UNIVERSITAT DE BARCELONA Facultat de Geologia Departament de Geoquímica, Petrologia i Prospecció Geològica

SEDIMENTOLOGIA, PETROLOGIA I GEOQUÍMICA (ELEMENTS TRAÇA I ISÒTOPS) DELS ESTROMATÒLITS DE LA CONCA EOCENA SUDPIRINENCA.

Anna Travé i Herrero

Barcelona'92

LÀMINA XLVI

MICROFÀCIES D:

Grainstone de foraminífers aporcellanats, alternant amb laminacions de cianobacteris.

FIGURA 1: (x 15)

Aspecte general de la microfàcies D.

La fotografia mostra un cicle complett dels que formen aquesta microfàcies. A la part superior s'observa l'interval de laminacions cianobacterianes (A), mentre que la part inferior i central mostra l'interval de grainstone de foraminífers (B). La major abundància de ciment a la part superior de l'interval de grainstone, podria correspondre a un augment del tamany dels bioclastos. Dins del grainstone s'hi pot observar:

a.- Secció longitudinal d'Spirolina sp.

b.- Miliòlids

c.- litoclastos amb envoltes oolítiques superficials.

FIGURA 2: (x 50)

Secció longitudinal d'Spirolina sp.

FIGURA 3 (x 50)

a.- Secció transversal de dascicladal
b.- Secció oblíqua de dascicladal
c.- Miliòlid

FIGURA 4 (x 50)

Diferents seccions de algues vermelles coral.lines articulades, interpretades com d'hàbitat epifític.

a.- Secció transversal oblíqua de Jania sp.

b.- Secció longitudinal de Jania sp.

c.- Crosta de tipus Dermatolithon formant branques erectes i protuberàncies característiques del gènere Tenarea sp.

}

FIGURA 5 (x 50)

Oòides superficials.

LÀMINA XLVI

LÀMINA XLVII

MICROFÀCIES E:

Laminacions de micrita i microsparita.

FIGURA 1: (x 15)

Visió general de la microfàcies E. Aquesta microfàcies es caracteritza per l'alternança de làmines clares i làmines més fosques, formades respectivament per microsparita i micrita. En aquesta microfàcies de tapissos cianobacterians és molt freqüent la presència d'estructures fenestrals, i l'absència pràcticament total de fauna.

MICROFÀCIES F:

Mudstone biotorbat

FIGURA 2: (X 15)

Visió general de la microfàcies F on s'observa el seu caràcter micrític i la gran abundància de bioturbació. En aquesta fotografia hi són presents dos tipus de bioturbació: la de tamany més petit, origina unes cavitats de morfologia arrodonida, de tamany molt regular, que oscil. la entre 250 i 300 µm de diàmetre (a), la de major tamany, destrueix parcialment a la primera, origina unes cavitats de morfologia molt més irregular, i pot assolir al voltant del mil.límetre de diàmetre (b).

FIGURA 3 (x 50).

Límit entre la Unitat Inferior (A) i la Unitat Mitja (B). Ambdues unitats estan separades per una discontinuïtat marcada per processos de dissolució d'un *hardground*, afectant a morfologies de *megaripples* d'oscil.lació. En la fotografia es pot observar els processos de dissolució que han afectat a la Unitat Inferior (a), així com un nivell de micritització a la part superior d'aquesta unitat (b). A més també es veu com el ciment present entre els bioclastos en la part superior de la Unitat Inferior és de tipus fibrós *fringing* (c) típic de la cementació primerenca submarina en els *hardgrounds*.

En la Unitat Superior s'observa bioturbació (d).

UNITAT INFERIOR CARBONATADA: DISTRIBUCIÓ DE MICROFÀCIES

La figura 48 representa un tall de tot l'aflorament, i detalls de tres de les àrees on s'observa millor les relacions laterals i verticals de les diferents microfàcies, i de les tres unitats carbonatades del Complex Terminal. Aquesta figura s'ha elaborat sobre la fotografia, a partir de l'estudi de les mostres.

La Unitat Inferior, que presenta un aspecte tabular, està constituïda per les microfàcies A i C1. La microfàcies A és la més extensa, i passa lateralment als cosos amb relleu positiu formats per la submicrofàcies C1.

El límit entre la Unitat Inferior i la Unitat Mitja és una discontinuïtat marcada per processos de dissolució (Làm. XLVII, fig. 3) d'un *hardground* afectant a morfologies de *megaripples* d'oscil.lació.

INTERPRETACIÓ DE LA UNITAT INFERIOR CARBONATADA

A partir del contingut fossilífer, els processos sedimentàris, i les relacions geomètriques entre els cosos que presenten les diferents microfàcies, s'ha establert la relació en el temps i en l'espai dels diferents paleoambients.

La principal característica de la microfàcies A, des del punt de vista del contingut faunístic, és l'abundància de foraminífers aporcellanats. Algunes d'aquestes formes tenen representants actuals, i per tant, es conèix el seu hàbitat. Per a d'altres formes, caldrà interpretar l'hàbitat, a partir de les similituds dels caràcters morfofuncionals amb formes actuals.

Així, el gènere *Orbitolites* presenta caràcters morfofuncionals (morfologia discoïdal i aplanada de la closca, i la disposició perifèrica de les obertures) semblants a les del gènere actual *Amphisorus*. Aquest gènere, té un hàbitat epifític sobre plantes vasculars (perennes), amb un cicle de maduració llarg (anual), i viu en medis oligotròfics (pobres en nutrients) a una fondària màxima de 35 mètres (Hottinger, 1977; Zohari *et al.*, 1980; Hottinger, 1983; Reiss i Hottinger, 1984).

El gènere *Praebullalveolina* té similitud morfològica i disposició d'obertures semblants a les formes allargades del gènere actual *Borelis*. Aquest gènere pot viure en hàbitat epifític sobre plantes vasculars, o sobre el substrat com a forma lliure (Hottinger, 1977, 1983; Kitazato, 1988), es troba en medis oligotròfics, en àrees calmades amb taxa de sedimentació de terrígens molt baixa, en fondàries òptimes d'entre 10 i 60 metres i condicions de salinitat marina normal (Reiss i Hottinger, 1984).

La Unitat Inferior representa, segons aquestes dades, un medi globalment oligotròfic, som, amb una vegetació perenne de plantes de cicle anual (*seagrass*), que hauria subministrat el fang del substrat tou i permès el desenvolupament de les formes de foraminífers d'hàbitat epifític, en particular les de cicle de maduració anual com els *Orbitolites* i *Prebullalveolina*. Per l'absència de morfologies aberrants en els especíments d'Orbitolites i la presència d'alveolínids (*Praebullalveolina*) podem considerar que les condicions de salinitat eren marines normals.

D'altra banda, la presència de briozous, equínids, bivalvs, gasteròpodes, i de foraminífers que no tenen activitat simbiòtica, indicaria la presència de zones més eutròfiques. Així, els miliòlids *Triloculina* i *Quinqueloculina*, que viuen com a formes lliures sobre la vegetació o en el sediment (Brazier, 1975b; Kitazato, 1988) i els cibicídids, que viuen en la vegetació almentant-se de les microalgues (Kitazato, 1988; Langer, 1988) indicarien un nivell superficial eutròfic a les fulles de la vegetació. Mentre que els bolivinítids que viuen com a formes lliures omnivores sobre el sediment (Kitazato, 1988), i els ammodiscàcids i valvulínids entre els microforaminífers, juntament amb la macrofauna, indicaria la presència d'un nivell eutròfic basal produït pel reciclatge de nutrients a partir de la biotorbació.

El subministrament del fang micrític per part de la vegetació hauria estat suficientment lent com per permetre la vida d'organismes filtradors com són els briozous.

Algunes algues vermelles coral.lines han estat citades en la bibliografia com d'hàbitat epifític (Johansen, 1981; Llimona *et al.*, 1985). Llimona *et al.*, (1985) cita en la Mediterrània actual, en els medis de substrat tou, una associació d'algues vermelles coral.lines formada per "Lithothamnium", *Jania* sp., *Corallina* sp., *Melobesia* sp. i *Dermatolithon* sp. En aquesta associació, "Lithothamnium" utilitza petites pedres i closques de mol.lusc per a fixar-se, quedant el tal.lus lliure i, *Jania* sp., *Corallina* sp., *Dermatolithon* sp., i *Melobesia* sp. viuen

Ambient deposicional posterior a la formació dels estromatòlits.

El domini de l'estromatòlit cianobacterià ha quedat ja emergit.

En les zones relativament més centrals del vorell estudiat, s'observa segons les diferents àrees, una notable diferència de potència (fins a 30 mètres) entre el sostre de l'estromatòlit bacterià carbonatat i els materials vermells continentals. Aquesta diferència implica necessariament una morfologia d'alts i baixos relatius. En les àrees on aquest interval presenta la major potència, trobem de base a sostre, per sobre de l'estromatòlit carbonatat bacterià, i per sota dels sediments vermells continentals, les laminacions guix-estromatòlit, els dipòsits de guix, i les seqüències deltaiques lacustres de sorra. En les àrees on aquest interval presenta la mínima potència, està constituït únicament per un petit nivell centimètric de carniola.

Tenint en compte que tots els estromatòlits bacterians indiquen, per les seves característiques petrològiques, una deposició sota pocs centímetres d'aigua, aquesta diferència de potència de les fàcies suprajacents, indica possiblement que la diferenciació en alts i baixos relatius s'hauria esdevingut en posterioritat al desenvolupament dels estromatòlits.

La presència de fàcies de carniola en les sèries on no hi són presents els guixos, ens fan pensar en què s'ha produït una dissolució dels guixos en aquestes àrees. La distribució al llarg del vorell Est de les zones amb guix i amb seqüències de sorra (zones relativament elevades), i de les zones que no en presenten (zones relativament deprimides), s'interpreta suposant la formació, en el vorell de la conca, de petites valls acanalades de direcció perpendicular a la línia de costa. En aquestes zones de vall, es produiria la dissolució del guix i el colapse dels materials dipositats per sobre seu, facilitant l'erosió de totes les fàcies dipositades per sobre dels estromatòlits.

L'existència de masses de guix amb estructures de *slumps* en la unitat superior dels guixos, podria indicar que la formació d'aquests alts i baixos relatius hauria començat quan encara es desenvolupava la unitat d'evaporites, possiblement en el límit entre la unitat mitja i superior dels guixos. Les zones d'alts relatius es comportarien com a àrees font del guix detrític durant la formació de la unitat superior evaporítica, mentre que les àrees més deprimides constituirien el lloc d'acumulació.

MODEL SEDIMENTARI

El model de deposició que proposem per a les fàcies superiors als estromatòlits bacterians és: una primera fase amb un ambient similar al dels estromatòlits bacterians, és a dir, una plataforma soma molt restringida, amb relleus en el fons, no necessariament separada físicament de la conca, on la forta salinitat conduiria a la precipitació d'evaporites. I una segona fase que s'iniciaria durant la formació de la unitat superior dels guixos, en la qual es començarien a diferenciar unes zones d'alts i baixos relatius deguda a la formació de petites valls acanalades perpendiculars al vorell de la costa, que produirien, en un primer estadi, la deposició de la unitat de guix detrític, i posteriorment la dissolució total de les evaporites en aquestes àrees.

Finalment, la deposició dels sediments vermells continentals es desenvolupa directament sobre l'estromatòlit, en les àrees en què les fàcies suprajacents han estat erosionades, o bé sobre els sediments lacustres (margues, seqüències de sorra, ..) en les àrees on no hi ha hagut dissolució del guix i erosió. epifítiques, les tres primeres sobre comunitats d'algues fotòfiles, i la darrera sobre algues esciòfiles. La gran semblança de l'associació d'algues vermelles coral.lines en la microfàcies A amb la que acabem de descriure de la Mediterrània, l'absència d'un substrat dur, i la seva associació amb una gran abundància de foraminífers epifítics, fa atribuir-les, tant les articulades com les incrustants, a un hàbitat epifític.

Respecte la submicrofàcies C1, l'absència de macroforaminífers, l'abundància de microforaminífers de vida lliure (bolivinítids, valvulínids), i d'hàbitat incrustant (victorièl.lids i homotremàtids), impliquen unes condicions no estrictament oligotròfiques (Reiss i Hottinger, 1984).

Pel que fa a l'associació d'algues vermelles coral.lines de la submicrofàcies C1, aquesta podria comparar-se a la descrita per Llimona *et al.*, (1985) que cita en la Mediterrània actual l'existència de comunitats macroalgals de *Cystoseira* que per modificacions del microhàbitat són colonitzades per diferents organismes animals i vegetals, així, hi són abundants com epifítiques les algues vermelles coral.lines incrustants *Dermatolithon pus-tulatum* i l'articulada *Jania rubens*, mentre que en l'estrat basal hi abunden l'articulada *Corallina elongata* i la incrustant *Lithophyllum incrustans* o *Hildebrandia canariensis*.

D'altra banda, l'abundància d'algues vermelles coral.lines d'hàbitat incrustant, i la presència de rodòlits, implicaria unes zones amb més energia. La geometria d'aquesta submicrofàcies en forma de barres paral.leles a la línia de costa, podria indicar que els corrents de deriva litoral limitaven zones amb vegetació macroalgal de *Cystoseira* i zones sense.

La disposició geomètrica de la microfàcies A, i la submicrofàcies C1 (Fig. 48A) indica la coexistencia, en el temps, de la zona de vegetació perenne i de les barres que representen àrees de colonització de vegetació macroalgal.

La figura 49 representa la interpretació de les característiques de la plataforma en el moment de la formació de la unitat carbonatada inferior (microfàcies A, i submicrofàcies C1).

FIGURA 49: Bloc diagrama sintetitzant la relació geomètrica, el contingut biològic i els corrents predominants durant el desenvolupament de la microfàcies A i la submicrofàcies C1.

UNITAT MITJA CARBONATADA: DISTRIBUCIÓ DE MICROFÀCIES

La Unitat Mitja està constituida per les microfàcies B, C2, D, E i F (Fig. 48).

La part baixa de la Unitat Mitja està representada per la microfàcies B, que localment genera petites barres longitudinals, d'escala centimètrica, paral.leles a l'antiga línia de costa. Aquesta morfologia de petits relleus condicionarà fortament la distribució de la resta de microfàcies de les Unitats Mitja i Superior.

En l'extrem de l'aflorament corresponent a l'àrea més distal, la submicrofàcies C2 passa lateralment a la microfàcies B (Fig. 48B) i es situa directament per sobre de la discontinuïtat o per sobre de la microfàcies B, on aquesta forma barres (Fig. 48A i B). A les parts més proximals de l'aflorament, la submicrofàcies C2 es situa per sobre de la microfàcies B, i passa lateralment a la microfàcies D (Fig. 48C). La submicrofàcies C2, per tant, col.labora en accentuar el relleu de la morfologia de barres.

Les microfàcies D i E es localitzen en les zones més proximals. La microfàcies E es troba només en les part elevades de les barres en les zones més proximals (Fig. 48C), mentre que la microfàcies D està relacionada verticalment i lateralment amb totes les altres microfàcies d'aquesta unitat; colonitza tota l'àrea de barres formada per la microfàcies B i recobreix també, en un estadi posterior, les diferents microfàcies que es desenvolupen en les zones de crestes generades pels relleus de les barres (submicrofàcies C2 i microfàcies E) (Fig. 48C).

La culminació de la Unitat Mitja es realitza amb el recobriment de totes les microfàcies precedents per la microfàcies F. Aquesta microfàcies F contribueix també a accentuar els relleus positius generats per les barres.

INTERPRETACIÓ DE LA UNITAT MITJA CARBONATADA

Per sobre de la discontinuïtat que separa la Unitat Inferior de la Unitat Mitja, es localitza la microfàcies B. Aquesta microfàcies, presenta el mateix contingut fossilífer que la microfàcies A. La presència de *coated grains*, i d'estructures internes de *megaripples*, el baix contingut en fang micrític i, el desenvolupament de relleus positius, indicarien rentats periòdics del *seagrass* produïts per un increment de l'energia del medi respecte la microfàcies A de la Unitat Inferior (Fig. 50), produïda per l'acció basal de les onades (10-15 metres).

Per sobre, a les àrees on aquesta microfàcies B desenvolupa barres, s'observen alternançes de *grainstone* de foraminífers aporcellanats i laminacions cianobacterianes (microfàcies D).

Dels peneròplids, es conèix pels seus representants actuals, que viuen sobre el substrat tou o com epifítics, ja sigui sobre plantes vasculars (perennes) o sobre clorofícies (estacionals), tenen un cicle de maduració curt, i presenten una ampla distribució batimètrica, d'entre 0 i 70 metres de fondària (Leutenegger, 1984; Hallock, 1984; Reiss i Hottinger, 1984; Faber, 1991). En la microfàcies D, l'absència dels macroforaminífers d'hàbitat epifític i cicle de maduració llarg (*Orbitolites* i *Praebullalveolina*), i l'abundància de peneròplids (*Peneroplis, Spirolina*), fa considerar que la cobertora vegetal era de tipus macroalgal estacional, on sols podrien existir-hi foraminífers epifítics amb cicle de maduració curt. La baixa producció de fang micrític és també característic dels fons colonitzats per macroalgues clorofícies (Matthews, 1966; Patriquin, 1972; Stieglitz, 1972; Land, 1970).

Figura 50.- Bloc diagrama sintetitzant la relació geomètrica, el contingut biològic i els corrents predominants durant el desenvolupament de la microfàcies B. Episodi similar a quan es desenvolupava la microfàcies A, però amb rentat del fons. Aquest rentat genera la microfàcies B (*Grainstone* de foraminífers aporcellanats i algues vermelles coral.lines) a la base de la Unitat Mitja.

La presència, en aquesta microfàcies D, dels peneròplids que reciclen els nutrients per endosimbiòsi (Leutenegger, 1984) i de microforaminífers bentònics, junt amb ostràcodes, bivalvs, equínids, i gasteròpodes de petites dimensions, indicaria un medi globalment oligotròfic amb microhàbitats més eutròfics relacionats directament amb la vegetació. La manca de biotorbació implicaria l'absència del nivell basal eutròfic, i per tant, caldria considerar que les àrees eutròfiques estarien localitzades en els rizomes, o bé en les superfícies horitzontals de la vegetació (Brazier, 1975a; Kitazato, 1988; Langer, 1988; Faber, 1991).

Els intervals laminats de les microfàcies D i E, amb l'alternança mil.limètrica de làmines fosques i làmines clares, les estructures fenestrals, i la laminació irregular i crenulada, són característics dels tapissos cianobacterians, per tant, interpretem aquests intervals laminats com corresponents a la colonització de tot el fons per part dels tapissos microbians. La figura 51 il.lustra detalladament la interpretació de com s'han format les alternances de les microfàcies E i D.

Figura 51.- Interpretació de les microfàcies D, E i submicrofàcies C2 a les zones proximals de la Unitat Mitja. Els símbols són els mateixos que els de la figura 49.

1) Formació de la microfàcies D a les zones proximals,

- a) Episodi caracteritzat pel desenvolupament de vegetació macroalgal amb organismes epifítics
- b) Episodi de colonització del fons per tapissos de cianobacteris.

2) Formació de les microfàcies E, D, i de la submicrofàcies C2 en les zones proximals.

a) Coexistència en les parts més proximals d'àrees colonitzades per tapissos de cianobacteris, àrees amb vegetació macroalgal amb organismes epifítics, i àrees de barres amb anèl.lids, briozous incrustants, foraminífers incrustants, i algues vermelles coral.lines incrustants.

b) Expansió dels tapissos cianobacterians per sobre de les zones colonitzades anteriorment per vegetació macroalgal.

La submicrofàcies C2, localitzada a les zones elevades de les barres infrajacents de la microfàcies B (Fig. 48C), presenta un predomini d'algues vermelles coral.lines incrustants que es localitzarien a la base del sediment, sense formar rodòlits, i abundants organismes filtradors (anèl.lids i serpul.lids) que s'ubiquen entre les algues coral.lines (Pl. 7, fig. 1). Aquesta associació fossilífera, juntament amb l'escasetat de *Corallina* sp. i *Jania* sp., fa pensar en que en la microfàcies C2 no existia una població macroalgal de *Cystoseira* per originar els dos estrats de microhàbitats (epifític i epilític) per a les algues vermelles coral.lines, com s'interpretava en la submicrofàcies C1.

L'arribada dels components siliciclàstics, i la formació de les barres amb relleus positius es deuria a l'acció dels corrents de deriva litoral.

La relació entre les microfàcies D, E, i la submicrofàcies C2 s'observa en la figura 48C. A les zones més proximals de la Unitat Mitja, desprès del desenvolupament de les barres de la microfàcies B, es troba la microfàcies D. El *grainstone* de la microfàcies D seria el resultat d'un episodi de vegetació estacional macroalgal, i les laminacions cianobacterianes representarien el recobriment del fons pels tapissos de cianobacteris. Posteriorment, la coexistència de la submicrofàcies C2 amb les microfàcies E i D (Fig. 48C), indicaria que mentre a les zones elevades de les barres més distals es desenvolupava un medi amb predomini d'algues vermelles coral.lines incrustants i d'organismes filtradors, en les zones també elevades, però més proximals, tenia lloc el recobriment permanent pels tapissos cianobacterians, i en les zones deprimides es produien periòdes alternants de colonització per vegetació macroalgal i colonització per tapissos de cianobacteris. Per últim, en les zones més proximals, les barres tornen a ser recobertes per la microfàcies D (Fig. 48C), implicant la recolonització del fons per l'alternança de vegetació macroalgal i tapissos de cianobacteris.

L'alternança entre la vegetació macroalgal i els tapissos de cianobacteris és pot interpretar com el producte d'un cicle anual. Així, en periodes oligotròfics i de salinitat marina normal es desenvoluparia la cobertora estacional, probablement macroalgal, mentre que en periòdes de canvi de salinitat, es desenvoluparien els tapissos de cianobacteris. Aquests canvis de salinitat poden produir-se per períodes de forta evaporació, formant-se ambients hipersalins, o per l'entrada d'aigües meteòriques, formant-se medis oligohalins. Les relacions laterals entre les microfàcies D, E, C2 i B, indiquen la coexistència en el temps, durant la formació de la unitat Mitja, de zones amb fauna de salinitat marina normal, amb zones de condicions més extremes on sols s'hi desenvolupen cianobacteris amb escasos ostràcodes de closca fina sense ornamentació. La coexistència dels cianobacteris amb la vegetació macroalgal, en un espai tant curt, és de difícil interpretació, i caldria pensar o bé, en l'influència local d'aigües dolces, o bé, en l'emersió temporal de les zones de barres on es desenvoluparien els cianobacteris. Considerant la posició en que es troben els cianobacteris, sempre en les àrees més proximals, podriem interpretar que la seva distribució esta regulada per l'entrada d'aigua meteòrica, que afectaria a la zona més marginal, reduint la salinitat i aportant nutrients que generarien condicions mesotròfiques.

La figura 52 representa l'evolució de la colonització del fons a les zones proximals, durant la formació des microfàcies D, E i la submicrofàcies C2, de la Unitat Mitja.

Figura 52.- Bloc diagrama sintetitzant la relació geomètrica, el contingut biològic i els corrents predominants durant el desenvolupament de les microfàcies D, E, i C2.

La relació lateral de les microfàcies D, E, i submicrofàcies C2 en les zones més proximals, amb la microfàcies B en les zones més distals (Figs. 48A i 48B), indica la coexistència, en el temps, de zones amb vegetació estacional, zones colonitzades per cianobacteris, zones de barres, i zones amb vegetació perenne. La seva distribució estaria condicionada a subambients de diferent energia.

L'absència de foraminífers amb morfologies de creixement aberrants en les microfàcies A, B, i D, indicaria condicions de salinitat marina a hiposalina en les fàcies més proximals (Hallock i Glenn, 1986; Reiss i Hottinger, 1984).

Dins d'aquesta Unitat Mitja, i per sobre de totes les microfàcies que acabem de descriure es situa la microfàcies F (Fig. 48). L'escasetat de foraminífers que reciclen els nutrients per endosimbiosi, així com, la intensa biotorbació, indicaria unes condicions més eutròfiques. La presència d'algun peneròplid, de cicle de maduració curt, assenyalaria que la cobertora vegetal era de tipus macroalgal estacional. Donat que els peneròplids tenen un ampli rang de distribució, des de condicions marines quan es troben amb macroforaminífers, fins a condicions mesohalines quan són el grup dominant (Reiss i Hottinger, 1984; Hottinger, 1977), aquest podria correspondre a un medi de salinitat baixa. La diferència de gruix de la microfàcies F entre les zones elevades de les barres i les zones deprimides, indica que la vegetació es desenvolupava bàsicament a les zones elevades, i que probablement va existir una cimentació primerenca. La presència d'aquesta microfàcies s'explicaria per un increment sobtat de l'aport de nutrients per *runoff*, que possiblement també seria el responsable d'una disminució de la salinitat.

La figura 53 representa la interpretació de les característiques de la plataforma en el moment de la formació de la microfàcies F.

Figura 53.- Bloc diagrama sintetitzant la relació geomètrica, el contingut biològic i els corrents predominants durant el desenvolupament de la microfàcies F.

DISCUSIÓ

Segons la distribució de foraminífers i algues vermelles coral.lines en les microfàcies de les unitats carbonatades inferior i mitja, es poden caracteritzar cinc biofàcies:

1) Orbitolites, Praebullalveolina, rhapydionínids, peneroplids, ammodiscàcids, miliòlids, valvulínids, asterigerínids, acervulínids, cibicídids, bolivinítids, i algues vermelles coral.lines epifítiques (salinitat marina normal, vegetació perenne, medi oligotròfic amb un nivell eutròfic basal)

2) Peneròplids, rhapydionínids, textulàrids, miliòlids, i algues vermelles coral.lines epifítiques (salinitat marina normal, vegetació estacional, medi oligotròfic amb microhàbitats eutròfics relacionats amb la vegetació).

3) Victorièl.lids, homotremàtids, placopsilínids i coscinophragmínids associats a algues vermelles coral.lines incrustants (salinitat marina normal, medi oligotròfic, amb energia de fons generada per corrents de deriva litoral).

4) Escassos peneròplids, petits foraminífers aporcellanats, ostràcodes de closca sense ornamentació, i abundant biotorbació (salinitat baixa, vegetació estacional, i medi eutròfic generat per *run off*).

5) Cianobacteris, escasos discòrbids, petits foraminífers aporcellanats i ostràcodes de closca fina sense ornamentació (salinitat baixa, medi eutròfic generat per *run off*).

En la vertical, les microfàcies indiquen una fondària progressivament més soma. La màxima fondària, representada per la microfàcies A (base de la Unitat Inferior), és situa al voltant dels 35 metres amb condicions de salinitat marina normal (coexistència d'-*Orbitolites, Praebullalveolina,* rhapydionínids i peneròplids), mentre que la microfàcies F (sostre de la Unitat Mitja) mostra unes condicions de salinitat baixa, i una fondària de 0 a 5 metres (únicament peneròplids). També, de la base al sostre, es dedueix el pas de

DISCUSIÓ

medis on predominen les condicions oligotròfiques a medis on predominen les condicions eutròfiques.

Aquestes condicions impliquen per a la Unitat Inferior, i, pràcticament per a tota la Unitat Mitja, una plataforma de geometria homoclinal amb predomini de corrents antiestuarines i de deriva litoral, sense *upwelling* ni *run off*. La part superior de la Unitat Mitja implica l'arribada de nutrients (possiblement des del continent "run off").

L'energia de fons tot i essent sempre baixa, presentaria oscil.lacions amb màxims corresponents a la formació de barres.

A més, les microfàcies estudiades mostren globalment pel seu contingut biològic un pas de cicles anuals a estacionals. Tanmateix, la coexistència en la Unitat Mitja de microfàcies caracteritzades per vegetació perenne, vegetació estacional, barres, i tapissos de cianobacteris, indica una imbricació en el temps entre els diferents cicles biològics, i entre els cicles biològics i els cicles sedimentaris.

Quant al tipus de clima existent durant la formació del Complex Terminal, cal tenir en compte que els macroforaminífers actuals es desenvolupen en àrees tropicals-subtropicals (Hallock, 1985).

Les unitats carbonatades del Complex Terminal representen en el seu conjunt una somerització d'una plataforma carbonatada. S'observa que amb l'estudi de les diferents associacions de foraminífers podem determinar, a partir del seu cicle de maduració, el tipus de cobertora vegetal que colonitzava el fons, així, el desenvolupament de macroforaminífers d'hàbitat epifític, amb un cicle de maduració lent, i de reproducció anual -estratègia K-, sols pot tenir lloc en presència d'una vegetació perenne, com és el cas de plantes vasculars (Wefer i Berger, 1980). Contràriament, la presència de foraminífers epífits de petites dimensions, amb cicles de maduració curts -estratègia r-, indicarà l'existència d'una vegetació macroalgal (cloròfites, feofícies,...), limitada pel factor temps, on les tiges creixen ràpidament i només durant una part del cicle anual (Hottinger, 1990). L' abundància de foraminífers que reciclen els nutrients per endosimbiosi indica un medi de condicions oligotròfiques globals, mentre que la presència d'altra fauna com equínids, gasteròpodes, bivalvs, briozous i microforaminífers bentònics, assenyalen l'existència d'àrees de trofisme més alt. Quan el sediment està biotorbat, es pot considerar l'existència d'un nivell eutròfic a la base, mentre que si no hi ha biotorbació, cal relacionar l'increment de trofisme amb la vegetació, ja sigui per l'acció dels rizomes o per l'acumulació de microalgues a diferents parts de la planta. A les zones de barres, riques amb components siliciclàstics i algues vermelles coral.lines d'hàbitat incrustant, el trofisme pot estar relacionat amb la redistribució dels nutrients pels corrents de deriva litoral.

4.- CARACTERÍSTIQUES I EVOLUCIÓ DE LA CONCA DURANT LA FORMACIÓ DEL COMPLEX TERMINAL.

En aquest apartat s'integren totes les dades obtingudes en els diferents nivells carbonatats del Complex Terminal (Unitat Inferior, Unitat Mitja, i Unitat Superior o nivell estromatolític), a fi de caracteritzar l'evolució del Complex.

Una correlació a banda i banda dels vorells Nord i Sud de la conca, tot i la manca de coneixements sobre possibles nivells guia en les margues del centre de la conca, podria establir-se per criteris de progradació (siliciclàstics), i d'expansió (nivells carbonatats). Els diferents intervals quedaran enregistrats en les zones més proximals per discontinuïtats, i en el centre de la conca, possiblement, per canvis faunístics dins de les margues.

En aquest treball s'han reconegut algunes de les discontinuïtats, amb nivells erosius i microcarsts, en les àrees proximals.

El primer nivell expanssiu reconegut, és el representat per la Unitat Inferior del Complex Terminal, constituïda per abundants foraminífers d'hàbitat epifític, que configura una plataforma extensa amb pendent molt suau homoclinal.

En el sostre d'aquesta Unitat Inferior carbonatada, hi ha en el marge Sud, una discontinuïtat representada per un *hardground* preservat amb morfologies de megaripples d'oscilació.

A continuació, en la vertical, hi ha una entrada de dipòsits siliciclàstics (margues amb petits nivells de sorra amb estructures de *slumps*, i petites seqüències estratocreixents i granocreixents). El següent nivell expansiu, està representat per la Unitat Mitja del Complex Terminal, que en les zones més marginals del marge Sud recobreix expansivament la Unitat Inferior.

Per sobre d'aquest segon nivell de foraminífers aporcellanats s'han reconegut, en les zones més proximals del vorell Nord, petites superfícies d'erosió i microcarsts, que indiquen l'exposició subaèria local d'aquest nivell anteriorment a la construcció dels estromatòlits.

Entre la segona Unitat Carbonatada i l'estromatòlit, existeix un nou interval, encara que poc potent, de margues.

Quan es desenvoluparen els estromatòlits, darreres estructures organògenes abans del rebliment total de la conca, ho fan recobrint les estructures infrajacents. Així, en els llocs on l'Unitat Carbonatada Mitja forma barres amb relleu positiu, els estromatòlits adopten la forma heretada entapissant les barres, i en les zones on la Unitat infrajacent és de pendent suau homoclinal, els estromatòlits es troben formant tapissos planars.

CARACTERÍSTIQUES

GEOMETRIA I FONDÀRIA.

El principal factor que controla el desenvolupament i la disposició del Complex Terminal (nivells carbonatats i nivells siliciclàstics) és la geometria dels alts que formaven els complexos progradants deltaics, és a dir, la topografia preexistent.

L'estudi dels nivells de foraminífers aporcellanats i dels estromatòlits mostra en la vertical un pas cap a condicions cada cop més somes.

Les estimacions de la fondària d'aigua en la conca durant la formació del Complex Terminal, prèvies a la formació dels estromatòlits, poden deduir-se de les dades obtingudes en l'estudi dels nivell de foramínifers aporcellanats. La coexistència d'*Orbitolites* sp., *Praebullalveolina* sp., rhapydioníninds, i peneròplids, en el nivell carbonatat inferior del CARACTERÍSTIQUES

Complex Terminal, indicaria, una fondària màxima de 35 metres en les àrees estudiades, augmentant possiblement cap a les zones més centrals de la conca. Les dades obtingudes en la Unitat Carbonatada Mitja (absència d'*Orbitolites* sp. i de *Praebullalveolina* sp., i abundants peneròplids), indicaria una fondària inferior als 20 metres en la zona estudiada, i major en les zones més centrals. El sostre de la Unitat Mitja, amb la microfàcies F, caracteritzada per la intensa biotorbació i la escasetat de fauna, indicaria una fondària entre 0 i 5 metres. L'estudi de les microfàcies estromatolítiques, ens indica que aquestes han estat formades sota una làmina d'aigua molt soma (d'uns pocs centímetres a 1.5 metres), o durant l'exposició subaèria (calcretes). Aquestes observacions palesen que entre la formació dels esculls i la formació dels estromatòlits s'esdevingué el procés de restricció, amb una caiguda important del nivell de la làmina d'aigua.

Quant a les evaporites depositades en les zones més centrals aflorants de la conca, per sobre dels estromatòlits, aquestes es van originar en medi subaquós.

CARACTERÍSTIQUES FISICO-QUÍMIQUES.

La Unitat Inferior carbonatada del Complex Terminal presenta, en la zona estudiada, un contingut faunístic característic de condicions de salinitat marina normal. Per l'associació faunística es dedueix un medi amb predomini de condicions oligotròfiques. L'existència de zones de barres, d'orientació paral.lela a la línia de costa, sense macroforaminífers, indica condicions locals més eutròfiques, degut a la redistribució de nutrients pels corrents de deriva litoral.

L'associació de foraminífers existents en la part inferior de la Unitat Mitja evidencia, a l'igual que en la Unitat Inferior, unes condicions de salinitat marina normal, amb predomini global de condicions oligotròfiques, localment més eutròfiques.

El sostre de la Unitat Mitja (microfàcies F) mostra, en canvi, unes condicions de salinitat baixa, i un predomini de les condicions eutròfiques.

Durant la formació dels estromatòlits s'estima una eutrofització del medi, i un pas de condicions mesohalines a condicions hipersalines.

A més d'existir unes condicions ambientals favorables pel creixement dels tapissos microbians, llur creixement i preservació es deu, sobretot, a la manca d'organísmes destructors dels tapissos. La escassa circulació de les aigües, amb la corresponent acumulació de matèria orgànica, són els responsables de les condicions anòxiques del fons. L'acidesa de les aigües es mantindria gràcies a la descomposició bacteriana de la matèria orgànica, a l'acumulació de sulfhídric per degradació del guix i, a la utilització del sulfat dissolt en l'aigua pels bacteris sulfato-reductors. L'haloclina ajuda a mantenir concentracions baixes d'àcid sulfhídric i d'altres àcids, i per tant, a rebaixar el pH de la salmorra de base.

En les fàcies estudiades, les condicions hipersalines no queden enregistrades fins a la formació dels estromatòlits.

Els estromatòlits de les zones més proximals, no presenten evidències d'hipersalinitat. La presència de les algues ocromonadals (crisòfites), dins de les làminacions cianobacterianes, indiquen el seu desenvolupament en un medi d'aigua dolça. També les dades geoquímiques, tan d'elements traça com isotòpiques, assenyalen un medi amb forta influència d'aigua dolça pels estromatòlits cianobacterians.

A mesura que la conca es va restringint, i els estromatòlits es van desenvolupant cap a zones més centrals en la conca, comencen a presentar evidències d'evaporites, de manera que els estromatòlits bacterians, presents en les àrees més centrals, indiquen per les seves característiques petrogràfiques, i per les senyals geoquímiques, que s'haurien desenvolupat en unes aigües hipersalines.

CARACTERÍSTIQUES BIOLÒGIQUES.

La Unitat Carbonatada Inferior del Complex Carbonatat presenta una associació faunística, on la característica principal a resaltar és la presència de macroforaminífers epifítics amb activitat simbiòtica com *Orbitolites* sp., *Praebullalveolina* sp., amb cicle de maduració llarg (estratègia K). Per aquesta associació faunística es dedueix un medi colonitzat per vegetació perenne (seagrasses), capaç de servir d'hàbitat a aquests organismes que es desenvolupen en un periòde major al estacional.

La Unitat Carbonatada Mitja es caracteritza per l'abundància d'organismes epifítics de cicle de maduració curt (estratègia r) i, per l'absència de macroforaminífers. Aquesta associació faunística indica un medi colonitzat per vegetació estacional (macroalgal).

La Unitat Carbonatada Superior està constituïda per laminacions cianobacterianes, i reflecteix la colonització de tot el fons per tapissos de cianobacteris. La preservació d'aquestes estructures estromatolítiques implica l'absència de fauna destructora dels tapissos.

RELACIÓ CARBONATS - EVAPORITES

Per sobre dels darrers esculls de la Seqüència Deposicional de Milany (Puigdefàbregas *et al.*, 1986) s'enregistra, en les diferents litofàcies del Complex Terminal, una progressiva somerització de la conca, amb etapes de progradació (entrada de siliciclàstics), i etapes de recobriment expanssiu (formació dels nivells carbonatats) durant l'aturament de la progradació.

Les dos unitats carbonatades inferiors, indiquen pel seu contingut biològic, condicions de salinitat marina normal, mentre que en la part alta de la Unitat Mitja i en la Unitat Superior s'enregistra l'entrada d'aigües dolces.

Les primeres litofàcies que comencen a presentar evidències directes de precipitació d'evaporites dins del Complex Terminal són els estromatòlits. Dins de les estructures estromatolítiques, com ja hem explicat, algunes àrees no presenten evidències d'hipersalinitat (ex. Moià, sèrie VS4), i en d'altres àrees els pseudomorfs de guix lenticular apareixen en la part mitja o alta de la sèrie estromatolítica (sèries VS1, VS2, i VS3).

La geometria i les relacions entre les diferents litofàcies d'estromatòlits carbonatats amb pseudomorfs de guix, estromatòlits carbonatats sense pseudomorfs de guix, laminacions guix- estromatòlit, i el cinturó sulfatat del vorell de la conca, assenyalen que el conjunt respon a una seqüència progressiva d'evaporació, i no a un canvi lateral de fàcies. La relació existent entre els diferents tipus d'estromatòlits presents en els distints vorells de la conca la deduïm a partir de la no existència, en tota l'àrea cartografiada, de punts on es pugui observar la relació entre els estromatòlits del vorell Nord i els estromatòlits del vorell Est, ni entre aquests darrers i els del vorell Sud. Aquesta mancança de punts de comunicació entre uns i altres estromatòlits fa que interpretem que no existeix relació lateral entre ells, i per tant, que considerem els diferents estromatòlits com a diacrònics, arreu del vorell de la conca.

En els estromatòlits cianobacterians trobem enregistrada la influència d'aigua dolça (segons les dades isotòpiques i d'elements traça), així com els diferents moments d'emersió i exposició subaèria (petrografia i isòtops). En el domini dels estromatòlits bacterians hi ha poques evidències directes d'emersió, i les dades geoquímiques (isòtops i elements traça) indiquen condicions cada cop més evaporades i concentrades, a més, les diferents microfàcies es distribueixen d'una manera més o menys concèntrica respecte les àrees més allunyades del vorell de la conca. Aquesta disposició concèntrica de les microfàcies es correspon també amb una disposició similar de les dades geoquímiques, tant les isotòpiques com les dels elements traça, cosa que ens indueix a pensar que, a messura que la conca es va restringint, i que el vorell de conca va migrant cap a zones més centrals, les diferents microfàcies estromatolítiques colonitzen zones relativament més centrals.

Aquesta "progradació" de les estructures estromatolítiques en direcció a zones cada cop més centrals de la conca, descarta la possibilitat d'un canvi lateral entre els estromatòlits carbonatats en el marge, les fàcies de laminacions guix-estromatòlit en àrees intermèdies, i la precipitació d'evaporites en les zones més centrals. Si fos així, la migració del marge de la conca, i per tant de les fàcies de l'estromatòlit carbonatat, cap al centre de la conca, originaria una seqüència vertical formada per dipòsits sulfatats a la base, laminacions guix-estromatòlit en la part mitja, i estromatòlit carbonatat al sostre. Per contra, la seqüència que trobem en les àrees relativament més centrals està formada, de la base al sostre, per l'estromatòlit carbonatat, les laminacions alternants guix-estromatòlit, i les evaporites. Aquesta successió vertical de les fàcies implica, en una conca regressiva, i pel principi de la superposició, que les fàcies han de ser progressivament més modernes de la base al sostre de la sèrie.

Respecte a la part relativament més profunda del vorell Est aflorant, trobem un nivell micrític amb components siliciclàstics i biogènics, pocs metres per sota del guix. El tipus de components orgànics que constitueixen aquest nivell: petits miliòlids, discòrbids, ostràcodes de closca fina sense ornamentació i restes vegetals, fan pensar en un ambient molt som i restringit, similar als ambients on es formaren els estromatòlits.

Els dipòsits evaporítics més inferiors estan per sobre de les margues anòxiques, dels estromatòlits, o d'aquest nivell micrític que acabem de definir, i per tant, són posteriors a totes aquestes litofàcies. Aquesta deposició de les evaporites per sobre de les diferents litofàcies del Complex Terminal evidencia una evolució ràpida cap a condicions evaporítiques.

Durant la deposició de les evaporites, en les depressions existents, les fàcies carbonatades marginals quedarien emergides, i s'esdevindria el desenvolupament d'un *caliche* vadós amb òxids de ferro i amb evidències de dissolució al sostre.

La interpretació ambiental de les evaporites es complica per les repetides fluctuacions del nivell de l'aigua i de la seva concentració, cosa que es palesa en el paquet format per laminacions guix-estromatòlit. La laminació fina i regular d'aquest paquet, i la manca de fauna, són evidències d'una alternança entre estadis d'estratificació d'aigües amb poca oxigenació, i estadis evaporítics. La formació de les laminacions guix-estromatòlit podria interpretar-se com a proliferacions periòdiques dels bacteris durant curts períodes de salinitat més baixa. El retorn a condicions hipersalines minvaria la proliferació dels bacteris, reactivant el creixement del guix que fossilitzaria les làmines bacterianes. En realitat, el guix podria haver seguit creixent i impregnant la salmorra intersticial durant el desenvolupament del tapís microbià. Segons Monty (1984), els estromatòlits són les últimes traces de vida sobrevivents en un ambient en crisi.

La situació estratigràfica de la depressió ocupada per aquests guixos és indicativa d'un medi som, i els seus valors isotòpics, analitzats per Utrilla (1989), concorden amb els donats per Claypool *et al.*, (1980) per a les evaporites marines del Terciari.

MODEL SEDIMENTARI

A partir de l'estudi de les unitats carbonatades del Complex Terminal, proposem la següent evolució de la conca:

Durant la formació de les Unitats Inferior i Mitja, el vorell de la conca hauria estat caracteritzat per una plataforma de geometria homoclinal progressivament més soma, amb un pas de condicions de salinitat marina normal cap a condicions mesohalines, i de medis globalment oligotròfics a medis eutròfics.

L'evolució d'aquests medis de plataforma, sintetitzats en la figura 55, originen un vorell de conca molt som, amb un fons irregular, generat pels relleus de les barres infrajacents.

Figura 55: Blocs diagrames sintetitzant l'evolució del Complex Terminal. Cada bloc diagrama representa diferents moments en aquesta evolució:

a) Desenvolupament de la microfàcies A (*Wackestone-packstone* de foraminífers aporcellanats i algues vermelles coral.lines), i submicrofàcies C1 (*Packstone* d'algues vermelles coral.lines, briozous i foraminífers incrustants).

b) Episodi similar a quan es desenvolupava la microfàcies A, però amb rentat del fons. Aquest rentat genera la microfàcies B (*Grainstone* de foraminífers aporcellanats i algues vermelles coral.lines) a la base de la Unitat Mitja.
c) Desenvolupament de la microfàcies D (Alternança de grainstone de foraminífers aporcellanats i algues vermelles coral.lines amb laminacions cianobacterianes), E (laminacions cianobacterianes) i submicrofàcies C2

(Packstone d'algues vermelles coral.lines, briozous i foraminífers incrustants), en la Unitat Mitja.

d) Desenvolupament de la microfàcies F.

El model sedimentari que proposem per a la formació dels estromatòlits estudiats, defineix dos ambients deposicionals clarament diferenciats (Figs. 56 i 57). Un ambient deposicional en el qual es desenvoluparien els estromatòlits formats principalment per cianobacteris, i un ambient deposicional diferent, en les àrees actualment més allunyades dels marges de la conca, on es desenvoluparien els estromatòlits formats principalment per bacteris.

Ambient deposicional dels estromatòlits cianobacterians.

Els estromatòlits cianobacterians es desenvolupen sobre els nivells carbonatats rics en foraminífers aporcellanats.

El límit entre les fàcies de foraminífers aporcellanats i l'estromatòlit és una discontinuïtat marcada segons les àrees per un microcarst, per un petit interval margós, o per un hiatus de no sedimentació.

L'evolució dels estromatòlits cianobacterians, en la vertical, impliquen un canvi des de condicions mesohalines, amb influència d'aigua meteòrica, cap a condicions d'alta salinitat i cap a l'emersió subaèria.

En el vorell Nord (àrea de Sant Bartomeu) on s'observa un tall perpendicular a l'antiga línia de costa, i per tant, la geometria de barra de les fàcies infrajacents, el domini de l'estromatòlit cianobacterià abarca des de la cresta de la barra infrajacent fins a les zones més marginals, és a dir, les zones protegides de la barra.

L'ambient que proposem per aquests estromatòlits cianobacterians, vàlid tant pel vorell Nord (àrea de Sant Bartomeu), com pel vorell Sud (àrea de Collsuspina-Moià-Artés), és una plataforma homoclinal molt soma, restringida al mar obert per una barrera física representada pels nivells de foraminífers. Es tractaria d'una àrea de maresma costanera que temporalment s'assecaria (fig. 56).

FIGURA 56: Bloc diagrama del tipus d'ambient existent durant la formació dels estromatòlits cianobacterians.

Ambient deposicional dels estromatòlits bacterians

Els estromatòlits bacterians es desenvolupen directament per sobre de sediments margosos. Respecte al vorell actual de la conca, aquest tipus d'estromatòlits es localitzen en àrees relativament més centrals que els estromatòlits cianobacterians.

En la vertical, els estromatòlits bacterians evolucionen des d'un medi amb influències d'aigua marina, cap a condicions cada cop més hipersalines. L'aturament en el desenvolupament d'aquests estromatòlits s'esdevé al produir-se la deposició evaporítica.

Desprès de la deposició de la sèrie evaporítica, es produeix segons les àrees, l'emersió i per tant, la sedimentació d'argiles i sorres vermelles continentals, o bé la sedimentació en medi lacustre de margues blaves sense fauna, de margues amb nivells de *slumps*, i/o de sorres en seqüències estratocreixents i granocreixents.

Les observacions petrogràfiques fetes en aquests estromatòlits bacterians, mostren que tot i la seva situació en les àrees més allunyades dels vorells de la conca, el medi en què es van depositar era molt som, possiblement es tractaria d'una àrea amb pendent molt suau cap a conca, amb un fons irregular, capaç d'originar un medi restringit sense una barrera física única (fig. 57).

FIGURA 57: Bloc diagrama del tipus d'ambient existent durant la formació dels estromatòlits bacterians.

Les diferències geoquímiques (tant isotòpiques com d'elements traça) entre els estromatòlits cianobacterians i els bacterians, indiquen un canvi important en la composició química de l'aigua on es formaren. Això, combinat amb les característiques petrogràfiques dels dos tipus d'estromatòlits (indicatives d'exposició subaèria en els estromatòlits cianobacterians, i amb caràcters de medis molt soms en ambdós), implica necessariament una disminució de la làmina d'aigua entre la formació dels estromatòlits cianobacterians i la dels bacterians.

La figura 58, indica de manera molt esquemàtica, la cronologia de la formació de les diferents litofàcies, i l'evolució de la línia de costa, durant la formació dels estromatòlits.

guix

FIGURA 58.- Successió cronològica de la formació de les diferents litofàcies i evolució de la línia de costa. La morfologia irregular del fons, i el pendent cap a centre de la conca, condicionà la successiva restricció de les fàcies marginals.

ς.

5.- RESUM I CONCLUSIONS

RESUM I CONCLUSIONS

A.- ESTRATIGRAFIA I SEDIMENTOLOGIA

Es caracteritza el Complex Terminal, que inclou l'interval de materials dipositats en el vorell de la conca per sobre de la Seqüència Deposicional de Milany, i per sota de la Seqüència Deposicional de Solsona. El Complex Terminal comprén tres nivells carbonatats separats per materials siliciclàstics progradants (Fig. 12).

Els nivells estromatolítics presents en els diferents vorells de la Conca Eocena Sudpirinenca no estan constituïts en la seva totalitat per laminacions orgàniques, sinó que estan formats per una associació de microfàcies algunes d'origen orgànic i d'altres d'origen inorgànic.

L'estromatòlit estudiat presenta sempre una macrostructura de tipus planaestratiforme, i dues textures diferents, una formada exclussivament per làmines carbonatades, i una altra formada per l'alternança mil.limètrica de làmines carbonatades i làmines de guix.

B.- PETROLOGIA

En les Unitats Carbonatades Inferior i Mitja del Complex Terminal, s'han diferenciat en total sis microfàcies carbonatades, una d'elles dividida en dues submicrofàcies. En la Unitat Carbonatada Superior, constituïda pels nivells estromatolítics, s'han descrit 26 microfàcies diferents que presenten una distribució complexa en les diferents àrees. Degut a la dificultat que representa definir texturalment aquestes microfàcies s'ha fet una divisió per àrees. En total, s'han definit 11 microfàcies en el vorell Nord, 10 microfàcies en el vorell Est, i 5 microfàcies en el vorell Sud. En base a les característiques petrogràfiques s'han diferenciat tres tipus diferents d'organismes formadors de l'estromatòlit: els cianobacteris filamentosos, els cianobacteris coccoides, i els bacteris.

C.- GEOQUÍMICA (Elements traça i isòtops estables).

Pel que fa als diferents elements analitzats (sodi, calci, estronci, magnesi, manganès, i ferro), el sodi és el que mostra una major relació amb el tipus de microfàcies, de manera que els estromatòlits cianobacterians presenten baix contingut en sodi, i els estromatòlits bacterians presenten alts continguts en aquest element (Fig. 24).

Relacionant el contingut en sodi amb la salinitat de les aigües podem establir la hipòtesi de que el grau de salinitat de les aigües influïa directament en el tipus d'organisme constructor de l'estromatòlit.

Dins de l'interval estromatolític, l'increment de la salinitat no és progressiu, sinó que existeixen canvis sobtats que indiquen dilucions de les aigües remanents en la conca.

Per la relació existent entre el contingut en sodi i el contingut en manganès, s'estableix una relació entre les condicions més evaporades i les condicions més reductores, de manera que quan hi ha un dilució en el medi, disminueix en la vertical el contingut en ambdos elements.

En els estromatòlits estudiats, el contingut en manganès, magnesi, ferro i estronci, indica un origen més relacionat amb aigües meteòriques que amb aigües marines. Aquesta evidència de forta influència d'aigües continentals és fa més palesa en els estromatòlits cianobacterians que en els bacterians.

La distribució irregular de les mostres que contenen celestina, fa atribuir aquest mineral a un producte diagenètic, probablement originat a partir de la lixiviació o dissolució dels esculls coral.lins infrajacents i del SO_4^{2-} present en l'aigua.

RESUM I CONCLUSIONS

Les poques dolomites trobades en els materials estudiats, presenten baixos continguts en sodi i en estronci, i alts continguts en ferro i en manganès (Taula 1), composició que suggereix un origen per aigües meteòriques. El magnesi que originaria la dolomita pot procedir de la compactació de les argiles circumdants durant la diagènesi primerenca, mentre que el ferro i el manganès procediria de l'aigua meteòrica.

Els estromatòlits cianobacterians, els biolaminoides i els estromatòlit bacterians mostren una evolució progressiva cap a valors més enriquits en δ^{18} O (Figs. 37 i 38), el que interpretem com un pas cap a condicions progressivament més evaporades.

Degut a que els tres tipus d'estromatòlits no mostren diferencies apreciables en la δ^{13} C (Figs. 37 i 38), podem interpretar que els efectes vitals d'aquests microorganismes no produeixen fraccionament isotòpic en la ¹³C, o bé, que si en produeixen és del mateix ordre.

La composició isotòpica en ¹⁸O dels estromatòlits cianobacterians indica que s'han format en unes aigües amb molta influència continental, poc o gens evaporada. El desplaçament progressiu cap a valors més enriquits en ¹⁸O per als biolaminoides, i finalment per als estromatòlits bacterians, indica la progressiva evaporació i concentració d'aquesta aigua a messura que la conca s'anava restringint, el vorell anava migrant cap a zones més centrals, i els estromatòlits es desenvolupaven en àrees més distals sota condicions més restringides.

Els rebliments esparítics dels pseudomorfes de guix (Figs. 43 i 44) indiquen una fase diagenètica primerenca, sota un fluid amb composició semblant al que hi havia en el medi quan es formaren els estromatòlits però influit per carboni empobrit en ¹³C.

Els rebliments esparítics de les esquerdes (Figs. 43 i 44) indiquen una fase diagenètica tardana multiepisòdica, originada per la circulació d'aigües meteòriques amb composició variable, degut a l'increment de la temperatura i/o a la seva evolució isotòpica durant l'enterrament.

D.- PALEOECOLOGIA

L'estudi de la fauna epifítica (foraminífers, algues vermelles coral.lines) del registre fòssil, en un medi de substrat tou, permet renonèixer, segons els cicles de maduració, el tipus de cobertora vegetal.

En les unitats carbonatades Inferior, Mitjà i Superior del Complex Terminal, s'han descrit en total, 5 biofàcies diferents:

1) *Orbitolites, Praebullalveolina,* rhapydionínids, peneròplids, miliòlids, ammodiscàcids, valvulínids, asterigerínids, acervulínids, cibicídids, bolivinítids, i algues vermelles coral.lines incrustants i articulades d'hàbitat epifític. Característic de medis de salinitat marina normal, vegetació perenne, i medi oligotròfic amb un nivell eutròfic a la base.

2) Peneròplids, rhapydionínids, miliòlids, textulàrids, i algues vermelles coral.lines incrustants i articulades d'hàbitat epifític. Característic de medis amb salinitat marina normal, vegetació estacional, medi oligotròfic i microhàbitats eutròfics relacionats amb la vegetació.

3) Victorièl.lids, homotremàtids, placopsilínids i coscinophragmínids associats a algues vermelles coral.lines d'hàbitat incrustant. Característics d'un medi amb salinitat marina normal, oligotròfic, amb energia de fons generada pels corrents de deriva litoral.

4) Peneròplids, petits foraminífers aporcellanats i escassos ostràcodes de closca sense ornamentació, amb intensa biotorbació. Característic d'un medi de salinitat baixa, vegetació estacional, i medi eutròfic generats pels corrents de *run off*.

5) Cianobacteris i/o bacteris, escassos discòrbids, petits foraminífers aporcellanats i ostràcodes de closca fina sense ornamentació, ocromonadals i caròfits. Característic d'un medi de salinitat baixa (ocromonadals i caròfits) a hipersalí (presència de pseudomorfes de guix), i medi eutròfic generat per *run off*.

E.- EVOLUCIÓ I CARACTERÍSTIQUES DE LA CONCA DURANT EL DESENVOLUPAMENT DEL COMPLEX TERMINAL.

Previ al desenvolupament del Complex Terminal, la sedimentació en la conca es caracteritzava pels sistemes deltaics progradants i el desenvolupament d'esculls coral.lins de la seqüència deposicional de Milany.

El Complex Terminal, format per tres nivells carbonatats separats per materials siliciclàstics, reflecteix moments de desenvolupament de plataformes somes i moments de progradació i rebliment de la conca.

Durant el desenvolupament de la Unitat Carbonatada Inferior del Complex Terminal la conca presentava unes condicions de salinitat marina normal, el medi era globalment oligotròfic, i el fons estava colonitzat per vegetació perenne.

Durant la major part del desenvolupament de la Unitat Mitja carbonatada del Complex Terminal, el medi seguia tenint unes condicions de salinitat marina normal, era globalment oligotròfic, i la cobertora vegetal era de tipus estacional.

La part alta de la Unitat Mitja indica emersió local, una cobertora macroalgal estacional, condicions més eutròfiques i, l'entrada d'aigua meteòrica a la conca.

La Unitat Carbonatada Superior, és a dir, el nivell amb estromatòlits, mostra, per les anàlisis geoquímiques i la presència d'algues ocromonadals (crisòfits), condicions d'aigua dolça a la base i en les zones més proximals, i una evolució cap a condicions de major evaporació en la part superior, i en les àrees més distals.

En la vertical, les diferents microfàcies que formen les tres unitats del Complex Terminal mostren una fondària progressivament més soma, un pas de medis on predominen les condicions oligotròfiques a medis on predominen les condicions eutròfiques, i un pas d'una cobertora vegetal perenne a una cobertora macroalgal estacional i finalment a una colonització de tot el fons per tapisssos microbians (Fig. 55).

En les fàcies estudiades, les condicions hipersalines no queden enregistrades fins a la part alta dels estromatòlits cianobacterians i en els bacterians. L'ambient deposicional dels estromatòlits cianobacterians podria correspondre a una maresma costanera protegida, separada de la conca per les barres infrajacents de la Unitat Mitja carbonatada, i sotmesa a emersions periòdiques (Fig. 56).

L'ambient deposicional dels estromatòlits bacterians podria correspondre a una zona extensa molt soma, amb condicions restringides, però sense existir una barrera física que la separès del reste de la conca (Fig. 57).

Els estromatòlits de tipus bacterià s'han format posteriorment als estromatòlits de tipus cianobacterià, en unes aigües sotmeses a una major evaporació i més concentrades.

A més, dins del domini dels estromatòlit bacterians, la relació entre els més propers al vorell de la conca, i els més allunyats, és també amb una geometria de falques successives, és a dir, "progradant", de manera que els més distals s'haurien desenvolupat més tard, durant els estadis de major evaporació.

La relació existent entre la δ^{18} O, les concentracions en els diferents elements, i el tipus de microfàcies estromatolítica, ens indica que el tipus de microfàcies depèn de l'ambient deposicional, i per tant, que les característiques químiques del medi influien en el tipus d'organismes constructors dels estromatòlits. D'aquesta manera, els cianobacteris haurien estat els principals microorganismes constructors dels estromatòlits en les aigües poc evaporades i poc concentrades, i amb una δ^{18} O més negativa, mentre que els bacteris haurien estat els principals responsables de la construcció dels estromatòlits en les aigües més evaporades i concentrades (hipersalines), i amb una δ^{18} O més positiva, quan la conca era més restringida.

L'acabament del desenvolupament dels estromatòlits en la conca s'hauria degut a l'arribada d'aports siliciclàstics en les zones més proximals, i a l'alta salinitat del medi en les zones més distals, que originarien directament el desenvolupament de les sèries evaporítiques. D'aquesta manera, per sobre del Complex Terminal té lloc la sedimentació dels dipòsits continentals de la Seqüència Deposicional de Solsona, en les zones proximals, i la formació dels dipòsits evaporítics de guix en les zones més distals.

Els dipòsits de guix del vorell de la conca són posteriors al desenvolupament dels estromatòlits, i la geometria existent entre els estromatòlits i les evaporites és de tipus tascó sobre tascó.

L'interval format per laminacions alternants de guix i carbonat, present entre els estromatòlits carbonatats i els dipòsits de guix representa proliferacions periòdiques dels bacteris en un medi hipersalí. Durant els períodes de salinitat més baixa proliferarien els bacteris, i en els períodes de major salinitat es formarien els intervals de guix. .

- ADAMS, J.E. i RHODES, M.L. (1960) "Dolomitization by seepage refluxion". *Bull. Am. Assoc. petrol. Geol.* 44, 1912-1920.
- AITKEN, J.D. (1967) "Classification and environmental significance of cryptalgal limestones and dolomites with ilustrations from the Cambrian and Ordovician of Southwestern Alberta". *Journ. of Sed. Petrology* 37, 1163-1178.
- ALEXANDERSSON, E.T. (1972a) "Intragranular growth of marine aragonite and Mg-calcite: Evidence of precipitation from supersaturated seawater. *Journ. of Sed. Petrology* 42, 441-460.
- ALEXANDERSSON, E.T. (1972b) "Mediterranean beachrock cementation: Marine precipitation of Mgcalcite" in D.J. Stanley (ed.), *The Mediterranean Sea: A Natural Sedimentation laboratory*. Dowden, Hutchinson and Ross Inc. Striudsburg, Pennsylvania, p. 203-223.
- ALLAN, J.R. i MATTHEWS, R.K. (1977) "Carbon and oxygen isotopes as diagenetic and stratigraphic tools: Surface and subsurface data, Barbados, West Indies" *Geology* 5, 16-20.
- ALLAN, J.R. i MATTHEWS, R.K. (1982) "Isotope signatures associated with early meteoric diagenesis". Sedimentology 29, 797-817.
- ANADON, P. (1978). "El Paleógeno continental anterior a la transgresión Biarritziense (Eoceno medio) entre los rios Gaià y Ripoll (provincia de Tarragona y Barcelona). Resumen de la Tesis doctoral. *Estudios geológicos*, 34, 431-440.
- ANADON, P. i MARZO, M (1975).-"Montserrat Molassic Sedimentation: a general view. Le Basin Tertiaire Catalan-espagnol et les gisements de potase" IX Cong. Int. Sed. Nice. Livret guide.-Excurs. 20, 41-47.
- ANADON, P.; CABRERA, Ll.; GUIMERA, J.; i SANTANACH, P. (1985a): "Paleogene strike-slip deformation and sedimentation along the southeastern margin of the Ebro Basin". En: BIDDLE,K i CRIS-TIE_BLICK,N. (eds.) Strike-slip deformation, basin formation and sedimentation. Special Publication of the Society of Economic Paleontologist and Mineralogists, 37, 303-318.
- ANADON, P.; MARZO, M.; i PUIGDEFABREGAS, C. (1985b): "The Eocene Fan-delta of Montserrat (South-eastern Ebro Basin, Spain)". Ed. Inst. D'Estudis Ilerdencs. Lleida. 6th European Regional Meeting I.A.S. Lleida. Exc. Guidebook 111-146.
- ANADON, P. i MARZO, M. (1986) "Sistemas Deposicionales eocenos del margen oriental de la Cuenca del Ebro: Sector Igualada-Montserrat". XI Congrès Español de Sedimentologia, Excursió 4, 4.1 4.59.
- ANADON, P.; CABRERA, Ll.; COLOMBO, F.; MARZO, M.; i RIBA, O. (1986): "Syntectonic intradeformational unconformities in al.luvial fan deposits, Eastern Ebro Basin margins (NE Spain)". En
 - ALLEN, Ph i HOMEWOOD,P (eds.) Foreland basins. Special Publication of the International Association of Sedimentoligist 8, 33-45.

- ANDERSON, J.H. (1985) "Depositional facies and carbonate diagenesis of the downslope reefs in the Nisku Formation (U. Devonian), central Alberta, Canada". *Dissertation*. The University of Texas/Austin. 393 p.
- ARTHUR, A.A.; ANDERSON, T.A.; KAPLAN, I.R., VEIZER, J. i LAND, L.S. (1983) "Stable isotopes in sedimentary geology" SEPM short course nº10, Dallas.
- AWRAMIK, S.M. (1991) "Archaean and Proterozoic Stromatolites" in *Calcareous algae and stromatolites* (Riding, R. ed.) p. 289-304. Springer-Verlag.
- AWRAMIK, S.M. i MARGULIS, L. (1974). Second stromatolite newsletter (unpublished).
- AWRAMIK, S.M. i CLOUD, P. (1978) "Biogeologic relationships of ancient stromatolites and modern analogs" in Krumbein, W.E. (ed.) "Environmental Biogeochemistry and geomicrobiology". The aquatic environment vol.1, 165-178. Ann. Arbor.
- AWRAMIK, S.M.; i RIDING, R. (1988) "Role of algal eukaryotes in subtidal columnar stromatolite formation" *Proc. Natl. Acad. Sci. USA*, 85, 1327-1329.
- BARNOLAS, A.; BUSQUETS, P. i SERRA-KIEL, J. (1981/1982) "Características sedimentológicas de la terminación del Eoceno superior en el sector oriental de la Depresión del Ebro (Catalunya, NE de España)" Acta Geol. Hisp. 16 (4), 215-221.
- BEHRENS, E.W. i FRISHMAN, S.A. (1971) "Stable Carbon Isotopes in the blue-green algal mats" J. Geol. 79, 94-100.
- BENCINI, A. i TURI, A. (1974) "Mn distribution in the Mesozoic carbonate rocks from Lima VAlley, Northern Appennines" Jour. Sed. Petrol. 44, 774-782.
- BERNER, R.A. (1970) "Sedimentary pyrite formation" Amer. Jour. Scien. 268, 1-23.
- BERNER, R.A. (1971) "Bacterial processes effecting the precipitation of calcium carbonate in sediments" (in BRICKER, O.P., ed.), *Carbonate cements*. Hopkins, Baltimore, London, p. 247- 251.
- BERTRAND-SARFATI, J. i WALTER, M.R. (1982) "Stromatolite biostratigraphy" *Precambrian research* 15, 353-371.
- BLACK, M. (1933) "The algal sediments of Andros Island, Bahamas. *Phil.Trans. R. Soc. London* (B) 222, 165-192.
- BRAZIER, M.D. (1975a) "An outline history of seagrass communities." Palaeontology, 18, 681-702.
- BRAZIER, M.D. (1975b) "Ecology of recent sediment-dwelling and phytal foraminifera from the lagoons of Barbuda, West Indies" Journ. *Foraminifera research*, *5*, 42-62.
- BROCK, T.D. (1976) "Environmental microbiology of living stromatolites" in: *Stromatolites* (Walter M.R. ed.). *Developments in sedimentology* 20, 141-148. Amsterdam. Elsevier.
- BURNE, R.V. i MOORE, L (1987) "Microbialites: organosedimentary deposits of benthic microbial communities". *Palaios* 2: 241-254.
- BURNS, S.J.; BAKER, P.A. i SHOWERS, W.J. (1988) "The factors controlling the formation and chemistry
 of dolomite in organic-rich sediments- Miocene Drakes Bay Formation, California". in Sedimentology
 and geochemistry of dolostones (Shukla, V. i Baker, P.A. eds.). SEPM Special Publication 43, 41-52.

- BUSQUETS, P. (1973) "Análisis estratigráfico (fundamentalmente por microfacies) de los niveles marinos superiores del área de St. Bartomeu del Grau (Vic). *Tesis de Licenciatura*. Fac. de Geología. Universidad de Barcelona. Inèdita.
- BUSQUETS, P. (1975) "La transition éocène marin-éocène continental aux environs de St. Bartomeu del Grau. IX Congrés International de Sédimentologie. Nice. Le Bassin Tertiaire Catalan Espagnol et les Gisements de Potasse. Exc. 20: 33- 39.
- BUSQUETS, P. (1981): Estratigrafia y sedimentologia del Terciari pre-pirinenc entre els rius Llobregat i Fresser-Ter. *Tesi doctoral*. Univ. de Barcelona 344 p. inèdita.
- BUSQUETS, P.; ORTI, F.; PUEYO, J.J.; RIBA, O.; ROSELL-ORTIZ, L.; SAEZ, A.; SALAS, R.; i TABERNER,
 C. (1985): "Evaporite deposition and diagenesis in the saline (potash) Catalan basin, Upper Eocene".
 6th European Reg. Meeting I.A.S. Lleida-85. Exc. Guidebook, 1, 11-59. Ed. Inst. d'Est. Ilerdencs. Lleida.
- BUSQUETS, P.; REGUANT, S.; SANTISTEBAN, C.; i TABERNER, C. (1986). "Depositos de plataformas mixtas silicicoclasticas carbonaticas del Eoceno Medio-Superior en el area de Vic-Ripoll-Berga (Depresión del Ebro i Prepirineo". XI Congreso Español de sedimentología excursión 5, 5.1 - 5.28.
- BUSQUETS, P.; REGUANT, S.; SERRA-KIEL, J.; i TABERNER, C. (1991) "El registro bentónico en el análisis sedimentológico (Bartoniense-priaboniense del area de Vic: NE de la Cuenca del Ebro)" Guia de campo del 1^{er} congreso del grupo español del terciario Vic. 69 p.
- CASANOVA, J. (1986) "Les stromatolites continentaux: paleoecologie, paleohydrologie, paleoclimatologie.
 Aplication au Rift Gregory". *Tesi doctoral.* Universite d'Aix-Marseille II. Faculte des Sciences de Luminy. 256 p.
- CASANOVA, J.; RENAUT, R.; i VINCENS, A. (1987) "Les estromatolites in Le demigraben de Baringo-Bogoria, Rift Gregory, Kenya. 30.000 ans d'histire hydrologique et sédimentaire". (Tiercelin,J.J. i Vincens, A. eds.). Bull. Centres Rech. Explor. Prod. Elf-Aquitaine 11, 249-540.
- CASANOVA, J. i NURY, D. (1989) "Biosédimentologie des stromatolites fluvio-lacustres du fossé oligocène de Marseille". *Bull. Soc. Géol. France* 8 (6), 1173-1184.
- CAUS, E. (1975) "Biostratigrafia del Eoceno Medio y Superior del Prepirineo Catalan (y la zona de tránsito entre esta unidad y la cordillera Prelitoral Catalana)" *Rev. Esp. de micropaleontologia*. VII, 297-316.
- CAYEUX, L. (1935). Les roches sédimentaires de France: Roches carbonatées. Masson, Paris. 447 p.
- CERLING, T.E. (1991) "Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols" *Am. Jour, of Sciences*, **291**, 337-400.
- CLAYPOOL, G.E.; HOLSER, W.T.; KAPLAN, I.R.; SAKAI, H.; i ZAK, I. (1980) "The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation". *Chem. Geology* 28, 199-260.
- COLLINSON, J.D. i THOMPSON, D.B. (1982) "Sedimentary Structures". Allen G. i Unwin. London. 194 p.
- COLOM, G. (1971) "Micropaleontología de las séries eocénicas de Santa Coloma de Queralt (Tarragona)" Mem. R. Acad. Cienc. Artes de Barcelona. 3ª época nº754, 41 (4), 73-135.
- COLOM, G.; VIA, L.; i REGUANT, S. (1970) "Hallazgo de Harrischara linata Grambast en el yacimiento de Parés (St. Boi del Lluçanés, Vic)" Acta Geol. Hisp. año V, 65-66.

- COLOMBO, F. (1980) "Estratigrafía y sedimentología del Terciario inferior continental de los Catalanides". *Tesis Doctoral*. Departament d'Estratigrafía i Geologia Historica. Univ. de Barcelona, 609 p.
- COMIN, F.A. (1989) "Els sistemes aquàtics costaners" Història natural dels països catalans" 14, 442-464
- CRAIG, H. (1957) "Isotopics standarts for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide". *Geochim. cosmochim. Acta.* 12, 133-149.
- CRAIG, H. (1965) "The measurement of oxigen isotope paleotemperatures. In: Stable Isotope studies in oceanographic studies and paleotemperatures. (Tongiorgi E. ed.): 3-24. Pise: Lab. Géol. nucl. -C.N.R.
- DAHANAYAKE, K. i KRUMBEIN, W.E. (1985) "Ultrastructure of a microbial mat-generated phosphorite.-*Miner. Depos.* 20, 260-265.
- DEFFEYES, K.S.; LUCIA, F.J.; i WEYL, P.K. (1964) "Dolomitization: observations on the island of Bonaire, Netherlands Antilles. *Science*, **143**, 678-679.
- DEFFEYES, K.S.; LUCIA, F.J. i WEYL, P.K. (1965) "Dolomitization of recent and Plio-Pleistocene sediments by marine evaporite waters on Bonaire, Netherlands Antilles". in Dolomitization and Limestone Diagenesis. SEPM Spec. Publ. 13, 71-88.
- DERCOURT, J.; ZONENSHAIN, L.P.; RICOU, L.E.; KAZMIN, V.G.; LE PICHON, X; KNIPPER, A.L.; GRANDJACQUET, C.; SBORTSHIKOV, I. Mm GEYSSANT, J.; LEPVRIER, C.; PECHERSKY, D.D.; BOULIN, J.; SIBUET, J.C.; SAVOSTIN, L.A.; SOROKHTIN, O.; WESTPHAL, M.; BAZHENOV, M.L.; LAUER, J.P.; i BIJU-DUVAL, B. (1986) "Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias". In: Aubouin,J; Le Pichon, X; i Monin, A. (eds.), Evolution of the Tethys. *Tectonophysics*, 123 (1-4), 241-315.
- DILL, R.F.; SHINN, E.A.; JONES, A.T.; KELLY, K. i STEINEN, R.P. (1986): Giant subtidal stromatolites forming in normal salinity waters. *Nature*, 324, 55-58.
- DRAVIS, H. (1983) "hardened subtidal stromatolites forming in normal salinity waters" <u>Science</u> 219, 385-386.
- DREVER, J.I. (1982) "The geochemistry of natural waters" Prentice Hall, Englewood Cliffs, N.J. 388 p.
- DROMGOOLE, E.L. i WALTER, L.M. (1990) "Iron and manganese incorporation into calcite: Effects of growth kinetics, temperature and solution chemistry" *Chem. Geology* **81**, 311-336.
- DRONKERT, H. (1976) "Late Miocene evaporites in the Sorbas Basin and adjoining areas" Proceedings Messinian Seminar I, Erice Sicily Oct. 1975, Memoire Della Societa Geologica Italiana 16, 341-362.
- DRONKET, H. (1977) 'The evaporites of Sorbas Basin' <u>Rev. Ins. Inv. Geolo. Diputación Prov. Barcelona</u> XXXII, 55-76.
- EPSTEIN, S i MAYEDA, T. (1953) "Variations in O18 content of waters from natural sources" Geoc. et Cosm. Acta. 27, 213-224.
- FABER, W.W.JR. (1991) "Distribution and substrate preference on Peneroplis planatus and P. arietinus from the Halophila meadows near Wadi Taba, Eilat, Israel" *Journ. of foraminifera research*, 21, 218-221.
- FERGUSON, J. i BURNE, R.V. (1981) "Interactions between saline redbed groundwaters and peritidal carbonates, Spencer Gulf, South Australia: Significance for models of stratiform copper ore genesis.-BMR Journal of Australian Geology and Geophysics 6, 3129-325.

- FERRER, J.(1967) "Bioestratigrafia y Micropaleontologia del Paleoceno y Eoceno del borde Sud-oriental de la Depresión del Ebro" *Tesis Doctoral*. Universidad de Barcelona.
- FERRER, J.(1971). "El Paleoceno y Eoceno del Borde Sur-oriental de la Depresión del Ebro (Cataluña)".
 Mém. Suisse de Paleont. 90, 1-70.
- FERRER, J.; ROSELL J. i REGUANT, S. (1968) "Sintesis litostratigráfica del Paleogeno del borde oriental de la Depresión del Ebro" *Acta Geol. Hisp.* año III, 54-56.
- FISCHER, W.L. i RODDA, P.U. (1969) "Edwards Formation (Lower Cretaceous), Texas: Dolomitization in a carbonate platform system". *Bull. Am. Ass. petr. Geol.* 53, 55-72.
- FREYTET, P. (1973) "Petrography and paleoenvironment of continental carbonate deposits with particular reference to the Upper Cretaceous and Lower Eocen of Languedoc (Southern France)". *Sediment. Geol.*, **10**, 25-60.
- FRIEDMAN, G.M. (1969) "Trace elements in carbonate sediments" in "Depositional environments in carbonate rocks" (Friedman, G.M. ed.) SEPM 14, 193-198.
- FRIEDMAN, G.M.; AMIEL, A,J.; BRAUN, M.; i MILLER, D.S. (1973) "Generation of carbonate particles and laminites in algal mats: example from sea-marginal hypersaline pool, Gulf of Aqaba, Red Sea. Bull. Am. Ass, Petr. Geol. 57, 541-557.
- FRIEDMAN, G.M. i O'NEIL, J.R. (1977) "Composition of Stable isotope fractionation factors of geochemical interest" U.S. Geol. Surv. Prof. Paper 440.
- FRITZ, P. i KATZ, A. (1972) "The sodium distribution of dolomite crystals" Chem Geol. 72, 170-194.
- GARRETT, P. (1970) "Phanerozoic stromatolites: noncompetitive ecologic restriction by grazing and burrowing animals" *Science* 169, 171-173.
- GEBELEIN, C.D. (1969) "Distribution, morphology, and accretion rate of recent subtidal stromatolites, Bermuda" *Journ. of sedimentary petrology*, 39, 49-69.
- GEBELEIN, C.D. i HOFFMAN, P. (1968) "Intertidal stromatolites from Cape Sable Florida" *Geol. Soc. Am. Spec. Paper* **121**, 109 (abstract).
- GEBELEIN, C.D. i HOFFMAN, P. (1973) "Algal origin of dolomite laminations in stromatolitic limestone". Journal of Sediment. Petrol., 43, 603-613.
- GERDES, G. i KRUMBEIN, W.E. (1987) "Biolaminated deposits" *Lecture notes in Earth Sciences* 9. (Bhattacharji,S.; Friedman, G.M.; Neugebauer,H.J. i Seilacher,A. eds.). Springer-Verlag. 183 pag.
- GILL, D (1977) "Salina A-1 sabkha in the Late Silurian paleogeography of the Michigan Basin". *Journ.* Sedi. Petrology 47, 979-1017.
- GINSBURG, R. N. (1991) "Controversies about stromatolites: Vices and Virtudes" in Controversies in Modern Geology: Evolution of Geological Theories in sedimentology. Earth History and Tectonics. (Müller, D.W; McKenzie, J.A.; i Weissert, H. eds.) Academic Press.
- GOLDSTEIN, R.H. (1991) "Stable Isotopes signatises associated with paleosols, pennsylvanian Holder Formation. New Mexico" *Sedimentology* 38, 67-77.
- GOLUBIC, S. (1976) "Organisms that build stromatolites". in Walter, M.R.(ed.,). Developments in Sedimentology, 20. Elsevier Scientific Publishing Company, Amsterdam, 113-126.

- GORDON, L.; SALUTSKY, M.L.; i WILLARD, H.H. (1959) Precipitation from homogeneous solution. Wiley, Nova York.
- GORIN, G. (1975) "Etude palynostratigraphique des sédiments Paléogènes de la Grande Limoge (Massif Central, France". Bull. B.R.G.M. 2ème Sér., Sect 1/3, 147-181.
- GREGG, J.M. (1988) "Regional epigenetic dolomitization in the Bonneterre Dolomite (Cambrian), southeastern Missouri" *Geology* 13, 503-506.
- HALLOCK, P. (1984) "Distribution of selected species of living algal simbiont-bearing foraminifera on two Pacific coral reefs" *Journal of Foraminiferal Research*, 14/4, 250-161.
- HALLOCK, P. (1985) "Why are larger foraminifera large?" Paleobiology 11, 195-208.
- HALLOCK, P. i GLENN, H.C. (1986) "Larger foraminifera: A tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies" *Palaios* 1/1, 55-64.
- HARBECK, G.E. (1955) "The effect of salinity on evaporation" U.S. Geological Survey. Professional Paper, 272 A:1-6.
- HARDIE, L. A. (1977) "Sedimentation on the Modern Tidal Flats of Northwest Andros Island, Bahamas. John Hopkins Univ. Studies in Geology nº 22.
- HOFMANN, H.J. (1969) "Attributes of stromatolites" Geol. Surv. Canada Paper 69-39, 58 pag.,
- HÖHN, A.; SCHIDLOWSKI, M.; i STAPF, K. (1989) "Carbon and Oxigen isotopes of lacustrine stromatolites from the Permo-Carboniferous Saar-Nahe Basin (Southwest Germany)". *Terra Abstracts* 1, 220-221.
- HOLLANDE, A. (1952) "Classe des Chrysomonadines" in *Traite de Zoologie* (Grasse, P.P. ed.) p. 471-570. Masson. Paris.
- HOSSACK, J.R.; DERAMOND, J.; i GRAHAM, R.H. (1984) "The geological structure and development of the Pyrenees" *Coll. Chevauchement et deformation*. Tolulouse, abstract p. 46-47.
- HOTTINGER, L. (1977) "Distribution of larger Peneroplidae, Borelis and Nummulitidae in the Golf of Elat, Red Sea" Utrecht Micropaleontological Bulletin, 15, 35-109.
- HOTTINGER, L. (1983) "Processes determining the distribution of larges foraminifera in space and time" Utrecht Micropaleontological Bulletin, 30, 239-253.
- HOTTINGER, L. (1990) "Significance of diversity in shallow benthic foraminifera" Atti del Quarto simposio di Ecologia e Paleoecologia delle Comunità Bentoniche, 35-51. Museo Regionale de Scienze Naturali, Torino.
- ILLING, L.V.; WELLS, A.J. i TAYLOR, J.C.M. (1965) "Penecontemporary dolomite in the Persian Gulf". In Dolomitization and limestone diagenesis (Pray,L.C. i Murray,R.C. eds.) a symposium. SEPM Spec. Publ. nº 13, 89-111.
- INGLES, M. (1983): Estudi mineralògic i geoquímic dels sediments lutítico carbonatats del marge oriental de la depressió de l'Ebre. Tesis doctoral. Univ. de Barcelona. 207 pp. Inèdita.
- JANAWAY, T.M. i PARNELL, J. (1989) "Carbonate production within the Orcadian BAsin, northern Scotland: a petrographic and geochemical study" Paleo. Paleo. Paleo. 70, 89-105.
- JAVOR, B.J. (1985) "Nutrients and ecology of the Western Salt and Exportadora de Sal Saltern Brines" Sixth International Symposium on Salt, 1, 195-205. Alexandria. Virginia.

- JOHANSEN, H.W. (1981) "Coralline algae. A first synthesis". CRC, Press Inc., 239 p. Boca Raton. Florida.
- KAHLE, C.F. (1965) "Strontium in oolitic limestone" Journ. sedim. petrol. 35, 846-856.
- KALKOWSKY, E. (1908) "Oolith und Stromatolith im norddeutschen Buntsandstein". Deutsche Geol Gesell Zeitschr., 60, 68-125.
- KENNARD, J.M; i BURNE, R.V. (1989) Stromatolites Newsletter 14. 171 p.
- KINSMAN, D.J.J. (1969) "Interpretation of Sr²⁺ concentrations in carbonate minerals and rocks. *Jour.* Sedimentary petrology 39, 486-508.
- KITANO, Y.; KANAMORI, N.; i TOKUYAMA, A. (1969) "Effects of organic matter on solubilities and crystal form of carbonates.- *Amer. Zool.* 9, 681-688.
- KITAZATO, H. (1988) " Ecology of benthic foraminifera in the tidal zone of a rocky shore" *Revue de Paléobiologie*, vol spéc. 2, Benthos'86, 815-825.
- KLAPPA, C.F. (1979) "Calcified filaments in Quaternary calcretes: organo-mineral interactions in the subaerial vadose environment". J. sedim. petrol. 49, 955-968.
- KNOLL, A.H. i AWRAMIK, S.M. (1983) "Ancient microbial ecosystems. In *Microbial Geochemistry* (Krumbein, W.E. ed.) Blackwell Scientific Publications, Oxford. p.287-315.
- KRUMBEIN, W.E. (1979a) "Calcification by bacteria and algae". In *Biogeochemical cycling of mineral-forming* elements (Trudinger P.A. i Swaine, D.J. eds.), p. 47-69. New York- Amsterdam. Elsevier.
- KRUMBEIN, W.E. (1979b) "Photolithotrophic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai)". *Geomicrobiology Journ*. New York, 1-2, p. 139-203.
- KRUMBEIN, W.E. (1979c) "Über die Zuordnung der Cyanophyten".- In: Cyanobakterien Bakterien oder Algen?, (Krumbein, W.E. ed.) p. 33-48. Universität Oldenburg.
- KRUMBEIN, W.E. (1983) "Stromatolites The challenge of a term in space and time". *Precambrian Research* 20, 493- 531.
- KRUMBEIN, W.E.; BUCHHOLZ, H.; FRANKE, P.; GIANI, D.; GIELE, C. i WONNEBERGER, C. (1979)
 "O2 and H2S coexistence in stromatolites. A model for the origin of mineralogical lamination in stromatolites and banded iron formations" *Die Naturwissenschaften* 66, 381- 389.
- LAND, L.S. (1970) "Carbonate mud: production by epibiont growth on *Thalassia testudinum*" Jour. of Sedim. Petrol. 40, 1361-1363.
- LAND, L.S. i HOOPS, G.K. (1973) "Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solution" *J. Sediment. Petrol.* 43, 614-617.
- LAND, L.S.; SALEM, M.R.I. i MORROW, D.W. (1975) "Paleohydrology of ancient dolomites: geochemical evidence" *Am. Assoc. Petrol. Geol. Bull.* 59, 1602-1625.
- LANDRY, J.C. i Jaccard, J. (1984) "Chimie des eaux libres dans le marais salant de Santa Pola, salina de Bras del Port" *Rev. Inv. Geol.* 38/39, 37-53.
- LANGER, M. (1988) "Recent epiphytic foraminifera from Vulcano (Mediterranean Sea" Revue de Paléobiologie, vol séc. 2, Benthos'86, 827-832.
- LEE, R.E. (1989) "Phycology" 649 p.

- LEUTENEGGER, S. (1984) "Symbiosis in benthic foraminifera: specifity and host adaptations" *Journ. of foraminifera research*, 14, 16-35.
- LLIMONA, X.; BALLESTEROS, E.; BRUGUES, M.; COMIN, F.; CROS, R.; MOLERO, J.; ROMERO, J.; TOMAS, X; i TORRELLA, F. (1985) "Les plantes inferiors" *Història dels països catalanas* 4, 255-330.
- LLOBET i VALL-LLOSERA (1847) "Explicación de varios fenómenos geológicos que presenta el llano de Vich".- Mem. R. Acad. Ciencias Barcelona, p. 37-48. Barcelona.
- LOGAN, B.W. (1961) "Cryptozoan and associate stromatolites from the Recent of Shark Bay, Western Australia". *Jour. Geol.* 69, 517-533.
- LOGAN, B.W. (1974) "Inventory of diagenesis in Holocene-Recent carbonate sediments, Shark Bay, Western Australia" Am. Assoc. Pet. Geol., Mem. 22, 195-249.
- LOGAN, B.W.; REZAK, R.; i GINSBURG, R.(1964) "Classification and environmental significance of algal stromatolites" *Geology*. **12**, 68-83.
- LOGAN, B.W.; HOFFMAN, P.; i GEBELEIN, C.D. (1974) "Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia". in Evolution and diagenesis of quaternary Carbonate secuences, Shark Bay, W. Australia (Logan,b.w. ed.) A.A.P.G. mem. 22.
- LOPEZ, M. (1991) "Estratigrafía y sedimentología del sector occidental del abanico costero de Sant Llorenç del Munt al este de Sant Vicenç de Castellet (Eoceno, Cuenca de Antepaís Surpirenaica)". *Tesi de Llicenciatura*. Mayo 1991, 135 pàg. No publicada.
- LORENS, R.B. (1981) "Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rate". *Geochim. cosmochim. Acta* 45, 553-562.
- LOVE, L.G. (1969) "Sulfides of metals in recent sediments" in Sedimentary Ores: Ancient and modern. *Rev. Ed. Proc. of the 15 Inter-University Geol. Cong.*, 1967, published by dept. of Geology, Univer. of Leicester, England, P. 31-60.
- MACINTYRE, I.G. (1977) "Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama. Jour. sed. petrology, 47, 503-516.
- MACINTYRE, I.G. (1985) "Submarine cements- the peloidal question". Soc. econ. Paleont. and Miner. Spec. Public. 36, 109-116.
- MACINTYRE, I.G; MOUNTJOY, E.W; i D'ANGLEJAN. B.F. (1968) "An ocurrence of submarine cementation of carbonate sediments off the west coast of Barbados, W. I. *Jour. sedim. Petrol.* 38, 660-664.
- MACINTYRE, W.L. (1963) "Trace element partition coefficients- a review of theory and applications to geology". *Geochim. cosmochim Acta* 27, 1209-1264.
- MAIKLEM, W.R., BEBOUT, D.G. i GLAISTER, R.T. (1969) "Classification of anhidrites -a practical approach". Bull. Canadian Petroleum Geology 17, 194-233.
- MASACHS ALAVEDRA, V. (1954) "Edad del horizonte de tránsito entre el Eoceno Marino y las calizas con Melanoides albigensis Noul, en una parte del sector catalan de la Depresión del Ebro" R. Soc. Esp. Hist. Nat. T. homenaje al prof. E. Hernandez-Pacheco p. 453-457.
- MASSARI, F. (1980) "Cryptalgal fabrics in the Rosso Ammonitico sequences of Venetian Alps. In: Proc. Rosso Ammonitico Symposium (Farinacci, a. i Elmi, s. eds.) p.435-469. Edizioni Techoscienza, Roma.

- MATTES, B.W.; i MOUNTJOY, E.W. (1980) "Burial dolomitization of the Upper Devonian Miette buildup, Jasper National Park, Alberta" in *Concepts and models of dolomitization* (Zenger, D.H.; Dunham, J.B.; i Ethington eds.).
- MATTHEWS, R.K. (1966) "Genesis of recent lime mud in Southern British Honduras" *Journ. Sedim. Petrol.* 36, 428-454.
- McCREA, J.M. (1950) "On the isotopic chemistry of carbonates and a paleotemperature scale" J. Chem. Phys., 18, 849-857.
- McCULLOCH, M.T.; DE DECKKER, P.; i CHIVAS, A.R. (1989) "Strontium isotope variation in single ostracod valves from the Gulf of Carpentiaria, Australia: a palaeoenvironmental indicator". *Geochim. cosmochim. Acta* 53, 1703-1710.
- McHARGUE, T.R. i PRICE, R.C. (1982) "Dolomite from clay in argillaceous or shale-associated marine carbonates". *Journ. sedim. petrol.* 52, 873-886.
- McKEE, E.D. i GUTSCHICK, R.C. (1969) "History of Redwall Limestone of northern Arizona". *Mem. geol.Soc. Am.* 114, 726.
- McKIRDLY, D.M.(1976) "Biochemical markers in stromatolites" in Stromatolites (Walter ed.) Developments in sedimentology 20, 163-191.
- MERZ, M. i ZANKL, H. (1991) "Biologically controlled carbonate precipitation by Cyanobacteria". 5th international symposium on fossil algae. Poster Abstract p.4.
- MONTY, C.L. (1965a) "Geological and environmental significance of cyanophyta" *Thesys.* Princeton University, N.J. 429 pag.
- MONTY, C.L. (1965b)."Recent algal stromatolites in the Windward Lagoon, Andros Island, Bahamas. Annls Soc. Geol. Belg. 88, 269-276.
- MONTY, C.L. (1967) "Distribution and structure of Recent Stromatolitic algal mats, Eastern Andros Island, Bahamas." *Annls. Soc. geol. Belg.* 90, 55-102.
- MONTY, C.L. (1973a) "Les nodules de manganèse sont des stromatolithes océaniques" C.R. Acad. Sci. Paris Sèr. D, 276, 3285-3288.
- MONTY, C.L. (1973b) "Precambrian background and Phanerozoic history of stromatolite communities, an overview" Ann. Soc. Géol. Belg., Bull. 96, 585-624.
- MONTY, C.L. (1973c) "Remarques sur la nature, la morphologie et la distribution spatiale des stromatolites" *Sci. Terre.* 18/3, 189-212.
- MONTY, C.L. (1976) 'The origin and development of criptalgal fabrics. in *Stromatolites* (Walter, M.R. ed.) Developments in Sedimentology, 20, 193- 249. Elsevier Scientific Publishing Company, Amsterdam.
- MONTY, C.L. (1977) "Evolving concepts on the nature and the ecological significance of stromatolites: a review" In: *Fossil Algae, recent results and developments* (Flugel E. ed.) 15-37. Berlin. Springer.
- · MONTY, C.L. (1984) "Stromatolites in Earth History" Terra Cognita 4, 423-430.

- MONTY, C.L.; ROUCHY, J.M.; MAURIN, A.; BERNET-ROLLANDE, M.C.; i PERTHUISOT, J.P. (1987)
 "Reef-stromatolites-evaporites facies relationships from middle Miocenne Examples of the Gulf of Suez and the Red Sea" *Lectures notes in Earth Sciences*, T.M. Peryt (ed.), Evaporite Basins. 13, 133-188. Springer-Verlag Berlin Heidelberg.
- MOORE, C.H.; CHOWDHURY, A. i CHAN, L. (1988) "Upper Jurassic Smackover platform dolomitization, northwestern Gulf of Mexico: a tale of two waters" in *Sedimentology and geochemistry of dolostones* (Shukla, V. i Baker, P.A. eds.). SEPM Spec. Publ. nº 43.
- MORROW, D.W. (1982a) "Diagenesis 1. Dolomite part 1. The chemistry of dolomitization and dolomite precipitation. *Geoscience Canada* 9, 5-13.
- MORROW, D.W. (1982b) "Diagenesis 2. Dolomite part 2. Dolomitization models and ancient dolostones. *Geoscience Canada* 9, 95-107.
- MUÑOZ, J.A.; MARTINEZ, A.; i VERGES, J. (1986) "Thrust sequences in the Spanish Eastern Pyrenees" Jour. structur. Geol. 8, 399-405.
- NURMI, R.D. i FRIEDMAN, G.M. (1977) "Sedimentology and depositional environments of Basin-Center Evaporites, Lower Salina Group (Upeer Silurian), Michigan Basin" in Reefs and Evaporites-concepts and depositional models ,*AAPG studies in geology* 5, 23-52.
- OBERHÄNSLI, H. i ALLEN, P.A. (1987) "Stable isotopic signatures of Tertiary lake carbonates, Eastern Ebro Basin, Spain" *Palaeo. Palaeo.*, 60, 59-75.
- ORTÍ, F. (1977) "Aproximación al estudio petrográfico de las microestructuras de las rocas de yeso secundario y a su origen" *Publ. Inst. Inv. Geol. Dip. Prov. Barcelona.* XXXII, 87-152.
- ORTI, F. (1990) "yesos de Artés (Priabonienses)" en "Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas, y de la zona de Levante" (Ortí, F. i Salvany, J.M. eds) p. 144-147.
- ORTI, F. i PALOU, P. (1977): "Yesos de Odena. In: I seminario práctico de asociaciones arrecifes-evaporitas (R. Salas ed.) 3.29 3.38, Univ. de Barcelona.
- ORTÍ, F. i SHEARMAN, D.J. (1977) "Estructuras i fàbricas deposicionales en las evaporitas del Mioceno Superior (Messiniense) de San Miguel de Salinas (Alicante, España). Revista del Instituto de Investigaciones Geológicas XXXII, 5-54. Diputación provincial- Universidad de Barcelona.
- ORTI, F., PUEYO, J.J., i TRUC, G. (1984a) " Las salinas marítimas de Santa Pola (Alicante, España).
 Breve introducción al estudio de un medio natural controlado de sedimentación evaporítica somera" *Rev. Inv. Geol.* 38/39, 9-29.
- ORTI, F., PUEYO, J.J., GEISLER-CUSSEY, D., i DULAU, N. (1984b) "Evaporitc sedimentation in the coastal salinas of Santa Pola (Alicante, Spain)" *Rev. Inv. Geol.* 38/39, 169-220.
- ORTI F. i PUEYO, J.J. (1990) "Yesos de La Noguera (Priaboniense)" en "Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas, y de la zona de Levante" (Ortí, F. i Salvany, J.M. eds) p. 147-148.
- ORTI, F.; VAN EECKHOUT, J.A.; RAMOS, S.; ROSELL, L.; PUEYO, J.J.; i SAEZ, A. (1990) "Eoceno evaporítico marino de cataluña: Sector central y oriental del Prepirineo catalan y Depresión central catalana" Excursión nº 1, del curso Formaciones evaporíticas de la Cuenca del Ebro y cadenas periféricas, y de la zona de Levante (Ortí, F. i Salvany, J.M. eds.)

- PALLI, L. (1972). "Estratigrafia del Paleógeno del Empordà y zonas limítrofes". *Tesis doctoral*. Publicaciones de Geologia. Univesidad Autónoma de Barcelona.
- PATRIQUIN, D.G. (1972) "Carbonate mud production by epibionts on Thalassia: An stimate based on leaf growth rate data". *Journ. Sedimen. Petrol.* 42, 687-689.
- PEDLEY, H.M. (1979) "Miocene bioherms and associated structures in the Upper Coralline limestone of the Maltese Islands: their lithification and palaeoenvironments. *Sedimentology* 26, 577-591.
- PIERRE, C. (1989) "Sedimentation and diagenesis in restricted marine basins" in *Handbook of Environmental Isotope Geochemistry*, (Fritz, P. & Fontes, J, Ch. eds.), The Marine Environment, A. 3, 257-315.
- PIERRE, C; UTRILLA, R; ORTI, F; i PUEYO, J.J. (1984) "Preliminary stable isotope investigations in carbonates and gypsum from the coastal Saline of Bonmatí (Santa Pola, Alicante, Spain). *Rev. Inv. Geol* 38/39, 229-235.
- PIERRE, C i ROUCHY, J.M. (1988) "Carbonate replacements after sulfate evaporites in the Middle Miocene of Egypt" *Jour. of Sediment. Petrol.* 58, 446- 456.
- PINGITORE, N.R. (1978) "The behaviour of Zn and Mn during carbonate diagenesis: theory and aplications. J. Sediment. Petrol., 48, 799-814.
- PLATT, N.H. (1989) "Lacustrine carbonates and pedogenesis: sedimentology and origin of palustrine deposits from the Early Cretaceous Rypelo Formation. West Cameros Basin, North Spain" Sedimentology 36, 665-684.
- PLAYFORD, P. i COCKBAIN, A. (1976) "Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Australia" in Walter, M.R. (ed) *Developments in Sedimentology*, 20, 389-411.
 Elsevier Scien. Publ. Comp., Amsterdam.
- PLAZIAT, J.C. (1977) "Les provinces paleobiogeographiques continentales de l'Europe occidentale a la fin du Cretace et au debut du Tertiaire". *Résume communication orale 5^{eme} Reunion Ann. des Sciences de la Terre*. Rennes. 19-22 avril p. 380.
- PLAZIAT, J.C. (1981) "Late Cretaceous to late Eocene Palaeogeographic evolution of Southwest Europe" Pal. Pal. Pal. 36 (3/4), 263-320. In: Spec. Isuue: Paleogene Paleogeography and the Geological events at the Eocene- Oligocene boundary (Pomerol, Ch., ed.)
- PRASADA RAO, C. (1990) "Petrography, trace elements and oxygen and carbon isotopes of Gordon Group carbonates (Ordovician), Florentine Valley, Tasmania, Australia" Sedimentary Geology 66, 83-97.
- PRASADA RAO, C. i NAQVI, I.H. (1977) "Petrography, geochemistry and factor analysis of a Lower Ordovician Subsurface Sequence, Tasmania, Australia" Journ. Sedim. Petrol. 47, 1036-1055.
- PREISS, W.V. (1972) "Proterozoic stromatolites succession, correlations and problems". In Jones, J.B. i McGowran, B. (eds.) Stratigraphic problems of the Late Precambrian and Early Cambrian. University of Adelaide Centre for Precambrian Research, Special Paper 1.
- PUEYO, J.J. (1975): Estudio petrológico y geoquímico de los yacimientos potásicos de Cardona, Súria, Sallent, y Balsareny (Barcelona, España). Tesis doctoral. Univ. de Barcelona. 350 p.
- PUEYO, J.J. i SAN MIGUEL, A. (1974) "Características petrológicas de las sales sódicas, potásicas y magnésicas de la Cuenca Potásica Catalana". *Rev. Inst. Inv. Geol. Dip. Prov. Barcelona* vol. 29, 23-49.

- PUIGDEFABREGAS, C; MUÑOZ, J.A; i MARZO, M. (1986). "Thrust belt development in the eastern Pyrenees and related depositional sequences in the southern foreland basin". Spec. Publ. int. Assoc. Sediment. 8, 229-246.
- REGUANT, S. (1967). "El Eoceno marino de Vic (Barcelona): Investigaciones estratigráficas en el borde Meridional de la depresión del Ebro". *Memorias del Instituto Geológico y Minero de España*. LXVIII, 330 pág.
- REISS, Z. i HOTTINGER, L. (1984) "The Gulf of Aqaba. ecological micropaleontology". *Ecological studies*. 50, 354 pp. Berlin.
- RIBA, O. (1967): Resultados de un estudio sobre el Terciario continental de la parte este de la Depresión Central Catalana. *Acta Geol.Hispàn.* 1, 1-6, 2 fig. Barcelona.
- RIBA, O. (1971). Mapa geológico de España 1:200.000. Síntesis de la cartografia existente nº14: Viella.
 1ª edición. Madrid. Inst. Geol. y Minero. 35 p.
- RIBA, O; REGUANT, S; COLOMBO, F; BUSQUETS, P; VILAPLANA, M; ANADON, P; MARZO, M; RAMIREZ, A; PUEYO, J.J; i WILLIAMS, R.C. (1975) "Le bassin tertiaire Catalan Espagnol et les Gisements de Potasse". IX Congrès int. de Sediment. Nice. Livret guide de l'excursion 20, 84 pp.
- RIBA, O; REGUANT, S; i VILLENA, J.(1983). "Ensayo de síntesis estratigràfica y evolutiva de la cuenca terciaria del Ebro" En: *Libro hom. J.M. RIOS* "Geologia de España" tomo. II, 131-159.
- RICHTER-BERNBURG, G. (1973) "Facies and palaeogegraphy of the Messinnian evaporites in Sicily" in Messinian events in the Mediterranean (Drooger, C.W. ed.) Amsterdam, North Holland Publishing Co., p.124-141.
- RIDING, R.; AWRAMIK, S.; WINSBOROUGH, B.; GRIFFIN, K.; i DILL, R. (1991) Geol. Magazine 128(3), 227-234.
- RIPPKA, R.; DERUELLES, J.; WATERBURY, J.B.; HERDMAN, M. i STANIER, R. (1979) "Generic assignments, strain histories and properties of pure cultures of cyanobacteria" J. Gen. Microbiol. 111, 1-61.
- ROSELL, J; JULIA, R; i FERRER, J. (1966). "Nota sobre la estratigrafia de unos niveles con carófitas existentes en el tramo rojo de la base del Eoceno al S de los Catalánides". Acta Geológica Hispànica, año I nº 5, 17-20.
- ROSELL-ORTIZ, L. (1983) "Estudi petrològic, sdimentològic i geoquímic de la formació de sals potàssiques de Navarra (Eocè Superior)". *Tesi doctoral*. Dept. de petrologia i geoquímica. Universitat de Barcelona.
 321 pag. inèdita.
- SAEZ, A. (1987). "Estratigrafia y sedimentologia de las formaciones lacustres del tránsito Eoceno-Oligoceno del NE de la Cuenca del Ebro". *Tesis Doctoral*. Universidad de Barcelona. 353 págs.
- SAEZ, A; VERGES, J; TABERNER, C; PUEYO, J.J; MUÑOZ, J.A; i BUSQUETS, P (1991): Eventos evaporíticos paleógenos en la cuenca Antepaís surpirenaica: ¿Causas climaticas-causas tectonicas?. Libro guia excursión nº 5, F.Colombo (ed.) I Congreso del Grupo Español del Terciario. Vic.
- SALAS, R. (1977) "El sistema arrecifal del Eoceno Superior del Sector de Igualada: La Tossa de Montbui" en 1^{er} Seminario práctico de asociaciones arrecifales evaporíticas (Salas, R. ed.). p. 3.15-3.27. Barcelona.
- SALAS, R. (1979). "El Sistema arrecifal del Eoceno Superior de la cuenca de Igualada, Barcelona". *Tesis de llicenciatura*. Universidad de Barcelona. 196 p.p.

- SALAS, R.; ESTEBAN, M.; i ALVAREZ, G. (1977) "El sistema arrecifal del eoceno superior del sector de igualada: corte del Puig Aguilera" en 1^{er} Seminario práctico de asociaciones arrecifales evaporíticas (Salas, R. ed.). p. 3.13-3.14. Barcelona.
- SAN MIGUEL, A. i PUEYO, J.J. (1971) "Observaciones petrológicas y petroestructurales de los yacimientos salinos de Sallent y Balsareny (Barcelona)" *Publ. Inst. Inv. Dip. Prov. Barcelona* XXVI, 5-20.
- SANDGREN, C.D. (1981) "An ultrastructural investigation of resting cyst formation in Dynobrion cylindricum Imhof (Chrysophyceae, Chrysophycophyta" Protistologica 16, 259-276.
- SANTISTEBAN, C. i TABERNER, C. (1977) "Barras de marea como control de la formación de arrecifes en el Eoceno Medio y Superior en el sector de St. Feliu de Codines-Centelles". *Rev. Inst. Inv. Geol.* Diputación Provincial-Universidad de Barcelona. 32, 203- 214.
- SANTISTEBAN, C. i TABERNER, C. (1979) "Relación entre sedimentos terrígenos costeros, facies arrecifales y evaporitas. El modelo de Centelles y su aplicación regional. Act. Geol. Hisp. Libro homenaje al Dr. L. Solé i Sabarís. 14, 229-236.
- SANTISTEBAN, C. i TABERNER, C. (1980) "The siliciclastic environments as a dynamic control in the establishment and evolution of reefs. Sedimentary models". Int. Assoc. of Sediment. 1st European Regional Meeting. Bochum. Abstr. p. 208-211.
- SANTISTEBAN, C. i TABERNER, C. (1988) "Sedimentary models of siliciclastic deposits and coral reefs interrelation", in *Carbonate-clastic transitions* (Doyle,L.J. i Roberts,H.H. eds.) Developments in sedimentology 42, 35-76. Elsevier. Amsterdam.
- SCANDONE, P. (1980) "Origin of the Tyrrenian sea and Calabrian arc". Boll. Soc. Geol. It. 98, 27-34.
- SCHOPF, J.W. i BLACIC, J.M. (1971) "New micro-organisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. J. Paleontology, 45, 925-960.
- SCHREIBER, B.C. i DECIMA, A. (1976) "Sedimentary facies produced under evaporitic environments: a review" In *Memorie della Società Geologica Italiana* 16, 111-126
- SCHREIBER, B.C; CATALANO, R; i SCHREIBER, E (1977): An evaporitic lithofacies continuum: latest Miocene (Messinian) deposits of Salemi basin (Sicily) and a modern analog. In: J.H.Fisher (Ed.), Reef and Evaporites- Concepts and models. Am. Assoc. Pet. Geol. Stud. Geol. 5, 169-180.
- SCHROEDER, J. H. (1972) "Calcified filaments of an endolithic alga in Recent Bermuda reefs: N. Jb. Geol. Paläont. Mh. p. 16-33.
- SEMIKHATOV, M.A. (1976) "Experience in stromatolite studies in the URSS" in *Stromatolites*. (Walter M.R. ed.). Elsevier. Amsterdam. p. 337-357.
- SEMIKHATOV, M.A.; GEBELIN, C.D.; CLOUD, P.; AWRAMIK. S.M.; i BENMORE, W.C. (1979) "Stromatolite morphogenesis-progress and problems". *Can. J. Earth. Sci.* 16, 992- 1015.
- SERRA-KIEL, J. (1981) "Estudi sobre la sistemàtica, filogènia, biostratigrafia i paleobiologia dels Nummulites del grup N. pernotus -N. Perforatus (Conca Aquitana, Catalana i Balear). Tesi doctoral. Dpt. de Paleontologia. Universitt de Barcelona.
- SHANMUGAM, G. i BENEDICT III, G.L. (1983) "Manganese distribution in the carbonate fraction of shallow to deep marine lithofacies, Middle Ordovician, eastern Tennessee. *Sediment. Geol.* 35, 159-175.

- SHARMA, T. i CLAYTON, R.N. (1965) "Measurement of ¹⁸O/¹⁶O ratios of total oxygen of carbonates" *Geochim. cosmochim. Acta* 29, 1347-1353.
- SHEATH, R.D.; HELLEBUST, J.A. i SAWA, T. (1975) "The statospore of *Dinobryon divergens* Imhoff: Formation and germination in a subarctic lake" Jour. Phycol. 11, 131-138.
- SHINN, E.A. (1968) "Practical significance of birdeye structures in carbonate rocks" J. sedim. petrol. 38, 215-223.
- SHINN, E.A.; GINSBURG, R.N.; i LLOYD, R.M. (1965) "Recent supratidal dolomite from Andros Island, Bahamas" in Dolomitization and Limestone Diagenesis, a Symposium. (Pray,L.C. i Murray,R.C. eds.). Soc. Econ. Paleont. Mineral., Spec. Publ. 13, 111-123.
- SHINN, E.A.; LLOYD, R.M.: i GINSBURG, R.N. (1969) "Anatomy of a modern carbonate tidal flat, Andros Island, Bahamas. J. Sedim. petrol. 39, 1202-1228.
- STANIER, R.Y. I COHEN-BAZIRE, G. (1977) "Phototrophic prokaryotes: the cyanobacteria". Ann. Rev. Microbiol. 31, 225-274.
- STIEGLITZ, R.D. (1972) "Scanning electron microscopy of the fine fraction of recent carbonate sediments from Bimini, Bahamas" *Journ. Sedim. Petrol.* 42, 211-226.
- TABERNER, C. (1978) "Ambientes sedimentarios en el borde SE de la Cuenca Eocena Catalana. *Tesis de Licenciatura*. Universidad Autónoma de Barcelona. Inédita.
- TABERNER, C. (1983): Evolución ambiental y diagenética de los depósitos del Terciario Inferior (Paleoceno y Eoceno) de la Cuenca de Vic. *Tesis doctoral*. Univ. de Barcelona. 1400 pp. Inédita.
- TABERNER, C. i SANTISTEBAN, C. (1984) "La sedimentación del tránsito Eoceno-Oligoceno en la Cuenca Eocena Catalana (sector de Vic), su significación geodinámica" *Libro homenaje a Luís Sanchez de la Torre*. Publicaciones de geología nº 20. Universidad Autónoma de Barcelona.
- TABERNER, C.; PUEYO, J.J. i ROSELL-ORTIZ, L. (1985) "Sedimentología y geoquímica de las facies anóxicas pre-evaporíticas del Eoceno Superior en el sector oriental de la Cuenca del Ebro". Ayuda a la investigación conv. 1985 Universidad de Barcelona. Inèdita.
- TAYLOR, J.C.M. i ILLING, L.V. (1969) "Holocene intertidal calcium carbonate cementation, Qatar, Persian Gulf. *Sedimentology* **12**, 69-107.
- TAYLOR, T.R. i SIBLEY, D.F. (1986) "Petrographic and geochemical characteristics of dolomite types and the origin of ferroan dolomite in the Trenton Formation, Ordovician, Michigan Basin, USA". *Sedimentology* 33, 61- 86.
- TEBBUT, G.E.; CONLEY, C.D. i BOYD, D.W. (1965) "Lithogenesis of a distinctive carbonate rock fabric" *Wyoming University Contributions Geology* 4, 1-13.
- TEIXELL, A. i SERRA-KIEL, J. (1988) "Sedimentologia y distribución de foraminiferos en medios litorales y de plataforma mixta (Eoceno medio y superior, cuenca del Ebro Oriental)". *Boletín del Instituto Geológico y Minero de España* 94, 871-885.
- THOMAS, J.C. (1984) "Formations benthiques à Cyanobacteries des salins de Santa Pola (Espagne): Composition spécifique, morphologie et caractéristiques biologiques des principaux peuplements". *Rev. Invst. Geol. Dip. Barcelona* 38/39, 139-158.

- THOMPSON, J.B; FERRIS, F.G. i SMITH D.A. (1990) "Geomicrobiology and sedimentology of the mixolimnion and chemocline in Fayetteville Green Lake, New York". *Palaios* 5, 52-75.
- THOMPSON, J.B.; DES MARAIS, D.J.; LONGSTAFFE, F.J.; BEVERIDGE, T.J. i FAYFE, W.S. (1991) "Carbon and oxygen isotopic study of the epicellularly precipitated calcite by Synechococcus sp. from Fayetteville Green Lake, New York, U.S.A." 5th International Symposium on fossil algae Abstract. p. 63.
- TRAVE, A. (1988) "Estratigrafia i sedimentologia dels dipòsits deltaics de l'Eocè Mitjà-Superior al sector de Manresa" *Tesi de llicenciatura*. 86 p. Universitat de Barcelona. Inèdita.
- TUCKER, M.E (1990) "Dolomites and dolomitization models" in *Carbonate sedimentology* (Tucker, M.E. i Wright, p. eds.) p. 365-401.
- TUCKER, M.E. i WRIGHT, V.P. (1990). Carbonate sedimentology Blackwell Scientific Publications. 482 p.
- UTRILLA, R. (1985) "Estudi sedimentològic i geoquímic de les salines de la Trinitat (Delta de l'Ebre) i San Pedro del Pinatar (Mar Menor)" *Tesi de llicenciatura*. 125 p. Universitat de Barcelona.
- UTRILLA, R. (1989) "Les composicions isotòpiques (18O, 34S) del sulfat, com a indicadores de l'origen de les evaporites del mesozoic i del cenozoic de la Península Ibèrica i les Illes Balears" *Tesi doctoral*. Universitat de Barcelona.
- VEIZER, J. (1983) "Chemical diagenesis of carbonates: Theory and application of the trace element technique". In: *Stable Isotopes in Sedimentary Geology* (Arthur, M.A.; Anderson, T.F.; Kaplan, I.R.; Veizer, J.; i Land, L.S. eds.) Short course Notes Soc. econ. Paleont. Mineral. Tulsa 10, 3.1-3.100. Oklahoma.
- VEIZER, J. i DEMOVIC, R. (1974) "Strontium as a tool in facies analysis" Journ. sed. petrology 44, 93-115.
- VEIZER, J. i GARRETT, D.E. (1978) "Secular variations in the composition of sedimentari rocks, I. Alkali metals" *Precambrian research* 6, 367- 380.
- VEIZER, J; LEMIEUX, J; JONES, B; GIBLING, M.R; i SAVELLE, J (1977) "Sodium: palosalinity indicator in ancient carbonate rocks" *Geology* 5, 177-179.
- VILAPLANA, M. (1973) "El límite marino-continental en el Terciario Inferior del área de Moià Collsuspina. Tesis de Licenciatura. Universidad de Barcelona. Inédita. 87 pp.
- VILAPLANA, M. (1975) "Le Bassin Tertaire Catalan et les Gisements de potasse. Cap.2. Aire du Vic.: Les problemes de la limite supérieure". *IX Congr. Int. Sedim. Livret Guide Exc.* 20.
- VILAPLANA, M. (1977). "Los arrecifes del Eoceno Superior de Calders (Borde Suroriental de la Cuenca del Ebro, Sector Catalán). En: 1^{er} seminario práctico de asociaciones arrecifales evaporíticas. (R. Salas Ed.) p. 3.43-3.66.
- WALTER, M.R. (1972) "Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian. *Palaentol. Assoc. London., Spec. Pap.* **11**, 190 p.
- WALTER, M.R. (1976) "Stromatolites". Elsevier Public. Comp. Developments in sedimentology 20. 790 p.
- WALTER, M.R. i HEYS, G.R. (1985) "Links between the rise of the Metazoa and the decline of stromatolites" *Precambrian Research*, 29, 149-174.
- WARREN, J.K (1982). The hydrological setting, ocurrence and significance of gypsum in Late Quaternary Salt Lake in South Australia. *Sedimentology*, 5, 609-637.
- WEAST, R.C. (1973-1974) "Handbook of Chemistry and Physics" 54th edition. 2325 p.

- WEFER, C. i BERGER, W.H. (1980) "Stable isotopes in benthic foraminifera and seasonal variation in larger tropical species" *Science* 209/4458, 803-805.
- WELTON, J.E. (1984) "SEM Petrology Atlas: Methods in Exploration Series" Tulsa, OK, Am Assoc. Petrol. Geologists, 237 p.
- WINSBOROUGH, B. i SEELER, J. (1986) "The relationship of diatom Epiflora to the growth of limnic stromatolites and microbial mats" in *Proceedings of the 7 International Symposium on living and fossil Diatoms*, M. Ricard (ed.) Paris, 1984, 395-407.
- WINSBOROUGH, B. i GOLUBI, S. (1987) "The role of diatoms in stromatolite growth: two examples from modern freshwater settings" *Journ. of Phycology* 23, 194-201.
- WRIGHT, V.P.; PLATT, N.H.; i WINBLEDON, W.A. (1988) "Biogenic laminar calcretes: evidence of calcified root-mat horizons in palosols". *Sedimentology* 35, 603-620.
- WRIGHT, V.P. i VANSTONE, S.D. (1991) "Assessing the Carbon Dioxide content of ancient atmospheres using palaeocalcretes: Theoretical and empirical contraints" *J. Geol. Soc. London* 148, 945-947.
- YOUSSEF, E.A.A. (1988) "Sedimentological studies of Neogene evaporites in the norterh Western Desert, Egypt" Sedimentary Geology, 59, 261-273.
- YURTSEVER, Y. (1975) "Worldwide Survey of Stable Isotopes in precipitation". *Rept. Sect. Isotope Hydrol., IAEA*, november, 1975. 40 p.
- ZAMARREÑO, I. (1972) "The Cambrian Carbonate lithofacies of the Cantabrian area (northwestern Spain) and their paleogeographic distribution". *Trab. Geol., Universidad de ciencias de Oviedo*, 5. 118 p.
- ZOHARI, T.; REISS, Z.; i HOTTINGER, L. (1980) "Population dynamics of *Amphisorus hemprichii* (Foraminifera) in the Gulf of Elat (Aqaba), Red Sea" *Eclogae geologicae Helvetiae*, 73, 1071-1094.

.

. .

.

ANNEX A- RESULTATS OBTINGUTS DE LA DISSOLUCIÓ DE LES MOSTRES AMBAIGUA (232 mostres). Els resultats indiquen la composició en la rocaa partir de la fracció que s'ha dissolt amb aigua. La composiciótotal d'aquests cations en la roca, s'obtindrà a partir de la sumadels resultats de les tres etapes del procès (annex A, B i C).MOSTRANa(ppm)SE101a82553140

SB101a	8	25	53	1300
SB102	14	25	62	926
SB104b	31	25	38	1184
SB105a	63	25	75	1177
SB107	29	25	6	947
SB108a	14	25	25	1023
SB108b	14	25	61	1036
SB110	25	25	16	650
SB111	30	25	16	1188
SB114	31	69	118	1219
SB115	20	25	67	1689
SB116a	52	25	36	958
SB117	182	25	138	839
SB118	64	31	75	969
SB121	61	25	43	1459
SB122	36	25	43	1896
SB124a	33	25	133	907
SB124b	17	25	30	1035
SB125	5	25	21	1246
SB126	22	25	204	1371
SB127	17	25	69	1197
SB128	11	25	18	900
SB129	9	25	12	608
SB131	40	25	60	1045
SB132a	14	25	18	908
SB134a	<4	25	20	870
SB134b	9	25	25	1021
SB135a	22	61	79	1888
SB135b	<4	25	16	1469
SB138	20	25	30	900
SB139	30	25	40	900
SB141a	12	25	25	415
SB141b	96	25	78	1088
SB141c	20	25	46	514
SB143	12	25	32	1258
SB144	20	25	39	3036
SB145	40	25	50	1450
SB146	30	25	30	750
SB151	9	25	22	404
SB152	60	25	60	950
SB155	19	25	67	1369
SB156	12	25	17	404
SB160	31	79	103	1588
SB161a	17	25	43	495
•				

SB161b	8	25	15	602
SB164	50	25	70	900
SB165	40	25	40	120
SB166	33	25	18	624
SB168	60	25	30	850
SB169a	27	25	82	424
SB173b	30	25	46	720
SB1742	11	25	40	709
SB174a	10	25	28	443
CP175	19	25	44 2C	423
SB175	50 C	07	30	121
SD176A2	11	25	43	//4
CD176b5	77	25	24	• 259
SB170D5	3	25	21	359
SB170	72	25		868
SB102	30	25	66	870
SB103	20	25	40	800
SB184a	8	25	28	781
SB184D	23	25	42	424
SB185	23	25	49	983
SB186	23	25	131	1534
SB186a	28	25	39	788
SB187a	30	25	50	700
SB1875	44	25	41	768
SB189	40	25	31	. 913
SB190b	33	25	71	666
SB190c	50	25	69	725
SB191	60	25	40	650
SB192	61	25	71	742
SB193	54	25	48	789
SB193	50	25	70	1300
SB194	50	25	60	800
SB196	61	25	61	759
SB197a	72	59	87	907
SB197b	12	733	29	494
SB199	20	3820	60	2400
SB200	50	2810	90	2450
SB201	30	3540	60	2450
SB203	29	25	53	865
SB204a	27	25	76	979
SB204b	16	25	35	741
SB205a	30	50	58	938
SB205b	<4	25	25	838
SB205c	28	50	40	718
SB206a	37	315	39	788
SB206b	42	50	38	806
SB207	44	50	38	846
SB208	50	50	40	800
SB210	<4	25	39	1516
SB211	15	25	34	1119
SB212a	20	25	31	649
SB212b	18	25	43	514
SB213	61	25	71	1413
SB214	11	25	20	605
SB215	40	50	40	800
•				

SB215	19	25	18	423
SB216a	37	25	33	1291
SB216b	42	25	31	897
SB218	43	646	87	1643
SB219a	14	699	41	2258
SB219b	11	332	42	1134
SB220a3	42	2200	53	1294
SB222	47	640	34	1001
SB223a	22	25	70	758
SB224	50	50	60	1550
SB226b	53	680	62	65361
SB227a2	34	2117	49	1498
SB227b1	53	2569	91	1819
SB227b2	4	1085	34	1128
SB229a	41	3736	45	1618
SB229b	35	3815	45	1813
SB230	43	3815	83	2580
SB231	28	3463	62	2095
SB232a	57	2472	94	1784
SB232a	58	2512	403	1330
SB232b1	17	1390	66	1297
SB232b3	85	2389	49	1579
SB233	49	25	45	927
SB234	17	25	39	1247
SB235	16	25	24	1088
SB236a	19	25	20	1127
SB236h	26	25	57	1428
SB237	20	25	54	1086
SB237 SB238	29	25	26	918
50230	12	25	20	915
SD2JJ CD2/0	27	25	59	1369
SB240 CD2/1	27	25	85	1086
SB241 CD242	12	25	31	976
30242 MX 20	52	220	27	1650
MAZS	52	5200	37 27	1055
MA34d Ma24b	50	25	20	1002
Mas4D	40	45	20	2106
MA44	65 5	1308	2/4	5106
MA57	55	25	97	719
MA58	31	25	93	699 1040
MA128(2)	76	37	1/3	1848
MAI7I	25	2637	54	1067
MA172	30	3465	33	1977
MA173a	40	3189	49	1614
MA173C1	50	3407	107	1//8
MA175	53	227	34	774
MA177	28	2650	34	1066
MA178	44	25	29	901
MA192a	35	25	49	745
MA192b	23	2322	54	991
MA195	125	3554	248	1617
MA200b2	41	25	61	757
MA204b	28	25	35	783
MA209	15	25	41	918
C01	4	25	47	2086

C08	4	25	47	1323
C09	5	25	42	1584
C13	4	25	38	1132
C16	4	25	38	1739
C21	8	25	42	871
C22	4	25	19	934
C23	4	25	19	1285
C28	4	25	19	1098
C29	4	25	19	1029
C30	4	25	19	1033
C31	4	25	19	1055
C32	4	36	15	932
C34	4	25	15	1348
C35	4	25	23	1579
C36	4	25	47	7/1
C37	5	25	22	741
C39	4	25	19	1095
C40	4	25	24	2726
C45		25	24	1000
101	21	23	24	5716A
EI	36	61	124	704
E3	23	74	146	124
E4	29	289	140	1100
E6	6	25	108	2514
E7	25	25	254	· 2014 510
H4	79	1247	2.34 Q3	1121
H5	71	46	40	1131
нб	65		33	1001
н7	65	32	15	1091
H8	36	74	40	1635
н9	77	38	67	1037
Т1	105	25	60	730
101	77	64	00	1124
J10	82	1680	56	10/2
J15	17	25	33	1254
J03	90	2269	96	12524
J04	70	43	50 17	1333
J05	75	2298		1245
90T	79	3491	17	1251
L01	27	3539	42	1201
L10	87	25	40	203
L02	85	486	40	1679
L03	66	37	36	964
L09	39	25	36	904 870
M1	70	2361	86	1402
M4	65	2670	94	1402
N1	261	668	1016	1070/
N2	37	25	183	10/34
N3	30	25	323	000 666
N4	43	25 76	353	000
N5	6	25	152	010
NG	12	25	200	
01	49	25	676	047 070
02	51	25	670	010
·	~*	<i>2</i> , <i>3</i>	037	100
03	85	165	443	788
---------------	------	--------	-------	-------
05	68	25	12	769
07	23	25	205	744
09	88	25	236	690
013	86	25	121	974
P1	20	25	30	917
029	93	43	57	897
005	84	48	40	1166
008	96	27	49	851
S15	45	2303	108	1251
S06	54	25	74	723
S08	63	25	86	867
T11	31	2693	52	1251
T13	33	3457	72	1865
V8	43	25	58	1107
W7	67	25	87	1050
X3	21	35	74	914
Z4	80	25	57	854
AB2	36	25	30	1011
AD5	30	25	36	870
AE1	22	25	36	965
AE2	38	25	58	1250
AE4	38	87	68	1012
AF1	52	25	62	867
AF4	115	81	80	1251
AF7	58	4050	46	1344
			000	
Nº mostres	232	232	232	232
Mitjana arıt.	37	479	75	1685
Mediana	30	25	46	977
Variançia	946	1.08E6	12060	3.7E7
Desv.estàn	30.7	1038	110	6088
Error estàn	2	68	7.2	399.7
Valor mínim	3	25	6	46
Valor màxim	261	4050	1016	67164

ANNEX B -	RESULTATS	OBTINGUTS DE	L'ATAC DE LES	s mostres en	ÀCID ACÈTIC
(232 most	res)				
MOSTRA	Na(ppm)	Sr(ppm)	Mg(ppm)	Mn (ppm)	Fe(ppm)
SB101a	87	402	1523	37	104
SB102	167	672	2739	59	119
SB104b	150	587	2308	129	821
SB105a	141	519	2859	153	768
SB107	159	613	2123	102	334
SB108a	182	511	2681	116	184
SB108b	183	398	2783	141	393
SB110	148	895	2364	102	275
SB111	149	494	1962	121	240
SB114	169	754	2842	78	210
SB115	151	620	2559	75	185
SB116a	169	629	2909	100	279
SB117	83	255	429	187	365
SB118	176	583	3202	108	494
SB121	110	390	1484	115	565
SB122	115	390	1412	121	309
SB124a	146	612	16781	29	353
SB124b	149	731	2119	104	169
SB125	148	390	1871	109	497
SB126	135	581	3041	94	303
SB127	143	474	2259	120	314
SB128	165	558	2362	115	204
SB129	185	404	2502	146	279
SB131	275	355	505	155	630
SB132a	204	319	2813	149	329
SB134A	164	740	2382	159	245
SB134B	190	627	2503	162	367
SB135a	189	465	2863	150	619
SB135B	178	329	2215	162	778
SB138	330	280	490	115	550
SB139	310	275	475	110	575
SB141a	189	342	2561	151	728
SB141b	166	337	2685	111	554
SB141c	175	349	2733	125	693
SB143	205	334	2827	117	376
SBI44	181	338	1063	117	190
SB145	265	275	405	130	590
SB146	295	280	435	165	475
SB151	217	344	3115	144	797
SB152	280	315	525	120	820
58122	152	335	Z2T8	11/	/ 04
SB120	1/1	354	2482	120	488
SBLOU	142	384	2302	127	444
SBIDIA	109	515	2033	150	385
SBIOID	1/9	314	2550	154	538
SD104 CD165	290	20V 27F	405	190	4/5
SD105	202	270 101	400	TON	415
2BT00	60	191	1031	200	19//

SB168	290	265	425	205	470
SB169a	135	280	3133	225	695
SB173b	232	290	3791	219	1628
SB174a	200	374	2901	264	847
SB174c	199	373	3251	249	1728
SB175	258	369	3639	228	1545
SB176a2	236	309	3062	228	1220
SB176b4	200	349	2820	264	1213
SB176b5	226	314	3268	219	1674
SB178	173	249	3348	263	1312
SB182	168	252	3014	213	1149
SB183	345	250	590	215	1035
SB184a	221	301	2721	197	841
SB184b	183	269	3332	224	1212
SB185	199	303	2727	234	968
SB186	175	312	3158	214	1036
SB186a	185	304	2998	232	1292
SB187a	300	225	625	185	935
SB187b	274	232	2987	240	883
SB189	187	287	2585	260	1079
SB190b	173	264	3061	298	1227
SB190c	171	224	3272	203	726
SB191	235	170	410	365	1160
SB192	120	237	2644	442	3883
SB193	218	260	4261	228	1129
SB193	220	235	560	435	500
SB194	225	310	485	415	5450
SB196	131	215	3/83	308	5052
SB197a	135	443	3590	354	5788
SB197b	112	2071	2594	249	2285
SB199	345	280	500	200	1525
SB200	275	300	115	355	4050
SB201	210	240	2815	174	751
SB203	174	207	2013	156	440
SB204a	1/4	299	2779	162	370
SB204D	199	354	2748	189	743
SB205a	202	341	2451	161	194
SB205D	176	329	2949	259	644
SB205C	170	464	2339	173	449
SB200a	158	294	2565	209	742
SB200D	146	274	2266	244	642
SB2075	260	240	420	260	565
SB210	179	293	2202	130	472
SB211	178	276	2700	125	697
SB212a	191	292	2505	152	549
SB212b	184	349	2853	125	1107
SB213	132	232	1985	140	413
SB214	130	255	1879	285	1679
SB215	157	279	2230	169	692
SB215	260	230	400	195	675
SB216	300	268	2091	173	2091
SB216b	174	291	2115	168	466
SB218	165	1020	2310	360	597
••					

SB219a	352	270	2243	402	1529
SB219b	202	774	2299	440	390
SB220a3	219	333	2205	493	3076
SB222	157	702	1699	318	2288
SB223a	160	295	2652	280	2782
SB224	255	140	430	330	575
SB226b	173	260	2024	206	1184
SB227a2	339	354	2990	370	1148
SB227b1	317	465	3179	402	1719
SB227b2	243	1151	3112	353	1273
SB229	295	694	2652	280	1234
SB229b	311	682	2829	287	1260
SB230	226	832	2271	293	1484
SB231	304	698	2944	293	1297
SB232a	231	2065	5194	325	1975
SB232a	321	468	3105	354	1485
SB232b1	230	282	3531	347	1434
SB232b3	352	1824	3134	349	1294
SB233	286	503	1475	142	249
SB234	120	408	1708	119	223
SB235	121	367	1722	106	344
SB236a	322	339	1596	108 (329
SB236b	113	359	1653	109	494
SB237	115	567	1859	114	309
SB238	137	438	2200	146	319
SB239	181	437	2687	144	393
SB240	157	30	2403	131	360
SB241	144	402	2282	117	289
SB242	132	585	2311	138	209
MA29	80	669	984	171	390
MA34a	81	144	2220	323	1160
MA34	76	119	1699	307	752
MA44	280	270	7751	273	2212
MA57	277	344	9159	237	2685
MA58	241	334	11261	225	2410
MA128(2)	89	229	3627	371	2377
MA171	267	689	2242	254	1413
MA172	267	689	2242	254	1413
MA173a	309	593	2492	259	1221
MA173c1	302	669	2552	267	1339
MA175	194	336	2273	246	1230
MA177	155	1439	1913	240	1076
MA178	143	232	1593	356	1535
MA192a	141	226	2946	375	4958
MA192	135	2083	2770	344	5640
MA195	171	649	4293	288	3010
MA200b2	117	294	2161	272	2620
MA204b	134	308	2117	380	2894
MA209	189	283	2544	150	641
C01	351	343	2430	114	37
C08	154	248	2294	129	104
C09	169	251	2568	154	85
C13	112	284	1755	141	167
C16	103	269	1489	133	133

C21	260	362	2909	126	76
C22	137	329	2120	103	105
C23	111	305	1714	108	133
C28	108	286	1584	110	167
C29	106	239	1678	159	229
C30	106	227	1668	163	206
C31	111	235	1666	156	297
C32	115	256	1761	152	243
C34	127	315	1883	169	66
C35	135	283	2181	135	200
C36	143	287	2317	137	195
C37	145	276	2449	86	80
C39	132	393	2215	95	76
C40	123	337	2353	116	170
C45	154	380	2320	135	248
D1	19	101	733	32	243
E1	128	550	18986	246	524
E3	149	578	19225	182	375
E4	114	776	10479	200	473
E6	180	85	30827	195	1121
E7	186	129	30923	155	680
H4	242	943	2823	305	912
11 1 115	105	275	2081	414	507
нб	98	280	252	391	263
H7	112	309	4596	400	241
ня ня	82	371	4289	111	217
но	109	439	6199	311	593
т1	196	171	2121	370	1157
.701	219	273	3324	349	1195
	264	1376	2122	381	656
.T15	214	310	2224	253	517
.T03	261	2166	2958	332	1124
.TOA	166	249	2564	312	656
.705	265	2034	2881	306	1105
еот.	203	2309	2170	317	763
T 01	173	2958	2664	235	525
	207	230	2392	205	793
1.02	204	462	2237	229	545
102	197	216	1638	181	405
105	171	323	2432	173	670
1103 M1	132	1690	4514	374	760
MI	129	2134	6207	346	622
M4 N1	210	1732	59550	318	3732
NT NO	170	55	60857	276	2010
241	102	55	66497	315	2263
CVI ATA	170	120	65296	319	2060
114	160	130	50580	309	4542
NO	100	4 / 20	51670	323	4581
01	133	20	62712	282	1405
01	1 47	50 75	61485	340	1799
02	1/4/	125	58876	259	1128
03	140	T 2 0	55676		

013	102	346	11215	246	1278
P1	111	353	2952	132	412
Q29	180	189	1670	327	783
Q05	204	128	1648	341	950
Q08	195	164	2199	350	1000
S15	186	1702	3567	207	525
S06	150	266	3078	234	800
S08	163	314	2521	233	715
T11	224	2279	2349	280	495
T13	193	3169	1818	279	445
V8	108	278	3456	232	599
W7	192	256	5724	206	484
Х3	158	289	3853	287	403
Z4	170	249	3312	174	392
AB2	137	547	1602	220	781
AD5	153	536	3081	227	763
AE1	102	273	2558	237	656
AE2	106	305	3189	302	677
AE4	136	476	7570	141	530
AF1	197	298	3433	295	567
AF4	192	317	3311	197	419
AF7	190	602	2754	211	387
Nºmostres	232	232	232	232	232
Mitjana	184	476	5888	221.5	1006
Mediana	173.5	318	2547	210	656
Variançia	4067	233558	1.6E8	9398	1.1E6
Desv.Estàn.	63.7	483.3	12747	97	1089
Valor Mínim	19	30	252	29	37
Valor Màxim	352	3169	66497	549	6114

ANNEX C-	RESULTATS	OBTINGUTS DE	L'ATAC AMB	àCID CLORHÍDRIC	: (232
mostres)	•	,			
MOSTRA	Na(ppm)	Sr(ppm)	Mg(ppm)	Fe(ppm)	Mn (ppm)
SB101a	<5	25	179	1613	<5
SB102	<5	25	137	3237	5
SB104b	<5	25	352	2934	7
SB105a	5	25	1557	8133	35
SB107	<5	25	736	3812	20
SB108a	64	25	575	2755	7
SB108b	10	25	540	3983	8
SB110	<5	25	481	2849	10
SB111	<5	25	311	2097	<5
SB114	<5	25	218	1224	<5
SB115	<5	25	213	1349	<5
SB116a	<5	25	611	4516	<5
SB117	35	25	3848	16142	84
SB118	16	25	1486	6708	24
SB121	19	25	213	6196	22
SB122	5	25	712	4304	10
SB124a	58	31	21960	4979	76
SB124b	<5	25	221	1667	<5
SB125	<1	25	77	468	3
SB126	58	25	610	3987	<5
SB127	63	25	573	3467	5
SB128	21	25	930	4836	23
SB129	<5	25	909	4884	10
SB131	20	25	355	12700	25
SB132a	<5	25	770	5736	<5
SB134a	47	25	672	3498	11
SB134b	6	25	902	3233	8
SB135a	11	25	513	3547	<5
SB135b	2	25	311	2187	5
SB138	20	25	290	14100	35
SB139	20	25	285	13600	25
SB141a	8	25	625	5351	12
SB141b	2	25	529	2456	9
SB141c	10	25	593	2868	17
SB143	3	25	558	2174	16
SB144	193	25	965	1028	25
SB145	20	25	305	15450	35
SB146	10	25	230	13900	25
SB151	5	25	374	5971	5
SB152	15	25	195	12500	15
SB155	<2	25	290	2518	2
SB156	6	25	399	2860	9
SB160	18	25	844	4639	21
SB161a	11	25	674	4172	17
SB161b	8	25	667	4159	17
SB164	15	25	200	12700	30
SB165	15	25	200	12700	30
SB166	21	25	2826	11253	83

	SB168	20	25	335	22400	45
	SB169a	17	25	1374	18716	36
1	SB173b	16	25	1084	6618	24
	SB174a	7	25	503	8301	13
	SB174c	50	25	388	2863	9
	SB175	10	25	875	5080	19
	SB176a2	14	25	1674	6834	29
	SB176b4	7	25	474	3644	9
	SB176b5	6	25	418	3637	7
	SB178	6	25	868	6008	23
	SB182	<2	25	720	5188	16
	SB183	15	25	365	14700	30
	SB184a	<1	25	397	3799	14
	SB184b	15	25	893	7270	21
	SB185	6	25	595	4905	23
	SB186	<2	25	627	5888	10
	SB186a	18	25	1058	6361	24
	SB187a	25	25	535	20600	45
	SB187b	24	25	2035	14377	50
	SB189	2	25	904	12976	27
	SB190b	19	25	1870	11169	43
	SB190c	21	25	2536	17452	57
	SB191	35	25	700	16550	55
1	SB192	43	25	6268	12458	93
	SB193	17	25	1563	8227	33
	SB193	35	25	815	22850	55
	SB194	35	25	675	26750	55
	SB196	31	25	3183	11054	58
	SB197a	26	25	2748	14324	55
	SB197b	13	65	1247	7270	23
	SB199	5	1280	170	4700	10
	SB200	25	620	465	24200	40
	SB201	40	645	840	25850	70
	SB203	<2	25	654	9043	15
	SB204a	<2	25	515	3257	6
	SB204b	<1	25	324	2238	8
	SB205a	10	25	828	5461	17
	SB205b	5	25	889	4187	16
	SB205c	12	25	753	6237	97
	SB206a	19	25	2797	16391	80
	SB206b	15	25	1943	11408	52
	SB207	15	25	1469	13748	38
	SB208	35	25	535	29500	50
	SB210	11	25	676	2395	16
	SB211	5	25	864	3863	32
	SB212a	<1	25	601	4544	16
	SB212b	15	25	549	4938	12
	SB213	<2	25	492	2996	12
	SB214	8	25	410	4173	9
	SB215	20	25	390	22100	40
	SB215	12	25	980	7516	26
	SB216a	126	25	1266	7226	29
	SB216b	4	25	74	5464	23
	SB218	<2	137	672	8740	22
	•					

SB219a	11	714	2763	3272	2
SB219b	<1	25	311	3552	12
SB220a3	21	58	2195	12599	32
SB222	22	178	2208	10283	40
SB223a	23	25	1988	15509	41
SB224	30	25	510	21850	35
SB226b	27	3193	515	1644	5
SB227a2	20	3190	1098	7913	17
SB227b1	21	1324	1264	7222	26
SB227b2	14	2629	1542	7983	33
SB229a	17	4720	944	8667	14
SB229b	16	4706	941	6444	14
SB230	116	7929	772	8168	11
SB231	15	6077	728	4585	8
SB232a	118	1999	1141	7007	20
SB232a	32	1244	1095	6463	27
SB232b1	16	3670	1992	4576	30
SB232b3	19	1664	1264	7827	20
SB233	108	25	398	2526	<1
SB234	<2	25	148	1237	<5
SB235	<1	25	155	1803	<5
SB236a	3	25	117	898	1
SB236b	<1	. 25	100	1084	<5
SB237	<1	25	369	543	<5
SB238	<1	25	374	573	<5
SB239	<1	25	572	627	7
SB240	229	25	1189	954	15
SB241	256	25	926	752	10
SB242	3	25	1006	1026	16
MA29	36	4727	1874	10013	56
MA34a	42	25	2822	13340	85
MA34b	30	25	4238	18806	104
MA44	147	76	4619	7915	65
MA57	39	25	4991	8785	68
MA58	15	25	3235	7350	51
MA128(2)	27	25	2725	15745	64
MA171	5	1330	1311	7093	27
MA172	21	6930	7540	5668	5
MA173a	15	4540	513	9114	8
MA173c1	18	4211	979	8147	14
MA175	16	25	1893	16686	40
MA177	19	1793	3019	17153	68
MA178	17	25	2270	2340	62
MA192a	11	25	2099	. 13159	50
MA192	10	1234	1739	8888	42
MA195	39	2511	3000	15704	53
MA200b2	20	25	1801	12875	37
MAZOAH	2° ~1	25	324	2238	8
MA209	1	25	384	1815	10
C01	10	25	192	954	25
C08	10	25	54	811	25
C09	10	25	46	465	25
C13	10	25	65	613	25
C15	11	25	77	541	25
1 CTO	T.4	2.2		~ - +	

II C21	10	25	37	458	25
C22	23	25	100	559	25
C22	22	25	151	784	25
C23	10	25	1/1	1037	25
C20	36	25	312	1853	25
C29	10	25	367	2228	25
C30	49	20	201	2230	25
022	54	20	304	2019	25
C32	21	25	400	5051	20
034	20	25	101	527	20
035	25	25	121	709	25
C36	23	25	107	6/3	25
C37	12	25	1630	5//1	25
C39	10	25	101	730	25
C40	10	25	67	677	25
C45	10	25	47	666	25
D1	21	133	1030	3417	25
E1	28	46	8373	13718	77
E2	54	58	15324	9368	100
E4	24	46	3493	7101	57
E6	63	25	7474	15755	163
E7	46	25	6478	31111	136
H4	19	249	1501	8547	41
H5	13	25	1250	9346	1659
Н6	11	25	798	8063	136
H7	93	27	1379	5379	164
Н8	15	53	2036	7200	302
Н9	92	25	9445	7715	241
I 1	13	25	1175	7914	26
J01	32	25	2359	12170	61
J10	12	2063	1065	6728	27
J15	12	25	945	1173	25
J03	60	2060	1369	10109	36
J04	15	28	1372	7986	32
J05	10	6964	749	11947	25
J09	. 74	7384	893	8620	27
L01	18	6241	1451	8135	30
L10	12	25	1211	6311	25
L02	12	46	1055	6834	27
L03	9.4	34	997	6085	25
L09	9	25	1101	5368	25
M1	82	8327	1347	6888	30
м4	27	8547	341	9780	34
N1	638	5450	19528	8616	132
N2	161	37	42350	5243	152
N3	120	43	37485	4755	146
N4	120	81	37113	4938	146
N5	114	45	30710	11962	250
NG	112	22 *2	31657	13400	220
01	97	42	37956	5559	143
02	92 27	43	38867	1766	146
	106	45	11710	4700	110
05	105	40	91/14 21/02	4JOU 7101	196
	140	40 25	JI473 17202	2100	140
	33 110	20 40	T1323	3430 E1EC	100
II 09	119	49	20398	2720	102

013	46	25	13832	4820	66
P1	4	25	359	3581	25
Q29	88	25	3445	17795	87
Q05	34	25	2991	15538	82
Q08	25	25	2115	11283	59
S15	19	2835	2473	12872	50
S06	28	25	2960	14366	65
S08	31	25	2328	10035	47
T11	13	5174	1224	9909	25
T13	12	5929	1763	10835	32
V8	20	25	3035	12787	55
W7 ·	11	25	980	3902	25
Х3	8	25	1273	3445	22
Z4	15	25	1525	6370	33
AB2	8	25	976	3659	25
AD5	2	25	255	3008	25
AE1	11	25	1453	24224	110
AE2	10	305	1523	19100	102
AE4	39	25	2804	10544	304
AF1	17	25	1537	9197	30
AF4	24	25	2471	13928	47
AF7	14	6468	1624	8864	27
Nºmostres	232	232	232	232	232
Mitjana.	30.5	631.7	3056	7622	42
Mediana	15	25	897	6216	25
Variançia	3031	2.8E6	5.5E7	3.6E7	2403
Desv. estàn.	55	1692	7451	395	3.2
Valor mínim	1	25	37	458	1
Valor màxim	638	8547	42350	31111	304

ANNEX D - RESU	JLTATS OBTINGUTS	DE L'ESTUDI	DEL Fe	TOTAL	(208	mostres).	
MOSTRA	FeO	D &					
SB101a	0.4	48					
SB102	0.5	-0 57					
SB104b	0.5	57					
SB105a	0.8	82					
SB107	0.6	62					
SB108a	0.5	53					
SB108b	0.6	62					
SB100D SB110	0.5	56					
SB111	0.5	5					
SB114	0.5	5					
SB115	0.5	5					ľ
SB116a	0.6	69					
SB117	1.0	07					
SB118	0.8	88					
SB121	0.7	78					
SB122	0.6	68					
SB124a	0.5	52					
SB124b	0.5	5					
SB125	0.3	33					
SB126	0.6	63					
SB127	0.5	55					
SB128	0.6	63					
SB129	0.6	67					
SB131	0.7	7			-		
SB132a	0.7	72					
SB134a	0.3	36					
SB134b	0.6	62					
SB135a	0.6	61					
SB135b	<0.	.3					
SB138	0.8	86					
SB139	1.0	08					
SB141a	0.5	53					
SB141b	0.5	53					
SB141c	0.5	53					
SB143	0.5	54					
SB144	<0.	.3					
SB145	0.9	9 E 4					
SB146	0.5	54 CA					
CP152	0.6	c .					
CP155	0.0	0 17					
GB156	0.4	= / 17					
SB150	0.4 0 £	- 					
SB161a	0.0	57					
SB161h	0.5	52			•		
SB164	0.5	5					
SB165	0.9	96	,				
SB166	1.2	28					
							П

.

SB168	1.23
SB169a	1.63
SB173b	0.86
SB174a	0.79
SB174c	0.53
SB175	0.66
SB176a2	0.96
SB176b4	0.67
SB176b5	0.56
SB178	0.86
SB182	0.8
SB183	1.1
SB184a	0.66
SB184b	0.97
SB185	0.81
SB186	0.82
SB186a	0.83
SB187a	1.51
SB187b	1.35
SB189	1.19
SB190b	1.09
SB190c	1.91
SB191	1.22
SB192	1.7
SB193	0.86
SB193	0.86
SB194	0.86
SB196	1.45
SB197a	1.41
SB197b	0.86
SB199	0.58
SB200	1.1
SB201	1.94
SB203	0.95
SB204a	0.55
SB204b	0.53
SB205a	0.71
SB205b	<0.3
SB205c	0.8
SB206a	1.74
SB206b	1.21
SB207	0.88
SB208	1.5
SB210	<0.3
SB211	0.62
SB212a	0.78
SB212D	0.52
SB213	0.52
	0.04
20215 CD215	1 27
20212 CD2162	1.3/
SD210a CD216b	0.00 0.0 <i>c</i>
2D210	1 00
50210	1.09

SB219a	0.59
SB219b	0.66
SB220a3	1.18
SB222	1.1
SB223a	1.47
SB224	1.12
SB226b	0.44
SB227a2	0.92
SB227b1	1.03
SB227b2	0.84
SB229a	0.91
SB229b	0.72
SB230	0.88
SB231	0.66
SB232a	1.08
SB232a	1.06
SB232b1	0.76
SB232b3	0.91
SB233	0.31
SB234	0.49
SB235	0.54
SB236a	0.25
SB236b	0.47
SB237	0.73
SB238	0.56
SB239	0.62
SB240	0.73
SB241	0.69
SB242	0.75
MA29	0.99
MA34a	1.04
MA34b	1.3
MA44	1.29
MA57	1.31
MA58	1.22
MA128(2)	1.53
MA171	0.92
MA172	0.68
MAI73a	0.94
MAI73cl	0.99
MA175	1.8
MAIT	0.4
MA178	1.4
MA192a	1.8
MA192	1.46
MA195	2.28
MAZUUDZ MAZUUDZ	1.55
MA204D	0.53
MA209	0.52
	0.56
	0.55
	0.54
016	0.55
	0.55

C21 C22 C23 C28 C29 C30 C31 C32 C34 C35	0.52 0.55 0.57 0.6 0.61 0.62 0.64 0.49 0.52
C36	0.5
C37	0.82
C39	0.5
C40	0.52
C45	0.49
E6	2.32
E7	2.85
H4	0.9
H5	0.61
H6	0.75
H7	0.72
H9 T1	0.8
11	1 07
	1.07
.T15	0.00
J103	0.76
104	0.79
J05	1.27
109	0.64
L10	0.99
L02	0.78
L03	0.8
M1	1.1
M4	1.18
N2	0.69
N3	0.64
N4	0.65
N5	1.6
N6	2.7
01	0.65
02	0.43
03	0.66
05	0.96
07	0.64
013	1.02
013	1.2/
243 005	1.39
008 702	1.21
w7	1.00 1 97
7.4	0.76
~ <u>-</u>	0.70

Nº mostres	208
Mitjana aritmètica	0.85
Mediana	0.7
Variançia	0.173
Desviació Estàndard	0.416
Valor Mínim	0.25
Valor Màxim	2.85

ANNEX E: LLISTAT DELS VALORS NUMERICS OBTINGUTS EN L'ANÀLISI FACTORIAL PER A CADA UNA DE LES MOSTRES.				
La primera columna representa els valors del factor 1,				
FACTOR 1 FACTOR 2				
SB101A -1.63933 -0.678755				
SB102 -1.24924 0.147296				
SB104B -0.64996 -0.0631635				
SB105A -0.195086 -0.195086				
SB107 -0.980012 0.0688489				
SB108A -0.94382 0.131026				
SB108B -0.751644 0.012056				
SB110 -0.945243 0.287678				
SB111 -0.982697 -0.0937347				
SB114 -1.08247 0.251752				
SB115 -1.19077 -7.48898E-3				
SB116A -0.97372 0.128002				
SB117 -0.828467 -0.706876				
SB118 -0.830288 0.0984833				
SB121 -0.991829 -0.506586				
SB122 -1.06498 -0.431997				
SB124A -0.58509 -0.635461				
SB124B -1.03083 0.144768				
SB125 -0.963725 -0.249417				
SB126 -1.0778 -0.180314				
SB127 -0.968023 -0.180427				
SB128 -0.969261 0.0701999				
SB129 -0.775809 0.0629972				
SB131 -0.433192 0.707239				
SB132A -0.715832 0.0915532				
SB134A -0.676538 0.29285				
SB134B -0.581237 0.341286				
SB135A -0.572393 0.104815				
SB135B -0.515157 -0.0983443				
SB138 -0.576476 0.992735				
SB139 -0.635571 0.837508				
SB141A -0.559649 -0.0252651				
SB141B -0.889345 -0.21736				
SB141C -0.732759 -0.145541				
SB143 -0.851889 0.0785433				
SB144 -1.01777 9.44056E-3				
SB145 -0.624607 0.535995				
SB146 -0.43029 0.800765				
SB146 -0.43029 0.800765				
SB151 -0.493822 0.13831				
SB152 -0.52825 0.644225				
SB155 -0.799608 -0.331391				
SB156 -0.661574 -0.101918				
SB160 -0.848022 -0.283171				
SB161A -0.765577 -0.160673				

SB161B SB164 SB165 SB166 SB168 SB169A SB173B SB174A SB174C SB175 SB176A2 SB1776B4 SB176B5 SB178 SB182 SB183 SB184A SB184B SB185 SB186 SB186A SB187A SB187B SB189 SB190B SB190C SB191 SB192 SB193 SB193 SB194 SB196 SB197A SB197B SB199 SB200 SB201 SB203 SB204A SB204B SB205A SB205B SB205C SB205C SB206A SB206B SB207B SB208 SB210 SB211 SB212A SB212B SB213 SB214

-0.657904 -0.31272-0.360142 0.304562 -0.243298 -0.318761 0.286357 0.109371 0.42637 0.370932 0.152178 0.262553 0.290747 0.224928 -0.118766 0.174403 -0.214628 8.28052E-3 -0.0159598 -0.128877 0.0924189 -0.126028 0.122794 0.132992 0.365004 -0.353477 0.734009 2.14563 0.0820933 0.788959 2.90554 2.668 2.79066 4.03593 1.06701 0.994433 1.95709 -0.513545 -0.695354 -0.63529 -0.392697 -0.719093 -0.0692387 -0.0692387 -0.580966 -0.337151 -0.23959 8.1706E-3 -0.82222 -0.745861 -0.644602 -0.528174 -0.919408 0.381293

0.888017 -1.0657 0.787585 -0.428671 0.131253 0.164811 0.0237392 0.426106 0.268062 0.0985719 0.131179 -0.236459 -0.282287 1.10035 0.182589 -0.167801 0.0470405 -0.160237 -0.103637 0.734236 0.511576 -0.0383038 -0.165209 -0.261489 0.362814 -0.732094 0.0460539 0.461846 -0.0203488 -1.02495 -0.791061 1.04608 1.04757 0.735165 0.0199737 -0.311849 -0.163604 0.0924123 -0.122413 0.143525 ~0.0375735 -0.0375735 0.0322145 ~0.245386 -0.2949430.587194 -0.123071 -0.201043 -0.0399059 -0.135131 -0.498287

-0.496362

-0.100949

0.787199

-0.285709	
0.503456	
0.569488	
-0.120811	
0.749055	
1.21761	
0.850839	
0.239506	
0.140609	
-0.407198	
0.508837	
-0.205927	
1.19687	
1.11278	
1.3254	
1.1653	
1.26268	

SB215	-0.278507	0.503456
SB216	0.363547	0.569488
SB216B	-0.64366	-0.120811
SB218	0.58612	0.749055
SB219A	1.40008	1.21761
SB219B	0.912808	0.850839
SB220A3	2.28072	0.239506
SB222	1.00027	0.140609
SB223A	0.933621	-0.407198
SB224	0.331362	0.508837
SB226B	-0.144758	-0.205927
SB227A2	1.07818	1.19687
SB227B1	1.48191	1.11278
SB227B2	1.06876	1.3254
SB229	0.651938	1.1653
SB229B	0.733458	1.26268
SB230	0.712766	0.818773
SB231	0.772158	1.22605
SB232A	1.50855	2.01608
SB232A	1.14127	1.13026
SB232B1	0.843101	0.262591
SB232B3	1,48251	2.81518
SB233	-0 584196	0.93447
SB234	-1 0918	-0.381613
GB235	-1 11393	-0.445256
SB236A	-0 689499	0 970165
SB236A	-0 689499	0.970165
SD2JOA SD2JOA	-1 05303	-0 522807
552505	-1 04215	-0.269019
GB338	-0.857159	-0 235355
SD230	-0.73137	0.0463429
55235	-0.984531	-0 555466
SD240 CD241		-0 250975
50241 CD241	-0.913641	_0 11359
SD242 CD242	-0.913641	-0.11359
MA 20	-0.913041	-0.328503
	0.715801	-0.320303
MAJ4A MAJ4	0.213031	-0.002937
	-0.0/3001/	0.262709
MA44 Mae7	1 05076	0.203703
	1.05876	0.170955
MA58	1.00000	-0.100091
MA128(2)	1.06693	-0.894037
MAI/I	0.52901	0.93216
MA172	0.52901	0.93216
MA173A	0.537294	1.14631
MA173C1	0.63798	1.16841
MA175	0.151223	0.0465778
MA177	0.274535	0.972885
MA178	0.696354	-0.332092
MA192A	2.32616	-0.796182
MA192	2.97919	1.04068
MA195	1.23016	-0.04111
MA200B2	0.719342	-0.682741

-0.576339

SB215

MA195 MA200B2 379.

MA204	1.43186	-0.475333
MA209	-0.620254	-0.0781866
C1	-0.70884	1.18559
C8	-1.05465	-0.311335
C9	-0.897119	-0.187102
C13	-1.05556	-0.545886
C16	-1.14004	-0.61821
C21	-0.811065	0.541612
C22	-1.20385	-0.363371
C23	-1.23616	-0.555815
C28	-1.22518	-0.594031
C29	-0.963259	-0.623852
C30	-0.956578	-0.629765
C31	-0.93916	-0.602691
C32	-0.967145	-0.553207
C34	-0.913774	-0.373004
C35	-1.01453	-0.410533
C36	-0.985659	-0.352515
C37	-1.2934	-0.389988
C39	-1.24834	-0.339008
C40	-1.13206	-0.460388
C45	-0.922446	-0.182925
D1	-1.84949	-1.47272
E1	0.0737258	-0.835862
E3	-0.261634	-0.708781
E4	-0.310454	-0.364276
E6	0.280432	-1.59028
E7	-0.091734	-1.49025
H4	0.597408	1.10624
н5	0.478128	-0.403444
Н6	0.204624	-0.361957
Н7	0.361143	-0.407673
н8	-1.17859	-0.810955
н8	-1.17859	-0.810955
Н9	0.122697	-0.484596
11	0.707158	0.0163166
J1	0.717613	0.213332
J10	1.02917	1.85719
J15	-0.0935937	0.25432
J3	1.21887	2.54153
J4 .	0.155465	-0.129433
J5	1.04737	2.41043
J9	0.892456	2.37072
L1	0.488563	2.75
L10	-0.251332	0.0341676
L2	-0.181976	0.318679
L3	-0.585125	3.49389E-3
L5	-0.585125	3.49389E-3
L8	-0.251332	0.0341676
L9	-0.519317	-0.141113
M1	0.890351	1.12688
M4	0.837613	1.496
N1	3.15566	-0.987306
N2	1.64359	-2.9558

N3	2.07117	-3.15879	
N4	1.9883	-3.04029	
N5	2.69444	-2.92292	
NG	2.74332	-3.16401	
01	1.42385	-3.01469	
02	1.82618	-3.10537	
03	1.0856	-2.9185	
05	1.39849	-2.46993	
07	0.674615	-1.75792	ç.
09	1.33295	-2.9665	
013	0.146754	-0.992202	
P1	-0.953231	-0.568407	
Q29	0.284397	-0.0556536	
Q5	0.463534	0.0451833	
Q8	0.532916	-1.96189E-3	
S15	0.0345949	1.43741	
S6	-0.199191	-0.337962	
S8	-0.210906	-0.160722	
T11	0.616291	2.44926	
T11	0.616291	2.44926	
T13	0.764709	3.2053	
T13	0.764709	3.2053	
V8	-0.37782	-0.619824	
W7	-0.344722	-0.151968	
Х3	-0.0655963	-0.193308	
Z4	-0.643597	-0.231599	
AB2	-0.255259	-0.078132	
AD5	-0.168323	-0.0307737	
AE1	-0.358318	-0.631238	
AE2	0.0126187	-0.537263	
AE4	-0.679422	-0.463538	
AF1	0.126053	0.101323	
AF4	-0.447713	0.0166028	
AF7	-0.324392	0.347386	

```
ANNEX F: CALCUL DE LES CONCENTRACIONS IÒNIQUES EN ELS
DIFERENTS TIPUS D'AIGUA:
      Tenint en compte que els diferents pesos atòmics pels
cations que hem analitzat són:
Ca = 40.08
Na = 22.99
Sr = 87.62
Mg = 24.31
Mn = 54.94
Fe = 55.85
El Na en aigua marina
mNa(s)
          mNa(w)
----- = D × -----
mCa(s)
          mCa(w)
ppmNa (s)
                    10760
-----
                  ------
22.99
                    22.99
----- = 0.000025 × -----
ppmCa (s)
                     411
-----
                   -----
 40.08
                    40.08
                           .
ppm Na (s)
----- = 6.54 \times 10^{-4}
ppm Ca (s)
El Na en aigua continental
ppm Na (s)
                      5,1
_____
                     -----
22.99
                      22.99
----- = 0.000025 × ------
ppm Ca (s)
                      14,6
-----
                     -----
40.08
                      40.08
ppm Na (s)
== 8,6 \times 10^{-6}
ppm Ca (s)
```

L'Sr en aigua marina ppm SR (s) 8 _____ -----87.62 87.62 ----- = 0.13 × ----ppm Ca (s) 411 -----40.08 40.08 ppm Sr (s) $-----= 2.5 \times 10^{-3}$ ppm Ca (s) L'Sr en aigua continental ppm Sr (s) 0.06 -----------87.62 87.62 ----- = 0.13 × ----ppm Ca (s) 14.6 _____ 40.08 40.08 ppm Sr (s) ----- = 5.3×10^{-4} ppm Ca (s) El Mg en aigua marina ppm Mg (s) 1290 ----------24.31 24.31 ----- = 0.03 × ----ppm Ca (s) 411 -----_____ 40.08 40.08 ppm Mg (s) ----- = 0.094 ppm Ca (s) El Mg en aigua dolça 3.8 ppm Mg (s) -----_____ 24.31 24.31 ----- = 0.03 × ----ppm Ca (s) 14.6 ---------40.08 40.08

```
ppm Mg (s)
----- = 7.81 \times 10^{-3}
ppm Ca (s)
El Mn en aigua marina
ppm Mn (s) 0.002
------
54.94 54.94
54.94
                  54.94
----- = 6 × -----
ppm Ca (s)
                   411
_____
                  -----
40.08
                   40.08
ppm Mn (s)
= 2,9 \times 10^{-5}
ppm Ca (s)
El Mn en aigua dolça
ppm Mn (s) 0.02
                  54.94
54,94
----- = 6 × -----
ppm Ca (s) 14.6
                 40.08
40.08
ppm Mn (s)
----- = 8.2 \times 10^{-3}
ppm Ca (s)
El Fe en aigua marina
ppm Fe (s) 0.01
ppm ....
               55.847
                55.847
----- = 5 × -----
         411
40.08
ppm Ca (s)
-----
40.08
ppm Fe (s)
----- = 1.22 \times 10^{-4}
ppm Ca (s)
```

El Fe en aigua continental 0.04 ppm Fe (s) ------55.847 55.847 ----- = 5 × ----ppm Ca 14.6 -----------40.08 40.08 ppm Fe (s) ----- = 4.99 × 10-3 ppm Ca (s)

ANNEX G:	RESULTATS	ISOTÒPICS DE	LES MICROMOSTRES
Mostra Colur	nna $\delta^{13}C$	δ ¹⁸ 0	Tipus
SB176 VN7	-1.917	-6.358	ESPARITA EN ESQUERDA
SB214 VN10	-2.021	-5.559	ESPARITA EN ESQUERDA
SB214 VN10	-2.248	-4.632	ESPARITA EN ESQUERDA
SB176 VN7	0.73	-3.447	LAMINACIONS BACTERIANES
SB176 VN7	-0.378	-3.143	LAMINACIONS BACTERIANES
SB176 VN7	-0.547	-4.503	ESPARITA EN PSEUDOMORF
SB176 VN7	-0.765	-4.637	ESPARITA EN ESQUERDA
SB214 VN10	-2.008	-5.015	ESPARITA EN PSEUDOMORF
SB214 VN10	0.429	-3.894	BIOLAMINOIDE
SB1/6 VN/	-1.135	-3.774	ESPARITA EN ESQUERDA
SB207 VN12	-9.278	-5.0/5	ESPARITA EN PSEUDOMORF
SB207 VN12	-0.430		LAMINACIONS CIANOBCTER
SB217 VN11	-2.17	-7.33	ESPARITA EN PSEUDOMORF
SB217 VN11 SB217 VN11	-2 124	-0.418	LAMINACIONS CIANOBACTERIANES
SB217 VN11	-1.051	-5.025	LAMINACIONS CIANOBACTERIANES
SB236 VN4	-2.31	-10 839	LAMINACIONS CIANOBACTERIANES
SB236 VN4	1.327	-3 83	LAMINACIONS CINNOR CERTA
SB236 VN4	1.278	-4.231	LAMINACIONS CIANOBACTERIANES
SB146 VN6	-5.635	-5.238	ESPARTTA EN REPUDOMORE
SB146 VN6	-0.165	-4.036	LAMINACIONS CLANODA CORDINADA
SB146 VN6	0.109	-4.085	LAMINACIONS CIANOBACTERIANES
SB167 VN5	-8.961	-4.721	ESPARITA EN REFUDOMORI
SB167 VN5	1.263	-3.573	LAMINACIONS CIANORACEPTANDO
SB167 VN5	-1.198	-4.847	BIOLAMINOTOF
SB229 VN13	-5.334	-4.737	ESPARITA JUNT & CELECTIVA
SB229 VN13	-0.797	-2.865	LAMINACIONS BACTERIANES
SB229 VN13	-0.509	-2.718	LAMINACIONS BACTERIANES
SB216 VN10	-1.14	-4.555	BIOLAMINOIDE
SB216 VN10	-1.647	-5.958	ESPARITA EN PSEUDOMORF
MAI71 VN5	0.922	-2.775	BIOLAMINOIDE
SB204 VN12	-4.399	-5.079	ESPARITA EN PSEUDOMORF
SB205 VN12	0.706	-3.192	BIOLAMINOIDE
SB106 VN2	-0.963	-4.764	LAMINACIONS CIANOBACTERIANES
SB120 VN1 SB216 VN10	-5.000	-5.773	ESPARITA EN PSEUDOMORF
SB216 VN10	-2 42	-3.595	LAMINACIONS CIANOBACTERIANES
SB205 VN12	-2.42	-3.521	ESPARITA JUNT A CELESTINA
SB242 VN3	0 501	-5.216	ESPARITA EN PSEUDOMORF
SB242 VN3	1 411	-5.572	ESPARITA EN PSEUDOMORF
SB199 VN8	-2 492	-3.699	LAMINACIONS CIANOBACTERIANES
SB241 VN4	1.097	-5.095	ESPARITA EN PSEUDOMORF
MA172 VN9	-1.331	-3.459	ESPARITA EN PSEUDOMORF
SB230 VN13	-6.202	-4.403 -1 0FC	ESPARITA JUNT A CELESTINA
SB174 VN7	-1.585	-4.030 _7 071	ESPARITA JUNT A CELESTINA
T12 VE14	0.254	-2 60	ESPARITA EN ESQUERDA
C22 VS3	2.989	-7 7/5	LAMINACIONS BACTERIANES
H5 VE4	-2.516	-5 665	LAMINACIONS CIANOBACTERIANES
H5 VE9	-4.093	-6.401	CALCRETA
			CALCRETA

J5	VE6	0.807	-4.084	LAMINACIONS BACTER	IANES
м1	VE9	-4.009	-6.479	CALCRETA	
M4	VE9	-2.164	-6.772	CALCRETA	
CC5	VS4	1.226	-7.111	LAMINACIONS CIANOB	ACTERIANES
L2	VE8	0.946	-3.792	LAMINACIONS BACTER	IANES
L2	VE8	-5.034	-4.913	LAMINACIONS BACTER	IANES
S17	VE13	-3.621	-2.158	LAMINACIONS BACTER	IANES
S17	VE13	-3.43	-2.439	LAMINACIONS BACTER	IANES
AF7	VE15	-0.097	-2.7	LAMINACIONS BACTER	IANES
L1	VE8	0.925	-3.243	LAMINACIONS BACTER	IANES
S12	VE13	-3,483	-1.963	LAMINACIONS BACTER	IANES
S16	VE13	-6.124	-2.704	LAMINACIONS BACTER	IANES
AF4	VE15	-1.597	-2.806	LAMINACIONS BACTER	IANES
010	VE12	-0.83	-2,838	LAMINACIONS BACTER	IANES
011	VE12	-0.499	-2.607	LAMINACIONS BACTER	IANES
011	VE12	-0.608	-2.61	LAMINACIONS BACTER	IANES
029	VE12	-0.58	-2.369	LAMINACIONS BACTER	IANES
AF6	VE15	-0.126	-2.306	LAMINACIONS BACTER	IANES
AF9	VE15	0.219	-2.482	LAMINACIONS BACTER	TANES
T11	VE14	0.327	-2.534	LAMINACIONS BACTER	IANES
T11	VE14	0.354	-2.553	LAMINACIONS BACTER	TANES
L1	VE8	0.885	-3.448	LAMINACIONS BACTER	TANES
CC5	VS4	0.533	-7.285	LAMINACIONS CIANOB	ACTERTANES
J7	VE6	1.054	-3.301	LAMINACIONS BACTER	TANES
026	VE12	0.033	-3,169	LAMINACIONS BACTER	TANES
026	VE12	0.219	-2 547	LAMINACIONS BACTER	TANES
028	VE12	-0.454	-2.762	LAMINACIONS BACTER	TANES
028	VE12	-0.696	-2.85	LAMINACIONS BACTER	TANES
J8	VE6	0.166	-3,193	LAMINACIONS BACTER	TANES
Q10	VE12	-0.422	-2.299	LAMINACIONS BACTER	TANES
010	VE12	-0.411	-2.411	LAMINACIONS BACTER	TANES
Н6	VE4	-4.316	-6.374	CALCRETA	
нб	VE4	-3.896	-6.429	CALCRETA	
BA4	VS1	1.78	-7.647	LAMINACIONS CIANOR	ACTERTANES
AB1	AB	-10.21	-5.496	CALCRETA	
AE1	AE	-4.405	-5.282	CALCRETA	
X2	VN16	0.56	-6.561	LAMINACIONS CIANOR	ACTERTANES
W9	VN16	-0.856	-6 25	LAMINACIONS CIANOR	ACTERIANES
L5	VE8	-6.76	-4.637	LAMINACIONS BACTER	LANES
1.5	VE8	-2.268	-3 748	LAMINACIONS BACTER	LANES
1.8	VE8	-6 223	-4 781	LAMINACIONS BACTER	LANES
1.8	VE8	-0.108	-3 755	LAMINACIONS BACTER	LANES
1.8	VE8	0 984	-3 665	LAMINACIONS BACTER	LANES
J6	VE6	0 104	-3 073	LAMINACIONS BACTER	LANES
J8	VE6	-0 732	-3 131	LAMINACIONS BACTER	LANES
.78	VEG	-0.691	-3 111	LAMINACIONS BACTERI	LANES
WG	VN16	-2 027	-5 999	LAMINACIONS DACIER	CTTERTANDS
WG	VN16	-1 07	-6 156		CTERIANES
W6	VN16	-1 966	-6 153	LAMINACIONS CIANODA	CTERTANES
W6	VN16	-0 224	-5 825	LAMINACIONS CIANOBA	CTERIANES
W6	VNIA	-1 224	-5 52	TAMINACIONS CIANOBA	CTENTANES
WE	VN16	1 100	-5 909	TWINYCIONS CIANOBY	CTERIANES
WE	VIN1 C	0.030	-5.909	LAMINACIONS CIANOBA	CTERIANES
WE	VIVLO	_0 264	-5.05	LAMINACIONS CIANOBA	CTERIANES
110	A 1 A T O	-0.204	-0.330	LAMINACIONS CIANOBA	ICTERTANES

W6	VN16	-0.518	-6.435	LAMINACIONS CIANOBACTERIANES
W6	VN16	-0.876	-6.493	LAMINACIONS CIANOBACTERIANES
02	VE11	0.143	-3.943	LAMINACIONS BACTERIANES
06	VE11	-0.066	-4.979	LAMINACIONS BACTERIANES
06	VE11	0.038	-4.857	LAMINACIONS BACTERIANES
06	VE11	0.373	-4.396	LAMINACIONS BACTERIANES
Q19	VE12	-0.199	-2.965	LAMINACIONS BACTERIANES
BA3	VS1	2.128	-7.201	LAMINACIONS CIANOBACTERIANES
BA3	VS1	2.054	-7.295	LAMINACIONS CIANOBACTERIANES
BA7	VS1	2.892	-8.132	LAMINACIONS CIANOBACTERIANES
N5	VE11	-0.303	-4.225	LAMINACIONS BACTERIANES
Z9	VN15	-6.499	-6.587	CALCRETA
C21	VS3	2.729	-7.009	LAMINACIONS CIANOBACTERIANES
C9	VS3	3.166	-6.578	LAMINACIONS CIANOBACTERIANES
C45	VS3	1.884	-7.15	LAMINACIONS CIANOBACTERIANES
C45	VS3	1.69	-7.168	LAMINACIONS CIANOBACTERIANES
C45	VS3	1.767	-7.146	LAMINACIONS CIANOBACTERIANES
C45	VS3	1.407	-7.278	LAMINACIONS CIANOBACTERIANES
C45	VS3	1.772	-7.549	LAMINACIONS CIANOBACTERIANES
C7	VS3	1.953	-7.204	LAMINACIONS CIANOBACTERIANES
C7	VS3	1.917	-7.183	LAMINACIONS CIANOBACTERIANES
C13	VS3	2.85	-7.542	LAMINACIONS CIANOBACTERIANES
C23	VS3	2.818	-7.751	LAMINACIONS CIANOBACTERIANES
C44	VS3	2.102	-7.069	LAMINACIONS CIANOBACTERIANES

BIBLIOTECA DE GEOLOGIA Universitat de Barcelona-CSIC

