

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Knowledge management technology for
integrated decision support systems in

process industries

Knowledge management technology for
integrated decision support systems in

process industries

Edrisi Muñoz Mata
M.Sc. in Industrial Engineering

A Thesis presented for the degree of
Doctor of Philosophy

Directed by:
Prof. Dr. Antonio Espuña
Prof. Dr. Luis Puigjaner

ELEMENTS BÀSICS

Símbol

Pantone 542

10

Escola Tècnica Superior d’Enginyeria Industrial de Barcelona
Universitat Politècnica de Catalunya

December 2011

Copyright © 2011 by Edrisi Muñoz Mata

A mi familia con todo mi cariño

He aquí

una prueba para verificar

si tu misión en la tierra

ha concluido:

Si estas vivo

no ha concluido

Ilusiones Richard Bach (1977)

Summary

Nowadays, factors such as globalization of trade, market uncertainty and fierce com-
petition involve dwindling error margins in enterprises. Two key aspects for achieve
it are the viability and the competitiveness of enterprises, which highly depend on
the effectiveness for taking their decisions related to their manufacturing character-
istics, such as economic efficiency, product quality, flexibility or reliability. For this
reason, companies have taken the task of developing better management information
systems in order to help the decision makers to exploit data and models, enriching and
improving decision-making.

In this sense, decision support systems must be improved in order to deal with the
large amount of available data and the heterogeneity of existing modeling approaches
available along the hierarchical levels in the enterprise structure. Hence, this thesis
proposes the application of ontologies as a decision support tool. Ontologies are in-
creasingly seen as a key semantic technology for addressing the problems created by
data heterogeneities thus enabling data mining driving by knowledge processing.

The aim of this thesis is to contribute to the development of decision support tools
for the process industry. As a decision support tool, it must be capable of becoming a
robust model which interacts among the different decision hierarchical levels, providing
a unified framework of data and information levels integration. On the other hand,
this thesis also aims at the improvement in the development of the ontologies.

Firstly, a detailed state of the art encompassing the different production process
systems, knowledge management base on ontologies, as well as decision support sys-
tems is carried out. Based on this review, the specific thesis objectives are posed.
Next, a methodology is proposed for the development and use of ontologies, based on
the analysis and adaptation of previously existing methodologies. Such methodology
is based on the improvement cycle (PSDA), and allows for a better way to design,
construct and apply domain ontologies.

The second part of this thesis is devoted to the application of the different parts
of the previously proposed methodology for the development of an ontological frame-
work in the process industry domain concerning the strategic, tactical and operational
decision levels.

Next, the description of the decision areas in which the ontological framework is
applied is presented. Namely, in the process control decision level, the coordination

I

Summary

control is considered. Regarding scheduling decisions level, mathematical optimization
approaches are applied. Finally, the distributed hierarchical decision level considers
the mathematical optimization for decentralized supply chain networks is adopted.
These decision areas and the performance of the proposed framework are studied
along different case studies presented in the thesis.

On the whole, this thesis represents a step forward toward the integration among
the enterprise hierarchical levels, the process and enterprise standardization and im-
proved procedures for decision-making. The aforementioned achievements are boosted
by the application of semantic models, which are currently increasingly used.

II

Resumen

En la actualidad, factores como la globalización del comercio, la incertidumbre del
mercado y la feroz competencia implican la disminución de los márgenes de error en
las empresas. Dos aspectos claves para lograrlo son la viabilidad y la competitividad
de las enterprisesm, que dependen en gran medida la eficacia para la toma de sus
decisiones relacionadas con sus características de fabricación, tales como eficiencia
económica, la calidad del producto, la flexibilidad y fiabilidad. Por esta razón, las
empresas han considerado la tarea de desarrollar mejores sistemas de gestión de la
información con el fin de ayudar a los tomadores de decisiones de explotación de datos
y modelos, para enriquecre y mejorar la toma de decisiones.

En este sentido, los sistemas de soporte a las decisiones deben ser mejorados con
el fin de hacer frente a la gran cantidad de datos disponibles y la heterogeneidad de
los métodos de modelización existentes disponibles a lo largo de los niveles jerárquicos
en la estructura de la empresa. Por lo tanto, esta tesis se propone la aplicación de
ontologías como herramienta de apoyo a la decisión. Las ontologias son cada vez más
vistas como una tecnología clave semántica para hacer frente a los problemas creados
por la heterogeneidad de los datos permitiendo asi la extracción de datos mediante el
procesado del conocimiento.

El objetivo de esta tesis es contribuir al desarrollo de herramientas de apoyo para la
industria de procesos. Como una herramienta de apoyo a la decisión, debe ser capaz de
convertirse en un modelo sólido que interactúa entre los diferentes niveles de decisión
jerárquica, proporcionando un marco unificado de datos e integración de los niveles
de información. Por otra parte, esta tesis también tiene como objetivo la mejora en el
desarrollo del área de ingeniería ontológica.

En primer lugar, se ha llevado a cabo un detallado estado del arte sobre los difer-
entes sistemas de procesos de producción, la base de la gestión del conocimiento en on-
tologías, así como los sistemas de soporte de decisiones. Basado en esa revision, los ob-
jetivos específicos de la tesis se plantean. A continuación, se propone una metodología
para el desarrollo y uso de ontologías, con base en el análisis y adaptación de las
metodologías ya existentes. Dicha metodología se basa en el ciclo de mejora (PSDA),
lo que permite una mejor manera de diseñar, construir y aplicar las ontologías de
dominio.

La segunda parte de esta tesis se dedica a la aplicación de las diferentes partes de

III

Resumen

la metodología propuesta anteriormente para el desarrollo de un marco ontológico en
el ámbito de la industria de procesos relativos a los niveles de decisiones estratégicas,
tácticas y operativas.

A continuación, la descripción de las áreas de decisión en la que se aplica el marco
ontológico se presenta. Es decir, en el nivel de decision de proceso de control, el control
de la coordinación se considera. En cuanto al nivel de decisiones de programación de
la producción, los métodos matemáticos de optimización se aplican. Finalmente, el
nivel jerárquico distribuido decisión considera la optimización matemática de las redes
descentralizadas de la cadena de suministro que se adopte. Estas áreas de decisión y
la desempeño del marco propuesto se estudian a lo largo de los diferentes casos de
estudio presentados en la tesis.

En general, esta tesis supone un paso hacia adelante en la integración entre los
niveles jerárquicos de la empresa, el proceso y la estandarización de la empresa y
mejorar los procedimientos de toma de decisiones. Los logros mencionados se potencian
mediante la aplicación de modelos semánticos, que actualmente se utilizan cada vez
más.

IV

Acknowledgments

I am deeply grateful to God and life for placing in my path to all those special people.
Starting with my family. To my father Máximo, example of responsibility and to

my mother Guadalupe,example of dedication and love, and who have prepared me to
love life. To my sisters, Mirna whose footsteps I try to follow and is an inspiration
to me; Idané, who has been from birth motivation and love. To Claudia, thanks for
sharing the task of parenting and mutual support. And finally I want to thank to my
two big hearts Ariadna and Ian, who have enlightened and energized why to be and
why to continue struggling.

Thank also the teachers whom I have worked these last 5 years, starting with
Professor Alberto Lassere, who help and encouragement to continue this PhD. And
most especially, to professors Luis Puigjaner and Antonio Espuña, who welcomed and
guided me along this new stage of learning and development work.

Besides to my friends during this PhD phase, whom I consider as my new family,
Jose Miguel, Elisabet K, Aaron, Marta, Mar, Georgios, Dejan, Marianna, Martina,
Diego, Rodolfo, Victor, Miguel, Javier, Ahmed, Carlos Tostado and all those who in
this I remember now, but know they are part of this cycle.

From my heart thank you.

V

Agradecimientos

Agradezco profundamente a todas las personas que Dios y la vida han puesto en mi
camino.

Comenzando por mi familia, a mi padre Máximo mi ejemplo de responsabilidad y
a mi madre Guadalupe mi ejemplo de entrega y amor, y quienes me han preparado
para amar la vida, a mis hermanas, Mirna que trato de seguir tus pasos y eres una
inspiración para mí, a Idané quien ha sido desde su nacimiento motivación y cariño.
Claudia gracias por compartir la tarea de ser padres y el apoyo mutuo. Por ultimo a
mis dos grandes corazones Ariadna e Ian, quienes han iluminado y energizado por qué
estar y porque seguir esforzándome.

Agradecer también a los profesores con los que he trabajado estos últimos 5 años,
comenzando por el profesor Alberto Lassere, quien ayudo e impulso a continuar el
doctorado. Y de manera muy especial, a los profesores Luis Puigjaner y Antonio Es-
puña, quienes me acogieron y guiaron a lo largo de esta nueva etapa de aprendizaje y
desenvolvimiento laboral.

Y a mis amigos de doctorado, a los cuales considero como mi familia, Jose Miguel,
Elisabet K, Aaron, Marta, Mar, Georgios, Dejan, Mariana, Martina, Diego, Rodolfo,
Victor, Miguel, Javier, Ahmed, Carlos Tostado y a todos aquellos que en este momento
no recuerdo, pero saben que son parte de este ciclo.

De corazón gracias.

VII

Contents

Part I Overview 1

1 Introduction 3
1.1 Chemical industry overview . 3

1.1.1 Positive social impact . 3
1.1.2 Long-range research initiative 4

1.2 Decision making in the enterprise . 5
1.2.1 Modeling systems . 6

1.3 Knowledge management . 7
1.3.1 Ontology definition . 8

1.4 Research scope . 8
1.5 Thesis outline . 9

2 State of the Art 11
2.1 Production process systems . 11

2.1.1 Continuous processes . 11
2.1.2 Semi-continuous processes . 12
2.1.3 Batch processes . 13

2.2 Standards for integration . 13
2.2.1 Process Standards . 13
2.2.2 Enterprise integration . 15
2.2.3 Information and knowledge management standards 18

2.3 Knowledge management: ontologies . 19
2.3.1 Ontology design principles . 20
2.3.2 Ontology programming conventions 21
2.3.3 Ontology methodologies . 22
2.3.4 Ontology types . 24
2.3.5 Ontology languages . 25
2.3.6 Applications and projects . 27
2.3.7 Ontology editors . 28
2.3.8 Ontology reasoning . 29

IX

Contents

2.4 Decision support systems . 30
2.4.1 Optimization-based decision support systems 33
2.4.2 Data and information . 33

2.5 Thesis objectives . 34

3 Methods and Tools 37
3.1 Toward a Methodology . 37
3.2 Proposed methodology . 41

3.2.1 Plan phase . 43
3.2.2 Do phase . 44
3.2.3 Check/Study phase . 46
3.2.4 Act phase . 47
3.2.5 Re-planning phase . 48

3.3 Ontology layering and architecture . 48

Part II Ontology 51

4 An ontology-based for Chemical Process Engineering: Enterprise
Ontology 53
4.1 Introduction . 53
4.2 Plan phase . 54

4.2.1 Requirements specification . 54
4.2.2 Domain definition . 55
4.2.3 Competence questions (ontology motivations) 59

4.3 Do phase . 63
4.3.1 Domain conceptualization . 63
4.3.2 Formalization (ontology editor implementation) 78
4.3.3 Integration . 78
4.3.4 Informatics implementation . 78

Technological architecture . 79
Application . 80

4.4 Study/Check phase . 80
4.4.1 Language conformity standard 80
4.4.2 Conceptually conformity standard 80
4.4.3 Reasoning . 81
4.4.4 Performance (application oriented) 81
4.4.5 Revise . 84

4.5 Act phase . 84
4.5.1 Implementation . 84
4.5.2 Maintenance . 86

4.6 Re-planning phase . 86

X

Contents

Part III Framework application 87

5 Decision support system 89
5.1 Process control decisions . 89
5.2 Planning & scheduling decisions . 90

5.2.1 Data requirement . 92
5.3 Supply chain decisions . 94

5.3.1 Data requirement . 94
5.4 Data and information management . 97
5.5 Remarks . 99

6 Case studies 101
6.1 Introduction . 101
6.2 Model 1: Information integration . 102

6.2.1 Case Study 1: PROCEL scheduling 102
Results . 104

6.2.2 Case study 2: Multi product batch plant - control and scheduling 106
Problem description . 106
Results . 108
Solution without previous plant knowledge 110
Solution with previous plant knowledge 111

6.2.3 Model remarks . 112
6.3 Model 2: Complete master recipe definition 113

6.3.1 Case Study 3: Multi product batch plant - scheduling 114
Problem description . 114
Results . 114

6.3.2 Case study 4: Benchmark problem - Kondili scheduling 116
Problem description . 116
Results . 117

6.3.3 Case study 5: Integration - scheduling 121
Problem description . 121
Results . 121

6.3.4 Model remarks . 124
6.4 Model 3: Complete supply chain management 124

6.4.1 Case study 6: Benchmark problem - Lainez supply chain 125
Problem description . 125
Results . 125

6.4.2 Model remarks . 131

Part IV Conclusions and Outlook 133

7 Conclusions and Future Work 135
7.1 Conclusions . 135

7.1.1 Methodology improvement . 135
7.1.2 Semantic enterprise domain representation 136

XI

Contents

7.2 Future work . 138

Appendixes 139

A Publications 141
A.1 Journals . 141

A.1.1 Manuscripts published . 141
A.1.2 Manuscripts submitted . 141

A.2 Conference proceeding articles . 141
A.2.1 Articles in conference proceedings 141
A.2.2 Other congresses and workshops 142

A.3 Participation in research projects . 143

B Domain conceptualization 145

C Interrelationship matrix 149

D Java code 151

E User’s manual of Enterprise Ontology 181
E.1 Usage requirements . 181
E.2 Problem instantiation . 182
E.3 Instances . 182
E.4 Instances inference . 189
E.5 Framework exploitation . 189

Bibliography 193

XII

List of Tables

2.1 Comparison of approaches and coverage. 15

3.1 Rating for the conceptualization complexity of ontologies 48

4.1 Supply chain main concepts. 63
4.2 Some concepts from ANSI/ISA-88. 65
4.3 Object properties (domain & range). 73
4.4 Data properties (domain & range). 76
4.5 Reasoners time for consistency checking. 81

5.1 Information provided by the ontology to the control level. 90
5.2 Relationship between optimization inputs and classes of the ontology. 93
5.3 Information provided by the ontology to the analytical model. 95
5.4 Elements of the model element "tasks". 97

6.1 Batches processing times [min]. 103
6.2 Pipes transfer times [min]. 103
6.3 Cleaning time [min]. 104
6.4 Control set points. 104
6.5 Product prices and lot sizes for Case study 2. 107
6.6 Recipe stage times [h]. 107
6.7 Description of the process plant in Case study 2. 107
6.8 Instances of each class for Case study 3. 114
6.9 Instances of each class for Case study 4. 118
6.10 Instances of each class for Case study 6. 126

B.1 Concepts from ANSI/ISA-88 . 145

XIII

List of Figures

1.1 World chemicals sales by region % of total 2009. 4
1.2 Hierarchy of modeling systems . 7
1.3 Thesis outline. 10

2.1 Production process systems. 12
2.2 Hierarchical model control & business systems. 14
2.3 ANSI/ISA interaction at the enterprise control system. 16
2.4 Hierarchical Purdue reference model. 18
2.5 Decision-making process. 31
2.6 A new decision paradigm for DSS, source (Courtney, 2001). 32

3.1 Methodology of methontology. 39
3.2 Methodology of On-To-Knowledge. 41
3.3 Methodology for developing enterprise ontology. 42
3.4 Model for improvement of the PDSA cycle. 43
3.5 Affinity diagram tool. 46
3.6 Construct ontology layering . 49

4.1 ANSI/ISA-88 recipe, procedure and process models. 57
4.2 Basic relations between models in ANSI/ISA-88. 58
4.3 Basic relations between models in ANSI/ISA-95. 59
4.4 Control activity model . 62
4.5 Taxonomy top classes (domain). 66
4.6 Process taxonomy. 66
4.7 Processing activities taxonomy. 66
4.9 Physical model taxonomy. 70
4.10 Process output taxonomy. 70
4.11 Control function taxonomy. 70
4.12 Production process taxonomy. 71
4.13 Resources taxonomy. 72
4.14 Procedure taxonomy. 72
4.15 Examples of axioms for the Master Recipe and Area classes. 77

XV

List of Figures

4.16 Model structure informatics . 79
4.18 Protege required parts in order to instance the process. 85

5.1 Information required by the recipe at different levels. 91
5.2 View of the Protègè interface containing the instances required for

defining the model element "production tasks". 96
5.3 Example of the Java code developed to give the model element "tasks"

to the analytical model. 97
5.4 Screenshot of the MySQL database interface. 98
5.5 Scheme of the relationships among the different actors of the ontolog-

ical framework and the database. 98

6.1 Piping and instrumentation diagram of the flow shop plant of the
PROCEL plant. 103

6.2 Temperature parameter following the ANSI/ISA-88 standard. 105
6.3 Ontology Model 1 approach for Case study 1. 106
6.4 Plant flowsheet for the Case study 2. 106
6.5 Piping and instrumentation diagram for Case study 2. 108
6.6 Diagram flow of the solution procedure exploiting the semantic repre-

sentation to react against incidences. 109
6.7 Diagram flow of the solution procedure exploiting ontology usability. 109
6.8 Gantt charts for Case study 2: a) initial solution and b) solution after

the rescheduling action (the breakdown in unit R1 is shown shaded). 111
6.9 Batch operation models: a) batch-oriented recipe and b) equipment-

oriented recipe. 112
6.10 Instances derived from master recipe of product A in Case study 3. . 117
6.11 Gantt chart resulting from the optimization of Case study 3. 118
6.12 STN representation for the Case study 4. 118
6.13 Instances derived from the master recipes in Case study 4. 121
6.14 Gantt chart resulting from the optimization of Case study 4. 122
6.15 STN representation showing the potential integration of the two pro-

duction lines for Case study 5. 122
6.16 Instances derived from the master recipes in Case study 5. 123
6.17 Gantt chart resulting from the optimization of Case study 5. 123
6.18 Supply chain structure of Case study 6. 125

E.1 Screenshot of the enterprise ontology project template. 184
E.2 Screenshot of the master recipe instantiation. 186
E.3 Screenshot of the site instantiation. 188
E.4 Step 1. Libraries loading. 190
E.5 Step 2. OWL classes importation. 190
E.6 Step 2. Work space declaration and OWL file loading. 191

XVI

Chapter 1

Introduction

1.1 Chemical industry overview

Chemistry is essential to our everyday lives. It creates opportunities for innovation,
and provides a wide range of benefits for society. There has always been a strong

connection between global development and innovation in chemistry: synthetic dyes
were central to the development of textiles during the Industrial Revolution, and led
to the birth of the pharmaceuticals industry; petrochemicals initiated the post-war
plastics and materials revolution; fine and specialty chemicals offered and continue to
offer a multitude of products, both for consumer items and industrial applications or
processes, active ingredients for crop protection, and intermediates for pharmaceuti-
cals.

In the 21st century, industry faces new challenges, many of which are concerns
shared by society as a whole: the impact of climate change, aging populations, avail-
ability of safe drinking water, food scarcity and cost, and the security of energy sup-
plies. With these challenges come tremendous business opportunities for the chemical
industry which is uniquely placed to help to develop solutions through the creation of
products that improve the quality of life, health, productivity, convenience and safety.

1.1.1 Positive social impact

The chemical industry has a positive social impact through its investment in human
resources. It offers good opportunities in terms of job creation: as a science-based
sector, the chemical industry requires high quality human capital and can offer good
remuneration. Worldwide, about 7 million people work in the chemical industry, and
taking into account indirect employment, more than 20 million people around the globe
have a job connected to the chemical industry. As a sector, it is not only important
in terms of size but also in terms of its features: significant capital investment, high
knowledge content and qualified human resources.

3

1. Introduction

It is also important for world economic and social development, as a science and
technology, knowledge based industry that is essential to a sustainable world economy
and improved health and nutrition. In 2009, world chemical sales is estimated in 1871
billion euros increasing 60% in 2009 compared with 1999 (see Figure 1.1) (CEFIC,
2009).

Facts and Figures 2010

The European Chemical Industry in a worldwide perspective

Unless specified, chemicals industry excludes pharmaceuticals Dr. Moncef Hadhri (mha@cefic.be)
Unless specified, EU refers to EU 27

1

Chemical Industry Profile

World chemicals sales by region

Developments during the previous 10 years from 1999 to 2009 indicate that the
European Union was the clear leader in terms of world chemicals sales, but the
region has gradually lost ground to Asia (excluding Japan). Comparing 2009 to 1999,
the EU contribution to world chemical sales declined by 8.1 percentage points. In
fact, the total value of sales in Europe has been growing continuously, but overall
world chemical sales are growing at an even faster clip. The value of world
chemicals sales increased by 60 per cent in 2009 compared with 1999.

Figure 1.1: World chemicals sales by region % of total 2009.

Industrialized countries account for a major part of world production, but the main
growth centers of chemical sales and production are in emerging Asia. Total world sales
in chemicals increased by around 10% from 2006 to 2007.

A major development beginning in the 1960s is the globalization of the business of
chemistry, with investments by companies of many countries in production facilities in
foreign countries, and the development of world markets. World economic growth, the
reduction of trade barriers and taxes, as well as advances in telecommunications and
air transportation, foster this globalization. Globalization of investments and markets
has spread industry capital resources, technology, and managerial capabilities around
the world and has resulted in the emergence of multinational chemical companies.

1.1.2 Long-range research initiative
Improved and validated scientific methods are essential to advance the understanding
of chemicals management by industry, government and the general public. Celebrating
its 10th anniversary in 2008, the ICCA Long-range Research Initiative (LRI) aims to
ensure a sustainable and healthy future by enabling industry, regulators and society
as a whole for:

• Better understand the potential impacts that chemicals may have on human
health, wildlife and the environment.

• Support robust and informed decision making based on high quality information.

4

Decision making in the enterprise

• Improve public confidence in decisions based on a scientific understanding of
risk.

Supporting to establish a reliable framework for innovation, the work toward this
goal should be developed in areas such as:

• Computational tools and models.

• Human biomonitoring.

• Intelligent testing strategies.

• Alternatives to animal use.

• Persistence and bioaccumulation.

• Exposure assessment.

• Toxicogenomics and its role in risk assessment.

• Innovations in risk assessment.

Progress in analytical methods enables the detection of very small quantities of
chemicals in the body. At the same time, advanced technologies show some changes in
gene expression are due to exposure to chemicals, raising concern among policy makers
and the public. Industry strongly believes that the management of chemicals must be
based on sound science.

The ICCA-LTR 2008 workshop held in Amsterdam, the Netherlands, focused on
how technological advancements can be used to improve the science of risk assessment
and how the growing body of data can be interpreted (Council, 2010).

1.2 Decision making in the enterprise

For many years companies have been developing management information systems to
help the end users to exploit data and models, with the final objective of discussing and
decision-making. Nowadays, global competition has made some of these decisions (re-
lated to certain manufacturing characteristics like economic efficiency, product quality,
flexibility, reliability, etc.) essential for the viability of the enterprise (Venkatasubra-
manian et al., 2006).

Decision Support Systems (DSS) are information technology solutions that can be
used to support complex decision-making and problem solving. DSS are defined as "aid
computer systems at the management company level that combine data and sophisti-
cated analytic models for support decision-making" (Simon and Murray, 2007). Clas-
sic DSS design is comprised of components for (i) sophisticated database management
capabilities with access to internal and external data, information, and knowledge; (ii)
modeling functions accessed by a model management system, (iii) simple user interface
designs that enable interactive queries, reporting, and graphing functions, and (iv) op-
timization by mathematic algorithms and or intuition/knowledge. Much research and
practical design effort has been conducted in each of these domains (Shim et al.,
2002).

5

1. Introduction

1.2.1 Modeling systems

In general terms, modeling is the attempt of devising an approximate representation
of a system with the goal of providing predictions of the system’s performance mea-
sures of interest. Such a representation is called a model. A model formalizes the
relationship between various flows of information and can adopt different forms, from
spreadsheets to mathematical programs, neural networks, expert systems among oth-
ers. Furthermore a model is designed to capture certain behavioral aspects of the
modeled system–those that are of interest to the analyst–in order to gain knowledge
and insight into the system’s behavior (Morris, 1967).

Modeling systems can be categorized from different perspectives. A general taxon-
omy distinguishes between transactional and analytical modeling approaches. Trans-
actional systems are concerned with the acquisition, processing and communication of
data over the enterprise. Analytical techniques introduce some reasoning to evaluate
the problems, and are further classified into descriptive and normative models. De-
scriptive models can be used to analyze a system, but not to improve it, and provide a
better understanding of internal and external functional relationships in the enterprise
(included are forecasting models, cost relationships, resource utilization relationships,
and simulation models). On the other hand, optimization or normative models are de-
veloped as decision-support systems to assist managers in the identification of efficient
and improved decisions.

In general, descriptive and optimization algorithms can be broadly classified into
equation-oriented or procedure-oriented approaches. Equation-oriented approaches in-
volve rigorous mathematical programs, either deterministic or stochastic, constraint
programming and graph theory. Procedure-oriented approaches comprise rule-based
techniques, heuristics, and meta-heuristics such as simulated annealing (SA), genetic
algorithms (GA), or tabu search, which are based on generic principles and schemes;
they attempt to improve a given solution effectively, but the optimality and conver-
gence are difficult to assess; there is no systematic procedure for obtaining good bounds
on the attainable optimum values of the objective function (Pekny and Reklaitis,
1998).

The basis for solving a systems problem is the system representation in an ad-
equate model, which captures the features relevant for the observer whose ultimate
aim lies on decision making. Precisely, decision making in process industries results
in a highly challenging task. In this area, process systems engineering (PSE) is a
well established discipline of chemical engineering which covers a set of methods and
tools to support decision-making for the creation and operation of the process supply
chain constituting the discovery, design, manufacturing and distribution of chemical
products and other process goods from a holistic approach. In order to deal with the
problem complexity, it is necessary to decouple the system across a hierarchy of appro-
priately chosen levels. Figure 1.2 represents a hierarchy of particular modeling systems
that can be distinguished in the broad area of PSE based on the temporal scale and
the level of decision. The need to integrate the different modeling approaches in a hi-
erarchical decision-support system makes necessary the use of consistent terminology
and concepts to improve the communication and collaboration tasks over the entire
system.

6

Knowledge management

Figure 1.2: Hierarchy of modeling systems

1.3 Knowledge management

A knowledge management of a specific domain can usually consider its knowledge
representation and is organized by five principles: i) a surrogate; ii) a set of ontological
commitments; iii) a fragmentary theory of intelligent reasoning; iv) a medium for
efficient computation; v) a medium of human expression (Davis et al., 1993).

The competitiveness of companies depends heavily on how they exploit their cor-
porate knowledge and memory. One of the enterprise basic commitments to ensure a
sustainable success is to manage its knowledge. It refers to the development and ex-
ploitation of the organization’s tangible and intangible knowledge resources. Organiza-
tional knowledge management is concerned with realizing the value of this "intellectual
capital", which exists as: tangible assets (such as patent licenses and information held
in databases on customers, suppliers, products and competitors, etc) and intangible
assets (such as the skills, experience and knowledge of people within the organization)
(Apostolou et al., 2008).

Besides, the support for information and knowledge exchange is a key issue in the
enterprise information system. The exponential growth of on-line information on intra-
nets and the web leads to information overload. To cut down on the time wasted in
searching and browsing, and reduce associated user frustration, much more selective
user access is needed.

Most information in modern electronic media is mixed-media and rather weakly
structured. Finding and maintaining information is a hard problem in weakly struc-

7

1. Introduction

tured representation media. Increasingly, companies realize that their intra-nets are
valuable repositories of corporate knowledge. But with the now rapidly increasing vol-
umes of information, turning this into useful knowledge has become a major problem.
Knowledge Management is about leveraging corporate knowledge for greater produc-
tivity, value, and competitiveness (Schreiber et al., 2000).

Due to Internet-enhanced globalization, many organizations are increasingly ge-
ographically dispersed and organized around virtual teams. Such organizations need
knowledge management and organizational memory tools that encourage users and fos-
ter collaboration while capturing, representing and interpreting corporate knowledge
resources and their meaning.

Knowledge management tools can be based on several technologies such as dis-
tributed data bases, ontologies, networks maps. In section 1.3.1 a general overview of
ontologies is given as a developed tool in this thesis.

1.3.1 Ontology definition
Ontologies are increasingly seen as a key semantic technology for addressing hetero-
geneities and mitigating the problems they create and for enabling semantics-driven
knowledge processing. Ontologies are formal structures enabling acquiring, maintain-
ing, accessing, sharing and reusing information (Gruber, 1993; Fensel, 2003). Knowl-
edge management systems benefit from ontologies that semantically enrich information
and precisely define the meaning of various information artifacts.

From the essence of enterprise modeling, we could say that it plays a critical role
in this integration, enabling better analysis of their performance, and management
of their operations. An enterprise model is a computational representation of the
structure, activities, processes, information, resources, people, behavior, goals, and
constraints of a business, government, or other enterprise. The role of an enterprise
model is to achieve model-driven enterprise design, analysis, and operation (Fox et al.
(1997); Fox and Gruninger (1998)).

Ontology is an important emerging discipline that has a significant potential to
improve information organization, management and understanding. It has a crucial
role to play in enabling content-based access, interoperability, communications, and
providing qualitatively new levels of services on the next wave of Semantic Web and
other research domains.

Ontologies have been developed in order to facilitate knowledge sharing and reuse.
They are a popular topic in various research communities, such as knowledge engineer-
ing, natural language processing, cooperative information systems, information inte-
gration, software agents, and knowledge management. Generally speaking, Ontologies
provide:

• A shared and common understanding of a domain; this domain can be commu-
nicated among people and across application systems.

• An explicit conceptualization that describes the semantics of the data.

1.4 Research scope
The main objective of this thesis is to bridge systems engineering processes domain
(chemical process) with computer science domain (artificial intelligence, ontological en-

8

Thesis outline

gineering and semantic web). This work should offer the required effective techniques
for rapid integration of communication and management of multiple systems. For this
reason, the proposed system should encompass standards (process standards, infor-
matics language standards, and ontological standards), which should give the strength
for its future validation, sharing and application.

Systems engineering processes are comprised by different independent activities
(such as pre-formulation and new process development, supply chain management,
scheduling, process control, fault analysis, etc.). These activities are included within
a functional hierarchical model (Purdue reference model (Williams, 1989)) which
includes: business planning & logistics, manufacturing operations & control, and batch,
continuous, or semi-continuous control.

On the other hand with regard to computer science domain, the model should
define the hierarchical levels at which decisions are made, and such model should
become the basis of a framework for developing a multi-scale decision support model.
Thus, this model would be supported by the ontology as a data, information and
knowledge system management.

1.5 Thesis outline
This thesis has been structured following a logical sequence stemming from the general
concepts to the practical application as shown in Figure 4.7, and explained next.

Firstly, in Part I, the state of the art about the different production process systems,
knowledge management based on ontologies, as well as decision support systems are
presented in Chapter 2. Thus, at the end of this Chapter the specific thesis objectives
are posed. Next, Chapter3 sets the methodology proposed for the development and use
of ontologies, based on the analysis and adaptation of previously existing methodolo-
gies. Such methodology is based on the improvement cycle (PSDA), allowing a better
way to design, construct and apply domain ontologies.

Part II of this thesis is devoted to the application of the different parts of the
previously proposed methodology for the development of an ontological framework in
the process industry domain concerning the strategic, tactical and operational decision
levels.

Thus, Part III presents the application of the ontological framework at decision
levels of the enterprise. Specifically, Chapter 5 describes the decision making tools
adopted in this thesis at each level of the hierarchical structure. A the process control
decision level, the coordination control is considered. Regarding scheduling decisions,
mathematical optimization approaches are applied. Finally, the distributed hierarchi-
cal decisions considering mathematical optimization for decentralized supply chain
networks is adopted. These decision areas and the performance of the proposed frame-
work interaction are studied along the different case studies presented in Chapter 6.

Finally, Part IV summarizes the conclusions derived from this research, and pro-
poses the future work that may be derived.

9

An ontology based framework for
chemical process engineering

Conclusions
and Future Work

Methods and Tools

Figure 1.3: Thesis outline.

Chapter 2

State of the Art

In this chapter, the description of the current state of the art regarding production
process systems, knowledge management tools based on ontologies, and decision

support systems, is detailed. Thus the thesis objectives based on the challenges iden-
tified in the literature are posed.

2.1 Production process systems

In this section, the major production process patterns found in chemical process in-
dustries are presented. Production processes can be classified as continuous, semi-

continuous and batch. This thesis’ work focuses primarily on batch production pro-
cesses because of their greater complexity (see section 2.1.3 for details). However, one
of the most important goals is flexibility of adaptation to any other kind of process.
The physical model differences of production process types are shown in the Figure
2.1.

2.1.1 Continuous processes

In a continuous task, materials and products are produced continuously along the time
period of the task, and processing rate can be either fixed or within a certain range.
The continuous production process is adopted by most oil and gas industries and petro-
chemical plants and in other industries, such as the float glass industry, where glass of
different thickness is processed in a continuous manner. Manufacturing firms often run
continuous processes to perform some production steps yielding intermediates and/or
final products.

Many fast moving consumers good manufacturing companies produce a moderate
number of intermediates that are combined in many different ways to generate an
enormous variety of end products. To do that, such companies usually run continuous
production plants in a make-to-stock environment. The process structure, includes

11

2. State of the Art

Figure 2.1: Production process systems.

a fabrication area yielding basic intermediates that are stocked in a large middle
storage space, and a packing sector where finished products, usually comprising several
intermediates, are manufactured.

2.1.2 Semi-continuous processes

In a semi-continuous task, either the raw materials or the products are fed continu-
ously; whereas the other is loaded/discharged at a time. Semi-continuous processing
offers a more customized operation for highly dynamic and uncertain environments.
Semi-continuous operations are characterized by their processing rate, running con-
tinuously with periodic start-ups and shutdowns for frequent product transition. The
processing times of semi-continuous processes are relatively long periods of time called
campaigns, each dedicated to the production of a single product. Typical campaign
lengths range from a few hours to several days. Most process plants in the chemical in-
dustry combine continuous operations and batch processes in their product processing
routes thus working in semi-continuous mode, since production becomes more flexible
and equipment can be more efficiently utilized.

12

Standards for integration

2.1.3 Batch processes

In a batch task, materials are fed at the start of the task; and after a certain time,
products are produced at once at the end. In a production batch plant environment,
the presence of unpredictable events not only related to external market factors but
also to the intrinsic plant operation itself, such as equipment breakdowns and vari-
able operation times, is usually unavoidable. Even more, due to the existent lack of
integration between the different control levels (control levels of the Purdue Reference
Model) (Williams, 1989) the decision support systems task becomes harder.

A crucial opportunity for batch process improvement and optimization is to de-
velop information structures which (i) streamline data gathering, and even more, (ii)
are capable of integrating transactional a system with the analytical tools developed.
Current trends in electronics, computer science & artificial intelligence, and control
system technology are providing the technical capability to greatly facilitating the de-
velopment of a support system for multi-level decision-making. This information struc-
ture must become increasingly agile and integrated across the batch process functions.

M ode of operation The operation of most chemical plants is influenced by how the
orders are organized. If orders are relatively long-term, plants can operate in campaign
mode, with all the resources of the plant dedicated to a subset of products for a period
of time (campaigns). Thus, the control of the plant’s production is simplified and
cyclic production can be established for a single product (or multi product) campaign,
in which many batches of identical sequences of the same product (or products) are
produced.

Conversely, if demand is not reliable, the production plant is based primarily on
manufacturing the available orders. This forces planning on a rather short-time hori-
zon, and a regular pattern of production cannot be established. The situation gives
rise to the problem of scheduling operations in the short-term.

2.2 Standards for integration

2.2.1 Process Standards

Process standards are guided by the ANSI/ISA standards playing a role in the work
of instrumentation and automation professionals, besides they are recognized by the
American National Standards Institute (ANSI). ANSI/ISA standards cover a wide
range of concepts of importance to instrumentation and automation at manufactur-
ing. ANSI/ISA has standards committees for symbols and nomenclature used within
the industry, safety standards for equipment in non-hazardous and hazardous environ-
ments, communications standards to permit interoperability equipment availability
from several manufacturers, and additional committees for standards on many more
technical issues of importance to the industry.

The ANSI/ISA-88 (International Society for Measurement and Control, 1995;
Measurement and Control, 2001; International Society for Measurement and Control,
2003, 2006, 2007a) defines standards and recommended practices for the design and
specification of batch control systems as used in the process control industries. Unlike
other, the ANSI/ISA-88 standards are not a compliance standard, and they are defined

13

2. State of the Art

Figure 2.2: Hierarchical model control & business systems.

as a guideline which contains the preferred term for systems and software based on
batch process requirements.

The application of ANSI/ISA-88 to the development of a batch control system
can facilitate the implementation of the project, as it gives engineers a clear set of
terms to describe flow sheets and control schemes and can considerably reduce the
time required to implement the system. it has been very successful in its fundamental
task of explaining what batch control is all about, and in cutting the time needed to
develop and configure software (Brandl and Emerson, 2003).

ANSI/ISA-95 (International Society for Measurement and Control, 1999) is a
definition of the functions associated with the interface between control functions and
enterprise functions. Even more it functions as a definition of the information which
is shared between control functions and enterprise functions.

When the ANSI/ISA-88 series and the ANSI/ISA-95 series of standards are used
within the same plant-wide automation system in an enterprise, it is necessary to align
the various definitions in both standards in order for industry stakeholders to reap the
intended benefits. In table 2.1 a comparison of approaches and coverage between the
ANSI/ISA-88 and ANSI/ISA-95 is shown.

When the ANSI/ISA-88 and ANSI/ISA-95 standards are applied together in an
application or project, some of the terminologies, models and key definitions in these
two sets of specifications need to be aligned to assist the users. A harmonization task
group with members from the ANSI/ISA-88 and ANSI/ISA-95 committees has gen-
erated this technical report to document and map the overlaps, gaps, similarities and

14

Standards for integration

Table 2.1: Comparison of approaches and coverage.

Item ISA-95 ISA-88

Orientation

Definition of work flow and
information exchange for
Manufacturing Operations
Management.

Physical work execution
for Batch and other types
of manufacturing.

Conceptual
Basis relative to
Manufacturing
Management
Functions

Flexible structure of man-
ufacturing management
functions that interacts
with business require-
ments.

Acknowledges but does not
directly address manufac-
turing management func-
tions.

Conceptual Ba-
sis relative to
Process Control

Stops short of directly ad-
dressing most traditional
process control activities.

Well-defined equipment-
oriented process control
structure and function
hierarchies extending to
the bits and pieces of the
manufacturing equipment
itself.

Primary areas of
concern

In the way most people de-
scribe a manufacturing en-
terprise, addresses business
functionalities and applica-
tions at a level below enter-
prise business systems but
above the physical manu-
facturing equipment.

Addresses a lower level, di-
recting, controlling and co-
ordinating the people and
equipment that carry out
the physical transforma-
tion of raw materials into
final or intermediate prod-
ucts.

Affected Indus-
tries

Spans all types of manufac-
turing.

Written primarily in terms
of batch manufacturing,
but is often applied in
other types of manufactur-
ing.

differences in these concepts, terms and definitions (International Society for Mea-
surement and Control, 2007b). Figure 2.3 shows the interaction between ANSI/ISA-95
for enterprise-to-control system integration and ANSI/ISA-88 for control system inte-
gration in the enterprise control system.

2.2.2 Enterprise integration

To remain competitive, enterprises must become increasingly agile and integrated
across their functions. Enterprise models play a critical role in this integration, en-
abling better designs for enterprises, analysis of their performance, and management
of their operations.

An enterprise model is a computational representation of the structure, activities,
processes, information, resources, people, behavior, goals, and constraints of a business,
government, or other enterprise. It can be both descriptive and definitional spanning
what is and what should be. The role of an enterprise model is to achieve model-driven

15

2. State of the Art

Figure 2.3: ANSI/ISA interaction at the enterprise control system.

enterprise design, analysis, and operation.
From a design perspective, an enterprise model should provide the language used

to explicitly define an enterprise. From an analysis perspective we need to be able
to explore alternative models in the enterprises spanning organization structure and
behavior. From an operations perspective, the enterprise model must be able to rep-
resent what is planned, what might happen, and what has happened. It must supply
the information and knowledge necessary to support the operations of the enterprise
to provide answers to questions commonly asked in the performance of tasks.

Achieving integration requires an information infrastructure that supports the com-
munication of information and knowledge, the making of decisions, and the coordina-
tion of actions. At the heart of this infrastructure lies a model of the enterprise.

The problem faced along last years was that the legacy systems that support enter-
prise functions were created independently and, consequently do not share the same
enterprise models. It is called this the correspondence problem. Although each enter-
prise model might represent the same concept, for example, activity, they will have
a different name, for example, operation versus task. Consequently, communication
among functions is not possible without at least some translation, but no matter how
rational the idea of renaming them is, organizational barriers impede it. Further, these
representations lack an adequate specification of what the objects (terminology) mean
(that is, semantics). Instead, concepts are poorly defined, and their interpretations
overlap, leading to inconsistent interpretations and uses of the knowledge. Finally, the
cost of designing, building, and maintaining a model of the enterprise is large. Each
tends to be unique to the enterprise; objects are enterprise specific.

The industrial systems in order to be able to produce that plant’s products at max-
imum overall profit for the company involved with at minimum cost have endeavored

16

Standards for integration

to integrate the operating units of the plant.
Some work and efforts to accomplish this have been developed, and can be divided

by trends.

• The first trend was based on techniques that intended to achieve closely coupled
production units, minimize in-process inventories and work in progress, and make
maximum use of in-plant energy sources to supply plant energy needs.

• A second trend was based on techniques that promote the use of automatic
control in its broadest sense (including dynamic control, scheduling and the
closure of information loops) to integrate all aspects of the plant’s operations
including closing the information loops within the plant.

• Finally, current trends are based in electronics, computer science and control
systems that include: distributed, digital, microcomputer based, the dynamic
control systems; standard real-time programming languages; standardized high
speed serial data links; and corresponding major developments in database man-
agement techniques. This last trend has only been possible thanks to the advent
of the modern computer that can handle the enormous computational involved
in carrying out functions in real time.

Most of these techniques and trends, latter will result in partial large scale, hier-
archically arranged computer systems integrating the plant management, plant pro-
duction scheduling, inventory management, individual process optimization, and unit
process control for all of the plant’s operating units treated as a whole. In addition,
some features such as the lack of unit coordination, the lack of dynamic response, and
the lack of market sensitivity may also be covered by the application of the aforemen-
tioned techniques.

The Purdue reference model provides an "environment" for discrete parts manufac-
turing and forms the basis for the other models. Certain activities have been identified
which are directly related to shop floor production. A six level hierarchical model was
selected to represent those activities (see Figure 2.4). It is quite likely that specific
applications may require more or fewer than six levels. But, six was deemed sufficient
for the purposes of identifying where integration standards are required. The following
list shows the name of each level and gives its major responsibility.

• Level 6 Enterprise - Corporate Management (External Influences)

• Level 5 Facility - Planning Production

• Level 4 Section-Material/Resource Supervision

• Level 3 Cell - Coordinate Multiple Machines

• Level 2 Station- Command Machine Sequences

• Level 1 Equipment-Activate Sequences Of Motion (Plant Machinery And Equip-
ment)

These activities apply to manual operations, automated operations, or a mixture
of the two at any level. The Purdue scheduling and control perception, do not include
levels 1 and 6. It is important to mention that the 6 tasks are easily subdivided into

17

2. State of the Art

those related to production scheduling, control enforcement, systems coordination and
reporting, and reliability assurance. In the context of any large industrial plant, or of
a complete industrial company based on one location, the tasks would be carried out
at each level of the hierarchy.

Figure 2.4: Hierarchical Purdue reference model.

In this way, the international Purdue workshop (Williams, 1989) on industrial com-
puter systems, carried out such a development for computer integrated manufacturing
(CIM) as applied to all industries. The CIM reference model was an enormous step
toward successfully system integration. A reference model is a previously agreed-upon
or "standard" definitive document or conceptual representation of a system. The ref-
erence model defines requirements common to all implementations but is independent
of the specified requirements of any particular implementation.

The CIM Reference Model is thus a reference for computer integrated manufactur-
ing. It is a detailed collection of the generic information management and automatic
control tasks and their necessary functional requirements for the manufacturing plant.

Nevertheless the CIM reference model committee has been limited to the elements
of the integrated information management and automation system. This means that
the company’s management (future planning function); financial; purchasing; research,
development and engineering; and marketing and sales have all been treated as external
influences.

2.2.3 Information and knowledge management standards

Information and knowledge management standards, are in this work guided by The
World Wide Web Consortium (W3C) which is an international consortium to develop
informatics Web standards. W3C primarily pursues its mission through the creation
of Web standards and guidelines designed to ensure long-term growth for the Web as
the actuality and future of the informatics framework.

18

Knowledge management: ontologies

One of the most important contributions is the Extensible Markup Language
(XML) which describes a class of data objects called XML documents and partially
describes the behavior of computer programs which process them. XML is an applica-
tion profile or restricted form of SGML, the Standard Generalized Markup Language
[ISO 8879]. By construction, XML documents are conforming SGML documents.

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which form
character data, and some of which form markup. Markup encodes a description of
the document’s storage layout and logical structure. XML provides a mechanism to
impose constraints on the storage layout and logical structure.

XML was developed by an XML Working Group (originally known as the SGML
Editorial Review Board) formed under the auspices of the World Wide Web Consor-
tium (W3C) since 1996. It was chaired by Bosak (1997) with the active participation
of an XML Special Interest Group (previously known as the SGML Working Group)
also organized by the W3C.

The design goals for XML are:

• XML shall be straightforwardly usable over the Internet.

• XML shall support a wide variety of applications.

• XML shall be compatible with SGML.

• It shall be easy to write programs which process XML documents.

• The number of optional features in XML is to be kept to the absolute minimum,
ideally zero.

• XML documents should be human-legible and reasonably clear.

• The XML design should be prepared quickly.

• The design of XML shall be formal and concise.

• XML documents shall be easy to create.

• Terseness in XML markup is of minimal importance.

This specification, together with associated standards (Unicode and ISO/IEC 10646
for characters, Internet BCP 47 and the Language Subtag Registry for language iden-
tification tags), provides all the information necessary to understand XML Version 1.0
and construct computer programs to process it.

2.3 Knowledge management: ontologies
Due to Internet-enhanced globalization, many organizations are increasingly geograph-
ically dispersed and organized around virtual teams. Such organizations need knowl-
edge management and organizational memory tools that encourage users and foster
collaboration while capturing, representing and interpreting corporate knowledge re-
sources and their meaning.

How to manage this knowledge has become an important issue in the past few
decades, and the knowledge management (KM) community has developed a wide range

19

2. State of the Art

of technologies and applications for both academic research and practical applications.
In addition, KM has attracted much effort to explore its nature, concepts, frameworks,
architectures, methodologies, tools, functions, real world implementations in terms
of demonstrating KM technologies and their applications. Therefore, the new era of
information and communication technology plays important roles not only in electronic
commerce but also in knowledge management. Due to this technological advance,
KM expands in a rapidly manner. In this sense, there is some classification of KM
technologies highlighting seven categories, according to Liao (2003): KM framework,
knowledge-based systems (KBS), data mining (DM), information and communication
technology (ICT), artificial intelligence (AI)/expert systems (ES), database technology
(DT), and modeling.

Specifically, information and communication technology (ICT) has been considered
as a technology used toward decision support. In todays information economy, rapid
access to knowledge is critical to the success of many organizations. An information
and communication technology (ICT) infrastructure provides a broad platform for
exchanging data, coordinating activities, sharing information, emerging private and
public sectors, and supporting globalization commerce, all based on powerful com-
puting and network technology. Information computing offers powerful information
processing abilities, and the network provides standards and connectivity for digital
integration. The ICT encompasses ontologies.

Ontology is the knowledge integration of different representations of the same piece
of knowledge at different levels of formalization. The experts who participate in the
ontology process are allowed to use their own terminology, facilitating knowledge inte-
grations with cooperative tools (Fernandez-Breis and Martinez-Bejar, 2000). Ontolo-
gies are increasingly seen as a key semantic technology for addressing heterogeneities
and mitigating the problems they create and for enabling semantics-driven knowledge
processing. Thus, ontologies enrich information and precisely define the meaning of
various information artifacts. As a whole, ontologies are formal structures enabling
acquiring, maintaining, accessing, sharing and reusing information (Gruber, 1993;
Fensel, 2003).

2.3.1 Ontology design principles
Here there is a summary of some design criteria and a set of principles that have been
proved useful for the development of ontologies.

• Clarity and bbjectivity (Gruber, 1993), which means that the ontology should
provide the meaning of defined terms by providing objective definitions and also
natural language documentation.

• Completeness (Gruber, 1993), which means that a definition expressed by a
necessary and sufficient conditions is preferred over a partial definition (defined
only by a necessary or sufficient condition).

• Coherence (Gruber, 1993), to permit inferences that are consistent with the
definitions.

• Maximize monotonic extendibility (Gruber, 1993), It means that new general
or specialized terms should be included in the ontology in such a way that the
revision of existing definitions is not required.

20

Knowledge management: ontologies

• Minimal ontological commitments (Gruber, 1993), which means making as few
claims as possible about the world being modeled, which means that the ontology
should specify as little as possible to the ontology freedom to specialize about
the meaning of its terms.

• Ontological distinction principle (Borgo et al., 1996) which means that classes
in an ontology should be disjoint. The criterion used to isolate the core of prop-
erties considered to be invariant for an instance of a class is called the Identity
Criterion.

• Diversification of hierarchies to increase the power provided by multiple inher-
itance mechanisms (Vega et al., 1996). If enough knowledge is represented in
the ontology and as many different classification criteria as possible are used,
it is easier to enter new concepts (since they can be easily specified from the
pre-existing concepts and classifications criteria) and to inherit properties from
different points of view.

• Modularity (Bernaras et al., 1996) to minimize coupling between modules.

• Minimize the semantic distance between sibling concepts (Vega et al., 1996).
Similar concepts are grouped and represented as subclasses of one class and
should be defined using the same primitives, whereas concepts which are less
similar are represented farther apart in the hierarchy.

• Standardize names whenever is possible (Vega et al., 1996).

Finally, the issue of ease of reuse is the focal point of study in many research
projects. In artificial intelligence and informatics science, ontologies were born to help
in knowledge reuse and sharing: reuse means building new applications by assembling
components already built, while sharing occurs when different applications use the
same resources. Both reuse and sharing have the advantage of being cost, time and
resources effective.

2.3.2 Ontology programming conventions

Next, the basic terms and constructs are introduced and explained in order to describe
the main programming characteristics of an ontology.

• A taxonomy is a set of concepts, which are arranged hierarchically. A taxonomy
does not define attributes of these concepts. It usually defines only the "is-a"
relationship between the concepts. In addition to the basic is-a relation, the
part-of relation may also be used.

• A vocabulary is a language dependent set of words with explanations/ documen-
tation. It seeks universality and formality in a local context.

• Axioms are the elements which permit the detailed modeling of the domain
and constitute the "core knowledge" that you must assume to be true during
reasoning. Axioms is often used to denote coherent statements that can be made
in RDFS/OWL.

21

2. State of the Art

• A class or type is a set of objects. Each of the objects in a class is said to be
an instance of the class. In some frameworks an object can be an instance of
multiple classes. The top classes employed by a well developed ontology derive
from the root class object, or thing, and they themselves are objects, or things.
Each of them corresponds to the traditional concept of being or entity.

• Every class and every individual has a unique identifier, or name. The name may
be a string or an integer and is not intended to be human readable.

• By conceptualization we mean a set of concepts, relations, objects and constraints
that define the domain in question.

• An object-oriented database schema defines a hierarchy of classes and attributes
and relationships of those classes.

• Objects that are not classes are referred to as individuals. Thus, the domain of
discourse consists of individuals and classes, which are generically referred to
as objects. Individuals are objects which cannot be divided without losing their
structural and functional characteristics. They are grouped into classes and have
slots.

• Objects have associated a set of own slots and each own slot of an object has
associated with it a set of objects called slot values. Slots can hold many different
kinds of values and can hold many at the same time. They are used to store
information, such as name and description, which uniquely define a class or an
individual.

• Relations operate among the various objects populating an ontology. In fact, it
could be said that the conjunctions of any articulated ontology is provided by
the network of dependency relations among its objects. The class-membership
relation that holds between an instance and a class is a binary relation that maps
objects to classes. The type-of relation is defined as the inverse of instance-of
relation.

• Inheritance through the class hierarchy means that the value of a slot for an
individual or class can be inherited from its super class.

• A knowledge base is a collection of classes, individuals, slots, slot values, facets,
and facet values. A knowledge base is also known as a module.

2.3.3 Ontology methodologies

It is seen for many people in the ontological field that the ontology building process
is a craft rather than an engineering activity. The construction of an ontology is a
time-consuming and complex task.

Nowadays, numerous ontologies are being developed and used in various research
areas. Each development project usually follows its own set of principles, design criteria
and phases in the ontology development process. The absence of standards guidelines
and methods hinders the development of shared and concentrated ontologies within
and between projects, the extension of a given ontology by others and its reuse in
other ontologies and final applications.

22

Knowledge management: ontologies

There are also ontology servers that collect a number of ontologies. Even if it is
widely recognized that constructing ontologies, or domain models, is an important step
in the development of knowledge-based systems (KBS), what is lacking is a consensus
for a uniform approach in designing and maintaining these ontologies.

Various methodologies exist to guide the theoretical approach taken, and numerous
ontology building tools are available. The problem is that these procedures have not
coalesced into popular development styles or protocols, and the tools have not yet
matured to the degree one expects in other software instances.

However, it exist a small but growing number of methodologies that specifically
address the issue of the development of ontologies. Some of those are the following:

• TOVE and enterprise modeling:

The Toronto Virtual Enterprise (TOVE) is a deductive enterprise model (EM),
an extension of a generic enterprise model. An enterprise Model is a compu-
tational representation of the structure, activities, processes, information, re-
sources, people, behavior, goals and constraints of a business, government or
other enterprise. It can be both descriptive and definitional. The role of an en-
terprise model is to achieve model-driven enterprise design, analysis and opera-
tion. The TOVE group developed a methodological approach for the construc-
tion of an EM based on the definition of (Gruninger and Fox, 1995; Uschold
and Gruninger, 1996): motivating scenarios, informal competency questions, ter-
minology specification, formal competency questions, axiom specification, com-
pleteness theorems. In common with most recent Knowledge Base Systems devel-
opment methodologies, the Enterprise approach distinguishes between informal
and formal phases of ontology construction. In fact, the Enterprise ontology does
not explicitly deploy a formal evaluation procedure; this was the main focus of
the methodology used in the context of the TOVE project.

Given the basic work on construction and evaluation methodologies by Uschold
and Gruninger (1996), others have focused on the preliminary phases of con-
struction.

• Methontology:

Methontology, on the other hand, provides support for the entire life-cycle of
ontology development. It enables experts and ontology makers who are unfa-
miliar with implementation environments to build ontologies from scratch. Ini-
tially described in Gómez-Pérez and Fernández (1996) and then updated in
Fernandez-Lopez et al. (1997), Methontology identify the following activities in
the development of an ontology: specification, knowledge acquisition, conceptu-
alization, integration, implementation, evaluation, documentation. The life cycle
of the ontology is based on the refinement of a prototype and ends with a main-
tenance state. The most distinctive aspect of Methontology is the focus on its
maintenance. The environment for building ontologies using the Methontology
framework is called ODE (Ontology Design Environment). ODE is a software
tool to specify ontologies at the knowledge level. ODE allows developers to spec-
ify their ontology by filling in tables and drawing graphs. It has a module which
automatically translates the specification of the ontology into target languages.

• The SENSUS-based methodology:

23

2. State of the Art

It was developed at the IST (Information Sciences Institute) to provide a broad-
based conceptual structure for developing machine translators. SENSUS uses a
top-down approach for deriving domain specific ontologies from giant ontolo-
gies and is semi- application dependent (Knight and Luk, 1994). Application-
semidependent means the possible scenarios of ontology use are identified in the
specification stage.

• The On-To-Knowledge methodology:
It includes the identification of goals that should be achieved by knowledge man-
agement tools and is based on an analysis of usage scenarios. The steps proposed
by the methodology are: kickoff, where specified, competency questions are iden-
tified, potentially reusable ontologies are studied and a first draft of the ontology
is built; refinement, where a mature and application-oriented ontology is pro-
duced; evaluation, where requirements and competency questions are checked,
and the ontology is tested in the application environment; and ontology mainte-
nance. This method is application dependent this indicates that the process by
which the ontology is built is totally independent of the uses to which it will be
put in knowledge-based systems, agents, etc. (Sure and Studer, 2002).

2.3.4 Ontology types
This section does not seek to give an exhaustive typology of ontologies, nevertheless
it presents the most commonly used types of ontologies and their basic principles.

Basically, the following categories are identified: knowledge representation ontolo-
gies, meta-ontologies, domain ontologies, tasks ontologies, domain-task ontologies, ap-
plication ontologies, index ontological tell and ask ontologies, etc.

• Knowledge representation ontologies (van Heijst et al., 1997) capture the rep-
resentation primitives used to formalize knowledge in knowledge representation
paradigms. The most representative example of this kind of ontologies is the
Frame-ontology (Gruber, 1993) which captures the representation primitives
(classes, instances, slots, facets, etc.) used in frame-based languages.

• General/common ontologies (Mizoguchi et al., 1995) include vocabulary related
to things, events, time, space, causality, behavior, function, etc. (van Heijst et al.,
1997), which are reusable across domains. The most representative example could
be a teleology ontology which would include the term part-of.

• Domain ontologies (Mizoguchi et al., 1995) (van Heijst et al., 1997) are reusable
in a given domain. They provide vocabularies about the concepts within a domain
(i.e., scalpel, scanner in a medical domain) and their relationships, about the
activities that take place in that domain (i.e., anesthetize, give birth), and about
the theories and elementary principles governing that domain.

In addition, according to the degree of formality of the ontology, Uschold and
Gruninger (1996) identified, in their overview of this field, the following types: highly
informal, semi-informal, semi-formal, rigorously formal. In the informal classes there
are more or less structured definitions in natural language. In the formal classes there
are ontologies defined through artificial formal languages (e.g., Ontolingua) or first or-
der theories with formal semantics, theorems and proofs of such properties as soundness
and completeness (Gómez-Pérez, 2007).

24

Knowledge management: ontologies

2.3.5 Ontology languages

Different ontology languages provide different facilities. Any language used to codify
ontology-underpinned knowledge should be expressive, declarative, portable, domain
independent and semantically well defined. Next, the most representative ontology
languages are presented:

• Ontolingua

The original Ontolingua language, as described by Gruber (1993), was designed
to support the design and specification of ontologies with a clear logical seman-
tics. To accomplish this, Gruber (1993) started from KIF (knowledge interchange
format) and extended it with additional syntax, to capture intuitive bundling of
axioms into definitional forms with ontological significance, and a frame ontology
to define object oriented and frame-language terms. The ontolingua Server has
extended the original language in two ways. First, it provides explicit support
for building ontological modules that can be assembled, extended, and refined
in a new ontology. Secondly, it makes an explicit separation between ontologies
presentation (the manner in which KIF axioms are viewed and manipulated by
a user) and semantics (the underlying meaning).

The original ontolingua language provided limited support for defining ontolog-
ical modules in the form of a tree of named ontologies. Users found this simple
model to be inadequate in several ways. Furthermore, the module system did
not have a clearly defined semantics; this was in sharp conflict with the basic
goals of the language.

The separation of presentation and semantics has always been implicit in ontolin-
gua’s translation approach to sharing ontologies. In the current system, however,
the explicit recognition of this distinction has become a key notion. The seman-
tics of an ontology is always defined by a set of KIF axioms. In ontolingua,
the semantics is always simple, clear, and unambiguous. The presentation, in
the ontolingua Server’s browsing and editing environment, is tailored for object-
oriented or frame-language descriptions of the world.

Farquhar et al. (1997) guarantee that each statement corresponds unambiguously
to a KIF axiom. The vocabulary used in the presentation is defined in the Frame
Ontology. The Frame Ontology defines terms including class, subclass-of, slot,
slot-value-type, slot-cardinality, facet and so on. If an ontology is defined using
this vocabulary, the ontolingua server can present it in a user-friendly form.

• CycL representation language

The CycL representation language, is a large and flexible knowledge represen-
tation language (Lenat and Guha, 1989). It is essentially an extension of first-
order predicate calculus, with extensions to handle equality, default reasoning,
skolemization, and some second-order features. For example, quantification over
predicates is allowed in some circumstances, and complete assertions can appear
as intentional components of other assertions. CycL uses a form of circumscrip-
tion, includes the unique names assumption, and can make use of the closed
world assumption where appropriate.

• LOOM

25

2. State of the Art

LOOM is a language and environment for building intelligent applications. The
heart of LOOM is a knowledge representation system that is used to provide
deductive support for the declarative portion of the LOOM language (MacGre-
gor, 1991). Declarative knowledge in LOOM consists of definitions, rules, facts,
and default rules. A deductive engine called a classifier utilizes forward-chaining,
semantic unification and object-oriented truth maintenance technologies in or-
der to compile the declarative knowledge into a network designed to efficiently
support on-line deductive query processing.

• Generic frame protocol

The Generic Frame Protocol (GFP) (Karp et al., 1995), jointly developed at
SRI International and Knowledge Systems Laboratory of Stanford University,
provides a set of functions that support a generic interface to underlie frame
representation systems (FRSs). The interface layer allows an application to be
independent from the idiosyncrasies of specific FRS software and enables the
development of generic tools that operate on many FRSs.

• Ontology web language

The Ontology Web Language (OWL), from the World Wide Web Consortium
(W3C), is the most recent development in standard ontology languages (Bech-
hofer et al., 2004). OWL makes it possible to describe concepts but it also pro-
vides new facilities. It has a richer set of operators - e.g. intersection, union and
negation. It is based on a different logical model, which makes it possible for
concepts to be defined as well as described. Complex concepts, can therefore be
built-up in definitions out of simpler concepts. Furthermore, the logical model
allows the use of a reasoner which can check whether or not all of the statements
and definitions in the ontology are mutually consistent and can also recognize
which concepts fit under which definitions. The reasoner can therefore help to
maintain the hierarchy correctly. This is particularly useful when dealing with
cases where classes can have more than one parent. There are three types of
OWL, and are the following:

– OWL-Lite
OWL-Lite is the syntactically simplest sub-language. It is intended to be
used in situations where only a simple class hierarchy and simple constraints
are needed. For example, it is envisaged that OWL-Lite will provide a quick
migration path for existing thesauri and other conceptually simple hierar-
chies.

– OWL-DL
OWL-DL is much more expressive than OWL-Lite. OWL-DL and OWL-
Lite are based on Description Logics (hence the suffix DL, described in
section 2.3.6). Description Logics are a decidable fragment of First Order
Logic and are therefore amenable to automated reasoning. It is therefore
possible to automatically compute the classification hierarchy and check for
inconsistencies in an ontology that conforms to OWL-DL.

– OWL-Full
OWL-Full is the most expressive OWL sub-language. It is intended to be
used in situations where very high expressiveness is more important than

26

Knowledge management: ontologies

being able to guarantee the decidability or computational completeness of
the language. It is therefore not possible to perform automated reasoning
on OWL-Full ontologies.

2.3.6 Applications and projects
Several applications can be found in the literature related to the ontology construction
and deployment. Therefore, the main contributions in connection with the manufac-
turing process.

The Ontology Inference Layer or Ontology Interchange Language (Fensel, 2003)
known as OIL, is a proposal for a joint standard for specifying and exchanging ontolo-
gies on the Web. OIL is entirely web-driven and is based on:

1. Description logic (DL), which provides formal, clean and well defined semantics
and efficient reasoning support. DL is part of a research effort in knowledge rep-
resentation to provide theories and systems for expressing structured knowledge,
and for accessing and reasoning with it in a principled way.

2. Frame-based systems, which provide epistemologically rich modeling primitives.
OIL incorporates the essential modeling primitives of Ontology Exchange Lan-
guage (XOL) into its language. OIL is based on the notion of concept and the
definition of its super-classes and attributes. Relations can also be defined not
as attributes of a class, but as independent entities having a certain domain and
range. Like classes, relations can be arranged in a hierarchy.

While in DL roles are not defined for concepts (actually, concepts are defined
as subclasses of restricted role), in a frame context a class is a subclass of its
attribute definitions (i.e., all instances of the class must fulfill the restrictions
defined for the attributes). Asking which roles could be applied to a class does
not make much sense in DL, as nearly all slots can be applied to a class, while with
frame-based modelling the implicit assumption made is that only those attributes
which are defined for a class can be applied to that class. The ontology definitions
encoded by XOL include both schema information, such as class definitions, and
non-schema information, such as object definitions.

3. Existing standards such as Open Knowledge Base Connectivity (OKBC), and
new Internet standards such as Extensible Markup Language (XML) and Re-
source Description Framework (RDF) which provide syntactically exchangeable
notations. OIL is intended to improve OKBC, XML and RDF with necessary
features for expressing rich ontologies and its core language has been designed so
that it provides most of the modelling primitives commonly used in frame-based
ontologies and automated reasoning support (e.g., class consistency and assump-
tion & subsumption checking). OIL shares many features with OKBC and defines
a clear semantics and XML-oriented syntax for them (extending OKBC). In the
same way as OIL provides an extension of OKBC (and is therefore downward
compatible with it), OIL provides an extension of XML and RDF.

Techniques for performance evaluation, developed for XML, can directly be used
for ontologies specified in OIL because the XML syntax of OIL is defined by
using the Extensible Markup Language Streams (XMLS) mechanism. XMLS
incorporates the notion of inheritance and this allows to capture the semantics

27

2. State of the Art

of the "is-a" relationship. RDF and RDF-Schema (RDFS) are further candidates
for a Web-based syntax for OIL. The relationship between OIL and RDFS is
much closer than that between OIL and XMLS. This is not surprising, since
XMLS was meant to generalize the way of defining the structure of valid XML
documents, and RDFS was meant to capture meaning in the way semantic nets
do. In the same way as RDFS is used to define itself it can also be used to
define other ontology languages. Therefore, a syntax for OIL is defined by giving
an RDFS for the core of OIL and an extension to this RDFS is proposed to
complement this core by covering further aspects.

Even if OIL is based on DL, verification and validation in OIL/XML are basically
syntax-based, whereas in logic they are typically based on theorems. It is not yet clear
how the OIL/XML/RDF community will deal with soundness and completeness.

Nonetheless, OIL proposers believe that the existing Ontolingua design for an on-
tology interchange language is not appropriate as a standard ontology language for
the Internet and put forward OIL as an alternative and better standard.

2.3.7 Ontology editors

There are a number of more or less generic editors to create and manage ontologies.
Some of them are presented next.

• The Stanford ontolingua ontology editor Standford-University (2010) was, in
1999, the most standard editor to create ontologies. It is a Web-based tool for
creating, editing and browsing ontologies in the Ontolingua language.

• OilEd is a simple ontology editor developed by Bechhofer et al. (2001) at the
University of Manchester. OilEd allows the user to: i) build ontologies; ii) use the
FaCT reasoner to check the consistency of ontologies and add implicit subClassOf
relations; iii) export ontologies in a number of formats including both OIL-RDF
and DAML-RDF. The intention behind OilEd is to provide a simple, freeware
editor that demonstrates the use of, and stimulates interest in, OIL.

OilEd is not intended as a full ontology development environment. It does not
actively support the development of large-scale ontologies, the migration and
integration of ontologies and many other activities that are involved in ontology
construction. Rather, it offers just enough functionality to allow users to build
ontologies and to demonstrate how the FaCT reasoner can be used to check and
enrich ontologies. To get the full benefit from OilEd, it is also necessary to have
the CORBA-FaCT reasoner installed. The latest Windows version also includes
the FaCT reasoner.

• WebOnto (Domingue, 2010) (HC-REMA, PATMAN and Enrich projects) is an
on-line tool for collaborative construction of ontologies. In addition to imple-
menting the standard HTTP protocol, the LispWeb server offers a library of
high-level Lisp functions to dynamically generate HTML pages, a facility for dy-
namically creating image maps, and a server-to-server communication method.
WebOnto enables knowledge engineers to browse and edit ontologies represented
in the knowledge modelling language OCML.

28

Knowledge management: ontologies

• Protègè-2000 is a tool for ontology editing and knowledge acquisition. Protègè-
2000 has hundreds of users who use it for projects ranging from modelling
cancer-protocol guidelines to modelling nuclear-power stations. Protègè-2000 is
aimed at making it easier for knowledge engineers and domain experts to perform
knowledge-management tasks. One of the major advantages of the Protègè-2000
architecture is that the system is constructed in an open source, modular fashion.
Its component-based architecture enables system builders to add new function-
alities to Protègè-2000 by creating appropriate plug-ins such as support for al-
ternative storage formats and domain-specific user-interface components. From
Protègè, it is possible to export ontologies to other knowledge-representation
systems, such as RDF, OIL and DAML (Pagels, 2006).

• OntoEdit (Sure et al., 2002) is an off-line tool which enables developing, in-
specting and modifying ontologies. It uses a GUI to codify conceptual structures
(concepts, concept hierarchy, relations and axioms). Ontologies in OIL format
can be imported and it is possible to export ontologies in OIL and Frame-Logic
formats.

2.3.8 Ontology reasoning

Reasoning and querying over data type properties are important and necessary tasks
if these properties are to be understood by machines.

For instance, e-shops may need to classify items according to their sizes, and to
reason that an item which has height less than 5 cm and the sum of length and width
less than 10 cm belongs to a class, called "small-items", for which no shipping costs
are charged. Accordingly the billing system will charge no shipping fees for all the
instances of the "small-items" class.

Various ontology languages, such as Resource Description Framework (RDF), OIL,
DAML+OIL (Gómez-Pérez and Suárez-Figueroa, 2003) and Ontology Web Lan-
guages, have witnessed the importance of data-types in the Semantic Web. All of them
support data-types. For instance, the DAML+OIL language supports unary data type
predicates and qualified number restrictions on unary data type predicates, e.g. a "less
than 21" predicate could be used with the data type property age to describe objects
having age less than 21. Description Logics (DLs), a family of logical formalisms for the
representation of and reasoning about conceptual knowledge, are of crucial importance
to the development of the Semantic Web. Their role is to provide formal underpinnings
and automated reasoning services for Semantic Web ontology languages such as OIL,
DAML+OIL and OWL.

Using data types within Semantic Web ontology languages presents new require-
ments for DL reasoning services. Firstly, such reasoning services should be compatible
with the XML Schema type system, and may need to support many different data-
types. Furthermore, they should be easy to extend when new data types are required.

An important aspect of future systems exploiting these resources is the ability
to process OWL (Web Ontology Language) documents and OWL Knowledge Bases
(OWL-KBs), which is the official semantic web ontology language. Ontologies may
be taken or extended for domain-specific purposes (domain-specific ontologies extend
core ontologies). For doing this, a reasoning system is required as part of the ontology
editing system. For example, the utilization of a reasoner, such as RacerPro, can
process OWL Lite as well as OWL DL documents (knowledge bases). Some restrictions

29

2. State of the Art

apply, however. OWL DL documents are processed with approximations for nominal
in class expressions and user-defined XML data-types are not yet supported.

The reasoners provide with the following services to OWL ontologies and RDF
data descriptions:

• Check the consistency of an OWL ontology and a set of data descriptions.

• Find implicit subclass relationships induced by the declaration in the ontology.

• Find synonyms for resources (either classes or instance names).

• Provide extensional information from OWL documents (OWL instances and
their relationships), which is needed for client’s applications.

• HTTP client for retrieving imported resources from the web. Thus, multiple
resources can be imported into one ontology.

• Incremental query answering for information retrieval tasks (retrieve the next n
results of a query).

2.4 Decision support systems

The concept of DSS was introduced, from a theoretical point of view, in the late 1960s.
Klein and Methlie (1995) define a DSS as a computer information system that provides
information in a specific problem domain using analytical decision models as well as
techniques and access to databases, in order to support a decision maker in taking
decisions effectively in complex and ill-structured problems. Thus, the basic goal of a
DSS is to provide the necessary information to the decision maker, in order to help
him to get a better understanding of the decision environment and the alternatives he
faces.

Decision-making in general, and specifically financial decision-making, has been
significantly improved, in the last two decades, through the rapid progress of informa-
tion technology and computer science. Decision-making in the financial management
field is a very complicated process, where decision makers (managers of companies,
managers of credit institutions, individual investors, engineers, etc.) face, on a daily
basis, a large volume of information that should be examined in order to make the
final decision concerning the performance or the viability of a firm, the granting or
denying of a credit application, the construction and management of a portfolio, the
choice of an investment, or the construction of a financial marketing plan, etc.

Typically, the phases of the decision-making process overlap and blend together,
with frequent looping back to earlier stages as more is learned about the problem, as
solutions fail, and so forth. Figure 2.5 describes what probably comes to be a more
customarily used model of the decision-making process in a DSS environment. A first
step is the recognition of the problem or an opportunity. Once the problem recognized,
it is defined as a term that facilitates the creation of the model. Some authors state
that emphasis must be placed in the next two steps: the model development and the
alternatives analysis. After that, the choice is made and implemented. As final step
and if necessary, a new recognition should be done. Obviously, no decision process is
this clear-cut in an ill-structured situation (Shim et al., 2002).

30

Decision support systems

Figure 2.5: Decision-making process.

There has also been a huge effort in the DSS field for building a group support sys-
tem (GSS) or Collaboration Support Systems in order to enhance the communication-
related activities of team members engaged to computer- supported cooperative work.
The communication and coordination activities of team members are facilitated by
technologies that can be characterized along the three continua of time, space, and
level of group support (Alavi and Keen, 1989; Shim et al., 2002). Teams can communi-
cate synchronously or asynchronously; they may be located together or remotely; and
the technology can provide task support primarily for the individual team member
or for the group’s activities. These technologies are utilized to overcome space and
time constraints that burden face to face meetings, to increase the range and depth
of information access, and to improve group task performance effectiveness, especially
by overcoming "process losses".

The combination of decision theory with the new knowledge and the powerful tools
offered by computer science and information technology, leads to the development of
new types of information systems able to support decision makers and improve the
decision-making process. Basically, the efforts in supporting the whole decision-making
process focused on the development of computer information systems providing the
support needed. Initially, two types of systems were developed: i) decision support
systems (DSS) and ii) expert systems (ES). Although these two approaches were very
promising, their implementation revealed several problems.

To overcome these problems without missing the advantages of both ESs and DSSs,
a new type of intelligent system called a knowledge-based DSS (KBDSS) has been pro-
posed. The basic characteristic of this new approach is the integration of ES technology
with models and methods used in the decision support framework, such as mathe-

31

2. State of the Art

matical programming methods, multicriteria decision aid methods, and multivariate
statistical methods.

In the 21st century, internet, web and telecommunications technologies can be
expected to result in organizational environments that will be increasingly more global,
complex, and connected. Courtney (2001), following Mitroff and Linstone (1993),
suggests that DSS researchers should embrace a much more comprehensive view of
organizational decision-making (see figure 2.6) and develop decision support systems
capable of handling much "softer" information and much broader concerns than the
mathematical models and knowledge-based systems have been capable of handling in
the past. This is an enormous challenge, it is imperative face if DSS is to remain a
vital force in the future. The primary difference between figure 2.6 and typical decision
models in a DSS context is the development of multiple and varied perspectives during
the problem formulation phase. Mitroff and Linstone (1993) suggest that perspectives
be developed from organizational (O), personal (P) and technical (T) positions. In
addition, ethical and aesthetic factors are considered as well. The mental models of
stakeholders with various perspectives lie at the heart of the decision process, from
defining what a problem is, the analysis of the results of the problem.

Figure 2.6: A new decision paradigm for DSS, source (Courtney, 2001).

Since the early 90’s, four powerful tools have emerged for building DSS. The first
new tool for decision support was the data warehouse. Next, on-line analytical pro-
cessing (OLAP) and the data-mining appeared. Finally, the fourth new toolset has
been the technology associated with the World Wide Web. Precisely, this last one is
the center of activity in developing DSS. This refers to a computerized system that
delivers decision support information or decision support tools to a manager or busi-
ness analyst using a Web browser such as Netscape Navigator or Internet Explorer

32

Decision support systems

(Power and Sharda, 2007).

2.4.1 Optimization-based decision support systems

Optimization-based decision support can be divided into three stages: formulation,
solution, and analysis.

Formulation: it refers to the generation of a model in the form acceptable to a model
solver. Converting a decision-maker’s specification of a decision problem into an
algebraic form and then into a form understandable by an algorithm is a key
step in the use of a model. It has been a long way from the days of requiring
an optimization problem to be input in the commonly used Mathematical Pro-
gramming System (MPS) format. Several algebraic modeling language processor
systems (AMLPS) have been developed that make it convenient to input the
modeler’s form of an optimization problem directly into a solver.

Solution: it refers to the algorithmic solution of the model.

Historically, most of the research effort in operations research (OR) has been
concentrated on development of new algorithms to solve problems faster. Deci-
sion support software developers appear to incorporate advances in the solution
algorithms quite quickly to let the user benefit from these enhancements. For
example, the traditional linear programming software continues to be refined in
both simplex method and interior point algorithms. The emphasis is on taking
advantage of problem characteristics to reduce the problem size or to speed up a
specific algorithmic step. The result is the ability to solve really large problems.
It has also enabled the modelers to consider uncertainty in the decision situation
through stochastic programming with recourse type approaches.

Analysis: it refers to the ’what-if’ analysis and interpretation of a model solution or
a set of solutions. Only recently have vendors of optimization software begun
to focus on the final stage of the modeling process-analysis. This stage includes
delivery of model solution in a usable form to enhance the ability to analyze and
understand the problem and the solution. For instance, the report generating
functionality is now a common feature used to present the results to the user in
a usable form that can be integrated into databases.

Solutions can also be stored in popular spreadsheet formats for simple graphi-
cal analysis or report generation. Some modeling environments offer their own
graphical display tools to display results in easy to use format. It is likely that
the growth of new visualization tools will benefit the process of solution delivery
in OR models as well. Thus, it would be possible to incorporate multimedia in
highlighting solutions or especially exceptions to the norm or signal infeasibili-
ties.

The development of DSS tools to support these three stages has occurred at dif-
ferent rates. Research in optimization traditionally focused on generating a better
solution algorithm; as the technologies have evolved, more progress has been made in
the formulation and analysis functions of DSS support.

33

2. State of the Art

2.4.2 Data and information
One of the most important contributions to the informatics data standards is the ex-
tensible markup language (XML), which describes a class of data objects called XML
documents and partially describes the behavior of computer programs which process
them. XML is an application profile or restricted form of SGML, the Standard Gener-
alized Markup Language [ISO 8879]. By construction, XML documents are conforming
SGML documents.

XML documents are made up of storage units called entities, which contain either
parsed or unparsed data. Parsed data is made up of characters, some of which form
character data, and some of which form markup. Markup encodes a description of
the document’s storage layout and logical structure. XML provides a mechanism to
impose constraints on the storage layout and logical structure.

XML was developed by an XML Working Group (originally known as the SGML
Editorial Review Board) formed under the auspices of the World Wide Web Consor-
tium (W3C) since 1996. It was chaired by Bosak (1997) with the active participation
of an XML Special Interest Group (previously known as the SGML Working Group)
also organized by the W3C.

The design goals for XML are:

• XML shall be straightforwardly usable over the Internet.

• XML shall support a wide variety of applications.

• XML shall be compatible with SGML.

• It shall be easy to write programs which process XML documents.

• The number of optional features in XML is to be kept to the absolute minimum,
ideally zero.

• XML documents should be human-legible and reasonably clear.

• The XML design should be prepared quickly.

• The design of XML shall be formal and concise.

• XML documents shall be easy to create.

• Terseness in XML markup is of minimal importance.

This specification, together with associated standards (Unicode and ISO/IEC 10646
for characters, Internet BCP 47 and the language sub-tag registry for language identi-
fication tags), provides all the information necessary to understand XML Version 1.0
and construct computer programs to process it.

2.5 Thesis objectives
The thesis characterizes an interdisciplinary research on computer science techniques
(rule-based reasoning, case-based reasoning, ontologies and planning) applied to man-
ufacturing control systems, in the different chemical processes (continuous, batch and
semi-continuous).

34

Thesis objectives

Also an important activity such as data integration could be carried out. Regard-
ing the previous, applying semantic web technologies to enable data integration of
disparate data sources based on the semantics (meaning) of the data, is a promising
research line.

Particular objectives that will allow the culmination of the thesis (and also seen as
opportunities for Ontology research areas) are:

• To create of a robust structure chemical process domain.

• To provide a controlled vocabulary.

• To provide the possibility to exploit the generalization/specialization of infor-
mation.

• To check the consistency, validation and verification of the ontology domain.

• To allow communication between and among people and organizations (e.g. to
unify different research fields by a common vocabulary).

• To facilitate the inter operability among systems, e.g. using the ontology as an
interlingua to unify different languages and software tools.

• To allow the re-usability of the ontology, when represented in a formal language
that can be (or become so by automatic translation) a re-usable and/or shared
component in software systems and hardware agents.

• To allow the reliability: A formal representation facilitates automatic consistency
checking.

• And to develop some libraries of the ontology for future sharing.

35

Chapter 3

Methods and Tools

In this chapter, the background of those methods and tools that are utilized in
the development and implementation of the different models presented throughout

this thesis are described. In general, methodologies give a set of guidelines of how
you should carry out the activities identified in the ontology development process,
what kinds of techniques are the most appropriate in each activity and what are the
results obtained as described in Section 3.1. Such methodologies provided the basis
for building and improve methodology, which is described in Section 3.2. Finally, it
is necessary to describe the ontology layering and its architecture which establishes
the level of complexity that has been adopted in the present ontological development
approach.

3.1 Toward a Methodology
Currently, a variety of ontologies are being developed and used in diverse research
areas. Each development project usually follows its own set of principles, in order to
design criteria and phases in the ontology unfolding process, as described in Section
2.3.3. The absence of standard guidelines and methods hinders the following aspects:

• The development of shared and concentrated ontologies within and between
projects.

• The extension of a given ontology by others.

• Its reuse in other ontologies and final applications.

It is widely recognized that constructing ontologies, or domain models, is an im-
portant step in the development of knowledge-based systems (KBS). However, there
is a lack of consensus on a uniform approach to design and maintain these ontologies.
Various methodologies exist to guide the theoretical approach that is taken, and nu-
merous ontology building tools are available. The problem is that these procedures

37

3. Methods and Tools

have not coalesced into popular development styles or protocols, and the tools have
not yet matured to the degree one would expect in other software instances. Conse-
quently. two key methodologies have been deeply studied to guide the development of
this thesis work.

Methontology is a structured method to build ontologies. It is based on the expe-
rience acquired in developing an ontology in the domain of chemicals.

It enables experts and ontology makers who are unfamiliar with implementation
environments to build ontologies from scratch. Methontology identifies the following
activities in the development of an ontology: specification, knowledge acquisition, con-
ceptualization, integration, implementation, evaluation, documentation. The life cycle
of the ontology is based on the refinement of a prototype and ends with a maintenance
state. The most distinctive aspect of Methontology is the focus on this maintenance
stage (Figure 3.1).

Specification: The goal of the specification phase is to produce either an informal,
semi-formal or formal ontology specification document written in natural lan-
guage, using a set of intermediate representations or using competency ques-
tions, respectively. The formality of the ontology specification document varies
on its degree of formality depending on if you use natural language, competency
questions or a middle-out approach. Uschold and Gruninger (1996) give excel-
lent argument on the use of a middle-out as opposed the classic bottom-up and
top-down approach in identifying the main terms of your glossary. The main ad-
vantage of the middle-out approach is that it allows you to identify the primary
concepts of the ontology you are starting on. After reaching agreement on such
terms and their definition you can move on to specialize or generalize them, only
if they are necessary.

Knowledge Acquisition: It is concerned about acquiring the knowledge from sources
like experts, books, handbooks, figures, tables and even other ontologies are
sources of knowledge from which it can he elucidated using in conjunction tech-
niques such as brainstorming, interviews, formal and informal analysis of texts,
and knowledge acquisition tools.

Conceptualization: In this phase a complete Glossary of Terms (GT) must be built.
Terms include concepts, instances, verbs and properties. So, the GT identifies and
gathers all the useful and potentially usable domain knowledge and its meanings.

This concepts must be described as Fernandez-Lopez et al. (1997) suggest: Data
Dictionary, which describes and gathers all the useful and potentially usable
domain concepts, their meanings, attributes, instances, etc.; Tables of Instance
Attributes, which provide information about the attribute or about its values
at the instance; Tables of Class Attributes, to describe the concept itself not
its instances; Tables of Constants, used to specify information related to the
domain of knowledge that always takes the same value; Tables of Instances,
where instances are defined; and attributes classification trees, to graphically
display attributes and constants related in the inference sequence of the root
attributes, as well as the sequence of the root attributes, as well as the sequence
of formulas or rules to be executed to infer such attributes.

38

Toward a Methodology

Integration: The reuse of definitions already built into other ontologies instead of start-
ing from scratch should be consider. Methontology proposes the development of
an integration document, summarizing: the meta-ontology to be used. Although
for each and every term whose definition is going to be used: the name of the
term in the conceptual model, the name of the ontology from which you will take
its definition, the name of the definition and its arguments in the ontology.

Implementation: Ontologies implementation requires the use of an environment that
supports the meta-ontology and ontoiogies selected at the integration phase. The
result of this phase is the ontology codified in a formal language such us: CLAS-
SIC, BACK, LOOM, Ontolingua, Prolog, C++ or any informatics language.

Evaluation: Evaluation means to carry out a technical judgment of the ontologies,
their software environment and documentation with respect to a frame of refer-
ence during each phase and between phases of their life cycle. Evaluation sub-
sumes the terms Verification and Validation.

• Verification refers to the technical process that guarantees the correctness
of an ontology, its associated software environments, and documentation
with respect to a frame of reference during each phase and between phases
of its life cycle.

• Validation guarantees that the ontologies, the software environment and
documentation correspond to the system that they are supposed to repre-
sent.

Documentation: Methontology intends to break this circle including the documen-
tation as an activity to be done during the whole ontology development pro-
cess. In fact, some documents also must be done after some phase as: after
the specification phase, a requirements specification document; after the knowl-
edge acquisition phase, a knowledge acquisition document and finally, after the
conceptualization, a conceptual model document that describes the application
domain.

Planification

Acquiring Knowledge

Documenting

Evaluating

Specification

Conceptualization Formalization Integration Implementation

Maintenance

Activities

States

Activity

Figure 3.1: Methodology of methontology.

39

3. Methods and Tools

On-to-Knowledge methodology includes the identification of goals that should be
achieved by knowledge management tools and is based on an analysis of usage scenar-
ios. The steps proposed by On-To-Knowledge are: (i) kick-off, in which some compe-
tency questions are identified, potentially reusable ontologies are studied and a first
draft of the ontology is built; (ii) refinement, in which a mature and application-
oriented ontology is produced; (iii) evaluation, in which requirements and competency
questions are checked and the ontology is tested in the application environment; and
finally (iv) ontology maintenance. On-To-Knowledge stresses that the ontology mod-
eling process should start with a definition of the abstraction level, which is strongly
dependent on the usage of the ontology (Figure 3.2).

The Institute AIFB (Germany) provides a methodology that includes guidelines
for introducing ontology-based knowledge management concepts and tools into enter-
prises, helping knowledge providers and seekers to present knowledge efficiently and
effectively. The methodology captures lessons learned from the On-To-Knowledge case
studies while applying the On-To-Knowledge tool set.

In this way On-To-Knowledge is based on two main features or process that must
be developed: The knowledge meta process and the knowledge process.

The knowledge meta process consists of five main steps. Each step has numerous sub-
steps, requires a main decision to be taken at the end and results in a spe-
cific outcome. The main stream indicates steps (phases) that finally lead to an
ontology-based KM application. The phases are: Feasibility Study, Kickoff, Re-
finement, Evaluation and Application & Evolution.

• Feasibility Study: This step contemplates a feasibility study, e.g. to identify
problem/opportunity areas and potential solutions. In general, a feasibility
study serves as a decision support for economical, technical and project
feasibility, determining the most promising focus area and target solution.

• Kickoff: The outcome of this phase is a semi-formal description of the on-
tology. It refers to the creation of an ontology requirements specification
document. It describes what an ontology should support, sketching the
planned area of the ontology application and listing and should guide an
ontology engineer to decide about inclusion and exclusion of concepts and
relations and the hierarchical structure of the ontology.

• Refinement: Approaches for modeling should be considered as top-down,
middle-out and bottom-up. Top-down approach refers to modeling con-
cepts and relationships from a very generic level to specific one. Middle-out
approach refers to identify the most important concepts, which will then
be used to obtain the remainder of the hierarchy trough generalization and
specialization. And finally bottom-up approach, where relevant concepts
are extracted semi-automatically from available documents.
To formalize the above mentioned, a taxonomy comes out of the semi-
formal description of the ontology and add relations other than the "is-a"
relation, which forms the taxonomic structure. The ontology engineer adds
different types of relations as analyzed, e.g. in the competency questions to
the taxonomic hierarchy. The outcome of this phase is the "target ontology",
that needs to be evaluated in the next step.

40

Proposed methodology

• Evaluation: In this phase, three tasks of evaluation are distinguished: (i)
technology-focused evaluation, which consists of two main aspects, the eval-
uation of properties of ontologies generated by development tools and the
evaluation of the technology properties; (ii) user-focused evaluation which
evaluates whether an ontology-based application is at least as good as
already existing applications that solve similar tasks, and; (iii) ontology-
focused evaluation which leads to more correct hierarchies of ontologies.
The outcome of this phase is an evaluated ontology, ready for the roll-out
into a productive system.

• Application & Evolution: In this step the usage of ontology-based systems is
being described by the knowledge process. Also there are some rules in the
evolution or updates of the ontology that implies testing all possible effects
to the application. Most important is therefore to clarify who is responsible
for maintenance and how it is performed and in which time intervals is the
ontology maintained.

The knowledge process. Once a Knowledge application has been fully implemented in
an organization, knowledge processes circle around the following steps:

• Knowledge creation and/or import of documents and meta data.

• Knowledge items have to be captured in order to elucidate importance or
inter-linkage.

• The retrieval of and access to knowledge.

• The use of knowledge in an specific context.

Knowledge
Management
Application

Feasibility
study

Kick-off Refinement Evaluation
Application
& Evolution

Human
issues

Software
Engineering

Identify.
1. Problems
and
opportunities
2. Focus of KM
application
3. (OTK) Tools
4. People

5. Capture
requirements
specification
in ORSD.
6. Create
semi-formal
ontology
description.

7. Refine
semi-forma
ontology
description.
8. Formalize
into target
ontology.
9. Create a
prototype.

10. Technology
focus
evaluation.
11. User
focused
evaluation.
12. Ontology
focus
evaluation.

13. Apply
ontology.
14. Manage
evolution and
maintenance.

Ontology development

Figure 3.2: Methodology of On-To-Knowledge.

3.2 Proposed methodology
The methodology used in this thesis work is based on two ontology development
methodologies "Methontology" (López et al., 1999) and "On-To-Knowledge" (Sure

41

3. Methods and Tools

and Studer, 2002). The aforementioned methodologies have been inserted into a Plan,
Do, Check/Study and Act Cycle (PDCA or PDSA), which results in an ordered se-
quence of steps, that are easy to understand and track (Figure 3.3).

Figure 3.3: Methodology for developing enterprise ontology.

PDSA Cycle is a four step cycle for problem solving, which includes: planning
(definition of a problem and a hypothesis about possible causes and solutions), doing
(implementing), checking (evaluating the results), and action (back to plan if the
results are unsatisfactory or standardization if the results are satisfactory). The PDSA
cycle emphasizes the prevention of error recurrence by establishing standards and the
ongoing modification of those standards. Even before the PDCA cycle is employed,
it is essential that the current standards be stabilized. The process of stabilization is
often called the SDCA (standardize-do-check-action) cycle.

The PDSA cycle has been changed since its beginnings at 1900, being known as
the Shewhart Cycle, the Deming Cycle, the PDCA Cycle, and the PDSA Cycle. When
Deming (1993) reintroduces the Shewhart cycle in 1986 stated that "Any step may
need guidance of statistical methodology for economy, speed, and protection from
faulty conclusions from failure to test and measure the effects of interactions".

The planning step of the improvement cycle required prediction and associated
theory. The third step compared the observed data to the prediction as a basis for
learning. The improvement of this tool came with the use of the word "study" in the
third phase of the cycle, which emphasizes that the purpose of this phase is to build
new knowledge.

The PDSA cycle (Figure 3.4) is applicable to all types of organizations and to
all groups and levels in an organization, and some important issues attained are well
known as:

• It provides a framework for the application of improvement methods and tools
guided by theory of knowledge:

– It encourages planning to be based on theory.

– Its theory leads to appropriate questions which provide the basis for learn-
ing.

42

Proposed methodology

– Its questions lead to predictions which guide the user in identifying the
necessary data, methods and tools to answer the questions relative to the
theory in use.

– It emphasizes and encourages the iterative learning process of deductive
and inductive learning.

• It allows project plans to adapt as learning occurs.

• It provides a simple way for people to empower themselves to take action that
leads to useful results in the pragmatic tradition of learning.

• It facilitates the use of teamwork to make improvements.

Act
- What changes are

to be made?

- Next cycle ?

 Plan
- Objective

- Questions and

predictions.

- Plan to carry out the

cycle (who, what,

where, when).

Do
- Carry out the plan.

- Document problems

and unexpected

observations.

-Begin analysis of

the data.

Study
- Complete the analysis

of the data.

- Compare data to

 predictions.

 - Summarize what

 was learned.

Model for improvement

What are we trying to accomplish?

How we will know that a change is an

improvement?

What change can we make that we result

in improvement?

Figure 3.4: Model for improvement of the PDSA cycle.

Regarding the PDSA cycle, it is worth mentioning that spending the right time
in each phase or activity of the PDSA cycle is imperative to having a smooth and
meaningful quality improvement process. Cycle elements involve a reflective process
based on the scientific method, and ensure improvement efforts are carried out by the
success to be achieved.

3.2.1 Plan phase

The purpose of this phase is to investigate the current situation, fully understand
the nature of any problem to be solved, and to develop potential solutions to the
problem. Once the problem is understood a specification document must be produced,
which can be modified later, but the main idea is to guide the process development
and establish the main targets. This methodology proposes to apply the three main
knowledge acquisition approaches in the presented order. The order of application,
that follows below, has been extensively tested rendering the most satisfactory results.

43

3. Methods and Tools

• Requirements specification: This step determines important information that
characterizes the project itself, such as people involved in the project and other
important information, e.g. due dates.

– Project name (ontology name)

– Date

– Creator

– Other information

• Domain definition: It is important to state the sources of knowledge that will be
used. As was aforementioned, the knowledge acquisition is proposed in a specific
order. In this way, an order of source knowledge is proposed. Thus, the use of
official documents like standards, taxonomies and glossaries of terms is a first
option covering the middle-out approach. Then, the use of books and handbooks
for improving the bottom-up approach. Finally, the use of expertise from experts,
to cover the Top-down approach is suggested.

– Knowledge sources: A key step is the definition of the source of domain
knowledge (Specialized Dictionaries in the domain, Handbooks of the do-
main, Review books, articles about the domain).

– Knowledge acquisition approaches

1. Middle-out approach: Refers to identify the most important concepts
which will then be used to obtain the remainder of the hierarchy by
generalization and specialization.

2. Bottom-up approach: Refers to modeling relevant concepts extracted
semi-automatically from available documents.

3. Top-down approach: Refers to modeling concepts and relationships
from a very generic level to specific one.

• Competence questions (Ontology motivations): The main ideas of the ontology
to be developed must be established. In this step the ontology scope, its main
purpose, its use and possible applicability are defined as well as its potential
users

– Field of knowledge

– Main Goal

– Analysis requirements

– Language definition

– Uses and applicability

– Potential users

3.2.2 Do phase
The purpose of this phase is to implement the work toward ontology building with
help of the previously planned. The details of this plan should include the necessary
aspects to begin the development of the ontology, e.g. what data will be collected, who
collects the data, the time line, etc.

44

Proposed methodology

• Domain Conceptualization

– Glossary of terms: The first step is to build a glossary of terms. The glossary
of terms identifies and collects all those useful and potential, as well as its
correct meaning for the domain which ontology is trying to modeling. In
addition, the glossary of terms will also help extracting relations between
concepts (properties), attributes, as well as guiding the building of rules
and axioms.

– Taxonomy: In order to formalize the above mentioned terms, a taxonomy of
the terms must be done. It is important to be sure that the "is-a" relation,
from bottom to up hierarchical structure, is accomplished.
An affinity diagram is a useful tool helping to develop this activity of struc-
turing the taxonomy in a both creative and logical manner (Figure 3.5).
There are six basic steps to creating an affinity diagram:
1. Identify the problem or issue: Applied to the taxonomic structure, the

concepts are the issues identified previously.
2. Each person writes issues related to problem on note cards or sticky

notes: Applied to the taxonomic structure, the main concepts (The ones
found at the top of the hierarchy) must be identified or created.

3. Organize the cards or sticky notes into logical piles: Applied to the
taxonomic structure, all the concepts must be organized following the
"is-a" relation.

4. Name each pile with a header: Applied to the taxonomic structure, it
must be decided whether there are some more general concept upon
the top (from the hierarchy) concepts.

5. Draw an affinity diagram: Applied to the taxonomic structure, in some
way the structure must be saved, with the pertinent notes if there were
any.

6. Discuss the piles created: Applied to the taxonomic structure, our tax-
onomy must be reviewed and none "is-a" relation can be violated.

Finally the concepts will be named later classes of the ontology.
– Table of verbs: The most usual verbs used in the domain can help to find

rapidly the properties in our domain.
– Table of properties: There are two types of properties. On the one hand,

there are properties that relate different concepts of our domain, called
object-type properties. On the other hand, there are the properties which
describe relationships between individuals and data values, called Data-type
properties.
For the object-type properties, a very useful tool for structuring the devel-
opment of the properties, is the interrelationship matrix. This is a square
matrix where all the concepts are placed in both axis (X & Y) as headers.
At each intersection between concepts, a relation must be defined if it ex-
ists. This process must be run two times, the first one is X/Y in top-down
direction and the second is Y/X in left-right direction.

– Table of restrictions (axioms): The restrictions build constraints between
the properties above mentioned. Some examples of restrictions are quantifier
restrictions, cardinality restrictions and hasValue restrictions.

45

3. Methods and Tools

Figure 3.5: Affinity diagram tool.

– Tables of instances: A table of instances or individuals must be done. The
individuals represent objects in the domain.

• Formalization (implementation of the ontology editor): This step should be done
if a platform that provides a set of tools to build the domain model is needed.
Actions to create, view and manipulate the model will result in structures in
the domain of knowledge-modeling. The capture of classes, object properties,
data properties, axioms, rules, cases, etc., should be implemented in an ontology
editor. The selection of the editor must define the main ontology language and
the possible formats to be imported.

• Integration: Finally, the search of other ontological models already developed is
suggested. It is important to emphasize that the ontologies that can be taking in
to account, must belong to the same domain. For the development of this final
step, two activities should be covered.

– Identify ontologies for reuse

– Inclusion of other ontology’s term

• Informatics implementation: In order to finish this phase, a light implementation
in any informatics language (e.g. C, C++, Java) should be developed. This code
must use the ontological model, for a first evaluation of the behavior in the
specific domain, and also for the particular tasks that the ontology was designed.

3.2.3 Check/Study phase

In this phase five steps are suggested to realize.

• Language conformity standard: As a first step looking for possible syntaxes lan-
guage errors within the ontological model must be done. In this sense the lan-
guage must be in agreement with the informatics standards of language, it means
to be in accordance to the rules from the world wide web consortium (W3C),

46

Proposed methodology

which is an international community that develops standards that ensure the
growth of the Web over time.

• Conceptually conformity standard: The second step concerns to all the concepts
that belong to the domain and model our ontology. Those classes now must have
a description concept in agreement with any standard of the domain. Also the
help of experts is necessary to ensure the generality of the model.

• Reasoning: The third step concerns to the reasoning which is the process that
checks the consistency of the ontological model. In addition, the reasoning pro-
cess performs the identification of the domain and range of properties (relation-
ships) among the classes that compose the ontology.

• Performance (application oriented): A complete informatics application is de-
signed and implemented at this stage. Based on any informatics language such
as C, C++ or Java, a framework capable of exploiting the ontological model
should be developed. Therefore the ontological model or semantic model serves
as the base model (main structure) for the specific purpose, or the main ones,
that the ontology was designed for (this part is an expansion of the previous
light informatics implementation).

• Revise: Finally the analysis of the effect of the application in the domain must be
done. Basically, it consists of comparing the new data to the baseline data in order
to determine whether an improvement is achieved, and whether the measures in
the aim statement are met. Such analysis can be performed by means of: Pareto
charts, histograms, run charts, scatter plots, control charts or radar charts. As
a result, two tasks are suggested to be implemented to accomplish the revision
phase:

1. Reflect on the analysis, and consider any additional information that emerged
as well. Compare the results of the test against the measurable objective.

2. Document lessons learned, knowledge gained, and any surprising results
that emerged.

3.2.4 Act phase
The objective of this step is twofold: on the one hand to ensure the correct imple-
mentation, and on the other hand to carry out the operations related to the ontology
maintenance.

• Implementation

– Performance (application environment): After the creation of the complete
informatics application, its behavior in the actual domain environment
should be tested based on potential users experience.

– Distribution of the new ontology : Once the ontology application has been
fully implemented in the actual domain environment, it is necessary to
distribute it to the final users. Thus, a users manual must be created con-
taining documents and data about the use of the ontological application.
Apart from this, the necessary training in using the new tool should be
given.

47

3. Methods and Tools

• Maintenance

– Formalization of relevant changes: The addition of arguments about possible
changes within the ontology domain regarding the addition of new relations
between concepts or the modification of these relations must be explained.

– Documentation of important changes: Along the use of the implementa-
tions, reasons for important changes may arise. Therefore all these reasons
must be documented in order to keep track off the relevant changes.

3.2.5 Re-planning phase
Toward a useful re-planning of the ontological model and computer application, the
following methodology is proposed to apply a SWOT analysis (Strengths, Weaknesses,
Opportunities and Threats) over the life of the ontological structure (the ontological
model + computer application).

• Domain overview (addition of new concepts and relationships)

• Ontology overview

• Develop ontology changes

• Informatics application overview

After posing the previous questions, the PDSA cycle should be restarted.
This simple and powerful process allows continuous efforts to achieve important

improvements regarding the efficiency, effectiveness and performance of the ontological
framework.

3.3 Ontology layering and architecture
The ontology architecture is classified according to the factors that influence its com-
plexity, such as concepts, taxonomy, patterns, constraints and instances, as shown in
Table 3.1.

Table 3.1: Rating for the conceptualization complexity of ontologies

Rating Conceptual Model Criteria
Very low Only concepts

Low Taxonomy, high number of patterns, no
constraints

Nominal Taxonomy with general patterns for prop-
erties available, some constraints

High
Taxonomy with properties and axioms, few
modeling patterns, considerable number of
constraints

Very High
Taxonomy with properties, axioms and in-
stances, no patterns, considerable number
of constraints

48

Ontology layering and architecture

Furthermore Figure 3.6 introduces the six layers that are seen as the main axis of
the ontology architecture.

Figure 3.6: Construct ontology layering

Such layers represent the following features:

Concepts: A concept defines a basic and abstract idea that is commonly used in an
ontology domain. It is represented as a word or phrase.

Relations: A relation describes the way in which two or more concepts are interrelated.
It is usually described by a verb or verb phrase (basic properties).

Basic fact types: A basic fact type is a kind of primitive sentence or fact. It is composed
of concepts and relations. If the basic fact type is always true in the ontology that
contains it, it can play a role as an axiom in the logic-based ontology (detailed
properties).

Constraints: A constraint is the restriction that is applied to a fact type (binary or
numerical restrictions for properties).

Derivation rules: These are rules, functions or operators (including mathematical cal-
culations or logical inference) that are used to derive new facts from existing
ones.

Instances: Instances have the particularities of processing and are specifications in the
applications of the upper layers.

49

Chapter 4

An ontology-based for Chemical Process Engineering:
Enterprise Ontology

4.1 Introduction

From the previous discussion in section 1.1, it is clear the need for infrastructures
continuously and coherently support for fast and reliable decision-making activ-

ities related to the production process, is now of paramount importance (Venkata-
subramanian et al., 2006). This need is more evident when we consider recent activity
in the fields of data warehousing, online analytical processing (OLAP), data mining
and Web-based DSS, followed by the treatment of collaborative support systems and
optimization-based decision support (Shim et al., 2002). It is quite common for pro-
cess activities to have large databases. Hence, an enormous amount of information is
created, stored and shared and it may be hard to find the right information when it is
required. Furthermore, because of the possible use of different computer languages and
differences in conceptualization, the interoperability between information in different
systems is one of the most critical aspects in the daily operation of many organizations.

Indeed, shrinking profits have made it essential to exploit large databases (as com-
panies need to manufacture many non-cyclical products with complex recipes, etc.)
using non-generic/blind methods. One key aspect is information extraction, which
should result in the extraction of information quality. Information quality can be de-
fined as precise information in terms of time, content, and clarity (Eppler, 2006). A
common problem is that this data extraction process may be performed using blind
methods in many cases. However, the performance of such methods can be drastically
improved by combining them with knowledge or expertise of the process.

Information is data that is processed to be useful. Knowledge is the application of
data and information through the development of a system which models, in a struc-
tured way, the experience gained in some domain. Knowledge exists as soon as human
interaction is or has been made available in any step of the product/process develop-
ment (Gebus and Leiviskä, 2009). In recent years, there has been an effort to create
knowledge with a minimum human interface, either in a straight and formal way (e.g.
expert systems) or in a conceptual manner. The use of multiple models to represent

53

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

detailed and abstract knowledge of chemical processes has been taken into account
recently. In particular, this knowledge representation enables us to identify process
sections together with their function, objectives and relations within the process. This
enables the automatic generation of alternative views of the process, organized in a
hierarchy of different levels of abstraction.

The way to address these problems is to reduce or eliminate conceptual and ter-
minological confusion and come to a shared understanding. Such an understanding
can function as a unifying framework as an ontology which can be adopted to develop
an integrated framework, through the definition and semantic description of data and
information. This is the basis for modeling the different forms of knowledge that are
to be organized or the contextualized information that can be used to produce new
meanings and generate new information.

As explained in section 2.3 ontologies constitute a means of specifying the structure
of a domain of knowledge in a generic way that can be read by a computer (formal
specification) and presented in a human-readable form (informal specification). More-
over, ontologies are emerging as a key solution to knowledge sharing in a cooperative
business environment (Missikoff and Taglino, 2002). Since they can express knowledge
(and the relationships in the knowledge) with clear semantics, they are expected to
play an important role in forthcoming information-management solutions to improve
the information search process (Gruber, 1993; Obrst, 2003). This chapter develops
the ontology steps following the methodology described in section 3.2.

4.2 Plan phase
As proposed in section 3.2, the three main knowledge acquisition approaches have been
applied as follows.

4.2.1 Requirements specification

The lack of integration among the enterprise hierarchical levels does not allow complete
optimization of companies’ functions. Information is needed from different hierarchi-
cal levels when an important change is necessary. However, the desired change cannot
be made unless the system is robust. In addition, the need to integrate the different
modeling approaches in a hierarchical decision-support system means that consistent
terminology and concepts must be used to improve the communication and collabora-
tion tasks over the entire system.

The problem of process management has been studied in many works (Rippin,
1983; Subrahmanyam et al., 1995). These works have made a rich and vast description
of such problems and have pointed out open issues where research efforts may provide
significant improvements, in which the in-depth description aids understanding.

• Project name (ontology name): The name of the project is Integrated Enterprise
Ontology Project.

• Date: Period ranging from December 2007 to December 2011.

• Creator: Mr. Edrisi Muñoz Mata.

• Other information: –

54

Plan phase

4.2.2 Domain definition
The scope of this ontology lies in the process systems engineering (PSE) domain.
Specifically, it is of utmost importance to coordinate and integrate information and
decisions among the various functions that comprise the whole supply chain. Recently,
enterprise-wide optimization (EWO) has emerged as a new area which aims at op-
timizing the operations of supply, production and distribution to reduce costs and
inventories. Specifically, EWO places emphasis on production facilities focusing on
their planning, scheduling and control taking into account the knowledge in the area
of chemical engineering. In this area, only some modest attempts at integrating a small
subset of enterprise-wide decision models exist, since the complex organizational struc-
tures underlying business processes challenge our understanding of cross-functional co-
ordination and its business impact (Varma et al., 2007). Models and tools that allow
a comprehensive application of the EWO are a research field that has not been deeply
studied yet. Therefore, the model has been constructed maintaining the coherence,
based on the needs to solve optimization problems. Thus, the ontology has to include
a level of detail sufficient enough to describe all the necessary and sufficient problem
features, but at the same time it has to be general enough to represent any EWO
problem.

In order to define this field, for its future modeling, the following three key areas
have been considered: supply chain, planning and scheduling, and process control
activities.

The supply chain (SC) concept can be defined as the group of interlinked resources
and activities required to create and deliver products and services to customers. In
this area decisions are taken at different stages within the supply chain and at different
levels in the management hierarchy. SC performance is a result of the synchronization
of materials, information and cash flows along the SC elements, such as suppliers,
manufacturers, distributors and retailers. The feasibility of the management of the al-
ternatives depends on several restrictions such as mass balances, capacity constraints,
technological constraints, budgeting limitations and customer satisfaction, among oth-
ers. The main SC drivers relate to economic performance defining the SC profitability.
The decisions involved in this area are concerned to those associated with to the
strategical decision level.

Planning and scheduling comprise the organization of human and technological re-
sources in a company within a range of days to weeks in order to directly satisfy
customer demands defined by a production plan resulting from the company plan-
ning function (Korovessi and Linninger, 2006). The planning and scheduling function
usually involves deciding on the amount of products, the allocation of resources to
the needed tasks, the order in which the different batches are to be performed and
at what time these tasks are to be started. This problem is stated as an optimiza-
tion problem that seeks for minimizing the production makespan, lateness, earliness,
or any performance function that could be adopted. The production process itself is
defined in the production recipe, which contains the stages that are to be performed
in different units, and the operations that are to be carried at each stage. In addition,
the constraints regarding operational timing such as simultaneity or sequential must
be described. Other issues, such as the material balance, the resource consumption
and processing times are also described in the production recipes.

55

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

Process control aims at achieving an efficient, safe, environmentally friendly and re-
liable operation to execute the production requests calculated at the scheduling level.
Thus, the real time execution in the plant and the optimization of dynamic trajec-
tories of process variables are addressed. Specifically, the problem of batch process
management has been studied in many works (Rippin, 1983; Subrahmanyam et al.,
1995).

Process control performs several functionalities in batch processes management.
On the one hand, the batch operation model should be implemented in a feed-forward
manner. This model is defined in the named control recipes, obtained from the opti-
mization solution of the scheduling system and the master recipes which have been
optimized in a previous process design step. Control recipes are composed by a serial
of process operations, phases and the transition logics to be implemented in a spe-
cific equipment piece. Additionally, processing conditions, actuation variables and set
points for each stage are given in the control recipes.

On the other hand, basic control is carried out. Firstly, automatic feedback control
is used to reduce the influence of uncertainty and reject intra-batch disturbances,
since in batch processing it is crucial to satisfy quality specifications in each batch.
In addition, supervision may be performed to improve processing conditions from
run to run and this constitutes a recipe adjustment. Process monitoring and fault
diagnosis are also employed to handle faults or exceptions and perform manual actions,
if required. Finally, interlock is used to provide safety or to avoid mistakes in processing
the batch. As for the performance objectives in process control level, there can be
from either economic (for example, maximize profit or profitability) or processing
type (for example, to accomplish customer specifications, minimize product variability,
meet safety or environmental regulations or maximize the plant flexibility with reliable
control).

• Knowledge sources: As a source for the domain knowledge for the PSE, EWO,
SC, planning and scheduling, and process control, the following documents are
considered.
For the process control part, the ANSI/ISA-88 standard is studied. ANSI /ISA-
88 standard (International Society for Measurement and Control, 1995, 2006,
2007a; Shirasuna, 2007)), allows to create a general infrastructure to be applied
to any process system. The ANSI/ISA-88 representation provides an advantage
of establishing a more general conceptualization in the batch process domain.
Such a generalization is behind years of joint work by recognized batch manufac-
turing experts who met to define a perceptive view of batch plants organization
and its corresponding hierarchy of control functions. As a consequence, follow-
ing the ANSI/ISA-88, virtually all activities concerning batch processes can be
properly represented.
The ANSI/ISA-88 standard is composed of five parts:

– ANSI/ISA-88.01-1995 Batch Control Part 1: Models and terminology.
– ANSI/ISA-88.00.02-2001 Batch Control Part 2: Data structures and guide-

lines for languages.
– ANSI/ISA-88.00.03-2003 Batch Control Part 3: General and site recipe

models and representation.
– ANSI/ISA-88.00.04-2006 Batch Control Part 4: Batch production records.

56

Plan phase

– ISA-TR88.00.02-2008 Machine and Unit States: An implementation exam-
ple of ISA-88.

The basic relations can be taken from the assertions of the models that ANSI/ISA-
88 describes. These assertions show the basic relations between physical model,
recipe model and procedural model and are described by entity-relationship dia-
grams (E-R diagrams). For ANSI/ISA-88, recipes are needed because of the set
of information that uniquely identifies the production requirements for a specific
product. Figure 4.1(a) shows the relations between recipes types. Some models
are also described, such as the procedural control model shown in Figure 4.1(b),
which describes the relation that occurs in a process cell. The process model
shown in Figure 4.1(c), which is very conceptual and describes the functionality
needed to create a batch, describes the steps that must occur to make a product.

Figure 4.1: ANSI/ISA-88 recipe, procedure and process models.

All these relations must involve the control model, process model and the physical
model to accomplish process functionality. Figure 4.3 shows some basic relations
of the aforementioned models.

For the planning and scheduling area, the use of the ANSI/ISA-88&95 standards
allows a real integration and enables future control related events to be taken
into account at scheduling level, in order to minimize the occurrence of critical
situations during the execution of the process. It also provides a definition for
any required information from the process measurements that are made by the
control and fault diagnosis system.

Concepts of functions (order processing, detailed production scheduling, pro-
duction control, quality assurance, etc.) can thus be developed according to the
ANSI/ISA-95 standard, which contains five parts:

57

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

Figure 4.2: Basic relations between models in ANSI/ISA-88.

– ANSI/ISA-95.00.01-2000, Enterprise-Control System Integration Part 1:
Models and Terminology

– ANSI/ISA-95.00.02-2001, Enterprise-Control System Integration Part 2:
Object Model Attributes

– ANSI/ISA-95.00.03-2005, Enterprise-Control System Integration, Part 3:
Models of Manufacturing Operations Management

– ISA-95.04 Object Models & Attributes Part 4 of ISA-95: Object models
and attributes for Manufacturing Operations Management

– ISA-95.05 B2M Transactions Part 5 of ISA-95: Business to manufacturing
transactions

The ANSI/ISA-95 has been also used for the supply chain areas, since it stands
for the integration of enterprise and control systems, and contains the termi-
nology and models that can be used to determine which information, has to be
exchanged between systems for sales, finance and logistics and systems for pro-
duction, maintenance and quality. The ANSI/ISA-95 standard can be used for
several purposes, for example as a guide for the definition of user requirements,
for the selection of manufacturing execution system (MES) suppliers and as a
basis for the development of MES systems and databases. Besides, SC hand-
books (Chopra and Meindl, 2004; Raleigh and Harmelink, 2004) and SC reviews
(Grubic and Fan, 2010) have been revised for further accuracy in the domain
definition.

58

Plan phase

Figure 4.3: Basic relations between models in ANSI/ISA-95.

4.2.3 Competence questions (ontology motivations)

In order to accomplish the competence questions, the following information must be
fulfilled:

1. Field of knowledge: Chemical process industry

2. Main Goal: The creation of an ontological framework capable of integrating the
different hierarchical levels within the enterprise structure.

3. Analysis requirements:

Next, the particular elements involved in ontology development comprising the
enterprise, plan, recipe and control levels are described.

Enterprise requirement Enterprise requirements that a knowledge represen-
tation system should meet are natural representation of the physical reality/-
model (items of equipment/devices), automatic generation of abstraction levels
to identify which sections of the process can be potentially improved, and the
implementation the Purdue Reference Model, which is a detailed collection of
the functional requirements of the generic information management and control
to run a batch manufacturing process (Williams, 1989). Such a reference model
can be hierarchically arranged in a large-scale computer system that integrates
plant management, plant production scheduling, inventory management, individ-
ual process optimization, and unit process control for all of the plant’s operating
units as a whole. The reference model defines requirements that are common to
all implementations, but it is independent of the specified requirements of any
particular implementation that are applicable to existing processes.

59

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

Plant requirement Effective production is very important in today’s global
competitive environment. In the case of the batch process industry, multi-product
and multipurpose plants, as well as continuous or semi-continuous processes,
manufacture a variety of products through a sequence of operations that share
available resources, intermediate products, and raw materials. The efficient use
of such resources can be analyzed at different levels:

• If we focus on the planning area and control level, a process system involves
multiple and interrelated activities that are performed at single or multi-
ple sites, with different durations and amounts of information. Generally,
information flows from the marketing department to the manufacturing
department, which determines the production schedule that is needed to
meet the sales strategies. In its most general form, the scheduling problem
requires information that is related to the configuration of the plant (the
available equipment units and resources), the product recipes (the set of
processing tasks and resources required to manufacture a given product),
precedence relationships between materials and final product requirements
(demands and related due dates) (International Society for Measurement
and Control, 1995).
At this level, a closed-loop framework is proposed for the decision-making
task of batch chemical plants. This framework integrates both scheduling
and control and is based on ANSI/ISA-88 standards. Integration enables fu-
ture events to be taken into account at scheduling level, in order to minimize
the occurrence of critical situations during the execution of the process. It
also provides any required information from the process measurements that
are made by the control and fault diagnosis system. On the other hand,
the opportunity for reactive scheduling allows the process to respond under
unexpected schedule deviations or abnormal events.

• In a batch plant production environment, the occurrence of unpredictable
events is usually unavoidable. Such events may be related to external mar-
ket factors or to the intrinsic plant operation, and include equipment break-
downs and variable operation times. Despite the uncertainty in the environ-
ment, the scheduler has to make some decisions in order to start production
and to face uncertainty when an abnormal event occurs.

• In addition, the integration of a control and monitoring system into process
management helps to provide the process state information opportunely at
different levels in the decision-making hierarchical structure, thus reducing
the risk of incidents and improving the efficiency of the reactive scheduling
by updating the schedules in the most effective way, which improves the
process yield.

Unexpected events or disruptions can change the system status and affect its per-
formance. Deviations from the original schedule and information about equip-
ment breakdowns that is provided by the control and monitoring system will
eventually trigger rescheduling. However, the schedule that is generated will be
assessed according to the new plant situation. Thus, if some modifications are
made, the newly created schedule will be translated into some control recipes
for the actual process. Consequently, ontology can also be used to ensure the
robustness of the running plan in the system.

60

Plan phase

The rescheduling system allows different dispatching rules, optimizers and ob-
jective functions to be selected, according to the process knowledge. Alternative
rescheduling techniques (recalculate a new robust schedule, update operation
times, reassignment, etc.) are evaluated and a system should select the most
suitable ones, according to the objective function that is adopted. Optimization
algorithms may be included, depending on the interest of the decision maker and
the required reaction time.

Recipe requirements This integration approach follows the ANSI/ISA-88 batch
control standard, which differentiates between four types of recipes: general, site,
master and control. The general and site recipes are general recipes that are out-
side the scope of the control system. At control level, the information recipes are
the master and control recipes.

Master recipes are derived from site recipes and are targeted at the process cell.
A master recipe is a required recipe level; without it, control recipes cannot
be created and batches cannot be produced. Master recipes take into consid-
eration the equipment requirements within a given process cell. They include
the following information categories: header, formula, equipment requirements
and procedure. Control recipes are batches that are created from master recipes.
They contain the product-specific process information that is required to man-
ufacture a particular batch of product. They also provide the detail needed to
initiate and monitor equipment procedural entities in a process cell.

Control activity requirements The control activity model International So-
ciety for Measurement and Control (1995) (Figure 4.4) provides an overall per-
spective of batch control and shows the main relationships between the various
control activities. The control activities define how equipment in the batch man-
ufacturing plant will be controlled.

Using this approach, recipes can be modified without changing the code of the
PLCS and DCS that run the basic regulatory control. Moreover, recipes can run
on different sets of equipment. The use of the ANSI/ISA-88 standard significantly
reduces costs and implementation time through:

• Effective utilization and optimization of plant equipment, which maximizes
total plant production capabilities.

• Reductions in total validation costs and production down-time via separate
validation of recipe procedures and equipment.

4. Language definition: As seen in section 2.3.5 different ontology languages provide
diverse facilities. Any language used to codify ontology- underpinned knowledge
should be expressive, declarative, portable, domain independent and semanti-
cally well defined. The language used in an ontology is essential for its future
implementation and sharing.

We adopted OWL (Web Ontology Language), as it has good characteristics for
ontologies (Bechhofer et al., 2004). OWL has been designed for use by applica-
tions that need to process the content of information, instead of just presenting
the information to humans. OWL facilitates greater machine interpretability of

61

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

Figure 4.4: Control activity model

Web content than that supported by XML (Extensible Markup Language), RDF
(Resource Description Framework), and RDF-S (Resource Description Frame-
work Schema), as it provides additional vocabulary along with formal semantics.
The ontology formally describes the meaning of the terminology used in doc-
uments. If machines are expected to perform useful reasoning tasks on these
documents, the language must go beyond the basic semantics of RDF Schema.

OWL has been designed to meet this need for a Web Ontology Language, and
is part of the growing stack of W3C recommendations that are related to the
Semantic Web:

• XML provides a surface syntax for structured documents, but imposes
no semantic constraints on the meaning of these documents (XML-Core-
Working-Group, 2009).

• XML Schema is a language that restricts the structure of XML documents
and extends XML with data types (McQueen and Thompson, 2000).

• RDF is a data model for objects ("resources") and relations between them.
It provides simple semantics for data models, which can be represented in
XML syntax (Klyne and Carroll, 2002).

• Schema is a vocabulary for describing properties and classes of RDF re-
sources. It includes semantics for generalization hierarchies of these prop-
erties and classes (Brickley and Guha, 2002).

OWL adds more vocabulary for describing properties and classes, including the
relations between classes (e.g. disjointedness), cardinality (e.g. "exactly one"),
equality, richer typing of properties, characteristics of properties (e.g. symmetry),
and enumerated classes.

62

Do phase

The semantics in the ontology build on XML’s ability to define customized tag-
ging schemes and RDF’s flexible approach to representing data. This unifying
aspect makes it easier to establish, through collaboration and consensus, the util-
itarian vocabularies (between ontologies) needed for far-flung cooperative and
integrative applications using the Word Wide Web and internal servers. The
uses of these languages are helpful for the first task of the ontology, which is to
become a standard tool for vocabulary, format, and definitions. Restrictions and
reasoning make communication possible between the different system elements.

5. Uses and applicability: The ontological framework should be used for helping in
the decision support-task, as a tool for extracting information quality as required.
The framework will also be used as a quantitative support tool improving the
use of optimization models.

6. Potential users: Any enterprise in which the automation has been implemented
(formal specification). Also the enterprise decision makers related to strategic,
tactical and operational decision levels (informal specification).

4.3 Do phase
As mentioned in the previous section, the modeling is based on the ANSI/ISA stan-
dards. Now that the knowledge sources and the goals of the project have been defined,
it is time to formalize the model through the construction of the ontology. This means
the implementation of the work based on the previous plan phase.

4.3.1 Domain conceptualization
• Glossary of terms: Table 4.1 contains the terms related to the upper level (strate-

gic level) within the supply chain as enterprise requirements. The glossary identi-
fies the usable and potential terms, as well as, their right meaning for the domain
of interest. Thus, Table 4.2 defines some of the concepts that are fully shown in
Table B.1 the terminology associated with the planning, scheduling and process
control, based on the ANSI/ISA-88 standard.

Table 4.1: Supply chain main concepts.

Name Description
Capacity The physical facilities, personnel and process available to meet the

product or service needs of customers. Capacity generally refers to
the maximum output or producing ability of a machine, a person,
a process, a factory, a product, or a service.

Customer In distribution, the Trading Partner or reseller. In Direct-to-
Consumer, the end customer or user.

Direct cost A cost that can be directly traced to a cost object since a direct or
repeatable cause-and effect relationship exists. A direct cost uses
a direct assignment or cost causal relationship to transfer costs.

Distribution
Center (DC)

The warehouse facility which holds inventory from manufacturing
pending distribution to the appropriate stores.

Distributor A business that does not manufacture its own products, but pur-
chases and resells these products. Such a business usually main-
tains a finished goods inventory.

Facility Place in the supply chain network where product is stored, assem-
bled or fabricated.

63

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

Finished Goods
Inventory

Products completely manufactured, packaged, stored, and ready
for distribution.

Geographic
placement

Point of the supply chain in which a facility can be installed.

Indirect cost A resource or activity cost that cannot be directly traced to a final
cost object since no direct or repeatable cause-and-effect relation-
ship exists. An indirect cost uses an assignment or allocation to
transfer cost.

Inventory Raw materials, work in process, finished goods and supplies re-
quired for creation of a company’s goods and services; The number
of units and/or value of the stock of goods held by a company.

Inventory cost The cost of holding inventory incurred by the shippers’ supply
chain network.

Inventory Man-
agement

The process of ensuring the availability of products through in-
ventory administration.

Location Deciding where a company will locate its facilities.
Market Demand In marketing, the total demand that would exist within a defined

customer group in a given geographical area during a particular
time period given a known marketing program.

Production
Planning and
Scheduling

The systems that enable creation of detailed optimized plans and
schedules taking into account the resource, material, and depen-
dency constraints to meet the deadlines.

Supplier A provider of goods or services. A seller with whom the buyer does
business, as opposed to vendor, which is a generic term referring
to all sellers in the marketplace.

Transportation It entails moving inventory from point to point in the supply chain
Transportation
cost

The total amount paid to various carriers for transporting prod-
ucts to customers.

Transportation
Mode

The method of transportation: land, sea, or air shipment.

• Taxonomy: The aforementioned terms are formalized in a taxonomic manner.
Specifically, the whole domain is organized in nine top terms or classes, as shown
in figure 4.5. Each top class unfolds their corresponding subclasses. Figures 4.11
to 4.13 detail the taxonomy related to each top class. It is important to men-
tion that description logic (DL), automatically name to the root class as Thing
(owl:Thing). Finally the concepts will be named later classes of the ontology.

64

Do phase

Table 4.2: Some concepts from ANSI/ISA-88.

Name Description
Allocation A form of coordination control that assigns a resource to a

batch or unit. An allocation can be for the entire resource
or for portions of a resource.

Arbitration A form of coordination control that determines how a re-
source should be allocated when there are more requests for
the resource than can be accommodated at one time.

Area A component of a batch manufacturing site that is iden-
tified by physical, geographical, or logical segmentation
within the site. An area may contain process cells, units,
equipment modules, and control modules.

Basic control Control that is dedicated to establishing and maintaining a
specific state of equipment or process condition. Basic con-
trol may include regulatory control, interlocking, monitor-
ing, exception handling, and discrete or sequential control.

Batch The material that is being produced or that has been pro-
duced by a single execution of a batch process. An entity
that represents the production of a material at any point in
the process. Batch means both the material made by and
during the process and also an entity that represents the
production of that material. Batch is used as an abstract
contraction of the words "the production of a batch."

Batch control Control activities and control functions that provide a
means to process finite quantities of input materials by sub-
jecting them to an ordered set of processing activities over a
finite period of time using one or more pieces of equipment.

65

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

Figure 4.5: Taxonomy top classes (domain).

Figure 4.6: Process taxonomy.

Figure 4.7: Processing activities taxonomy.

66

D
o
phase

Figure 4.8: Information taxonomy (1/3).

67

4.
A
n
ontology-based

for
C
hem

icalP
rocess

E
ngineering:

E
nterprise

O
ntology

Figure 4.8: Information taxonomy (2/3).

68

D
o
phase

Figure 4.8: Information taxonomy (3/3).

69

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

Figure 4.9: Physical model taxonomy.

Figure 4.10: Process output taxonomy.

Figure 4.11: Control function taxonomy.

70

Do phase

Figure 4.12: Production process taxonomy.

71

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

Figure 4.13: Resources taxonomy.

Figure 4.14: Procedure taxonomy.

72

Do phase

• Table of verbs: In order to identify the properties that relate the classes of the
enterprise ontology project, the following verbs have been proposed: to have, to
be applied to, to carry, to derive in, to supply, to refer, to provide, to receive, to
give, to send, to assign, to relate, to be part of, to demand.

• Table of properties: In order to identify the object type properties an interrela-
tionship matrix has been constructed (see Appendix C). As a result of the prop-
erties identification process tables 4.3 and 4.4 contain the object type properties
and the data type properties of the enterprise ontology project, respectively; as
well as their domain and their range. Specifically a total of 140 object properties
and 11 data properties are specified.
[t]

Table 4.3: Object properties (domain & range).

Object Property Domain Range
derivesInSiteRecipe GaneralRecipe; SiteRecipe;
hasTransportationLink Supplier; DistributionCen-

ter; Market; Site;
TransportationLink;

demands Market; Demand;
hasRecipeUnitProcedure RecipeProcedure; RecipeUnitProcedure;
hasID_RecipeElement RecipeElement; IDRecipeElement;
hasProcedure ProceduralElement; Procedure;
hasArbitration CoordinationControl; Arbitration;
canCarryMaterialResource TransportResources; TransportedMaterials;
hasSupplier RawMaterialCost; Supplier;
hasUnitProcedure Procedure; UnitProcedure;
derivesInControlRecipe MasterRecipe; ControlRecipe;
referstoEquipmentModule IDEquipmentModule; EquipmentModule;
hasMaterialResource LocationCapacity; Invento-

ryMaterialResources;
MaterialResourses;

isAppliedAt SupplyChainManagement; Facility;
inverse_of_hasElementOf_27 Unit; ProcessCell;
hasEquipmentModule Unit; EquipmentModule; EquipmentModule;
suppliesResources Supplier; Resources;
inverse_of_hasElementOf_29 EquipmentModule; Unit; EquipmentModule;
referstohasID_Logic IDLogic; ProceduralLogic;
hasLocationCost SCLocationManagement; FacilityInvestmentCost;
hasEquipmentControl BatchControl; EquipmentControl;
hasProcessAction ProcessOperation; ProcessAction;
hasParameter Formula; RecipeElement; Parameter;
inverse_of_derivesIn_32 SiteRecipe; GaneralRecipe;
inverse_of_derivesIn_33 MasterRecipe; SiteRecipe;
inverse_of_derivesIn_34 ControlRecipe; MasterRecipe;
hasProductionPolicy Demand; ProductionPolicy;
hasHumanResource InventoryHumanResources; HumanResourses;
hasEquipmentRequirement MasterRecipe; RecipeEle-

ment;
EquipmentRequirement;

inverse_of_hasElementOf_14 ProcessManagement; BatchProcess;
inverse_of_assingResourseTo Unit; Batch; Arbitration; Allocation;
hasProcessProduction ProductionProcess; BatchProcess; DiscretPart-

Process; ContinuosProcess;
hasProcessControl Unit; EquipmentEntity;

ControlModule; Equipment-
Module;

ProcessControl;

hasID_Equipment Unit; IDEquipment;
inverse_of_hasElementOf_6 EquipmentControl; BatchControl;
inverse_of_hasElementOf_7 BatchControl; ProcessControl;
hasRestriction EquipmentRequirement; Restriction;
inverse_of_hasElementOf_16 Process; Facility;
referstoRecipeID IDRecipe; RecipeType;
inverse_of_hasElementOf_15 RecipeType; BatchProcess;
inverse_of_hasElementOf_5 Batch; BatchProcess;
hasBatch BatchProcess; Batch;
hasProcessManagement BatchProcess; ProcessManagement;

73

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

hasTransportationCost TransportationLink; InboundTransportationCost;
InterfacilityTransportation-
Cost; OutboundTransporta-
tionCost;

provideCost RawMaterialCost; RawMaterial;
hasID_EquipmentRequirement EquipmentRequirement; IDEquipment;
inverse_of_hasElementOf_1 EquipmentProcedure;

EquipmentUnitProcedure;
EquipmentOperation; Con-
trolModule;

EquipmentControl;

hasDemand IDMaterial; Demand;
hasID_Logic ProceduralLogic; IDLogic;
hasProcessCell Area; ProcessCell;
hasRecipePhase RecipeOperation; RecipePhase;
hasSupplyChainManagement Facility; SupplyChainManagement;
hasRecipe Unit; ProcessCell; Equip-

mentEntity; Site; Con-
trolModule; Equipment-
Module;

RecipeType;

isRuledBy TransportResources; TransportationLink;
hasLink_from ProceduralLink; IDProcessStage;
inverse_of_includesA_1 GaneralRecipe; Control-

Recipe; MasterRecipe;
SiteRecipe;

RecipeManagement;

hasIDFromRecipeElementType RecipeElement; IDRecipeElementType;
hasUnit ProcessCell; Instalation-

Cost;
Unit;

receiveInformationFrom IDRecipeEle-
mentType

IDRecipeElementType; ProcessStage; RecipePhase;
RecipeOperation;

hasTransport TransportationLink; TransportResources;
referstoRecipeElement IDRecipeElement; RecipeElement;
hasProcessOutput BatchProcess; Resources;
referstoEquipmentRequirement IDEquipment; EquipmentRequirement;
hasID_EquipmentModule EquipmentModule; IDEquipmentModule;
inverse_of_hasElementOf_30 ControlModule; ControlModule; Equipment-

Module;
hasModels ProceduralElement; Mode;
hasArea Site; Area;
hasBatchControl ProcessControl; BatchControl;
hasSite Enterprise; Site;
hasInventoryCost SCInventoryManagement; InventoryHoldingCost;
hasEqupmentOperation EquipmentProcedure; EquipmentOperation;
hasProductionOrder Site; ProductionOrder;
hasParameterSource Parameter; IDMaterial; ProcessParame-

ter;
hasHeader RecipeType; RecipeEle-

ment;
Header;

isAreaOf Area; Site;
sendMaterialTo Supplier; DistributionCen-

ter;
DistributionCenter; Market;
Site;

receiveMaterialFrom DistributionCenter; Supplier; Site;
gives_control ProcessControl; Unit; EquipmentEntity;

ControlModule; Equipment-
Module;

hasResourceCost Resources; OtherAcquisitionCost; Raw-
MaterialCost;

connectFacilities TransportationLink; GeographicPlacement;
refersTo Unit; EquipmentRequirement;
inverse_of_provideControlTo_5 BasicControl; Coordination-

Control; ProceduralElement;
EquipmentControl;

hasEquipmentUnitProcedure EquipmentProcedure; EquipmentUnitProcedure;
assingResourceTo Arbitration; Allocation; Unit; Batch;
referstoEquipment IDEquipment; Unit;
hasInventory SCInventoryManagement; Inventory;
hasLink_to ProceduralLink; IDProcessStage;
hasProcess Facility; Process;
inverse_of_hasOrderedSetOf_15 RecipeOperation; RecipeUnitProcedure;
inverse_of_hasOrderedSetOf_14 RecipeUnitProcedure; RecipeProcedure;
inverse_of_hasOrderedSetOf_16 RecipePhase; RecipeOperation;
inverse_of_hasOrderedSetOf_11 EquipmentUnitProcedure; EquipmentProcedure;
hasProcessOperation ProcessStage; ProcessOperation;
referstoMaterial IDMaterial; Resources;

74

Do phase

inverse_of_hasOrderedSetOf_10 Phase; Operation;
inverse_of_hasOrderedSetOf_13 EquipmentPhase; EquipmentOperation;
inverse_of_hasOrderedSetOf_12 EquipmentOperation; EquipmentProcedure;
hasFormula RecipeType; Formula;
referedFrom EquipmentRequirement; Unit;
transportMaterial TransportationLink; IDMaterial;
hasRecipeOperation RecipeUnitProcedure; RecipeOperation;
hasPhases Operation; Phase;
receiveInformationFromIDLink IDLink; ProceduralLink;
provideID ProceduralLink; ID;
includesARecipes RecipeManagement; GaneralRecipe; Control-

Recipe; MasterRecipe;
SiteRecipe;

provideControl EquipmentControl; BasicControl; Coordination-
Control; ProceduralElement;

hasEnergeticResource InventoryEnergeticResources; EnergeticResourses;
inverse_of_hasOrderedSetOf_9 Operation; UnitProcedure;
inverse_of_hasOrderedSetOf_8 UnitProcedure; Procedure;
hasTime ProcessStage; P_Time;
hasProceduralLogic RecipeType; RecipeEle-

ment;
ProceduralLogic;

relatesToProduct TransportedMaterials; De-
mand; ProductionOrder;

MaterialResourses;

hasEconomicResource InventoryEconomicResources; EconomicResourses;
hasID_Material MaterialResourses; IDMaterial;
inverse_of_hasOrderedSetOf_26 ProcessAction; ProcessOperation;
inverse_of_hasOrderedSetOf_25 ProcessOperation; ProcessStage;
isProductionProcessOf Procedure; Area;
inverse_of_hasOrderedSetOf_24 ProcessStage; Process;
derivesInMasterRecipe SiteRecipe; MasterRecipe;
hasProductionans DistributionCost SCProductionand Distribu-

tionManagement;
IndirectDistribution Center-
Cost; OtherAcquisitionCost;
DirectManufacturingCost;
IndirectManufacturingCost;
DirectDistribution Center-
Cost; RawMaterialCost;

relatesToFacility LocationCapacity; Facility-
InvestmentCost;

Facility;

hasOperation UnitProcedure; Operation;
hasFacility Enterprise; Geographic-

Placement;
Facility;

hasProductionProcess Area; Procedure;
hasLocationParameter SCLocationManagement; LocationParameter;
hasControlModule ControlModule; Equipment-

Module;
ControlModule;

hasEquipmentParts EquipmentControl; EquipmentProcedure;
EquipmentUnitProcedure;
EquipmentOperation; Con-
trolModule;

isProcessProduction BatchProcess; DiscretPart-
Process; ContinuosProcess;

ProductionProcess;

hasEquipmentPhase EquipmentOperation; EquipmentPhase;
isSiteOf Site; Enterprise;
hasAllocation CoordinationControl; Allocation;
hasID_ProcessStage ProcessStage; IDProcessStage;
hasBatchSize Header; BatchSize;
hasProcessInputParameter ProcessStage; P_Materials;
is_part_of_area ProcessCell; Area;
hasLink ProceduralLogic; ProceduralLink;
hasProcessOutputParameter ProcessStage; P_Materials;
hasID_RecipeID RecipeType; IDRecipe;
hasPhysicalProcessing EquipmentEntity; Unit; ProcessCell; Con-

trolModule; Equipment-
Module;

hasRecipeElement RecipeType; RecipeEle-
ment;

RecipeElement;

75

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

Table 4.4: Data properties (domain & range).

DataProperty Domain Range
value BatchSize; Inventory; Parameter; Restriction; Demand;

LocationCapacity; SupplyChainCost; ProductionOrder;
float

link_type ProceduralLink string
max_value BatchSize; ProcessParameter; Resources; LocationCapac-

ity
float

min_value BatchSize; ProcessParameter; Resources; LocationCapac-
ity

float

salesPrice Demand float
existence Facility boolean
availability Unit boolean
priceUnits Demand string
due_date Demand; ProductionOrder data
unit_of_measure BatchSize; PRocessOutput; ProcessParameter; Restric-

tion; LocationCapacity; SupplyChainCost; Produc-
tionOrder;

string

isDemanded MaterialResources boolean

• Table of restrictions (axioms): The restrictions build constraints between the
properties above mentioned. Some examples of restrictions are quantifier restric-
tions, cardinality restrictions and hasValue restrictions. A total of 64 axioms
have been defined for the proposed ontological model. For example, Figure 4.15
contains the main axioms of the Master Recipe and Area classes.

76

D
o
phase

Master Recipe Class

Description Expression

hasEquipmentRequirement ≥ 1 {MasterRecipe ∈ R | card({Area ∈ R∪LV : <MasterRecipe,Area> ∈ ER(hasArea)}) ≥ 1}

hasFormula = 1 {MasterRecipe ∈ R | card({Formula ∈ R∪LV : <MasterRecipe,Formula> ∈ ER(hasFormula)}) = 1}

hasHeader = 1 {MasterRecipe ∈ R | card({Header ∈ R∪LV : <MasterRecipe,Header> ∈ ER(hasHeader)}) = 1}

hasID_RecipeID = 1 {MasterRecipe ∈ R | card({RecipeID ∈ R∪LV : <MasterRecipe,RecipeID> ∈ ER(hasID_RecipeID)}) = 1}

hasProceduralLogic ≥ 1 {MasterRecipe ∈ R | card({ProceduralLogic ∈ R∪LV : <MasterRecipe,ProceduralLogic> ∈ ER(hasProceduralLogic)}) ≥ 1}

hasRecipeElement ≥ 1 {MasterRecipe ∈ R | card({RecipeElement ∈ R∪LV : <MasterRecipe,RecipeElement> ∈ ER(hasRecipeElement)}) ≥ 1}

Site Class

Description Expression

hasArea ≥ 1 {Site ∈ R | card({Area ∈ R∪LV : <Site,Area> ∈ ER(hasArea)}) ≥ 1}

hasTransportationLink ≥ 1 {Site ∈ R | card({TransportationLink ∈ R∪LV : <Site,TransportationLink> ∈ ER(hasTransportationLink)}) ≥ 1}

Figure 4.15: Examples of axioms for the Master Recipe and Area classes.

77

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

• Tables of instances: Since one of the project objectives consist on the ontology
usability, several case studies are presented in chapter 6. For each of them a table
of instances is presented.

4.3.2 Formalization (ontology editor implementation)
The selected editor is Protégé (for Biomedical Informatics Research (BMIR), 2007), a
description logic reasoning system as a tool for ontology editing and knowledge acqui-
sition (Horridge et al., 2007). This system acts as an inference engine to check data
consistency and validity (http://protege.stanford.edu/). The main reason for this
choice is that Protégé is a widely used open-source ontology and knowledge base ed-
itor with a friendly user interface. Moreover, with this tool the representational and
logical qualities that can be expressed in the built ontology allow the multiple inher-
itance concept and relation hierarchies; meta-classes; instances specification support;
constraint axioms ala Prolog, F-Logic, OIL and general axiom language (PAL) via
plug-ins. Furthermore the native or primary language used to encode the ontology is
the OKBC model.

Furthermore, we used Collaborative Protégé, a Protégé extension that enables users
who develop an ontology collaboratively to hold discussions, chat, annotate ontology
components and changes, all as an integral part of the ontology development process.
From Protégé, it is possible to export ontologies to other knowledge-representation
systems, such as:

• RDF (Resource Description Framework) is mainly intended for use in the seman-
tic web, but it has also been described as a content management technology, a
knowledge management technology, a portal technology, and as one of the pillars
of e-commerce (Klyne and Carroll, 2002).

• OIL (Ontology Inference Layer) is intended to solve the findability problem,
support e-commerce, and enable knowledge management (Horrocks et al., 2000).

• DAML (The DARPA Agent Markup Language) focuses on supporting the se-
mantic web, though one would assume that it also has other uses (Pagels, 2006).

Finally the creation of the ontology has been possible based on the Protègè’s users
guide (Horridge et al., 2007).

4.3.3 Integration
At this time, due to the lack of consensus among existing ontologies and no use of
standards, it has not been possible the addition of other ontologies for their reuse.
Besides, the models of the same domain vary depending on the construction method.
For this reason, the inclusion of other ontologies’ terminology has been disregarded
until now.

4.3.4 Informatics implementation
The main objective established for developing the informatics system is its capacity
to integrate different perspectives (e.g., different hierarchical decision levels) and the
mappings between them. In this sense, the enterprise ontology project contemplates

78

http://protege.stanford.edu/

Do phase

the enterprise system integration, where processes are categorized, the relationships
between them are examined and imposed. Thus, the model instances must be retrieved
from the decision maker optimization tools.

Technological architecture

The application development is based on the MVC (model view controller). The MVC
is a standard software architecture that separates data from an application, the user
interface, and control logic, into three distinct components called layers (Avgeriou and
Zdun, 2005). The view, controller and model layers are separated clearly among them
allowing the easy implementation of new features. Besides, this architecture allows the
scaling of the infrastructure easily. Figure 4.16 shows the distribution of the layers and
their corresponding servers.

Figure 4.16: Model structure informatics

View layer The view layer manages the interaction with the final costumers and
the delivery of information in different formats. This layer uses the Apache Struts
framework, which is an open source for creating Java web applications (Gosling et al.,
2005). The View represents the page design code, and the Controller represents the
navigational code. The Struts framework is designed to help developers to create web
applications that utilize the MVC architecture (Holmes, 2004).

Model layer Referred also as a business logic layer (BLL), also known as the domain
layer, is a software engineering practice of compartmentalizing. The business logic layer
is usually one of the tiers in a multi layer architecture. It separates the business logic
from other modules, such as the data access layer and user interface. The programs
that are running are located in the business layer. These programs receive user requests
and send responses after the process has been executed. It is called business layer (and
even business logic) because this is where all the rules that must be accomplished are
set. This layer communicates with the view layer, to receive applications and present
the results, and the data layer, to ask the database manager to store or retrieve data
from it.

79

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

Controller layer (data & access) Data and access layer is where data reside and
it is responsible for accessing it. It consists of one or more database administrators to
perform all data storage, receiving requests for storing or retrieving information from
the business layer.

For this layer the Hibernate framework has been used. Hibernate facilitates the
storage and retrieval of Java domain objects via Object/Relational Mapping. Nowa-
days, Hibernate is a collection of related projects enabling developers to utilize POJO-
style domain models in their applications in ways extending well beyond Object/Re-
lational Mapping (Linwood et al., 2010).

As data base motor MySQL was chosen. The MySQL database server is the world’s
most widely used open source database. Its ingenious software architecture makes it
extremely fast and easy to customize (Table, 2004). Extensive reuse of code within the
software and a minimalistic approach to produce functionally rich features has resulted
in a database management system unmatched in speed, compactness, stability and ease
of deployment.

Application

For the applications, Java has been used as a high-level programming language. Java
presents a good versatility, efficiency and security. Java code can run on most com-
puters because Java interpreters and runtime environments, known as Java Virtual
Machines (VMs), exist for most operating systems.

The application of the ontological model takes place inside the business layer. In
this particular work the business layer is integrated by the planning and the controls
tasks. Each task processes a XML recipe data. Once this recipe is processed by an
external application, the recipe is sent to the next stage. The data could be saved in
a data base and at the same time sent to the control level.

The applications of planning and control have an important module that uses the
Case Base Reasoning (CBR) method, to collaborate in the decision task. At the same
time this CBR helps to the information recovery acting as a cache or reusing the data
information.

4.4 Study/Check phase

The five steps comprised in this phase according to section 3.2 are explained next.

4.4.1 Language conformity standard

Since the software for ontology construction and edition, Protègè, is based on the
standards in accordance agreement with the rules from the world wide web consortium
(W3C), this step of the check phase is automatically fulfilled.

4.4.2 Conceptually conformity standard

The enterprise ontology project is based on the ANSI/ISA standards, as well as widely
recognized reviews in the PSE domain. For this reason, the conceptual conformity of
the built project is guaranteed.

80

Study/Check phase

4.4.3 Reasoning

The support for debugging defects in OWL ontologies has been fairly weak. Com-
mon defects include inconsistent ontologies and unsatisfiable concepts. An unsatisfi-
able concept is one that cannot possibly have any instances or it represents the empty
set (e.g., owl:Nothing). However, these errors can be detected automatically using a
DL reasoner, which simply reports the errors, without explaining why the error occurs
or how it can be resolved correctly.

The reasoning of the enterprise ontology project has been performed using Racer-
Pro and several reasoners included in Protègè namely FaCT++, HermiT, Pellet and
Pellet incremental. The reasoners performed the identification of the domain and range
of properties (relationships) among the classes that compose the ontology. As a result,
they detected problems such as:

• Inverse properties must have inverse domains and ranges.

• Missing disjoints on primitive subclasses.

• The transitivity of a property should also hold for its inverse.

In general, inconsistency was related to unsatisfiable class and properties descrip-
tion. Only if the taxonomic classification of the classes is checked and the ontology is
consistency in accordance to the reasoners, the asserted individuals consistent could
be checked as well.

Along the project development inconsistencies have been solved at the time they
appeared. Having found defects in the ontology, their resolution has been carried out,
requiring an exploration of remedies with a cost/benefit analysis. In this case, repair
solutions that impact the ontology minimally have been generated. Particular care
and effort was taken to ensure that ontology repair is carried out efficiently. Table
4.5 contains the reported times by the reasoners for checking consistency once the
ontology has been debugged.

Table 4.5: Reasoners time for consistency checking.

Reasoner name time[sCPU]
Pellet 1.938

FaCT++ 0.204
HermiT 16.266

Pellet (Incremental) 3.828

4.4.4 Performance (application oriented)

In order to build the informatics application, the software NetBeans platform has been
used for editing the java code necessary to program the functions for the particular
task that the enterprise ontology project was designed for (Figure 4.17).

Thus the OWL API interface (Horridge et al., 2007) has been adopted as a base
code for its OWL APIs functionality. The OWL API is a Java interface and implemen-
tation for the W3C Web Ontology Language OWL. The latest version of the API is
focused towards OWL 2 which encompasses, OWL-Lite, OWL-DL and some elements

81

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

of OWL-Full. The OWL API is open source. The interface allows to access to the
ontology within a java environment.

The complete application code is given in (Appendix D). The results of running
the informatics application may be saved in a Data Base for facilitating the access
to them. These results are used as inputs of the optimization tools for the decision
makers. Thus the results of the optimization are available to update and be included
in the data instantiation of problem in the ontological framework.

82

Study/C
heck

phase

Figure 4.17: Screen shot of NetBeans environment for the informatics application.

83

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

4.4.5 Revise

The results of the optimization were analyzed as an issue of validation and comparison
of behavior. The results refer to different case studies which belong to the domain
defined in the enterprise ontology project.

The use of the enterprise ontology project enables the integration of the different
decision levels and supplied the process state information to different levels in the
decision-making hierarchical structure, which leads to the following improvements:

• Behavior: The efficiency of the reactive policies are improved by updating the
decision level’s state in a most effective way, which leads to an increase in process
yield.

• Language: The information presented proper, common and standardized lan-
guage within the hierarchical levels, regardless of its origins.

• Documentation: Ontology provides a certain and easy description for formal
(read by a computer) and informal (presented in a human-readable form) spec-
ifications of the system elements’ content.

• Storage: Efficient access is provided to process databases using a database man-
agement system and to establish the links and locations of these databases.

• Navigation: The Web-Protégé portal provides the option of interaction among
potential users of the ontology, by interchanging some notes about the different
parts.

• Data: Significant data can be mined from the whole amount of available data
that flows along the hierarchical structure levels of the enterprise. Thus it is
possible to use it as information quality.

A comparison between the process of how different levels interact in a traditional
way and a proposed one has been done. An average improvement of 20% in the number
of steps for carrying out each process has been obtained, leading to savings in process
time ranging between 70-80%.

4.5 Act phase

4.5.1 Implementation

• Performance (application environment): After the creation of the enterprise on-
tology project, different applications have been performed in benchmark prob-
lems of the literature comprising the supply chain, planning & scheduling and
process control domains. the behavior of the framework is thoroughly reported
in chapter 6.

A remarkable aspect consists of the fact that when a system or a process is
instantiated within the ontology structure during the problem implementation,
the relationships defined by axioms and rules ensure that every part or instance
follows the standards requirements. This can be defined as an automated way

84

Act phase

to standardize a particular process. Even more, those parts that are compul-
sory within the model are demanded during the problem instantiation. Specifi-
cally, once a class is instantiated, those other required classes are automatically
demanded by the ontology. Such feature is achieved by creating the adequate
axioms. For example, as shown in Figure 4.18, the slot information is required
and requested by the ontological model when a control recipe instantiation is
performed.

Figure 4.18: Protege required parts in order to instance the process.

As a conclusion of this step, it can be stated that the enterprise ontology project
is general enough to be used and reused in any enterprise wide optimization case.

• Distribution of the new ontology: A users manual contains in general terms the
procedures for:

– Instantiating a real problem.

– Checking consistency.

– Generating input files for the decision maker. This file can be used for
machines (formal specification) or people(informal specification).

Appendix E contains the users manual for the enterprise ontology project.

85

4. An ontology-based for Chemical Process Engineering: Enterprise Ontology

4.5.2 Maintenance
The maintenance phase is part of the continued use of this project. Hence, the formal-
ization and documentation of possible changes are updated when improvements in the
domain application are made.

4.6 Re-planning phase
The results of this phase are included in the previous subsections, which present the
final structure of the pursuit project. However the project has been re-planned several
times adding new functionalities to the studied domain. The main stages are:

1. Construction oriented to the control and scheduling levels.

2. Addition of the planning level (site recipe issues).

3. Addition of the supply chain level (strategic issues).

86

Chapter 5

Decision support system

As explained Section 2.4 the traditional components of decision support systems
include: (i) data management capabilities, (ii) modeling functions, and (iii) in-

terface designs (Shim et al., 2002). Precisely, by means of the systematic solutions, a
decision support systems tool capable of handling much softer information and broader
concern than the mathematical models and knowledge systems handled until now can
be developed.

Model management systems and knowledge-based decision support systems have
use techniques as artificial intelligence and expert systems to provide smarter support
for the decision-maker. Furthermore, the Internet, the Web and telecommunications
technology can be expected to result in organization environments that will be in-
creasingly more global and complex.

In this thesis, a model is created toward closing the gap between transactional
and analytical models which are used in the technical and organizational parts. It
also integrates the different hierarchical levels within the enterprise structure, making
information quality available. As a result, multiple and varied decision perspectives
may be available within the decision making task, increasing the speed response of the
decision support system.

This chapter aims to explain how decision support systems may be involved in the
exploitation of the capabilities of the proposed ontological model. Thus, the specific
decisions that are to be assisted at each decision level of the hierarchical structure are
thoroughly defined.

5.1 Process control decisions

This thesis handles process control decisions related to procedural and coordination
control. Therefore, the implementation of the sequence of control steps in the equip-
ment modules, as well as the transition between control recipes are dealt. Such deci-
sions are specified in the control recipes, which receive data from the scheduling level,

89

5. Decision support system

and provide data with the actual plant state. Next, the information flow and proce-
dures involved in this decision level along with their relationship with other decision
levels are described.

The data requirement for this decision level as well as the main classes that must
be instantiated for the coordination control are given in table 5.1.

Table 5.1: Information provided by the ontology to the control level.

Concept Ontology implementation (classes involved)
Capacity P_Capacity
Pressure P_Pressure

Temperature P_Temperature
Transfere rate P_TransfereRate
Valve position P_ValvePosition
Mixing speed P_MixingSpeed

Power P_Power
Coordination cntrol CoordinationCntrol
Equipment control EquipmentControl
Procedural control ProceduralControl
Procedural element ProceduralElement

Operation Operation
Phases Phases

Equipment operation EquipmentOperation
Recipe operation RecipeOperation
Equipment phase EquipmentPhase
Recipe phase RecipePhase

The decisions at this level are concerned with the implementation of the control
recipe according to the results from the scheduling decision level, and the update of
the current plant state. The scheme of the control recipe is written using Matlab
(Mathworks, 2009) in XML language. Therefore, the coordination control manages
the batch operation by using the control recipe scheme and using the data contained
in the ontological model. The data are managed by Matlab, which provides a set of
information that can be linked and processed by the Java interface, and also related
to the appropriate classes and properties in the ontology.

Thus, the results from the scheduling function are on their turn passed from the
scheduling function to the ontology by the Java environment providing the control
function with the necessary data. As a whole, it is an iterative procedure for decision
making, which involves the control and the scheduling levels (Figure 5.1). The plant
workout as well as the equipment model are executed in Matlab/Simulink environment.

Case studies 1 and 2 in chapter 6 detail the flow of information during the perfor-
mance of this decision level.

5.2 Planning & scheduling decisions
The scheduling decisions that are handled in this thesis work are concerned with the
sequencing and timing of multi-product ans multi-purpose batch plants. It is also deals
with the scheduling task and rescheduling after an unexpected event occurs.

90

Planning & scheduling decisions

•Product
•Amount of product to be

Production Order

Amount of product to be

produce

•Order production type
•Order priority
•Material resource

Planning Level

•Product
•Lot size
•Product ID
•Estimated processing time

•Time line

•Equipment availability

•Equipment time for be

output

inputMaster
Recipe

Optimization

Ontology
Data Base
(Query

Parameter)
available

•Process sequence
•Amount of material resource

to be used

•Lot number

•Batch ID
output

ANSI /ISA S88
XML message

Control Level

Parameter)

00
•Equipment/Unit ID

•Start time

•End time

•Phases
•Parameter max/min value

•Batch ID

input

output

Control
Recipe

ANSI /ISA S88
XML message

Data Base

Control

•Batch ID
•Batch process status
•Current time

•Estimated end time

•Equipment/Unit status

•Material resources

inputData

ANSI /ISA S88
XML message

Figure 5.1: Information required by the recipe at different levels.

A large number of approaches has been presented in the literature to model and
solve planning and scheduling problems. On the one hand, mathematical representa-
tions, graphic or artificial intelligence based models can be used. On the other hand,
mathematical programming, logic-based methods, heuristics, meta-heuristics, or hy-
brid methods have been applied for solving the planning and scheduling problems
(Mendez et al., 2006).

In this thesis, an optimization based decision support system using mathematical
programming is adopted for solving the scheduling problem. In the literature, there
are several formulations such as the general precedence model, the continuous and
discrete RTN formulation, or unit-specific time event. Specifically, in this thesis, the
continuous time STN-formulation presented by Maravelias and Grossmann (2003)
has been considered, since it is able to represent multi-product and multipurpose
plant configurations. However, any other formulation or optimization approach, able
to represent the problems’ features, could have been used to solve the scheduling
problem.

The continuous time STN representation is based on the definition of a common
time grid that is variable and valid for all shared resources. To guarantee the feasibility
of the material balances at any time during the time horizon of interest, the model
imposes that all tasks starting at a time point must occur at the same time Tn, where
n is the set of time points occurring at unknown time Tn, n = 1, 2, ..., N . The ending
time does not necessarily have to coincide with the occurrence of a time point n, except
for those tasks that need to transfer the material with a zero wait time policy. The

91

5. Decision support system

model adopts two binary variables to denote at which time point a given task i starts
and finishes. Moreover, it is necessary to define the batch size of a given task at the
beginning, finishing and during the processing time of the task. Thus, the the quantity
of resources available at each time point can be monitored.

In this thesis, the ontological model has been used to represent the scheduling
problem and adequately translated using the Java environment to be exploited by the
mathematical programming tool. Indeed, the formulation has been implemented in
GAMS and solved using the MILP solver CPLEX 9.0, since the posed problems (their
specific formulations) are lineal.

5.2.1 Data requirement
The data required for taking decisions at the scheduling level are specified next. The
steps comprised in the usability to scheduling given in this ontological model are
common to all cases. Specifically, once the problem is instantiated, the scheduling
function requires the following information:

• Capacity: It refers to the raw materials quantities available in the production
plant, and the maximum storage capacity of the intermediates, residues and final
products.

• Demand: It contains the quantity of each product required by the customers.

• Due-date: It contains the date that each final product has to be delivered to the
customer.

• Product-stage-unit: It contains the set of units that is available at each stage of
the production process for all products.

• Quantities in/out: It refers to the quantities of the raw materials, intermediates
and final products that are necessary to perform/ that are delivered at each stage
of the production recipe of each product according to the material balances.

• Processing time: The time necessary to perform the tasks of a given stage.

• Stage-process: It contains the set of stages that are contained in each master
recipe of the products.

• Time horizon: It refers to the time horizon for the scheduling task.

• Unit availability. It contains the time at which the unit is available.

Therefore, the Java code is programmed for generating the input files for the
scheduling optimization tools. Table 5.2 contains the sources from the ontological
model that are used to provide the optimization framework with the necessary data.
Finally, the optimization software can be executed. On the whole, any scheduling
problem can be modeled by the ontological framework, and next solved by the deci-
sion maker tools.

In Case studies 2 to 5 the usability of the ontological model is demonstrated and
the advantages obtained are highlighted.

92

P
lanning

&
scheduling

decisions

Table 5.2: Relationship between optimization inputs and classes of the ontology.

Concept Set Ontology implementation (classes involved)
Recipe p ∀ MasterRecipe → RecipeID
Stages s ∀ RecipeElement |RecipeElementType = ProcessStage → RecipeElementID
Units u ∀ EquipmentRequirement ∈ GeneralInformation → EquipmentRequirementID

Materials i

∀ RawMaterial ∈ ProcessInputs → MaterialsID
∀ Intermediate ∈ ProcessInputs → MaterialsID
∀ By_Product ∈ ProcessOutputs → MaterialsID
∀ End_Product ∈ ProcessOutputs → MaterialsID
∀ Residue ∈ ProcessOutputs → MaterialsID

Stage-process p,s ∀ ProcessStage → ProcessStageID

Raw materials i ∀ RecipeElemnt ∈ MasterRecipeID → RecipeElementID
∀ RawMaterial ∈ ProcessInput → RawMaterialID

Final products i ∀ FinalProduct ∈ ProcessOutput → MaterialID
Product-Stage-Unit p,s,u ∀ EquipmentRequirement ∈ ∀ RecipeElement ∈ MasterRecipe → EquipmentRequirementID
Process-stage-input p,s,i ∀ ProcessStage ∈ RecipeElement ∈ MasterRecipe → ProcessInputParameter = ParameterSource → ID
Process-stage-output p,s,i ∀ ProcessStage ∈ RecipeElement ∈ MasterRecipe → ProcessOutputParameter = ParameterSource →

ID
Quantity- process-stage-input p,s,i ∀ Material ∈ ProcessStage ∈ RecipeElement ∈ MasterRecipe →

ProcessInputParameter = ParameterSource → Value
Quantity- process-stage-output p,s,i ∀ Material ∈ ProcessStage ∈ RecipeElement ∈ MasterRecipe →

ProcessOutputParameter = ParameterSource → Value
Processing time p,s,u DataBasefor ∀u; ∀s : ∀p
Storage capacity i DataBasefor ∀ Material
Demand i DataBasefor ∀ FinalProduct(i)

93

5. Decision support system

5.3 Supply chain decisions
In this thesis, the decisions involved in the strategic level are related to the number of
facilities to be opened, the increase of their capacity at each time period, the linkages
among them, the assignment of manufacturing and distribution tasks to the networks
nodes, and the amount of final products to be sold, among others. Such decision
environment can be friendly captured by the ontological environment.

In general, strategic decisions for determining the optimal SC network structure
are key for the later optimization of SC operations. Traditional approaches available in
literature addressing this problem usually utilize as departing point a rigid pre-defined
network structure which may restrict the opportunities of adding business value. In
this thesis, a flexible formulation approach which translates a recipe representation to
the SC environment is used for the design and retrofit of SC (Lainez et al., 2009).
Such design-planning model is analytical optimization model, based on the STN con-
cept for representing SC networks, containing equations related to the mass balances,
the design, the capacity and the markets and suppliers, as well as a complete set of eco-
nomic performance metrics grouped in operating revenue, operating cost, and capital
investment.

Such analytical optimization model must be provided with the necessary infor-
mation regarding the SC structure, which is derived from the ontological model and
the related data contained in the database. Additionally, the ontological model opti-
mizes the way in which the databases are distributed along the enterprise structure.
As a result, databases are well located and their data are easily available and can be
transformed into valuable information.

The optimization model has been implemented in GAMS and solved using CPLEX
9.0. The Java application is used for generating the required inputs of the model, specif-
ically the code generates the .txt files which are called by the optimization problem
(Lainez et al., 2009).

The usability of the ontology for SC decisions is illustrated in case study 6 of
chapter 6.

5.3.1 Data requirement
The specific information needed at this decision level is presented in Table 5.3.

The "production task" model element is part of the ontological model as shown in
Figure 5.2, specifically the recipe element. It is necessary to export such instances to
a format readable by the analytical system, namely a .set file (Table 5.4). Therefore,
the adequate Java code (Figure 5.3) must be written in order to create the necessary
input files.

94

Supply chain decisions

Table 5.3: Information provided by the ontology to the analytical model.

SC model concept Ontology implementation (classes involved)
States RawMaterial, Intermediate and EndProduct
Locations Site and DistributionCenter
Facilities Supplier, SitePlacement and Market
Markets Markerts
Activities RecipeElements and TransportedMaterials
Technologies Units and TrasportResources
Equipment Units
Final products EndProduct
Raw materials RawMaterial
Distribution tasks TrasportedMaterials
Production tasks RecipeElements
Supplier sites Supplier
Production sites Sites
Distribution centers DistributionCenter
SC model concept Ontology class
Capacity transports TransportedMaterials(relatesToProduct)
Cost raw material RawMaterialCost
Facility investment cost FacilityInvestmentCost (relatesToFacility value)
Facility location relationship SitePlacement(hasFacility)
Market location relationship MarketPlacement(hasFacility)
Market price Market(Demands sales price)
Max capacity technology TrasportResources(canCarryMaterialResource max value)
Min capacity technology TrasportResources(canCarryMaterialResource min value)
Process inputs RecipeElement(hasProcessInputParameter)
Process outputs RecipeElement(hasProcessOutputParameter)
SC demand Market(Demands value)
Supplier capacity LocationCapacity(hasMaterialResource value)
Transport costs TransportationLink (hasTrasportationCost)
Transport resources TransportResources(canCarryMaterialResource)
Max facility capacity LocationCapacity(hasMaterialResource max value)
Min facility capacity LocationCapacity(hasMaterialResource min value)

95

5.
D
ecision

support
system

Figure 5.2: View of the Protègè interface containing the instances required for defining the model element "production tasks".

96

Data and information management

Table 5.4: Elements of the model element "tasks".

tasks.set
RecipeElementP11
RecipeElementP12
RecipeElementP13
RecipeElementP21
RecipeElementP22

Figure 5.3: Example of the Java code developed to give the model element "tasks" to the
analytical model.

5.4 Data and information management
Interoperability among different decision support tools is a critical aspect in the daily
operation of enterprises. Thus, data bases are used to store the values related to specific
and relevant aspects of the enterprise environment. In order to enhance the manage-
ment of data by the ontological framework, it is important to consider the link and
communication among data bases and the ontology. As a result, the decision support
tool will benefit from a higher data availability and their subsequent interpretation as
information quality.

In this thesis, the data which are introduced in the decision support systems are di-
rectly problem instances of the ontological model, whose dynamic values (those which
are frequently updated) are read from different databases. What is more, an automatic
order of the net of databases, which many times are spread along the different hier-
archical decision levels, is achieved since every database is adequately related to the
corresponding part of the ontological model. Every relationship between the dynamic
value, e.g. demand data property in the ontology, and its corresponding numeric value
stored in the data base is easily programmed in Java language (Figure 5.4).

An additional feature of the data management framework consists of the possibility
of introducing the results of the decision support systems in the databases for its
further exploitation by other decision support tool. For example, the results of the
supply chain decisions are stored in the corresponding databases of the plants, and

97

5. Decision support system

Figure 5.4: Screenshot of the MySQL database interface.

next the data for building the model in the scheduling decision support tool are based
on the ontological model and the data stored in the databases (Figure 5.5).

Figure 5.5: Scheme of the relationships among the different actors of the ontological frame-
work and the database.

An important advantage regarding database consistency with the ontology is the
design of the database tables and field structures based on the terminology and knowl-
edge presented in the ontology. In this way, a better database net structure would be
achieved.

A proposed additional decision support tool which can be directly exploited by the
ontological framework and the database is the case based reasoning. Such tool is an
artificial intelligence technique based on the fact that similar problems have similar
solutions. Therefore, problem-solution pairs are recorded in the form of "cases" which
are recorded in the case base repository.

Therefore, the importance of an adequate storage of the optimization results is
crucial. The CBR employed in this thesis is the FreeCBR package (Johanson, 2011),
which contains an API able to be used in the Java environment. The case based
reasoner is applied in Case study 2 of Chapter 6.

98

Remarks

5.5 Remarks
The defined decision support system shows several drawbacks and advantages when
applied at the different decision levels.

On the one hand the main inconvenient of the proposed framework consist of the
additional modeling time, since a high level of detail is required for modeling the
problem. In addition it is necessary to be familiar with the ontological framework in
order to know what information to extract and where it is located.

On the other hand a large number of advantages can be mentioned derived from
the application of the ontological framework to the decision support tools. Since the
model is more complete it is easier to integrate the different decision levels, as well as
to consider other data. Thus, the change of the parameters is straight forward. THe
framework also facilitates the establishment of relationships and properties between
the data bases and the models. Moreover, the application of any model or any kind of
model at any decision level can be generalized. Even more, the change in the physical
structure of the problem (adding complexity) is also easy to carry out. Finally, the
standardization of concepts and vocabulary allows the generalization in the applica-
tion of the decision support tools regardless of the specific process structure by the
consensus in the vocabulary.

99

Chapter 6

Case studies

6.1 Introduction

In this chapter, the application of the ontological framework is demonstrated in
several process, plant and enterprise configurations related to different case studies

using the decision support tools described in Chapter 5. The ontology has been created
from scratch, so it has evolved along the different iterations of the re-planning phase, as
explained in Chapter 4. This can be observed in the different models through the time
line and their corresponding case studies, which are presented in order of increasing
completeness of the ontological model.

Thus, the contributions of the proposed integrated information environment to the
supply chain, scheduling and process control decision-making levels are shown, empha-
sizing the following features: re-usability, usability and more efficient communication.

The re-usability consists of the instantiation of different problems using the same
modeling framework. The specific information regarding each case study is developed
in every instantiation description.

The usability refers to the capacity of transforming the data contained in the
problem instantiated in the model into valuable information (information quality).
Precisely, the ontology allows the representation in a single model of the whole enter-
prise domain. The active parts of the model are determined by the final goals and by
the use of the ontology in the enterprise level at which it will be applied.

Furthermore, the development of an ontological representation for the enterprise
domain leads to the centralization of information and the coordination of the different
hierarchical decision levels, and it may improve the time for reaching the desired data
from the enterprise. Such features are illustrated in the explanation of the presented
case studies.

An additional advantage of the use of an ontology in the enterprise domain consists
of the possibility to work in a web environment, which is emerging as a very important
decision support system platform. As a result, technological barriers can be reduced
and decision support systems may be available to managers and staff users which

101

6. Case studies

are geographically distributed at a relatively lower cost. Even more, enterprise-wide
decision support systems can be implemented in geographically dispersed companies
for improving their overall results.

Moreover, the ontological framework stands for a bridge in natural language be-
tween the reality representation and any informatics framework. Thus, the information
is available in multiple informatics formats. This means the translation of knowledge
and know-how to an efficient way to manage domain information flow.

6.2 Model 1: Information integration
This model contains the elements described in the ANSI/ISA-88 specifically the phys-
ical, procedural, process and recipe model (found in Appendix B) and their corre-
sponding relationships (found in Appendix C). As a result, it consists of 92 classes,
10 axioms, and 132 properties. This ontology is the result of the first completion of
the proposed PDSA based methodology described in chapter 4, before the re-planning
phase. In this approach the management of recipes is performed by external files writ-
ten in xml code. As a main feature obtained in this first ontology draft, the integration
of the control and the scheduling hierarchical decision levels has been achieved. This
means that the different data found within those two decision levels are shared and
carried to the right places that require a specific data.

This model has been applied to two different process plants for checking the us-
ability of the ontology. Thus, the capabilities of the ontology for acting as a connector
(model integrator) agent between the scheduling and the control levels data bases have
been explored.

6.2.1 Case Study 1: PROCEL scheduling

A batch pilot plant (PROCEL), which is a basic environment for open simulation and
optimization in a real time environment package scenario, is located at the labora-
tory facilities at the UPC Chemical Engineering Department. PROCEL provides an
appropriate scenario for the first evaluation of the ontology performance from a quali-
tative and usable perspectives and for studying and developing new process strategies.
Indeed, the plant has been adequately instantiated proving the ontology principle of
usability.

This case study deals with the production of three chemical products, each with
different production requirements (Table 6.1). The production system comprises 3
principal processing units, namely two reactors and one tank. The detailed piping
and instrumentation diagram of the process is shown in Figure 6.1. It is considered
one recipe for each product. Nominal processing times, transfer times (Table 6.2) and
cleaning times (Table 6.3) are considered fixed for initial scheduling. However, they
will be subject to changes, if required, to react to unexpected events. The changes
follow the corresponding models by which the process is updated according to the
information received from the plant. In Table 6.4 some control set points are taken
into account, which are the maximum values for maintaining the plant under control.

The data contained in the ontological model can be mined by any external in-
formatics agent. Such retrieval of information by an informatics systems is referred
as the formal exploitation of the ontological model. Specifically, the data contained
in the ontology can be used for the creation of files for further use, for example the

102

Model 1: Information integration

Table 6.1: Batches processing times [min].

Product i1 i2 i3
Stage Unit Time Unit Time Unit Time

l1 j1 30 j2 24 j3 50
l2 j2 60 j3 12 j2 12
l3 j3 59 j1 54 - -

Figure 6.1: Piping and instrumentation diagram of the flow shop plant of the PROCEL
plant.

Table 6.2: Pipes transfer times [min].

From-to Unit (j1) Unit (j2) Unit (j3)
Unit (j1) 0 5.8 9.6
Unit (j2) 10.4 0 5.6
Unit (j3) 10.3 11.8 0

temperature parameter may be required by the master recipe and the control recipes.
Therefore, Figure 6.2 shows how the information is shared both by the master recipe
(unique file), and the control recipe. Such exploitation is achieved by the application of
a single and standardized model at these two decision levels (scheduling and control).

103

6. Case studies

Table 6.3: Cleaning time [min].

Product Unit (j) Time
i1 j1 20
i2 j2 10
i3 j3 20
i1 j1 40
i2 j2 20
i3 j3 40
i1 j1 10
i2 j2 5
i3 j3 10

Table 6.4: Control set points.

Control Parameter Value
Descharge EQ1 LT1min 2.4 dm3

Charge QE1 LT1max 4.4 dm3

Hold tank time 60 s
SP clean EQ1 time 90 s
SP clean EQ3 time 120 s
Heat EQ1 SP T1 50ºC
Heat EQ3 SP T3 50ºC
Heat EQ1 SP R1 100%
Heat EQ3 SP R3 50%
Heat EQ1 SP AG1 100%
Heat EQ3 SP AG2 20%

Control Set Points (TOP: operation time)

Results

In this case study no quantitative results are obtained but the operational procedure
of the proposed framework is analyzed qualitatively.

The control task in the units modeled has been applied to bring the processing time
data from the control level model through an special API of the ontology software, to
the scheduling level model. In this way, variable values have been updated when the
planing level asks for using them as input for scheduling. In order to succeed in this
activity a link between data source from the external software variable and the real
values captured by the control system in the process database has been created.

A first application of this ontology has been implemented to "close" the typical
scheduling-fault analysis-rescheduling loop (control levels 0 to 3 of the Purdue reference
model). The system is coordinated by an internal server acting as an information
administrator that is consistent with the ontology structure. This can be achieved
through the ontology web language-application program interface OWL-API, which is
a Java interface and implementation for the W3C Web Ontology Language OWL.

The user interface interacts with a model of the ontology (batch processes domain)
on the client side via a listener pattern. When the model needs to be filled with new

104

Model 1: Information integration

Figure 6.2: Temperature parameter following the ANSI/ISA-88 standard.

information, the Remote Procedure Call (RPC) module on the client side will invoke
a request to the RPC module of the server, which interacts with the ontology and
the Collaboration APIs to provide the requested data. The aim is to make it easier
for knowledge engineers and experts to manage knowledge. The working process of

105

6. Case studies

the ontology modeling approach is shown in Figure 6.3, which illustrates the relation
between different actors. In addition, it enables the user to reuse existing information
from the modeling databases or to create and add new design information.

Figure 6.3: Ontology Model 1 approach for Case study 1.

6.2.2 Case study 2: Multi product batch plant - control and
scheduling

Problem description

The case study consists of a multi product plant, manufacturing two products, i.e.
A and B, through three process stages (Figure 6.4). Product batch sizes, optimal
production times and product demands are shown in Tables 6.5 and 6.6. A single
unit is available for each stage and unlimited intermediate storage policy is adopted.
Product changeover time and cost are disregarded.

Figure 6.4: Plant flowsheet for the Case study 2.

The detailed piping and instrumentation diagram of the process plant is shown in
Figure 6.5. Table 6.7 contains the identification of the different elements in the process
recipe. These elements must be instantiated in the ontology as described in section
4.3.

The scheduling objective function, profit maximization (Eq. 6.1), includes the ben-
efit of each batch and the operating cost, which is a function of the free process

106

Model 1: Information integration

Table 6.5: Product prices and lot sizes for Case study 2.

Product Batch Benefit Batch size Demand Unitary energy
[m.u./batch] [ton/batch] [ton] cost [m.u./MWh]

A 30 5 20 90
B 40 6 24 90

Table 6.6: Recipe stage times [h].

Product Stage 1 Stage 2 Stage 3
Unit Time [h] Unit Time [h] Unit Time [h]

A R1 0.5 P1 0.5 C1 0.5
B R1 0.5 P1 0.8 C1 0.4

Table 6.7: Description of the process plant in Case study 2.

Concept Name ID State Density Capacity
Product End_Product A LP00A liquid

End_Product B LP00B liquid
Residue 1 R001 liquid
Residue 2 R002 liquid

By products BP100 liquid
Unit Reactor P-110 10 m3

Separator D-120 10 m3

Separator D-130 8 m3

Stage Reaction
Separation1
Separation2

Resource Raw Material A RM001 liquid 1000kg/m3

Raw Material B RM002 liquid 1100kg/m3

Raw Material C RM003 liquid 1200kg/m3

Control Ele-
ment

Electro Valve 1 J-112

Electro Valve 2 J-113
Electro Valve 3 J-122
Electro Valve 4 J-123
Electro Valve 5 J-124
Electro Valve 6 J-132
Electro Valve 7 J-133
Electro Valve 8 J-134

Pumps Pump 1 K-111
Pump 2 K-121

Data Bases Production Planning PPDB lot size
Production Plant Planning PPPDB Production costs

Demand
Price

Production PDB Operational times
control CDB temperature

time
reaction

variables and is related to the processing time as a result. Specifically, linear functions
(Eqs. 6.2 and 6.3) are used to calculate the operating costs depending on the required
processing time; they are approximated from experimental data (i.e. simulation data
from the rigorous process model) so that they can be easily included in the scheduling
objective function.

zprofit = SellingPrice−OperatingCost−RawMaterialCost (6.1)

OperatingCostA = 32.6260− 15.5879 · ProcessingT ime (6.2)

107

6. Case studies

Figure 6.5: Piping and instrumentation diagram for Case study 2.

OperatingCostB = 42.7954− 27.6950 · ProcessingT ime (6.3)

The first stage dynamics correspond to an isothermal reaction system with second
order kinetics for both products A and B in a continuous stirred tank reactor. The
higher temperature in this stage, the lower production time and higher energy cost.
Basic control system in unit R1 is composed by a feedback temperature controller.
The operation in this stage can be adapted to the scheduling level as mentioned, so
that flexible processing times and operating costs can be obtained. This means that
set point values are decided at the scheduling level instead of being decided at the
process level, at inter-batch control level or by the supervision system.

Results

The re-usability of the ontology, that is its capacity to be applied to any process plant,
is demonstrated by the successful instantiation of this case study. Specifically, the
instantiation of the ontology contains 52 instances. Thus, the ontology provides the
complete semantic model of the whole plant according to the batch process manage-
ment model described in the ANSI/ISA-88. As a result, the same representation of
the process is available to the various expert systems contained in the software, which
hold every decision making function, namely programming, control and case-based
reasoning, along with information needed to perform such tasks.

In turn, the informatics systems receive the results of the decisions taken out, and
store such information in appropriate databases. In all cases, the informatics systems
work supported by the ontological representation of the process. Hence, the ontology
is regarded as usable, because the plant knowledge can be approached by several
applications.

For example, when defining the plant equipment in the different functions, the
scheduling level only requires a shallow level of detail (Figure 6.4), so the informatics
system provides it with the "Unit" elements according to the ANSI/ISA-88 (P-110,
D-120, P-130 from Figure 6.5); whereas the control level needs a deeper degree of de-
scription, and the informatics system provides it with all the elements up to "Equip-
ment Modules" level (K-111, J-114, K-112 and so on, from Figure 6.5). On the whole, a
single unified process representation of the plant can build different problem instances
and be used to manage the information in spite of the specific problem that needs to
be solved at each moment.

108

Model 1: Information integration

Next, two solution procedures for the scheduling problem are presented to illustrate
the capabilities of the integrated information environment, depending on the available
plant knowledge in the historical plant database. Both of them take advantage of the
ontology usability and more efficient communication capabilities, allowing sharing of
information between different decision levels with different degree of detail and time
scales.

The first scheduling procedure (Figure 6.6), which includes rescheduling action
when faults are detected at the process level, underlines improvements in reaction
to incidences of both decision levels. On the other hand, the usability of the overall
knowledge constructed through the information framework plant model is exploited in
the second scheduling procedure (Figure 6.7), since previously implemented operating
plans are used. As a result, the repetition of solving identical optimization problems
is avoided and computing time and effort are saved.

Figure 6.6: Diagram flow of the solution procedure exploiting the semantic representation
to react against incidences.

Figure 6.7: Diagram flow of the solution procedure exploiting ontology usability.

109

6. Case studies

Solution without previous plant knowledge

A solution procedure is proposed to solve the case study when no historical knowledge
is considered (Figure 6.6). When a production order (Production request - master
recipe, according to Figure 6.6) enters the production decision-level, the informatics
application, described in Section 4.3.4, poses the problem for the scheduling function
according to the incoming production orders and the plant representation contained in
the ontological model. Therefore, the information necessary for building the scheduling
model is automatically transferred to the optimizer.

Next, the scheduling function calculates the batch sequencing, allocation and tim-
ing to be executed by the process control level (Optimization process of scheduling,
according to Figure 6.6). As a result, a production schedule is sent back to the in-
formatics application and interpreted by the informatics application according to the
ontological model. Therefore, the informatics system stores the data in the correspond-
ing place of the data base. The Gantt chart of the solution is shown in Figure 6.8a.

Next, the informatics system builds the control recipe according to the production
schedule and based on the whole process plant description of the ontological instan-
tiation (Initial solution - control recipes off-line mode, according to Figure 6.6). Such
control recipe is used by the control function to perform the optimized schedule for
all the units at the control level (Control policies implementation in process plant,
according to Figure 6.6).

Therefore, the scheduling solution, which is given through a set of batch-oriented
control recipes (Figure 6.9a), is correlated to a set of equipment-oriented control recipes
(Figure 6.9b) to be implemented (Take control actions if required, , according to Figure
6.6). Their correspondence is defined by the coordination control.

As a result, the simulation of the procedural control, basic control and process is
carried out in Matlab as explained in Section 5.1. Thus, an exception alarm system is
implemented in order to warn the scheduling level about production delays in real-time
(Alarm message, according to Figure 6.6). In such cases, the real plant status is sent
from the control function to the informatics application, which accordingly updates
the database based on the plant description of the ontological model and the actual
plant status.

Next, the informatics system poses the new problem with the updated information
so that the scheduling function can build its model and optimize the new schedul-
ing solution. Therefore, the solution of the processing requests is recalculated at the
scheduling level having into account the current state of the process (Reschedule with
actual parameters and Actual solution, according to Figure 6.6).

In this particular case study, an unexpected event has been introduced at time
1:30h: unit R1 (P-110) suffers a breakdown during the manufacturing of the fourth
batch (second batch of product B), which has to be dismissed. For this reason, the
control system sends an alarm signal and rescheduling is started. The first action can
only be taken from the fifth batch on. The resulting scheduling is shown in Figure 6.8b.
New actions are taken in the reactor control set points, and at the end, all required
batches are served except for one batch of product A.

On the whole, the integrated framework is responsible for organizing and transfer-
ring the information and process constraints between the control level (for example,
foreseen time of unit availability and processed orders) and the scheduling level (which
defines not only the batch operation model but also temperature set-points). The batch
process model behind the proposed information environment is based on ANSI/ISA-

110

Model 1: Information integration

[a]

[b]

Figure 6.8: Gantt charts for Case study 2: a) initial solution and b) solution after the
rescheduling action (the breakdown in unit R1 is shown shaded).

88 standard, which guarantees correspondence between the information of the several
levels. Moreover, re-usability and communication efficiency in the provided integration
framework can be exploited. In addition, the scheduling level eventually reschedules
the orders; which demonstrates that high and effective reactivity to incidences can be
achieved by the global system.

Solution with previous plant knowledge

The second solution approach (Figure 6.7) takes advantage of the ontology usability
with the application of a Case-Based Reasoning (CBR). In this case, when a produc-
tion order enters informatics application (Production request, according to Figure 6.7),

111

6. Case studies

Figure 6.9: Batch operation models: a) batch-oriented recipe and b) equipment-oriented
recipe.

an informatics system based on the ontological representation of the plant adapts the
request for the interpretation of the CBR, which checks if any previous order fully or
partly coincides with the current one (Historical DB checking/Previous similar pro-
duction request, according to Figure 6.7). In such case, the scheduling optimizer is
not required for the calculation of the whole batch sequencing, allocation and timing;
instead, the scheduling solutions stored in the historical database are used (Recover
solution off-line mode, according to Figure 6.7). Therefore, the stored control recipes
are sent to the control function, which implements the production schedule (Control
policies implementation in process plant and Take control actions, according to Figure
6.7). As a result, information can be directly reused, and the usability of the proposed
ontological framework is successfully exploited. The final production schedule imple-
mentation must be incorporated in the historical database (Incorporate production
log in historical DB, according to Figure 6.7).

6.2.3 Model remarks

This model represents the first approach toward the support for the integration, not
just communication, of different software tools applicable to the management and

112

Model 2: Complete master recipe definition

exploitation of plant database information, resulting into an enhancement of the entire
process management structure.

However the application of the first model to the previous case studies has opened
new challenges which are to be included in the re-planing phase for a second model.
Specifically, the master recipe definition in Model 1 is a black box which does not
contain enough level of detail regarding the representation that can be achieved with
an ontological model, for the complete integration of the decision levels and its fu-
ture exploitation. For this reason, Model 2 has been developed in a higher detail in
order to incorporate other functionalities of the scheduling level. Furthermore it has
been proved that the re-planning phase in the methodology proposed improves the
current ontologies development methodologies by including a continuous quality tool,
the PDCA cycle. From this point of view, this model represents an ongoing successful
effort to improve ontology process development in a friendly way.

In addition, this ontology opens the way for achieving successful flexible control in
adapting and recognizing different elements found through the hierarchy models that
are associated with manufacturing multilevel control systems.

Finally, it has been proved the adequacy of an ontology as a means for sharing
information about a general model for different problem representations. As a result,
it deals with the problem of integration, standardization and compatibility of hetero-
geneous modeling systems.

6.3 Model 2: Complete master recipe definition

This model is the result of the re-planning phase described in chapter 4. It improves
the previous one by the addition of the elements contained in the master recipe de-
tailed description, according to the model proposed by the world batch forum (WBF)
(Brandl and Emerson, 2003). In this way new classes, properties and axioms have
been defined in order to extract the planning and scheduling knowledge involved in
the master recipe creation. For example, the specification of recipe elements, proce-
dure logics, equipment requirements, header, formula, batch sizes, links, etc leads to
the direct exploitation by the users decision tools.

This model comprises 129 classes, 73 axioms, and 130 properties. It is noteworthy
to mention that the number of object properties has decreased compared to the previ-
ous model because although new properties have been added, some inverse properties
relationships have been debugged. As a main feature of this new ontology, the connec-
tion of static data (structural related classes as equipment capacities) and dynamic
data (operational related as demand in a time period) has been improved by the fact
that the classes related to these elements have been included in the new model and
the xml code is avoided.

This model has been applied to two different process plants for checking capabil-
ities of the ontology to deal with both multi product and multi purpose structured
scheduling problems.

113

6. Case studies

6.3.1 Case Study 3: Multi product batch plant - scheduling
Problem description

The plant described in Case study 2 is revisited in this case study, giving emphasis to
the master recipe definition. It is important to note that a production time horizon of
6.5 hours is considered, and fixed processing times are considered for stage 1.

Results

The re-usability of the proposed ontological model has been demonstrated through
the instantiation of this case study. Specifically a total of 151 instances represent all
the necessary problem features. The number of instances have been increased three
times compared to Model 1 because of the detail of the master recipe which makes
the model more complete (more classes). The total time for instantiating this case
study consists of 5400s. The reasoner needs 0.49 sCPU to check the consistency of the
inferred instances. In this instantiation of physical and procedural model, equipment
requirement, processing times, costs, mass balances, raw material, and other elements
have been referenced from the master recipe. For illustrating purposes, Figure 6.10
contains the instances derived from the master recipe of product A.

Table 6.8 contains all the instances of this case study for each class. As defined in
Table 5.2, the instances of specific classes are required by the scheduling function in
order to implement the scheduling optimization. Therefore, with the instances defined
in Table 6.8 and the properties within the model, the scheduling problem can be
fulfilled and optimized.

Table 6.8: Instances of each class for Case study 3.

Class Instances
Administrator -
Allocation -
Arbitration -
Area -
BasicControl -
Batch -
BatchControl -
BatchProcess Separation_liquid;
BatchProduction -
BatchSize BatchSize_MasterRecipe_A; Batch-

Size_MasterRecipe_B;
ByProduct -
Capacity -
CleaningTime -
ContinuosProcess -
ControlActivities -
ControlFunctions -
ControlModule ControlModule_ElectroValves; ControlMod-

ule_Pumping; ControlModule_Temperatur; Con-
trolModule_none;

ControlRecipe -
CoordinationControl -
Demand Demand_A_May; Demand_B_May;
DiscretPartProcess -
DominianConcepWCW -
EconomicResourses Pesos;
EndProduct EndProduct_A; EndProduct_B;
EnergeticResourses electricity;
Enterprise -
EquipmentControl -
EquipmentEntity -

114

Model 2: Complete master recipe definition

EquipmentModule ElectroValve1; ElectroValve2; ElectroValve3; Elec-
troValve4; ElectroValve5; ElectroValve6; ElectroValve7;
ElectroValve8; Pump1; Pump2; Pump3; Resistence;

EquipmentOperation -
EquipmentPhase -
EquipmentProcedure -
EquipmentRequirement Equipment_1; Equipment_2; Equipment_3;
EquipmentUnitProcedure -
Formula Formula_Product_B; Formula_product_A;
GaneralRecipe -
GeneralInformation -
Header product_Recipe_A; product_Recipe_B;
HumanResourses -
ID -
IDByProduct -
IDEndProduct ID_FP00A; ID_FP00B;
IDEquipment ID_D-120; ID_D-130; ID_P-110;
IDEquipmentModule ID_J-112; ID_J-113; ID_J-122; ID_J-123; ID_J-124;

ID_J-132; ID_J-133; ID_J-134; ID_K-111; ID_K-112;
ID_K-113; ID_R-110;

IDIntermediate IN001A; IN001B; IN002A; IN002B;
IDLink ID_LA1; ID_LA2; ID_LB1; ID_LB2;
IDLogic LogicID_A; LogicID_B;
IDMaterial -
IDProcessStage PS00A1; PS00A2; PS00A3; PS00B1; PS00B2; PS00B3;
IDRawMaterial ID_RM001; ID_RM002; ID_RM003;
IDRecipe MR00A; MR00B;
IDRecipeElement REA1S1; REA1S2; REA1S3; REB1S1; REB1S2; REB1S3;
IDRecipeElementType -
IDRecipeOperation -
IDRecipePhase -
IDResidue ID_R001; ID_R002;
IndustrialManufacturingProcess -
Information -
Intermediate Intermediate_1A; Intermediate_1B; Intermediate_2A;

Intermediate_2B;
InventoryEconomicResources -
InventoryEnergeticResources -
InventoryHumanResources -
InventoryManagement -
InventoryMaterialResources InventoryMaterialResources_C1; InventoryMateri-

alResources_C2; InventoryMaterialResources_C3;
InventoryMaterialResources_FPA; InventoryMaterialRe-
sources_FPB;

Lot -
MasterRecipe MasterRecipe_A; MasterRecipe_B;
MaterialResourses -
MixingSpeed -
Mode -
Operation -
P_Capacity -
P_Materials C1_A; C1_B; C2_A; C2_B; C3_A; C3_B; I1_A;

I1_B; I2_A; I2_B; fpA_A; fpB_B; residue_1_A;
residue_1_B; residue_2_A; residue_2_B;

P_MixingSpeed -
P_Pressure -
P_Temperature reactor_temp_A; reactor_temp_B;
P_Time PT_A_S1; PT_A_S2; PT_A_S3; PT_B_S1;

PT_B_S2; PT_B_S3;
P_TransferRate -
P_ValvePosition -
Parameter -
Phase -
PhysicalModel -
Pressure -
ProceduralControl -
ProceduralElement -
ProceduralLink link_1; link_2; link_3; link_4;
ProceduralLogic ProceduralLogic_A; ProceduralLogic_B;
Procedure -
Process -
ProcessAction -

115

6. Case studies

ProcessCell -
ProcessControl -
ProcessInformation -
ProcessingActivities -
ProcessingTime ProcessingTime_S1; ProcessingTime_S2; Processing-

Time_S3;
ProcessManagement -
ProcessOperation Reaction; Separation;
ProcessOutput -
ProcessParameter -
ProcessStage ProcessStage_A1; ProcessStage_A2; ProcessStage_A3;

ProcessStage_B1; ProcessStage_B2; ProcessStage_B3;
ProductionPolicy Earliness; EnvironmentalImpact; Makespan; Profit; Tar-

diness;
ProductionProcess -
ProductionRequirement -
RawMaterial RawMaterial_A; RawMaterial_B; RawMaterial_C;
RecipeElement RecipeElement_A1; RecipeElement_A2; RecipeEle-

ment_A3; RecipeElement_B1; RecipeElement_B2;
RecipeElement_B3;

RecipeManagement -
RecipeOperation -
RecipePhase -
RecipeProcedure -
RecipeProcess -
RecipeType -
RecipeUnitProcedure -
Requeriments -
Residue Residue_1; Residue_2;
Resources -
Restriction -
Site -
SiteRecipe -
State -
Temperature reactor_temp;
Thing -
Time -
TranferRate -
Unit Reactor; Separator_1; Separator_2;
UnitProcedure -
UnitResources -
UnitSupervision -
ValvePosition -
WatingTime -

Regarding the re-usability, results shown in Gantt chart in Figure 6.11 are obtained
after the problem instantiation. Thus, the use of the ontology provides a smarter way to
manage data, in contrast to traditional scheduling problem instantiations in which the
problem is described for a particular case and cannot be shared with other applications
or other optimization models.

6.3.2 Case study 4: Benchmark problem - Kondili scheduling
Problem description

The case study consists of a multi-purpose batch plant, which is a benchmark case
study of the scheduling area (Kondili et al., 1993).The production process consist
of five production tasks and nine states, namely three raw materials, two final prod-
ucts and four intermediates. Figure 6.12 shows the process flow sheet as well as the
processing times and mass balances.

A single unit is available for each stage and unlimited intermediate storage policy
is adopted. Product changeover time and cost are disregarded.

116

Model 2: Complete master recipe definition

Figure 6.10: Instances derived from master recipe of product A in Case study 3.

The scheduling objective function consists of production maximization within 18
h time horizon.

Results

The re-usability of the proposed ontological model has been proved through the instan-
tiation of the multi-purpose batch plant. Specifically a total of 111 instances represent
all the necessary problem features. The reasoner needs 0.172 sCPU to check the consis-
tency of the inferred instances. In this case, the production process has been divided in
two main recipes. For illustrating purposes, Figure 6.13 contains the instances derived
from the master recipes.

Table 6.10 contains all the instances of this case study for each class. As defined in
Table 5.2, the instances of specific classes are required by the scheduling function in
order to implement the scheduling optimization. Therefore, with the instances defined
in Table 6.10 and the properties within the model, the scheduling problem can be
fulfilled and optimized.

117

6. Case studies

Figure 6.11: Gantt chart resulting from the optimization of Case study 3.

Figure 6.12: STN representation for the Case study 4.

Table 6.9: Instances of each class for Case study 4.

Class Instances
Administrator -
Allocation -
Arbitration -
Area -
BasicControl -
Batch -
BatchControl -
BatchProcess -
BatchProduction -
BatchSize BatchSize_P1; BatchSize_P2;
ByProduct -

118

Model 2: Complete master recipe definition

Capacity -
CleaningTime -
ContinuosProcess -
ControlActivities -
ControlFunctions -
ControlModule HeatingReactorControlModule; ReactorControlModule;

SeparationControlModule;
ControlRecipe -
CoordinationControl -
Demand DemandProduct1; DemandProduct2;
DiscretPartProcess -
DominianConcepWCW -
EconomicResourses -
EndProduct Product1; Product2;
EnergeticResourses -
Enterprise -
EquipmentControl
EquipmentEntity -
EquipmentModule HeatingReactorModule; ReactorModule; SeparationMod-

ule;
EquipmentOperation -
EquipmentPhase -
EquipmentProcedure -
EquipmentRequirement EquipmentRequirement_1; EquipmentRequirement_2;

EquipmentRequirement_3; EquipmentRequirement_4;
EquipmentUnitProcedure -
Formula Formula_P1; Formula_P2;
GaneralRecipe -
GeneralInformation -
Header Header_P1; Header_P2;
HumanResourses -
ID -
IDByProduct -
IDEndProduct FP001; FP002;
IDEquipment HR; RR1; RR2; SR;
IDEquipmentModule -
IDIntermediate IN001; IN002; IN003; IN004;
IDLink IDLink_1; IDLink_2; IDLink_3;
IDLogic Log_P1; Log_P2;
IDMaterial -
IDProcessStage PS_P1_H; PS_P1_R1; PS_P1_R2; PS_P2_R1;

PS_P2_S;
IDRawMaterial RM001; RM002; RM003;
IDRecipe R_P1; R_P2;
IDRecipeElement RE_P1_S1; RE_P1_S2; RE_P1_S3; RE_P2_S1;

RE_P2_S2;
IDRecipeElementType -
IDRecipeOperation -
IDRecipePhase -
IDResidue -
IndustrialManufacturingProcess -
Information -
Intermediate HotA; ImpureE; IntAB; IntBC;
InventoryEconomicResources -
InventoryEnergeticResources -
InventoryHumanResources -
InventoryManagement -
InventoryMaterialResources Inv_A; Inv_B; Inv_C;
Lot -
MasterRecipe MasterRecipe_P1; MasterRecipe_P2;
MaterialResourses -
MixingSpeed -
Mode -
Operation -
P_Capacity -
P_Materials AB_P1; AB_P2_In; AB_P2_Out; A_P1; BC_P1;

B_P1; C_P1; C_P2; E_P2; HA_P1; P1; P2;
P_MixingSpeed -
P_Pressure -
P_Temperature -

119

6. Case studies

P_Time P_Time_Heating_P1; P_Time_Reaction1_P1;
P_Time_Reaction1_P2; P_Time_Reaction2_p1;
P_Time_Separation_P2;

P_TransferRate -
P_ValvePosition -
Parameter -
Phase -
PhysicalModel -
Pressure -
ProceduralControl -
ProceduralElement -
ProceduralLink Link_1; Link_2; Link_3;
ProceduralLogic ProceduralLogic_P1; ProceduralLogic_P2;
Procedure -
Process -
ProcessAction -
ProcessCell -
ProcessControl -
ProcessInformation -
ProcessingActivities -
ProcessingTime ProcessingTime_Heating; ProcessingTime_Reaction1;

ProcessingTime_Reaction2; ProcessingTime_Reaction3;
ProcessingTime_Separation;

ProcessManagement -
ProcessOperation Heating; Reaction; Separation;
ProcessOutput -
ProcessParameter -
ProcessStage ProcessStage_P1_Reaction1; Pro-

cessStage_P1_Reaction2; ProcessStage_P1_heating;
ProcessStage_P2_Reaction; Pro-
cessStage_P2_Separation;

ProductionPolicy Earliness; EnvironmentalImpact; Makespan; Profit; Tar-
diness;

ProductionProcess -
ProductionRequirement -
RawMaterial FeedA; FeedB; FeedC;
RecipeElement RecipeElement_P11; RecipeElement_P12; RecipeEle-

ment_P13; RecipeElement_P21; RecipeElement_P22;
RecipeManagement -
RecipeOperation -
RecipePhase -
RecipeProcedure -
RecipeProcess -
RecipeType -
RecipeUnitProcedure -
Requeriments -
Residue -
Resources -
Restriction -
Site -
SiteRecipe -
State -
Temperature -
Thing -
Time -
TranferRate -
Unit HeatingReactor; Reactor1; Reactor2; Separation_Unit;
UnitProcedure -
UnitResources -
UnitSupervision -
ValvePosition -
WatingTime -

Regarding the re-usability, results shown in the Gantt chart in Figure 6.14 are
obtained after the problem instantiation. As in the previous case study, the use of the
ontology provides a smart way to manage data. Additionally, this case demonstrates
that different plant structures can be easily instantiated in the ontological model and

120

Model 2: Complete master recipe definition

Figure 6.13: Instances derived from the master recipes in Case study 4.

automatically used by the informatics application to generate the necessary files to be
used by the optimizer.

6.3.3 Case study 5: Integration - scheduling
Problem description

This case study comprises the model integration of the two previous production plants.
Specifically, the re-usability of the ontology has allowed to directly instantiate this case
study based on the previous ones. Even more, in this case study different features re-
garding plant configuration (equipment, storage capacity, raw materials) can be turned
off or on as convenient. Therefore, Figure 6.15 presents the two STN representations
corresponding to the afore mention production lines. In this case, equipment resources
are not shared. However, equipments could be used by any new recipe if equipment
integration was pursued.

Results

The re-usability of the proposed ontological model has been proved by the instantiation
of the two production lines. Specifically a total of 244 instances represent all the
necessary problem features described previously in Section 5.2. The reasoner needs
1.42 sCPU to check the consistency of the inferred instances. For illustrating purposes,
Figure 6.16 contains the instances derived from the master recipes.

121

6. Case studies

Figure 6.14: Gantt chart resulting from the optimization of Case study 4.

Figure 6.15: STN representation showing the potential integration of the two production
lines for Case study 5.

122

Model 2: Complete master recipe definition

Figure 6.16: Instances derived from the master recipes in Case study 5.

Regarding the re-usability, results shown in Gantt chart in Figure 6.17 are obtained
after the problem instantiation.

Figure 6.17: Gantt chart resulting from the optimization of Case study 5.

123

6. Case studies

6.3.4 Model remarks

As demonstrated in previous examples, this model contributes to improve communica-
tion within the plant process environment, and represents a step forward to support the
integration of different software tools applicable to the management and exploitation
of plant database information, resulting into an enhancement of the entire scheduling
function. Specifically, once the problem is instantiated, the modification of processing
times, product demand or due date, resulting from plant redesign or new orders, is
straight-forward and can be traced back to adequate databases.

Thus, the model enhances the way for achieving a successful scheduling decision-
making supporting tool which adapts and recognizes the different elements found in
the master recipe. Moreover, a general semantic framework is proposed, which is able
to model any scheduling plant layout, proving its re-usability. Furthermore, it has
been proved the ontology usability by its application to an optimization framework.
As a whole, the main contributions of this environment and the model behind are re-
usability, usability, higher efficiency in communication and coordination procedures.

In addition, it has been proved the adequacy of an ontology as a means for sharing
information about a general model for different problem representations. As a result, it
solves the problem of integration, standardization and compatibility of heterogeneous
modeling systems. Even more, the response time for decision-making task could be
reduced and better decisions adopted owing to faster availability of higher quality
data and the improved visibility of the existing relationships between the scheduling
function and other hierarchical levels functions.

Finally, given the advantages presented in this model the fact of including an
additional decision level seems appropriate. For this reason the re-planning phase
after checking Model 2 leads to the modeling of the SC level in the enterprise ontology
model.

6.4 Model 3: Complete supply chain management

This model is the result of the second re-planning phase described in chapter 4. In this
phase, the domain of the supply chain was taken in to account for its implementation
in the ontological model as an expanded area for the complete enterprise integration.
In fact this model corresponds to the one described in Chapter 4. The most important
features defined are the information pieces found in the classes related to inventory,
location, production & distribution and transportation management. In this way the
supply chain management functions have been successfully modeled leading to the
integration of the strategic level with the other decision levels already modeled.

This model comprises 182 classes, 64 axioms, and 155 properties. The number of the
axioms has decreased as a result of the model debugging, which eliminated unnecessary
or unused restrictions. The remarkable features of this model are described in chapter
4: the supply chain management, the supply chain design and retrofit, integration of all
decision levels within a single model and the consequent improvement of the decision
support task.

This model has been applied to a supply chain network problem presented by
Lainez et al. (2009) based on a benchmark of the scheduling problem (Kondili et al.,
1993). This case study demonstrates the re-usability of previous ontologies and the
capability of integrating different levels of detail within a single model. Even more,

124

Model 3: Complete supply chain management

the capability of delivering information quality at the right place in the right moment
enhances the decision maker possibilities.

6.4.1 Case study 6: Benchmark problem - Lainez supply chain

Problem description

The case study is based on a supply chain network design-planning problem presented
by Lainez et al. (2009). It consists of three suppliers, four potential locations for
the processing sites and the distribution centers in a planning horizon of five annual
periods (Figure 6.18). The production process fulfills the demand of six markets that
entails two final products and one intermediate product.

Figure 6.18: Supply chain structure of Case study 6.

Results

Quantitatively speaking, the problem representation in the proposed ontological frame-
work results in 573 instances (Table 6.10). The reasoning time for the problem instances
is 0.922 sCPU in a successful compilation.

It is important to mention that each possible site is fully represented in the ontology.
Each production plant (site) may contain a set of four equipment technologies as

125

6. Case studies

presented by Kondili et al. (1993), a benchmark problem for the scheduling of batch
process industries. The production process is described in Case study 4 (Figure 6.12).
Specifically, each site is described by 111 instances, which may be adequately used to
make operational decisions.

The results of the optimization model cited in Section 5.3 are identical to those
reported in the original paper (Lainez et al., 2009). Furthermore, the previous re-
sults can be dated back to the ontological model for further exploitation by the other
decision levels, such as the operational system of each site. This can be achieved by
automatically updating the databases with the resulting optimization data.

Table 6.10: Instances of each class for Case study 6.

Class Instances
Administrator -
Allocation -
Arbitration -
Area Area_127; Area_251; Area_3; Area_Kondili;
BasicControl -
Batch -
BatchControl -
BatchProcess -
BatchProduction -
BatchSize BatchSize_117; BatchSize_202; BatchSize_241; Batch-

Size_326; BatchSize_365; BatchSize_78; BatchSize_P1;
BatchSize_P2;

ByProduct -
Capacity -
CleaningTime -
ContinuosProcess -
ControlActivities -
ControlFunctions -
ControlModule ControlModule_13; ControlModule_137; ControlMod-

ule_143; ControlModule_19; ControlModule_214;
ControlModule_261; ControlModule_267; ControlMod-
ule_338; ControlModule_90; HeatingReactorCon-
trolModule; ReactorControlModule; SeparationCon-
trolModule;

ControlRecipe -
CoordinationControl -
Demand Demand_M1IntABT1; Demand_M1P1T1; De-

mand_M1P2T1; Demand_M2IntABT1; De-
mand_M2P1T1; Demand_M2P2T1; De-
mand_M3IntABT1; Demand_M3P1T1; De-
mand_M3P2T1; Demand_M4IntABT1; De-
mand_M4P1T1; Demand_M4P2T1; De-
mand_M5IntABT1; Demand_M5P1T1; De-
mand_M5P2T1; Demand_M6IntABT1; De-
mand_M6P1T1; Demand_M6P2T1;

DirectDistributionCenterCost -
DirectManufacturingCost -
DiscretPartProcess -
Distance -
DistributionCenter DistributionCenter_1; DistributionCenter_2; Distribu-

tionCenter_3; DistributionCenter_4;
DistributionCenterPlacement LA; LB; LC; LD;
DominianConcepWCW -
EconomicResourses -
EndProduct Product1; Product2;
EnergeticResourses -
Enterprise -
EquipmentControl -
EquipmentEntity -
EquipmentMaintenance -

126

Model 3: Complete supply chain management

EquipmentModule EquipmentModule_133; EquipmentModule_142; Equip-
mentModule_18; EquipmentModule_213; Equipment-
Module_257; EquipmentModule_266; EquipmentMod-
ule_337; EquipmentModule_89; EquipmentModule_9;
HeatingReactorModule; ReactorModule; SeparationMod-
ule;

EquipmentOperation -
EquipmentPhase -
EquipmentProcedure -
EquipmentRequirement EquipmentRequirement_1; EquipmentRequire-

ment_130; EquipmentRequirement_139; Equipmen-
tRequirement_145; EquipmentRequirement_15; Equip-
mentRequirement_2; EquipmentRequirement_21;
EquipmentRequirement_210; EquipmentRequire-
ment_254; EquipmentRequirement_263; Equipmen-
tRequirement_269; EquipmentRequirement_3; Equip-
mentRequirement_334; EquipmentRequirement_4;
EquipmentRequirement_6; EquipmentRequirement_86;

EquipmentUnitProcedure -
Facility -
FacilityInvestmentCost FacilityInvestmentCost_DC1; FacilityInvestment-

Cost_DC2; FacilityInvestmentCost_DC3; FacilityInvest-
mentCost_DC4; FacilityInvestmentCost_Site1; Facili-
tyInvestmentCost_Site2; FacilityInvestmentCost_Site3;
FacilityInvestmentCost_Site4;

Formula Formula_147; Formula_217; Formula_23; Formula_271;
Formula_341; Formula_93; Formula_P1; Formula_P2;

GaneralRecipe -
GeneralInformation -
GeographicPlacement -
GoodsandSevices -
Header Header_116; Header_201; Header_240; Header_325;

Header_364; Header_77; Header_P1; Header_P2;
HumanResourses -
ID -
IDArea -
IDByProduct -
IDEndProduct FP001; FP002; IDEndProduct_157; IDEndProduct_221;

IDEndProduct_281; IDEndProduct_33; IDEndProd-
uct_345; IDEndProduct_97;

IDEquipment HR; IDEquipment_11; IDEquipment_132; IDEquip-
ment_135; IDEquipment_141; IDEquipment_17; IDE-
quipment_212; IDEquipment_256; IDEquipment_259;
IDEquipment_265; IDEquipment_336; IDEquipment_8;
IDEquipment_88; RR1; RR2; SR;

IDEquipmentModule -
IDIntermediate IDIntermediate_101; IDIntermediate_160; IDInterme-

diate_163; IDIntermediate_166; IDIntermediate_225;
IDIntermediate_284; IDIntermediate_287; IDIntermedi-
ate_290; IDIntermediate_349; IDIntermediate_36; ID-
Intermediate_39; IDIntermediate_42; IN001; IN002;
IN003; IN004;

IDLink IDLink_1; IDLink_114; IDLink_192; IDLink_199;
IDLink_2; IDLink_238; IDLink_3; IDLink_316;
IDLink_323; IDLink_362; IDLink_68; IDLink_75;

IDLogic IDLogic_115; IDLogic_200; IDLogic_239; IDLogic_324;
IDLogic_363; IDLogic_76; Log_P1; Log_P2;

IDMaterial -
IDProcessCell IDProcessCell_122; IDProcessCell_246; IDProcess-

Cell_370; KON001;
IDProcessStage IDProcessStage_105; IDProcessStage_109; ID-

ProcessStage_183; IDProcessStage_188; ID-
ProcessStage_194; IDProcessStage_229; ID-
ProcessStage_233; IDProcessStage_307; ID-
ProcessStage_312; IDProcessStage_318; ID-
ProcessStage_353; IDProcessStage_357; IDPro-
cessStage_59; IDProcessStage_64; IDProcessStage_70;
PS_P1_H; PS_P1_R1; PS_P1_R2; PS_P2_R1;
PS_P2_S;

127

6. Case studies

IDRawMaterial IDRawMaterial_154; IDRawMaterial_173; IDRawMa-
terial_180; IDRawMaterial_278; IDRawMaterial_297;
IDRawMaterial_30; IDRawMaterial_304; IDRawMate-
rial_49; IDRawMaterial_56; RM001; RM002; RM003;

IDRecipe IDRecipe_146; IDRecipe_216; IDRecipe_22;
IDRecipe_270; IDRecipe_340; IDRecipe_92; R_P1;
R_P2;

IDRecipeElement IDRecipeElement_119; IDRecipeElement_121;
IDRecipeElement_204; IDRecipeElement_206;
IDRecipeElement_208; IDRecipeElement_243;
IDRecipeElement_245; IDRecipeElement_328;
IDRecipeElement_330; IDRecipeElement_332;
IDRecipeElement_367; IDRecipeElement_369;
IDRecipeElement_80; IDRecipeElement_82;
IDRecipeElement_84; RE_P1_S1; RE_P1_S2;
RE_P1_S3; RE_P2_S1; RE_P2_S2;

IDRecipeElementType -
IDRecipeOperation -
IDRecipePhase -
IDResidue -
IDSite -
InboundTransportationCost -
IndirectDistributionCenterCost -
IndirectManufacturingCost -
IndustrialManufacturingProcess -
Information -
InstalationCost InstalationCost_12; InstalationCost_136; Instalation-

Cost_138; InstalationCost_14; InstalationCost_144;
InstalationCost_20; InstalationCost_215; Instalation-
Cost_260; InstalationCost_262; InstalationCost_268;
InstalationCost_339; InstalationCost_91; Instala-
tionCost_HeaterReactor; InstalationCost_Reactor1;
InstalationCost_Reactor2; InstalationCost_Separator;

InterfacilityTransportationCost InterfacilityTransportationCost_LA_LB; In-
terfacilityTransportationCost_LA_LC; Inter-
facilityTransportationCost_LA_LD; Interfa-
cilityTransportationCost_LA_M1; Interfacil-
ityTransportationCost_LA_M2; Interfacili-
tyTransportationCost_LA_M3; Interfacility-
TransportationCost_LA_M4; InterfacilityTrans-
portationCost_LA_M5; InterfacilityTransporta-
tionCost_LA_M6; InterfacilityTransportation-
Cost_LB_LC; InterfacilityTransportationCost_LB_LD;
InterfacilityTransportationCost_LB_M1; In-
terfacilityTransportationCost_LB_M2; In-
terfacilityTransportationCost_LB_M3; In-
terfacilityTransportationCost_LB_M4; In-
terfacilityTransportationCost_LB_M5; In-
terfacilityTransportationCost_LB_M6; Inter-
facilityTransportationCost_LC_LD; Interfa-
cilityTransportationCost_LC_M1; Interfacil-
ityTransportationCost_LC_M2; Interfacili-
tyTransportationCost_LC_M3; Interfacility-
TransportationCost_LC_M4; InterfacilityTrans-
portationCost_LC_M5; InterfacilityTransporta-
tionCost_LC_M6; InterfacilityTransportation-
Cost_LD_M1; InterfacilityTransportation-
Cost_LD_M2; InterfacilityTransportation-
Cost_LD_M3; InterfacilityTransportation-
Cost_LD_M4; InterfacilityTransportation-
Cost_LD_M5; InterfacilityTransportation-
Cost_LD_M6;

Intermediate HotA; ImpureE; IntAB; IntBC;
Inventory -
InventoryByProduct -
InventoryEconomicResources -
InventoryEndProduct InventoryEndProduct_1; InventoryEndProduct_1DC1;

InventoryEndProduct_2; InventoryEndProduct_2DC1;
InventoryEnergeticResources -
InventoryHoldingCost -
InventoryHumanResources -

128

Model 3: Complete supply chain management

InventoryIntermediate InventoryIntermediate_AB; InventoryIntermedi-
ate_ABDC1;

InventoryMaterialResources -
InventoryParameter -
InventoryRawMaterial Inv_A; Inv_B; Inv_C;
InventoryResidue -
InventoryTransportResources -
InventoryUnitResources -
LocationCapacity LocationCapacity_DC1; LocationCapacity_DC2; Loca-

tionCapacity_DC3; LocationCapacity_DC4; Location-
Capacity_Supplier1; LocationCapacity_Supplier2; Loca-
tionCapacity_Supplier3;

LocationNumber -
LocationParameter -
Lot -
Market Market_1; Market_2; Market_3; Market_4; Market_5;

Market_6;
MarketPlacement LM1; LM2; LM3; LM4; LM5; LM6;
MasterProductionScheduling -
MasterRecipe MasterRecipe_129; MasterRecipe_209; Master-

Recipe_253; MasterRecipe_333; MasterRecipe_5;
MasterRecipe_85; MasterRecipe_P1; MasterRecipe_P2;

MaterialResourses -
MixingSpeed -
Mode -
Operation -
OtherAcquisitionCost -
OutboundTransportationCost -
P_Capacity -
P_Materials AB_P1; AB_P2_In; AB_P2_Out; A_P1; BC_P1;

B_P1; C_P1; C_P2; E_P2; HA_P1; P1; P2;
P_Materials_102; P_Materials_148; P_Materials_155;
P_Materials_158; P_Materials_161; P_Materials_164;
P_Materials_167; P_Materials_174; P_Materials_218;
P_Materials_219; P_Materials_222; P_Materials_223;
P_Materials_226; P_Materials_24; P_Materials_272;
P_Materials_279; P_Materials_282; P_Materials_285;
P_Materials_288; P_Materials_291; P_Materials_298;
P_Materials_31; P_Materials_34; P_Materials_342;
P_Materials_343; P_Materials_346; P_Materials_347;
P_Materials_350; P_Materials_37; P_Materials_40;
P_Materials_43; P_Materials_50; P_Materials_94;
P_Materials_95; P_Materials_98; P_Materials_99;

P_MixingSpeed -
P_Pressure -
P_Temperature -
P_Time P_Time_107; P_Time_111; P_Time_185;

P_Time_190; P_Time_196; P_Time_231;
P_Time_235; P_Time_309; P_Time_314;
P_Time_320; P_Time_355; P_Time_359;
P_Time_61; P_Time_66; P_Time_72;
P_Time_Heating_P1; P_Time_Reaction1_P1;
P_Time_Reaction1_P2; P_Time_Reaction2_p1;
P_Time_Separation_P2;

P_TransferRate -
P_ValvePosition -
Parameter -
Phase -
PhysicalModel -
Pressure -
ProceduralControl -
ProceduralElement -
ProceduralLink Link_1; Link_2; Link_3; ProceduralLink_104; Procedu-

ralLink_182; ProceduralLink_193; ProceduralLink_228;
ProceduralLink_306; ProceduralLink_317; Procedu-
ralLink_352; ProceduralLink_58; ProceduralLink_69;

ProceduralLogic ProceduralLogic_103; ProceduralLogic_181; Procedural-
Logic_227; ProceduralLogic_305; ProceduralLogic_351;
ProceduralLogic_57; ProceduralLogic_P1; Procedural-
Logic_P2;

Procedure -
Process -

129

6. Case studies

ProcessAction -
ProcessCell ProcessCell_128; ProcessCell_252; ProcessCell_4; Pro-

cessCell_kondili;
ProcessControl -
ProcessInformation -
ProcessingActivities -
ProcessingTime ProcessingTime_108; ProcessingTime_112; Processing-

Time_186; ProcessingTime_191; ProcessingTime_197;
ProcessingTime_232; ProcessingTime_236; Processing-
Time_310; ProcessingTime_315; ProcessingTime_321;
ProcessingTime_356; ProcessingTime_360; Process-
ingTime_62; ProcessingTime_67; ProcessingTime_73;
ProcessingTime_Heating; ProcessingTime_Reaction1;
ProcessingTime_Reaction2; ProcessingTime_Reaction3;
ProcessingTime_Separation;

ProcessManagement -
ProcessOperation Heating; ProcessOperation_113; ProcessOperation_187;

ProcessOperation_198; ProcessOperation_237; Proces-
sOperation_311; ProcessOperation_322; ProcessOpera-
tion_361; ProcessOperation_63; ProcessOperation_74;
Reaction; Separation;

ProcessOutput -
ProcessParameter -
ProcessStage ProcessStage_106; ProcessStage_110; Pro-

cessStage_184; ProcessStage_189; ProcessStage_195;
ProcessStage_230; ProcessStage_234; Pro-
cessStage_308; ProcessStage_313; ProcessStage_319;
ProcessStage_354; ProcessStage_358; Pro-
cessStage_60; ProcessStage_65; ProcessStage_71; Pro-
cessStage_P1_Reaction1; ProcessStage_P1_Reaction2;
ProcessStage_P1_heating; ProcessStage_P2_Reaction;
ProcessStage_P2_Separation;

ProductionOrder ProductionOrder_S1P1; ProductionOrder_S1P2;
ProductionParameter -
ProductionPolicy Earliness; EnvironmentalImpact; Makespan; Profit; Tar-

diness;
ProductionProcess -
ProductionRequirement -
ProductionScheduling -
RawMaterial FeedA; FeedB; FeedC;
RawMaterialCost RawMaterialCostA-SP1; RawMaterialCostB-SP2;

RawMaterialCostC-SP3;
RecipeElement RecipeElement_118; RecipeElement_120; RecipeEle-

ment_203; RecipeElement_205; RecipeElement_207;
RecipeElement_242; RecipeElement_244; RecipeEle-
ment_327; RecipeElement_329; RecipeElement_331;
RecipeElement_366; RecipeElement_368; RecipeEle-
ment_79; RecipeElement_81; RecipeElement_83;
RecipeElement_P11; RecipeElement_P12; RecipeEle-
ment_P13; RecipeElement_P21; RecipeElement_P22;

RecipeManagement -
RecipeOperation -
RecipePhase -
RecipeProcedure -
RecipeType -
RecipeUnitProcedure -
Requeriments -
Residue -
Resources -
Restriction -
SCInventoryManagement SCInventoryManagement_DC;
SCLocationManagement SCLocationManagement_DC1; SCLocationManage-

ment_DC2; SCLocationManagement_DC3; SCLoca-
tionManagement_DC4; SCLocationManagement_Site1;
SCLocationManagement_Site2; SCLocationManage-
ment_Site3; SCLocationManagement_Site4; SCLo-
cationManagement_Supplier1; SCLocationManage-
ment_Supplier2; SCLocationManagement_Supplier3;

SCProductionandDistributionManagement-
SCTransportationManagement -
Site Site_1; Site_2; Site_3; Site_4;
SitePlacement LA; LB; LC; LD;

130

Model 3: Complete supply chain management

SiteRecipe SiteRecipe_123; SiteRecipe_247; SiteRecipe_371;
SiteRecipe_kondili;

State -
SuplierPlacement GP_S1; GP_S2; GP_S3;
Supplier Supplier_1; Supplier_2; Supplier_3;
SupplyChainCost -
SupplyChainInformation -
SupplyChainManagement -
SupplyChainParameter -
Temperature -
Thing -
Time -
TranferRate -
TransportationLink TL_LA_LB; TL_LA_LC; TL_LA_LD; TL_LA_M1;

TL_LA_M2; TL_LA_M3; TL_LA_M4; TL_LA_M5;
TL_LA_M6; TL_LB_LC; TL_LB_LD; TL_LB_M1;
TL_LB_M2; TL_LB_M3; TL_LB_M4; TL_LB_M5;
TL_LB_M6; TL_LC_LD; TL_LC_M1; TL_LC_M2;
TL_LC_M3; TL_LC_M4; TL_LC_M5; TL_LC_M6;
TL_LD_M1; TL_LD_M2; TL_LD_M3; TL_LD_M4;
TL_LD_M5; TL_LD_M6;

TransportationParameter -
TransportedMaterials TM_1; TM_2; TM_3; TM_4; TM_5; TM_6; TM_7;

TM_8;
TransportResources TransportResources_1; TransportResources_2;
Unit HeatingReactor; Reactor1; Reactor2; SeparationUnit;

Unit_10; Unit_131; Unit_134; Unit_140; Unit_16;
Unit_211; Unit_255; Unit_258; Unit_264; Unit_335;
Unit_7; Unit_87;

UnitProcedure -
UnitResources -
UnitSupervision -
ValvePosition -
WatingTime -

6.4.2 Model remarks
This improvement in the model enhances the way for achieving a successful enterprise
decision making supporting tool which adapts and recognizes the different elements
found through the hierarchy models that are associated to the whole supply chain.

Moreover, a general semantic framework is presented, which is able to model any
enterprise particular case, proving its re-usability. The ontology is used by applying it
to an optimization framework as defined in chapter 5.

One of the benefits in using the ontology consists of the option of cloning a given
site, or a part of it, within the model facilitates the definition of new sites within
the supply chain structure, that can be the result of redesigning the supply chain.
Therefore, the modeling of the supply chain may be achieved faster and with greater
level of detail.

131

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The work presented along the development of this thesis represents a step forward
in the application of semantic models to the process industry. On the one hand,

a methodology which comprises from the design and development of the ontological
model to its final use has been proposed, applied and validated. On the other hand, the
use of this tool in the process engineering domain has improved the decision making
process along different decision levels. On the whole, the objectives posed initially have
been achieved as explained next.

7.1.1 Methodology improvement

The field of ontology development has been thoroughly studied in order to design an
adequate semantic model for representing the desired domain. As a result, the lack
of a consensual methodology has been detected, along with the fact that the scope of
the existing methodologies is limited to the methodological design, disregarding the
application for the model exploitation in the domain. For this reason, in this thesis, a
new methodology has been designed and reviewed through the application in different
models, which considers the continuous improvement cycle. Such methodology allows
an easy and friendly guide and reference on how to use the ontological model, and
provides a guidance on the way the user can apply it as a decision tool.

Specifically, On-to-Knowledge and Methontology, which are two of the most com-
monly used existing methodologies, have been taken as reference for the development
of the proposed methodology. Therefore, this work ensures an ordered quality manner
to develop an ontology based on the well known continuous improvement tool PDSA
cycle. From this point of view, this work stands for an ongoing effort to improve on-
tology process development in a friendly way, from the ontology design and building
phase, to the practical framework application.

135

7. Conclusions and Future Work

Although the results of applying this methodology have not been directly compared
to the models that would have been obtained using other methodologies, it is clear
that the wider scope of the proposed method has allowed to incorporate additional
features to the domain, that would not have been obtained otherwise. For example,
the final application of the semantic model, namely the decision support tools, has
been considered from the design phase of the ontology, enabling higher success with
the goals fulfillment.

On the whole, the proposed methodology has proved to have a large potential for
the development and use of ontologies regardless the specific domain.

7.1.2 Semantic enterprise domain representation
The integration of various decision levels within a common representation facilitates
the creation, storage and sharing of knowledge in a specific domain, and allows to
improve the effectiveness of decision support systems.

In this thesis, the creation of a common model including the control, scheduling and
supply chain hierarchical levels has been achieved. Thus, the gap between analytical
techniques, such as optimization approaches, and transactional models concerned with
the task processing and communicating data, has been reduced.

Furthermore, since the proposed enterprise ontology framework has been created
using the standards, it has resulted in a well-behaved performance at capturing com-
mon understanding in conceptual design and at helping to utilize the relations that are
mined from the databases. Such properties help users to obtain data and information
in a proper, fast and standard way. Even more, it can be applied to web portals, facili-
tating the communication and knowledge sharing along different geographic locations.

The following list contains the main achievements related to the development of
the enterprise ontology framework:

• A common and standardized language is established. As a result, better commu-
nication within the enterprise can be achieved, both from a formal perspective,
using informatics languages, and an informal one, that is, in natural language
among people within organizations. Therefore improved communication allows
higher capacity to deal uncertainty, since it is easier to react against incidences
which may stem from different sources and levels.

• This framework represents a modular and consistent procedure for standardizing
processes at different decision levels, which helps in reducing engineering costs.
Thus, it also be used as an enterprise management tool.

• The formal representation of the whole enterprise allows to check the consis-
tency while instantiating of the model structure automatically, which results in
a higher reliability of the decision systems that may be applied, and so of the fi-
nal decisions made. Even more, the derived decision models, which can be either
mathematical or coded for artificial intelligence purposes, can be automatically
built.

• Based on a general ontological model comprising strategical (supply chain), tac-
tical (scheduling) and operational (unit control) decision levels of the enterprise
structure, a robust enough framework for enriching and assisting the decision
making process along the aforementioned hierarchical levels has been created.

136

Conclusions

• Thus, by representing the whole system within a single model, coordination pro-
cedures can be improved allowing automation opportunities for manufacturing
requirements.

• An integration bridge among the different enterprise processes and their related
data has been developed. Therefore, by means of the exploitation of knowl-
edge management and experience and by using different optimization tools, the
generation and processing of quality information has been achieved. Thus, the
information of the whole enterprise is available within the model, but only those
pieces which are necessary are retrieved.

• In addition, this ontology opens the way for achieving successful flexible control
in adapting and recognizing different elements found through the hierarchy mod-
els which are associated to manufacturing and processing at multilevel control
systems.

• The limitations regarding the enterprise management capacity derived from the
restriction to information access can be avoided by the use of the semantic model,
which acts as an integrator in the decision making application. In addition, the
proposed framework has the advantage of providing the data in any informatics
format.

• The practical implementation of the ANSI/ISA standards to enterprise environ-
ments has been possible by the creation of a model according to the principles
described in the standards. As a result, the instantiation of any particular prob-
lem within the model, agrees with the aforementioned standards.

• One of the most important achievements of the ontological model for the enter-
prise domain consists of its re-usability. Such property allows that this general
semantic framework can model any enterprise particular case. Specifically, the in-
stances of a problem can be derived straight forward based on the model features
requirements.

• Another key achievement of the proposed framework is the usability, which lies
on the fact that it can be applied to systematic tools for decision support related
to different decision levels. In other words, the framework is usable to provide
the adequate data to the decision maker in order to fulfill the enterprise goals.

• Furthermore, the model is represented in a formal language that can be (or be-
come by automatic translation) a re-usable and/or shared component in software
systems and hardware agents.

• Finally, this work represents a step forward to support the integration (not just
"communication") of different software tools applicable to the management and
exploitation of plant database information, resulting into an enhancement of the
entire process management structure. Thus, since the ontology has been written
in a shared language and can be opened by freeware software, it its a potential
tool for any user.

137

7. Conclusions and Future Work

7.2 Future work
Several aspects could be tackled in order to expand the scope of the enterprise ontology
project, presented in this thesis. Specifically they can be grouped in the model domain
and framework development issues. Such model improvements are described next:

• A user interface should be created in order to allow a user friendly framework,
in accordance with the different particular decision hierarchical levels within the
enterprise. In this way the final user should not have any background about
ontology models or informatics programing in order to instantiated the desired
reality (problem).

• The ontological model can be extended in the future to incorporate other func-
tionalities of the enterprise domain, such as marketing issues, quality manage-
ment, inventory management, proactive maintenance, strategical planning and
so on. Thus, the incorporation within the model of production philosophies that
are related to enterprises, for example the just in time, the six sigma, the 5 s´s,
the e-business or the business intelligence may be tackled.

• Furthermore, the level of detail of the hierarchical structure can be even deeper.
For example at process level, all the features of a given equipment (such as year
of construction, material of construction, lifespan) which may be required for
any decision task beyond the scope of these thesis.

• In order to maximize the usability of the model toward incorporating the decision
making tools, their inclusion within the ontology, could be dealt. For example the
mathematical models for optimization could be considered in the semantic model
if the appropriate classes for mathematical language were created or imported.

• Finally another remarkable improvement that can be achieved to the presented
ontological framework is the translation, with its adequate equivalence standard
language, to other different geographical languages (such as Spanish, French,
Chinese or German), in order to spread the usability among the geographically
distributed partners of an enterprise.

138

Appendix A

Publications

This is a list of the works carried out so far within the scope of this thesis, in
reversed chronological order.

A.1 Journals

A.1.1 Manuscripts published

Muñoz, E.; Capón-García, E.; Moreno-Benito, M.; Espuña, A.; Puigjaner, L. Schedul-
ing and control decision-making under an integrated information environment.
Computers & Chemical Engineering, ISSN: 0098-1354, 35 (5): 774 – 786 (2011).

Muñoz, E.; Espuña, A.; Puigjaner, L. Towards an ontological infrastructure for chemi-
cal batch process management. Computers & Chemical Engineering, ISSN: 0098-
1354, 34(5): 668 – 682 (2010).

A.1.2 Manuscripts submitted

Muñoz, E.; Capón, E.; Espuña, A. Puigjaner, L. Ontological framework toward pro-
cess system integration: Cases studies. Computers and Chemical Engineering,
2011.

A.2 Conference proceeding articles

A.2.1 Articles in conference proceedings

Muñoz, E; Espuña, A.; Puigjaner, L. Integration of a multilevel control system in an
ontological information environment. European Symposium on Computer Aided
Process Engineering (ESCAPE-21), (J. Jeżowski and J. Thullie, Eds.), 648 –
652, ISBN: 978-0-444-53711-9, 2011.

141

http://dx.doi.org/10.1016/j.compchemeng.2011.01.025
http://dx.doi.org/10.1016/j.compchemeng.2009.12.009

A. Publications

Muñoz, E.; Botaro, G.; Espuña, A.; Puigjaner, L. Multilevel control system integra-
tion through an Ontological chemical flexible infrastructure. American Institute
of Chemical Engineers Meeting Conferencee Proceedings on CD-ROM (AIChE
Meeting-2010), (American Institute of Chemical Engineers), ISBN: 978-0-8169-
1065-6, 2010.

Capón-García, E.; Moreno-Benito, M.; Muñoz, E.; Espuña, A.; Puigjaner, L. Schedul-
ing and control decision-making under an integrated information environment.
European Symposium on Computer Aided Process Engineering (ESCAPE-20),
(S. Pieruzzi and G. Buzzi Ferraris, Eds.), 1195 – 1200, ISBN: 978-0-444-53569-6,
2010.

Muñoz, E.; Espuña, A.; Puigjaner, L. Ontological chemical flexible infrastructure light
and heavy approach towards enterprise system integration. American Institute
of Chemical Engineers Meeting Conference Proceedings on CD-ROM (AIChE
Meeting-2009), (American Institute of Chemical Engineers), ISBN: 978-0-8169-
1058-6, 2009.

Muñoz, E; Kopanos, G.M.; Espuña, A.; Puigjaner, L. Towards an ontological in-
frastructure for chemical batch process management. European Symposium on
Computer Aided Process Engineering (ESCAPE-19), (J. Jeżowski and J. Thullie,
Eds.), 883 – 888, ISBN: 978-0-444-53433-0, 2009.

A.2.2 Other congresses and workshops

Muñoz, E; Capon, E.; Laínez, J.M.; Espuña, A.; Puigjaner, L. Operational, Tactical
and Strategic Integration for Enterprise Decision-Making. European Symposium
on Computer Aided Process Engineering (ESCAPE-22), London, UK, 2012. (Ac-
cepted)

Silvente, J.; Muñoz, E; Espuña, A. Use of ontological structures for integrated Supply
Chain Management. European Symposium on Computer Aided Process Engineer-
ing (ESCAPE-22), London, UK, 2012. (Accepted)

Muñoz, E.; Capón, E.; Espuña, A.; Puigjaner, L. Operational level integration system
based on an ontological framework by means of master/control recipe semantic.
American Institute of Chemical Engineers Meeting Conferencee Proceedings on
CD-ROM (AIChE Meeting-2011), (American Institute of Chemical Engineers),
Minneapolis, USA, 2011. (Oral presentation)

Muñoz, E.; Capón, E.; Lainez, J.M.; Espuña, A.; Puigjaner, L. Ontological frame-
work for the enterprise from a process perspective. International Joint Con-
ference on Knowledge Engineering and Knowledge Management (IC3K), Paris,
France,2011. (Oral presentation)

Muñoz, E.; Capón, E.; Espuña, A.; Puigjaner, L. Integration of general master recipe
modeling into process system ontology for improved automation. 12th Mediter-
ranean Congress of Chemical Engineering, Barcelona, Spain, 2011. (Oral com-
munication)

142

Participation in research projects

Muñoz, E.; Kopanos, G.; Espuña, A.; Puigjaner, L. Batch Process Ontology. 11th
Mediterranean Congress of Chemical Engineering, Barcelona, Spain, 2008. (Poster
presentation)

A.3 Participation in research projects
EHMAN, Extendiendo los Horizontes productivos frente a la paradoja de la inte-

gración, supported by the Ministerio de Educación y Ciencia (DPI2009-09386),
Spain, 2010-2012.

ToleranT, Sistema de Soporte Avanzado para Procesos de Fabricación Flexible en
la Industria Química y Petroquímica, supported by Ministerio de Educación y
Ciencia (DPI2006-05673), Spain, 2007-2009.

143

Appendix B

Domain conceptualization

This appendix shows in Table B.1 the glossary of terms related to planning, schedul-
ing and process control based on the ANSI/ISA-88 standard.

Table B.1: Concepts from ANSI/ISA-88

Name Description
Administrator A physical person capable of configuring the process coordinator.
Allocation A form of coordination control that assigns a resource to a batch

or unit. An allocation can be for the entire resource or for portions
of a resource.

Arbitration A form of coordination control that determines how a resource
should be allocated when there are more requests for the resource
than can be accommodated at one time.

Area A component of a batch manufacturing site that is identified by
physical, geographical, or logical segmentation within the site. An
area may contain process cells, units, equipment modules, and
control modules.

Basic control Control that is dedicated to establishing and maintaining a spe-
cific state of equipment or process condition. Basic control may in-
clude regulatory control, interlocking, monitoring, exception han-
dling, and discrete or sequential control.

Batch The material that is being produced or that has been produced
by a single execution of a batch process. An entity that represents
the production of a material at any point in the process. Batch
means both the material made by and during the process and also
an entity that represents the production of that material. Batch
is used as an abstract contraction of the words "the production of
a batch."

Batch control Control activities and control functions that provide a means to
process finite quantities of input materials by subjecting them to
an ordered set of processing activities over a finite period of time
using one or more pieces of equipment.

Batch Process A process that leads to the production of finite quantities of ma-
terial by subjecting quantities of input materials to an ordered set
of processing activities over a finite period of time using one or
more pieces of equipment.

Batch produc-
tion

A manufacturing process used to produce or process any product
in batches.

145

B. Domain conceptualization

Batch schedule A list of batches to be produced in a specific process cell. The
batch schedule typically contains such information as what is to
be produced, how much is to be produced, when or in what order
the batches are to be produced, and what equipment is to be used.

Common re-
source

A resource that can provide services to more than one requester.
Common resources are identified as either exclusive-use resources
or shared-use resources.

Control module A Collection of sensors, actuators and associate processing equip-
ment that acts as single entity from a control stand point, that
can carry out basic control. This term applies to both the phys-
ical equipment and the equipment entity. A control module may
contain another control modules.

Control recipe A type of recipe which, through its execution, defines the manu-
facture of a single batch of a specific product.

Coordination
control

A type of control that directs, initiates, and/or modifies the exe-
cution of procedural control and the utilization of equipment en-
tities.

Enterprise An organization that coordinates the operation of one or more
sites. Must contain a site.

Equipment con-
trol

The equipment-specific functionality that provides the actual con-
trol capability for an equipment entity, including procedural, ba-
sic, and coordination control, and that is not part of the recipe.

Equipment en-
tity

A collection of physical processing and control equipment and
equipment control grouped together to perform a certain control
function or set of control functions.

Equipment
module

A functional group of equipment that can carry out a finite num-
ber of specific minor processing activities. An equipment module
is typically centered around a piece of process equipment (a weigh
tank, a process heater, a scrubber, etc.). This term applies to
both the physical equipment and the equipment entity. An equip-
ment module may contain another equipment modules, and con-
trol modules.

Equipment op-
eration

An operation that is part of equipment control. An equipment
operation has an ordered set of equipment phase

Equipment
phase

A phase that is part of equipment control.

Equipment pro-
cedure

A procedure that is part of equipment control. An equipment pro-
cedure has an ordered set of equipment unit procedure.

Equipment unit
procedure

A unit procedure that is part of equipment control. An equipment
unit procedure has an ordered set of equipment phase.

Exception han-
dling

Those functions that deal with plant or process contingencies and
other events which occur outside the normal or desired behavior
of batch control.

Exclusive-use
resource

A common resource that only one user can use at any given time.

Failures diagno-
sis tool

A system that in in charge of monitor the state of the plant for
detect and identify anomalous situations, generates alarms and
propose a corrective actions system.

Formula A category of recipe information that includes process inputs, pro-
cess parameters, and process outputs.

General recipe A type of recipe that expresses equipment and site independent
processing requirements.

Header Information about the purpose, source and version of the recipe
such as recipe and product identification, creator, and issue date.

ID A unique identifier for batches, lots, operators, technicians, and
raw materials.

Lot A unique amount of material having a set of common traits.
Master recipe A type of recipe that accounts for equipment capabilities and may

include process cell-specific information.
Mode The manner in which the transition of sequential functions are

carried out within a procedural element or the accessibility for
manipulating the states of equipment entities manually or by other
types of control.

Operation A procedural element defining an independent processing activity
consisting of the algorithm necessary for the initiation, organiza-
tion, and control of phases. An operation has an ordered set of
phases.

Path; stream The order of equipment within a process cell that is used, or is
expected to be used, in the production of a specific batch.

146

Phase The lowest level of procedural element in the procedural control
model.

Procedural con-
trol

Control that directs equipment-oriented actions to take place in
an ordered sequence in order to carry out some process-oriented
task. Has a building block of procedural element

Procedural ele-
ment

A building block for procedural control that is defined by the
procedural control model.

Procedure The strategy for carrying out a process. In general, it refers to the
strategy for making a batch within a process cell. It may also refer
to a process that does not result in the production of product, such
as a clean-in-place procedure. A procedure has an ordered set of
unit procedure.

Process A sequence of chemical, physical, or biological activities for the
conversion, transport, or storage of material or energy. A process
consists of an ordered set of Process Stage.

Process Action Minor processing activities that are combined to make up a pro-
cess operation.

Process cell A logical grouping of equipment that includes the equipment re-
quired for production of one or more batches. It defines the span
of logical control of one set of process equipment within an area.
This term applies to both the physical equipment and the equip-
ment entity. Must contain unit.

Process control The control activity that includes the control functions needed to
provide sequential, regulatory, and discrete control and to gather
and display data.

Process Coordi-
nator

A system component that is in charge of process management,
unit supervision and process control. If an abnormal situation is
received it executes a restore routine (if it is required).

Process input The identification and quantity of a raw material or other resource
required to make a product.

Process man-
agement

The control activity that includes the control functions needed to
manage batch production within a process cell.

Process Opera-
tion

A major processing activity that usually results in a chemical or
physical change in the material being processed and that is de-
fined without consideration of the actual target equipment config-
uration. A process operation consists of an ordered set of process
actions.

Process output An identification and quantity of material or energy expected to
result from one execution of a control recipe.

Process parame-
ter

Information that is needed to manufacture a material but does
not fall into the classification of process input or process output.

Process Stage A part of a process that usually operates independently from other
process stages and that usually results in a planned sequence of
chemical or physical changes in the material being processed. A
process stage consists of an ordered set of process operations.

Production
information
management

The activity that is in charge of the compilation, processing and
notification of the information of production.

Production
planning and
scheduling

The activity that is formed by decision algorithms for producing
plan production.

Production Pro-
cess

The production process is concerned with transforming a range of
inputs process into those outputs that are required by the market
by the use of transforming resources .There are three main types
of production process: job, batch and flow production.

Recipe The necessary set of information that uniquely defines the pro-
duction requirements for a specific product. There are four types
of recipes defined in S88.01: general, site, master, and control. A
recipe may contain a header, a formula, an equipment, require-
ments, a procedure and other information.

Recipe manage-
ment

The control activity that includes the control functions needed to
create, store, and maintain general, site, and master recipes.

Recipe opera-
tion

An operation that is part of a recipe procedure in a master or
control recipe. Recipe operation is an ordered set of recipe phase.

Recipe phase A phase that is part of a recipe procedure in a master or control
recipe.

Recipe proce-
dure

The part of a recipe that defines the strategy for producing a
batch. A recipe procedure is an ordered set of unit procedure,
recipe operation and recipe phase.

147

B. Domain conceptualization

Recipe unit pro-
cedure

A unit procedure that is part of a recipe procedure in a master
or control recipe. Recipe procedure is an ordered set of recipe
operation.

Requirement A singular documented need of what a particular product or ser-
vice should be or do.

Shared-use
resource

A common resource that can be used by more than one user at a
time.

Site A component of a batch manufacturing enterprise that is identi-
fied by physical, geographical, or logical segmentation within the
enterprise. A site may contain areas, process cells, units, equip-
ment modules, and control modules.

Site recipe A type of recipe that is site specific. Site recipes may be derived
from general recipes recognizing local constraints, such as lan-
guage and available raw materials.

State The condition of an equipment entity or of a procedural element
at a given time. The number of possible states and their names
vary for equipment and for procedural elements.

System Compo-
nents

All the components needed for manage and control a batch pro-
duction system.

Train; line A collection of one or more units and associated lower level equip-
ment groupings that has the ability to be used to make a batch of
material.

Unit A collection of associated control modules and/or equipment mod-
ules and other process equipment in which one or more major
processing activities can be conducted. Units are presumed to op-
erate on only one batch at a time. Units operate relatively inde-
pendently of one another. This term applies to both the physical
equipment and the equipment entity. A unit may contain equip-
ment modules, and control modules.

Unit procedure A strategy for carrying out a contiguous process within a unit. It
consists of contiguous operations and the algorithm necessary for
the initiation, organization, and control of those operations. Unit
procedure has an ordered set of operations.

Unit recipe The part of a control recipe that uniquely defines the contiguous
production requirements for a unit. The unit recipe contains the
unit procedure and its related formula, header, equipment require-
ments, and other information.

Unit supervision The control activity that includes control functions needed to su-
pervise the unit and the unit’s resources.

148

Appendix C

Interrelationship matrix

This appendix presents the interrelation matrix of the process description based on
ANSI/ISA standards.

149

Ba
tch

 P
ro

ce
ss

Ba
tch

Re
cip

e

He
ad

er

Fo
rm

ula

Pr
oc

es
s

Pr
oc

es
s S

tag
e

Pr
oc

es
s O

pe
ra

tio
n

Pr
oc

es
s A

cti
on

En
ter

pr
ise

Si
te

Ar
ea

Pr
oc

es
s c

ell

Un
it

Eq
uip

me
nt

mo
du

le

Co
ntr

ol
mo

du
le

Pr
oc

ed
ur

e

Un
it p

ro
ce

du
re

Op
er

ati
on

Ph
as

e

Ba
sic

 co
ntr

ol

Co
or

din
ati

on
 co

ntr
ol

Al
loc

ati
on

Ar
bit

ra
tio

n

Re
cip

e m
an

ag
em

en
t

Ge
ne

ra
l re

cip
e

Si
te

re
cip

e

Ma
ste

r r
ec

ipe

Co
ntr

ol
re

cip
e

Ba
tch

 co
ntr

ol

Ba
tch

 sc
he

du
le

Co
mm

on
 re

so
ur

ce

Eq
uip

me
nt

co
ntr

ol

Eq
uip

me
nt

en
tity

Eq
uip

me
nt

pr
oc

ed
ur

e

Eq
uip

me
nt

un
it

pr
oc

ed
ur

e

Eq
uip

me
nt

op
er

ati
on

Eq
uip

me
nt

ph
as

e

Ex
ce

pti
on

 ha
nd

lin
g

Ex
clu

siv
e-

us
e r

es
ou

rce

ID Lo
t

Mo
de

Pa
th;

 st
re

am

Pr
oc

ed
ur

al
co

ntr
ol

Pr
oc

ed
ur

al
ele

me
nt

Pr
oc

es
s c

on
tro

l

Pr
oc

es
s i

np
ut

Pr
oc

es
s o

utp
ut

Pr
oc

es
s m

an
ag

em
en

t

Pr
oc

es
s p

ar
am

ete
r

Re
cip

e p
ro

ce
du

re

Re
cip

e u
nit

 pr
oc

ed
ur

e

Re
cip

e o
pe

ra
tio

n

Re
cip

e p
ha

se

Sh
ar

ed
-u

se
 re

so
ur

ce

St
ate

Tr
ain

; li
ne

Un
it r

ec
ipe

Un
it s

up
er

vis
ion

Pr
od

uc
tio

n p
lan

nin
g

an
d s

ch
ed

uli
ng

Pr
od

uc
tio

n i
nfo

rm
ati

on

ma
na

ge
me

nt

Fa
ilu

re
s d

iag
no

sis
 to

ol

Re
qu

ire
me

nt

Pr
od

uc
tio

n P
ro

ce
ss

Sy

ste
m

Ba
tch

 pr
od

uc
tio

n

Tr
an

sfo
rm

ing

re
so

ur
se

s

Pr
oc

es
s C

oo
rd

ina
tor

Sy
ste

m
Co

mp
on

en
ts

Ad
mi

nis
tra

tor

Sc
he

du
lin

g s
ys

tem

(M
OP

P)

Pi
lot

 pl
an

t (
PR

OC
EL

)

Da
ta

Ma
na

ge
r (

Th
ot)

Da
ta

Ba
se

 (I
SA

 S
88

)

Fa
ilu

re
s d

iag
no

sis
 to

ol
(C

he
mE

ye
)

Ot
he

r

Batch Process has Batch has recipe
element

has process
input

has process
output

has process
managemen

t

Batch is part of
recive

information
from

Recipe is part of
receive

information
from

Header
provide

information
to

receive
information

from

Formula
provide

information
to

Process

Process Stage is order set
of

has order
set of

Process Operation is order set
of

has order
set of

Process Action is ortder set
of

Enterprise has site

Site is site of has area

Area is part of has
procedure

Process cell has unit

Unit is part of
has

equipment
module

recive
information

from

Equipment module
provide

information
to

is part of
has

equipment
module

has control
module

Control module is part of has control
module is part of

Procedure has order
set of

Unit procedure is order set
of

has order
set of

Operation is order set
of

has order
set of

Phase is order set
of

Basic control
receive

information
from

Coordination control has
Allocation

has
arbitration

receive
information

from

Allocation
provide

information
to

provide
information

to

Arbitration
provide

information
to

provide
information

to

Recipe management include include include include

General recipe derives from
/ include in derives in

Site recipe include in derives from derives in

Master recipe include in derives from derives in

Control recipe include in

Batch control
has

equipment
control

is part of

Batch schedule

Common resource

Equipment control
has

equipment
part

provide
information

to

provide
information

to
is part of

has
equipment

part

has
equipment

part

has
equipment

part

provide
information

to

Equipment entity has order
set of

has order
set of

has order
set of has some

Equipment procedure is part of has order
set of

has order
set of

Equipment unit
procedure

is part of is order set
of

Equipment operation is part of is order set
of

has order
set of

Equipment phase is order set
of

Exception handling derives from

Exclusive-use
resource

ID
provide

information
to

Lot
Mode has manner

Path; stream has equipment order

Procedural control
has P-E
building

bloks

Procedural element
receive

information
from

is a bulding
block for P-

C
has some

Process control has Batch
Control

Process input is part of

Process output is part of

Process management is part of

Process parameter has manufacturung
information

Recipe procedure has order
set of has lower level unit

Recipe unit procedure is order set
of

has order
set of

Recipe operation is order set
of

has order
set of

Recipe phase is order set
of

Shared-use resource

State is part of is part of has state condition

Train; line has some is asociate a lower level

Unit recipe

Unit supervision

Production planning
and scheduling

Production
information
management
Failures diagnosis
tool

derives in

Requirement
provide

information
to

Production Process
System

has
production

process
has some

Batch production is type of

Process Coordinator
is in charge
of process

control

is in charge
of process

managemen
t

is in change
of unit

supervision
=

System Components is part of

Administrator =

Other

manner; equipment
order; manufacturing

information; state
condition; lower level

unit

Appendix D

Java code

This appendix contains the Java code for the application of the enterprise ontology
project.

1
2
3 /∗ To change t h i s template , choose Tools | Templates and open

the template in the ed i t o r . ∗/
4
5 package on to l og i a3 ;
6 import java . i o . ∗ ;
7 import java . i o . F i l e ;
8 import java . u t i l . I t e r a t o r ;
9 import java . u t i l .Map;
10 import java . u t i l . Set ;
11 import org . semanticweb . owlapi . ap ib ind ing .OWLManager ;
12 import org . semanticweb . owlapi . model . IRI ;
13 import org . semanticweb . owlapi . model . OWLClass ;
14 import org . semanticweb . owlapi . model . OWLClassExpression ;
15 import org . semanticweb . owlapi . model . OWLDataProperty ;
16 import org . semanticweb . owlapi . model . OWLDataPropertyExpression ;
17 import org . semanticweb . owlapi . model . OWLIndividual ;
18 import org . semanticweb . owlapi . model . OWLLiteral ;
19 import org . semanticweb . owlapi . model . OWLNamedIndividual ;
20 import org . semanticweb . owlapi . model .

OWLObjectPropertyExpression ;
21 import org . semanticweb . owlapi . model . OWLOntology ;
22 import org . semanticweb . owlapi . model .

OWLOntologyCreationException ;
23 import org . semanticweb . owlapi . model . OWLOntologyManager ;
24 import org . semanticweb . owlapi . model . UnloadableImportException ;

151

D. Java code

25 import java . t ex t . DateFormat ;
26 import java . t ex t . ParseException ;
27 import java . t ex t . SimpleDateFormat ;
28 import java . u t i l . Calendar ;
29 import java . u t i l . Date ;
30 import org . semanticweb . owlapi . model . AxiomType ;
31 import org . semanticweb . owlapi . model .OWLAxiom;
32 import org . semanticweb . owlapi . model . OWLLogicalAxiom ;
33 import org . semanticweb . owlapi . model . OWLObjectProperty ;
34 import org . semanticweb . owlapi . model . OWLSubClassOfAxiom ;
35
36 /∗ @author Ed r i s i ∗/
37
38 pub l i c c l a s s Main {
39
40 p r i va t e s t a t i c OWLSubClassOfAxiom SubTypeOf ;
41 /∗ @param args the command l i n e arguments ∗/
42 pub l i c s t a t i c void wr i t e t x t (S t r ing name , S t r ing i n s t a n c i a s)

{
43 try {
44 F i l eWr i t e r ou tF i l e = new Fi l eWr i t e r (name) ;
45 Pr intWriter out = new PrintWriter (ou tF i l e) ;
46
47 // Write t ex t to f i l e
48 St r ing [] i n s = i n s t a n c i a s . s p l i t (" ") ;
49 f o r (i n t j = 0 ; j < in s . l ength ; j++){
50 out . p r i n t l n (i n s [j]) ;
51 }
52 out . c l o s e () ;
53 } catch (IOException e) {
54 e . pr intStackTrace () ;
55 }
56 }
57
58
59
60 pub l i c s t a t i c void wr i t e2 tx t (S t r ing name , S t r ing i n s t a n c i a s

) {
61 try {
62 F i l eWr i t e r ou tF i l e = new Fi l eWr i t e r (name) ;
63 Pr intWriter out = new PrintWriter (ou tF i l e) ;
64
65 // Write t ex t to f i l e
66 St r ing [] i n s = i n s t a n c i a s . s p l i t ("&") ;
67 f o r (i n t j = 0 ; j < in s . l ength ; j++){
68 out . p r i n t l n (i n s [j]) ;
69 }
70 out . c l o s e () ;

152

71 } catch (IOException e) {
72 e . pr intStackTrace () ;
73 }
74 }
75
76
77 pub l i c s t a t i c S t r ing f indmy ind iv idua l s (S t r ing

nameIndividual , S t r ing property , OWLOntology bapron ,
OWLOntologyManager manager) {

78 // func ion que busca l a s i n t an c i a s que se encuentran
i n s t anc i ada s dentro de una propiedad e s p e c i f i c a de una
i n s t an c i a name//

79 // l o s datos de entrada son
80 //1 . e l nombre de l a i n s t an c i a a s e r ana l i zada
81 //2 . e l nombre de l a propiedad de l a cua l se desean

obtener l a s i n s t a n c i a s
82 //3 . e l nombre de l a on to l og i a
83 //4 . e l admin i s t rador de l a rch ivo de l a on to l og i a
84
85 // func ion que encuentra e l IRI de l a i n s t an c i a .
86 IRI myindividualID = IRI . c r e a t e (bapron . getOntologyID () .

getOntologyIRI () + "#" +nameIndividual) ;
87
88 // obt i ene e l nombre de l a i n s t an c i a r e l a c i onado con ese IRI .
89 OWLIndividual myindiv idual = manager . getOWLDataFactory

() . getOWLNamedIndividual (myindividualID) ;
90
91 //obtenemos l a s propiedades de l a i n s t a c i a de r e c e t a maestra //
92 Map<OWLObjectPropertyExpression , Set<OWLIndividual>>

re lements = myindiv idual . getObjectPropertyValues (
bapron) ;

93
94 //guardamos un s t r i n g de l a s propiedades con l a va r i ab l e var1

//
95 St r ing var1 = re lements . t oS t r i ng () ;
96
97 // separamos l a s d i f e r e n t e s prop iedades y sus i n s t a n c i a s //
98 St r ing [] var2 = var1 . s p l i t (" >] , <") ;
99 i n t Dove = 0 ;
100 f o r (i n t j = 0 ; j < var2 . l ength ; j++){
101 St r ing [] var21 = var2 [j] . s p l i t (">=") ;
102 St r ing [] var22 = var21 [0] . s p l i t ("#") ;
103 i f (var22 [1] . equa l s (property))
104 Dove = j ;
105 }
106
107 // separa l a propiedad deseada " has rec ipee l ement " y sus

i n s t a n c i a s "RE001 etc "

153

D. Java code

108 St r ing [] var3 = var2 [Dove] . s p l i t ("=") ;
109
110 // separamos l a s i n s t a n c i a s en l i n e a s "
111 St r ing [] var4 = var3 [1] . s p l i t (" , ") ;
112
113 // creamos e l s t r i n g donde se guardan l a s i n s t a n c i a s en cada

loop que hace //
114 St r ing var5 = "" ;
115 f o r (i n t j = 0 ; j < var4 . l ength ; j++){
116
117 // el iminamos e l IRI de l a i n s t an c i a //
118 St r ing [] auxvar = var4 [j] . s p l i t ("#") ;
119
120 // el iminamos e l > tambien de l a i n s t an c i a //
121 St r ing [] auxvar2 = auxvar [1] . s p l i t (">") ;
122 var5 = var5 + auxvar2 [0] + " " ;
123 }
124 return var5 ;
125 }
126
127
128 pub l i c s t a t i c S t r ing f indmyvalues (S t r ing nameIndividual ,

S t r ing property , OWLOntology bapron ,
OWLOntologyManager manager) {

129
130 // func ion que busca l a s i n t an c i a s que se encuentran

i n s t anc i ada s dentro de una propiedad e s p e c i f i c a de una
i n s t an c i a name//

131 // l o s datos de entrada son
132 //1 . e l nombre de l a i n s t an c i a a s e r ana l i zada
133 //2 . e l nombre de l a propiedad de l a cua l se desean

obtener l a s i n s t a n c i a s
134 //3 . e l nombre de l a on to l og i a
135 //4 . e l admin i s t rador de l a rch ivo de l a on to l og i a
136
137 // func ion que encuentra e l IRI de l a i n s t an c i a .
138 IRI myindividualID = IRI . c r e a t e (bapron . getOntologyID () .

getOntologyIRI () + "#" +nameIndividual) ;
139 // obt i ene e l nombre de l a i n s t an c i a r e l a c i onado con ese IRI .
140 OWLIndividual myindiv idual = manager . getOWLDataFactory

() . getOWLNamedIndividual (myindividualID) ;
141
142 //obtenemos l a s prop iedades de l a i n s t a c i a de r e c e t a maestra

//
143 Map<OWLDataPropertyExpression , java . u t i l . Set<

OWLLiteral>> re lements = myindiv idual .
getDataPropertyValues (bapron) ;

144

154

145 //guardamos un s t r i n g de l a s prop iedades con l a va r i ab l e var1
//

146 St r ing var1 = re lements . t oS t r i ng () ;
147
148 // separamos l a s d i f e r e n t e s prop iedades y sus i n s t a n c i a s //
149 St r ing [] var2 = var1 . s p l i t (" , ") ;
150 i n t Dove = 0 ;
151 f o r (i n t j = 0 ; j < var2 . l ength ; j++){
152 St r ing [] var21 = var2 [j] . s p l i t (">=") ;
153 St r ing [] var22 = var21 [0] . s p l i t ("#") ;
154 i f (var22 [1] . equa l s (property))
155 Dove = j ;
156 }
157 /∗ St r ing aux9Wkt = "" ;
158 St r ing Wkt = f indmy ind iv idua l s (aux5

[0] , " hasID_Material " , bapron ,
manager) ;

159 St r ing [] auxWkt = Wkt . s p l i t (" ") ;
160 ∗∗∗ IRI myqoutID = IRI . c r e a t e (

bapron . getOntologyID () .
getOntologyIRI () + "#" +aux5 [0]) ;

161 ∗∗∗OWLIndividual myqout = manager .
getOWLDataFactory () .
getOWLNamedIndividual (myqoutID) ;

162 ∗∗∗∗∗ MAP! ! ! !
163 ∗∗∗∗ St r ing qout = qoutvalue .

t oS t r i ng () ;
164 St r ing [] qout1 = qout . s p l i t (" , ") ;
165 aux9Wkt = aux9Wkt + auxWkt [0] + "

" + qout1 [1] +"&";
166 GenWkt = GenWkt + aux9Wkt ;
167 wr i t e2 tx t ("Workspace\\JAVA\\

Ontologia3 \\ Resu l t s \\
StructuredOutput \\" + "
CEnEdProduct" +". txt " , GenWkt) ;

168 }∗/
169 // separa l a propiedad deseada " has rec ipee l ement " y

sus i n s t a n c i a s "RE001 e tc "
170 St r ing [] var3 = var2 [Dove] . s p l i t ("\"") ;
171 // separamos l a s i n s t a n c i a s en l i n e a s "
172 St r ing var4 = var3 [1] ;
173
174 return var4 ;
175 }
176
177 pub l i c s t a t i c f l o a t hoursBetween2Dates (Calendar c1 , Calendar

c2) {

155

D. Java code

178 return ((c2 . getTime () . getTime () − c1 . getTime ()
. getTime ()) / (3600 ∗ 1000)) ;

179 }
180
181
182 pub l i c s t a t i c void main (S t r ing [] a rgs) {
183
184 try {
185 St r ing micarpeta = "Workspace\\JAVA\\

Schedu leResu l t s \\" ;
186 St r ing micarpetaSC = "Workspace\\JAVA\\SCResults

\\" ;
187
188 OWLOntologyManager manager = OWLManager .

createOWLOntologyManager () ;
189 // F i l e f i l e = new F i l e ("Workspace\\JAVA\\

ejemplo1_Bapron . owl ") ;
190 // F i l e f i l e = new F i l e ("Workspace \\JAVA\\

ejemplo2_Kondil i . owl ") ;
191 // F i l e f i l e = new F i l e ("Workspace \\

e jemplo3_Integrat ion . owl ") ;
192 F i l e f i l e = new F i l e ("Workspace \\

ejemplo4_KondiliSC . owl ") ;
193
194
195 OWLOntology bapron = manager .

loadOntologyFromOntologyDocument (f i l e) ;
196
197
198 System . out . p r i n t (" INICIO BET" + "\n") ;
199
200 System . out . p r i n t l n (" Loaded onto logy : " + bapron) ;
201 Set<OWLClass> c l a s e s 2 = bapron .

g e tC l a s s e s InS i gna tu r e () ;
202 I t e r a t o r i t c l a s = c l a s e s 2 . i t e r a t o r () ;
203
204
205 OWLSubClassOfAxiom jmn = SubTypeOf ;
206 Set<OWLSubClassOfAxiom> mln = bapron . getAxioms (

jmn) ;
207
208
209 //Obtain data and ob j e c t p r op e r t i e s .
210
211 Set<OWLDataProperty> datap = bapron .

ge tDataProper t i e s InS ignature () ;
212 I t e r a t o r i tdprop = datap . i t e r a t o r () ;
213

156

214 Set<OWLObjectProperty> objec tp = bapron .
g e tOb j e c tPrope r t i e s InS i gna tu r e () ;

215 I t e r a t o r i toprop = objec tp . i t e r a t o r () ;
216
217 St r ing DPropert ies = " " ;
218 St r ing DDProperties = " " ;
219 St r ing RDProperties = " " ;
220
221 whi l e (i tdprop . hasNext ()) {
222 OWLDataProperty k = (OWLDataProperty) i tdprop .

next () ;
223 St r ing g = k . getIRI () . t oS t r i ng () ;
224 St r ing [] aux22 = g . s p l i t ("#") ;
225 DPropert ies = DPropert ies + aux22 [1] + " " ;
226 }
227
228
229 St r ing OPropert ies = " " ;
230 St r ing DOProperties = " " ;
231 St r ing ROProperties = " " ;
232 whi l e (i toprop . hasNext ()) {
233 OWLObjectProperty k = (OWLObjectProperty)

i toprop . next () ;
234 St r ing g = k . getIRI () . t oS t r i ng () ;
235 St r ing [] aux22 = g . s p l i t ("#") ;
236
237 Set<OWLClassExpression> dd = k . getDomains (

bapron) ;
238
239 I t e r a t o r i t cp rop = dd . i t e r a t o r () ;
240
241 St r ing COpropert ies = "" ;
242
243 whi l e (i t cp rop . hasNext ()) {
244 OWLClassExpression ebet = (OWLClassExpression)

i t cp rop . next () ;
245 Set<OWLClass> dd2 = ebet . g e tC l a s s e s InS i gna tu r e

() ;
246
247 I t e r a t o r i t cp rop2 = dd2 . i t e r a t o r () ;
248
249 whi l e (i t cp rop2 . hasNext ()) {
250 OWLClassExpression ebet2 = (

OWLClassExpression) i t cp rop2 . next () ;
251 OWLClass nameedbet2 = ebet2 . asOWLClass () ;
252
253 St r ing h = nameedbet2 . getIRI () . t oS t r i ng () ;
254 St r ing [] auxlks = h . s p l i t ("#") ;

157

D. Java code

255 COpropert ies = COpropert ies + auxlks [1]+
" ; " ;

256 }
257
258 i f (COpropert ies . equa l s (""))
259 COpropert ies="none " ;
260 Set<OWLClassExpression> dd1 = k . getRanges (

bapron) ;
261 I t e r a t o r i t cp rop1 = dd1 . i t e r a t o r () ;
262 St r ing COpropert ies1 = "" ;
263
264 whi l e (i t cp rop1 . hasNext ()) {
265 OWLClassExpression ebet1 = (OWLClassExpression

) i t cp rop1 . next () ;
266 Set<OWLClass> dd21 = ebet1 .

g e tC l a s s e s InS i gna tu r e () ;
267
268 I t e r a t o r i t cprop21 = dd21 . i t e r a t o r () ;
269
270 whi l e (i t cprop21 . hasNext ()) {
271 OWLClassExpression ebet21 = (

OWLClassExpression) i t cprop21 . next () ;
272 OWLClass nameedbet21 = ebet21 . asOWLClass

() ;
273
274 St r ing h = nameedbet21 . getIRI () . t oS t r i ng ()

;
275 St r ing [] auxlks1 = h . s p l i t ("#") ;
276 COpropert ies1 = COpropert ies1 + auxlks1

[1]+ " ; " ;
277 }
278 }
279 OPropert ies = OPropert ies + aux22 [1] + "\ t " +

COpropert ies + "\ t " + COpropert ies1 + "\n " ;
280 }
281 }
282 wr i t e t x t (micarpeta + "Output\\" + " ob j e c t

p r op e r t i e s " + " . txt " , OPropert ies) ;
283
284 // End obta in data and ob j e c t Prope r t i e s
285
286
287 // Obtain data f o r the Schedul ing and SC opt imiza t i on

frameworks
288
289 whi l e (i t c l a s . hasNext ()) {
290 OWLClass c = (OWLClass) i t c l a s . next () ;
291 St r ing s = c . getIRI () . t oS t r i ng () ;

158

292 St r ing [] aux3 = s . s p l i t ("#") ;
293
294 // Condicion de c l a s e Master Recipe : Rtn .
295 Boolean Rtn=f a l s e ;
296 i f (aux3 [1] . equa l s ("MasterRecipe "))
297 Rtn = true ;
298
299 // Condit ion o f c l a s s

InventoryMater ia lResources : Bh .
300 Boolean Bh=f a l s e ;
301 i f (aux3 [1] . equa l s ("

InventoryMater ia lResources "))
302 Bh = true ;
303
304 // Condit ion o f c l a s s

InventoryMater ia lResources : Bh .
305 Boolean Bh1=f a l s e ;
306 i f (aux3 [1] . equa l s ("ByProduct "))
307 Bh1 = true ;
308
309 // Condit ion o f c l a s s

InventoryMater ia lResources : Bh .
310 Boolean Bh2=f a l s e ;
311 i f (aux3 [1] . equa l s ("EndProduct "))
312 Bh2 = true ;
313
314 // Condit ion o f c l a s s

InventoryMater ia lResources : Bh .
315 Boolean Bh3=f a l s e ;
316 i f (aux3 [1] . equa l s (" Intermed iate "))
317 Bh3 = true ;
318
319 // Condit ion o f c l a s s

InventoryMater ia lResources : Bh .
320 Boolean Bh4=f a l s e ;
321 i f (aux3 [1] . equa l s (" Residue "))
322 Bh4 = true ;
323
324 // Condit ion o f c l a s s

InventoryMater ia lResources : Bh .
325 Boolean Vc=f a l s e ;
326 i f (aux3 [1] . equa l s ("EndProduct "))
327 Vc = true ;
328
329 // Condit ion o f c l a s s S i t e : P l l 1 .
330 Boolean P l l 1=f a l s e ;
331 i f (aux3 [1] . equa l s (" S i t e "))
332 P l l 1 = true ;

159

D. Java code

333
334 // Condit ion o f c l a s s

TransportResources : P l l 2 .
335 Boolean P l l 2=f a l s e ;
336 i f (aux3 [1] . equa l s ("

TransportResources "))
337 P l l 2 = true ;
338
339 // Condit ion o f c l a s s

TransportResources : Pch1 .
340 Boolean Pch1=f a l s e ;
341 i f (aux3 [1] . equa l s ("

TransportedMater ia l s "))
342 Pch1 = true ;
343
344 // Condit ion o f c l a s s

Fac i l i ty Inves tmentCos : Pch2 .
345 Boolean Pch2=f a l s e ;
346 i f (aux3 [1] . equa l s ("

Fac i l i ty Inves tmentCos t "))
347 Pch2 = true ;
348
349 // Condit ion o f c l a s s Market : Spt .
350 Boolean Spt=f a l s e ;
351 i f (aux3 [1] . equa l s ("Market "))
352 Spt = true ;
353
354 // Condit ion o f c l a s s RawMaterial :

Spt2 .
355 Boolean Spt2=f a l s e ;
356 i f (aux3 [1] . equa l s (" RawMaterialCost ")

)
357 Spt2 = true ;
358
359 // Condit ion o f c l a s s Locat ionCapacity

: FrE .
360 Boolean FrE=f a l s e ;
361 i f (aux3 [1] . equa l s (" Locat ionCapacity

"))
362 FrE = true ;
363
364 // Condit ion o f c l a s s TL: FrE2 .
365 Boolean FrE2=f a l s e ;
366 i f (aux3 [1] . equa l s ("

Transportat ionLink "))
367 FrE2 = true ;
368

160

369 // Condit ion o f c l a s s SitePlacement :
Ptrr .

370 Boolean Ptrr=f a l s e ;
371 i f (aux3 [1] . equa l s (" SitePlacement "))
372 Ptrr = true ;
373
374 // Condit ion o f c l a s s MarketPlacement :

Ptrr2 .
375 Boolean Ptrr2=f a l s e ;
376 i f (aux3 [1] . equa l s ("MarketPlacement ")

)
377 Ptrr2 = true ;
378
379
380 // Create S t r i ng s to be used in the output

f i l e s .
381 St r ing GenWkt = "" ;
382 St r ing GenWkt1 = "" ;
383 St r ing GenWkt2 = "" ;
384 St r ing GenWkt3 = "" ;
385 St r ing GenWkt4 = "" ;
386 St r ing GenWkt5 = "" ;
387 St r ing GenWkt6 = "" ;
388 St r ing GenWkt7 = "" ;
389 St r ing GenWkt8 = "" ;
390 St r ing GenWkt11 = "" ;
391
392 St r ing DemandedProducts = "" ;
393 Boolean f i n d p l l 1 = true ;
394 St r ing auxmpc = "" ;
395 St r ing auxmpc2 = "" ;
396 St r ing auxmpc3 = "" ;
397 St r ing Maxcapacity = "" ;
398 St r ing auxkpon = "" ;
399 // End c r ea t e S t r i ng s to be used in

the output f i l e s .
400
401
402 i f (aux3 . l ength > 1)
403 System . out . p r i n t l n (aux3 [1]) ;
404 Set<OWLIndividual> aux = c . g e t I nd i v i dua l s (

bapron) ;
405 I t e r a t o r i t i n d = aux . i t e r a t o r () ;
406 St r ing aux6 = "" ;
407 i n t i =0;
408 whi l e (i t i n d . hasNext ()) {
409 OWLIndividual p = (OWLIndividual)

i t i n d . next () ;

161

D. Java code

410 St r ing aux1 = p . t oS t r i ng () ;
411 St r ing [] aux4 = aux1 . s p l i t ("#") ;
412 St r ing [] aux5 = aux4 [1] . s p l i t (">")

;
413 aux6 = aux6 + aux5 [0] + " " ;
414 System . out . p r i n t (aux5 [0] + " ") ;
415 i++;
416
417
418 //∗∗∗

419 // Part be long ing to the SCHEDULING
//∗∗∗

420
421 //Rtn es l a cond i c i on de l a Master r e c i p e : Busca l o s i d s de l

p roce s s s tage que pertenecen a l a master r e c i p e //
422 i f (Rtn) {
423 St r ing myname = f indmy ind iv idua l s (

aux5 [0] , " hasID_RecipeID " , bapron ,
manager) ;

424 St r ing Wkt = f indmy ind iv idua l s (aux5
[0] , " hasRecipeElement " , bapron ,
manager) ;

425 St r ing [] auxWkt = Wkt . s p l i t (" ") ;
426 St r ing aux2Wkt = "" ;
427 St r ing aux3Wkt = "" ;
428 St r ing aux4Wkt = "" ;
429 St r ing aux5Wkt = "" ;
430 St r ing aux7Wkt = "" ;
431 St r ing aux8Wkt = "" ;
432 St r ing aux9Wkt = "" ;
433 f o r (i n t j = 0 ; j < auxWkt . l ength ; j

++){
434 St r ing Gorr = f indmy ind iv idua l s (

auxWkt [j] , "
hasIDFromRecipeElementType " ,
bapron , manager) ;

435 St r ing [] Gorr11 = Gorr . s p l i t (" ") ;
436 St r ing Gorr2 = f indmy ind iv idua l s (

auxWkt [j] , "
hasEquipmentRequirement " , bapron ,
manager) ;

437 St r ing [] Gorr22 = Gorr2 . s p l i t (" ") ;
438 St r ing Gorr3 = f indmy ind iv idua l s (

Gorr22 [0] , "
hasID_EquipmentRequirement " ,
bapron , manager) ;

162

439 St r ing Gorr4 = f indmy ind iv idua l s (
Gorr11 [0] , "
receiveInformationFromIDRecipeElementType
" , bapron , manager) ;

440 St r ing [] Gorr44 = Gorr4 . s p l i t (" ") ;
441 St r ing Gorr5 = f indmy ind iv idua l s (

Gorr44 [0] , "
hasProcessInputParameter " , bapron ,
manager) ;

442 St r ing [] Gorr55 = Gorr5 . s p l i t (" ") ;
443 St r ing Gorr6 = f indmy ind iv idua l s (

Gorr44 [0] , "
hasProcessOutputParameter " , bapron
, manager) ;

444 St r ing [] Gorr66 = Gorr6 . s p l i t (" ") ;
445 St r ing Gorr7 = f indmy ind iv idua l s (

Gorr44 [0] , " hasTime " , bapron ,
manager) ;

446 St r ing [] Gorr77 = Gorr7 . s p l i t (" ") ;
447
448 // Find the IRI o f t h i s i n s t anc e .
449 IRI mytimeID = IRI . c r e a t e (bapron .

getOntologyID () . getOntologyIRI ()
+ "#" +Gorr77 [0]) ;

450
451 //Obtain the name o f the in s t anc e with t h i s IRI .
452
453 OWLIndividual mytime = manager .

getOWLDataFactory () .
getOWLNamedIndividual (mytimeID) ;

454 //obtenemos l a s prop iedades de l a i n s t a c i a de r e c e t a maestra //
455 Map<OWLDataPropertyExpression , java .

u t i l . Set<OWLLiteral>> timevalue =
mytime . getDataPropertyValues (

bapron) ;
456 St r ing Ptime = timevalue . t oS t r i ng ()

;
457 St r ing [] Ptime2 = Ptime . s p l i t ("\"")

;
458 aux7Wkt = aux7Wkt + myname + " ." +

Gorr + " ." + Gorr3 + " " +
Ptime2 [1] + "&";

459
460 //// el iminamos e l IRI de l a i n s t an c i a //
461 aux2Wkt = aux2Wkt + myname + " ." +

Gorr + "&";
462 aux3Wkt = aux3Wkt + myname + " ." +

Gorr + " ." + Gorr3 + "&";

163

D. Java code

463 f o r (i n t k = 0 ; k < Gorr55 . l ength ; k
++){

464 St r ing Gorr551 = f indmy ind iv idua l s (
Gorr55 [k] , " hasParameterSource " ,
bapron , manager) ;

465 St r ing [] Gorr552 = Gorr551 . s p l i t ("
") ;

466 St r ing Gorr5521 = f indmy ind iv idua l s
(Gorr552 [0] , " hasID_Material " ,
bapron , manager) ;

467 St r ing [] Gorr5522 = Gorr5521 . s p l i t
(" ") ;

468 aux4Wkt = aux4Wkt + myname + " ." +
Gorr + " ." + Gorr5522 [0] + "&";

469
470 IRI myqinID = IRI . c r e a t e (bapron .

getOntologyID () . getOntologyIRI ()
+ "#" +Gorr55 [k]) ;

471 OWLIndividual myqin = manager .
getOWLDataFactory () .
getOWLNamedIndividual (myqinID) ;

472 Map<OWLDataPropertyExpression , java .
u t i l . Set<OWLLiteral>> qinva lue =
myqin . getDataPropertyValues (
bapron) ;

473 St r ing qin = qinva lue . t oS t r i ng () ;
474 St r ing [] q in1 = qin . s p l i t ("\"") ;
475 aux8Wkt = aux8Wkt + myname + " ." +

Gorr + " ." + Gorr5522 [0] + "
" + qin1 [1] + "&";

476 }
477 f o r (i n t k = 0 ; k < Gorr66 . l ength ; k

++){
478 St r ing Gorr551 = f indmy ind iv idua l s (

Gorr66 [k] , " hasParameterSource " ,
bapron , manager) ;

479 St r ing [] Gorr552 = Gorr551 . s p l i t ("
") ;

480 St r ing Gorr5521 = f indmy ind iv idua l s
(Gorr552 [0] , " hasID_Material " ,
bapron , manager) ;

481 St r ing [] Gorr5523 = Gorr5521 . s p l i t
(" ") ;

482 aux5Wkt = aux5Wkt + myname + " ." +
Gorr + " ." + Gorr5523 [0] + "&";

483
484 IRI myqoutID = IRI . c r e a t e (bapron .

getOntologyID () . getOntologyIRI ()

164

+ "#" +Gorr66 [k]) ;
485 OWLIndividual myqout = manager .

getOWLDataFactory () .
getOWLNamedIndividual (myqoutID) ;

486 Map<OWLDataPropertyExpression , java .
u t i l . Set<OWLLiteral>> qoutvalue =
myqout . getDataPropertyValues (

bapron) ;
487 St r ing qout = qoutvalue . t oS t r i ng () ;
488 St r ing [] qout1 = qout . s p l i t ("\"") ;
489 aux9Wkt = aux9Wkt + myname + " ." +

Gorr + " ." + Gorr5523 [0] + "
" + qout1 [1] +"&";

490 }
491 }
492 GenWkt = GenWkt + aux2Wkt ;
493 GenWkt1 = GenWkt1 + aux3Wkt ;
494 GenWkt2 = GenWkt2 + aux4Wkt ;
495 GenWkt3 = GenWkt3 + aux5Wkt ;
496 GenWkt4 = GenWkt4 + aux7Wkt ;
497 GenWkt7 = GenWkt7 + aux8Wkt ;
498 GenWkt8 = GenWkt8 + aux9Wkt ;
499
500 System . out . p r i n t l n (GenWkt) ;
501 wr i t e2 tx t (micarpeta + "

StructuredOutput \\" + " sp ro c e s s "
+". s e t " , GenWkt) ;

502 wr i t e2 tx t (micarpeta + "
StructuredOutput \\" + "
prods tageun i t " +". s e t " , GenWkt1) ;

503 wr i t e2 tx t (micarpeta + "
StructuredOutput \\" + " ps in " +".
s e t " , GenWkt2) ;

504 wr i t e2 tx t (micarpeta + "
StructuredOutput \\" + "psout "
+". s e t " , GenWkt3) ;

505 wr i t e2 tx t (micarpeta + "
StructuredOutput \\" + "pt" +". txt
" , GenWkt4) ;

506 wr i t e2 tx t (micarpeta + "
StructuredOutput \\" + " qps in " +".
txt " , GenWkt7) ;

507 wr i t e2 tx t (micarpeta + "
StructuredOutput \\" + "qpsout "
+". txt " , GenWkt8) ;

508 }
509 i f (Bh) {
510 St r ing aux6Wkt = "" ;

165

D. Java code

511 St r ing myname = f indmy ind iv idua l s (
aux5 [0] , " hasResource " , bapron ,
manager) ;

512 St r ing [] myname2 = myname . s p l i t ("
") ;

513 St r ing Wkt = f indmy ind iv idua l s (
myname2 [0] , " hasID_Material " ,
bapron , manager) ;

514 St r ing [] auxWkt = Wkt . s p l i t (" ") ;
515 St r ing aux2Wkt = "" ;
516 Map<OWLDataPropertyExpression , java .

u t i l . Set<OWLLiteral>>
inventoryva lue = p .
getDataPropertyValues (bapron) ;

517 St r ing inventory = inventoryva lue .
t oS t r i ng () ;

518 St r ing [] inventory2 = inventory .
s p l i t ("\"") ;

519 aux6Wkt = aux6Wkt + auxWkt [0] + "
" + inventory2 [1] + "&";

520
521 GenWkt = GenWkt + aux6Wkt ;
522 wr i t e2 tx t (micarpeta + "

StructuredOutput \\" + " capac i ty "
+". txt " , GenWkt) ;

523 }
524
525 i f (Bh1) {
526 St r ing aux9Wkt = "" ;
527 St r ing Wkt = f indmy ind iv idua l s (aux5

[0] , " hasID_Material " , bapron ,
manager) ;

528 St r ing [] auxWkt = Wkt . s p l i t (" ") ;
529 St r ing Wktval = f indmyvalues (aux5

[0] , " max_value " , bapron , manager) ;
530 aux9Wkt = aux9Wkt + auxWkt [0] + "

" + Wktval +"&";
531 GenWkt = GenWkt + aux9Wkt ;
532 wr i t e2 tx t (micarpeta + "

StructuredOutput \\" + "CByProduct
" +". txt " , GenWkt) ;

533 }
534
535 i f (Bh2) {
536 St r ing aux9Wkt = "" ;
537 St r ing Wkt = f indmy ind iv idua l s (aux5

[0] , " hasID_Material " , bapron ,
manager) ;

166

538 St r ing [] auxWkt = Wkt . s p l i t (" ") ;
539 St r ing Wktval = f indmyvalues (aux5

[0] , " max_value " , bapron , manager) ;
540 aux9Wkt = aux9Wkt + auxWkt [0] + "

" + Wktval +"&";
541 GenWkt = GenWkt + aux9Wkt ;
542 wr i t e2 tx t (micarpeta + "

StructuredOutput \\" + "
CEndProduct" +". txt " , GenWkt) ;

543 }
544
545 i f (Bh3) {
546 St r ing aux9Wkt = "" ;
547 St r ing Wkt = f indmy ind iv idua l s (aux5

[0] , " hasID_Material " , bapron ,
manager) ;

548 St r ing [] auxWkt = Wkt . s p l i t (" ") ;
549 St r ing Wktval = f indmyvalues (aux5

[0] , " max_value " , bapron , manager) ;
550 aux9Wkt = aux9Wkt + auxWkt [0] + "

" + Wktval +"&";
551 GenWkt = GenWkt + aux9Wkt ;
552 wr i t e2 tx t (micarpeta + "

StructuredOutput \\" + "
CIntermediate " +". txt " , GenWkt) ;

553 }
554
555 i f (Bh4) {
556 St r ing aux9Wkt = "" ;
557 St r ing Wkt = f indmy ind iv idua l s (aux5

[0] , " hasID_Material " , bapron ,
manager) ;

558 St r ing [] auxWkt = Wkt . s p l i t (" ") ;
559 St r ing Wktval = f indmyvalues (aux5

[0] , " max_value " , bapron , manager) ;
560 aux9Wkt = aux9Wkt + auxWkt [0] + "

" + Wktval +"&";
561 GenWkt = GenWkt + aux9Wkt ;
562 wr i t e2 tx t (micarpeta + "

StructuredOutput \\" + "CResidue"
+". txt " , GenWkt) ;

563 }
564
565 i f (Vc) {
566 Calendar datedemand = Calendar .

g e t In s tance () ;
567 Calendar datetoday = Calendar .

g e t In s tance () ;

167

D. Java code

568 St r ing aux8Wkt = "" ;
569 St r ing aux81Wkt = "" ;
570 St r ing aux82Wkt = "" ;
571 St r ing myname = f indmy ind iv idua l s (

aux5 [0] , " hasDemand" , bapron ,
manager) ;

572 St r ing [] myname2 = myname . s p l i t ("
") ;

573 St r ing Wkt = f indmy ind iv idua l s (aux5
[0] , " hasID_Material " , bapron ,
manager) ;

574 St r ing [] auxWkt = Wkt . s p l i t (" ") ;
575 IRI mydemandID = IRI . c r e a t e (bapron .

getOntologyID () . getOntologyIRI ()
+ "#" +myname2 [0]) ;

576 OWLIndividual mydemand = manager .
getOWLDataFactory () .
getOWLNamedIndividual (mydemandID)
;

577 Map<OWLDataPropertyExpression , java .
u t i l . Set<OWLLiteral>> demandvalue
= mydemand . getDataPropertyValues
(bapron) ;

578 St r ing demand = demandvalue .
t oS t r i ng () ;

579 St r ing [] demand2 = demand . s p l i t
(" , ") ;

580 St r ing [] demand21 = demand2 [0] .
s p l i t ("\"") ;

581 St r ing [] demand22 = demand2 [1] .
s p l i t ("\"") ;

582 St r ing [] demand221 = demand22 [1] .
s p l i t ("T") ;

583 St r ing [] demand221A = demand221 [0] .
s p l i t ("−") ;

584 St r ing [] demand221B = demand221 [1] .
s p l i t (" : ") ;

585 i n t year = In t eg e r . pa r s e In t (
demand221A [0]) ;

586 i n t month = In t eg e r . pa r s e In t (
demand221A [1]) ;

587 i n t day = In t eg e r . pa r s e In t (
demand221A [2]) ;

588 i n t hour = In t eg e r . pa r s e In t (
demand221B [0]) ;

589 i n t minute = In t eg e r . pa r s e In t (
demand221B [1]) ;

168

590 datedemand . s e t (year , month , day ,
hour , minute) ;

591 System . out . p r i n t l n (datetoday .
getTime ()) ;

592
593 f l o a t hours = hoursBetween2Dates (

datetoday , datedemand) ;
594
595 aux8Wkt = aux8Wkt + auxWkt [0] + "

" + demand21 [1] + "&";
596 aux81Wkt = aux81Wkt + auxWkt [0] + "

" + demand22 [1] + "&";
597 aux82Wkt = aux82Wkt + auxWkt [0] + "

" + hours + "&";
598
599 GenWkt5 = GenWkt5 + aux8Wkt ;
600 GenWkt6 = GenWkt6 + aux81Wkt ;
601 GenWkt11 = GenWkt11 + aux82Wkt ;
602
603
604 wr i t e2 tx t (micarpeta + "

StructuredOutput \\" + "demand"
+". txt " , GenWkt5) ;

605 wr i t e2 tx t (micarpeta + "
StructuredOutput \\" + "duedate "
+". txt " , GenWkt6) ;

606 wr i t e2 tx t (micarpeta + "
StructuredOutput \\" + "
t imehor izonhours " +". txt " ,
GenWkt11) ;

607 }
608
609
610 //∗∗∗

611 // This part be longs to the SC opt imiza t i on part
612 //∗∗∗

613
614 This part o f the code aims at

f i nd i n g demanded products .
615
616 i f (Bh2) {
617 St r ing myname = findmyvalues (aux5

[0] , " isDemanded " , bapron , manager) ;
618 i f (myname . equa l s (" t rue ")) {
619 DemandedProducts= DemandedProducts

+ aux5 [0] + "&";

169

D. Java code

620 }
621 wr i t e2 tx t (micarpetaSC + "

StructuredOutput \\" + "
EndProductD" + " . s e t " ,
DemandedProducts) ;

622 }
623
624 i f (Bh3) {
625 St r ing myname = findmyvalues (aux5

[0] , " isDemanded " , bapron , manager) ;
626 i f (myname . equa l s (" t rue ")) {
627 DemandedProducts= DemandedProducts

+ aux5 [0] + "&";
628 }
629 wr i t e2 tx t (micarpetaSC + "

StructuredOutput \\" + "
IntermediateD" + " . s e t " ,
DemandedProducts) ;

630 }
631
632 i f (P l l 1 & f i n d p l l 1) {
633 St r ing auxpltP = "" ;
634 St r ing auxpltC = "" ;
635 St r ing auxcch = "" ;
636 f i n d p l l 1=f a l s e ;
637 St r ing myname =

f indmy ind iv idua l s (aux5 [0] , "
hasArea " , bapron , manager) ;

638 St r ing [] auxkpn = myname . s p l i t
(" ") ;

639 St r ing my2name =
f indmy ind iv idua l s (auxkpn [0]
," hasProce s sCe l l " , bapron ,
manager) ;

640 St r ing [] auxkpn2 = my2name .
s p l i t (" ") ;

641 St r ing my3name =
f indmy ind iv idua l s (auxkpn2 [0]
," hasUnit " , bapron , manager) ;

642 St r ing [] auxkpn3 = my3name .
s p l i t (" ") ;

643 St r ing my4name = "" ;
644 St r ing auxmincapacity="";
645 St r ing auxmaxcapacity="";
646
647 f o r (i n t k=0; k<auxkpn3 . l ength ;

k++){

170

648 St r ing mymincapacity=
f indmyvalues (auxkpn3 [k]
,"min_value " , bapron ,
manager) ;

649 St r ing mymaxcapacity=
f indmyvalues (auxkpn3 [k]
,"max_value " , bapron ,
manager) ;

650 auxmincapacity=
auxmincapacity + auxkpn3 [
k]+ " " +
mymincapacity + "&";

651 auxmaxcapacity=
auxmaxcapacity + auxkpn3 [
k]+ " " +
mymaxcapacity + "&";

652 my4name = my4name + auxkpn3
[k] + "&";

653
654
655 }
656 St r ing my5name =

f indmy ind iv idua l s (aux5 [0] , "
hasRecipe " , bapron , manager) ;

657 St r ing [] auxkpn4 = my5name .
s p l i t (" ") ;

658 St r ing my6name =
f indmy ind iv idua l s (auxkpn4 [0]
," der ives InMasterRec ipe " ,
bapron , manager) ;

659 St r ing [] auxkpn5 = my6name .
s p l i t (" ") ;

660 St r ing my8name = "" ;
661 f o r (i n t j =0; j<auxkpn5 . l ength ;

j++){
662 St r ing my7name =

f indmy ind iv idua l s (auxkpn5 [j]
," hasRecipeElement " , bapron ,
manager) ;

663 St r ing [] auxkpn6 = my7name .
s p l i t (" ") ;

664 f o r (i n t l =0; l<auxkpn6 . l ength ;
l++){

665 my8name = my8name + auxkpn6 [l]
+ "&";

666 }
667 }
668

171

D. Java code

669 /∗INPUTS∗/
670 St r ing [] r e c i p e e l ement s= my8name .

s p l i t ("&") ;
671 f o r (i n t j = 0 ; j < re c ip e e l ement s .

l ength ; j++){
672 St r ing Gorr = f indmy ind iv idua l s (

r e c i p e e l ement s [j] , "
hasIDFromRecipeElementType " ,
bapron , manager) ;

673 St r ing [] Gorr11 = Gorr . s p l i t (" ") ;
674 St r ing Gorr2 = f indmy ind iv idua l s (

r e c i p e e l ement s [j] , "
hasEquipmentRequirement " , bapron ,
manager) ;

675 St r ing [] Gorr22 = Gorr2 . s p l i t (" ")
;

676 St r ing Gorr3 = f indmy ind iv idua l s (
Gorr22 [0] , " referedFrom " , bapron ,
manager) ;

677 St r ing Gorr4 = f indmy ind iv idua l s (
Gorr11 [0] , "
receiveInformationFromIDRecipeElementType
" , bapron , manager) ;

678 St r ing [] Gorr44 = Gorr4 . s p l i t (" ")
;

679 St r ing Gorr5 = f indmy ind iv idua l s (
Gorr44 [0] , "
hasProcessInputParameter " , bapron
, manager) ;

680 St r ing [] Gorr55 = Gorr5 . s p l i t (" ")
;

681
682 auxcch = auxcch + Gorr3 + " ." +

rec ip e e l ement s [j] + " " + "1"
+ "&";

683
684 f o r (i n t k = 0 ; k < Gorr55 . l ength ; k

++){
685 St r ing Gorr551 = f indmy ind iv idua l s (

Gorr55 [k] , " hasParameterSource " ,
bapron , manager) ;

686 St r ing [] Gorr552 = Gorr551 . s p l i t ("
") ;

687
688 IRI myqinID = IRI . c r e a t e (bapron .

getOntologyID () . getOntologyIRI ()
+ "#" +Gorr55 [k]) ;

172

689 OWLIndividual myqin = manager .
getOWLDataFactory () .
getOWLNamedIndividual (myqinID) ;

690 Map<OWLDataPropertyExpression , java
. u t i l . Set<OWLLiteral>> qinva lue
= myqin . getDataPropertyValues (
bapron) ;

691 St r ing qin = qinva lue . t oS t r i ng () ;
692 St r ing [] q in1 = qin . s p l i t ("\"") ;
693 auxpltP = auxpltP + rec ip e e l ement s [

j] + " ." + Gorr552 [0] + " "
+ qin1 [1] + "&";

694 }
695
696 /∗OUTPUTS∗/
697 St r ing Gorr6 = f indmy ind iv idua l s (

Gorr44 [0] , "
hasProcessOutputParameter " , bapron
, manager) ;

698 St r ing [] Gorr66 = Gorr6 . s p l i t (" ") ;
699 f o r (i n t k = 0 ; k < Gorr66 . l ength ; k

++){
700 St r ing Gorr551 = f indmy ind iv idua l s (

Gorr66 [k] , " hasParameterSource " ,
bapron , manager) ;

701 St r ing [] Gorr552 = Gorr551 . s p l i t ("
") ;

702 St r ing Gorr5521 = f indmy ind iv idua l s
(Gorr552 [0] , " hasID_Material " ,
bapron , manager) ;

703
704 IRI myqoutID = IRI . c r e a t e (bapron .

getOntologyID () . getOntologyIRI ()
+ "#" +Gorr66 [k]) ;

705 OWLIndividual myqout = manager .
getOWLDataFactory () .
getOWLNamedIndividual (myqoutID) ;

706 Map<OWLDataPropertyExpression , java .
u t i l . Set<OWLLiteral>> qoutvalue =
myqout . getDataPropertyValues (

bapron) ;
707 St r ing qout = qoutvalue . t oS t r i ng () ;
708 St r ing [] qout1 = qout . s p l i t ("\"") ;
709 auxpltC = auxpltC + rec ip e e l ement s [

j] + " ." + Gorr552 [0] + " "
+ qout1 [1] +"&";

710 }
711

173

D. Java code

712 }
713
714 wr i t e2 tx t (micarpetaSC + "

StructuredOutput \\" + "
Techno log ie s " + " . s e t " , my4name) ;

715 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "Tasks" +
" . s e t " , my8name) ;

716 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "
Proces s Inputs " + " . txt " , auxpltP)
;

717 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "
ProcessOutputs " + " . txt " , auxpltC
) ;

718 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + " tasks−tech
" + " . txt " , auxcch) ;

719 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "
mincapac i tytech " + " . txt " ,
auxmincapacity) ;

720 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "
maxcapacitytech " + " . txt " ,
auxmaxcapacity) ;

721 }
722
723
724 i f (P l l 2) {
725 St r ing myname = f indmy ind iv idua l s

(aux5 [0] , "
canCarryMater ia lResource " ,
bapron , manager) ;

726 St r ing [] mpc = myname . s p l i t (" ")
;

727 St r ing mymaxcapacity=f indmyvalues
(aux5 [0] ,"max_value " , bapron ,
manager) ;

728 Maxcapacity=Maxcapacity + aux5
[0]+ " " + mymaxcapacity +
"&";

729
730 f o r (i n t j =0; j<mpc . l ength ; j++){
731 auxmpc=auxmpc + aux5 [0] + " ."

+ mpc [j] + " 1"+ "&";
732 }

174

733 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + " trans−
tech " + " . txt " , auxmpc) ;

734 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "
capac i t y t r an spo r t s " + " . txt " ,
Maxcapacity) ;

735
736 }
737
738 i f (Ptrr) {
739 St r ing myname = f indmy ind iv idua l s

(aux5 [0] , " h a sFa c i l i t y " , bapron ,
manager) ;

740 St r ing [] mpc = myname . s p l i t (" ")
;

741
742 f o r (i n t j =0; j<mpc . l ength ; j++){
743 auxmpc=auxmpc + aux5 [0] + " ."

+ mpc [j] + " 1"+ "&";
744 }
745 wr i t e2 tx t (micarpetaSC + "

StructuredOutput \\" + "
f a c i l i t y l o c a t i o n r e l a t i o n s h i p " +
" . txt " , auxmpc) ;

746
747 }
748
749 i f (Pch1) {
750 St r ing myname = f indmy ind iv idua l s

(aux5 [0] , " re latesToProduct " ,
bapron , manager) ;

751 St r ing [] mpc = myname . s p l i t (" ")
;

752 auxmpc=auxmpc + aux5 [0] + " ." +
mpc [0] + " 1"+ "&";

753 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "
t ranspo r t e " + " . txt " , auxmpc) ;

754 }
755
756 i f (Pch2) {
757 St r ing myname = f indmy ind iv idua l s (

aux5 [0] , " r e l a t e sToFa c i l i t y " , bapron ,
manager) ;

758 St r ing [] mpc = myname . s p l i t (" ") ;
759 St r ing myname2 = findmyvalues (aux5

[0] , " va lue " , bapron , manager) ;

175

D. Java code

760 auxmpc=auxmpc + mpc [0] + " "+
myname2 + "&";

761 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "
Fac i l i ty Inves tmentCos t " + " . txt " ,
auxmpc) ;

762 }
763
764
765 i f (Spt) {
766 St r ing myname = f indmy ind iv idua l s (

aux5 [0] , " demands " , bapron , manager) ;
767 St r ing [] mpc = myname . s p l i t (" ") ;
768 f o r (i n t j =0; j<mpc . l ength ; j++){
769 St r ing myname2 = findmyvalues (mpc [j

] , " va lue " , bapron , manager) ;
770 St r ing myname4 = findmyvalues (mpc [j

] , " s a l e sP r i c e " , bapron , manager) ;
771 St r ing myname3 = f indmy ind iv idua l s (

mpc [j] , " re latesToProduct " , bapron ,
manager) ;

772 auxmpc=auxmpc + myname3+ "."+ aux5 [0]
+ " "+ myname2 + "&";

773 auxmpc2=auxmpc2 + myname3+ "."+ aux5
[0] + " "+ myname4 + "&";

774 }
775 wr i t e2 tx t (micarpetaSC + "

StructuredOutput \\" + "SCDemand" +
" . txt " , auxmpc) ;

776 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "MarketPrice "
+ " . txt " , auxmpc2) ;

777 }
778
779 i f (Spt2) {
780 St r ing myname3 = f indmy ind iv idua l s (

aux5 [0] , " provideCost " , bapron ,
manager) ;

781 St r ing myname = findmyvalues (aux5
[0] , " va lue " , bapron , manager) ;

782 auxmpc=auxmpc + myname3+ " " +
myname + "&";

783 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "
CostRawMaterial " + " . txt " , auxmpc) ;

784 }
785
786

176

787 i f (FrE) {
788 St r ing myname3 = f indmy ind iv idua l s (

aux5 [0] , " r e l a t e sToFa c i l i t y " , bapron ,
manager) ;

789 St r ing minvalue = f indmyvalues (aux5
[0] , " min_value " , bapron , manager) ;

790 St r ing maxvalue = findmyvalues (aux5
[0] , " max_value " , bapron , manager) ;

791 St r ing value = f indmyvalues (aux5 [0] , "
va lue " , bapron , manager) ;

792 St r ing mate r i a l s = f indmy ind iv idua l s (
aux5 [0] , " hasMater ia lResource " ,
bapron , manager) ;

793 St r ing [] mate r i a l s 2 = mate r i a l s . s p l i t
(" ") ;

794 i f (! maxvalue . equa l s (" 0 . 0 ")) {
795 auxmpc2=auxmpc2 + myname3+ " " +

minvalue + "&";
796 auxmpc3=auxmpc3 + myname3+ " " +

maxvalue + "&";
797 }
798
799 i f (! va lue . equa l s (" 0 . 0 ")) {
800 f o r (i n t j =0; j<mate r i a l s 2 . l ength ; j

++){
801 auxmpc=auxmpc +mate r i a l s 2 [j] + " ." +

myname3+ " " + value + "&";
802 }
803 }
804
805 wr i t e2 tx t (micarpetaSC + "

StructuredOutput \\" + "
m in f a c i l i t y c a p a c i t y " + " . txt " ,
auxmpc2) ;

806 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "
max f a c i l i t y c apa c i t y " + " . txt " ,
auxmpc3) ;

807 wr i t e2 tx t (micarpetaSC + "
StructuredOutput \\" + "
supp l i e r c apa c i t y " + " . txt " , auxmpc)
;

808 }
809
810 i f (FrE2) {
811 St r ing auxpltP = "" ;
812 St r ing myname =

f indmy ind iv idua l s (aux5 [0] , "

177

D. Java code

c o n n e c t F a c i l i t i e s " , bapron ,
manager) ;

813 St r ing [] auxkpn = myname . s p l i t
(" ") ;

814 St r ing my2name =
f indmy ind iv idua l s (aux5 [0] ,"
hasTransportat ionCost " , bapron
, manager) ;

815 St r ing [] auxkpn2 = my2name .
s p l i t (" ") ;

816 St r ing my3name = findmyvalues (
auxkpn2 [0] ," va lue " , bapron ,
manager) ;

817 St r ing [] auxkpn3 = my3name .
s p l i t (" ") ;

818 auxkpon=auxkpon + auxkpn [0]+
" ." + auxkpn [1] + " "
+ my3name + "&";

819 auxkpon=auxkpon + auxkpn [1]+
" ." + auxkpn [0] + " "
+ my3name + "&";

820
821 wr i t e2 tx t (micarpetaSC + "

StructuredOutput \\" + "
TransportCosts " + " . txt " ,
auxkpon) ;

822 }
823
824
825 i f (Ptrr2) {
826 St r ing myname = f indmy ind iv idua l s

(aux5 [0] , " h a sFa c i l i t y " , bapron ,
manager) ;

827 St r ing [] mpc = myname . s p l i t (" ")
;

828
829 f o r (i n t j =0; j<mpc . l ength ; j++){
830 auxmpc=auxmpc + aux5 [0] + " ."

+ mpc [j] + " 1"+ "&";
831 }
832 wr i t e2 tx t (micarpetaSC + "

StructuredOutput \\" + "
Marke t l o c a t i on r e l a t i on sh i p " +
" . txt " , auxmpc) ;

833
834 }
835

178

836 wr i t e t x t (micarpeta + "Output\\" + aux3 [1]+" .
s e t " , aux6) ;

837
838 }
839 }
840
841 }
842 catch (UnloadableImportException e) {
843 I f our onto logy conta in s imports and one or more

o f the imports could not be loaded then an
844 UnloadableImportException w i l l be thrown (

depending on the miss ing imports handl ing
po l i c y)

845 System . out . p r i n t l n ("Could not load import : " + e .
ge t Import sDec la ra t ion ()) ;

846 The reason f o r t h i s i s s p e c i f i e d and an
OWLOntologyCreationException

847 OWLOntologyCreationException cause = e .
getOntologyCreat ionExcept ion () ;

848 System . out . p r i n t l n ("Reason : " + cause . getMessage ()
) ;

849 }
850 catch (OWLOntologyCreationException e) {
851 System . out . p r i n t l n ("Could not load onto logy : " + e

. getMessage ()) ;
852 }
853 }
854
855 }

179

Appendix E

User’s manual of Enterprise Ontology

This appendix presents the user’s manual for instantiating any problem in the
enterprise and process domain using the enterprise ontology.

E.1 Usage requirements

Next, the description of the elements necessary to start using the framework are listed:

1. A Java language editor, such as Eclipse or NetBeans, must be installed. This
editor enables the management of the user’s specific programming needs that
can be managed from the Java enterprise ontology project. Either the user must
have the programming language skills or any informatics programmer must be
in charge of implementing or modifying the code for the connection between the
ontological model and the decision-maker support tool.

2. The OWL Java API must be loaded within the Java editor, that is, the corre-
sponding libraries must be added.

3. Prótegé software must be installed and ready to use. Otherwise, any full-OWL
editor or manager should be installed. In addition, basic software skills are desired
to be able to manage this platform. Alternatively, the Prótegé user’s manual can
be downloaded for more orientation.

4. The OWL file containing the enterprise ontology template (without any instance)
located in the users workspace must be opened. Otherwise, if an already exist-
ing OWL file is used from past models, then such file must be opened for its
modification.

181

E. User’s manual of Enterprise Ontology

E.2 Problem instantiation

The very first step for the problem instantiation consists of the identification and clas-
sification of the different elements that are involved in the reality of the process that
the user aims to model. For this step, the use of the enterprise ontology classes defini-
tions could help the user for an easier elements classification. In enterprise ontology,
the classification is divided in nine principal parts, which are summarized next:

Processing activities Process operation and process actions are described in this class.

Process The description of the process as batch, discrete and continuous should be
identified here.

Information The parameters and variables values related to supply chain manage-
ment, process information, general information, recipe type, costs, identifiers,
formula, process requirement, production parameters, procedural links, etc. are
comprised as model information.

Physical model Process cell, unit, enterprise, equipment entity, control modules, areas,
equipment modules and the different kind of facilities related to the physical
description of the model are found here.

Process Output The lots and batches resulting from the production process are con-
tained in this class.

Control Functions The information related to the coordinator control, equipment con-
trol, procedural control, procedural elements, etc. are defined within this class.

Production Process The process management, restrictions, control activities, inven-
tories, demand, production process and other information directly related to
production process must be addressed here.

Resources Transport, economic, human, unit, energetic and material resources should
be classified within the different subclasses contained in resources.

Procedure This class contains the recipe procedure, equipment procedure, equipment
unit procedure, etc.

E.3 Instances

Once that the enterprise ontology template is already loaded, the instantiation of the
problem must be fulfilled according to the problem features. This action can be guided
by the class/properties table (4.3) found in chapter 4, which provides the range and
the domain of the relations that are established among classes.

The user can made the instantiation starting from top-down (starting from the
main or general class to the required derived ones) or bottom-up (fulfilling first the
classes that an expert user already knows that are required by a main or general
class) perspective. The procedure for instantiating a given class is described next
exemplifying the process for the master recipe class instantiation.

182

Instances

1. By making click on the Protégé (Protégé 3.4) individuals tab (Figure E.1, clue 1),
the layout will show class browser (showing the class taxonomy), the instances
browser (showing the asserted instances), and the individual editor.

2. Inside the class browser, recipe type class must be found clicking on master recipe
class (Figure E.1, clue 2).

3. In order to make the first instance, the create instance button must be clicked,
appearing a new instance that will be named MasterRecipe_1 as a default,
renaming it as desired (Figure E.1, clue 3).

4. The enterprise ontology axioms will show the required fields that must be in-
stantiated and are necessary for modeling the problem. The necessary fields are
highlighted in red squares, as shown in Figure E.1.

5. Thus, the required fields of the instance must be fulfilled, within the individual
editor. There are two possible ways to make it for an object property field:

• Making click on the create resource button (if a top-down strategy was
adopted) a new instance of the class contained in the range of the property
must be created (Figure E.1, clue 4).

• Otherwise, clicking the select existing resource button (if bottom-up strat-
egy was adopted) adding an existing instance of the class contained in the
range of the field property (Figure E.1, clue 5).

6. If the field requires more than one instance, just repeat the step number four.

7. If instance within a field is to be eliminated, select the instance clicking over it
and then clock on the remove current value button (Figure E.1, clue 6).

8. If a another master recipe is to be instantiated, two alternatives can be followed.

• Repeating step number three.

• If there are more that one additional instance and is very similar to one
already existing, the copy instance button should be used. (Figure E.1,
clue 7), adding the number of copies as desired and just changing the right
information for its differentiation.

9. Additionally, if a data object field is found, a data must be directly typed ac-
cording to the correct range type (float, boolean, date, string, etc).

183

E
.
U
ser’s

m
anualof

E
nterprise

O
ntology

Figure E.1: Screenshot of the enterprise ontology project template.

184

Instances

Next, for illustrating purposes the tree representations of the relationship derived
from the master recipe and the site classes are shown.

For the master recipe case E.2:

• Formula

– Parameter

∗ value
∗ Parameter Source (Material Resources)

• Header

– Batch size

∗ minimum value
∗ maximum value
∗ value
∗ unit of measure

• Recipe ID

• Equipment requirement

– Unit

– ID Equipment requirement

• Procedural logic

– ID logic

– Link

∗ Link type
∗ ID Process stage (hasLinkFrom)
∗ ID Process stage (hasLinkTo)
∗ IDLink (provideID)

• Recipe element

– Header

– ID Recipe element

– Equipment requirement

– Process stage (has ID from Recipe Element)

185

E
.
U
ser’s

m
anualof

E
nterprise

O
ntology

Figure E.2: Screenshot of the master recipe instantiation.

186

Instances

For the site case E.3:

• Area

– Process Cell

• Production Order

– Duedate

– Value

– Unit of measure

– Material Resource

• Site Recipe

• Supply Chain Management

– Supply Chain Location Management

∗ Is applied at (Facility)
∗ Has location cost

· Facility investment cost
∗ Has location parameter

· Has facility (Facility)

– Supply Chain Inventory Management

– Supply Chain Production and Distribution Management

– Supply Chain Transportation Management

• Transportation links

– Connect facilities (Facility)

– Has transport (Transport resources)

– Has transportation cost

– Transport material (ID material resources)

187

E
.
U
ser’s

m
anualof

E
nterprise

O
ntology

Figure E.3: Screenshot of the site instantiation.

188

Instances inference

E.4 Instances inference
After the complete instantiation of the problem, it is necessary to compute the inferred
types. This step provides feedback to the user about the logical implications of the
model design.

Within the menu "Reasoning", the user should select the desired reasoner and
infer the instances by clicking on "Compute inferred types...". A window with the
information of the reasoner’s process will appear.

E.5 Framework exploitation
In order to exploit the ontological model, it is necessary to program the Java interface.
The result of this process will provide the correct data as appropriate to the different
objectives for which the ontology is adopted. Next a brief example of how it works will
be provided.

1. Load libraries. Within the project properties it is necessary to load the OWL
Java APIS owlapi-bin and owlapi-src, in order to work with the functions in the
main Java project (Figure E.4).

2. Create the main Java File. The next step consist of creating a main Java file
which contains the following parts:

• Import the OWL-API classes which are to be used within the code (Figure
E.5).

• Declare path of the workspace.

• Declare and load the OWL file already instantiated (Figure E.6).

3. Create the necessary variables according to the decision support tool require-
ments (Figure 5.3).

4. Structure the form of the desired output file and give them the right extension.

189

E. User’s manual of Enterprise Ontology

Figure E.4: Step 1. Libraries loading.

Figure E.5: Step 2. OWL classes importation.

190

Framework exploitation

Figure E.6: Step 2. Work space declaration and OWL file loading.

191

Bibliography

Alavi, M. and P. G. W. Keen (1989). Business teams in an information age. Inf.
Soc. 6 (4), 179–95.

Apostolou, D., G. Mentzas, and A. Abecker (2008, june). Ontology-enabled knowl-
edge management at multiple organizational levels. In Engineering Management
Conference, 2008. IEMC Europe 2008. IEEE International, pp. 1 –6.

Avgeriou, P. and U. Zdun (2005). Architectural patterns revisited: A pattern lan-
guage. In In 10th European Conference on Pattern Languages of Programs (Euro-
Plop 2005), Irsee, pp. 1–39.

Bechhofer, S., I. Horrocks, C. Goble, and R. Stevens (2001). OilEd: A reason-able
ontology editor for the semantic Web. LNCS 2174, 396ff.

Bechhofer, S., F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. (2004, February). Owl web ontology language.

Bernaras, A., I. Laresgoiti, and J. Corera (1996). Building and reusing ontologies for
electrical network applications. In W. Wahlster (Ed.), Proceedings of the 12th Eu-
ropean Conference on Artificial Intelligence (ECAI 96): Budapest, Hungary: August
11-16, pp. 298–302. Wiley.

Borgo, S., N. Guarino, and C. Masolo (1996). Stratified ontologies: The case of physical
objects.

Bosak, J. (1997). Xml, java, and the future of the web. World Wide Web Journal ,
219–227.

Brandl, D. and D. Emerson (2003, September). Batch markup language batchml.
Brickley, D. and R. Guha (2002, November). Rdf vocabulary description language 1.0:
Rdf schema.

CEFIC, E. C. I. C. (2009). High level group on the competitiveness of the european
chemicals industry final report.

Chopra, S. and P. Meindl (2004). Supply chain management : strategy, planning, and
operation. Prentice Hall.

Council, T. E. C. I. (2010). Cefic review 2009-2010. sustainability and innovation
driving chemistry solutions for the future. Technical report, CEFIC.

Courtney, J. F. (2001). Decision making and knowledge management in inquiring

193

Bibliography

organizations: toward a new decision-making paradigm for dss. Decis. Support
Syst. 31 (1), 17–38.

Davis, R., H. Shrobe, and P. Szolovits (1993). What is a knowledge representation?
Deming, W. E. (1993). The New Economics. Massachusetts Institute of Technology
Press.

Domingue, J. (2010, June). Webonto.
Eppler, M. J. (2006). Introducing the Notion of Information Quality (second ed.).
Springer Berlin Heidelberg.

Farquhar, A., R. Fikes, and J. Rice (1997). The ontolingua server: a tool for collabora-
tive ontology construction. International Journal of Human-Computer Studies 46,
707–727.

Fensel, D. (2003, December). Ontologies: : A Silver Bullet for Knowledge Management
and Electronic Commerce. Springer.

Fernandez-Breis, J. T. and R. Martinez-Bejar (2000). A cooperative tool for facilitating
knowledge management. Expert Systems with Applications 18 (4), 315 – 330.

Fernandez-Lopez, M., A. Gomez-Perez, and N. Juristo (1997, March). Methontology:
from ontological art towards ontological engineering. In Proceedings of the AAAI97
Spring Symposium, Stanford, USA, pp. 33–40.

Informatics Research for Biomedical(BMIR), S. C. (2007). Protègè 3.4 and protègè
4.1.

International Society for Measurement and Control(1995, October). Batch control
part 1 models and terminology.

International Society for Measurement and Control (1999). Enterprise control system
integration part 1 models and terminology.

International Society for Measurement and Control (2003, March). Batch control part
3: General and site recipe models and representation.

International Society for Measurement and Control(2006, Agosto). Control batch parte
4 registros de producción de lote.

International Society for Measurement and Control (2007a, January). Batch control
part 5 automated equipment control models & terminology.

International Society for Measurement and Control (2007b, December). Isa-88/95
technical report: Using isa-88 and isa-95 together. Technical report, ISA The In-
strumentation, Systems, and Automation Society.

Fox, M. S., M. Barbuceanu, M. Gruninger, and J. Lin (1997). An organization ontology
for enterprise modelling. In Modeling, In: International Conference on Enterprise
Integration Modelling Technology 97. Springer.

Fox, M. S. and M. Gruninger (1998). Enterprise modeling. AI Magazine 19 (3), 109–
121.

Gebus, S. and K. Leiviskä (2009). Knowledge acquisition for decision support systems
on an electronic assembly line. Expert Syst. Appl. 36 (1), 93–101.

Gómez-Pérez, A. (2007). Ontological engineering: A state of the art.
Gómez-Pérez, A. and M. Fernández (1996). Towards a method to conceptualize domain
ontologies. In Proceedings of the workshop on Ontological Engineering. ECAI.

Gómez-Pérez, A. and M. C. Suárez-Figueroa (2003). Results of taxonomic evalua-
tion of rdf(s) and daml+oil ontologies using rdf(s) and daml+oil validation tools
and ontology platforms import services. In II ISWC Workshop on Evaluation of

194

Bibliography

Ontology-based Tools, Volume 87.
Gosling, J., B. Joy, G. Steele, and G. Bracha (2005). Java(TM) Language Specification,
The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Professional.

Gruber, T. R. (1993, June). A translation approach to portable ontology specifications.
Knowl. Acquis. 5 (2), 199–220.

Grubic, T. and I.-S. Fan (2010, June). Supply chain ontology: Review, analysis and
synthesis. Computers in Industry .

Gruninger, M. and M. Fox (1995). Methodology for the design and evaluation of on-
tologies. In IJCAI’95, Workshop on Basic Ontological Issues in Knowledge Sharing,
April 13, 1995.

Holmes, J. (2004). Struts: The Complete Reference (Osborne Complete Reference
Series). McGraw-Hill Osborne Media.

Horridge, M., S. Bechhofer, and O. Noppens (2007). Igniting the owl 1.1 touch paper:
The owl api. In OWLED 2007, 3rd OWL Experienced and Directions Workshop.

Horridge, M., S. Jupp, G. Moulton, A. Rector, R. Stevens, and C. Wroe (2007). A
practical guide to building owl ontologies using protege 4 and co-ode tools. Technical
report, The University Of Manchester.

Horrocks, D. Fensel, J. Broekstra, S. Decker, M. Erdmann, C. Goble, F. van Harmelen,
M. Klein, S. Staab, R. Studer, and E. Motta (2000). Ontology inference layer oil.

Johanson, L. (2011, June). Freecbr.
Karp, P., K. Myers, and T. Gruber (1995). The generic frame protocol. In Proceedings
of the 1995 International Joint Conference on Artificial Intelligence (IJCAI95),
Montreal, Canada., pp. 768–774.

Klein, M. R. and L. B. Methlie (1995). Knowledge-Based Decision Support Systems:
With Applications in Business (2nd ed.). New York, NY, USA: John Wiley & Sons,
Inc.

Klyne, G. and J. J. Carroll (2002, November). Resource description framework (rdf):
Concepts and abstract syntax.

Knight, K. and S. Luk (1994). Building a large knowledge base for machine translation.
In Proceedings of the American Association of Artificial Intelligence Conference,
Seattle, USA, pp. 773–778.

Kondili, E., C. Pantelides, and R. Sargent (1993). A general algorithm for short-
term scheduling of batch operations–i. milp formulation. Computers & Chemical
Engineering 17 (2), 211 – 227.

Korovessi, E. and A. A. Linninger (2006). Batch processes. Taylor & Francis Group.
Lainez, J. M., G. Kopanos, A. Espuna, and L. Puigjaner (2009, JUL). Flexible design-
planning of supply chain networks. AICHE JOURNAL 55 (7), 1736–1753.

Lenat, D. B. and R. V. Guha (1989). Building Large Knowledge-Based Systems; Rep-
resentation and Inference in the Cyc Project (1st ed.). Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.

Liao, S.-H. (2003). Knowledge management technologies and applications–literature
review from 1995 to 2002. Expert Systems with Applications 25 (2), 155 – 164.

Linwood, J., D. Minter, J. Linwood, and D. Minter (2010). Integrating and configuring
hibernate. In Beginning Hibernate, pp. 9–25. Apress.

López, M. F., A. Gómez-Pérez, J. P. Sierra, and A. P. Sierra (1999). Building a
chemical ontology using methontology and the ontology design environment. IEEE

195

Bibliography

Intelligent Systems 14 (1), 37–46.
MacGregor, R. (1991). Principles of semantic networks, Chapter The evolving technol-
ogy of classification-based knowledge representation systems., pp. 385–400. Morgan
Kaufmann.

Maravelias, C. T. and I. E. Grossmann (2003). New general continuous-time state-
task network formulation for short-term scheduling of multipurpose batch plants.
Industrial & Engineering Chemistry Research 42, 3056–3074.

Mathworks (2009). The mathworks corporation. matlab 7.2. Technical report,
http://www.mathworks.com.

McQueen, S. and H. Thompson (2000, April). Xml schema.
Measurement, I. S. F. and Control (2001, February). Data structures and guidelines
for languages.

Mendez, C. A., J. Cerda, I. E. Grossmann, I. Harjunkoski, and M. Fahl (2006, May).
State-of-the-art review of optimization methods for short-term scheduling of batch
processes. Computers & Chemical Engineering 30 (6-7), 913–946.

Missikoff, M. and F. Taglino (2002, January). Business and enterprise ontology man-
agement with symontox. In S. B. . Heidelberg (Ed.), The Semantic Web - ISWC
2002, Volume 2342/2002, pp. 442–447.

Mitroff, I. I. and H. A. Linstone (1993). The unbounded mind: Breaking the chains of
traditional business thinking. Business Horizons 36 (5), 88–89.

Mizoguchi, R., J. Vanwelkenhuysen, and M. Ikeda (1995). Task Ontology for Reuse of
Problem Solving Knowledge. IOS press.

Morris, W. T. (1967). On the arts of modelling. Management Science 13, 707–717.
Obrst, L. (2003, November). Ontologies for semantically interoperable systems. In
CIKM ’03: Proceedings of the twelfth international conference on Information and
knowledge management, pp. 366–369. ACM.

Pagels, M. (2006, January). The darpa agent markup language (daml).
Pekny, J. F. and G. V. Reklaitis (1998). Towards the Convergence of Theory and
Practice: A Technology Guide for Scheduling/Planning Methodology. Foundations
of Computer Aided Process Operations.

Power, D. J. and R. Sharda (2007). Model-driven decision support systems: Concepts
and research directions. Decis. Support Syst. 43 (3), 1044–1061.

Raleigh, T. and D. Harmelink (2004). The Supply chain handbook. Tompkins Press.
Rippin, D. (1983). Batch process systems - engineering: A retrospective and prospec-
tive review. Computers & Chemical Engineering 17, S1 – S13.

Schreiber, G., H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van de
Velde, and B. Wielinga (2000). Knowledge Engineering and Management: The Com-
monKADS Methodology. Cambridge, MA: MIT Press.

Shim, J. P., Warkentin, Merrill, Courtney, F. James, Power, J. Daniel, Sharda, Ramesh,
Carlsson, and Christer (2002). Past, present, and future of decision support tech-
nology. Decis. Support Syst. 33 (2), 111–126.

Shirasuna, M. (2007, June). Optimización de la producción en una empresa de cervezas
usando el estándar isa s88 (caso polar). In Rockwell Automatization.

Simon, F. and T. Murray (2007). Decision support systems. Commun. ACM 50 (3),
39–40.

Standford-University (2010). Webonto.

196

Bibliography

Subrahmanyam, S., M. Bassett, J. Pekny, and G. Reklaitis (1995). Issues in solv-
ing large scale planning, design and scheduling problems in batch chemical plants.
Computers and Chemical Engineering 19, 577 – 582.

Sure, Y., M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke (2002). Ontoedit:
Collaborative ontology development for the semantic web. In Proceedings of the First
International Semantic Web Conference on The Semantic Web, ISWC ’02, London,
UK, UK, pp. 221–235. Springer-Verlag.

Sure, Y. and R. Studer (2002, September). On-to-knowledge methodology. Technical
report, University of Karlsruhe.

Table, M. A. (2004). Mysql reference manual.
Uschold, M. and M. Gruninger (1996). Ontologies: principles, methods, and applica-
tions. Knowledge Engineering Review 11 (2), 93–155.

van Heijst, G., A. T. Schreiber, and B. J. Wielinga (1997). Using explicit ontologies
in kbs development. Int. J. Hum.-Comput. Stud. 46 (2-3), 183–292.

Varma, V. A., G. V. Reklaitis, G. E. Blau, and J. F. Pekny (2007, May). Enterprise-
wide modeling & optimization - an overview of emerging research challenges and
opportunities. Computers & Chemical Engineering 31 (5-6), 692–711.

Vega, J. C. A., A. Gómez-Pérez, A. L. Tello, H. S. A. N. P. Pinto, H. Sofia, and
A. N. P. Pinto (1996). (onto)²agent: An ontology-based www broker to select
ontologies. In Workshop on application Ontologies and PSMs, pp. 16–24.

Venkatasubramanian, V., C. Zhao, G. Joglekar, A. Jain, L. Hailemariam, P. Suresh,
P. Akkisetty, K. Morris, and G. Reklaitis (2006, July). Ontological informatics infras-
tructure for pharmaceutical product development and manufacturing. Computers
and Chemical Engineering 30, 1482–1496.

Williams, T. J. (1989). A reference model for computer integrated manufacturing
(CIM). ISA Research Triangle Park.

XML-Core-Working-Group (2009, April). Extensible markup language (xml).

197

