransmitter GABA in the glomeruli provide a substrate for the

representation of time in the cerebellum, thereby explaining the distinct

capability of the cerebellar cortex to generate well-timed responses in

the classical conditioning of the eye-blink. We have shown that such a

representation can be decoded with a linear readout and that the GrCs

that are excited by the CS carry the timing information. Finally, we

have reported that the combined model of the granular and molecular

layers reproduces the CS-intensity e�ect and the over-expectation result.

With these last results we have disentangled how the slow inhibitory cur-

rents and the intrinsic activity of the PCs mediate di�erent aspects of

CR generalization.

The key feature of the model presented here is the role of slow inhibitory

currents in the representation of time. Slow inhibitory currents in the

cerebellar GrCs are well-studied. They arise because of the spill-over of

the neurotransmitter GABA in the synapse from GoCs to GrCs. Due

to the tight glial encapsulation (Eccles et al., 1967), neurotransmitter

di�usion within the glomeruli is restrained, such that spill-over molecules

have an increased probability of activating non-local synapses (Rossi &

Hamann, 1998). Slow inhibitory currents have been reported both in-

vitro (Rossi & Hamann, 1998; Hamann et al., 2002; Rossi et al., 2003) and

in-vivo (Jörntell & Ekerot, 2006). Crucially for our model, the cumulative

e�ect of trains of slow inhibitory currents has been recently demonstrated

in-vitro by Crowley and colleagues (Crowley et al., 2009). In summary,

our model provides a functional role for what appears to be key aspects

of the physiology of the cerebellar glomeruli.

More generally, any slow current endows a neuron with the capacity of
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integrating information over long time intervals. Previous models of the

representation of time in the granular layer included slow currents in the

form of NMDA or mGluR currents (Medina et al., 2000; Medina & Mauk,

2000; Yamazaki & Tanaka, 2007a). Although these excitatory currents

have been reported in vitro (Mitchell & Silver, 2000b), their signi�cance

in vivo is still unclear. Recently, another kind of extra-synaptic current

generated by the spill-over of neurotransmitter has been shown to pro-

mote prolonged activity in GrCs over hundreds of milliseconds. Namely,

inhibitory mGluR2 expressed in GoCs activated by GrC-released gluta-

mate (Holtzman et al., 2011). Therefore it seems plausible that spill-over

currents play a major role in cerebellar function supporting sub-second

timing.

Our computational model relies on random connectivity to obtain a diver-

sity of GrC responses. In vitro studies report that GrCs receive a varying

number of MF and GoC contacts, which results in a variety of response

dynamics to short lasting stimulations (Mapelli et al., 2010). Intracellu-

lar GrC recordings identi�ed other putative sources of response diversity

such as the variability in synaptic gains (Bengtsson & Jörntell, 2009a)

and the variability of the temporal dynamics of inhibitory synaptic cur-

rents (Crowley et al., 2009). We expect that this diversity of responses

exists in the GrCs of the cerebellar cortex in order for the ensemble of

GrC TSO curves to contain a large set of independent basis, allowing the

generation of complex output responses such as the PC�generated CR

by linear combination .

Random connectivity is a common ingredient of a number of models of the

representation of time in the granular layer (Buonomano & Mauk, 1994;

Medina & Mauk, 2000; Yamazaki & Tanaka, 2007a,b). However such

models are inspired on the, so called, liquid�state machine (Maass et al.,

2002). Essentially, a liquid�state machine requires a network with posi-

tive feedback, that in this case would be the cerebellar cortex. This is at

odds with cerebellar anatomy since the cerebellar cortex is mainly a feed-
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forward structure whose only feedback connections are inhibitory. More-

over, from a physiological perspective, these models assume that GrCs

have irregular, bursty and/or delayed responses to stimuli which, to our

knowledge, still lack experimental support (even though detailed compu-

tational models have predicted similar dynamics (D'Angelo & De Zeeuw,

2009) and see (Holtzman et al., 2011)). In addition, we have shown previ-

ously that liquid state machines are very sensitive to noise (Knusel et al.,

2004).

In contrast to these models, we have made more conservative physio-

logical assumptions. First, we assumed a labelled line code for the GrCs

where the cells coding the CS are only the ones that increase their activity

at CS onset (�g 2.8). We assumed that given tonic excitation from MFs,

GrCs sustain an increased �ring rate with a progressive attenuation. To

our knowledge there is only one in-vivo study that reports the response

of the GrCs to prolonged stimulation. In this case somatosensory stimu-

lation results in a sustained but decreasing response (Jörntell & Ekerot,

2006). Of course, in such a study the mechanism of the depression might

be adaptation occurring upstream to the cerebellum, but nonetheless

these GrC dynamics are fully consistent with our model. Furthermore

recent work has shown in vitro that the build up of slow inhibition in a

GrC depresses its spike output after but not at stimulus onset (Crowley

et al., 2009).

We assumed that GoCs increase their activity during the CS. It has

been shown that GoCs can sustain high �ring rates for hundreds of mil-

liseconds in response to the initiation of voluntary movements (van Kan

et al., 1993) but so far their most typically reported response to sen-

sory stimulation consists in a short excitation followed by a long lasting

depression (Holtzman et al., 2006, 2011). Therefore, the answer to the

plausibility of sustained GoC responses in vivo in the case of auditory

stimuli (or electrical MF stimulation) remains unclear. However, we can

make two inferences. First, even though our simulations contain just 20
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GoCs we are able to produce well timed responses, thus it might not be

necessary to have a large population of GoCs with a sustained response to

obtain a stable and robust TSO representation. Second, even in the case

of short phasic GoC responses, they also elicit slow inhibitory currents in

vivo (Jörntell & Ekerot, 2006). In this case, sustained summation of slow

currents would not occur, as our hypothesis requires. However, this �nd-

ing does advocate a role of slow inhibitory currents in any hypothetical

representation of time in the granular layer.

We have shown that in our model most of the timing information can be

decoded from the GrCs receiving strong sustained CS-excitation. Thus,

as long as learning is concerned, the cerebellar cortex acts as a high-pass

�lter of the information coming through the MF pathway. In classical

conditioning, this implies that before recruiting the cerebellar cortex, a

CS has to produce a strong response in the brain areas upstream to the

cerebellum, i.e.: the auditory cortex for a tone CS. This gives a functional

interpretation to the two-stage theory of classical conditioning (Konorski,

1967). We predict that the GoCs act as a gate of these extra-cerebellar

representations of the CS. Only responses that are su�ciently boosted

will e�ectively drive the granular layer and thus the molecular learning

machinery (Boele et al., 2009; Inderbitzin et al., 2010).

As already noted by Eccles, a cell with a spontaneous level of activity can

code information bi-directionally by increasing or decreasing its default

�ring rate (Eccles et al., 1967). Additionally, if such a cell has the capa-

bility of �xing its spontaneous rate independently of the activity of its

e�erent neurons, then it is reasonable to infer that its coding properties

will be enhanced. We had exploited this feature in our previous model

of cerebellar learning (Verschure & Mintz, 2001). The physiology of the

PCs justi�es the introduction of a source of activity other than direct

GrC output (Häusser & Clark, 1997). Our results highlight the signif-

icance of an independent input bias, while drawing an exciting analogy

between intrinsic activity and the constant term of a multi-regression
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system (�g 2.6). Moreover, in our model the generalization inherent to

the over-expectation and CS-intensity e�ects requires such an indepen-

dent input bias, speci�cally for the amplitude e�ect. Interestingly such

a generalization appears to entail prior assumptions underlying adaptive

avoidance behaviour; e.g.: in the case of the CS-intensity e�ect, once a

particular stimulus is identi�ed as noxious, in this case a given CS, its

intensity can be interpreted as a predictor of perilousness, or time to

contact, therefore the more the intensity, the faster and bolder the pro-

tective action. Our results suggest that the intrinsic activity of PCs may

be fundamental to implement this latter generalization. This prediction

could be tested by measuring the CS-intensity e�ect in transgenic mice

having disrupted PC intrinsic activity. Precisely, we hypothesize that

despite showing correct acquisition, these genetically-modi�ed mice will

not respond to a stimulus of an increased intensity with an increased

amplitude.

2.5 Conclusion

Several lines of evidence indicate that the cerebellar cortex has the dis-

tinct capacity of solving the temporal extent of the CS-US association in

delay eye-blink conditioning for ISIs in the sub-second range. Here we

have provided a novel explanation for this capacity based on a unique

feature of the cerebellar cortex: the pervasive presence of slow inhibitory-

currents originated by the spill-over of neurotransmitter within the glomeruli.





CHAPTER 3
Nucleo-Olivary Inhibition

balances the interaction

between the reactive and

adaptive layers in motor

control

In the previous chapter we addressed the problem of the coding of the

passage of time in the cerebellar cortex and we showed that it is possible

to generate such a code taking into account the slow dynamics of the

spillover inhibition. Here we exploit such an encoding framework while

testing a cerebellar-based controller in a simulation of an avoidance learn-

ing task.

Instead of modeling just the granular layer of the cerebellum, now we

use a computational model that includes cerebellum and inferior olive.

However, all structures are modeled at a higher level of abstraction. In

what follows we summarize the key features of this chapter and how it

relates to Chapter 2:

55
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1. We implement a rate-based model of the granular layer of the cere-

bellar cortex that reproduces the pro�le of the output signals from

the spiking model previously shown. We refer to these signals, that

simulate the output of granule cells, as cortical bases. Despite hav-

ing simpli�ed the generation of each cortical basis, we replicate the

basic dynamics of the responses in Chapter 2, i.e., at stimulus pre-

sentation each basis has a fast rise in activity followed by a slow

decay (see 3.2).

2. The computational controls a simulated robot. Therefore, the

teaching signal is derived from the interaction of the robot with

the world, i.e., it is computed as a function of the proximity of

the robot to the walls, and as such, it varies during the simulation

contingently on the robot's learned behavior.

3. To mimic the signaling properties of the inferior olivary-cells, a

Poisson process maps the real valued proximity signal into a binary

code. This binary code is superimposed over a further Poisson

process that generates spontaneous activity with a physiological

rate of 1 Hz.

4. Crucially, we include in the controller design the deep nuclear in-

hibitory projections to the inferior olivary cells, i.e., the Nucleo

Olivary Inhibition (NOI). It is known that such connection is in-

strumental in allowing the cerebellum to erase acquired responses

that are no longer adaptive. Here we show that the behavioral

consequence of such a connection in avoidance learning is that in

the trained agent, the reactive and adaptive actions are blended,

and that the exact balance of both actions is governed by the gain

of the NOI.

In short, our approach here is to study how the anatomy of the cerebellar

microcircuit studied in classical conditioning constrains the behavior of

a robot in an avoidance learning task. This chapter reproduces a paper
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with its same title, which was published at the journal Neural Networks

(Herreros Alonso & Verschure, 2013a). The abstract reads:

In the acquisition of adaptive motor re�exes to aversive

stimuli, the cerebellar output ful�lls a double purpose: it

controls a motor response and it relays a sensory prediction.

However, the question of how these two apparently incom-

patible goals might be achieved by the same cerebellar area

remains open. Here we propose a solution where the inhibi-

tion of the Inferior Olive (IO) by the cerebellar Deep Nuclei

(DN) translates the motor command signal into a sensory

prediction allowing a single cerebellar area to simultaneously

tackle both aspects of the problem: execution and prediction.

We demonstrate that having a graded error signal, the gain

of the Nucleo-Olivary Inhibition (NOI) balances the genera-

tion of the response between the cerebellar and the re�exive

controllers or, in other words, between the adaptive and the

reactive layers of behavior. Moreover, we show that the re-

sulting system is fully autonomous and can either acquire or

erase adaptive responses according to their utility.

3.1 Introduction

The execution of an avoidance action seems to involve both sensory pre-

diction and motor control: the prediction of a noxious stimulus triggers

an anticipatory motor command. A similar division between sensory

prediction and actuation is also found in control theory when a forward

model provides predicted feedback to a feedback controller (Miall et al.,

1993). In this latter case, the reactive commands of the feedback con-

troller are caused by the factual feedback anticipated by the forward

model. On the contrary, in the case of an avoidance action, a common

sense interpretation suggests that the predicted sensory event is counter-
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factual, i.e., not the factual sensory event is predicted but the one that

would be perceived if the avoidance action is not carried out. Here we

will show that to understand the role of the cerebellum in Avoidance

Learning (AL) one might have to drop this assumption.

Acquisition of anticipatory responses has been extensively studied with

the paradigm of pavlovian classical conditioning (Pavlov & Anrep, 1927),

e.g., classical conditioning of the eyeblink re�ex (Gormezano et al., 1987)

(henceforth, eyeblink conditioning). In eyeblink conditioning a neutral

cue such as a sound or a light, the Conditioning Stimulus (CS), pre-

cedes by a �xed time-interval the delivery of a noxious Unconditioned

Stimulus (US) to the eye, e.g., a periorbital electric shock. The US oc-

currence triggers a re�exive protective action (the closure of the eyelid)

that constitutes the Unconditioned Response (UR). After a number of

paired CS-US repetitions, the subject reacts to the delivery of the CS

by closing the eyelids in anticipation of the expected US, i.e., produc-

ing a Conditioned Response (CR) (Pavlov & Anrep, 1927; Mackintosh,

1974; Gormezano et al., 1987). Once acquired, CRs can be deleted by

extinction training, i.e., presenting CSs not followed by the US.

There is broad agreement that the substrate of learning in eyeblink con-

ditioning is located in the cerebellum (Christian & Thompson, 2003; Yeo

& Hesslow, 1998). The well known cerebellar circuitry (Eccles et al.,

1967) helped to accurately delineate the neural pathways of CS, US and

CR (Steinmetz et al., 1985; Mauk et al., 1986). The roles of the di�er-

ent stimuli accord with Marr-Albus-Ito cerebellar learning theory (Marr,

1969; Albus, 1971; Ito et al., 1982): the US signal relayed by the IO

reaches the cerebellar cortex through the climbing �bers where it induces

plasticity at the synapses of the parallel �bers that transmit the CS in-

formation. After repeated coincidence of these two signals, the Purkinje

cells �the sole output of the cerebellar cortex� acquire a response to the

CS, namely, a drop in their �ring activity, that drives the behavioral

CR (Jirenhed et al., 2007). Moreover, as with the overt CR, extinction
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Figure 3.1: Layout of the cerebellar controller and the re�ex arc. Infor-
mation pathways are tagged according to the inputs outputs that they
relay in classical conditioning. The labels in italic identify anatomi-
cally information pathways and processes. For a detailed description
of the cerebellar architecture see (Eccles et al., 1967).

training suppresses the Purkinje cell response.

Learning in classical conditioning regards sensory prediction. As the

Rescorla-Wagner model formalized, animals learn in classical condition-

ing only when events violate their expectations (Rescorla & Wagner,

1972). Therefore, to support this kind of learning the cerebellum must

acquire and generate sensory predictions. In general, according to the

adaptive �lter theory, cerebellar learning is explained in terms of decor-

relation (Fujita, 1982). A corollary of this theory is that the cerebellum

only learns when the IO activity is perturbed from baseline. In this con-

text, the inhibitory connections from the cerebellar deep nuclear cells

to the Inferior Olive, the Nucleo Olivary Inhibition (NOI) (Andersson

et al., 1988), are key to interpret cerebellar learning as the acquisition
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of sensory predictions. The NOI subtracts the cerebellar output relayed

from the US signal reaching the IO, such that if both signals match, they

cancel each other leaving IO activity at baseline. Therefore, in eyeblink

conditioning, if after the CS either the excitation produced by the US or

the inhibition produced by the CR (via the NOI) outweighs the other,

the perturbation of the IO activity would recruit cerebellar plasticity

such that in following trials IO activity will remain closer to baseline.

Remarkably, the NOI has an unusual long latency for a monosynaptic

transmission in the order of the tens of milliseconds (Hesslow, 1986).

Regarding motor control, it is well-established that the output of the

cerebellum drives the CR (Hesslow, 1994). In itself, this does not con-

tradict the sensory prediction interpretation if the predicted US stimulus

and the amplitude of the CR are correlated (although it is not obvious

why such a correlation should exist). In other words, since correlation

between neural activity and stimulus intensity �or action amplitude� is

interpreted as evidence for the neural activity coding the stimulus �or the

action� then, in classical conditioning, the cerebellar output may code

both the perception and the response if perception and response are

themselves correlated. However, the question remains whether the NOI,

fundamental for sensory prediction, is functional from a motor learning

perspective. AL, which, as a paradigm, is closely related to classical

conditioning, serves us to address this issue.

In a classical conditioning preparation the CR is required to not amelio-

rate or reduce the noxiousness of the US. For instance, with a peri-orbital

shock US, the CR has no e�ect in reducing the intensity of the shock.

In AL, the CR modi�es the e�ect of the US. For instance, if we use an

airpu� without restraining the eyelids, then the e�ective or sensed in-

tensity of the US will decrease as the CR increases the degree of eyelid

closure, i.e., the noxiousness of the US will diminish as it reaches a more

protected cornea. Therefore, whereas in classical conditioning the CR

and the US can only be compared internally (and by means of the NOI),
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in AL an implicit comparison between action and stimulus takes place

in the external world. This di�erence between classical conditioning and

AL is not always explicitly made in the literature, since some eyeblink

conditioning studies, specially with humans subjects, are made with an

airpu� and an unconstrained CR (Clark & Squire, 1998).

However, attempting to apply the cerebellar microcircuit studied classical

conditioning to a task of AL raises a series of questions.

First, if the cerebellum outputs a motor command and the IO receives a

peripheral sensory signal, then the NOI performs a non consistent com-

parison between information from di�erent domains. In such a case,

why should the temporal pro�le of the signal masking a phasic US be

similar to the motor command controlling the eyelid muscles? (Lepora

et al., 2010). Note that the same inconsistency of the temporal dynam-

ics appears when we consider the avoidance of a noxious stimulus as a

comparison performed in the external world. E.g., the temporal pro�le

of the eyelid closure and the physical US stimulus might be di�erent.

And second, AL introduces a contingency between the motor action and

the sensory prediction: the CR diminishes the e�ective intensity of the

US. We refer to this link as the behavioral negative feedback loop in con-

trast to the internal negative feedback provided by the NOI. But if the

behavioral learning can avoid the US, what is the use of the internal neg-

ative feedback? Remark that in cases where avoidance can be complete

(to hit against a wall or to completely avoid it) the role of the NOI is

not evident, i.e., since both negative feedback loops are superposed, the

NOI might halt learning before it leads to the total avoidance of the US.

However, it has been shown both with modeling and animal preparations

that inactivation of the NOI prevents extinction in classical condition-

ing (Medina et al., 2002; Bengtsson & Hesslow, 2006). Extrapolating

this result to AL, then the NOI has the functional role of suppressing

acquired responses that are no longer adaptive. Therefore, even though
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it could be possible for a cerebellar microcircuit lacking the NOI to op-

timally acquire an avoidance response in AL, such circuit would require

an extra-cerebellar brain structure to generate the signal driving extinc-

tion. In other words, in the absence of an external signal re�ecting the

cost of an unnecessary avoidance action, this signal, playing the role of a

hypothetical `negative US', has to be computed internally, and the NOI

provide a means for its generation.

We propose that the key to reconcile sensory prediction and motor control

lies in the nature of the US signal. Considering a graded rather than an

all-or-none US signal, the NOI can halt learning once the US intensity

drops below a certain safety level, that is, once the US is as mild as to

lose its noxiousness. Moreover, this residual signal can play an important

functional role, i.e., in a trial-by-trial basis, it can validate the suitability

of the anticipatory action. For instance, in the case of AL of the eyeblink

response, once the eyelids are closed, perceiving the airpu� con�rms the

suitability of keep triggering the anticipatory action the next time the

CS is presented.

To summarize, we propose that the NOI allows balancing the level of

control between a reactive and an adaptive layer. We validate this pro-

posal in a series of simulations where a robot has to perform a collision

avoidance task in a track with a single turn. For the adaptive layer we

use a controller based on the anatomy of the cerebellum (Fig. 3.1) (Ec-

cles et al., 1967). Using the principles behind adaptive �lter modeling

of the cerebellum, we implement an analysis-synthesis �lter with a de-

correlation learning rule (Dean et al., 2010). With this setup, we study

the e�ects of di�erent parametrizations of the NOI gain, showing that it

�xes the balance between reactive and adaptive actions, and that besides

being required for extinction, the NOI is fundamental for a correct timing

of the adaptive responses.
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3.2 Methods

3.2.1 Cerebellar model

The model of the cerebellum consists of a set of parallel cerebellar mi-

crocircuits, each one connected to its IO component. Each cerebellar

microcircuit encapsulates information processing from cerebellar cortex

and cerebellar nuclei together. The inputs displayed in Fig. 3.2 corre-

spond to the mossy �ber and the climbing �ber pathways, and relay the

cue and the error signals, respectively. In nature, the output of a micro-

circuit module will be carried by the axons of the deep-nuclear cells (for

a review of the cerebellar cytoarchitecture see (Eccles et al., 1967)).

We implemented each cerebellar microcircuit as an analysis-synthesis

adaptive �lter (see (Dean et al., 2010) for a review), where the infor-

mation coming through the mossy �ber pathway is mapped into deep-

nuclear activity and adjusted according to the teaching signal provided

by the climbing-�ber signal. Even though the assumptions inherent to

this model are described in a series of publications (Fujita, 1982; Porrill

& Dean, 2008; Dean et al., 2010) we brie�y describe them here. The

cerebellar cortex acts as a �lter that maps mossy-�ber activity into the

Purkinje cell output. Upon entering the cerebellar cortex, the mossy

�ber information is expanded into multiple components or basis into the

granular layer. Such basis arise by means of the interaction between the

mossy �bers, the excitatory granule cells and the inhibitory Golgi cells

(Yamazaki & Tanaka, 2007b). Di�erent factors such as the diversity in

the connectivity between these cells (Mapelli et al., 2010) and in the

synaptic gain distribution (Crowley et al., 2009) generate a repertoire

of responses in the output of the granule cells. We will refer to these

outputs as the cortical basis. Such cortical basis, relayed by the parallel

�bers, serve to modulate the output of Purkinje cells. Since parallel �bers

can directly excite a Purkinje cell or inhibit it by disynaptic inhibition

through the molecular layer interneurons, then a same parallel �ber can
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Figure 3.2: Computational architecture with the reactive and the adap-
tive controllers including N cerebellar microcircuits (CM), N IO com-
ponents and a re�ex arc (Ref). Each microcircuit generates an output
command Ci. The individual commands are averaged into C and then
added to R to generate the �nal action.

have either a positive or a negative e�ect in the projecting Purkinje cell.

This allows the weights applied to the cortical basis in the model to have

positive or negative values (Porrill & Dean, 2008). Such weights model

the gain of synaptic contacts made by the parallel �bers with inhibitory

interneurons and Purkinje cells. Their values are adjusted according to

the teaching signal provided IO activity, that reaches the cerebellar cor-

tex through the climbing �bers.

This implementation of the adaptive �lter model includes the following

novelties:
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1. we use a random spike generator model for the IO with a rate of

1 Hz, consistent with the range of low �ring rates observed in vivo

(Eccles et al., 1967);

2. we set a series of parallel microcircuits each one with its own IO

component;

3. we collapse the cerebellar cortex and cerebellar nuclei together.

The total output of the cerebellar controller is produced averaging the

output of all the microcircuits.

Cortical basis To generate the cortical basis we convolve the signal

coming through the mossy �ber pathway with two exponentials. In such

a way, the response of each basis to a unitary pulse resembles an alpha

function. The time constants governing the exponentials are randomly

drawn from two �at distributions (a fast time constant, τr, ranging from

2 to 50 ms and a slow one, τd, ranging from 50 to 750 ms). The �rst

set of fast time constants control the rise of the basis and the second,

the decay. These values are within the physiological range of the time

constants of the slow currents in the granular layer, e.g., slow spillover

inhibitory currents (Crowley et al., 2009; Hamann et al., 2002; Rossi &

Hamann, 1998).

Given an input m(t), the output of a cortical basis pj(t) is generated

according to the next di�erence equations:

prj(t) = γrj p
r
j(t− 1) +m(t− 1)

pdj (t) = γdj p
d
j (t− 1) + prj(t− 1)

pj(t) = σj [p
d
j (t− 1)− θj ]+

where j indexes a particular basis. prj and pdj compute a convolution

and, informally, each one governs the rise and decay of the pj basis,

respectively. They are controlled by the persistence factors γrj and γdj ,
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which are computed from τr and τd (see above). The third equation adds

a non-linearity (a threshold θj) allowing to produce steeper responses

(note that [x]+ = max(x, 0)). Such threshold was set to 0.7 times the

maximum value attained by pdj when m(t) carried a spike during a single

time-step. Finally, all basis are scaled by σj such that their maximum

amplitude is �xed to 1.

The output of each microcircuit is obtained by a linear combination of

the its current components:

Ci(t) = [pi(t)wi(t)
T ]+ (3.1)

where i indexes a particular microcircuit and wi(t) is the vector of weights

and pi(t), the vector of basis. As in (Lepora et al., 2010) we clipped the

output of the adaptive �lter to remove negative values.

The weights are updated using the de-correlation learning rule:

∆wij(t) = β ei(t) pij(t− δ) (3.2)

where β controls the learning rate and ei(t) is the error signal of the

microcircuit i, computed from the inferior olive output (see below). δ

corresponds to the latency of the error feedback (Miall et al., 2007). This

parameter establishes how far ahead happened (or should have happened)

the action that caused (or could have prevented) the current error. For

this, δ resolves the temporal credit assignment problem (Sutton & Barto,

1998). In practice, this parameter sets up the relative timing of the CS

relative to the US. For this, it has to account not only for the delays in

transmission of the signals, but also for the latency associated to the ac-

tion execution. In our case, given the temporal dynamics of the temporal

basis, turns last on the order of 100 ms, making such a value a sensible

choice for δ.
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3.2.2 Inferior Olive

Since this work focus on the NOI, we found relevant to reproduce in our

model a distinctive trait of the IO physiology: its low spontaneous �ring

rate. To this end, each IO component generates randomly and indepen-

dently spikes with a poisson �ring rate of 1 Hz. Having a simulation

time step orders of magnitude below this rate, we generate the poisso-

nian �ring pattern converting that rate into a baseline �ring probability,

b. The baseline probability is then modulated at each time step both

by the error signal, E(t), and by the cerebellar command of the i-th mi-

crocircuit, Ci(t), yielding the probability of spike in the IO at each time

step, P IOi (t), according to:

P IOi (t) = b+ E(t)− kcCi(t− δ)

where kc is the gain of the NOI. The last term of this equation implements

the NOI, subtracting the cerebellar output to the probability of �ring in

the IO. Note, however, that δ, the same parameter that controlled the

temporal eligibility trace in Eq. 3.2, is used here to delay the e�ect

cerebellar output into the IO. In other words, as in nature, we set up a

NOI with a long latency.

3.2.3 Error signal

To compute the teaching signal term in Eq. 3.2 each microcircuit com-

pares the instant IO activity rIOi (t) and the baseline r̃IOi (t).

ei(t) = rIOi (t)− r̃IOi (t)

To compute r̃IOi (t) we used exponential averaging with a time constant

of 10 seconds.
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Figure 3.3: A sample trial. Trajectory of the robot during a trial,
replotted every 50 time steps. The green mark in the ground is the cue
signal and the thick black line is the wall.

3.2.4 Scenario

We tested our model in a simulation where a robot performs a collision

avoidance task. The simulated robot has a cylindrical shape and incorpo-

rates two sensors: a proximity sensor that detects the presence of a wall

and a rudimentary visual sense that allows the robot to detect a color

mark in the ground. At every trial, as the robot traverses the track, it

passes over a green mark in the ground (cue) and after a �xed timed

interval, determined by the distance between the cue and the turn, de-

tects the proximity to the wall and turns /(Fig. 3.3). Note that with

this scenario the robot avoidance task is analogous to an eyeblink AL

experiment. We already exploited a similar analogy in (Hofstotter et al.,

2002).

To remark that this is a scenario of AL and not of classical conditioning,
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we use a di�erent nomenclature. Instead of a US, an error signal E

is relayed by the proximity sensors. E depends both in the physical

closeness, p, between the robot and the wall, and we de�ned it relative

to the radius of the robot r as

p =

[
1− |c− x| − r

r

]+

where the vector x vector contains robot position, c the closest point in

the wall and the operator | | computes the vector norm. Note that the

value of p ranges between 0 and 1. Then E is generated multiplying p

by the approaching angle:

E = [cos(ẋ, c− x) p]+

where ẋ is the robot velocity. E can only have positive values, since

negative ones imply that the robot moves away from the wall.

Instead of a CS we have a cue signal, which is a binary event �red when

the robot crosses over the green line. The reactive response, similar to

the unconditioned response is denoted as R, and the adaptive response,

which is generated by the cerebellum and is similar to the CR, is denoted

as C. Both responses induce a turn in the robot trajectory by controlling

the angular velocity and are added to generate the total turn at each time

step. The command C is generated by the already introduced cerebellar

controller. The command R is generated by multiplying E by the gain

of the re�exive controller (kr).

3.3 Results

3.3.1 Acquisition of a response

Before discussing the experimental results, we highlight a key di�erence

between the obstacle avoidance task we use and AL of the eyeblink re�ex.

From the sensory prediction view, in the eye-blink paradigm the target
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function for the cerebellar controller to match �the sensory response to

the US� varies in amplitude as the adaptive response evolves trial by

trial; the noxiousness of the airpu� diminishes as it reaches a more closed

eyelid. In the collision avoidance setup both the amplitude of the US �

the proximity to the wall� and its timing vary. Any turn, insu�cient as

it might be to avoid hitting the wall, delays the collision, increasing the

interval between cue and collision. Given this contingency, it is di�cult to

predict for a track con�guration the optimal timing of the turn. However,

we can predict that once the responses become stable, the relative timing

of C and R will be determined by the delay of the NOI (δ, see Methods).

We display the results of a representative simulation where we use a track

with a turn of 30 ◦ and the delay between cue and the onset of the prox-

imity signal is of 300 ms. To maintain the analogy with conditioning we

refer to this time interval as the Inter Stimulus Interval (ISI). After a few

trials the controller produces adaptive responses, that during the remain-

ing of the simulation are slowly adjusted both in timing and amplitude

(Fig. 3.4A). The �nal responses are narrower and peak later than the

initial ones (Fig. 3.4C). All adaptive trajectories are smoother than the

purely reactive one, but within the adaptive trajectories we observe that

the robot turns faster and closer to the wall in the last trials (Fig. 3.4B)

and that by the end of training the adaptive response provides a higher

proportion of the total response (Fig. 3.4D).

3.3.2 Adaptability of the responses in time and

amplitude.

We show that the controller adapts to di�erent turn angles, R0, (Fig.

3.5A and B) and ISIs (Fig. 3.5C and D). For a same ISI, the ratio of the

adaptive response to R0 (C/R0) remains constant regardless of R0 (Fig.

3.5B). This is not the case for di�erent ISIs: the larger the distance from

cue to collision, the minor the ratio of the adaptive response (C/R0) (Fig.

3.5D). In short, as in nature, performance decreases as the ISI increases.
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Figure 3.4: Single simulation. A. Raster plot of the adaptive re-
sponses (C) trial by trial. B. Three sample trajectories plotted on the
track: trial 1 (blue), mean of trials 51 to 100 (black) and trials 351 to
400 (red). The cue signal (green line) and the walls of the track are
shown (thick black line). C. Pro�le of the total response, C + R, (solid
lines) for the same data in B. The dashed lines separate the adaptive
component, C, (below) from the reactive, R, (above). D. Cumulative
responses. The dotted line marks the target response (R0)
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Figure 3.5: Adaptability to di�erent amplitudes and timings. A. Mean
responses in the last 50 trials for three di�erent target amplitudes:
30 ◦ (black), 45 ◦ (red) and 60 ◦ (blue). The dashed lines separate the
adaptive component, C, (below) from the reactive, R, (above) B. Cu-
mulative responses scaled to the target amplitude (R0). Same data as
in A. C. Adaptive and reactive responses for three di�erent timings:
230 ms (black), 330 ms (red) and 430 ms (blue). Data displayed and
trial selected as in A. D. Cumulative responses scaled to the target
amplitude (R0). Same data as in C.
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3.3.3 Control of the IO over the dynamics of the

learning.

We validate that the controller acquires and extinguishes actions accord-

ing to changes in the stimuli contingencies. For this, we run a protocol

with acquisition, extinction and reacquisition stages. For the acquisition

and reacquisition we use the same track, with a turn of 45 ◦ and an ISI

of 300 ms, and for extinction we use a straight track.

In the results we observe that after the regular acquisition, the response

is erased with extinction training (Fig 3.6A and B). Remarkably, during

reacquisition both the amplitude of the response and the timing are more

rapidly adjusted than in acquisition (Fig 3.6C). We analyze this result

in detail since it goes beyond the expected properties of this adaptive

�lter implementation. In short, fast reacquisition might occur because

after extinction the weight con�guration does not return to the initial

one, but to a closer con�guration in the weight space (in this case a

25% closer). This relative proximity is not totally explained by the trace

of the adaptive response that still remains after extinction, since the

magnitude of this response, measured as area under response, is only a

17% of magnitude prior to extinction. In other words, extinction a�ects

more the overt behavior than the underlying memory. If we only consider

the �rst two principal components describing both the trajectory of the

weights and the evolution of C during the experiment, the same results

hold (Fig 3.6D). However, by visual inspection we also appreciate that

after just 100 trials of reacquisition both the weights and C are very close

to their con�gurations of the previous acquisition, suggesting a faster

(more direct) gradient descent during reacquisition.

3.3.4 Behavioral role of the NOI.

We check how the di�erent values of kc a�ect the behavior. We use a track

with a 45 ◦ for acquisition, and afterwards a straight track for extinction.
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Figure 3.6: Acquisition, extinction and reacquisition. A. Raster plot
of the adaptive response C during acquisition (A), extinction (E )and
reacquisition (RA). Warmer colors for higher amplitude. B. Evolution
of the ratio of adaptive to total response (C/R0). Blocks of 20 trials. C.
Evolution of the timing of the adaptive response C during acquisition
(black) and reacquisition (red). The timing of C is computed as

∑
C(t)t∑
C(t)

.

D. (Up) Trajectories of the weights during learning (First two principal
components). The labels identify the end of each stage. The solid star
marks the position after 100 trials of acquisition and the empty star,
after 100 trials of reacquisition. (Down) Trajectory of the evolution of
the adaptive responses (C).

We see that the higher the value of kc the smaller the adaptive response

but the faster and more e�ective the extinction (Fig. 3.7A). As expected,

after removing the NOI no extinction is observed. More interestingly, the

NOI is required for the precise timing the responses (Fig.3.7B). Since

the basis generated in the cerebellar cortex are not optimal to adjust the

timing, part of the initial response has to be deleted or unlearned (Fig

3.4C). This latter process relies on the NOI. Thus, in absence of the NOI,

the initial response, poorly timed, is maintained as long as it avoids the

collision (Fig. 3.7B).

3.3.5 Transference of responses between layers

controlled by the gain of the NOI.

Finally test how di�erent values of kc balance the adaptive and reactive

responses. The values of kc are chosen in proportion to the inverse of the
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gain of the re�exive controller kr. First, we see that for a same ISI, the

ratio between the adaptive and reactive actions is set by kc independently

of the angle of the turn (Fig. 3.8A). This is, at the end of acquisition

simulations with a same kc have a same proportion of the initial response

transferred to the adaptive layer. Next, in a same track with a turn of 45 ◦

and an ISI of 300 ms, we run simulations varying the value of kc between

2k−1
r and 2−6k−1

r . Higher values of kc result on a minor transfer of the

response to the adaptive layer (Fig. 3.8A). When kc is equal to the inverse

of kr so that the feedforward connection of the re�exive controller and the

feedback connection of the NOI apply inverse transformations, then the

�nal response is roughly equally distributed between the adaptive and

the reactive layers. As kc becomes smaller, the maximum proportion of

transfer achieved is of 0.8, i.e., the anticipatory action executes an 80% of

the total turn. However, minimizing the reactive action by transferring

more control to the adaptive layer comes at the expense of the timing
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NOI. Evolution of the proportion of the adaptive response (C/R0) for
di�erent gains of the NOI (kc) and total angle of the turn (R0). A.
Proportion of the adaptive over the total turn (C/R0). Angles are 30 ◦
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−1
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r /4 (black). B. Final values
of C/R0 as a function of kc in a track with a turn of 45 ◦ and an ISI
of 300 ms. C. Timing of C. Time between cue and C. Left. Time
between C and R. The values of kc correspond to the points with the
same color in B. The timings are computed as in Fig. 3.6.

accuracy of the anticipatory action. Only for the smaller values of kc C

is closely timed to the ISI, with C anticipating R by 100 ms. This is,

for small values of the kc the temporal arrangement of C and R re�ects

accurately the latency of the NOI δ. Summing up, kc trades o� the

amount of anticipatory control against the timing accuracy.

3.4 Discussion

It is suggested that one of the functions of the cerebellum is to replace

re�exes by anticipatory avoidance actions (Wolpert et al., 1998). In this

paper, we proposed that the NOI might allow such a replacement to be

partial, resulting in a cooperation between the reactive and adaptive lay-

ers of control. To test this hypothesis we built a computational model

including a re�ex controller �the reactive layer� and a cerebellar con-

troller �the adaptive layer� implementing the latter along the lines of the
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cerebellar adaptive �lter theory (Dean et al., 2010; Fujita, 1982). This

architecture was then applied to a simulation of a robot collision avoid-

ance task. The results con�rmed that the strength of the NOI inhibition

determined the degree of replacement of the original reactive turn by an

anticipatory adaptive one. Moreover, since the question of whether the

cerebellum performs motor control or sensory prediction in classical con-

ditioning still remains open (Lepora et al., 2010), such results advocate

for the possibility of both roles coexisting in cerebellar function.

The originality of our approach lies in the inclusion of the NOI in a motor

control scenario. On the one hand, previous computational simulations of

the cerebellum that included the NOI have only been applied to classical

conditioning paradigms, where the CR a�ects the US signal reaching

the cerebellum through the NOI but not behaviorally (Medina & Mauk,

2000). This left open the question of how the NOI might interact with a

behavioral avoidance response. On the other hand, simulations that used

a cerebellar model in motor tasks, such as navigating a robot through a

curved path (McKinstry et al., 2006), lacked the NOI feedback projection.

Multiple roles are attributed to the inhibitory projections from deep nu-

clear cells to the IO (Bengtsson & Hesslow, 2006): controlling the tonic

activity of the whole olivo-cortico-nuclear circuit (Demer et al., 1985;

Andersson & Hesslow, 1987), regulating the teaching signal provided by

the climbing �bers (Medina et al., 2002; Jirenhed et al., 2007) and also

adjusting dynamically the coupling between of olivary cells through gap

junctions (De Zeeuw et al., 1998; Llinas & Welsh, 1993). In this paper

we have only dealt with the control of the teaching signal.

3.4.1 NOI in timing and optimality of the

cortical basis

Comparing avoidance responses at initial and later stages of learning,

we see that the peak of the responses is delayed with learning until a
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more optimal timing is achieved. This operation requires suppressing

the early part of the initial responses. But to correct these initial poorly

timed responses, that are already e�ective from a behavioral point of

view, the cerebellum has to detect the mismatch between its positive

output and the shape of the error signal.

However, if we had used a set of basis that was optimal for the response

generation (e.g., a set of Gaussian functions of constant amplitude but

increasing delays as in (Lepora et al., 2010)) then it would have not been

necessary to suppress early components of the response. Interestingly,

in classical conditioning the time of CRs is adjusted in a similar manner

during learning in mice: training delays the peak of the CR until it

matches the US onset (Koekkoek et al., 2003). Thus, using the adaptive

�lter stance for speculation, we can infer that the basis produced in the

cerebellar cortex might not be optimal for the timing of delayed eyeblink

responses.

3.4.2 NOI and extinction

The necessity of the NOI for extinction has already been shown in stud-

ies of classical conditioning both computationally and in physiology (Ver-

schure & Mintz, 2001; Medina & Mauk, 2000). However we highlight that

in the case of the learning of avoidance behavior, a controller both able

to acquire and to erase adaptive responses can function in a completely

autonomous manner.

3.4.3 Plausibility of a graded error signal

Our solution requires a graded error signal. We assume that the residual

error either does not require correction or that the reactive response

prevents any noxious consequences. In our simulations, even though we

have not referred to the concepts of harm or noxiousness in the error

signal, we have modeled the latter case; the residual error still induces
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a turn, a reactive response. It is our view that there are AL paradigms

that provide a graded error signal. For instance, in eyeblink AL, the

activation of the cornea receptors by the airpu� will be more harmful

that the activation of the eyelid receptors. And obviously, even if the

noxious US is completely avoided, i.e., even if the eyelids are totally

closed protecting the cornea, this does not precludes the eyelid receptor

to sense the airpu�.

3.4.4 Cerebellum as a forward model

We have shown that in the context of adaptive re�exes, interpreting the

cerebellum as a forward model helps to de�ne the goal of learning, as it

to be the exact prediction of the sensory input. However, since in this

architecture the same signal supports the sensory prediction and the mo-

tor control, this solution implies that the CR amplitude and the residual

US signal are proportional. This proportionality might be non-intuitive.

For instance, in eyeblink AL, we might expect the successful CR to be

de�ned in terms of degree of eyelid closure independently of the intensity

of the airpu�. In contrast, our model predicts that the CR amplitude at

the asymptotic level depends on the US intensity. This prediction could

be easily validated experimentally, or by a further analysis of existing

data.

However a question stands regarding the suitability of the controller ar-

chitecture here presented. Since there is evidence of cerebellar regions

acting as forward models (Miall et al., 2007), why do we not adhere to

the standard forward model-forward controller architecture (Miall et al.,

1993)? Quite simply, AL is not a feedback control task and for this, a

forward model-feedback controller architecture cannot be applied. For

instance, in collision avoidance, we are not trying to act faster after the

collision by predicting it, but to avoid the collision altogether. In our

case, only the re�ex controller performs feedback control, but the cere-

bellar controller uses the feedback information to improve performance
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in future trials.

3.4.5 Role of the Inferior Olive

Our computational model can acquire correct responses with the IO sus-

taining a physiologically correct rate of activity of 1 Hz. However, such

a low �ring rate slowed learning and caused performance of the indi-

vidual microcircuits to �uctuate (data not shown). A problem that we

practically by-passed by a adding independent IO cells to the model.

However, within each microcircuit, the low �ring rate of the IO limited

the gain of the NOI. In our implementation the error information resides

the spiking probability of the IO (P IO, see Methods). Therefore, when-

ever the NOI drives this probability below 0, information regarding the

magnitude of the error is lost. For this, it is hard to see how can be

bene�cial to have a teaching signal with such a low �ring rate. One view

is that the output of the IO, besides acting as a teaching signal, might

play other roles wherein low �ring rate is bene�cial. This role should be

supported by the speci�c response of Purkinje cells to the the climbing

�ber signal, namely, the complex spikes. A second explanation is that

the low rate of complex spikes might prevent them to interfere with the

information carried at a much higher �ring rate by the simple spikes.

3.4.6 Fast reacquisition

Although not directly related to the claim of this paper, we also reported

that our model reproduces the fast reacquisition observed after extinc-

tion (Jirenhed et al., 2007). Previous computational studies reproduced

fast acquisition by including di�erent learning mechanisms with di�er-

ent learning rates (Porrill & Dean, 2008; Medina et al., 2001). In our

model fast reacquisition stems for a non-linearity in the cerebellar adap-

tive �lter and not from the interaction of di�erent learning mechanisms.

Indeed, by the recti�cation applied to the cerebellar output (Eq. 3.1) ex-
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tinction can be achieved without returning to the original con�guration

of null weights, i.e., any con�guration yielding a negative output before

the recti�cation is also e�ective. Such a con�guration might be closer in

weight space to the weight con�guration that triggers the CRs, for which

at reacquisition returning to this con�guration might be achieved faster.

3.4.7 Means to adjust the gain of the NOI

As we manually set the gain of the NOI (kc) to di�erent values, a next step

would be to devise a heuristic or learning rule to set its gain adaptively.

On the one hand, our controller has to produce an adaptive avoidance

response managing to decrease the error signal under a safety level. In

addition, we know that the greater the gain of the NOI the smaller the

adaptive response produced. For this, an heuristic should decrease such

gain to allow a su�cient transfer of control from the reactive to the

adaptive layer. On the other hand, the smaller the NOI the slower the

extinction of no longer adaptive responses. Considering that the drive for

rapid extinction might be related to the cost of unnecessary avoidance

actions (for instance, closing the eyelids to protect the eyeballs results in

a momentary loss of potentially relevant visual input), this cost function

could be used to learn an optimal kc. In any case, a model solving

this issue would have to hypothesize which extra-cerebellar structures

evaluate this cost, and how does their information reach nucleo-olivary

circuit.

3.4.8 Conclusion

We have a cerebellar controller including the NOI negative feedback-

loop to the acquisition of an adaptive re�ex in a collision avoidance task.

Within that domain, we have shown a) that we can simultaneously inter-

pret the output of the cerebellar controller as a sensory prediction and

as a motor control signal and b) that the degree of transference of the

initial reactive response into an adaptive response after learning is deter-
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mined by the gain of the NOI. These results require the error signal, the

US, to be graded. Moreover, under these conditions the NOI controls

the temporal accuracy of the responses and allows the extinction of no

longer adaptive responses. With this work we have shown that from the

cerebellar microcircuit studied in classical conditioning we can obtain a

functional controller for AL. A next question now is whether once more

realistic plants are taken into consideration, such as the muscles control-

ling the eyelids, this architecture is complete or additional components

are necessary to simultaneously meet the requirements of sensory predic-

tion and motor control.





CHAPTER 4
The CS-intensity e�ect as a

built-in cerebellar

sensorimotor contingency

In the previous chapter we demonstrated a cerebellar-based controller

applied to an avoidance learning task. The results con�rmed that the

model was functional and that in the trained robot, the commands of

the reactive and adaptive components are blended. We concluded that

the collision avoidance learning scenario developed for the previous study

o�ered us a test-bed where to reproduce �ndings of the experimental

eyeblink conditioning paradigm in the context of avoidance learning.

In this chapter we advance this work in two ways. First, we move from the

simulated to the physical world, to check whether the control architecture

is still functional in the noisy conditions inherent to a real-world control

problem. Secondly, we investigate whether an e�ect observed in the

eye-blink classical conditioning paradigm, i.e., the CS-intensity e�ect,

can be considered as a built-in sensorimotor contingency enhancing the

computational �exibility of the cerebellum.

83
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The CS-intensity e�ect is a contingency observed in classical condition-

ing that links the intensity of the CS with the latency of the acquired

CR. Thus, the rationale behind this work is that this modulation of the

response latency may allow the cerebellar model to control the execution

of the same skill with di�erent rapidities, according to the context. The

skill we use here is a turn, and the necessity to modulate the execution

rapidity is given by the di�erent velocities at which the robot navigates

the track.

The key features relating this chapter with the previous ones are the

following:

1. The computational layout employed in this model is the same as

in Chapter 3 with the di�erence that instead of using multiple

microcircuits that receive a low bandwidth binary teaching signal

we use a single microcircuit receiving a scalar teaching signal.

2. The generation of the cortical bases now explicitly introduces the

slow inhibitory component that was the core of the solution pro-

posed in Chapter 2 for the representation of time in the cerebellar

cortex.

3. We employ the same collision avoidance scenario developed for

Chapter 3, even though we move from a simulated to a real-world

setup. Crucially, we increment the speed of the robot as the train-

ing progresses.

This chapter reproduces a paper with the title �Speed Generalization

Capabilities of a Cerebellar Model on a Rapid Navigation Task� that will

appear in the proceedings of the International Conference on Intelligent

Robots and Systems (IROS) (Herreros Alonso et al., 2013b) to be held

in Tokyo, Japan, during November 3-8, 2013. The abstract reads:

The cerebellum is a brain structure necessary for skilled mo-

tor behavior and has a well understood and repetitive ar-
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chitecture. Such an architecture inspired the Marr-Albus-Ito

theory of cerebellar learning, that provides an explanation

for the acquisition of motor skills by the cerebellum. Nu-

merous computational models inspired in such a theory have

already been employed in robotic tasks. Here we look into

one of the suggested roles of the cerebellum, the replacement

of re�exes by anticipatory actions and we apply it to a robot

navigation task. The acquisition of anticipatory actions has

been thoroughly studied in the �eld of classical conditioning.

Of particular interest is the so-called CS-intensity e�ect, an

e�ect that links the rapidity of execution of an anticipatory

protective action, the Conditioned Response (CR), to the in-

tensity of a predictive signal, the Conditioning Stimulus (CS).

We propose that the CS-intensity e�ect implements a built-

in sensory-motor contingency that allows to carry over a skill

learned in a safe and easy context, e.g., turning at slow veloc-

ity, to a more di�cult one, e.g., a turning at a faster speed.

We demonstrate this hypothesis in a series of experiments

where a robot has to navigate a track that has a turn. We

show that after being trained at a slow velocity, by means

of the CS-intensity e�ect, the cerebellar controller modulates

the turning such that its onset anticipates as the robot speed

increases. Ultimately, through incremental learning, this gen-

eralization allows the robot to learn to navigate the track at

its maximum speed.

4.1 Introduction

Since the �rst theories of cerebellar learning were proposed (Albus, 1971;

Marr, 1969), computational models of the cerebellum have been applied

to robotic control tasks (Albus et al., 1975). The aim of such implemen-
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tations has been not only theoretical, to validate the functionality of cere-

bellar theories (Herreros Alonso & Verschure, 2013a; McKinstry et al.,

2006; Luque et al., 2011; Hofstotter et al., 2002), but also practical, since

computational models of the cerebellum perform competitively in some

domains (e.g. bipedal walking (Sabourin & Bruneau, 2005), robotic arm

control (Fag et al., 1997)). Competitive applications are often obtained

with models that abstract away from the cerebellar physiology. Such

models reproduce 1) the overall cerebellar architecture at the level of

the information pathways and 2) the error-based learning rule. However

poor attention is devoted to the �ne-grained dynamics of the cerebellar

computation. We believe that as much as the robotic community has

gained from the implementation of control systems blueprinted from the

cerebellar architecture, it will gain from reproducing the dynamics of the

real cerebellum. Here we look into the dynamics of anticipatory re�exes

controlled by the cerebellum as studied in classical conditioning. More

concretely, we look into the CS-intensity e�ect, that links the speed and

amplitude of execution of an anticipatory re�ex to the intensity of the

cue signal (Svensson et al., 2010, 1997). We show that the CS-intensity

e�ect implements a sensory-motor contingency that allows generalizing

a learned motor skill along di�erent speeds of execution. Finally, we

demonstrate that this generalization enables to safely learn the rapid

execution of a motor action, namely, to perform a turn at high speed

avoiding collisions.

In classical conditioning the experimenter sets up a contingency between

a neutral Conditioning Stimulus (CS) and a noxious Unconditioned Stim-

ulus (US) such that the CS becomes a predictor for an upcoming threat

(Pavlov & Anrep, 1927). Initially, the US triggers an innate and re�ex-

like protective Unconditioned Response (UR) that after training will be

preceded by a similar anticipatory action, i.e., the Conditioned Response

(CR) . For instance, in eye-blink conditioning a usual setup has a tone

preceding a mild electric shock to the peri-orbital area of an animal by a
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time interval below a second (Gormezano et al., 1987) that elicits a pro-

tective eyeblink. After a number of repetitions of such paired CS − US
presentations, animals develop an anticipatory blink, the CR, aiming to

mitigate the harm caused by the US.

Here we have translated the delay eyeblink paradigm to a collision avoid-

ance task. In such a task, a robot has to traverse a track avoiding col-

lisions. The track contains a single turn, that is preceded by a series

of stripes on the ground. The robot is equipped with sensors through

which it detects the marks on the ground (CS) and the proximity to the

walls (US). The proximity signal triggers �rst a reactive turn (URt) and,

over a certain threshold, a reactive braking (URb). Initially, the robot is

tested at a velocity for which the reactive control safely avoids collisions

even though the close proximity to the wall forces the robot to brake.

Thus, �rstly, cerebellar learning will be expressed as an anticipatory and

smooth turn, the CR, preventing the robot from reducing the velocity.

Our rationale is to apply a sensory motor contingency like the CS-

intensity e�ect to generalize the turn learned at the slower and safer

velocity to a faster and dangerous one, i.e., a velocity for which the re-

active controller would not prevent the robot collision. Ultimately, this

would allow the robot to learn to navigate the track at higher veloci-

ties. In order to map the speed into the intensity of the CS, we use

the derivative of the visual signal, i.e., an analogous to simple optic �ow

signal. Likewise a faster robot will experience a more intense (albeit

shorter) CS.

We use an adaptive �lter model of the cerebellum with a de-correlation

learning rule (Dean et al., 2010). In accordance with this model, the

signal generated by the visual input is decomposed on a series of compo-

nents with di�erent temporal pro�les, we call them cortical bases. The

cerebellar learning consists then in �nding the weights of the linear com-

bination that maps the response of cortical bases into a correct output.
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In our case, a correct output is the one producing an anticipatory turn

that either allows the robot to navigate the track without reducing the

velocity or, if this is not possible, to simply stay within the track bound-

aries avoiding collision.

According to this scheme, when the CS-intensity is increased, the vari-

ation of the CR learned at a given intensity depends on the response of

the cortical bases to the new CS. For instance, if doubling the intensity

of the stimulus only doubles the response of the cortical bases, but does

not alter their temporal pro�le, the cerebellar output will only be scaled

in amplitude but not shifted in time. Thus, in practical terms, the re-

sponse of cortical bases responses has to be non-linear. To achieve this,

we implement in our model the signal transduction mechanism that is

applied in the input stage of the cerebellar cortex, i.e., at the granular

layer (Eccles et al., 1967). Namely, we assume that the granule cells, the

cells that code the cortical bases, act as linear thresholded �lters (Spanne

& Jörntell, 2013) and that their output results from the interaction of a

fast excitatory component minus a slow inhibitory one (Crowley et al.,

2009).

To summarize, we propose that the CS-intensity e�ect allows to gener-

alize a sensory motor association learned at one speed of execution to

di�erent ones and that this generalization can help a robot to master the

execution of skilled behavior at high speeds through incremental train-

ing. In order to reproduce the CS-intensity e�ect in the computational

model of the cerebellum, we generate the cortical bases mimicking the

fast excitation followed by slow inhibition signal transduction of the cere-

bellar cortex. Finally, we validate this proposal with a series of robotic

experiments where a robot navigates a track at gradually increasing ve-

locities.
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4.2 Methods

4.2.1 Computational architecture

The computational architecture implemented two layers of control (Fig.

4.1). The reactive controller maps the proximity signals at both sides

of the robot (USl and USr) into re�ex-like avoidance turns (URtl and

URtr) and braking actions (URbl and URbr). In addition, an adaptive

controller, implemented as a cerebellar analysis-synthesis adaptive �lter

controller ((Dean et al., 2010)), will eventually acquire an anticipatory

turn after the CS and ahead of the UR. In these experiments, since the

tracks included just a single right turn, we only implemented a controller

to anticipate the turn to the right. However, we mounted reactive con-

trollers in both sides, to ensure that the robot stayed on the track even

when the anticipatory turn was overshooting.

4.2.2 Cerebellar model

The neurobiological assumptions underpinning this model have been de-

scribed elsewhere (Herreros Alonso & Verschure, 2013a). We just high-

light that this model implements the Nucleo-Olivary Inhibition (NOI),

through which the cerebellum can compare its output signal with the

sensory signal carrying the US information, and adjust its mapping until

the mismatch is minimized. Additionally, here we add a slow inhibitory

components to the computation of each basis computation, that allows

for more precise responses.

To generate the signal of the cortical bases we produce two components

for each basis: a fast excitatory and a slow inhibitory one. Each com-

ponent consists of a double exponential convolution. The time constants

of the convolutions for the excitatory and inhibitory component are ran-

domly drawn from two �at probability distributions ranging from 0.05 to

0.1 seconds, and from 0.2 to 5.5 seconds, respectively. These values are
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Figure 4.1: Computational architecture with the reactive and adap-
tive controllers. CS, conditioning stimulus (visual input); US, uncon-
ditioned stimulus (proximity signal); CR, conditioned response (an-
ticipatory turn); URt, unconditioned response (reactive turn); URb,
unconditioned response (reactive brake); CER, cerebellar controller;
Rturn, reactive turn controller; Rbrake, reactive brake controller; θbrake,
threshold for braking; knoi, gain of the Nucleo-olivary inhibition; kturn,
gain of the turning command; kbrake, gain of the braking command.

signi�cantly over the physiological time constants of the synaptic currents

found in the cerebellar cortex, but they are appropriated for the current

experimental setup. The value obtained after the two convolutions is

then thresholded and scaled for each basis. The whole computation is

formalized as follows:

erj(t) = γrj e
r
j(t− 1) + CS(t)

edj (t) = γdj e
d
j (t− 1) + erj(t)

ej(t) = σj [e
d
j (t)− θj ]+

where j indexes a particular basis. erj and e
d
j compute a convolution and,

informally, each one governs the rise and decay of the ej basis, respec-

tively. They are controlled by the persistence factors γrj and γdj , which

generate the appropriated exponential decay. The third equation adds a
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non-linearity (a threshold θj) that in the current implementation is crit-

ical for obtaining the response latency modulation by the CS intensity

(note that [x]+ = max(x, 0)). I.e., without such a threshold the com-

putational model would act as a linear �lter. For each cortical basis an

inhibitory component, ij is generated with the exact same process, only

using time constants 10 times larger.

The �nal value of the basis, pj , is computed as follows:

pj(t) = [ej(t)− ij(t)]+

The output of the cerebellar controller is given by:

CR(t) = [p(t)Tw(t)]+

where w(t) is the vector of weights and p(t), the vector of bases.

The weights are updated using the de-correlation learning rule:

∆wj(t) = β E(t) pj(t− δ)

where β is the learning rate and E(t) is the error signal, computed by

the inferior olive output (see below). δ provides the latency of the NOI.

The value of δ determines how much the adaptive action anticipates the

reactive one and has to exceed the feedback delay (Miall et al., 1993). In

our experiments we used a β of 0.01 and a δ of 1.0 s. We estimated that

the feedback delay in our system was in the order of 0.2 seconds.

Finally, the error signal for the cerebellar system is computed as the

di�erence between the scaled cerebellar output and the US signal as

follows:

E(t) = US(t)− knoiCR(t− δ) (4.1)

The factor scaling the CR is the gain of the NOI, knoi. Note that through

this computation, the error signal for the cerebellum is suppressed before
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Figure 4.2: Experimental setup. Mixed reality environment with the
back-projected arena and the physical robot (e-puck).

the sensory US is completely prevented, for which a fraction of the initial

reactive response, UR, still prevails after training. The amplitude of this

residual UR depends on the knoi value and has functional implications

(see (Herreros Alonso & Verschure, 2013a)). In short, with a knoi of 1

the �nal amplitude of both actions would be similar whereas with a knoi

equal to 0 the adaptive response would completely replace the reactive

one. In this setup we use a value of 0.4, obtaining a CR that is bigger

than the UR at the end of training.

4.2.3 Experimental setup

The setup consists of an epuck robot (Mondada et al., 2009) and a Mixed-

Reality Robot Arena (MRRA) (Fibla et al., 2010). The robot navigates

a track back-projected onto the table displaying the CS signal as a series

of green stripes. A tracking system captures the position and direction

of the robot in order to compute the sensory data, proximity and visual

signals. These virtual sensory signals are provided to the controller sys-

tem, that then issues the appropriated motor commands to the epuck
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robot via a bluetooth connection. In summary this setup mixes the con-

straints of controlling a real robot with the versatility of generating a

virtual scenario.

Stimuli The robot is equipped with virtual sensors. Namely, a camera

and proximity sensors. The camera allows to detect the green stripes

displayed on the ground of the track. From this input, we compute the

proportion of the visual �eld occupied by CS stimulus (the green stripes).

The CS is then computed as the di�erential of the previous signal. With

this procedure, the intensity of the CS signal is linked to the speed of the

robot, since the instantaneous variation in the visual �eld is proportional

to the robot velocity. The proximity sensors are mounted at each side,

frontally and 15 degrees away from the forward direction. They have a

range of 6 cm, and are normalized such that at maximum proximity their

value is 1.

Motor commands The motor of each wheel is controlled indepen-

dently, with a signal that blends the output of all controllers as follows:

Ml = Minit + kturn(CR+ URtl − URtr)
−kbrake(URbl + URbr)

Mr = Minit + kturn(CR− URtl + URtr)

−kbrake(URbl + URbr)

Ml and Mr denote the left and right commands, respectively. Minit sets

the initial velocity, that is maintained constant for each trial. We use

values ranging from 8 cm/s (corresponding to a Minit equal to 20 units)

to 20 cm/s (corresponding to a Minit equal to 50 units). The reactive

turns (URtl and URtr), that convey the same value as their contra-lateral

US signals, are added to the anticipatory turn (CR) and multiplied by

the motor gain for the turn kturn. Each brake command is computed as
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Figure 4.3: Evolution of the responses. (Left). Reactive commands
at the �rst trial (turning [thin line] and braking [thin dashed line])
and at last trial (reactive turning [thick solid line], there is no braking
at the last trial). The cue signals are displayed near the onset of the
trial [grey dotted lines]. (Right). Evolution of the adaptive command.
Darker color indicates higher amplitude of the response.

follows:

URbl = (1− θbrake)[(USr − θbrake)]+

In short, each URb is computed as the proximity signal exceeding the

θbrake threshold, normalized. Both braking actions are then added and

multiplied by the corresponding motor gain (kbrake). In our experiment

we set kturn and kbrake to values of 8 and 20, respectively, and set the

braking threshold to 0.5, what corresponds approximately to a 3 cm

distance from the wall.

4.3 Results

4.3.1 Experiment 1

The goal of this experiment is to train the robot to acquire a predic-

tive turn allowing it to traverse the track without decreasing the initial

velocity. The training session lasts 100 trials. We set up an initial veloc-

ity of 8 cm/s. This speed is su�ciently slow to prevent the robot from
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Figure 4.4: Integration of the reactive and adaptive responses. (Left).
Total command in an early trial (thin lines) and at the end of learning
(thick lines). The dashed lines separate the adaptive (below) and re-
active components of the response (above). (Right). Trajectory of the
robot for the same two trials

hitting the wall under sole reactive control. However, even at this slow

velocity the proximity signal reaches the braking level (Fig. 4.3 left). As

training progresses we observe the acquisition of a predictive turn that

slowly grows in amplitude and becomes more accurately timed (Fig. 4.3

right). Note that at the end of the training the reactive response is not

completely erased: the proximity signal still grows over the threshold

causing a reactive turn, but stays below the braking threshold (Fig. 4.3

left). Thus, once successfully trained, the robot balances the predictive

and the reactive actions such that it can traverse the track as fast as

possible preserving the initial speed.

Concerning the relative timing of both actions, δnoi determines how much

the adaptive response will anticipate the reactive one (Fig. 4.5). We set

up this parameter to 1 s, obtaining an optimal merge of both actions (Fig.

4.4). Namely, the adaptive response peaks at the onset of the reactive

one, which is the textbook de�nition of adaptive timing in the classical
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Figure 4.5: Quanti�cation of the responses during training. (Left).
Timings relative to the CS onset. Onset (gray markers) and peak
(black) of the adaptive response and peak of the reactive one (empty
marker). Mean and standard deviations computed every �ve trials.
(Right). Maximum amplitudes of both responses.

eye-blink conditioning paradigm. This merge results in a �nal trajectory

where the robot displays a single turn di�erent from the trajectory during

the early trials, where both turns can be singled out (Fig. 4.4).

4.3.2 Experiment 2

With the second experiment we assess how well the response acquired at

the initial safe velocity generalizes to faster velocities. For this, we applied

the cerebellar controller that we trained in the previous experiment and

we froze its memory by setting the learning rate to 0. Afterwards, we

increased the initial velocity every �ve trials by a step of 0.8 cm/s. In

this way, at the trained velocity the cerebellar controller outputs the

same response acquired during the training, but the response at higher

velocities depends on how the increased intensity of the CS is translated

into the response.

We �rst evaluate the experiment in behavioral terms. For this we test

which is the maximum speed that the robot can achieve before colliding
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with the walls. We observe that after having only been trained at a

velocity of 8 cm/s, the robot can safely navigate the track at speeds up

to 17.6 cm/s. Note that the highest safe speed with sole reactive control

was of 14.4 cm/s (see supplementary video). Therefore, even though the

robot cannot learn from scratch to traverse the track at a speed of 17.6

cm/s, because it will crash with the wall in the �rst trial, it can traverse

the track at such a velocity if it is initially trained at the safe velocity

of 8 cm/s. This suggests that, in principle, we can use this controller to

train the robot optimally navigate this track at the speed of 17.6 if we

�rst train it at 8 cm/s.

Now, we examine the output of the cerebellar controller to assess whether

the navigation of the track at higher velocities is achieved, 1) because the

exact response that was learned at the initial training speed is triggered

at higher velocities but still facilitates the turning, or 2) because the

learned response is generalized in congruence with the requirements of

the increased velocity. Note that as the velocity increases, the interval

between the CS and the collision shortens and that, given the dynamics

of the motor plant, the amplitude of the turning command also increases

(i.e., reproducing the same curvature at a higher speed requires a higher

control signal). Thus, to generalize from the previous learned motor

command, the cerebellum has, 1) to anticipate the adaptive response

such that the robot turns earlier and 2) increase the amplitude of the

motor command. We recall here that the speed of the robot is implicitly

coded in the intensity of the CS.

We obtain that as the velocity increases (as the intensity of the CS stim-

ulus increases) the timing of the adaptive response is anticipated. The

anticipation is such that at all the velocities tested the adaptive response

still peaks ahead of the reactive one (Fig. 4.6 left). The adaptive turn

remains anticipatory even when the increase of speed triggers an earlier

reactive turn. However, we do not obtain an increase in the amplitude

of the response together with the increased velocity (Fig. 4.6 right).
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Figure 4.6: Quanti�cation of the responses during generalization.
(Left). Timings relative to the CS onset. Peak of the adaptive re-
sponse (black) and peak of the reactive one (empty marker). Mean
and standard deviations computed every �ve trials. (Right). Maxi-
mum amplitudes of both responses.

This lack of generalization of the amplitude may be the reason why, even

though the learned response remains anticipatory, at some point it be-

comes insu�cient to keep the robot on the track.

4.3.3 Experiment 3

Finally, we want to �nd out whether the controller allows the robot to

traverse the track at its maximum velocity (20 cm/s). For this we run an

experiment in which the robot is incrementally trained at higher veloci-

ties. As in the previous experiment we depart from a cerebellar controller

already trained during 100 trials at the initial velocity of 8 cm/s. When-

ever the robot navigates the track without braking for 5 consecutive trials

or after performing 10 trials at the same velocity, we increase the velocity

by a step of 0.8 cm/s. Our hypothesis is that, since the controller gener-

alizes the response learned at a slower velocity to a higher one, learning

to perform a correct turn at an increased speed would only require a

�ne-tuning of the initial acquired CR.

We obtain that the robot is able to navigate the track at the maximum
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Figure 4.7: Quanti�cation of the responses during continuous learn-
ing. (Left). Timings relative to the CS onset. Peak of the adaptive
response (black) and of the reactive one (empty marker). For compar-
ison, the peak of the CRs obtained in the previous experiment are also
displayed (gray). Mean and standard deviations computed every �ve
trials. (Right). Maximum amplitudes of both responses.

velocity, even though it cannot avoid braking for speeds above 17.6 cm/s.

To assess how much the generalization from slower to higher velocities

facilitates the learning, we compare the results from experiment 2, that

were generalized from a single initially trained velocity, with the com-

mands learned in this experiment, where the learning proceeds at each

velocity step, assuming that a major similarity implies a better gener-

alization. We observe that having learned to perform the turn at the

velocity of 8 cm/s, the controller correctly generalizes the timing at the

velocities up to 17.6 cm/s, i.e., there is no systematic di�erence between

the timing of the generalized and the learned commands (Fig. 4.7 left).

However, both commands are very di�erent in amplitude (Fig. 4.7 right).

As our controller did not reproduce the amplitude component of the gen-

eralization, the learned commands have a bigger amplitude than the gen-

eralized ones. Finally, besides delaying the collision with the wall, that

in the current experiment did not occur even at the maximum velocity of

the robot, learning a more precise response allows the robot to navigate

the track faster (Fig 4.8).
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Figure 4.8: Time to navigate the track at di�erent velocities with
continuous learning (dark) or only training at the slowest speed (gray).
Mean and standard deviation of the last �ve trials in each condition.

In conclusion, we observe that the correct generalization of the timing

of the CR to higher velocities allows the robot to learn to navigate the

track at its maximum velocity.

4.4 Conclusions

We have presented a control architecture inspired by the cerebellum that

allows a robot to navigate a track avoiding collisions. Such controller

learns to transform a purely reactive avoidance response into a more

complex response that includes both anticipatory and reactive compo-

nents, i.e., the CR and the UR, respectively. We have also shown that

even if the robot is only trained at the slowest velocity, the generalized

response is still adaptive for higher velocities, with the CR correctly an-

ticipating the US onset. In addition, we show that this generalization

facilitates the process of learning to navigate the track at velocities much

higher that the ones that could be safely handled by the reactive control

alone.

To achieve this result we have extended previously existing computational
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models of the cerebellum (Herreros Alonso & Verschure, 2013a; Dean

et al., 2010) with a method for generating the cortical bases inspired by

the cerebellar physiology. More concretely, here we added two features

that mimic the computation of the cerebellar granule cells: the interplay

between fast excitation and slow inhibition (Crowley et al., 2009) and

the non-linearity of their responses (Spanne & Jörntell, 2013). The �rst

modi�cation allows the system to acquire precise responses and the sec-

ond, the non-linearity of the bases, namely, the addition of a threshold to

the currents, is necessary for achieving the modulation of the CR latency

by the intensity of the CS. Since in our set-up the intensity of the CS

is linked to the velocity of the robot, this means that as the velocity of

the robot increased the latency of the response was correctly advanced.

This addition allowed us to explore the generalization of an avoidance

action over di�erent speeds of execution, a feature not studied in other

previous studies that used cerebellar controllers for collision avoidance

(Hofstotter et al., 2002; McKinstry et al., 2006).

With this controller the reactive turn, the UR, is not completely sup-

pressed by the CR. The amount of the �nal response transferred to the

adaptive controller is determined by the gain of the NOI (knoi) (Her-

reros Alonso & Verschure, 2013a). The residual UR is the only means

for the controller architecture to know that the CR is necessary. For

instance, if we remove the US of the current set-up (removing the turn

while keeping the CS) this controller would gradually extinguish the CR.

Thus thanks to the comparison between cerebellar output and sensory

input performed via the NOI this controller can manage the acquisition

and extinction of an anticipatory adaptive re�ex in a totally autonomous

way.

The proposed controller architecture is not task speci�c and, in general,

it could be applied to scenarios having a feedback signal that has to be

kept under a certain safety level. An interesting suggestion is that this
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type of controller could be involved safe limb control in soft robots (Dean

et al., 2013). In that case, the cerebellar controller would take care of

avoiding the limbs to too strongly collide with the robot's own limbs

or external objects. The major di�erence then in that case is that the

signal playing the role of the CS will be internally generated, re�ecting

the robot's intent to move the limb.

Regarding the delay of the NOI, some questions remain open. First, how

can this parameter be learned? And secondly, can it also be modulated?

In particular, the second question has a functional relevance in our sce-

nario, because even though the CS-CR interval is learned by the system,

the CR-UR is �xed. In other words, the CR always anticipates the UR

by the same �xed time interval, even if it it would be more e�ective for

this time interval to be adjusted according to the velocity.

Thus, to conclude we have presented a controller for the acquisition of

anticipatory re�exes that besides being completely autonomous, it in-

cludes a built-in sensory motor contingency that modulates the timing

of the protective action according to the intensity of the predictive cue.

For the �rst time we have implemented this controller with a real robot.

The next step will be to apply this controller with more complex motor

plants to validate whether this built-in sensory motor contingency facil-

itates learning the rapid execution of motor actions when the dynamics

are more complex.



CHAPTER 5
Replacing a cerebellar

microcircuit by a synthetic

system

In the previous chapters we have deployed computational models onto

progressively more constrained scenarios. This is, starting from a purely

computational study, continuing with a computational model applied to

a simulated task, ending with the application of a computational model

to a real-world robot task. In all cases, we dealt with the issuing of well-

timed actions. The last experimental work that we present addresses

the same issue but in the most constrained scenario for a neural model:

controlling a living animal via the (functional) replacement of one of its

brain structures.

So far, the positive results obtained are existence proofs for a given artic-

ulated computational hypothesis of the function of the cerebellar cortex.

The components of such a hypothesis are the following: 1) the granular

layer produces a representation of the passage of time presynaptically to

the Purkinje cells; 2) Purkinje cells exploit such a code by means of a

synaptic plasticity mechanism, therefore being able to trigger adaptively-

103
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timed responses; 3) the Purkinje cells receive a teaching signal via the

climbing �bers; 4) the inhibition of the IO by the deep nuclear cells is a

necessary component of the circuitry, that modulates the acquisition and

extinction dynamics, and that is fundamental for the adaptive timing of

the CRs. Now, we go beyond the existence proof to validate whether a

synthetic system built along this computational hypotheses is compatible

with the brain of a living animal. In other words, if instead of arti�cially

generated signals we connect the model to biological signals retrieved in

real-time, is our computational model still functional?

Since this test is done in the context of the development of an implantable

neuro-prosthesis, further implementation constraints apply. In short, it

was necessary to reduce the computational model to its functional core.

For this reason, the computational model we present in this chapter is

qualitatively di�erent from the models presented so far. Namely, we

have been assuming that the cerebellar output is produced as a linear

combination of multiple bases, each one providing a di�erent coding of

time. Now, to allow implementation of the model in a low power aVLSI

platform, we use a minimal representation of time, a single basis that via

a non-linear mapping controls the issuing of a stereotyped conditioned

response. Indeed, the overall design of the computational model follows

the line of previous aVLSI implementations by our own group (Hofstotter

et al., 2004) but adapts it to the requirement of dealing with a teaching

signal that is encoded as a binary signal with a low level of spontaneous

activity (this same requirement was considered in Chapter 3).

This chapter reproduces a manuscript Herreros Alonso et al. (2013a)

that has been submitted to a journal from the �eld of neural circuits and

neuroprosthetics. The abstract of the manuscript reads as follows:

The reproduction of the computations performed by a brain

structure opens the possibility of developing a neuro-pros-

thetic system that could replace the original structure. Here,
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we demonstrate the feasibility of this approach with respect

to the motor learning capabilities of the cerebellum. Speci�-

cally we show that we can sustain the acquisition, retention

and extinction of the eye-blink re�ex in a rat when the bi-

ological circuit that performs this task, the cerebellum, has

been inactivated by anesthesia. To achieve this, we �rst de-

velop a computational model of the cerebellar microcircuit

involved in the acquisition of conditioned re�exes and test it

with synthetic data that has the characteristics of the sig-

nals directly obtained from the brain. Later, in a closed-

loop bio-hybrid preparation, we interface the model with the

brain of an anaesthetized rat, feeding into the synthetic sys-

tem the biosignals recorded from the cerebellar input struc-

tures and injecting back the result of the computation into

an area targeted by cerebellar output. In consequence, we

show that an anaesthetized rat can be classically conditioned

to the acquisition of an eye-blink response with the aid of

our neuro-prosthetic system. Finally, to overcome stability

problems in the dynamics of the recorded biosignals, we pro-

pose an updated computational model and validate it with

the experimental data recorded. The neuro-prosthetic sys-

tem presented here is unique in that it replaces a function of

the central nervous system receiving inputs from the brain

and returning its outputs back into the brain. These results

represent an early example of science based medicine where

on one hand the neuro-prosthetic system directly validates a

theory of cerebellar learning that informed the design of the

system, and on the other, it takes a step towards the devel-

opment of neuro-prostheses that could recover lost learning

functions in animals and, in the longer term, humans.
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5.1 Introduction

Neural prostheses between the central nervous system and peripheral

systems exist from some time. Some examples are retinal and cochlear

implants (Cohen, 2007; Zrenner, 2002; Wilson et al., 1991; Eddington

et al., 1978), and brain computer interface systems controlling arti�cial

limbs (Hochberg et al., 2012; Moritz et al., 2008; Schwartz et al., 2006;

Chapin et al., 1999). However, the bi-directional coupling of a prosthetic

system with the Central Nervous System (CNS) has only very recently

been addressed (Berger et al., 2011; Giovannucci et al., 2010). Here we

demonstrate the functional bi-directional coupling of an arti�cial system

and the CNS in the context of classical conditioning.

Classical conditioning is one of the most essentials forms of associative

learning (Pavlov & Anrep, 1927). In classical conditioning, an initially

neutral Conditioned Stimulus (CS) precedes an aversive or appetitive Un-

conditioned Stimulus (US), leading to the acquisition of a Conditioned

Response (CR). A widely employed paradigm in classical conditioning is

eye-blink re�ex conditioning where an animal is exposed to a CS, e.g., a

tone, followed after a certain Inter-Stimulus Interval (ISI) by an aversive

US to the eye or periorbital area, e.g. an air-pu� (Kehoe & Macrae,

2002b). After repeated trials of this paired stimulus presentation, the

animal closes the eyelids in anticipation of the expected air-pu�; this

anticipatory action is known as the conditioned response (CR). If a so

trained animal is subsequently exposed to tones followed by the absence

of the air-pu� US (CS-alone stimulation or extinction training), the pre-

viously acquired associative CR will disappear and the tone will return

to its neutral nature. Remarkably, if we repeat the initial training after

extinction, the CRs are more rapidly acquired, a phenomenon known as

savings (Napier et al., 1992).

The cerebellum is critical for the acquisition of CRs in eyeblink condi-

tioning (Christian & Thompson, 2003; Hesslow & Yeo, 2002). The CS
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signal reaches the cerebellum through the mossy �bers originating in the

Pontine Nuclei (PN), while the US signal is projected through the climb-

ing �bers originated in the Inferior Olive (IO). These two projections

converge on the cerebellar Purkinje Cells (PCs), the sole output cells of

the cerebellar cortex, that acquire a reduction in their activity to the

CS (Jirenhed et al., 2007) that through dis-inhibition of their target, the

deep nuclear cells, leads to the production of the CR.

Following these assumptions, we have previously developed a computa-

tional model of learning in the cerebellum (Hofstotter et al., 2002; Ver-

schure & Mintz, 2001) that was implemented in aVLSI hardware and

tested in a robot learning task (Hofstotter et al., 2004). Here we show

how this computational model can be deployed as a prototype of a neuro-

prosthetic device by interfacing an implementation of the model with the

brain of a living animal, replacing the function of the animal's inactivated

cerebellum.

The validation proposed here entails feeding the computational model not

with the arti�cial signals generated in the robot experiments, but with

biosignals acquired through electrodes. Indeed, a very relevant di�er-

ence among this so-called bio-hybrid set up and the robot one previously

tested (Hofstotter et al., 2004) resides in the coding of the CS and the

US: whereas in previous work, the computational model received an un-

ambiguous CS/US signal, the signal we now extract from the animal's

pons and IO is re�ecting the complexity of the biological system. In

particular the IO derived signals contain US-evoked events interspersed

with many events caused by the spontaneous activity of the IO. Indeed,

the characteristics of the signal we retrieve in our experiment is a good

match with the IO physiology showing a baseline �ring rate in the range

of 0.5-2 Hz (De Zeeuw et al., 1998). In other words, in our experiment,

the encoding of the US in the IO is very noisy. Therefore, in order to

adapt the computational model to the characteristics of the experimen-

tal biosignals, our �rst goal is to develop a set of methods allowing the
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computational model to work even when there is a low level of signal to

noise in the IO channel.

In addition to providing a proof of concept of our approach towards

neuro-prosthetics, our second goal is to validate the algorithms designed

for the interfacing and operation of a neuro-prosthetic system in an in-

vivo bio-hybrid preparation. The system under evaluation implements a

real-time model of cerebellar learning that is driven by signals recorded

directly from the PN and IO, detecting CS and US events respectively

from these recording channels, and transduce CRs acquired by the neuro-

prosthetic system by stimulation in a physiologically appropriate location

in the Facial Nucleus (FN) in order to elicit a well-timed CR, with laten-

cies matched to the biological circuit being replaced (see Prueckl et al.

(2011a) for speci�cs on the physiology of this experiment). Since in our

preparation the acquisition of natural CRs is precluded by anesthesia,

any overt CRs observed in the experiment are the result from associative

learning occurring solely within the synthetic system.

Finally, we address a drawback encountered in the experimental setup.

Namely, during the recording the level of spontaneous activity in the IO,

that has a crucial e�ect on the stability of the learning, slowly varies

during the experiment ± 1 Hz above the initial value. Therefore, and

foreseeing that such �uctuations are even more likely to occur in a future

chronic implant, our �nal goal is to implement a variation of the cerebellar

algorithm that is robust under similar conditions, i.e. slow �uctuations

in the activity of IO.

We believe that our approach de�nes a speci�c paradigm for the gen-

eration of neuro-prosthetic systems that evolves following 4 steps: 1:

identify the input and output structures and their encoding, 2: identify

the anatomical and physiological principles underlying the computations

performed by the target system, 3: integrate steps 1 and 2 with the

appropriate signal processing in a single device and 4: miniaturise the
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neuro-prosthetic system while optimising its power consumption. Here

we emphasize steps 1-3 since we already previously have demonstrated

step 4 (Hofstotter et al., 2004).

In summary, with this work we sought to provide further evidence for the

fundamental principle underlying our model; namely, that the activity

of the IO constitutes a teaching signal that controls the acquisition or

extinction of CRs, and that by regulating the IO activity, the Nucleo

Olivary Inhibition (NOI) stabilizes the CRs during paired CS-US training

and drives extinction during CS alone stimulation. Our results provide

such evidence, and additionally, they demonstrate at the design level

the possibility of realizing an implantable low power neuro-prosthesis

that would support the controlled acquisition, retention and extinction

of novel behavior even if the biological substrate has lost its learning

capability due to trauma or ageing.

5.2 Methods

5.2.1 Cerebellar model

Latencies

It is well known in the domain of control theory that the latencies and

delays inherent in a system to be controlled play an important role in

the design of the controller. Here, our controller is based on the cere-

bellar microcircuit involved in eye-blink conditioning. In nature, such a

microcircuit must have internalized the latencies to the eyeblink system

in several ways, one of them arguably being through the unusually long

latency of the NOI (Hesslow, 1986) that we had previously interpreted as

allowing for the matching of the system delays (Hofstotter et al., 2002).

Informally, once an error signal reaches the IO, such a delay indicates

how far ahead of it, the cerebellum should have taken a protective action

for it to be e�ective. Consistently with this view, in the computational
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Figure 5.1: Biological microcircuit and synthetic counterpart.

Recording (pn and io) and stimulation sites. After ampli�cation and
�ltering of the signals recorded in the a�erent structures, discrete
events retrieved from Multi Unit Activity (MUA) are isolated by the
event detection stages of the system, such that they are fed to their
counterparts in the synthetic cerebellum (PN and IO). In nature, the
repeated coincidence of CS and US signals within the cerebellar cortex
induces plasticity causing the cerebellum to respond to the CS with
a CR. In our model, once such a CR is acquired, it is relayed via
the synthetic DN to the fn of the rat as an electrical stimulation that
causes the animal to trigger the behavioral CR, i.e., the eyeblink. In
addition, within the model, the CR triggered by the DN inhibits the
IO, preventing a US derived signal from reaching the cerebellum once
a protective action has already been issued. Since anesthesia prevents
acquisition in the rodent's cerebellum, behavioral CRs expressed in the
set up studied here are controlled by the synthetic circuit.
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model that we employ (see below), the latency between the activation of

the Deep Nucleus (DN) and the onset of the inhibition of the IO (the

NOI delay, Λnoi) sets the anticipation of the CR execution relative to the

expected US arrival (Hofstotter et al., 2002) (see Fig. 5.2). Therefore,

we will �rst discuss the latencies associated with the task of classical

conditioning, since their speci�c properties underlie the cerebellar com-

putational model.

PN
trigger

detection

FN
trigger eff. eyelid closure

ωCS

ωCR

NOI

Λnoi

inhibitory
pulse

IO

trigger

ωUS

ISI

tCR

detection
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detection

FN
trig. eff. eyelid closure

ωCS

ωCR

NOI
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inhibitory
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trigger
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detection

BA

Figure 5.2: Intrinsic latencies of the eye-blink conditioning

preparation. A: ISI, Inter-stimulus interval; ωCS, latency between
the peripheral CS stimulation and the detection of its associated neu-
ronal response in the PN; tCR, internal response timing learned by the
model between the CS detection and the CR triggering; ωCR, latency
between the neuronal triggering of the CR and the e�ective eyelid clo-
sure, Λnoi, delay between the CR trigger and the onset of the negative
feedback loop inhibition; ωUS, latency between the US trigger and the
detection of its associated neural response in the IO. B: Same latencies
as in A for the minimum learnable ISI.

Concretely, setting a functional delay for the NOI requires knowledge of

the transmission or mechanical latencies involved in the task, otherwise
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the internal timing of the CR and US signals would result in non-adaptive

CRs coming too late or too early with respect to the US air-pu�. In other

words, for the blink to anticipate the air-pu�, Λnoi has to exceed the sum

of the sensory latency between the air-pu� reaching the cornea and the

US detection (ωUS) plus the e�ector latency between the CR triggering

by the DN and the e�ective eyelid closure (ωCR):

Λnoi ≥ ωCR + ωUS (5.1)

In the literature this sum of a�erent plus e�erent latencies is referred to

as the delay of the error feedback (Miall et al., 1993). Setting Λnoi to

this minimal latency the CR and the US onsets will match. However, to

achieve a better protection form the US, the best temporal arrangement

of CR and US is that of the US onset coinciding with the middle of the

CR. Given that we elicit the CR by an electrical stimulation lasting 150

ms ((Prueckl et al., 2011b)), such a temporal arrangement is achieved

adding 75 ms to the minimal latency in Eq 5.1.

On the other hand, the sum of the latency between the onset of the

CS delivery and its detection (ωCS) plus the latency between the FN

stimulation and the CR execution (ωCR) a�ects the optimal internal

timing (tCR) that the model has to acquire for a given ISI:

tCR = ISI − (ωCS + ωCR) (5.2)

This time interval is shorter than the external ISI since it accounts for the

detection and execution latencies. Note that diminishing tCR towards

0 we get the minimum ISI that is learnable by the model, where CS

detection immediately triggers a CR:

minISI = ωCS + ωCR
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For an ISI shorter than minISI , a CR initiated by the cerebellum will

always come after the US. For this reason, we will design a controller

that only acquires CRs whenever the ISI exceeds this value.

Computational model

In what follows we summarize the biological model that is a modi�cation

of an earlier model (Hofstotter et al., 2002; Verschure & Mintz, 2001).

Our model is based on the following assumptions: (1) the cerebellum

is the brain area principally involved in the acquisition of a CR in the

delay classical conditioning paradigm; (2) the only inputs received by the

cerebellum are the Mossy Fibers (MF), carrying CS-related information,

and the Climbing Fibers (CF), carrying US-related information; (3) the

mechanism responsible for the acquisition of a conditioned response is

plasticity at the Parallel Fiber (PF) to PC synapses; (4) such plasticity

is induced by the stimulation of PF, alone (Long Term Potentiation �

LTP) or jointly with CF (Long Term Depression - LTD); (5) IO, cere-

bellar cortex and DN are organized in distinct micro-complexes, which

constitute negative feedback loops over IO; (6) the timing of the CR is

adapted to the length of the ISI by these olivo-cortico-nuclear feedback

loops that control the plasticity at PF-PC synapses by gating the cf er-

ror signal; (7) the training procedure leads to a pause in PC activity

following CS presentation; (8) a CR is triggered by dis-inhibition of the

deep nucleus by the cessation of PC �ring; (9) PCs operate in two dis-

tinct modes: a spontaneous and a CS-driven mode. Informally, the PC

is always maintained active during spontaneous activity of the input PF.

However, during a CS presentation, PCs switch to a decaying activity.

For a detailed explanation see Hofstotter et al. (2004).

Here, in order to deploy the cerebellar model on a low power aVLSI

platform, we generated a computational model functionally equivalent

to previous versions (Hofstotter et al., 2004, 2002; Verschure & Mintz,

2001) albeit more abstract from an anatomical standpoint to ensure com-



114 CHAPTER 5. A SYNTHETIC CEREBELLUM

putational e�ciency.
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Figure 5.3: Functional model of the cerebellum. The processes in
the top row (white boxes) map PN activity into action; in the case of
eyeblink conditioning, tone detections into eyeblinks. Such mapping is
controlled by the memory parameter w. The shaded processes adapt
the mapping, namely, they are involved in the adjustment of w. The
numbers identify speci�c processes. The latencies a�ecting each of the
recording and stimulating channels as well as the parameters used in
each process (wee main text for an explanation).

Process descriptions The Trace generation, Scaling and Threshold-

ing processes (1, 2 and 3 in Fig. 5.3) model the processing of information

that enters the cerebellum via the mossy �bers and leaves it through the

excitatory axons of deep nuclear cells that project to the FN (Hesslow

& Yeo, 2002; Christian & Thompson, 2003). The Trace generation (1)

process codes the time since the CS onset with a decaying trace having

a �xed initial value (τ0), �nal value (τ1) and duration (Λτ ). This trace

de�nes the memory span of the system; i.e. the maximum temporal gap
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between CS detection and a CR execution learnable by the system. The

Scaling (2) process multiplies the trace with the memory parameter w,

which is the only parameter modi�ed by learning. With w we mimic

the changes in synaptic e�cacy that occur in the molecular layer, due to

LTD in the PF to PC synapse and/or other kinds of associative plasticity

(Dean et al., 2010). Lastly the Thresholding (3) process triggers a CR

whenever the value of the scaled trace falls below a decision threshold

(θCR). Within this process we collapse all the transductions that occur

post-synaptically from the PCs down to the e�erents of the deep nu-

clei. In short, these three processes, map event detections in the PN into

stimulation of the rat FN. The parameter w regulates the mapping and,

by scaling the trace signal, controls whether a response is triggered or

not, and if so, determines its timing in a way analogous to the biological

system.

Three processes control the negative feedback loop that stabilizes learn-

ing: Inhibitory pulse (4), Delay (5) and Gating (6). The role of the

negative feedback in classical conditioning is to prevent the error signal

triggered by the US from reaching the cerebellar cortex if a CR has al-

ready been triggered (Medina et al., 2001; Verschure & Mintz, 2001).

Processes 4 and 5 set the shape of the inhibitory square pulse. Its du-

ration matches the duration of the CS trace, such that the IO can be

inhibited for the whole duration of the CS trace. Process 4 delays the

pulse by Λnoi seconds. In practice, the value used was on the order of

100 ms. The Gating process (6) suppresses IO detections that co-occur

with the inhibitory pulse. In summary, these components functionally

reproduce the inhibitory control of the deep nuclear cells over the IO

(Bengtsson & Hesslow, 2006).

The last two components, Delay (7) and Coincidence detection (8), up-

date the associative weight w, thereby controlling the learning of the

CR timing. Process Delay delays the CS stimulus trace by Λnoi seconds

(same value introduced above). The resulting trace de�nes the temporal
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window wherein errors detected by IO can be prevented by the cerebel-

lum. For instance, if a US is detected following a CS but ahead of this

temporal window, then the CS-US interval is too short and any CR ini-

tiated by the cerebellum after the CS detection could not avoid the US

(see eq. 5.1). Likewise, such a trace de�nes a so-called eligibility window

wherein IO activity can be associated with a given PN detection. In

short the system has a minimum ISI of Λnoi s, and a maximum ISI of

Λnoi+Λτ s. Lastly, the Coincidence detection process (8) checks whether

event detections in the CS and US pathways coincide and updates w ac-

cordingly. Namely, it decreases w every time an IO detection overlaps

with the eligibility trace, and increases w if no IO detection occurs during

that period. The function performed by these last two processes mimics

the control of plasticity in the PF-PC synapse (Safo & Regehr, 2008;

Wang et al., 2000; Sarkisov & Wang, 2008). The initial value of w is set

to w0.

Calibration of the cerebellar model

De�nition of the optimization problem We mentioned that the

Coincidence Detection process in Fig. 5.3 modulates the w parameter

thereby controlling the acquisition and timing of CRs. In our implemen-

tation, the synaptic e�cacy w is modi�ed in linear steps, namely, δd for

depression and δp for potentiation. The cerebellar model optimization

consists of selecting the plasticity parameters δd and δp that result in

a desired learning behavior. We solve this optimization problem in two

di�erent scenarios: with synthetic data or with data directly obtained

from the brain activity of the animal. With the former we assess the

properties of the model, whereas with the latter is applied in the bio-

hybrid preparation. In both cases, the data consists of a set of detections

in both recording sites of the system (PN and IO) and each set might

contain evoked-detections (caused by the CS or the US, respectively) of

spontaneous events. We refer to the former as True Detections (TDs)
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and to the second as False Alarms (FAs).

Informally, we impose that the learning dynamics of the system mirror

the behavior: when CSs and USs are paired the circuit should learn to

produce CRs within tens of trials; when in a trained animal CSs are not

paired with USs, the circuit should unlearn to produce CRs within tens

of trials; all other conditions should not alter the circuit transfer func-

tion. More formally, the optimization problem is described by a linear

system representing three types of constraints: acquisition, extinction

and stability (see Table 5.1).

ID Experimental
condition

Description

1 Acquisition Paired CS-US presentation leading to acqui-
sition of CRs

2 Extinction CS-alone trials with CR leading to extinction
of CRs

3 Stability CS-alone or unpaired CS-US trials with no
CR, causing no modi�cation of the memory
parameter

Table 5.1: Stimulation conditions for the closed-loop experiment. See
text for further explanation.

Estimation of plasticity events. PN (CS) and IO (US) detected or

arti�cially generated events are coded in binary vectors P and I, where

each element is a time step and a value of 1 signals an event. The vector

of eligibility traces (Π, box 1 in Fig. 5.3) is obtained by convolving P

with the eligibility trace waveform (ε):

Π = P ? ε

where ε is a rectangular pulse lasting Λτ s and delayed by Λnoi s. Here

we �xed these values to 0.3 s and 0.1 s, respectively. The �rst value is in
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good accordance with the maximum interval between CS and US bridged

by the cerebellum in eyeblink conditioning (Kalmbach et al., 2009; Moyer

et al., 1990), whereas the second matches the most e�ective interval be-

tween parallel �ber and climbing �ber stimulation for the induction of

cerebellar LTD (Safo & Regehr, 2008; Wang et al., 2000; Sarkisov &

Wang, 2008).

Eligibility Trace Vector US Vector Plasticity
Π(t) = 1 I(t) = 1 Depression
Π(t) = 1 any I(t) Potentiation
Π(t) = 0 any I(t) No plasticity event

Table 5.2: Plasticity Conditions. See text for further explanation.

Plasticity events occur under the conditions speci�ed in table 5.2. Firstly,

a necessary condition for a potentiation or depression event to occur at a

given time step (t) is that the eligibility trace is non-zero. Secondly, the

number of potentiation events is P =
∑

Π for potentiation occurs for

every time step with a non-zero CS eligibility trace. Thirdly, depression

occurs when US detection overlaps with the eligibility trace. Hence, the

number of depression events can be obtained with the scalar product of

Π and I:

D = ΠT I (5.3)

Note that whenever a depression event occurs, it outweighs the default

potentiation events triggered by the plasticity trace Π, resulting in a net

depression.

In the presence of CRs, D must be corrected to account for the IO events

(spontaneous or US-evoked) suppressed by the NOI. Note that since the

timing of inhibition depends on the triggering of the CR and the eligibil-

ity window is anchored to the CS, rapidly elicited CRs are more e�ective

in gating plasticity than late CRs. In other words, the e�ectiveness of
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the gating decreases as the CRs become more delayed. We can heuris-

tically approximate the reduction in IO events reaching the coincidence

detection by multiplying the number of IO detections by an estimated

mean proportion of IO events not suppressed by the NOI (σ̄),

D = ΠT (σ̄I) = σ̄ΠT I (5.4)

where σ̄ = 1 − σ, with σ being the proportion of IO events suppressed

by inhibition.

As the equation illustrates, this result can be computed simply by mul-

tiplying the result of Eq. 5.3 by the factor σ̄.

Optimization of the plasticity parameters. At this point, having

estimated the number of plasticity events produced by two sets of event

detections in PN and IO, we obtain the optimal plasticity parameters (δp

and δd) by solving with weighted least squares the following system:

 P̄1 D̄1

P̄2 D̄2

P̄3 D̄3

[ δp

−δd

]
=

 −∆a/Ta

∆e/Te

0

 (5.5)

P̄i and D̄i are the mean plasticity events per trial, potentiation and

depression respectively, and the sub-indexes indicate the experimental

condition (see Table 5.1). They are obtained by dividing D and P by

the number of trials contained in the training set. ∆a is an estimate of

the change in w necessary for acquisition and Ta sets the desired number

of trials for acquisition. These two values set a target mean change of

w per trial. For instance, if the initial value of w is 0.5 and we estimate

that well-timed CRs occur when w reaches a value of 0.3, then we set

∆a to 0.2. ∆e and Te are the same values applied to extinction. As we

declared in the assumptions of the biological model, and for consistency
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with classical cerebellar learning theory, that links learning in the cere-

bellum with LTD in PF-PC synapses (Ito et al., 1982; Albus, 1971), we

suppose that CR acquisition requires depression (decrease) of the value

of w and extinction, a potentiation (increase). Regarding the optimiza-

tion algorithm, we weighted more the stability constraint since it by itself

guarantees the convergence of the learning dynamics, i.e., paired CS-US

stimulation yields acquisition and CS-alone stimulation yields extinction.

Informally, if under spontaneous IO activity w has an average of 0 drift,

then an increase in IO activity will lead to acquisition and a decrease, to

extinction. Once this constraint is satis�ed, the acquisition and extinc-

tion constraints modulate the rate of either learning process.

Adaptive calibration of the model

In the previous section we have introduced a calibration method that

assumes stationary bio-signals during the experiment. Crucially, this is a

strong assumption that will hardly ever be met under in-vivo conditions.

In our case, for instance, the rate of IO activity in the bio-hybrid exper-

iment, �uctuated markedly producing non-associative modi�cations in

the synaptic e�cacy w. For this reason, here we introduce an adaptive

version of the calibration method that considers non-stationary responses

in IO activity. Since the recalibration has to occur without resorting to

additional training data, we keep the same acquisition and extinction

constraints used for the initial calibration, and we only update the sta-

bility constraint, introducing in this constraint the current estimation of

the rate of spontaneous IO activity.

The recalibration is periodically performed, with a �xed time interval.

In the experiment we used 150 seconds, that corresponds roughly to 10

trials. Such recalibration requires an estimate of the ongoing level of

spontaneous activity in IO, the IOfar, where the sub-index far stands

for the false alarm rate (see below). To compute this estimate we count

the number of IO detections between recalibrations. Note that, since
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the system is blind to whether the detections are spontaneous or evoked,

i.e. it has no knowledge whether stimuli are presented or not, for the

estimation of IOfar all detections are considered spontaneous. During

acquisition, given that some of the IO detections will be US-evoked, this

results in an over-estimation of the true IOfar. In that case, the estimate

is more accurate for a higher proportion of spontaneous detections to

evoked ones, what can be easily achieved using large Inter-Trial Intervals

(ITI).

From here, since the IO rate only a�ects the number of depression events,

we only have to update one value in the linear system in Eq. 5.5, namely,

D̄3 that accounts for the number of depression events during spontaneous

activity. This is so, because the other term of the stability constraint has

no dependence on IO activity. Hence, having only to update a single term

of the system allows us to ful�ll one of the requirements of the system

prototyped here: providing algorithms simple enough to be implemented

in a low power VLSI solution. Indeed, algebraic manipulation shows

that we can compute the solution to the optimization for each of the

two plasticity parameters as a ratio of two polynomials with a maximum

degree of 1 (for the derivation see appendix). For instance, in the case of

δp we have:

δp =
α2IO

2
far + α1IOfar + α0

β2IO2
far + β1IOfar + β0

where the coe�cients of the polynomials are determined only by the

training data. For the detailed derivation of this formula see Appendix

2.

5.2.2 Work-�ow of the bio-hybrid experiment

The methods introduced so far where common to the simulation and in-

vivo experiments. In what follows we introduce the methodology specif-
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ically developed for the bio-hybrid preparation.

Preparation The details of the animal preparation, surgery and elec-

trophysiological setup with the exact placement of the electrodes have

been fully described in a separate publication (Prueckl et al., 2011b).

Brie�y, we introduce a titanium-nitride micro-electrode array (Faculty of

Engineering, Tel Aviv University) in the PN in order to detect the neural

response to the CS (an auditory signal: white noise), and a tungsten nee-

dle electrode (A-M Systems, USA) in the IO to detect the response to the

US (the air-pu� to the eye of the rat). Signals from both recording sites

are band-pass �ltered (300 - 3000 kHz) to work in the MUA range. A

stimulating electrode is placed in the facial nucleus and tested to induce

reliable eye-blinks when 200 mA 0.1 ms constant-current pulses with a

frequency of 80 Hz for 150 ms are delivered.

For the classical conditioning preparation we use as the CS a white-noise

stimulus at 67-70 dB with a duration of 450 ms and a 150 ms duration air-

pu� as the US. The presence of CRs was veri�ed recording the periorbital

electromyography. The Inter-Stimulus Interval is set to 300 ms and the

ITI is randomized between 10 and 15 seconds.

After validating the responsiveness of the MUA signal to the air-pu� and

the tone by visual inspection of both Peri-Stimulus Time Histograms

(PSTHs) of MUA events, we record a training data-set that comprises

30 trials with paired CS-US presentation followed by 2 minutes of spon-

taneous activity. This data-set is then used to calibrate the synthetic

cerebellum (see below). After calibration we proceed with the classical

conditioning paradigm, providing the animal with CS-US stimulations

until we observe stable CRs, followed by CS-alone stimulation until ex-

tinction of the CRs has been achieved.

Signal processing The goal of the signal processing stage is to detect

in the MUA signal the onset of the responses to the CS and US, i.e., to the
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tone and the aripu� stimuli, respectively. Given the intended implemen-

tation in a low power VLSI solution, we limit ourselves to low complexity

algorithms. Brie�y, we detect sustained increases in the variability of the

MUA signal occurring after each stimulus presentation. This is achieved

with the following steps: �rst we subtract from the signal a running esti-

mation of the mean and rectify the resulting signal. Secondly, the signal

is smoothed to obtain a short-term temporal average that serves as a

measure monotonically related to the variability increase. Lastly, event

detection occurs every time the resulting variability signal surpasses a

certain detection threshold.

We de�ned a priori the windows of possible True Detections (TDs) for

each channel (10-150 ms after the trigger in the PN and 5-205 ms after

the trigger in the IO). Likewise, the performance of the signal detection

can be summarized with the True Detections Ratio (TDR) and the False

Alarm Rate (FAR), where the TDR indicates the proportion of stimuli

raising at least one detection within the TD window, and the FAR the

frequency of events detections during the periods of no stimulation, i.e.,

outside the TD window. Note that since in the IO we found a FAR

between 0.5 and 2 Hz, we can compare the IOfar with the spontaneous

levels of activity in the IO (Jirenhed et al., 2007).

Estimation of the event detections. With the calibration data-

set we estimate for both channels the detection performance during early

acquisition trials (before any CR is triggered). To estimate the number of

detections during CS-alone trials we combine the PN data from the paired

stimulation trials with IO data from the spontaneous activity period.

This is done in order not to excessively extend length of the calibration

phase.

Optimization of the signal detection regimes. To signal an event

detection we have to �rst set a detection threshold. Such selection poses
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a multi-objective optimization problem since we want to simultaneously

maximize the TDs and minimize the false alarms, and we do not know

a priori which is the best trade-o� of both measures that maximizes

the chance of success in our experiment. To overcome this problem we

iterate the optimization process over a set of threshold con�gurations

for both input channels, and then select a posteriori the one yielding

the minimum error in the optimization of the plasticity parameters (eq.

5.5). Likewise, the optimization process, and not us, selects the optimum

trade-o� between TDs and false alarms. Note that the simplicity of the

calibration method previously introduced allows us to iterate over a great

number of possible threshold con�gurations in very little time.

5.2.3 Use of the model with simulated data

Before deploying the computational model in the bio-hybrid setup, we

tested the performance of the model with arti�cially generated data. To

this end we generate a set of detections for each channel according to a

certain pair of TDR and FAR statistics. From these two statistics we

produce the binary vectors of detections P and I, and for this we convert

the TDR and FAR to event probabilities per time step. We obtain the

probability of detection in the absence of stimulation by multiplying the

FAR by the model time step, which is 2 ms. Regarding TDs, to convert

the TDR to a probability we have to consider the size of the TD window.

Operationally, since we interpret the TDR as the probability of getting

at least one event within the detection window, we have to �nd the event

detection probability yielding no events during the TD window with a

probability of 1 − TDR. This event detection probability is equal to

1− n
√

1− TDR, where n is the size of the TD window in time steps.



5.3. RESULTS 125

5.3 Results

5.3.1 Simulation experiments

Performance of the model with spontaneous activity in the

IO
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Figure 5.4: Raster plots of the inputs and outputs of the model
with and without stability constraint. A. Model with stability
constraint. PN detections (green), IO detections (black) and CR trig-
gers (blue), well-timed (thick) and late (thin). CS (dotted green line)
and US (dashed red line) onset times. The horizontal dashed black
line separates acquisition and extinction phases. B. Model without
stability constraint. Data plotted as in A.

In previous work we used this cerebellar model assuming no baseline ac-

tivity in the IO (Verschure & Mintz, 2001; Hofstotter et al., 2004). As

a �rst step, we test whether this model supports the acquisition and

extinction of CRs when the IO displays spontaneous activity (see param-

eters in Table 5.3). The outcome of a representative simulation shows

that indeed the model adapts well to the case of baseline IO activity

(Fig. 5.4A). It acquires well-timed CRs in CS-US paired trials and ex-

tinguishes them in CS-alone unpaired trials (Fig. 5.4A and 5.5A), and

importantly the parameter w reaches a stable plateau after complete ex-

tinction (Fig. 5.5B). We stress that the stabilization occurring at the end

of extinction even in the presence of CS alone stimulations, stems from
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the stability condition in equation 5.5. If we remove this constraint the

overt behavioral results are similar (Fig. 5.4B and Fig. 5.5A) but the un-

derlying memory dynamics di�er (Fig. 5.5B). Indeed, behaviorally both

models only di�er in the extinction phase, which is slower for the model

with stability. However, in regard to the model's state, without stability,

the synaptic e�cacy w grows also after extinction of the CRs has been

accomplished. Note that, in consequence this can make reacquisition

harder than acquisition if the extinction training is maintained, which

goes against the experimental evidence (Kehoe & Macrae, 2002b). In

conclusion, the computational model of the cerebellum is also functional

when the IO has baseline activity, requiring only a proper calibration of

the plasticity parameters.
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Figure 5.5: Behavior of the model with simulated data. Behav-
ioral performance. Percentage of CRs per block of trials of the model
�tted with stability constraint (solid line) and without (dashed line).
The vertical dotted line separates acquisition and extinction training.
B. Trajectory of w in the model �tted with plasticity constraint (solid
line) and without (dashed line). The horizontal green dotted line marks
the level above which the model does not trigger any CRs. Blocks of
10 trials.
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Parameter Value

Cerebellar model
CS trace:
τ0 1
τ1 0.5
Λτ 350 ms

Λnoi 100 ms
θCR 0.2
w0 0.5

Signal Detection
PNtd 0.95
PNfar 0 Hz
IOtd 0.75
IOfar 1.0 Hz

Fitting constraints
∆a, ∆e 0.2
Ta, Te 40

Table 5.3: Parameters of the simulation.

E�ect of the latencies of the cerebellar model

We previously discussed the relevance of the latencies in the design of

the controller. Here we will illustrate with two examples the functional

implications of the two latencies implemented in the model, namely, the

latency of the NOI and the latency of the plasticity trace. We recall that

in our model, both latencies are set to the same value, namely, Λnoi s.

The e�ects of the NOI latency on the timing of the CRs has already been

discussed in the literature at the theoretical level (Hofstotter et al., 2002;

Hesslow & Ivarsson, 1994), and demonstrated in experimental set-ups

(Herreros Alonso & Verschure, 2013a). Here, and because of the noisy

input conditions, we see that if we do not apply any delay to the NOI, the

CR triggers eventually anticipate the US, but by too short a latency too

be considered e�ective (Fig. 5.6A). Therefore, even though the model
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Figure 5.6: Results with and without delayed NOI inhibition.

A. Raster plot with the output of the model with the delay of the NOI
set to 0 s. B. Trajectory of w in the model with a delay of 100 ms in the
NOI (solid line) and with no delay (dashed line). The horizontal green
dotted line marks the level above which the model does not trigger any
CRs. Blocks of 10 trials.

triggers CRs, they are maladaptive. Indeed, the synaptic e�cacy w fails

to reach a level su�ciently low to initiate well-timed CRs, as it does

when the latency of the NOI is properly set (Fig. 5.6B). Note however

that the jitter of the trace of the synaptic e�cacy w occasionally brings

the CR triggers close to the criterion of correct timing. Given that, if

such a jitter will be incresead it would be possible for occasional CRs

to anticipate the US su�ciently to be characterized as well-timed. This

occurs if, for instance, the signal to noise ratio of the IO signal decreases

(5.7B, with TDs in the IO lowered from 70% to 50%) or if we force the

learning to be faster (5.7A). This by no means indicates that the model

works better if the signal conditions are worse, it only indicates that as

the dynamics of the model become more noisy (5.7C), some well-timed

CRs may incidentally be triggered, even if the delay of the NOI is not

correctly set.

Not delaying the plasticity trace leads to a di�erent kind of maladaptive

behavior. In this case, if we set an ISI below the minimum ISI described

in Eq. 5.1, the computational model without delayed plasticity acquires
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Figure 5.7: Results with non-delayed NOI inhibition in di�er-

ent conditions. Raster plots with the output of the model with the
delay of the NOI set to 0 s. B. the model constraint to acquire CRs
twice as fast or with A. a ratio of TDs in the IO lowered to 50%. C.
Traces of the synaptic e�cacy w for the simulation in Fig. 5.6 (black)
compared to the simulations in panel A (dotted red) and B (dotted
blue).

CRs that can only be late CRs by de�nition (Fig. 5.8B). In contrast,

setting the appropriate delay to the plasticity trace avoids building any

association between CS and US that are too close in time (Fig. 5.8A).

5.3.2 Bio-hybrid experiment

Evaluation of the training data We started the bio-hybrid experi-

ment recording a training data set composed of 30 trials of paired CS-US

stimulation, with an ISI of 300 ms and an ITI of 10 s. After applying
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Figure 5.8: E�ect of the delayed plasticity trace on the be-

havior. A Model with plasticity trace starting Λnoi s after each PN
detection. B. Model with plasticity trace starting right after each PN
detection. Data plotted as in Fig. 5.4

.

the signal processing algorithms (see Methods) we built the Receiver Op-

erating Characteristic (ROC) curve for each of the channels (Fig. 5.9).

The PN channel TDs reached 100% with a False Alarm Rate close to 0.1

Hz while the IO displayed TDs near 50% for the range of optimal FARs

(∼ 1 Hz). Therefore the PN channel was reliable while the IO channel

was poor from the detection standpoint.
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Figure 5.9: Event detection performance for the recording

sites. ROC curves for the IO (A) and the PN (B) event detections.
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Optimization of the plasticity parameters and signal detection

regimes The following phase entailed tuning the plasticity parameters

and selecting the optimal signal detection thresholds. The optimization

process selected detection thresholds yielding a percentage of TDs of

48.6% and a FAR of 1.14 Hz for the IO channel, and a 91.4% of TDs

with a FAR of 0.11 Hz for the PN.

The model calibration set the potentiation and depression steps (δp and

δd) to 0.0161 and 3.36e-5 respectively.

The o�ine simulation parameterized with the previous values is shown in

Fig. 5.10. First of all, acquisition occurs in 40 trials with an asymptotic

performance of 40% well-timed CRs. Secondly, there is a 20% chance of

obtaining total extinction after 120 trials of CS-alone stimulation. Thus,

we observe a priori that the low detection quality of the US driven IO

signals makes will pose a challenge for successful extinction.

Evaluation of the bio-hybrid experiment After the preliminary

assessment of the quality of the biosignals, we proceeded with the online

classical conditioning experiment (Fig. 5.11). The experiment lasted 1h

20min and comprised 190 CS-US stimulation trials (acquisition) followed

by 180 CS-alone trials (extinction), with randomized ITIs between 10

and 15 s. In Fig. 5.11 we display events detected and stimulations

triggered by the neuro-prosthetic system. For the whole experiment, in

the PN there was a TDR in of 75.5% and a FAR of 0.1 Hz, that include

a high number of late CS detections (Fig. 5.11). Notably, the number

of PN detections during baseline was very low (only 5 false alarms in 80

minutes). In the IO we obtained a TDR of 38% and a FAR of 1.2 Hz.

Detections in both channels were delayed by tens of milliseconds with

respect to the stimulus trigger. The mean latency of the TDs in the PN

(ωCS) was of 96.2 ms after the CS trigger (Fig. 5.12A) whereas the mean

latency in the IO channel (ωUS) was of 68.5 ms (Fig. 5.12B).
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Figure 5.10: Performance of the experiment predicted by the

training data. A. Trajectory of the memory parameter after 2500
simulations plotted in blocks of 10 trials. The simulated experiment
contained 120 trials of acquisition and 180 trials of extinction. Distri-
bution of the block-by-block values of w (gray-scale) with mean (blue)
and and output of a sample simulation (red). We indicate the levels
of the weight that result in late (upper green line) and well-timed CRs
(lower green line). The transition from acquisition to extinction train-
ing is marked by a vertical line. B. Predicted behavioral performance
after 2500 simulations. Percentage of well-timed CRs. Distribution
of the block-by-block performance (gray-scale) with mean (blue) and
result (red) of a sample simulation (same as in A).

The experiment was successful in terms of behavior: well-timed CRs were

triggered with regularity towards the end of the acquisition phase, and

no CR was triggered during the last 90 trials of the extinction training

(Fig. 5.11 and 5.12C). The �rst response appeared at trial 29, but the

�rst well-timed CR came only at trial 118. Notice that towards the

end of acquisition the series of well-timed CRs appeared regular. After

the onset of the extinction trials (trial 191) well-timed CRs were rapidly

extinguished. A block-by-block analysis reveals that the performance

�uctuated during acquisition (Fig. 5.12C) and that extinction of well-

timed CRs was very rapid, in total there are only 4 well-timed CRs

during extinction, the last one appearing at trial 220, i.e., after 30 trials

of extinction. However, the extinction of late CRs was more gradual,

encompassing blocks 21 to 29, i.e. total extinction required 100 trials.
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No CR was triggered by the system in the last 60 trials of the experiment.

Regarding the timing, well-timed CRs occurred on average 50 ms ahead

of the US trigger (Fig. 5.11E).

The evolution of the synaptic e�cacy w is displayed in Fig. 5.13. We

estimate that given our setup CRs follow a PN event whenever the value

of w goes below 0.4. However, for such CRs to be anticipatory, w should

settle below or at 0.28. During the experiment, w decreased steadily

during the �rst 60 trials, down to a value of 0.29. Afterwards the decrease

decelerated. The dynamics of w suggest that learning has reached an

asymptotic-level by the end of the acquisition stage (Fig. 5.13). The
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Figure 5.11: Event detections and triggers during the online

experiment. A. Raster plot with the PN detections (blue dots; well-
timed PNs are thicker), IO detections (black), and CR triggers (blue
dots; well-timed triggers are thicker). CS trigger (dotted green line)
and US trigger (dashed red line) are also indicated. Blue line separates
well-timed from late CRs. Horizontal dashed-line de�nes transition
from acquisition to extinction training.
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mean value of w during well-timed CRs was 0.25, indicating that well-

timed CRs were triggered on the average 140 ms after the PN detection.

Thus, for an ISI of 300 ms the model acquired an internal timing (tCR)

of 140 ms.

Thus, in conclusion, at a �rst level of analysis, the results of the bio-
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Figure 5.12: Quantitative results. A. Events detected in the

PN. PSTH of PN detections relative to the CS-trigger: TDs (black
bars) and FAs (gray bars). CS trigger (dotted green line) and US
trigger (dashed red line). B. Events detected in the IO. Detections
in the IO sorted relative to the US-trigger. Data plotted as in A). C.
Behavioural performance of the bio-hybrid. Percentage of well-
timed CRs during acquisition (solid red line) and extinction (dashed
red line - starting at block 20). CRs that were not triggered at least 20
ms ahead of the US trigger appear as late-CRs (light red line). Each
block contains 10 trials. D. Timing of CRs. PSTH of the Condition
Responses. The information is extracted from trials 118 to 190. Data
plotted as in A
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hybrid experiment were correct both from the behavioral point of view

and also regarding the dynamics of the underlying memory parameter

stored in the synthetic cerebellum.

50 100 150 200 250 300 350

0.25

0.3

0.35

0.4

0.45

0.5

w

#trial

Figure 5.13: Weight trajectory during the experiment. The
dashed vertical line separates the acquisition and extinction phases.
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Figure 5.14: Fluctuations in the spontaneous IO rate. Mean
IO rate in each trial of the experiment. The horizontal dotted line
marks the 1.14 Hz level of activity. The vertical dashed line marks the
transition from acquisition to extinction trials.

Instability of the activity during the recording Having said

that, there were two major caveats in the experiment. First, due to an
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artifact introduced by the electrical stimulation of the CR, the signal

of the IO was masked for 2 seconds after each CR. This masking was

performed at the signal acquisition stage (Prueckl et al., 2011b). For

this reason, no events reached the computational model of the cerebel-

lum for 2 seconds after each CR trigger. Under such circumstances the

model's NOI became super�uous, because for all its extent there was no

IO detection to be inhibited. Or, in other words, the mask at the sig-

nal acquisition stage acted as a NOI with 0 latency and longer duration.

We have already argued that the latency of the NOI is necessary for

consistently achieving a correct timing of the CRs (Fig. 5.6). Thus, in

summary, on the one hand, it is reasonable to assume that the well-timed

CRs were in part a consequence of the noisy conditions of the input setup

(e.g., a IOtd of 38%), and on the other, it is also reasonable to expect

that in the absence of the stimulation artifact the synthetic cerebellum

would have achieved a higher proportion of well-timed CRs.

Second, our calibration of the cerebellar model assumes that the level

of spontaneous activity in the IO remains constant. If the IO sponta-

neous activity signi�cantly deviates from the one estimated during cal-

ibration, then w will drift, eventually leading to either acquisition or

extinction. Since during the conditioning experiment we observed that

the spontaneous activity �uctuated (Fig. 5.14), there is the possibility

that the behavior observed did not result from associative learning but

from changes in w due to oscillations in the IO spontaneous activity. In

particular, given that the IO spontaneous activity increased during ac-

quisition and decreased during extinction such �uctuations might have

caused or favored the behavioral result.

To perform an a posteriori control for this, we check whether the observed

oscillations in spontaneous activity may lead to acquisition by themselves

even in the presence of temporally unrelated CSs and USs. We tested

this simulating unpaired CS-US presentations. For this, we generate ex-

periments with shu�ed IO detections within each trial. After performing
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20000 simulations, we observe that the increased spontaneous activity of

the IO causes a decrement in w during the acquisition phase for unpaired

stimulation (Fig. 5.15A). Considering the behavior (Fig. 5.15B) in the

average simulation the decrease of w yielded to the triggering of a small

number of CRs. These results both at the level of the memory parame-

ter and the behavior were clearly below the performance observed on the

bio-hybrid experiment but demonstrated nonetheless that under experi-

mental conditions with big variability in the recorded signals, the model

might acquire spurious associations.

A B C

Figure 5.15: Observed performance vs. performance during

simulated unpaired acquisition. A. Acquisition during paired CS-
US training versus simulated unpaired CS-US. Trajectory of the weight
during the acquisition phase of the experiment (black line) plotted
against results of 20000 simulations of unpaired training. Distribution
of the simulation results (grayscale), median (blue dotted line) and
the 0.05 bottom of the distribution (red line). Blocks of 10 trials. B.
Behavioral performance during acquisition against performance in the
simulations. Percentage of CRs during acquisition in the experiment
(black line) plotted against the percentage obtained in the simulations.
Distribution of the simulation performances (grayscale), median (blue
dotted) and the upper 0.1 of the distribution (red line). C. Acquisition
during paired CS-US training versus simulated unpaired CS-US with
and without negative feedback loop. Trajectory of the weight during
the extinction phase of the experiment (black line) plotted against re-
sults of 20000 simulations of unpaired training. Distribution of the
simulation results with the negative feedback-loop (grayscale and box-
plots) and without it (red line, mean).
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5.3.3 Calibration method adapted to �uctuating

IO activity

Lastly, we tackle the problem of the instability of the IO activity evi-

denced in the previous section. For this we apply the adaptive calibra-

tion method (see Methods). We test this method with data from the

bio-hybrid preparation, aiming to show that with the adaptive calibra-

tion, the cerebellar model becomes robust against slow �uctuations in the

baseline IO activity. As a caveat, notice however, that in the bio-hybrid

experiment, by de�nition of a closed-loop set-up, the data recorded dur-

ing the session depended on the output of the model. In this case, the

data recorded was a�ected by the electrical stimulation in the FN driving

the CR. Thus, to cancel out this e�ect we replaced the 3 seconds of the

IO signal occurring after each CR, by the signal extracted from random

trials with no CR.

A B

Figure 5.16: Performance with the adaptive calibration

method. A. Trajectory of the memory parameter w plotted in blocks
of 10 trials. Distribution of the performace of the simulations of un-
paired CS-US stimulation (grayscale), with mean (dotted blue) and
lower 10% (dotted red), for a total of 2500 simulations of 36 blocks.
Trajectory of the simulated classical conditioning experiment (solid
black), with 18 blocks of acquisition and 18 blocks of extinction. The
transition from acquisition to extinction training is marked by a ver-
tical line. B. Behavioral performance of the same simulations. Per-
centage of well-timed CRs per block. Results plotted with the same
convention as in A.
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The results now separate clearly the performance between the unpaired-

and paired-stimulation experiments. Most importantly, there is no acqui-

sition of CRs during unpaired stimulation. In this case, the �uctuations

of the baseline IO rate do not push w further than +/- 0.1 from the start-

ing value, both during acquisition and extinction. Regarding the perfor-

mance, in the mean, there are no well-timed CRs with unpaired CS-US

training. To the contrary, in the simulated acquisition and extinction

experiment, the overall behavior of acquisition followed by extinction is

preserved. In this experiment the CR performance decreases relative to

the result with the bio-hybrid, especially by the end of acquisition, when

the recorded IO baseline rate was higher. The reason is that now a high

rate of spontaneous detections in the IO diminishes the relative saliency

of the US-evoked events, for which such a high rate harms rather than

helps acquisition. Thus, this simulation con�rms, that if same conditions

of signal instability of the bio-hybrid experiment are repeated, with the

adaptive calibration method we can ensure that any CRs observed will

speci�cally be due to the CS-US association.

5.4 Discussion

Here we have addressed the challenge of de�ning, interfacing and vali-

dating a neuro-prosthetic system for the cerebellum. In particular, we

have �rst: de�ned a biologically grounded computational model of the

circuit targeted for substitution, second: de�ned its input and output

structures and their encoding of their respective events and third , we

have implemented this cerebellar prosthetic and interfaced it to the brain

of a rat. Our results show that our bio-hybrid preparation shows behav-

iorally and physiologically valid forms of acquisition and extinction of

the conditioned eye-blink response. Our neuro-prosthetic system learned

to associate a tone with an air-pu�, and as a result to trigger an an-

ticipatory closure of the eyelid. Since the anaesthesia used impairs the
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cerebellar circuitry dedicated to learning such a task, the observed eye-

blinks are produced by the synthetic system. The fact that acquired CRs

can be abolished by extinction training also indicates that the CRs result

from a learning process induced by the contingent association of the CS

and the US, thus reproducing the hallmark result of Pavlovian classical

conditioning.

Here we have presented a step towards the enhancement and/or recovery

of the capabilities of CNS through neuro-prosthetic solutions. Recently,

another closed-loop solution targeting a di�erent structure of the brain,

the hippocampus (Berger et al., 2011) has been presented. This system,

however, follows a di�erent approach where �rst, the subject had to �rst

acquire a speci�c stimulus response association that was recorded by the

neuro-prosthetic system and subsequently the recorded state was used

to recover this association after lesion to the hippocampus. Compared

to this model, instead of aiming at restoring an acquired memory, our

neuro-prosthesic targets to fully replace its target structure and to realize

the capability to form new memories.

In a parallel e�ort, the computational model of the cerebellum here pre-

sented, together with the signal detection algorithms and the signal ac-

quisition components, have been implemented in a low power VLSI (Bam-

ford et al., 2012). Hence, with the results presented here we provide the

last step in showing that our silicon cerebellum has satis�ed all require-

ments of a neuro-prosthetic system.

An earlier version of the computational model presented here was imple-

mented in an aVLSI platform and interfaced with a robot that was con-

ditioned to a visual stimulus predicting a collision (Verschure & Mintz,

2001; Hofstotter et al., 2002, 2004). Thus, after showing that our ap-

proach allowed miniaturization and autonomous performance, we have

now demonstrated that the model can be applied to the processing of

inputs coming from a living brain that are speci�c to the computation
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performed, i.e. CS, US, and trigger its speci�c output: the CR.

In our experiment, the IO channel provided the only teaching signal to

the system. This channel displayed a spontaneous level of activity in

the 0.5-2 Hz range, i.e., the level of activity expected in a single IO cell.

However, in healthy animals, acquisition of an eyeblink CR is controlled

by a cerebellar micro-complex, encompassing not one, but a number of IO

cells. This imposes di�erent constraints on the learning system because

the IO derived error signal for our neuro-prosthetic is in all likelihood

much impoverished as compared to the its biological counterpart. Hence,

we expect that the key feature to strengthen in our approach is the quality

and precision of the data acquisition of the biological preparation. For

this we are planning further experiments in a chronic implant together

with higher bandwidth physiology.

We reported two major caveats in the experimental preparation: the in-

stability of the IO spontaneous rate, and presence of a stimulation arte-

fact that precluded reliable read-out of the IO signal. Regarding the �rst

problem, in the bio-hybrid experiment we computed the plasticity param-

eters assuming that the spontaneous IO rate inferred from the calibration

data remained stable throughout the experiment. However, we observed

that �uctuations in the spontaneous IO �ring rate induced a drift in

the w synaptic weight. Comparing this performance with simulated un-

paired CS-US experiments, we saw that the performance with unpaired

stimulation tended to be below the one observed in our experiment, but

we also saw that the system triggered non-associative CRs. Next, we

showed in simulations, that with an adaptive calibration method it is

possible to control for the �uctuations in the IO activity such that they

do not induce the acquisition of the these non-associative CRs. Thus we

can conclude from the bio-hybrid experiment that our silicon cerebellum

neuro-prosthetic can tuned to deal with marked �uctuations of its in-

put brain signals. This also demonstrates the robustness of the learning

principles implemented in the cerebellum and in particular the negative
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feedback implemented in the DN-IO system.

Regarding the problem of the stimulation artifact, addressing it falls

outside the scope of the current analysis. We emphasize that this problem

is an issue of engineering of the stimulation system that the biological

system does not encounter. We are investigating two solutions. First,

given the very short duration of the stimulation pulses (see (Prueckl et al.,

2011b)) it is possible to apply a more precise masking to the IO signal,

timed to these pulses, that would minimize the signal loss. A second

possibility is to avoid electrical stimulation altogether using optogenetic

methods. These aspects need to be taken into account in a next iteration

of the neural-prosthesis development.

To conclude, from a bio-engineering perspective we demonstrate that our

approach supports outsourcing to a linked neuro-prosthetic system the

acquisition and extinction of an adaptive re�ex in an acute preparation.

Given the modularity of the cerebellum, and the common assumption

that the cerebellar algorithm performs similar computations throughout

its di�erent microcircuits (Dean et al., 2010; Albus, 1971; Marr, 1969),

this work could be applied to support other adaptive re�exes as well, as

long as their a�erent and e�erent circuitry could be identi�ed. Additional

further work is required to reproduce this result with the aVLSI synthetic

system, testing this approach with a chronic implant, where one could

check the stability of the acquired memory along days and study the

long-term bio-compatibility.

Appendix 1: Mathematical de�nition of

the cerebellar model

In what follows we provide a compact de�nition of the cerebellar com-

putational model, describing each of the processes separately. The only

additional notation introduced here for convenience are the sample time
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s, that it is used to access the state of a variable in the previous step of

the computation, and the the Heaviside function, H(x), de�ned as

H(x) =

{
1 if x > 1

0 elsewhere

The signals and the processes correspond to the ones presented in Fig.

5.3. Note that except T(t), S(t) and w(t), that are real-valued, the rest

of the signals are binary.

Process 1: Trace generation

T(t) = τ
P(t)
0

{
H(T(t− s)− τ1)

(
T(t− s)− τ0 − τ1

Λτ

)}(1−P(t))

Process 2: Scaling

S(t) = w(t)T(t)

Process 3: Thresholding

F(t) = H(θCR − S(t))H(S(t− s)− θCR)

Process 4: Inhibitory Pulse

N(t) = N(t− s) + F(t)− F(t− Λτ )

Process 5: Delay of inhibitory pulse

NΛ(t) = N(t− Λnoi)

Process 6: Gating

C(t) = I(t)(1−NΛ(t))
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Process 7: Delay of plasticity trace

Π(t) = H(T(t− Λnoi))

Process 8: Coincidence detection

w(t) = w(t− s) + Π(t)(δp −C(t)δd)

Appendix 2: Derivation of the update

function of the adaptive calibration model

We assume that during spontaneous activity, detections in the IO and

the PN are independent. Consequently, the probability of a simultaneous

detection in both channels as PNfarIOfar.

D̄3 = PNfarΛτIOfarT3 (5.6)

where T3 is the duration of the original recording used for the calibration

and Λτ is the duration of the plasticity trace.

The linear system to optimize is given by: P̄1 D̄1

P̄2 D̄2

P̄3 D̄3

[ δp

−δd

]
=

 −∆a/Ta

∆e/Te

0

 (5.7)

The expressed in matrix notation becomes:

A x = b (5.8)

Adding the cost matrices for the weighted least squares we get:

C A x = C b

where

C =

 c1 0 0

0 c2 0

0 0 c3

 (5.9)
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With this, the least squares solution for x is given by

x = (ATCA)−1ATC b

First, ATCA expressed in terms of plasticity events and costs is the

following matrix[
c1P̄

2
1 + c2P̄

2
2 + c3P̄

2
3 c1P̄1D̄1 + c2P̄2D̄2 + c3P̄3D̄3

c1P̄1D̄1 + c2P̄2D̄2 + c3P̄3D̄3 c1D̄
2
1 + c2D̄

2
2 + c3D̄

2
3

]
(5.10)

Grouping and renaming all the terms that do not depend on D̄3 we can

express this matrix as[
χ1 χ2 + ψ2D̄3

χ2 + ψ2D̄3 χ3 + ψ3D̄
2
3

]
(5.11)

The expressions for the χ and ψ terms are given at the end of this ap-

pendix.

The determinant of this matrix, D, expressed as polynomial of D̄3 is

(χ1ψ3 + ψ2
2)D̄2

3 + 2χ2ψ2D̄3 + (χ1χ3 − χ2
2)

using Eq. 5.6, we can simplify the notation, and express this determinant

as a polynomial of IOfar, which is the input variable that will be updated

at each re-calibration.

β2IO
2
far + β1IOfar + β0

Now we can express (ATCA)−1ATC as

1

D

[
χ3 + ψ3D̄

2
3 −χ2 − ψ2D̄3

−χ2 − ψ2D̄3 χ1

][
c1P̄1 c2P̄2 c3P̄3

c1D̄1 c2D̄2 c3D̄3

]
where the �rst two factor are the inverse of ATCA and the third term

in the result of ATC.
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Performing the algebra, we obtain the following matrix expression[
(χ3 + ψ3D̄

2
3)c1P̄1 − (χ2 + ψ2D̄3)c1D̄1 (χ3 + ψ3D̄

2
3)c2P̄2 − (χ2 + ψ2D̄3)c2D̄2

χ1c1D̄1 − (χ2 + ψ2D̄3)c1P̄1 χ1c2D̄2 − (χ2 + ψ2D̄3)c2P̄2

]

were we have omitted the third column of the matrix, since it will be

canceled by the zero in the third of row b.

The last step to solve the system is to multiply by b, after what we obtain

the solution for the δp and δp:

δp = − 1
D

∆a

Ta

(
(χ3 + ψ3D̄

2
3)c1P̄1 − (χ2 + ψ2D̄3)c1D̄1

)
+ 1

D
∆e

Te

(
(χ3 + ψ3D̄

2
3)c2P̄2 − (χ2 + ψ2D̄3)c2D̄2

)
and

δd = 1
D

∆a

Ta

(
χ1c1D̄1 − (χ2 + ψ2D̄3)c1P̄1

)
− 1

D
∆e

Te

(
χ1c2D̄2 − (χ2 + ψ2D̄3)c2P̄2

)
where we see that D̄3 appears in the numerator of δp with degree 2 and

in the numerator of δd with degree 1. In both cases, the denominator

is given by the determinant D, which is another polynomial of degree 2.

Therefore, we can express each parameter as a ratio of two polynomials.

δp =
α2IO

2
far + α1IOfar + α0

β2IO2
far + β1IOfar + β0

δp =
γ1IOfar + γ0

β2IO2
far + β1IOfar + β0

In consequence, the adaptive calibration algorithm requires to pre-compute

8 coe�cients. The expression for each coe�cient is detailed next:
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β0 = (χ1χ3 − χ2
2)

β1 = 2χ2ψ2

β2 = (χ1ψ3 + ψ2
2)

α0 = ∆a

Ta
(χ2c1D̄1 − χ3c1P̄1) + ∆e

Te
(χ3c1P̄1 − χ2c2D̄2)

α1 = ∆a

Ta
ψ2c1D̄1 − ∆e

Te
ψ3c2D̄2

α2 = ∆e

Te
ψ3c2P̄2 − ∆a

Ta
ψ3c1P̄1

γ0 = ∆a

Ta
(χ1c1D̄1 − χ2c1P̄1) + ∆e

Te
(χ1c2D̄2 − χ2c2P̄2)

γ1 = ∆e

Te
ψ2c2P̄2 − ∆a

Ta
ψ2c1P̄1

where χ and ψ are given by

χ1 = c1P̄
2
1 + c2P̄

2
2 + c3P̄

2
3

χ2 = c1P̄1D̄1 + c2P̄2D̄2

χ3 = c1D̄
2
1 + c2D̄

2
2

ψ2 = c3P̄3

ψ3 = c3
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Abbreviation Meaning
CNS Central Nervous System
IO Inferior Olive
PN Pontine Nuclei
DN Deep Nuclei
FN Facial Nucleus
NOI Nucleo Olivary Inhibition
Λnoi Latency of the NOI
δp potentiation step size
δd depression step size
TDR proportion of true detections
FAR False Alarm Rate
PNtd proportion of true detections in the PN
PNfar rate of false alarms in the PN
IOtd proportion of true detections in the IO
IOfar rate of false alarms in the IO
w synaptic e�cacy
PSTH Peri-Stimulus Time Histogram
ωCS latency between CS trigger and CS event detection
ωUS latency between US trigger and US event detection
ωCR latency between CR trigger and its physical execution
σ probability of a US signal suppression by the NOI
Pi number of potentiation events in the condition i
P̄i mean number of potentiation events per trial in the condition i
Di number of depression events in the condition i
D̄i mean number of depression events per trial in the condition i
∆a estimated amount of change in w required for acquisition
∆e estimated amount of change in w required for extinction
Ta desired number of trials required for acquistion
Te desired number of trials required for extinction

Table 5.4: List of the abbreviations used in this chapter.



CHAPTER 6
Conclusion

This dissertation constitutes an e�ort towards the understanding of the

function carried out by the cerebellum in the context of the acquisition

of anticipatory actions and of the mechanisms that underlie such a func-

tion. To this end we have addressed the following theoretical questions:

what is the representation of time in the granular layer of the cerebel-

lar cortex? (Chapter 2); how is the teaching signal provided by the IO

a�ected by its spontaneous activity, and how is this teaching signal mod-

ulated by the Nucleo Olivary Inhibition (NOI)? (Chapters 3 and 5)? and

�nally, how does the microcircuit studied in classical conditioning of the

eye-blink response apply to the more ecologically valid context of avoid-

ance learning? (Chapters 3 and 4). All these issues have been studied

in an integrated manner, and tested in scenarios that were increasingly

more constrained �rst by the embedding of the computational models in

simulated and physical robots and �nally by the testing of the functional

validity of the solution in a neuro-prosthetic implementation.

This dissertation's main contributions, reported in the same order as they

appear in the main text, are the following:

• We have introduced a parsimonious model that accounts for the

149
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generation of a code of the passage of time in the cerebellar cor-

tex, that is able to code intervals up to 1 second, in good match

with the described range of operation of the cerebellum in timing

tasks (Buhusi & Meck, 2005). We have proposed that the substrate

for such a code is the well documented presence of slow spillover

inhibitory currents in the cerebellar granule cells.

• We have shown that the cerebellar microcircuit studied in classical

conditioning of the eye-blink response can be applied to an avoid-

ance learning scenario. We have shown that a crucial component

of this microcircuit, the NOI, shapes the behavior of the controlled

agent, in this case a robot, causing the adaptive and reactive ac-

tions to become blended after training.

• We have accounted for the so-called CS-intensity e�ect of classi-

cal conditioning as the �ngerprint of the cerebellum's capacity to

acquire sensorimotor contingencies. Again, to demonstrate this

we employed an avoidance learning setup where a robot traversed

a track at gradually increasing velocities. We demonstrated that

the sensorimotor contingency linking the intensity of the predic-

tive stimulus with the latency of the avoidance response allowed

the robot to generalize a learned skill, in this case a turn, along

di�erent speeds of execution.

• We have demonstrated that a computational model of a structure of

the central nervous system, in this case the cerebellum, can be used

to implement a neuro-prosthetic device allowing the functional re-

placement of its inactivated biological counterpart. Regarding this

contribution, we have provided a complete analysis of this pioneer

result, and also provided an evolved version of the computational

model used in the experiment to be tested in the next iteration of

the development of the cerebellar neuro-prosthesis.



6.1. CODING OF TIME 151

Now we will address each of these contributions in more detail, discussing

the opportunities of further research that they open.

6.1 Coding of time in the cerebellar

cortex

In Chapter 2 we have introduced which, to our knowledge, is the more

parsimonious model of the encoding of the passage of time in the cerebel-

lar cortex. Yamazaki & Tanaka (2007a) and Medina et al. (2000), among

others, have likened the computation at the granular layer of the cerebel-

lar cortex to that of a reservoir in echo-state networks (Jaeger, 2003) or

liquid-state machines (Maass et al., 2002). However, such a hypothesis

lacks experimental evidence since, so far, the response of granule cells to

sustained stimuli seems to lack the complex dynamics required for such

models (Bengtsson & Jörntell, 2009b; Jörntell & Ekerot, 2006).

In comparison, from the output perspective, our coding hypothesis sim-

ply assumes that granule cells progressively adapt their response to sus-

tained stimuli, as it was shown for example by Jörntell & Ekerot (2006),

and that the rate of the adaptation is in the same order of magnitude

as the timing capacities of the cerebellum, i.e., up to 1 second. Based

on the well-known presence of spillover inhibition in the granular layer

(Hamann et al., 2002; Rossi & Hamann, 1998) we further hypothesized

that the mechanism causing such adaptation is the build-up of such slow

inhibitory currents in granule cells, and demonstrated such a hypothesis

with a computational simulation. After having presented this work as a

poster (Herreros et al., 2009), this idea found experimental support in

a work by Crowley et al. (2009), where the accumulation of inhibitory

spillover currents was measured intra-cellularly in vitro.

This by no means implies that we have provided the de�nite answer to the

coding of time in the cerebellar cortex, since some of our assumptions still

need experimental support, such as the dynamics of the Golgi cells dur-
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ing eye-blink conditioning. Regarding the type of code, such a question

will be answered once the response of granule cells to the conditioning

stimulus is recorded in vivo during an eye-blink conditioning experiment

either electrophysiologically or by imaging techniques. It is very likely

that the response will come out soon, since this type of experiment is

now in the agenda of the �eld (Rasmussen et al., 2013b; Halverson et al.,

2010).

The question regarding the substrate of the code is more complex to

answer since spillover inhibition and standard fast synaptic inhibition

cannot be di�erentially blocked, as both are mediated by the same re-

ceptors (Hamann et al., 2002). For this, a blockade of spillover inhibition

will also a�ect local synaptic transmission, or in other words, remove

inhibition from the whole granular layer circuit, what will presumably

have widespread consequences in cerebellar function. Therefore, �nding

the mechanism that supports such a capacity will require intra-cellular

recordings.

However, we have indirectly validated our timing hypothesis by testing

its functional implications. In Chapters 3 and 4 we employed such a

representation of time in an adaptive controller that was tested in a

robot collision avoidance task. The controller was able to learn that task

and there were qualitative similarities between the behavior of the robot

and the one observed in nature in similar associative learning tasks. For

instance, in our model the learning of a well-timed response progressed

by incrementally delaying the peak of the initial CR and the same has

been reported for mice in classical conditioning (Koekkoek et al., 2003).

6.2 The cerebellar microcircuit in

avoidance learning

An idiosyncrasy of the eye-blink conditioning paradigm is that, in prin-

ciple, the CR should be devoid of any adaptive value, i.e., it should not
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ameliorate the US by making it less noxious. This is not the case in the

more ecologically valid setup of avoidance learning, where, in contrast,

the elicited protective behavior reduces the noxiousness of the aversive

stimulus (Kreider & Mauk, 2010). For this it was unclear how the func-

tionality of the cerebellar microcircuit studied in classical conditioning

generalized to the avoidance learning scenario, an issue of poignant in-

terest since, arguably, in nature the function of such a microcircuit is

homologous to avoidance learning, i.e., to support the acquisition of an-

ticipatory re�exes. Speci�cally, a major caveat was to discern whether

the internal negative feedback provided by the NOI was functional in

avoidance learning or if, instead, it interfered with the negative behav-

ioral feedback, that is non-existent in classical conditioning. This matter

is the focus of Chapter 3.

There, we used the cerebellar microcircuit as the core of a controller

for a robotic collision avoidance task. Such approach highlighted an

aspect that until very recently was overlooked in the eye-blink condition-

ing literature: that the US does not necessarily have to raise an internal

all-or-none signal, but that it can be coded in a graded manner (Ras-

mussen et al., 2013a; Naja� & Medina, 2013)). Indeed, it is well-known

in the �eld that rather than stereotypical discrete responses both the CR

and the UR have temporal dynamics and graded amplitudes that evolve

through the training process. Our results claim the same status for the

US signal.

This distinction is relevant since it allows a new interpretation of the goal

of the cerebellum in avoidance learning. Such a goal being to attenuate

the noxiousness of the aversive stimulus through an anticipatory protec-

tive action bringing the stimulus intensity below a certain safety level.

That is, the aversive stimulus is not completely erased because 1) it is

not necessary to do so once its intensity is su�ciently diminished and

because 2) its presence validates the suitability of the avoidance action.

For the last point one has to consider that protective actions may have
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a cost, e.g., blinking has the cost of interrupting the visual input stream,

therefore it may be desirable to avoid avoiding too much. In that case,

the presence of a residual US signal allows to con�rm the appropriateness

of the action at every single execution while its absence drives extinction.

Besides highlighting these points, the fundamental contribution of our

proposal in Chapter 3 is that the balance between the anticipatory and

the reactive actions can be set by a single parameter, this being the

gain of the NOI. The next logical step in future experiments is to �nd

a principled way to adjust such a parameter, for instance, in terms of

cost minimization. We are already addressing this issue form a compu-

tational perspective (Brandi, 2013) but, in addition, it will be of major

interest to devise an eye-blink conditioning paradigm where the cost the

anticipatory action is under experimental control, to see whether we can

act upon the balance of adaptive and reactive actions. This last point

would demonstrate a second degree of adaptivity in the acquisition of

avoidance actions; a meta-learning of the adaptive re�ex.

6.3 Acquisition of sensorimotor

contingencies by the cerebellum

In an example of a transfer of knowledge from experimental psychology

to robotics, we have shown that the cerebellum can use a sensorimotor

contingency like the CS-intensity e�ect to enable the �exible execution

of motor skills. Indeed, the reproduction of the CS-intensity e�ect, that

in Chapter 2 we used as a means to further validate our model for the

representation of time in the cerebellar cortex, now is upgraded from an

experimental phenomenon to a critical feature of cerebellar operation,

along the lines of what was put forth in Svensson et al. (1997, 2010).

This is, it shows that by controlling the intensity of the cerebellar input

it might be possible to �exibly adjust the timing of its output.

We demonstrated this result in a real robot setup, thus providing a more
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constrained validation of the applicability of our cerebellar-based control

model. Even though this point was not elaborated in the main text, in

the experiments we observed that the anticipatory responses triggered

in the real arena were wider than in the simulated environment and, for

this, the real robot turned more smoothly than the simulated one, even

though both were mounted with the exact same controller. A possible

explanation for this is that the variability of the movement of the physi-

cal robot introduced variability in its perceptions, for instance, �attening

the distribution of the error signal across trials, and this impacted on the

learned response, that became �atter as well. In other words, this illus-

trates, as put forth in Verschure et al. (2003), that there are properties

of an autonomous learning system that only manifest themselves when

the synergies between behaviour and perception enter the picture.

It has been recently proposed that a control framework very similar

to the one presented here can be used as a basis for safe limb control

(Dean et al., 2013), which opens an array of applications in the emerging

�eld of soft robotics. A crucial step in this direction can be taken by

simply replacing the externally generated CS by an internal signal. In

that case we would be able to apply this control scheme to support the

skilled execution of volitional actions. Or, in other words, to provide

a grounded robotic demonstration of the 170 years-old hypothesis ad-

vanced by Flourens (1842): that the cerebellum shapes and coordinates

the motor commands triggered by other brain structures.

6.4 Recovery of a lost cerebellar learning

function through neuro-prosthetics.

With the neuro-prosthetic application (Chapter 5) we showed that our

understanding of the information processing of the cerebellar microcircuit

allowed us to build a synthetic microcircuit that can functionally replace

its biological counterpart in the context of eye-blink conditioning. Such
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a result required not only the work presented in this thesis, but also the

coordinated e�ort of a broad and multidisciplinary team (see Prueckl

et al. (2011b) and Bamford et al. (2012)).

Regarding the computational model, the practical constraints of the ex-

periment, i.e., the intended implementation in an aVLSI device, informed

its design. For this we implemented a model along the line of Verschure

& Mintz (2001) while incorporating aspects highlighted in the previous

chapters of this dissertation, i.e., the e�ect of the low spontaneous activ-

ity of the IO on the coding of the teaching signal.

The results obtained showed that it is possible to design closed-loop

neuro-prosthetic systems that replicate the function of a brain structure

by reproducing, to some extent, the anatomical layout of the original

structure. The novelty of our approach resides in that, besides perform-

ing the same input-output transformation of the biological system, by

replicating its neuro-anatomy, our neuro-prosthesis implements a simi-

larly structured algorithm.

In addition, the goal of our neuro-prosthesis was not just to rebuild a

damaged link between di�erent brain areas, or to reproduce previously

observed patterns of activation thereby restoring already acquired memo-

ries, but to recover the capability to form new memories. In the long run,

these are the �rst steps on a vast and uncharted territory: that of the

direct closed-loop interaction of our brain with machines. Leaving ethical

concerns aside, and the metaphysical considerations regarding how this

will a�ect he concept of self, we have illustrated the possibility to de-

velop neuroscience-based treatments for the diseases that a�ect speci�c

structures of the central nervous system.

In the short run, we will see an incremental increase in the computational

capacity of the neural-prosthesis, in the bio-compatibility of the implants,

etc. but the real progress in this �eld, requires clearly delineated theories

on the function of the di�erent structures of the central nervous system.
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6.5 Concluding remarks

The computational models introduced in this dissertation are currently

being used to address other aspects of cerebellar function that were not

dealt with here, such as the generation motor sequences (Brandi et al.,

2013), the minimization of the overall cost in avoidance behavior (Brandi,

2013) and the acquisition of anticipatory postural adjustments (Ma�ei

et al., 2013), what con�rms that such models were not an end in them-

selves but that they constitute a means for performing further research

and advance our general understanding of the cerebellar function.

How general is the cerebellar algorithm that he have gradually developed

throughout this work is a question that will only be answered in the

future by extending its range of application. Here, in the last robot

experiments that we have presented, we applied the microcircuit design to

an avoidance learning task that was performed at di�erent speeds. This is

already a long shot from the initial computational simulation of the eye-

blink conditioning paradigm. But, as we mentioned in the introduction,

the diversity of theories about the cerebellar function suggests, to us,

that the cerebellum serves a diversity of functions.

The next step is to include this circuit in the loop of voluntary motor

control, using as the triggers for the cerebellar output internal signals and

not external stimuli. These signals will be now generated by higher brain

structures, for which it will be necessary to embed the computational

models of the cerebellum in complex cognitive structures. And as the

volitional commands reaching the cerebellum will become more complex,

composed of multiple concurrent or sequential elements, the cerebellum

will have to coordinate them, probably by adjusting the relative timing

of execution of each sub-command.

Finally, an exciting venue is to model the control of cognitive operations

by the cerebellum (Ito, 2008). Then we could address issues such as how

does the cerebellum might contribute to logical reasoning? (Balsters &
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Ramnani, 2011) Or, how does it contribute to our conscious experience?

(It	o, 2012; Schmahmann et al., 2002).

In general, these questions will require to embed the cerebellum in elabo-

rated cognitive architectures, such as the one provided by the distributive

adaptive control theory (Verschure, 2012), and explicitly delineate the in-

teraction between its di�erent components and the cerebellum. This has

the potential of leading towards the development of robots or autonomous

agents that will not only be more agile from a physical point of view, but

also be more adaptive from a cognitive perspective.

Following this path we will begin to provide a general answer to the

questions of: What is the key computational feature that the cerebellum

adds to the central nervous system of (almost) all vertebrates? Why is it

preserved all through evolution almost since the body plan of vertebrates

was originated? And how does it enhance the �tness of living organisms?

We believe that the integrative approach we took in this thesis is the key

towards providing a joint answer to all of the above questions.
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