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Abstract

Over the last few decades, transistor miniaturization has enabled a tremendous increase in the

processing capability of commercial electronic devices, which, combined with the reduction of

production costs, has tremendously fostered the usage of the Information and Communications

Technologies (ICTs) both in terms of number of users and required data rates. In turn, this has

led to a tremendous increment in the energetic demand of the ICT sector, which is expected

to further grow during the upcoming years, reaching unsustainable levels of greenhouse gas

emissions as reported by the European Council.

Additionally, the autonomy of battery operated devices is getting reduced year after year

since battery technology has not evolved fast enough to cope with the increase of energy con-

sumption associated to the growth of the node’s processing capability.

Energy harvesting, which is known as the process of collecting energy from the environ-

ment by different means (e.g., solar cells, piezoelectric generators, etc.), has become a potential

technology to palliate both of these problems. However, when energy harvesting modules are

placed in wireless communication devices (e.g., sensor nodes or hand-held devices), traditional

transmission strategies are no longer applicable because the temporal variations of the node’s

energy availability must be carefully accounted for in the design.

Apart from not considering energy harvesting, traditional transmission strategies assume

that the transmission radiated power is the unique energy sink in the node. This is a reasonable

assumption when the transmission range is large, but it no longer holds for low consumption

devices such as sensor nodes that transmit to short distances. As a result, classical transmission

strategies become suboptimal in short-range communications with low consumption devices

and new strategies should be investigated.

Consequently, in this dissertation we investigate and design transmission strategies for

Wireless Energy Harvesting Nodes (WEHNs) by paying a special emphasis on the different

sinks of energy consumption at the transmitter(s).

First, we consider a finite battery WEHN operating in a point-to-point link through a static
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channel and derive the transmission strategy that minimizes the transmission completion time

of a set of data packets that become available dynamically over time. The transmission strategy

has to satisfy causality constrains in data transmission and energy consumption, which impose

that the node cannot transmit data that is not yet available nor consume energy that has not yet

been harvested.

Second, we consider a WEHN that has an infinite backlog of data to be transmitted through

a point-to-point link in a time-varying linear vector Gaussian channel and study the linear

precoding strategy that maximizes the mutual information given an arbitrary distribution of the

input symbols while satisfying the Energy Causality Constraints (ECCs) at the transmitter.

Next, apart from the transmission radiated power, we take into account additional energy

sinks in the power consumption model and analyze how these energy sinks affect to the trans-

mission strategy that maximizes the mutual information achieved by a WEHN operating in a

point-to-point link.

Finally, we consider multiple transmitter and receiver pairs sharing a common channel and

investigate a distributed power allocation strategy that aims at maximizing the network sum-

rate by taking into account the energy availability in the different transmitters and a generalized

power consumption model.
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Resum

Durant les últimes dècades, la miniaturització del transistor i la reducció dels seus costos de

fabricació han provocat un augment substancial del nombre de terminals de comunicacions i

del tràfic de dades requerit per aquests dispositius. Aixı́ doncs, el consum energètic del sector

de les Tecnologies de la Informació i Comunicacions ha incrementat notablement. A més a

més, s’espera que aquest consum segueixi creixent durant els propers anys arribant a nivells

insostenibles d’emissions de gasos d’efecte hivernacle segons ha informat el Consell Europeu.

D’altra banda, la tecnologia de les bateries no ha evolucionat suficientment ràpid com per

fer front a l’augment del consum energètic associat al creixement de la capacitat de proces-

sament dels dispositius. Això ha ocasionat que l’autonomia dels dispositius que operen amb

bateries empitjori any rere any.

Les energies renovables (per exemple, energia solar, cinètica, etc.) s’han convertit en una

solució potencial per pal·liar aquests dos problemes. No obstant això, quan els dispositius de

comunicació sense fils incorporen mòduls de captació d’energies renovables, les estratègies

tradicionals de transmissió deixen de ser vàlides, ja que les variacions temporals de la disponi-

bilitat d’energia en el dispositiu han de ser considerades en el disseny.

A més a més, les estratègies de transmissió tradicionals assumeixen que la potència radiada

és l’única font de consum energètic del node. Aquesta és una suposició raonable per distàncies

de transmissió llargues, però deixa de ser vàlida quan es consideren dispositius de baix consum

que transmeten en distàncies curtes. Com a resultat, les estratègies de transmissió clàssiques

són subòptimes en comunicacions de curt abast amb dispositius de baix consum i per això,

s’han d’investigar noves estratègies.

En conseqüència, en aquesta tesi doctoral s’investiguen i es dissenyen noves estratègies

de transmissió per nodes sense fils que operen amb energies renovables (WEHN) posant un

èmfasi especial en les diferents fonts de consum d’energia en el transmissor.

En primer lloc, la tesi investiga l’estratègia de transmissió en un enllaç punt a punt a través

d’un canal estàtic que minimitza el temps de transmissió d’un conjunt de paquets de dades que
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s’adquireixen al llarg del temps. L’estratègia de transmissió ha de satisfer les limitacions per

causalitat en la transmissió de dades i en el consum d’energia les quals imposen que el node

no pot transmetre dades que no han estat encara obtingudes o utilitzar energia que encara no ha

estat adquirida.

En segon lloc, es considera un WEHN que sempre disposa de dades per a transmetre

a través d’un enllaç punt a punt en un canal lineal Gaussià amb variacions temporals. En

aquest escenari i, també, donada una distribució arbitrària dels sı́mbols d’entrada, s’estudia

l’estratègia de precodificació lineal que maximitza la informació mútua alhora que satisfà la

causalitat d’energia en el transmissor.

A continuació, a part de la potència radiada en transmissió, s’inclouen en el model de

consum energètic els costos d’activació per accés al canal i per portadora. Donat aquest model,

s’analitza com aquestes fonts de consum addicionals afecten a l’estratègia de transmissió que

maximitza la informació mútua d’un WEHN que opera en un enllaç punt a punt.

Finalment, la tesi considera diversos parells transmissor i receptor que comparteixen un

canal comú i investiga una estratègia d’assignació de potència distribuı̈da la qual té com a

objectiu maximitzar la suma de les taxes de transmissió dels diferents nodes tenint en compte la

disponibilitat energètica en cada transmissor que està basada en un model de consum energètic

generalitzat.
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Sacristan, Javier Arribas, Anica Bukva, Lazar Berbakov, Tatjana Predojev, Biljana Bo-

jovic, Kyriaki Niotaki, Juan Manuel Castro, and Miquel Calvo.

• Finally, I also want to thank Onur Tan, Konstantinos Ntontin, Miguel Angel Vazquez,
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tournament for the funny weekly matches; specially, I thank Edu Dı́az for the organization.
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Notation

R,C,N The set of real, complex, and natural numbers, respectively.

R+ The set of nonnegative real numbers.

Rn,Rn
+ The set of vectors of dimension n with entries in R and R+,

respectively.

Rn×m,Rn×m
+ ,Cn×m The set of n×m matrices with entries in R, R+ and C , respectively.

x Scalar.

x Column vector.

X Matrix.

X Set.

||x|| Euclidian norm of the vector x, i.e.,
√

xHx.

|X | Cardinality of the set X .

[x]n n-th component of the vector x.

[X]pq Element in the p-th row and q-th column of matrix X.

In Identity matrix of order n.

1n, 0n Column vector of n ones or zeros.

The dimension n might be omitted when it can be deduced from the

context.

(·)T Transpose operator.

(·)H Conjugate transpose operator.

Tr(·) Trace operator.

diag(X) Column vector that contains the diagonal elements of the matrix X.

Diag(x) Diagonal matrix where the diagonal entries are given by the vector x.

vec(X) Column vector that stacks the columns of X.

x = (xn)Nn=1 Column vector constructed by stacking vectors xn, i.e.,

x = [xT
1 , . . . ,x

T
N ]T.

df(x)
dx Derivative of the scalar function f (x) with respect to (w.r.t.) x.
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∂f(x,y)
∂x

Partial derivative of the scalar function f (x, y) w.r.t. x.

∇xf(x) Gradient of the function f (x) w.r.t. x.

DXF Jacobian of the matrix function F w.r.t. the matrix variable X.∫ b
a
f(x)dx Integral of f (x) w.r.t. x in the interval [a,b].

⊗ Kronecker product.

◦ Hadamard product.

[x]ba Projection of x in the interval [a, b].

[x]+ Projection of x into R+, i.e., max{0, x}.
E{·} Expected value.

var{·} Variance.

≤,≥ Smaller and greater than or equal inequality, respectively.

�,� Componentwise smaller and greater than or equal inequality,

respectively.

arg Argument.

maximizex f(x) Maximize the objective function f(x) w.r.t. the optimization

variable x.

minimizex f(x) Minimize the objective function f(x) w.r.t. the optimization

variable x.

x? Optimal value of a given optimization problem.

max,min Pointwise maximum and minimum.

H`(·) Left continuous unit step function, i.e.,

H`(x) = 1 if x > 0 andH`(x) = 0, otherwise.

Hr(·) Right continuous unit step function, i.e.,

Hr(x) = 1 if x ≥ 0 andHr(x) = 0, otherwise.

Π(·) Unit pulse in the interval [0, 1], i.e.,

Π(x) = 1 if x ∈ [0, 1] and Π(x) = 0, otherwise.

W0(·) Positive branch of the Lambert function.

log(·) Natural logarithm.

logb(·) Base-b logarithm.

∩,∪ Intersection and union, respectively.

⊂,⊆ Proper subset and subset, respectively.

∼ Distributed according to.

≈ Approximately equal to.

B (n, q) Binomial distribution of parameters n and q.

CN (m,C) Complex circularly symmetric Gaussian vector distribution with

mean m and covariance matrix C.

N (m,σ2) Gaussian distribution with mean m and variance σ2.
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Chapter 1
Introduction

“The Information and Communications Technologies (ICTs) industry is in a unique

position to demonstrate leadership in reducing its footprint, through structural

change and innovation as well as by leading the way in identifying and creating

efficient solutions for other socio-economic sectors to follow.

...

This can be done for instance by replacing products with on-line services (e.g.

company newsletters), by moving business to the internet (e.g. costumer’s support),

by adopting new ways of working (tele-working and flexi-work enhanced by video-

conferencing and tele-presence tools) and by exploring the viability of using green

suppliers and energy from renewable resources.”

The European Comission [1].

1.1 Motivation

The discovery of the transistor in 1947 revolutionized the field of electronics, becoming the

fundamental component of current electronic devices. The transistor’s inventors John Bardeen,

Walter Brattain, and William Shockley were worldwide recognized with the Nobel Prize in

Physics in 1956.

A few years later, in 1965, Gordon Moore accurately predicted that the number of tran-

sistors that can be placed in an integrated circuit would double every two years [2]. Since

then, transistor miniaturization has enabled a tremendous increase in the processing capability

of commercial electronic devices, which combined with the reduction of production costs has

tremendously fostered the sales of electronic equipments. As a result, the usage of the ICTs

has exponentially grown during last years both in terms of number of users and required data
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Figure 1.1: Relative improvements in laptop computing technology from 1990–2003 [4].

rates. This growth has in turn increased the energetic demand of the ICT sector; in 2008, the

ICT community expended 7.15% of the global electricity bill [3] and the analysts predict that

the energetic demand of the ICT sector will double by 2020 [3]. The unsustainability of this

situation has yielded the European Council to target for 2020 a 20% reduction in emissions

compared to 1990 levels and a 20% share of renewable energies in overall European Union

energy consumption [1].

Another recent technological trend is that battery powered devices are becoming broadly

used due to the high mobility provided to users and because they can be deployed in places

in which there is no access to the power grid. Unfortunately, the battery autonomy of these

devices drops year after year because, as depicted in Figure 1.1 [4], battery technology has not

evolved fast enough to cope with the increase in energy consumption associated to the growth

of the processing capability of the devices.

In this context, energy harvesting, which is known as the process of collecting energy

from the environment by different means (e.g. solar cells, piezoelectric generators, etc.), has

emerged as a potential technology both to expand the lifetime of battery powered devices by

recharging their batteries and to reduce the carbon footprint in order to meet the 2020 targets

of the European Council.

Energy harvesting has a great potential in a myriad of applications. For example, energy

harvesters can be used to power devices with high mobility requirements (e.g., hand-held de-

2



1.1. Motivation

Figure 1.2: Expected sales of energy harvesting modules by application [5].

vices like cell-phones, laptops, tablets, etc.), which cannot be constantly connected to the power

grid, or devices that are placed in remote locations where it is not practical to replace batteries

(e.g., sensor nodes). Accordingly, energy scavenging modules will be ubiquitously deployed

and used in networking applications such as wireless sensor networks, machine to machine

communications, the Internet of Things, etc. This is confirmed in the market study performed

by Yole Développement [5] that, as shown in Figure 1.2, predicts a tremendous increase on the

sales of energy harvesting modules in the upcoming years. The main market drivers are the

huge installation cost reduction (no wiring is needed to connect the devices to the power grid),

and their being maintenance free (there is no need to replace the batteries) [5].

Up until very recently, many research efforts have focused on the design of communica-

tion systems and transmission strategies that are able to provide the exponentially increasing

bit rate demand of the network users given some Quality of Service (QoS) requirements. As

argued above, currently, users do not only require higher bit rates but also more battery auton-

omy and mobility, which can be obtained thanks to modern energy harvesting technologies.

Nevertheless, when nodes are powered by energy harvesting modules, traditional transmis-

sion strategies, such as the well-known Classical Water-Filling (CWF) (which is presented in

§2.2.1), are no longer applicable because the temporal evolution of the node’s available energy

must be carefully accounted for in the design. Accordingly, energy harvesting opens a new
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research paradigm for the design of transmission strategies.

Additionally, classical transmission strategies generally consider that the transmission ra-

diated power is the unique source of energy consumption of the node. This is a reasonable

assumption when the transmission range is large, but it no longer holds for low consumption

devices such as sensor nodes that transmit to short distances. As a result, classical transmission

strategies become suboptimal in short-range communications with low consumption devices

and new strategies should be investigated.

To summarize all what has been said above, the study and design of transmission strategies

for energy harvesting nodes is required in order to enlarge the autonomy of battery operated

devices and, at the same time, to reduce the carbon footprint of the ICT community; it is key

that these transmission strategies not only account for the transmission radiated power but also

for other relevant sources of energy consumption.

1.2 Outline of the dissertation and research contributions

This dissertation considers transmitter nodes equipped with energy harvesting modules, which

palliate the battery autonomy problem, and investigates transmission strategies that take into

account the energy availability variations in the node. More precisely, the thesis studies theoret-

ical bounds on the best achievable performance in different scenarios as well as practical trans-

mission strategies that can be implemented in Wireless Energy Harvesting Nodes (WEHNs).

As depicted in Figure 1.3, the dissertation is structured in seven chapters and two different

performance measures are considered: (i) transmission completion time minimization, which

is studied in Chapter 3; and (ii) mutual information maximization, which is investigated in

Chapters 4-6 for different transmitter architectures, network topologies, and sources of energy

consumption.

The following lines summarize the contents of the different chapters.

Chapter 1

The current chapter has motivated the conducted research by answering the question “Why is

the design of new transmission strategies for WEHNs necessary?” and now is presenting the

outline and research contributions of this dissertation.
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Chapter 2

The second chapter introduces the main characteristics of WEHNs, presents the main facts that

must be accounted for in the design of transmission strategies for WEHNs, and overviews the

state of the art on known transmission strategies.

Chapter 3

The third chapter considers a point-to-point link where the transmitter is a WEHN that ac-

quires the data along time. The chapter investigates the scheduling or power allocation strategy

that minimizes the transmission completion time of all the data packets by using the harvested

energy while satisfying some generic QoS constraints. Additionally, since both data and en-

ergy arrive dynamically to the node, the resource allocation strategy must satisfy a set of Data

Causality Constraints (DCCs) and Energy Causality Constraints (ECCs), which are formally

introduced in §2.1.5.

The contributions of this chapter were presented in the 2011 edition of the Global Telecom-

munications Conference [6] and published in a journal publication [7]:

• M. Gregori and M. Payaró, “Efficient data transmission for an energy harvesting node

with battery capacity constraint,” in Proceedings of the IEEE Global Telecommunications

Conference (GLOBECOM), Dec. 2011, pp. 1–6.

• M. Gregori and M. Payaró, “Energy-efficient transmission for wireless energy harvesting

nodes,” IEEE Trans. on Wireless Communications, vol. 12, no. 3, pp. 1244–1254, Mar.

2013.

Chapter 4

The fourth chapter considers an energy harvesting node that has an infinite backlog of data

to be transmitted through a point-to-point link in a linear vector Gaussian channel. Given

an arbitrary distribution of the input symbols, the chapter investigates the linear precoding

strategy that maximizes the mutual information while satisfying the ECCs at the transmitter.

Accordingly, the linear precoding strategy must take into account that the mutual information

of finite constellations asymptotically saturates.

The contributions of this chapter were presented in the 2012 edition of the International

Conference on Communications [8] and published in 2013 as a journal publication [9], which

obtained the 2013 best young researcher’s paper award within the NEWCOM# project funded

by the European Commission:
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• M. Gregori and M. Payaró, “Optimal power allocation for a wireless multi-antenna en-

ergy harvesting node with arbitrary input distribution,” in Proceedings of the IEEE Inter-

national Conference on Communications (ICC), Jun. 2012, pp. 5794 –5798.

• M. Gregori and M. Payaró, “On the precoder design of a wireless energy harvesting

node in linear vector Gaussian channels with arbitrary input distribution,” IEEE Trans.

on Communications, vol. 61, no. 5, pp. 1868–1879, May 2013.

NEWCOM# 2013 Best young researcher’s paper award.
Committee:

Muriel Médard, MIT Boston, USA

Petar M. Djurić, Stony Brook University, USA

Björn Ottersten, University of Luxembourg, Luxembourg.

Chapter 5

The fifth chapter investigates the resource allocation strategy that maximizes the mutual infor-

mation of a WEHN transmitting in a point-to-point link when the circuitry power consumption,

e.g., the consumption of the Radio Frequency (RF) chain, is considered within the ECCs.

The contributions of this chapter were presented in two international conferences: in the

2012 edition of Vehicular Technology Conference [10], and in the 2013 edition of the Wireless

Communications and Networking Conference [11]. Additionally, a journal publication has

been recently accepted for publication [12].

• M. Gregori and M. Payaró, “Throughput maximization for a wireless energy harvesting

node considering the circuitry power consumption,” in Proceedings of the IEEE Vehicu-

lar Technology Conference (VTC Fall), Sep. 2012, pp. 1–5.

• M. Gregori, A. Pascual-Iserte, and M. Payaró, “Mutual information maximization for a

wireless energy harvesting node considering the circuitry power consumption,” in Pro-

ceedings of the IEEE Wireless Communications and Networking Conference (WCNC),

Apr. 2013, pp. 4238–4243.

• M. Gregori and M. Payaró, “On the optimal resource allocation for a wireless energy

harvesting node considering the circuitry power consumption,” accepted in IEEE Trans.

on Wireless Communications, Jun. 2014.

Chapter 6

Chapter 6 considers the case where multiple transmitter and receiver pairs share a common

channel and investigates a distributed transmission strategy that aims at maximizing the sum

7



Chapter 1. Introduction

of the achieved mutual information in the different links while satisfying the ECCs in all the

transmitters. The ECCs consider a generalized power consumption model that accounts for a

broad class of energy sinks such as the circuitry power consumption and the startup cost of the

transmitter, which is associated to off-on transitions of the transmitter.

The contributions of this chapter will be soon submitted for journal publication:

• M. Gregori, M. Payaró, G. Scutari, and D. P. Palomar, “Sum-rate maximization for en-

ergy harvesting nodes with a generalized power consumption model,” in preparation,

2014.

Chapter 7

The final chapter concludes the dissertation and points some possible future research directions.

Other research contributions

Some of the work performed during this PhD thesis has not been included in this dissertation;

however, the results have been published in the following international conferences [13, 14]:

• M. Gregori and M. Payaró, “Multiuser communications with energy harvesting transmit-

ters,” in Proceedings of the IEEE International Conference on Communications (ICC),

2014.

• M. Payaró, M. Gregori, and D. P. Palomar, “Yet another entropy power inequality with

an application,” in International Conference on Wireless Communications and Signal

Processing (WCSP), Nov. 2011, pp. 1–5.
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Chapter 2
Background and state of the art

“Energy harvesting has grown from long-established concepts into devices for

powering ubiquitously deployed sensor networks and mobile electronics. Systems

can scavenge power from human activity or derive limited energy from ambient

heat, light, radio, or vibrations.”

Joseph A. Paradiso and Thad Starner [4].

This chapter is divided into three sections: the first section gives an overview of the struc-

ture of a WEHN and presents the key factors that influence on the design of transmission

strategies for WEHNs; whereas, the second and third sections overview the state of the art on

well-known transmission strategies for non-harvesting nodes and WEHNs, respectively.

2.1 Characteristics of wireless energy harvesting nodes

A WEHN is a battery operated device equipped with one or more energy harvesters that trans-

mits data through a wireless medium.

The basic components of a WEHN, which is depicted in Figure 2.1, are:

• Power transducer(s): Different types of energy might be present in the surroundings of

a WEHN (e.g., light, temperature or wind energy); the power transducer is the element in

charge of converting these energy sources into usable electric power. Each energy source

has associated a specific transducer and a wireless node can be equipped with different

transducers, as it is later presented in §2.1.1.

• Power storage system: The electric energy at the output of the transducer is stored in

the power storage system, typically a rechargeable battery, a supercapacitor, a solid state

battery or hybrid solutions. Then, the different circuits of the node are powered with

9
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Figure 2.1: Structure of a WEHN.

the stored energy. This architecture is known as harvest-store-use [15, 16].1 The storage

system has a finite capacity, which might degrade after several charge and discharge

cycles; additionally, the power storage system may suffer from energy leakage.

• Sensors: The WEHN might also contain sensors and actuators. Wireless sensors have

a broad class of applications like light or motion detection, environmental monitoring,

machine and process control, etc. [17, 18]. The sensed data is digitalized in an analog to

digital converter and stored in the data buffer until it is transmitted.

• Processing unit: The processing unit regulates the operation of all the functional units

of the node. Accordingly, it is the element in charge of elaborating smart energy manage-

ment and transmission policies so that the WEHN achieves the best performance given

some figure of merit [19]. Towards this goal, the processing unit must take into account,

among others, the data arrival and energy harvesting processes, the capacities of the data

buffer and energy storage systems, the communication channel and the power consump-

tion of the different components.

• Transceiver: The circuitry that allows the transmission/reception of RF signals through

the wireless medium.

As depicted in Figure 2.2, a point-to-point energy harvesting Multiple-Input Multiple-

Output (MIMO) communication system is composed of three building blocks: the energy har-

vesting transmitter, the channel, and the receiver. The transmitter aims at sending a given

message ω to the receiver in an efficient and reliable manner by exploiting the available Chan-

nel State Information (CSI), Data Arrival Information (DAI), and Energy Harvesting Infor-

mation (EHI). To do so, the transmitter encodes the message ω in a sequence of symbols

xn ∈ CnT×1, n = 1, . . . , L, that jointly compose the codeword X(ω) = [x1, . . . ,xL] of length

1There exists a different node architecture, referred in the literature as harvest-use, in which the power at the
output of the transducer is directly used to supply the circuitry of the node [15, 16]; however, in this dissertation
we focus on the harvest-store-use architecture.
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2.1. Characteristics of wireless energy harvesting nodes

Figure 2.2: Point-to-point energy harvesting MIMO communication system.

Figure 2.3: Point-to-point energy harvesting MIMO communication system with a linear trans-
mitter.

L. These symbols are sequentially transmitted through the physical channel between the trans-

mitter and the receiver, which adds impairments to the transmitted symbols. The receiver

collects the sequence of received symbols Y = [y1, . . . ,yL] with yn ∈ CnR×1 and the decoder

estimates the transmitted message given some decision rule ω̂(Y).

Due to the complexity of the encoder and decoder designs, it is practical in terms of sim-

plicity and performance to impose a linear structure to the transmitter [20,21]. This means that

the transmitter is divided in two blocks as depicted in Figure 2.3. The first block, the encoder,

generates a sequence of data symbols S(ω) = [s1, . . . , sL] with sn ∈ CnS×1 from the infor-

mation message independently of the CSI, DAI, and EHI, following the rules dictated by the

code construction theory. The second block generates the transmitted symbols through a linear

transformation of the data symbols by exploiting the available CSI, DAI, and EHI.

In this dissertation, we focus on the design of the linear transformation in the second block,

xn = Bnsn,

that allows the transmitter to achieve the best performance given some figure of merit, where

Bn ∈ CnT×nS is usually referred to as linear precoding matrix.

In some scenarios, it is practical to force a diagonal structure to the precoding matrices,

e.g., when the channel can be decomposed in a set of K parallel and independent subchannels.

Then, the linear transmitter design reduces to a power allocation problem in which the system

designer must decide the power, pkn, allocated to each data stream. Thus, we have that

xkn =
√
pknskn, k = 1, . . . , K,
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where K = nT = nR is the total number of independent data streams. In the following lines

of this chapter, we often refer to linear precoding designs; however, the reader must recall

that a power allocation problem is a particular case of a linear precoding design in which the

precoding matrix is forced to have a diagonal structure.

One of the key challenges when dealing with the design of transmission strategies for

WEHNs is that one must account for the temporal variations of the energy availability so that

the node can operate with the best possible performance, which is not easy due to the random

nature of the energy harvesting process. Among others, the following factors must be accounted

for when designing transmission strategies for WEHN:

• Available energy sources and power harvesting profile of the node.

• The communication channel.

• Offline or online transmission strategies, which as explained later refer to the available

knowledge of the CSI, DAI, and EHI.

• Sources of power consumption of the node.

• Chosen figure of merit and constraints.

These factors are thoroughly examined in the following subsections.

2.1.1 Energy sources and power harvesting profile

As presented in Figure 2.1, different types of energy can be present in the surroundings of wire-

less nodes, which can be harvested and transformed to electric power by using the appropriate

conversion technologies. The characteristics of the available energy sources certainly affect

the transmission strategy design. For example, an energy source can be either controllable or

non-controllable; and non-controllable energy sources can be further sorted in predictable or

unpredictable.

In the following lines, the characteristics of the different energy sources and the associated

transducers are presented, which are summarized in Table 2.1.

2.1.1.1 Light energy

The most commonly exploited source of energy is light energy such as solar radiation or artifi-

cial light. The energy transducer is a solar panel, which is able to generate electricity through

the photovoltaic effect; the amount of generated current is directly proportional to the light

12
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Energy source Characteristics Harvested power
Light energy [22]
Outdoor Uncontrollable (predictable) 10 mW/cm2

Indoor Uncontrollable (predictable) 10µW/cm2

Thermal energy [22]
Human Uncontrollable (predictable) 30µW/cm2

Industrial Uncontrollable (predictable) 1− 10 mW/cm2

Wind energy [23] Uncontrollable (unpredictable) 1 W at 2000 rpm
Kinetic energy [16]
Finger Motion Controllable 2.1 mW
Footfalls Uncontrollable (predictable) 5 mW
RF energy [22, 24]
GSM Uncontrollable (unpredictable) 0.01− 0.3µW/cm2 at 25− 100 m
TV Broadcasting Uncontrollable (unpredictable) 0.1µW/cm2 at 4 km

Table 2.1: Characteristics of energy sources.

intensity, the area of the solar panel, and the efficiency of the converter that is around 10%-

15% [16]. When the solar panel harvests solar energy in an outdoor environment under good

weather conditions, the net electric power is around 10 mW/cm2; whereas, in an indoor envi-

ronment, around 10µW/cm2 can be harvested [22].

Solar energy is uncontrollable since it depends on the daily weather conditions, but it

is predictable as later exposed in §2.1.1.6. Indoor light is also uncontrollable but predictable

except in some specific system setups in which it is controllable, e.g., when the system designer

controls the light source.

2.1.1.2 Thermal energy

Thermal energy can be harvested when the node is exposed to temperature gradients. For ex-

ample, when the node has direct contact with the body, it can exploit the temperature gradient

between the body and the surrounding environment [25]. Thermoelectric generators, or ther-

mogenerators, are devices that convert temperature gradients into electrical energy by using the

Seebeck effect [26]. In body applications, the temperature gradient is limited to around 15 ◦C,

which limits the total harvested power to 30µW/cm2 [22]. In opposition, higher temperature

gradients are tolerated in industrial environments and the harvested power at the output of the

thermoelectric generator is between 1 mW/cm2 and 10 mW/cm2 [22].

Thermal energy is in general uncontrollable but predictable; however, it depends on the

specific placement of the thermogenerator.

2.1.1.3 Wind energy

A wind turbine can be used to scavenge energy from air flows. For example, the Windlab Junior

turbine generates 1 W of output power when the turbine rotates at 2000 rpm [23,27]. A smaller
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Figure 2.4: Wind turbine implemented in a wireless sensor node in [28].

wind turbine that provides an output power in the range of 7.3 − 55 mW was used in [28] to

power the wireless sensor node depicted in Figure 2.4.

Wind energy is in general an uncontrollable and unpredictable energy source as fast vari-

ations in the air flow can easily occur. Nevertheless, if the airflow is generated by industrial

applications, the harvested energy might be predictable or even controllable.

2.1.1.4 Kinetic energy

Vibrations are commonly encountered in bridges, roads, commercial buildings, automobiles,

etc. Accordingly, movements or vibrations of objects are another potential source of energy for

wireless nodes. The most common transducers to harvest vibrational energy are piezoelectric

generators or electrostatic and electromagnetic converters [29–31].

The available energy might be due to uncontrollable environmental vibrations, human

active or human passive. Human active sources require the user to perform a specific power

generating motion and are generally controllable; for example, finger motion is able to produce

an output power of 2.1 mW [16]. In opposition, human passive energy refers to the energy

generated by humans in habitual gestures and movements, e.g., the heel impact in the floor

while walking generates an output power of 5 mW, which might be predictable [16].
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2.1.1.5 RF energy

Ambient RF energy, e.g., from Global System for Mobile communications (GSM), Wireless

Local Area Networks (WLANs), and TV broadcasting can be exploited to charge the battery

of WEHNs. For example, RF energy is broadly used in active and passive Radio Frequency

IDentification (RFID) technologies [32]. In [33], the authors showed that WLAN transmissions

are able to power sensor nodes.

According to the Friis transmission equation, the ratio between the received power at the

energy harvesting device and the radiated power in the power source is GtGr

(
λ

4πd

)2, where Gt

and Gr are the transmitter and receiver gains, λ is the wavelength of the signal, and d is the

distance between the power source and the energy harvesting device. Therefore, RF harvesting

is critically limited by the transmission range, d. For example, the power density at distances

from 25 m to 100 m from a GSM base station ranges from 0.01µW/cm2 to 0.3µW/cm2 [24];

whereas the power density observed 4 km away from a TV broadcasting tower is 0.1µW/cm2

[22].

RF energy is controllable in applications in which the power source is controlled by the

system designer and uncontrollable (and very difficult to predict) when energy is harvested

from spontaneous transmissions of other networks.

2.1.1.6 Power harvesting profile

Note that the definition of a WEHN, which is given at the beginning of this chapter, is generic

and includes, among others, sensor nodes, hand-held devices (e.g., a cell-phone), or even a

low-traffic base station powered with renewable energies as the one in Figure 2.5. The average

data traffic and power consumption of these devices is completely different; for example, the

power consumption of a wireless sensor is around 100µW [22], a cell-phone consumes around

1 W [22], and a low traffic base station consumes around 150 W [34]. Thus, as shown in

Table 2.1, current energy harvesting technologies seem specially suitable to power low power

electronic circuits like sensor nodes. However, energy harvesting technologies can also be used

in other applications if the energy harvesting and storage systems are dimensioned accordingly

to the energetic demand of the node.

A key aspect in the design of transmission strategies for WEHNs is having knowledge

of the power harvesting profile, i.e., the temporal evolution of the net harvested power at the

output of the different transducers, which depends on the energy density available in each trans-

ducer and on its dimensions and efficiency. Having this knowledge is straightforward when all

the energy sources are controllable, but it is a very difficult issue if some of the sources are un-

controllable. For predictable energy sources, it is feasible to implement prediction algorithms
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Figure 2.5: Base station entirely powered with solar energy, which was used in the 2010
Mobile World Congress in Barcelona [34].

that allow the node to have an estimate of the future harvested energy; unfortunately, a little

work has been done in the design of low complexity prediction algorithms that can be used in

battery operated wireless nodes.

In this context, most of the efforts have focused on measuring or modeling the power

harvesting profile of a solar harvester [15, 31, 35–43]. Within the Energy Harvesting Active

Networked Tags (EnHANTs) project, a prototype that allows the measurement of the solar and

kinetic harvested energies has been created [31, 35]; the obtained data is publicly available

in [36]. This data is used in Figure 2.6 to depict the power harvesting profile obtained with a

100 cm2 solar panel with 10% conversion efficiency during 3 consecutive days. It is observed

that the solar power harvesting profile has diurnal cycles, which can be exploited to create pre-

diction models of the future harvested energy: In [37], the environmental energy harvesting

framework was proposed to predict the harvested energy by means of an autoregressive fil-

ter, which takes into account the harvested energy in previous time instants; an exponentially

weighted moving-average filter was used in [15] to exploit the diurnal and seasonal solar cycles;

the authors of [44] proposed the weather conditioned moving average scheme; solar radiation

models for predicting the average daily and hourly global radiation were proposed in [39–41]

and references therein; finally, in [42], the authors proposed a solar (or wind) energy harvesting

prediction model that uses the weather forecast.

When one aims to design transmission strategies for WEHNs, it is practical to use a dis-

crete version of the power harvesting profile. Accordingly, the energy harvesting process is

modeled as a set of energy packets arriving to the node at different time instants and with

different amounts of energy: as depicted in Figure 2.7, the j-th energy packet arrives at time

instant ej seconds and a total of Ej Joules are harvested; and the term epoch, τj , is used to
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Figure 2.6: Solar power harvesting profile given a surface of 100 cm2 and 10% conversion
efficiency. The data is taken from [36].

Figure 2.7: Packetized model of the energy harvesting process.

denote the period of time between two consecutive arrivals.

Note that this packetized model of the energy harvesting process can be understood as a

sampling of the continuous power profile with the proper scaling factor to convert from powers

to energies; this is depicted in Figures 2.8 and 2.9. First, Figure 2.8 depicts a time sampling

of the continuous power harvesting profile in Figure 2.6 from 8 am to 1 pm of day 1 given a

sampling window of 30 minutes. Then, assuming that the harvested power remains constant

throughout the sampling window and that all the energy is collected by the end of the window

in an energy packet, Figure 2.9 depicts the amplitude and arrival times of the different energy

packets. It is important to remark that this packetized model of the energy harvesting process

is able to capture any power harvesting profile by making the sampling window sufficiently

small. Additionally, more samples can be taken in time intervals with strong variations of the

power harvesting profile (e.g., from 11 am to 1 pm in Figure 2.8).

Additionally, this packetized model is also able to capture the energy harvesting process

of nodes that have an hybrid storage system composed of a battery and a supercapacitor. Under

this particular storage system, the harvested energy is first temporarily stored in the superca-

pacitor and then, when a substantial amount of energy is stored in the supercapacitor, it is
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Figure 2.8: Sampling of the continuous power harvesting profile in Figure 2.6 from 8 am to 1
pm of day 1 given a sampling window of 30 minutes.

8 am 9 am 10 am 11 am 12 am 13 am
0

0.2

0.4

0.6

0.8

1

E
n
e
rg

y
p
a
ck

e
t
a
m
p
li
tu

d
e
(J

)

Time

Figure 2.9: Packetized model of the power harvesting profile in Figure 2.8.

transferred to the battery as an energy packet. It has been shown that the discharge capacity

and life cycle of Lithium-Ion batteries can be improved by recharging the battery in pulses [45],

which motivates the use of a hybrid storage system.

Accordingly, throughout the dissertation, the energy harvesting process is characterized

by a packetized model.

2.1.2 The communications channel

Throughout this dissertation, we have only considered memoryless channels in which the chan-

nel output probability distribution depends only on the current channel input. The following
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2.1. Characteristics of wireless energy harvesting nodes

lines present the channel models that are relevant to the following chapters.

2.1.2.1 The linear vector Gaussian channel

A linear vector Gaussian channel is such that the output of the channel, y ∈ CnR×1, is a linear

function of the input, x ∈ CnT×1, i.e.,

y = Gx + w, (2.1)

where G ∈ CnR×nT is the channel matrix and w ∈ CnR×1 is a circularly symmetric com-

plex Gaussian random variable with zero mean and covariance matrix given by Rw, w ∼
CN (0,Rw), that models the thermal noise and other undesired effects in the receiving RF

front-ends.

Many practical communication systems of interest can be modeled as a linear vector Gaus-

sian channel. For example, in a multi-antenna wireless channel, nT and nR denote the number

of antennas at the transmitter and receiver, respectively, and the element in the r-th row and

t-th column of G denotes the channel coefficient between the t-th antenna at the transmitter

and r-th antenna at the receiver. Other examples of systems that can be modeled as (2.1) are:

Digital Subscriber Line (DSL); Code Division Multiple Access (CDMA); multicarrier systems

like Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi-Tone (DMT);

etc. [20].

2.1.2.2 Parallel transmissions over Gaussian scalar channels

A particular case of special interest throughout the dissertation occurs when the channel matrix

is diagonal, i.e., G = Diag([g1, . . . , gK ]T), since then the system model can be rewritten as a

set of K parallel scalar channels:

yk = gkxk + wk, k = 1, . . . , K. (2.2)

2.1.2.3 Interfering multiuser communications

In practice, it is common to encounter scenarios where several transmitter and receiver pairs

must share the same channel. When this happens, the transmission of the different users gener-

ally interfere each other, which must be accounted for in the design of the transmission strategy

of each user.

In Chapter 6, we consider a Gaussian interference channel composed of T transmitter

and receiver pairs sharing the same band over SISO frequency-selective links composed of K
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parallel subcarriers. In this setup, the received signal at the t-th receiver and k-th subchannel is

yt(k) = gtt(k)xt(k) + wt(k)︸ ︷︷ ︸
Noise

+
∑
t′ 6=t

gt′t(k)xt′(k)︸ ︷︷ ︸
MUI

, (2.3)

where gtr(k) is the channel value between the t-th transmitter and the r-th receiver at the k-th

subcarrier; xt(k) is the transmitted symbol by user t at the k-th subcarrier; wt(k) denotes the

noise at the t-th receiver and k-th subcarrier; and the term
∑

t′ 6=t gt′t(k)xt′(k) is the MultiUser

Interference (MUI) at the t-th receiver and k-th subcarrier.

Note that, in practical communication systems, several independent channel accesses are

produced over time. Throughout this dissertation, we denote the temporal accesses with the

index n. Accordingly, we will further index the expressions in (2.1), (2.2), and (2.3) by n.

2.1.3 Offline and online transmission strategies

There exist two well established approaches for the design of transmission strategies, which

apply to both WEHNs and classical non-harvesting nodes, namely, online and offline. These

approaches differ on the available knowledge at the transmitter of random parameters that

influence transmission, e.g., CSI, DAI, and EHI.

In offline transmission strategies, the transmitter node has full knowledge (i.e., from the

past, present, and future realizations) of these random parameters.

In opposition, online transmission strategies consider that the transmitter only has causal

knowledge (i.e., from the past and present realizations) of these random parameters and maybe

some statistical information regarding its future behaviour.

The study of offline transmission strategies is of key importance due to the following

reasons.

(1.) The offline transmission strategy can be found independently of the specific choice of

energy transducers in the node since, as introduced in §2.1.1.6, the packetized model of

the energy harvesting process applies to any power harvesting profile. In opposition, on-

line transmission strategies must account for the power harvesting profiles and statistical

information of each specific energy source.

(2.) In some scenarios, it is indeed feasible to have full knowledge of these random parame-

ters. For example, when the channel is time-static, the transmitter knows the arrival time

of the data packets (e.g., a sensor that takes periodic measurements or when there is a

sufficiently long backlog of data to be transmitted), and the energy source is controllable
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or uncontrollable but predictable in the time window in which the transmission scheme is

being designed (e.g., the solar power harvesting profile can be predicted with the models

introduced in §2.1.1.6).

In other scenarios, where indeed the transmitter only has causal knowledge of these random

parameters:

(3.) The optimal offline transmission strategy gives a bound on the achievable performance

by any online strategy:

• When the transmitter is designed to maximize some utility function, then the opti-

mal offline transmission strategy gives an upper bound on the achievable utility.

• In opposition, when the design objective is the minimization of a cost function, then

the optimal offline transmission strategy gives a lower bound on the achievable cost.

(4.) In many cases, it provides analytical and intuitive solutions, which can be later used for

the design of online transmission strategies.

Therefore, the derivation of the offline transmission strategy is a good first step to gain

insight for the later design of the online transmission strategies.

2.1.4 Sources of power consumption

Traditional transmission strategies consider that the radiated power is the unique source of

energy consumption at the transmitter (as it is later presented in §2.2). This is a reasonable as-

sumption when the transmission power is large, which occurs in long-range communications,

since it dominates over other sinks of energy. However, in certain applications, the trans-

mission power might be comparable to the remaining energy sinks. For example, in energy

efficient network topologies, transmission distances may be below 10 m and the circuitry en-

ergy consumption caused by the different components of the RF chain becomes relevant, even

dominating over the radiated power [46, 47]. This often occurs to low-consumption devices

such as sensor nodes that are powered by energy harvesting.

A more realistic power consumption model is given in [47–51], where the total consumed

power is modeled as2

C1(p) =


ξ

η
p+ α if p > 0,

δ if p = 0,

(2.4)

2Different power consumption models are used through the dissertation. Accordingly, the i-th power con-
sumption model is denoted as Ci.
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where p denotes the transmission radiated power; α accounts for both the power consumption

of the digital to analog converter and for the consumption of the different components of the

radio frequency chain, which includes the mixer, the filters, and the synthesizer; ξ and η are

the power amplifier output back-off and drain efficiency, respectively [48]; and δ models the

circuitry consumption when the transmitter is silent, which is much smaller than α.

For convenience, we introduce the following equivalent formulation of (2.4):

C1(p) =
ξ

η
p+ (α− δ)H` (p) + δ, (2.5)

whereH` (x) is the left continuous unit step function defined as

H` (x) =

 1 if x > 0,

0 if x ≤ 0.
(2.6)

This model is able to capture the consumption of having the node “on”, but it is still a

clear simplification from reality because, among others, it ignores the power consumption of

transitions between the “off” and “on” states, which are associated to the startup time of the

transmitter [51].

As it is later presented in §2.2.1.3 and Chapters 5 and 6, the discontinuity of C1 at the

origin substantially complicates the design of transmission strategies with respect to (w.r.t.)

solely considering the transmission radiated power.

2.1.5 Figure of merit and constraints

There are several figures of merit or objective functions that can be investigated when designing

transmission strategies. Some examples that have been considered in the literature are:

(1.) Minimization of the Mean-Square Error (MSE) [52, 53].

(2.) Minimization of the Bit Error Rate (BER) [53].

(3.) Minimization of the total energy consumption to transmit a certain amount of information

by a given deadline [54, 55].

(4.) Maximization of the mean Signal to Interference plus Noise Ratio (SINR) [53].

(5.) Maximization of the mutual information [56–59].

(6.) Minimization of the total transmission time of a certain amount of information [60].
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In this dissertation, we focus on the figures of merit 5 and 6 leaving the remaining ones as

possible future research directions.

Given any figure of merit, the system performance is, in practice, limited by the available

resources (e.g., a finite amount of energy, bandwidth, transmission time, etc.) or by some

specific design requirements (e.g., a minimum Signal to Noise Ratio (SNR) at the receiver, a

maximum delay constraint, etc.).

In the following lines, we summarize the common limitations that appear when designing

transmission strategies for WEHNs.

• Energy Causality Constraints (ECCs): As it has been briefly introduced in the previous

chapter, the presence of energy harvesters implies a loss of optimality of the traditional

transmission policies for non-harvesting nodes because the ECCs must be taken into ac-

count, which impose that the energy cumulatively used by the node at a certain time

instant must be no greater than the energy cumulatively harvested and stored on the bat-

tery. Accordingly, the ECCs mainly depend on the battery capacity (since energy lost due

to battery overflows cannot be later used), the packetized model of the energy harvesting

process (cf. §2.1.1.6), and the considered power consumption model (cf. §2.1.4). Other

factors such as battery capacity degradation or leakages can also be considered in the

ECCs (see , e.g., [61, 62]); however, this dissertation considers an ideal storage system.

The ECCs can be imposed instantaneously or by averaging over the transmitted symbols;

nevertheless, most of the works in the literature consider the averaged ECCs since it is

commonly assumed that the dynamics of the energy harvesting process are much slower

than the symbol duration.

• Instantaneous mask constraints: The temporal and/or spectral mask constraints limit

the maximum transmitted power at a certain time instant and/or over a certain subcar-

rier. These constraints are generally imposed either by radio regulatory bodies or by the

maximum output power at the power amplifier.

• Data Causality Constraints (DCCs): This set of constraints applies when the data to

be transmitted is collected dynamically over time, which occurs, for instance, when the

node takes periodic measurements of some event(s) through the sensor(s). Similarly to

the ECCs above, the DCCs impose that the data cumulatively transmitted by the node at

a certain time instant must be no greater than the data that have cumulatively arrived to

the data buffer.

• Finite data buffer constraint: This constraint applies when the buffer to store the data

to be transmitted is finite and imposes that no data is lost due to buffer overflows.
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• QoS constraints: QoS constraints impose a given performance on the quality of the

received message. For example, it might be convenient to bound the maximum transmis-

sion delay, the maximum probability of error or the minimum SNR.

2.1.6 Linear transmitter design problem formulation

The linear transmitter design problem can be, in general, mathematically formulated as the

following optimization problem

minimize
{Bn}Nn=1

f
(
{Bn}Nn=1

)
(2.7a)

subject to gi
(
{Bn}Nn=1

)
≤ 0, i = 1, . . . ,m, (2.7b)

where N denotes the number of channel accesses in which the transmitter is being designed;

{Bn}Nn=1 is the set of precoding matrices from the channel access 1 to N , which are the opti-

mization variables; f is the objective function; and the functions gi denote a set of m inequality

constraints. These functions depend on all the factors presented above (packetized model of the

energy harvesting process, channel model, offline or online implementation, sources of power

consumption, figure of merit, practical design constraints, etc.).

Note that for compactness we have formulated the transmitter design problem as a discrete-

time linear precoding design; however, without loss of generality, it can also be formulated as

a time continuous problem or as a power allocation problem (when the precoding matrix is

forced to have a diagonal structure). In the remaining chapters of the dissertation, we deal both

with continuous and discrete-time designs.

Convex optimization theory3 dictates that if the functions f and gi are convex, then the

optimization problem in (2.7) is a convex program (or convex optimization problem) whose

optimal solution can be found by standard convex optimization techniques [63].

Unfortunately, in many transmitter designs of interest, e.g., the problems explored in Chap-

ters 3-6, the optimization problem in (2.7) is nonconvex and, accordingly, determining its so-

lution is more involved.

Depending on the structure of the problem, one may still be able to derive a globally

optimal solution to the nonconvex problem. For example, in some problems of interest, it is

possible to reformulate the problem as an equivalent convex optimization problem that can be

solved by convex optimization theory, e.g., by doing a change of variables. However, such a

reformulation does not always exist; in these situations, a common approach in the literature

3The following chapters of this dissertation make use of convex optimization theory, which is not introduced
here since it is currently well-known in the information and communication theory community; the interested
reader is referred to [63].
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is to relax some of the constraints to obtain a more tractable problem or to simply accept a

feasible solution that performs close to the optimal one.

There exist several nonconvex optimization algorithms in the literature (e.g., gradient-

based descend schemes [64], Successive Convex Approximation (SCA) algorithms [65–67],

feasible sequential quadratic programming [68], parallel variable distribution [69], etc.), which

are iterative and guarantee converge to some locally optimal solution.

When the constraints are convex, but the objective function is nonconvex, a common ap-

proach is to use gradient-based descend schemes, e.g., the Frank-Wolfe method [64], which

linearizes the objective function around the current iterate and solves the resulting convex pro-

gram to find the updated direction. In opposition, the algorithm in [66], which is based on

SCA, convexifies only the nonconvex part of the objective function, thus exploiting any possi-

ble degree of convexity in the objective function, which results in a faster convergence speed.

The algorithm in [67] generalizes the work in [66] to deal also with nonconvex constraints.

Throughout this dissertation, we explore different alternatives to deal with nonconvex

transmitter design problems.

The following section presents the relevant state of the art of known transmission strategies

for non-harvesting nodes.

2.2 State of the art on transmission strategies

for non-harvesting nodes

2.2.1 Maximization of the mutual information

Channel capacity was originally derived by Shannon for single-user time invariant channels

as the maximum mutual information between the channel input and output. Equivalently, the

channel capacity is the maximum data transmission rate such that the probability of error can

be made arbitrarily small by using a sufficiently long transmission block [70].

When the channel is time-varying, several definitions of channel capacity apply depending

on the available CSI, e.g., the instantaneous capacity, the ergodic capacity or outage capacity

(see the tutorial in [71] for more details). This dissertation considers the idealistic situation in

which both the transmitter and receiver know perfectly and instantaneously the channel matrix,

which happens when the channel is static or when the channel coherence time is much larger

than the symbol duration so that it is constant for a sufficient number of transmissions. In such

scenario, the channel can be considered as time invariant.
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2.2.1.1 Classical Water-Filling (CWF)

The instantaneous capacity of the linear vector Gaussian channel in (2.1), i.e., y = Gx + w, is

obtained by using a Gaussian code with transmission covariance matrix Q, x ∼ CN (0,Q), as

maximize
Q

I(x; y) (2.8a)

subject to Tr(Q) ≤ P̄ , (2.8b)

where I(x; y) , log det(InR + R−1
w GQGH) is the mutual information [56] and the constraint

in (2.8b) imposes a limitation on the average transmit power.

As shown by Telatar in [56], capacity can be achieved by diagonalizing the whitened

channel matrix, which has the following Gram matrix RG = GHR−1
w G that can be equivalently

written in terms of its eigenvalue decomposition as RG = URGDRGUH
RG

, where URG contains

the eigenvectors of RG and DRG contains the associated eigenvalues hk, k = 1, . . . , K, i.e.,

DRG = Diag([h1, . . . , hK ]T), where K = nT . Accordingly, the channel is diagonalized when

the transmit covariance matrix has the following structure

Q = URGDQUH
RG
,

where DQ = Diag([p1, . . . , pK ]T).

As a result of diagonalizing the channel, the original linear vector channel is equivalent to

a set of K parallel scalar channels whose capacity is obtained by solving the following power

allocation problem:

maximize
{pk}Kk=1

K∑
k=1

log(1 + hkpk) (2.9a)

subject to
K∑
k=1

pk ≤ P̄ , (2.9b)

where it has been used that the capacity of a scalar Additive White Gaussian Noise (AWGN)

channel is log(1 + hkpk) [72]. Since the objective function is concave and the constraint

is affine, (2.9) is a convex optimization problem and can be easily solved by means of the

Karush–Kuhn–Tucker (KKT) optimality conditions [63] from where the CWF power alloca-

tion is obtained as

p?k =

[
W − 1

hk

]+

, (2.10)

where hk is the channel gain of the k-th parallel stream andW is the water level that is obtained

by imposing that the power constraint must be satisfied with equality,
∑K

k=1 p
?
k = P̄ .
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Figure 2.10: Graphical representation of CWF. In this specific representation, no power is
assigned to the subchannels 4, 5, and 6.

The CWF solution accepts an intuitive graphical representation that is depicted in Figure

2.10 and proceeds as follows:

(1.) Each parallel channel is represented with a unit-base water-porous vessel.

(2.) Each vessel is filled with a solid substance up to a height equal to h−1
k .

(3.) A volume of water equal to P̄ is poured through the vessels.

(4.) Finally, the optimal power allocation in each parallel channel is the height of water in

each vessel.

From the graphical representation, it is clear that higher power is assigned to the parallel chan-

nels (or eigenmodes) with higher channel gains. Additionally, zero power is assigned to those

subchannels in which the water level does not reach the height 1
hk

.

2.2.1.2 Mercury/Water-Filling (HgWF)

To derive the CWF solution in (2.10), the distribution of the input symbols is chosen to be

Gaussian because it is the one that provides the highest mutual information [72]. Unfortunately,

current technology cannot cope with Gaussian codes and finite constellations are used instead,

e.g.,M-PAM andM-QAM, whereM denotes the alphabet cardinality.

In the low SNR regime, the capacity achieved with finite constellations is very close to

the one achieved with Gaussian signaling. However, the mutual information asymptotically

saturates when the SNR increases as no more than log2M bit per channel use can be sent (see

Figure 1 in [73]). Accordingly, in practical setups, the CWF solution in (2.10) is a theoretical

limit that might be far from the real one [73].
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This must be taken into account in the design of the optimal power allocation when the

input symbols are constrained to belong to a finite alphabet. In opposition to the Gaussian case,

where the better the channel gain, the higher the allocated power, when arbitrary constellations

are used, the relation between the allocated power and the channel gain depends on the alphabet

cardinality.

In [57], the authors derived the power allocation that maximizes the mutual information

of a set of parallel channels, when the distribution of the input symbols is fixed and given. To

do so, the authors of [57] used the relation between the mutual information and the Minimum

Mean-Square Error (MMSE), which was revealed in [74] and further generalized in [75], as

summarized in the following lines.

In [74], Guo et al. revealed that the derivative of the mutual information w.r.t. the SNR for

a real-valued scalar Gaussian channel is proportional to the MMSE, i.e.,

d
dh
I(x;
√
hx+ w) =

1

2
mmse(h), (2.11)

where x is the channel input, w is the observed noise with w ∼ N (0, 1) and mmse(h) =

E {(x− x̂)2}, where x̂ = E {x|
√
hx+ w} is the conditional mean estimator.

The mutual information in linear vector Gaussian channels was further characterized in

[75], where its partial derivatives w.r.t. arbitrary system parameters were determined, e.g., the

gradient w.r.t. the channel matrix, G, was found to be

∇GI(x; Gx + w) = GE, (2.12)

where E = E {(x− x̂)(x− x̂)H} is the MMSE matrix, and x̂ = E {x|Gx + w}.

Thanks to the relationship in (2.11), the power allocation that maximizes the mutual infor-

mation over a set of parallel channels (each of them denoted by a different index k) with finite

alphabet inputs was derived in [57] and named Mercury/Water-Filling (HgWF), i.e.,

p?k =

[
W − 1

hk
Gk

(
1

Whk

)]+

, (2.13)

where Gk(ψ) is the mercury factor that depends on the input distribution and is defined as

Gk(ψ) =


1
ψ
−mmse−1

k (ψ) if ψ ∈ [0, 1],

1 if ψ ≥ 1,
(2.14)

and mmse−1
k (ψ) is the inverse MMSE function, which returns the required SNR to achieve a

certain MMSE ψ and depends on the input distribution. This result showed that the optimal
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power allocation not only depends on the channel gain as in the Gaussian signaling case but

also on the shape and size of the input constellation.

In particular, when the input symbols are drawn from a Gaussian distribution, x ∼ N (0, 1),

then the MMSE function and the inverse MMSE function are

mmse(h) =
1

1 + h
(2.15)

and

mmse−1(ψ) =
1− ψ
ψ

, (2.16)

respectively. With this, it follows that Gk(ψ) = 1,∀ψ, from where it is easy to check that the

CWF solution in (2.10) is recovered after particularizing the HgWF in (2.13) for a Gaussian

input distribution.

Interestingly, the HgWF solution also accepts a graphical representation that is depicted

in Figure 2.11 and summarized in the following lines:

(1.) Each parallel channel is represented with a unit-base water-porous mercury-nonporous

vessel.

(2.) Then, each vessel is filled with a solid substance up to a height equal to h−1
k .

(3.) Given the optimal water level W , pour mercury in each vessel until the mercury level

(i.e., the height of the mercury from the ground level) is 1
hk
Gk

(
1

Whk

)
.

(4.) Pour a volume of water equal to P̄ (note that the resulting water level must be W ).

(5.) Finally, the optimal power allocation in each parallel channel is found as the difference

between the water and mercury levels.

Note that both the CWF (2.10) and theHgWF (2.13) are parametric solutions that depend

on the water level W . In opposition to CWF, where the value of the optimal water level W

is obtained directly from the graphical interpretation, in the HgWF solution the optimal water

level W must be numerically computed in advance for the graphical interpretation to apply.

In Chapter 4, we generalize the HgWF solution to include energy harvesting at the trans-

mitter and propose a graphical interpretation that does not require previous knowledge of the

optimal water level.

It is important to remark that the HgWF presented above only applies when the chan-

nel and linear precoder matrices are diagonal. When general channel and precoder matrices

are considered, finding the precoder that maximizes the mutual information is indeed quite
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Figure 2.11: Graphical representation of HgWF. In this representation, different modulation
orders are used in the different streams, where the modulation order increases with the sub-
channel index k. In the subchannels 1− 3, it is observed that, under the same channel gain, the
mercury level decreases with an increase of the modulation order and, as a result, more power
is allocated to the streams with a denser constellation. Additionally, the power allocated to the
fourth subchannel is greater than the power of the first subchannel in spite of having a worse
channel gain.

involved as the resulting problem is nonconvex [58, 76–78]; this is argued in more detail in

Chapter 4.

2.2.1.3 Glue pouring

Both CWF and HgWF consider that the transmission radiated power is the unique source of

energy consumption at the transmitter. As it has been argued in §2.1.4, this is a reasonable as-

sumption for long-range communications, but it no longer holds for short-range transmissions.

In [50] and [51], the authors analyzed how CWF is modified when the circuitry consump-

tion is taken into account. In particular, the authors considered the scalar AWGN channel,

y = x+ w,

with Gaussian signaling4. Youssef-Massaad et al. showed that, due to the circuitry power

consumption, it is preferable to transmit data during a fraction θ of the total available time.

4Verdú showed in [79] that pulse position modulation is optimal by transmitting arbitrarily high peaks whose
position is used to carry information. This scheme has some inconveniences, e.g., the need of having the receiver
“on” for the whole time; or the fact that, in practice, the instantaneous transmit power is limited by mask con-
straints due to the dynamic margin of the power amplifier. Accordingly, this justifies the interest of fixing the input
distribution to be Gaussian [51].
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Accordingly, the maximum mutual information is obtained as

maximize
θ∈[0,1],p≥0

θ log(1 + p) (2.17a)

subject to θ(p+ α) ≤ P̄ . (2.17b)

Note that the average power constraint in (2.17b) uses the power consumption model in (2.4)

where, without loss of generality, the authors considered ξ
η

= 1 and δ = 0.

The optimal solution to (2.17) is

θ? = min

{
1,

P̄W0(e−1(α− 1))

(α− 1)(W0(e−1(α− 1)) + 1)

}
, (2.18a)

and

p? =
α− 1

W0(α−1
e

)
− 1, (2.18b)

where W0(·) is the upper branch of the Lambert function [80]. Accordingly, it is shown that

depending on the values of the power constraint P̄ and the circuitry power consumption α, it is

preferable to transmit information just during a fraction of the total available time and turn off

the device during the remaining time. The authors named this solution as glue pouring because

water is “glued” and does not occupy all the available degrees of freedom (in opposition to

CWF where water spreads occupying all the available channel dimensions) [50].

In Chapter 5, we extend the glue pouring solution in (2.18) to cope with parallel streams at

each channel access, which may have different fading levels. Additionally, we consider that the

transmitter is equipped with energy harvesters. Moreover, in Chapter 6, we further generalize

the power consumption model to include other sinks of energy consumption such as the startup

power consumption entailed by off-on transitions of the transceiver.

2.2.2 Energy consumption minimization

The power allocation strategies derived in the previous section consider that the transmitter has

an infinite amount of data to be transmitted at any given time instant. In certain applications,

this does not hold since the data packets to be transmitted are acquired over time, e.g., when a

sensor takes periodic measures of some process.

Consider a transmitter that collects a total of D data packets, where the i-th data packet

arrives at the time instants di ≥ 0 seconds containing Di > 0 bits with i = 1, . . . ,D, and let T

denote the deadline constraint for the transmission of the
∑D

i=1 Di bits of information.

In this setup, the authors of [54] derived the transmission strategy that minimizes the

energy consumption of the node under the DCC (cf. §2.1.5). The authors exploited the fact
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that energy consumption can be reduced by decreasing the transmission power or, equivalently,

the rate (since for most coding and modulation schemes the achievable rate increases with the

transmission power). In subsequent works, their problem was extended for different scenarios:

In [81] variable length packets were considered, while [82] considered a fading channel.

The authors of [55, 83] analyzed the same problem under a different point of view, i.e.,

by defining the concept of cumulative curves, which allows the derivation of a graphical and

intuitive solution that is presented next. Apart from the deadline constraint T and the DCC,

Zafer and Modiano considered that the node has to satisfy some QoS constraint on the delivery

of the data bits. To do so, the authors defined the following cumulative curves:

Definition 2.1 (Data Departure Curve). A data departure curve D(t) ≥ 0, t ≥ 0, is the total

number of bits that have been cumulatively transmitted by the node in the time interval [0, t].

Definition 2.2 (Accumulated Data). The accumulated data DA(t) is the sum of data that has

arrived at the node during the time interval [0, t), i.e., DA(t) =
∑D

i=1DiH` (t− di).

Definition 2.3 (Minimum Data Departure). The minimum data departure, DQoS(t), is the

smallest amount of data that the node must have cumulatively transmitted at time t such that

the QoS constraint is satisfied.

Different QoS constraints can be considered by mapping the constraint into an appropriate

minimum data departure curve. Let us briefly describe two examples, introduced in [55], of

how to map a certain QoS constraint to the minimum data departure curve:

• Deadline constraint: This constraint considers that the maximum permissible delay for

the transmission of a certain data packet, Dk, is θk seconds. Then, DQoS(t) is a piecewise

constant function that changes at instants qk = dk + θk with an increment of Dk. As a

specific case, we can consider that the allowed delay for all the packets is the same, i.e.,

θk = θ, ∀k. Then, the minimum data departure is given by DQoS(t) = DA(t− θ).

• Finite data buffer constraint (cf. §2.1.5): Consider that the transmitter has a limited data

queue of size Dmax. Then, in order not to lose any incoming data, the minimum data

departure must be DQoS(t) = [DA(t)−Dmax]+.

Accordingly, the energy minimization problem is to obtain the data departure curve with

the least energy expenditure that satisfies the DCC, D(t) ≤ DA(t), and the QoS constraint,

DQoS(t) ≤ D(t):

minimize
D(t)

∫ T

0

g

(
dD(t)

dt

)
dt (2.19a)

subject to DQoS(t) ≤ D(t) ≤ DA(t), t ∈ [0, T ], (2.19b)
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Figure 2.12: Graphical representation of the problem in (2.19). The optimal data departure
curve is the tightest string tied at the origin and at (T,DA(T )).

where dD(t)
dt is the instantaneous transmission rate, which is the time derivative of the data

departure curve, D(t); g(·) is a time-invariant, strictly increasing, convex power-rate function;

accordingly, g(dD(t)
dt ) is the instantaneous power consumption and its integral in [0, T ] returns

the total energy consumption. This problem is depicted in Figure 2.12 for the finite data buffer

constraint. Note that a feasible data departure curve must lie within the blank region ∀t. Zafer

and Modiano showed that independently of the specific power-rate function (as long as it is

time-invariant, strictly increasing, and convex), the optimal data departure curve, D?(t), is

the one with the shortest length among all the feasible curves, which can be visualized as the

tightest string tied at the origin and at (T,DA(T )) when the constraints are hard boundaries.

2.3 State of the art on transmission strategies for WEHNs

When the transmitter has energy harvesting capabilities, all the strategies presented above are

no longer valid because the ECCs must be taken into account in the design (cf. §2.1.5).

During the last years, several works have explored transmission strategies for energy har-

vesting nodes as summarized in the following lines.

2.3.1 Directional Water-Filling (DWF)

Given Gaussian distributed input symbols, the power allocation strategy that maximizes the

mutual information of a WEHN operating in a point-to-point link duringN consecutive channel
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Figure 2.13: Temporal representation of the energy arrivals along channel accesses.

accesses of duration Ts is obtained as the solution to

maximize
{pn}Nn=1

N∑
n=1

log (1 + hnpn) (2.20a)

subject to Ts
∑̀
j=1

∑
n∈τj

pn ≤
∑̀
j=1

Ej, ` = 1, . . . , J, (2.20b)

where the ECCs in (2.20b) assume that the energy packet arrival times are aligned at the be-

ginning of a channel use5 (see Figure 2.13) and impose that the total energy consumed by the

end of the `-th epoch is no greater than the total energy harvested at the beginning of the `-th

epoch.

The optimal power allocation of the problem in (2.20), which is named DWF and was

initially derived in [84] for a time continuous channel, is

p?n =

[
Wj −

1

hn

]+

, n ∈ τj, (2.21)

where n is the channel use index, and Wj is the water level of the j-th epoch, which can be

found by means of the KKT optimality conditions [63]. The main difference between DWF

(2.21) and CWF (2.10) is that in the former the water level is allowed to change across the

different epochs according to the node energy availability.

The DWF solution also accepts a graphical representation, which is shown in Figure 2.14:

(1.) Each channel access is represented with a water-porous vessel with base equal to Ts.6

(2.) Each vessel is filled by a solid substance up to a height equal to h−1
n .

(3.) A water right-permeable material is used to separate the different epochs.

5If an energy packet arrives in the middle of a channel access, one can always assume that the packet becomes
available for the transmitter at the beginning of the following channel access since the transmission strategy can
only be changed in a channel access basis.

6The vessel boundaries are not depicted in Figure 2.14 for the sake of simplicity.
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Figure 2.14: Graphical representation of the DWF. The figure represents the optimal power
allocation when E1 > E2 = E3. It is observed that some water flows from the first epoch to
the second one.

(4.) Given that water volume represents energy and water height corresponds to power, the

water level is progressively increased to all epochs at the same time by adding the nec-

essary amount of water to each epoch. The maximum amount of water that can be exter-

nally added at some epoch is given by the epoch’s harvested energy (depicted with the

top-down arrows in Figure 2.14). When some epoch runs out of water, it uses water that

flows from previous epochs (if any is available) in order to continue increasing the water

level simultaneously.

(5.) When all the available water has been poured, the optimal power allocation is found as

the height of the water in each vessel, i.e., p?n = [Wj − h−1
n ]+.

2.3.2 Other transmission strategies for WEHNs

Apart from the DWF [84], several works have recently considered the design of transmission

strategies for WEHNs both for point-to-point links and multiuser scenarios. In the following

lines, we briefly summarize some of these works:

Point-to-point links

In [85], the authors derived online and offline optimal policies by using dynamic program-

ming and convex optimization techniques. The authors of [86] studied the coding problem from
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an information theoretic perspective. The transmission policy that maximizes the throughput

in a finite horizon for a finite battery capacity was derived in [87] assuming an infinite backlog

of data at the transmitter. In [88], different resource allocation strategies were evaluated and

compared by using real energy traces, which were collected in [35]. A learning theoretic ap-

proach was taken in [89], where data and energy arrivals were modeled as finite-state Markov

processes. Markov models were used in [90] to model the battery state of the node. Finally, the

stability and delay of the data queue were considered in [91] to derive the optimal transmission

policies.

The concept of cumulative curves, cf. §2.2.2, has been broadly used to derive optimal

transmission strategies for WEHNs. In this context, the authors of [92] considered dynamic

data packet arrivals and found the transmission strategy that minimizes the delivery time of all

data packets under the assumption of having infinite battery capacity. In [87], a node with finite

battery capacity was studied; however, it was considered that all the data packets are available

from the beginning of the transmission.

The works mentioned above consider that the transmission radiated power is the only en-

ergy sink of the node. In opposition, the works in [49, 93] derived optimal power allocation

strategies by using the power consumption model C1 in (2.5) for a time-static and fading con-

tinuous channel, respectively.

Multiuser communication systems

Several works have explored multiuser scenarios:

• Broadcast channel: The minimization of the transmission completion time for a WEHN

operating in a broadcast link was considered in [94–97]. References [94] and [95] as-

sumed infinite battery capacity, whereas, the authors of [96,97] found the rate scheduling

policy of the finite battery capacity case.

• Multiple access channel: The capacity region of a Gaussian multiple access channel

was considered in [98]. Under an offline approach, [99] proposed the power allocation

strategy that minimizes the transmission completion time. The stability of the packet

queues was studied in [100]. The authors of [101] proposed an online algorithm to max-

imize the long-term average channel throughput. Low-complexity scheduling policies to

maximize the sum throughput were derived in [102] without the knowledge of the power

harvesting profile.

• Relay and multi-hop channels: Two-hop communications were considered in [103–

109]. The optimal offline transmission scheme was proposed in [103] for the full-duplex
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tow-hop relay channel. The optimal offline energy management policies for the source

and the relay that maximize the end-to-end throughput were studied in [104] by allowing

energy cooperation between the source and the relay. The authors of [109] proposed the

power allocation strategy that maximizes the system throughput over a finite number of

transmission time slots under conventional decode-and-forward relay (the relay retrans-

mits the signal in the consecutive time slots) and under the buffer-aided link adaptive

relaying (where the relay can retransmit the signal in any of the consecutive time slots).

The relay channel (with direct link between transmitter and destination) was studied

in [110–112].

• Cooperative transmissions: The authors of [45, 113] considered multiple energy har-

vesting sensors that transmit a shared common message to a distant base station and

studied the power allocation strategy in the different nodes that maximizes the total data

throughput.

• Interference channel: The power allocation that maximizes the sum throughput with

a given deadline for the two-user Gaussian interference channel with energy harvesting

transmitters was investigated in [114]. The two-user Gaussian interference channel was

studied in [115] by considering the cost of having the transmitter “on”, i.e., by using the

power consumption model C1 in (2.5).

In the following chapter, we have generalized the concept of cumulative curves introduced

by Zafer and Modiano in [83] to deal with energy harvesting at the transmitter, which has

allowed us to derive the scheduling strategy that minimizes the transmission completion time

while satisfying DCCs, ECCs, finite battery capacity constraint, and QoS constraints.
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Chapter 3
Transmission completion time minimization

for a WEHN

3.1 Introduction

This chapter considers a WEHN that acquires some data measurements over time, e.g., a sensor

that eventually or periodically senses a given process like temperature, humidity, etc. Each

measurement is digitalized in a sequence of bits that conform a data packet, which is stored in

the data buffer until it is transmitted. In practice, the data and energy buffers can only store

a finite amount of data and energy, respectively. In this context, this chapter investigates the

transmission strategy that minimizes the transmission completion time of a finite amount of

incoming data packets (the time by which all the data packets are transmitted), which arrive

dynamically over time as generally occurs in wireless sensor nodes.

As it is presented throughout this chapter, the transmission completion time minimization

problem for WEHNs is closely related to the energy minimization problem for non-harvesting

nodes. In particular, the concept of cumulative curves, which has been presented in §2.2.2, is a

useful tool to derive optimal transmission strategies for WEHNs.

As it has been presented in the previous chapter, given that energy harvesters are used to

power the transmitter(s), the minimization of the transmission completion time was consid-

ered in [84, 87, 92] for a point-to-point link and in [94, 96, 99] for multiuser scenarios, as it is

explained in more detail in the following lines.

The authors of [92] considered dynamic data packet arrivals and found the transmission

strategy that minimizes the transmission completion time by assuming an infinite battery ca-

pacity.

The optimal transmission policy for a finite battery capacity node was derived in [87] for
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Figure 3.1: System model.

a time-static channel and in [84] for a time-varying channel. Both of these works assume that

the bits to be transmitted are available from the beginning, which significantly simplifies the

setup as losing energy due to battery overflows is clearly suboptimal because there is always

data to be transmitted.

Again assuming that all the data bits are available from the beginning of the transmission,

the optimal transmission strategy was derived in [99] for a two-user multiple access communi-

cation system, and in [94, 96] for an AWGN broadcast channel.

None of these works jointly considered dynamic data arrivals and a finite battery capacity

at the transmitter because, then, there exists an inherent coupling between the data and energy

domains, which substantially complicates the problem. In this context, this chapter bridges this

gap by determining the transmission strategy that minimizes the transmission completion time

of a WEHN with finite battery capacity and dynamical data and energy arrivals that additionally

has to satisfy some generic QoS constraints (see Figure 3.1). These generic QoS constraints

have the form introduced in §2.2.2 and are able to impose, among others, a finite size of the

data buffer or a maximum delay on the delivery of the data packets.

The main contributions of this chapter are:

• Proposing a framework to map the constraints of the energy domain to the data domain

that allows us to adapt the calculus approach proposed in [55] (cf. §2.2.2), which did not

take into account energy harvesting at the transmitter, to the energy harvesting scenario.

• Studying the impact of the QoS constraint in the transmission strategy that minimizes

the transmission completion time, which, to the best of our knowledge, had not been

previously studied in the literature by the time of this research.

• Showing that, due to the QoS constraints, there may be situations in which no feasible

transmission strategy exists. Such situations are analytically characterized in Lemma 3.4.
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• Showing that, if a feasible transmission strategy exists, the optimal cumulative data de-

parture curve is a piecewise linear function where battery overflows are only produced

when the data buffer is empty.

• Developing an algorithm that either computes the optimal transmission strategy or con-

cludes that there is no feasible solution and analytically showing its optimality.

The remaining of the chapter is structured as follows. In §3.2, the problem is mathemat-

ically formulated by using the concept of cumulative curves, which is introduced in [55], that

allows an appealing visualization of the solution. The solution is characterized in §3.3. §3.4

presents the developed iterative algorithm that is able to compute the optimal solution, which

is numerically evaluated in §3.5. Finally, §3.6 concludes the chapter.

3.2 Problem formulation

We consider a node with a finite battery capacity, Cmax, that has to transmit D data packets

by using at the most the J energy packets that it harvests over time while satisfying some QoS

requirements (see Figure 3.1). We want to find the power allocation/rate scheduling strategy1

that minimizes the transmission completion time, T .

We assume that the time instants at which the data and energy packets arrive to the node

and their size (bits or Joules) are known from beforehand; accordingly, we focus on the offline

problem (cf. §2.1.3). Hence, it is known that at the time instant di ≥ 0 seconds the i-th data

packet arrives containingDi bits, with i = 1, . . . ,D. Similarly, the j-th energy packet arrives at

the instant ej ≥ 0 seconds and a total of Ej Joules are harvested, with j = 1, . . . , J (see Figure

3.2). Without loss of generality, the first energy arrival is produced at e1 = 0 and contains the

initial battery of the node E1.

To describe our model we present the following definitions, which are based on the concept

of cumulative curves introduced in §2.2.2, that are summarized in Table 3.1.

Definition 3.1 (Data Departure Curve). A data departure curve D(t) ≥ 0, t ≥ 0, is the total

number of bits that have been cumulatively transmitted by the node in the time interval [0, t].

Definition 3.2 (Energy Expenditure Curve). An energy expenditure curve E(t) ≥ 0, t ≥ 0, is

the energy in Joules that has been cumulatively consumed by the node in the time interval [0, t].

Let us consider a static channel with a power-rate function denoted by g(·), i.e., the func-

tion that, at any given time instant t, relates the transmitted power, p(t), with the rate, r(t),
1Observe that fixing the transmission power or the rate is equivalent as it will be shown next.
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Figure 3.2: Summary of the different events considered in the time domain, namely, energy
arrivals, data arrivals, and quality of service requirements. The figure represents the deadline
QoS constraint, where θ is the maximum allowed delay for all the packets.

Definition General notation Notation at the m-th algorithm iteration
Instantaneous power p(t)
Instantaneous rate r(t)
Power-rate function g(·)
Transmission completion time T T (m) = T − im
Data departure curve D(t) D(m)(t) = D(t+ im)−D?(im)

Optimal data departure curve D?(t) D?(m)

(t) = D?(t+ im)−D?(im)

Accumulated Data DA(t) D
(m)
A (t) = DA(t+ im)−D?(im)

Minimum Data Departure DQoS(t) D
(m)
QoS(t) = {DQoS(t+ im)−D?(im)}+

Energy expenditure curve E(t) E(m)(t) = E(t+ im)− E?(im)

Optimal energy expenditure curve E?(t) E?
(m)

(t) = E?(t+ im)− E?(im)

Accumulated Battery BA(t; tx) B
(m)
A (t) = BA(t+ im; im)− E?(im)

Minimum Energy Expenditure Emin(t; tx) E
(m)
min(t) = {Emin(t+ im; im)− E?(im)}+

Actual mapping of BA(t; im) to data domain D̄
(m)
BA

(t)

Effective mapping of BA(t; im) to data domain D
(m)
BA

(t)

Effective mapping of Emin(t; im) to data domain D
(m)
Emin

(t)

Equivalent upper bound on the data domain D
(m)
max(t) = min{D(m)

A (t), D
(m)
BA

(t)}
Equivalent lower bound on the data domain D

(m)
min(t) = max{D(m)

QoS(t), D
(m)
Emin

(t)}
Discontinuities of the upper bound Z(m)

max = {t |D(m)
max(t−) 6= D

(m)
max(t+)}

Discontinuities of the lower bound Z(m)
min = {t |D(m)

min(t−) 6= D
(m)
min(t+)}

m-th pool rate rm
m-th pool length `m
Beginning m-th pool im

Data arrival time di d
(m)
i = di − im

Amount of data in the packet Di
D

(m)
0 = DA(im)−D?(im)

D
(m)
i is a relabeling of Di for di > im

Energy arrival time ej e
(m)
j = ej − im

Amount of energy in the packet Ej
E

(m)
1 = BA(im; im)− E?(im)

E
(m)
j is a relabeling of Ej for ej > im

QoS requirement arrival time qk q
(m)
k = qk − im

Amount of data in the QoS requirement Qk
Q

(m)
0 = 0

Q
(m)
k is a relabeling of Qk for qk > im

Table 3.1: Summary of the chapter’s notation.
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according to p(t) = g(r(t)). As in [55] and [92], we make the common assumption that the

function g(·) is time-invariant, convex, strictly increasing, and g(0) = 0. Note that the instan-

taneous rate, r(t), can be expressed as the derivative w.r.t. t of the data departure curve, i.e.,

r(t) = dD(t)
dt . Similarly, the transmitted power is p(t) = dE(t)

dt . Then, the energy expenditure

curve can be obtained from the data departure curve as follows2:

E(D(t)) =

∫ t

0

g

(
dD(τ)

dτ

)
dτ. (3.1)

Observe that the magnitudesD(t), E(t), r(t), and p(t) are unambiguously related by (3.1)

and g(·). Therefore, given the initial states E(0) = 0 and D(0) = 0, the design of the system

to be optimized can be described by any of these magnitudes.

Definition 3.3 (Battery). The battery of the node, B(t), is the amount of energy that the node

has available at a given time instant t. We consider a battery with finite capacity Cmax. Thus,

B(t) must satisfy that 0 ≤ B(t) ≤ Cmax, ∀t ≥ 0.

Due to the limited battery capacity, at the j-th energy arrival, some part of the harvested

energy Ej may be lost. This lost energy is denoted as the j-th battery overflow, i.e., Oj =

[Ej−Cmax+B(e−j )]+. Observe that battery overflows depend on the chosen energy expenditure

curve E(t) and guarantee that the battery level will never be above the battery capacity, i.e.,

B(e+
j ) = B(e−j ) + Ej −Oj ≤ Cmax.

As battery overflows depend on the chosen E(t), their value Oj cannot be computed until

the energy expenditure curve E(t) is fixed ∀t ≤ ej . Loosely speaking, one can expect that

the optimal solution uses efficiently the harvested energy to transmit the available data and, at

the same time, tends to minimize the total overflow of the battery and, thus, maximizes the

accumulated energy stored in the battery. In other words, if overflows are minimized, the node

will be able to use more energy, as, otherwise, the energy of the overflows is lost.

In the following lines, we define the accumulated battery, a concept introduced in this

work that allows us to characterize the optimal solution when having finite battery capacity

constraint. Let tx denote the last time instant up to which D(t) (or, equivalently, E(t)) is

known.

Definition 3.4 (Accumulated Battery). The accumulated battery BA(t; tx) is a real measure

of the accumulated energy stored in the battery for t ∈ [0, tx) and it is the maximum possible

accumulated energy in the battery for t ∈ [tx,∞) (assuming that no overflows are produced

2Without loss of generality, we can assume that r(t) is right-continuous.
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for t ∈ (tx,∞)), i.e., BA(t; tx) =
∑J

j=1

(
−OjH` (tx − ej) + Ej

)
H` (t− ej), where H` (·)

denotes the left continuous unit step function in (2.6).

Observe that, for t ∈ [0, tx), BA(t; tx), represents the real measure of the energy accu-

mulated in the battery during (0, t), because, for these time instants, overflows are known and

taken into account. Alternatively, for t ∈ (tx,∞), battery overflows are unknown after tx and

BA(t; tx) models the best case scenario where the node is able to store in the battery all the

harvested energy in the interval (tx,∞). Moreover, observe that BA(t; tx) = BA(t; ty) for any

tx, ty ≥ t.

At every time instant, the energy stored in the battery is B(t) = BA(t; t)−E(t). Note that

BA(t; t) takes into account the actual net incoming energy in the battery, whereas, E(t) is the

net outgoing energy. Thus, their difference results in the energy stored in the battery.

Definition 3.5 (Minimum Energy Expenditure). The minimum energy expenditure, Emin(t; tx),

is the smallest amount of energy that the node must have cumulatively spent at time t > tx

such that no overflow of the battery is produced in the interval (tx, t], i.e., Emin(t; tx) =[∑J
j=1 (−OjHr(tx − ej) + Ej)Hr(t− ej)− Cmax

]+

, where Hr(·) denotes the right contin-

uous unit step function.

Note thatEmin(t; tx) andBA(t; tx) are right continuous and left continuous w.r.t. t, respec-

tively. Indeed in the points in which both functions are continuous, we have that Emin(t; tx) =

[BA(t; tx)− Cmax]+ ,∀t 6= ej, j = 1, . . . , J.

Definition 3.6 (Accumulated Data). The accumulated data DA(t) is the sum of data that has

arrived at the node during the time interval [0, t), i.e., DA(t) =
∑D

i=1 DiH` (t− di).

Different QoS constraints can be considered by mapping the constraint into an appropriate

minimum data departure curve, which was introduced in [55], and is defined as follows:

Definition 3.7 (Minimum Data Departure). The minimum data departure, DQoS(t), is the

smallest amount of data that the node must have cumulatively transmitted at time t such that

the QoS constraint is satisfied.

The rest of the chapter considers a generalDQoS(t) that is a non-negative staircase function

where changes are produced at time instants qk with increments of Qk bits for k = 1, . . . ,Q,

i.e., DQoS(t) =
∑Q

k=1QkHr(t − qk). From now on, the instants qk are called quality require-

ment events. Thus, three kind of events are considered, namely, data arrival, energy arrival, and

quality requirement events, as summarized in Figure 3.2. As it has been presented in §2.2.2, the
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3.2. Problem formulation

minimum data departure curve allows to impose, among others, the following constraints: (i)

no data can be lost due to overflows of the data buffer; and (ii) a maximum permissible delay

for the transmission of a certain data packet.

Observe that depending on the chosen QoS constraint, it is likely that the instants qk are

equal to di for some values of k and i, e.g., for the finite data buffer constraint (cf. §2.2.2).

Hence, we consider that two different types of events can be produced simultaneously at the

same time instant.

Our goal is to find the data departure curve, D(t), that minimizes the transmission com-

pletion time T of the D data packets, i.e., D(T ) =
∑D

i=1Di, while satisfying the following

conditions: (i) ECC: energy must be harvested before it is used by the node or, which is the

same, the battery level in the node must be greater or equal than zero. (ii) DCC: it is not

possible to transmit more bits than the ones that have arrived to the node. (iii) QoS constraint:

at time t, a minimum amount of data DQoS(t) has to be transmitted in order to preserve the

link quality of service. Moreover, given two data departure curves with the same completion

time, the one that requires less energy is always preferred. From all that has been said above,

the problem can be expressed as follows:

minimize
D(t)

T (3.2)

subject to E(t) ≤ BA(t; t), ∀t ∈ [0, T ],

DQoS(t) ≤ D(t) ≤ DA(t), ∀t ∈ [0, T ],

D(T ) =
D∑
i=1

Di.

We want to remark the two main difficulties of the problem presented in (3.2). First, the

integral relation among the data and energy domains through (3.1). Second, the fact that neither

T nor BA(t; t) are known from beforehand, due to their dependence on D(t). Consequently,

both T and BA(t; t) will be found along with the solution to the problem.

This problem is graphically represented in Figure 3.3, where the figures at the top and

bottom stand for the energy and data domains, respectively. The ECC is represented by the

solid line at the top figure, whereas DCC and QoS constraints are depicted by the dot-dashed

and dashed lines in the figure at the bottom, respectively. The dotted line in the energy domain

represents the minimum energy expenditure curve; however, as it can be seen from (3.2), it is

not a constraint of the problem. Hence, D(t) and its associated E(t) must lie within the blank

region of the data and energy domains, respectively, in order to be a feasible solution. Three

different data departure curves (A, B, and C) and their associated energy expenditure curves

are shown. The curve A is not feasible since it breaks the ECC. The curve B is feasible in spite
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A
B

A B

C

C

Figure 3.3: Illustrative representation of the problem presented in (3.2).

of having an overflow of the battery at e3, which is, in general, a suboptimal strategy as we will

show later. Finally, the curve C is not feasible because it does not satisfy the QoS constraint.

We want to remark that Figure 3.3 is just an illustrative representation of the problem. As

mentioned before, both the accumulated battery and the minimum energy expenditure depend

on the selected transmission strategy. Note that the figure shows BA(t; 0) as ECC instead

of the real ECC, i.e., BA(t; t). In some manner, with BA(t; 0), we are showing the battery

accumulated that is obtained when D(t) does not produce any battery overflow. In case that

overflows cannot be avoided, it would be necessary to subtract the amount of the overflow to the

shown accumulated battery and minimum energy expenditure from that time instant onward.

Thus, we can only show the real graphical representation of the problem once we have fixed

the solution.

Note that (3.2) is not a convex optimization problem and that its conversion into a convex

problem is not straightforward. Thus, we cannot directly solve (3.2). Alternatively, in next

section, we model the properties that the optimal solution must satisfy, which will allow us to

construct the optimal data departure curve.
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3.3. Properties of the optimal solution

3.3 Properties of the optimal solution

As pointed out previously, in this section we will characterize the optimal data departure curve,

D?(t), and its associated energy expenditure curve, E?(t), for the problem (3.2):

Problem 3.1 (Transmission Without Events). Consider that the optimal departure curve is

known up to t1 and that we want to characterize its optimal behaviour in the time interval

(t1, t2) where there are no changes in DA(t), BA(t; t1), and DQoS(t). We also consider that

the data departure curve at the boundary of the intervals is D(t1) and D(t2), respectively, and

that these two points satisfy the data, energy, and QoS constraints.

Lemma 3.1. In Problem 3.1, D?(t) is a straight line where the slope, or, equivalently, the

transmission rate, is constant and equal to r(t) = D(t2)−D(t1)
t2−t1 , ∀t ∈ (t1, t2).

Proof: The proof follows from the integral version of Jensen’s inequality in a similar

way to the BT-problem in [55].

Corollary 3.1. Lemma 3.1 implies that D?(t) is a piecewise linear function such that its slope,

which is equivalent to the transmission rate, can only change either at ej , di or qk.

From the previous lemma and corollary, it follows that constant rate transmission saves en-

ergy due to the convexity of the power-rate function g(·). However, constant rate transmission

is not optimal when a battery overflow is produced because the energy saved due to constant

rate transmission is lower than the energy lost in the overflow. Consequently, the optimal solu-

tion increases the rate before the overflow until either there is no overflow or the data buffer is

empty, as shown in the following lemma and its subsequent proof:

Lemma 3.2. Under the optimal policy, battery overflows may only be produced when there is

no data to be transmitted.

Proof: See appendix 3.A.1.

The following lemma states that by the end of the transmission the battery must be empty,

otherwise, transmission could have been finished earlier by transmitting at a higher rate.

Lemma 3.3. The optimal solution must satisfy that, at the instant T at which all the data has

been transmitted, the energy expenditure is equal to the accumulated battery, i.e., E?(T ) =

BA(T ;T ).
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Proof: The proof follows in a similar way to the proof of Lemma 5 in [87].

In the remainder of the chapter, the term pool denotes each of the time intervals of D?(t)

at which transmission is done at constant rate. We define M as the total number of pools of the

optimal solution, i.e., the number of linear pieces of D?(t). Note that M is unknown a priori.

Consequently, solving the problem in (3.2) is equivalent to determining the rate rm and length

`m of each pool, i.e., {rm, `m}Mm=1. To do so, we have developed an iterative algorithm that, at

the m-th iteration, determines the rate and duration of the m-th pool, i.e., {rm, `m}. We denote

im as the instant at which them-th pool begins, i.e., im =
∑m−1

p=1 `p, where by definition i1 = 0.

The algorithm ends when all data has been efficiently transmitted. With this, M , T , BA(t;T ),

and D?(t) are found.

To simplify the complexity of our algorithm, at the beginning of the m-th iteration3, the

origin of coordinates is moved to the point (im, D
?(im)). To be coherent with the vertical

and horizontal displacement of the origin of coordinates, the data and energy constraints in

(3.2) must be vertically rescaled by D?(im) and E?(im), respectively, and temporally dis-

placed by im. In the remainder of the chapter, a super-index (m) above a variable (B(m)
A (t),

D
(m)
A (t), D(m)

QoS(t), and E(m)
min(t)) denotes that it is the rescaled version at the m-th iteration4,

e.g., B(m)
A (t) = BA(t+ im; im)− E?(im)5.

From the structure of the problem in (3.2), it is expected that it may not have a feasible

solution whenever the node has to fulfill very tight QoS requirements, while, at the same time,

it does not harvest enough energy to transmit all the required data. The following lemma is

checked at every iteration of our proposed algorithm to determine whether the problem in (3.2)

has a feasible solution or not.

Lemma 3.4. The problem (3.2) does not have a feasible solution whenever

D
(m)
QoS(q

(m)
k ) > q

(m)
k g−1

(
B

(m)
A (q

(m)
k )/q

(m)
k

)
, (3.3)

for some quality requirement event q(m)
k ∈ (0, T (m))6.

Proof: Whenever we encounter that the problem does not have a feasible solution is

because, at some quality requirement event q(m)
k , it is not possible to fulfill all the constraints.

Let D̄(t) be the data departure curve that transmits the maximum amount of data in the in-

terval [0, q
(m)
k ], i.e., D̄(t) = g−1

(
B

(m)
A (q

(m)
k )/q

(m)
k

)
t. Note that this curve has constant rate,

3Note that D?(t) is known in [0, im].
4The relations among the iteration specific and general versions of the variables are given in Table 3.1.
5We have dropped the second argument in B(m)

A (t) and E(m)
min(t) since within the m-th iteration, the second

argument, which denotes the last instant at which the solution is known, is always im.
6Where X(m) = X − im is the rescaled version of some temporal variable X at the m-th iteration (see Table

3.1).
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empties the battery at q(m)
k , and that the constrains are not necessarily satisfied. If, at some

q
(m)
k ∈ (0, T (m)), the QoS constraint requires more than g−1

(
B

(m)
A (q

(m)
k )/q

(m)
k

)
q

(m)
k bits to be

transmitted, then the problem does not have a feasible solution.

If there is no q(m)
k ∈ (0, T (m)) that satisfies Lemma 3.4, then the problem still may have a

feasible solution and at least another pool, i.e., {rm, `m}, can be determined. In this context in

the next subsection, we model how the rate changes must be produced in order to be optimal.

3.3.1 Constraints mapping into the data domain for a given pool

Within an algorithm iteration, the ECC can be mapped to the data domain, hence, allowing us

to merge both constraints to the most restrictive constraint. Let us consider that the algorithm

is at the beginning of the m-th iteration, i.e., the optimal solution is known up to im, where the

rate rm and length `m of the m-th pool must be determined. Given that transmission must be

done at constant rate/power, the maximum amount of data that can be transmitted at a certain

time instant ty due to the ECC is g−1(py)ty, where py = B
(m)
A (ty)/ty.7 With this, at the instant

ty, the upper bound on the energy expenditure curve has been mapped to an upper bound on

the data departure curve, as shown in Figure 3.4 for the instants t1 and t2. By applying this

procedure at all time instants ty ∈ (0, T (m)), we can map the whole upper bound in the energy

domain to an upper bound in the data domain, which we denote by D̄(m)
BA

(t) = g−1(B
(m)
A (t)/t)t

and call actual mapping. However, doing this computation for each time instant has a high

computational cost. In summary, if a data departure curve that transmits at constant rate, i.e.,

D(m)(t) = rmt, satisfies that D(m)(t) ≤ D̄
(m)
BA

(t),∀t, then it also satisfies the ECCs.

The cost associated with the computation of D̄(m)
BA

(t) can be reduced by noting that it is

suboptimal that D(m)(t) reaches the actual mapping at any time instant t1 that is not an event,

i.e., t1 6= d
(m)
i , t1 6= e

(m)
j , and t1 6= q

(m)
k , ∀i, j, k. This is clearly seen in Figure 3.4. Observe

that if D(m)(t1) = D̄
(m)
BA

(t1), then the battery is empty at t1, i.e., E(m)(t1) = B
(m)
A (t1), which

follows from the definition of the actual mapping. Consequently, in order to satisfy the ECCs,

the rate at t+1 must be zero as no energy arrival is produced at t1. From Corollary 3.1, we know

that this rate change is suboptimal and, therefore, the data departure curve can only reach the

actual mapping in some event. Thus, to reduce the computational complexity of the actual

mapping, we can compute the value of the mapping only at the aforementioned events and

assign a constant value in the interval between events. In the rest of the chapter, we refer to this

mapping as effective mapping, i.e., D(m)
BA

(t). Note that the effective mapping is an upper bound

of the actual mapping. However, we want to remark that by using the effective mapping, we are

7Note that for the constraints mapping it is not necessary that py satisfies the constraints. The constraints
fulfillment is enforced by the algorithm that computes the optimal solution, which is explained in Section 3.4.
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x

x

Figure 3.4: Mapping of the ECC to the data domain. The plot in the bottom shows the subop-
timality to reach D̄(m)

BA
(t) at any time instant that is not an event. This implies that in practice

the effective mapping D(m)
BA

(t) can be used as the mapping of the energy constraint to the data
domain.

not relaxing the constraints of the problem since both mappings are equal at the time instants

where the optimal solution for the data departure curve coincides with the actual mapping.

A similar approach can be done to map the minimum energy expenditure curve E(m)
min(t) to

the data domain. In this case, since overflows may only be produced at energy arrival events,

it is only necessary to map the lower bound in the expended energy to the data domain at these

time instants. For the rest of time instants, the time intervals between energy arrivals, a constant

value is assigned without loss of generality, hence, obtaining D(m)
Emin

(t).

Figure 3.5 shows a representation of the problem once the constraints in the energy do-

main are mapped to the data domain. Now the problem is simplified, since data and energy

constraints can be merged in a single constraint that, at every time instant, is the most restric-

tive of the two constraints, i.e.,

D(m)
max(t) = min{D(m)

A (t), D
(m)
BA

(t)}. (3.4)
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Figure 3.5: Mapping of the ECC and minimum energy expenditure to the data domain.

Similarly, the lower constraint is

D
(m)
min(t) = max{D(m)

QoS(t), D
(m)
Emin

(t)}. (3.5)

Note that D(m)
max(t) and D(m)

min(t) are only valid within an algorithm iteration and that it can

occur that D(m)
max(t) < D

(m)
min(t). This happens in the following situations: (i) The node has to

transmit a certain amount of data in order not to overflow the battery; however, this data is still

not available, i.e, D(m)
Emin

(t) > D
(m)
A (t). (ii) The node has to transmit a certain amount of data in

order to satisfy the QoS constraint; however, it does not have enough energy available to do so,

i.e., D(m)
BA

(t) < D
(m)
QoS(t). Note that the situation (ii) occurs when the problem does not have a

feasible solution. As mentioned before, the aim of this section is to model how rate changes are

produced when the problem indeed has a solution (at least up to the current algorithm iteration)

and, hence, we will focus on situation (i) where an overflow of the battery is produced.

Let us define the sets of time instants at which D(m)
max(t) and D(m)

min(t) have discontinuities

as Z(m)
max = {t |D(m)

max(t−) 6= D
(m)
max(t+)} and Z(m)

min = {t |D(m)
min(t−) 6= D

(m)
min(t+)}, respectively.

Remember that, due to Corollary 3.1, we know that D?(t) is constant between events defined

according to Z(m)
max and Z(m)

min. In Lemmas 3.5, 3.6, and 3.7, we model the behavior of the

optimal solution when the rate changes at a time instant where a single event is produced.

Similarly, Lemmas 3.8 and 3.9 describe the behavior of the optimal solution when the rate

changes at a time instant where two events are produced. The proofs of these lemmas are given

in Appendix 3.A.2.

Lemma 3.5. If a rate change is produced at a certain time instant `m such that `m ∈ Z(m)
max and
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`m /∈ Z(m)
min, then D?(m)

(`m) = D
(m)
max(`−m) and the rate increases, rm < rm+1.

Lemma 3.6. If a rate change is produced at the time instant `m such that `m /∈ Z(m)
max, `m ∈

Z(m)
min and D(m)

max(`m) ≥ D
(m)
min(`+

m), then D?(m)
(`m) = D

(m)
min(`+

m) and the rate decreases, rm >

rm+1.

Lemma 3.7. If a rate change is produced at a certain time instant `m such that `m /∈ Z(m)
max,

`m ∈ Z(m)
min and D(m)

max(`m) < D
(m)
min(`+

m), then an overflow of the battery is produced at `m,

D?(m)
(`m) = D

(m)
max(`m) and the rate is zero until the next data arrival event, rm+1 = 0.

Lemma 3.8. If a rate change is produced at a certain time instant `m such that `m ∈ Z(m)
max,

`m ∈ Z(m)
min, and D(m)

max(`−m) ≥ D
(m)
min(`+

m), then either D?(m)
(`m) = D

(m)
max(`−m) and the rate

increases, or D?(m)
(`m) = D

(m)
min(`+

m) and the rate decreases.

Lemma 3.9. If a rate change is produced at a certain time instant `m such that `m ∈ Z(m)
max,

`m ∈ Z(m)
min, and D(m)

max(`−m) < D
(m)
min(`+

m), then an overflow of the battery is produced at `m,

D?(m)
(`m) = D

(m)
max(`−m) and the rate can either increase or decrease.

By using these lemmas, we are able to construct an algorithm, which is presented in the

next section, that iteratively finds the optimal solution, or concludes that there is no feasible

solution.

3.4 Optimal data departure curve construction

In this section, we describe the developed algorithm that is able to either construct D?(t) or,

alternatively, conclude that the problem in (3.2) does not have a feasible solution. As stated in

Corollary 3.1, the optimal data departure curve is a piecewise linear function. As previously

explained, the developed algorithm follows an iterative process where, at them-th iteration, the

duration, `m, and rate, rm, of a pool are determined. We will focus on the explanation of the

m-th iteration since all the other iterations follow the same approach.

As shown in Figure 3.6, the algorithm is composed by three main blocks. The first block,

named checkSolution, determines the existence of solution in the current iteration by checking

the condition in Lemma 3.4. If the problem does not have a solution, the algorithm ends.

Otherwise, the algorithm proceeds to the subsequent blocks to determine the rate and length of

the pool.

The second block, named checkFinish, checks whether it is possible to transmit all the

remaining data by using all the available energy at constant rate. This block is necessary
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Figure 3.6: Block diagram of the iterative algorithm.

because T (m) is unknown. In case it is possible to finish in a single pool, it is obtained that

T (m) = `m and M = m. Then, the solution to problem (3.2) has been found and can be

computed as

D?(t) =
∑M

m=1 rm(t− im) Π
(
t−im
`m

)
+ rm`mHr(t− im − `m), (3.6)

where Π(·) is the unit pulse in the interval [0, 1]. The domain of D?(t) is [0, T =
∑M

m=1 `m].

Otherwise, if it is not possible to finish in a single pool, the block checkFinish returns the

mode (minT or minEnergy) to be used by the third block, which we name getPool, to find

the pool rate and length (rm and `m) that fulfill Lemmas 3.5-3.9. The modeminT is used when

the node already has enough energy to finish transmission, whereas the mode minEnergy is

used when the node is still not able to finish transmission at any rate and, hence, the objective

is to save as much energy as possible for the end of the transmission. An extended explanation

of the inner behavior of each of these blocks is given in Appendix 3.A.3.

Once rm and `m are determined, the origin of coordinates is moved to the point (`m, rm`m)

and the variables are prepared for the new iteration. In the data domain, the iteration transmitted

bits D?(m)
(`m) = rm`m are subtracted from D

(m)
A (t) and D(m)

QoS(t); for instance, D(m+1)
A (t) =

D
(m)
A (t+ `m)−D?(m)

(`m). Similarly, in the energy domain, the expended energy E?(m)
(`m) =

g(rm)`m is subtracted from B
(m)
A (t) and E(m)

min(t). Moreover, in case that transmitting at rm
produces a battery overflow at time instant `m, the amount of energy lost due to the overflow
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is also subtracted from these variables. Finally, the mapping to the data domain is recalculated

for the iteration m+ 1 and the whole procedure starts again to determine rm+1 and lm+1.

There are two possible reasons for which the algorithm ends: (i) At some iteration, Lemma

3.4 is satisfied and, hence, the problem does not have solution. (ii) All the data has been

transmitted and the optimal data departure curve has been obtained as given in (3.6).

The algorithm optimality is summarized in the following theorem and its subsequent

proof:

Theorem 3.1. The algorithm presented in this section constructs the optimal data departure

curve, D?(t), for the problem (3.2).

Proof: See appendix 3.A.3.4.

3.5 Results

To the best of our knowledge there is no other algorithm in the literature that considers alto-

gether the ECC, DCC, the QoS constraint and the finite battery capacity. Therefore, in order

to get some insights on the gain obtained with our proposed solution, we have developed a

suboptimal ad-hoc strategy, namely, the Empty Buffers Strategy (EBS), that tries to empty the

buffers as soon as possible, i.e., it looks for the time instant at which the next arrival (energy

or data) is produced and tries to transmit at a constant rate so that the corresponding buffer is

emptied by the time of the corresponding arrival.

The left y-axis of Figure 3.7 compares the normalized mean minimum T along a total of

1000 iterations, where at each iteration the data and energy arrivals are randomly generated

following a uniform distribution. The amount of energy in each of the packets is normalized

according to the total harvested energy which varies along the x-axis. The right y-axis shows

the percentage of iterations in which there exists a feasible solution to (3.2). As shown in

Figure 3.7, our proposed optimal algorithm substantially reduces the mean minimum T . If

feasible solutions exist, the optimal algorithm finds the one that minimizes T ; however, for

some arrival profiles, the EBS is not able to find any feasible solution in spite of its existence.

Note that the EBS performs worse than the optimal strategy because it changes the rate at

every packet arrival without checking whether constant power transmission is feasible between

two arrivals, which would consume less energy. As a result of this extra energy consumption,

the mean minimum T is higher and the probability of finding a feasible solution decreases.
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Figure 3.7: Performance comparison of our proposed optimal algorithm w.r.t. the suboptimal
EBS in terms of mean minimum completion time and percentage of solutions. The lines marked
with rectangles and diamonds refer to the left axis, whereas the lines marked with circles and
asterisks refer to the rights axis.

3.6 Conclusions

In this chapter, the optimal transmission strategy has been obtained for WEHNs with finite

battery capacity that, additionally, have to fulfill some QoS constraint. Hence, we have con-

tributed to decrease the transmission completion time and, thus, we have increased the overall

efficiency in the use of the harvested energy. Moreover, in more technical terms, we have

seen that, as far as the battery does not overflow, constant rate transmission is the strategy that

requires less energy to transmit a certain amount of data. However, if indeed the battery over-

flows, transmitting at constant rate is not optimal anymore, but the optimal strategy increases

the rate before the overflow until either there is no overflow or the DCC is reached (i.e., there

is no more data to transmit). We have seen that the existence of the optimal solution depends

both on the dynamics of the harvesting process and on the required QoS. According to this, we

have developed an algorithm that is able to determine whether the problem has a solution or

not and, in case of having a solution, determines the optimal data transmission strategy.
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3.A Appendix

3.A.1 Proof of Lemma 3.2

Consider the time interval (t1, t2) where there is an energy arrival at ej ∈ (t1, t2) that produces

an overflow of the battery, Oj . We want to characterize which of the following solutions, D1(t)

or D2(t), t ∈ (t1, t2), is more efficient:

(1.) D1(t), which is such that D1(t) = D(t1) + (t − t1)r0, ∀t ∈ (t1, t2), that is the same as

saying that we are transmitting at a constant rate, r0, in the interval (t1, t2).

(2.) D2(t), which is such that

D2(t) =

{
D(t1) + (t− t1)r1 if t ∈ (t1, ej],

D2(ej) + (t− ej)r2 if t ∈ (ej, t2),

that is the same as saying that we are transmitting at r1, with r1 = r0 + ε1, in (t1, ej] and

at r2, with r2 = r0 − ε2, in (ej, t2), where ε1 and ε2 are positive and such that the total

transmitted data of both solutions is the same, i.e., D1(t2) = D2(t2). Moreover, ε1 must

be small enough so that the strategy D2(t) still produces an overflow of the battery at ej .

The problem formulated above is graphically presented in Figure 3.8, where the blue and

red lines represent solutions 1 and 2, respectively. The following Lemma summarizes its solu-

tion:

Lemma 3.10. The strategyD2(t) is more efficient than strategyD1(t) because the battery level

at t2 is higher for D2(t), i.e., B2(t2) > B1(t2).

Proof: We denote by p0, p1, and p2 the powers obtained by evaluating the rates r0,

r1, and r2, respectively, in the power rate function g(·). Note that p2 < p0 < p1 since r2 <

r0 < r1 and the power-rate function, p(t) = g(r(t)), is strictly increasing in r(t). This implies

that, at ej , the energy expenditure of solution 2, E2(ej), is greater than the energy expenditure

of solution 1, E1(ej). We denote the difference between the energy expenditures of the two

solutions as ∆ > 0. Then, E2(ej) = E1(ej) + ∆. Note that solution 2 reduces the overflow of

the battery by ∆, therefore, the relation between the accumulated battery is

BA2(t, tx) = BA1(t, tx) + ∆, ∀ t > ej, tx > ej. (3.7)
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Figure 3.8: Graphical representation of the overflow problem.

However, solution 1 consumes less energy due to the fact that transmission is done at a

constant rate. Let us denote the energy saving of solution 1 w.r.t. solution 2 at time instant t2
as µ. Then, the relation between the two energy expenditure curves at t2 is

E2(t2) = E1(t2) + µ. (3.8)

By subtracting (3.7) evaluated at t2 and (3.8), we obtain that, B2(t2)−B1(t2) = ∆− µ, where

we have used that B(t) = BA(t; t)− E(t).

We want to prove that B2(t2) > B1(t2), therefore, that ∆ − µ > 0. Let us first find the

expressions for ∆ and µ:

∆ = E2(ej)− E1(ej) = (ej − t1)(g(r1)− g(r0)),

µ = E2(t2)− E1(t2) = (ej − t1)g(r1) + (t2 − ej)g(r2)− (t2 − t1)g(r0).

Finally, the expression of ∆− µ is

∆− µ = (t2 − ej)(g(r0)− g(r2)), (3.9)
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that is greater than zero since g(r0) > g(r2).

Note that D2(t) achieves a higher battery level at t2 due to the fact that the reduction in the

battery overflow is higher than the energy saved by a constant rate transmission. Accordingly,

the optimal transmission strategy increases the rate until either there is no overflow or the data

buffer is emptied, which implies that the data departure curve must reach its upper bound, i.e.,

D(t) = DA(t). Note that the insertion of the QoS constraint, which is a lower bound on D(t),

does not affect the validity of the proof given above, which proves Lemma 3.2.

3.A.2 Rate change characterization

Proof of Lemma 3.5

The proof of the lemma is divided in two parts. We first show that if a rate change occurs at

`m, then D?(m)
(`m) = D

(m)
max(`−m) and, afterwards, we show that the rate must increase.

Part 1. Let us assume that a rate change occurs at `m such that D(m)(`m) < D
(m)
max(`−m). We

will show by contradiction that this cannot be optimal. Let us consider the time interval (`m −

ε, `m+ε) with ε being positive. Note that if we select a sufficiently small ε, we can find a straight

line with rate r = D(m)(`m+ε)−D(m)(`m−ε)
2ε

, which still satisfies the constraints, that transmits the

same amount of data while having less energy expenditure. Hence, we have proved that if the

rate changes at `m, then D?(m)
(`m) = D

(m)
max(`−m).

Part 2. Now we prove that when the rate changes at `m, it must increase. The procedure is

the same as the one in the first part of the proof. We start by assuming that a rate decrease is

optimal and then, we see that it leads to a logical contradiction. We denote rm and rm+1 the

rates before and after `m, respectively, where rm > rm+1. We consider the same time interval.

In this case, we can also find a straight line whose slope is r = D(m)(`m+ε)−D(m)(`m−ε)
2ε

, which

satisfies the energy and data constraints, that transmits the same amount of data while having

less energy expenditure. Hence, we have proved by contradiction that if the rate changes, it

must increase.

Proof of Lemma 3.6

This proof is similar to the proof of Lemma 3.5. The main difference is that now the disconti-

nuity is in the lower constraint. Then, by following the same procedure we can first show that

a rate change is suboptimal unless D?(m)
(`m) = D

(m)
min(`+

m) and a rate decrease is produced.
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Proof of Lemma 3.7

We know that `m comes from an energy arrival event, otherwise, the problem would not have

a feasible solution as stated in Lemma 3.4. This implies that D(m)
max(`m) = D

(m)
A (`m) and

D
(m)
min(`m) = D

(m)
Emin

(`+
m). Then, it is obvious that if D(m)

A (`m) < D
(m)
Emin

(`+
m), an overflow is

produced. Hence, the proof that D?(m)
(`m) = D

(m)
max(`m) comes from Lemma 3.2, where we

show that the optimal data departure curve satisfies that when an overflow is produced, all the

data has been transmitted and, hence, the rate must change to zero until the following data

arrival.

Proof of Lemma 3.8

This lemma states that two events are produced at the time instant `m. One could look at this

lemma as the union of Lemmas 3.5 and 3.6 at the same time instant, hence, the proof has been

already given in the aforementioned lemmas.

Proof of Lemma 3.9

As we pointed out, this lemma only applies when the problem has a solution. Consequently, we

know thatD(m)
min(`m) = D

(m)
Emin

(`+
m) and thatD(m)

max(`m) = D
(m)
A (`−m). Hence, this is the overflow

problem with the particularity that a data arrival is produced at `m. From Lemma 3.2, the

optimal solution minimizes the energy lost due to overflow and, thus, D?(m)
(`m) = D

(m)
max(`−m).

However, in this situation, nothing can be stated regarding the rate in the following pool.

3.A.3 The algorithm

In this appendix, a technical explanation of the algorithm is given. First, we introduce the

maximum and minimum rates, a concept required to understand the second and third blocks of

the algorithm that are presented afterwards.

3.A.3.1 Maximum and minimum rates

Let R(m)
max denote the set that contains the rates obtained by joining the reference point, (0,

D(m)(0) = 0)8, with the discontinuities from the left ofD(m)
max(t), i.e., the points (z,D

(m)
max(z−)),

∀z ∈ Z(m)
max, and such that the obtained curve is feasible for t ∈ (0, z), where by feasible we

mean that the curve satisfies all the constraints. Similarly, R(m)
min contains the rates obtained by

8Note that the reference point is always (0, 0) as the origin of coordinates is moved at every iteration.
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Figure 3.9: Graphical interpretation of the computation R(m)
min and R(m)

max. The optimal pool rate
lies within the interval [R

(m)
min, R

(m)
max].

joining the reference point with the discontinuities from the right of D(m)
min(t), i.e., the points

(z,D
(m)
min(z+)), ∀z ∈ Z(m)

min, and such that the obtained curve is feasible in the same interval.

An example of this can be seen in Figure 3.9.

Let R(m)
max denote the infimum of the set R(m)

max and R
(m)
min refer to the supremum of the

set R(m)
min. Let z(m)

max and z(m)
min denote the time instants from which R(m)

max and R(m)
min have been

obtained. Then, all the rates above R(m)
max and below R

(m)
min are suboptimal as they would require

a rate change to transmit the same amount of data.9 Thus, the optimal rate lies within the

interval [R
(m)
min, R

(m)
max].

3.A.3.2 Finish transmission at a constant rate (checkFinish)

The first step, which is presented in Function 3.1, checks whether it is possible to transmit all

bits by using an even power allocation in just one pool. If it is possible, which implies that

transmission is ended, the algorithm returns the rate and length of the last pool, otherwise, it

returns the strategy or mode that will be used in order to determine the following pool.

The function checkFinish first checks whether by transmitting at the maximum feasible

rate, R(m)
max, it is possible to transmit all the remaining data D(m)

Tot (this is done by the subroutine

getDataInCrossing). In case it is not possible, the function returns the mode minEnergy.

Otherwise, the function finds the time T̂ (m)
1 required to transmit the remaining data D(m)

Tot with

the iteration’s initial battery E(m)
1 .10 Then, it computes the equivalent rate R̂(m) and checks

whether transmitting at this rate is feasible, i.e., the following two conditions are fulfilled: (i)

9Note that R(m)
max is always greater than R(m)

min, otherwise, either R(m)
max or R(m)

min would not be feasible.
10Remember that E(m)

1 = BA(im; im)− E?(im) as summarized in Table 3.1.
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Function 3.1 checkFinish

D
(m)
Tot = D

(m)
max(∞) . Remaining data

if (getDataInCrossing(R
(m)
maxt , D

(m)
max(t) ) < D

(m)
Tot ) then

return mode = minEnergy, finish = 0 . It is not possible to finish yet.
else

for i = 1 : J (m) do . J (m) is the number of packets with ej > im plus one.
E =

∑i
j=1E

(m)
j

T̂
(m)
i is obtained by solving g−1(E/T̂

(m)
i ) = D

(m)
Tot/T̂

(m)
i

R̂(m) = D
(m)
Tot/T̂

(m)
i . Even power allocation among all bits.

if R(m)
min ≤ R̂(m) ≤ R

(m)
max then . D(t) = R̂(m)t is feasible in [0, T̂

(m)
i ].

S = {E(m)
j | j > i , e

(m)
j ∈ (0, T̂

(m)
i )}

if S = ∅ then . The algorithm ends and the rate and length of the last pool are
returned.

return r = R̂(m), ` = T̂
(m)
i , finish = 1

end if
else if (R̂(m) > R

(m)
max) then

return mode = minT , finish = 0
end if

end for
return mode = minEnergy, finish = 0

end if

R̂(m) ≤ R
(m)
max and (ii) R̂(m) ≥ R

(m)
min. In case that (i) is not fulfilled, the function returns

the mode minT . If (ii) is not met, it is checked if, by using the following energy arrivals, a

feasible curve is obtained. Finally, in case both conditions are fulfilled, it is checked whether

any energy arrival has been produced in the time interval (0, T̂
(m)
1 ). In case of no arrivals, the

algorithm ends and the last pool has been found. In case there is an energy arrival in (0, T̂
(m)
1 ),

the function repeats the whole process but now using the initial battery, E(m)
1 , and the energy

of the first arrival, E(m)
2 . This process is repeated until (i) becomes false or a feasible curve is

found.

3.A.3.3 Get rate and length of the next pool (getPool)

This algorithm’s block uses the parameter mode, which is obtained from the function check−
Finish as presented in Appendix 3.A.3.2, to compute the rate and length of the following pool.

Minimize the total completion time (mode == minT ): This strategy is used when both

of the following conditions are satisfied: (i) It is possible to finish the transmission at some rate

r with r ≤ R
(m)
max. (ii) The rate obtained from an even power allocation R̂(m) is not feasible due

to R̂(m) > R
(m)
max. Hence, the objective is to find the rate that allows us to finish transmission

as soon as possible, without paying attention on saving power; however, without wasting it,
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either. In such case, the rate and duration of the pool are rm = R
(m)
max and `m = z

(m)
max.

Minimize the energy expenditure (mode == minEnergy): This strategy is used when,

due to the constraints, transmission cannot be finished at a constant rate, e.g., the rate must

be increased to satisfy the QoS constraints. Hence, the objective is to save as much energy as

possible in order to use it when ending the transmission is feasible. Note that in this situation,

the problem of obtaining the following pool is similar to the problem presented in [55] and,

hence, the solution is also similar. The possible data departure curves with constant rate r, i.e.,

D(m)(t) = rt, are divided in two sets. The first set S(m)
Rmax

contains all the rates r such that

the associated data departure curve crosses the constraint D(m)
max(t) first. Whereas the set S(m)

Rmin

contains all the rates r such that the associated data departure curve crosses the constraint

D
(m)
min(t) first. Then, the rate of the following pool is determined as the infimum of S(m)

Rmax

or, equivalently, the supremum of S(m)
Rmin

, i.e., rm = inf
(
S(m)
Rmax

)
= sup

(
S(m)
Rmin

)
and the

duration of the pool `m can be obtained as the first time instant such that, rm`m = D
(m)
max(`m)

or rm`m = D
(m)
min(`m).

3.A.3.4 Proof of the algorithm optimality

At each iteration, the algorithm checks whether Lemma 3.4 is fulfilled. In such a case, there

is no solution for the problem and the algorithm ends. Otherwise, the algorithm must satisfy

Lemmas 3.5-3.9 at each rate change and Lemma 3.3 by the end of the transmission. To show

that these lemmas are satisfied and, hence, the algorithm computes the optimal data departure

curve, we focus on the three different situations that can occur depending on the constraints

of the problem: (i) The algorithm finishes transmission by using an even power allocation

among all bits to be transmitted. (ii) minT strategy is used to obtain the pool. (iii) The pool is

computed by usingminEnergy mode. In the following, the optimality of these cases is proved

by showing that the algorithm-chosen solution satisfies the optimality conditions and that it is

unique.

Part 1 (Even power allocation). When this situation occurs, the algorithm ends transmission by

transmitting at a constant rate. Hence, Lemma 3.1 is satisfied. No overflow is produced, thus,

Lemma 3.2 is satisfied. Lemmas from 3.5 to 3.9 do not apply since there are no rate changes.

Finally, note that Lemma 3.3 is satisfied, since the last rate rM is obtained as the rate that allows

the transmission of all the data by using all the available energy, moreover, from the properties

of the function g(·) this rate is unique.

Part 2 (minT mode). We want to demonstrate that the optimal departure curve transmits at

R
(m)
max during a period of time z(m)

max. Let T̂ (m) be the total completion time that would be
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obtained if transmitting at rate R̂(m) was feasible, hence, T̂ (m) = D
(m)
Tot/R̂

(m). Similarly,

T
(m)
max = D

(m)
Tot/R

(m)
max. Note that, since R(m)

max is a feasible rate, T (m)
max is an upper bound of

the remaining completion time, T (m), whereas T̂ (m) is a lower bound, hence:

T̂ (m) < T (m) < T (m)
max. (3.10)

Consider the data departure curve D(m)
1 (t) = R

(m)
maxt. Note that any other data departure

curve, D(m)
2 (t), is suboptimal since, in order to satisfy (3.10), D(m)

2 (t) will cross D(m)
1 (t) for

some ty ∈ (0, T
(m)
max). Hence, at ty, both curves have sent the same amount of data; however,

D
(m)
1 (t) has consumed less energy.

Now we must show that, at z(m)
max, the rate increases. Note that by transmitting at R(m)

max

instead of at R̂(m), some energy has been saved. Then, in the following pool, the available

energy per bit is higher and, then, the new rate R̂(m+1) obtained from an even power allocation

among all bits in the following pool fulfills R̂(m+1) > R̂(m) > R
(m)
max. Hence, we have proved

that at z(m)
max a rate increase is produced.

Part 3 (minEnergy mode). This mode is used when it is not possible to finish transmission

at any rate. Note that the algorithm can select three different kind of points, denoted as vx =

(`m, D
?(m)

(`m)), for ending the pool depending on the constraints:

• v1 |D?(m)
(`m) = D

(m)
max(`−m) where `m is either d(m)

i or e(m)
j .

• v2 |D?(m)
(`m) = D

(m)
min(`+

m) where `m is either q(m)
k or e(m)

j .

• v3 |D?(m)
(`m) = D

(m)
max(`−m) where `m is e(m)

j and an overflow is produced.

Note that Corollary 3.1 and Lemma 3.2 are satisfied for any of the selected points and that

Lemma 3.3 does not apply since transmission cannot be ended yet. Hence, we have to prove

the following three conditions: (i) If a point such as v1 is selected, there will be a rate increase

(Lemma 3.5 or Lemma 3.8 for the case that at `m two events are produced). (ii) If a point such

as v2 is selected, there will be a rate decrease (Lemma 3.6 or Lemma 3.8 for the case that at `m

two events are produced). And (iii), if a point such as v3 is selected, the rate of the following

pool is zero as far as `3 is not a data arrival event (Lemma 3.7 and Lemma 3.9).

Regarding (i), the rate of the pool is rm = D
(m)
max(`−m)
`m

that is the supremum of S(m)
Rmin

. Note

that, at the following iteration, the set S(m+1)
Rmin

includes all the rates in the interval (0, rm) and
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the rates contained in the interval (rm, rm+ ε), for some ε > 0. Hence, the rate of the following

iteration, rm+1, satisfies that rm+1 ≥ rm, therefore, a rate increase is produced. A similar

approach can be done for (ii), the rate of the pool is rm =
D

(m)
min(`+m)

`m
that is the infimum of

S(m)
Rmax

. At the following iteration the set S(m+1)
Rmax

contains all the rates in (rm − ε,∞) for some

ε > 0. Hence, the rate of the following iteration, rm+1, satisfies that rm+1 ≤ rm and, therefore,

there is a rate decrease. Finally, in case (iii), an overflow of the battery is produced. Note

that the solution chosen by the algorithm satisfies that all the available data at `−3 has been

transmitted. This implies that if non-data arrival is produced at `3 the rate of the following pool

must be zero in order to satisfy the DCC.

Therefore, the algorithm computes the optimal solution since it satisfies all the lemmas

that model the behavior of the optimal solution.
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Chapter 4
On the precoder design of a wireless energy

harvesting node in linear vector Gaussian

channels with arbitrary input distribution

4.1 Introduction

In the previous chapter, we have studied a scenario where data dynamically arrives to the trans-

mitter and thoroughly examined the effect of the DCCs and the finite buffer constraint over the

optimal continuous-time transmission strategy. In opposition, the remaining chapters of this

dissertation, consider the scenario in which the node has an infinite backlog of data to be trans-

mitted through a discrete-time memoryless channel. Accordingly, in the remaining chapters,

we aim to design transmission strategies that transmit the maximum amount of data by using

the harvested energy.

Since the transmitter has always data to be transmitted, the DCCs are trivially satisfied and

it is known that battery overflows are suboptimal. Thus, one can impose that the transmission

strategy does not produce any battery overflows by imposing an additional set of constraints to

the problem. Given a generic power consumption model C(·) and the packetized model of the

energy harvesting process in Figure 2.13, the ECCs and the finite battery capacity constraints

can be written as

Ts
∑`

j=1

∑
n∈τj C(pn) ≤

∑`
j=1Ej, ` = 1, . . . , J, (4.1)

and
∑`

j=1Ej −
∑`−1

j=1 Ts
∑

n∈τj C(pn) ≤ Cmax, ` = 2, . . . , J, (4.2)
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respectively, where C(pn) is the power consumption of the n-th channel access of duration Ts
and, as before, Cmax denotes the battery capacity.

In the following chapters, we relax the finite battery capacity constraints assuming that no

overflows are produced because the battery capacity is much larger than the amplitude of the

harvested energy packets, i.e., Cmax � Ej , which can be argued due to the low power levels

provided by current harvesting technologies (cf. §2.1.1). We have done this relaxation because

we prefer to focus on different aspects of the transmitter design; additionally, we believe that

the finite battery constraint neither supposes an additional complexity to the problem (due to its

similarity to the ECCs) nor provides many additional insights on the structure of the solution;

finally, this assumption allows us to slightly simplify the notation of the studied problems,

which is already quite involved as shown in the following chapters.

Accordingly, this chapter considers a WEHN operating in linear vector Gaussian channels

with arbitrarily distributed input symbols and studies the offline (cf. §2.1.3) linear precoding

strategy that maximizes the mutual information along N independent channel accesses, which

must satisfy the ECCs.

It is important to recall that when the node does not have energy harvesting capabilities

and the linear vector Gaussian channel can be decomposed as a set of parallel subchannels,

then the optimal power allocation strategy is HgWF, which has been presented in §2.2.1.2.

When the channel matrix is not diagonal, the precoding strategy that maximizes the mutual in-

formation for non-harvesting nodes has been investigated in [58,76–78] and references therein;

these works are thoroughly presented in §4.3 after presenting the system model. To the best

of our knowledge, none of the works in the literature has jointly considered arbitrary input

distributions of the transmitted symbols and energy harvesting at the transmitter. The main

contributions of this chapter are:

• Proving that, at the n-th channel use, the left singular vectors of the n-th precoder matrix

are equal to the eigenvectors of the n-th channel Gram matrix.

• Deriving an expression that relates the singular values of the n-th precoder matrix with

the energy harvesting profile through the MMSE matrix.

• Showing that the derivation of the optimal right singular vectors is a difficult problem

and proposing a possible research direction towards the design of a numerical algorithm

that computes the optimal right singular vectors. The design of this numerical algorithm

is left for future research; instead, we derive the closed form power allocation that is

obtained after setting the right singular vectors matrix to be the identity matrix and, in

this scenario, the contributions are:
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− Deriving the optimal offline power allocation, named the MIMO Mercury Water-Flowing

solution, and providing an intuitive graphical interpretation.

− Proposing two different algorithms to compute the MIMO Mercury Water-Flowing solu-

tion, proving their optimality, and carrying out an exhaustive study of their computational

complexity.

− Implementing an online algorithm, which does not require future knowledge of neither

the channel state nor the energy arrivals, that computes a power allocation that performs

close to the offline optimal MIMO Mercury Water-Flowing solution.

The remainder of the chapter is structured as follows. §4.2 presents the system model. In

§4.3, the aforementioned offline problem is formally formulated and solved and the state of the

art for non-harvesting nodes is presented. The graphical interpretation of the MIMO Mercury

Water-Flowing solution is given in §4.4. The offline and online algorithms are introduced in

§4.5 and §4.6, respectively. In §4.7, the performance of our solution is compared with different

suboptimal strategies and the computational complexity of the algorithms is experimentally

evaluated. Finally, the chapter is concluded in §4.8.

4.2 System model

We consider a point-to-point communication through a discrete-time linear vector Gaussian

channel where the transmitter is equipped with energy harvesters. A total of N channel uses

are considered where at each channel use the symbol sn ∈ RnS is transmitted.1

We consider that the data symbols {sn}Nn=1 have independent components with unit power,

i.e., Rs = E{snsTn} = InS and that they are independent and identically distributed (i.i.d.) along

channel uses according to PS(sn). As shown in Figure 4.1, the symbol sn is linearly processed

at the transmitter by the precoder matrix Bn ∈ RnT×nS . We consider a slow-fading channel

where the coherence time of the channel TC is much larger than the symbol duration Ts, i.e.,

Ts � TC . Thus, a constant channel matrix Gn ∈ RnR×nT is considered at the n-th channel

use. Let K denote the rank of the channel matrix, i.e., K = rank(Gn) = min{nT , nR}, then

1The real field has been considered for the sake of simplicity. The extension to the complex case is feasible
but requires the definition of the complex derivative, the generalization of the chain rule, and cumbersome math-
ematical derivations, which is out of the scope of this thesis. Nevertheless, the extension to the complex case can
be done similarly as [78] generalized the results obtained in [76].
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Transmitter Channel Receiver

Figure 4.1: The discrete-time linear vector Gaussian channel at the n-th channel use.

we have that nS ≤ K.2 Thus, the received signal at the n-th channel use is

yn = GnBnsn + wn, (4.3)

where wn represents the zero-mean Gaussian noise with identity covariance matrix Rwn =

InR .3 Let En denote the n-th channel use MMSE matrix, which is defined as En = E {(sn −
ŝn)(sn − ŝn)T} and ŝn = E {sn|yn} is the conditional mean estimator.

Let us express the channel matrix as Gn = VGn∆nU
T
Gn

, where ∆n ∈ RnS×nS is a

diagonal matrix that contains the nS largest eigenvalues of Gn and VGn ∈ RnR×nS and UGn ∈
RnT×nS are semi-unitary matrices that contain the row and column associated eigenvectors,

respectively. The precoder matrix Bn can be expressed as Bn = UBnΣnV
T
Bn

, where UBn ∈
RnT×nS ; Σn ∈ RnS×nS is a diagonal matrix whose entries are given by the vector σn =

[
√
p1n, . . . ,

√
pnSn]T; and VBn ∈ RnS×nS is a unitary matrix. Full CSI is assumed at the

transmitter.

As presented in §2.1.1, the energy harvesting process at the transmitter is characterized

by a packetized model, which is depicted in Figure 2.13, where J denotes the total number of

packets harvested during the N channel uses. We assume that the mean time between energy

arrivals, Te, is considerably larger than the symbol duration time, i.e., Te � Ts and thus we

can consider that packet arrival times are aligned at the beginning of a channel use.4 First, in

§4.3 - 4.5, we consider the offline approach as it provides analytical and intuitive expressions.

Afterwards, in §4.6, we develop an online transmission strategy where the transmitter only

has causal knowledge of the energy harvesting process, i.e., about the past and present energy

2We have considered that Gn is not rank deficient, ∀n, which is a realistic assumption due to the random
nature of the channel.

3Note that if the noise is colored and its covariance matrix Rwn is known, we can consider the whitened
received signal R

−1/2
wn yn.

4In our model, the transmitter can only change its transmission strategy in a channel access basis. Accordingly,
if an energy packet arrives in the middle of a channel access, we can assume that the packet becomes available for
the transmitter at the beginning of the following channel access.
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arrivals (cf. §2.1.3). Recall that, as presented in §2.1.1, we use the term epoch, τj, j = 1, . . . , J ,

to denote the set of channel accesses between two consecutive energy arrivals. As argued at the

beginning of the chapter, we assume an infinite capacity battery.

4.3 Throughput maximization problem

In this section, we study the set of linear precoding matrices {Bn}Nn=1 that maximizes the input-

output mutual information along N independent channel accesses,
∑J

j=1

∑
n∈τj I(sn; yn),

where I(sn; yn) is the n-th channel use mutual information. The design of {Bn}Nn=1 is con-

strained to satisfy the instantaneous ECCs, which impose that energy cannot be used before it

has been harvested, Ts
∑`

j=1

∑
n∈τj ||Bnsn||2 ≤

∑`
j=1Ej , ` = 1, . . . , J . However, since in

each epoch there are several channel accesses with the same channel gains (because Tc � Ts

and Te � Ts), instead of imposing the instantaneous ECCs, we can consider the mean ECCs

that become Ts
∑`

j=1

∑
n∈τj Tr(BnB

T
n) ≤

∑`
j=1 Ej , ` = 1, . . . , J , which do not require prior

knowledge of the transmitted symbols at each channel use as only the expectation of the sym-

bols is needed.5

Therefore, the mutual information maximization problem is mathematically expressed as

maximize
{Bn}Nn=1

J∑
j=1

∑
n∈τj

I(sn; yn) (4.4a)

subject to Ts
∑̀
j=1

∑
n∈τj

Tr(BnB
T
n) ≤

∑̀
j=1

Ej, ` = 1, . . . , J. (4.4b)

Before addressing the problem in (4.4), let us summarize the state of the art on the pre-

coding strategy that maximizes the mutual information for non-harvesting nodes, which was

studied in [58, 76–78] and references therein.6 In [58], it was shown that, in general, the mu-

tual information, I(sn; yn), is not a concave function of the precoder and that depends on the

precoder only through the matrix Zn = BT
nGT

nGnBn. The authors of [58] also showed that the

left singular vectors of the precoder can be chosen to be equal to the eigenvectors of the channel

5In general, the energy harvesting and the channel state are two independent random processes. Thus, there
may be situations in which only a few channel accesses separate an energy arrival from a change in the channel
realization; however, note that these situations are unlikely since Tc � Ts and Te � Ts. In these unlikely
situations, the temporal averaging is not sufficient to ensure that the fulfillment of the mean ECCs implies a
fulfillment of the instantaneous ECCs; however, the averaging through the different channel dimensions brings
closer the mean and instantaneous ECCs. Thus, the mean ECCs can be used instead of the instantaneous ECCs
since the cases in which they differ are indeed very unlikely.

6When there is no energy harvesting at the transmitter, the mutual information maximization problem is the
one obtained after setting J = 1 and N = 1 in (4.4). Thus, the mutual information is maximized for a single
channel use under a power constraint.
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Gram matrix, i.e., UBn = UGn . From this, Zn = VBnΣ
2
n∆

2
nV

T
Bn

and the mutual information

depends on the precoder only through the right eigenvectors and the associated singular val-

ues. In [76], it was shown that I(sn; yn) is a concave function of the squared singular values

of the precoder, diag(Σ2
n), when a diagonal channel matrix is considered. Finally, the authors

of [58] stated that the complexity in the design of the globally optimal precoder lies in the right

singular vectors of the precoder, VBn . Then, in [77], it was shown that I(sn; yn) is a concave

function of the matrix Zn and a gradient algorithm over Zn was derived to find a locally opti-

mal precoder. References [58, 76, 77] considered a real channel model. The extension to the

complex case was done in [78], where the authors pointed out that by allowing the precoder and

the channel matrix to be in the complex field the mutual information can be further improved.

Then, they proposed an iterative algorithm that determines the globally optimal precoder that

imposes that the power constraint must be met with equality.

When energy harvesting is considered, instead of having a single power constraint, we

have a set of J ECCs as in (4.4b) and it is not straightforward to determine which of the con-

straints must be met with equality. This fact implies that the algorithm introduced in [78] is no

longer optimal when energy harvesting is considered. Altogether, (4.4) is not a convex opti-

mization problem since the mutual information is not a concave function of the precoder and,

hence, its solution is not straightforward. In the following lemma, we generalize Proposition 1

in [58] for the case of considering energy harvesting at the transmitter.

Lemma 4.1. The left singular vectors of the n-th precoder matrix, UBn , are equal to the

eigenvectors of the channel Gram matrix UGn , ∀n.

Proof: See Appendix 4.A.1.

Thanks to Lemma 4.1, the optimal precoding matrix is B?
n = UGnΣ

?
nV

T?
Bn
,∀n, and the

dependence of I(sn; yn) on the precoder is only through Σn and VBn .

In the following lines, we maximize the mutual information w.r.t. Σn for a given VBn . By

applying Lemma 4.1 in (4.3), the next equivalent signal model is obtained

yn = G̃nsn + wn, (4.5)

where G̃n = VGn∆nΣnV
T
Bn

and VT
Bn

is deterministic and known. To fully exploit the di-

versity of the channel, we assign the dimension of the input vector to be equal to the number

of channel eigenmodes, i.e., nS = K. It is easy to verify that the maximization of the mutual

information w.r.t. Σn is not a convex optimization problem. However, if instead we maximize

the mutual information w.r.t. the squared singular values of the precoder pn = [p1n, . . . , pKn]T,
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the obtained problem is convex, as shown in the following lines. Thus, the problem reduces to

maximize
{pn}Nn=1

J∑
j=1

∑
n∈τj

I(sn; G̃nsn + wn) (4.6a)

subject to Ts
∑̀
j=1

∑
n∈τj

1T
Kpn ≤

∑̀
j=1

Ej, ` = 1, . . . , J. (4.6b)

Observe that, at the n-th channel access, the input-output mutual information I(sn; G̃nsn+wn)

is concave w.r.t. pn, which was proved in [76]. Therefore, the objective function is concave

as the sum of concave functions is concave [63]. Finally, as the constraints are affine in pn,

(4.6) is a convex optimization problem and the KKT are sufficient and necessary optimality

conditions. In particular, the optimal solution must satisfy DpnL = 0 (the reader who is not

familiar with this notation, which is presented in [116], is referred to [76, Appendix B] for a

concise summary), where L is the Lagrangian that is

L =
J∑
j=1

∑
n∈τj

I(sn; G̃nsn + wn)−
J∑
`=1

λ`

Ts∑̀
j=1

∑
n∈τj

1T
Kpn −

∑̀
j=1

Ej

 ,

where {λ`}J`=1 are the Lagrange multipliers associated with the ECCs in (4.6b). We want to

remark that in all the expressions derived in the remainder of the chapter, n refers to some

channel access contained in τj , which follows from the formulation of L. In order to obtain

DpnL, we first need to determine the Jacobian matrix of the mutual information w.r.t. pn, which

is done in the following lemma:

Lemma 4.2. The Jacobian matrix of the mutual information w.r.t. pn is DpnI(sn; G̃nsn +

wn) = 1
2
diagT

(
∆2

nV
T
Bn

EnVBn

)
.

Proof: See Appendix 4.A.2.

With this result, we can proceed to solve the KKT condition DpnL = 0:

DpnL =
1

2
diagT

(
∆2

nV
T
Bn

EnVBn

)
− Ts

J∑
`=j

λ`1
T
K = 0 ⇒

[
∆2

nV
T
Bn

EnVBn

]
kk

=
1

Wj

, k = 1, . . . , K, n ∈ τj, (4.7)

where Wj is the j-th epoch water level, i.e.,

Wj =
1

2Ts
∑J

`=j λ`
. (4.8)

71



Chapter 4. On the precoder design of a wireless energy harvesting node in linear vector
Gaussian channels with arbitrary input distribution

From (4.7), at each channel use, we obtain a set ofK conditions that relate the power allocation

in each stream (through the MMSE matrix) with the energy harvesting profile (through the

epoch’s water level). Some properties of the water level Wj can be derived from the KKT

optimality conditions:

λ` ≥ 0, ∀`, (4.9)

λ`

Ts∑̀
j=1

∑
n∈τj

1T
Kpn −

∑̀
j=1

Ej

 = 0, ∀`. (4.10)

Plugging (4.9) in (4.8), it is straightforward to obtain the following property:

Property 4.1. The water level is non-decreasing in time.7

From (4.10), we can get more insights in the solution. There are two possibilities to fulfill

(4.10):

• Empty battery: This situation occurs when, at the end of the `-th epoch, the node has

consumed all the energy, i.e., Ts
∑`

j=1

∑
n∈τj 1T

Kpn −
∑`

j=1 Ej = 0.

• Energy flow: This situation occurs when, at the end of the `-th epoch, the node has some

remaining energy in the battery, which will be used in the following epochs. When this

happens λ` = 0 and, hence, W`+1 = W`.

Property 4.2. Changes on the water level are only produced when at the end of the previous

epoch the node has consumed all the available energy.

Note that the ECCs take into account the energy spent by the node over all the dimensions.

Thus, these two properties also hold in a scalar channel model as proved in [85, Theorem 3].

Since the problem in (4.6) is convex, by using (4.7) and Properties 4.1 and 4.2, we can

construct efficient numerical algorithms to compute the optimal power allocation, {p?n}Nn=1,

for a given VBn . The maximization of the mutual information w.r.t. VBn is indeed much

more complicated as pointed out in [58] for the non-harvesting scenario. In this context, in

this work, we focus on the particular case in which VBn = IK because, in spite of not being

necessarily the globally optimal precoder, it leads to an analytical closed form power allocation

that allows an intuitive graphical representation of the solution, as it is explained in the next

section. Observe that for any other choice VBn 6= IK , we must resort to numerical methods to

compute the optimal power allocation.

7This property is only valid under an infinity battery capacity assumption. When a finite battery is considered
the water level may increase or decrease [84].
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The design and development of a numerical algorithm that computed the globally optimal

precoder at each channel access would be an interesting research problem in its own and is left

for future research. We believe that a possible starting point would be to analyze how to expand

the algorithms presented in [77] and [78], which exploit the concavity of the mutual informa-

tion w.r.t. the matrix Zn and the fact that the power constraint must be met with equality, to

the energy harvesting scenario. Note that if we knew the optimal total power allocation in each

channel access, we could run N times the algorithm proposed in [78] to obtain the globally

optimal precoder in each channel access; however, this approach has two major drawbacks.

First, the optimal total power allocation in each channel access is not known a priori and its

computation is not straightforward since the total power consumptions of the different channel

accesses belonging to the same epoch must simultaneously satisfy (4.7). The second drawback

is the required computational burden since any iterative approach requires a new estimation of

the MMSE matrix, En, at every iteration since it depends on VBn and Σn. These two reasons

make challenging the applicability of the proposed approach and, hence, different alternatives

to find the globally optimal precoder may be required. Altogether, we believe that the develop-

ment of a numerical algorithm that computes the globally optimal precoder for a WEHN is the

object of a new work in its own and is left for future research.

4.4 The MIMO Mercury Water-Flowing solution

In the remainder of the chapter, we consider a communication system in which the precoder is

constrained to satisfy VBn = IK or, equivalently, a communication system such that both the

precoder and channel matrices are diagonal. In spite of the fact that the total achievable mutual

information is reduced by forcing VBn = IK , we consider that it is interesting to study this

scenario for the following three reasons:

• The system y′n = ∆nΣnsn + w′n, with w′n being the observed noise at the receiver, is

commonly encountered in practical systems where, for simplicity at the decoder, inde-

pendent symbols are transmitted in each dimension (e.g., in multi-tone transmissions like

OFDM), and it has been broadly considered in the literature, indeed, theHgWF solution

was derived for such an input-output system model in [57].

• The optimal power allocation, which is named Mercury Water-Flowing, accepts a closed

form expression and an intuitive graphical representation.

• We believe that the intuition gained thanks to the Mercury Water-Flowing graphical in-

terpretation may help for the design of the algorithm that computes the globally optimal

precoder of the problem in (4.4).
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In this context, the input-output model y′n = ∆nΣnsn + w′n can be obtained from the

general model in (4.5) by setting VT
Bn

= IK and y′n = VT
Gn

yn. From this, we obtain that the

equivalent noise is w′n = VT
Gn

wn. Thus, a set of K independent parallel streams are observed

at each channel use. The received signal in the k-th stream is y′kn =
√
hknpknskn + w′kn,

where the transmitted symbol is the k-th component of sn, i.e., skn = [sn]k; w′kn = [w′n]k is

the observed noise; hkn = [∆2
n]kk is the channel gain; and pkn = [Σ2

n]kk is the transmission

radiated power. Therefore, in this section we solve the following optimization problem:

maximize
{{pkn}Kk=1}

N
n=1

J∑
j=1

∑
n∈τj

I(sn; y′n), subject to (4.6b). (4.11)

Note that I(sn; y′n) = I(sn; yn) since a linear unitary rotation in the received signal does

not affect the input-output mutual information [78]. Thus, the power allocation that maximizes

(4.11) is equal to the one that maximizes (4.6) and it can be obtained by particularizing (4.7)

with VT
Bn

= IK , i.e., [En]kk = 1
hknWj

. From where, it follows that

pkn =
1

hkn
mmse−1

k

(
min

{
1,

1

Wjhkn

})
, ∀k,∀j,∀n ∈ τj, (4.12)

where mmse−1
k (·) is the inverse MMSE function, defined as in the HgWF power allocation

[57] (cf. §2.2.1.2), that returns the SNR of the k-th stream for a given MMSE, which depends

on the probability distribution of skn.

To present the graphical interpretation of the solution, we need to reformulate (4.12) as

pkn =

[
Wj −

1

hkn
Gk

(
1

Wjhkn

)]+

, ∀k,∀j,∀n ∈ τj, (4.13)

where Gk(ψ) is defined in (2.14) [57], depends on the modulation used, and satisfies the next

lemma:

Lemma 4.3. The function Gk(ψ) is monotonically decreasing in ψ.

Proof: See Appendix 4.A.3.

Remark 4.1. To demonstrate the validity of the graphical representation presented in this sec-

tion, we need to analytically demonstrate that Gk(ψ) is monotonically decreasing in ψ. In [57],

it was already stated that Gk(·) is decreasing; however, the authors did not provide an analyti-

cal proof for their statement. Therefore, we consider that Lemma 4.3 and its explicit proof are

crucial to validate the graphical representation introduced in this section.
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Observe the similarity of the power allocation found in (4.13) with the HgWF in (2.13)

[57]. The main difference of our solution is that, due to the nature of the energy harvesting

process, the water level depends on the channel access. Indeed, from Properties 4.1 and 4.2 we

have seen that the node is able to increase the water level as energy is being harvested.

Moreover, observe that if we particularize (4.13) for Gaussian distributed inputs, which

have Gk(ψ) = 1, ∀ψ, (see [57]), the DWF solution in (2.21) (cf. §2.3.1) is recovered. There-

fore, the mercury factor gives a measure of how the power allocation is modified when using

non-Gaussian input distributions.

LetH{kn}g (Wj) be the mercury level of the k-th stream at the n-th channel use, i.e.,

H{kn}g (Wj) =
1

hkn
Gk

(
1

Wjhkn

)
, ∀k,∀j,∀n ∈ τj, (4.14)

which depends on the gain and water level of the channel use. Then, the power allocated in a

certain stream is the difference between the water and mercury levels, i.e.,

pkn =
[
Wj −H{kn}g (Wj)

]+
.

The solution interpretation presented in this section is based on the fact that the mercury level

is monotonically increasing in Wj , which follows directly from Lemma 4.3, and generalizes

both theHgWF and the DWF solutions derived in [57] and [84], respectively, which have been

presented in §2.2.1.2 and §2.3.1. The MIMO Mercury Water-Flowing interpretation, depicted

in Figure 4.2, is the following:

(1.) Each parallel channel is represented with a water-porous mercury-nonporous vessel with

a base of area Ts8.

(2.) Then, each vessel is filled with a solid substance up to a height equal to h−1
kn .

(3.) A water right-permeable material is used to separate the different epochs.

(4.) Each vessel has a faucet that controls the rhythm at which mercury is poured. The faucet

modifies the mercury flow so that the relation between mercury and water levels in (4.14)

is always satisfied.

(5.) Simultaneously,

• The water level is progressively increased to all epochs at the same time, adding the

necessary amount of water to each epoch. The maximum amount of water that can

8The vessel boundaries are not depicted in Figure 4.2 for the sake of simplicity.
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Figure 4.2: Graphical interpretation of the MIMO Mercury Water-Flowing solution, where
N = 6, J = 3, and K = 2.

be externally added at some epoch is given by the epoch’s harvested energy, Ej .

Let the water freely flow right through the different epochs.

• Mercury is added to each of the vessels at a different rhythm which is controlled by

the vessel’s faucet.

(6.) The optimal power allocation in each parallel channel is found when all the epochs have

used all the harvested energy and is obtained as the difference between the water and

mercury levels.

4.5 MIMO Mercury Water-Flowing offline algorithms

We have designed two different algorithms to compute the optimal MIMO Mercury Water-

Flowing solution, namely, the Non Decreasing water level Algorithm (NDA) and the Forward

Search Algorithm (FSA), which are presented in §4.5.1 and §4.5.2, respectively. Afterwards,

in §4.5.3, we prove the algorithms’ optimality and analyze their computational complexity.

As shown by the KKT optimality conditions, the water in a certain epoch may flow to

the epochs at its right (i.e., from prior to later time instants). This way, the water level over a

consecutive set of epochs may be equalized. This set of constant water level epochs is referred

to as a pool, Pm,m = 1, . . . ,M , where M is the total number of pools and it is unknown
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a priori.9 Note that, since the epochs are a partition of the pools, a certain epoch τj is only

contained in one pool. However, a pool may contain several epochs, therefore, M ≤ J .

To compute the power allocation in (4.13), we just need to determine which epochs are

contained in each pool Pm as, once the pools are known, the optimal power allocation of the

pool can be found by performing the Mercury/Water-Filling Algorithm (HgWFA) introduced

in [57], where the m-th pool water level, W̄m, is found by forcing that the energy expended in

the pool has to be equal to the energy harvested, which follows from Property 4.2.

The following two algorithms use a different approach two determine the pools:

4.5.1 NDA

The NDA uses the fact that a water level decrease is suboptimal, which follows from the KKT

conditions (see Property 4.1), to compute the optimal power allocation as follows:

(1.) Initially, set M := J , i.e., every pool contains one epoch Pm := {τm}, m = 1, . . . ,M.

(2.) Perform theHgWFA in [57] to every pool to obtain the water level, W̄m, in each pool.

(3.) Look for some pool, m′, at which the water level decreases, i.e., W̄m′ > W̄m′+1:

• If some pool is found, merge this pool with the following pool, i.e., Pm′ := Pm′ ∪
Pm′+1. The harvested energy of the resulting pool is the sum of the two original

pools. Then, the total number of pools has been reduced by one, i.e., M := M − 1.

Perform theHgWFA to obtain the new water level of the m′-th pool, i.e., W̄m′ , and

go back to 3.

• If no pool is found, the optimal M has been found along with the optimal power

allocation.

4.5.2 FSA

The FSA determines the different pools by finding the optimal transition epochs, {T ?m}Mm=1,

that are defined as the first epoch of each pool. As stated before, once the pools are known the

optimal power allocation is determined by applying the HgWFA to each pool.10 To determine

{T ?m}Mm=1, we have designed a forward-search algorithm that extends the algorithm introduced

9In the previous chapter, where a static channel was considered, a pool denoted the time interval with constant
power transmission. Note that, when the channel is static in all the dimensions, constant water level implies
constant power and the term pool is consistent with the definition given in the previous chapter.

10Observe that, by definition, T ?1 is the first epoch.
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in [85] to take into account arbitrary input distributions. We explain how to obtain T ?2 and the

others are found in the same manner:

(1.) Assume that the first pool contains all the epochs, P1 := {τ1, τ2, . . . , τJ}.

(2.) Perform theHgWFA in [57] to the pool.

(3.) Check whether all the ECCs within the pool are fulfilled:

• If they are not fulfilled, remove the last epoch from P1 and go back to step 2.

• If they are fulfilled, the optimal transition epoch, T ?2 , is the first epoch not included

in the pool.

The same procedure is repeated to determine the following transition epochs until the J-th

epoch is included in some pool. When this happens, the optimal power allocation has been

found for all the channel accesses and streams.

4.5.3 Optimality and performance characterization of the

offline algorithms

In this section, first, we demonstrate the optimality of the NDA and the FSA, which is presented

in Theorem 4.1 and, afterwards, we characterize their associated computational complexity.

Theorem 4.1. Both the NDA and the FSA compute the optimal power allocation given in

(4.13).

Proof: See Appendix 4.A.4.

With the previous theorem, we have demonstrated that both algorithms compute the op-

timal power allocation; however, the computational cost of such a computation may be very

different. To evaluate this, in Appendix 4.A.5, we have conducted an exhaustive study on the

computational complexity of each of these two algorithms.

Our performance analysis is three-fold, namely, the best, worst, and average computational

complexities are computed. Note that both algorithms internally call the HgWFA a certain

number of times to find the optimal solution. Let CHgWFA denote the number of calls to the

HgWFA required to compute the MIMO Mercury Water-Flowing solution, which depends on

the algorithm itself and on the dynamics of the energy harvesting process. In this context, the

best or worst computational complexity is the performance when the minimum or maximum

number of calls to HgWFA are required, respectively. The average computational complexity
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Best Worst Average
(Op.) (CHgWFA) (Op.) (CHgWFA) (CHgWFA )

NDA âNK J O( â2KNJ) 2J − 1
E {CNDAHgWFA} = J(q̂ + 1)− q̂
var{CNDAHgWFA} = (J − 1)q̂(1− q̂)

FSA âNK 1 O( â6KNJ
2) J2+J

2

E {CFSAHgWFA} =
(
J2

2 + J
2 − 1

)
p̂+ 1

var{CFSAHgWFA} =
(
J
2 + 1

)2
(J − 1)p̂(1− p̂)

Table 4.1: Computational complexity of the NDA and the FSA in the best, worst and average
case scenarios.

uses a probabilistic model to compute the average number of calls to HgWFA. Basically, for

the NDA we assume that there is a fixed probability q̂ that the water level decreases from pool

to pool, whereas, for the FSA we assume that there is a fixed probability p̂ that a certain ECC is

not satisfied. Both p̂ and q̂ can be experimentally adjusted depending on the energy harvesting

profile. The computational complexity in terms of operations (Op.), as well as, in terms of

CHgWFA is summarized in Table 4.1, where â is a constant parameter that depends, among

others, on the size of the MMSE table required to compute the inverse MMSE function and

on the tolerance used in the stopping criteria of the HgWFA. The details of the derivations

of the different computational complexities can be found in Appendix 4.A.5. In §4.7.2, the

theoretical results on the algorithms’ computational complexities are compared with the ones

obtained through simulation.

4.6 Online algorithm

Up to now, we have assumed that the transmitter has non-causal knowledge of both the CSI and

the EHI, which might be realistic in scenarios in which the energy source is predictable, cf.,

§2.1.3. Therefore, the MIMO Mercury Water-Flowing solution provides an upper bound on the

achievable mutual information of practical schemes in which VBn = IK . In this section, we

develop an online algorithm, which is strongly based on the optimal offline solution, the MIMO

Mercury Water-Flowing power allocation, but that does not require future knowledge of neither

the energy arrivals nor the channel state, that computes a suboptimal power allocation of the

problem in (4.11).

Let Fw be the flowing window that is an input parameter of the online algorithm that refers

to the number of channel accesses in which the water is allowed to flow, which can be obtained

by a previous training under the considered energy harvesting profile, and let an event denote

a channel access in which a change in the channel state is produced or an energy packet is
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harvested, i.e.,

Et = {n|∆n−1 6= ∆n} ∪ {n|n = ej, j = 1, . . . , J}, t = 1, . . . , S,

where S ∈ [J,N ]. In this context, the proposed online algorithm proceeds as follows:

(1.) The initial energy in the battery, E1, is allocated to the different streams of the first Fw
channel accesses according to theHgWFA where the channel is expected to be static and

equal to the gain of the first channel use ∆n = ∆1,∀n ∈ [1, Fw].

(2.) When the transmitter detects an event, it updates the allocated power of the channel ac-

cesses n ∈ [Et,min{Et + Fw − 1, N}] by using the HgWFA with the remaining energy

in the battery and with the energy of the harvested packet (if the event is an energy ar-

rival), i.e.,
∑

j|ej≤Et Ej − Ts
∑Et−1

n=1

∑
k pkn, and by assuming that the channel remains

constant during the flowing window, i.e., ∆n = ∆Et , ∀n ∈ [Et,min{Et + Fw − 1, N}].
Note that the transmitter may stay silent in some channel accesses if the difference be-

tween two consecutive incoming energy packets is greater than the flowing window,

ej − ej−1 > Fw.11

(3.) Step (2.) is repeated until the N -th channel access is reached. The proposed online

algorithm satisfies the ECCs and, as pointed out, does not require future information of

neither the channel state nor the energy arrivals.

The performance in terms of achieved mutual information depends on the correctness of

the estimation of the flowing window, Fw, as discussed with the numerical analysis in §4.7. In

summary, this online algorithm provides us a lower bound on the mutual information that can

be achieved with sophisticated online algorithms that make use of precise statistical models of

the energy harvesting process and channel state. A myriad of works have dealt with channel

modeling; however, as it has been argued in §2.1.1, having a precise statistical model of the

energy harvesting process is indeed not trivial as it depends on many factors such as the har-

vester used by the node (e.g., a solar panel, piezoelectric generator, etc.), the node’s placement,

mobility, etc. According to this, to develop better online algorithms it is key that during the

following years statistical models of the energy harvesting process are developed, which must

capture the energy variability due to environmental and climatic conditions, and the node’s

placement and mobility.

11This situation rarely takes place in practice since, in most common situations, Fw is several times the mean
number of channel accesses per epoch. For example, in the simulated framework presented in §4.7, we have
obtained that Fw is 4.4 times the mean number of channel accesses per epoch.
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4.7 Results

This section first evaluates the gain of the proposed MIMO Mercury Water-Flowing solution

w.r.t. other suboptimal solutions and, secondly, it presents an analysis through simulation of

the computational complexity of the NDA and FSA.

4.7.1 Results on the MIMO Mercury Water-Flowing solution

In this section, we evaluate the mutual informations obtained with the optimal offline solution,

the MIMO Mercury Water-Flowing (Hg-WFlow), and with the online policy presented in §4.6.

To the best of our knowledge, there are no offline algorithms in the literature that max-

imize the mutual information by jointly considering energy harvesting at the transmitter and

arbitrary distributed input symbols. In this context, we use the following three algorithms,

which are optimal in different setups and have been adapted to the energy harvesting scenario,

as a reference to evaluate the mutual information achieved by the proposed offline and online

solutions:

• The DWF solution in (2.21) that is the optimal offline power allocation for a WEHN

when the distribution of the input symbols is Gaussian.

• Epoch-by-Epoch Water-Filling (EbE-WF) that uses the CWF power allocation in (2.10)

by forcing that the harvested energy in a certain epoch is expended in the channel ac-

cesses of that same epoch.

• Epoch-by-Epoch Mercury/Water-Filling (EbE-HgWF) where the power allocation is ob-

tained by using the HgWF solution in (2.13) and forcing that the harvested energy in a

certain epoch is expended in the channel accesses of that same epoch.

We have considered a channel matrix of rank K = 4, where the channel gains are uni-

formly distributed in (0, 1). The modulations used in each stream are BPSK, 4-PAM, 16-PAM,

and 32-PAM, respectively. The symbol duration is Ts = 10 ms and N = 100 channel accesses

have been considered during which a total of J = 40 energy packets are harvested. Energy

arrivals are uniformly distributed along the channel accesses and with random amounts of en-

ergy, which are normalized according to the total harvested energy that varies along the x-axis

of Figure 4.3. The y-axis shows the mutual information obtained with the different strategies.

After some training in this scenario, we have obtained that the optimal flowing window is

Fw = 11 channel accesses.

As shown in Figure 4.3, our proposed solution, theHg-WFlow, outperforms all the subop-

timal strategies. The improvement of theHg-WFlow w.r.t. the EbE-HgWF comes from letting
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Figure 4.3: Mutual information for the different transmission strategies versus total harvested
energy.

the water to flow across epochs and, hence, it directly depends on the parameter J since the

higher is the number of epochs, the higher is the mutual information gain that can be achieved

by letting the water flow.12 The same happens with the improvement of the DWF w.r.t. EbE-

WF. On the other hand, the mutual information gain of the EbE-HgWF andHg-WFlow w.r.t.

their respective CWF strategies, EbE-WF and DWF, comes from the use of mercury in the

resource allocation. Thus, when the energy availability is low, both perform similarly because

the node is working in the low SNR regime in which the mutual information of finite alphabets

is well approximated by the mutual information of the Gaussian distribution [117]. However,

when the energy availability is high, the EbE-HgWF andHg-WFlow achieve a higher mutual

information than their respective CWF strategies since the mutual information of finite con-

stellations asymptotically saturates (not more than log2M bits of information can be sent per

channel use), cf., §2.2.1.2. Finally, note that, in spite of not having knowledge of the energy

arrivals nor channel state, the online power allocation performs close to the offline optimal

Hg-WFlow in the low SNR regime. When the available energy increases, the gap between the

MIMO Mercury Water-Flowing and the proposed online algorithm also increases, nevertheless

the online algorithm still presents a reasonably good mutual information outperforming any

Epoch-by-Epoch strategy.

12When J = 1, the solid and dashed curves overlap since there is only one epoch.
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Figure 4.4: Graphical representation of the MIMO Mercury Water-Flowing solution. The red,
gray, and blue solid bars represent the inverse of the channel gain, the mercury and the water
levels, respectively. The allocated power is obtained as the difference between the water level
and the mercury level.

The study of the performance in the static scenario is of special interest because the as-

sumption of having future knowledge of the channel state, which has been used for the design

of the optimal offline solution, becomes realistic when the channel is static. We have evaluated

the achieved mutual information in the above setup for the static channel case and we have

obtained similar results to the ones in Figure 4.3, where the only difference is that the achieved

mutual information of the different algorithms in the static case is slightly lower since there is

less channel gains diversity to assign the available energy.13

In Figure 4.4, the power allocation obtained by the MIMO Mercury Water-Flowing solu-

tion in a single simulation is shown for N = 20 and K = 4, where the modulations used in

the streams 1-4 are BPSK, 4-PAM, 16-PAM and 32-PAM, respectively. Six energy arrivals are

produced at the beginning of the channel accesses marked with a triangle. The gains have been

generated randomly along channel uses, but fixed constant along streams to ease the observa-

tion of the mercury level obtained for the different modulations. As expected from Property

4.1, the obtained water level is an increasing stepwise function. Observe that the solution con-

tains three pools, i.e., three different water levels, where the epochs contained in each pool are

P1 = {τ1}, P2 = {τ2, τ3, τ4}, and P3 = {τ5, τ6}. Moreover, observe that under the same chan-

nel gain and water level, the mercury level decreases as the modulation dimension increases.

13The figure of the static scenario has been omitted for the sake of brevity.
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4.7.2 Results on the algorithms’ performance

In §4.5.3, we have given a summary of the computational complexity of the NDA and FSA

(Table 4.1 summarizes the obtained results). In this section, we compare the theoretical and

experimental performance of both algorithms.

From the simulations, we confirm that, in the best and worst case scenarios, the experi-

mental computational complexity shown in Figure 4.5 fits the theoretical results presented in

Table 4.1. Regarding the average case scenario, the mean number of calls to HgWFA of the

NDA fits the analytical expression E{CNDA
HgWFA} = J(q̂+1)− q̂ for a value of q̂ = 0.98. Regard-

ing the FSA, the mean obtained through simulation and the analytically computed expression

E {CFSA
HgWFA} =

(
J2

2
+ J

2
− 1
)
p̂ + 1 differ from one another. Observe that the quadratic and

linear terms of J have the same weight independently of the value of p̂. However, it is easy to

observe in Figure 4.5 that the linear component dominates over the quadratic. Therefore, there

is a mismatch between the analytical and experimentally obtained expressions. We believe that

this mismatch is due to the fact that in order to obtain some tractable model (see Appendix

4.A.5), we have assumed that all the ECCs have the same probability p̂ of not being satisfied;

however, in reality this probability is not necessarily equal but depends on the dynamics of the

energy harvesting process.

Regardless of the aforementioned mismatch, we observe that, in our simulated energy

harvesting set up (the amount of energy in the packets is uniformly distributed), both algorithms

have a similar performance in the average case scenario. Note that the difference between the

best and worst case scenario is much smaller for the NDA than for the FSA. This comes from

the fact that, in the worst case scenario, the FSA has a quadratic dependence on J , whereas,

for the NDA the dependence is linear. This makes the NDA more robust in front of changes in

the energy harvesting profile. In other words, if the energy harvesting profile changes, the FSA

has more margin to either improve or degrade its performance. For instance, consider a node

that harvest energy through a solar panel. Then, if the node’s initial battery is very high and it

is operating in the sunset (the amount of harvested energy at the beginning of the transmission

duration is higher than the amount harvested at the end), it is likely that the performance of the

FSA is close to the best case scenario, i.e., a single call to theHgWFA. On the other hand, if the

battery is almost empty at the beginning and the node operates in the sunrise, the performance

of the FSA will be very poor.

To conclude the discussion between the NDA and the FSA, we want to highlight again that

the NDA is more robust to changes in the energy harvesting profile. However, the FSA may be

preferable in certain profiles as in its best case performance just requires a call to theHgWFA.

Therefore, we believe that the algorithm selection must be done by taking into account the

energy harvesting profile and the environmental conditions in which the node is operating.
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Figure 4.5: Analysis of the performance of the NDA and FSA in terms of CHgWFA.

4.8 Conclusions

In this chapter, we have considered a WEHN transmitting arbitrarily distributed symbols in

a discrete-time linear vector Gaussian channel. We have studied the precoding strategy that

maximizes the mutual information by taking into account causality constraints on the use of

energy. We have proved that the optimal left singular vectors of the precoder matrix diagonal-

ize the channel, similarly as in the optimal precoder for the case of non-harvesting nodes. We

have derived the expression
[
∆2

nV
T
Bn

EnVBn

]
kk

= 1
Wj

that relates the singular values of the

precoder (through the MMSE matrix) with the energy harvesting profile (through the different

water levels). The derivation of the optimal right singular vectors, V?
Bn

, is left as an open prob-

lem. Then, we have derived the MIMO Mercury Water-Flowing solution, the optimal power

allocation when VBn = IK , which can be expressed in closed form and accepts an intuitive

graphical interpretation based on the fact that the power allocation in a certain stream is the

difference between the water level and the mercury level, which, as shown in this chapter, is

a monotonically increasing function of the water level. Additionally, we have developed two

different algorithms that compute the MIMO Mercury Water-Flowing solution and we have an-

alytically and experimentally evaluated their computational complexity. We have also proposed

an online algorithm that only requires causal knowledge of the energy harvesting process and

channel state. Finally, through numerical simulations, we have shown a substantial increase in
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the mutual information w.r.t. other suboptimal offline strategies, which do not account for the

shape, size and distribution of the input symbol or do not exploit the water level equalization

across epochs, and we have seen that the mutual information achieved with the online algorithm

is close to the one of the MIMO Mercury Water-Flowing solution.

4.A Appendix

4.A.1 Proof of Lemma 4.1

Let us assume that the optimal precoding matrices of the channel accesses n = 2, . . . , N are

known, i.e., {B?
n}Nn=2. Then, we focus on finding the optimal precoding matrix of the first

channel use B?
1. The problem in (4.4) is equivalent to

maximize
B1

I(s1; y1) + a (4.15a)

subject to TsTr(B1B
T
1 ) + b+ c(`) ≤

∑̀
j=1

Ej, ` = 1, . . . , J,

where a, b and c(`) do not depend on B1. By only keeping the most restrictive constraint,

which is denoted by P̄ , the previous optimization problem reduces to

maximize
B1

I(s1; y1) (4.16a)

subject to Tr(B1B
T
1 ) ≤ P̄ . (4.16b)

Finally, once the problem is expressed as (4.16), it is known from [58, Prp. 1] that the left

singular vectors of B?
1 can be chosen to coincide with the eigenvectors of the channel Gram

matrix, i.e., UB1 = UG1 . A similar approach can be applied to show that {B?
n}Nn=2 diagonalize

their respective channels.

4.A.2 Proof of Lemma 4.2

By applying the chain rule, we have that

DpnI(sn; G̃nsn + wn) = DG̃n
I(sn; G̃nsn + wn) DpnG̃n.
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The first term in the previous equation can be easily derived from (2.12) as

DG̃n
I(sn; G̃nsn + wn) = vecT(G̃nEn).

The second term, DpnG̃n, is

DpnG̃n =
1

2
(VBn ⊗VGn∆n)S̄KDiag(σ−1

n ) (4.17)

=
1

2
(VBn ⊗VGn∆n)S̄KDiag(diag(Σ−1

n )) (4.18)

=
1

2
(VBn ⊗VGn∆n)S̄KS̄TK(IK ⊗Σ−1

n )S̄K (4.19)

=
1

2
(VBn ⊗VGn∆n)(IK ⊗Σ−1

n )S̄K , (4.20)

where (4.17) can be proved in a similar manner to DλP in [76, Proof of Theorem 5] with

S̄K ∈ RK2×K being the reduction matrix introduced in [76] (see Appendix 4.A.6 for a concise

summary on the properties of S̄K). In (4.19) and (4.20), we have applied Properties 6 and 8 in

Appendix 4.A.6, respectively.

Therefore, we have that DpnI(sn; G̃nsn + wn) is

DpnI(sn; G̃nsn + wn) =
1

2
vecT(G̃nEn) (VBn ⊗VGn∆n)

(
IK ⊗Σ−1

n

)
S̄K (4.21)

=
1

2
vecT(G̃nEn)

(
VBn ⊗VGn∆nΣ

−1
n

)
S̄K (4.22)

=
1

2
vecT

(
(VGn∆nΣ

−1
n )TG̃nEnVBn

)
S̄K (4.23)

=
1

2
vecT

(
∆2

nV
T
Bn

EnVBn

)
S̄K =

1

2
diagT

(
∆2

nV
T
Bn

EnVBn

)
,(4.24)

where, in (4.22) and (4.23), we have used that (A⊗B)(C⊗D) = AC⊗BD and vec(ABC) =

(CT ⊗A)vecB for any matrices A, B, C, and D such that the matrix products AC, BD, and

ABC are well defined [116]. Finally, (4.24) follows from the definition of the reduction matrix

(see Appendix 4.A.6). This concludes the proof.

4.A.3 Proof of Lemma 4.3

Let ψ be some fixed MMSE that can be obtained as

ψ = mmseG(snrG) = mmseA(snrA), (4.25)
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wheremmseG(snrG) andmmseA(snrA) give the MMSE as a function of the SNR for a Gaus-

sian and for an arbitrary input distribution, respectively. Thus, snrG and snrA are the associated

required SNRs to achieve the error ψ for these distributions.

Similarly, the required SNR to obtain a certain error can be computed by the inverse

MMSE function as snrG = mmse−1
G (ψ) and snrA = mmse−1

A (ψ).

For the Gaussian case, it is broadly known that ψ = mmseG(snrG) = 1
1+snrG

with deriva-

tive dmmseG(snrG)
dsnrG

= −1
(1+snrG)2

. Similarly, snrG = mmse−1
G (ψ) = 1

ψ
− 1 and dmmse−1

G (ψ)

dψ = −1
ψ2 .

Note that for any generic function f(x), such that f(x) and f−1(x) are differentiable, it is

verified that df−1(f(x))
dx = df−1(f(x))

df(x)
df(x)

dx = 1. By applying the previous property, the following

relation is obtained:

dmmse−1
G (ψ)

dψ
dmmseG(snrG)

dsnrG
=

dmmse−1
A (ψ)

dψ
dmmseA(snrA)

dsnrA
.

Recall that G(ψ) = 1
ψ
−mmse−1

A (ψ) as ψ ∈ [0, 1]. Then, its derivative is

dG(ψ)

dψ
=
−1

ψ2
− dmmse−1

A (ψ)

dψ
=

dmmse−1
G (ψ)

dψ
− dmmse−1

A (ψ)

dψ

=

dmmse−1
G (ψ)

dψ
dmmseA(snrA)

dsnrA

(
dmmseA(snrA)

dsnrA
− dmmseG(snrG)

dsnrG

)
.

In [118], it was recently shown that mmseA(snrA) = E{M2} and dmmseA(snrA)
dsnrA

= −E{M2
2},

where M2 = var{x|√snrAx+ n}. Therefore, the first term of the previous equation is always

nonnegative since both the MMSE and the inverse MMSE functions are decreasing for any

distribution. Accordingly, we have that

sign

(
dG(ψ)

dψ

)
= sign

(
dmmseA(snrA)

dsnrA
− dmmseG(snrG)

dsnrG

)
(4.26)

= sign

(
dmmseA(snrA)

dsnrA
+

1

(1 + snrG)2

)
(4.27)

= sign

(
dmmseA(snrA)

dsnrA
+mmseA(snrA)2

)
(4.28)

= sign
(
−E{M2

2}+ (E{M2})2) = sign (−var{M2}) , (4.29)

where in (4.28), we have used that snrG = 1
mmseA(snrA)

− 1, which follows from (4.25). In

(4.29), we have used the recently found expressions of the MMSE and its derivative [118].

Finally, as the variance is nonnegative, dG(ψ)
dψ ≤ 0 and G(ψ) is a monotonically decreasing

function.

88



4.A. Appendix

4.A.4 Proof of Theorem 4.1

The optimality of the algorithms is proved by demonstrating that the power allocation obtained

by means of each of the algorithms satisfies the KKT sufficient optimality conditions:

(1.) ∂L
∂pkn

= 0, ∀k, n.

(2.) Ts
∑`

j=1

∑
n∈τj

∑K
k=1 pkn ≤

∑`
j=1 Ej , ` = 1, . . . , J .

(3.) λ` ≥ 0, ` = 1, . . . , J .

(4.) λ`
(
Ts
∑`

j=1

∑
n∈τj

∑K
k=1 pkn −

∑`
j=1 Ej

)
= 0, ` = 1, . . . , J .

Moreover, we know that by the end of the transmission the battery must be empty since,

otherwise, the remaining energy in the battery can be used to increase the total mutual infor-

mation. Thus, (2.) must be met with equality for ` = J . Note that both algorithms compute a

power allocation strategy that satisfies the ECCs and that by the end of the last channel access

all the energy has been used. Therefore, (2.) is satisfied ∀` and it is satisfied with equality for

` = J . From Property 4.1, if the water level is non-decreasing in time, then (3.) can be verified.

In the NDA, the water level is clearly non-decreasing in time. Regarding the FSA, if some ECC

is not satisfied, it is because the water level must be reduced before the point where the ECC is

not satisfied and increased afterwards. Indeed, this is what the algorithm does in the procedure

of finding the optimal pools. Therefore, (3.) is also satisfied in the FSA. Finally, since both

algorithms compute the optimal power allocation within a pool by using the HgWFA, where

the water level is found by forcing that all the available energy must be used by the end of the

pool, conditions (1.) and (4.) are satisfied. With this, we have demonstrated that the power

allocation computed by the NDA and the FSA is the optimal power allocation.

4.A.5 Computational complexity of the algorithms

In this appendix, we study the performance of the two algorithms that compute the MIMO

Mercury Water-Flowing solution, the NDA and the FSA.

We have carried out a three-fold analysis, namely, the best, worst and average computa-

tional complexity. As mentioned before, both algorithms internally call the HgWFA a certain

number of times to find the optimal solution. The performance is evaluated in terms of op-

erations and number of calls to the HgWFA required to compute the MIMO Mercury Water-

Flowing solution, CHgWFA.
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Before getting into the complexity of each of the aforementioned scenarios, let us first

compute the complexity of the HgWFA when the algorithm computes the power allocation of

NK parallel channels, i.e.,

CCHgWF(N,K) = âNK, (4.30)

where â is a constant parameter that depends, among others, on the size of the MMSE table

required to compute the inverse MMSE function mmse−1
k (·) and on the tolerance used in the

stopping criteria of theHgWFA. Now, let us proceed to compute the computational complexity

of the NDA and FSA.

4.A.5.1 Computational complexity in the best case scenario

NDA: The best case scenario for the NDA occurs when the resulting water levels of applying

the HgWFA at each epoch are non-decreasing throughout all the transmission. Thus, the best

case computational complexity for the NDA is

CCB
NDA(N,K, J) =

J∑
j=1

CCHgWF(Lj, K) =
J∑
j=1

âLjK = âNK, (4.31)

where Lj is the number of channel accesses contained in τj and, accordingly,
∑J

j=1 Lj = N .

Note that the number of calls to theHgWFA is CHgWFA = J.

FSA: Regarding the FSA the best performance is obtained when the algorithm can stop at

the first iteration, i.e., after applying the HgWFA to the N channel accesses it is observed that

the resulting power allocation satisfies all the ECCs. Thus, we have that

CCB
FSA(N,K, J) = CCHgWF(N,K) = âNK. (4.32)

Note that the number of calls to theHgWFA for the FSA in the best case scenario is CHgWFA =

1.

Observe that, even though CHgWFA differs from one algorithm to another, they achieve

the same computational complexity in terms of operations in the best case scenario. However,

note that the best case scenario for the FSA occurs when the water level of the optimal power

allocation remains constant throughout all the transmission time, in other words, there is a

single pool. However, the best case scenario for the NDA is completely the opposite, the water

level is different at every epoch and, thus, the total number of pools is J .
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Figure 4.6: Representation of the NDA algorithm.

4.A.5.2 Computational complexity in the worst case scenario

NDA: The worst case computational complexity for the NDA is produced when at every iter-

ation of the algorithm it is observed that the water level is decreasing in some epoch transition.

Figure 4.6 shows an example of how the algorithm proceeds for J = 4. In the first iteration a

total of J calls to the HgWFA are required. Then, in the second iteration, an additional call is

performed to merge the first two pools where it is observed that the water level is decreasing.

As we are considering the worst case scenario, the resulting water levels will be decreasing at

some pool transition and an additional call is required until all epochs have been merged in a

single pool. Therefore, the worst case computational complexity for the NDA is

CCW
NDA(N,K, J) =

J∑
j=1

CCHgWF(Lj, K) +
J∑
j=2

CCHgWF(jLj, K) (4.33)

= âKN +
J∑
j=2

âKjN/J (4.34)

= O
(
â

2
KNJ

)
, (4.35)

where the first summation comes from the first iteration of the algorithm and the second one

comes from merging the epochs with decreasing water level, i.e., iterations from 2 to J . In
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Iteration Pool Complexity
1 P1 = {τ1, . . . , τJ} âK

∑J
j=1 Lj

2 P1 = {τ1, . . . , τJ−1} âK
∑J−1

j=1 Lj
...

...
...

J P1 = {τ1} âKL1

Total P?1 = âK[JL1 + (J − 1)L2 + · · ·+ LJ ]

J + 1 P2 = {τ2, . . . , τJ} âK
∑J

j=2 Lj
...

...
...

2J − 1 P2 = {τ2} âKL2

Total P?2 = âK[(J − 1)L2 + (J − 2)L3 + · · ·+ LJ ]

...
J(J+1)

2
PJ = {τJ} âKLJ

Total P?J = âKLJ

Table 4.2: Computational complexity of the FSA in the worst case scenario.

(4.34), we have made the simplification of having equal length epochs, i.e., Lj = N/J , ∀j.
The number of calls to theHgWFA is CHgWFA = 2J − 1.

FSA: The FSA starts by assuming that the first pool contains all the epochs, then, it performs

HgWF and checks whether the ECCs are satisfied, which are not as we are considering the

worst case scenario. Then, it removes the last epoch from P1 and tries again and so forth until

P1 just contains one epoch and then the constraints must be satisfied. Therefore, a total of J

iterations are required to determine P?1. Similarly, J−1 iterations are required to determine P?2.

The computational complexity at each iteration is summarized in Table 4.2 from where we can

conclude that the worst case computational complexity of the FSA is

CCW
FSA(N,K, J) =

J∑
j=1

âKLj(J − j + 1)j (4.36)

= âK
N

J

J∑
j=1

(jJ − j2 + j) = O
(
â

6
KNJ2

)
, (4.37)

where in (4.37) we have made the simplification of having equal length epochs, i.e., Lj = N/J ,

∀j. As every iteration performs a call toHgWF, the total number of calls is CHgWFA = J(J+1)
2

.
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4.A.5.3 Computational complexity in the average case scenario

For the average case scenario, due to the inherent difficulty of determining the computational

complexity measured in operations, we have just derived the complexity in terms of calls to

the HgWFA, i.e., CHgWFA. By doing this, we can see how the computational complexity is

affected by the number of energy arrivals J .

NDA: We start by analyzing the average performance of the NDA. Let q̂j , j = 1 . . . J − 1,

be the probability that the water level decreases at some epoch transition. Let us assume equal

probability at all the transition q̂j = q̂, ∀j. Let CNDA
HgWFA be a random variable that, for a

certain call to the NDA algorithm, denotes the number of calls to the HgWFA. Note that the

minimum number of calls to the HgWFA is J and, from here, an additional call is produced

every time that a water level decrease is produced. Observe that this additional number of calls

is a binomial distribution of parameters J − 1 and q̂, i.e., B (J − 1, q̂). Therefore, CNDA
HgWFA =

J + B (J − 1, q̂) and the mean and variance are

E {CNDA
HgWFA} = J + E{B (J − 1, q̂)} = J + (J − 1)q̂ = J(q̂ + 1)− q̂, (4.38)

var{CNDA
HgWFA} = var{B (J − 1, q̂)} = (J − 1)q̂(1− q̂). (4.39)

FSA: Similarly for the FSA, let p̂j , j = 1 . . . J − 1, denote the probability that the j-th ECC

of the FSA is not satisfied. We assume that this probability is equal for all the constraints

p̂j = p̂, ∀j. Let CFSA
HgWFA be a random variable that, for a certain call to the FSA algorithm,

denotes the number of calls to the HgWFA. To determine E {CFSA
HgWFA} for a general J , we

first obtain in Table 4.3, the number of calls to theHgWFA, CFSA
HgWFA, for some specific values

of J as a function of the unfulfilled constraints; note that up to J − 1 constraints can be non

satisfied. In Table 4.3, 4 and 8 denote that a certain constraint is satisfied or not, respectively.

For example, when J = 3, the ECCs that can be unfulfilled are in the transitions of τ1 → τ2,

which is depicted in the first column, and τ2 → τ3, in the second column. After carefully

examining the previous table, one may realize that there exists a fixed cost that depends on the

number of unfulfilled constraints b̂ that is b̂ + 1 (at least, one call to the HgWFA is required

before and after the unfulfilled constraint) and a variable cost that depends on the placement of

each unfulfilled constraint. If the position of a given unfulfilled constraint is the last one, the

associated variable cost is 1. If it is the one before the last one, the variable cost is 2 and so

forth up to the case in which the unfulfilled constraint is the first ECC where the variable cost

is J − 1.
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J=3
Constraint CFSA

HgWFA Probability
4 4 1 (1− p̂)2

4 8 3 (1− p̂)p̂
8 4 4 (1− p̂)p̂
8 8 6 p̂2

E {CFSA
HgWFA} = (1− p̂)2 + 7(1− p̂)p̂+ 6p̂2

J=4
Constraint CFSA

HgWFA Probability
4 4 4 1 (1− p̂)3

4 4 8 3 (1− p̂)2p̂
4 8 4 4 (1− p̂)2p̂
8 4 4 5 (1− p̂)2p̂
4 8 8 6 (1− p̂)p̂2

8 4 8 7 (1− p̂)p̂2

8 8 4 8 (1− p̂)p̂2

8 8 8 10 p̂3

E {CFSA
HgWFA} = (1− p̂)3 + 12(1− p̂)2p̂+ 21(1− p̂)p̂2 + 10p̂3

J=5
Constraint CFSA

HgWFA Probability
4 4 4 4 1 (1− p̂)4

4 4 4 8 3 (1− p̂)3p̂
4 4 8 4 4 (1− p̂)3p̂
4 8 4 4 5 (1− p̂)3p̂
8 4 4 4 6 (1− p̂)3p̂
4 4 8 8 6 (1− p̂)2p̂2

4 8 4 8 7 (1− p̂)p̂2

8 4 4 8 8 (1− p̂)2p̂2

4 8 8 4 8 (1− p̂)2p̂2

8 4 8 4 9 (1− p̂)2p̂2

8 8 4 4 10 (1− p̂)2p̂2

4 8 8 8 10 (1− p̂)p̂3

8 4 8 8 11 (1− p̂)p̂3

8 8 4 8 12 (1− p̂)p̂3

8 8 8 4 13 (1− p̂)p̂3

8 8 8 8 15 p̂4

E {CFSA
HgWFA} = (1− p̂)4 + 18(1− p̂)3p̂+ 48(1− p̂)2p̂2 + 46(1− p̂)p̂3 + 15p̂4

Table 4.3: Computational complexity of the FSA in the average case scenario (in terms of calls
to the HgWFA) for different values of J . 4 and 8 denote that a certain constraint is satisfied
or not, respectively.
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From this observation we can find E {CFSA
HgWFA} for a general J as

E {CFSA
HgWFA} =

J−1∑
b=0

[(
J − 1

b̂

)
(b̂+ 1) +

(
J − 2

b̂− 1

)
(J − 1)J

2

]
p̂b̂(1− p̂)J−1−b̂ (4.40)

=
J−1∑
b̂=0

(
J − 1

b̂

)(
b̂

(
J

2
+ 1

)
+ 1

)
p̂b̂(1− p̂)J−1−b̂, (4.41)

=

(
J

2
+ 1

)
(J − 1)p̂+ 1 =

(
J2

2
+
J

2
− 1

)
p̂+ 1, (4.42)

where in (4.42), we have used that the mean of a binomial distribution with parameters n and

p̂ is np̂. Similarly, the variance of CFSA
HgWFA can be obtained through the variance of a binomial

distribution as

var{CFSA
HgWFA} =

(
J

2
+ 1

)2

(J − 1)p̂(1− p̂). (4.43)

This concludes the analysis of the computational complexity of the algorithms.

4.A.6 Properties of the reduction matrix

The reduction matrix, S̄K ∈ RK2×K , was introduced in [76] and is defined as:

[S̄K ]i+(j−1)k,z = δ̄ijz, {i, j, z} ∈ [1, K], (4.44)

with δ̄ijz = 1 if i = j = z and δ̄ijz = 0, otherwise.

Note that from the structure of S̄K , in each column there is only one entry different than

zero and it is equal to one. For instance, the matrices for K = 2 and K = 3 are:

S̄2 =


1 0

0 0

0 0

0 1

 , and S̄3 =



1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1



.
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The reduction matrix is designed so that

S̄T
Kvec(A) = diag(A) (4.45)

for A ∈ RK×K . In this appendix, we summarize some additional properties of the reduction

matrix:

Property 4.3. Multiplication properties:

• Let A ∈ RK2×R, then the multiplication S̄T
KA removes K2 −K rows of A.

• Let A ∈ RK×R, then the multiplication S̄KA adds K2 −K rows of zeros to A.

• Let A ∈ RR×K , then the multiplication AS̄T
K adds K2 −K columns of zeros to A.

• Let A ∈ RR×K2 , then the multiplication AS̄K removes K2 −K columns of A.

Proof: The proof follows directly from the structure of the reduction matrix.

Property 4.4. Let A ∈ RK×R, B ∈ RK×R, then S̄T
K (A⊗B) S̄K = A ◦B.

Proof: See [76, Lemma A.2].

Property 4.5. S̄T
KS̄K = IK .

Proof: The proof directly follows from setting A = IK and B = IK in Property 4.4.

Property 4.6. Let A ∈ RK×K , then S̄T
K(A⊗ IK)S̄K = Diag(diag(A)).

Proof: The proof directly follows from setting B = IK in Property 4.4.

Property 4.7. Let v ∈ RK , then S̄T
K(v ⊗ IK) = Diag(v).

Proof: The Kronecker product expands the vector v in a K2 ×K matrix that stacks

K diagonal matrices. Then, the multiplication by S̄T
K eliminates rows (see Property 4.3) so that

the resulting matrix is Diag(v).

Property 4.8. Let A ∈ RK2×K2 be a diagonal matrix, then S̄KS̄T
KAS̄K = AS̄K

Proof: From Property 4.3, S̄T
KA removes rows from A. Then, the product by the left

by S̄K adds rows of zeros. As a result, S̄KS̄T
KA ∈ RK2×K2 zeroes K2−K rows of A. Finally,

the product with S̄K from the right removes K2 − K columns. As A is diagonal, the entries

that are modified by multiplying from the left by S̄KS̄T
K are later removed by multiplying from

the right by S̄K . Therefore, S̄KS̄T
KAS̄K is equal to AS̄K , which directly removes the columns.
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Chapter 5
On the optimal resource allocation for a

wireless energy harvesting node considering

the circuitry power consumption

5.1 Introduction

Most transmission strategies like the MIMO Mercury Water-Flowing presented in the previous

chapter or the well-known CWF,HgWF, and DWF (cf. §2.2.1 and §2.3 [57, 84]) consider that

the radiated power is the unique source of energy consumption at the transmitter. Nevertheless,

as it has been argued in §2.1.4, this is a reasonable assumption only when the link distance is

large; in short-range communications, the remaining energy sinks at the transmitter, such as the

energetic cost associated with having the transceiver “on” in a certain channel access, must be

also accounted for in the design, as it was done in the Glue pouring strategy for non-harvesting

nodes (cf. §2.2.1.3 [50, 51]).

According to this, the aim of this chapter is to study and analyze the impact of other

sources of energy consumption at the transmitter (apart from the radiated power) over the

transmission strategy that maximizes the mutual information in a point-to-point link through a

discrete-time fading channel composed of several parallel independent streams.

In particular, since we consider several parallel subchannels at each channel access, we

generalize the power consumption model C1 presented in (2.4), to account not only for the

channel access activation cost but also for the activation cost of each parallel subchannel.

As it has been argued in the state of the art in Chapter 2, recently, a few works have studied

the impact of the channel access activation cost in point-to-point links with energy harvesting at
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Continuous channel model Discrete channel model
Static Temporal fading Temporal fading

SISO [49] [93] This chapter
Frequency/space [49]: Cost per channel access only This chapter: Circuitry cost per
parallel channels temporal and frequency/spatial accesses

Table 5.1: State of the art: circuitry energy consumption in WEHNs

the transmitter, which are summarized in Table 5.1. In [49] and [93], a continuous-time chan-

nel was considered: the authors of [93] studied a Single-Input Single-Output (SISO) channel

and showed that the mutual information maximization problem is convex when the channel is

continuous in time; whereas in [49], a system composed by multiple parallel AWGN channels

was studied, but the channel was considered static along time, which substantially simplifies

the analysis since, when the channel is static, there is no tradeoff between channel gain and en-

ergy availability (see §5.2). Additionally, Xu et al. [49] considered a power consumption model

that has a fixed cost for activating the transmitter in a given time instant independently of the

number of active parallel channels. Due to this, their model is only applicable to a limited set

of transmitter architectures as it is argued in §5.2.

In opposition to [49] and [93], we consider a WEHN operating in a discrete-time channel,

composed of multiple parallel streams at each channel use, and that is affected by temporal and

spatial/frequency fading. The fact of considering a discrete-time channel model is key because

it is the actual channel model that is being used in current digital communication systems, e.g.,

in OFDM. As it is later shown, the discreteness of the channel and the temporal variations of

the channel coefficients substantially complicate the problem since it is no longer convex.

According to this, the major contributions of this chapter are:

• Generalizing the power consumption model in (2.4) to consider multiple parallel AWGN

channels and showing its applicability in practical transmitter architectures.

• Studying the resource allocation that maximizes the mutual information over N chan-

nel accesses when there are multiple parallel data streams by jointly considering energy

harvesting and the different sources of energy consumption at the transmitter.

• Deriving an upper bound of the achievable mutual information and two asymptotically

optimal solutions of the offline maximization problem, i.e., solutions that tend to the

optimal when the number of streams or channel accesses grows without bound.

• Proposing an intuitive graphical representation of the asymptotically optimal offline so-

lution, named Boxed Water-Flowing.
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• Implementing an online algorithm that achieves a mutual information that is close to the

one achieved by the optimal offline solution.

• Evaluating and comparing the computational complexities of the proposed strategies.

This chapter is structured as follows. In §5.2, the system model and problem formulation

are presented. The offline resource allocation problem is studied in §5.3 from two perspectives:

integer relaxation (§5.3.1) and through the dual problem (§5.3.2). A graphical interpretation of

the offline solution is presented in §5.3.3. In §5.4, the online solution is presented. The mutual

information and computational requirements of the different algorithms are evaluated in §5.5.

Finally, the chapter is concluded in §5.6.

5.2 System model and problem formulation

We consider a WEHN transmitting in a point-to-point link in which, at each channel access, the

communication channel can be decomposed into a set of K parallel non-interfering streams by

performing some joint signal processing at the transmitter and receiver, e.g., by using OFDM

or by diagonalizing a MIMO channel.

Let ykn be the channel output of the k-th stream at the n-th channel access, i.e.,

ykn =
√
pkngknxkn + wkn, k = 1, . . . , K, n = 1, . . . , N,

where xkn is the input symbol with E{||xkn||2} = 1; pkn is the radiated power; gkn is the

complex channel response with hkn = ||gkn||2 being the channel power gain; and wkn ∼
CN (0, 1) is the noise. First, in §5.3, we assume that the transmitter has non-causal knowledge

of all the channel gains. This assumption is removed in §5.4 for the design of the online

algorithm.

As in the previous chapters, we characterize the energy harvesting process at the trans-

mitter with the packetized model introduced in §2.1.1, which is depicted in Figure 2.13, and

assume an ideal energy storage that has an infinite capacity and no imperfections.

The power consumption at the transmitter depends on its hardware and software archi-

tecture. As we focus on architectures with multiple data streams, it naturally follows that the

transmitter may experience either a power consumption associated with the channel access ac-

tivation, α, or a power consumption associated with the activation of each of the streams, β, or

both simultaneously.

In this context, we propose a power consumption model that, as shown later, can be applied

to several transmitter architectures, which is a generalization of C1 in (2.5) to scenarios in which
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Figure 5.1: Example of MIMO and V-BLAST (B = IK) transmitter architectures.

there exist several parallel streams. The total consumed power at the n-th channel access is

modeled as:

C2(pn) = δ︸︷︷︸
Idle consumption

+
ξ

η

K∑
k=1

pkn︸ ︷︷ ︸
Transmission power

+ (α− δ)H`

(
K∑
k=1

pkn

)
︸ ︷︷ ︸

Consumption per active slot

+
K∑
k=1

βH`(pkn),︸ ︷︷ ︸
Consumption per active stream

(5.1)

where pn = [p1n, . . . , pKn]T is the vector of transmission radiated powers at the n-th channel

access; as argued in §2.1.4, ξ and η are the power amplifier output back-off and drain efficiency,

respectively [48]; and the constants δ, α and β model the idle state power consumption and the

power consumptions associated with the channel access and stream activation, respectively.

These constants have to accurately capture the different sources of energy consumption and

are dependent on the transmitter hardware/software architecture. For example, consider the

following architectures:

MIMO linear precoding: The information of the different streams is linearly processed

by a precoding matrix, B, and transmitted over the different antennas (see Figure 5.1). If the

channel access is active, the precoding operation usually1 activates all the RF chains at the

transmitter independently of the number of active streams. Thus, α would account for the

circuitry power consumption of all RF chains, whereas, the number of active streams affects

on the number of products and summations required for the linear precoding. In this context,

β models the power consumption at the base band processing boards of one of these products

and additions.

V-BLAST: The information of the different streams is directly sent over the channel with-

out performing any linear precoding, i.e., in Figure 5.1, set B = IK . In this architecture, the

1Excluding some specific precoder designs such as B = IK , the precoder is generally designed to transmit
through the channel eigenmodes and as a result, if one stream is active, all the elements at the output of the
precoding matrix are “active” (different than zero).
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number of active RF chains is equal to the number of active streams and thus β accounts for the

power consumption of each RF chain and α = 0 since there is no additional cost per channel

access.

OFDM: The number of operations required for the Inverse Fast Fourier Transform (IFFT)

depends on the number of active streams. Thus, the cost per operation of the IFFT can be

modeled through β and the cost of performing the serial to parallel conversion is mapped in α.

As mentioned in the introduction, the previous results for multi stream communications

with WEHNs [49], only considered architectures in which α 6= 0 and β = 0. Moreover, the

results in [49] only apply for time-static channels. Thus, we extend the results obtained in [49]

to a broader class of transmitter architectures and to consider time-varying fading channels.

The goal of this chapter is to derive the power allocation strategy P ∈ RK×N
+ with P =

[p1, . . . ,pN ] that maximizes the mutual information I(P) while satisfying the ECCs obtained

with the power consumption model C2 in (5.1) that impose that the battery level by the end of

the `-th epoch is nonnegative, i.e.,

[B(P)]` ,
∑̀
j=1

Ej − Ts
∑̀
j=1

∑
n∈τj

C2(pn) ≥ 0, ` = 1, . . . , J.

Accordingly, the mutual information maximization problem reads as

I? = maximize
P

I(P) (5.2a)

subject to B(P) � 0, (5.2b)

where, assuming Gaussian distributed input symbols, the mutual information at the k-th stream

of the n-th channel use is log(1 + hknpkn) and the accumulated mutual information is I(P) =∑N
n=1

∑K
k=1 log(1 + hknpkn).

The problem in (5.2) is nonsmooth and nonconvex due to the presence of the unit step

functions H` (x) within the ECCs; accordingly, its solution cannot be directly derived through

classical convex optimization techniques.

In this chapter, in order to tackle the nonconvex and nonsmooth problem in (5.2), we

substitute the step functions by an additional set of optimization variables that are named

Indicator Variables (IVs); whereas, in Chapter 6, we take a different approach based on a

Successive Smooth Approximation (SSA) of the step functions. Accordingly, the stream IV,
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ψkn, denotes whether a certain stream is active, i.e.,

ψkn =

 1 if pkn > 0,

0 if pkn = 0.

Similarly, the channel access IV, ρn, denotes when a certain channel access is active, i.e.,

ρn =

 1 if
∑

k pkn > 0,

0 if
∑

k pkn = 0.

Let Ψ = [ψ1, . . . ,ψN ] be the K × N matrix that contains the stream IVs, where the

vector ψn = [ψ1n, . . . , ψKn]T stacks the IVs of the different streams at the n-th channel access.

Similarly, ρ = [ρ1, . . . , ρN ] is a 1×N vector that contains the channel access IVs. Given these

new optimization variables, the ECCs in (5.2b) can be equivalently written as B(P,ρ,Ψ) � 0

with

[B(P,ρ,Ψ)]` ,
∑̀
j=1

Ej − Ts
∑̀
j=1

∑
n∈τj

(
αρn +

K∑
k=1

(pkn + βψkn)

)
, ` = 1, . . . , J, (5.3)

where to simplify the problem notation and without loss of generality we have assigned ξ
η

= 1

and δ = 0 (note that we can scale the constants α, β, and Ej to have ξ
η

= 1 and δ = 0).2

Similarly, the mutual information can be equivalently written in terms of the new opti-

mization variables as

I(P,ρ,Ψ) =
J∑
j=1

∑
n∈τj

ρn

K∑
k=1

ψkn log(1 + hknpkn).

Accordingly, the remainder of this chapter deals with deriving the resource allocation P,

ρ, and Ψ that maximizes the mutual information I(P,ρ,Ψ) while satisfying the ECCs,

I? = maximize
P,ρ,Ψ∈X

I(P,ρ,Ψ) (5.4a)

subject to B(P,ρ,Ψ) � 0, (5.4b)

2We assume that the node has enough energy to at least be kept in the idle state during the whole transmission
duration, i.e., Ts

∑`
j=1

∑
n∈τj δ ≤

∑`
j=1Ej ,∀` = 1, . . . , J, as otherwise the problem would not have a feasible

solution.
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where the feasible set of the optimization variables is

X = {pkn ≥ 0, ρn ∈ {0, 1}, ψkn ∈ {0, 1},∀k, n} .

To simplify the notation and without loss of generality, the remainder of the chapter as-

sumes that, within a given time index n, the streams are sorted with non-increasing channel

gains, i.e., h1n ≥ h2n · · · ≥ hKn, ∀n.

Note that (5.4) is not a convex optimization problem either as the feasible set X is not a

convex set and the objective function is not jointly convex in the optimization variables. The

complexity of (5.4) lies in the selection of the active channel accesses and streams (ρ and Ψ),

because once ρ and Ψ are fixed, the optimal power allocation in the active streams is given by

the DWF in (2.21) (see [10, 11] for more details).

The optimal stream and channel access selection depends on the tradeoff between the

magnitude of the channel gain and the energy availability and is a hard combinatorial prob-

lem [10, 11]. For instance, assuming that we knew in advance that a single channel access and

stream is active, then we could wonder which would be the pair of indices (k, n) among the

KN possibilities that provides the highest mutual information: the one with the best gain or

some other pair that has the highest energy availability but worse gain? The answer depends

on the specific values of the channel gains and the energy arrival distribution and, hence, the

derivation of the optimal solution to (5.4) is not straight forward.

Remark 5.1. If the transmitter does not have energy harvesting capabilities (which means that

it is only powered by the initial energy in the battery), then the presented system model still

applies by particularizing J = 1. To the best of our knowledge, even for the particular case

J = 1, this chapter is the first work to derive an asymptotically optimal power allocation for

battery operated nodes in a fading channel by considering both the channel access and stream

activation costs (α and β).

Remark 5.2. The system model and problem formulation could also include: (i) instantaneous

mask constraints on the transmission power (cf. §2.1.5); and (ii) concave non-linearities of the

RF amplifier.3 Although the structure of the solution and its graphical interpretation depend on

the considered scenario, the numerical algorithms proposed in the remaining of the chapter can

be trivially extended to include (i) and (ii).

In this context, in the following section we study two different offline feasible solutions

3The objective function should be modified to
∑J
j=1

∑
n∈τj ρn

∑K
k=1 ψkn log(1 +hkng(pkn)), where g(·) is

the non-linear concave function that returns the output power at the RF amplifier as a function of the input power.
Thus, the design variable would be the input power at the RF amplifier.
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that perform close to I?, whereas, in §5.4 we propose an online resource allocation.

5.3 Offline resource allocation

In this section, we analyze the offline resource allocation from two different perspectives,

namely, integer relaxation (§5.3.1) and duality (§5.3.2). In §5.3.3, we present a graphical inter-

pretation of the asymptotically optimal offline resource allocation.

5.3.1 Integer relaxation

In this section, we relax the original problem in (5.4) and formulate a similar convex optimiza-

tion problem whose solution upper bounds the solution to (5.4). Moreover, from the optimal

resource allocation of the relaxed problem, we derive a feasible solution to the original problem

in (5.4) whose mutual information is close to I?.

In this context, we have modified the objective function in (5.4) so that the new objective

function, i.e.,

Ĩ(P,Ψ) =
J∑
j=1

∑
n∈τj

K∑
k=1

ψkn log

(
1 +

hknpkn
ψkn

)
,

is jointly concave in the optimization variables. Additionally, we have relaxed the binary con-

straint in the IVs, i.e., letting ρn and ψkn to be in the interval [0, 1].4 The relaxed problem to

(5.4) is mathematically expressed as

Ĩ? = maximize
P,ρ,Ψ

Ĩ(P,Ψ) (5.5a)

subject to B(P,ρ,Ψ) � 0, (5.5b)

ψkn ≤ ρn, ∀k, n, (5.5c)

ψkn ≤ 1, −ψkn ≤ 0, ∀k, n, (5.5d)

−pkn ≤ 0, ∀k, n. (5.5e)

Note that in order to have a jointly concave objective function, we have removed the depen-

dency on ρn from the objective function; however, we have included the channel access activa-

tion constraint in (5.5c) to ensure that the channel access IV is at least as large as the pointwise

maximum of the stream IVs. Therefore, with (5.5c), we force that if any stream is active,

4In this section, ρn can be viewed as if it represented the n-th channel access usage fraction rather than just
indicating if the channel access is “on” or “off” and, similarly, ψkn can be interpreted as the usage fraction of the
k-th stream.
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ψkn > 0, the associated channel access circuitry consumption ρnα is correctly accounted for in

the ECCs in (5.5b), where [B(P,ρ,Ψ)]` is defined in (5.3). In (5.5d) and (5.5e), we ensure that

ψkn and pkn lie in their respective feasible sets. We do not have any constraint in the feasible set

of ρn; however, note that the value of the optimal ρn is always in [0, 1] since, in order to reduce

the term ρnα in the ECCs in (5.5b) (see (5.3)), the optimal ρn takes the minimum allowed value

in (5.5c) that is the pointwise maximum of the optimal ψkn, i.e., ρ̃?n = max{ψ̃?1,n, . . . , ψ̃?K,n},
therefore, ρ̃?n is also in the interval [0, 1]. Moreover, observe that if ψkn = {0, 1} and ρn =

{0, 1}, ∀k, n, then the value of the new objective function Ĩ(P,Ψ) is equal to the value of

the original function I(P,ρ,Ψ). This implies that the optimal solution to (5.4) is a feasible

solution to (5.5) and, hence, the solution to (5.5) upper bounds the solution to (5.4).

The Lagrangian of (5.5) is

L̃ = Ĩ(P,Ψ) +
J∑
`=1

λ` [B(P,ρ,Ψ)]`

+
J∑
j=1

∑
n∈τj

K∑
k=1

(−µkn(ψkn − ρn)− η̌kn(ψkn − 1) + η̂knψkn + ξknpkn) ,

where λ` and µkn are the Lagrange multipliers associated with the ECCs and the channel access

activation constraints, respectively; η̂kn, η̌kn are the multipliers associated with the feasible set

of ψkn; and ξkn is the multiplier associated with the feasible set of pkn.

Since Ĩ(P,Ψ) is jointly concave (it is easy to check that its Hessian matrix is negative

semidefinite) and the constraints are affine, (5.5) is a convex optimization problem and can be

solved by, e.g., interior point methods [63]. In the following lines, we study the KKT sufficient

optimality conditions, which are given in Table 5.2, to gain some knowledge on the structure of

the optimal solution to (5.5). This structural knowledge of the solution is later used in §5.3.3 to

devise the graphical interpretation of the asymptotically optimal solution and in §5.4 to design

the online resource allocation algorithm. From (5.6a), we obtain that

pkn = ψkn

(
1

−ξkn + Ts
∑J

`=j λ`
− h−1

kn

)
= ψkn

[
Wj − h−1

kn

]+
, (5.7)

where Wj = 1

Ts
∑J
`=j λ`

is the j-th epoch water level that is equal for all the active streams

contained in some channel access n ∈ τj and where we have used the slackness condition

(5.6e).

The j-th epoch water level, Wj , is related to the available energy at the transmitter through

the dependence with the Lagrange multipliers λ`, ` = j, . . . , J . As it is later shown in Lemma

5.1, when the available energy is very low, then Wj → 0 to satisfy the ECCs, the n-th channel
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∀ k, n :
∂L̃
∂pkn

=
ψknhkn

ψkn + hknpkn
+ ξkn − Ts

J∑
`=j

λ` = 0, (5.6a)

∀ k, n :
∂L̃
∂ψkn

= log

(
1 +

hknpkn
ψkn

)
− hknpkn
ψkn + hknpkn

−Ts
J∑
`=j

λ`β−µkn−η̌kn+η̂kn = 0. (5.6b)

∀ n : ∂L̃
∂ρn

= −Ts
J∑
`=j

λ`α+
K∑
k=1

µkn = 0. (5.6c)

∀ ` = 1, . . . , J : λ` [B(P,ρ,Ψ)]` = 0. (5.6d)

∀ k, n : ξknpkn = 0,
(5.6e)

η̂knψkn = 0,
(5.6f)

η̌kn(ψkn − 1) = 0,
(5.6g)

µkn(ψkn − ρn) = 0.
(5.6h)

∀ ` = 1, . . . , J, ∀ k, n : λ` ≥ 0, ξkn ≥ 0, η̂kn ≥ 0, η̌kn ≥ 0, µkn ≥ 0 (5.6i)

Table 5.2: KKT optimality conditions of problem (5.5).

access is “off” (ρn = 0), and the mutual information of the n-th channel access is zero. Then,

if the available energy grows, Wj increases and there is a point that we refer to as the n-th

channel access cutoff water level, Ŵn(M?
n), in which the obtained reward in terms of mutual

information becomes higher than the activation cost. As it is shown next, Ŵn(M?
n) depends

on α, β, the number of streams that contribute to the channel access activation, M?
n ∈ [1, K],

which is a priori unknown, and the channel gains of these streams. Thus, when the available

energy and the other system parameters are such that Wj = Ŵn(M?
n), the n-th channel access

becomes “partially active”, i.e., ρn ∈ (0, 1). Finally, if the available energy is very high, the

channel access is completely active, i.e., ρn = 1. In the following lemma, we derive the

expression of the channel access cutoff water level as a function ofM?
n and later, in Proposition

5.1, we propose a low complexity method to obtain M?
n.

Lemma 5.1. The optimal channel access IV satisfies that

ρ̃?n =


1 if Wj > Ŵn(M?

n),

(0, 1) if Wj = Ŵn(M?
n),

0 if Wj < Ŵn(M?
n),

n ∈ τj,
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where the n-th channel access cutoff water level reads as

Ŵn(Mn) =
1
Mn

(α +Mnβ −
∑Mn

k=1 h
−1
kn )

W0

(∏Mn
k=1 h

1
Mn
kn

eMn
(α +Mnβ −

∑Mn

k=1 h
−1
kn )

) , (5.8)

and depends on α, β, the number of streams that contribute to the channel access activation

Mn and on the channel gains of these streams. W0(·) is the positive branch of the Lambert

function [80]. Thus, the optimal resource allocation of the streams k ∈ [1,M?
n] satisfies that

p̃?kn =


(
Wj − h−1

kn

)
if Wj > Ŵn(M?

n),

ψ̃?kn
(
Wj − h−1

kn

)
if Wj = Ŵn(M?

n),

0 if Wj < Ŵn(M?
n),

ψ̃?kn =


1 if Wj > Ŵn(M?

n),

(0, 1) if Wj = Ŵn(M?
n),

0 if Wj < Ŵn(M?
n),

n ∈ τj.

Proof: See Appendix 5.A.1.

Remark 5.3. Ŵn(Mn) increases with both α and β, and decreases with hkn, ∀k ∈ [1,Mn] (the

proof follows from Lemma 5.4.b in Appendix 5.A.3).

Note that, in Lemma 5.1, we have used that the M?
n streams that contribute to the channel

access activation are the ones with the best channel gains, i.e., h1n, . . . , hM?
nn, because these

streams are the ones that contribute the most to the objective function. Intuitively, the M?
n

streams that become active first share the cost of using the channel access α. Once the channel

access is being used, the remaining streams, k > M?
n, may become active by just paying their

own stream circuitry cost, β. As a result of this, the streams k ∈ (M?
n, K] experience different

activation water levels as shown in the following lemma:

Lemma 5.2. The optimal resource allocation of the streams k ∈ (M?
n, K] satisfies that

p̃?kn =


(
Wj − h−1

kn

)
if Wj > W̄kn,

ψ̃?kn
(
Wj − h−1

kn

)
if Wj = W̄kn,

0 if Wj < W̄kn,

ψ̃?kn =


1 if Wj > W̄kn,

(0, 1) if Wj = W̄kn,

0 if Wj < W̄kn,

n ∈ τj,
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where the k-th stream cutoff water level at the n-th channel use reads as

W̄kn =
β − h−1

kn

W0

(
βhkn−1

e

) , k ∈ (M?
n, K], (5.9)

and depends on the stream circuitry consumption, β, and the stream gain hkn.

Proof: See Appendix 5.A.2.

Remark 5.4. When β → 0, the cutoff water level in DWF is recovered, i.e., W̄kn = h−1
kn (see

(2.21)). Moreover, W̄kn increases with β and decreases with hkn (this can be proved similarly

to the proof of Lemma 5.4.b in Appendix 5.A.3).

Note that for coherence, W̄kn > Ŵn(M?
n), ∀k > M?

n, which implies that the streams

with higher gains are activated first. However, from the expressions (5.8) and (5.9), this is not

obvious. Indeed, if W̄k′,n < Ŵn(M?
n) for some k′ > M?

n, then the stream k′ would become

active before the channel access was active, which is a logical contradiction. If such a situation

happens, the stream k′ should also contribute to activate the channel access, which means that

actually M?
n is not the optimal number of streams to activate the channel access. Since the mu-

tual information of the n-th channel access is zero until the channel access becomes active, the

optimal number of active streams at the channel access cutoff water level is the one that allows

to activate the channel access with the lowest water level, i.e.,M?
n = arg minimizeMn Ŵn(Mn).

To find M?
n, an exhaustive search over Mn could be performed. However, this may require a

high computational complexity (especially when K � 1) that can be reduced by means of the

following procedure:

Proposition 5.1. The n-th channel access cutoff water level, Ŵn(M?
n), can be found by per-

forming a forward search over Mn, i.e.,

(1.) Initially, set Mn := 1.

(2.) Compute Ŵn(Mn) and W̄(Mn+1)n.

(3.) Check if Ŵn(Mn) < W̄(Mn+1)n: if the condition is true, thenM?
n = Mn and the algorithm

ends; otherwise, increase Mn, i.e., Mn := Mn + 1 and go back to step 2.

Proof: See Appendix 5.A.3.

Until now, we have derived Lemmas 5.1, 5.2 and Proposition 5.1 to gain some knowledge

on the structure of the optimal solution to (5.5). As mentioned before, since (5.5) is a convex

optimization problem, the resource allocation that maximizes (5.5), {P̃?, ρ̃?, Ψ̃
?}, can be found
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Algorithm 5.1 Close to optimal solution to (5.4) from integer relaxation

Require: {P̃?, ρ̃?, Ψ̃
?} and Γ ∈ (0, 1)

1: Let S be the set that contain the partially used streams, i.e., S = {{k, n}|[ψ̃?]kn ∈ (0, 1)} and let
S1 = {{k, n}|[Ψ̃?

]kn ∈ [Γ, 1)} and S0 = {{k, n}|[Ψ̃?
]kn ∈ (0,Γ)} be a partition of S, where Γ is

a constant in (0, 1).
2: if |S| = 0 then
3: {P̂, ρ̂, Ψ̂} = {P̃?, ρ̃?, Ψ̃

?} . {P̂, ρ̂, Ψ̂} is the optimal solution to (5.4).
4: else
5: [P̂]kn = [P̃?]kn, [Ψ̂]kn = [Ψ̃

?
]kn, ∀{k, n} /∈ S. . Assign the resource allocation in

{P̃?, ρ̃?, Ψ̃
?} to all the streams not contained in S.

6: [P̂]kn = [P̃?]kn and [Ψ̂]kn = 1, ∀{k, n} ∈ S1; . Round up or down the stream IVs.
[P̂]kn = 0 and [Ψ̂]kn = 0, ∀{k, n} ∈ S0.

7: [ρ̂]n = maxk[Ψ̂]kn, ∀n = 1, . . . , N . . Compute the channel access IVs.
8: Ensure the feasibility of {P̂, ρ̂, Ψ̂} by scaling down the transmission radiated power of the

channel accesses that produce some ECC violation.
9: end if

10: return {P̂, ρ̂, Ψ̂}

by, e.g., interior point methods [63]. In Algorithm 5.1, we propose a procedure to derive

a feasible resource allocation of (5.4) , {P̂, ρ̂, Ψ̂}, from the solution to (5.5), {P̃?, ρ̃?, Ψ̃
?},

whose mutual information, Î = I(P̂, ρ̂, Ψ̂), performs close to I?, as argued in the following

lines.

Note that in general Î ≤ I? ≤ Ĩ?. However, these inequalities are tight (Î = I? = Ĩ?),
when, in Algorithm 5.1, we have that S = {∅}, or, equivalently, if Wj 6= Ŵn(M?

n) and Wj 6=
W̄kn, ∀n ∈ τj,∀j,∀k > M?

n. This means that {P̃?, ρ̃?, Ψ̃
?} is the optimal resource allocation

to (5.4). Alternatively, when S 6= {∅}, we know that the optimality gap, i.e., I?− Î, is at most

Ĩ? − Î and is closely related to the cardinality of S. Since for most of the streams and channel

accesses the water level is different to the cutoff water level, we know that |S| � KN , which

implies that the optimal resource allocation to (5.5) is used in the majority (KN − |S|) of the

streams. This discussion is later continued in Remark 5.7 once the graphical representation of

the asymptotically optimal solution is presented.

Remark 5.5. Observe that {P̃?, ρ̃?, Ψ̃
?} is the optimal solution to the time continuous channel

problem. Hence, if we particularize K = 1, then our solution reduces to the directional glue

pouring algorithm introduced in [93].

In the following section, we solve the dual problem to (5.4). Interestingly, the concept of

the cutoff water level also appears when solving the dual problem, which is indeed surprising

due to the great difference between the relaxed and dual problem approaches.
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5.3.2 Duality

In this section, we study the Lagrange dual problem to (5.4) and show that, even though (5.4) is

not a convex optimization problem, the duality gap tends asymptotically to zero as the number

of streams or channel accesses per epoch grows without bound.

The Lagrangian of (5.4) is

L(P,ρ,Ψ,λ) = I(P,ρ,Ψ) + λTB(P,ρ,Ψ),

where λ = [λ1, . . . , λJ ]T is the dual variable that contains the Lagrange multipliers associated

with the ECCs. The dual function is defined for λ � 0 as

g(λ) = maximize
P,ρ,Ψ ∈ X

L(P,ρ,Ψ,λ)

(see [63]) and yields to upper bounds to the maximum achievable mutual information I? ob-

tained by maximizing the primal problem (5.4), i.e., I? ≤ g(λ). The Lagrange dual problem,

D? = minimize
λ�0

g(λ),

is a convex program that determines the best upper bound on I? as I? ≤ D? ≤ g(λ). The

duality gap is defined as D? − I? and it is zero if Slater qualification constraints are satisfied.

However, in our problem the Slater qualification constraints are not satisfied since the feasible

set X is not convex and, therefore, the duality gap might not be zero.

The time-sharing condition introduced in [119] provides a condition under which the du-

ality gap is zero even though the primal optimization problem is not convex. In the following

proposition, we demonstrate that the time-sharing condition is asymptotically satisfied as the

number of streams or channel accesses per epoch grows without bound.

Proposition 5.2. The time-sharing condition is asymptotically satisfied when, within each

epoch, every channel realization is observed a sufficiently large number of times.5

Proof: See Appendix 5.A.6.
5The time sharing condition has been broadly used in different non-harvesting scenarios where the nodes

have to satisfy a single sum-power constraint. In such non-harvesting scenarios, the requirement for the asymptotic
fulfillment of the time sharing condition is that every channel realization must be observed a large number of times
[119]. When energy harvesting is considered, the problem is constrained by a set of ECCs and the time-sharing
condition is asymptotically satisfied if, within each epoch, every channel realization is observed a sufficiently
large number of times. When K = 1, it is necessary that every channel realization is observed in a sufficiently
large number of channel accesses. This situation happens, for instance, when the number of channel accesses per
epoch is large, i.e., ej+1 − ej � 1, ∀j, and Tc � Ts. Whereas when K > 1, this condition is more likely to be
fulfilled due to the additional (space or frequency) dimension.
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Algorithm 5.2 Projected subgradient
Initialization:

Set q := 0 and initialize λ(0) to any value such that λ(0) � 0.
For all n = 1, . . . , N , compute Ŵn(M?

n) according to (5.8) with M?
n obtained from the forward

search in Proposition 5.1.
Step 1: If a termination condition is met, the algorithm stops.
Step 2: Compute the optimal primal variables at the q-th iteration that are

[P(q),ρ(q),Ψ(q)] = arg maximizeP,ρ,Ψ∈X L(P,ρ,Ψ,λ(q))

by means of Algorithm 5.3 that requires λ(q) and Ŵn(M?
n).

Step 3: Update the dual variable following the subgradient, i.e., ∀j = 1, . . . , J ,

[λ(q+1)]j = λ
(q+1)
j , with λ

(q+1)
j =

[
λ

(q)
j − s(q)[B(P(q),ρ(q),Ψ(q))]j

]+
.

Step 4: Set q := q + 1 and go to Step 1.

Thanks to the previous proposition, when the number of streams or channel accesses per

epoch is high and the channel variations in one of the dimensions (time, space or frequency) are

slow, the duality gap tends to zero and, consequently, the solution to D? asymptotically tends

to I?. At this stage, it is important to highlight that, in practice, it is not necessary that the

number of streams or channel accesses per epoch grows without bound; a small duality gap is

already observed for small values of these magnitudes as verified in the simulations results (see

§5.5) where K = 8 and the mean number of channel accesses per epoch is 5. This behaviour

was previously observed in scenarios without energy harvesting in, e.g., [119].

To solve the dual problem we have implemented the projected subgradient method [120],

which is presented in Algorithm 5.2, that guarantees convergence if the updating step size s(q)

is correctly chosen. In this context, we have used s(q) = A√
q||B(P(q),ρ(q),Ψ(q))|| that satisfies the

diminishing conditions s(q) ≥ 0, limq→∞ s
(q) = 0 and

∑∞
q=1 s

(q) = ∞ [120], where A > 0

is an arbitrary constant. When the algorithm converges to the optimal dual variable, λ?, all

the ECCs are satisfied, which is ensured by the termination condition in Step 1. In the next

subsection, we explain Step 2 of Algorithm 5.2, i.e., how to obtain the primal variables P(q),

ρ(q) and Ψ(q) at the q-th iteration of the subgradient method.

5.3.2.1 Maximizing the Lagrangian for a given λ(q)

At every iteration of the subgradient algorithm, it is necessary to compute the optimal primal

variables given the dual variables of the iteration, i.e., λ(q). From the expression of g(λ), the

optimal primal variables at the q-th iteration are

[P(q),ρ(q),Ψ(q)] = arg maximize
P,ρ,Ψ∈X

L(P,ρ,Ψ,λ(q)).
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Note that the maximization of the Lagrangian is not a convex problem as X is not a convex set.

To solve the maximization of the Lagrangian we apply decomposition as follows:

maximize
P,ρ,Ψ∈X

L(P,ρ,Ψ,λ(q))

= maximize
P,ρ,Ψ∈X

I(P,ρ,Ψ) +
J∑
`=1

λ
(q)
`

∑̀
j=1

(Ej)− Ts
∑̀
j=1

∑
n∈τj

(
ρnα +

K∑
k=1

pkn + ψknβ

)
=

J∑
`=1

(
λ

(q)
`

∑̀
j=1

Ej

)
+

maximize
P,ρ,Ψ∈X

J∑
j=1

∑
n∈τj

[
ρn

( K∑
k=1

ψkn log(1 + hknpkn)
)
− Ts

(
ρnα +

K∑
k=1

pkn + ψknβ
) J∑
`=j

λ
(q)
`

]

=
J∑
`=1

(
λ

(q)
`

∑̀
j=1

Ej

)
+

J∑
j=1

∑
n∈τj

maximize
pn,ρn,ψn∈X

gn(pn, ρn,ψn).

We have reordered the sums over j and ` to decompose the Lagrangian maximization in N

independent maximization problems, one for each channel use, where the objective function is

gn(pn, ρn,ψn) = ρn

(
K∑
k=1

ψkn log(1 + hknpkn)

)
− 1

W
(q)
j

(
ρnα +

K∑
k=1

pkn + ψknβ

)

with W (q)
j = 1

Ts
∑J
`=j λ

(q)
`

being the water level of the j-th epoch at the q-th iteration.

Note that the problem

maximize
pn,ρn,ψn∈X

gn(pn, ρn,ψn)

is still a nonconvex problem due to the binary variables. However, after applying decomposi-

tion, it is feasible to perform an exhaustive search over ρn as there are only two possibilities

either ρn = 0 or ρn = 1. Thus, we can solve two separated maximization problems and select

the pointwise maximum of the two, i.e.,

maximize
pn,ρn,ψn∈X

gn(pn, ρn,ψn) = max
{

maximize
pn,ψn∈X

gn(pn, 0,ψn)︸ ︷︷ ︸
(SP 1)

,maximize
pn,ψn∈X

gn(pn, 1,ψn)︸ ︷︷ ︸
(SP 2)

}
.

(5.10)

These two problems are solved in the following lines and Table 5.3 summarizes the obtained

results.
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Subproblem Maximum value Optimal pn Optimal ψn

(SP 1) 0 p(SP 1)
n = 0 ψ(SP 1)

n = 0

(SP 2) − α

W
(q)
j

+
∑A(q)

n

k=1

(
log(W

(q)
j hkn) [p(SP 2)

n ]
k∈[1,A(q)

n ]
= W

(q)
j − h−1kn [ψ(SP 2)

n ]
k∈[1,A(q)

n ]
= 1

−1 + 1

W
(q)
j hkn

− β

W
(q)
j

)
[p(SP 2)
n ]

k∈(A(q)
n ,K]

= 0 [ψ(SP 2)
n ]

k∈(A(q)
n ,K]

= 0

Table 5.3: Optimal solution to the subproblems in (5.10).

Subproblem Maximum value Optimal pkn

(SP 2.1) 0 p(SP 2.2)
kn = 0

(SP 2.2) log(W
(q)
j hkn)− 1 + 1

W
(q)
j hkn

− β

W
(q)
j

p(SP 2.2)
kn = W

(q)
j − h−1

kn

Table 5.4: Optimal solution to the subproblems in (5.11).

Solution to (SP 1): By observing the objective function of (SP 1), i.e.,

gn(pn, 0,ψn) = − 1

W
(q)
j

(
K∑
k=1

pkn + ψknβ

)

and by noting that W (q)
j is positive, it is straight-forward to show that the optimal transmitted

powers and stream IVs of the n-th channel access are p(SP 1)
n = ψ(SP 1)

n = 0 and the maximum

value of the objective function is 0, as expected since ρn = 0.

Solution to (SP 2): To solve the second subproblem, which is nonconvex due to the stream

IVs, we can again apply decomposition as follows:

maximize
pn,ψn∈X

gn(pn, 1,ψn) = − α

W
(q)
j

+
K∑
k=1

maximize
pkn,ψkn∈X

gkn(pkn, ψkn),

where gkn(pkn, ψkn) = ψkn log(1 + hknpkn) − 1

W
(q)
j

(pkn + ψknβ). As before, after applying

decomposition, we can perform an exhaustive search over ψkn since there are only two possi-

bilities, i.e., either ψkn = 0 or ψkn = 1. Thus,

maximize
pkn,ψkn∈X

gkn(pkn, ψkn) = max
{

maximize
pkn∈X

gkn(pkn, 0)︸ ︷︷ ︸
(SP 2.1)

,maximize
pkn∈X

gkn(pkn, 1)︸ ︷︷ ︸
(SP 2.2)

}
. (5.11)

Now, both subproblems are convex and can be easily solved. Table 5.4 summarizes the maxi-

mum achieved value and the optimal transmission power of each subproblem. Thus, the k-th

stream is active if

log(W
(q)
j hkn)− 1 +

1

W
(q)
j hkn

− β

W
(q)
j

> 0.

113



Chapter 5. On the optimal resource allocation for a wireless energy harvesting node
considering the circuitry power consumption

Solving the previous equation (set M := 1, Ŵ := W̄kn, H1 := hkn and Pc := β in Appendix

5.A.7), we obtain an equivalent condition for the k-th stream activation, i.e., W (q)
j > W̄kn,

where W̄kn is the stream cutoff water level given in (5.9). Thus, after evaluating the condition

W
(q)
j > W̄kn, ∀k, we obtain the number of streams that are activated if the channel access is

active, A(q)
n .

Now that both (SP 1) and (SP 2) are solved (Table 5.3 summarizes the obtained results),

we can conclude that the n-th channel access is active if

− α

W
(q)
j

+

A
(q)
n∑

k=1

(
log(W

(q)
j hkn)− 1 +

1

W
(q)
j hkn

− β

W
(q)
j

)
> 0

or, equivalently, if W (q)
j > Ŵn(A

(q)
n ) (set M := A

(q)
n , Ŵ := Ŵn(A

(q)
n ), Hk := hkn, and

Pc := A
(q)
n β + α in Appendix 5.A.7 to show this equivalence).6

In summary, the optimal primal variables at the q-th iteration of the subgradient can be

obtained by checking the condition W (q)
j > W̄kn, ∀k, to obtain the number of streams that

would be active if the channel access was active, A(q)
n , and then checking the condition W (q)

j >

Ŵn(A
(q)
n ) to find out whether the channel access is active or not. If the channel access is active,

the optimal primal variables at the q-th iteration of the subgradient are p
(q)
n = p

(SP2)
n , ψ(q)

n =

ψ(SP2)
n , and ρ(q)

n = 1. Otherwise, we have that p
(q)
n = 0, ψ(q)

n = 0, and ρ(q)
n = 0. However, this

procedure might be quite inefficient when the number of streams is large (K � 1) and it can

be avoided by first checking whether the channel access is active. Note that for any value of

A
(q)
n the channel access is active if and only if W (q)

j > Ŵn(M?
n).7 In this context, the procedure

in Algorithm 5.3 is equivalent to the proposed above, but more computationally efficient.

Remark 5.6. The resource allocation obtained by solving the dual problem is almost equal to

the one obtained by means of the relaxed problem, which is given in Lemmas 5.1 and 5.2.

The channel access or stream activation conditions obtained in this section only differ from

the ones in Lemmas 5.1 and 5.2 when the water level is equal to the stream or channel access

cutoff water levels. In this section we have seen that if Wj = Ŵn(M?
n) (or Wj = W̄kn for

k ∈ (M?
n, K]), it is indifferent to have the channel access (or stream) active or inactive since

both situations achieve the same value of the dual function, whereas, in the relaxed problem we

6Note that whenW (q)
j = W̄kn (orW (q)

j = Ŵn(A
(q)
n )) it is equivalent to activate or not the stream (or channel

access) since both achieve the same value of the objective function.
7By using the definition of M?

n and Lemmas 5.3 and 5.4 in Appendix 5.A.3, it is easy to show that: if
A

(q)
n > M?

n, then Ŵn(M?
n) < Ŵn(A

(q)
n ) < W̄

A
(q)
n ,n

< Wj ; and if A(q)
n < M?

n, then Ŵn(A
(q)
n ) ≥ Ŵn(M?

n) ≥
W̄M?

n,n
≥Wj > W̄

A
(q)
n ,n

. Thus, from these inequalities, we can compareWj directly with Ŵn(M?
n) to determine

whether the channel access is active or not.
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Algorithm 5.3 Maximization of the Lagrangian

Data: λ(q), Ŵn(M?
n).

1: Compute W (q)
j = 1

Ts
∑J
`=j λ

(q)
`

, ∀j = 1, . . . , J . . Compute the water level in all the epochs given

λ(q).
2: for n ∈ τj , j := 1, . . . , J do . For all the channel accesses.
3: if W (q)

j > Ŵn(M?
n) then . Check if the channel access is active.

4: A
(q)
n := M?

n; . The channel access is active; Then, count the number of active streams.
5: for k := M?

n + 1, . . . ,K do
6: if W (q)

j > W̄kn then
7: A

(q)
n := A

(q)
n + 1; . The k-th stream is active at the q-th iteration water level.

8: end if
9: end for . End of counting.

10: p
(q)
n = p

(SP2)
n , ψ(q)

n = ψ
(SP2)
n , and ρ(q)

n = 1;
11: else
12: p

(q)
n = 0, ψ(q)

n = 0, and ρ(q)
n = 0; . The n-th channel access is turned off.

13: end if
14: end for

obtained that a partial use of the channel access (or the stream) is optimal, which is not allowed

in the problem considered in this section due to the binary feasible set of the IVs.

5.3.3 The Boxed Water-Flowing interpretation

In this section, we provide a graphical representation of the asymptotically optimal offline

solution named the Boxed Water-Flowing interpretation, which is depicted in Figure 5.2. This

interpretation follows directly from the concept of the cutoff water levels and it generalizes the

DWF interpretation in §2.3.1 [84] by considering the different sources of energy consumption

at the transmitter. The interpretation is the following:

(1.) Each stream is represented with a water-porous vessel with base equal to Ts.8 There

are two types of boxes, namely, the channel access box and the stream box. At the n-th

channel access, the channel access box with height Ŵn(M?
n) is shared among the streams

k = 1, . . . ,M?
n. The remaining streams, i.e., k > M?

n, have their own stream box with

height equal to W̄kn.9 A water right-permeable material is used to separate the different

epochs.

(2.) Each box is filled by a solid substance up to a height equal to h−1
kn and the boxes are closed

by a lid. The cost (in terms of water) of opening the channel access box is (α+M?
nβ)Ts,

whereas, the cost of opening each stream box is βTs.
8The vessel boundaries are not depicted in Figure 5.2 for the sake of simplicity.
9Thus, the n-th channel access has K −M?

n stream boxes and one channel access box.
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(3.) The water level is progressively increased to all epochs at the same time by adding the

necessary amount of water to each epoch. The maximum amount of water that can be

externally added at some epoch is given by the epoch’s harvested energy (depicted with

the top-down arrows in Figure 5.2).10 When some epoch runs out of water, it uses water

that flows from previous epochs (if any is available) in order to continue increasing the

water level simultaneously. When the water level reaches the lid of some box, check if

there is enough available water (in the current and previous epochs) to pay the cost of

opening the lid and to fill in the whole box with water. If there is enough water, remove

the lid (which means that the amount of water associated with the lid opening cost is

lost), let the water fill the box and go back to Step 3; otherwise, keep the lid in the box

and go back to Step 3.

(4.) When all the available water has been poured, the optimal power allocation is found as

the amount of water in each of the vessels divided by Ts or, equivalently, as the height of

the water in each vessel, i.e., pkn = [Wj − h−1
kn ]+.

Interestingly, by particularizing the Boxed Water-Flowing interpretation to the case in

which there is no circuitry consumption (α = 0 and β = 0), the heights of the boxes re-

duce to its minimum possible value, i.e., h−1
kn , (set α = 0 and β = 0 in Lemmas 5.1 and 5.2)

and the DWF graphical interpretation in [84] is recovered, which has been presented in §2.3.1.

Remark 5.7. Having the graphical representation of the asymptotically optimal solution in

mind, it is easy to understand why its performance is close to I?. In the representation shown

in Figure 5.2, all the streams are using the optimal resource allocation to (5.5), except the sec-

ond stream of τ1. After solving the integer relaxation problem, we would have obtained that a

fractional use of this stream would be optimal. However, as this fractional use is not allowed

in a discrete channel model, we do not know where to optimally allocate the small remaining

energy in τ1. In summary, the following arguments justify why the optimality gap of the Boxed

Water-Flowing solution is small:

• As mentioned before, if the water level is different than the cutoff water level of all the

boxes (ρ̃?n ∈ {0, 1} and ψ̃?kn ∈ {0, 1}, ∀k, n), then the Boxed Water-Flowing solution is

optimal and the optimality gap is zero.

• Otherwise, when some stream or slot is partially used (ρ̃?n ∈ (0, 1) or ψ̃?kn ∈ (0, 1)), the

remaining energy in the epoch is very small and can be allocated in any of the active
10The amount of water corresponds to energy, whereas, the water level, i.e., the height of the water, corresponds

to power.
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Figure 5.2: The Boxed Water-Flowing interpretation. For graphical simplicity, only one chan-
nel access is contained in each epoch. Figures (a) and (b) depict steps 1 and 2 of the explanation,
respectively. Figures (c) to (e) depict step 3 where the water level is progressively increased
and different situations occur: in (c), the box is opened because, by using water from τ2 and
τ3, there is enough water to fill the box and pay the opening cost of the channel access box;
in (d), when the water level reaches the stream box (n = 1, k = 2) the remaining water in
the first epoch is not enough to pay the opening cost and fill in the whole box with water (see
Remark 5.7 for a discussion on what happens with this remaining water); finally, (e) depicts
the obtained resource allocation once all the available water has been poured.
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channels without having a relevant impact on the total mutual information.

– Within each epoch, the water level can only be equal to one specific box height,

which might be present in different channels as far as they have the same chan-

nel gain. This means that all the channels with different box heights (or different

channel gains) are using the optimal resource allocation to (5.5).

– If this specific box height is present in several channel accesses or streams of that

same epoch, then the time sharing argument can be used to allocate the little re-

maining energy in the epoch, i.e., a fraction ρ̃?n (ψ̃?kn) of channel access (stream)

boxes are opened and the remaining ones are kept closed.

Due to this, we can expect a small optimality gap as it is confirmed by the conducted experi-

mental results presented in §5.5.

5.4 Online resource allocation

Up to now, we have assumed that the transmitter has non-causal knowledge of both the channel

state and the energy harvesting process, which is only a realistic assumption under very specific

scenarios, e.g., when the channel is static and the energy source is controllable, cf., §2.1.3.

In this section, we develop an online algorithm, which does not require future knowledge of

neither the energy arrivals nor the channel state, that is based on the structure of the Boxed

Water-Flowing, the asymptotically optimal offline resource allocation that we derived in the

previous section.

Similarly to Chapter 4, the proposed online algorithm has an input parameter, Fw, which

is named the flowing window, that controls the number of channel accesses in which the water

is allowed to flow, which can be obtained by a previous training under the considered (or

measured) energy harvesting profile. Let an event, Et, denote the time index of a channel access

in which either a change in the channel state is produced or an energy packet is harvested (or

both events take place at the same time), i.e.,

Et = ∪Kk=1{n|hk(n−1) 6= hkn} ∪ {n|n = ej, j = 1, . . . , J}, t = 1, . . . , S,

where S ∈ [J,N ]. In this context, the proposed online algorithm proceeds as follows:

(1.) The initial energy in the battery, E1, is allocated to the different streams of the first Fw
channel accesses according to the Boxed Water-Flowing where the channel is expected
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to be static and equal to the observed channel at the first channel use, i.e., we assume as

if hkn = hk1,∀n ∈ [1, Fw], ∀k.

(2.) When the transmitter detects an event, it updates the allocated power of the channel

accesses n ∈ [Et,min{Et + Fw − 1, N}] by using the Boxed Water-Flowing with the

remaining energy in the battery and with the energy of the harvested packet (if the event is

an energy arrival), i.e.,
∑

j|ej≤Et Ej−Ts
∑Et−1

n=1 C2(pn), and by assuming that the channel

remains constant during the flowing window, i.e., hkn = hkEt , ∀n ∈ [Et,min{Et + Fw −
1, N}], ∀k.11

(3.) Step (2.) is repeated until the N -th channel access is reached. A natural requirement

of WEHNs is that they operate perpetually. Note that the proposed online algorithm

can operate in an infinite time window, i.e., N → ∞, where the algorithm continuously

remains in Step (2.).

The proposed online algorithm satisfies the ECCs and, as pointed out, does not require future

information of neither the channel state nor the energy arrivals.

The mutual information that can be achieved by any online algorithm is inherently limited

by the partial knowledge of the harvested energy and channel state. By using sophisticated

statistical models of the Energy Harvesting (EH) process, one can design online algorithms

that perform close to the optimal offline algorithm. Currently, the design of sophisticated online

algorithms is limited by the following factors:

• There is a lack of models of the energy harvesting process (cf. §2.1.1).

• The computational complexity required by the resulting online algorithms has to be as

low as possible since the energy spent in the computation of the online strategy cannot

be used for transmission, which directly affects the achievable mutual information.

We believe that our proposed online algorithm correctly balances these two points since

it is a low-complexity online algorithm (the estimation of Fw can be done during the node

deployment when the node is not limited by the harvested energy) that achieves a remarkably

high fraction of the mutual information as shown by numerical simulation in the next section.

11Note that the transmitter may stay silent in some channel accesses if the difference between two consecutive
incoming energy packets is greater than the flowing window, ej − ej−1 > Fw. This situation rarely takes place in
practice since, in most common situations, Fw is several times the mean number of channel accesses per epoch.
For example, in the simulated framework presented in §5.5, we have obtained that Fw is 5 times the mean number
of channel accesses per epoch.
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5.5 Simulation results

By numerical simulation, in this section we evaluate the performance of the different solutions

presented in the previous sections. We have considered a total of N = 100 channel accesses in

which symbols are transmitted through K = 8 parallel streams. The channel access duration is

Ts = 10 ms. The power consumptions associated with the channel access and stream activation

are α = 100 mW and β = 10 mW, respectively [49]. A Rayleigh fading channel has been

considered where the channel power gain satisfies E{hkn} = 1. The energy harvesting process

is modeled as a compound Poisson process as done in [84], where the packet arrival instants

follow a Poisson distribution with rate 1
5

and the energy in the packets is drawn from a uniform

distribution and normalized by the total harvested energy that varies along the x-axis of Figures

5.3-5.7.

In the setup above, Figure 5.3 shows the achieved mutual information with the different

presented resource allocation strategies: Ĩ? is the upper bound obtained in §5.3.1 by relaxing

the feasible set of the stream and channel access IVs to the integer interval [0, 1]; Î is the

mutual information achieved by the feasible the resource allocation {P̂, ρ̂, Ψ̂} that is obtained

by projecting ρn and ψkn into the set {0, 1} as explained in §5.3.1, where we have used Γ = 0.5

as it provides a good performance; Duality shows the mutual information achieved by solving

the dual problem as explained in §5.3.2; and Online depicts the mutual information achieved by

the online algorithm presented in §5.4. Additionally, to assess the impact of energy harvesting

versus traditional non-harvesting nodes, we have evaluated the performance of a virtual non-

harvesting node in which the battery of the node is replaced by a new battery containing Ej
Joules at the channel access ej . Although this battery replacement is not feasible in practice,

it allows us to fairly compare the performance of the energy harvesting node and the virtual

battery operated node since both nodes have the same energy levels. For the non-harvesting

node, we have designed a resource allocation strategy, named Epoch by Epoch (EbE), that

uses the Boxed Water-Flowing in each epoch independently, i.e., water is not allowed to flow

between epochs (due to the virtual battery replacement). Finally, we also compare our strategies

with DWF & PP that uses the DWF in (2.21) with an additional post processing stage that scales

the transmission powers to guarantee that the ECCs containing the circuitry power consumption

are satisfied.

In the magnified plot in Figure 5.3, one can observe that the optimality gap is almost zero

since the difference between the upper bound, Ĩ?, and the strategies Î and Duality is almost

zero (remember that I? − Î ≤ Ĩ? − Î and the same applies for Duality). As expected, the

proposed online algorithm has performance loss in comparison to the optimal offline solution

as it has no knowledge of the future channel state and energy arrivals. This performance loss
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Figure 5.3: Achieved mutual information versus total harvested energy for the different algo-
rithms.
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Figure 5.4: Performance loss of the proposed online algorithm versus the optimal offline solu-
tion.
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Figure 5.5: Percentage of the total harvested energy expended in the circuitry.

is evaluated in Figure 5.4 both in absolute (left y-axis) and relative (right y-axis) terms. It is

observed that when the harvested energy is above 1 J, the relative performance loss is around

10%. The Boxed Water-Flowing solutions (I? and Duality) also outperform the EbE scheme

(for the battery operated node) and the DWF & PP. It is observed that the performance of the

EbE scheme drops down for high energy levels because water is not allowed to flow across

epochs. In opposition, the DWF & PP behaves better for high energy levels since water is

allowed to flow across epochs but has a very poor performance for low energy levels since

the circuitry power consumption has not been accounted for in the optimization and plays an

important role.

Figure 5.5 shows the percentage of the total harvested energy that is expended in the

circuitry, i.e., Ts
∑N

n=1

(
αρn +

∑K
k=1 βψkn

)
100∑J
j=1 Ej

. It is observed that when the harvested

energy is low, the amount of energy spent in the circuitry components is a relatively high

fraction of the total harvested energy. Additionally, when the harvested energy is high the

different strategies show a similar percentage of circuitry energy consumption. However, the

Boxed Water-Flowing strategies (I? and Duality) achieve a higher mutual information as seen

in Figure 5.3. This is because the Boxed Water-Flowing solutions are able to activate the

channel accesses and streams that contribute the most to the mutual information.

The computational complexities of the different strategies are compared in Figure 5.6 in
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Figure 5.6: Mean execution time versus total harvested energy.

terms of measured execution time versus harvested energy.12 Observe that Duality requires

a much lower execution time than Î. However, to obtain such a good performance, the step

size to update the dual variable must be carefully selected depending on the energy harvesting

profile. In some manner, Î is more robust to variations of the energy harvesting profile; how-

ever, at a cost of having a higher computational complexity. Moreover, the complexity of the

proposed Online solution is remarkably low, which makes it a good candidate solution to be

implemented in wireless devices.

As pointed out in Remark 5.2, the Boxed Water-Flowing algorithms in Algorithms 5.1 and

5.2, can be trivially extended to include mask constraints. Figure 5.7 evaluates the impact of

two different mask constraints on the achieved mutual information for K = 80 parallel streams

where β = 1 mW (the remaining system parameters are the ones mentioned above). We have

considered two different mask constraints: the first mask, Mask 1, limits the transmission power

in each stream as pkn ≤ 25 mW, ∀k, n; in the second mask, Mask 2, the transmission power

of the external streams is further limited to avoid interferences to other possible transmissions,

i.e., pkn ≤ 5 mW, k ∈ [1, 20] ∪ [61, 80],∀n, and pkn ≤ 25 mW, ∀k ∈ [21, 60],∀n. As

expected, at low energy levels, the mask constraint does not have a significant impact on the

achieved mutual information because the transmission power in the different subchannels is

low; however, when the harvested energy increases, the mask constraint limits the transmission

power in the different subchannels and, as a result, the mutual information is reduced.

12Note that the execution time is approximately proportional to the algorithmic computational complexity.
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Figure 5.7: Mutual information of the Boxed Water-Flowing solution given different mask
constraints.

5.6 Conclusions

In this chapter, we have studied the resource allocation for a WEHN that maximizes the mu-

tual information along N independent channel accesses in which symbols are sent through K

parallel streams. The main contribution w.r.t. previous works is that we not only account for

the transmission radiated power but we also consider the channel access and stream activation

costs. First, we have studied the offline maximization problem (where the transmitter has full

knowledge of the harvested energy and channel state) and we have shown that it is not a convex

optimization problem. Due to this lack of convexity, we have proposed and studied two differ-

ent problems (the integer relaxation and the dual problem) from which we have obtained two

suboptimal solutions of the offline maximization problem that asymptotically tend to the opti-

mal solution when the number of channel accesses or streams per epoch is large. From these

two problems, we have obtained a common condition for the activation of the channel access

and streams, i.e., if the epoch water level is greater than the corresponding cutoff water level.

Based on the cutoff water level concept, we have devised the Boxed Water-Flowing, a novel

graphical representation of the asymptotically optimal offline resource allocation. Additionally,

we have proposed a practical online algorithm that does not require knowledge of the future

energy arrivals nor the channel state. From the simulation results, we have confirmed that the

Boxed Water-Flowing resource allocation is the asymptotically optimal offline resource alloca-

tion and that the performance loss of the proposed online solution is very small. Moreover, we
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have evaluated the computational complexity of the different resource allocation strategies and

obtained that the online solution is the one that requires the lowest execution time.

5.A Appendix

5.A.1 Proof of Lemma 5.1

We know that the M?
n streams that contribute to the channel access activation are the ones with

the best channel gains, i.e., h1n, . . . , hM?
nn, because these streams are the ones that contribute

the most to the objective function. Given M?
n, the following two conditions must be satisfied at

the cutoff water level, i.e., when Wj = Ŵn(M?
n):

(C1) ∀k ≤ M?
n, the following relations must be fulfilled: (i) pkn > 0; (ii) ψkn ∈ (0, 1); (iii)

η̂kn = 0; (iv) η̌kn = 0; and (v) ξkn = 0.13

(C2) ∀k > M?
n, the following conditions must be satisfied: (i) pkn = 0; (ii) ψkn = 0; (iii)

η̌kn = 0; and (iv) µkn = 0.14

Going back to (5.7), the radiated power of the streams k ≤ M?
n at the channel access

cutoff water level is pkn = ψkn

(
Ŵn(M?

n)− h−1
kn

)
, where we have used that Wj = Ŵn(M?

n) =

(Ts
∑J

`=j λ`)
−1. Plugging this into the KKT condition in (5.6b), we have that all the streams

that contribute to the n-th channel access activation, i.e., k ≤M?
n, must satisfy:

∂L̃
∂ψkn

= log(hknŴn(M?
n))− 1 +

1

Ŵn(M?
n)hkn

− β

Ŵn(M?
n)
− µkn = 0, ∀k ≤M?

n. (5.12)

Note that we cannot isolate Ŵn(M?
n) in the previous equation due to the dependence on the

Lagrange multiplier µkn. To get rid of this dependence, we can use the KKT condition in

(5.6c) evaluated at the cutoff water level, i.e.,

K∑
k=1

µkn =

M?
n∑

k=1

µkn =
α

Ŵn(M?
n)
, (5.13)

where we have used that µkn = 0 ,∀k > M?
n, which follows from (C2).

13Where (i) and (ii) follow from the fact that the stream must contribute to the channel access activation and
(iii), (iv), and (v) follow from the slackness conditions (5.6f), (5.6g), and (5.6e), respectively.

14Where (i) and (ii) follow from the fact that the stream must not contribute to the channel access activation
and (iii) and (iv) follow from the slackness conditions (5.6g) and (5.6h).
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With this, we can obtain an equation that does not depend on µkn by adding the equations
∂L̃
∂ψkn

= 0, ∀k ≤ M?
n. Thus, the n-th channel access cutoff water level, Ŵn(M?

n), is obtained

by solving
∑M?

n
k=1

∂L̃
∂ψkn

= 0, which is performed in Appendix 5.A.7 (set M := M?
n, Ŵ :=

Ŵn(M?
n), Hk := hkn, and Pc := M?

nβ + α), and is the one given in (5.8).

Up to now, we have shown that ifWj = Ŵn(M?
n), the channel access is “partially on”, i.e.,

ρn ∈ (0, 1), ψkn ∈ (0, 1),∀k ≤ M?
n and ψkn = 0,∀k > M?

n. Note that if Wj = Ŵn(M?
n) + ε,

with ε > 0, then we have that log(hknWj) − 1 + 1
Wjhkn

− β
Wj
− µkn > 0. Thus, in order to

satisfy (5.6b), we must have η̌kn > 0, ∀k ≤M?
n. Then, from the slackness condition (5.6g), we

know that ψkn = 1, ∀k ≤M?
n, and hence ρn = 1. A similar approach can be used to show that

if Wj < Ŵn(M?
n), then ψkn = 0, ∀k, and hence ρn = 0.

5.A.2 Proof of Lemma 5.2

Now, we derive the expression of the k-th stream cutoff water level, W̄kn, i.e., the water level at

which the k-th stream becomes partially active, where now k > M?
n. Similarly as in the proof

of Lemma 5.1, in the k-th stream cutoff water level, we must have that pkn > 0, ψkn ∈ (0, 1),

ρn = 1, and from the slackness conditions we know that η̌kn = 0, η̂kn = 0, ξkn = 0, µkn = 0.

The k-th stream cutoff water level is obtained by solving the equation obtained from the KKT

condition in (5.6b) for W̄kn (set M := 1, Ŵ := W̄kn, H1 := hkn and Pc := β in Appendix

5.A.7) and is the one given in (5.9). Following the same procedure as in the last paragraph

of the proof of Lemma 5.1, it can be shown that if Wj > W̄kn, k ∈ (M?
n, K], then ψkn = 1.

Alternatively, if Wj < W̄kn, k ∈ (M?
n, K], then ψkn = 0.

5.A.3 Proof of Proposition 5.1

In this appendix, we prove that M?
n can be found by performing a forward search over Mn

and that it is the smallest Mn that satisfies the condition Ŵn(Mn) < W̄(Mn+1)n. To prove

Proposition 5.1, we need to make use of the following two lemmas:

Lemma 5.3. If Ŵn(Mn) = W̄(Mn+1)n, then Ŵn(Mn + 1) = Ŵn(Mn).

Proof: See Appendix 5.A.4.

Lemma 5.4. If Ŵn(Mn) ≥ W̄(Mn+1)n, then: (a) Ŵn(Mn + 1) ≥ W̄(Mn+1)n; (b) the function

Ŵn(Mn + 1) is monotonically decreasing with h(Mn+1)n.

Proof: See Appendix 5.A.5.
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Observe that W̄(Mn+1)n is a function of h(Mn+1)n in opposition to Ŵn(Mn) that does not

depend on h(Mn+1)n. In this context, let h̃(Mn+1)n be the specific value of the channel gain of

the stream k = Mn + 1 that satisfies W̄(Mn+1)n = Ŵn(Mn).

We first show that any Mn smaller than M?
n is suboptimal. We know that Ŵn(Mn) ≥

W̄(Mn+1)n, ∀Mn < M?
n, since the condition Ŵn(Mn) < W̄(Mn+1)n is not satisfied until Mn :=

M?
n. Since W̄(Mn+1)n is decreasing with the channel gain (see Remark 5.4), the condition

Ŵn(Mn) ≥ W̄(Mn+1)n implies h(Mn+1)n ≥ h̃(Mn+1)n. From Lemma 5.3, we have that at

h̃(Mn+1)n, Ŵn(Mn + 1) = Ŵn(Mn) and from Lemma 5.4.b if h(Mn+1)n ≥ h̃(Mn+1)n, then

Ŵn(Mn + 1) ≤ Ŵn(Mn), ∀Mn < M?
n or, equivalently, Ŵn(1) ≥ Ŵn(2) ≥ · · · ≥ Ŵn(M?

n).

Therefore, any Mn in [1, M?
n) is suboptimal.

Now, we prove the suboptimality of any Mn greater than M?
n. From the structure of the

forward search, the following relationship is satisfied Ŵn(Mn) < W̄(Mn+1)n, ∀Mn ∈ [M?
n, K].

Thus, the streams k > M?
n cannot contribute to the channel access activation since these

streams are not active at the cutoff water level.

Finally, we must show that the streams k ≤ M?
n are active in the channel access cutoff

water level, i.e., W̄k,n ≤ Ŵn(M?
n), which is verified as proved in Lemma 5.4.a.

5.A.4 Proof of Lemma 5.3

Let the channel access cutoff water level for a given Mn be expressed as

Ŵn(Mn) =
XMn

1
e
(
∏Mn

k=1 h
1
Mn
kn )W0(XMn)

,

where XMn is the argument of the Lambert function, i.e.,

XMn =

∏Mn

k=1 h
1
Mn
kn

eMn

(α +Mnβ −
Mn∑
k=1

h−1
kn ). (5.14)

In the following lines, we impose the condition W̄(Mn+1)n = Ŵn(Mn), and, after some algebra,

we obtain the argument of the Lambert function in Ŵn(Mn + 1), i.e., X̃Mn+1, where the tilde

denotes that W̄(Mn+1)n = Ŵn(Mn):
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(
∏Mn

k=1 h
1
Mn

kn )W̄(Mn+1)n

e
log

 (
∏Mn

k=1 h
1
Mn

kn )W̄(Mn+1)n

e

 =

∏Mn

k=1 h
1
Mn

kn

eMn
(α+Mnβ −

Mn∑
k=1

h−1kn )⇒ (5.15)

X̃Mn+1 =

∏Mn+1
k=1 h

1
Mn+1

kn

e(Mn + 1)

MnW̄(Mn+1)n log

 (
∏Mn

k=1 h
1
Mn

kn )W̄(Mn+1)n

e

+ β − h−1(Mn+1)n

⇒ (5.16)

X̃Mn+1 =
(
∏Mn+1
k=1 h

1
Mn+1

kn )MnW̄(Mn+1)n

e(Mn + 1)

log

 (
∏Mn

k=1 h
1
Mn

kn )W̄(Mn+1)n

e

+
W0(

βh(Mn+1)n−1
e )

Mn

⇒ (5.17)

X̃Mn+1 =
(
∏Mn+1
k=1 h

1
Mn+1

kn )W̄(Mn+1)n

e(Mn + 1)
log

(
(
∏Mn

k=1 hkn)W̄Mn

(Mn+1)n

eMn
eW0(

βh(Mn+1)n−1

e )

)
⇒ (5.18)

X̃Mn+1 =
(
∏Mn+1
k=1 h

1
Mn+1

kn )W̄(Mn+1)n

e
log

 (
∏Mn+1
k=1 h

1
Mn+1

kn )W̄(Mn+1)n

e

 (5.19)

To obtain (5.16), we have multiplied both sides in (5.15) by Mn
∏Mn+1
k=1 h

1
Mn+1
kn∏Mn

k=1 h
1
Mn
kn

and used the

definition of X̃Mn+1, which follows from (5.14). In (5.19), we have used that eW(z) = z
W(z)

,

which directly follows from the definition of the Lambert function.

The cutoff water level forMn+1 active streams is Ŵn(Mn+1) =
X̃Mn+1

1
e

(
∏Mn+1
k=1 h

1
Mn+1
kn )W0(X̃Mn+1)

,

from where

X̃Mn+1 =

∏Mn+1
k=1 h

1
Mn+1

kn

e
Ŵn(Mn + 1) log

∏Mn+1
k=1 h

1
Mn+1

kn

e
Ŵn(Mn + 1)

 .

By comparing this expression with (5.19), we have that Ŵn(Mn+1) must be equal to W̄(Mn+1)n

and, thus, we have Ŵn(Mn + 1) = Ŵn(Mn).

5.A.5 Proof of Lemma 5.4

5.A.5.1 Proof of Lemma 5.4.a

Following similar steps as in (5.15)-(5.19), it is easy to show that if Ŵn(Mn) ≥ W̄(Mn+1)n, then

XMn+1 ≥ X̃Mn+1. From where, it follows XMn+1

W0(XMn+1)
≥ (

∏Mn+1
k=1 h

1
Mn+1
kn )W̄(Mn+1)n

e
and, therefore,

we also have Ŵn(Mn + 1) ≥ W̄(Mn+1)n.
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5.A.5.2 Proof of Lemma 5.4.b

In the following lines, we demonstrate that ∂Ŵn(Mn+1)
∂h(Mn+1)n

≤ 0 for Ŵn(Mn) ≥ W̄(Mn+1)n or, equiv-

alently, for XMn+1 ≥ X̃Mn+1. Thus, we look at the sign of the derivative, sign
[
∂Ŵn(Mn+1)
∂h(Mn+1)n

]
,

i.e.,

sign

[
h−2(Mn+1)n

Mn + 1
W0(XMn+1)− 1

Mn + 1

(
(Mn + 1)β + α−

Mn+1∑
k=1

h−1kn

)
dW0(XMn+1)

dXMn+1

∂XMn+1

∂h(Mn+1)n

]
(5.20)

= sign

W0(XMn+1)−XMn+1

1 +
eh(Mn+1)nXMn+1∏Mn+1

k=1 h
1

Mn+1

kn

 dW0(XMn+1)

dXMn+1

 (5.21)

= sign

[
W0(XMn+1)−XMn+1 (1 +mXMn+1)

W0(XMn+1)

XMn+1(1 +W0(XMn+1))

]
(5.22)

= sign

[
W0(XMn+1) (W0(XMn+1)−mXMn+1)

]
(5.23)

In (5.21), we have used that

∂XMn+1

∂h(Mn+1)n

=
XMn+1

(Mn + 1)h(Mn+1)n

+

∏Mn+1
k=1 h

1
Mn+1

kn

e(Mn + 1)h2
(Mn+1)n

.

In (5.22), we have defined m , eh(Mn+1)n

(∏Mn+1
k=1 h

1
Mn+1

kn

)−1

and evaluated the derivative of

the Lambert function, i.e.,

dW0(XMn+1)

dXMn+1

=
W0(XMn+1)

XMn+1(1 +W0(XMn+1))
.

From (5.23), we see that the sign of the derivative depends on the product of the Lambert

function (which is positive for XMn+1 > 0 and negative for XMn+1 < 0) and the difference

between the Lambert function and a line with slope m. To demonstrate that Ŵn(Mn + 1) is

monotonically decreasing with h(Mn+1)n for XMn+1 ≥ X̃Mn+1, we must show that

W0(XMn+1)
(a)
< m̄XMn+1

(b)

≤ mXMn+1, ∀XMn+1 > max{0, X̃Mn+1}, (5.24)

W0(XMn+1)
(a)
> m̄XMn+1

(b)

≥ mXMn+1, ∀X̃Mn+1 < XMn+1 < 0, (5.25)

where m̄ is an arbitrary constant. Observe that when m̄ ≤ m, inequalities (b) in (5.24) and

(5.25) are satisfied. In the following lines, we propose a specific m̄ that allows us to prove

inequalities in (a) and thus to demonstrate that Ŵn(Mn + 1) is monotonically decreasing with
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h(Mn+1)n.

Note that, by replacing m in (5.19), we obtain

X̃Mn+1 =
W̄(Mn+1)nh(Mn+1)n

m
log

(
W̄(Mn+1)nh(Mn+1)n

m

)
.

From this relation, we can express m as a function of X̃Mn+1, i.e.,

m = W̄(Mn+1)nh(Mn+1)n
W0(X̃Mn+1)

X̃Mn+1

.

Note that W̄(Mn+1)nh(Mn+1)n ≥ 1 because W̄(Mn+1)n ∈ [h−1
(Mn+1)n,∞) as pointed out in Remark

5.4. Thus, m ≥ W0(X̃Mn+1)

X̃Mn+1
. Let m̄ denote the minimum slope, i.e., m̄ =

W0(X̃Mn+1)

X̃Mn+1
. Since

m̄ ≤ m the inequalities (b) in (5.24) and (5.25) are satisfied. Note that the Lambert function,

W0(XMn+1), and the line m̄XMn+1 cross both at the origin (XMn+1 = 0) and at the point

XMn+1 = X̃Mn+1, i.e.,W0(X̃Mn+1) = m̄X̃Mn+1. Finally, by using the concavity of the positive

branch of the Lambert function [80] and these two crossing points, it is straight forward to show

that the inequalities (a) in (5.24) and (5.25) are satisfied. Thus, Ŵn(Mn + 1) is monotonically

decreasing with h(Mn+1)n.

5.A.6 Proof of Proposition 5.2

Let E1 and E2 be two different energy harvesting profiles, where the energy packet arrival in-

stants are the same but the amount of energy in the packets is different, and let
{
P?

E1
,ρ?E1

,Ψ?
E1

}
and

{
P?

E2
,ρ?E2

,Ψ?
E2

}
be the associated optimal solutions to (5.4), respectively. Therefore,

showing that the time-sharing condition is fulfilled is equivalent to demonstrating that

I(P?
θE1+(1−θ)E2

,ρ?θE1+(1−θ)E2
,Ψ?

θE1+(1−θ)E2
) ≥

I(PθE1+(1−θ)E2 ,ρθE1+(1−θ)E2
,ΨθE1+(1−θ)E2) ≥

θI(P?
E1
,ρ?E1

,Ψ?
E1

) + (1− θ)I(P?
E2
,ρ?E2

,Ψ?
E2

)

where θ ∈ [0, 1],
{
P?
θE1+(1−θ)E2

,ρ?θE1+(1−θ)E2
,Ψ?

θE1+(1−θ)E2

}
is the optimal resource alloca-

tion for an energy harvesting profile equal to θE1 +(1−θ)E2 and
{
PθE1+(1−θ)E2 ,ρθE1+(1−θ)E2

,

ΨθE1+(1−θ)E2

}
is any feasible resource allocation.
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In the following lines, we construct a feasible resource allocation,

{
PθE1+(1−θ)E2 ,ρθE1+(1−θ)E2

,ΨθE1+(1−θ)E2

}
,

that satisfies the time sharing condition in an epoch by epoch basis. In this context, since the

procedure is the same for all the epochs, we just explain how to obtain the resource allocation

of the streams contained in a generic epoch τj . Let u = 1, . . . ,U be an index used to indicate

the different channel realizations observed within the streams in τj . Thus, U is the number of

different channel realizations within the epoch. Let the set Su contain all the streams in τj that

have channel gain equal to h̄u, i.e., Su = {{k, n}|hkn = h̄u, n ∈ τj}. Ku denotes the cardinal-

ity of Su, which is a large number since, in the proposition statement, we have considered that

within each epoch every channel realization is observed a sufficiently large number of times. In

the following lines, we explain how to construct the resource allocation of the channel accesses

in Su. Since Ku is large, θ can be approximated as θ ≈ N̄u
Ku

, where N̄u is an integer in the

interval [0, Ku]. Due to the nature of DWF, the power allocated by the optimal solution given

some energy harvesting profile is equal for all the streams in Su because when a certain channel

access is active, the transmission power in (2.21) only depends on the epoch water level and

on the channel gain. We construct the resource allocation in the streams in Su by assigning

the resource allocation in {[P?
E1

]k′n′ , [ρ
?
E1

]n′ , [Ψ
?
E1

]k′n′} to N̄u streams of Su and the resource

allocation in {[P?
E2

]k′n′ , [ρ
?
E2

]n′ , [Ψ
?
E2

]k′n′} to the remainingKu−N̄u streams, where {k′, n′} is

any stream contained in Su. This procedure is repeated for the different channel realizations to

obtain the resource allocation in all the streams of τj , then the total power consumption in τj is

equivalent to θ times the power consumption in τj given by
{
P?

E1
,ρ?E1

,Ψ?
E1

}
and (1−θ) times

the power consumption in τj given by
{
P?

E2
,ρ?E2

,Ψ?
E2

}
. After repeating this process for all

the epochs, the constructed resource allocation
{
PθE1+(1−θ)E2 ,ρθE1+(1−θ)E2

,ΨθE1+(1−θ)E2

}
is

a feasible solution as the ECCs are satisfied and the obtained mutual information is θI(P?
E1
,

ρ?E1
,Ψ?

E1
) + (1 − θ)I(P?

E2
,ρ?E2

,Ψ?
E2

). Therefore, we have shown that the time-sharing con-

dition is satisfied.
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5.A.7 Derivation of the cutoff water level

In this appendix, we use a generic notation that serves us to derive both Ŵn(Mn) and W̄kn.

Thus, Ŵ denotes the cutoff water level for the case of considering M active streams at the

cutoff region with gains Hk, k ∈ [1,M ], and when the circuitry power consumption is Pc.

Specifically, Ŵ is obtained by solving the equation
∑M

k=1

[
log(ŴHk)− 1 + 1

ŴHk

]
− Pc

Ŵ
= 0

as follows:

Ŵ

(
M∏
k=1

H
1
M

k

)[
log

(
Ŵ

M∏
k=1

H
1
M

k

)
− log e

]
+

1

M

(
M∏
k=1

H
1
M

k

)(
M∑
k=1

H−1k

)
− Pc
M

(
M∏
k=1

H
1
M

k

)
= 0⇒ (5.26)

Ŵ
∏M
k=1H

1
M

k

e
log

(
Ŵ
∏M
k=1H

1
M

k

e

)
=

∏M
k=1H

1
M

k

Me
(Pc −

M∑
k=1

H−1k )⇒ (5.27)

Ŵ =
Pc −

∑M
k=1H

−1
k

MW0

(∏M
k=1H

1
M
k

Me (Pc −
∑M
k=1H

−1
k )

) (5.28)

In (5.26), we have multiplied by Ŵ
M

(∏M
k=1H

1
M
k

)
. In (5.28), we have used that b log b = a ⇔

b = a
W(a)

, which follows from the definition of the Lambert function [80]. Moreover, since

Ŵ > H−1
k , ∀k = [1,M ], so that the streams are active in the cutoff region, the term b is always

greater than e−1 and, thus, the positive branch of the Lambert function, which is denoted by

W0(·), is used.
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Chapter 6
Sum-rate maximization in multiuser

communications with WEHNs considering a

generalized power consumption model

6.1 Introduction

In the previous chapter, we have seen that it is key that the power consumption model accounts

not only for the transmission radiated power but also for the remaining energy sinks, which can

be modeled, in general, by step functions. As a result of considering the channel access and

stream activation costs, the (asymptotically) optimal transmission strategy alternates between

“off” and “on” cycles.

The power consumption model considered in the previous chapter, C2 in (5.1), is a good

first step towards the design of more efficient transmission strategies; however, still many

sources of energy consumption escape from the model, which must be progressively included

in the design. For example, “off-on” transitions also entail energy consumption due to the

startup time of the transceiver [51, 121] that can be taken into account by refining the power
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consumption model C2 as:

C3
n(pn,pn+1) =


C2(pn) if n = N ,

C2(pn) + γ

(
1−H`

(
K∑
k=1

pkn

))
H`

(
K∑
k=1

pk(n+1)

)
︸ ︷︷ ︸

Startup power consumption

if n = 1, . . . , N − 1,

(6.1)

where γ ≥ 0 is the mean startup power consumption of the transceiver;
(

1−H`
(∑K

k=1 pkn

))
is one when the n-th channel access is “off”, H`

(∑K
k=1 pk(n+1)

)
is one when the (n + 1)-th

channel access is “on”, and their product takes value one when an “off-on” transition occurs.

Note that now the power consumption model depends on the channel access index, n, since the

last channel access cannot incur on startup power consumption.

Additionally, in the previous chapter, we have seen that when the power consumption

model includes step functions, the linear transmitter design is a nonconvex nonsmooth problem

since the ECCs are no longer linear (as occurs when solely the transmission radiated power is

considered, e.g., in DWF, cf. §2.3.1). Therefore, the optimal transmission strategy cannot

be found with classical convex optimization techniques. To overcome the nonconvexity of the

problem, in the previous chapter we have replaced the step functions by additional optimization

variables, named IVs, which has allowed us to derive an asymptotically optimal solution of the

problem.

The main advantages of reformulating the problem with IVs are:

(A1) Although the resulting problem is nonconvex (due to the presence of the binary IVs), by

integer relaxation, dual decomposition, or other techniques, one might obtain a convex

problem that performs close to the optimal solution as occurs in Chapter 5.

(A2) When the resulting problem is analytically tractable, one can obtain an intuition of the

structure of the solution as it has been shown with the Boxed Water-Flowing.

Nevertheless, the approach based on IVs also has the following inconveniences:

(I1) The computational complexity of the problem increases due to the additional number of

optimization variables.

(I2) In many transmitter designs, as the one explored in this chapter, even after perform-

ing integer relaxation of the IVs, the problem is still nonconvex; accordingly, for such
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problems, the use of IVs does not seem the best approach to obtain a good transmission

strategy.

(I3) It is generally difficult to deal with products of step functions in the power consumption

model since products of optimization variables are nonconvex even after integer relax-

ation, which leads to (I2); accordingly, it would be difficult to derive good solutions given

the power consumption model C3
n in (6.1).

(I4) It is not robust to variations on the power consumption model, i.e., one must formulate

and solve an optimization problem for every single variation of the power consumption

model and, as we have seen in Chapter 5, finding the solution to the problem might be

indeed involved.

In this context, in the current chapter we propose an alternative approach for solving power

allocation problems that contain step functions; the proposed approach performs a successive

approximation of the step functions by smooth functions in order to derive a smooth nonconvex

optimization problem that can be solved by SCA [67]. The main advantages of this approach

w.r.t. the use of IVs are:

• It applies to nonconvex optimization problems.

• It accepts products of step functions, which allows us to take into account, among others,

the startup power consumption.

• It can be easily adapted to include new sources of energy consumption.

• The problem can be solved in a distributed way under very mild assumptions.

• In some applications, it provides a faster convergence due to the lower dimensionality of

the problem.

More precisely, in this chapter, we consider a network of WEHNs transmitting simulta-

neously in a Gaussian interference channel and investigate a distributed power allocation algo-

rithm that maximizes the sum-rate by considering a general power consumption model, which

is composed of step functions and permits to take into account the different sources of energy

consumption at each transmitter (e.g., the energy spent in the different components of the RF

chain when the transmitter is “on” or the startup power consumption).

135



Chapter 6. Sum-rate maximization in multiuser communications with WEHNs considering a
generalized power consumption model

To the best of our knowledge, a few works have considered the interference channel for

WEHNs: the authors of [114] assumed that the radiated power is the unique energy sink and

derived a policy that maximizes the sum-rate; whereas, the two-user Gaussian interference

channel was studied in [115] by considering the cost of having the transmitter “on”.

The major contributions of this chapter are:

• Proposing a smooth approximation of the step function in (2.6) that can be easily con-

vexified by state of the art SCA algorithms.

• Studying the power allocation strategy that maximizes the sum-rate in a network of en-

ergy harvesting nodes, which transmit simultaneously over a shared channel, by consid-

ering a generalized power consumption model that accepts products of step functions.

• Proposing the Iterative Smooth and Convex approximation Algorithm (ISCA), which

distributedly computes a stationary solution of the aforementioned problem.

The remainder of the chapter is structured as follows. In §6.2, the sum-rate maximization

problem for a network of WEHN is formulated. In §6.3, the smooth and convex approximations

of the step functions are given. In §6.4, the ISCA is presented for a general power consumption

model, which is particularized in §6.5 to the power consumption model C2 in (5.1). The per-

formance of the ISCA in terms of achieved rate and computational complexity is numerically

evaluated in §6.6. Finally, the chapter is concluded in §6.7.

6.2 System model and problem formulation

In the remaining of the chapter, we use the same notation as in the previous chapters with the

only difference that we use the subindex t to differentiate between the different transmitters.

We consider a Gaussian interference channel composed of T transmitter and receiver pairs

sharing the same band over SISO frequency-selective links composed ofK parallel subcarriers.

Transmission takes place during N time slots of duration Ts where, at the n-th slot, the channel

power gain from transmitter t to receiver r at the k-th subcarrier is denoted by htr(k, n). We

do not consider interference cancellation techniques in order to avoid the need of having a

centralized control or coordination in the network. Accordingly, we treat the MUI as additive

colored noise. Thus, assuming that Gaussian signaling is used, the rate of user t depends on
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Figure 6.1: Representation of the energy harvesting process at the t-th transmitter.

its radiated power, pt ∈ RKN
+ , pt = (ptn)Nn=1 ,ptn = (pt(k, n))Kk=1, and on the transmission

power of all the other transmitters, i.e., p−t = (pt′)
T
t′ 6=t=1, and reads as

rt(pt,p−t) =
N∑
n=1

K∑
k=1

log

1 +
pt(k, n)htt(k, n)

σ2
t (k) +

∑
t′ 6=t

pt(k, n)ht′t(k, n)

 , (6.2)

where σ2
t (k) denotes the noise power spectral density at the t-th receiver and k-th subcarrier.1

We consider that the transmitters can harvest energy from the environment to recharge

their batteries. As argued in §2.1.1, we model the energy harvesting process at each transmitter

with a packetized model, which is depicted in Figure 6.1, where the subindex t is used to

differentiate between transmitters.

The aim of this chapter is not to propose the ultimate power consumption model but to

derive an algorithmic framework that is able to compute a distributed power allocation strategy

for a very general power consumption model, which is composed of summations and products

of step functions. This framework allows the use of a different power consumption model for

each transmitter, which can be specified when the network is being deployed and one knows

the different energy sinks of each node. Note that the solutions in [10–12, 49–51, 93, 115] are

not robust to variations of the power consumption model, but a new optimization problem must

be formulated and solved. In this context, we consider that the power consumption model has

the following general form

C4
tn(pt) =

K∑
k=1

pt(k, n)︸ ︷︷ ︸
Transmission power

+
Stn∑
s=1

wtns

Qtns∏
q=1

H` (φtnsq(pt))︸ ︷︷ ︸
Remaining energy sinks

, (6.3)

1We consider that each channel varies sufficiently slowly, so that the information theoretical results are mean-
ingful.
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where the subindex t and n denote a specific transmitter and channel access, respectively;

wtns 6= 0 is a given set of weights; Stn and Qtns ∈ N; and φtnsq : RK
+ → R+ must be concave,

Lipschitz continuous, and continuously differentiable.

Since the different transmitters may have different architectures, they may also experience

different consumptions for the channel access/slot activation costs and startup of the transceiver.

Accordingly, we index the power consumption models C2 in (5.1) and C3
n in (6.1) with an

additional index to distinguish between transmitters. Thus, we have

C2
t (ptn) =

K∑
k=1

pt(k, n)︸ ︷︷ ︸
Transmission power

+ αtH`

(
K∑
k=1

pt(k, n)

)
︸ ︷︷ ︸

Power consumption per active slot

+
K∑
k=1

βtH` (pt(k, n)) ,︸ ︷︷ ︸
Power consumption per active stream

(6.4)

and C3
tn(ptn,pt(n+1)) =


C2
t (ptn) if n = N ,

C2
t (ptn) + γt

(
1−H`

(
K∑
k=1

pt(k, n)

))
H`

(
K∑
k=1

pt(k, n+ 1)

)
︸ ︷︷ ︸

Startup power consumption

if n = 1, . . . , N − 1,

(6.5)

respectively.

Note that C2
t and C3

tn are particular cases of C4
tn in (6.3); the associated weights and inner

functions, φtnsq(pt), are given in Table 6.1.

Our objective is to design a distributed power allocation strategy that maximizes the sum-

rate under an offline approach (cf. §2.1.3), i.e., by assuming that we have non-causal knowledge

of the channel gains and energy harvesting process. As argued in §2.1.3, this knowledge is

available when the channel is time-static and the power harvesting profile is controllable or

predictable, which happens, for example, with a solar harvester. Note that if a distributed power

allocation strategy is derived, then the nodes can recompute the solution when a substantial

change in the power profile prediction is observed. In non-static scenarios, the offline power

allocation is still useful because it can be used as a benchmark for the design and evaluation

of online transmission strategies, which does not require future knowledge of the harvested

energy and channel state.

In this context, the offline sum-rate maximization problem is
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C2
t and C3

tN .

s 1, . . . , K K + 1

wtns βt αt

φtns1(pt) pt(s, n)
∑K

k=1 pt(k, n)

C3
tn for n = 1, . . . , N − 1.

s 1, . . . , K K + 1 K + 2 K + 3

wtns βt αt γt −γt
φtns1(pt) pt(s, n)

∑K
k=1 pt(k, n)

∑K
k=1 pt(k, n+ 1)

∑K
k=1 pt(k, n)

φtns2(pt) - - -
∑K

k=1 pt(k, n+ 1)

Table 6.1: Weights and inner functions to rewrite C2
t and C3

tn as C4
tn.

(P̂ ) : maximize
p

T∑
t=1

rt(pt,p−t) (6.6a)

subject to
 , P̂

Bt(pt) � 0Jt , ∀t = 1, . . . , T , (6.6b)

pt ∈ Pt, ∀t = 1, . . . , T , (6.6c)

where the transmission strategy p = (pt)
T
t=1 must satisfy the ECCs in (6.6b), which impose that

the battery level must be nonnegative or, equivalently, that the energy cumulatively expended

by the end of the `-th epoch is not greater than the energy cumulatively harvested, i.e.,

[Bt(pt)]` ,
∑̀
j=1

Etj︸ ︷︷ ︸
Harvested energy

−Ts
∑̀
j=1

∑
n∈τtj

C4
tn(pt)︸ ︷︷ ︸

Expended energy

≥ 0, ` = 1, . . . , Jt, (6.7)

where C4
tn(pt) is given in (6.3). Additionally, the transmission strategy p must fulfill the

temporal-spectral mask constraints (cf. §2.1.5) in (6.6c) that limit the maximum transmit

power, where Pt = {pt : pt � 0KN , pt � pmax
t } with pmax

t , ((pmax
t (k, n))Kk=1)Nn=1.

The problem in (6.6) has the following major difficulties: first, it is nonsmooth, nonconvex

and NP -hard, which was shown in [122] for the simpler scenario of not having energy har-

vesting nor step functions; and second, it is key that the solution can be computed distributedly
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by the network nodes because then they can adjust their strategies when strong variations of

the energy harvesting profile are observed. In this context, we propose the ISCA that is able

to compute a distributed power allocation strategy that aims at maximizing the sum-rate. The

details of the ISCA are presented in §6.4. By now, it is important to know that it is composed

of two loops: the outer loop performs a SSA of the step functions to derive, at each iteration,

a smooth nonconvex problem that approximates (6.6); then, the inner loop solves this smooth

nonconvex problem by means of the SCA algorithm in [67].

In the following section, we introduce a smooth approximation of the step function that

can be easily convexified by SCA algorithms.

6.3 Approximations of the step function

The objective of this section is two-fold: (i) to design a smooth approximation of the unit step

function in (2.6), which is used in the outer loop of the ISCA; and (ii) to derive a convex ap-

proximation of the smooth approximation in (i) that can be handled by the SCA algorithm in

the inner loop. The later approximation, (ii), has to satisfy some tight requirements in order

to guarantee convergence [67], which are listed in [67, Assumption 3], that intrinsically cou-

ple the design of the approximations in (i) and (ii) because depending on the chosen smooth

approximation, it might be either easy or extremely difficult to later find an accurate convex

approximation. In this context, we can easily derive a convex approximation if the smooth

approximation is:

(C1) Differentiable.

(C2) An addition of concave and convex functions.

6.3.1 Smooth approximation of the step function

In this section, we present a smooth approximation of the step function that satisfies (C1)-(C2);

whereas, in §6.3.2, we present its convexification that satisfies [67, Assumption 3].
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Figure 6.2: Representation of Hρ(x) in (6.8) for different values of the approximation control
parameter ρ.

6.3.1.1 Single step function

We first propose an approximation of the single step function in (2.6). Note that since we focus

on power allocation problems, we limit the domain of the step function to the nonnegative real

numbers. According to the requirements in (C1)-(C2), we approximateH` (x) for x ∈ R+ with

the functionHρ : R+ → [0, 1] with

Hρ(x) = 1− e−
x
ρ , (6.8)

where ρ > 0 is a parameter that controls how good the approximation is (the smaller the value

of ρ the better the approximation) as illustrated in Figure 6.2. Additionally, it can be easily

shown that

lim
ρ→0
Hρ(x) = H` (x) . (6.9)

6.3.1.2 Product of step functions

In practice, it is also possible to encounter products of step functions as happens with the startup

power consumption in C3
tn (see (6.5)). For illustrative reasons, we first consider a single product

of step functions, i.e., H` (x1)H` (x2), and later, in Lemma 6.1, we present a smooth approxi-

mation of higher order products. We approximate the product of step functionsH` (x1)H` (x2),

x1, x2 ∈ R+, with the functionHρ : R2
+ → [0, 1] with

Hρ(x1, x2) = Hρ(x1)Hρ(x2) = 1 + e−
x1−x2
ρ︸ ︷︷ ︸

Convex

−e−
x1
ρ − e−

x2
ρ︸ ︷︷ ︸

Concave

. (6.10)
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Figure 6.3: Representation of the smooth approximation of H` (x1)H` (x2), i.e., Hρ(x1, x2)
in (6.10) for different values of the approximation control parameter ρ.

This approximation is depicted in Figure 6.3, where it is observed that the approximation im-

proves when the control parameter ρ is reduced.2

Lemma 6.1. Given a set of variables xq ∈ R+, q = 1, . . . , Q, and x = [x1, . . . , xQ]T, then the

product of Q step functions,
∏Q

q=1H`(xq), can be approximated by the differentiable function

Hρ : RQ
+ → [0, 1], with

Hρ(x) =

Q∏
q=1

Hρ(xq) = 1 +
∑
i∈E

∑
0<j1···<ji≤Q

e−
∑i
k=1 xjk
ρ

︸ ︷︷ ︸
Convex

−
∑
i∈O

∑
0<j1···<ji≤Q

e−
∑i
k=1 xjk
ρ

︸ ︷︷ ︸
Concave

, (6.11)

where E and O are a partition of the set {1, . . . , Q} that take the even and odd elements,

respectively; and ρ > 0 is the parameter that controls the approximation. Additionally,

lim
ρ→0
Hρ(x) =

Q∏
q=1

H` (xq) . (6.12)

Proof: Note that the function Hρ(x) in (6.11) is obtained by developing the product∏Q
q=1Hρ(xq). Since e−x/ρ is differentiable so it is Hρ(x). The concavity and convexity of the

different terms follows by noting that e−x/ρ is a convex function. Finally, limρ→0Hρ(x) =

limρ→0

∏Q
q=1Hρ(xq) =

∏Q
q=1H` (xq).

Note that in the second and fourth sums, the values of ji take all the possible combinations

of i elements without repetition from the set {1, . . . , Q}; accordingly, each of these sums con-

2Note that, for compactness in the notation, we useHρ to denote both the smooth approximation of the single
step and the product of step functions. Throughout the chapter, we differentiate between them by the dimension
of the argument.
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tains Q!
i!(Q−i!) summands. Observe that if we particularize the approximation in Lemma 6.1 to

Q = 1 and Q = 2, then we recover the approximations of the single step function and the first

order product given in (6.8) and (6.10), respectively.

6.3.2 Convex approximation of the smooth step function

In this section, we derive a convex approximation of the smooth step function, Hρ(φ(x)),

around the point y for a given transformation φ, whose component functions are all concave,

denoted as H̆ρ (x; y,φ), that satisfies the SCA requirements from [67, Assumption 3], which

for completeness are given in Appendix 6.A.1.

6.3.2.1 Convex approximation of the single step function

We first consider the convex approximation of the single step function in (6.8), Hρ(φ(x)),

which, from the rules of function composition, is a concave function [63]. Thanks to this

concavity, it is easy to show that its linearization at the point y, i.e., H̆ρ (x; y, φ) = 1 +

ξρ(x; y, φ), is a convex function that satisfies the requirements in [67, Assumption 3], where

we have defined ξρ(x; y, φ) as the linearization of −e
−φ(x)
ρ around the point y, i.e.,

ξρ(x; y, φ) ,
∇xφ(y)

ρ
e−

φ(y)
ρ (x− y)− e−

φ(y)
ρ . (6.13)

6.3.2.2 Convex approximation of products of step functions

Similarly, by linearizing the concave terms of the smooth product of step functions, we can

obtain a convex approximation that satisfies the requirements in [67, Assumption 3].

Lemma 6.2. Given the smooth approximation of the product of step functions Hρ(φ(x)) ≈∏Q
q=1H` (φq(x)) with φ , [φ1, . . . , φQ]T, where φi is a concave, Lipschitz continuous, and

continuously differentiable function, ∀i = 1, . . . , Q, then the function

H̆ρ (x; y,φ) = 1 +
∑
i∈E

∑
0<j1···<ji≤Q

e−
∑i
k=1 φjk

(x)

ρ

︸ ︷︷ ︸
Convex

+
∑
i∈O

∑
0<j1···<ji≤Q

ξρ

(
x; y,

i∑
k=1

φjk

)
︸ ︷︷ ︸

Linear

(6.14)

is a convex approximation ofHρ(φ(x)) around the point y that satisfies the required conditions

in [67, Assumption 3], where ξρ is given in (6.13).
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Proof: See Appendix 6.A.1.

Remark 6.1. Using smooth approximations of step functions to deal with their discontinuity

is not a new concept in the literature; it has been used before to approximate the cardinality

operator (or `0 norm), e.g., see [123] and [124]. However, to the best of our knowledge this

is the first work that derives an approximation for the product of step functions that takes into

account the SCA requirements in [67, Assumption 3]. Note that the smooth approximation is

not unique, e.g., one could use a logarithmic approximation. The key properties of the proposed

approximation are: (i) it easily generalizes to products of step functions (products of logarithms

are no longer concave and the approximation would be difficult to convexify); and (ii) the

smooth approximation is accurate for not so small values of ρ (logarithmic approximations

need to reduce much more the parameter ρ to have an accurate approximation, which leads to

numerical problems due to the finite precision of the solvers).

These approximations are used by the ISCA, which is presented in the following section.

6.4 The Iterative Smooth and Convex approximation Algo-

rithm (ISCA)

One natural approach to deal with the problem in (6.6) is to approximate the step functions in

the ECCs with the approximation derived in Lemma 6.1 and then apply existing smooth non-

convex optimization algorithms (e.g., the algorithm in [67]) to find a locally optimal solution

of the resulting problem. However, there exists a tradeoff in the selection of the approximation

control parameter ρ. If we select a very small value of ρ, i.e., ρ→ 0, the approximation of the

step functions is really accurate, but the nonconvex optimization problem has many local max-

ima and the SCA algorithm is highly influenced by the provided initial point. In opposition,

if we set ρ to a large value, the nonconvex optimization algorithm is not affected that much

by the initial point (because the approximation of the step functions is smoother), but then the

resulting problem does not sufficiently resemble the original problem in (6.6).

In this context, we propose the ISCA that is composed of two loops as shown in Figure 6.4.

The outer loop indexed by ς , performs a SSA of (6.6), deriving, at each iteration, a nonconvex

smooth problem (P̃ ς). This problem is obtained by using the approximation of the step func-

tions derived in Lemma 6.1 given the approximation control parameter ρς , which is initially set
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SSA
(P̃ ς)

p0 ∈ P̂ ∩ P̃1

ς := 1

Find a
feasible initial point:

pς1 ∈ Pς
ν := 1 SCA

(P̆ ςν)

pςν p̃ς

Stop?
yes

p̂

Improve the approximation:
set ρς : ρς < ρς−1 ς:= ς + 1

Outer loop

Inner loop (Algorithm 1)

ν := ν + 1

No

Figure 6.4: Block diagram of the ISCA.

to a large value ρ1 >> 0 so that the ISCA is not influenced by the initial point, p0. Then, given

a certain smooth problem (P̃ ς), the inner loop, which is based on SCA [67], determines a lo-

cally optimal solution. To do so, the inner loop, which is indexed by ν, sequentially convexifies

(P̃ ς) around the current iterate, pςν , and solves the resulting strongly convex problem, (P̆ ςν),

to determine the best update direction. When the inner loop converges to a local optimum of

(P̃ ς), denoted as p̃ς , a termination condition is checked: if it is satisfied, which implies that the

approximation of the step functions is tight enough, the ISCA concludes that a good solution

of the original problem (6.6) is p̂ = p̃ς ; otherwise, a new outer iteration starts by reducing

the approximation control parameter, which tightens the approximation of the step functions.

Then, a feasible initial point for the inner loop is obtained that resembles the locally optimal

solution of the previous outer iteration. Hence, by doing this double loop procedure, we hope

to escape from locally optimal solutions that achieve a sum-rate that is far from the optimal one

(in a similar way to graduated nonconvexity does [125]).

Given the smooth approximation of the step functions in Lemma 6.1, we can now ap-

proximate the original nonsmooth problem (6.6) by a smooth one, (P̃ ς), that, in spite of being

nonconvex, has an inherently high degree of convexity, which is exploited by the inner loop to

efficiently find its locally optimal solution. Then, the smooth problem that has to be solved at

the ς-th outer iteration is:

(P̃ ς) : maximize
p

T∑
t=1

rt(pt,p−t) (6.15a)

subject to
 , P̃ ς

Bς
t(pt) � 0Jt , ∀t = 1, . . . , T (6.15b)

pt ∈ Pt, ∀t = 1, . . . , T (6.15c)
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where

[Bς
t(pt)]` ,

∑̀
j=1

Etj − Ts
∑̀
j=1

∑
n∈τtj

K∑
k=1

pt(k, n) +
Stn∑
s=1

wtnsHρς (φtns(pt)), ` = 1, . . . , Jt;

(6.16)

Hρ is given in (6.11); and φtns(pt) is a vector function defined as

φtns(pt) = [φtns1(pt), . . . , φtnsQtns(pt)]
T.

Accordingly, we have obtained a smooth nonconvex problem (P̃ ς) in which all the terms

associated with the step functions are either convex or concave. This simplifies the SCA inner

loop, which is presented in the following section.

6.4.1 The inner loop: Nonconvex optimization of smooth problems with

SCA

Among the algorithms that converge to stationary solutions of smooth nonconvex problems

(e.g., gradient-based descend schemes [64], SCA algorithms [65–67], feasible sequential

quadratic programming [68], parallel variable distribution [69], etc.), we have selected the

algorithm in [67] for the inner loop because it has the following main advantages:

• It accepts nonconvex constraints.

• It exploits any degree of convexity present in the problem, which results in a much faster

convergence.

• The problem can be generally solved in a distributed way under very mild assumptions.

• It includes as special cases SCA-based algorithms, such as (proximal) gradient or New-

ton type method, block coordinate (parallel) descent schemes and difference of convex

functions methods.

The algorithm proposed in [67] is based on SCA and consists on solving a sequence of

strongly convex inner approximations of the nonconvex smooth problem. Under some struc-

tural assumptions, the algorithm converges to a locally optimal solution. These assumptions

enforce a specific structure of: (i) the original nonconvex smooth problem [67, Assumption 1];
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(ii) the convex approximation of the objective function [67, Assumption 2]; and (iii) the convex

approximation of the constraints [67, Assumption 3]. In order to use the algorithm in [67] in

our inner loop, we need to satisfy these structural requirements.

It can be easily shown that the smooth problem in (6.15) satisfies (i).

Since the objective function is nonconvex, we need to derive a proper convex approxi-

mation. To do so, we exploit the “partial” concavity of the rate of a certain user, rt(pt,p−t),

w.r.t. its own transmission power pt. Hence, we approximate the objective function in (6.15a)

around the current iterate pςν = (((pςνt (k, n))Kk=1)Nn=1)Tt=1 as

T∑
t=1

r̆t(pt,p
ςν), where r̆t(pt,p

ςν) = rt(pt,p
ςν
−t) + πςνTt (pt − pςνt )− bt

2
||pt − pςνt ||2.

The term πςνt linearizes the rate functions of the users t′ 6= t w.r.t. pt, i.e.,

πςνt , ((πςνtkn)Kk=1)Nn=1 =
∑
t′ 6=t

∇ptrt′(pt′ ,p−t′)
∣∣∣
pςν

with

πςνtkn =
∑
t′ 6=t

−snrςνt′ (k, n)htt′(k, n)

muiςνt′ (k, n)(1 + snrςνt′ (k, n))
; (6.17)

snrςνt (k, n) , htt(k,n)pςνt (k,n)

muiςνt (k,n)
and muiςνt (k, n) , σ2

t (k) +
∑

t′ 6=t p
ςν
t′ (k, n)ht′t(k, n) are the SINR

and the multiuser interference-plus-noise power experienced by user t given the power profile

pςν . The term bt
2
||pt − pςνt ||2 with bt ≥ 0 is a proximal regularization term that relaxes the

convergence conditions of the inner loop algorithm or enhances the convergence speed [66].

Finally, we use the convex approximation of the step functions derived in Lemma 6.2 to

approximate the constraints of the smooth problem.

Accordingly, the strongly convex problem that has to be solved in the ν-th inner loop

iteration, which approximates the smooth problem (P̃ ς) around the current iterate, pςν , is

(P̆ ςν) : maximize
p

T∑
t=1

r̆t(pt,p
ςν) (6.18a)

subject to
 , P̆ ςν

Bςν
t (pt; p

ςν
t ) � 0Jt , ∀t = 1, . . . , T (6.18b)

pt ∈ Pt, ∀t = 1, . . . , T (6.18c)
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with [Bςν
t (pt; p

ςν
t )]` ,

∑̀
j=1

Etj−Ts
∑̀
j=1

∑
n∈τtj

K∑
k=1

pt(k, n)+
∑
s∈S+tn

wtnsH̆ρς (pt; p
ςν
t ,φtns)+

∑
s∈S−tn

wtnsH̆−ρς (pt; pςνt ,φtns),

(6.19)

where S+
tn = {s ∈ [1, Stn] : wtns > 0} and S−tn = {s ∈ [1, Stn] : wtns < 0}; H̆ρ is given in

Lemma 6.2; and H̆−ρ is defined as H̆ρ but swapping the odd and even sets. Note that we have

defined H̆−ρ because the negative weights invert the concavity or convexity of the terms of the

smooth step function.

Additionally, since the objective function and constraints of the different transmitters are

decoupled, we can apply primal decomposition [126] and solve T parallel problems, one for

each user, which leads to a distributed resource allocation strategy that requires very limited

feedback as presented later. Accordingly, each transmitter must solve the following problem at

each inner loop iteration:

(P̆ ςν
t ) : maximize

pt
r̆t(pt,p

ςν) (6.20a)

subject to
 , P̆ ςνt

Bςν
t (pt; p

ςν
t ) � 0Jt , (6.20b)

pt ∈ Pt. (6.20c)

Since (P̆ ςν
t ) is a strongly convex problem, its unique solution, p̆ςνt , can be easily deter-

mined by classical convex optimization algorithms, e.g., interior point methods [63]. However,

since the solution to (P̆ ςν
t ) has to be computed at each inner loop iteration, it is key to derive (if

possible) a closed form solution in order to reduce the computational complexity of the ISCA.

The SCA-based inner loop algorithm that converges to a locally optimal solution of the

smooth nonconvex problem (P̃ ς) is given in Algorithm 6.1 [67]. Basically, the algorithm uses

the unique optimal solution to (P̆ ςν
t ), p̆ςνt , to determine the initial point of the following itera-

tion, p
ς(ν+1)
t , which is computed as a convex combination of p̆ςνt and the previous iterate pςνt .

Theorem 6.1 ( [67]). Given the smooth nonconvex problem (P̃ ς), suppose that one of the two

following conditions holds:

a) The step size aςν is such that 0 < infν a
ςν ≤ supν a

ςν ≤ amax ≤ 1 and 2cr̆ ≥ amaxL∇r,

where cr̆ is the constant of uniform strong convexity of
∑T

t=1 r̆t(pt,p
ςν) and L∇r is Lipschitz
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Algorithm 6.1 The inner loop: SCA of (P̃ ς)

Input: pς1 ∈ P̃ς , aςν > 0.
Initialization: Set ν := 1.
Step 1: If a termination condition is satisfied: STOP.
Step 2: For every user t ∈ [1, T ], find p̆ςνt that is the unique optimal solution of the strongly convex problem
(P̆ ςνt ).
Step 3: Update the iterate: p

ς(ν+1)
t = pςνt + aςν (p̆ςνt − pςνt ) ,∀t.

Step 4: ν := ν + 1 and go to Step 1;

continuity constant of
∑T

t=1 rt(pt,p−t).

b) (i) P̃ ς is compact; (ii) p̆ςν is regular for every possible initial point pς1 ∈ P̃ ς; and (iii) the

step size aςν is such that aςν ∈ (0, 1], aςν → 0, and
∑

ν a
ςν = +∞.

Then every regular limit point of {p̆ςν}∞ν=1 is a stationary solution of (P̃ ς). Furthermore, none

of such points is a local maximum.

6.4.2 Determining a feasible initial point for the inner loop.

The inner loop in Algorithm 6.1 requires a feasible initial point, i.e., pς1 ∈ P̃ ς , in order to

determine the solution of (P̃ ς). Ideally, we would like to use as initial point the solution to

(P̃ ς−1), denoted as p̃ς−1; however, in most of the cases this point is not feasible, i.e., p̃ς−1 /∈ P̃ ς ,

due to the reduction of the approximation control parameter, which is formally shown later in

Lemma 6.3. Then, we could use as initial point the projection of p̃ς−1 to the feasible set P̃ ς .

However, since P̃ ς is nonconvex, computing the projection would suppose solving a nonconvex

problem, which is not practical because we need something simple and fast. There are many

heuristic approaches to find the initial feasible point. The simplest and most general option,

which in practice works well, is to move from p̃ς−1 towards the ISCA initial point, p0, which is

required to belong to P̂ ∩P̃1. It can be easily shown that if p0 ∈ P̂∩P̃1, then there exists a step

length, sς , such that an initial feasible point is obtained, i.e., pς1 , p̃ς−1 + sς(p0− p̃ς−1) ∈ P̃ ς .

Observe that given the power consumption models C2
t and C3

tn in (6.4) and (6.5), respectively,

we can select p0 = 0.

Depending on the specific power consumption model one may find better ways to obtain

the initial feasible point for the inner loop. For example, given the power consumption model

C2
t , it can be shown that the steepest ascend direction of a given ECC is an ascend direction of

the remaining ECCs. Hence, for such a power consumption model, we could find the feasible

initial point by successively moving in the steepest ascend direction of the latest unfulfilled
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ECC, i.e., ∇pt [Bς
t(p̃

ς−1
t )]jςt , with jςt = maxj{[Bς

t(p̃
ς−1
t )]j < 0, j = 1, . . . , Jt}, until the jςt

constraint is satisfied. This process must be repeated until all the constraints are fulfilled.

6.4.3 Convergence of the feasible sets and distributed implementation

Now, the details of all the building blocks of the ISCA have been introduced. The following

lemma characterizes the relations between the feasible sets of the outer loop problems (P̃ ς),

P̃ ς , w.r.t. the feasible set of the original problem, P̂ .3

Lemma 6.3. (a) The sequence of feasible sets of the smooth problems {P̃ ς}∞ς=1 converges to

P̂ , i.e.,

lim
ς→∞
P̃ ς → P̂ . (6.21)

(b) If the step function weights are all positive, wtns > 0, ∀t, s, then we have that P̂ ⊆ P̃∞ ⊂

· · · ⊂ P̃ ς+1 ⊂ P̃ ς ⊂ · · · ⊂ P̃1.

(c) If the weights are all negative, wtns < 0, ∀t, s, then P̃1 ⊂ · · · ⊂ P̃ ς ⊂ P̃ ς+1 ⊂ . . . P̃∞ ⊆ P̂ .

Proof: See Appendix 6.A.2.

Note that when a step function has a positive weight, wtns > 0, it is tightening the ECCs

w.r.t. solely considering the radiated power in the ECCs. Conversely, the ECCs are loosed by

negative weighted step functions. As shown in Table 6.1, the power consumption model C2
t

in (6.4) has all the weights positive; whereas, C3
tn in (6.5) has positive and negative weights.

Observe that, it would be estrange that a power consumption model had all the weights negative

since it would imply that all the step functions reduce the power consumption.

In the near future we want to use the result on the convergence of the feasible sets in

Lemma 6.3 in order to prove that the sequence of stationary solutions of the smooth problem,

(P̃ ς), obtained by Algorithm 6.1, converges to a stationary solution of the original nonconvex

and nonsmooth problem (P̂ ). We believe that by using the tools of variational analysis [127]

we might be able to obtain the desired proof; however, further research is required.

As argued in §2.1.3, the solution to the offline maximization problem is specially meaning-

ful when the channel and energy harvesting processes can be predicted within the optimization

3Lemma 6.3 uses the limit definition of a sequence of sets, which is given in [127, Definition 4.1]. Basically,
the limit exists if the outer and inner limits (see definitions in [127, Definition 4.1]) are equal. In such a case, the
limit is the set given by the inner and outer limits.
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time horizon. When this happens, it is key that the power allocation strategy can be com-

puted distributedly by the network nodes because then the nodes can adapt their transmission

strategies when substantial changes on the energy harvesting process are observed.

In order to compute the solution in a distributed manner, the following signaling is required

so that the remaining transmitters can compute the weights πςνtkn: (i) at each outer loop iteration,

each transmitter has to broadcast the feasible initial point of the inner loop; and (ii) at each

inner loop iteration, each transmitter t solely has to broadcast ∇p−trt(pt,p
ςν
−t), which can be

computed with the local measurements of the SINR and the MUI.

Note that the fulfillment of the ECCs is not guaranteed until convergence of the ISCA.

Accordingly, it is required that each of the nodes has a backup battery to be used for this

transitory regime, which can be recharged with the harvested energy.

Remark 6.2. Note that if a different rate function applies, the ISCA can be used by deriving a

proper convex approximation of the objective function.

In the following section, we focus on the power consumption model C2
t and derive a closed

form solution of the inner loop problem.

6.5 The ISCA algorithm for C2
t .

In this section, we use the ISCA to distributedly compute a locally optimal power allocation

given the power consumption model C2
t in (6.4), which is the power consumption model that

we used in Chapter 5.

As it has been mentioned in §6.4, at each inner loop iteration, the t-th transmitter must

solve (6.20) to obtain the update direction. Given the power consumption model C2
t , we have

that

[Bςν
t (pt; p

ςν
t )]` =

∑̀
j=1

Etj −∑
n∈τj

(
εςνt (n) +

K∑
k=1

ϕςνt (k, n)pt(k, n)

) , with (6.22)

ϕςνt (k, n) = Ts

(
1 +

αt
ρς
e
−

∑K
k=1 p

ςν
t (k,n)

ρς +
βt
ρς
e
−pςνt (k,n)

ρς

)
and (6.23)
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εςνt (n) = Tsαt

(
1−

(
1 +

∑K
k=1 p

ςν
t (k, n)

ρς

)
e
−1
ρς

∑K
k=1 p

ςν
t (k,n)

)
+ (6.24)

Tsβt

K∑
k=1

(
1−

(
1 +

pςνt (k, n)

ρς

)
e
−1
ρς
pςνt (k,n)

)
, (6.25)

where the constants ϕςνt (k, n) and εςνt (n) are obtained after linearizing the positive step func-

tions at the current iterate, pςνt .

Lemma 6.4. Given the power consumption model C2
t , the optimal solution to (6.20) is obtained

in closed form as

p̆ςνt (k, n) =

[
1
2

(
pςνt (k, n)− muiςνt (k,n)

htt(k,n)

)
− 1

2bt

(
1

W ςν?
t (k,n)

− (6.26)

√[
1

W ςν?
t (k,n)

− bt
(
pςνt (k, n) +

muiςνt (k,n)

htt(k,n)

)]2

+ 4bt

)]pmax
t (k,n)

0

, n ∈ τj,

where

W ςν?
t (k, n) =

1

−πςνtkn + λ̄ςν?tj ϕ
ςν
t (k, n)

, (6.27)

λ̄ςν?tj =
∑Jt

`=j λ
ςν?
t` with {λςν?t` }

Jt
`=1 being the optimal Lagrange multipliers associated to the

ECCs in (6.18b), which can be efficiently obtained similarly to the FSA algorithm in §4.5.2.

Additionally, if we do not include the proximal regularization term, i.e., bt = 0, we obtain the

following iterative directional water-filling like solution:

p̆ςνt (k, n) =

[
W ςν?
t (k, n)− muiςνt (k, n)

htt(k, n)

]pmax
t (k,n)

0

. (6.28)

Proof: See Appendix 6.A.3.

From the expression in (6.28), we can get some intuition on the solution. First, if the

water level, W ςν?
t (k, n), is smaller than muiςνt (k,n)

htt(k,n)
, then it is preferable to turn off the (k, n)-th

subchannel. Second, the water level, which is given in (6.27), decreases with the interference

produced to other users, which is quantified in the term −πςνtkn. This implies that the users will

try to reduce the interference as much as possible to increase the sum-rate. Third, the water

level depends on ϕςνt (k, n) in (6.23), i.e., the partial derivative of the n-th slot smooth power

consumption w.r.t. pt(k, n) evaluated at the current iterate pςνt (k, n). Accordingly, if the power

of a certain subchannel is small, pςνt (k, n) → 0, the derivative of the smooth step functions
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is large and the water level is penalized. In opposition, if the power of a certain subchannel

is large, pςνt (k, n) → pmax
t (k, n), the derivative of the smooth step function tends to zero and

the water level is rewarded. Note that these penalizations or rewards are weak at the initial

ISCA iterations, because the approximation of the step functions is smooth, but they gain in

importance as the ISCA iterations go by. Finally, the water level is a function of the Lagrange

multipliers that depend on the energy availability of the node in a similar way to the DWF

solution [84].

It is worth mentioning that if the number of transmitter and receiver pairs in the network

is set to one, T = 1, then the ISCA computes the solution to the problem studied in Chapter 5.

Note that the ISCA can be applied to a broad class of problems. In the following remarks,

we use the ISCA to derive power allocation strategies that, to the best of our knowledge, have

not been yet derived in the literature.

Remark 6.3 (Transmission power only). Consider the sum-rate maximization problem of a

network of energy harvesting nodes, where the unique source of energy consumption is the

transmission power (αt = 0, βt = 0, γt = 0). Then, the inner loop of the ISCA (or the

algorithm in [67]) can be used to determine a distributed locally optimal solution, where the

solution to the ςν-th inner loop problem is

p̆ςνt (k, n) =

[
1

−πςνtkn + λ̄ςν?tj Ts
− muiςνt (k, n)

htt(k, n)

]pmax
t (k,n)

0

, n ∈ τj. (6.29)

Remark 6.4 (Power consumption model C3
tn in (6.5)). Consider the problem of maximizing the

sum-rate given the power consumption model C3
tn. Then, the ISCA determines a distributed

power allocation strategy, where the inner loop problem must be solved by numerical methods

since it does not accept a closed form solution. Additionally, the power allocation strategy in a

point-to-point link is obtained by particularizing T = 1, which implies that πςνtkn = 0,∀k, n.

Remark 6.5 (Non-harvesting nodes). Finally, consider the sum-rate maximization problem of

a network of non-harvesting nodes given any power consumption model of the form (6.3).

Then, the ISCA determines a distributed power allocation strategy, where the strongly convex

problem that has to be solved at each inner loop iteration is (6.20) given that Jt = 1, ∀t, which

imposes a sum-power constraint.

In the following section, we evaluate the performance of the ISCA.
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6.6 Results

In this section, we numerically evaluate the performance of the ISCA in terms of achieved rate

and computational complexity of the algorithm.

As it has been argued in the state of the art in Chapter 2, there are few works that consider

the different energy sinks at each transmitter; indeed, to the best of our knowledge, the most

similar work to the problem studied in this chapter is the problem that we studied in Chapter

5, where we considered the mutual information maximization problem in a point-to-point link

with the power consumption model C2
t .

Accordingly, in order to have some benchmark with which to compare the performance

of the ISCA, we particularize the solution derived in the previous section to a point-to-point

link by setting T = 1. The remaining system parameters have been set as follows. We have

considered N = 50 channel accesses of duration Ts = 20 ms in which symbols are transmitted

through K = 2 parallel streams. The power consumption constants are set to αt = γt =

150 mW and βt = 10 mW. A Rayleigh fading channel has been considered with unit mean

channel power gain. The energy harvesting process is modeled as a compound Poisson process

as done in [84], where the arrival instants follow a Poisson distribution with rate 1
10

and the

energy in the packets is drawn from a uniform distribution and normalized by the total harvested

energy that varies along the x-axis of Figures 6.5-6.7. The initial point of the ISCA is set to

zero, and the approximation control parameter is ρς = 0.5ρς−1 with ρ1 = 5. We have not

used the proximal regularization term, bt = 0, and the step size of the inner loop is aςν =

aς(ν−1)(1− 10−3aς(ν−1)) with aς0 = 1, ∀ς .

We consider two classes of strategies:

• Power consumption model C2
t : On the one hand, we consider strategies that use the

power consumption model C2
t (i.e., strategies that disregard the startup power consump-

tion, γt = 0), which can be based either on the use of IVs or on the use of the ISCA: (i)

the IVs based strategies are the upper bound and feasible solution obtained through inte-

ger relaxation as it has been explained in §5.3.1, which we label here as IV-UB (γt = 0)

and IV (γt = 0); (ii) the ISCA based strategies are ISCA-FSA (γt = 0) that uses the

closed form solution derived in Lemma 6.4, where the Lagrange multipliers are obtained

similarly to the FSA algorithm (cf. §4.5.2), and ISCA-BM (γt = 0) that solves (6.20)
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Figure 6.5: Achieved rate versus total harvested energy for the different considered strategies.

using the barrier method [63] given that γt = 0.

• Power consumption model C3
tn: On the other hand, we consider strategies that account

for the startup power consumption (i.e., strategies that use the power consumption model

C3
tn), ISCA-BM, which solves (6.20) using the barrier method, and the strategies IV and

ISCA-FSA, which scale IV (γt = 0), and ISCA-FSA (γt = 0) until the ECCs with startup

power consumption are satisfied.

In this setup, Figure 6.5 shows the achieved rate versus total harvested energy. First, we

observe that the solution provided by the ISCA strategies is close to the global optimum since

the gap with the upper bound, IV-UB (γt = 0), is small. Second, the ISCA based solutions

perform slightly better than the feasible strategy IV (γt = 0). Finally, as expected, the strategies

that consider the startup power consumption achieve a lower sum-rate, where the stationary

solution ISCA-BM performs better than the other strategies that consider the startup power

consumption.

Figure 6.6 shows the percentage of the total harvested energy that is expended in energy

sinks different than the transmission power. The percentage of energy spent in the circuitry

is much higher at low harvested energies, where the cost for turning on a subchannel is a
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Figure 6.6: Percentage of the total harvested energy expended in the circuitry.

high fraction of the total available energy, and decreases in the high energy regime, where the

transmission power in each subchannel increases. Additionally, at the high energy regime, the

effect of disregarding the startup power consumption does not have a significant impact since

most of the channel accesses are active and, accordingly, there are few off-on transitions.

Figure 6.7 evaluates the computational complexity of the different algorithms. It is ob-

served that the worst performance is achieved by ISCA-BM, where most of the execution time is

spent in the computation of the gradient and the Hessian required for the Newton method [63];

however, it also solves a more complex problem than the strategies that disregard the startup

power consumption. Note that the performance of the ISCA with the barrier method improves

when the startup power consumption is disregarded. Finally, it is important to mention that

when a closed form solution of the inner loop problem is available, as happens with ISCA-FSA,

the computational complexity of the ISCA is dramatically reduced outperforming the strategy

based on IVs.

Finally, Figure 6.8 shows the violation of the original nonsmooth ECCs produced by the

stationary solution of each smooth nonconvex problem, which is computed as the Euclidean

norm of the nonfulfilled constraints. To obtain Figure 6.8, we have reduced the approximation
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control parameter slightly slower to have more points, i.e., ρς = 0.8ρς−1 with ρ1 = 5. As

expected, when the outer loop iterations go by and the approximation control parameter is

reduced, the violation of the original nonsmooth ECCs is reduced, reaching tolerable levels in

EH applications.

6.7 Conclusions

In this chapter, we have studied the sum-rate maximization problem of a Gaussian interfer-

ence channel composed of WEHNs by considering a general power consumption model that

is composed of step functions. We have proposed the ISCA, a distributed power allocation

algorithm that is based on SSA of the step functions to derive a sequence of smooth nonconvex

problems that can be solved by means of SCA. By numerical simulation, we have shown that

the sum-rate achieved by the ISCA is similar to the one of existing algorithms while it reduces

the computational complexity when a closed form solution of the inner loop problem exists.
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6.A Appendix

6.A.1 Proof of Lemma 6.2

In the following lines, we show that H̆ρ (x; y,φ) satisfies all the requirements imposed in [67,

Assumption 3] that are:

Assumption 1. The function H̆ρ(·; ·,φ) : X × Y → R must satisfy [67, Assumption 3] for all

φ:

A1) H̆ρ(·; y,φ) is convex on X for all y ∈ Y;

A2) H̆ρ(x; x,φ) = Hρ(φ(x)), for all x ∈ Y;

A3)Hρ(φ(x)) ≤ H̆ρ(x; y,φ) for all x ∈ X and y ∈ Y;

A4) H̆ρ(·; ·,φ) is Lipschitz continuous on X × Y;

A5) ∇xH̆ρ(y; y,φ) = ∇xHρ(φ(y)), for all y ∈ Y;

A6) ∇xH̆ρ(·; ·,φ) is continuous on X × Y;

where∇xH̆ρ(y; y,φ) denotes the partial gradient of H̆ρ (x; y,φ) w.r.t. x evaluated at (y; y,φ).

First note that since the component functions of φ are all concave and e
−x
ρ is convex and

158



6.A. Appendix

decreasing, the function e−
∑i
k=1 φjk

(x)

ρ is convex [63], which proves the convexity of the terms

in (6.14). Accordingly, A1 is satisfied because H̆ρ is the addition of convex and affine terms.

Since H̆ρ(·; y,φ) is obtained after linearizing the concave terms of Hρ(φ(·)), it follows that

H̆ρ(·; y,φ) is a global over estimator that has the same value and gradient at y. Hence, condi-

tions A2, A3 and A5 are also satisfied. Finally, since e
−x
ρ is Lipschitz continuous, H̆ρ(·; ·,φ) is

also Lipschitz continuous.

6.A.2 Proof of Lemma 6.3

Note that the difference between P̃ ς+1 and P̃ ς is due to the reduction of the approximation

control parameter (ρς+1 < ρς) in the ECCs. It can be easily shown that: (i) Hρ is strictly

decreasing in ρ (for x > 0) and (ii) Hρ(x) ≤
∏Q

q=1H` (xq), ∀x ∈ RQ
+, ρ > 0. Accordingly,

when all the weights are positive, we have from (i) that the smooth ECCs are tightened when

the approximation control parameter is reduced, i.e., P̃ ς+1 ⊂ P̃ ς ,∀ς . Additionally, from (ii),

the ECCs are relaxed when using the smooth approximation, we have that P̂ ⊆ P̃ ς . This

proves (b), the proof of (c) follows similarly by noting that when all the weights are negative

the original ECCs are tightened. In the following lines, we prove (a).

Let us write P̃ ς = Pt∩Bς withBς = {pt : Bς
t(pt) � 0Jt ,∀t = 1, . . . , T } and P̂ = Pt∩B̂

with B̂ = {pt : Bt(pt) � 0Jt ,∀t = 1, . . . , T }. Accordingly, we need to prove that Bς

converges to B̂ as ς →∞. To prove this, we define the following two sets:

Bς+ ,
{

pt :
∑̀
j=1

Etj − Ts
∑̀
j=1

∑
n∈τtj

K∑
k=1

pt(k, n) +
∑
s∈S+tn

wtnsHρς (φtns(pt))

+
∑
s∈S−tn

wtns

Qtns∏
q=1

H` (φtnsq(pt)) ≤ 0,∀` = 1, . . . , Jt,∀t = 1, . . . , T
}
,

Bς− ,
{

pt :
∑̀
j=1

Etj − Ts
∑̀
j=1

∑
n∈τtj

K∑
k=1

pt(k, n) +
∑
s∈S−tn

wtnsHρς (φtns(pt))

+
∑
s∈S+tn

wtns

Qtns∏
q=1

H` (φtnsq(pt)) ≤ 0,∀` = 1, . . . , Jt,∀t = 1, . . . , T
}
,

where S+
tn and S−tn are defined as in (6.19). Note that Bς+ approximates the positive step func-

tions only and Bς−, the negative ones. Similarly to the proofs of (b) and (c), it follows that
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Bς+1
+ ⊂ Bς+,∀ς and Bς− ⊂ Bς+1

− ,∀ς . Additionally, following the same arguments, we have that

Bς− ⊂ Bς ⊂ Bς+. From [127, Exercise 4.3], we have that the limits of the setsBς+ andBς− exists

(the inner and outer limits are equal) and are Bς+ → B̂ and Bς− → B̂. This leads to Bς → B̂,

which proves (a).

6.A.3 Proof of Lemma 6.4

We prove Lemma 3 by using the KKT sufficient optimality conditions. The Lagrangian of

the problem in (6.20) is Lςνt (pt,λ
ςν
t ) = rt(pt,p

ςν
−t) + πςνTt (pt − pςνt ) − bt

2
||pt − pςνt ||2 +

λςνTt Bςν
t (pt; p

ςν
t ), where λςνt are the Lagrange multipliers associated to the ECCs in (6.20b).

Taking the derivative of the Lagrangian w.r.t. pt(k, n), n ∈ τj , and equating to zero, we have

p̆ςνt (k, n) =



0 if 1
W ςν
t (k,n)

≥ htt(k,n)
muiςνt (k,n)

+ btp
ςν
t (k, n),

p̄ςνt (k, n) if 1
W ςν
t (k,n)

< htt(k,n)
muiςνt (k,n)

+ btp
ςν
t (k, n), and

1
W ςν
t (k,n)

> htt(k,n)
htt(k,n)pmax

t (k,n)+muiςνt (k,n)
− bt(pmax

t (k, n)− pςνt (k, n)),

pmax
t (k, n) if 1

W ςν
t (k,n)

≤ htt(k,n)
htt(k,n)pmax

t (k,n)+muiςνt (k,n)
− bt(pmax

t (k, n)− pςνt (k, n)),

where W ςν
t (k, n) = 1

−πςνtkn+λ̄ςνtj ϕ
ςν
t (k,n)

with λ̄ςνtj =
∑J

`=j λ
ςν
t` ; and p̄ςνt (k, n) is obtained as the

solution of the following quadratic equation

htt(k, n)

htt(k, n)p̄ςνt (k, n) + muiςνt (k, n)
=

1

W ςν
t (k, n)

+ bt(p̄
ςν
t (k, n)− pςνt (k, n)). (6.30)

From [128, Lemma 35] (with Hk := htt(k,n)
muiςνt (k,n)

, τ := bt, ck := pςνt (k, n), µ̃k := 1
W ςν
t (k,n)

),

the previous equation has the following properties: (i) both roots are real, one root is always

negative, and the other is nonnegative; (ii) both roots are increasing in W ςν
t (k, n); and from the

expression of the nonnegative root, we obtain (6.26).

Finally, note that if the proximal step is zero, i.e., bt = 0, then (6.28) follows directly from

the first order equation in (6.30).
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7.1 Conclusions

This dissertation has focused on the design of transmission strategies (linear precoding designs

and resource allocation strategies) that take into account the specific characteristics of WEHNs.

In particular, the dissertation has put an special emphasis on taking into account the energy

availability variations and the different sources of energy consumption at the transmitter(s),

which are not accounted for in classical transmission strategies. As a result, the proposed

transmission strategies exploit more efficiently the available energy than classical transmission

strategies improving the achieved performance given some figure of merit.

In Chapter 1, we have motivated the conducted research and presented the outline and

research contributions of the dissertation.

Chapter 2 has presented the structure of a WEHN and the main characteristics that must

be taken into account when designing transmission strategies for WEHNs. Additionally, the

chapter has overviewed the state of the art on well-known transmission strategies.

Chapter 3 has considered an energy harvesting transmitter operating in a point-to-point

link with a time-static channel that has a finite battery capacity, acquires the data packets over

time, and has to fulfill some QoS constraint. This chapter has studied the (offline) data depar-

ture curve that minimizes the transmission completion time by satisfying the DCC, the ECC,

and the QoS constraint. The optimal transmission strategy has been constructed by deriving

structural properties of the solution: first, it has been shown that constant rate transmission is

the strategy that requires less energy to transmit a certain amount of data if no energy is lost due
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to battery overflows; afterwards, it has been shown that losing energy due to battery overflows

is suboptimal as far as there is data to be transmitted and, accordingly, it is better to increase

the rate before the overflow until either there is no overflow or the DCC is reached (i.e., there

is no more data to transmit); finally, it has been demonstrated that the existence of the optimal

solution depends both on the dynamics of the harvesting process and on the required QoS. Ac-

cording to these properties, an algorithm has been proposed that is able to determine whether

the problem has a solution or not and, in case of having a solution, determines the optimal data

departure curve.

Chapter 4 has been devoted to a WEHN transmitting arbitrarily distributed symbols in a

discrete-time linear vector Gaussian channel. The chapter has investigated the offline linear

precoding strategy that maximizes the mutual information by taking into account the causality

constraints on the use of energy when there is an infinite backlog of data waiting to be trans-

mitted. The chapter has proved that the optimal left singular vectors of the precoder matrix

diagonalize the channel and argued that the derivation of the optimal right singular vectors is

an involved problem that is left for future research. Then, the chapter has focused in the prac-

tical situation in which the right singular vectors are set to the identity matrix; in this setup,

the optimal offline power allocation, the MIMO Mercury Water-Flowing solution, has been

derived. The chapter has presented two different algorithms that compute the offline MIMO

Mercury Water-Flowing solution whose computational complexity has been evaluated both an-

alytically and experimentally; additionally, an online algorithm has been proposed. Finally,

the performance of the different algorithms has been compared through numerical simulations

showing a substantial increase in the achieved mutual information.

Chapter 5 has studied the power allocation strategy that maximizes the mutual informa-

tion achieved by a WEHN along N independent channel accesses in which symbols are sent

through K parallel streams. The main contribution of Chapter 5 w.r.t. previous works like

DWF is that, not only the transmission radiated power has been accounted for in the ECCs,

but also the cost associated with having a certain channel access or stream “on”. The offline

maximization problem has been shown to be nonsmooth and nonconvex due to the presence

of step functions on the power consumption model. After replacing the step functions by ad-

ditional optimization variables, named IVs, the chapter has explored the integer relaxation and

dual problems to obtain two suboptimal solutions and an upper bound of the original offline

maximization problem. Interestingly, we have shown that these feasible solutions are practi-
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cally identical in the sense that a common condition for the activation of the channel access

and streams is obtained, i.e., if the epoch water level is greater than the corresponding cutoff

water level, and asymptotically tend to the optimal solution when the number of channel ac-

cesses or streams per epoch is large. Additionally, we have devised the Boxed Water-Flowing,

an intuitive graphical representation of the asymptotically optimal offline resource allocation,

which is based on the cutoff water level concept. Finally, a practical online algorithm has been

proposed, which requires the lowest execution time compared to the offline algorithms and has

a small performance loss.

Finally, Chapter 6 has focused on a multiuser communication system and has investigated

the power allocation strategy in each transmitter that maximizes the network’s sum-rate when a

generalized power consumption model is considered in the ECCs, which is composed of prod-

ucts and summations of step functions. To address the problem, the ISCA has been proposed

that is based on SSA of the indicator functions to derive a sequence of smooth nonconvex prob-

lems that can be solved by means of SCA. As it has been presented, one of the key features of

the proposed algorithm is that the power allocation strategy can be computed in a distributed

manner by the network nodes. By numerical simulation, we have shown that, under the setup

of Chapter 5 (a point-to-point communication with channel access and stream activation costs),

the mutual information achieved by the ISCA is similar to the asymptotically optimal Boxed

Water-Flowing solution while it reduces the computational complexity.

7.2 Future Work

There are a myriad of possible research directions that can be considered to extend the results

obtained in this work. In short, for the design of more efficient transmission strategies, it is key

to develop better models of both the energy generation and consumption processes.

First of all, given the current available models of the energy generation and consumption

processes, there are still many offline transmission strategies that should be investigated:

• This thesis has only considered the transmission completion time minimization and the

mutual information maximization; accordingly, one possible research direction is the

consideration of different figures of merit (for example, the ones discussed in §2.1.5).

• Regarding practical communication systems that use an arbitrary input distribution, the
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following research lines can be considered:

– To determine the optimal right singular vectors of the precoding matrix under the

setup studied in Chapter 4.

– To determine the optimal linear precoder with the generalized power consumption

model C4 introduced in Chapter 6.

– To allow a dynamic selection of the modulation and coding schemes according to

the node energy availability.

As briefly discussed in §2.1.1, few works have dealt with the modeling of the energy har-

vesting process given the different energy sources and transducers. Accordingly, the following

research directions are required in the upcoming years:

• To develop measurement campaigns of the harvested energy given different energy sour-

ces and harvesting technologies (in a similar way than the measurements of the solar and

kinetic energies obtained in [31, 35, 36]). These measurement campaigns must be broad

enough to capture the energy variability due to environmental and climatic conditions as

well as node’s placement and mobility.

• To create statistical models of the acquired data in the previous point in order to design:

– Low-complexity prediction algorithms of the harvested energy that can be used

prior to the computation of the offline transmission strategy.

– Online algorithms that exploit the available statistical knowledge of the harvested

energy.

Additionally, for the design of accurate offline and online transmission strategies it is key

to analyze the impact of not having complete CSI at the transmitter.

This work has proposed a generalized power consumption model, but still many sources

of power consumption escape from the model and should be considered:

• Energy consumption at the processing unit to perform the computation of the transmis-

sion strategy:

As we have seen throughout this dissertation, the computation of the transmission strat-

egy entails a certain computational complexity, which in general grows with the num-

ber of channel accesses, N , (or optimization time horizon), the number of parallel data
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streams, K, and the number of energy packets or ECCs, J . This computational com-

plexity has an associated energy consumption which has been ignored in the designed

transmission strategies (and, to the best of our knowledge, in all the related works in the

literature).

On the one hand, when this source of energy consumption is neglected, a larger optimiza-

tion time horizon is always preferred in terms of achievable performance; additionally,

as it has been argued in §2.1.1, the packetized model of the energy harvesting process

can be understood as a time sampling of the continuous power harvesting profile, where

the smaller the sampling window (or the greater the value of J), the more the packe-

tized model resembles to the real power harvesting profile, which also results in a better

performance.

On the other hand, if this source of energy consumption is considered, there exists a

tradeoff in the selection of the parameters N and J , which should be carefully analyzed

and studied, since larger values of N and J imply a loss on the total available energy for

transmission due to the higher energy consumption to compute the transmission strategy.

• Energy consumption of the sensors to acquire data:

A wireless sensor node consumes a substantial amount of energy for sensing purposes

(in the sensor itself and to perform the analog to digital conversion of the sensed data),

which has been generally ignored when designing the node’s transmission strategy. This

source of consumption opens a new research paradigm since the sensing and transmission

policies must be jointly designed to achieve the best performance given some figure of

merit.
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[57] A. Lozano, A. M. Tulino, and S. Verdú, “Optimum power allocation for parallel Gaus-

sian channels with arbitrary input distributions,” IEEE Trans. on Information Theory,

vol. 52, no. 7, pp. 3033 – 3051, Jul. 2006.
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[79] S. Verdú, “On channel capacity per unit cost,” IEEE Trans. on Information Theory,

vol. 36, no. 5, pp. 1019–1030, Sep. 1990.

[80] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth, “On the LambertW function,”

Advances in Computational mathematics, vol. 5, no. 1, pp. 329–359, 1996.

[81] E. Uysal-Biyikoglu, B. Prabhakar, and A. El Gamal, “Energy-efficient packet transmis-

sion over a wireless link,” IEEE/ACM Trans. Netw., vol. 10, no. 4, pp. 487–499, Aug.

2002.

[82] E. Uysal-Biyikoglu, A. El Gamal, and B. Prabhakar, “Adaptive transmission of variable-

rate data over a fading channel for energy-efficiency,” in Proceedings of the IEEE Global

Telecommunications Conference, vol. 1, Nov. 2002, pp. 97–101.

[83] M. Zafer and E. Modiano, “Delay-constrained energy efficient data transmission over a

wireless fading channel,” in Proceedings of the IEEE Information Theory and Applica-

tions Workshop, Jan. 2007, pp. 289–298.

[84] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with en-

ergy harvesting nodes in fading wireless channels: Optimal policies,” IEEE Journal on

Selected Areas in Communications, vol. 29, no. 8, pp. 1732–1743, Sep. 2011.

[85] C. K. Ho and R. Zhang, “Optimal energy allocation for wireless communications with

energy harvesting constraints,” IEEE Trans. on Signal Processing, vol. 60, no. 9, pp.

4808 –4818, Sep. 2012.

[86] O. Ozel and S. Ulukus, “Information-theoretic analysis of an energy harvesting com-

munication system,” in Proceedings of the IEEE International Symposium on Personal,

Indoor and Mobile Radio Communications Workshops, Sep. 2010, pp. 330–335.

175



BIBLIOGRAPHY

[87] K. Tutuncuoglu and A. Yener, “Optimum transmission policies for battery limited energy

harvesting nodes,” IEEE Trans. on Wireless Communications, vol. 11, no. 3, pp. 1180–

1189, Mar. 2012.

[88] M. Gorlatova, A. Bernstein, and G. Zussman, “Performance evaluation of resource al-

location policies for energy harvesting devices,” in Proceedings of the IEEE Modeling

and Optimization in Mobile, Ad Hoc and Wireless Networks, May 2011, pp. 189–196.

[89] P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach to energy har-

vesting communication system optimization,” in Proceedings of the IEEE GLOBECOM

Workshops, Dec. 2012, pp. 1657–1662.

[90] J. Ventura and K. Chowdhury, “Markov modeling of energy harvesting body sensor

networks,” in Proceedings of the IEEE International Symposium on Personal Indoor

and Mobile Radio Communications, Sep. 2011, pp. 2168–2172.

[91] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy management policies

for energy harvesting sensor nodes,” IEEE Trans. on Wireless Communications, vol. 9,

no. 4, pp. 1326 –1336, Apr. 2010.

[92] J. Yang and S. Ulukus, “Optimal packet scheduling in an energy harvesting commu-

nication system,” IEEE Trans. on Communications, vol. 60, no. 1, pp. 220–230, Jan.

2012.

[93] O. Orhan, D. Gunduz, and E. Erkip, “Throughput maximization for an energy harvesting

communication system with processing cost,” in Proceedings of the IEEE Information

Theory Workshop, Sep. 2012, pp. 84–88.

[94] J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with an energy harvesting rechargeable

transmitter,” IEEE Trans. on Wireless Communications, vol. 11, no. 2, pp. 571 –583,

Feb. 2012.

[95] M. A. Antepli, E. Uysal-Biyikoglu, and H. Erkal, “Optimal scheduling on an energy

harvesting broadcast channel,” in Proceedings of the IEEE Modeling and Optimization

in Mobile, Ad Hoc and Wireless Networks, May 2011, pp. 197–204.

176



BIBLIOGRAPHY

[96] O. Ozel, J. Yang, and S. Ulukus, “Optimal broadcast scheduling for an energy harvesting

rechargeable transmitter with a finite capacity battery,” IEEE Trans. on Wireless Com-

munications, vol. 11, no. 6, pp. 2193–2203, Jun. 2012.

[97] ——, “Optimal transmission schemes for parallel and fading Gaussian broadcast chan-

nels with an energy harvesting rechargeable transmitter,” Computer Communications,

Elsevier, vol. 36, no. 12, pp. 1360 – 1372, Jul. 2013.

[98] R. Rajesh, P. Deekshith, and V. Sharma, “Capacity of a Gaussian MAC with energy

harvesting transmit nodes,” in Proceedings of the IEEE Information Theory and Appli-

cations Workshop, Feb. 2012, pp. 338–343.

[99] J. Yang and S. Ulukus, “Optimal packet scheduling in a multiple access channel with en-

ergy harvesting transmitters,” Journal of Communications and Networks, vol. 14, no. 2,

pp. 140–150, Apr. 2012.

[100] J. Jeon and A. Ephremides, “The stability region of random multiple access under

stochastic energy harvesting,” in Proceedings of the IEEE International Symposium on

Information Theory, Jul. 2011, pp. 1796–1800.

[101] M. Khuzani and P. Mitran, “On online energy harvesting in multiple access communi-

cation systems,” IEEE Trans. Inf. Theory, vol. 60, no. 3, pp. 1883–1898, Mar. 2014.

[102] P. Blasco, D. Gunduz, and M. Dohler, “Low-complexity scheduling policies for energy

harvesting communication networks,” in Proceedings of the IEEE International Sympo-

sium on Information Theory Proceedings, Jul. 2013, pp. 1601–1605.

[103] D. Gunduz and B. Devillers, “Two-hop communication with energy harvesting,” in Pro-

ceedings of the IEEE International Workshop on Computational Advances in Multi-

Sensor Adaptive Processing, Dec. 2011, pp. 201–204.

[104] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus, “Energy cooperation in energy harvest-

ing wireless communications,” in Proceedings of the IEEE International Symposium on

Information Theory Proceedings, Jul. 2012, pp. 965–969.

177



BIBLIOGRAPHY

[105] O. Orhan and E. Erkip, “Optimal transmission policies for energy harvesting two-hop

networks,” in Proceedings of the IEEE46th Annual Conference on Information Sciences

and Systems, Mar. 2012, pp. 1–6.

[106] ——, “Energy harvesting two-hop networks: Optimal policies for the multi-energy ar-

rival case,” in Proceedings of the IEEE Sarnoff Symposium, May 2012, pp. 1–6.

[107] Y. Luo, J. Zhang, and K. B. Letaief, “Optimal scheduling and power allocation for two-

hop energy harvesting communication systems,” IEEE Trans. on Wireless Communica-

tions, vol. 12, no. 9, pp. 4729–4741, Sep. 2013.

[108] A. Nasir, X. Zhou, S. Durrani, and R. Kennedy, “Relaying protocols for wireless en-

ergy harvesting and information processing,” IEEE Trans. on Wireless Communications,

vol. 12, no. 7, pp. 3622–3636, Jul. 2013.

[109] I. Ahmed, A. Ikhlef, R. Schober, and R. Mallik, “Power allocation for conventional and

buffer-aided link adaptive relaying systems with energy harvesting nodes,” IEEE Trans.

on Wireless Communications, vol. 13, no. 3, pp. 1182–1195, Mar. 2014.

[110] M. Feghhi, A. Abbasfar, and M. Mirmohseni, “Optimal power and rate allocation in the

degraded Gaussian relay channel with energy harvesting nodes,” in Proceedings of the

IEEEIran Workshop on Communication and Information Theory, May 2013, pp. 1–6.

[111] C. Huang, R. Zhang, and S. Cui, “Throughput maximization for the Gaussian relay

channel with energy harvesting constraints,” IEEE J. Sel. Areas Commun., vol. 31, no. 8,

pp. 1469–1479, Aug. 2013.

[112] B. Medepally and N. B. Mehta, “Voluntary energy harvesting relays and selection in co-

operative wireless networks,” IEEE Trans. on Wireless Communications, vol. 9, no. 11,

pp. 3543–3553, Nov. 2010.

[113] L. Berbakov, C. Antón-Haro, and J. Matamoros, “Optimal transmission policy for col-

laborative beamforming with finite energy storage capacity,” in Proceedings of the

IEEE Personal Indoor and Mobile Radio Communications, Sep. 2013, pp. 559–563.

178



BIBLIOGRAPHY

[114] K. Tutuncuoglu and A. Yener, “Sum-rate optimal power policies for energy harvest-

ing transmitters in an interference channel,” Journal of Communications and Networks,

vol. 14, no. 2, pp. 151–161, Apr. 2012.

[115] X. Liu and E. Erkip, “Energy-efficient communication over Gaussian interference net-

works with processing energy cost,” CoRR, vol. abs/1301.1661, 2013.

[116] J. R. Magnus and H. Neudecker, Matrix differential calculus with applications in statis-

tics and econometrics, ser. Wiley series in probability and statistics. New York: Wiley,

1999.
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