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Abstract

Wireless sensor networks are developed to monitor areas of interest with the purpose of

estimating physical parameters or/and detecting emergency events in a variety of military

and civil applications. A wireless sensor network can be seen as a distributed computer,

where spatially deployed sensor nodes are in charge of gathering measurements from the

environment to compute a given function. The research areas for wireless sensor networks

extend from the design of small, reliable hardware to low-complexity algorithms and

energy saving communication protocols.

Distributed consensus algorithms are low-complexity iterative schemes that have re-

ceived increased attention in different fields due to a wide range of applications, where

neighboring nodes communicate locally to compute the average of an initial set of mea-

surements. Energy is a scarce resource in wireless sensor networks and therefore, the

convergence of consensus algorithms, characterized by the total number of iterations until

reaching a steady-state value, is an important topic of study.

This PhD thesis addresses the problem of convergence and optimization of distributed

consensus algorithms for the estimation of parameters in wireless sensor networks. The

impact of quantization noise in the convergence is studied in networks with fixed topologies

and symmetric communication links. In particular, a new scheme including quantization

is proposed, whose mean square error with respect to the average consensus converges.
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The limit of the mean square error admits a closed-form expression and an upper bound

for this limit depending on general network parameters is also derived.

The convergence of consensus algorithms in networks with random topology is studied

focusing particularly on convergence in expectation, mean square convergence and almost

sure convergence. Closed-form expressions useful to minimize the convergence time of the

algorithm are derived from the analysis.

Regarding random networks with asymmetric links, closed-form expressions are pro-

vided for the mean square error of the state assuming equally probable uniform link

weights, and mean square convergence to the statistical mean of the initial measurements

is shown. Moreover, an upper bound for the mean square error is derived for the case of

different probabilities of connection for the links, and a practical scheme with randomized

transmission power exhibiting an improved performance in terms of energy consump-

tion with respect to a fixed network with the same consumption on average is proposed.

The mean square error expressions derived provide a means to characterize the deviation

of the state vector with respect to the initial average when the instantaneous links are

asymmetric.

A useful criterion to minimize the convergence time in random networks with spa-

tially correlated links is considered, establishing a sufficient condition for almost sure

convergence to the consensus space. This criterion, valid also for topologies with spatially

independent links, is based on the spectral radius of a positive semidefinite matrix for

which we derive closed-form expressions assuming uniform link weights. The minimiza-

tion of this spectral radius is a convex optimization problem and therefore, the optimum

link weights minimizing the convergence time can be computed efficiently. The expressions

derived are general and apply not only to random networks with instantaneous directed

topologies but also to random networks with instantaneous undirected topologies. Fur-

thermore, the general expressions can be particularized to obtain known protocols found

in literature, showing that they can be seen as particular cases of the expressions derived

in this thesis.



Resumen

Las redes de sensores inalámbricos se utilizan para monitorizar zonas de interés con el

propósito final de estimar parámetros f́ısicos y/o detectar situaciones de emergencia en

gran variedad de aplicaciones militares y civiles. Una red de sensores inalámbricos puede

ser considerada como un método de computación distribuido, donde nodos provistos de

sensores toman medidas del entorno para calcular una función que depende de éstas.

Las áreas de investigación comprenden desde el diseño de dispositivos hardware pequeños

y fiables hasta algoritmos de baja complejidad o protocolos de comunicación de bajo

consumo energético.

Los algoritmos de consenso distribuidos son esquemas iterativos de baja complejidad

que han suscitado mucha atención en diferentes campos debido a su gran espectro de

aplicaciones, en los que nodos vecinos se comunican para calcular el promedio de un

conjunto de medidas iniciales de la red. Dado que la enerǵıa es un recurso escaso en redes

de sensores inalámbricos, la convergencia de dichos algoritmos de consenso, caracterizada

por el número total de iteraciones hasta alcanzar un valor estacionario, es un importante

tema de estudio.

Esta tesis doctoral aborda problemas de convergencia y optimización de algoritmos de

consenso distribuidos para la estimación de parámetros en redes de sensores inalámbricos.

El impacto del ruido de cuantización en la convergencia se estudia en redes con topoloǵıa

fija y enlaces de comunicación simétricos. En particular, se propone un nuevo esquema que
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incluye el proceso de cuantización y se demuestra que el error cuadrático medio respecto

del promedio inicial converge. Igualmente, se obtiene una expresión cerrada del ĺımite del

error cuadrático medio, y una cota superior para este ĺımite que depende únicamente de

parámetros generales de la red.

La convergencia de los algoritmos de consenso en redes con topoloǵıa aleatoria se

estudia prestando especial atención a la convergencia en valor esperado, la convergencia en

media cuadrática y la convergencia casi segura, y a partir del análisis se derivan expresiones

cerradas útiles para minimizar el tiempo de convergencia.

Para redes aleatorias con enlaces asimétricos, se obtienen expresiones cerradas del error

cuadrático medio del estado suponiendo enlaces con probabilidad idéntica y con pesos

uniformes, y se demuestra la convergencia en media cuadrática al promedio estad́ıstico

de las medidas iniciales. Se deduce una cota superior para el error cuadrático medio para

el caso de enlaces con probabilidades de conexión diferentes y se propone, además, un

esquema práctico con potencias de transmisión aleatorias, que mejora el rendimiento en

términos de consumo de enerǵıa con respecto a una red fija. Las expresiones para el error

cuadrático medio proporcionan una forma de caracterizar la desviación del vector de

estado con respecto del promedio inicial cuando los enlaces instantáneos son asimétricos.

Con el fin de minimizar el tiempo de convergencia en redes aleatorias con enlaces cor-

relados espacialmente, se considera un criterio que establece una condición suficiente que

garantiza la convergencia casi segura al espacio de consenso. Este criterio, que también

es válido para topoloǵıas con enlaces espacialmente independientes, utiliza el radio es-

pectral de una matriz semidefinida positiva para la cual se obtienen expresiones cerradas

suponiendo enlaces con pesos uniformes. La minimización de dicho radio espectral es un

problema de optimización convexa y, por lo tanto, el valor de los pesos óptimos puede cal-

cularse de forma eficiente. Las expresiones obtenidas son generales y aplican no sólo para

redes aleatorias con topoloǵıas dirigidas, sino también para redes aleatorias con topoloǵıas

no dirigidas. Además, las expresiones generales pueden ser particularizadas para obtener

protocolos conocidos en la literatura, demostrando que éstos últimos pueden ser consid-

erados como casos particulares de las expresiones proporcionadas en esta tesis.
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Notation and Abbreviations

Vectors and matrices

x,x,X a scalar, a vector and a matrix

xi the entry of the ith row of vector x

Xij, xij the entry of the ith row and jth column of X

xT ,XT the transpose of a vector x, the transpose of a matrix X

X 1 the inverse of a square matrix X

tr X the trace of a matrix X

rank X the rank of a matrix X, or the dimension of its column space

diag x a diagonal matrix whose entries are the elements of vector x

span x,y the subspace spanned by vectors x and y

x 2 the 2-norm of a vector x

X 0 X is positive definite

X 0 X is positive semidefinite

X Y X Y is positive semidefinite

X Y the Schur product between m n matrices X and Y

i.e., the element-wise multiplication of their elements.

X Y the Kronecker product between matrices X and Y
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Sets

X a finite nonempty set of elements

x X x belongs to the set X

X Y X is a subset of Y

X cardinality of the set X

R the set of real numbers

R the set of positive real numbers

S the set of symmetric matrices

S the set of positive semidefinite matrices

Operators and relations

defined as

approximately

is equivalent

lim limit

max maximum

min minimum

x the absolute value of x

x the expected value of x

x̄ the expected value or mean of x

Pr x the probability of x

Re x the real part of x

δij Kronecker delta function

Common notations

xi 0 initial state of node i

xi k state of node i at time k

x 0 initial state vector

x k state vector at time k

2



xave
1
N 1Tx 0 1, average consensus vector

x̄ave
1
N 1T x 0 1, mean average consensus vector

0 the zero vector

1 the all-ones vector

I the identity matrix

ei the ith vector of the matrix I

J the all-ones matrix

JN normalized all-ones matrix

P the connection probability matrix

ρ X the spectral radius of X

λi X ith eigenvalue of X

λ1 X the largest eigenvalue in magnitude of X

λN X the smallest eigenvalue in magnitude of X

x0 statistical mean of the measurements

σ2
0 variance of the measurements

σ2
q variance of the quantization noise

�, � link weight and optimum link weight

Graph theory terms

G a time-invariant graph

G k , Ḡ a time-varying graph, the expected value of G k

V the time-invariant set of nodes of G

E , E k the time-invariant/time-varying set of links of G

eij edge (link) from node j to node i

Ni,Ni k the time-invariant/time-varying set of neighbors of node i

A,D,L the adjacency matrix, the degree matrix, the Laplacian matrix

A k , Ā the adjacency matrix at time k, the expected adjacency matrix

D k , D̄ the degree matrix at time k, the expected degree matrix

L k , L̄ the Laplacian matrix at time k, the expected Laplacian matrix

3



4 Contents

Acronyms

BLUE best linear unbiased estimator

FC fusion center

ML maximum likelihood

MAC medium access control

MSE mean square error

WSN wireless sensor network

i.i.d. independent identically distributed

r.v. random variable
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Introduction

Wireless sensor networks (WSNs) are developed with the purpose of estimating phys-

ical parameters or detecting emergency events in a variety of military and civil applica-

tions like battlefield surveillance, target tracking, environmental monitoring for detection

of fire hazards, gas leakages or landslides, home automation and health care applica-

tions [Cho03,Aky02]. A WSN is composed of multiple units called sensor nodes which are

deployed in the area of observation. Depending on the application and on the coverage

area, the deployment can consist of a reduced number of sensor nodes or on the contrary,

it can be a large-scale deployment composed of hundreds of units. In large-scale WSN

applications, low-cost sensor nodes are preferred rather than expensive ones, although

they are expected to satisfy minimum requirements so the quality of the measurements

is not jeopardized.

A standard sensor node is usually composed of a transducer, in charge of sensing the

physical parameters, a radio transceiver for wireless communications, a low complexity

processing unit and a power supply, normally in form of a battery. The sensors gather

measurements from the environment and eventually make simple processing of the sensed

data. The data can be transferred to a central node in a centralized network, or it can be

locally processed instead in a decentralized network. A microwave link or a satellite link

can be finally used to extract the information from the WSN to take further actions.
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6 Introduction

Relevant topics of study for WSN applications include the design of low-cost simple

devices able to perform simple tasks, possible energy harvesting from the environment,

design of energy efficient communication protocols, self-organization of the network, man-

agement of node failures and information fusion, among others. A fundamental require-

ment to guarantee a proper information flow is that the network is connected, that is,

a path connecting each node with the network is needed. In a WSN, the existence of a

connection between a pair of nodes depends on the transmission power applied and on

their geographical location, which can be decided according to optimization methods or

it can be completely random; for instance, in natural areas with difficult or restricted

access, the nodes might be spread out from a plane. Higher levels of transmission power

results typically in more connections among the nodes. Therefore, the transmission power

and the location of the nodes determine the connectivity or topology of the network.

If the nodes in a WSN are not plugged into any form of power supply, energy becomes

a scarce resource and must be properly administrated. In situations where reaching the

devices is practically impossible or when the cost of mobilizing personnel is high, used-up

batteries may not be replaced. Although a good option is to provide the sensor nodes

with self-rechargeable batteries using for instance solar energy, a low-power consumption

is essential to guarantee a longer lifetime for the entire network. Energy saving commu-

nication protocols, periodic sleeping intervals and low-complexity programming are some

approaches to reduce the overall energy consumption of a WSN.

In summary, the nodes of a -possibly large-scale- WSN are therefore required to be

simple and preferably have a reduced size, be inexpensive yet reliable; these devices should

be able to perform simple computations and to implement low-complexity protocols.

In typical centralized deployments, the nodes convey their measurements to a more

complex and intelligent unit denoted fusion center (FC), in charge of collecting the data

of the network and making the final computations. Centralized networks require a proper

organization of the nodes and the implementation of medium access control (MAC) as

well as routing protocols to forward the data to the FC. In event-driven applications or for

instance when an emergency situation arises, the information flow to the FC can become

particularly high and create congestion. Moreover, a re-organization of the MAC and
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routing protocols is required every time a node falls down, turns to sleeping mode or is

added to the network. The hardware requirements for wireless communications may also

lead to an increase in the cost of the devices and thus, a higher overall cost of the network,

specially when the number of nodes becomes large. For these reasons, a centralized WSN

can be highly inefficient and expensive in terms of both energy consumption, scalability

and response to event-driven applications.

An alternative is a decentralized network, an architecture where all the nodes have

the same capabilities and are able to perform the same tasks. The principle of decen-

tralized systems is that the nodes organize themselves interacting locally and carry out

the computations without the necessity of conveying the information to a FC. Each node

communicates with neighboring nodes -often located within a small range- to exchange

their information and make decisions. A decentralized network is expected to provide

reliable results that approach a globally optimal solution and in some cases, the global

information is expected to be available at each node. A decentralized network can be also

organized in clusters, where a node within a cluster and denoted cluster-head functions

as a local FC, establishing a connection with other cluster-heads and forming an upper

layer of the network connected for instance to a computer with the final application. This

is an example of a decentralized network with a hierarchical structure [Gir05,Gir06]. In

this thesis however, decentralized WSNs refers to architectures without neither a central

node nor clusters-heads.

While in a centralized WSN the FC is in charge of the computations, in decentralized

architectures the computations are carried out in a distributed manner, giving rise to

distributed algorithms. A WSN can be therefore seen as a distributed computer aimed at

computing a function of the data collected by the sensor nodes, and can be designed using

tools of parallel and distributed optimization [Ber97,Rab04]. A distributed algorithm may

require global information, that is, information which can not be computed through local

interactions, or conversely it may only use data gathered by the nodes themselves along

with data received from one-hop neighbors. Whenever required, global parameter values

can be made available at each node through broadcasting or routing.

Some of the most critical aspects to take into account while designing distributed
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algorithms for WSNs are the scarcity of resources, the reliability of the final decision as

well as the robustness to node failures or sleeping mode periods [Lyn96, Gir06]. Smart

hardware design, energy saving algorithms and communication protocols are therefore

necessary to build robust and reconfigurable WSNs optimally exploiting the available

resources.

1.1 Distributed Consensus Algorithms

Distributed consensus algorithms are low-complexity iterative algorithms where neigh-

boring nodes communicate with each other to reach an agreement regarding a function

of the measurements, without the necessity of forwarding any information to a FC. In

particular, the average consensus algorithm computes the average of an initial set of mea-

surements [OS04]. In a digital implementation, each node in the network programs a

discrete dynamical system whose state is initialized with the value of one or several mea-

surements and updated iteratively using a linear combination of its previous state value

and the information received from its neighbors.

Also known as the alignment or the agreement problem [Bor82], consensus was early

studied by Tsitsiklis [Tsi84,Tsi86] and has received increased attention in different fields

due to its wide range of applications such as load balancing in parallel computing [Cyb89,

Ber97, Die97], coordination of autonomous agents [Jad03, Fax04, Lin05, Mor05, Ren05a,

Ols06], distributed control [Xia03,OS04,Wu05], data fusion problems [Zha03,Sch04,Spa05,

Xia05,Moa06,Sch08], or flocking in dynamical systems [Blo05,OS06]. Consensus could be

also seen as a form of self-synchronization of coupled oscillators [Vic95, Mir90, Bel04,

Hon05,Bar05a,Bar05b,Por08].

Linear consensus algorithms and nonlinear consensus algorithms are studied in con-

tinuous or in discrete form, and can converge either on the state, meaning that the state

of the dynamical system reaches a consensus, or on the state derivative, meaning that

the derivative of the state reaches a steady-state value. Algorithms converging on the

state are robust to changes in the connectivity of the network and have a bounded

state value [OS04], while algorithms converging on the state derivative are resilient to

propagation delays or to coupling noise. Detailed surveys for continuous-time and for
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discrete-time implementations of consensus algorithms converging on the state can be

found in [Ren05b, OS07]. Consensus algorithms converging on the state derivative are

thoroughly studied in [Bar05a,Bar05b,Pes06,Bar06,Bar07b]. [Bar07a] derives conditions

on the coupling mechanism, shows globally asymptotically stability of the synchronized

state and studies the impact of changes in the topology. Further, the impact of coupling

noise is studied in [Clo07] while the effect of propagation delay on both the synchronization

capability of the system and on the final estimate is studied in [Scu06].

Consensus algorithms can be synchronous, meaning that the nodes update their state

at the same time instant, or on the contrary they can be asynchronous, meaning that the

nodes update their state at different time instants. An example of an asynchronous con-

sensus algorithm is the random gossip algorithm, where we can distinguish between three

different forms of implementation: the pair-wise gossip algorithm [Boy05,Boy06,Gir06],

the geographic gossip algorithm [Dim08] and the broadcast gossip algorithm [Ays09]. The

gossip algorithm can be resumed as follows. A node wakes up randomly and either es-

tablishes a bidirectional communication link with a randomly chosen node to exchange

the state values in pair-wise and geographic gossiping, or it broadcasts its state to the

neighboring nodes within connectivity range in broadcast gossiping. The two first models

converge to the average of the initial values due to the symmetry of the communication

links, whereas the last one converges to a value different from the average consensus due

to the non-symmetric nature of the links. The difference between gossip and standard

consensus is that in the former, only one link/node is active at each iteration, whereas

in the latter, several nodes are transmitting at the same time. Gossip algorithms can be

therefore seen as asynchronous versions of the consensus algorithm with spatially corre-

lated links, and important contributions for gossip are useful for the convergence analysis

of consensus algorithms.

1.2 Convergence of Consensus Algorithms

Due to its iterative nature, the convergence of the consensus algorithm is determined by

the total number of iterations until reaching a steady-state value. A smaller number of

iterations until reaching a consensus is therefore interpreted as a faster convergence of the
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algorithm. In particular, a reduction in the total number of iterations until convergence in

a WSN can lead to a reduction in the total amount of energy consumed by the network,

a desirable result since energy is a scarce resource.

The convergence analysis of consensus algorithms has a vast literature, specially for

networks with time-invariant topologies and communication links exhibiting symmetry.

Regarding more general network characteristics, the number of contributions is more lim-

ited. Early results on consensus focus on fixed topologies [Xia03,Sch04], that is, networks

where the nodes and the communication links are assumed constant throughout time.

Regarding time-varying networks, [OS04] introduces the concept of switching topology

which refers to a deterministically time-varying model where at each time instant, the

network adopts a topology from a finite known set. In that contribution, convergence

conditions for networks with such topologies are derived. Furthermore, the effect of time

delays is studied in [OS04, Fan05, Xia06a, Lin09] whereas the effect of additive noise is

addressed in e.g. [Xia05,Xia06b,Hat05,Kar09,Ays10].

When the links are symmetric or bidirectional, the topology of the network is de-

noted undirected. On the other hand, when the links are asymmetric or directional,

the topology of the network is denoted directed. In the presence of random failures

caused by for instance changes in the environment, mobility of the nodes, asynchronous

sleeping periods or randomized communication protocols, the topology of a WSN varies

randomly with time and the convergence can be characterized in probabilistic terms.

Important contributions for undirected random networks with independent links in-

clude [Hat04,Hat05,Ols06,Pat07,Kar07] whereas for directed random networks with in-

dependent links important contributions include [Wu06,Por07,TS08,Por08,Zho09,Pre10].

The works in [Aba10, Jak10] provide results assuming correlated random topologies,

whereas [Boy06,Pic07,Fag08,Ays09,Ays10] focus on random gossip algorithms.

This PhD thesis focuses on the convergence analysis and optimization of distributed

consensus algorithms for wireless sensor networks. The impact of quantization noise in

the performance of the algorithm in a network with fixed topology is also studied, where a

new scheme including quantization is proposed. The convergence in networks with random

topology is studied, focusing particularly on convergence in expectation, mean square
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convergence and almost sure convergence.

1.3 Thesis Outline and Contributions

The work described in this PhD thesis is the result of the research on discrete-time

consensus algorithms converging on the state for WSNs and, in particular, on the average

consensus algorithm for the estimation of physical parameters like temperature, humidity,

pressure, etc.

The organization of the thesis and the main contributions from each chapter are de-

scribed below, along with the publications which resulted from the research. The use of

graph theory terms and concepts is widely used throughout this thesis, and for that rea-

son, the next chapter is devoted to introduce graph theory concepts. The third chapter is

devoted to consensus algorithms while the last three chapters present the main results of

this thesis, concerning the effect of quantization noise in fixed topologies and probabilistic

convergence in networks with random topologies.

Chapter 2

This chapter presents a review of fundamental concepts of algebraic graph theory and

the notation used in subsequent chapters. Notions of connectivity for undirected and for

directed graphs, definitions of subgraphs and trees and an overview of common graph

topologies are presented. The matrices associated with a graph, with special focus on the

Laplacian matrix along with its spectral properties are described in detail. Definitions for

deterministic time-varying and for random time-varying graphs are finally presented.

Chapter 3

This chapter presents the state of the art on discrete-time consensus algorithms converging

on the state for applications aimed at estimating one or several parameters. We start

presenting the time-invariant consensus model and review the conditions for convergence

to a common value in directed and undirected topologies, as well as the conditions to

reach the average of the initial set of measurements. Then, we introduce consensus in
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time-varying topologies, differentiating between the deterministic case and the random

case, and define different forms for random convergence of the state vector. We review

some commonly used designs for the weight matrix of the consensus algorithm, with

special focus on the uniform weights model and its convergence conditions. Finally, we

discuss approaches to reduce the convergence time of the consensus algorithm in networks

with time-invariant topology.

Chapter 4

The focus of this chapter is on consensus algorithms with quantized information exchange.

A detailed review of existing contributions is provided as well as the quantization noise

model used in the chapter. A new approach which results from a modification of the well-

known discrete-time consensus model by Olfati-Saber and Murray [OS04] is presented,

and its performance is evaluated by analyzing the mean square error of the state with

respect to the average of the initial values, as well as its asymptotic behavior. Conversely

to existing models that include quantization, the mean square error of the state for the

proposed model converges and its limit admits a closed-form expression. An upper bound

for the limit of the mean square error which depends on general network parameters is

derived as well.

The work of this chapter has led to the publication of one article in an international

conference.

[Sil08] S. Silva Pereira and A. Pagès-Zamora, “Distributed consensus in wireless sensor net-

works with quantized information exchange”, Proceedings of the 9th IEEE Workshop

on Signal Processing Advances in Wireless Communications (SPAWC’08), pp. 241–

245, Recife, Brasil, July 2008.

Chapter 5

This chapter presents the study of mean square convergence of consensus algorithms in

networks with random directed topologies, where the mean square error with respect to

the statistical mean of the initial values is analyzed. For the case of random links with
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equal probability, closed-form expressions for the mean square error of the state and for

the asymptotic mean square error are derived, as well as the dynamic range and the value

of the link weights minimizing the convergence time. For the case of random links with

different probabilities, an upper bound for the mean square error of the state is derived

and the asymptotic mean square error is studied. Additionally, an approach to find the

optimum link weights minimizing the convergence time of the upper bound is provided.

Finally, a practical scheme of randomized transmission power intended to reduce the

overall power consumption of the network is proposed, where the results of the chapter

are used to minimize the convergence time of the algorithm in the mean square sense.

The technical contributions of this chapter have been published in the proceedings of

two international conferences and in one journal paper.

[Sil09a] S. Silva Pereira and A. Pagès-Zamora, “Fast mean square convergence of consensus

algorithms in WSNs with random topologies”, Proceedings of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP’09), pp. 2213–

2216, Taipei, Taiwan, April 2009.

[Sil09b] S. Silva Pereira and A. Pagès-Zamora, “Randomized transmission power for accel-

erated consensus in asymmetric WSNs”, Proceedings of the 3rd IEEE International

Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAM-

SAP’09), pp. 348–351, Aruba, Dutch Antilles, December 2009.

[Sil10a] S. Silva Pereira and A. Pagès-Zamora, “Mean square convergence of consensus algo-

rithms in random WSNs”, IEEE Transactions on Signal Processing , vol. 58, no. 5,

pp. 2866–2874, May 2010.

A contribution partially using the results of this chapter and not included in this PhD

thesis, is published in the proceedings of an international conference.

[Sil10b] S. Silva Pereira, S. Barbarossa, and A. Pagès-Zamora, “Consensus for distributed

EM-based clustering in WSNs”, Proceedings of the 6th IEEE Sensor Array and

Multichannel Signal Processing Workshop (SAM’10), pp. 45–48, Ma’ale Hahamisha,

Israel, October 2010.
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Chapter 6

This chapter studies the convergence of consensus algorithms in random networks assum-

ing spatially correlated links, where an optimization criterion that establishes a sufficient

condition for almost sure convergence is considered. The convergence is related to the

spectral radius of a positive semidefinite matrix for which we derive closed-form expres-

sions for both directed and undirected topologies. The minimization of this spectral radius

can be obtained as the solution of a convex optimization problem and the general for-

mulations derived subsume known protocols found in literature. Additional closed-form

expressions for the dynamic range and the optimum link weights for particular cases of

links with equal probability of connection are also provided. The analytical results are

further validated with computer simulations of a general case with different probabilities

of connection for the links and different correlations among pairs of links. Simulations of

a small-world network and simulations of a randomized transmission power network are

also provided.

The technical contributions of this chapter have been published in the proceedings of

two international conferences and in one journal paper.

[Sil11a] S. Silva Pereira and A. Pagès-Zamora, “Consensus in random WSNs with correlated

symmetric links”, Proceedings of the 12th IEEE International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC’11), pp. 136–140, San

Francisco, USA, June 2011.

[Sil11b] S. Silva Pereira and A. Pagès-Zamora, “When gossip meets consensus: convergence

in correlated randomWSNs”, International Conference on Wireless Technologies for

Humanitarian Relief (ACWR2011), Invited Paper, Kochi, India, December 2011.

[Sil11c] S. Silva Pereira and A. Pagès-Zamora, “Consensus in correlated random wireless

sensor networks”, IEEE Transactions on Signal Processing , vol. 59, no. 12, pp. 6279–

6284, December 2011.

Chapter 7

This chapter summarizes the results of this PhD thesis and discusses open problems.
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Graph Theory Concepts

The information flow among the nodes of a WSN is usually described using graphs. A

graph is a mathematical abstraction used to represent binary relations among the elements

of a set. These elements are called vertices and the relations are described by edges between

pairs of vertices. In terms of a WSN, the vertices represent the sensor nodes and the edges

represent the possibly time-varying wireless communication links among these nodes.

The connectivity of a WSN, described by the Laplacian matrix of its underlying graph

model, determines the capacity of the network to reach a consensus and characterizes the

convergence rate of the consensus algorithm [Fax04]. In particular, a symmetric Laplacian

matrix, associated with communication links exhibiting symmetry, is commonly assumed

in the study of consensus algorithms converging to the average of the initial values. The

spectral properties of the Laplacian matrix play an important role on the convergence

analysis of consensus algorithms, since the stability of the system is determined by the

location of its eigenvalues.

This chapter reviews important concepts on algebraic graph theory and presents the

notation used in the forthcoming chapters for the convergence analysis of consensus al-

gorithms [God01]. We start defining fundamental concepts and the matrices associated

with a graph in section 2.1. Notions of connectivity and the concepts of subgraphs and

trees, important to understand the results presented in the state of the art of consensus

algorithms, are given in section 2.2 and 2.3 respectively. Typical graph topologies are

15
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presented in section 2.4, and the Laplacian matrix associated with a graph along with

its spectral properties are described in section 2.5. Finally, section 2.6 introduces the ter-

minology used for deterministic time-varying graphs and random graphs, where we have

borrowed concepts from [Bol01,Erd60].

2.1 Fundamental Concepts of Graph Theory

A graph is defined as G V , E , where V is the set of vertices indexed with i 1, , N

and E V V is an unordered set of pairs of vertices from V called edges representing

a connection between two vertices, where the total number of vertices is M N2. The

edge between two vertices i and j is denoted eij and refers to the information flowing from

vertex j to vertex i.

If a direction is assigned to the edges, the relations are asymmetric and the graph is

called a directed graph, or a digraph. For a directed edge eij, j is called the head and i

is called the tail of edge eij. On the other hand, if no direction is assigned to the edges,

then eij E eji E for all pairs i, j V and the graph is called an undirected graph.

Graphs are graphically visualized using diagrams where vertices are depicted with points

and edges are depicted with lines from one vertex to another, while directed edges are

depicted with arrows. Examples of a graph composed of N 5 vertices and M 6 edges,

with undirected and directed edges are depicted respectively in Fig. 2.1 and Fig. 2.2.

Figure 2.1: Undirected graph with N 5 ver-

tices and M 6 edges.

Figure 2.2: Directed graph with N 5 vertices

and M 6 edges.
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Figure 2.3: Three diagrams depicting different binary relations.

Two undirected edges with the same end vertices are called parallel edges, while two

directed edges with the same head and tail are calledmultiple edges. An edge that connects

a vertex with itself is called a self-loop. These particular cases are depicted in Fig. 2.3.

An oriented graph is a directed graph without loops or multiple edges. An oriented

graph can be also seen as the result of assigning an arbitrary direction to each edge of an

undirected graph. Therefore, the set of edges of an oriented graph has one and only one

of the two edges eij, eji . For instance, the example graph in Fig. 2.2 is also an oriented

version of the undirected graph in Fig. 2.1.

A graph is called weighted if a weight is associated with every edge according to a

proper map W : E R, such that if eij E , then W eij 0, otherwise W eij 0.

Two vertices joined by an edge are called the endpoints of the edge. If vertex i and

vertex j are endpoints of the same edge, then i and j are said to be adjacent to each

other. An edge is said to be incident on a vertex if the vertex is one endpoint of the edge.

Two edges are adjacent if they have a common endpoint. The outgoing edges of a vertex

i are the directed edges whose origin is vertex i. The incoming edges of a vertex i are the

directed edges whose destination is vertex i.

In undirected graphs, vertices that are adjacent to a vertex i are called the neighbors of

i. In directed graphs, the neighbors of a vertex i are those vertices that have an outgoing

edge to i.

The set of all neighbors of a vertex i is defined as

Ni j V : eij E .

The edge structure of a graph G with N nodes is described by means of an N N
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matrix. The adjacency matrix A of G is the matrix with entries aij given by

aij
1 if eij E

0 otherwise
(2.1)

i.e., the ij th entry of A is 1 only if vertex j is a neighbor of vertex i. If G is weighted,

then aij W eij for all eij E . Further, if G has no self-loops aii 0, i.e., the diagonal

entries of the adjacency matrix are all equal to 0. If G is undirected, aij aji, i.e., A is

symmetric. For instance, the adjacency matrices for the undirected and for the directed

example graphs in Fig. 2.1 and Fig. 2.2 are given respectively by

AU

0 1 0 0 1

1 0 1 0 0

0 1 0 1 1

0 0 1 0 1

1 0 1 1 0

, AD

0 0 0 0 1

1 0 0 0 0

0 1 0 1 0

0 0 0 0 1

0 0 1 0 0

.

If we consider a given ordering 1, 2, ,M of the edge set E , the incidence matrix

B of an undirected graph G is the N M matrix with entries

bil
1 if vertex i is incident with edge l

0 otherwise
.

In other words, bil is 1 if vertex i is in the edge l, or equivalently edge l is incident to

vertex i. For digraphs, the incidence matrix is a 0, 1 -matrix such that

bil

1 if vertex i is the tail of edge l

1 if vertex i is the head of edge l

0 otherwise

. (2.2)

The incidence matrix for the example graphs in Fig. 2.1 and Fig. 2.2 are given respectively

by



2.1. Fundamental Concepts of Graph Theory 19

BU

1 0 0 0 1 0

1 1 0 0 0 0

0 1 1 0 0 1

0 0 1 1 0 0

0 0 0 1 1 1

, BD

1 0 0 0 1 0

1 1 0 0 0 0

0 1 1 0 0 1

0 0 1 1 0 0

0 0 0 1 1 1

, (2.3)

where the rows correspond to the ordering of the vertices and the columns correspond to

the following order of the edges

e21 1, e32 2, e34 3, e45 4, e15 5, e53 6.

Due to the arbitrary ordering of the edges, the incidence matrix is not unique. However,

the different versions of an incidence matrix for a given set of nodes vary only by column

permutation.

The in-degree and out-degree of a vertex i are determined by the sums of the weights

of the outgoing and the incoming edges respectively, i.e.,

dini

N

j 1

aji, and douti

N

j 1

aij.

A vertex i is said to be balanced if its in-degree and out-degree are equal, i.e., dini douti .

A digraph G is called balanced if all its vertices are balanced. Therefore, all undirected

graphs are balanced graphs.

The degree matrix D of G is the N N diagonal matrix with ij th entry given by

Dij

douti if i j

0 otherwise
(2.4)

where douti is the out-degree of vertex i. For graphs with unit weights, that is aij 1 for

each eij E , the diagonal entries of D coincide with the number of incoming edges for

each vertex, i.e., Dii Ni for all i V . The entries of the degree matrix are equal to the

row sums of the adjacency matrix, that is

D diag A 1

where 1 RN 1 is the vector of all ones and diag v refers to the N N diagonal matrix

whose entries are the elements of a vector v RN 1.
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2.2 Connectivity in Undirected and Directed Graphs

This section provides important definitions regarding the connectivity of a graph having

either undirected or directed edges. We start defining the concept of path, which leads to

the concept of connectivity.

A path from a vertex i to a vertex j is a sequence of distinct vertices starting with vertex

i and ending with vertex j such that consecutive vertices are adjacent. A simple path is

a path with no repeated vertices. A directed path is a path with directed edges. A strong

path in a digraph is a sequence of distinct vertices with consecutive order 1, , q V

such that ei,i 1 E , i 2, , q. A weak path is a sequence of distinct vertices with

consecutive order 1, , q V such that either ei 1,i E or ei,i 1 E .

A cycle is a closed path that starts and ends at the same vertex, and visits each other

vertex only once. A directed cycle is a cycle where all the edges are directed.

For instance, for the directed graph example in Fig. 2.2, the sequence of vertices 1, 2, 3

with edge set e21, e32 is a strong path, the sequence 2, 3, 4 with edge set e32, e34 is a

weak path and the sequence 5, 4, 3 with edge set e45, e34, e53 is a directed cycle.

In an undirected graph G, two vertices i and j are connected if there is a path from

i to j, or equivalently from j to i. An undirected graph is therefore connected if for any

two vertices in G there is a path between them. Conversely, two vertices i and j in an

undirected graph are disconnected if there is no path from i to j. An undirected graph is

disconnected if we can partition its vertices into two nonempty sets X and Y such that

no vertex in X is adjacent to a vertex in Y .

Whereas undirected graphs are either connected or disconnected, we can differentiate
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between different forms for connectivity in digraphs. A digraph is strongly connected if

any ordered pair of distinct vertices can be joined by a strong path. A digraph is quasi-

strongly connected if for every ordered pair of vertices i and j, there exists another vertex

that can reach either i or j by a strong path. A digraph is weakly connected if any

ordered pair of distinct vertices can be joined by a weak path. An alternative definition of

weakly connection is as follows: a digraph is weakly connected if the equivalent undirected

graph, i.e., the graph with no direction assigned to the edges, is connected. A digraph

is disconnected if it is not weakly connected, i.e., if the equivalent undirected graph is

disconnected. Strong connectivity in digraphs implies quasi-strong connectivity, and quasi-

strong connectivity implies weak connectivity, but the converse does not hold in general.

A graph is called a regular graph if all the vertices have the same number of neighbors.

The graph is denoted n-regular if the number of neighboring vertices is n for all vertices.

A graph is said to be complete if every pair of vertices has an edge connecting them. In

other words, every vertex is adjacent to every other, such that the number of neighbors

for each vertex is equal to N 1. A complete graph is also known as a fully-connected

graph.

2.3 Subgraphs and Trees

Consider a graph G V , E with vertex set V and edge set E eij : i, j V :

A subgraph Gs Vs, Es of G is a graph whose vertices and edges are subsets of the

vertices and edges of G respectively, such that Vs V and Es E . The graph G is then

called the supergraph of Gs.

A spanning subgraph of G is a subgraph Gs Vs, Es that contains all the vertices of G,

i.e., Vs V , and Es E . Any spanning subgraph of G can be obtained by deleting some

of the edges from E .

An induced subgraph of G is a subgraph Gs Vs, Es such that for any pair of vertices

i and j of Vs V , eij Es eij E . Any induced subgraph of G can be obtained by

deleting some vertices in V along with any edges in E incident to a deleted vertex.

A maximal subgraph of G is a subgraph Gs such that there are no other node in G that
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could be added to Gs, and all the nodes in the subgraph would still be connected.

A cliqué C of G is a complete subgraph of G which is also an induced graph. A cliqué

C is maximal if no vertex of G outside of C is adjacent to all members of C.

A connected component of an undirected graph G is an induced subgraph that is con-

nected and maximal. A connected graph has exactly one connected component, whereas a

disconnected graph is the disjoint union of two or more connected components. A strongly

connected component of a digraph is a subgraph that is strongly connected.

A particular case of a quasi-strongly connected digraph is the tree, where only one

vertex has a directed path to every other vertex in the graph. This distinguished vertex is

called the root and has no incoming edges, whereas every vertex i distinct from the root,

has only one incoming edge1. A n-ary tree is a tree in which every internal vertex has n

outgoing edges. In a binary tree, each vertex has at most two outgoing edges.

A subgraph Gs Vs, Es of G is a spanning tree if it is a tree and a spanning subgraph.

A graph is a forest if it consists in one or more trees with no vertices in common.

A subgraph Gs Vs, Es of G is a spanning forest if it is a forest and Vs V .

Figure 2.4: Example tree composed of 21 vertices and example forest composed of two

trees of 10 and 7 vertices respectively.

1For undirected graphs, a tree is a graph where any two vertices are connected by exactly one simple

path, i.e., a graph with no cycles.
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2.4 Examples of Common Graph Topologies

We overview some common topologies assumed in the study of graphs; some of them are

used throughout the analysis carried out in this thesis. The following models apply to

both undirected and directed graphs.

The ring A ring is a one-dimensional grid where the

vertices are spatially distributed forming a circle. The

ring is a 2-regular graph, since every node has exactly

two neighbors.

The lattice A lattice is a topology where the ver-

tices are spatially distributed according to a two-

dimensional grid. The number of neighbors for an in-

ternal vertex is 4, whereas for an external vertex is 2.

Random geometric graph A random geometric

graph consists in a set of vertices randomly spread in

a 2-dimensional area where every pair of vertices are

connected whenever the euclidean distance between

them is smaller than a given radius [Pen03]. In such

topologies, the radius must be asymptotically larger

than logN N to guarantee the connectivity of the

graph [Gir05].
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Small-world network In a small-world network,

most of the vertices are not neighbors of each other,

but most vertices can be reached from every other by a

small number of hops [Wat98]. Starting from a regular

grid, random connections can be established between

vertices by rewiring existing edges or by adding new

ones with nonzero probability.

Scale-free network In a scale-free network, the dis-

tribution of the vertex degrees follows a power law

[Cal07]. In these graphs, some vertices are highly con-

nected but most vertices have a low number of con-

nections. Scale-free networks have a number of ver-

tices which can sum up to some millions, and there-

fore statistical distributions are used for descriptions

rather than quantities. Examples of these structures

are commonly found in nature and in technology, like

for instance the Internet or the World Wide Web.

2.5 The Laplacian Matrix

This section introduces an important matrix associated with a graph, known as the con-

nectivity matrix or the Laplacian matrix, used for mathematical convenience to describe

the connectivity in a more compact form. In general, the spectral properties of the Lapla-

cian are of prime importance in the convergence analysis of the consensus algorithm, as

we will see in Chapter 3.

The Laplacian matrix of a graph G has ij th entry given by

Lij

douti i j

aij i j
.
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This definition can be expressed in matrix form as follows

L D A

where D and A are the degree and the adjacency matrix of G with entries defined in

(2.4) and (2.1) respectively. Recalling the example graphs in Fig. 2.1 and Fig. 2.2, the

corresponding Laplacian matrices are given respectively by

LU

2 1 0 0 1

1 2 1 0 0

0 1 3 1 1

0 0 1 2 1

1 0 1 1 3

, LD

1 0 0 0 1

1 1 0 0 0

0 1 2 1 0

0 0 0 1 1

0 0 1 0 1

.

If G is undirected, L can be also defined as the N N matrix

L BDB
T
D

where BD is the incidence matrix of G with an arbitrary orientation, and build using (2.2).

As an example, note that the Laplacian LU of the undirected graph in Fig. 2.1 can be

also obtained using the incidence matrix BD in (2.3) corresponding to the directed case

depicted in Fig. 2.2.

By construction, the Laplacian matrix of an undirected graph is always symmetric,

whereas the Laplacian of a digraph is not.

2.5.1 Spectral Properties of the Laplacian

In this section we review the spectral properties of the Laplacian matrix associated with a

graph. According to the Geršgorin circle theorem [Hor06], the eigenvalues of the Laplacian

L of a graph G are located inside the discs in the complex plane with centers in Lii and

radii given by the row-sums N
j 1
j i

Lij for each i, where denotes absolute value. Since

by definition the diagonal entries of L are nonnegative and all row-sums are equal to

zero, the Geršgorin circles are tangent to the imaginary axis at zero. Fig. 2.5 visualizes

an example of Geršgorin circles for the Laplacian in the complex plane.
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Figure 2.5: Geršgorin circles for the eigenvalues of the Laplacian matrix.

Therefore, the eigenvalues of L have nonnegative real parts and are all inside a circle

of radius 2doutmax where

doutmax max
i V

douti .

Since L 1 0, where 0 is a zero vector of length N , L has at least one eigenvalue zero

with associated right eigenvector 1.

In undirected graphs, the associated Laplacian is positive semidefinite and its eigen-

values can be arranged in non-increasing order as follows

2doutmax λ1 L λN L 0.

In addition, both the left and the right eigenvector associated with λN L is 1 such that

1TL 0T . In weighted digraphs however, a necessary and sufficient condition for 1 to

be the left eigenvector associated with λN L is that the digraph is balanced [OS04]. The

second smallest eigenvalue λN 1 L is known as the algebraic connectivity and reflects

the degree of connectivity of the graph [Fie73]. The algebraic connectivity can be used to

define the spectral gap, a quantity useful to get insight into important properties of the

graph like expansion2 and the mixing time of random walks [Hoo06]. In some cases, the

term spectral gap is directly used to refer to λN 1 L .

As it will be seen in Chapter 3, the conditions to reach a consensus are related to the

algebraic multiplicity of the eigenvalue zero of L. A necessary and sufficient condition for

λN L to have algebraic multiplicity one in undirected graphs, i.e., the algebraic connec-

tivity is nonzero, is that the graph is connected [Chu97]. If the algebraic multiplicity of

2Expansion of a graph requires that it is simultaneously sparse and highly connected.
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λN L is one, L is an irreducible matrix3. For digraphs however, a necessary and sufficient

condition for λN L to have algebraic multiplicity one is that the associated digraph has

a spanning tree, i.e., there is at least one vertex that can communicate with any other

vertex in the network [Ren05a]. Furthermore, the Laplacian of a digraph is irreducible if

and only if the digraph is strongly connected [Chu97]. Therefore, whereas in undirected

graphs a necessary and sufficient condition for the eigenvalue zero of L to have algebraic

multiplicity one is that L is irreducible, in directed graphs irreducibility of L is only a

sufficient condition.

If the geometric multiplicity of the eigenvalue zero is one, then rank L N 1. In

general, if the graph has c connected components then rank L N c. The proof of

this property for undirected graphs can be found in [God01], whereas the proof of this

property for digraphs is given in [OS04].

2.6 Graphs with Time-Varying Topology

This section introduces the notation to be used for time-varying graphs. We denote by

G k V , E k the graph with fixed vertex set V 1, , N and time-varying edge set

E k , where the edges can vary with time either deterministically or completely random.

The instantaneous set of neighbors of vertex i is denoted Ni k j V : eij E k

and the adjacency matrix is time-varying and denoted A k . The Laplacian matrix is also

time-varying and modeled as

L k D k A k

where D k is the instantaneous degree matrix. Analogously to the time-invariant case,

the instantaneous Laplacian satisfies L k 1 0 for all k by construction. Additionally, if

the instantaneous edges are balanced, 1TL k 0T is satisfied for all k.

3A matrix is irreducible if it is not similar to a block upper triangular matrix with two blocks via a

permutation [Hor06].
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2.6.1 Deterministic Time-Varying Topologies

If the time-varying set of edges E k belongs to a known finite set E1, E2, , EK with

K , the topology of the graph is called a switching topology. This time-varying

yet deterministic topology was defined in [OS04] to study the convergence of consen-

sus algorithms in directed networks. In that contribution, the instantaneous topologies

are assumed strongly connected and balanced for all k, i.e., L k is irreducible and the

eigenvalue zero of L k has 1 as both the left and the right associated eigenvectors for

all k. Therefore, the total number of elements in the set E k is bounded above with

K N N 1 .

Another connectivity concept is the periodical connectivity, defined in [Jad03] to reach

a consensus in time-varying undirected topologies. Consider a finite collection of graphs

SG G1,G2, ,GK for some K with vertex set V1,V2, ,VK . The union of the

graphs in SG is a graph Gu G1 G2 GK with vertex set Vu V1 V2 VK

and whose set Eu E1 E2 EK is the union of all the edges of the graphs in

SG. A collection of graphs SG is said to be jointly connected if the union of graphs Gu

is connected. A collection SG can be jointly connected even if none of its members is

connected. If a collection SG is jointly connected frequently enough over a finite sequence

of intervals, we say that the resulting graph is periodically connected.

2.6.2 Random Topologies

A random graph G k is a graph generated by some random process [Bol01]. Typically, the

set of vertices V is assumed constant throughout time whereas the set of edges E k varies

randomly with time. A general way of modeling the randomness of the edges consists in

assuming a probability of connection between two vertices i and j, such that eij E k

with probability 0 pij 1. Let’s define the N N connection probability matrix P

with ij th entry

Pij

pij i j

0 i j
. (2.5)
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The instantaneous adjacency matrix A k RN N of G k is random with statistically

independent entries over time given by

Aij k
1 with probability pij

0 with probability 1 pij
. (2.6)

Then, a realization G k at time k can be seen as a spanning subgraph of a graph with fixed

edge set. Due to the random nature ofA k , the instantaneous degree matrixD k and the

instantaneous Laplacian L k are also random and so are their corresponding eigenvalues.

The adjacency matrix has expected value A k Ā P whereas the degree matrix

has expected value D̄ diag P 1 . Analogously, the mean of the Laplacian is given by

L̄ D̄ P.

Note that L̄ can be seen as the Laplacian of the supergraph with fixed edge set, which

can be defined as G k Ḡ.

Erdős-Rényi models

Two well-known models of random graphs were introduced by Erdős and Rényi [Erd60],

each with a different way of modeling the randomness of the edges:

1. The Erdős-Rényi model G k V ,M refers to a random graph where at each

realization there are N vertices and exactly M edges whose endpoints may vary from

realization to realization. In other words, at time k a graph G k is chosen uniformly at

random from the collection of all graphs which have N vertices and M edges.

2. The Erdős-Rényi model G k V , p refers to a graph with N vertices where each

edge exists with nonzero probability p, equal for all the vertices. For this model, any pair

of vertices in the network can be connected with the same probability p regardless of their

position, and the number of edges varies generally from realization to realization. The

adjacency matrix for this model is a particular case of the general adjacency matrix in

(2.6) with pij p for all i, j V . The connection probability matrix defined in (2.5)

can be rewritten for this model as follows

P p J I
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where J 11T is an all-ones matrix and I denotes the identity matrix, both of dimen-

sions N N . The adjacency matrix A k and the degree matrix D k have mean given

respectively by

Ā p J I , D̄ N 1 pI.

Analogously, the mean of the Laplacian matrix is given by

L̄ p NI J .

Remark that as p 1, the number of edges increases and with p 1 we obtain a complete

graph at every realization. References to Erdős-Rényi graphs made throughout this PhD

thesis refer to this particular model.
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Distributed Consensus Algorithms

3.1 Introduction

Consensus algorithms are iterative schemes where autonomous agents or nodes communi-

cate with each other to reach an agreement regarding a certain value of interest, without

the necessity to forward any information to a central node or FC. At each iteration, the

nodes exchange information locally such that a common value is asymptotically reached.

In particular, the average consensus algorithm computes the average of an initial set of

measurements.

Consider a network composed of N nodes indexed with i 1, , N . Each node

has an associated scalar value xi defined as the state of node i -if several variables are

considered, a state vector is used instead-. The state is initialized with the value of a

measurement and updated iteratively using the information received from its neighbors.

We say that nodes i and j have reached a consensus if xi xj.

Consensus algorithms can be classified according to the value computed by the algo-

rithm. When the application requires only a global agreement and the value reached is

irrelevant, the algorithm is denoted unconstrained. On the other hand, when the applica-

tion requires the computation of a function of the initial measurements, the algorithm is

denoted constrained. For instance, let χ : RN R be a function of N variables x1, , xN

and let x 0 x1 0 , , xN 0 T be the vector of initial states of the network. Common

31
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functions of the initial measurements are

χ x
1

N

N

i 1

xi 0 , average consensus

χ x i d
out
i xi 0

i d
out
i

, weighted average consensus

χ x max
i

xi 0 , max-consensus

χ x min
i

xi 0 , min-consensus

where douti is the out-degree of node i, as defined in Chapter 2 -Section 2.1-.

Consensus algorithms can converge either on the state or on the derivative of the state.

Algorithms converging on the state are robust to changes in the topology of the network

and have a bounded state value, but are sensitive to propagation delays and additive noise.

On the other hand, consensus algorithms converging on the state derivative are resilient

to propagation delays or coupling noise, but are sensitive to changes in the topology of

the network and have unbounded state value.

In a continuous-time implementation, a simple algorithm to reach a consensus regard-

ing the state of N integrator agents can be expressed as an N th-order linear system

xi t
j Ni

aij xj t xi t (3.1)

where aij is the ij th entry of the adjacency matrix associated to the underlying graph

of the network and Ni denotes the set of neighbors of node i [OS04]. The state of the

network evolves according to the following linear system

x t Lx t (3.2)

where x t x1 t , x2 t , , xN t T is the vector of all states at time t and L RN N

is the Laplacian matrix associated to the graph. An equilibrium of the system in (3.1) is

a state of the form x c, , c T , with c R, unique for connected graphs and globally

exponentially stable [OS07]. For the case of undirected graphs, the algorithm in (3.2) is a

gradient-descent algorithm.

A generalized nonlinear extension of (3.1) for self-synchronization of mutually coupled

oscillators is given by

xi t gi yi
KC

zi j Ni

aijf xj t xi t (3.3)
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where gi yi is a function of the local observation yi, f is a nonlinear odd function, KC 0

measures the coupling strength and zi is a local parameter to control the final equilibrium

value [Bar07a]. The model in (3.3) converges on the state derivative and coincides with

the Kuramoto model [Kur03] when f x sin x and aij zi 1, for all i, j .

A discrete implementation of the expression in (3.1) yields the difference equation

given by

xi k 1
j Ni i

wijxj k , k 0 (3.4)

where wij is a nonzero weight assigned by node i to the information received from node

j, satisfying

j Ni i

wij 1. (3.5)

The weight wij can be seen as the degree of confidence assigned by node i to the infor-

mation received from node j [Ren05b].

Since discrete-time algorithms can be directly loaded to a digital device, in this thesis

we focus on discrete-time implementations of linear consensus algorithms converging on

the state, i.e., the consensus of the form (3.4) with link weights satisfying (3.5).

Outline of the Chapter

This chapter is devoted to a detailed review of discrete-time consensus algorithms of the

form (3.4). We start presenting the time-invariant consensus model by [OS04] in Section

3.2 and review the convergence conditions to reach a consensus as well as the conditions to

reach the average consensus, assuming directed topologies in Sections 3.2.1 and assuming

undirected topologies in Section 3.2.2. In Section 3.3 we present the consensus model for

networks with time-varying topology, where we distinguish between deterministic time-

varying topologies in Section 3.3.1 and random time-varying topologies in Section 3.3.2,

and introduce different forms of probabilistic convergence for the state vector. In Section

3.4 we describe common approaches to model the weight matrix with special focus on

the uniform weights model and its convergence conditions. In Section 3.5 we discuss

some approaches to minimize the convergence time of the consensus algorithm in fixed

topologies and in Section 3.6 we resume the conclusions of the chapter.
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3.2 Consensus Algorithms: The Time-Invariant Model

Consider a WSN with information flow characterized by a fixed underlying graph G

V , E with node set V 1, , N and edge set E V V . At time k, each node i

updates its state using a linear combination of its own previous value and the information

received from its neighbors as follows

xi k Wiixi k 1
j Ni

Wijxj k 1 , k 0

where Wij is the ij th entry of the weight matrix, and is the weight associated to the

edge eij. According to the model in (3.4) we have

Wij

wij eij E

0 eij E
i, j V

i.e., a nonzero entry of the weight matrix corresponds to a node i receiving information

from node j. Consider the vector of all the states of the network x k at time k. The

evolution of x k can be written in matrix form as follows

x k Wx k 1 , k 0 (3.6)

or equivalently

x k Wkx 0 , k 0. (3.7)

We say that the state of the nodes reach a consensus asymptotically if

lim
k

x k c1 (3.8)

where c R is the consensus value and 1 RN 1 is a vector of all-ones. The consensus

vector c1 belongs to the agreement space A, defined as

A RN 1 A span 1 . (3.9)

If the consensus value is given by

c
1

N
1Tx 0 (3.10)

we say that the nodes asymptotically reach the average consensus.

We review the conditions on the weight matrix W for a network characterized by a

time-invariant graph G, so that x k in (3.6) reaches a consensus. We review first the
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conditions to reach a consensus and the conditions to reach the average consensus in

networks with directed topologies in Section 3.2.1, whereas in Section 3.2.2 we address

the case of networks with undirected topologies.

3.2.1 Consensus in Directed Topologies

According to the expression in (3.7), the convergence of x k to a vector of the form c1

as in (3.8) depends on the existence of limk Wk, which is independent of the initial set

of values x 0 . Suppose that W is diagonalizable with eigenvalues λi W , i 1, , N .

The weight matrix can be expressed using its eigenvalue decomposition as follows

W QMQ 1 (3.11)

where Q is a nonsingular matrix whose columns are the right eigenvectors q1, ,qN ,

M is an N N diagonal matrix with the eigenvalues of W arranged in non-increasing

order of magnitude, and the columns of Q 1 T are the left eigenvectors v1, ,vN of

W. Substituting W for its factorization we have

Wk
N

i 1

λi W
kqiv

T
i (3.12)

where vT
i qj δij is satisfied for all i, j , and δij denotes the Kronecker delta function.

Consider now the spectral radius of W defined as

ρ W max
i

λi W , i 1, , N.

If ρ W 1, Wk does not converge as k increases because the sum in (3.12) grows

unbounded, and therefore x k in (3.6) cannot converge to a vector of the form c1. Further,

if ρ W 1, Wk converges to an N N zero matrix as k increases and x k converges

to the zero vector 0 RN 1. However, the algorithm converges for the case ρ W 1,

implying that λi W 1 must be satisfied for all i with -at least- one equality.

3.2.1.1 Conditions to Reach a Consensus

A consensus of the form (3.8) is asymptotically reached if the spectral radius ofW is equal

to 1, i.e., ρ W λ1 W 1 with associated right eigenvector q1 1 and λi W 1
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for i 2, , N such that

lim
k

Wk 1vT
1 (3.13)

with v1 satisfying 1Tv1 1. Then,

lim
k

x k 1vT
1 x 0 (3.14)

and the consensus value is c vT
1 x 0 . Actually this condition is not only sufficient but

also necessary, since if the algebraic multiplicity of λ1 W is larger than one, a consensus

of the form (3.8) cannot be achieved. This is easily explained considering that the algebraic

multiplicity of λ1 W is 2. Then, taking the limit of (3.12) yields

lim
k

Wk 1vT
1 q2v

T
2 .

Since the eigenvectors are linearly independent by definition, this sum cannot take the

form in (3.13). Similarly, (3.13) is not achieved if q1 1. Therefore, x k converges

asymptotically to c1 for any set of initial values x 0 if and only if W satisfies

W1 1

ρ W 1vT
1 1

(3.15)

where ρ W 1vT
1 is the second largest eigenvalue of W in magnitude. Summing up, the

conditions in (3.15) are that the weight matrix has row-sums equal to 1 as in (3.5) and

that the algebraic multiplicity of the eigenvalue one is 1. Note that these conditions apply

also for weight matrices with negative entries.

Moreover, if the weight matrix is defective, the algebraic multiplicity of at least one

of its eigenvalues is different from its geometric multiplicity, meaning that the number of

independent eigenvectors associated to that particular eigenvalue is less than its algebraic

multiplicity. The eigenvalue matrix M in (3.11) has therefore the form of a Jordan matrix

[Hor06]. According to [Nob88, Theorem 9.30], Wk is bounded as k if and only if

(1) ρ W 1 and

(2) if λi W 1, then its algebraic multiplicity equals its geometric multiplicity.

In other words, W may be a defective matrix but not in the eigenvalue 1 to ensure

the convergence of Wk. Therefore, if the conditions 1 and 2 above are satisfied, the

convergence conditions derived in (3.15) apply also for defective matrices.
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The convergence to a consensus has been also studied in terms of the underlying graph

model. For instance, assuming that the weight matrix is nonnegative with positive diagonal

elements and with row-sums equal to 1, a necessary and sufficient condition for the state

vector x k to achieve a consensus asymptotically is that the underlying graph model has

at least one spanning tree, meaning that there is at least one node that can communicate

with all the other nodes in the network [Ren05a]. Note that nonnegative matrices with

row-sums equal to 1 are called row-stochastic matrices, and all row-stochastic matrices

satisfy the convergence conditions in (3.15). Therefore, having a row-stochasticW in (3.6)

is sufficient to achieve a consensus. Moreover, if the graph has a quasi-strongly connected

topology, the consensus value reached is equal to the weighted average of the entries of

x 0 corresponding to those nodes that have a directed path to all the other nodes in the

network, i.e., the roots of the spanning trees contained in the topology [Ren05b].

3.2.1.2 Conditions to Reach the Average Consensus

We review now the conditions to reach a consensus on the average of the initial values,

i.e., the conditions such that the consensus value c is given by (3.10). Note that, according

to (3.14) the consensus value is given by c vT
1 x 0 . In order to compute the average of

the initial values, the left eigenvector associated with λ1 W must be v1 1, such that

as k tends to infinity we have

lim
k

Wk 1

N
11T

JN . (3.16)

Then,

lim
k

x k JNx 0

xave (3.17)

where xave is denoted the average consensus vector. Summing up, both the right eigen-

vector q1 and the left eigenvector v1 associated with λ1 W are all-ones vectors. A right

eigenvector 1 implies that after reaching a consensus the network will remain in consen-

sus, and a left eigenvector 1 implies that the average of the state vector is preserved from

iteration to iteration.
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Necessary and sufficient conditions for (3.6) to reach the average consensus asymptot-

ically, for any set of initial values x 0 are therefore

1TW 1T

W1 1

ρ W JN 1

(3.18)

or in other words, the matrix W has largest eigenvalue 1 with algebraic multiplicity one,

with associated left and right eigenvector 1. The condition 1TW 1T implies that the

topology of the network is balanced.

Analogous to the previous case, the convergence to the average consensus can be related

to the connectivity of the underlying graph model. Assuming that the weight matrices

are row-stochastic with positive diagonal entries, a necessary and sufficient condition to

solve the average consensus problem in weighted directed graphs is that the underlying

graph is strongly connected and balanced [OS04]. Remark that a row-stochastic matrix

with positive diagonal elements is also a primitive matrix1. Due to the Perron-Frobenius

theorem [Hor06], the eigenvalue 1 has algebraic multiplicity one and the weight matrix

satisfies the convergence conditions in (3.18). Furthermore, since the Laplacian is bal-

anced, so is the weight matrix and the conditions to reach the average consensus in (3.18)

are satisfied.

Fig. 3.1 depicts the evolution of the states for an example network composed of N 20

nodes with directed communication links where the consensus value is c 20.38, whereas

the average of the initial values is 1 N1Tx 0 19.91.

3.2.2 Consensus in Undirected Topologies

For the particular case of undirected topologies, that is when the communication links

are bidirectional, the weight matrix W is symmetric and the left and right eigenvectors

associated with the eigenvalue λ1 W are equal, i.e., q1 v1. Since q1 1 must be

satisfied to reach a consensus, we have that v1 1 by construction. The conditions in

1A nonnegative matrix X is called primitive if there exists a K such that for all i, j , the ij th entry

of XK is positive. A sufficient condition for X to be primitive is to be nonnegative irreducible with

positive entries on the main diagonal.
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Figure 3.1: Evolution of the states in a di-

rected network with N 20 nodes and average

of initial values equal to 1 N1Tx 0 19.91.

Figure 3.2: Convergence of the states to the

average consensus in the same network consid-

ering undirected communication links.

(3.18) become therefore equivalent to the conditions in (3.15) and the algorithm in (3.6)

asymptotically reaches the average of the initial values given by (3.10).

In terms of connectivity of the underlying graph model, a necessary and sufficient

condition to solve the average consensus problem in undirected topologies is that the

associated graph is connected [OS07, Lemma 1]. Under these connectivity conditions, the

Laplacian matrix and the weight matrix are both irreducible.

Fig. 3.2 depicts the evolution of the states for the example network used in Fig. 3.1

but considering instead undirected communication links. The consensus value c for the

undirected case is equal to the average of the initial values, i.e., c 1 N1Tx 0 19.91.

The models presented so far assume that the topology of the underlying graph model

is time-invariant. Although the set of nodes is usually assumed constant throughout time,

the communication links can vary with time and therefore, the information flow among the

nodes of the network must be described by means of a time-varying graph. The following

section presents the consensus algorithm in time-varying topologies.
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3.3 Consensus Algorithms: The Time-Varying Model

When the communication links of a network vary with time, the connectivity is charac-

terized by a dynamic graph G k V , E k , where the set of edges E k varies with

time while the set of nodes V remains constant. The consensus algorithm in (3.6) for

time-varying systems can be rewritten as follows

x k W k 1 x k 1 (3.19)

where

W k ij

wij eij E k

0 eij E k
i, j V

is the ij th entry of the time-varying weight matrix, being nonzero whenever there is

information flowing from node j to node i at time k. The evolution of the state vector

x k in (3.19) can be rewritten as follows

x k
k

l 1

W k l x 0 . (3.20)

Clearly, the convergence of x k to a vector of the form c1 as in (3.8) will be determined

by the convergence of the product k
l 1 W k l to a rank one matrix, that is, a consensus

is reached whenever

lim
k

k

l 1

W k l 1vT
1 . (3.21)

The convergence above is ensured if all the matrices in the set W k , k satisfy the

convergence conditions in (3.15). In addition, if all the weight matrices satisfy the con-

vergence conditions in (3.18), x k converges to the average consensus vector xave defined

in (3.17). However, the states will still converge to a consensus although the condition

ρ W 1vT
1 1 is not satisfied for all k, provided that the weight matrices have row-sums

equal to one and that the network is connected on average. These conditions will be deeply

analyzed in the study of probabilistic convergence of consensus algorithms. The existence

of the limit in (3.21) is studied in different ways depending on whether the instantaneous

weight matrices belong to a deterministic set or on the contrary, they conform a collection

of random matrices. We review existing contributions distinguishing between both cases

in the following sections.
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3.3.1 Consensus in Deterministic Topologies

In this section we review some of the most relevant contributions regarding consensus in

deterministic time-varying topologies, where the convergence is described in terms of the

connectivity of the underlying graph model, and where new concepts of connectivity have

been defined.

Olfati-Saber and Murray [OS04] introduces the concept of switching topology for di-

rected networks, which refers to a case where at each time instant, the instantaneous

topology belongs to a finite set of known topologies -see Chapter 2, Section 2.6.1-. In

that contribution, the authors assume that the topologies in the set are all strongly con-

nected and balanced, i.e., the instantaneous Laplacian is irreducible and the eigenvalue

zero has 1 as both the left and the right associated eigenvectors2. According to the model

in [OS04], this condition is equivalent to say that the weight matrix fulfills the conditions

in (3.18) at any time instant. For the particular case of undirected networks, W k is a

symmetric matrix and the conditions of strong connectivity and balanced nodes reduce

to the condition of a connected network at any time instant.

Jadbabaie et al. [Jad03] introduces the concept of periodical connectivity -see Chapter

2, Section 2.6.1- to show convergence to a common value in undirected networks assuming

row-stochastic and primitive weight matrices, i.e., the instantaneous weight matrices are

nonnegative and due to the Perron-Frobenius theorem [Hor06] they satisfy the convergence

conditions in (3.18). In that contribution, the properties of products of indecomposable,

aperiodic and stochastic matrices which result from Wolfowitz theorem [Wol63] are used

to show that a sufficient condition for the state vector to converge to a common value

asymptotically, is that the network is periodically connected. Clearly, periodical connec-

tivity of the network is a weaker condition than instantaneous connectivity, as assumed

in [OS04]. The value reached by the nodes depends on the set of initial values and on the

sequence of weight matrices.

Ren and Beard [Ren05a] generalizes the results in [Jad03] for directed networks with

positive weight matrices and shows that a necessary and sufficient condition to achieve

2The set of all topologies has therefore at most N N 1 elements.
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a consensus asymptotically assuming time-varying topologies is that the union of the

collection of graphs across some time intervals has a spanning tree frequently enough.

Then, the states of the nodes converge to the state corresponding to the root of the

tree. The requirement of having a spanning tree frequently enough is less strict than the

requirement of having a periodically connected network as in [Jad03], but guarantees that

the algebraic multiplicity of the eigenvalue zero of the Laplacian matrix is one frequently

enough. Recall that the Laplacian of a strongly connected digraph is irreducible, while

the Laplacian of a quasi-strongly connected graph is not.

Assuming a noisy model, Xiao et al. [Xia05] computes the maximum-likelihood (ML)

of the initial values in a network with a time-varying topology using two different para-

contracting matrices
3 to model the link weights, and shows that both models guarantee

convergence to the average consensus provided that the infinitely occurring communica-

tion graphs are jointly connected. Analogously to the assumption in [Jad03], the model

allows communication links to fail all the time but, the convergence is guaranteed as long

as the union of infinitely occurring communication graphs is jointly connected.

3.3.2 Consensus in Random Topologies

When the edges of a graph are added or removed unpredictably from the set at any

time, the graph can be seen as the realization of a random process. WSNs are normally

exposed to random communication failures caused by packet loss, range problems, mobility

of the nodes, nodes being switched off, damaged or turned to stand-by mode. These

communication impairments cause abrupt changes in the connectivity of the network,

which are described by means of a random graph.

Consider a supergraph Ḡ with a fixed number of nodes V and a fixed edge set E . A

realization G k at time k is a spanning subgraph of Ḡ whose edge set E k E varies

randomly with time. The weight matrix W k under these connectivity conditions is also

random and makes the state vector x k in (3.19) become a random process. In addition to

the condition imposed to the weight matrix on having row-sums equal to one, conditions

3A matrix is paracontracting with respect to the Euclidean norm if and only if all its eigenvalues lie in

the interval 1, 1 .
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on the connectivity of the underlying graph model must be imposed in statistical terms,

depending on the form of convergence desired.

Consider the agreement space A defined in (3.9) and let xa A. We may have the

following forms of convergence of the consensus algorithm:

• Sure convergence - We say that x k converges to a vector xa if

lim
k

x k xa

or equivalently, x k xa.

• Almost sure convergence - We say that x k converges almost surely -or with

probability one- to xa if

Pr lim
k

x k xa 1

or equivalently, x k
a.s.

xa. Almost sure convergence is also denoted as strong

convergence.

• Convergence in expectation - We say that x k converges to xa in expectation

if

lim
k

x k xa.

• Mean square convergence - We say that x k converges to xa in the mean square

sense if

lim
k

x k xa
2

2
0

where
2
denotes the 2-norm, or equivalently, x k

m.s.
xa.

• Convergence in probability - We say that x k converges to xa in probability

if for all δ 0

lim
k

Pr x k xa 2
δ 0

or equivalently, x k
P

xa.

Almost sure convergence implies convergence in probability. Convergence in the mean

square sense implies also convergence in probability.

Most contributions on probabilistic convergence of the consensus algorithm found in

literature address the analysis considering statistically independent links existing with
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a given nonzero probability, and the most relevant ones are reviewed in Chapter 5. In-

stantaneous communication links may be however spatially correlated not only due to an

intrinsic correlation of the channels between pairs of nodes, but also to the communication

protocol. An example is the random gossip algorithm, which is an asynchronous version

of the consensus algorithm with spatially correlated links. In random gossip algorithms, a

node wakes up randomly with probability 1 N and either establishes a bidirectional com-

munication link with another randomly chosen node as in pair-wise [Boy06] and geographic

gossiping [Dim08], or broadcasts its state to all its neighbors within its connectivity range

as in broadcast gossiping [Ays09]. Relevant contributions regarding probabilistic conver-

gence of the consensus algorithm assuming spatially correlated communication links are

reviewed in Chapter 6.

In the following section we review some approaches reported in literature to design the

weight matrix such that a consensus -constrained or unconstrained- is achieved.

3.4 Design of the Weight Matrix

The design of the weight matrix is performed using information on the topology of the

network and depends on the available information at every node. According to the ap-

plication, the communication links may be required to be undirected or directed. Some

weighting models assume that the nodes have global information available while other

models can be implemented using local information gathered directly by the nodes or

obtained through cooperation. The weight matrix model is also chosen depending on the

connectivity of the network, i.e., whether it is time-varying or fixed. When the topology

is fixed, the model is chosen to satisfy the convergence conditions reviewed in Section

3.2, either (3.15) or (3.18), whereas when the topology is time-varying the instantaneous

weight matrices are forced to satisfy either one of them.

3.4.1 Review of Common Weight Matrix Designs

Max-degree weights An approach to design the matrix W in graphs with time-

invariant topology consists in assigning a weight on each edge equal to the maximum
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out-degree of the network [Xia03], i.e.,

Wij

1 doutmax j Ni

1 douti doutmax i j

0 otherwise

where

doutmax max
i V

douti N 1.

Note that the value of doutmax must be previously determined and broadcasted across the

network before running the consensus algorithm. This is an example of a distributed

scheme using global information.

Local-degree weights Another approach to design the matrix W consists in assigning

a weight on each edge equal to the largest out-degree of its two incident nodes as follows

[Xia03]

Wij

1 max douti , doutj j Ni

0 j Ni

1
j i

Wij i j

.

For this model, each node requires knowledge of the out-degrees of all its neighboring

nodes. Analogous to the previous example, this information must be known by the nodes

before running the consensus algorithm and can be exchanged locally at the beginning of

the algorithm. This is an example of a distributed scheme using local information.

Pair-wise/geographic gossip This algorithm assumes a transmitting node i chosen

randomly with probability 1 N . Then, the transmitting node choses another node j with

a nonzero probability to establish a bidirectional communication link. The weight matrix

for a transmitting node i and a receiving node j at time k in random gossiping is modeled

as follows

W k I
ei ej ei ej T

2

where I is the N N identity matrix and ei denotes its ith column vector [Boy06]. In pair-

wise gossiping, j Ni, i.e., each node communicates only with neighboring nodes, whereas

in geographic gossiping, a connection is established with any j V through geographic
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routing. The state of the nodes in both algorithms converge asymptotically to the average

consensus. The pair-wise gossip and the geographic gossip are examples of distributed

consensus algorithms using global information.

Broadcast gossip In broadcast gossiping, a transmitting node q randomly chosen with

probability 1 N broadcasts its state to all the nodes within its connectivity range. The

weight matrix for the broadcast gossip algorithm has ij th entry given by

Wij k

1 i Nq, j i

γ i Nq, j i

1 γ i Nq, j q

0 otherwise

where γ is denoted the mixing parameter [Ays09]. For a proper choice of the mixing

parameter, the broadcast gossip algorithm reaches a consensus asymptotically but on

a value different to the initial average. The broadcast gossip requires the use of global

information.

Nearest-neighbor rule A well-known method for assigning weights in a graph with

time-varying topology is the nearest-neighbor rule [Vic95,Jad03], where

Wij k

aij k j Ni k

1
1 douti k i j

0 otherwise

aij k is the ij th entry of the instantaneous adjacency matrix, douti k is the time-varying

out-degree of node i and Ni k is the time-varying set of neighbors. The nearest-neighbor

rule does not preserve the average because 1TW k 1T , so the asymptotic agreement

depends on the set of initial measurements x 0 and on the sequence of graph topologies.

This approach is therefore not suitable to compute the average consensus.



3.4. Design of the Weight Matrix 47

Metropolis weights The metropolis weights for a graph with a time-varying topology

are defined as follows [Xia06c]

Wij k

1
1 max douti k ,doutj k j Ni k

1
l Ni k

Wil k i j

0 otherwise

.

Analogous to the local-degree weights model, each node requires knowledge of the out-

degrees of the neighboring nodes, but in this case the set of neighbors vary with time.

An approach to share the out-degree is to broadcast it together with the state value

at each iteration. Note that the diagonal elements are adjusted so that the sum of the

states remains unchanged and the conditions for convergence to the average consensus

are fulfilled.

Adaptive weights The adaptive weights model is designed for a graph whose links may

fail at random [Den08]. First, an optimal weight matrix WG computing the average con-

sensus is modeled for the fixed supergraph Gs assuming no link failures. Then, the weight

for each link is decided at each time step depending on whether there is a communication

failure or not as follows

Wij k

WG
ij j Ni k

1
l Ni k

Wil k i j

0 otherwise

.

The diagonal elements of W k are adjusted as well so the conditions for convergence to

the average consensus are fulfilled.

3.4.2 Consensus Algorithms with Uniform Weights

A widely used model for the weight matrix in both time-invariant and time-varying topolo-

gies and the one assumed throughout the analysis included in this PhD thesis, consists in

weighting the difference with the states of the neighboring nodes at each iteration with a

positive constant �, as proposed by [OS04]. The consensus algorithm with uniform weights
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� has an update equation given by

xi k xi k 1 �
j Ni

xj k 1 xi k 1 .

The weight matrix has in this case entries given by

Wij

�, j Ni

1 � Ni i j

0 otherwise

where denotes cardinality, or expressed in matrix form

W I �L (3.22)

where L is the Laplacian matrix of the associated underlying graph. The choice of �

must be properly made to guarantee that the weight matrix satisfies the convergence

conditions. For the time-varying case, the Laplacian matrix is time-varying and so is the

weight matrix, given by

W k I �L k . (3.23)

In some cases, the value of the link weights � is time-varying. For instance, in the presence

of additive noise [Hat05] proposes a decreasing link weight in order to reduce the variance

of the consensus value, and a similar approach is proposed in [Kar09]. Moreover, [Por07]

studies the consensus with link weights that are not necessarily positive. In our analysis

however, � is assumed equal for all the links, constant and positive, although a positive �

not necessarily results in a positive weight matrix. The optimum choice of � is described

separately in the following section.

3.4.2.1 Conditions to Reach a Consensus with Uniform Weights

Consider a WSN with time-invariant topology and implementing the consensus algorithm

in (3.6) with weight matrix defined in (3.22). According to the results from Section 3.2.1,

the weight matrix must satisfy the convergence conditions in (3.15) to reach a consensus.

The uniform weights model in (3.22) satisfies the first condition since by construction,

L1 0 and therefore W1 1. Further, in order to have ρ W 1vT
1 1, observe that

the eigenvalues of W are given by

λi W 1 �λN i 1 L , i 1, , N. (3.24)
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As described in Chapter 2 -Section 2.5.1- all the eigenvalues of L are located inside a disc

of radius doutmax centered on the real axis and tangent to the imaginary axis [Hor06], and

have therefore a nonnegative real part. Therefore, in order to have ρ W λ1 W 1, the

interval of possible values of � must be delimited. Using (3.24), we have that the dynamic

range of � is given by

� 0, 2β

with

β min
i 1, ,N 1
λi L 0

Re λi L

λi L 2

where Re[ ] denotes the real part -see Fig. 3.3-. Then, with an � belonging to its dynamic

range, we ensure that λi W 1 whenever λN i 1 L 0, i.e., the eigenvalues equal to 1

of W are associated with the eigenvalues equal to 0 of L, while the remaining ones are

less than 1 in magnitude. If the matrix L is positive semidefinite, which is the case in

undirected networks, its eigenvalues are real and can be arranged in non-increasing order

as follows

λ1 L λN L 0

and β 1 λ1 L , such that the dynamic range of � is 0, 2 λ1 L . A practical but more

restrictive solution is to choose � in the interval 0, 1 N 1 , since from spectral graph

theory we have that [God01]

2 N 1 2doutmax λ1 L .

Remark that substituting the value of � for its upper bound 1 doutmax we obtain the max-

degree weights model presented in Section 3.4.

The next step consists in ensuring that the eigenvalue zero of L has algebraic multi-

plicity equal to one such that ρ W 1vT
1 1. Recall that for digraphs, the eigenvalue

zero of the Laplacian matrix has algebraic multiplicity one if the digraph has a spanning

tree, which is a particular case of quasi-strongly connected topology where only one node

can reach all the other nodes of the network. Then, the weight matrix in (3.22) will have

an eigenvalue 1 with algebraic multiplicity one and a consensus will be asymptotically

achieved for an � belonging to its dynamic range. On the other hand, if the digraph has
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Figure 3.3: Visualization of Geršgorin circles in the complex plane for the eigenvalues

of the Laplacian and the resulting ones for the weight matrix in (3.22) with � 0, 2β .

no spanning tree, the algebraic multiplicity of λN L 0 is larger than one and the alge-

braic multiplicity of the eigenvalue λ1 W 1 is also larger than one for any choice of �.

Under these conditions a consensus of the form (3.8) can not be asymptotically achieved.

If the digraph is strongly connected, the Laplacian matrix is irreducible [Chu97] and

so is the weight matrix W. Further, if the digraph is strongly connected and balanced, L

is irreducible and balanced with all column-sums equal to zero. The column-sums of W

will be equal to one and the average consensus is asymptotically achieved for a proper

choice of �. If W is nonnegative, it is also a double-stochastic4 matrix. If in addition the

entries of the main diagonal of W are all positive, W is primitive and due to the Perron-

Frobenius theorem ρ W λ1 W with algebraic multiplicity one [Hor06]. From the

results in [OS04], having a primitive double-stochastic weight matrix modeled as in (3.22)

is a sufficient condition to achieve the average consensus in weighted directed networks. A

non-symmetric and non-balanced W can reach a consensus on a value different from the

initial average of x 0 . However, Rabbat et al. [Rab05] shows that the average consensus

can be asymptotically achieved in directed topologies provided that the value of the link

weights tends to zero, but at the cost of significantly increasing the convergence time.

For undirected graphs L is symmetric and for undirected connected graphs L is in ad-

dition irreducible. The resulting W is also symmetric and irreducible for an � belonging

to the dynamic range 0, 2 λ1 L , and under these connectivity conditions the average

4A nonnegative matrix is called double-stochastic if all its row-sums and column-sums are equal to 1.
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consensus is asymptotically achieved. On the other hand, if the undirected graph is dis-

connected, the algebraic multiplicity of the eigenvalue zero of L is larger than one. The

resulting W has several eigenvalues with modulus one and the state vector will converge

in clusters to different consensus values corresponding to the algebraic multiplicity of the

eigenvalue zero of L. The multiplicity of the eigenvalue zero of L reflects the number of

connected components of the graph.

In the following section, we review some strategies to achieve a faster convergence of

the consensus algorithms, both for general weight matrix models and for the uniform

weights model.

3.5 Minimizing the Convergence Time of Consensus Algorithms

Since iterations are power consuming, reducing the total number of iterations necessary to

reach a consensus is of prime importance to reduce the energy consumption and possibly

lengthen the network lifetime. The minimization of the convergence time of consensus

algorithms is therefore an important topic of research. We describe some approaches

assuming fixed topologies.

3.5.1 Minimizing the Second Largest Eigenvalue of the Weight Matrix

The convergence speed of Wk to a normalized all-ones matrix JN is controlled by the

second largest eigenvalue of W, as it can be seen from (3.12), where a smaller ρ W JN

will speed up the convergence. In general, an approach to reduce the number of iterations

needed to achieve a consensus consists therefore in decreasing the magnitude of ρ W JN .

[Xia03] defines the asymptotic convergence factor and the associated convergence time

as follows

ra sup
x 0 xave

lim
k

x k xave 2

x 0 xave 2

1 k

(3.25)

τa
1

log 1 ra

where xave is as defined in (3.17), whereas the per-step convergence factor and its associ-
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ated convergence time are defined as

rs sup
x k xave

x k 1 xave 2

x k xave 2
(3.26)

τs
1

log 1 rs

Based on the per-step convergence factor in (3.25), [Xia03] proposes a method to obtain

the optimum weight matrix that achieves the average consensus in time-invariant balanced

topologies as the solution of a semi-definite convex programming. This weight matrix is

allowed to have negative entries and is considered optimum in terms of the minimization

of ρ W JN . A time-varying case is addressed in [Jak10], where the mean square con-

vergence rate is considered as the optimization criterion to assign the optimum weights

in random networks with correlated links, as we will see in Chapter 6.

3.5.2 Maximizing the Algebraic Connectivity of the Graph

A well-known result from graph theory states that the algebraic connectivity of an undi-

rected graph, i.e., the second smallest eigenvalue of the Laplacian matrix λN 1 L , reflects

the degree of connectivity of the graph, meaning that a more connected graph has a larger

λN 1 L [God01]. For the case of weighted digraphs, Olfati-Saber and Murray [OS04]

shows that the value of λN 1 L̂ where L̂ L LT 2, is a measure of the speed of con-

vergence for the consensus algorithm with uniform weights model, where again a larger

λN 1 L̂ gives a faster convergence of the algorithm.

Some approaches found in literature concentrate on increasing the magnitude of the

algebraic connectivity by designing the topology of the network. An example is proposed

in [OS05] for undirected networks, where concepts from small-world networks are applied

to design the best topology maximizing λN 1 L . A similar concept is used also in [Ald05]

to design both the topology and the weights to be assigned to each link, whereas [Kar06]

focuses on minimizing the ratio λ1 L λN 1 L to achieve a faster convergence to a con-

sensus.
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3.5.3 Choosing the Optimum Uniform Link Weights

The uniform weights model described in Section 3.4.2 assumes fixed topologies, i.e., the

algebraic connectivity of the network is constant through time. The value of � in (3.22) can

be chosen such that the second largest eigenvalue of W is minimized, while still satisfying

the convergence conditions. As previously stated, according to (3.24), minimizing ρ W

JN is equivalent to maximizing the second smallest eigenvalue of the graph Laplacian

λN 1 L .

In case all the eigenvalues of W are real, the second largest eigenvalue in magnitude

will be the maximum between λ2 W , λN W , or expressed in terms of the eigenvalues

of L,

ρ W JN max 1 �λN 1 L , �λ1 L 1 , � 0,
2

λ1 L
.

Therefore, the optimum link weight � minimizing ρ W JN will be given by

�
2

λN 1 L λ1 L

which is attained at the intersection of two lines [Xia03,Sch04]. Remark however that any

value of � 0, 1 N 1 will satisfy the conditions for convergence. This is based on the

fact that doutmax N 1 and5 λ1 L 2doutmax. Thus, only knowledge the total number of

nodes would be sufficient to choose an � guaranteeing convergence of x k to a consensus,

although the convergence time would not be minimized.

For networks with random topologies, the dynamic range of � and its optimum value

will be determined for given conditions on the general parameters in the forthcoming

chapters. First, in Chapter 4 we will consider the convergence of the time-invariant model

in (3.6) assuming quantization noise. Then, in Chapter 5 we will consider the time-varying

model in (3.19) for random topologies with instantaneous directed links and study the

convergence in the mean square sense. Finally, in Chapter 6 we will study almost sure

convergence of the time-varying model in (3.19) assuming random topologies and com-

munication links which are allowed to exhibit spatial correlation.

5 In practice, in a random geometric network where communication takes place only among neighboring

nodes doutmax N 1.
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3.6 Conclusions of the Chapter

This chapter has introduced the network model for the discrete-time consensus algo-

rithm converging on the state. The time-invariant model for both directed and undirected

topologies has been presented, where the conditions to reach a consensus and the con-

ditions to reach the average consensus have been reviewed, not only in algebraic terms

but also in terms of the connectivity of the underlying graph model. The time-varying

consensus model has been presented, distinguishing between deterministic time-varying

and random time-varying topologies, as well as different forms of probabilistic conver-

gence for the state vector. A variety of designs for the weight matrix in time-varying and

time-invariant topologies have been described, assuming both directed and undirected

communication links, and using either global or local information. The uniform weights

model has been introduced along with its conditions for convergence. Finally, some ap-

proaches to reduce the convergence time of consensus algorithms in fixed topologies have

been discussed.



4

Consensus with Quantized Information Exchange

4.1 Introduction

The communications in WSNs are not only exposed to power constraints to reduce the

energy consumption, but also to bandwidth constraints. Therefore, in order to reduce the

requirements of bandwidth, the information is usually quantized before transmission.

Quantization is a nonlinear process applied to physical quantities to represent them

numerically. A quantizer is typically a staircase function ψq that transforms a continuous

set of values into a discrete set with a finite number of units by rounding them to the

nearest unit or quantization level, such that

xq ψq x (4.1)

represents the quantized version of an input signal x. The intervals between consecutive

quantization levels determine the accuracy of the representation, where narrower inter-

vals result in a better approximation to the original signal. If the quantization levels are

uniformly spaced, the quantizer is denoted uniform. Conversely, if the quantization levels

are not uniformly spaced, the quantizer is denoted non-uniform. A graphical representa-

tion of a uniform quantizer is depicted in Fig. 4.1, where the curve in solid line depicts a

symmetric version of the quantizer, i.e., having the same number of levels at both sides of

the ordinate axis, whereas the dotted line depicts the non-symmetric version of the same

quantizer.

55
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Figure 4.1: (i) Uniform symmetric quantizer (solid line) and uniform non-symmetric

quantizer (dotted line) with step-size ∆ and (ii) block-diagram of the quantizer ψq.

The use of a quantizer introduces an error determined by the difference between the

input signal x and the output signal xq, and called quantization noise. In the previous

chapter, no assumptions on quantization are made for the consensus algorithm described.

However, in a digital implementation of the algorithm, a more realistic assumption is that

the computations are carried out using floating-point numbers with double precision -i.e.,

64 bits precision-, while the information transmitted is quantized to reduce bandwidth

and power consumption. Therefore, in this chapter each node of the network is assumed

to update, encode and broadcast its state in quantized form into a packet at each iteration

of the consensus algorithm.

Outline of the Chapter

This chapter is devoted to study the average consensus algorithm where at each iteration

the information exchanged among neighboring nodes is quantized. A detailed overview

of the most relevant contributions found in literature is provided in Section 4.2 and the

quantization noise model assumed in the chapter is presented in Section 4.3. In Section

4.4 a simple transmission scheme combining data with floating-point precision and data
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with quantized precision is proposed, and which results from a modification of the well-

known discrete-time consensus model by Olfati-Saber and Murray [OS04]. The effect

of quantization noise on the performance of the algorithm is evaluated in Section 4.5 by

analyzing the mean square error (MSE) of the state computed with respect to the average

of the initial measurements. First, in Section 4.5.1 we assume that the quantization noise

is temporally uncorrelated, a reasonable assumption at the beginning of the consensus

algorithm. Then, in Section 4.5.2 we consider temporally correlated quantization noise.

The performance of the proposed model is compared with the performance of two different

algorithms found in literature including quantization noise. We will see that, conversely

to these examples, the MSE of the state for the proposed model converges as time evolves

and its limit admits a closed-form expression which can be computed offline. An upper

bound for the limit of the MSE which depends on general network parameters is also

derived, providing an a priori quantitative measure of the effects of quantization on the

consensus algorithm. The numerical results and the conclusions of the chapter are included

in Section 4.6 and Section 4.7 respectively.

4.2 Relevant Contributions on Consensus with Quantized Data

The concept of quantized consensus is introduced by Kashyap et al. [Kas06], where a ran-

dom gossip algorithm denoted the quantized gossip algorithm is proposed. The quantized

gossip algorithm restricts the state values of the network to be integers at each time step,

and is said to converge to the quantized consensus if the state vector belongs to the set

S z : zi
N
i 1 L,L 1 , S

N

i 1

zi 0

where L is an integer such that S NL R with 0 R N . In other words, z S has

N R entries equal L and R entries equal L 1. The quantized gossip algorithm has the

following iterative state update

z k ψq Wz k 1

where z k is the vector of integer states at time k, ψq is the quantization function and W

denotes the weight matrix satisfying the convergence conditions. The theory of Markov
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chains is applied to show that the state vector z k converges in probability to the set

S as k 1. A similar problem is addressed in [Fra08] which shows that, as long as

the distance from the consensus is much larger than the quantization step, the speed

of convergence is almost the same as for the consensus algorithm with floating-point

precision.

A straightforward approach to evaluate the impact of quantization consists in modeling

the quantization noise as an additive noise. Based on the average consensus model in

[OS04], Xiao et al. [Xia06b] studies the convergence to a consensus when the received

values at each iteration are assumed corrupted with an additive noise. Then, the update

equation can be expressed as

xi k Wiixi k 1
N

j 1,j i

Wijxj k 1 vi k 1

where vi, i 1, , N are independent identically distributed (i.i.d) random variables

(r.v.’s) with zero mean and unit variance. Expressing the update equation for the whole

network in matrix form yields

x k Wx k 1 v k 1 .

[Xia06b] shows that the variance of x k with respect to the vector of initial averages

given by

xave JNx 0 (4.2)

where JN is the normalized all-ones matrix, diverges with time. According to these results,

if quantization noise is modeled as an additive noise with i.i.d. components the algorithm

may fail to converge. On the other hand, Yildiz and Scaglione [Yil07] modifies the model

of [OS04] to include source coding strategies and quantization noise, and shows however

that when exploiting the increasing temporal and spatial correlation of the state values,

the variance of the state does not increase unbounded as time evolves. The main conclusion

of the paper is that, even using highly suboptimal coding strategies, when the correlation

of the data is taken into account, the MSE evaluated with respect to xave does not increase

with the number of iterations.

1The quantized consensus as defined by [Kas06] is therefore not a strict consensus, and is different from

the model of consensus with quantized information assumed in this chapter.
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Aysal et al. [Ays07a] presents an algorithm where the nodes implement a probabilistic

quantizer such that the quantized state at each iteration is equal to the analog state in

expectation. The update equation for this model is given by

xi Wiix
q
i k 1

N

j 1,j i

Wijx
q
j k 1 (4.3)

where xq
i is the quantized version of xi, as defined in (4.1)2. Using the theory of Markov

chains, almost sure convergence to a consensus in one of the quantized levels is shown,

where the expected value of the consensus value is equal to the average of the analog

measurements. The rates of convergence for the average consensus algorithm using prob-

abilistic quantization is addressed in [Ays07b]. Furthermore, Aldosari and Moura [Ald06]

proposes a model of consensus algorithms for distributed detection in sensor networks

based on the time-invariant model by [OS04] and studies the impact of quantization on

the performance. For this model, each node updates the state using its own value with

infinite precision and the values of its neighbors with quantized precision as follows

xi k Wiixi k 1
N

j 1,j i

Wijx
q
j k 1 . (4.4)

The paper shows through simulations that the performance of the dynamical system in

(4.4), evaluated in terms of probability of decision error, is degraded by the quantization

noise but can be improved introducing a small degree of randomness in the topology of

the network, affecting thus the structure of the matrix W. A trade-off between the total

number of communication links of the network and the amount of bits used for quantiza-

tion is established, where a higher number of connections leads to a faster convergence,

while a higher number of quantization bits leads to a smaller probability of decision er-

ror. Although the state of the nodes for the model in [Ald06] converge to a steady-state

value, the MSE of the state does not admit a closed-form expression, as we will see in

Section 4.5. In this chapter we propose a model including quantization noise which ad-

mits a closed-form expression for the residual MSE of the state, providing an a priori

quantitative measure of the effects of quantization on the consensus algorithm.

Other contributions not related to the work carried out in this chapter which are

2Remark that substituting xq
i k 1 with xi k 1 we obtain the time-invariant consensus model presented

in Chapter 3.
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also worth mentioning, include for instance Kar and Moura [Kar08a], which applies the

theory of controlled Markov processes to show almost sure convergence to the average

consensus when the data is randomized by adding an amount of statistical dither before

quantization and assuming a sequence of link weights decreasing in time. As in [Ald06],

the MSE is characterized with respect to xave and the trade-off between convergence

rate and accuracy of the estimates is discussed. [Kar10] extends the results of [Kar08a]

focusing on quantized consensus with random link failures, shows almost sure and mean

square converge assuming an unbounded quantizer range, and derives probability bounds

assuming a bounded quantizer range. Finally, Schizas et al. [Sch08] proposes distributed

MLE and BLUE estimators for the estimation of deterministic signals in ad hoc WSNs.

These estimators, formulated as the solution of convex minimization subproblems, exhibit

resilience against quantization noise.

4.3 Quantization Noise Model

In this section we present the quantization noise model assumed throughout the analysis

carried out in the chapter. Let’s consider a uniform quantizer with b bits, that is, with

a total of 2b quantization levels. Assuming a range Xmax, Xmax , the step-size of the

quantizer is equal to

∆
2Xmax

2b
.

Recall that using a higher number of bits for a given range, we obtain a smaller step-

size ∆ and a better approximation to the analog input signal and a smaller quantization

error, but also the requirements of storage and data processing are more demanding. The

trade-off between accuracy of the representation and bandwidth requirement is therefore

established by the size of the step ∆. Since roundoff errors have values between plus and

minus ∆ 2, we will consider that the quantization noise is modeled as a r.v. uniformly

distributed within the interval ∆ 2,∆ 2 . The variance of the quantization noise for

this model is thus given by

σ2
q

X2
max

3
2 2b.

The quantization noise is modeled as an additive noise such that the vector of quantized
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values can be expressed as follows

xq k x k eq k (4.5)

where eq k RN 1 is the error vector at time k, and eq k , k 0 conforms a set of

independent uniformly distributed zero mean random vectors.

According to the mathematical formulation in (4.5), the state values should diverge

for some models of the consensus algorithm, as we will see in Section 4.5, where the

MSE of the state is studied. This is not the case in practice and we will corroborate that

the states converge in the simulations section. The reason is that the error vectors for the

consensus algorithm are neither uniformly distributed nor spatially independent, although

both assumptions are made for mathematical simplicity. We propose however a model of

consensus including quantization noise that admits a closed-form expression for the MSE

of the state which converges as time evolves, presented in the following section.

4.4 Consensus Algorithms with Quantized Data

In this section we present a consensus algorithm based on the discrete-time model of

[OS04], given by

x k Wx k 1 , k 0 (4.6)

where the weight matrix is modeled using the uniform weights model

W I �L (4.7)

with constant � 0 and Laplacian matrix L associated with the underlying graph. The

eigenvalues of W and L are related as follows

λi W 1 �λN i 1 L , i 1, , N. (4.8)

The Laplacian matrix is assumed time-invariant, symmetric and irreducible, such that for

� 0, 2 λ1 L the weight matrix satisfies the following convergence conditions

1TW 1T

W1 1

ρ W JN 1

(4.9)
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i.e., it has largest eigenvalue λ1 W 1 with algebraic multiplicity one and associated

left and right eigenvector 1 RN 1, an all-ones vector of length N .

We assume that the nodes compute their state at each iteration using infinite -floating-

point- precision values but are only allowed to broadcast a quantized version of the up-

dated state. Then, at time k a node i updates its state using the quantized states received

from its neighbors combined with its own previous state as follows

xi k xi k 1
N

j Ni

Wij xq
j k 1 xq

i k 1

i.e., its own value is used both with floating-point precision and quantized. Rewriting the

expression above for the whole network in matrix form yields

x k x k 1 �Lxq k 1 . (4.10)

Assuming the quantization noise model given in Section 4.3, we can substitute (4.5) in

(4.10) to obtain

x k Wx k 1 �Leq k 1 . (4.11)

The performance of the algorithm in (4.11) is compared with the performance of two

different models including quantization. The first model assumes that each node updates

the state using its own previous value and the values received from neighboring nodes in

quantized form as in (4.3), with the quantization noise model presented in Section 4.3.

The difference equation for this model is given by

x k Wxq k 1 . (4.12)

After the state update at each node, the state is quantized and broadcasted. The second

model used for comparison is the one proposed in [Ald06], which assumes that the ith node

updates the state using the quantized state values received from its neighbors and its own

state value with floating-point precision as in (4.4). The resulting dynamical equation in

matrix notation is given by

x k WDx k 1 W WD xq k 1 (4.13)

where WD is a diagonal matrix with ii th entry equal to WD ii Wii.

In the following section we analyze the MSE of the state vector in (4.10) using the

expression in (4.11), where we show that, conversely to the case of (4.12) and (4.13), the
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formulation in (4.11) admits a closed-form expression for the MSE of the state which

converges as time evolves.

4.5 MSE Analysis of Consensus Algorithms with Quantized Data

In this section we analyze the MSE of the state vector in (4.10) using the expression in

(4.11). Due to the randomness of the quantization noise model in (4.5), the convergence

of x k is studied in probabilistic terms. We analyze the MSE of the state, defined as

MSE x k x k xave
2

2
(4.14)

where xave is the average consensus vector defined in (4.2). The MSE of the state can be

decomposed into the sum of the variance and the squared bias as follows

MSE x k x k x k
2

2
x k xave

2

2

var x k bias2 x k
(4.15)

so that the terms can be analyzed separately. The theoretical analysis will be carried out

under two different assumptions. First, we consider the case of spatially and temporally

uncorrelated quantization noise in Section 4.5.1. Then, we consider the case of spatially

uncorrelated but temporally correlated quantization noise in Section 4.5.2.

4.5.1 MSE with Temporally Uncorrelated Quantization Noise

We analyze the bias and the variance of the state vector x k in (4.11) when the quantiza-

tion error is assumed uncorrelated among nodes and uncorrelated from one time instant

to the next one. Under these conditions, the covariance matrix of the error vector can be

expressed as

eq l eTq m σ2
qδlmI (4.16)

with δlm denoting the Kronecker delta function. Note that the assumption of temporally

uncorrelated quantization noise is reasonable at the beginning of the consensus algorithm.

The MSE in (4.14) converges as time evolves, as shown by the following proposition.
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Proposition 4.1. Consider the algorithm in (4.11) with weight matrix W defined in

(4.7) and satisfying (4.9), and i.i.d. zero mean temporally uncorrelated random vectors

eq k , k 0 assumed independent of x 0 . The limit of the MSE of the state in (4.14)

as k increases is given by

lim
k

MSE x k σ2
q

N

i 2

1 λi W

1 λi W
(4.17)

where λi W , i 1, , N is the set of eigenvalues of W arranged in non-increasing

order and σ2
q is the variance of the quantization error.

Proof. Considering the quantized vector in (4.5), the dynamical system in (4.11) can be

rewritten as

x k Wkx 0 �
k

l 1

Wl 1Leq k l . (4.18)

We start the proof analyzing the bias term defined in (4.15). Since the error vectors eq k

are zero mean for all k, the expected value of the expression above is

x k Wkx 0 . (4.19)

Further, since W satisfies the convergence conditions in (4.9) we have

lim
k

Wk JN

such that

lim
k

x k JNx 0 xave

and substituting for x k in the bias term in (4.15) we obtain

lim
k

x k xave
2

2
0 (4.20)

showing that the bias is asymptotically zero.

The next step consists in analyzing the variance term defined in (4.15), which can be

expressed as follows

var x k �
k

l 1

Wl 1Leq k l
2

2
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where we have substituted for (4.19). Then, considering that L and W are symmetric we

have

var x k �2
k

l 1

eq k l TLW2 l 1 Leq k l

�2 tr
k

l 1

W2 l 1 Leq k l eq k l TL

where tr . denotes the trace function and in the last equality we have applied the linearity

of the trace and the expected value operators. Using the covariance matrix of the error

in (4.16) yields

var x k σ2
q tr W 2

k

l 1

W2l�2L2 . (4.21)

Although at first sight it could seem that the variance in (4.21) does not converge due to

the summation in the trace, we will show that indeed it does. Considering that W and

L are diagonalized by the same set of orthonormal eigenvectors we have W QΛWQT

and L QΛLQT , where Q is an orthogonal matrix and ΛW,ΛL are diagonal matrices

with the eigenvalues of W and L respectively, denoted by λi W , λi L , i 1, , N .

Then, remark that

W 2
k

l 1

W2l�2L2 QΛ 2
WMk�

2Λ2
LQ

T (4.22)

where Mk is an N N diagonal matrix with entries given by

Mk 11 k (4.23a)

Mk ii
λi W 2 λi W 2k 2

1 λi W 2
i 2, , N (4.23b)

where we have considered that λ1 W 1 and used the equality
k

l 0

λi W
l 1 λi W k 1

1 λi W
. (4.24)

Recalling that Q is orthogonal and using that λN L 0, the trace of the matrix in (4.22)

is given by

tr W 2
k

l 1

W2l�2L2
N

i 2

λi W
2 Mk ii�

2λN i 1 L 2

N

i 2

1 λi W

1 λi W
1 λi W

2k (4.25)
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where in the last equality we have substituted for (4.23) and used the eigenvalue rela-

tionship in (4.8). Substituting (4.25) in (4.21) and computing the limit as k increases

yields

lim
k

var x k σ2
q

N

i 2

1 λi W

1 λi W
(4.26)

where we have considered that λi W 1, for all i 2, , N . Finally, combining the

results in (4.20) and (4.26) we obtain the expression for the limit of MSE of the state in

(4.17), completing the proof.

Furthermore, considering the eigenvalue relationship in (4.8) and recalling that λ1 L

N [God01], we can obtain an upper bound for the limit of the MSE x k in (4.17), as

stated in the following corollary.

Corollary 4.2. The limit of the MSE of the state in (4.17) is upper bounded by

lim
k

MSE x k N 1 σ2
q (4.27)

where σ2
q is the variance of the quantization error and N is the total number of nodes.

Proposition 4.1 shows that the limit MSE x k as k tends to infinity exists and it can

be computed offline, whereas Corollary 4.2 provides an upper bound for the limit of the

MSE x k that depends only on general parameters of the network. These parameters

are the number of nodes of the network and the variance of the quantization noise.

For the sake of comparison, we will now analyze the MSE x k for the model in (4.12).

Considering the model for the quantized state vector in (4.5), the dynamical system in

(4.12) is equivalent to

x k Wx k 1 Weq k 1 (4.28)

Wkx 0
k

l 1

Wleq k l . (4.29)

Analogously to the previous case, we analyze the bias an the variance terms separately.

The computation of the bias is similar to the one in (4.20), since the expected value of
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x k in (4.28) is given by (4.19). We conclude therefore that the bias of x k for this

model is asymptotically equal to zero. For the computation of the variance, using (4.19)

and (4.29) and recalling that eq k is zero mean and independent of x 0 for all k we

obtain

var x k
k

l 1

Wleq k l
2

2
.

Then, we have

var x k tr
k

l 1

W2leq k l eq k l T

σ2
q tr

k

l 1

W2l (4.30)

where we have used (4.16). Note that the trace in (4.30) diverges for k , and this

can be seen observing that the sum can be expressed as a geometric series of matrices as

follows
k

m 0

Wm
s I, where Ws W2.

The geometric series above converges if and only if the eigenvalues of the matrix Ws are

less than one in magnitude. Since we know that λ1 W 1, Ws has largest eigenvalue

λ1 Ws 1 and the geometric series does not converge. An alternative way of showing

that the trace in (4.30) diverges is using the eigenvalue decomposition of W as in the

proof of Proposition 4.1, where

tr
k

l 1

W2l tr
k

l 1

QΛ2l
WQT

tr
k

l 1

Λ2l
W

N

i 1

Mk ii (4.31)

with Mk defined in (4.23). Substituting (4.23) in (4.31) and replacing further in (4.30),

yields

var x k σ2
q k

N

i 2

λi W 2 λi W 2k 2

1 λi W 2
.
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Finally, taking the limit of the expression above yields

lim
k

var x k σ2
q lim
k

k
N

i 2

λi W 2 λi W 2k 2

1 λi W 2
(4.32)

which shows that the variance diverges as k . Clearly, the variance of the quantization

error σ2
q forces the variance of the state to increase with time because the model in (4.29)

accumulates the error as time evolves. This behavior is already well-known and would

imply to stop the dynamical system run by the nodes once a consensus is achieved since,

otherwise, the states would start to diverge. In practice however, the consensus algorithm

with quantized state values converges, as we will see in the simulations section.

We will now analyze the MSE x k for the model in (4.13). Considering again the

quantized state vector in (4.5), the dynamical system in (4.13) is equivalent to

x k Wx k 1 W WD eq k 1 (4.33)

Wkx 0
k

l 1

Wl 1 W WD eq k l .

Analogously to the previous case, the bias for this model converges to zero as k ,

since the expected value of x k is given by (4.19). Regarding the variance term we have

var x k
k

l 1

Wl W WD eq k l
2

2

tr
k

l 1

W2 l 1 W WD eq k l eq k l T W WD .

Using (4.16) and taking the limit of the equation above yields

lim
k

var x k σ2
q lim
k

tr W 2
k

l 1

W2l W WD
2 . (4.34)

Although we have not found a closed-form expression for this limit, with computer sim-

ulations we have observed that this expression diverges, which similarly to the previous

case, is due to the summation term in the trace.
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4.5.2 MSE with Temporally Correlated Quantization Noise

In this section we analyze the bias and the variance of x k in (4.11) when the quantization

error is assumed uncorrelated among nodes but is exactly the same from one time instant

to the next one, once the state is stabilized. This is a reasonable assumption after the

consensus algorithm has reached a steady-state value. The covariance matrix of the error

vector in this case is given by

eq l eTq m σ2
qI. (4.35)

The MSE defined in (4.14) converges as time evolves in this case as well, as shown by the

following proposition.

Proposition 4.3. Consider the algorithm in (4.11) with weight matrix defined in

(4.7) and satisfying (4.9), and i.i.d. zero mean temporally correlated random vectors

eq k , k 0 assumed independent of x 0 . The limit of the MSE of the state in (4.14)

as k increases is given by

lim
k

MSE x k N 1 σ2
q (4.36)

Proof. Following a similar procedure as in the proof of Proposition 4.1, we find that the

bias term tends to zero whereas the variance is equal to

var x k σ2
q tr

k

l 1

k

m 1

Wm 1Wl 1�2L2 (4.37)

which is slightly different from (4.21). Using the spectral decomposition of L and W as

in (4.22), the trace in (4.37) is equal to

tr
k

l 1

k

m 1

Wm l 2�2L2 tr
k

l 1

k

m 1

Λm l 2
W �2Λ2

L

N

i 2

�2λN i 1 L 2λi W
2 λi W λi W k 1

1 λi W

2

(4.38)

where we have used (4.24) and substituted for λN L 0. Since the eigenvalues of W

are less than 1 in magnitude for i 2, N , the term λi W k 1 tends to zero as k .
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Taking the limit of the trace in (4.38) yields

lim
k

N

i 2

�2
λN i 1 L

λi W

2 λi W λi W k 1

1 λi W

2 N

i 2

�2λN i 1 L 2

1 λi W 2

N 1 .

where in the last equality we have used (4.8). Substituting for the bias and the variance

in (4.15) we obtain the limit in (4.36), which completes the proof.

Remark 4.1. The limit of the MSE in (4.36) obtained assuming a temporally correlated

quantization error coincides with the upper bound for the MSE derived in (4.27) for the

case of temporally uncorrelated quantization error. This behavior might be the result of a

quantization error becoming temporally correlated as time evolves.

Consider again the consensus model with quantization noise in (4.28). We analyze the

MSE x k when the quantization error is assumed temporally correlated with covariance

matrix given by (4.35). The bias term in this case tends to zero whereas the variance is

given by

var x k σ2
q tr

k

l 1

k

m 1

Wm l

σ2
q k

N

i 2

λi W λi W k 1

1 λi W

2

where we have used (4.24). Again, as k the term λi W k 1 tends to zero and the

limit of the variance is

lim
k

var x k σ2
q lim
k

k
N

i 2

λi W 2

1 λi W
2 (4.39)

Similarly to the case of the limit computed in (4.32), assuming temporally correlated error

vectors the variance of x k in (4.12) diverges as time evolves.

Consider now the consensus model with quantization noise in (4.33). We analyze the

MSE x k when the quantization error is assumed temporally correlated with covariance
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matrix given by (4.35). The bias term in this case tends also to zero whereas the variance

is given by

var x k σ2
q tr

k

l 1

k

m 1

Wm l W WD
2

and taking the limit yields

lim
k

var x k σ2
q lim
k

tr
k

l 1

k

m 1

Wm l W WD
2 (4.40)

which, similarly to the case in (4.34) diverges as time evolves.

According to the results obtained in (4.32) and (4.34), as well as the results in (4.39)

and (4.40), we would have expected the state values in (4.12) and (4.13) to diverge. How-

ever, in the simulations section we will observe that the MSE x k in both cases indeed

does not diverge. This mismatching between theory and practical results was already

pointed out in [Ald06] where the authors concluded that the actual eq k was not i.i.d.

for different time instants when a quantizer is implemented. In fact, the authors observed

that the variance of the quantization error decays with time. On the other hand, the

expression in (4.17) shows that the MSE x k for the proposed model in (4.10) does not

diverge. This theoretical approximation is useful to obtain closed-form expressions for the

bounds of the MSE x k of the estimation reached by the network.

4.6 Numerical results

In this section we present the results of the computer simulations evaluating the perfor-

mance of the model proposed in (4.10) implementing a uniform symmetric quantizer. The

simulated models are summarized in Table 4.1, where the model in (4.6) in floating-point

precision and denoted “No quant” is also included as a benchmark.

We consider a WSN composed of a set of nodes randomly deployed in a unit square

where a pair of nodes are connected whenever the euclidean distance between them is

smaller than a given radius a, centered at the transmitting node. The topology is assumed

connected and the Laplacian matrix is symmetric. The initial measurements are modeled

as Gaussian r.v.’s with mean x0 and variance σ2
0 5, uncorrelated among nodes. Since the

performances of the three models with quantization depend on how close the mean x0 is
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to a quantized value, x0 is selected at random within the range 15, 15 and different

at every realization. We implement a uniform symmetric quantizer operating in the range

of 20, 20 with b 3 and b 5 quantization bits. The quantization noise variance for

the case b 3 is σ2
q 2.0833, whereas for the case b 5 is σ2

q 0.1302. The link weights

are constant and set to � 2 N .

In the first set of simulations, we consider N 20 nodes and connectivity radius

a 0.35. Then, we consider the same deployment but with a more connected topology

letting a 0.50. The topologies, depicted respectively in Fig. 4.2 (i) and Fig. 4.2 (ii),

have an average out-degree equal to 5 in the first case and equal to 7.2 in the second

case. Subfigures 4.2 (iii)-(vi) show the evolution of the MSE of the state as a function of

the iteration index k, averaged over all nodes for 10.000 independent realizations of the

models in Table 4.1. Subfigures (iii) and (v) depict the results for the network with radius

a 0.35 for b 3 and b 5 quantization bits respectively, whereas subfigures (iv) and (vi)

depict the results for a radius a 0.50 and b 3 and b 5 quantization bits.

The simulations show that the MSE converges for all models and, as expected, the

performance improves with a higher number of bits - which is clearly observed comparing

subfigures (v) and (vi) -. The figures plot also the limits obtained with (4.17) for the

temporally uncorrelated quantization noise - dashed-dotted line - and (4.36) for the tem-

porally correlated quantization noise - dashed line -. For the case of b 5, the distance

between the limits obtained with (4.17) and with (4.36) becomes narrower while both

values approach the theoretical benchmark. In all cases, the empirical MSE converges to

a value confined between the two limits. The system with floating-point precision asymp-

totically reaches the average of the initial set of measurements, as expected.

No quant x k Wx k 1

Model 1 x k Wxq k 1

Model 2 x k WDx k 1 W WD xq k 1

Proposed x k x k 1 �Lxq k 1

Table 4.1: Simulated consensus models including quantization.
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(i) Deployment of 20 nodes with average out-degree

5.

(ii) Deployment of 20 nodes with average out-

degree 7.2.

(iii) Averaged MSE of the state for a 0.35 and

b 3.

(iv) Averaged MSE of the state for a 0.5 and

b 3.

(v) Averaged MSE of the state for a 0.35 and

b 5.

(vi) Averaged MSE of the state for a 0.5 and

b 5.

Figure 4.2: WSN deployments with N 20 nodes and connectivity radii a 0.35 (i), (iii), (v),

and a 0.5 (ii), (iv), (vi). The MSE of the state is depicted for the cases of b 3 and b 5

quantization bits respectively.
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Clearly, as the number of quantization bits increases, the performance of all models

improves and the curves approach the one for the infinite precision model. The results for

Model 1 show the worst performance even with a relatively high number of quantization

bits. Comparing the performance of the proposed model and Model 2, the former attains

a smaller MSE in all cases. For a higher average out-degree, the performance of the MSE

for the proposed model approaches the theoretical limit in (4.17). In other words, the

theoretical model in (4.11) is better suited for a more connected network. We observe

also that an increase in the average out-degree leads to a narrower distance between the

theoretical limit in (4.17) and the theoretical limit in (4.36), which coincides with the

upper bound derived in (4.27). This may be caused by the fact that, as the connectivity

increases, the magnitude of the eigenvalues of L increase and the limit in (4.17) approaches

the upper bound in (4.27).

In the second set of simulations, we consider N 50 and connectivity radius a 0.25.

We consider then the same deployment with a higher number of connection links letting

a 0.35, depicted in Fig. 4.3 (i) and 4.3 (ii) respectively. The topology has an average out-

degree equal to 6.6 in the first case and equal to 12 in the second case. Again, subfigures

(iii) and (v) depict the results for the network with radius a 0.25 for b 3 and b 5

quantization bits respectively, whereas subfigures (iv) and (vi) show the results for a

radius a 0.35 with b 3 and b 5 quantization bits.

Analogously to the first set of simulations, we observe that an increase in the number of

bits used for quantification leads to a smaller MSE for all models and a narrower distance

between the theoretical limits. An increase in the connectivity of the network leads also

to a better fit of the curve for the proposed model with the theoretical limit in (4.17).

In all topologies, the proposed model in (4.10) outperforms Models 1 and Model 2 and

results in a smaller residual MSE. Moreover, for a higher average out-degree, the perfor-

mance of the proposed model approaches the theoretical limit in (4.17). For a number

of quantization bits greater than 5, all models in Table 4.1 behave quite similar and the

curves approach the average of the initial set of measurements. Summing up, increasing

the number of bits used for quantization we obtain a smaller residual MSE with respect

to the infinite precision model.
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(i) Deployment of 50 nodes with average out-degree

6.6.

(ii) Deployment of 20 nodes with average out-

degree 12.

(iii) Averaged MSE of the state for a 0.25 and

b 3.

(iv) Averaged MSE of the state for a 0.35 and

b 3.

(v) Averaged MSE of the state for a 0.25 and

b 5.

(vi) Averaged MSE of the state for a 0.35 and

b 5.

Figure 4.3: WSN deployments with N 50 nodes and connectivity radii a 0.25 (i), (iii), (v),

and a 0.35 (ii), (iv), (vi). The MSE of the state is depicted for the cases of b 3 and b 5

quantization bits respectively.
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4.7 Conclusions of the Chapter

A model to achieve the average consensus in a WSN where the information exchanged

among nodes is quantized has been presented. The analysis of the MSE of the state has

been carried out considering spatially independent and both temporally uncorrelated and

temporally correlated quantization error vectors.

Conversely to the cases for two other models studied in the chapter, the MSE of the

state for the proposed model converges and its limit admits a closed-form expression in

both cases of temporally uncorrelated quantization noise and temporally correlated quan-

tization noise. Therefore, the limit of the MSE of the state can be computed analytically

offline.

The simulations show that, when a uniform symmetric quantizer is used, the proposed

model outperforms similar existing consensus models that also include quantization in

terms of the MSE. Moreover, the simulations show an increased agreement between the

practical model including quantization and the theoretical approximation using the addi-

tive noise model as the average out-degree of the network increases.

An upper bound for the limit of the MSE that depends only on general network

parameters is also derived. This upper bound might be useful in the design of the quantizer

implemented by the nodes.
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Mean Square Consensus in Random Networks

5.1 Introduction

The communications in a WSN are usually exposed to node and channel failures, changes

in the environment, mobility of the nodes or asynchronous sleeping periods which make

the topology vary randomly with time. The randomness of the topology can be owing also

to random communication protocols. When the existence of a link between a given pair

of nodes is random, the convergence of consensus algorithms is studied in probabilistic

terms [Kus71,Mao94] and the information flow among the nodes of the network is modeled

by a random graph.

The instantaneous links of the underlying random graph model of a WSN are usually

assumed to exist with a given probability, which can be assumed equal for all nodes as in

the case of Erdős-Rényi [Erd60] topologies or different for all pairs of nodes. If a random

geometric topology is considered1, the probability of connection for a link is nonzero only

for neighboring nodes within a connectivity radius and zero otherwise [Bol01,Pen03].

The convergence analysis of the consensus algorithm in networks with random topolo-

gies can be carried out considering either instantaneous undirected topologies, i.e., the

links are bidirectional at any time instant, or considering instantaneous directed topolo-

1The random geometric topology refers to a random geometric graph as defined in Chapter 2.
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gies, i.e., the links are unidirectional at any time instant. When the instantaneous topology

is assumed undirected or balanced directed, the states of the nodes converge to the av-

erage of the initial values. Particularly, when the instantaneous topology is undirected

the Laplacian matrix of the underlying graph model is positive semidefinite and all its

eigenvalues are real. In a practical implementation however, a symmetric instantaneous

topology may be a strong requirement since it compels the communication system to

implement for instance an acknowledgement protocol to ensure reciprocal exchange of

information at each iteration. On the other side, when the instantaneous topology is al-

lowed to be directed, the Laplacian matrix is non-symmetric at every iteration and, if it

is in addition non-balanced, the states of the nodes converge to a value different from the

initial average. This is a less restrictive assumption than the requirement of symmetry at

every time instant.

Furthermore, the links can be spatially independent or spatially correlated, as for the

case of random gossip algorithms. In this chapter we study the convergence in the mean

square sense of the algorithm in [OS04] for WSNs with random directed topologies and

statistically independent links, where the MSE of the state is evaluated with respect

to the statistical mean of the initial measurements. The constraint on instantaneous link

symmetry is relaxed and only symmetric probability of connection for every pair of links is

assumed. We consider a design of the link weights based on the MSE analysis to minimize

the convergence time of the algorithm. We start reviewing important contributions found

in literature regarding statistically independent random links in undirected and directed

topologies separately.

Contributions on Undirected Random Topologies

For Erdős-Rényi topologies, Hatano and Mesbahi [Hat04] shows convergence to a consen-

sus in probability using notions of stochastic stability, whereas Patterson et al. [Pat07]

characterizes the convergence rate of the consensus algorithm in terms of the eigenvalues

of a Lyapunov-like matrix recursion.

For links with different probabilities, Kar and Moura [Kar07] relates mean square

convergence of the consensus algorithm to the second smallest eigenvalue of the average
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Laplacian and derives bounds on the convergence rate, whereas [Kar08b] uses semi-definite

convex programming to propose a probabilistic topology that maximizes the convergence

rate when an overall budget for the consumption of energy is considered. Furthermore, the

works in [Kar09] and [Kar10] include the assumptions of channel and quantization noise

respectively and propose two different models to reduce either the bias or the variance

produced by the noise in the consensus value.

Contributions on Directed Random Topologies

For Erdős-Rényi topologies, Wu [Wu06] uses results from inhomogeneous Markov chains

to derive sufficient conditions for convergence in probability in graphs containing spanning

trees, whereas Preciado et al. [Pre10] derives closed-form expressions for the mean and

the variance of the asymptotic consensus value.

Rabbat et al. [Rab05] shows that the average consensus is asymptotically achieved in

directed topologies provided that the value of the link weights tends to zero, but at the

cost of significantly increasing the convergence time.

Assuming stochastic weight matrices with positive diagonals, Tahbaz-Salehi and Jad-

babaie [TS08] uses ergodicity properties to show almost sure convergence to a common

value, and relates the convergence to the second largest eigenvalue of the average weight

matrix.

Porfiri and Stilwell [Por07] shows that a sufficient condition for almost sure convergence

in continuous systems is that the eigenvalues of the average Laplacian matrix have positive

real parts and that the topology varies sufficiently fast, assuming either positive weights or

arbitrary weights. The paper shows that consensus is asymptotically achieved in random

directed graphs almost surely if the probability that the network is strongly connected is

nonzero, and this happens whenever the expected network is strongly connected. A similar

approach is presented in [Por08], where almost sure local synchronization of oscillators in

a random weighted directed graph is shown.

Finally, in Zhou and Wang [Zho09] the asymptotic and per-step convergence factors

from [Xia03] are redefined to characterize the convergence speed of the consensus algo-
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rithm using stochastic stability notions.

Outline of the Chapter

The chapter is organized as follows. Section 5.2 presents the consensus algorithm for

networks with random topologies and in Section 5.3 convergence in expectation to the

statistical mean of the initial values is shown. In Section 5.4 the convergence of the

MSE of the state values is analyzed and a general expression for the MSE which can be

computed for each iteration is derived. The general expression for the MSE is analyzed

distinguishing between random links with equal probability and random links with differ-

ent probabilities of connection. Section 5.5 addresses the case of an Erdős-Rényi random

graph model [Erd60], where a closed-form expression for the MSE of the state and for

the asymptotic MSE are derived along with the dynamic range and the optimum link

weights minimizing the convergence time. In Section 5.6 the case of different probabilities

of connection among the nodes is considered and an upper bound for the MSE of the

state is derived. Furthermore, the asymptotic upper bound is studied and the optimum

link weight minimizing the convergence time of the upper bound is defined. Section 5.7

presents a practical implementation of the algorithm with a scheme of randomized trans-

mission power where the results from Section 5.6 are used to reduce the convergence time.

Finally, the conclusions for the chapter are presented in Section 5.8.

5.2 Consensus in Random Directed Topologies

Consider a WSN with N nodes characterized by a directed random graph G k V , E k

where the communication links exist with a given probability, such that eij E k with

probability 0 pij 1. We assume that the probabilities are symmetric, i.e., pij pji.

Defining the connection probability matrix with entries Pij pij and Pii 0 for all

i, j V , the instantaneous adjacency matrix A k RN N of G k is random with

temporally independent entries given by

A k ij

1 with probability pij

0 with probability 1 pij
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and mean Ā P. The instantaneous Laplacian matrix given by L k D k A k is

random with mean L̄ D̄ P, where D̄ diag P 1 .

The consensus algorithm under these topology conditions has a difference equation

given by

x k W k 1 x k 1 , k 0 (5.1)

where x 0 is the vector of initial measurements, considered random, and the weight

matrix at time k is modeled as

W k I �L k , k 0 (5.2)

with random non-symmetric Laplacian L k and constant � 0, equal for all the links.

The matrices W k , k 0 in (5.1) are random, assumed independent of each other

and identically distributed with one eigenvalue equal to 1 and associated right eigenvector

1. The associated left eigenvector varies randomly from realization to realization because

W k is, in general, non-symmetric. The evolution of the state vector x k in (5.1) can

be then rewritten as follows

x k Mw k x 0 , k 0 (5.3)

where the product matrix

Mw k
k

l 1

W k l , k 0 (5.4)

is assumed independent of x 0 for all k. The product matrix Mw k has row-sums equal

to 1, and this is easily shown noticing that the matrices W k , k 0 have at least

one eigenvalue equal to 1 with associated right eigenvector 1. For those realizations with

k for which the eigenvalue λ1 Mw k 1 has algebraic multiplicity one, we have

that

lim
k

x k
1

N
1γT

Mx 0

where γM is the left eigenvector associated with λ1 Mw k for k .

From the results in [Rab05], we know that as the value of � approaches zero, the

states of the nodes asymptotically reach the average consensus xave JNx 0 where

JN 11T N , coinciding in this case with the ML estimator. In other words, γM tends to

a vector of all-ones as k increases. In general, as the value of � decreases, the convergence



82 Mean Square Consensus in Random Networks

time of the consensus algorithm in (5.1) increases. For that reason, we consider a value

of � not tending to zero, although at the cost of deviating from the average of the initial

measurements.

5.3 Convergence in Expectation to the Mean Average Consensus

Assume a set of initial measurements modeled as i.i.d. Gaussian r.v.’s with mean xm and

variance σ2
0, such that

x 0 xm1

x 0 x 0 T σ2
0I x2

mJ
(5.5)

where J 11T . Recalling the independence assumption of Mw k and x 0 in (5.3), we

have

x k Mw k x 0

and using the i.i.d assumption of the weight matrices W k , k 0

x k W̄k x 0 .

In order for the matrix power to converge, the expected weight matrix should satisfy the

following conditions

W̄1 1

1TW̄ 1T

ρ W̄ JN 1

. (5.6)

Remark that using (5.2), the expected weight matrix is given by W̄ I �L̄, where L̄ is the

expected Laplacian. L̄ can be seen as the Laplacian of a fixed undirected graph, defined as

the expected graph G k Ḡ. Due to the assumption of a symmetric connection prob-

ability matrix P, L̄ is symmetric, meaning that Ḡ is undirected. In addition, Ḡ is assumed

connected such that the smallest eigenvalue of the Laplacian λN L̄ 0 with algebraic

multiplicity one. Summing up, W̄ is symmetric by construction and double-stochastic for

� 0, 2 λ1 L̄ with eigenvalues λi W̄ 1 �λN i 1 L̄ for all i 1, , N . Using

(5.5), we can conclude that W̄ satisfies the convergence conditions in (5.6) since

lim
k

x k lim
k

W̄k x 0

JNxm1

x̄ave
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where x̄ave is denoted the mean average consensus vector, showing that the estimation is

asymptotically unbiased. Remark that if the set of initial values x 0 is assumed deter-

ministic, the average consensus xave is reached in expectation. Since the state vector x 0

is random and since the underlying random graph has an instantaneous directed topology,

we consider the convergence of the state vector x k in the mean square sense to x̄ave.

The following section addresses the analysis of the MSE of the state.

5.4 Mean Square Convergence to a Consensus

We evaluate the deviation of x k from the vector of statistical means x̄ave and study the

impact of the value of � on this deviation. Therefore, we analyze the MSE of the state

defined as

MSE x k
1

N
x k x̄ave

2

2
. (5.7)

Substituting (5.3) in (5.7) and expanding the expression yields

MSE x k
1

N
x 0 TMT

w k Mw k x 0

x 0 TMT
w k x̄ave x̄T

aveMw k x 0 x̄T
avex̄ave . (5.8)

For convenience, consider the matrix

Rw k MT
w k Mw k , k 0 (5.9)

which has row-sums and column-sums equal to 1. This is easily observed noting that

Rw k is symmetric by definition and has row-sums equal to 1, i.e.,

Rw k 1 MT
w k Mw k 1

MT
w k 1 W̄k T1 1

where the second equality holds because Mw k 1 1 and the last equality holds because

W̄ satisfies the convergence conditions in (5.6). However, Rw k is not necessarily a

nonnegative matrix for all k. Furthermore, using (5.5) and (5.9) and considering the

independence of Mw k and x 0 , the expression in (5.8) can be rewritten as

MSE x k
1

N
tr σ2

0I x2
mJ Rw k xm1

T W̄k T x̄ave

xmx̄
T
aveW̄

k1 x̄T
avex̄ave

σ2
0

N
tr Rw k . (5.10)
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The expression in (5.10) tells us that the MSE x k will be deviated from the variance

of the ML estimator, i.e., σ2
0 N , by a factor tr Rw k . In order to characterize this

deviation we start expanding the expression for Rw k in (5.9). Applying the linearity of

the trace and the expected value operators and using the fact that the random matrices

W k , k 0 are i.i.d., (5.10) can be expressed as follows

MSE x k
σ2
0

N
tr WT 1 . . .WT k 1 W k 1 . . .W 1 W 0 WT 0

σ2
0

N
tr Rw k 1 Cw (5.11)

where

Cw W k WT k

I 2�L̄ �2 L k L k T

and in the last equality we have substituted for (5.2). After some matrix manipulations,

we observe that L̄ and L k L k T have entries given respectively by

L̄ij

N

l 1

pil i j

pij i j

(5.12)

L k L k T
ij

2
N

l 1

pil

N

l 1

N

m 1
m l

pilpim i j

pij

N

l 1

pil

N

l 1

pjl

N

l 1
l j

pilpjl i j

. (5.13)

Therefore, Cw can be expressed analytically as

Cw I 2�L̄ �2 L̄2 2 D̄ D̃ (5.14)

where D̃ is a diagonal matrix with ii th entry

D̃ii P P 1 i, i 1, , N (5.15)

and denotes the Schur product. Remark that D̃ is the degree matrix of a graph whose

adjacency matrix has entries equal to the squared entries of P. The next step consists in

analyzing the MSE x k expression in (5.11) in two different scenarios: when all the links

have the same probability of connection and when all the links have different probability

of connection.
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5.5 MSE Analysis for Links with Equal Probability

In this section we assume an Erdős-Rényi random graph, where for any pair of nodes

i, j V , a communication link between them exists with probability pij pji p. The

following theorem resumes an important result:

Theorem 5.1. Consider the consensus algorithm in (5.1) with N nodes and weight matrix

defined in (5.2), probability of connection 0 p 1 equal for all the links and i.i.d. initial

values x 0 with mean xm and variance σ2
0. The MSE x k in (5.7) is equal to

MSE x k σ2
0

b

1 a b

a 1

1 a b
a b k (5.16)

where

a 1 2 N 1 p� 2 N 1 p N 1 N 2 p2 �2

b 2p� Np2�2
(5.17)

Proof. Replacing for L̄ p NI J , D̄ N 1 pI and D̃ N 1 p2I in (5.15), we

obtain

Cw b J I a b (5.18)

where a and b are as defined in (5.17). Then, replacing (5.18) in (5.11), the expression for

the MSE becomes

MSE x k
σ2
0

N
Nb a b tr Rw k 1

where we have used that Rw k 1 has row-sums equal to 1. Substituting the trace above

recursively and noting that tr Rw 1 tr Cw Na, we obtain

σ2
0

N
tr Rw k

σ2
0

N
N

k 2

l 0

b a b l a a b k 1

σ2
0

b

1 a b

a 1

1 a b
a b k

and the proof is completed.
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Remark 5.1. The closed-form expression derived in Theorem 5.1 allows us to compute

the MSE x k at any time instant off-line, as it only requires knowledge of the general

parameters N, p and �.

In the following sections we study the convergence conditions for the MSE x k in

(5.16) and the residual MSE after convergence.

5.5.1 Fast MSE Convergence and Optimum Link Weights

Since the convergence of the MSE x k is related to the value of the link weights �, we aim

at determining the dynamic range of �, finding the value that maximizes the convergence

rate of the MSE x k and evaluating the convergence time.

We observe that the convergence of (5.16) is related to the term a b . For simplicity,

for a given number of nodes N 1 and probability of connection 0 p 1 consider the

following function

f � a b

1 2Np� 2 N 1 p N 1 2 1 p2 �2. (5.19)

According to (5.16), the MSE x k converges whenever f � k 0, and a necessary and

sufficient condition for the power to approach zero as k is that f � 1. It is not

difficult to check that for N 1 and 0 p 1, f � is a quadratic nonnegative function

with f 0 1 and negative derivative in the proximity of � 0. Therefore, the optimum

� can be easily determined, as stated in the following lemma:

Lemma 5.1. For a given number of nodes N and a given probability of connection 0

p 1, the value of � that minimizes the convergence time of the MSE x k in (5.16) is

given by

�
N

2 N 1 N 1 2p p
. (5.20)
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Proof. The value of � in (5.20) corresponds to the minimum of a convex nonnegative

quadratic function, namely f � in (5.19). The value of � in (5.20) minimizes therefore

a b, resulting in a faster convergence of the MSE expression in (5.16).

The value of f � at the point � is given by

f �
2 N 1 1 p

2 N 1 N 1 2p p
.

Note that since f 0 1 and the derivative of f � is negative in the proximity of � 0,

we have 0 f � 1. The convergence time of the MSE x k is proportional to the

term

τmse
1

lnf �
.

Substituting for f � , the convergence rate of the algorithm is proportional to

τmse ln 1 2 N 1 1 p

2 N 1 N 1 2p p
. (5.21)

It is interesting to note that, as the network size increases, the value of � approaches

zero and the convergence rate of the algorithm given by (5.21) is faster. The impact of

the network size on the convergence time is more evident for low values of p because, as

p approaches 1, the consensus value is reached in a single iteration.

The results from Lemma 5.1 allow us to bound the values of � ensuring convergence

in the mean square sense, as stated in the following theorem:

Theorem 5.2. Consider the consensus algorithm in (5.1) with N nodes and weight matrix

defined in (5.2), probability of connection 0 p 1 equal for all the links and i.i.d. initial

values x 0 with mean xm and variance σ2
0. Then, x k converges in the mean square

sense if

0 �
2N

2 N 1 N 1 2p p
. (5.22)
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Proof. The demonstration follows from Lemma 5.1 and the fact that f � is a quadratic

nonnegative function with f 0 1, negative derivative in the proximity of � 0 and

vertex at the point � , whose value is given by (5.20). The dynamic range in (5.22) is

therefore determined by the values of � ensuring f � 1.

Remark 5.2. Theorem 5.2 resumes an important result. It states that if we choose �

belonging to the interval defined in (5.22), we can guarantee that as k , the algorithm

in (5.1) converges in the mean square sense to a consensus. In addition, choosing the

optimum link weight � in (5.20), the convergence time of the MSE x k is minimized

and proportional to (5.21).

For a network with a Erdős-Rényi topology, the expected Laplacian L̄ has one eigen-

value equal to 0 with algebraic multiplicity one and one eigenvalue equal to Np with

algebraic multiplicity N 1 . As the number of nodes increases, the upper bound for �

in (5.22) approaches the value 2 Np 2 λ1 L̄ . Moreover, in that case

�
1

Np

2

λ2 L̄ λN L̄

coinciding with the results derived in [Xia03] for a network with time-invariant topology.

According to the results in [TS08, Corollary 4], a necessary and sufficient condition

for almost sure convergence of the consensus algorithm in (5.1) is that the second largest

eigenvalue of the average weight matrix satisfies λ2 W̄ 1, assuming that the matrices

W k , k have positive diagonal entries. In our model however, we do not restrict the

instantaneous weight matrices to have positive diagonal entries, since that condition would

require � 1 N 1 and 1 N 1 � for p 1 1 N , resulting in a penalization of

the convergence speed.

[Kar08b, Lemma 11] states that for a network connected in average over time and

implementing the uniform weights model, the value of the link weight that minimizes the

convergence time of (5.1) in the mean square sense belongs to the interval 0, 2 λ2 L̄ ,

which in this case translates to 0 � 2 Np. However, the value of the optimum link

weight is not specified in [Kar08b], whereas in Lemma 5.1 we provide this value when



5.5. MSE Analysis for Links with Equal Probability 89

the links have equal probability of connection. In fact, it can be checked that � in (5.20)

belongs also to the interval 0, 2 Np specified in [Kar08b].

5.5.2 Asymptotic Behavior of the MSE

In this section we aim at determining the impact of the number of nodes and the proba-

bility of connection on the asymptotic MSE x k . In order to determine the asymptotic

MSE for the case of equally probable links, we choose a value of � in the interval defined

in (5.22). Then, the limit of the MSE x k as k is given by

lim
k

MSE x k σ2
0

b

1 a b
σ2
0

N

2N N2p�

2N 2 N 1 N 1 2p p �
σ2
0

N
g � (5.23)

where we have substituted for a and b defined in (5.17). Clearly, the function g � in (5.23)

approaches 1 as � 0, so the MSE at each node tends to σ2
0 N as the value of � 0,

and this result is compliant with [Rab05]. Therefore, g � provides the deviation of the

MSE x k with respect to the optimum σ2
0 N . Particularly, the deviation with respect

to σ2
0 N for the optimum � can be computed as follows

g �
4 N 1 1 p N2p

2 N 1 N 1 2p p
.

Furthermore, it can be seen that this deviation increases monotonically for � 0, 2�

and tends to infinity as � 2� . In order to gain intuitive insight into the impact of N and

p on the limit in (5.23), we assume that � is sufficiently small to approximate g � using a

first-order Taylor series expansion. Noting that g 0 1 and g 0 N 1 N 1 p ,

in the vicinity of � 0, the limit in (5.23) behaves as

lim
k

MSE x k
σ2
0

N
1

N 1

N
1 p � .
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This result shows that for small values of �, the impact of N on the deviation of the

asymptotic MSE with respect to σ2
0 N becomes negligible after a relatively high number

of nodes. On the other hand, the higher the probability of connection of the links is, the

closer the asymptotic MSE is to the benchmark σ2
0 N .

In summary, closed-forms expressions for the MSE x k and for the asymptotic

MSE x k have been derived, as well as for the dynamic range and for the optimum

link weights minimizing the convergence time in the mean square sense of the consensus

algorithm in Erdős-Rényi random networks with instantaneous directed links. Finally,

the impact of the number of nodes and the impact of the probability of connection on

the asymptotic MSE x k have been discussed. In the following section we present the

simulations results for an Erdős-Rényi network, whereas in Section 5.6 we generalize the

expression in (5.11) for the case of links with different probabilities of connection.

5.5.3 Numerical Results

The analytical results obtained in Section 5.5.1 and in Section 5.5.2 are supported with

computer simulations of a WSN composed of N 20 nodes randomly deployed in the

unit square where the communication links are randomly generated with probability p

0.4. The entries of the vector x 0 are modeled as Gaussian r.v.’s with mean xm 20

and variance σ2
0 5. A total of 10.000 independent realizations were run to obtain the

empirical MSE x k , where the position of the nodes and the connection probability

matrix P are kept fixed for all the realizations, while a new Laplacian matrix is generated

at each iteration.

Figure 5.1 shows the empirical MSE x k defined in (5.7) in log-linear scale along

with the theoretical closed-form expression in (5.16) (patterns) for three different cases:

(1) � 0.1094 found using (5.20) (dotted line)

(2) � 1 N 1 0.0526 (dashed line)

(3) � 0.2 2� (dashed-dotted line)

The benchmark value σ2
0 N 0.25 is included in solid line. As expected, the empirical

values obtained with (5.7) match the theoretical values obtained with (5.16). We observe
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Figure 5.1: Empirical and theoretical MSE x k as a function of k averaged over

N 20 nodes with p 0.4 and different values of �.

that the gap corresponding to the term g � defined in (5.23) decreases with �. However,

choosing the optimum � we achieve fastest convergence of the MSE x k (dotted line) as

stated by Lemma 5.1, whereas choosing the smallest � the curve is closer to the benchmark

(dashed line).

5.6 MSE Analysis for Links with Different Probabilities

In this section we generalize the results from Section 5.5 and analyze the MSE expression

in (5.11) for the case of communication links having different probabilities of connection.

At this point we make use of the results in [Fan94, Theorem 3], reproduced bellow:

Lemma 5.2. [Fan94] Inequality for the trace of matrix product - For any

matrix X RN N
and any symmetric matrix Y RN N

, let X X XT 2. Then

tr XY λ1 X tr Y λN Y Nλ1 X tr X (5.24)

where λ1 . and λN . denote largest and smallest eigenvalue respectively.

Using Lemma 5.2 we can resume an important result in the following theorem:
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Theorem 5.3. Consider the consensus algorithm in (5.1) with N nodes and weight matrix

defined in (5.2), symmetric nonnegative connection probability matrix P and i.i.d. initial

values x 0 with mean xm and variance σ2
0. Assuming that the largest eigenvalue of Rw k

in (5.9) is equal to 1 k 0, the MSE x k in (5.7) is upper bounded by

MSE x k
σ2
0

N
N tr Cw N

1 λk
N Cw

1 λN Cw
(5.25)

where Cw is the matrix defined in (5.14) and λN Cw denotes its smallest eigenvalue.

Proof. Applying Lemma 5.2, the trace term in (5.11) is upper bounded by

tr Rw k tr Cw λN Cw N λN Cw tr Rw k 1

where we have substituted for X Rw k 1 and Y Cw in (5.24), and assumed that

λ1 Rw k 1 1. Replacing tr Rw k 1 for tr Rw k 2 Cw above, and computing

the upper bound recursively until reaching Rw 1 we obtain

tr Rw k tr Cw tr Cw

k 2

i 1

λi
N Cw λk 1

N Cw tr Rw 1 N
k 1

i 1

λi
N Cw .

This inequality can be further simplified to

tr Rw k tr Cw tr Cw N
k 1

i 1

λi
N Cw

N tr Cw N
k 1

i 0

λi
N Cw

and replacing for the trace in (5.11) the proof is completed.

Theorem 5.3 states that, for a known connection probability matrix P, we can find

Cw using (5.14), compute its eigenvalues and then compute the upper bound for the

MSE x k in (5.25) for any time instant. It can be checked that when the link prob-

abilities are all equal, the value of the upper bound in (5.25) coincides with the exact
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expression in (5.16). This is due to the particular structure of Cw when substituting

pij p i, j .

Theorem 5.3 provides an upper bound for the estimation error of the consensus al-

gorithm whenever the matrix Rw k has largest eigenvalue equal to 1. This is a strong

condition and in the following subsection we give sufficient conditions on the value of �

to guarantee that Rw k has largest eigenvalue λ1 Rw k 1 k 0 and that the MSE

upper bound in (5.25) converges.

5.6.1 Asymptotic MSE Upper Bound and Optimum Link Weights

We observe that the term λk
N Cw on the right-hand side of the inequality in (5.25) tends

to zero as k increases and therefore, the upper bound for the MSE in (5.25) converges

whenever λN Cw 1. In order to analyze the asymptotic behavior of the upper bound,

we make use of the following Lemma:

Lemma 5.3. Consider the matrix Cw defined in (5.14) with symmetric connection prob-

ability matrix P. If � 0, 1 N 1 , the smallest eigenvalue of Cw satisfies

0 λN Cw 1, 0 pij 1 . (5.26)

Proof. The left inequality in (5.26) holds because Cw in (5.14) is a real, symmetric and

positive semi-definite matrix, and therefore its eigenvalues are all real and nonnegative.

To prove the right inequality in (5.26) we have that

tr Cw

N

i 1

λi Cw NλN Cw

therefore, the smallest eigenvalue of Cw is upper bounded by

λN Cw
1

N

N

i 1

Cw ii

1
2�

N

N

i 1

N

l 1

pil
�2

N

N

i 1

N

l 1

pil 2
N

m 1
m l

pim (5.27)
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where we have replaced for the diagonal entries of Cw. For simplicity, we denote the

expression on the right-hand side of (5.27) as the function h � . This function satisfies

h 0 1 and, after some algebraic manipulations we have

h
1

N 1
1

1

N 1 2

N

i 1

N

l 1

pil 2 N 2
N

m 1
m l

pim

1
N 2

N N 1 2

N

i 1

N

l 1

pil

1
N 2

N 1
1

where the first inequality holds because N
m 1
m l

pim N 2 and the second inequality

holds because we assume pij 0 for any pair i, j V . Since h � above is a convex

function on �, we have that

h � 1, � 0,
1

N 1
. (5.28)

Substituting (5.28) in (5.27) we prove the right inequality of (5.26).

Applying the results of Lemma 5.3, the asymptotic upper bound in (5.25) is

lim
k

MSE x k σ2
0

tr Cw NλN Cw

1 λN Cw
for � 0, 1 N 1 .

The expression above gives an upper bound for the error after the algorithm has converged,

and this upper bound can be computed off-line, since the matrix Cw depends on the

probability matrix P and on the constant �.

Lemma 5.3 shows that if we choose � in the interval in (5.28), the smallest eigenvalue

of Cw is less than one in magnitude, so the term λk
N Cw tends to zero as k . Note

that this dynamic range also guarantees that the weight matrices W k , k 0 in (5.1)

are nonnegative with positive diagonal entries. In that case, it can be shown that the

matrix Rw k is nonnegative for all k 0, and due to Corollary 8.1.30 in [Hor06], it

has largest eigenvalue one with algebraic multiplicity one. Thus, the upper bound for the

MSE x k in (5.25) applies and converges for � 0, 1 N 1 and in addition, x k

converges almost surely to a consensus by the results in [TS08].



5.6. MSE Analysis for Links with Different Probabilities 95

In general, the optimum � minimizing λN Cw and therefore minimizing the conver-

gence time of the MSE upper bound in (5.25) is greater than the upper limit 1 N 1 ,

which further guarantees that λ1 Rw k 1 with algebraic multiplicity one. However,

we have observed that the upper bound still converges for values of � exceeding the upper

limit in (5.28). This might happen because the matrix Rw k still has largest eigenvalue

equal to 1.

Since a smaller λN Cw would lead to a faster convergence of the upper bound, and

since λN Cw is not convex on �, we propose to select the value of � that minimizes λN Cw

using an exhaustive search in a closed interval. As we will observe in the simulation results,

the choice of � minimizing λN Cw provides convergence of the empirical MSE x k and

in addition, fast convergence of the algorithm.

5.6.2 Numerical Results

The analytical results obtained in Section 5.6 are supported with computer simulations.

Analogously to the previous set of simulations, we consider a WSN withN nodes randomly

deployed in the unit square where the communication links are randomly generated. The

entries of the vector x 0 are modeled as Gaussian r.v.’s with mean xm 20 and variance

σ2
0 5. A total of 10.000 independent realizations were run to obtain the empirical

MSE x k , where a new Laplacian matrix is generated at each iteration.

First, we simulate a small-world network [Wat98] with N 20, 4 nearest neighbors

and shortcut probability 0.4. The non-zero entries of the matrix P are set equal to p

0.4. Three different values of � were tested for the deployment, all of them satisfying

λN Cw 1. For the small-world network, we obtained

(1) � 0.1781 (solid line)

(2) � 0.0526 (dashed line)

(3) � 0.36 2� (dashed-dotted line)

Figure 5.2 shows the empirical MSE x k in log-linear scale for the small-world network

and the theoretical upper bound computed with (5.25) depicted with patterns. The bench-

mark value σ2
0 N 0.25 is included in solid line. We observe that although the upper
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Figure 5.2: Empirical MSE x k and theoretical upper bound for a small-world net-

work with N 20, 4 nearest neighbors, connection probability 0.4 and different values

of �.

bound curves for the two smallest values of � converge quite fast, the curve for � converges

even faster. We observe also that the curves for the empirical MSE x k behave rather

similar to the upper bound curves in terms of the convergence time, since the empirical

MSE x k shows a faster convergence also when the optimum � is chosen.

Finally, we simulate two random geometric networks2 with N 20 and N 100 nodes

respectively. In this case, the non-zero entries of the matrix P are modeled as i.i.d. r.v.’s

uniformly distributed between 0 and 1. The optimum link weights minimizing λN Cw are

� 0.0740 and � 0.0170 respectively (dotted lines), found using exhaustive searches

over closed intervals of positive values of �. The remaining choices are � 1 N 1

(dashed-lines) and � 2� (dashed-dotted line) as for the previous case. Figures 5.3 and 5.4

show the empirical MSE x k for the networks composed of 20 and 100 nodes respectively,

where the theoretical upper bound computed with (5.25) is depicted with patterns and

the benchmark values σ2
0 N 0.25 and σ2

0 N 0.05 respectively are included in solid

line.

Analogously to the small-world case, the upper bound curves for � in Fig. 5.3 and Fig.

5.4 converge faster than the curves for the two remaining cases, although the difference

2We refer here to a random geometric graph as defined in Chapter 2.
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Figure 5.3: Empirical MSE x k and theoretical upper bound as a function of k

averaged over N 20 nodes for different probabilities of connection and different

values of �.

Figure 5.4: Empirical MSE x k and theoretical upper bound as a function of k

averaged over N 100 nodes for different probabilities of connection and different

values of �.

is less remarkable. Again, the empirical MSE x k curves behave similarly to the upper

bound curves in terms of the convergence time, obtaining a faster convergence when the

optimum � is chosen.

The simulations show that all the values of � for which λN Cw 1 is satisfied,

guarantee the convergence of the upper bound but not necessarily the convergence of
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the empirical MSE x k . For instance, with N 20 and � 0.2 -no figures included-

the upper bound converges but the MSE x k diverges. This might be due to the fact

that the eigenvalue equal to 1 of the matrix Rw k is no longer the largest, and therefore

Theorem 5.3 does not be apply in this case. This problem is further studied in Chapter

6 where we study almost sure convergence of the consensus algorithm in networks with

random topologies where the communication links might exhibit spatial correlation. In

the following section we propose a practical implementation using random transmission

power at each iteration to reduce the overall power consumption of the network.

5.7 Application: Randomized Transmission Power Network

In this section, we present a heuristic scheme of randomized power transmission intended

to reduce the energy consumption of the network until reaching a consensus. After con-

vergence, we assume that the nodes switch to a save-energy mode in order to extend the

network lifetime. In the proposed scheme, the nodes transmit at each time instant using

different power levels selected at random from a predefined range of values and indepen-

dently of the rest of the nodes, such that the total amount of energy consumed by the

network is balanced among the nodes. In other words, the average power used is the same

for all the nodes. The transmission power at each node varies therefore with time and is,

in general, different among nodes at the same time instant.

The randomized transmission power scheme establishes random links between nodes

with different probabilities of connection, which results in an instantaneous random di-

rected topology. In order to minimize the convergence time of the algorithm, we use the

results from the analysis of the MSE x k in Section 5.6. As we will see with computer

simulations, the overall energy consumption of the network until convergence of the con-

sensus algorithm is strongly reduced with respect to a fixed symmetric topology that

spends the same average transmission power.
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Figure 5.5: Example network with N 5

nodes and R 3 power levels. The connec-

tivity radii for node i are ρ 1
i , ρ 2

i and ρ 3
i .

Figure 5.6: Map of probabilities of receiving a

packet from node i depending on distance d i, j

and on the connectivity radii.

5.7.1 Network Model

We assume a set of nodes randomly deployed in a given area. At each iteration, each

node transmits using a power level randomly selected from a predefined set of values, and

independently from the rest of the nodes. These power levels describe different concentric

circles of connectivity, centered at the transmitting node, and with a radius denoted ρi k

for node i at time k, proportional to the square root of the associated transmit power

level.

Without loss of generality, we define the set containing all the possible radii, arranged

in increasing order of magnitude as follows

R ρ 1 , ρ 2 , , ρ R (5.29)

where ρ 1 is the connectivity radius associated with the minimum power level, ρ R is the

connectivity radius associated with the maximum power level and R is the total number

of radii in R. Consider the distance between two nodes i, j V defined as d i, j and let

the connectivity radius for node i at time k belong to the set of radii, i.e., ρi k R. For

instance, if d i, j ρi k is satisfied at iteration k, then node j receives the information

from node i at time k. An example deployment of 5 nodes and 3 different transmission

power levels, with transmitting node i is depicted in Fig. 5.5.
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For simplicity, we assume that the power levels in (5.29) have all the same probability

of begin chosen, equal to

π
1

R
.

Then, the nodes located inside the first circle centered at node i will receive the information

from node i with probability 1, while the nodes lying only in the last annulus receive the

information from node i with probability π. The nodes outside the outer circle receive

information with probability 0. The connection probability matrix has entries Pij pij

with pij pji, given by

Pij

R l 1 π if ρ l 1 d i, j ρ l , l 1, , R

0 otherwise
(5.30)

for all pairs i, j V with ρ 0 0. The corresponding map of probabilities for the

example network in Fig. 5.5 is depicted in Fig. 5.6.

The set of neighbors for every node and consequently the corresponding adjacency

matrix A k , varies randomly from iteration to iteration depending on the instantaneous

choice of power levels. A k is clearly non-symmetric and random with symmetric mean

Ā P. An example of a random realization along with the corresponding instantaneous

adjacency matrix is depicted in Fig. 5.7.

Consider the consensus algorithm in (5.1) with weight matrix given in (5.2) and in-

stantaneous connectivity radii ρi k R for each node. Due to the random nature of

A k , L k is random and in general non-symmetric3. Therefore, the weight matrices

{W k , k 0} are by construction random, temporally independent of each other, non-

symmetric and satisfy W k 1 1. Assuming again that the network is connected in

expectation, L̄ is irreducible and so is the expected weight matrix W̄. Since our aim

is to minimize the overall energy consumption of the network, we aim at finding the �

that minimizes the convergence time of the state vector x k and the dynamic range of

� guaranteeing mean square convergence of the consensus algorithm implementing the

randomized transmission power scheme. Because of the lack of a closed form expression

3Note that for this model the entries of L k are spatially correlated among each other.
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A k

0 1 0 0 0

0 0 0 1 0

1 1 0 1 0

0 1 1 0 0

0 0 0 0 0

Figure 5.7: Example of a resulting instantaneous topology and its corresponding

adjacency matrix.

for the MSE x k , we use the theoretical results derived in Section 5.6 to characterize

the convergence time of the algorithm, particularly we compute the upper bound derived

in Theorem 5.3 for different probabilities of connection for the links.

5.7.2 Convergence of the MSE Upper Bound

Recall that the upper bound for the MSE in (5.25) converges if and only if λN Cw 1,

and the convergence time of the upper bound decreases as λN Cw 0. Using (5.12) and

(5.13), the matrix Cw can be rewritten as follows

Cw I 2�L̄ �2Υ (5.31)

where Υ has entries given by
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Υii 2
N

l 1

pil

N

l 1

N

m 1
m l

pilpim

Υij pij

N

l 1

pil

N

l 1

pjl

N

l 1
l j

Φl, i j

with

Φl

pil if ρ R d i, l d j, l

pjl if ρ R d j, l d i, l
, l. (5.32)

Since Cw in (5.31) depends on the matrix P, it can be computed off-line whenever we

have knowledge of the probabilities of connection. For the randomized transmission power

model, the matrixP can be derived using (5.30) when the node locations -which we assume

fixed- and the set of power levels R in (5.29) are known. Then, using an exhaustive search

over all values of � in a given interval we can choose the � that minimizes the magnitude

of λN Cw .

5.7.3 Performance Evaluation

In this section we evaluate the performance of the consensus algorithm in terms of con-

vergence time and energy consumption in a network implementing the randomized trans-

mission power scheme. We compare the performance of the proposed scheme with two

networks with fixed symmetric topology where the nodes transmit using constant trans-

mission power.

For that purpose, we simulate a WSN composed of N 100 nodes uniformly deployed

in a squared area of dimensions 100 100, where each node measurement is modeled as

an independent Gaussian r.v. with mean xm 4 and variance σ2
0 25. We evaluate

the performance of the randomized power network with several power levels and applying

uniform link weights � , where � is the link value that minimizes λN Cw . The instan-

taneous radius of connectivity for each node, denoted hereafter as ρvar, takes one of the

values in the set

R 5, 10, 15, 30 .
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The fixed topology networks use constant transmission power and optimum link

weights derived in [Xia03], given by

�opt
2

λ2 L λN L

where L is the fixed Laplacian matrix. In the first model implemented for comparison,

the transmission power is equal to the average power of the randomized network, such

that the connectivity radius for each node is given by

ρave
1

R

R

l 1

ρ l 2
(5.33)

and in this case equal to ρave 17.67. Note that this network will spend the same

transmission power as the randomized power network on average over time.

In the second model, the transmission power is equal to the maximum power of the

randomized network, such that the connectivity radius for each node is equal to

ρmax ρ R (5.34)

and in this case equal to ρmax 30. Due to the dimensions of the simulated network

and the power levels assumed, we are close to a fully connected network when all the

nodes transmit using ρmax. Note that this case is interesting because in general, a faster

convergence of the consensus algorithm is attained when the network is almost fully

connected. However, this scenario does not guarantee a minimum energy consumption

until convergence when all the nodes transmit at the same power level, as we will observe

from the simulation results.

A total of 10.000 realizations of x 0 were simulated to obtain the empirical MSE x k .

Fig. 5.8 shows the empirical MSE x k plotted in log-linear scale as a function of the

iteration index for the three cases:

(1) the fixed network with radius ρmax and �opt 0.0576 (line-dots)

(2) the fixed network with radius ρave and �opt 0.1221(dashed line)

(3) the randomized power network with � 0.1 (dashed-dotted line)
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Figure 5.8: Empirical MSE x k as a function of k for a network with randomized

power and variable radius of connectivity ρvar, and for fixed topology networks with

fixed power and radii ρave and ρmax.

The benchmark value σ2
0 N 0.25 is included in solid line. Convergence has been con-

sidered reached when the difference between subsequent states is less than 2 10 5. As

expected, the curves for the fixed topology networks reach the benchmark, since L is in

both cases time-invariant and symmetric. First, we observe that the curve for the ran-

domized power network converges faster than the curve for the average power case (ca. 84

and 164 iterations respectively), although it stays over due to the non-symmetry of L k .

This is due to the fact that at some time instants, a given node i can communicate with

a node j far away (with maximum distance d i, j ρ R ), increasing the instantaneous

connectivity of the network.

Comparing the performance of the network using maximum transmission power with

the performance of the network with randomized transmission power, we observe that the

former converges faster, i.e., 40 vs 84 iterations. However, the overall energy consumption

in the fixed network is greater than in the randomized power one, since the energy spent

by every node is proportional to the term K ρ2max, where K denotes the convergence

time. The results for this and for other combinations of power levels are included in Table

5.1, showing the approximate number of iterations to reach consensus and the consumed

power by each node until reaching a consensus in terms of the quantity K radius2. De-

spite numerical differences, in all cases the network with randomized transmission power



5.8. Conclusions of the Chapter 105

Connectivity radii Iterations (K) with: Energy consumption

R & (ρave) ρmax ρvar ρave K ρ2max K ρ2var K ρ2ave

5, 10, 15, 30 (17.7) 40 84 164 36000 26250 51250

5, 10, 15, 50 (26.7) 16 25 73 40000 17812 52012

10, 20, 30, 60 (35.3) 12 22 29 43200 27500 36250

10, 20, 70 (42.4) 9 13 21 44100 23400 37800

Table 5.1: Number of iterations for several combinations of power levels.

converges faster than the fixed network with average transmission power.

These results show that using the randomized transmission power scheme, the con-

vergence time of the consensus algorithm can be improved at the same overall power

consumption. This means that the energy consumption of the network to reach consen-

sus is lowered, although at the cost of a reduction in the accuracy of the estimation. In

addition, the value of � that minimizes the convergence time of the upper bound seems

to be a good choice to reduce the convergence time of the empirical MSE x k .

5.8 Conclusions of the Chapter

This chapter has shown that consensus can be reached in the mean square sense in a WSN

with random topology and instantaneous asymmetric links, and that the mean average

consensus can be reached in expectation. Moreover, the MSE of the state vector can be

characterized analytically with knowledge of the probability of connection of the links and

the statistics of the initial set of measurements.

For the case of links with equal probability of connection, closed-forms expressions

for the MSE x k and for the asymptotic MSE x k have been derived, as well as for

the dynamic range of the link weight that guarantees mean square convergence of the

consensus algorithm. A closed-form expression for the optimum link weights providing

maximum convergence rate has been derived and the impact of the number of nodes as

well as the impact of the probability of connection on the asymptotic MSE x k have been

discussed. The MSE expression derived proves to be useful to characterize the convergence
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time of the consensus algorithm.

For the case of links with different probabilities of connection, an upper bound for the

MSE of the state has been derived and its convergence and asymptotic behavior have

been studied. Although the upper bound differs from the empirical MSE x k , it can be

employed for the computation of a link weight that reduces the convergence time of the

consensus algorithm under these connectivity conditions.

Additionally, a practical transmission scheme intended to extend the lifetime of a WSN

running consensus algorithms has been proposed. With the proposed scheme, the nodes

transmit using different power levels at every time instant, selected independently of other

nodes and with equal probability. The computer simulations show that the convergence

time is reduced with respect to a fixed topology where the nodes transmit using the same

average power. Therefore, the total energy required to reach a consensus is reduced and

the network lifetime can be lengthened.

The randomized transmission power scheme is also more energy efficient than a fully

connected network. The price to be paid for reducing the energy consumption is a reduc-

tion in the accuracy of the estimation. The preference of improving either the accuracy

of the estimation or the energy consumption can be determined by the final application.
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Almost Sure Consensus in Random Networks

6.1 Introduction

Most contributions found in literature studying the convergence of consensus algorithms in

random networks assume spatially independent communication links, that is, the existence

of a link between a given pair of nodes is completely independent of the existence of a link

between another pair of nodes. Communication links may be however spatially correlated

not only due to an intrinsic correlation of the channels among the nodes, but also due

to the communication protocol. An example is the pair-wise gossip algorithm, which is a

particular case of consensus in correlated random networks with undirected links, where

at each time instant a bidirectional communication link is established between two nodes

selected at random. Another example is the broadcast gossip algorithm, a particular case

of consensus in correlated random networks with directed links where at each iteration a

single node selected at random broadcasts its value to all its neighbors, creating directional

communication links. A further example is the randomized transmission power scheme

presented in Chapter 5 -Section 5.7- where at each iteration the nodes use different power

levels randomly chosen from a predefined set of values. Since the existence of a link

depends on the instantaneous transmission power applied and the distance between two

nodes, the resulting instantaneous topology is random directed and the links are spatially

correlated.

107
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Several results for gossip algorithms can be generalized for the consensus algorithm,

e.g. [Boy06, Pic07, Fag08, Ays09]. Fagnani and Zampieri [Fag08] studies the asymptotic

convergence rate of randomized consensus schemes based on either mean square conver-

gence or on Lyapunov exponents. Based on [Boy06] and [Fag08], Aysal et al. [Ays09]

derives a sufficient condition for almost sure convergence of the broadcast gossip algo-

rithm. Furthermore, [Ays10] provides a formulation which includes sum-preserving, non

sum-preserving, quantized and noisy gossip algorithms, and derives sufficient conditions

for almost sure convergence as well as an asymptotic upper bound on the mean square per-

formance. Regarding consensus algorithms in correlated topologies, Jakovetić et al. [Jak10]

shows that the problem of assigning the optimum weights is a convex optimization prob-

lem. For undirected networks, the optimization criterion is the minimization of the MSE

computed with respect to the average of the initial values, while for directed networks it

is the minimization of the mean square deviation with respect to the instantaneous state

average. Moreover, Abaid and Porfiri [Aba10] focuses on numerosity-constrained directed

networks, i.e., n-regular topologies where all the nodes have out-degree n, and derives

closed-form expressions for the asymptotic convergence factor as a function of n, denoted

as the numerosity factor.

In this chapter, the convergence of the consensus algorithm in WSNs assuming in-

stantaneous directed and instantaneous undirected topologies is studied, where the links

are allowed to be spatially correlated. Whereas [Fag08] and [Ays09] focus specifically on

gossip and [Aba10] restricts the nodes to have a fixed out-degree, we consider the model of

consensus with uniform weights as presented in Chapter 3 -Section 3.4.2- not necessarily

restricted to symmetric and nonnegative instantaneous weight matrices, where we use the

results in [Zho09] to show almost sure convergence to the agreement space. As we will see,

almost sure convergence to a consensus can be related to the spectral radius of a positive

semidefinite matrix for which we derive closed-form expressions. We consider the mini-

mization of this spectral radius as the optimization criterion to reduce the convergence

time of the algorithm, and show that the value of the optimum link weights can be ob-

tained as the solution of a convex optimization problem. In addition to show convexity of

the optimization problem, we show that the closed-form expressions derived are useful to

compute the dynamic range of the link weights guaranteeing almost sure convergence. Fur-
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ther, we show that our general formulation subsumes known protocols found in literature

and derive additional closed-form expressions for the optimum parameters for particular

cases of links with equal probability of connection. For simplicity, “random networks with

directed topology” refers to networks with random directed instantaneous links, whereas

“random networks with undirected topology” refers to networks with random undirected

instantaneous links.

Outline of the Chapter

The chapter is organized as follows. Section 6.2 presents the network model with spatial

correlation among links, and in Section 6.3 convergence in expectation to the average

consensus in random networks is shown, considering both directed and undirected in-

stantaneous links. An optimization criterion to reduce the convergence time which sets

a sufficient condition for almost sure convergence is presented in Section 6.4, whereas in

Section 6.5 convexity of the optimization problem is shown, as well as the existence of an

optimum solution. In Section 6.6 closed-form expressions useful for the minimization of

the convergence time are derived for undirected and for directed random networks. These

closed-form expressions are further validated in Section 6.7, where theoretical results for

known existing protocols found in literature as well as additional closed-form expressions

for further particular cases are derived. Simulation results for three different scenarios,

namely a random geometric expected network1, a small-world network and a randomized

transmission power network are included in Section 6.8, whereas the conclusions for the

chapter are included in Section 6.9.

6.2 Network and Spatial Correlation Models

Consider a WSN composed of N nodes with a topology characterized by a random graph

G k V , E k where a communication link eij between two nodes i, j exist with a

given probability 0 pij 1. Assuming a connection probability matrix with entries

Pij pij where pij pji for all i, j V , the instantaneous adjacency matrix A k is

1The random geometric network refers to a random geometric graph as defined in Chapter 2.
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random with expected value matrix A k Ā P. The entries of the adjacency

matrix A k are temporally independent but might be spatially correlated, and the in-

formation about the spatial correlation among pairs of links eij, eqr is arranged in the

matrix C RN2 N2
, with st th entry given by

Cst

0, s t

aijaqr pijpqr, s t
for

s i j 1 N

t q r 1 N
(6.1)

where aij A k ij, and the iteration indexing is omitted since correlation is assumed

time invariant. That is, the off-diagonal entries of C are the covariance between the links

eij and eqr for the nodes i, j, q, r , whereas the entries of the main diagonal are set equal

to 0. Note that C is not a covariance matrix but it will be useful later in Section 6.6 to

derive closed-form expressions in the convergence analysis.

We analyze the convergence of the state vector x k given by

x k W k 1 x k 1 , k 0, (6.2)

where x 0 is the vector of initial measurements and the weight matrix W k RN N is

modeled as

W k I �L k , k 0 (6.3)

with random Laplacian L k D k A k and constant � 0, equal for all the links.

The matrices W k , k 0 in (6.2) are random and independent of each other with

one eigenvalue equal to 1 and associated right eigenvector 1. For undirected instantaneous

topologies, L k is symmetric and W k satisfies:

W k 1 1

1TW k 1T
, k 0 (6.4)

whereas for directed instantaneous topologies, L k is non-symmetric and W k satisfies:

W k 1 1

1TW k 1T
, k 0 (6.5)

i.e., the left eigenvector associated with the eigenvalue 1 may vary randomly from real-

ization to realization. The expected weight matrix W̄ is assumed to satisfy the following
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properties

W̄1 1

1TW̄ 1T

ρ W̄ JN 1

(6.6)

where JN 11T N is the normalized all-ones matrix, in both the instantaneous

undirected and the instantaneous directed case. In other words, the weight matrices

W k , k 0 are in expectation balanced with only one largest eigenvalue equal to

one. Using (6.3), the expected weight matrix is W̄ I �L̄. The matrix L̄ can be seen

as the Laplacian of an undirected graph, defined as the expected graph G k Ḡ,

and is symmetric due to the assumption of a symmetric connection probability matrix

P. We assume that Ḡ is connected such that λN L̄ 0 with algebraic multiplicity one.

W̄ is therefore symmetric by construction and double-stochastic for � 0, 2 λ1 L̄ , and

satisfies the convergence conditions in (6.6). These conditions will be important for the

derivation of closed-form results later in Section 6.6.

6.3 Convergence in Expectation to the Average Consensus

It is not difficult to see that due to the conditions on the expected weight matrix in (6.6),

the estimation in (6.2) is asymptotically unbiased and the consensus value c R is, in

expectation, equal to the average consensus, since

x k W k 1 x k 1
k

l 1

W k l x 0

W̄kx 0

where in the last equality the assumption of temporally independent weight matrices is

used. Taking the limit of the expression above yields

lim
k

x k JNx 0

xave.

In order to minimize the rate at which the network reaches a consensus, in the following

section we present a criterion for minimizing the convergence time which establishes a

sufficient condition for almost sure convergence under these topology conditions.
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6.4 Almost Sure Convergence to a Consensus

We say that the entries of the state vector x k in (6.2) converge almost surely (with

probability one) to a consensus value c if

Pr lim
k

x k c1 1.

In this section, we study the convergence of the random vector x k to the agreement

space A span 1 using notions of stochastic stability. Using the results in [Zho09], we

say that almost sure consensus is achieved if for all δ 0

lim
k0

Pr sup
k k0

inf
xa A

x k xa
2
2 δ 0. (6.7)

Note that the vector xa in A minimizing the norm above is given by

inf
xa A

x k xa
2
2 x k x̄ k 2

2, k

where x̄ k JNx k is the orthogonal projection of x k onto the agreement space A.

We define the deviation vector at time k as

d k x k x̄ k

I JN x k (6.8)

which specifies the distance to the average x̄ k , i.e., d k specifies how far the nodes are

from a consensus at time k. In other words, the expression in (6.7) is equivalent to

Pr sup
k k0

d k 2
2 0. (6.9)

The discrete-time consensus algorithm in (6.2) asymptotically reaches almost sure con-

sensus if and only if the equilibrium point 0 is almost surely asymptotically stable for the

error vector d k , and therefore we analyze the evolution of d k 2
2 . Remark that in

the undirected case, the algorithm is sum-preserving and d k 2
2 x k xave

2

2

is the expected error with respect to the average consensus. Using the fact that the row-

sums of W k are equal to 1, we have that

d k 1 I JN W k x k

I JN W k I JN x k

I JN W k d k .
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For convenience, let’s define the matrix Ω k I JN W k , and remark that [Pap65]

d k
2

2 d k 1 d k d k
2

2
d k 1 . (6.10)

The expected squared norm of d k given d k 1 is given by

d k
2

2
d k 1 d k 1 T Ω k TΩ k d k 1

d k 1 TWd k 1

λ1 W d k 1
2

2
(6.11)

where in the last inequality we have used the fact that for any vector u of unit norm

yields uTXu λ1 X uTu [Hor06, Theorem 4.2.2], and

W Ω k TΩ k

W k T I JN W k (6.12)

where we have considered that I JN is symmetric and idempotent. Therefore, we have

that the expected squared norm of d k given d k 1 is bounded above. Substituting

(6.11) in (6.10) yields

d k
2

2
λ1 W d k 1

2

2

λ1 W d k 1
2

2
. (6.13)

Repeatedly conditioning and replacing iteratively for d k we obtain

d k 2
2 λk

1 W d 0
2

2
. (6.14)

The right hand side in (6.14) is an upper bound for the expected square norm of the

deviation vector, and this upper bound will converge as time evolves whenever

λ1 W 1. (6.15)

Clearly, λ1 W governs the rate at which the upper bound for the error decays to zero,

where a smaller value of λ1 W will result in a faster convergence of the upper bound in

(6.14). The convergence time of the upper bound is then given by

τbound
1

log λ1 W . (6.16)

λ1 W is denoted as the per-step mean square convergence factor in [Zho09], defined

as
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rs sup
d k 0

d k 1 2
2 d k

d k 2
2

.

and is the stochastic equivalent of the per-step convergence factor defined in (3.26). From

the results in [Zho09, Lemma 2(i)], the per-step mean square convergence factor rs is

greater than the asymptotic mean square convergence factor ra, defined as

ra sup
d k 0

lim
k

d k 2
2 d 0

d 0 2
2

1 k

which considers instead the distance to the average consensus, and is the stochastic equiva-

lent of the asymptotic convergence factor in (3.25). A necessary and sufficient condition for

mean square stability, which is only sufficient for almost sure asymptotic stability [Fen92]2,

is that ra 1. Since rs ra, rs 1 is sufficient to ensure asymptotic almost sure stability.

Therefore, according to [Zho09, Lemma 2(ii)], (6.15) is sufficient to ensure asymptotic al-

most sure stability and implies almost sure convergence of x k in (6.2) to the agreement

space A. The minimization of λ1 W , which further minimizes the convergence time of the

upper bound in (6.14), is the optimization criterion chosen to reduce the convergence time

of the consensus algorithm in random networks while ensuring almost sure convergence

to a consensus. Consequently, we focus on finding the value of � in (6.3) that minimizes

the value of λ1 W .

6.5 Minimizing the Convergence Time of the Upper Bound

According to the results in Section 6.4, a sufficient condition for almost sure consensus is

that (6.15) is satisfied. Note that after some matrix manipulations, the matrix W defined

in (6.12) can be expressed as

W L k T I JN L k �2 2L̄� I JN (6.17)

where we have replaced for (6.3) and used the fact that L̄ has 1 as both the left and

the right eigenvectors associated with λN L̄ 0. The matrix W is positive semidefinite

2 In general, necessary and sufficient conditions for stochastic stability can be derived using the results

in [Hib96] and [Ben97].
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by definition with row-sums equal to 1 and nonnegative real eigenvalues. Since W is

symmetric, it satisfies also 1TW 1T .

The minimization of λ1 W with respect to � is a convex optimization problem for both

undirected and directed instantaneous topologies, as shown in the following theorem.

Theorem 6.1. Consider the consensus algorithm in (6.2) with spatially correlated random

links, W k defined in (6.3) and satisfying W k 1 1, and W defined in (6.12) with

largest eigenvalue λ1 W . The minimization problem

min
�

f � λ1 W

s.t. � 0, W S
(6.18)

is convex on �.

Proof. Let the objective function be expressed as f � h G � , dom f �

dom G G � dom h where h : RN N R denotes the maximum eigenvalue function

with domain dom h S and the function W G : R RN N is given by

G � Γ�2 2∆� Θ (6.19)

with Γ L k T I JN L k , ∆ L̄ and Θ I JN , coinciding with (6.17).

We show that the composition f h G is convex, and we do so in three steps: a)

show convexity of G, b) show matrix monotonicity of h and c) show convexity of the

composition f h G.

a) To show convexity of G � we start showing that Γ S , since for any non-zero

unitary vector v RN 1, v 1 we have

vT L k T I JN L k v vTL k T I JN
T I JN L k v 0

Further, observe that for all x, y dom G we have

Γ τx 1 τ y 2 Γ τx2 1 τ y2

where A B means that B A S . Adding 2∆ τx 1 τ y Θ on both sides yields

Γ τx 1 τ y 2 2∆ τx 1 τ y Θ τΓx2 1 τ Γy2 τ2∆x 1 τ 2∆y Θ

G τx 1 τ y τG x 1 τ G y .
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b) Next, we analyze the function h. This function is matrix convex [Boy04] and we will

show that it is also matrix monotone:

A function h : RN N R is matrix monotone with respect to the set S if for any pair

X,Y S, X Y yields h X h Y .

Since the maximum eigenvalue of X can be seen as the point-wise supremum of a family of

linear functions of X, we have λ1 X sup uTXu u 2 1 . Let’s denote by u and v the

eigenvectors associated with the largest eigenvalue of X and Y respectively. If X Y, for

any u RN 1 uTXu uTYu. Moreover, if u is the eigenvector associated with λ1 X

we have λ1 X uTXu uTYu λ1 Y and we can conclude that λ1 X λ1 Y .

c) Combining the convexity of G from a) and the matrix monotonicity of h from b)

yields

h G τx 1 τ y h τG x 1 τ G y (6.20)

and recalling the matrix convexity of h we have

h τG x 1 τ G y τh G x 1 τ h G y (6.21)

Combining the left-hand side of (6.20) and the right-hand side of (6.21) yields

f τx 1 τ τf x 1 τ f y

which completes the proof.

6.5.1 Dynamic Range for the Uniform Link Weights

Theorem 6.1 shows that the function f � in (6.18) is convex. The next step consists in

showing that the dynamic range of � for which (6.15) is satisfied, exists. In fact, in this

section we show that the minimization of f � results in a value of λ1 W satisfying the

sufficient condition in (6.15) that guarantees almost sure consensus.

Using (6.19), the function f � in (6.18) can be rewritten as follows

f � sup
u 2

2 1

uTΓu�2 2uT∆u� uTΘu

sup
u 2

2 1

γ�2 2δ� θ (6.22)
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where γ uTΓu, δ uT∆u and θ uTΘu. Observe that Θ has eigenvalues 0 with

algebraic multiplicity one and 1 with algebraic multiplicity N 1. Thus, for � 0 we have

λi W λi Θ for all i with λ1 W 1. For values of � in the proximity of zero, the

quadratic term in (6.22) is negligible and f � can be approximated as

f �
� 0

sup
u 2

2 1

2δ� θ . (6.23)

Since Θ has eigenvalues 0 and 1, for all vectors u with u 2
2 1 we have 0 θ 1,

while since ∆ S , we have δ 0. Therefore, the value in (6.23) is always less than or

equal to 1. Note however that θ 1 if and only if u is one eigenvector associated with

the eigenvalue 1. Analogously, δ 0 if and only if u is the eigenvector associated with the

eigenvalue 0, i.e., u 1. However, 1 is also the eigenvector associated with the eigenvalue

0 of Θ. Therefore, there is no u such that δ 0 and θ 1 at the same time, showing that

the approximation in (6.23) is always below 1. On the other hand, as � the quadratic

term in (6.22) becomes predominant and λ1 W . Combining these results with the

fact that f � is convex, we conclude that there exists an interval of positive values of �

for which (6.15) holds, ensuring therefore (6.9). In addition, the value of � that minimizes

f � satisfies the sufficient condition for almost sure convergence in (6.15).

In summary, there exists a range of positive values of � ensuring the convergence of the

norm of the deviation vector to zero, and there exists a positive value of � minimizing the

convergence time of the upper bound in (6.14). Theorem 6.1 shows that the optimum � is

the solution of a convex optimization problem, and this value can be computed using the

subgradient algorithm [Boy06,Jak10]. In order to find the optimum � analytically we derive

closed-form expressions for the matrix W for both the case of instantaneous undirected

topologies and the case of instantaneous directed topologies with links exhibiting spatial

correlation.

6.6 Derivation of Closed-Form Expressions for the Matrix W

The next step consists in analyzing the matrix W where we focus on uniform link weights

with matrices satisfying either (6.4) or (6.5) and a network connected in average over time

whose instantaneous links are independent in time but correlated in space according to
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the model in (6.1). In both cases, we assume that the expected weight matrix satisfies the

convergence conditions in (6.6). We derive closed-form expressions for W for undirected

random networks in Section 6.6.1 and for directed random networks in Section 6.6.2.

6.6.1 Closed-form Expressions for W in Undirected Topologies

In this section we consider instantaneous symmetric links, i.e., weight matrices satisfying

(6.4). When the links are bidirectional, the matrix W in (6.12) can be rewritten as follows

W W k TW k JN . (6.24)

Theorem 6.2. Consider the consensus algorithm in (6.2) with spatially correlated random

links, W k defined in (6.3) and satisfying (6.4) and (6.6). The matrix W in (6.24) has

a closed-form expression given by

W L̄2 2 L̄ L̃ R �2 2L̄� I JN (6.25)

where L̄ is the Laplacian of the expected underlying graph,

L̃ D̃ P P (6.26)

D̃ is diagonal with ii th
entry D̃ii P P 1 i i 1, , N and connection prob-

ability matrix P, and R is an N N symmetric matrix built with the covariance terms

in C as follows

Rmm gT
mCgm

Rmn
N
i 1 e

T
inCeim gT

nCenm gT
mCemn

(6.27)

with

gm 1 em, emn em en, (6.28)

where ei is the ith column of I and denotes Kronecker product.

Proof. See Appendix 6.A.

Note that the matrix L̃ in (6.26) has the structure of a Laplacian whose non-diagonal

entries are the squared entries of P. In general, L̃ is not diagonalized by the eigenvectors
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of L̄ and a closed-form expression for λ1 W can not be derived, except for the special

case of links with equal probability of connection, as we will see in Section 6.7. Moreover,

the matrix R has row-sums equal to 1, as it can be verified using the covariance sums in

(6.75) and (6.76) from Appendix 6.A.

Corollary 6.3. Consider the consensus algorithm in (6.2) with spatially uncorrelated

random links, W k defined in (6.3) and satisfying (6.4) and (6.6). The matrix W in

(6.24) has a closed-form expression given by

W L̄2 2 L̄ L̃ �2 2L̄� I JN (6.29)

where L̄ is the Laplacian of the expected underlying graph and L̃ is as defined in (6.26).

6.6.2 Closed-form Expressions for W in Directed Topologies

This section addresses the case of instantaneous asymmetric random links, i.e., weight

matrices satisfying (6.5). For the case of links with directionality, we consider the matrix

W defined in (6.12).

Theorem 6.4. Consider the consensus algorithm in (6.2) with N nodes and spatially

correlated random links, W k defined in (6.3) and satisfying (6.5) and (6.6). The matrix

W in (6.12) has a closed-form expression given by

W L̄2 2 N 1

N
L̄ L̃ R �2 2L̄� I JN (6.30)

where L̄ is the Laplacian of the expected underlying graph, L̃ is as defined in (6.26) and

Rmm gT
mCgm

1
N gT

m qT
m C qm gm

Rmn
N
i 1 e

T
inCeim gT

nCenm gT
mCemn

1
N gT

n qT
n C qm gm

(6.31)

with
qm em 1 (6.32)

and gm, emn as defined in (6.28).
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Proof. See Appendix 6.B.

Remark that the matrix R defined in (6.27) for the undirected case is different from

the matrix R defined in (6.31) for the directed case. Analogously to the undirected case,

the matrix R has row-sums equal one, as it can be verified using the covariance sums in

(6.75) and (6.76) from Appendix 6.A, combined with the covariance sums in (6.80) and

(6.81) from Appendix 6.B.

Corollary 6.5. Consider the consensus algorithm in (6.2) with spatially uncorrelated

random links, W k defined in (6.3) and satisfying (6.5) and (6.6). The matrix W in

(6.12) has a closed-form expression given by

W L̄2 2 N 1

N
L̄ L̃ �2 2L̄� I JN (6.33)

where L̄ is the Laplacian of the expected underlying graph and L̃ is as defined in (6.26).

Corollary 6.3 and Corollary 6.5 follow from considering zero matrices R and R when

computing (6.25) and (6.30) respectively, which result from considering a zero matrix C.

The closed-form expressions derived in this section are useful to find the optimum

� minimizing λ1 W analytically. Furthermore, starting from the expressions in (6.25),

(6.30) and (6.33), we are able to derive closed-form expressions for existing protocols

found in literature, showing therefore that they can be seen as particular cases of the

general expressions derived in this chapter.

6.7 Particularization of General Expressions to Special Cases

We particularize now the closed-form expressions derived in the previous section for the

case of links with equal probability of connection. This is useful not only to further

validate the main results of Section 6.6, but also to gain insight into the impact of the

spatial correlation on the convergence time of the consensus algorithm. In Section 6.7.1,

we particularize the general formulations for known protocols whose parameters have a

closed-form expression, whereas in Section 6.7.2 we derive additional closed-form results

for further particular cases.
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6.7.1 Derivation of Expressions for Existing Protocols

We particularize the general formulations in (6.25), (6.30) and (6.33) to obtain four pro-

tocols found in literature: the broadcast gossip algorithm [Ays09], the pair-wise gossip

algorithm [Boy06], random consensus in undirected networks with correlated links [Jak10]

and random consensus in directed Erdős-Rényi networks with uncorrelated links [Sil09a],

also included in Chapter 5 -Section 5.5-.

6.7.1.1 The Broadcast Gossip Algorithm

The broadcast gossip algorithm is a particular case of random consensus with spatially

correlated links in directed topologies. In broadcast gossiping, a node wakes up randomly

and broadcast its state to all its neighbors within its connectivity radius, where the prob-

ability of being activated is the same for all nodes and equal to p 1 N . While stan-

dard gossip preserves the sum from iteration to iteration, the broadcast gossip algorithm

converges to the average consensus only in expectation, since the connectivity radius is

assumed equal for all nodes. The difference with the more general consensus model used

in Section 6.6 is that, instead of having several nodes transmitting at the same time, in

gossip algorithms only one node is transmitting at each time instant with probability p.

Then, with probability p, the instantaneous weight matrix has jk th entry given by

W k jk

1, j Ni, k j

1 �, j Ni, k j

�, j Ni, k i

0, otherwise

where � 0, 1 . According to the results in [Ays09], the matrix W in (6.12) for the

broadcast gossip algorithm, denoted hereafter WBG, is given by

WBG 2L̄ L̄2 �2 2L̄� I JN (6.34)

with L̄ pL and Ā pA where, adopting the notation in [Ays09], A, D and L are

respectively the adjacency matrix, the degree matrix and the Laplacian matrix of the

underlying fixed graph. We start defining the entries of the matrix C in (6.1), needed for

the computation of R in (6.31).
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Covariance terms Let aij A k ij as before and note that aij p for j Ni and

for all k. Then,

aijaqr

p, if q i, r j, j Ni

p, if r j, q i and j Ni Nq

0, otherwise

(6.35)

for all i, j, q, r 1, , N . For notation clarity, we let Cij
qr

denote the st th entry of

C, with s, t as defined in (6.1) for nodes i, j, q, r such that

Cij
qr

p 1 p if r j, q i and j Ni Nq

p2 if r j, j Ni and r Nq

0 r j and q i

0 otherwise

(6.36)

where we have used (6.35) and considered that the diagonal entries of C are equal to 0

by definition. A closed-form expression for R is given in the following Lemma:

Lemma 6.1. Consider the broadcast gossip algorithm with N nodes and C as defined in

(6.36). The matrix of correlation terms in (6.31) has a closed-form expression given by

R 2L̃ L̄2 1

N
2 L̄ L̃ pL2 . (6.37)

Proof. Consider the covariance summations in (6.75) and (6.76) from Appendix 6.A and

(6.80) and (6.81) from Appendix 6.B for the diagonal and the non-diagonal entries of R

respectively, and let R be expressed as

R Rdiag Roff

where Rdiag is diagonal and Roff has zero entries on the main diagonal. Since we assume

C ii
qr

Cij
qq

Cij
ij

0 for all i, j, q, r , we observe that the mm th entry of R is given by

Rmm

i j

Cmi
mj

1

N
i j

Cmi
mj

i j

Cim
mj

i j

Cmi
jm

i j

Cim
jm
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whereas the non-diagonal mn th entry is given by

Rmn

i

Cim
in

i

Cmi
mn

i

C ni
nm

1

N
i j

Cim
nj

i j

Cim
jn

i j

Cmi
nj

i j

Cmi
jn

where the sums are from i, j 1 to N . Now, for notation simplicity let Dm denote the

mm th entry of the degree matrix of the fixed topology and observe that the summations

for the diagonal entries can be expressed as

i j Cmi
mj

p2Dm Dm 1 i j Cim
mj

p2D2
m

i j Cim
jm

p 1 p Dm Dm 1 i j Cmi
jm

p2D2
m

whereas the summations for the non-diagonal can be expressed as

iCim
in

p2 Nm Nn p2 A2 D mn i Cmi
mn

p2Amn Dm 1

iC ni
nm

p2Amn Dn 1 i j Cim
jn

p2DmDn

i j

Cmi
nj

p2DmDn p2 Nm Nn p 1 p Nm Nn

i j

Cmi
jn

p2 DmDn AmnDn p 1 p Amn Dn 1

i j

Cim
nj

p2 DmDn DmAmn p 1 p Amn Dm 1 .

Then, Rdiag can be computed as follows

Rdiag p2 D2 D
1

N
p2 D2 D 2p2D2 p 1 p D2 D

p2 D D2 1

N
p D D2 2p2D (6.38)

whereas Roff can be computing gathering together the terms multiplying p2 and the

terms multiplying p 1 p as follows

Roff p2 A2 D AD DA 2A
1

N
p2 A2 D AD DA

1

N
p 1 p AD DA 2A A2 D

p2 A2 D AD DA 2A
1

N
p AD DA 2A A2 D 2p2A (6.39)

where an extra D is added to compensate for the contribution of A2 on the main diagonal.

Finally, adding (6.38) and (6.39) and substituting for L̄ p D A and L̃ pL̄, we obtain

the closed-form expression for R in (6.37), completing the proof.
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Replacing (6.37) in (6.30) we obtain the expression forWBG in (6.34), and we can conclude

that the closed-form results for the W matrix derived in [Ays09] can be obtained using

the general formulation in (6.30). The eigenvalues of WBG can be expressed as functions

of the eigenvalues of L̄ as follows

fi � 2λi L̄ λi L̄
2 �2 2λi L̄ � 1, i 1, ,N 1

where we have replaced λi I JN 1 and considered that fN � 0. Note that these

are quadratic functions of � where the subindex i is in one to one correspondence with

the ordering of the eigenvalues of L̄ but not with the ordering of the eigenvalues of WBG.

This is due to the fact that, as the eigenvalues of L̄ increase in magnitude, the terms on

� increase in magnitude as well and the quadratic curves become narrower with a vertex

approaching the abscissa while moving away from the origin. Since at � 0, fi � is equal

to one for all i 1, , N 1 and the curve experiencing the slowest decay is the one

corresponding to i N 1, the largest eigenvalue of WBG is given by3

fN 1 � 2λN 1 L̄ λN 1 L̄ 2 �2 2λN 1 L̄ � 1. (6.40)

The optimum � is therefore the value minimizing the function in (6.40), and is given by

�
1

2 λN 1 L̄
.

Replacing for � 1 γ, L̄, and p we obtain the optimum mixing parameter γ derived

in [Ays09, Corollary 1]. A closed-form expression for λ1 WBG is obtained substituting

for � in (6.40) and yields

λ1 WBG �

2 1 λN 1 L̄

2 λN 1 L̄

2 N λN 1 L

2N λN 1 L
.

6.7.1.2 The Pair-Wise Gossip Algorithm

The pair-wise gossip algorithm is a particular case of random consensus with spatially

correlated links in undirected topologies. As for the case of the broadcast gossip algorithm,

3The procedure to find the optimum � minimizing λ1 W under similar conditions is explained in detail

in Section 6.7.2.3 using the general formulations.
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a node i wakes up randomly at time k with probability 1 N but establishes instead a

bidirectional link with one of its neighboring nodes with probability 1 Ni, where Ni is the

set of neighbors of node i. The rest of the nodes remain silent, such that the instantaneous

weight matrix for this protocol is given by

W k I
1

2
ei ej ei ej

T

coinciding with the definition in Chapter 3 -Section 3.4-. Remark that the weight matrix

W k for this protocol has the form in (6.3) where L k ei ej ei ej T is the

instantaneous Laplacian matrix for a pair of communicating nodes i, j and � 1 2.

The probability of a link between nodes i and j in this case is

pij
1

N

1

Ni

1

Nj
(6.41)

where for symmetry, pij pji.

Covariance terms Let aij A k ij as before and observe that

aijaqr
pij, if r i, q j, j Ni

0, otherwise
i, j 1, , N .

Again, we let Cij
qr

denote the st th entry of C, with s, t as defined in (6.1) for nodes

i, j, q, r . The entries of the matrix C are therefore

Cij
qr

pij 1 pij if q j, r i, j Ni

pijpqr if j Ni and r Nq

0 r j and q i

0 otherwise

(6.42)

with zero elements on the main diagonal. The matrix of correlation terms R defined in

(6.27) has diagonal and non-diagonal entries

Rmm i j Cmi
mj

Rmn i Cim
in

i Cmi
mn

i C ni
nm

(6.43)

and can be computed using the values given in (6.42). For notation simplicity let D̄m

denote the mm th entry of the matrix D̄ diag P 1 and D̃m denote the mm th entry
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of the matrix D̃ diag P P 1 , where P is the connection probability matrix with

ij th entry pij defined in (6.41). Then we have

i j

Cmi
mj

i Nm

1

NNm

1

NNi

2

i Nm

1

NNm

1

NNi

2

D̄2
m D̃m

i

Cim
in

m,n Ni

1

NNi

1

NNm

1

NNi

1

NNn

P2
mn

i

Cmi
mn

i,n Nm

1

NNm

1

NNi

1

NNm

1

NNn

D̄P mn P P mn

i

C ni
nm

i,m Nn

1

NNn

1

NNi

1

NNn

1

NNm

PD̄ mn P P mn

Combining the expressions above as in (6.43) we have

R D̄2 P2 D̄P PD̄ 2 D̃ P P

where an extra term D̃ has been added to compensate for the contribution of P2 in the

main diagonal. The expression above can be rewritten as

R 2L̃ L̄2 (6.44)

where L̄ D̄ P. Replacing (6.44) in (6.25) yields

W 2L̄�2 2L̄� I JN . (6.45)

Analogously to the previous case, the largest eigenvalue of the matrix W in (6.45) has a

closed-form expression and is given by

λ1 W 2λN 1 L̄ �2 2λN 1 L̄ � 1.

Furthermore, the value minimizing the function above is

�
1

2

which is the optimum mixing parameter for pair-wise gossip algorithms. The value of

λ1 W for the optimum � is therefore

λ1 W 1
1

2
λN 1 L̄ .
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Summing up, the closed-form expression in (6.25) can be particularized for the pair-wise

gossip algorithm, showing that this protocol is a particular case of consensus with spatially

correlated undirected communication links.

6.7.1.3 Erdős-Rényi Undirected Topologies with Correlated Links

We consider now an Erdős-Rényi graph composed of N nodes, where any pair of nodes is

connected with probability p, and the links have equal covariance p 1 p υ with 0 υ 1.

The instantaneous links are undirected, such that the weight matrix satisfies (6.4) and

W is given by the expression in (6.25). Assuming an all-ones matrix J̃ RN2 N2
and an

identity matrix Ĩ RN2 N2
, the matrix C defined in (6.1) is in this case given by

C p 1 p υ J̃ Ĩ T (6.46)

where

Tst

1 if s i i 1 N or t j j 1 N

0 otherwise

for all i, j 1, , N . When the entries of the matrix P are all equal and non-zero,

i.e., Pij p and Pii 0 for all i j, the expected Laplacian is equal to L̄ pN I JN

and L̃ p2N I JN . L̄ has one eigenvalue equal to 0 with algebraic multiplicity one, and

one eigenvalue equal to Np with algebraic multiplicity N 1, whereas L̃ has eigenvalue

equal to 0 with algebraic multiplicity one, and one eigenvalue equal to Np2 with algebraic

multiplicity N 1. Moreover, the entries of the matrixR and its corresponding eigenvalues

can be easily computed, since the nonzero entries of C in (6.46) are all equal. According

to (6.27) we have

Rmm
i j

Cmi
mj

N 1 N 2 p 1 p υ

Rmn
i

Cim
in

i

Cmi
mn

i

C ni
nm

N 2 2 N 2 p 1 p υ N 2 p 1 p υ

such that

R N N 2 p 1 p υ I JN .

The eigenvalues ofR are therefore 0 with algebraic multiplicity one, andN N 2 p 1 p υ

with algebraic multiplicity N 1. Under these connectivity conditions L̄, L̃ and R are
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diagonalized by the same set of eigenvectors and the matrix W has largest eigenvalue

λ1 W Np 1 p 2 υ N 2 Np�2 2Np� 1 (6.47)

where we have used (6.25). The minimum of λ1 W is attained when the function above

reaches its minimum. Taking the derivative of (6.47) and solving for � we obtain

�
1

Np 1 p 2 υ N 2
(6.48)

coinciding with the results in [Jak10]. Substituting (6.48) in (6.47) we obtain the value of

λ1 W , which in this case is

λ1 W
�

1 p 2 υ N 2

Np 1 p 2 υ N 2
. (6.49)

Finally, since the function in (6.47) is quadratic on �, the dynamic range is given by

� 0,
2

Np 1 p 2 υ N 2
. (6.50)

This example is useful to observe that as the correlation increases, the value of λ1 W

increases and the convergence time of the upper bound defined in (6.16), decreases.

6.7.1.4 Erdős-Rényi Directed Topologies with Uncorrelated Links

Analogous to the previous case we assume an Erdős-Rényi graph composed of N nodes

connected with probability p, but consider instead spatially independent links. The proce-

dure to derive � and its dynamic range is similar to the previous one where, using instead

(6.33), the largest eigenvalue of W is given by

λ1 W N2p 2 N 1 1 p p�2 2Np� 1. (6.51)

Taking the derivative of (6.51) and solving for � we obtain

�
N

N2p 2 N 1 1 p
(6.52)

and substituting � in (6.51) we obtain the value of λ1 W , given by

λ1 W
�

2 N 1 1 p

N2p 2 N 1 1 p
. (6.53)

Again, since the function in (6.51) is quadratic on �, the dynamic range of � is given by

� 0,
2N

N2p 2 N 1 1 p
. (6.54)
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Remark 6.1. The optimum link weight in (6.52) as well as its dynamic range in (6.54),

coincide with the expressions derived in Chapter 5 -Section 5.5- minimizing the mean

square convergence of the consensus algorithm for the case of Erdős-Rényi directed random

networks with spatially independent links.

6.7.2 Derivation of Expressions for Further Particular Cases

In this section we analyze particular cases of networks with links of equal probability

of connection whose optimum link weights allow a closed-form expression. In case of no

correlation among pairs of links, the matrix W is given by (6.29) for undirected topologies

and by (6.33) for directed topologies. In Section 6.7.2.1 we derive results for Erdős-Rényi

directed topologies with correlated links whereas in Section 6.7.2.2 we focus on Erdős-

Rényi undirected topologies with uncorrelated links. These examples will be useful along

with some results from Section 6.7.1 to evaluate the impact of correlation on the conver-

gence rate. The optimum value of � minimizing the convergence time of the consensus

algorithm in networks with generic expected topologies and its dynamic range are found

analytically for both the directed and the undirected case in Sections 6.7.2.3 and 6.7.2.4

respectively.

6.7.2.1 Erdős-Rényi Directed Topologies with Correlated Links

Consider an Erdős-Rényi graph composed of N nodes connected with probability p, and

equal covariance among links according to the model in (6.46). This is the generalization

of the example in Section 6.7.1.3 to directed topologies, or equivalently, the counterpart

of the model in Section 6.7.1.4 with spatially correlated links, where again we have that

L̄ pN I JN and L̃ p2N I JN . The entries of the matrix R and its corresponding
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eigenvalues can be easily computed using (6.31) as follows

Rmm N 1 N 2 2 1
1

N
p 1 p υ

Rmn N 2
2

N
p 1 p υ

such that

R N 1 2 1 p 1 p υ I JN .

The eigenvalues of R are therefore 0 with algebraic multiplicity one, and N 1 2

1 p 1 p υ with algebraic multiplicity N 1. Under these connectivity conditions L̄, L̃

and R are diagonalized by the same set of eigenvectors and the matrix W has largest

eigenvalue

λ1 W Np 1 p
2 N 1

N
υ N 2

2

N
Np�2 2Np� 1

where we have used (6.30). Taking the derivative of the function above with respect to �

and solving, we obtain the optimum � given by

�
N

N2p 1 p 2 N 1 υ N 1 2 1
(6.55)

and substituting for � in the expression for λ1 W we obtain

λ1 W
�

1 p 2 N 1 υ N 1 2 1

N2p 1 p 2 N 1 υ N 1 2 1
. (6.56)

The dynamic range is obtained as before and yields

� 0,
2N

N2p 1 p 2 N 1 υ N 1 2 1
. (6.57)

Remark 6.2. Comparing these results with the ones in 6.7.1.4 for the case of uncorrelated

links, we can state that spatial correlation is detrimental to the convergence rate of con-

sensus algorithms in random directed topologies. This is clear comparing the expressions

for λ1 W in (6.53) and (6.56). Further, comparing (6.54) and (6.57) it can be observed

that correlation reduces the dynamic range of the link weights. In addition, particularizing

the results of this section for υ 0, we obtain the results of Section 6.7.1.4.
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Figure 6.1: λ1 W as a function of � for uncorrelated links and correlated links with

υ 0.3 respectively along with � for a network with N 20 and p 0.5.

The curve for λ1 W as a function of � for an example deployment of N 20 nodes and

probability of connection p 0.5 is depicted in Fig. 6.1 for both spatially uncorrelated

and spatially correlated links with υ 0.3. The optimum � for the uncorrelated case is

� 0.1667, whereas the optimum � for the correlated case is � 0.1389.

6.7.2.2 Erdős-Rényi Undirected Topologies with Uncorrelated Links

In this section we consider the case of uncorrelated links in undirected topologies, that

is, the counterpart of Section 6.7.1.3 with uncorrelated links. Consider an Erdős-Rényi

graph composed of N nodes connected with probability p, and spatially uncorrelated

communication links. We proceed as before but taking into account that R is a zero

matrix, which leads to further simplified computations. The matrix W for this case has

largest eigenvalue

λ1 W Np 2 1 p Np�2 2Np� 1 (6.58)

where we have used (6.29). Taking the derivative and solving for � we obtain the value of

� minimizing (6.58), i.e.,

�
1

Np 2 1 p
(6.59)
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and substituting � in (6.58) we obtain

λ1 W
�

2 1 p

Np 2 1 p
. (6.60)

Analogously to the previous cases, the dynamic range is given by

� 0,
2

Np 2 1 p
. (6.61)

Note that another way to obtain the expressions in (6.59) and (6.61) is using (6.47) with

υ 0.

In the following sections we assume generic expected topologies where the commu-

nications are restricted to a smaller number of nodes, that is, not every pair of nodes

may exchange information, and spatially uncorrelated links existing with the same prob-

ability. The optimum � minimizing the convergence time of the algorithm can be found

analytically as well for both the directed and the undirected case, as described below.

6.7.2.3 Generic Directed Topologies with Uncorrelated Links

We consider a WSN with generic expected topology, where the instantaneous links are

random directed and spatially uncorrelated, existing with probability p. Recall that for

the case of equally probable links, the matrices L̄ and L̃ are diagonalized by the same set

of eigenvectors because L̃ pL̄. Therefore, the eigenvalues are related by λi L̃ pλi L̄ .

Using (6.33), we can express the eigenvalues of W as functions of the eigenvalues of L̄ as

follows

fi � λi L̄
2 λi L̄ η �2 2λi L̄ � 1, i 1, ,N 1 (6.62)

where

η
2 N 1

N
1 p (6.63)

and we have considered that fN � 0. Note that these are quadratic functions of �

as well. First of all, recall that the subindex i of the functions fi � are in one to one

correspondence with the ordering of the eigenvalues of L̄ but not with the ordering of

the eigenvalues of W . This is due to the fact that, as the eigenvalues of L̄ increase in

magnitude, the terms on � in (6.62) increase in magnitude as well and the quadratic
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Figure 6.2: λ1 W as a function of � for un-

correlated links along with the curves for fi �

in (6.62) for a random geometric network with

N 6 and p 0.7.

Figure 6.3: f1 � and fN 1 � as a function of

� along with the curve for λ1 W for the same

random geometric network with uncorrelated

links with N 6 and p 0.7.

curves become narrower with a vertex approaching the abscissa while moving towards the

origin. For the sake of clarity, Fig. 6.2 depicts the set of functions in (6.62) along with

λ1 W for a particular network composed of N 6. We relate the functions in (6.62) with

λ1 W in four steps:

i) First, we evaluate their slope. Note that at � 0, fi � is equal to one for all

i 1, , N 1 , and the slope evaluated at that point is equal to 2λi L̄ . The curve

experiencing the slowest decay will be the one corresponding to i N 1. In other

words, in the proximity of � 0 the largest eigenvalue of W will be given by fN 1 � , in

correspondence with the results of Section 6.5.1.

ii) Next, we have to evaluate the intersections of fN 1 � with the remaining fj � for

j 1, , N 2 , i.e., fN 1 � fj � , which occur at the point

�
2 λN 1 L̄ λj L̄

λ2
N 1 L̄ λ2

j L̄ η λN 1 L̄ λj L̄

2

λN 1 L̄ λj L̄ η
(6.64)

for a given j. The first intersection of fN 1 � will take place when the value of � in (6.64)

is minimum, and this happens for j 1. At this point, substituting for j 1 in (6.64) we
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obtain

�int
2

λN 1 L̄ λ1 L̄ η
. (6.65)

iii) It is not difficult to check that no other curve intersects f1 � for � �int since

the crossing points fulfill 2 λ1 L̄ λj L̄ η �int, for j 2, , N 2 . Summing up,

λ1 W is given by fN 1 � for � 0, �int , whereas from �int it is given by f1 � .

iv) The last step consists in checking if the minimum of fN 1 � is attained before or

after the intersection with f1 � . Note that the minimum of fN 1 � appears at the point

�min
1

λN 1 L̄ η
(6.66)

and this value of � is larger than the one where f1 � attains its minimum, i.e., 1 λ1 L̄ η .

Therefore, the optimum value of the link weights solving (6.18) will be given by

� min
2

λN 1 L̄ λ1 L̄ η
,

1

λN 1 L̄ η
. (6.67)

Note that (6.65) will be the optimum when λN 1 L̄ η λ1 L̄ , and this will happen

already from relatively small values of N and p (see Fig. 6.3). If the optimum link weight

is given by �int in (6.65), the expression for λ1 W is given by

λ1 W
e

λN 1 L̄ λ1 L̄ η 2 4λN 1 L̄ λ1 L̄

λN 1 L̄ λ1 L̄ η 2
.

On the other hand, if the optimum link weight is given by �min in (6.66), the expression

for λ1 W is

λ1 W
e

η

λN 1 L̄ η
.

In order to specify the dynamic range of �, observe that the curve for f1 � is the

narrower one, and since no other curves are crossing f1 � for � �int, the upper bound

for � is found simply equating f1 � to one. Solving for � we obtain

� 0,
2

λ1 L̄ η
. (6.68)



6.7. Particularization of General Expressions to Special Cases 135

6.7.2.4 Generic Undirected Topologies with Uncorrelated Links

Analogous to the previous case, we consider a WSN with generic expected topology and

equally probable links, but with undirected instantaneous links instead. Using (6.29), the

set of functions used for the analysis are

fi � λi L̄
2 λi L̄ η �2 2λi L̄ � 1, i 1, , N 1

where η 2 1 p . The optimum value of the link weights under these connectivity

conditions is given by

� min
2

λN 1 L̄ λ1 L̄ η
,

1

λN 1 L̄ η
. (6.69)

If the first expression to the right hand side of (6.69) is the value of the optimum �, then

λ1 W
e

λN 1 L̄ λ1 L̄ η 2 4λN 1 L̄ λ1 L̄

λN 1 L̄ λ1 L̄ η 2

whereas if the second expression to the right-hand side of (6.69) is the value of the optimum

�, then

λ1 W
e

η

λN 1 L̄ η
.

Analogously to the directed case in the previous section, the dynamic range of � is given

by

� 0,
2

λ1 L̄ η
. (6.70)

Remark 6.3. When the probability of connection p is equal to 1, we obtain a determin-

istic system and the closed-form expressions in (6.67) and (6.68), and (6.69) and (6.70)

coincide with the expressions for the optimum � and its dynamic range derived in Xiao

and Boyd [Xia03] for fixed topologies, that is

�
2

λN 1 L̄ λ1 L̄
and � 0,

2

λ1 L̄
.
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6.8 Numerical Results

The analytical results obtained in the previous sections are supported with computer

simulations of three different scenarios: a random geometric network [Bol01], a small-

world network [Wat98], and a network with randomized transmission power as presented

in Chapter 5 -Section 5.7-. The random geometric network is a general case where the

links have different probabilities of connection and different spatial correlation, and is

therefore a useful case to verify and support the analytical expressions derived in the

chapter.

6.8.1 Random Geometric Network

We consider N 20 nodes randomly deployed within a unit square and with fixed posi-

tion, where each pair of neighboring nodes may have a connection only if the euclidean

distance between them is smaller than a given threshold, chosen equal to 0.37 -see Fig.

6.4-. The entries of x 0 are modeled as Gaussian r.v.’s with mean xm 20 and variance

σ2
0 5. For the verification of the closed-form expressions, we choose a very general model

with different probabilities of connection for the possible links and different correlation

among pairs of links. Therefore, the instantaneous links among neighboring nodes i and j

are generated as correlated Bernoulli r.v.’s with probability pij pji where pij is chosen

uniformly at random in the interval 0, 1 . For the spatial correlation we consider the

autoregressive model in [Lun98], included in Appendix 6.C for the sake of clarity. The

matrix C in this case is given by

Cst

ψ 1 ψ υ t s ζsζt, s t

0, s t
with

s i j 1 N

t m n 1 N
(6.71)

for nodes i, j,m, n , where ψ, υ and ζ are as defined in Appendix 6.C.

A total of 10.000 independent realizations were run to obtain the expected squared

norm of the deviation vector d k 2
2 , where the matrix P was kept fixed while a

new L k was generated at each iteration. The closed-form expression in (6.30) has been

verified with simulations, and the difference between the theoretical value of λ1 W and
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Figure 6.4: Deployment of N 20 nodes in the unit square with connectivity radius

equal to 0.37.

Figure 6.5: Theoretical and empirical λ1 W as a function of � for a network

with N 20.

the empirical one is around 1 10 5. Fig. 6.5 depicts the theoretical value of λ1 W (solid

line) along with samples of the empirical value (’o’) as a function of � for the example

deployment of Fig. 6.4.

Fig. 6.6 shows the expected squared norm of the deviation vector in log-linear scale as

a function of the iteration index for three different values of �:

(1) � 1 N 1 0.0526, considered as the worst case scenario (dotted line)
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(2) �bound 0.1850, minimizing the upper bound for the MSE x k derived in Section

5.6 (dashed line)

(3) � 0.3367 minimizing λ1 W (solid-line)

As expected, we observe that the choice of � minimizes the convergence time of the

algorithm. For the case of � , the error is below 10 3 after 43 iterations, whereas for the

cases � 1 N 1 and �bound, the error is below that value after respectively 256 and 73

iterations.

We have also computed the empirical MSE x k characterizing the deviation of the

state with respect to the statistical mean of the observations, that is, determining the error

caused by allowing asymmetric links. Since the network is connected and symmetric in

average over time, the estimation is unbiased and the consensus value c is, in expectation,

equal to the average consensus. Fig. 6.7 shows the empirical MSE x k in log-linear scale

for the three values of � defined above, along with the benchmark value σ2
0 N (solid line).

Again, choosing � we obtain fastest convergence whereas choosing the smallest � the

convergence is slower but as expected, the error curve is closest to the benchmark. The

choice of � outperforms also the performance of �bound.

The results depicted in Fig. 6.6 are useful to verify that the convergence using � is

faster, whereas the results in Fig. 6.7 are useful to evaluate the error with respect to

the statistical mean of the initial measurements when choosing the different values of �.

We conclude that finding the � that minimizes λ1 W is a good criterion to reduce the

convergence time of the consensus algorithm under these topology conditions.

6.8.2 Small-World Network

We consider a small-world network with N 20, 4 nearest neighbors and shortcut prob-

ability 0.4, where the non-zero entries of the matrix P are set equal to p 0.4. The links

are assumed spatially uncorrelated and the optimum link weight is computed using (6.67).

Fig. 6.8 depicts the empirical squared norm of the deviation vector in log-linear scale as

a function of the iteration index for three different values of �:

(1) � 0.0526 (dotted line)
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Figure 6.6: Expected squared norm of d k as a function of k in log-linear scale for

different probabilities of connection and different values of � in a random geometric graph

with autoregressive correlated links.

Figure 6.7: Empirical MSE x k as a function of the iteration index k in log-linear scale

for the same random geometric deployment with different probabilities of connection and

different values of �.

(2) �bound 0.1686 (dashed line)

(3) � 0.2633 minimizing λ1 W (solid line)

The expected squared norm of the deviation vector tends to zero, and as expected, choos-

ing � we achieve fastest convergence also in small-world networks. For the case of � , the

error is below 10 3 after only 13 iterations, whereas for the cases � 1 N 1 and �bound,
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Figure 6.8: Expected squared norm of d k as a function of k in log-linear scale for

different values of � in a small-world network with N 20, 4 neighboring nodes and

p 0.4.

Figure 6.9: Empirical MSE x k as a function of k in log-linear scale for the small-

world with different probabilities of connection and different values of �.

the error is below that value after respectively 59 and 18 iterations.

Finally, Fig. 6.9 shows the empirical MSE x k in log-linear scale for the different

values of �, along with the benchmark value σ2
0 N (solid line). Again, choosing � we

obtain fastest convergence whereas choosing the smallest � the curve is closest to the

benchmark. The choice of � outperforms also the performance of the �bound, showing that

the minimization of λ1 W is a good criterion to reduce the convergence time of consensus
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algorithms in small-world networks.

6.8.3 Network with Randomized Transmission Power

For the last simulation we use the same deployment as the one in Section 6.8.1, i.e.,

the position of the nodes and the expected graph correspond to the random geometric

network depicted in Fig. 6.4. In this case however, the nodes transmit using different

power levels at each time instant, selected at random from a predefined range of values

and independently of the rest of the nodes. In Chapter 5 -Section 5.7- we considered a

similar transmission scheme but assuming a discrete set of power levels, and observed

via simulations that the overall energy consumption of the network until convergence is

strongly reduced when implementing the of the consensus algorithm. Here, we address a

more general case where the power decays exponentially with distance and may take any

value in a closed continuous interval.

Each power level describes approximately a circle of connectivity with radius ρ

0, ρmax proportional to the square root of the transmission power level and centered at

the transmitting node. Thus, if node i transmits with a power level at iteration k defining

a connectivity radius ρi, we assume node j will receive data from node i at iteration k

whenever the distance d i, j between them is less or equal to ρi. The connectivity radius

ρ at time k is the realization of a r.v. with exponential density function, i.e.,

ρ 0, ρmax with probability density function fρ ρ
1

ρave
e

ρ
ρave

where ρave is the statistical mean. For practical reasons we consider ρmax . However,

ρmax ρave must be satisfied so that ρave can be considered the mean. In fact, we choose

a value of ρmax such that 90% of the nodes are located within the maximum connectivity

radius. The connection probability matrix P for this model has entries given by

Pij

pij Pr ρ d i, j i j

0 i j

where

Pr ρ d i, j
ρmax

d i,j

fρ ρ dρ.
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In order to compute the matrix C observe that, since the transmission power is chosen

independently by each node at each time instant, two links are correlated only if they are

receiving data from a third transmitting node no further away than ρmax, such that

Cst

0 s t

pim 1 pjm if ρmax d i,m d j,m

pjm 1 pim if ρmax d j,m d i,m

0 otherwise

, for
s i m 1 N

t j m 1 N

Note that this matrix is much more sparse than the general one in (6.1). Then, we compute

the matrix W using (6.30) and find the value of � minimizing λ1 W .

Fig. 6.10 shows the empirical squared norm of the deviation vector in log-linear scale

as a function of the iteration index for three different values of � as before:

(1) � 0.0526 (dotted line)

(2) �bound 0.1250 (dashed line)

(3) � 0.2060 (solid line)

The choice of � provides a fast convergence of the deviation vector, although the difference

with respect to the case � 1 N 1 is not distinguishable in the high error regime for

this particular deployment. For instance, the error is below 10 3 after only 12 iterations

using � , but the same results are obtained with �bound. For � 1 N 1 however, the

error is below that value after 30 iterations. This similarity in the results for the cases

� and �bound is observed until reducing the error to 10 5, from where the performance

improves using � .

Fig. 6.11 shows the empirical MSE x k in log-linear scale along with the benchmark

value σ2
0 N (solid line). Again, the improvement when choosing � for this example is not

so significant as for the ones in the previous sections when comparing it to the performance

of �bound. However, the MSE x k converges faster for � when comparing it to the case

of � 1 N 1 . We conclude that the minimization of λ1 W is a good design criterion

to reduce the convergence time of the consensus algorithm in WSNs with randomized

transmission power.
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Figure 6.10: Expected squared norm of d k as a function of k in log-linear scale for

a random geometric graph with randomized transmission power and different values

of �.

Figure 6.11: Empirical MSE x k as a function of k in log-linear scale for a random

geometric graph with randomized transmission power and different values of �.

6.9 Conclusions of the Chapter

Almost sure convergence to a consensus in randomWSNs has been studied, assuming both

instantaneous directed topologies and instantaneous undirected topologies, and allowing

the links to be spatially correlated. Convergence in expectation to the average consen-

sus has been shown and a useful criterion for the minimization of the convergence time
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has been adopted. This criterion states a sufficient condition for almost sure convergence

and is based on the spectral radius of a positive semidefinite matrix, for which we have

derived closed-form expressions assuming uniform link weights. The closed-form expres-

sions derived are useful for the computation of the optimum link weights minimizing the

convergence time of an upper bound for the error vector.

The general expressions derived in this chapter subsume existing protocols found in

literature as it has been shown, and greatly simplify the derivation of the optimum link

weights, not only in networks with Erdős-Rényi topologies but also in networks with

generic expected topologies where the communication links among pairs of links exist

with equal probability.

The analytical results obtained for particular cases of networks with random topologies

and equally probable communication links show that spatial correlation is detrimental to

the convergence rate of consensus algorithms and reduces the dynamic range of the link

weights.

The analytical results are further validated with computer simulations of a general case

with different probabilities of connection for the links and different correlations among

pairs of links. Simulations of a small-world network and simulations of a randomized

transmission power network using the optimum link weights derived in the chapter are

also provided, as well as using the link weights minimizing the MSE upper bound derived

in Chapter 5. A reduction on the total number of iterations until convergence can be

observed with the optimization criterion adopted in all cases, as well as an improved

performance with respect to the link weights minimizing the MSE upper bound from

Chapter 5.
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6.A Appendix: Proof of Theorem 6.2

We start the proof replacing the expression (6.3) in (6.24). After some matrix manipula-

tions we obtain

W L k TL k �2 2L̄� I JN . (6.72)

In order to compute the expected matrix to the right-hand side of the expression above,

remark that at time k we have diagonal and non-diagonal elements given by

L k TL k mm

i

ami

2

i

a2im
i

a2mi
i j i

amiamj

i

a2im (6.73)

L k TL k mn

i

amiamn

i

anianm
i

aimain

a2mn
i n

amiamn a2nm
i m

anianm
i

aimain (6.74)

where amn A k mn, amm 0 for all m, and the sums are from i, j 1 to N .

Consider the C matrix in (6.1), and for notation clarity, let Cij
qr
denote the entry Cst with

s i j 1 N and t q r 1 N as before. Taking the expectation of the expressions

above we obtain

L k TL k mm

i

pmi

i j i

pmipmj

i

pim
i j

Cmi
mj

L k TL k mn pmn

i n

pmipmn pnm
i m

pnipnm
i

pimpin
i

Cmi
mn

i

C ni
nm

i

Cim
in

where we have assumed that C ii
qr

Cij
qq

Cij
ij

0, for all i, j, q, r 1, , N and

considered that P is symmetric with zero diagonal entries. Rearranging terms we have

L k TL k mm 2
i

pmi

i

pmi

2

i

p2mi
i j

Cmi
mj

2D̄mm D̄2
mm D̃mm

i j

Cmi
mj

(6.75)

L k TL k mn 2pmn pmn

i

pmi

i

pni
i

pimpin 2p2mn
i

Cmi
mn

i

C ni
nm

i

Cim
in

2Pmn D̄P mn PD̄ mn P2 D̃ mn 2 P P mn

i

Cmi
mn

i

C ni
nm

i

Cim
in

(6.76)

where D̃ is a diagonal matrix with ii th entry D̃ii P P 1 i subtracted also in (6.76)

to compensate for the contribution of P2 in the main diagonal. Combining the results
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from (6.75) and (6.76) we obtain

L k TL k D̄ P 2 2 D̄ P D̃ P P R (6.77)

where we have arranged the correlation terms in the matrix R as follows

Rmm gT
mCgm

Rmn

N

i 1

eTinCeim gT
nCenm gT

mCemn

with gm and emn defined in (6.28). Finally, defining L̃ D̃ P P and replacing (6.77)

in (6.72) we obtain the closed-for expression

W L̄2 2 L̄ L̃ R �2 2L̄� I JN

which completes the proof.

6.B Appendix: Proof of Theorem 6.4

For the directed case, recall that replacing (6.3) in (6.12) we obtain

W L k T I JN L k �2 2L̄� I JN (6.78)

and note that

L k T I JN L k L k TL k L k TJNL k (6.79)

Although the matrix L k is non-symmetric for all k, we can use the computations for the

diagonal and the non-diagonal entries in (6.73) and (6.74), obtaining (6.75) and (6.76)

respectively. In other words, we can compute the second matrix to the right-hand side of

the expression in (6.79) and combine it with the results of Theorem 6.2. Since JN J N ,

we use J instead for simplicity such that

L k TJL k mm

i

ami

2

i

aim

2

i j

amiajm
i j

aimamj

i

a2mi
i

a2im
i j i

amiamj

i j i

aimajm
i j

amiajm
i j

aimamj
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L k TJL k mn

i j

amianj
i j m

aimanj
i

aimanm
i n

amiamn a2mn
i

aimamn

i j m

amiajn
i j m

aimajn

i j

amianj
i j m

aimanj
i n

aimanm a2nm
i n

amiamn a2mn

i

aimamn

i j

amiajn
i

amiamn

i j

aimajn
i

aimamn

where again amn A k mn, amm 0 for all m, and the sums are from i, j 1 to N .

Taking the expectation of the expressions above we obtain

L k TJL k mm 2
i
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i j i
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i j i
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i j

pmipjm
i j

pimpmj

i j

Cmi
mj
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where as before we have assumed that C ii
qr

Cij
qq

Cij
ij

0, for all i, j, q, r 1, , N

and considered that P is symmetric with zero diagonal entries. Rearranging terms yields
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i j

Cmi
mj

i j
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(6.80)
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2Pmn P P mn
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(6.81)

Finally, combining the results from (6.75), (6.76), (6.80) and (6.81) according to (6.79)

and replacing J with JN we obtain

L k T I JN L k D̄ P 2 2 N 1

N
D̄ P D̃ P P R (6.82)

where we have arranged the correlation terms in the matrix R as follows

Rmm gT
mCgm

1

N
gT
mCqm qT

mCgm gT
mCgm qT

mCqm

gT
mCgm

1

N
gT
m qT

m C qm gm

Rmn

N

i 1

eTinCeim gT
nCenm gT

mCemn
1

N
gT
n qT

n C qm gm
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with gm and emn defined in (6.28), and qm defined in (6.32). Replacing (6.82) in (6.78)

and using the already defined L̃ we obtain the closed-for expression

W L̄2 2 N 1

N
L̄ L̃ R �2 2L̄� I JN

which completes the proof.

6.C Appendix: Autoregressive Correlation Model

Let s denote the index for the communication link between node i and node j with

probability pij, and t denote the index for the link between nodesm and n with probability

pmn. The correlation scheme considered for this simulation model has an autoregressive

structure where �st denotes the correlation coefficient between links eij and emn. Let Yi ,

Ui and Zi be sets of independent r.v.’s with binomial distributions B 1, ψ , B 1, υ

and B 1, ζi respectively, with 1 i E k , where E k is the number of directed links

at time k. The r.v. Xi is defined as

X1 Y1, Xi 1 Ui Yi UiXi 1, 2 i E k

and Wi ZiXi, where Zi is distributed binomially B 1, ζi independently of all the other

variables. Then, Wi are correlated r.v.’s with mean

Wi pi ζiψ

and variance

var Wi ζiψ 1 ζiψ

where

ψ max P

is the maximum entry of the connection probability matrix. The correlation coefficients

are given by

�st υ t s ζsζt

and the entries of the C matrix for this model are therefore computed as in (6.71).



7

Conclusions and Open Problems

This PhD thesis has addressed the problem of distributed estimation in wireless sensor

networks using consensus algorithms. The convergence to the average consensus has been

studied for networks with fixed topology assuming quantization noise, whereas proba-

bilistic convergence to a consensus has been studied for networks with random topologies

where the information exchanged might exhibit spatial correlation.

A simple model to achieve the average consensus in a WSN with quantized infor-

mation exchange among neighboring nodes has been proposed in Chapter 4, where the

impact of quantization noise on the performance of the algorithm has been characterized

studying the MSE of the state computed with respect to the average of the initial measure-

ments. The analysis has been carried out considering both temporally uncorrelated and

temporally correlated quantization error, while assumed independent among the nodes.

Conversely to other models found in literature studying consensus with quantized data,

the MSE of the state for the proposed model converges as time evolves. Closed-form ex-

pressions have been derived for the limit of the MSE and for an upper bound assuming

temporally uncorrelated quantization error, as well as for the limit of the MSE assum-

ing temporally correlated quantization error. These closed-form expressions depend on

general network parameters and can be computed offline. Particularly, the upper bound

might be useful in the design of the quantizer implemented by the nodes.

149
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Some open problems regarding consensus with quantized information exchange in-

cludes considering more accurate models for the quantization error vector exploiting for

instance spatial correlation, since as the states of the nodes approach a consensus, the

error becomes correlated among the nodes. Moreover, the analysis in Chapter 4 can be

extended for networks with other characteristics, like for instance directed communication

links or random communication failures. Another interesting problem consists in finding

a means to compute analytically the optimum link weight minimizing the convergence

time of the MSE of the state, which would result in a reduction of the convergence time

of the algorithm.

Convergence in the mean square sense to a consensus in networks with random topology

and directed communication links has been studied in Chapter 5, where convergence in

expectation to the mean average consensus has been also shown. The MSE of the state

computed with respect to the statistical mean of the initial measurements is characterized

analytically with knowledge of the probability of connection of the links and the statistics

of the measurements.

From the analysis considering equally probable communication links, closed-form ex-

pressions for the MSE, for the asymptotic MSE, for the dynamic range of the link weights

and for its optimum value have been derived. The impact of the number of nodes and

the impact of the probability of connection on the asymptotic MSE have been studied as

well.

From the analysis considering links with different probabilities of connection, an upper

bound for the MSE which can be computed for any time instant, as well as its asymptotic

behavior and its convergence conditions have been derived. A criterion to minimize the

convergence time of the upper bound has been proposed, and a sufficient condition guar-

anteeing convergence of the upper bound has been provided. Although the upper bound

differs from the empirical MSE, it can be used for the computation of a link weight that

reduces the convergence time of the algorithm under these connectivity conditions.

A practical transmission scheme applying randomized transmission power to reduce

the overall energy consumption of the network until convergence to a common value has

been proposed. The nodes are programmed to transmit at each iteration using a different
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power level selected at random from a predefined set of values and independently of the

other nodes. The set of possible transmission power levels may be discrete or continuous.

The randomization of the instantaneous power results in a reduction of the consumption

with respect to a fixed topology with the same average power consumption, such that

the total energy required to reach a consensus is reduced and the network lifetime can be

therefore lengthened.

The impact of additive noise and the impact of time-varying link weights in the con-

vergence of the consensus algorithm, as well as the assumption of different link weights

applied at every node in networks with random topologies have not been addressed in

this PhD thesis and remain as open problems.

Almost sure convergence of the consensus algorithm in random networks with spa-

tially correlated links is considered in Chapter 6, where convergence in expectation to

the average consensus is also shown. A criterion establishing a sufficient condition for

almost sure convergence to the agreement space is applied. This criterion, valid also for

topologies with spatially uncorrelated links, is based on the spectral radius of a positive

semidefinite matrix for which closed-form expressions are derived assuming uniform link

weights. Expressions for directed topologies with spatial correlation, directed topologies

with no spatial correlation, undirected topologies with spatial correlation and undirected

topologies with no spatial correlation are provided. The closed-form expressions allow the

computation of the optimum link weights minimizing the convergence time of an upper

bound for the squared norm of the error vector. Convexity of the optimization problem

is shown, as well as the existence of a dynamic range for the link weights. The general

expressions derived subsume existing protocols found in literature, and are particularized

for networks with equally probable links. The analytical results obtained for these partic-

ular cases show that spatial correlation is detrimental to the convergence rate of consensus

algorithms in random topologies and reduces the dynamic range of the link weights.

The simulations show that the optimum link weight derived in Chapter 6 outperforms

the one obtained in the mean square convergence analysis of Chapter 5. Nevertheless, the

MSE expressions derived in Chapter 5 are still useful to characterize the deviation of the

state with respect to the average consensus when the instantaneous links are directed.
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An open problem regarding consensus in correlated random networks is the assump-

tion of non-symmetric connection probability matrix. The expressions derived in Chapter

6 assume the uniform weights model with a symmetric expected Laplacian matrix. Recall

that these assumptions are sufficient to ensure that the expected weight matrix is double-

stochastic, a property that has been used in the derivation of the closed-form expressions.

However, the minimization of the spectral radius of the positive semidefinite matrix con-

sidered does not require a symmetric expected Laplacian. Additionally, the closed-form

expressions derived in Chapter 6 could be extended to more general models of expected

weight matrices. The effect of time-varying link weights is also an interesting issue not

covered by the work conducted in this PhD thesis.



References

[Aba10] N. Abaid, and M. Porfiri, “Consensus over numerosity-constrained random networks”,

IEEE Trans. on Automatic Control , vol. PP, no. 99, pp. 649–654 , March 2010.

[Aky02] I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on

sensor networks”, IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, Aug.

2002.

[Ald05] S.A. Aldosari, and J.M.F. Moura, “Distributed Detection in Sensor Networks: Con-

nectivity Graph and Small World Networks”, Record of the Thirty-Ninth Asilomar

Conf. on Signals, Systems and Computers, pp. 230–234, October 28 - November 1,

2005.

[Ald06] S.A. Aldosari, and J.M.F. Moura, “Topology of Sensor Networks in Distributed De-

tection”, Proc. IEEE International Conf. on Acoustics, Speech and Signal Processing

(ICASSP’06), vol. 5, May 2006.

[Ays07a] T. C. Aysal, M. Coates, and M. Rabbat, “Distributed average consensus using proba-

bilistic quantization”, IEEE 14th Workshop on Statistical Signal Processing, SSP ’07 ,

pp. 640–644, 26-29 Aug. 2007.

[Ays07b] T. C. Aysal, M. Coates, and M. Rabbat, “Rates of convergence for distributed av-

erage consensus with probabilistic quantization”, 45th Annual Allerton Conference,

September 26-28 , 2007.

[Ays09] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast Gossip Algo-

rithms for Consensus”, IEEE Trans. on Signal Processing , vol. 57, no. 7, pp. 2748–

2761, 2009.

153



154 References

[Ays10] T.C. Aysal, and K.E. Barner, “Convergence of consensus models with stochastic dis-

turbances”, IEEE Trans. on Information Theory , vol. 56, no. 8, pp. 4101 –4113, Aug.

2010.

[Bar05a] S. Barbarossa, “Self-organizing sensor networks with information propagation based

on mutual coupling of dynamic systems”, Proc. of IWWAN, London, UK , May 2005.

[Bar05b] S. Barbarossa, and F. Celano, “Self-Organizing sensor networks designed as a pop-

ulation of mutually coupled oscillators”, Proc. IEEE Workshop on Signal Processing

Advances in Wireless Communications (SPAWC’05), New York, US , June 2005.

[Bar06] S. Barbarossa, G. Scutari, and L. Pescosolido, “Global Stability of a Population of

Mutually Coupled Oscillators Reaching Global ML Estimate Through a Decentralized

Approach”, Proc. IEEE International Conf. on Acoustics, Speech and Signal Process-

ing (ICASSP’06), vol. 4, May 2006.

[Bar07a] S. Barbarossa, and G. Scutari, “Decentralized Maximum-Likelihood Estimation for

Sensor Networks Composed of Nonlinearly Coupled Dynamical Systems”, IEEE Trans.

on Signal Processing , vol. 55, no. 7, pp. 3456–3470, July 2007.

[Bar07b] S. Barbarossa, G. Scutari, and A. Swami, “Achieving Consensus in Self-Organizing

Wireless Sensor Networks: The Impact of Network Topology on Energy Consump-

tion”, Proc. IEEE International Conf. on Acoustics, Speech and Signal Processing

(ICASSP’07), vol. 2, pp. II–841–II–844, 15-20 April 2007.

[Bel04] V. N. Belykh, I. V. Belykh, and M. Hasler, “Connection graph stability method for

synchronized coupled chaotic systems”, Physica D: Nonlinear Phenomena, vol. 195,

no. 1-2, pp. 159–187, 2004.

[Ben97] K. Benjelloun, E. K. Boukas, and P. Shi, “Robust stochastic stability of discrete-time

linear systems with markovian jumping parameters”, Proc. 36th IEEE Conf. Decision

and Control , vol. 1, pp. 559–564, 1997.

[Ber97] D. P. Bertsekas, and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical

Methods, Prentice Hall, 1997.

[Blo05] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis, “Convergence in

multiagent coordination, consens us, and flocking”, CDC-ECC Proc. 44th IEEE Conf.

on Decision and Control and European Control Conference, pp. 2996 – 3000, Dec.

2005.
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[Erd60] P. Erdős, and A. Rényi, “On the evolution of random graphs”, Acta Mathematica

Academiae Scientiarum, vol. 5, pp. 17–61, 1960.

[Fag08] F. Fagnani, and S. Zampieri, “Randomized consensus algorithms over large scale net-

works”, IEEE Journal on Selected Areas In Communications, vol. 26, no. 4, pp. 634–

649, 2008.

[Fan94] Y. Fang, K.A. Loparo, and X. Feng, “Inequalities for the trace of matrix product”,

IEEE Trans. on Automatic Control , vol. 39, no. 12, pp. 2489–2490, Dec. 1994.

[Fan05] L. Fang, and P.J. Antsaklis, “Information consensus of asynchronous discrete-time

multi-agent systems”, Proc. of the American Control Conference, vol. 1-7, pp. 1883–

1888, 2005.



156 References

[Fax04] J.A. Fax, and R.M. Murray, “Information flow and cooperative control of vehicle

formations”, IEEE Trans. on Automatic Control , vol. 49, no. 9, pp. 1465–1476, Sept.

2004.

[Fen92] X. Feng, K. A. Loparo, Y. Ji, and H. J. Chizeck, “Stochastic stability properties of

jump linear systems”, IEEE Trans. on Automatic Control , vol. 37, no. 1, pp. 38–53,

1992.

[Fie73] M. Fiedler, Algebraic connectivity of graphs, vol. 23, Czechoslovak Mathematical Jour-

nal, 1973.

[Fra08] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri, “Average consensus by gossip algo-

rithms with quantized communication”, Proc. 47th IEEE Conference on Decision and

Control CDC 2008 , pp. 4831–4836, 2008.

[Gir05] A. Giridhar, and P.R. Kumar, “Computing and communicating functions over sen-

sor networks”, IEEE Journal on Selected Areas in Communications , vol. 23, no. 4,

pp. 755–764, April 2005.

[Gir06] A. Giridhar, and P.R. Kumar, “Toward a theory of in-network computation in wireless

sensor networks”, IEEE Communications Magazine, vol. 44, no. 4, pp. 98–107, April

2006.

[God01] C. Godsil, and G. Royle, Algebraic graph theory , vol. 207, Graduate Texts in Mathe-

matics. Berlin, Germany: Springer-Verlag, 2001.

[Hat04] Y. Hatano, and M. Mesbahi, “Agreement over random networks”, CDC. 43rd IEEE

Conf. on Decision and Control , vol. 2, pp. 2010–2015, Dec. 2004.

[Hat05] Y. Hatano, A.K. Das, and M. Mesbahi, “Agreement in presence of noise: pseudogradi-

ents on random geometric networks”, CDC-ECC Proc. 44th IEEE Conf. on Decision

and Control and European Control Conference, pp. 6382–6387, 2005.

[Hib96] J. L. Hibey, “Stochastic stability theory for systems containing interval matrices”,

IEEE Trans. on Aerospace and Electronic Systems , vol. 32, no. 4, pp. 1385–1391,

1996.

[Hon05] Yao-Win Hong, and A. Scaglione, “A scalable synchronization protocol for large scale

sensor networks and its applications”, IEEE Journal on Selected Areas in Comm.,

vol. 23, no. 5, pp. 1085–1099, 2005.

[Hoo06] S. Hoory, N. Linial, and A. Widgerson, “Expander graphs and their applications”,

Bulletin of the American Mathematical Society , vol. 43, no. 4, pp. 439–531, Oct. 2006.

[Hor06] R.A. Horn, and C.R. Johnson, Matrix analysis, Cambridge University Press, 2006.

[Jad03] A. Jadbabaie, Jie Lin, and A.S. Morse, “Coordination of groups of mobile autonomous

agents using nearest neighbor rules”, IEEE Trans. on Automatic Control , vol. 48,

no. 6, pp. 988–1001, June 2003.



References 157
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