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the Universidad Juárez Autónoma de Tabasco (UJAT), who proposed me and represented

in the SEP. In special to PhD Dora Maria Frias Márquez secretary of academic services

and institutional representative in the UJAT by PROMEP, because at supporting to the

conclusion of my thesis. To the Universitat Politècnica de Catalunya (UPC), which gave
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Abstract

Survival analysis with standard methods such as proportional hazards models or paramet-

ric models are commonly used to analyze time to event data. A standard assumption in

survival analysis is that all individuals will have the event of interest provided the follow-

up period is large enough. However, common models might be inappropriate when data

contain too much right-censoring. In these cases one might think that the follow-up is not

enough, maybe because the data contains long-term survivors or both. In this scenario,

standard models are extended to a more general class of models that take into account

long-term survivors. These individuals are mixed with those censored individuals due to

the termination of the study, yielding a large proportion of censored data for which the

subsample of long-term survivors cannot be distinguished from the others. One might

assume that this type of data arises from the mixture of two populations, the immune

individuals and the non-immune individuals and, in this case, the standard use of the

Kaplan-Meier estimator could prove to be wrong since we are dealing with an improper

survival function. An standard approach for these data are the cure models. However,

before carrying out an analysis with a mixture cure model, one has to ensure, whether

follow-up was sufficient. In addition to the problem of heavy right-censoring, sometimes

we have to face with the situation in which the interest event can or not occur within a

finite interval of time, for example, data coming from veterinary studies: when the event

is abortion, the interest interval for the study is determined from conception to before

birth, or when the event is death to weaning, the interest interval is birth-weaning. In

these cases a model with bounded hazard function could be the most appropriate, or any

member of the class of nonlinear transformation models introduced by Tsodikov (2003).
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In this dissertation we propose recommendations for use of the Cox model in presence of

heavy censoring, we implement nonparametric tests for assessment of sufficient follow-up,

and we show applications of the no standard survival models. The research developed

in this thesis has been motivated by two datasets, which are introduced in Chapter 2,

one concerning the mortality of calves from birth to weaning while the other refers to

survival of patients diagnosed with melanoma. In both cases the percentage of censoring

is high, it is very likely to have immune individuals and proper analysis accounting for the

possibility of a not negligible proportion of cured individuals has to be performed. Cure

models are introduced in Chapter 3 together with the available software to perform the

analysis, such as SAS, R and STATA, among others. We investigate the effect that heavy

censoring could have on the estimation of the regression coefficients in the Cox model via

a simulation study which considers several scenarios given by different sample sizes and

censoring levels, results presented in Chapter 4. An application of a mixture cure model,

which includes a Cox model for the survival part and a logistic model for the cure part

of patients with melanoma, is described in Chapter 5. In addition, discussions about test

for sufficient follow-up and censoring levels are also presented for this data. The data

analysis is carried out using the macro in SAS: PSPMCM. The results show that patients

with Sentinel Lymph Node (SLN): negative status to biopsy, Clark’s level of invasion I-

III, Histopathological of Malignant Melanoma subtype: Superficial Spreading Melanoma

(SSM), younger than 46 years, and female, are more likely to be cured, whereas patients

with melanoma in head and neck, Breslow’s micrometric depth ≥ 4mm and ulceration

presents, are patients with increased risk of relapse. In particular, patients with Breslow’s

micrometric depth ≥ 4mm are at higher risk for death. Furthermore, since mixture cure

models do not have the property of proportional hazards for the entire population, they

can be extended to non-mixture cure models by means of nonlinear transformation models

as defined in Tsodikov (2003). An application of the extended hazard models is presented

for the mortality of calves in Chapter 6. The methodology allows to get estimates for the

cure rate as well as for genetic and environmental effects for each herd. A relevant feature

of the non-mixture cure models is that they model, separately, factors which could affect

survival from those affecting the cure model, making the interpretation of these models



relatively easy. Results are shown in section 6.3.1, and were obtained using the library

NLTM of the statistical package R. The short (mortality) and long term (survivors) ef-

fects are determined for each factors, as well as its statistical significance in each herd.

For example in the herd 1, we find that calving month and difficulty at birth is the set

of statistically significant factors for the nonsusceptible (long-term survivors) proportion.

Calves born in the period march-august have lower probability of survive than those born

in september-february; and the probability of survive is much lower for those that have

difficulties at calving for herd 1. For herd 7 the effect of difficulty at calving is different

as for herd 1, here only is significative the category strongly assisted. Calves that born

from strongly assisted calving have lower probability of survive that calves from without

assistance calving. Regarding short-term (mortality) effects, we only find statistically sig-

nificant predictors in herd 7 where the risk of death of calves born from older mothers,

hence with a longer reproductive life, is twice the risk of death of calves born from younger

mothers. The obtained results have been compared with those coming from standard sur-

vival models. It is also included, a discussion about the likely erroneous conclusions that

may yield from standard models, without taking into account the cure.
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Chapter 1

Introduction

The idea for this thesis came from the seminaries of the GRASS group (Grup de Recerca

en Anàlisi eStad́ıstica de la Supervivència) on survival analysis, held at the UPC (Univer-

sitat Politècnica de Catalunya). The initial motivation was a dataset of the mortality of

calves (Tarrés et al. (2005)). The particularity of this dataset was that the event of inter-

est mortality could or could not occur within a period of finite time: the birth-weaning

period. Furthermore due to the fact that the majority of the calves survived the study, the

data collected presented heavy right censoring. Furthermore the calves can be classified

as immune or non-immune (equivalent to die or not within the birth-weaning period). A

second motivation was given by a sample of diagnosed patients with skin cancer, being

the relapse (or death) due to cancer the event of interest. As patients receive a treatment,

most of them do not experience a relapse (long-term survival), resulting survival data

with high level of right censoring. These data types can be analyzed via survival cure

models. The cure model was first proposed as a scheme where the event of interest can

or cannot happen in a period of sufficiently long time (Boag (1949), Berkson and Gage

(1952)), thus, it is considered as an interval of infinite time. The cure model has been

widely studied by many researchers, among them Maller and Zhou (1996). In their work,

they have summarized the majority of the contributions on the subject until 1996, and

this book will be our basic point of reference.

1



2 1.1. NOTATION AND DEFINITIONS

The main objective in this thesis will be to extend the cure models to a situation with

survival data subject to a heavy right-censoring level. Our purpose is to investigate the

effects due to the heavy right-censoring on the regression coefficients in the Cox model

when the assumption of this model is true. Determine the appropriate sample size to

ensure acceptable results using the Cox model in a scenario of heavy censoring. Identify

the causes of heavy censoring and the most appropriate models for the analysis in such

scenario. Show the advantages of the cure models with respect to the standard models.

Implement statistical tests to determine whether the follow-up is or not enough, when the

existence of immune and susceptible individuals is suspected in the population. Identify

the cure models that do not have the property of proportional hazard, study the proper-

ties of their estimated parameters. Review the useful statistical software to perform an

analysis using a survival model that takes into account long term survivors. Apply the

extended hazard models to the data of calves, and compare the results with those obtained

using a standard model.

This chapter aims to make an introduction about the mixture cure models in survival

analysis. In section 1.1 we give the basic concepts and notation needed for the subsequent

chapters. In section 1.2 we present the notation for right-censored data. Section 1.3

introduces the formulation of mixture cure models. Finally, we give an outline of the

subsequent chapters in Section 1.4.

1.1 Notation and definitions

In this thesis the random variables are denoted by capital letters, for example T , C, U ,

Y . Covariates or covariate vectors are denoted by small letters, say x or z.

Let T be a positive random variable representing the survival time, defined as the time

until an event of interest occurs. F denotes the distribution function of T and S the

survival function defined by S(t) = 1− F (t). SP (t) denotes the survival function of T in

a specific population.
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Let C be a positive random variable to represent the time to censoring, with distribution

function G.

Definition 1 : A survival function S(t) is said to be improper, if S(∞) > 0.

Definition 2 : The right extreme of the distribution function F (t) is defined as τF =

inf{t ≥ 0 : F (t) = 1}.

Definition 3 : An individual who does not present the event of interest during a long

enough follow-up, is defined as a long-term survivor, immune, cured or nonsusceptible.

While an individual who presents the event is defined as susceptible or uncured.

Definition 4 : Let ϕ(u) be a nonnegative strictly monotonically decreasing function de-

fined for all u ≥ 0, such that its first derivative ϕ′ is continuous and ϕ(0) = −ϕ′(0) = 1.

The ϕ-hazard rate r(t) for the survival function S(t) is defined by the relation, r(t) =
d
dt

ϕ−1(S(t)), where ϕ−1 is the inverse function for ϕ. It is clear that the function r(t)

reduces to the traditional hazard rate h(t) if one chooses ϕ of the form ϕ(u) = exp(−u).

Definition 5 : Let r(t) be the ϕ-hazard rate for the survival function S(t). Then S(t)

has increasing ϕ-hazard rate average, if 1
t

∫ t

0
r(u)du is increasing in t > 0. When r(t) is the

traditional hazard rate h(t), then it is said that the survival function S(t) has increasing

hazard rate average.

1.2 Right censoring

In survival analysis, the survival time is the time from a well-defined, possibly random,

starting point until some event E occurs. Some examples of survival times are: lifetime of

an organism, time to re-offense of a criminal, remission times for cancer. An observation is

censored, or more specifically, right-censored at time C if the survival time T is unknown
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except for the fact that T is greater than C. In this thesis, we suppose that censoring is

random, and that censoring times are independent of survival times.

The general problem of right censoring in survival analysis was first treated by Lagakos

(1979), who represented the life process of a subject using random variables (T, U, δ),

where T is the time to event E, with distribution function F , U is the observed portion

of T with U ≤ T and, δ=1 if U = T and δ=0 if U < T .

Nevertheless, in independent censoring models, the survival time of a subject can be

represented by random variables (T, C, U, δ) where T is the time until event E with dis-

tribution F and C represents the time until censoring, with distribution G, T and C are

stochastically independent. Within this formulation the observed pair (U, δ) are struc-

turally represented by U = min{T,C} and, δ=1 if U = T or δ=0 if U = C (Williams and

Lagakos (1977)). The distribution function of U (which we denote by L) is given by the

relation

L(u) = 1− [1− F (u)][1−G(u)]. (1.1)

Furthermore,

P (U ≤ u, δ = 0) = P (U ≤ u, T > C) =

∫ u

0

[1− F (s)]dG(s). (1.2)

1.3 Mixture survival models

Mixture survival models are widely applied to carry out survival analysis when the pop-

ulation being studied is heterogeneous and it is not possible to distinguish between indi-

viduals of different types. Mixture survival models are so called because they are formed

from a combination of different survival functions, each one corresponding to a group of

individuals of the entire population.

Sp(u) = π1S1(u) + π2S2(u) + · · ·+ πkSk(u), (1.3)

where
∑k

i=1 πi = 1. The properties of a mixture model depend on the properties of the

components involved in the mixture. Models with more than two components are rarely
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used, and as explained by Lawless (2003), they can be difficult to estimate.

Mixture models with two population components were originally proposed by Boag (1949)

and Berkson and Gage (1952). These models must be used together with the proportion

of cures and the survival time of a disease. In this particular case, mixture models are

called mixture cure fraction models or mixture cure models. By cure it is meant that an

individual will have little or no risk of experiencing the event of interest again (e.g. return

of disease). In this scenario, the majority of the patients survive the disease and only a

small percentage of mortality can be observed, resulting in a mixture of two populations,

immune patients and not immune (Maller and Zhou (1996)). All this could be complicated

by the presence of a censoring random variable, and combined with the additional problem

of patients cured, resulting in the problem of mixture cure models with heavy censoring.

Mixture models have been widely applied in criminology (Schmidt and Witte (1989)),

finances (Cole and Gunther (1995)) and, as Farewell (1986) discusses, they should not be

used indiscriminately. In order to use mixture cure models a good empirical or biological

evidence of a nonsusceptible population is required as well as large sample and long-follow

up combined with a not excessive censoring during the period when events can occur (Sy

and Taylor (2000)).

1.4 Outline of the subsequent chapters

In this section we describe the structure and composition of the thesis. The chapters are

presented thematically in relation to each other, but they can also be read and understood

separately without much difficulty.

Chapter 2, contains a presentation of the datasets that have motivated the development

of this thesis, the first deals with data from a clinical trial of patients with melanoma,

the second deals with a calf mortality study. A preliminary analysis was done separately,

showing the limitations of the standard survival model. Some questions that arise from
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the analysis are made, and the subsequent chapters are developed to provide answers to

these questions.

Chapter 3 presents the state of the art about cure models, from its origins to the present,

including applications in various fields, as well as the development of the mixture cure

models and the non-mixture cure models approaches. At the end of this chapter a review

of existing software to analyse survival data with cure models is provided together with a

discussion about availability.

In Chapter 4, we propose new recommendations for survival analysis specially designed

for heavy censoring. We examine how the level of right censoring affects the properties of

parameter estimators in survival models. First we will confront the problem of simulating

survival data with a controlled level of right censoring. We must, however, obtain the

theoretical results to control the censoring, and establish the bases for simulation. We

begin with a simulation study to investigate the effects of heavy censoring in estimates of

the regression coefficients in the Cox model. For these simulations we consider different

scenarios for various sample sizes and censoring levels. An analysis of the bias, variance,

relative bias and coverage of Cox´s regression coefficient estimator will be carried out,

with simulated data with heavy right censoring. All the methodology for the simulation

study was implemented as functions in the statistical package R (see Appendix A.2.1).

Chapter 5 presents the application of the mixture cure models to the dataset of melanoma.

First a discussion about testing for sufficient follow-up is presented, second a formulation

about the estimation process for a semiparametric mixture cure model is formulated via

maximum likelihood and EM algorithm. The nonparametric tests for sufficient follow-up

and the estimation for cure rate, were implemented with the statistical package R (see

Appendix A.2.2). The results to estimate the regression coefficients in the mixture cure

models were obtained using the SAS program.

Chapter 6 presents an extension of the cure models through the nonlinear transformation
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models, resulting in a large family of extended hazard models. These models were recently

developed, and this chapter presents an application to calves mortality data. Results pre-

sented are obtained using the statistical package R.

Finally, chapter 7 summarizes the results in this thesis and addresses those aspects which

remain to be completed. When we compare the results obtained with the proposed cure

models with those results calculated from standard survival models, the later mistakenly

assess the effects of factors and may lead to erroneous conclusions. Moreover, our cure

models are easy to interpret since the effects of the factors, both the cure and survival,

are modelled separately.



Chapter 2

Motivation data

2.1 Introduction

This work is motivated by population studies from two areas of application, from oncology

studies in human populations and from veterinary studies in animal populations. The first

is related to a group of skin cancer patients and the second is a dataset about mortality

of calves, both of which were collected in Catalonia, Spain. The objective of this chapter

is to give an introduction to these studies and to make a descriptive presentation of these

two datasets, which are amply discussed in the development of this thesis.

2.2 Melanoma dataset

Cancer is one of the most important diseases in the developed world for its incidence,

prevalence and mortality. The cancer derived from melanocytes (cutaneous melanoma)

represents 2-3% of all malignancies and is responsible for 80% of deaths from skin cancer.

As in many other neoplasms, prognostic depends on the extension of the disease. Early

localized disease can be curable, but once the melanoma cells migrate to lymphatic nodes

or distant sites, the disease free survival (DFS) and overall survival (OS) dramatically

decays. Revisions to the melanoma staging system were published in the 7th edition of

8
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the American Joint Committee on Cancer (AJCC) in 2009 and implemented January,

2010 (see Balch et al. (2010)). The melanoma staging system, known as the Tumour,

Node, Metastasis (TNM) system is based on depth of tumor invasion, the number of

regional lymph nodes involved, and the presence of metastasis (see Table 2.1). The AJCC

classification stratifies patients in three main categories according to the disease extension

and their prognostic. These categories are recognized: Stages I and II (limited to the

Table 2.1: TNM system for Cutaneous Melanoma
T classi�cation Thickness Ulceration Status/Mitoses

Tis N/A N/A

T1 ≤ 1.0 mm a:  w/o ulceration and mitosis <1/mm2

b:  with ulceration or mitoses ≥ 1/mm2

T2 1.01 - 2.0 mm a:  w/o ulceration 

b:  with ulceration

T3 2.01 - 4.0 mm a:  w/o ulceration 

b:  with ulceration

T4 > 4.0 mm a:  w/o ulceration 

b:  with ulceration

N classi�cation # of Metastatic Nodes Nodal Metastatic Mass

N0 0 nodes N/A

N1 1 node a:  micrometastasis*

b:  macrometastasis**

N2 2-3 nodes a:  micrometastasis*

b:  macrometastasis**

c:  in-transit met(s)/satellite(s) without  
     metastatic nodes

N3 4 or more metastatic nodes, 
or matted nodes, or in-transit 
met(s)/satellite(s) with metastatic 
node(s)

M classi�cation Site Serum LDH

M0 0 sites N/A

M1a Distant skin, subcutaneous, or 
nodal mets

Normal

M1b Lung metastases Normal 

M1c All other visceral metastases Normal 

Any distant metastasis Elevated

*Micrometastases are diagnosed after sentinel lymph node biopsy and completion lymphadenectomy  
(if performed).

**Macrometastases are de�ned as clinically detectable nodal metastases con�rmed by therapeutic lymphadenec-
tomy or when nodal metastasis exhibits gross extracapsular extension.
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primary site), Local regional stage III disease (once the melanoma cells migrate to regional

nodal basins through lymphatic vessels) and disseminated stage IV disease (once melanoma

cells had spread to distant organs). In localized melanoma (see Figure 2.1), the prognostic

is related to the tumor burden, and currently, the diagnostic and therapeutic protocol

for this type of cancer includes local wide excision and, in tumors with Breslow thickness

deeper than 1.0mm (or thinner ones but with high mitotic rate or ulceration), to explore

regional nodal involvement. Complete Lymph Node Dissection (CLND) is only performed

in those patients with evidence of nodal involvement. Sentinel Lymph Node (SLN) biopsy

is a technique that allows the identification and analysis of the lymph node(s) in the

regional basin, that receives a direct afferent drainage from a solid tumor, and therefore

is at greatest risk of harboring regional metastases.

Figure 2.1: Melanoma

The two main measures to estimate the primary tumor burden are: Clark’s level of inva-

sion (a discrete measure that defines the deepest skin layer invaded by melanoma); and

Breslow’s micrometric depth. The Clark’s classification measures the level of invasion
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into the different layers of the skin. Level I : lesions involving only the epidermis (in situ

melanoma); not an invasive lesion. Level II : tumor invades the papillary dermis, but it

does not reach the papillary-reticular dermal interface. Level III : invasion fills and expands

the papillary dermis, but the tumor does not penetrate the reticular dermis. Level IV :

invasion into the reticular dermis but not into the subcutaneous tissue. Level V : invasion

through the reticular dermis into the subcutaneous tissue. Breslow’s micrometric depth

of invasion measures the vertical thickness of the melanoma from the granular endermic

layer. Thickness 1 : 0.75 mm or less. Thickness 2 : 0.76 mm to 1.50 mm. Thickness 3 :

1.51 mm to 4.0 mm. Thickness 4 : 4.0 mm or greater (see Figure 2.2).

Figure 2.2: Clark levels and Breslow thickness
                              Clark                                                  Breslow 

2.2.1 Data description

The data corresponds to an observational study of all patients diagnosed with primary cu-

taneous melanoma treated at the Hospital Universitari Germans Trias i Pujol (HUGTIP)

from Badalona, between September 1998 and January 2008. The dataset is formed by

a group of 400 patients with melanoma who underwent SLN biopsy. The result of the

biopsy was positive in 80 (20%) patients (see Table 2.2), and all of them underwent lym-

phadenectomy.

Variables under study

For each patient (positive, negative) different characteristics of their melanoma were evaluated,

and are summarized in Table 2.2. The categorizations for each of the variables or character-

istics of melanoma were given by the hospital staff responsible of the study. In this table we
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Table 2.2: Characteristics of patients

Variables Categories Count(%) Total

Age ≤ 45 137(34.42)

46− 60 107(26.88)

61− 70 84(21.10)

> 70 70(17.58) 398

Gender F 233(58.25)

M 167(41.75) 400

HMM subtype SSM 206(55.83)

ALM 26( 7.05)

LMM 4( 1.08)

NM 133(36.04) 369

SLN Status Negative 320(80.00)

Positive 80(20.00) 400

Localization Extremities 199(49.75)

Head and Neck 39( 9.75)

Trunk 162(40.50) 400

Breslow level < 1 106(26.97)

[1, 2) 123(31.30)

[2, 4) 101(25.70)

≥ 4 63(16.03) 393

Ulceration No 254(70.36)

Yes 107(29.64) 361

Clark level I-III 122(31.28)

IV-V 268(68.72) 390

Mitotic index ≤ 1 102(40.32)

> 1 151(59.68) 253
Histopathological of Malignant Melanoma(HMM) subtype: Superficial Spreading Melanoma (SSM),

Acral Lentiginous Melanoma (ALM), Lentigo Maligna Melanoma (LMM), Nodular Melanoma (NM).
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see that the melanoma is mainly located in Extremities (49.75%) and Trunk (40.5%); Breslow’s

depth of melanoma is more frequent in the class [1-2)mm (31.30%), followed by the class < 1mm

(26.97%) and [2-4)mm (25.70%); 29.64% of patients had Ulceration; the levels of anatomical

invasion of the melanoma in the skin described by Clark’s level and classified into two categories

were, I-III in 31.28% of the cases and IV-V in the remanning 68.72%; Histopathological of Malig-

nant Melanoma(HMM) subtype (see Swetter et al. (2005) for melanoma subtype) more frequent

were Superficial Spreading Melanoma (SSM) (55%) and Nodular Melanoma (NM) (36.04%);

Mitotic index classified into two categories were, ≤ 1 mitosis/mm2 in 40.32% of the cases and

> 1 mitosis/mm2 in the remaining 59.68%. In the same Table 2.2, we observe that 34.42% of

the patients are less than 45 years old and 58.25% are women. Furthermore, characteristics of

melanoma such as Breslow, Ulceration, Clark, HMM subtype, Mitotic index and Age, were not

collected for all patients.

Missing data

The information for some of the variables under study is missing. In what follows we describe

the characteristics of those patients with missing information. Concerning Breslow’s depth of

melanoma we have 7 patients for which this variable is missing. Among these, one has a positive

result of the biopsy, two relapsed and one died. There are ten patients (including the previous

seven) for which Clark’s level is not reported. Missing information for Ulceration and HMM

subtype is around 10% and 8%, respectively, and are summarized in Table 2.3. The information

about Ulceration was missing for 39 patients (26 women and 13 men, most of them younger than

60 years old), among these 31 had a negative SLN, 19 of them had the melanoma Localized in

the Extremities, 21 had Breslow’s depth between 1 and 2mm and Clark’s levels in one of the

first 3 categories. The information about HMM subtype was missing for 31 patients (18 women

and 13 men, most of them younger than 60 years old), among these 28 had a negative SLN, 16

of them had the melanoma Localized in the Trunk, 11 had Breslow’s depth less than 1mm and

12 between 1 and 2mm, 18 had Clark’s levels between IV and V categories. Mitotic index is

only reported for 253 (63%) of the patients (see Table 2.2), and due to this high percentage of

missing data (37%) this variable will be excluded for the next analysis.

Patients relapsed

In the group of 400 patients with a melanoma diagnosis, each patient is followed from the di-
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Table 2.3: Description of missing data

Histopathological of Malignant Melanoma(HMM) subtype: Superficial Spreading Melanoma (SSM), Acral

Lentiginous Melanoma (ALM), Lentigo Maligna Melanoma (LMM), Nodular Melanoma (NM).
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agnosis date until the date of the last visit at hospital (Data was collected until January 2008).

During follow-up some patients relapsed or died due to melanoma (or other causes). In this

dataset we observed 63 patients (15.75%) with a melanoma relapse while the remaining of the

patients (84.25%) stay relapse-free.

Table 2.4 describes the characteristics of 61 (15.25%) patients who relapsed (two patients were

not included in this table due to missing information in the relapse type). Among these, 39.34%

of patients are older than 70 years, 24.59% are aged between 61-70, and the same percentage for

46-60 years. Among the patients who relapsed, most of them had a Visceral type (28 patients)

followed by 16 with Satellitosis or in transit type, 14 with Nodal type and only 3 had a Local

type. The melanoma was located in the Extremities for 29 patients, in the Trunk for 19 and the

remainder 13 had melanoma in the Head and Neck. Approximately half of the patients (55%)

had a Negative biopsy result, and half (55%) suffered an Ulceration. Moreover, 29 patients died

due to melanoma and 30 patients were still Alive at the end of follow-up.

Two events are of great importance for research in this group of patients: relapse and death.

We define two survival times of interest. First is the disease-free survival time, defined as the

difference between the date of the relapse and the date of diagnosis. The second is the overall

survival time, defined as the difference between the date of death and the date of the diagnosis.

2.2.2 Disease-free survival time

To analyze the disease-free survival time, we define censored patients as all patients alive without

relapse at the end of the study. We have a total of 337 patients censored, the maximum censoring

time was 4136 days. The maximum time until relapse was 3065 days, and is attained when the

study is closed and 81 patients, still at-risk, have not relapsed. The estimated probability of

survivors beyond approximately 8 years is given by ŜKM (3065) = 0.7971 and 95% confidence

interval of [0.750, 0.847]. Observe that this probability is slightly smaller than the probability of

not relapsing given by the proportion 337
400 = 0.8425.

Table 2.5 describes the characteristics of relapsed patients. In this table, we observe that pa-

tients with a positive SLN have a percentage of relapse higher than the patients with negative

1Kaplan-Meier estimator
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Table 2.4: Characteristics of patients who relapsed

Histopathological of Malignant Melanoma(HMM) subtype: Superficial Spreading Melanoma (SSM), Acral Lentiginous

Melanoma (ALM), Lentigo Maligna Melanoma (LMM), Nodular Melanoma (NM); Censoring type (Cexit).
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result. We observe that the percentage of relapse due to melanoma increases when patients get

older. Men are more susceptible to relapse than women. Regarding the location of melanoma,

patients with melanoma in Head and Neck have a higher percentage of relapse than patients

with melanoma in Extremities or Trunk. In addition, we observe that the higher the tumor

volume (Breslow level) is at higher risk of relapse. Likewise patients who present ulceration

have a percentage of relapse more higher than patients with non-ulcerated tumors. The group

of patients with Clark I-III has a lower percentage of relapse than patients with Clark IV-V.

On the other hand, the Histopathological of Malignant Melanoma (HMM) for Acral Lentiginous

Melanoma (ALM), Lentigo Maligna Melanoma (LMM) and Nodular Melanoma (NM) types have

a percentage of relapse higher than Superficial Spreading Melanoma (SSM) type.

It follows from Table 2.5 that patients with primary tumor ulceration or positive result of the

SLN biopsy are at higher risk of a relapse compared to patients that have non ulcerated tumor

or negative result in the biopsy. Similarly, it is observed that the risk of relapse increases when

patients get older and when Breslow’s thickness increases. These and other evidences were ana-

lyzed using the log-rank test and of Peto-Peto test, the latter to detect early differences.

Figure 2.3 shows plots of the disease-free survival curves by groups defined from categorial vari-

ables, with similar percentage of relapse (where one might suspect equality of survival curves)

into variable. Table 2.6 presents log-rank and Peto-Peto statistics2 value (Harrington and Flem-

ing (1982)) together with the p-value for these groups. Not significant differences were found

between levels. Figure 2.3 plots the survival curve according to the melanoma location (Figure

2.3 a), Breslow’s categories (Figure 2.3 b), Histopathological of Malignant Melanoma (HMM)

subtype (Figure 2.3 c) and Age (Figure 2.3 d). We observe that, for instance, the survival of

patients with melanoma in Extremities and Trunk is very similar. Concerning HMM subtype we

observe a much higher disease-free survival for Superficial Spreading Melanoma (SSM) than the

rest. These considerations suggest a new categorization for these 4 variables, before considering

such factors in the survival model.

2Nonparametric test for comparing two or more survival curves where some of the observations may

be censored.
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Table 2.5: Characteristics of relapsed patients

Variables Categories Relapsed(%) Total

Age ≤ 45 7( 5.10) 137

46− 60 15(14.01) 107

61− 70 17(20.23) 84

> 70 24(34.28) 70

Gender F 27(11.58) 233

M 36(21.55) 167

HMM subtype SSM 20( 9.70) 206

ALM 6(23.07) 26

LMM 1(25.00) 4

NM 34(25.56) 133

SLN Status Negative 36(11.25) 320

Positive 27(33.75) 80

Localization Extremities 30(15.07) 199

Head and Neck 13(33.33) 39

Trunk 20(12.34) 162

Breslow level < 1 5( 4.71) 106

[1, 2) 10( 8.13) 123

[2, 4) 21(20.79) 101

≥ 4 25(39.68) 63

Ulceration No 25( 9.84) 254

Yes 33(30.84) 107

Clark level I-III 7( 5.73) 122

IV-V 54(20.14) 268
Histopathological of Malignant Melanoma(HMM) subtype: Superficial Spreading Melanoma (SSM),

Acral Lentiginous Melanoma (ALM), Lentigo Maligna Melanoma (LMM), Nodular Melanoma (NM).

Cox model for the disease-free survival time

Based on the results obtained in the previous section, we present, in Table 2.7, the new recoding

variables. We are now using only two categories for location type (Extremities-Trunk versus
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Figure 2.3: Disease-free survival time by categories of the studied variables
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Table 2.6: Tests for equality of survival curves 

Tests Log-rank Peto-Peto 

Groups 
�2 

df p-value
�2 

df p-value

 !" !"#$: Extremities, Trunk 0.3 1 0.615  0.2 1 0.674 

 !" !"#   : <1,  [1, 2) 1.1 1 0.286  1.2 1 0.283 

$%%#           : A ! , LMM, N!   0.0 2 0.976  0.1 2 0.949 

$%"#    : 46-60, 61-70 1.9 1 0.170  2.1 1 0.149 

 

Head-Neck), three categories for Breslow level (< 2, [2, 4) and ≥ 4), two categories for HMM

subtype (SSM versus ALM-LMM-NM) and three categories for Age (≤ 45, 46-70, and > 70). In

this table we can see the distribution of the total of relapses (and percentage) by categories for

each of the studied variables.
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Table 2.7: Genetic factors for relapse due to melanoma

Factor Categories Relapsed(%) Total

SLN status Negative 36(11.25) 320

Positive 27(33.75) 80

Localization Extremities-Trunk 50(13.85) 361

Head and Neck 13(33.33) 39

Breslow level < 2 15( 6.55) 229

[2, 4) 21(20.79) 101

≥ 4 25(39.68) 63

Ulceration No 25( 9.84) 254

Yes 33(30.84) 107

Clark level I-III 7( 5.73) 122

IV-V 54(20.14) 268

HMM subtype SSM 20( 9.70) 206

ALM-LMM-NM 41(25.15) 163

Age ≤ 45 7( 5.10) 137

46− 70 32(16.75) 191

> 70 24(34.28) 70

Gender F 27(11.58) 233

M 36(21.55) 167
Histopathological of Malignant Melanoma(HMM) subtype: Superficial Spreading Melanoma (SSM),

Acral Lentiginous Melanoma (ALM), Lentigo Maligna Melanoma (LMM), Nodular Melanoma (NM).

The results obtained with the Cox model, are summarized in Table 2.8. Highly statistically

significant factors for survival are SLN status, Breslow, Ulceration, Clark, and Age. This table

shows that, patients with nodal metastasis in the SLN have twice the risk of relapse than patients

with negative SLN; patients with Breslow ≥ 4 have three times more risk of relapse than those

with Breslow < 2; patients with Ulceration have two times more risk of relapse than those

without Ulceration. Another important factor is Clark’s level, patients with Clark in categories

IV-V are three times more at risk of relapse than those with Clark I-III.
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Table 2.8: Statistically significant factors for disease free survival using a Cox model. Reference

group: SLN status= negative, Breslow level < 2mm, Ulceration= no, Clark level= I-III and

Age≤ 45 years.

Predictors β se(β) p eβ L.95 U.95

SLN Status

positive 0.718 0.288 0.012 2.050 1.164 3.610

Breslow level

[2,4)mm 0.611 0.381 0.108 1.842 0.872 3.889

≥ 4mm 1.191 0.427 0.005 3.289 1.423 7.605

Ulceration

Yes 0.758 0.311 0.014 2.135 1.160 3.928

Clark level

IV-V 1.083 0.493 0.027 2.955 1.124 7.764

Age

46-70 1.339 0.452 0.003 3.815 1.572 9.256

> 70 2.183 0.466 <.001 8.871 3.556 22.133

n=352 (48 missing observations)

The risk of relapse one increases when increasing the patient’s Age: patients aged between 46

and 70 years are more than three times at risk of relapse than those younger than 45 years, and

patients older than 70 years are around nine times more at risk of relapse than those younger

than 45 years. These results indicate that patients with Ulcerated melanoma, thick (high Bres-

low and Clark) and extended to SLN have a higher risk of relapse and this risk increases if the

patient is older than 45 years.

In this Thesis, testing for the proportional hazards assumption in the Cox regression model is

carried out using the cox.zph function in R. Table 2.9 summarizes the results for the validation of

the assumption of proportionality. The column rho is the Pearson’s product-moment correlation

between the scaled Schoenfeld residual and g(t), where g(.) is the Kaplan-Meier transformation
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(1−S(t)). The significance level p is for testing whether the proportional hazards assumption is

true or not. As we can see all the p-values are larger than 0.13, excluding a linear dependence

between the coefficient of the variable and time. Therefore, we conclude that the proportional

hazards condition is satisfied.

Table 2.9: Test for proportional hazards.

Predictors rho chisq p

SLN Status

positive -0.0146 0.015 0.904

Breslow level

[2,4)mm -0.0276 0.059 0.807

≥ 4mm -0.0914 0.778 0.378

Ulceration

Yes -0.0433 0.160 0.689

Clark level

IV-V -0.0403 0.102 0.749

Age

46-70 -0.2054 2.266 0.132

> 70 -0.1617 1.460 0.227

Schoenfeld residuals (Schoenfeld (1982)), useful, for checking the proportional hazards assump-

tion in Cox model, are shown in Figure 2.4 for Ulceration=Yes (Ulc1), Clark=IV-V (clark1),

Age=46-70 (age1) and Age>70 (age2). Although the proportional hazards assumption is satis-

fied, we observe residual outliers, in Figure 2.4 b), c) and d). In the remaining variables we did

not observe any outlier.

2.2.3 Overall survival time

To analyze the overall survival time, we defined censored patients as all patients who are still alive

at the end of the study. We have a total of 369 patients censored, the maximum censoring time

was 4136 days (the same value for disease-free time). The maximum time until death was 3358
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Figure 2.4: Schoenfeld residuals
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d) Beta for Age > 70
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days, and is attained when 59 patients are still alive at the last visit and hence they are censored

because the study was completed. The estimated probability of survivors beyond approximately

9 years is given by ŜKM (3358) = 0.872 and 95% confidence interval of (0.824, 0.923). Notice

that their value is bit smaller than the level of censoring at end the follow-up, 369
400 = 0.9225.

Table 2.10 describes the percentage of dead patients by categories of the studied variables. In this

table, we observe that patients with a positive SLN have a percentage of death higher than the

patients with a negative one. We observe that the percentage of death due to melanoma increases

when patients get older. The patients with Breslow ≥ 4 have a death proportion higher than

the rest of the patients. Likewise the patients who present an ulcerated tumor have a percentage

of death higher than the patients who do not have. The group of patients with Clark I-III has
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Table 2.10: Characteristics of dead patients

Variables Categories Dead(%) Total

Age ≤ 45 5( 3.64) 137

46− 60 7( 6.54) 107

61− 70 9(10.71) 84

> 70 10(14.28) 70

Gender F 17( 7.29) 233

M 14( 8.38) 167

HMM subtype SSM 13( 6.31) 206

ALM 5(19.23) 26

LMM 0( 0.00) 4

NM 13( 9.77) 133

SLN status Negative 16( 5.00) 320

Positive 15(18.75) 80

Localization Extremities 18( 9.04) 199

Head and Neck 4(10.25) 39

Trunk 9( 5.55) 162

Breslow level < 1 2( 1.88) 106

[1, 2) 8( 6.50) 123

[2, 4) 7( 6.93) 101

≥ 4 13(20.63) 63

Ulceration No 12( 4.72) 254

Yes 16(14.95) 107

Clark level I-III 3( 2.45) 122

IV-V 27(10.07) 268
Histopathological of Malignant Melanoma(HMM) subtype: Superficial Spreading Melanoma (SSM),

Acral Lentiginous Melanoma (ALM), Lentigo Maligna Melanoma (LMM), Nodular Melanoma (NM).

a percentage of death lower than the patients with Clark IV-V. On the other hand, the HMM

subtype for Acral Lentiginous type have a percentage of death higher than the rest of the patients.
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From Table 2.10, similarly as in Table 2.5 for relapse, it is concluded that patients with an

ulcerated melanoma or metastasis in the SLM, are at higher risk of death compared to patients

that don’t have ulceration or a negative SLM. Similarly, it is observed that the risk of death

increases with age. For those variables where it is unclear whether there is or not a difference

between categories in the proportion of deaths, we proceed to investigate its significance via

hypothesis testing. Figure 2.5 and Table 2.11 show the survival curves and the test statistic to

Figure 2.5: Overall survival time by categories of the studied variables
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compare them, respectively, by Localizations, Breslow index, HMM subtype and Age. As it is

observed the plots are quite similar among the categories. The p-value in the Table 2.11 for

log-rank and Peto-Peto statistics confirm that the equality of survival curves cannot be rejected.

These results suggest redefining the characteristics of Location, Breslow and HMM subtype of

melanoma, and Age of the patient, before considering such factors in the survival model.
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Table 2.11: Tests for equality of survival curves 

Tests Log-rank Peto-Peto 

Groups 
�2 

df p-value �2 
df p-value

 !"#$%!&: Extremities, Head and  eck, Trunk 1.9 2 0.390  1.8 2 0.398 

'()*+!,   : <1,  [1, 2), [2, 4) 4.2 2 0.121  4.2 2 0.122 

-../////:   !"#LMM, N! 3.1 2 0.217  2.9 2 0.233 

01)/           :  45, 46-60 1.3 1 0.250  1.3 1 0.247 

01)/////: 61-70, >70 1.2 1 0.270  1.2 1 0.270 

 

Cox model for the survival time

Taking into account the results obtained in the previous section, in Table 2.12 there are the new

recoded variables. We are now using only two categories for Breslow level (< 4 versus ≥ 4), two

categories for HMM subtype (SSM-LMM-NM versus ALM) and two categories for Age (less than

60 years old and higher than 60). In this table we can see the distribution of the total number

of deaths in each category, such as will enter the survival model.

The results obtained with the Cox model, are summarized in Table 2.13. Highly statistically

significant factors for survival are SLN Status, Ulceration, Clark and Age. This table shows that,

patients with positive SLN have three times more risk of dead than patients with negative status;

patients with an ulcerated melanomas are three more times at risk of dead than those without

ulceration; patients with Clark’s level IV-V are five more times at risk of dead than those with

Clark I-III; and patients older than 60 years is three times higher the risk of dead that younger.

These results indicate that patients with ulcerated, thick and advanced Clark melanoma, which

has extended to the nodes are at high risk of dead, and this risk increases if the patient is older

than 60 years.

Table 2.14 summarizes the results for the validation of the assumption of proportionality. In

this table we see that in all cases, the test is not significant, and conclude that the proportional

hazards condition is satisfied.

Moreover, Schoenfeld residuals shown in Figure 2.6, confirms the proportional hazards assump-
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Table 2.12: Genetic factors for death due to melanoma
Factor Categories Dead(%) Total

SLN Status Negative 16( 5.00) 320

Positive 15(18.75) 80

Breslow level < 4 17( 5.15) 230

≥ 4 13(20.63) 63

Ulceration No 12( 4.72) 254

Yes 16(14.95) 107

Clark level I-III 3( 2.45) 122

IV-V 27(10.07) 268

HMM subtype SSM-LMM-NM 26( 7.58) 343

ALM 5(19.23) 26

Age ≤ 60 12( 4.91) 244

> 60 19(12.33) 154

Gender F 17( 7.29) 233

M 14( 8.38) 167
Histopathological of Malignant Melanoma(HMM) subtype: Superficial Spreading Melanoma (SSM),

Acral Lentiginous Melanoma (ALM), Lentigo Maligna Melanoma (LMM), Nodular Melanoma (NM).

tion in Cox model. However, we observe two residuals with values atypical in Figure 2.6 c).
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Table 2.13: Statistical significant factors for survival to death using a Cox model. Reference

group: SLN Status= negative, Ulceration= no, Clark level= I-III and Age≤ 60 years.

Predictors β se(β) z p eβ L.95 U.95

SLN Status

presence of metastasis 1.111 0.390 2.848 0.004 3.038 1.414 6.528

Ulceration

Yes 1.268 0.388 3.265 0.001 3.556 1.661 7.614

Clark level

IV-V 1.647 0.744 2.212 0.027 5.190 1.206 22.332

Age

> 60 1.053 0.394 2.674 0.007 2.866 1.325 6.203

n=353 (47 missing observations)

Table 2.14: Test for proportional hazards.

Predictors rho chisq p

SLN Status

presence of metastasis -0.078 0.157 0.692

Ulceration

Yes -0.211 1.124 0.289

Clark level

IV-V 0.054 0.079 0.779

Age

> 60 -0.287 2.060 0.151
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Figure 2.6: Schoenfeld residuals
a) Beta for SLN status=Positive
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b) Beta for Ulceration= Yes
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c) Beta for Clark= IV-V
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2.3 Dataset mortality up to weaning of calves

This data corresponds to the cow pedigree Old Brown Swiss, called Bruna dels Pirineus, reported

in Tarrés et al. (2005). The reproduction system of the Bruna dels Pirineus race conforms to

the seasons, passing the winters in the valleys close to the villages and summers in the praries

of the high mountains (port), accompanied normally by their calves. Many individuals of this

race pass the winter in the open air. The herds are located in the Pyrenean mountains areas

of Catalonia (Spain), see Figure 2.7. Although classified as a special protected race, the Bruna

dels Pirineus constitute 80% of the bovine meat in Catalonia. During the time period from birth

until the moment of weaning (birth-weaning period), approximately the first 180 days of the

calf´s life, a certain percentage of calves die due to natural causes. Even though this percentage

is not very high, it reduces cattle farm incomes and adds significantly to cattle productions costs

(see Goyache et al. (2003), for a review). For example, the effect of spontaneous abortion on

the dairy industry is substantial, costing the industry around $200 million per year in California
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Figure 2.7: Bruna dels Pirineus

alone (Hanson et al. (2003)).

2.3.1 Data description

A study was designed with the objective of identifying calf survival traits so as to reduce the

mortality of calves from birth to weaning. The data was recorded between 1994 and 2002 in

three breeding herds, Tarrés et al. (2005). Table 2.15 presents the distribution of calves during

the nine years of research, the first row represents the number of deaths and the second the

total number of births. In this table we observe that in the initial and final year of the study no

deaths occurred. The data base contains information on 2,504 calves, 68 of which died during

the period of the first 180 days after birth. Mortality is displayed in Figure 2.8 where the highest

percentage of deaths was 4.07% registered in 1998.

Table 2.15: Distribution of calves by year

Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 Total

dead 0 7 5 13 11 13 13 6 0 68

Total 80 308 334 346 270 355 413 310 88 2504

Table 2.16 shows the distribution of the calves by month, the first row represents the number of

deaths and the second row represents the total births. In this table we can see that most of the

calving (73%) occurred between January and April.
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Figure 2.8: Percentage of dead calves by year
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herd1= 32 deaths

herd3= 10 deaths

herd7= 26 deaths

Table 2.16: Distribution of calves by month

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dic

died 6 11 12 22 6 2 2 2 1 0 2 2

Total 451 599 482 295 175 73 55 55 63 46 47 163

In May, the cows and calves migrate to the grazing pastures of the mountains until Septem-

ber when they return to the valleys below where they stay for the winter. When they return

to the valley in September, the calves are weaned. Consequently, a calf born in January is

weaned at eight months and a calf born in April is weaned at four months. This is a reason for

which a calf born in the month of April has the greatest risk of death, with a probability of 0.074.

For some of the calves born in 2002, the date of weaning was unknown and was replaced with the

date of the end of the study, and these were considered as censored. The birth-weaning period

for cattle begins at birth and lasts for the first 180 days of life. The survival time was estimated

as the difference between the date of death and the date of birth. The results of the study are

as follows: 68 complete records (2.7% dead calves) and 2,436 censored records (97.3% censored

calves). The total of censored calves is distributed into two groups: 1384 (55.3%) censored be-

cause they survived to 180 days and 1052 (42%) censored due to loss during the follow-up study
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or because the study finished.

The Kaplan-Meier estimator of the survival time curve of the calves is shown in Figure 2.9 a),

and the corresponding histogram in Figure 2.9 b). We observe that the survival curve in a),

is asymptotically improper (not converging to zero). The altitude of the curve is given by the

Kaplan-Meier estimator as ŜKM (tn) = 0.968, where tn is the greatest time of failure observed.

Note that this value is similar to the level of censoring 0.973 end of the period, contained in the

data. In the histogram of Figure 2.9 b, the highest bar represents the group formed by the 1,384

censored calves which survived until the end of the follow-up.

Figure 2.9: Kaplan-Meier estimator and survival time histogram

                                            a)                                                                                                      b) 

The group of calves which entered the study belong to the herds: herd1, herd3 and herd7. Table

2.17 shows the distribution of the calves considering their status at the end of the follow-up and

the herd to which they belong. In this table we observe that around 50% of the calves belong to

herd7. In contrast, we also observe that 95% of the calves from herd1 completed the follow-up

and survived. However in herd3, there are approximately 80% of the calves did not complete the

follow-up and are censored before 180 days. In comparison, in herd7 there are approximately

98% censoring, 45% due to loss during follow-up and 53% due to survival beyond 180 days.

Additionally we want to emphasize that in the last year of the study all of the calves that entered

the study were from herd3, constituting a total of 88 calves, see Table 2.15.

Until now we have given a description about distribution of calves into the herds and a temporal
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Table 2.17: Follow-up of calves from 1994 to 2002

Status herd1 (%) herd3 (%) herd7 (%)

dead 32 ( 4.89) 10 ( 1.53) 26 ( 2.16)

lost during follow-up 0 ( 0.00) 518 (79.69) 534 (44.50)

alive at 180 days 622 (95.10) 122 (18.76) 640 (53.33)

Total 654 (26.11) 650 (25.95) 1200 (47.92)

description about distribution of calves by year and month. In the following section we present

genetic and environmental factors, which could influence the survival of the calves.

2.3.2 Survival factors

The data set collected includes variables at the time of calving such as: cow’s longitude of pro-

ductive life at calving; calf birth-weight; gender; month and year of birth; difficulties at calving;

as well as the herd to which the cow belongs. All these factors could contribute to the mortality

and the survival time of calves, and were categorized based on the information provided by the

veterinarians and farmers (see Tarrés et al. (2005)).

Table 2.18 summarizes the descriptive statistics for each factor, such as the productive life of the

cow, denoted by Lpl, dichotomized into groups < 1300 days and > 1300 days; month of birth,

denoted by Month, dichotomized into groups September to February and March to August);

Gender (female, male); Difficulties at calving, denoted by Difficulty, categorized into without

assistance, slightly assisted by the farmer and strongly assisted by the farmer or the veterinary

practitioner ; and the weight at birth, denoted by Weight, categorized into small (<42.9kg),

median-large (>42.9kg) and missing. In this Table we have excluded a total of 427 records: 168

records, corresponding to births in 1994 and 2002, were excluded because an irregular distribu-

tion of calves in the herds (see Table 2.15), and 259 records were excluded due to an insufficient

follow-up (censored at t = 1 day) (see Figure 2.9 b). We analyze the remainder 2077 calves born

between 1995 and 2001 from three different herds, with a total of 68 uncensored observations

(3.27% dead calves). In this table and in the future, we exclude the Year, due to time-dependent

of the same way as does the Month of birth.
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Table 2.18: Characteristics of Calves
Factors herd1 (%) herd3 (%) herd7 (%)

Lpl3

< 1300d 360 (58.72) 263 (63.52) 498 (47.42)

> 1300d 253 (41.27) 151 (36.47) 552 (52.57)

Month

sep-feb 204 (33.27) 319 (77.05) 650 (61.90)

mar-aug 409 (66.72) 95 (22.94) 400 (38.09)

Gender

female 308 (50.24) 216 (52.17) 544 (51.80)

male 305 (49.75) 198 (47.82) 506 (48.19)

Difficulty

without assistance 299 (48.77) 379 (91.54) 916 (87.23)

slightly assisted 38 ( 6.19) 25 ( 6.03) 50 ( 4.76)

strongly assisted 3 ( 0.48) 9 ( 2.17) 83 ( 7.90)

missing 273 (44.53) 1 ( 0.24) 1 ( 0.09)

Weight

small (<42.9kg) 101 (16.47) 123 (29.71) 259 (24.66)

median-large (>42.9kg) 12 ( 1.95) 284 (68.59) 506 (48.19)

missing 500 (81.56) 7 ( 1.69) 285 (27.14)

Total 613 (29.51) 414 (19.93) 1050 (50.55)

3 Length of productive life of the cow

In Table 2.18 we see that in the herd1 and herd3 there is a higher percentage of young cows than

in herd7. A highest number of births occurred in the period from September to February in the

herd3 and herd7, whereas than in the herd1 occurred into the period from March to August.

There is a high percentage of missing information for difficulty at calving in the herd1. Similarly,

we observe that a high percentage of weights were not recorded in the herd1 and herd7. These
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observations in addition to those obtained from Table 2.17, are clear evidence that these herds

are heterogeneous among themselves.

Standard survival analysis

Given the heterogeneity between herds, the analysis of calves’ survival time up to weaning is

presented by herd. Taking account that all the calves that live up to 180 days were defined them

as censored. We have then a censored percentage of 94.78% for herd1, 97.59% for herd3, and

97.52% for herd7, see Table 2.19 similarly as in Table 2.17.

Table 2.19: Follow-up of calves from 1995 to 2001

Status herd1 (%) herd3 (%) herd7 (%)

dead 32 ( 5.22) 10 ( 2.41) 26 ( 2.48)

lost during follow-up 0 ( 0.00) 334 (80.68) 391 (37.24)

alive at 180 days 581 (94.78) 70 (16.91) 633 (60.28)

Total 613 (29.52) 414 (19.93) 1050 (50.55)

Herd 1 : The estimated probability of survivors beyond 180 days is given by ŜKM (180) = 0.948

(is the estimated probability of being censored) and 95% confidence interval of [0.930, 0.966]. In

this herd, the weight factor (calf’s weight at birth) was not considered in the analysis, because

81.56% of its data is lost, see Table 2.18. The gender has not been considered as a survival

factor because there are not significant differences between females and males, the log-rank test

(p-value = 0.479) and Peto-Peto (p-value = 0.47) were not significant.

Table 2.20 summarized the characteristics of 273 (44.53%) calves that were excluded from the

analysis because the difficulty at calving of these calves was not recorded. This table shows that

61.53% of their births correspond to young cows, 64.47% were born between March-August and

their weights were not recorded.

The results obtained with the Cox model with reference group given by Month= Sep-Feb and

Difficulty= without assistance, are summarized in Table 2.21. Highly statistically significant
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Table 2.20: Description of missing data for Difficulty in the herd1

Factor Categories Total(%)

Lpl < 1300d 168(61.53)

> 1300d 105(38.47)

Month sep-feb 97(35.53)

mar-aug 176(64.47)

Gender female 150(54.94)

male 123(45.06)

Difficulty without assistance

slightly assisted

strongly assisted

missing 273(100)

Weight small (< 42.9kg)

median-large(> 42.9kg)

missing 273(100)

factors for survival were Month and Difficulty. Calves that were born between March-August

are seven more times at risk of dead within their 180 days of life than those were born between

September-February, as shown on the Table. Calves that come from slightly or strongly assisted

calving are six and eight more times at risk of dead before 180 days of life than those coming

from calving without assistance.

Table 2.22 summarizes the results for the validation of the assumption of proportionality. In this

table we see that in all cases, the test was not significant, and conclude that the proportional

hazards condition was satisfied.

Moreover, Schoenfeld residuals shown in Figure 2.10, confirms the proportional hazards assump-

tion in the Cox model for herd1.

Herd 3 : In this herd the estimated probability of survivors beyond 180 days is given by

ŜKM (180) = 0.976 and 95% confidence interval of [0.961, 0.991], similarly to the estimated
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Table 2.21: Statistical significant factors for survival up to weaning using a Cox model for herd1.

Reference group: month of birth= sep-feb and difficulty at calving= without assistance.

Predictors β se(β) z p eβ L.95 U.95

Month

mar-aug 2.032 1.029 1.974 0.048 7.630 1.015 57.37

Difficulty

slightly assisted 1.853 0.475 3.901 < .001 6.382 2.515 16.19

strongly assisted 2.134 1.051 2.030 0.042 8.449 1.076 66.35

n=340 (273 missing observations)

Table 2.22: Test for proportional hazards for herd1.

Predictors rho chisq p

Month

month2= mar-aug -0.381 2.707 0.0999

Difficulty

difficulty2= slightly assisted 0.170 0.547 0.4594

difficulty3= strongly assisted -0.136 0.346 0.5563

probability of being censored (0.975).

When comparing the survival curves between levels for each factor, we did not find statistically

significant differences. Table 2.23 summarizes the obtained results with the log-rank test and

Peto-Peto. These results suggest that in this herd there is not difference between the categories

of each factor, and thereby there are not statistically significant factors for survival.
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Figure 2.10: Schoenfeld residuals for herd 1
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Table 2.23: Tests for equality of survival curves in the herd3 

Tests Log-rank  Peto-Peto 

Groups 
�2 

df p-value  
�2 

df p-value

Lpl : <1300 d, >1300 d 0.8 1 0.372  0.8 1 0.376 

Month : sep-feb,  mar-aug 0.3 1 0.565  0.3 1 0.568 

Gender : female ,male  0.0 1 0.897  0.0 1 0.900 

Difficulty: without assistance, slightly assisted, strongly assisted 3.6 2 0.167  3.6 2 0.162 

Weight : small (< 42.9kg), median-large (> 42.9kg) 1.9 1 0.171  1.9 1 0.172 

 

Herd 7 : The estimated probability of survivors beyond 180 days is given by ŜKM (180) = 0.975

and 95% confidence interval of [0.966, 0.985], similarly to the estimated probability of being

censored.

Table 2.24 summarized the characteristics of 285 (27.14%) calves whose weight at calving were

not recorded. This table shows that 53.33% of their births coming from young cows, 64.56%

were born between September-February and 87.72% coming from calving without assistance.

When comparing the survival curves between levels for each factor, we did not find statistically

significant differences for Lpl, Month, Gender, and Weight. We also found no significant differ-
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Table 2.24: Description of missing data for Weight in the herd7

Factor Categories Total(%)

Lpl < 1300d 152(53.33)

> 1300d 133(46.67)

Month sep-feb 184(64.56)

mar-aug 101(35.44)

Gender female 158(55.44)

male 127(44.56)

Difficulty without assistance 250(87.72)

slightly assisted 4( 1.40)

strongly assisted 30(10.53)

missing 1( 0.35)

Weight small (< 42.9kg)

median-large(> 42.9kg)

missing 285(100)

ences between without assistance calving and slightly assisted calving in the difficulty at calving.

Table 2.25 summarizes the obtained results with the log-rank test and Peto-Peto. These results

suggest that difficulty at calving is an important factor for the survival of calves, and may be

recoded in without assistance- slightly assisted versus strongly assisted.

Table 2.25: Tests for equality of survival curves in the herd7 

Tests Log-rank  Peto-Peto 

Groups 
�2 

df p-value  
�2 

df p-value

Lpl : <1300 d, >1300 d 3.4 1 0.064  3.4 1 0.066 

Month : sep-feb, mar-aug 1.6 1 0.202  1.6 1 0.201 

Gender : female, male 0.0 1 0.841  0.0 1 0.851 

Difficulty: without assistance, slightly assisted 0.0 1 0.991  0.0 1 0.995 

Weight : small (< 42.9kg), median-large (> 42.9kg) 1.1 1 0.293  1.1 1 0.294 

 

The results obtained with the Cox model with reference group given by Difficulty= without
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assistance or slightly assisted, are summarized in Table 2.26. Highly statistically significant for

survival is Difficulty. Calves that come from strongly assisted calving are three more times at

risk of dead before 180 days of life than those coming from without assistance or slightly assisted

calving.

Table 2.26: Statistical significant factors for survival up to weaning using a Cox model for herd7.

Reference group: difficulty at calving= without assistance or slightly assisted.

Predictors β se(β) z p eβ L.95 U.95

Difficulty

strongly assisted 1.332 0.468 2.844 0.004 3.788 1.513 9.486

n=1049 (1 missing observations)

The test for the validation of the assumption of proportionality is not significant (difficulty3=

strongly assisted), whit rho= -0.109, chisq= 0.295 and p= 0.587. Conclude that the proportional

hazards condition is satisfied. Moreover, Schoenfeld residuals shown in Figure 2.11, confirms the

proportional hazards assumption in the Cox model.

Figure 2.11: Schoenfeld residuals for herd 7
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2.4 Limitations of the standard survival techniques

The databases presented here, concerning the evaluation of survival time until the occurrence

of an event of interest, including those features that could be considered as survival factors,

have one characteristic in common: they are subject to a large (heavy) censoring level. This

characteristic of heavy censoring leads to two questions which have to be investigated. First, if the

assumption of a proportional hazards model is satisfied in these data, then which are the effects

of the heavy censoring in the inference about regression coefficients? and what is the appropriate

sample size?. Second, the Kaplan and Meier curve for these data suggests a survival model that

does not converge to zero as time goes on indefinitely, then we seek a non-standard survival

model that takes into account the improperness of the curve. Which are these models and what

advantages have over standard models? The answers to these questions are investigated in the

following chapters of this thesis, and nonstandard analyses are presented using these databases.

Concerning limitations of standard models, a PH model could be adequate in a setting where

S(∞|x) = π > 0, since S(t|x) approaching a positive limit is not excluded. The proportion

of immune S(∞|x) in a censored sample, is often estimated by Kaplan-Meier estimator, π̂ =

ŜKM (t(n)|x), where t(n) is the last observed survival time. Properties of consistency under heavy

censoring scenario are presented in Zukang (1997) (see also Maller and Zhou (1992)). Although

in a PH model we have S(∞|x) = [S0(∞)]ψ(x;β), it lacks flexibility since β determines both the

hazard ratio for persons who are susceptible, h(t|x2)
h(t|x1) = ψ(x2;β)

ψ(x1;β) and the nonsusceptible fraction

ratios, π2
π1

= [S0(∞)]ψ(x2;β)−ψ(x1;β), where ψ(x;β) = exp(−β′x) and S0(t) is the baseline survival

function.



Chapter 3

Review on Cure Models

3.1 Introduction

In many clinical studies (especially in cancer research), there might be a certain percentage of

patients who respond favourably to treatment. After a sufficient period of follow-up they appear

to be risk free or even cured of the disease. Only a proportion of the population is susceptible

to the target illness within the survival-time of the data while others remain immune. Empirical

evidence to confirm this population trend appears in a graph as a long, stable plateau which,

contains heavy censoring at the end of the Kaplan-Meier survival curve. Cure models or Cure

fraction models also referred to as Cure rate models were specifically introduced for the purpose

of modeling time-to-event data and incorporating a cure fraction. These types of models are

becoming increasingly useful in clinical trials, especially in oncology studies. More recently, they

have been applied to a wide range of fields of research such as psychology, criminology, economics,

education, etc.

Within survival analysis with cure, there are two major approaches which take the cure fraction

S(∞) > 0 into account, when dealing with the modeling of survival times in a population with

survival function S. The first type of cure model introduced in statistical literature is called the

mixture cure model (Boag (1949)) where it is assumed that a proportion S(∞) = π of patients

are cured and are no longer at risk of experiencing the disease. However, remains a proportion

(1-π), which is still uncured. Consequently, these people will eventually experience the illness

42
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and thus the survival function S1(t), will tend to zero for these subjects. With this approach in

mind, a mixture cure model is defined as

S(t) = π + (1− π)S1(t). (3.1)

The second type of cure model is the non-mixture cure model (Tsodikov (1998)), which is defined

by a bounded cumulative hazard function, H(∞) = θ as follows

S(t) = exp{−θF (t)}, (3.2)

where H(t) = θF (t) and F (t) is any distribution function and H(t) represents a standard-

ized cumulative hazard function. Within this representation the cure fraction is given by

S(∞) = exp(−θ).

This chapter reviews cure survival models, from their origin up until the writing of this thesis.

The presentation is in chronological order and distinguishes between the various approaches

related to the topic. At the end of this chapter there is a description of the software available to

carry out an analysis with a cure model.

3.2 Mixture cure models

In 1949, John W. Boag published an article in the Journal of the Royal Statistical Society

SERIES B under the title Maximum likelihood estimates of the proportion of patients cured

by cancer therapy. In this article he discusses the modeling of the survival times of a group of

cancer patients. After undergoing the treatment the results vary; some patients respond well and

were cured, however, others continue to have the illness despite undergoing the same treatment.

Because of this (and based on the schema of Figure 3.1 taken from his article), Boag introduced

a mixture cure model for the modeling of both the survival function and cure fraction in a

population as follows

S(t) = S0(t){c + (1− c)S1(t)}. (3.3)

In this model S0(t) indicates the probability of a patient surviving to time t when all causes of

death except the original cancer are considered. Meanwhile S1(t) indicates the probability of a

patient, who has not been permanently cured, surviving to time t when only the cause of cancer
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is considered. This formulation assumes that the specific causes of cancer S1(t) are independent

of other causes S0(t). In Figure 3.1, c denotes the proportion of cured patients and S1(t) denotes

a lognormal survival function. By applying the process of maximum likelihood to estimate S1(t)

Figure 3.1: Statistical model of a clinical experiment, Boag (1949).

and c, it becomes possible to ignore the factors that contain S0(t).

The most popular cure model is the mixture cure model introduced by Berkson and Gage (1952).

Based on empirical evidence from cancer studies, a simple function, in terms of two physically

meaningful parameters, has evolved, which fits such survival data very well. These two param-

eters can be used to compare simultaneously the mortality of two groups, which differ in type

of treatment, type of cancer, or other characteristics. Berkson and Gage assume that patients

with a specific cancer are, all before treatment, subject to the effect of two mortality forces, Cs

representing the cancer in question (cause-specific) and Co representing all other diseases (other-

causes), and that these act independently and simultaneously. After treatment, a fraction c of

the population is cured and they are only subject to the mortality forces Co, while the remainder

(1-c) are subject to two forces, Co and Cs, the value of Cs being not necessarily equal to zero,

and presumably less than one, before treatment.

When we think about the two hypothesized cohorts of the population separately, then the proba-

bility of survival to time t of the cured (nonsusceptible) cohort is given by P [T > t| only Co acts],
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and for the uncured (susceptible) cohort it is given by P [T > t| both forces of mortality act]. The

probability of survival to time t for the total population S(t) = P [T > t] is given as

S(t) = cP [T > t| only Co acts] + (1− c)P [T > t| both forces of mortality act]. (3.4)

If S0(t) = P [T > t| only Co acts] and S1(t) = P [T > t| only Cs acts], under the additional

supposition of independence of Co and Cs, the survival to time t in the total population can be

rewritten as (3.3). S0(t) represents the survival function for a population subject to other causes,

which can be obtained from standard life tables, while S1(t) represents the survival function for

a population subject only to the specified cancer. Berkson and Gage (1952) argued that S0(t)

can be a constant value, estimated from general life tables which are considered applicable to

the population at hand. Hence, the survival model due to the specific causes of cancer in a

population free of other factors which can cause death is given by

S(t) = c + (1− c)S1(t). (3.5)

Berkson and Gage (1952) assumed (3.5) a constant excess mortality rate (1−c) for the susceptible

group and an exponential distribution for the time of incidence

S1(t) = exp(−λt), (3.6)

and values of c and λ maybe estimated by a least-squares procedure. Farewell (1977) introduced

a version of the previous model in which he assumed that a binary variable Y could specify the

incidence of a particular disease with Y = 1 or a lifetime free of the disease with Y = 0, and

denoting by π = P [Y = 1]. The new formulation results in,

S(t) = P [T > t, Y ] = [1− π] + πS1(t), (3.7)

where P [T > t|Y = 0] = 1 and S(∞|x) = 1−π(x) corresponds to the rate of the subjects free of

the disease. He studies the efficiency of the model by modelling the probability π as a function

of a vector of covariates by means of a logistic model given by (3.8)

π(x) = P [Y = 1|x] =
exp(bx)

1 + exp(bx)
, (3.8)

and S1(t) is as well Exponential as in (3.6). Later, Farewell (1982) reanalyzed a toxicological

experiment analyzed by Pierce et al. (1979), using model (3.8) and a Weibull regression model

for the survival time of susceptible individuals

S1(t|x) = exp(−(λt)δ), (3.9)
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where δ is a shape parameter and λ is related to x by λ = exp(−γ0−γ
′
x). The vector γ represents

unknown regression coefficients. Notice that, in terms of hazard functions, (3.9) can be rewritten

as h1(t|x) = exp(βx)[αδ(αt)δ−1], where β = −δγ
′
and α = exp(−γ0). And more generally,

h1(t|x) = exp(βx)h0(t), (3.10)

where the conditional baseline hazard h0(t) = h(t|Y = 1, x = 0) is Weibull with parameters

δ and α. Yamaguchi (1992) assume (3.8) in combination with a general class of accelerated

failure time model for (3.9), namely, the extended family of generalized Gamma models; which

includes exponential, Weibull, reciprocal Weibull, log-normal, and Gamma as its special cases.

And shows an application to the analysis of permanent employment in Japan. Kuk and Chen

(1992) proposed a semiparametric generalization of Farewell’s model using a Cox proportional

hazards model in the susceptible group. Their model is also based on (3.8) and (3.10) but h0(t)

can be any arbitrary unspecified hazard function not necessarily in the Weibull family. In terms

of survivor functions, the assumption (3.10) of proportional hazard implies S1(t|x) = S0(t)
exp(βx),

where S0(t) = S(t|x = 0). For the purpose of estimating the regression coefficients b in (3.8)

and β in (3.10), they proposed a marginal likelihood approach where S0(t) is a nuisance base-

line function. To simplify the calculations, they suggest a Monte Carlo approximation of the

marginal likelihood which can be maximized using existing software. Moreover, Ghitany et al.

(1994) provide sufficient conditions for the existence, consistency, and asymptotic normality of

maximum likelihood estimators for the parameters in the model (3.7) using (3.8) and (3.9). In

Maller and Zhou (1996) there is an extense discussion of the model proposed by Farewell (1982).

Gieser et al. (1998) apply a mixture cure model like (3.5), using (3.8) for c and a Gompertz

model for S1(t|x) to analyze data of acute lymphocytic leukaemia in children. Peng et al. (1998)

considered the model (3.5), using (3.8) and a generalized F for the susceptible group distribution,

i.e.,

S1(t|x) =
∫ k

0

us2−1(1− u)s1−1

B(s2, s1)
du,

where k = s2[s2 + s1 exp(w)]−1, w = [log(t)− µ]/σ and µ = βx. The generalized F distribution

includes many commonly used distributions as special cases, such as the log-normal, Weibull,

gamma, and log-logistic distributions. Calculation problems with the model, model and covariate

selection methods are discussed. They compared maximum likelihood estimates with those
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obtained from mixture models under other distributions. Other different methods of estimation

were given, among others, by Anscombe (1961), Meeker (1987), De Angelis et al. (1999), Peng

and Dear (2000), Sy and Taylor (2000), Betensky and Schoenfeld (2001), Aljawadi et al. (2011),

Dikta (2014).

3.2.1 Split population models

The cure models defined out from a binary variable Y given by Farewell (1977), have a wide ap-

plications in various areas, such as criminology, reliability, marketing, education (see Maller and

Zhou (1996)). In some of these areas of application, the mixture cure models have been known

as a split population models, in the sense that the population is separated by the categorical vari-

able Y . We briefly describe below, some of the references which have applied these methodologies.

Schmidt and Witte (1989) analyzed data on a cohort of releasees from the North Carolina prison

system, where the survival time, T , is defined as time to recidivism and Y = 1 when the indi-

vidual is recidivist. They analyzed this data using a mixture cure model of the form (3.7), with

P (Y = 1) like (3.8) and several distributions for S1(t), such as Exponential, Weibull, lognormal

and loglogistic, all with scale parameters dependent of covariates. Cole and Gunther (1995)

studied the factors influencing bank failures using a model of the form (3.7), in their formula-

tion, Y = 1 if the bank fails and T is the time until failure. In the present context, they used a

log-logistic distribution for S1(t) and a logistic model for P [Y = 1] like (3.8).

And more recently, Mavromaras and Orme (2004) considered a split population model for the

duration of temporary layoffs in the German labour market (see also Yamaguchi (1992) for the

analysis of permanent employment in Japan); the population being split according to whether

a layoff is temporary or permanent. In this case the binary random variable (unobserved) Y ,

partitions (splits) the population into temporary (Y = 1) or permanent (Y = 0) layoffs, and

T denotes the duration of a layoff conditional on Y = 1, that is, T denotes the duration of a

temporary layoff. They defined a survival model S1(t) by means of a flexible piecewise constant

hazard and the probability π(x) = P [Y = 1] was modeled using a probit link π(x) = Φ(x′β),

where Φ(.) denotes the standard normal distribution function.
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3.3 Non-Mixture Cure Models

Although model (3.1) is intuitively attractive and widely used, it does not have a proportional

hazards structure for S(t), which is desirable in carrying out survival analysis with covariates. An

alternative cure model, with a proportional hazards structure for the population, is the so called

non-mixture cure model or non-mixture cure fraction model given by (3.2) and was introduced

by Tsodikov (1998). In the formulation of the survival model, Tsodikov takes into account that

the cumulative hazard function can be written as H(t) = − log(S(t)) and according to (3.1),

H(t) ≤ θ and H(∞) = θ. A convenient way to adjust for the above property is to consider

H(t) = θF (t), where F (t) is the distribution function of a nonnegative random variable. In

conclusion, the survival function in the general population can be rewritten as (3.2). In addition,

if the observed covariates are related to θ by means

θ(x) = exp(xβ), (3.11)

then we get a PH model with a cure faction S(∞) = exp(−θ). Tsodikov (1998) proposes an

estimation method for θ via the profile likelihood, when F is completely unknown.

The motivation behind non-mixture cure models (3.2), is due to the function F , since F can

be defined as the distribution function of a unobserved or latent variable, computationally very

attractive from a Bayesian approach. For this approach, a basic reference is given by Ibrahim

et al. (2001), as we mention in chapter 5.

Chen and Ibrahim (2001) proposed maximum likelihood estimation methods via EM algorithm

for parameters in the models proposed by Tsodikov (1998), when F (t) is defined as a piecewise

exponential and θ(x) as in (3.11). Broët et al. (2001) introduce a new proposal for the two-

sample comparison of survival times with long-term survivors, the approach is made by means

a semiparametric generalization of the improper Gompertz model. This paper was the starting

point for a new line of research on extensions of the non-mixture cure model, such as Tsodikov

(2002), Sposto (2002), Tsodikov (2003), Kim et al. (2009), among others. Extensions which we

discuss in more detail and show some of its applications in Chapter 6 of this thesis.
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3.4 Cure rate models unified

The mixture cure model S(t|z, x) = π(z) + [1 − π(z)]S1(t|x) and non-mixture cure models

S(t|z, x) = exp(−θ(z)F (t|x)) are the most widely used cure rate models which may be seen

as competitors. Recent applications of these models to oncology data are presented by Lambert

et al. (2010), Kim et al. (2011), Othus et al. (2012), and Aljawadi et al. (2013), among others.

Each model offers its own advantages as well as its disadvantages (Ibrahim et al. (2001)). When

covariate z is absent and F (t|x) is unspecified, defined π = exp(−θ) and S1(t|x) = 1 − F (t|x),

the mixture and non-mixture cure models are equivalent. They are simply different forms of the

same model. When z is present and x is absent, the non-mixture model is a proportional hazards

model (h(t|z) = θ(z)f(t), f(t) = F ′(t)) and the mixture cure models is not, and they are clearly

models for different data structures. When both x and z are present, both models are flexible

and they can be considered for modeling survival data with a cure fraction.

The first attempt to unify these models in a more general class of models was given by Yin and

Ibrahim (2005a) and Yin and Ibrahim (2005b), via the Box-Cox transformation. Recently Peng

and Xu (2012) propose a unified cure model, the proposal is based on a review the unified cure

model and a novel biological interpretation for the non-mixture cure model given by Hanin et al.

(2001).

3.5 Available Software

Before and during the development of this thesis, extensive literature on mixture cure models was

reviewed, the main goal was to identify the statistical software available to carry out an analy-

sis with mixture cure models. Among the most important in the literature are those listed below.

Windows: CANSURV

A windows program for population-based cancer survival analysis. The program is available at

http://srab.cancer.gov/cansurv, but it only reads data-bases created by the Surveillance,

Epidemiology and End Results (SEER) program of the National Cancer Institute. Therefore,

the use of this software is limited. The CANSURV is based on the models proposed by Yu et al.

(2005).
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SAS: PSPMCM

A macro for parametric and semiparametric mixture cure models (PSPMCM). This macro is

available at http://www.isped.u-bordeaux2.fr/recherche/biostats/FR-biostats-accueil.

htm#programmes. It does not have any restriction and it can be used freely. This macro is given

by Corbière and Joly (2007), and is based on the methodology proposed by Peng and Dear (2000)

and Sy and Taylor (2000).

STATA: CUREREGR

It is a macro to fit a Parametric Cure Model (PCM) in either the non-mixture or mixture class.

The program works with one or multiple records by observation or subject and time-varying-

covariates also can be estimated. This macro is available at http://econpapers.repec.org/

scripts/search/search.asp?kw=parame tric+near+cure+near+regression. Despite that this

macro is based on the models proposed by Sposto (2002), was not until 2004 when it was created

for a Stata version 8.2. However, the methodology was later extended by Lambert et al. (2007),

who discusses how the scale and shape parameters in the Weibull distribution can be modeled

as a function of covariates, for both the mixture and non-mixture models.

STATA: SPSURV

In the standard survival model, the risk of failure is non-zero for all cases. A split-population

(or cure) survival (SPSURV) model relaxes this assumption and allows an (estimable) fraction of

cases never to experience the event. This macro is available at http://econpapers.repec.org/sc

ripts/search/search.asp?kw=split-population+near+model

STATA: strsmix and strsnmix

Other important softwares have been developed by Lambert (2007). He describes the strsmix

and strsnmix commands written in Stata, which fit the two main types of cure fraction model,

namely, the mixture and nonmixture cure fraction models. These models allow incorporation of

the expected background mortality rate and thus enable the modeling of relative survival when

cure is a possibility.

R: NLTM
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A library for the free software R, to fit a non-linear transformation model (NLTM) for ana-

lyzing survival data. The class of NLTM are extensions of the non-mixture cure models and

includes a proportional hazards model with cure as a particular case. This package is available

at http://cran.r-project.org/web/packages/nltm/index.html. This package was created

in 2009, and the models included in this library were discussed in Tsodikov (2002). This class of

models are related to (3.2), and when the distribution function F (t) in (3.2) depends on covari-

ates, the resulting model is called a non-linear transformation model. Tsodikov (2003) studies

the properties and self-consistence of semiparametric models using Nonparametric maximum

likelihood estimation.



Chapter 4

Heavy right-censoring

We investigate using simulation, the effect that different levels of right-censoring have on the

estimation of the relative risk in a proportional hazards model. We suppose a fixed censoring

model for the censoring distribution and a Cox model for the survival times. The simulations

were done assuming a binary covariate as an explanatory variable and a fixed percentage of

censoring, which we called the censoring level. In order to evaluate the effect of the censoring

level on the relative risk we have studied the properties of its estimator such as: bias, variance,

mean square error, relative bias and coverage.

This chapter is organized as follows: Section 4.1 describes a dataset where there is a time to

event variable and heavy right censoring. In section 4.2 we establish the notation and provide

the definitions that we will use throughout this chapter. In section 4.3 we formulate the model

and obtain relations between the probability of censoring, the probability of success for a binary

variable and the relative risk, using a proportional hazards model for T and a fixed censoring

model for C. In section 4.4 we display the simulation results: bias, variance, relative bias and

coverage for the relative risk in the Cox model, under fixed censoring. This Chapter 4 concludes

with a discussion in section 4.5.

52



CHAPTER 4. HEAVY RIGHT-CENSORING 53

4.1 Motivation

In survival studies the individuals are often right-censored due to either the end of study or loss

to follow-up. End of study censoring is, in general, administered by the researcher and it is a

particular case of fixed censoring. The level of administrative censoring depends on the window

of observation and the population in study. Loss to follow-up is mainly due to some random

mechanism that can depend or not on the survival time. In this chapter we will consider some

scenarios where administrative censoring due to end of the study is the unique cause of censoring.

Heavy right-censored data often arises in survival analysis due to an insufficient follow-up. When

the follow-up period is not long enough, the event for a large percentage of individuals is not

observed, these individuals without the event are right-censored. A second instance producing

heavy right-censored data is the presence of long-term survivors. Those individuals for whom

the event was not observed during the follow-up period but that in the future will fail, are right-

censored at end of study. Finally, one third possibility is to have immunes or cured individuals.

In this scenario, the immune or cured subpopulation is censored at the end of study. Maller and

Zhou (1996) discuss this special case of censoring, usually named as heavy censoring.

The motivation of this chapter is based on Tarrés et al. (2005) and it is described in the Chapter

2 of this thesis. The first analysis of these data, carry out survival analysis using a proportional

hazards model for calf mortality data. The survival time was estimated as the difference between

the date of death and the date of birth in the first 180 days. The data collected included the

survival time of 2504 calves, with 68 complete records (2.7% dead calves) and 2436 censored

records (97.3% censored calves). When we fit a Cox’s model, and censoring is heavy, many

questions arise on the quality of the adjustment and on the estimators: (1) which properties of

the estimators remain valid? (2) when is censoring too heavy for modelling a survival time via

a proportional hazards model? (3) in which scenarios we would not recommend to analyze data

using a Cox’s model?

Although the Cox’s model has been intensively investigated using simulation studies to get

information about bias and efficiency of the estimated regression coefficients for a variety of

situations (Tsiatis and Davidian (1998), Bender et al. (2005) among others), much less has been
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done under heavily censored data and recommendations on whether or not the Cox model is

appropiate are lacking and it can be very useful.

4.2 Fixed right-censoring mechanism

Fixed right-censoring occurs in studies which have a finite duration time, say τ . An observation

on a subject is (fixed) right-censored if the subject is still alive at the end of the study and the

measurement of interest has not yet been made for the subject. The recorded variable for the

subject is the time at the end of the study. Among others we find this type of censoring in

toxicology experiments and are discussed by Groggel et al. (1989).

4.2.1 Formulation

Let T be the survival time and x a covariate vector. Assume that T |x follows a Weibull regression

model with shape parameter α and scale parameter λx. Let S(t|x) represent the survival function

of T with covariate x. We have

S(t|x) = exp(−(λxt)α).

We will link λx with x by assuming that λx = exp(−β′x). This model has hazard function

h(t|x) = λα
x(αtα−1) = (exp(−β′x))α(αtα−1) and the ratio h(t|x1)

h(t|x2) = (exp(−β′(x1 − x2)))α is con-

stant in t.

Under a fixed censoring model, the distribution of the censoring variable C concentrates all their

probability in some point τ (Breslow (1970)). This is equivalent to define a time window [0, τ ]

within which we would observe the event of interest E, i.e., a fixed censoring at time τ . The

probability, p, that T is right-censored at τ is given by p = P (T > τ). Consequently, in this

formulation the censoring level on T is given by parameter p, and the scenarios we investigate

here are under a heavy right-censoring level, defined for p ≥ 0.70.

4.2.2 Comparing two groups

In survival analysis is common to compare the survival curves of two groups (by gender, treat-

ment), with the aim of investigating which group is more susceptible to the event of interest.
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With this idea in mind, we evaluate the effect of the heavy censoring on the estimation of the

relative risk between two groups: group 1 (x = 1) and group 0 (x = 0), where κ = P (x = 1)

(under a fixed window of observation [0, τ ]).

Under these assumptions, the probability of censoring p is given by the marginal law of T , when

a window of observation [0, τ ] is fixed, that is,

p = [1− κ]S(τ |x = 0) + κS(τ |x = 1),

and if a Weibull law with shape parameter α and scale parameter λx is considered we have

p = [1− κ] exp(−(λ0τ)α) + κ exp(−(λ1τ)α).

The choice of a Weibull model with equal shape parameter for both groups yields a proportional

hazard relation as follows

RR =
h(t|x = 1)
h(t|x = 0)

=
λα

1

λα
0

,

and if we take, without loss of generality, λα
0 = 1, we have RR = λα

1 and we can write

p = [1− κ] exp(−τα) + κ exp(−RRτα). (4.1)

In order to evaluate the effect of the censoring level p on the RR, we will compute the values of

τ for fixed values of RR given p, κ and α by means of the relation

RR = − 1
τα

log{p− [1− κ] exp(−τα)
κ

}. (4.2)

4.3 Simulation design

In the simulation study, T is the survival time of interest within a fixed window of observation

[0, τ ] and subject to a censoring level p. We will evaluate the relative risk between the group 1

(x = 1) versus group 0 (x = 0), given κ = P (x = 1), T |(x = 1) as a Weibull distribution with
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scale parameter λ1, T |(x = 0) as a Weibull distribution with scale parameter λ0, and both with

the same shape parameter α. The main goal of this study is to estimate the relative risk (4.2)

subject to a right-censoring, and evaluate the effect that a heavy right-censoring mechanism has

on this estimation.

In designing the simulation, we first need to determine the parameter τ in terms of the censoring

level p using (4.1), where the relative risk RR, the probability κ, and the shape parameter of

Weibull distribution α are fixed. Secondly, we have to determine the sample size in each group,

say n1 and n0, given the total sample size n. Observe that given the values α and RR, the scale

parameter λ1 is given by λ1 = (RR)1/α. Then the number of observations in the sample from

group 1 and group 0 are given as, n1 = nκ and n0 = n(1− κ), respectively.

After calculating (τ(p), λ1, n1, n0) given (α, κ, RR, p, n) as mentioned above, the simulation

study is summarized in the following steps:

• Given α, κ, RR, p and n

• For x = 1n1 , generate a vector tn1 with n1 survival times following a Weibull(α, λ1)

distribution function.

• For x = 0n0 , generate a vector tn0 with n0 survival times following a Weibull(α, 1) distri-

bution function.

• Take t = (tn1 , tn0) and x = (1n1 ,0n0) and generate a sample of survival data {ui, δi, xi}n
1

with a censoring level p, where ui = min{ti, τ(p)}, δi = 1 if ui = ti or δi = 0 if ui = τ(p),

i = 1 : n.

• Fit a Cox’s model to the sample {ui, δi, xi}n
1 using the function coxph from the R software

2.9.2, and compute the estimator rr = R̂R together with a confidence interval at 95%.

4.4 Evaluation criteria

In the simulation study two important aspects have to be discussed: First, since κ = P (x = 1),

its value controls the proportion between the groups in the sample; Second, since λ1 = (RR)1/α,
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the values of RR control the level of the risk between the groups, as it is described in Table 4.1

Table 4.1: Evaluation of values for κ and RR

κ n0 compared with n1 RR group 0 compared with group 1

0.2 unbalanced (>) 0.2 5.00 times more risk

0.5 balanced (=) 0.4 2.50 times more risk

0.8 unbalanced (<) 0.6 1.65 times more risk

0.8 1.25 times more risk

1 equal risks

In the following Example 4.1 the main objective is showing the behavior of censored samples and

the effect that the level of censoring has in the estimation of the relative risk. Every sample has

been simulated under a model of proportional hazards and different censoring levels.

Example 4.1: Two samples of survival times were generated according to the steps summarized

in section 4.3, with n0 < n1, RR=0.4 and each with a sample size of 2500. The sample A with

censoring level of 70% and the sample B with 10% of censoring. In sample A we observed 755

events, equivalent to 70% of censoring, distributed in 10% for group 0 and 60% for group 1. In

sample B we observed 2249 events, equivalent to 10% of censoring, distributed in 0% for group

0 and 10% for group 1. These results are summarized in Table 4.2. The risk in group 0 is always

greater than in group 1 and it satisfies the property of proportionality, as it can be seen in Figure

4.1. The relative risk was estimated, and 95% confidence interval was constructed in each sample

after fitting a Cox’s model. For the sample A with a censoring level of 70%, the relative risk was

0.42 with an interval of [0.36, 0.48]. For the sample B with a censoring level of 10%, the relative

risk was 0.40 and an interval of [0.36, 0.45].

In the previous example we observe an overestimation of the value of the parameter RR (=0.40)

when using Sample A containing 70% of censoring, and its confidence interval is slanted to the

right. This suggests that if increasing the level of censoring, the bias should increase; such

situation is very important for studying the behavior of the bias in terms of the size of sample.
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Table 4.2: Simulated data, n0 < n1 and RR=0.4

Sample A Sample B

70% of censoring 10% of censoring

Groups records events records events

group 0 500 250 500 496

group 1 2000 505 2000 1753

Total 2500 755 2500 2249

Figure 4.1: Kaplan-Meier estimator, two samples with 70% and 10% of censoring
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4.5 Results

We start the study with 45 configurations given by three levels for α (the shape parameter of the

Weibull distribution), three levels for κ = P (x = 1), and five levels for RR. In each configuration

we consider 3 levels of heavy censoring (p = 0.7, 0.8, 0.9) and 10 different sample sizes. Table 4.3

summarizes the 1350 scenarios for the simulation, each one replicated 1000 times. All simula-

tions were implemented as functions of the statistical package R, using the R-packages splines

and survival (see Appendix A.2.1). We display the simulation results of the bias, variance,

mean square error (mse), relative bias and coverage in the Cox model for the estimator rr of the

relative risk RR.
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The preliminary results showed that the shape parameter of the Weibull, α, does not have an

influence in the results (in terms of bias and mse). We present the results for α = 1 and discuss

the results for κ, RR, p, and n. Hereby we conducted the simulation for 450 scenarios with

three censoring levels, after having eliminated the value of α. The conduction in terms of bias,

variance and mean square error are similar for the unbalanced case as for the balanced case. We

present and discuss here the situation with κ = 0.8, hence n0 < n1.

Table 4.3: Simulation scenarios

Number of replications m 1000

Common shape parameter Weibull distributions α 0.5, 1, 2

Probability of choosing an individual from group 1 κ 0.2, 0.5, 0.8

Relative risk RR 0.2, 0.4, 0.6, 0.8, 1

Probability of censoring p 0.7, 0.8, 0.9

Sample size n 50, 100, 200, 300, 400,

500, 1000, 1500, 2000, 2500

In Table 4.4 (at the end of this chapter) we present the bias, variance and mean square error for

the scenarios defined in the previous Table. When the size of the sample is small, sometimes one

of the groups does not present events, and generates problems in the convergence of the process

of estimation of the relative risk. These atypical cases were excluded in Table 4.3. We observe

that given a value of the relative risk, the bias and variance grow when increasing the censoring

level, and both decrease when the sample size increases. If the value of relative risk increases to

1, the bias and variance decrease slowly.

Since the RR is a relative quantity, a small variation in this value can involve big differences

between the risks of the groups, as it is shown in Table 4.1. We are ready to accept a variation

of the relative bias up to 14%. That is to say, |( rr−RR
RR )∗100| < 14, which implies that 0.86RR <

rr < 1.14RR. For example, when RR = 1, we accept an estimation if it is contained in the

interval (0.86, 1.14). In Table 4.5 (at the end of this chapter), we showed the relative bias in

percentage, the coverage and the number of times that the procedure converges and obtains the

estimator. For each value of RR, we observed that the relative bias decreases when n increases,
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and presents big variations when n < 500. Also we observed that there are convergence problems

when n < 500, mainly when the censoring level is 90%. The coverage is consistent to 95% when

n > 500. From this table we can deduce that, if the percentage of censoring is 70% or below,

the Cox model can be used for the estimation of the relative risk whenever the total sample size

in both groups is larger than 100. For an 80% of censoring, a larger than 200 size would be

required to get an approximately unbiased and precise estimator for the relative risk. Whenever

the percentage of censoring is 90% or larger, a sample size of at least 500 is required, unless the

RR is relatively small.

Figure 4.2: Mean square error of the relative risk estimator, n0 < n1
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In Figure 4.2 we presented a graph of the behavior of mse under different values from RR with

three censoring levels, and n = 500, 1000, 1500, 2000. The mse decreases when RR decreases,

and increases when the censoring level increases. This behavior stays for each level of n. For
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each level of RR, the mse is maximum when the censoring level is 90%.

4.6 Conclusion

In the presence of censoring levels from 70% to 90%, the Cox model is always suitable if the

sample size is greater or equal than 500. The study has verified, that the behavior of the relative

risk, in terms of mse, is better if the sample is balanced. If censoring is too heavy, the Cox

model should not be used or used cautiously when sample size is smaller than 500. In this case,

there can be problems of convergence or one could have an erroneous estimation of the relative

risk, since it tends to overestimate the parameter. The Cox model can be used cautiously for

the estimation of the relative risk whenever the total sample size in both groups is larger than

100 for a percentage of censoring of 70% or below, or larger than 200 for an 80% of censoring. If

the sample size is larger than 200 and the RR is relatively small with a percentage of censoring

of 90%, the Cox model can be used too. Although in this last case it could have convergence

problems, these problems will disappear if the groups are balanced.
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Table 4.4: Properties of the estimator for relative risk under heavy censoring
n0 < n1 bias(rr) var(rr) mse(rr) 

n\p 0.70 0.80 0.90 0.70 0.80 0.90 0.70 0.80 0.90 

RR =0.2
    5 0 0.035 0.060 0.077  0.025 0.052 0.053 0.027 0.056 0.059

   1 0 0 0.010 0.020 0.050  0.008 0.015 0.042 0.008 0.015 0.045

   2 0 0 0.004 0.007 0.019  0.003 0.005 0.022 0.003 0.005 0.023

   3 0 0 0.003 0.004 0.012  0.002 0.003 0.008 0.002 0.003 0.008

    4 0 0 0.004 0.004 0.008  0.002 0.002 0.006 0.002 0.002 0.006

   5 0 0 0.003 0.003 0.004  0.001 0.002 0.004 0.001 0.002 0.004

  1 0 0 0 0.000 0.001 0.002  0.001 0.001 0.002 0.001 0.001 0.002

  1 5 0 0 0.000 0.000 0.001  0.000 0.001 0.001 0.000 0.001 0.001

 2 0 0 0 0.001 0.001 0.002  0.000 0.000 0.001 0.000 0.000 0.001

 2 5 0 0 0.001 0.001 0.002  0.000 0.000 0.001 0.000 0.000 0.001

RR =0.4
    5 0 0.103 0.128 0.039  0.156 0.190 0.110 0.167 0.206 0.112

   1 0 0 0.036 0.066 0.107  0.043 0.088 0.168 0.044 0.093 0.180

   2 0 0 0.012 0.023 0.062  0.014 0.023 0.090 0.014 0.024 0.094

   3 0 0 0.008 0.013 0.044  0.009 0.014 0.043 0.009 0.014 0.045

    4 0 0 0.008 0.013 0.025  0.007 0.011 0.027 0.007 0.011 0.028

   5 0 0 0.005 0.006 0.017  0.005 0.008 0.019 0.005 0.008 0.019

  1 0 0 0 0.001 0.002 0.009  0.003 0.004 0.007 0.003 0.004 0.007

  1 5 0 0 0.000 0.001 0.006  0.002 0.002 0.005 0.002 0.002 0.005

 2 0 0 0 0.002 0.003 0.005  0.001 0.002 0.004 0.001 0.002 0.004

 2 5 0 0 0.002 0.003 0.006  0.001 0.001 0.003 0.001 0.002 0.003

RR=0.6
    5 0 0.179 0.175 -0.035  0.373 0.379 0.150 0.405 0.410 0.151

   1 0 0 0.075 0.135 0.148  0.122 0.270 0.322 0.127 0.288 0.344

   2 0 0 0.024 0.056 0.123  0.036 0.107 0.234 0.037 0.110 0.249

   3 0 0 0.017 0.030 0.095  0.025 0.040 0.161 0.025 0.040 0.170

    4 0 0 0.018 0.026 0.052  0.019 0.032 0.072 0.020 0.033 0.075

   5 0 0 0.010 0.013 0.047  0.014 0.021 0.058 0.014 0.021 0.060

  1 0 0 0 0.003 0.005 0.022  0.007 0.010 0.021 0.007 0.010 0.021

  1 5 0 0 0.001 0.003 0.013  0.004 0.006 0.014 0.004 0.006 0.014

 2 0 0 0 0.004 0.006 0.010  0.003 0.005 0.009 0.003 0.005 0.010

 2 5 0 0 0.005 0.005 0.012  0.002 0.004 0.008 0.002 0.004 0.008

RR=0.8
    5 0 0.258 0.145 -0.145  0.695 0.486 0.172 0.761 0.507 0.193

   1 0 0 0.135 0.227 0.155  0.321 0.585 0.460 0.339 0.636 0.484

   2 0 0 0.046 0.091 0.216  0.080 0.220 0.559 0.083 0.229 0.606

   3 0 0 0.026 0.063 0.174  0.050 0.087 0.397 0.050 0.091 0.427

    4 0 0 0.027 0.046 0.093  0.040 0.072 0.203 0.041 0.074 0.211

   5 0 0 0.015 0.029 0.090  0.027 0.045 0.136 0.027 0.045 0.144

  1 0 0 0 0.006 0.013 0.041  0.013 0.020 0.047 0.013 0.020 0.049

  1 5 0 0 0.003 0.008 0.022  0.008 0.013 0.030 0.008 0.013 0.030

 2 0 0 0 0.006 0.011 0.014  0.007 0.010 0.019 0.007 0.010 0.019

 2 5 0 0 0.006 0.008 0.021  0.005 0.008 0.018 0.005 0.008 0.018

R R = 1 
    5 0 0.303 0.087 -0.278  0.964 0.541 0.193 1.055 0.549 0.271

   1 0 0 0.224 0.275 0.117  0.652 0.888 0.573 0.702 0.963 0.586

   2 0 0 0.079 0.156 0.279  0.162 0.523 0.801 0.168 0.547 0.879

   3 0 0 0.041 0.095 0.226  0.089 0.187 0.679 0.090 0.196 0.730

    4 0 0 0.038 0.061 0.155  0.072 0.118 0.446 0.073 0.121 0.470

   5 0 0 0.023 0.046 0.136  0.049 0.097 0.254 0.050 0.099 0.272

  1 0 0 0 0.009 0.019 0.059  0.023 0.034 0.084 0.023 0.034 0.087

  1 5 0 0 0.006 0.011 0.033  0.015 0.022 0.053 0.015 0.022 0.054

 2 0 0 0 0.010 0.016 0.020  0.012 0.018 0.033 0.012 0.018 0.033

 2 5 0 0 0.009 0.011 0.029  0.009 0.013 0.031 0.009 0.013 0.032
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Table 4.5: Consistency of the estimator for relative risk under heavy censoring
n0 < n1 ( bias(rr)/RR )x100% coverage convergence 

n\p 0.70 0.80 0.90 0.70 0.80 0.90 0.70 0.80 0.90 

RR =0.2
    5 0 17.358 29.773 38.335  0.951 0.970 0.992  999 992 849

   1 0 0 4.952 9.958 25.135  0.947 0.953 0.976  1000 1000 993 

   2 0 0 1.806 3.525 9.713  0.956 0.957 0.957  1000 1000 1000

   3 0 0 1.572 2.141 6.231  0.959 0.949 0.952  1000 1000 1000

    4 0 0 2.205 2.051 4.114  0.950 0.941 0.943  1000 1000 1000

   5 0 0 1.463 1.410 1.926  0.954 0.960 0.949  1000 1000 1000

  1 0 0 0 0.049 0.324 0.812  0.944 0.944 0.962  1000 1000 1000

  1 5 0 0 0.003 0.199 0.512  0.947 0.944 0.940  1000 1000 1000

 2 0 0 0 0.409 0.530 0.869  0.948 0.953 0.949  1000 1000 1000

 2 5 0 0 0.318 0.708 1.067  0.952 0.950 0.946  1000 1000 1000

RR =0.4
    5 0 25.656 31.898 9.626  0.964 0.971 0.981  996 977 807

   1 0 0 9.078 16.517 26.740  0.948 0.965 0.975  1000 1000 971 

   2 0 0 2.953 5.648 15.471  0.961 0.952 0.960  1000 1000 999 

   3 0 0 2.028 3.345 10.898  0.950 0.943 0.952  1000 1000 1000

    4 0 0 1.926 3.227 6.178  0.942 0.942 0.949  1000 1000 1000

   5 0 0 1.366 1.621 4.282  0.951 0.947 0.955  1000 1000 1000

  1 0 0 0 0.183 0.599 2.326  0.941 0.945 0.964  1000 1000 1000

  1 5 0 0 0.117 0.286 1.512  0.948 0.942 0.943  1000 1000 1000

 2 0 0 0 0.599 0.674 1.333  0.945 0.950 0.952  1000 1000 1000

 2 5 0 0 0.624 0.661 1.400  0.952 0.946 0.944  1000 1000 1000

RR=0.6
    5 0 29.770 29.203 -5.786  0.966 0.963 0.972  989 944 737

   1 0 0 12.563 22.504 24.640  0.957 0.964 0.969  1000 999 939

   2 0 0 4.026 9.309 20.567  0.958 0.956 0.970  1000 1000 999 

   3 0 0 2.816 4.931 15.778  0.947 0.953 0.959  1000 1000 1000

    4 0 0 2.943 4.336 8.684  0.939 0.948 0.944  1000 1000 1000

   5 0 0 1.641 2.132 7.768  0.944 0.955 0.953  1000 1000 1000

  1 0 0 0 0.561 0.848 3.730  0.944 0.947 0.958  1000 1000 1000

  1 5 0 0 0.223 0.552 2.143  0.936 0.946 0.955  1000 1000 1000

 2 0 0 0 0.742 0.929 1.667  0.940 0.948 0.954  1000 1000 1000

 2 5 0 0 0.783 0.851 2.000  0.954 0.941 0.943  1000 1000 1000

RR=0.8
    5 0 32.243 18.157 -18.127  0.962 0.962 0.961  978 899 666

   1 0 0 16.815 28.326 19.397  0.964 0.969 0.967  1000 995 897

   2 0 0 5.773 11.425 27.051  0.953 0.947 0.975  1000 1000 993 

   3 0 0 3.301 7.856 21.768  0.947 0.956 0.957  1000 1000 1000

    4 0 0 3.321 5.766 11.606  0.943 0.947 0.953  1000 1000 1000

   5 0 0 1.924 3.650 11.235  0.948 0.948 0.949  1000 1000 1000

  1 0 0 0 0.702 1.599 5.167  0.944 0.949 0.948  1000 1000 1000

  1 5 0 0 0.378 0.999 2.718  0.941 0.943 0.947  1000 1000 1000

 2 0 0 0 0.775 1.388 1.738  0.946 0.941 0.952  1000 1000 1000

 2 5 0 0 0.773 1.028 2.664  0.939 0.950 0.946  1000 1000 1000

R R = 1 
    5 0 30.264 8.734 -27.828  0.959 0.953 0.947  956 851 606

   1 0 0 22.350 27.457 11.702  0.965 0.951 0.959  1000 978 852

   2 0 0 7.877 15.558 27.935  0.952 0.954 0.973  1000 1000 985 

   3 0 0 4.132 9.535 22.555  0.954 0.953 0.960  1000 1000 996 

    4 0 0 3.828 6.124 15.465  0.950 0.950 0.956  1000 1000 999 

   5 0 0 2.339 4.600 13.649  0.954 0.954 0.950  1000 1000 1000

  1 0 0 0 0.890 1.874 5.897  0.940 0.956 0.958  1000 1000 1000

  1 5 0 0 0.558 1.120 3.320  0.940 0.953 0.946  1000 1000 1000

 2 0 0 0 0.999 1.618 2.004  0.944 0.946 0.960  1000 1000 1000

 2 5 0 0 0.900 1.099 2.865  0.943 0.954 0.945  1000 1000 1000



Chapter 5

Analysis of the melanoma data via

mixture cure models. Assessment of

sufficient follow-up

5.1 Introduction

In this Chapter we return to the discussion of the melanoma data described in Chapter 2, section

2.1. In the development of this chapter, we allow the possibility that immune or cured individuals

are present in the population. An analysis via a mixture cure model, defined in Chapter 3, is

then more appropriate than a standard survival model, since it takes into account the immune

proportion and the survival function of the nonimmune individuals. However in a scenario of

immune and nonimmune individuals in the population, three aspects must be taken into account

before proceeding to use the mixture cure model. First, there must be some empirical evidence to

suppose the presence of immune individuals in the population. Second, the presence of immune

individuals in addition to those susceptible who are censored before the end of the study could

result heavy censoring percentage. Third, it has to be checked whether the follow-up was enough

to make sure that individuals in the population are really immune.

This Chapter is composed as follows, Section 5.2 presents a description of the cure proportion,

64
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level of censoring and the sufficient follow-up: nonparametric tests are introduced in 5.2.1 and

5.2.2, both implemented as functions of R (see Appendix A.2) and applied to the melanoma

dataset to evaluate the follow-up, results of these tests are summarized in 5.2.3. Subsequently an

analysis via a mixture cure model is presented in Section 5.3 using the SAS macro PSPMCM: the

model formulation and discussion of the estimation procedure are presented in 5.3.1, discussion

of software for data analysis are presented in 5.3.2, and 5.3.3 summarizes the results. Finally,

Section 5.4 contains an overall conclusion from the results.

5.2 Sufficient follow-up in the case of melanoma data

We begin this section by examining the Kaplan and Meier curves for the melanoma data described

in Chapter 2. Figure 5.1 shows the K-M curves for the disease-free time (time to relapse) and

overall time (time to death), we see that both have the property of an improper survival (both

curves are around 0.8), which is an empirical evidence which suggests the presence of immunes

or cured individuals.

Figure 5.1: Kaplan and Meier curves for disease-free time (time to relapse) and overall time

(time to death), both survival curves are improper, S(∞) > 0.

 
!"

 
!#

 
!$

 
!%

 
!&

'
! 

()*+,-./012

3
4
56
)6
/
7

845+ rate

 !  "   "!  #   #!  $   $!  %    !  "   "!  #   #!  $   $!  %   

&'()*+,*-)./01)

&'()*+,*2)/+3

The K-M estimator in Figure 5.1, represents the estimated curve for survival function of the
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population S(t), as stated in equation (3.7).

S(t) = [1− π] + πS1(t). (5.1)

This approach leaves too an estimator for the cure rate S(∞), given by ŜKM (u(n)), where u(n)

is the maximum survival time observed in the sample of size n (see Figure 5.1). These estimates

are presented in Table 5.1 for both, the disease-free time and the overall time, along with its the

standard error and an 95% confidence interval.

Table 5.1: Estimation of the cure rate
Period cure se(cure) low.95 upper.95

Disease-free time 0.797 0.025 0.750 0.847

Overall time 0.872 0.025 0.823 0.923

Similarly, the estimated survival function of nonimmune individuals S1(t) may be obtained from

(3.7) via Kaplan-Meier

Ŝ1(t) =
ŜKM (t)− ŜKM (u(n))

1− ŜKM (u(n))
, t > 0. (5.2)

The estimated curves for the marginal and conditional survival function are shown in Figure

5.2. Sometimes S1 is called conditional survival, while S is called the marginal survival. To

Figure 5.2: Kaplan and Meier curves for conditional and marginal survival: a) disease-free time

(time to relapse), b) overall time (time to death).
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distinguish between censored due to lost to follow-up and end of follow-up, we have taken the

maximum observed time to event as the reference point. The maximum observed time to relapse

was t(n) = 3065 days, while that, the maximum observed time to death was t(m) = 3358 days

(see Figure 5.3).

Figure 5.3: Censoring scheme: t(n) is reference point for disease-free time (time to relapse) and

t(m) is reference point for overall time (time to death).
Censoring due to: loss to follow-up end of follow-up 

loss to follow-up 

maximum observed relapsed time 

end of follow-up 

Disease-free time 

t(n)

reference point 

reference point 

Censoring due to: 

Overall time 

t(m)

maximum observed dead time 

Table 5.2 summarizes the level of censoring for each case that are illustrated in the scheme of

the Figure 5.3. In this table we see a relatively small percentage of individuals censored due

to the end of follow-up for overall time, such individuals are contributing to the cure rate. We

also found that 6.5% censored patients due to end of follow-up in the period disease-free time

(censored in interval (t(n), t(m))), contribute to censoring due to lost of follow-up for overall time.

Table 5.2: Censoring levels

Censoring due to

Period loss to follow-up end of follow-up total

Disease-free time 64.00% 20.25% 84.25%

Overall time 77.50% 7.75% 85.25%

Although in Figure 5.1 and Table 5.1 show strong evidences to suppose the existence of immune
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individuals in the population, it isn’t clear whether follow-up was sufficient. For example, for

overall survival we see that the level of censoring due to the end of follow-up is low (see Table

5.2), the conditional survival curve falls slowly to zero (see Figure 5.2 b). Could indicate that the

proportion of censoring due to end of follow-up not due to the presence of immune individuals

but rather a insufficient follow-up.

In order to prove whether or not there is sufficient follow-up in this data, two non-parametric

tests are reviewed and are introduced below. Both tests have been implemented as functions

in the statistical package R and are applied to the dataset, a discussion about application is

presented in the last subsection and Appendix A.2.

5.2.1 α-test

Let F and F1 the distribution functions defined by F = 1−S and F1 = 1−S1, G is the distribution

function of the censoring and τF , τF1
, τG are the right extremes, respectively, defined in section

1.1. When 0 < π < 1, π̂n = 1− ŜKM (u(n)) is consistent if and only if

τF1
≤ τG ,

where τF1
≤ τG means a sufficient follow-up (Maller and Zhou (1992)). The consistency prop-

erties for π = 1 under a scenario of heavy censoring can see in Zukang (1997), Wellner (1985),

among others.

Maller and Zhou (1992, 1994, 1996) proposed a nonparametric statistic, called the αn-test, to

test the hypothesis

H0 : τF1
> τG versus H1 : τF1

≤ τG . (5.3)

The test rejects H0 if αn < α, where αn = (1 − Nn
n )n, Nn is the number of failure times in the

interval (2t(n) − u(n), t(n)], t(n) is the maximum observed failure time and u(n) is the maximum

observed failure or censored time in a sample of size n. Observe that if wn and δn are the values

observed of T(n) and U(n) − T(n) in the sample, then wn − δn = t(n) − (u(n) − t(n)) = 2t(n) − u(n),

where δn is the length of the interval (t(n), u(n)].
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5.2.2 ∆-test

Due to the instability of π̂n when follow-up is large, Klebanov and Yakovlev (2007) proposed a

procedure to test the hypothesis (equivalent to (5.3))

H0 : S(T0) = S1(T0) versus H1 : S(T0) > S1(T0), (5.4)

where T0 is the duration of follow-up and S1(t) has non-decreasing ϕ-hazard rate average defined

in section 1.1. Under a random censoring scheme with T0 < min{τF1
, τG}, the test is based on

the Kolmogorov goodness-of-fit statistic

∆n = Ŝn(T0)− ϕ(
T0

t0
ϕ−1(Ŝn(t0)))− [1 +

T0

t0
]
Dα√

n
Ŝn(t0)(1 + An(t0)),

where An(t0) = n
∑

(i:ti<t0)
δi

(n−i)(n−i+1 , δi is the censoring indicator and Dα is the (1 − α)th

percentile of the asymptotic Kolmogorov distribution. The test rejects H0 at a significance level

of less that α, if 0 < ∆n. In addition a consistent estimator π̃n for π is given by equation (26)

of Klebanov and Yakovlev (2007), and by Maller and Zhou (1992) it is concluded that follow-up

was sufficient. These two tests are not available yet in statistical software. We have implemented

them in R (see Appendix A.2).

5.2.3 Results

For the implementation of the ∆-test, t0 and π̃n were obtained using equation (26) of Klebanov

and Yakovlev (2007). The statistic ∆n has been computed using that Dα ' zα√
n
, see Gibbons

(1985). The ∆-test can be used since as widely discussed by Klebanov and Yakovlev (2007),

S1(t) has non-decreasing ϕ-hazard rate overage, especially in applications in cancer data.

The results obtained of the α-test and the ∆-test using the melanoma data are summarized in

Table 5.3. Observe that, both tests are at the limit of the rejection region, contrasting with the

slow convergence to zero in the conditional survival function (Figure 5.2 b)) and explained by

the excessive censoring due to loss to follow-up (Table 5.2). We can see that with both tests we

reject H0 for each case, so we can assume that there is sufficient follow-up, for both, disease-free

time (with π̃n = 0.536) and Overall time (with π̃n = 0.319). However, regarding the estimation

of the cure rate, we must take into account the censoring level (see Table 5.2) due to excessive

loss of patients during follow-up (Sy and Taylor (2000)), and utilize π̃n as a nonparametric lower
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bound and π̂n as a nonparametric upper bound for cure rate π (Klebanov and Yakovlev (2007)).

In this way, we can infer an interval for the cure rate obtained from the ∆-test: cure [0.536, 0.797]

for disease-free time and [0.319, 0.872] foroverall time.

Table 5.3: Test for sufficient follow-up

Test-Statistic conclusion implication

Disease-free time

αn = 0.006 reject H0 : τ
F1

> τ
G

sufficient follow-up

∆n = 0.204 reject H0 : S(T ) = S1(T ) π̃n consistent

Overall-time

αn = 0.049 reject H0 : τ
F1

> τ
G

sufficient follow-up

∆n = 0.045 reject H0 : S(T ) = S1(T ) π̃n consistent

5.3 Analysis of the melanoma data

From Table 5.2 in previous section we have seen that the proportion of censoring due to loss

to follow-up is 64% for disease-free time and about 77% for overall time, and the rest of the

censored patients can be defined as cured patients. In the first case cured patients are those who

are not expected relapse or die (20.25% of patients), whereas in the second case, are those that

may relapse but not die (7.75% of patients). From the heavy censoring analysis in the chapter

4, we found that for a censoring percentage of 80% need a sample size larger than 200; in the

melanoma dataset there are 400 patients. Moreover, in Section 5.2 we found that in both periods

disease-free and overall time, the follow-up is sufficient.

The next subsection summarizes the inference procedure for a mixture cure model introduced

by Farewell (1977). This methodology was implemented as a SAS macro by Corbière and Joly

(2007), and is used in this thesis to analyze the data melanoma, the results are presented in the

last section.
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5.3.1 Likelihood function

Let T be the survival time for a patients with cancer and C be the censoring time, T and C

independent, T with distribution function F and C with distribution function G. Suppose that

T is right censored by C, and let U be observed survival time and δ the censoring indicator,

defined in section 1.2. Let Y be a binary variable that specifies that an individual is nonimmune

to cancer (susceptible) with Y=1 or immune (cured) with Y=0, and π = P [Y = 1], Farewell

(1977). Let {(ui, δi, yi, xi, zi) : i = 1, 2, . . . , n} be survival data observed in a sample n patients

with cancer, where the i-th patient has an observed survival time ui with censoring indicator

δi, cure indicator yi (partially observed) and a vector of covariates (xi, zi). The full likelihood

function observed under an independent, noninformative, random censoring model is given by

L(b, β) =
n∏

i=1

{πi(zi|b)f(ui|β, xi)}δi{[1− πi(zi|b)] + πi(zi|b)S(ui|β, xi)}1−δi , (5.5)

where π(zi|b) = P [Y = 1|zi] is the probability of being susceptible given a covariate vector zi,

S(ui|β, xi) = S(ui|Y = 1, xi) is the survival function for susceptible individuals given a covariate

vector xi and f(ui|β, x) = − d
dui

S(ui|β, xi). Furthermore x is a vector of covariates explaining

the survival time of susceptible, z is a covariates vector including the intercept explaining the

proportion of susceptible, which may include the same covariate as x.

Maximization procedure

For a parametric mixture cure model, β can be estimated specifying a distribution function to

the survival time of susceptible patients, S(u|Y = 1). Discussions of parametric mixture cure

models can be found in Farewell (1977), Farewell (1982), Ghitany et al. (1994), Peng et al.

(1998), De Angelis et al. (1999), Yu et al. (2005). Main problem with the parametric mix-

ture cure models is that it is difficult to verify the distributional assumptions. An alternative to

these models are semiparametric mixture cure models, such as Cox’s proportional hazard models.

For a Cox’s proportional hazard mixture cure models, the conditional distribution of the suscep-

tible population is defined by

S(u|Y = 1, x) = S0(u|Y = 1)exp(β′x), (5.6)
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where S0(u|Y = 1) is left arbitrary. By replacing S(u|Y = 1, x) of the (5.6) in (5.3) can obtain

estimates for b and β maximizing L(b, β, S0(u|Y = 1)) via EM algorithm (see Appendix A.1).

Discussions of nonparametric mixture cure models can be found in Kuk and Chen (1992), Taylor

(1995), Sy and Taylor (2000), Peng and Dear (2000) and Corbière and Joly (2007).

5.3.2 The macro PSPMCM

Several mixture cure models using parametric and nonparametric methods have been pro-

grammed in different softwares, see section 3.4. Here we use the SAS macro called PSPCM

given by Corbière and Joly (2007), to estimate the model introduced by Farewell (1982), Sy and

Taylor (2000) and Peng and Dear (2000).

For the melanoma’s cancer we have established a Logistic-Cox model given by

S(u|z, x) = [1− π(z|b)] + π(z|b)S(u|β, x), (5.7)

where the effects of z and x are modeled via

π(z|b) =
exp(b′z)

1 + exp(b′z)
and S(u|β, x) = S0(u)exp(β′x).

Being π(z|b) = P [Y = 1|z] is the probability of relapse (probability of incidence) to cancer

and S(u|β, x) = P [U > u|Y = 1, x] the conditional survival of the time to relapse (conditional

distribution of latency). The main goal is to identify factors that would increase the probability

of incidence and which are the factors that would accelerate the occurrence when this can occur.

5.3.3 Results for the melanoma data

In the analysis all factors were introduced to the mixture cure model, in the cure part and sur-

vival. For disease-free time we use the Location type (Extremities-Trunk versus Head-Neck),

Breslow level (< 2, [2 − 4) and ≥ 4), Histopathological of Malignant Melanoma subtype (SSM

versus ALM-LMM-NM) and Age (≤ 45, 46-70, and > 70) (see Table 2.7, Chapter 2). For overall

time we use Breslow level (< 4 versus ≥ 4), Histopathological of Malignant Melanoma subtype

(SSM-LMM-NM versus ALM) and age (less than 60 years old and higher than 60) (see Table

2.12, Chapter 2).
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Significant covariates for the probability of the event (relapse/death) and conditional survival of

the time to event using model (5.7) are presented in the Table 5.4 and Table 5.5.

Table 5.4: Statistical significant factors for probability of relapse and the time to relapse using a

Logistic-Cox model. Reference group: SLN status= Negative, Localization= Extremites-Trunk,

Bres< 2mm, Ulceration= No, Clark level= I-III, HMM subtype= SSM, Age ≤ 45 years and

Gender= Female.

Predictors β eβ se(β) p L.95 U.95

LOGIT PART

SLN status

Positive 0.762 2.142 0.358 0.033 1.061 4.324

Clark level

IV-V 1.414 4.111 0.482 0.003 1.599 10.571

Age

46-70 years 1.238 3.448 0.432 0.004 1.479 8.036

> 70 years 2.647 14.117 0.490 0.000 5.407 36.859

Gender

Male 0.899 2.458 0.313 0.004 1.331 4.541

HMM subtype

ALM-LMM-NM 0.744 2.105 0.354 0.035 1.052 4.212

SURVIVAL PART

Localization

Head-Neck 1.013 2.754 0.426 0.017 1.195 6.349

Breslow level

[2,4)mm 0.028 1.028 0.398 0.944 0.471 2.244

≥ 4mm 0.992 2.696 0.446 0.026 1.124 6.465

Ulceration

Yes 1.479 4.390 0.382 0.000 2.078 9.275
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We observe in Table 5.4 that the characteristics of the tumor, such as Sentinel Lymph Node

status, Clark level, Histopathological of Malignant Melanoma subtype, as well as Age and Gender

of the patient are highly significant factors for the incidence of cancer. For example the odds

ratio to Age> 70 years on reference group Age≤ 45 years is given as OR(Age > 70years|Age ≤
45years) = exp(2.647) = 14.117. That is, the odds of relapse of patients older than 70 years are

14 times the odds of relapse of patients younger than 45 years; the odds of relapse of patients

between 46-70 years are three times more than the odds of relapse of patients younger than 45

years. The odds of relapse of patients with positive Sentinel Lymph Node status are twice the

odds of relapse of patients with negative status. The odds of relapse of patients with level of

invasion into the skin from IV-V are four times the odds of relapse of patients with level I-III.

The odds of relapse of patients with Histopathological of Malignant Melanoma ALM-LMM-NM

are twice the odds of relapse of patients with SSM subtype. There is twice more the odds of

relapse for males than for females.

In the same Table 5.4, we observe that the Location, Breslow and Ulceration of the cancer are

significant factors for survival in susceptible patients. These factors accelerate the relapse or

development of cancer. Patients with ulceration are four times more risk to relapse than patients

without ulceration. Patients with level of Breslow≥ 4mm have two times more risk to relapse

than patients with Breslow< 2mm. There are two times more risk of relapse among patients

with head and neck cancer that with patients with cancer in extremities and trunk.

We observe in Table 5.5 that the Ulceration and Clark are characteristics of the tumor highly

significant for death due to cancer. The odds of death of patients with Clark level between

IV-V are seven times more than the odds of death of patients with Clark level between I-III.

The odds of death of patients with ulceration are twice the odds of death of patients without

ulceration. Observe that the Ulceration is a factor that accelerating the time to relapse (Table

5.4), increasing the probability of death (Table 5.5). Moreover, in Table 5.5 we see that the

Breslow is a highly significant factor for the survival time of patients. Patients with a Breslow

level≥ 4mm have about five times more risk to die than patients with a Breslow level< 4mm.
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Table 5.5: Statistical significant factors for probability of death and the time to death using

a Logistic-Cox model. Reference group: SLN status= negative, Bres< 4mm, Ulceration= no,

Clark level= I-III.

Predictors β eβ se(β) p L.95 U.95

LOGIT PART

SLN status

Positive 0.687 1.989 0.362 0.057 0.977 4.046

Ulceration

Yes 0.737 2.089 0.349 0.034 1.054 4.141

Clark level

IV-V 2.015 7.500 0.667 0.002 2.029 27.719

SURVIVAL PART

Breslow level

≥ 4mm 1.582 4.869 0.567 0.005 1.603 14.791

5.4 Conclusion

In the analysis for melanoma data described in Section 5.2, we obtain evidence that individuals

cured (and not cured) can be in the population, increasing the assumption that a survival model

that takes into account both populations may be more appropriate, than a standard proportional

hazards model described in Chapter 2, Section 2.2. However, before applying a mixture cure

model, we describe the percentage of censoring that arises due to loss to follow-up and end of

follow-up, then evaluate whether the follow-up has been sufficient to ensure the presence of im-

mune individuals in the population, and discard any effect only of the censoring mechanism due

to follow-up. The information in Table 5.2 suggests the follow-up assessment, for this purpose,

we apply the nonparametric tests described in section 5.2. The results of these tests, Table 5.3,

show that in both, disease-free time and overall time the follow-up is sufficient. Therefore, it is

valid to assume that immune individuals are actually present in the population, and a mixture

cure model is more appropriate to analyze of this data. The advantage of this analysis over the
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standard model of survival, is the separate modeling, effects of factors on the nonsusceptible pro-

portion [1− π(z|b)] (or cure rate) and effects of factors on time survival of susceptible S(u|β, x)

(or not cured) individuals, like in Table 5.4 and 5.5. In the analysis for disease-free time, some of

the factors with significant effects on the standard proportional hazards model, such as Sentinel

Lymph Node status, Clark level and Age (Table 2.8), are now highly significant for the non-

susceptible proportion (Table 5.4) in the mixture cure model. Similarly, for analysis of overall

time, Ulceration and Clark level (Table 2.13), now significant for the nonsusceptible proportion

(Table 5.5). In addition, the mixture cure model incorporates other significant factors, such as

Gender, Histopathological of Malignant Melanoma subtype and Localization for disease-free time,

and Breslow thickness for overall time.



Chapter 6

Extended hazard models

6.1 Introduction

Mortality of calves from birth to weaning (approximately at 180 days) reduces farm’s income,

and significantly increases cattle production costs (see Goyache et al. (2003) for a review). Thus,

it is important to take into account the survival pattern of calves into the overall breeding. Tarrés

et al. (2005) used a standard survival analysis to study how genetic and environmental factors

influence mortality up to weaning. However, and due to the high proportion of censoring in

the data, one could think of the presence of a mixture of two subpopulations of calves: those

susceptible to die before weaning and those who don’t. A binary mixture model, also known as

cure model, (e.g. Farewell, 1982), which takes into account a fraction of cured individuals, could

be appropriate in this situation.

In this chapter we present an application of the extended hazard models (EHM) proposed by

Tsodikov (2002) which is developed to combine both long-term and short-term effects. EHM

models include as a particular case the proportional hazard cure models. We established a pro-

portional hazard-proportional hazard cure (PHPHC) model to fit both genetic and environmental

factors and discriminate between mortality of calves effects (short-term effects) and survival or

cure effects (long-term effects).

77
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6.2 Nonlinear transformation model

Let T be a non-negative random variable denoting the failure time of interest, with improper

survival function Sp(t|z) and bounded cumulative hazard function Hp(t|z) such that π(z) =

Sp(∞|z) > 0 and θ(z) = Hp(∞|z) < ∞ being z a vector of covariates. A model that takes into

account the cure fraction π(z) can be formulated in two ways (as we have explained in section

3.1):

(i) A mixture cure model (Farewell, 1982) given by

Sp(t|z) = π(z) + [1− π(z)]S(t|z), (6.1)

where S(t|z) is defined as the survival function for the time to failure conditional upon ultimate

failure, i.e. S(t|z) = P [T > t|T < ∞, z];

(ii) By specifying a bounded cumulative hazard function Hp(t|z) of the population (Tsodikov

(2002)) and taking the survival function of T as

Sp(t|z) = exp{−θ(z)F (t|z)}, (6.2)

where F (t|z) = Hp(t|z)
Hp(∞|z) . In terms of the estimation of the cure fraction π(z) = exp{−θ(z)}, the

two representations (6.1) and (6.2) are equivalent within a nonparametric framework. Model

(6.1) does not have the proportional hazard property, however when F does not depend on z,

model (6.2) has the proportional hazard property and is referred as the proportional hazard cure

model (PHC) (Tsodikov (2003)).

The standardized cumulative hazard function F (t|z), itself a distribution function, might depend

on the covariate vector z. Thus, its corresponding survival function, 1−F (t|z), can be specified as

a parametric transformation of the baseline survival function S0 (representing a reference group

of individuals) in terms of a second predictor η(z) (Tsodikov (2003)). In particular, Lehmann

alternatives for 1 − F (t|z) can be assumed, that is, 1 − F (t|z) = S
η(z)
0 (t), yielding a PH model

for 1− F (t|z). The combined PH-PHC model is then given by

Sp(t|z) = exp{−θ(z)[1− S
η(z)
0 (t)]}, (6.3)

and it allows separate modelling of the long-term and short-term effects in terms of the covariate

vector z, which may not necessarily be the same set for each predictor. This extension includes
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the PHC model when there are not short-term predictors, that is, when η(z) = 1; and the PH

model when there are no long-term predictors, that is, when θ(z) = 1. Due to we are assuming

η(z) = exp(βηz) and θ(z) = exp(βθz + βc), parameters βη and βθ are the regression coefficients

for short-term effects and for long-term effects, respectively, and βc is an additional regression

parameter for the reference category of the cure fraction.

Inference procedures for regression coefficients βη, βθ and βc are based on the generalized log-

likelihood for a non linear transformation model. The R-package nltm includes the PH-PHC

model, among others, and uses restricted Nonparametric Maximum Likelihood Estimation pro-

cedure (Tsodikov, 2002 and 2003) to get parameter estimates.

6.3 Mortality and survival up to weaning of beef calves

In this section we return to the data presented in section 2.3. We remind that these data have

two main characteristics: first, the herds are heterogeneous among themselves, second; they are

severely censored. Moreover this dataset contains a high level of missing data, mainly in the

variable weight (weight at birth), see Table 2.17. With this evidence in hand, we propose to use

the models described in section 6.2, excluding of the analysis the variable weight. The obtained

results are presented below.

6.3.1 Results

A sample of 2077 calves in three different herds has been analyzed (see Chapter 2, section 2.3 for

details about the data). Here the covariates included in the model were, the length of productive

live of the cow, say lpl, dicotomized into groups < 1300 days and > 1300 days, month of birth,

say month, dicotomized into groups September to Febrary and March to August, gender (female,

male) and the type of difficulties at calving, say difficulty, categorized into without assistance,

slightly assisted by the farmer and strongly assisted by the farmer or the veterinary practitioner.

Due to heterogeneity among the three herds, separate PH-PHC models (as in 6.3) were fitted for

each herd. Table 6.1 displays the results for those models. Concerning long-term (cure) effects

we find that calving month and difficulty at birth is the set of statistically significant factors
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for the nonsusceptible proportion (long-term effects) of calves for herd 1, calving difficulty is

the only significant factor for herd 7, and there are no significant predictors among this set of

covariates for herd 3.

Table 6.1: Statistical significant factors for mortality and cure for each herd using a PH-PHC

model. Reference group for herd 1: Month= calves born between September and February and

Difficulty= without assistance, for herd 7: Difficulty= calves born without assistance.

Predictors β eβ se(β) p L.95 U.95

herd1

Long term predictor

Month

mar-aug 1.96 7.097 0.989 0.047 1.022 49.263

Difficulty

slightly assisted 1.87 6.476 0.474 0.000 2.557 16.401

strongly assisted 2.17 8.716 1.051 0.039 1.110 68.386

herd7

Long term predictor

Difficulty

slightly assisted 0.01 1.007 1.027 0.990 0.134 07.549

strongly assisted 1.33 3.798 0.471 0.004 1.507 09.569

Short term predictor

Length productive

>1300 days 0.89 2.440 0.466 0.056 0.978 06.080

We point out that the interpretation of the regression parameters for the cure fraction π(z) is

such that a higher value for eβ would represent a lower probability of cure for the corresponding

factor. Note that model (3), together with η(z) = exp(βηz) and θ(z) = exp(βθz + βc), implies

that π(z) = (π(0))eβ
where π(0) = exp(− exp(βc)) represents the probability of cure of the refer-
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ence group. Observe that if β1 is associated with z = 1 and exp(β1) > 1, means that θ(1) > θ(0),

then π(1) < π(0). In particular, calves born in the period march-august have lower probability of

cure than those born in september-february; and the probability of cure is much lower for those

that have difficulties at calving for herd 1. For herd 7 the effect of difficulty is different as for

herd 1, here only is significative the category strongly assisted. Calves that born from strongly

assisted calving have lower probability of cure that calves from without assistance calving. The

last two columns of Table 6.1 contain the lower (L.95) and upper (U.95) limits of a 95% confidence

interval for the ratio log π(1)
log π(0) = exp(β1).

Regarding short-term (mortality) effects, we only find statistically significant predictors in herd

7 where the risk of death of calves born to older mothers, hence with a longer reproductive life,

is twice the risk of death of calves born to younger mothers (βη = 0.89, eβη = 2.44, p-value

= 0.056). The last two columns of Table 6.1 contain the limits of a 95% confidence interval, in

this case, for the risk ratio eβη .

The results obtained by Tarrés et al. (2005), when the three herds were considered as one only

with 2504 records, by using a standard Cox model, are different from those presented here. In

this case, the calves borns from September-Febrary, had the lowest mortality risk. Calves from

cows younger that 1300 days of productive life had a higher risk of mortality. The non-assisted

calvings presented the smallest risk of mortality, and it increased up to five times according to

the calving became more difficult.

Due to a complete parametrization of the probability of cure, that is survival up to weaning,

given by π(z), we obtained estimations of it for each of the categories of the significant covariates

for the long-term effects given in Table 6.1. In Table 6.2 are estimates and confidence interval

for the cured probability of the different groups for each herd, obtained using the relationship

π(z) = (π0)eβ
. Observe that if (L.95, U.95) is a 95% confidence interval for π(0), then (L.95, U.95)eβ1

is a 95% confidence interval for π(1). We observe lower probabilities of cure for calves born

between March and August and for calves born with assistance for herds 1. Whereas for the

herd 7, there is low probability of cure for calves born strongly assisted. Furthermore, note that

herd 7 is the only herd for which the length of productive live of the cow has an influence on

the risk of death of the calves, and this short-term effect is influencing the probability of cure
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Table 6.2: Estimates of the Probability of Cure π(z) and 95% Semiparametric Likelihood Ratio

Confidence Intervals (in parentheses). Reference group for herd 1: Month= calves born between

September and February and Difficulty= without assistance, for herd 7: Difficulty= calves born

without assistance.

Predictors herd1 (L.95, U.95) herd3 (L.95, U.95) herd7 (L.95, U.95)

Reference Group .993 (.955, .999) .975 (.955, .986 ) .980 (.968, .987)

Month

mar-aug .953 (.723, .992)

Difficulty

slightly assisted .957 (.743, .993) .981 (.968, .987)

strongly assisted .942 (.671, .991) .930 (.887, .953)

(survival up to weaning) in such a way that the confidence interval for those calves born with

strong assistance (.887, .953) is strictly below the confidence interval for calves born without

assistance (.968, .987). Thus,the probability of survival up to weaning of calves born without

assistance is significatively higher than the probability of survival up to weaning of calves born

with strong assistance.

6.4 Conclusion

Concluding, we point out that the PH-PHC model is an alternative to the standard Proportional

Hazards model when there is a proportion of nonsusceptible individuals in the population. This

model allows us to jointly estimate the proportion of cure (survival up to weaning) and the effect

of different set of covariates for short and long-term on individuals in a heterogeneous population.

Moreover, we have been able to use the same approach for the three herds, providing a unified

method for situations, such as the one described in this chapter, where the initial set of covariates

has different short and long effects on each herd.



Chapter 7

Contributions, Future research and

Conclusions

In this chapter we present the major contributions we have made in this research, some tasks

to develop and the conclusion of this thesis. Section 7.1 summarizes the contributions made in

three categories: data analysis, methodological and implementation. In section 7.2 we discuss

some conceptions that can be developed as future works, and finally in Section 7.3 the general

conclusion is presented

7.1 Contributions

Survival data about oncology and veterinary studies discussed here are complex data. It involves

indistinguishable mixtures of two populations, the susceptible and nonsusceptible; with a combi-

nation of random and fixed censoring. Besides complex vectors of covariates, which may or not

influence in the survival times of the susceptible population and the nonsusceptible proportion.

Data of this nature has to be analyzed via cure models, which involve a new methodology, not

implemented in the statistical software. Estimation procedure, effect of censoring levels on esti-

mators of the parameters in the model, statistical tests about sufficient follow-up, among others,

has to be researched, developed and implemented in some statistical software.

83
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Data analysis

• Analysis of oncological data. We begin this thesis with a discussion of an observational

study of 400 patients diagnosed with skin cancer, which were followed for a fixed time

period. For its medical importance, the time to relapse and time to death due to cancer,

were defined as response variables to be investigated, and a set of tumor and personal

characteristics as covariates. In a preliminary analysis we observed that some covariates

were not completely collected, the Kaplan-Meier estimator of the curves for overall and

disease-free time did not converge to zero. We also found that some covariates have to be

recategorized, with the aim of getting more interpretable results. These and other results

are presented in section 2.2, where we make a description of missing values of covariates,

and then a semi-parametric survival analysis and nonparametric one thoroughly discussed

for both response variables. However, due to a high percentage of patients do not relapse

or survive to cancer, the time of these patients were defined as a censored observation at

study end (fixed censoring or administered), along with those who were censored during

follow-up (random censoring). The data of this nature give rise to a high level of right

censoring, which could skew the results obtained with the Cox model. To understand what

occurs in this scenario, a comprehensive analysis via simulation is carried out to investigate

these effects, and the results are presented in Chapter 4.

On the other hand, patients who remain until the end of the study without experiencing the

event of interest and that are declared as censored, are called long-term survivors. These

patients may be defined as cured (immune or nonsusceptible), if the time to follow-up is

long enough. A priori, these patients are indistinguishable from those patients experiencing

the event, called uncured (nonimmune or susceptible). A survival curve that does not

converge to zero, called improper survival curve, can be an empirical evidence of the

presence of immune individuals in the study population. In Chapter 5, we discuss about

the validation of sufficient follow-up in the sample of patients with cancer. Estimates of

the proportion of cured patients and nonparametric statistical tests to assess the follow-up,

and thereby ensure the existence of cured individuals, are thoroughly discussed in section

5.2. Survival analysis using a more general model than the Cox’s model is presented in

section 5.3. This model composed of a cure fraction and a survival function of uncured

patients, is called mixture cure model. The advantages gained by using the mixture cure
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model are based on the separation of statistically significant factors for the susceptible and

unsusceptible part in the estimation process, better quality of the estimators, consistent

results and ease of interpretation of those obtained from the standard models. These

results are widely exposed for both, the disease-free and overall survival time.

• Analysis of veterinary data. The other main study analyzed in thesis, begins with the

discussion made about a sample of 2504 calves, begins with the discussion made about a

sample of 2504 calves, which were followed from birth to the first 180 days of life (when

weaning takes place). The study was conducted in order to identify the genetic and

environmental factors that influence the time to death before weaning. Features of the calf,

the cow and the herd at calving, were recorded as factors that might influence survival time.

In a preliminary analysis of the data, we found relevant aspects that need to be taken into

account in the modeling, such as, heterogeneous herds, invalid data, heavy censoring and

missing data. These preliminary results led to a better analysis strategy, helped identify

factors that provided little or no information, also allowed us to debug and summarize the

characteristics of calves per herd. In Chapter 2, Section 2.3, we begin the discussion with

a description of the temporal and spatial mortality, concluding that the herds included

in the study, were heterogeneous. Discussions about genetic and environmental factors,

as well as missing data in the sample, are fully explained. A survival analysis using the

Cox model per herd, was carried out. The results and model validation were thoroughly

discussed as well.

In this study we observed several compositions and various natures of the censoring level

(see Table 2.17 and 2.19), mainly due to the characteristics of the cows, as well as of

the type of assistance received at calving, and the follow-up type of calves in each herd.

This behavior of the censoring, is reflected in the survival curves of Kaplan and Meier,

showing an improper type. This was empirical evidence to suppose the presence of calves

which are more likely to die within the first 180 days of life than the others. We take into

account that the follow-up period is held within a finite time interval, and that beyond

this time there is no interest in whether or not the event occurs. In this scenario a survival

model defined by specifying a bounded cumulative hazard function is more appropriate

for modeling these data. In Chapter 6 we present survival analysis using cure models with

an extended risk function, which includes the cure model of proportional hazards. The
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analysis is presented by herd, and covariates were included into the model via nonlinear

transformation models. The results and discussions are presented, together with estimates

of the proportion of survivors calves by herds.

• Determination of risk factors and the proportion of cure in patients with an SLN biopsy via

mixture cure models. Analysis of the melanoma data via mixture cure models, presented

in chapter 5, is carried out using the macro in SAS: PSPMCM. The results show that

patients with negative Sentinel Lymph Node status, Clark level I-III, Histopathological of

Malignant Melanoma subtype externa-superficial, younger than 46 years, and female, are

more likely to be cured, whereas patients with melanoma in head and neck, Breslow level

≥ 4mm and ulceration presents, are patients with increased risk of relapse. In particular,

patients with Breslow level ≥ 4mm are at higher risk for death.

• Determination of risk factors and the proportion of cure of beef calves up to weaning via

extended hazard models. In Chapter 6, we present a review and general discussion about

the extended hazard models (EHM) proposed by Tsodikov (2002). An analysis of the

calves data is carried out via extended hazard models by herd. Results are shown in sec-

tion 6.3.1, and were obtained using the library ”NLTM” of the statistical package R. The

short and long term effects are determined for each covariates, as well as the immune the

proportion of calves per herd. For example in the herd 1, we find that calving month

and difficulty at birth is the set of statistically significant factors for the nonsusceptible

proportion. Calves born in the period march-august have lower probability of cure than

those born in september-february; and the probability of cure is much lower for those

that have difficulties at calving for herd 1. For herd 7 the effect of difficulty is differ-

ent as for herd 1, here only is significative the category strongly assisted. Calves that

born from a strongly assisted calving have lower probability of cure that calves from an

unassisted calving. Regarding short-term (mortality) effects, we only find statistically sig-

nificant predictors in herd 7 where the risk of death of calves born to older mothers, hence

with a longer reproductive life, is twice the risk of death of calves born to younger mothers.

Methodological

• Methodological review about the cure models and software. We present in Chapter 3 a
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methodological review about the mixture and nonmixture cure models, from their origin up

until the writing of this thesis, which included its formulation, justification, development

and applications. The presentation is in chronological order and distinguishes among

various approaches related to the topic. We make a thoroughly revised about available

software to carry out analysis with a cure model, and at the end of this chapter we presented

a description of the more relevant software, which is available.

• Determination of relative risk under a scenario of heavy right-censoring in the Cox model.

In Chapter 4, section 4.2 we present a methodological proposal to evaluate the effects of

the heavy right-censoring on the estimates of relative risk in a proportional hazards model.

The proposal assumes a binary covariate as an explanatory variable and a fixed percentage

of censoring, which we called the censoring level. The methodology is based on the study

of the relationships between the probability of censoring, the probability of success for

binary covariate and the relative risk.

• Recommendations for use of the Cox model in presence of heavy right-censoring. In chap-

ter 4, section 4.5, the properties and consistency of the estimator of the relative risk are

presented in tables, under three censoring levels and different sample sizes. Recommenda-

tions for use of the Cox model in presence of heavy censoring are determined. The main

recommendation is, if censoring is too heavy, the Cox model should not be used or used

cautiously when sample size is smaller than 500.

• Discussion and application about tests to assessment of sufficient follow-up. We begin

Chapter 5, section 5.2, with a discussion about the justification for using the mixture cure

model. First, there must be some empirical evidence to suggest the presence of immune or

cured individuals in the population (and estimate the cure rate, possibly in a scenario of

heavy censoring). Then it has to be checked whether follow-up was enough to ensure that

individuals of the population are actually immune. The discussion includes a review of

the statistical tests for this purpose, like its applications to patients with melanoma cancer.

R implementations

• Assessment of heavy right-censoring in the Cox model by Simulation. Proposed method-

ology to evaluate the effect of the censoring level on the estimation of the relative risk in
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a proportional hazards model, was implemented as a function in the statistical package R

(see Appendix A.2.1), and a study by simulation was performed. The simulation study

include 450 scenarios with three censoring levels. The results are presented in Chapter 4,

sections 4.3-4.6.

• Implementation of nonparametric tests for assessment of sufficient follow-up in the case

of melanoma data. Non-parametric tests to determine if follow-up was or was not enough

in a sample, were implemented as functions in the statistical package R (see Appendix

A.2.2), and applied to the sample of patients with melanoma, the results are described in

section 5.2.3.

7.2 Future research

Among the different issues that remain open after the completion of this thesis, we point out six

which we plan to develop in the near future.

• In the study of melanoma data some analyses will still be done. With the goal of a

better interpretation, the main Medical Doctor of the study, suggested introducing vari-

able Histopathological of Malignant Melanoma (HMM) subtype in three categories: SMM,

ALM/LMM and NM. To this end, this recategorized variable, will be included in the mod-

els for the disease-free survival time as well as for the overall survival.

• We plan to extend the study and simulations presented in Chapter 4 to two dichotomous

variables. In this case the probability of censoring

p = [1− κ] exp(−τα) + κ exp(−RRτα), (7.1)

with dichotomous variables x1 and x2 had the form

p = exp(−τα)κ00 + exp(−RR2τ
α)κ01 + exp(−RR1τ

α)κ10 + exp(−RR1RR2τ
α)κ11,

where κij = P [x1 = i, x2 = j], RR1 =
λα
1x2

λα
0x2

, RR2 =
λα

x11

λα
x10

, and λij = exp(−β1(i)− β2(j)).
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• Also we plan to extend the study and simulations presented in Chapter 4 using other dis-

tributions with one or two dichotomous variable.

• We plan to study the theoretical properties of the estimator of RR under the scenario

described in Chapter 4, for small and large samples, and extend it to the new scenarios

proposed above.

• Similar to the simulation study presented in Chapter 4, we plan to extend it, when the

survival time T is right-censored by a random variable C within a time interval bounded

by τ . In this case, T can be censored by C (random censoring) or τ (fixed censoring) due

to the end of the study. Then the probability of censoring p is given by

p = P [T > C|T ≤ τ, x] + P [T > τ |x], (7.2)

where x is a dichotomous variable. Indeed when T follows a Weibull regression model

with shape parameter α and scale parameter λx and C follows Weibull model with shape

parameter α and scale parameter λ, then equation (7.2) has the form

p = A +
kλα + RR ∗B

λα + RR
,

where A = 1−κ
λα+1 [λα + exp(−(λα + 1)τα)], B = exp(−(λτ)α)[pτ − (1 − κ) exp(−τα)] and

pτ = P [T > τ |x] is the same equation (7.1), with λα
0 = 1 and λα

1 = RR.

• Another extension to the study and simulations presented in Chapter 4 is to simulate sce-

narios with parameter values close to those encountered in the skin cancer data and in calf

mortality data: RR > 1 in combination with heavy fixed censoring and moderate random

censoring, RR > 1 in combination with moderate fixed censoring and heavy random cen-

soring, among others.

• One of the main differences when using the non-mixture model instead of the Cox model is

to distinguish the -short or long term-effects that the covariates have on the subpopulations.

This flexibility allows an estimating the proportion of the cured population. We plan to
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study the convergence properties of the estimators with the Cox model when the true

distribution is given by one of the cure rate model.

7.3 Conclusions

This thesis has studied the cure rate model, has reviewed mixture and non-mixture cure mod-

els from a classical statistics approach, and has shown the advantages of these models over the

standard Cox models. A review about available software to carry out analysis with a cure rate

model is presented. A standard assumption in survival analysis is that all individuals will have

the event of interest provided the follow-up period is large enough. However, common models

might be inappropriate when data contain too much right-censoring. Simulation is used to an-

alyze the effects of heavy right censoring and sample size on the relative risk of the Cox model.

Results show that in the presence of censoring levels from 70% to 90%, the Cox model is always

suitable if the sample size is larger or equal than 500. The study has verified, that the behavior

of the relative risk, in terms of mse, is better if the sample is balanced. The thesis has been

motivated by two studies that have a high percentage of right-censoring, and where it is likely

that there are immune individuals or that the follow-up has not been long enough to see how

the entire population or both fail. In this situation, standard methods of survival analysis like

the Kaplan-Meier and the Cox model have limitations and can produce biased results.

Mixture cure models are presented, discussed and applied to the melanoma dataset. However,

before carrying out an analysis with these models, one has to ensure, whether follow-up was

sufficient. To assess whether the follow-up is sufficient or not, nonparametrics tests are pre-

sented and implemented in a statistical package R. The main role of these tests is to ensure the

presence of immune individuals in the population, and discard any effect only of the censoring

mechanism due to follow-up. We apply these nonparametric tests to the data, and the results

show that for both times: disease-free time and overall time the follow-up is sufficient. There-

fore, it is valid to assume that immune individuals are actually present in the population, and

a mixture cure model is more appropriate to analyze this data. The advantage of this analysis

over the standard models of survival analysis, is that the mixture cure model allows the separate

modeling, factors effects on the nonsusceptible proportion [1− π(z|b)] (or cure rate) and factors
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effects on time survival of susceptible S(u|β, x) (or not cured) individuals, like are presented

in Table 5.4 and 5.5. In the analysis for disease-free time, some of the factors with significant

effects on the standard proportional hazards model, such as Sentinel Lymph Node status, Clark

and Age (Table 2.7), are now highly significant for the nonsusceptible proportion (Table 5.4) in

the mixture cure model. Similarly, for the analysis of overall time, Ulceration and Clark (Table

2.12), now statistically significant for the nonsusceptible proportion (Table 5.5). In addition, the

mixture cure model incorporates other significant factors, such as Gender, Histopathological of

Malignant Melanoma subtype and Localization for disease-free time, and Breslow for overall time.

In addition to the problem of heavy right-censoring, we face the situation when the interest

event can or not occur within a finite time interval, such is the case of veterinary data, where

the event is death before ending weaning, where the interval of interest comes from birth to

weaning. In these cases a model with a bounded hazard function could be the most appropriate,

or any member of the class of nonlinear transformation models like PH-PHC model. This model

allows us to jointly estimate the proportion of cure (survival up to weaning) and the effect of

different set of covariates for short and long-term on individuals in a heterogeneous population.

Then estimations and confidence intervals for the cure rate could be carried out. The results

obtained show lower probabilities of survival up to weaning for calves born between March and

August and for calves born with assistance for herds 1. Whereas for the herd 7, there is low

probability of survival up to weaning for calves born strongly assisted. Furthermore, in the herd

7 the length of productive live of the cow has an influence on the risk of death of the calves,

and this short-term effect is influencing the probability of survival up to weaning. Thus, the

probability of survival up to weaning of calves born without assistance is significatively higher

than the probability of survival up to weaning of calves born with strong assistance.
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Appendix A

Algorithms and programs

The Appendix contains a brief description of R codes (including libraries and functions) used in

the thesis.

A.1 EM Algorithm

The usual process to fill the lacking information is the traditional algorithm EM. This algorithm

makes wear of the log-likelihood of the complete data, namely the log-likelihood of the data

censored like those are not censored. The algorithm was made in two steps: step E that results

on apply the expectation at the log-likelihood and, the step M that results of maximize this

expectation.

Example: Weibull case.

Supposed that T |Y = 1 ∼ Weibull(α, γ), with survival function S(t|Y = 1) = e−αtγ and hazard

function h(t|Y = 1) = αγtγ−1, and with p = P [Y = 1].

The likelihood of the complete data assuming independent, noninformative, random censore

model, and independence of the susceptibility, is given by

L(p, α, γ; y) =
n∏

i=1

pyi [1− p]1−yi [αγtγ−1
i ]yie−αtγi yi .

Step E: Let O = {yi′s observadas, (ti, δi) : i = 1 : n} and θ = (p, α, γ). Making Q(θ(m)) =

98
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E[log[L(p, α, γ; y|θ(m), O)]], we have that Q(θ(m)) = Q1(p) + Q2(α, γ) where

Q1(p) = n ln[1− p] + ln[
p

1− p
]

n∑

i=1

E
[
Yi|θ(m), O

]
,

Q2(α, γ) = ln (αγ)
n∑

i=1

E[Yi|θ(m), O] + (γ − 1)
n∑

i=1

[ln (ti)]E[Yi|θ(m), O]

−α

n∑

i=1

tγi E[Yi|θ(m), O].

E[Yi|θ(m), O] = δi + (1− δi)
pe−αtγi

[1− p] + pe−αtγi

Step M: We maximize the likelihood considering the lacking dates as if those were observed,

and with g
(m)
i = E[Yi|θ(m), O].

Q(θ|g(m)) =

[
n ln[1− p] + ln[

p

1− p
]

n∑

i=1

g
(m)
i

]

+

[
ln(αγ)

n∑

i=1

g
(m)
i + (γ − 1)

n∑

i=1

[ln (ti)] g
(m)
i − α

n∑

i=1

tγi g
(m)
i

]

The maximization method leads to a double maximization :

max
θ

Q(θ|g(m)) = max
p

[
n ln[1− p] + ln[

p

1− p
]

n∑

i=1

g
(m)
i

]

+max
(α,γ)

[
ln (αγ)

n∑

i=1

g
(m)
i + (γ − 1)

n∑

i=1

[ln (ti)] g
(m)
i − α

n∑

i=1

tγi g
(m)
i

]
.

The exponential case results when γ = 1 in the Weibull distribution. On this case the maximiza-

tion of the EM algorithm leads a double simple maximization:

max
θ

Q(θ|g(m)) = max
p

[
n ln[1− p] + ln[

p

1− p
]

n∑

i=1

g
(m)
i

]

+max
α

[
ln(α)

n∑

i=1

g
(m)
i − α

n∑

i=1

tig
(m)
i

]
,

where

g
(m)
i = δi + (1− δi)

pe−αti

[1− p] + pe−αti
, θ = (p, α).
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A.2 R Program

A.2.1 Heavy censoring

wcf= function(alf,px,tau,rr,m,n)

{

#Bias, variance and MSE of the estimator rr.

#alf is the shape parameter of the distribution of T.

#rr is the relative risk of Cox’s model

#tau is the value of censoring level

# m is the number of replicas

# n is the sample size (less than or equal to 2500)

# px is the probability of x = 1.

library(splines)

library(survival)

lan1= (rr)^(1/alf)

n1= n*px

n0= n*(1-px)

x= c(rep(1,n1),rep(0,n0))

#initialization of results vector

rep= matrix(numeric(3*m), nrow=m,ncol=3)

#Seed: by if someone wants to redo the study

set.seed(23571317)

for(j in 1:m)

{
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#Simulation of the failure times Weibull(alf, lan1)

v1= runif(n1,0,1)

t1= ( (-log(v1))^(1/alf) )/lan1

#Simulation of the failure times Weibull(alf, lan0= 1)

v0= runif(n0,0,1)

t0= (-log(v0))^(1/alf)

t= c(t1,t0)

#Survival Data (times, cens)

cens= 0*t

obs= which(t<=tau)

cens[obs]=1

times= pmin(t,tau)

fit.cox= coxph(Surv(times,cens)~as.factor(x),method="br")

k= summary(fit.cox)$conf.int

rep[j,]= k[c(1,3,4)]

}

#As in some iterations the procedure does not converge

ojo =which(rep[,3]<1/0)

rep =rep[ojo,]

m1 =length(ojo)

#Estimation of bias and relative bias of rr

s.rr= mean(rep[,1])-rr

sr.rr= (s.rr/rr)*100

#Variance of rr
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v.rr= var(rep[,1])

#mean square error of rr

mse.rr= v.rr + ((s.rr)^2)

#Coverage of rr

li= rep[,2]

ls= rep[,3]

nc= which(li < rr & rr < ls)

#Coverage level for rr

p.rr=length(nc)/m1

tab=c(s.rr, v.rr, mse.rr, sr.rr, p.rr, m1)

}

be= c(0.2, 0.4, 0.6, 0.8, 1)

c= length(be)

vtau= c(0.6502, 0.5273, 0.4509, 0.3971, 0.3566,

0.3923, 0.3255, 0.2809, 0.2482, 0.2231,

0.1799, 0.1519, 0.1321, 0.1171, 0.1053)

tau= matrix(vtau,nrow=5,ncol=3)

tf=matrix(numeric(50*3*6),nrow=50,ncol=3*6)
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for(h in 1:c)

{

va= tau[h,]

r= length(va)

vn= c(50,100,200,300,400,500,1000,1500,2000,2500)

k= length(vn)

tabla=matrix(numeric(6*k*r),nrow=k, ncol=r*6)

for(j in 1:r)

{

ta=matrix(numeric(6*k),nrow=k, ncol=6)

for(i in 1:k)

{

ta[i,]=wcf(1,0.5,va[j],be[h],1000,vn[i])

}

tabla[,j]= ta[,1]

tabla[,j+3]= ta[,2]

tabla[,j+6]= ta[,3]

tabla[,j+9]= ta[,4]

tabla[,j+12]= ta[,5]

tabla[,j+15]= ta[,6]

tabla=round(tabla,4)

}

tf[(1+10*(h-1)):(10*h),]=tabla

tf

}

tf
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A.2.2 Test for assessment sufficient follow-up

----------------------------

$\alpha$-test

----------------------------

----------------------------

#Disease free survival time

----------------------------

m = read.table(’melanoma_new.txt’, header=T)

times= m$seg_reci

cens= m$recid

----------------------------

#Overall survival time

----------------------------

m = read.table(’melanoma_new.txt’, header=T)

times= m$seg

cens= m$cens

obs1= which(cens==1)

timesf= times[obs1]

Tnes= max(timesf)

Tn= max(times)

tf= which(timesf>(2*Tnes-Tn) & timesf<=Tnes)

k= length(times[tf])

k

n= length(times)

alfn=(1-(k/n))^n

alfn
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----------------------------------

$\triangle$-test

----------------------------------

----------------------------

#Disease free survival time

----------------------------

m= read.table(’melanoma_new.txt’, header=T)

times= m$seg_reci

cens= m$recid

----------------------------

#Overall survival time

----------------------------

m = read.table(’melanoma_new.txt’, header=T)

times= m$seg

cens= m$cens

Tn= max(times)

library(splines)

library(survival)

km= summary(survfit(Surv(times,cens)~1))

tf= km$time

stf= km$surv

#m number of partitions of the vector t

an= function(Tn, m, tf, stf)

{
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xmin= tf[1]+.5

xmax= Tn

t= seq(xmin, xmax, by = ((xmax-xmin)/(m-1)) )

st= 0*t

for (i in 1:length(t))

{

obs= which( tf<t[i] )

pos= length(tf[obs])

st[i]= stf[pos]

}

rnt= -(1/t)*log(st)

zhi= exp( -Tn*rnt )

n= length(tf)

cotainf= ( 1 -( (1-stf[n])/(1-zhi) ) )

values= cbind(t,cotainf)

}

tabt= an(Tn, 1000, tf, stf)

nr= nrow(tabt)

for (i in 1:nrow(tabt))

{

if (tabt[i,2]<0)

{

tabt[i,2]=0
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}

else if (tabt[i,2]>=0)

{

tabt[i,2]= tabt[i,2]

}

}

max_an= max(tabt[,2])

obs= which(tabt[,2]==max_an)

tabt0= tabt[obs,]

plot(tabt[,1],tabt[,2],type=’l’,xlab=’t’,ylab=’a_n(t)’)

t0= tabt0[1]

obs1= which(tf< t0)

snt0= (stf[max(obs1)])

ant= function(times, cens, t0)

{

n= length(times)

obs= which(times<t0)

di= cens[obs]

sum= 0

for (i in 1:length(di))

{

if (di[i]==1)

{

sum = sum + ( 1/( (n-i)*(n-(i-1)) ) )

}

else if (di[i]==0)

{
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sum = sum

}

}

antf= ( n*sum )

values= antf

}

ant0= ant(times,cens,t0)

n= length(times)

Dalf= 1.36/sqrt(n)

ter1= min(stf)

ter2= exp(- (Tn/t0)*(-log(snt0)) )

ter3= ( 1+(Tn/t0) )*( Dalf/sqrt(n) )*snt0*( 1+ant0 )

#reject H0: S(T)=S_0(T) if (ter1-ter2-ter3)>0

rr=ter1-ter2-ter3

rr




