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Abstract
Through advances in sensor, networking, semiconductor and energy stor-
age technologies, Wireless Sensor Networks (WSNs) are increasingly be-
ing deployed in many important applications to enable users to access
information about the physical world. As a result, WSNs role as one of
key components of the Internet Of Things. However, the increase of num-
ber of sensors, the number of sensor types, and the number of applications
will make very difficult for the management systems of WSNs.

In this thesis, we propose a self organizing management platform de-
signed to ensure sensor nodes and user applications are set up and running
as intended. Our management platform, called DISON (DIstributed Self
Organizing Network) uses a multilevel management schema to provide
scalability for large sensor networks. We show how sensor nodes self
adapt to the changes in network resources and application requirements
and how network resources are coordinated efficiently among groups of
adjacent sensor nodes.

For flexibility, our platform are implemented and performed in an in-
dependent layer and interact with the user application and network pro-
tocols through public interfaces. This helps our platform to be easily in-
tegrated to an existing or a new application. A set of management data
models and protocols are developed to validate the efficiency of the pro-
posed platform in resolving challenging management problems in both
single and shared sensor networks.

Finally, in order to qualitatively evaluate our platform, we present two
case studies, one with a single sensor network and another with a shared
sensor network, where DISON was used to coordinate network resources
and application requirements. The results from extensive experiments
show that using DISON can bring a dramatic improvement to the scal-
ability, the stability, the efficiency, the reliability and the flexibility of
WSNs.
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Resum

Gracias a los avances en la tecnologı́a de sensores, redes, semiconductores
y almacenamiento de energı́a, el uso de las redes de sensores inalámbricos
(WSNs) ha augmentado notablemente en los últimos años con la apara-
ción de multitud de nuevas aplicaciones que permiten a los usuarios ac-
ceder a la información sobre el mundo fı́sico. Como resultado, las WSNs
son uno de los componentes clave en la Internet of Things. Sin embar-
go, el aumento del número de sensores, la diversidad de sensores, y del
número de aplicaciones hará muy difı́cil para los sistemas de gestión de
redes inalámbricas de sensores.

En esta tesis, se propone una plataforma de gestión auto-organizativa
diseñada para asegurar que los nodos sensores y aplicaciones de usua-
rio estén siempre configurados y funcionando según lo previsto. Nues-
tra plataforma de gestión, llamada DISON (DIstributed Self Organizing
Network), utiliza un esquema de gestión de varios niveles para propor-
cionar escalabilidad en redes de sensores de gran tamaño. Mostramos
cómo los nodos sensores se auto-adaptan a los cambios en los recursos
de la red y en los requisitos de las aplicaciones y cómo los recursos de
red se coordinan de manera eficiente entre grupos de nodos de sensores
adyacentes.

Para una mayor flexibilidad, nuestra plataforma se implementa y ma-
terializa en una capa independiente que interactúa con la aplicación de
usuario y los protocolos de red a través de interfaces públicas. Esto ayuda
a nuestra plataforma a integrarse fácilmente a una aplicación ya existente
o a una nueva. Un conjunto de modelos de datos y protocolos de gestión
se han desarrollado para validar la eficacia de la plataforma propuesta en
la resolución de problemas de gestión de desafı́o en tanto las redes indi-
viduales y compartidas de los sensores.

Por último, con el objetivo de evaluar nuestra plataforma, presentamos
dos estudios de caso, uno con una red individual de sensores y otra con
una red compartidas de sensores, donde se utilizó DISON para coordinar
los recursos de red y aplicaciones de usuario. Los resultados de extensos
experimentos muestran que el uso de DISON puede aportar una mejora
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dramática a la escalabilidad, la estabilidad, la eficiencia, la fiabilidad y la
flexibilidad de WSN.
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Chapter 1

INTRODUCTION

This chapter describes the demand for efficient self organizing manage-
ment architectures for Wireless Sensor Networks (WSNs). This chapter is
organized as follows: section 1.1 discusses background information; sec-
tion 1.2 motivates the work proposed in this thesis; section 1.3 outlines
the main research objectives; section 1.4 presents the approach adopted in
the research; section 1.5 presents a summary of main results and contri-
butions of this thesis, and finally section 1.6 presents the structure of the
thesis.

1.1 Background
Cities are getting increasingly crowded. Many research groups, in both
academia and industry, have recently put huge efforts to make cities smarter
to ensure public safety, provide efficient transport, save energy, reduce
expenses, and improve the quality of life. With advances in wireless
communications and MEMS (Micro Electro Mechanical Systems), Smart
Cities 1 [1] [2] [3] are becoming a reality. Three most commonly deployed

1In [1], a city can be defined as ’smart’ when investments in human and social capital
and traditional (transport) and modern (ICT) communication infrastructure fuel sustain-
able economic development and a high quality of life, with a wise management of natural
resources, through participatory action and engagement.

1
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Smart Cites’ applications are shown in Figure 1.1 and can be summarized
as follows:

• Intelligent Transportation Systems (ITS). Intelligent transporta-
tion systems are applications which apply advances in information
and communication technologies with the goal to organize traffic
more efficiently, enhance safety and reduce CO2 emissions in trans-
port systems. They can be deployed in vehicles (e.g., car, train,
ship, and air plane) and infrastructure (e.g., road, train station, and
gas station).

• Smart Grids (SG). The growing population has created a greater
demand for energy while the limited amount of fossil fuels is di-
minishing. Additionally, the power grids designed and deployed
in the past are not able to cope with current and future needs. To
resolve these problems, smarter electrical grids which use informa-
tion and communication technologies to optimize the energy distri-
bution and to improve the efficiency and productivity of the energy
usage are being developed. New smart grids can also help suppliers
and consumers to monitor and control the energy usage and costs.

• Smart Home, Smart Building - Home and Office automation
Systems (HOS). Home and office automation systems interconnect
electric devices such as heaters, lights, air conditioners, TVs, com-
puters, alarms, and cameras through a communication network, al-
lowing them to be remotely controlled, monitored or accessed from
any room in the building, as well as from any location in the world
by Internet. They help people to optimize their living style, arrange
the day-to-day schedule, secure a high living quality, and reduce the
energy consumption bills.

Recently, there are numerous research projects aiming at the develop-
ment of technologies for such cities, such as Open Cities [4] and Smart
Santander [5]. In the Open Cities project [4], several European cities such
as Amsterdam, Barcelona, Berlin, Helsinki, Paris are working on explor-
ing Open and User Driven Innovation methodologies to the Public Sector

2
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Figure 1.1: Smart City

in a scenario of Future Internet Services for Smart Cities. The Smart
Santander project [5] focuses on designing, deploying and validating an
experimental research facility to support typical applications and services
for a smart city. In most of Smart Cities projects, wireless sensor net-
works play an important role in building instrumented and interconnected
urban environments.

Wireless Sensor Networks (WSNs) are made up of small, low power,
and low cost automated devices (i.e., sensor nodes), which have the ca-
pability of sensing, data processing, and wireless communication. Given
these capabilities, WSNs can be deployed in different environments and
using a large number of sensor nodes with an affordable cost. WSNs have
wide applications in a variety of areas from industry, military to medical,
scientific. Examples of applications include habitat monitoring, structure
monitoring, smart homes and offices, surveillance, intelligent transporta-

3
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tion systems, and many others [6] [7] [8] [9][10]. Therefore, WSNs are
one of the critical components of Smart Cities. For example, in HOS,
wireless sensor nodes are used to monitor or detect temperature, light,
gas leaks and fire. The output of these sensors can be used to adjust the
operation of electric appliances at homes. In ITS, numerous sensors in-
stalled on a vehicle can detect obstacles, measure the speed of the leading
vehicle, warn impending collisions to the driver and trigger the collision
avoidance system when necessary. Infrastructure sensors including in-
duction loops, video and image processing, and microwave radars can
be installed on the road to monitor traffic conditions and detect traffic
congestion. Several recent studies have examined the feasibility of using
WSNs in ITS. Wang et al. in [9], designed and implemented EasiTia, an
applicable and cost-effective system for acquiring pervasive traffic infor-
mation based on WSNs. Recently, Bottero et al. [10] have installed and
tested a WSN traffic monitoring system in the area of a logistic platform
at the Turin’s freight village in Italy. In SG, sensors can be embedded in
metering devices, placed at both end-points and in the transport network,
to monitor and control the energy usage and/or the waste in real time both
locally and remotely. They help operators and consumers to manage their
energy usage efficiently, reducing their energy bills and optimize delivery
networks.

1.2 Motivation

WSNs differ from conventional distributed systems in many aspects. First,
sensor nodes are only equipped with a limited power source (e.g., batter-
ies and solar cells). Therefore, sensor nodes are easy to fail or have un-
predictable operations. In addition, sensor nodes can be deployed in large
numbers over a large geographic area or even in hostile or harsh environ-
ment. Therefore, replacement of sensors that have run out of energy is
complex or sometimes impossible.

Second, current applications of WSNs are used for a single purpose
solely and assuming that their operation parameters are fixed before de-

4
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ployment. However, application requirements may change over time. For
example, to deploy a new thief detection application in the smart house
in Figure 1.2a, it would be more efficient if the new application can use
existing devices in the house such as occupancy sensors rather than re-
quiring the installation of new ones. In addition, it is convenient to have
only one system which manages all the devices in the house. This helps
the user to monitor and handle all the devices in the house easily. There-
fore, a WSN should be able to support various types of applications or
adapt to the changes in application requirements. In other words, it is
expected that multiple applications will be executed concurrently over a
single wireless sensor network [11] [12].

Third, there has been a lot of research conducted in both hardware
and networking technologies for WSNs. WSNs can use different wireless
node platforms (e.g., MICAz, TelosB, IRIS, Imote2) and different net-
work protocols (e.g., MAC protocols [13], topology control protocols [14]
[15] and routing schemes [16] [17]). Therefore, to manage a huge amount
of heterogeneous sensor nodes and their data in WSNs is extremely com-
plex.

Fourth, there will be more and more deployed WSNs to meet differ-
ent needs in future. It is possible and expected that these networks can
cooperate to support each other to improve the performance or the quality
of offered services. For example in Figure 1.2b, based on the traffic infor-
mation from the traffic monitoring sensor network, the pollution sensor
network can predict the future pollution and change the collecting data
rate correspondingly.

These existing limitations in WSNs make management problems on
sensor nodes quite difficult to address. In order to outline the requirements
of WSN management systems, we discuss some following management
scenarios:

Fault or Misbehavior

There are many faults or misbehaviors which can happen in WSNs. In the
following we will discuss two examples.

5
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Temperature Sensor Light Sensor Occupancy Sensor

(a)

Traffic SensorPollution Sensor

(b)

Figure 1.2: WSNs Applications: (a) Smart House, (b) Road Network
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Scenario A: The electric bill is wrong due to no receiving energy
consumption reading caused by errors on node, e.g., battery depletion or
sensor broken, or errors on the data delivery path, e.g., network partition
or network congestion.

Scenario B: The electric bill is wrong due to receiving incorrect en-
ergy consumption readings caused by external attacks, misbehaviors of
metering sensor, or errors in network protocols.

These two scenarios provide some different requirements of WSN
management systems:

• First of all, a WSN management system must be able to determine
what has caused the faults. This requires management tasks such as
monitoring and fault tracking.

• To avoid unexpected effects when a fault occurs, a WSN manage-
ment system needs to support fault predictability. In other words,
it should be able to detect a fault before it occurs by analyzing and
validating data including sensing data, network operation logs, etc.

• Due to the existence of inevitable faults (e.g., in hardware, in soft-
ware components, and in network links etc.), a WSN management
system needs to detect these faults promptly and reconfigure net-
work operations to ensure the accuracy of the provided service.

Integration of new sensor nodes or new applications

During the network’s lifetime, there might be the need for deploying new
sensor nodes or new applications to replace broken ones, to extend the
network, to improve the network performance or to meet new users’ re-
quirements. The following are some examples of this situation:

Scenario A: A company wants to deploy a particular security appli-
cation in its office, which is located in a smart building. This application
includes some kinds of sensors such as camera sensors, motion sensors
and occupancy sensors to capture any unauthorized activity. There might

7
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be also some WSN applications with different types of sensor nodes de-
ployed in the smart building such as the lighting system, the air condition-
ing system, and the alarm system. Taking advantage of existing resources
in the building can reduce the deployment cost of the new user’s security
application. For example, it can utilize existing occupancy sensors of the
lighting systems instead of deploying new ones.

Scenario B: In this scenario, sensor nodes powered by batteries are
replaced by ones powered by solar energy in case sensor nodes are lo-
cated in areas where sunlight is abundant such as green fields or roads.
New energy harvesting sensor nodes can eliminate the inconvenience of
replacing batteries, and also prolong WSN operational lifetime.

Scenario C: The deployment of a network may include several phases.
In each phase, some new sensor nodes may be added to the network.

The management issues that arise in the above scenarios are as fol-
lows:

• Sensor nodes should be able to support multiple applications which
can be owned by multiple users. A WSN management system needs
to be able to allocate resources among applications, and also to en-
sure the privacy of each user.

• A WSN management system needs to have a power management
mechanism to manage the harvested energy at harvesting sensor
nodes. This mechanism should be able to cooperate with the re-
source allocation function to align the workload with the energy
availability at sensor nodes.

• The integration of new sensor nodes or new applications can require
a code update process. Due to the large number of nodes in WSNs,
a manual update is inefficient. Therefore, a WSN management sys-
tem should have a remote configuration function.

• In order to ensure the compatibility between old sensor nodes and
new ones, a WSN management system needs to update the network
operations in which new sensor nodes can take part in, such as rout-
ing or allocating network resources for applications.
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Quality of Service of WSNs

Due to the variety of applications in WSNs, the quality of service (QoS)
of WSNs varies greatly from application to application. For example, one
of the QoS factors is the accuracy. In WSNs which provide information
about the physical environment, the accuracy is measured by the discrep-
ancy between the real world value and the provided results. However, in
WSNs which are used to decide how to control actuators, the accuracy is
measured by the discrepancy between the correct decision and the taken
one. Moreover, different QoS factors such as delay and network lifetime
may conflict by nature. Two scenarios are introduced to illustrate the con-
flict among QoS factors.

Scenario A: In the fire detection system in a smart building, important
events such as high temperature and smoke occurrence need to be detected
promptly. It requires a high data collecting rate which results in larger
energy consumption, more network congestion and higher delays.

Scenario B: There are two WSN applications deployed on a road.
The first application is used to detect the traffic congestion. The second
one is to detect vehicles that cross a stop line while a red traffic light is
on. There is a traffic congestion on the road. To keep live reports, camera
sensors need to transmit information of the congestion (e.g., the vehicle
density, the length of congestion, the beginning and the end of congestion)
with a high rate to the sink, which affects the data traffic of the red light
application. Information of some cars which violate traffic rules may be
lost.

From the above scenarios, a WSN management system must consider
the following requirements in order to ensure the required QoS:

• The WSN management system should define a QoS model for each
application to identify the desired trade-off among QoS factors. It
should also identify key QoS factors, if any, that influence the effi-
ciency of the application. For example, the accuracy and the delay
are more important for fire detection compared to other factors.

• The WSN management system should have a mechanism to moni-
tor the QoS of running services to detect if the QoS of a service is
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met.

• When multiple applications are executed concurrently in a single
WSN, the WSN management system should combine the QoS mod-
els of all applications and generate a global QoS model to find the
general trade-off in case the required QoS of all running applica-
tions can not be guaranteed.

Collaboration among WSNs

As mentioned above, there are multiple WSNs deployed to support dif-
ferent applications in Smart Cities. However, the WSNs operate inde-
pendently and belong to different authorities. It would be efficient if the
WSNs can cooperate to provide higher services or to improve the net-
work performance. Some scenarios of the collaboration among WSNs
are described as follows:

Scenario A: A driver wants to find a parking place around a tourist
attracting area. The smart parking WSN and the traffic monitoring WSN
can collaborate to guide the driver to the most suitable empty parking
place without trouble of traffic congestion.

Scenario B: Based on collected information from the traffic monitor-
ing WSN, the pollution monitoring WSN can adjust its data collecting
rate correspondingly (e.g., the more traffic the higher rate). This helps the
pollution monitoring WSN to keep up-to-date information of pollution
while optimizing energy consumption.

To support the collaboration among WSNs, there are new manage-
ment requirements which a WSN management system needs to take into
account.

• The WSN management system should be able to analyze and val-
idate data or requests received from other WSNs. Then, it should
reallocate network resources to perform received requests.

• The WSN management system needs to monitor and evaluate the
effects of the collaboration with other WSNs on the network perfor-
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mance. It should be also able to use information of similar previous
collaboration requests in handling the current request.

1.3 Objectives
Meeting the above mentioned management requirements requires an au-
tonomic management platform. The autonomic concept is inspired by the
autonomic function of the human central nervous system which helps hu-
man adapt to the changes of environment. This system regulates the body
processes such as breathing, heat rate automatically without a person’s
conscious effort. The term autonomic computing was coined by IBM in
[18]. The key feature of autonomic computing is self-* behavior which
allows a system to manage itself without direct human intervention when
its scale and complexity grows. The self-* behavior were described as
follows.

• Self-healing: discover and repair potential problems to ensure that
the system runs smoothly.

• Self-protection: identify threats quickly and take protective ac-
tions. Sensors feed data to a protection center, for auditing, and
action taking against various threats.

• Self-configuration: install and set up applications/patches/updates
automatically, verify compliance with the specified service levels,
optimize configuration of applications using adaptive algorithms.

• Self-optimization: constantly monitor predefined system goals and
performance levels to ensure that all systems are running at opti-
mum levels.

The main objective of this work is to demonstrate that applying au-
tonomic principles in the design of management systems for WSNs will
bring a dramatic improvement to the scalability, the stability, the effi-
ciency, the reliability and the flexibility of WSNs. In order to achieve the
research goal, the following tasks are set:
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• To design an autonomic management platform that enables sensor
nodes to self organize in an efficient way with respect to the WSN
restrictions and various applications’ requirements. First, the de-
sired features of such a platform need to be addressed. Second,
its network architecture needs to be designed to support a variety of
sensor networks from small to large scale, and from single to shared
sensor networks.

• To design management data models and management protocols that
enable the self configuration and the self optimization in both han-
dling network operations and running user applications.

• To evaluate the scalability, the stability, the efficiency, the reliability
and the flexibility of the proposed platform in specific and challeng-
ing scenarios.

1.4 Methodology
For any network management system or framework, a key challenge is
evaluation. Most of the existing works in management for WSNs were
not evaluated or only through small scale simulation or device emulation
with a few sensor devices. We believe that the management system for
WSNs should be evaluated on both simulation and testbed for various
networks with different typologies, network sizes and different applica-
tion requirements.

In this thesis, we firstly use SENSE [19], an independent simulator to
give initial evaluation. Then, we deploy our approaches on TOSSIM [20],
a simulation tool that included in TinyOS [21], a popular operating system
for WSNs. Finally, we evaluate on testbeds including many TelosB motes.

1.4.1 Simulation
Since sensor nodes have limited computing power and memory sizes, it
is difficult to verify the operation of algorithms on a sensor node. In ad-
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dition, the number of sensor nodes can be large, and sensor nodes can be
deployed in harsh environments. Therefore, to test and debug the man-
agement system in motes is extremely difficult and requires much effort.
For example, if the designed algorithm causes a crash memory error, the
mote stops working. It is difficult to know which part of the algorithms
causing the error. For the early stages of the development of management
systems for WSNs, using simulator can help to reduce the time debugging
simple errors. The simulator also allows to evaluate the performance of
the proposed system easily and quickly.

SENSE Simulator

SENSE [19] is a simulator designed with the primary goal is to bring
the extensibility, reusability, and scalability for WSNs simulation. In or-
der to enable the fully extensibility of network simulation architecture,
SENSE proposed a component-port model where a component can be re-
placed by new one if they have compatible interfaces and inheritance not
required. Moreover it also allow users to extend the simulation engines as
needed. The reusability comes from the removal of interdependency be-
tween models e.g., the same module can be used at different simulations
and the use of C++ template. In addition, SENSE provides the paralleliza-
tion as an option to the users.

The simplicity of SENSE enables to build all components in the man-
agement systems from scratch. Although this takes much effort, possible
errors in developing algorithms are detected easier since the problems of
external libraries have been excluded.

TOSSIM

One of operating systems for sensor nodes is TinyOS [21]. TinyOS is
based on nesC, a component oriented language. TinyOS provides a set
of important services and abstractions, such as sensing, communication,
storage, and timer and is compatible with many platforms. Moreover, it
also provides some examples to help user better understand and easier
develop sensor network applications. Building an application in TinyOS
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is simply the definition of how to combine components. By using ”split-
phase” approach, the hardware/software boundary in TinyOS is flexible.

TOSSIM [20] is a WSN simulator which is useful for assessing and
evaluating application code in TinyOS operating system and Micaz mote
based environments. It provides varying degrees of scalability, realism,
and detail for understanding the behavior of sensor networks. One advan-
tage of using TOSSIM is the developing system in TOSSIM can be easily
deployed on testbeds which support TinyOS. Therefore, TOSSIM can be
used as a validation step before testing on testbed.

1.4.2 Testbed
Simulation tools can provide a lot of information about the feasibility and
the efficiency of the new management system. However, they can not
cover all problems that can occur when deploying sensor networks for
real business applications. For example, some data packets can be lost
due to the occurrence of obstacles in the deployment area or a broken
forwarding node.

TelosB

TelosB is a mote designed for easy experimentations and low-power op-
erations. It has a TI MSP430 16-bit microcontroller with 10 kB of RAM
and 48 kB of flash program memory. Its radio, a TI CC2420 which fol-
lows the IEEE 802.15.4 standard, can send up to 250 kbps. In terms of
power, the radio dominates the system: on a pair of AA batteries, a Telos
can have the radio on for about four days. Lasting longer than four days
requires keeping the node in a deep sleep state most of the time, waking
only when necessary, and sleeping as soon as possible.

1.5 Research Contributions
This thesis comprises scientific contributions to the WSN management
research area. In summary, following contributions are made:
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• We address management requirements of WSNs through present-
ing some key management scenarios in the Smart Cities context,
such as intelligent transportation systems, smart grids and smart
buildings. The limited resources and heterogeneous characteristics
of WSNs pose new challenges in network management, which in-
clude the fault detection and diagnosis in the presence of various
faults, the fault prediction and prevention to avoid replacing and
repairing a large number of sensor nodes, how to ensure the effi-
ciency of management processes under uncertain topology, and the
resource allocation among heterogeneous sensor nodes for multiple
applications. Then, we present in detail the desired features for a
WSN management system such as lightweight, self-detection, self-
configuration, sharing infrastructure, service monitoring, plug and
play, context awareness and interoperability. We discuss advan-
tages and disadvantages of centralized and distributed management
approaches and the benefit of the multilevel management schema.

• We describe a DIstributed Self-Organizing Network management
framework (DISON) that provides an autonomous management mech-
anism to allow sensor nodes to self configure and adapt to the changes
in application requirements, resources and network state. In DI-
SON, sensor nodes perform management tasks at different level ac-
cording to their resources. Sensor nodes with limited resources can
exploit their local knowledge to reconfigure their operations and
provide management information for other nodes. In case of nodes
that have more resources (e.g., more powerful battery or larger
memory), more complex management tasks can be performed by
them. One example is they can coordinate application tasks among
a set of nearby nodes. Another example is they collect manage-
ment data from a set of nodes to detect if there is any problem and
reconfigure the operation of these nodes if needed. Sink nodes or
base stations which are normally connected to large power suppli-
ers and have strong computing capacity are responsible for global
management tasks such as topology management and disseminat-
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ing new code to support new management tasks. To support this
architecture, we defined a new protocol stack and three data mod-
els. The Context and Policy models help sensor nodes to detect
changes which they have to react, and to determine which action
needs to be executed correspondingly. The Task model is used in
handling multiple concurrent tasks.

• We describe some management mechanisms and protocols to man-
age WSNs based on the proposed platform. The context detection
and policy based reasoning mechanism is used to detect context
and trigger the corresponding policy. We have designed and im-
plemented a role election protocol to assign management roles to
sensor nodes according to their resources. We also describe an all
in one acknowledgment mechanism to improve the accuracy of the
exchange management data process. A resource allocation protocol
is designed to coordinate multiple tasks from multiple authorities to
sensor nodes in an efficient way to optimize the network resource
usage and to prolong the network lifetime. The last mechanism,
a local task scheduler, is responsible for scheduling all application
task executions on sensor nodes in time to accumulate idle time
duration in the processor schedule.

• Finally, we show by means of two case studies how the proposed
management platform can be used in two data collection applica-
tions. The first application is very popular in WSNs, where a single
authority (sink) broadcasts non concurrent requests to the networks.
By contrast, there are multiple requests from multiple authorities in
the second application. It is easy to see that the requirements of the
second application are more complicated than the first one. This
demonstrate the suitability and openness of the DISON platform
to support applications from simplicity to complexity. Both case
studies are evaluated in simulation tools and testbed.

The contributions generated by this thesis have been published in:
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• DISON: A Self-organizing Network Management Framework for
Wireless Sensor Networks, ADHOCNETS 2012, Paris, France.

• Design of a Generic Management System for Wireless Sensor Net-
works, Ad Hoc Networks Journal, Elsevier.

• Managing Heterogeneous WSNs in Smart Cities: Challenges and
Requirements, submitted.

• A Management Schema for Shared Sensor Networks, submitted.

1.6 Thesis Structure
The remainder of this thesis is structured as follows. We begin in Chap-
ter 2 with a discussion of sensor network management systems and ap-
proaches. In Chapter 3, we present the architecture and basic compo-
nents. Some management data models are defined in Chapter 4. Chapter
5 introduces some management protocols and mechanisms that are the
enabling technology for this platform. As proof of concept, we demon-
strate the feasibility of the proposed platform by developing two different
data collection applications, one in a single sensor network and another in
a shared sensor network, in Chapter 6. Chapter 7 summarizes the thesis
and draws the future trends.
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Chapter 2

SENSOR NETWORK
MANAGEMENT

This chapter is comprised of four parts. First, we will briefly outline
the WSN management concepts, then its objectives, and the unique chal-
lenges WSN management brings. Next we will discuss some early works
in management systems for WSNs. Finally, we will examine the key en-
abling technologies for network management in WSNs.

2.1 Objectives
Based on the management requirements described previously, a WSN
management system can be defined as: A management system for WSNs is
an autonomic system that keeps the network and the services that the net-
work provides up and running smoothly with as little human intervention
as possible, and consumes as little resources and energy as possible. It
predicts potential problems, performs operations to avoid or locate them,
and self-configures or suggests solutions to solve them. It also allows ad-
justing network operations and reprogramming nodes remotely. Finally,
it supports allocating resources to the services offered by the network.

The overall of network management for WSNs is to examine the way
in that network resources are being used, and provide the necessary infor-
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mation for adjusting the operation of network so it optimizes the network
usage and prolongs the network lifetime. According to the above defini-
tion, the detail objectives of network management in WSNs are:

• Managing network resources and services: monitor, control, update
and report the status of sensor nodes and offering services.

• Reliable services: provide network with the high quality of service.
Management systems for WSNs should detect, diagnose, fix, pre-
dict and prevent faults and errors.

• Little administrative effort: WSN network management systems
should enable sensor nodes to self manage as much as possible.

• Prolong network lifetime: allocate network resources. Network
management should have the ability to choose a set of sensor nodes
to offer a required service. It should also arrange and coordinate
network resources to serve multiple services from different author-
ities.

• Over-the-air update: WSN network management systems should be
able to reconfigure or reprogram network remotely.

These objectives are accomplished through basic management activ-
ities, each of that must be provided in an effective WSN management
system:

• Monitoring is one of the most important management functions. It
is responsible for collecting the information required by the man-
agement system to monitor the running status of the network, in-
cluding the network topology, the remaining energy of nodes in the
network, and the quality of provided services, among others.

• Resource Allocation is necessary when multiple tasks, from dif-
ferent applications, run simultaneously in the same node and net-
work. The resource allocation protocol is responsible for assigning
network resources to different applications in order to ensure the
quality of provided services while prolonging the network lifetime.
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• Fault Management is responsible for the analysis of the causes
and the search of solutions when a fault occurs.

• Configuration is used to reconfigure node’s operation and update
new code.

2.2 Challenges in Management for WSNs

Due to the scarcity nature of resources and the variety of applications, a
WSN management system needs to cope with many challenges which are
described in detail as follows:

• Fault detection and diagnosis in the presence of various faults.
In WSNs, faults happen more frequently than other communica-
tion networks for many reasons. Firstly, sensor nodes have very
limited resources. They are mainly equipped with a small power
source (e.g., 2 AA batteries), which only allows them to be contin-
uously active for hundreds hours of operation. In addition, batter-
ies may be defective, hence, shortening node’s lifetime. Therefore,
sensor nodes are prone to failure due to the depletion of batteries.
Secondly, WSNs can be deployed in various environments such as
houses, buildings, roads, and rivers. There are a lot of factors which
can make sensor nodes or network links fail temporarily or perma-
nently. For examples, nature disasters or traffic accidents can break
connections or destroy sensor nodes in one area. Thirdly, WSNs
can have a large number of sensor nodes in a small area. In other
words, the congestion may occur frequently since multiple nodes
may want to transmit packets simultaneously, which leads to packet
losses. The characteristics of WSNs make management more chal-
lenging. As has been discussed, there are multiple different factors
that can cause problems and failures in WSNs. Therefore, figuring
out exactly and promptly their causes is extremely challenging for
the WSN management system.
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• Fault prediction and prevention is must-have. WSNs might be
deployed in remote, unattended, or hostile environments, which
makes difficult, expensive or sometimes impossible to replace or
repair broken sensor nodes. In those conditions, potential faults
should be identified or predicted before they occur. How sensor
nodes are able to predict potential faults and find solutions to pre-
vent them is still an open challenge.

• Ensuring the efficiency of management processes under uncer-
tain topology. Depending on the application, the sensor network
topology can be random or pre-determined. For example, in a smart
house or a smart building, the location of the sensor nodes is spec-
ified. However, in forest fire detection systems, sensor nodes are
deployed randomly. Moreover, after the deployment, there may ex-
ist a lot of factors that affect the WSN topology, including node
faults, different wake up cycles or node movement. For example,
node faults might result in broken links and the loss of network
connectivity, or sensor nodes can wake up at different periods due
to mis-configured or faulty network protocols. In some applica-
tions, the sink or sensor nodes are placed on movable objects such
as a patient, a vehicle or an animal, resulting in a changing net-
work topology. When the network topology is uncertain, keeping
up-to-date network information is more costly since the WSN man-
agement system has to monitor frequently the network state. More-
over, management data could be also lost due to a change of the
management data forwarding paths. It would result in the degrada-
tion of the efficiency of the WSN management system.

• Resource allocation among heterogeneous sensor nodes for mul-
tiple applications. Traditional WSNs are designed to support a
single application that belongs to a single user. However, with
the rapid development of MEMS technology, there are more dif-
ferentiated types of sensor devices with different energy capacity
and functionality. This results in the emergence of heterogeneous
WSNs that consist of several different types of sensor nodes and,
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in addition, each sensor node may support multiple applications.
For example, in a smart business building, the owner may deploy a
WSN which supports multiple applications, including temperature
and humidity monitoring, structure health monitoring and security
alarms. Using a single network to interconnect all nodes can reduce
the deployment and maintenance costs since each node can run sev-
eral applications. However, that situation also raises new challenges
for the network management, such as how to allocate the network
resources to different applications, how nodes collect and transmit
measured data of different applications from different nodes to the
sink efficiently, and how to keep the energy consumption as low
as possible. In addition, recent advances in technologies enable
sensor nodes to collect and use energy from the environment [22],
for example, light, differences in temperature, or linear motion in-
stead of batteries. However, the availability of the harvested energy
varies with time in a non deterministic manner. For example, the
energy extracted from a solar panel depends on the maximum solar
radiation and varies during a day. In addition, different nodes will
have different harvesting opportunities. For example, sensor nodes
placed at abundant sunlight areas can gather more energy than ones
in shaded areas. Therefore, it is difficult to allocate tasks to the
harvesting nodes since they do not have a stable energy source.

2.3 Early Works towards Management Systems
for WSNs

In traditional networks, Simple Network Management Protocol (SNMP)
[23] is a standard protocol for managing networks. In SNMP, a manager
station collects information from network agents in network elements.
The structure of the management data in SNMP are described in Manage-
ment Information Base (MIB). There are several reasons that make SNMP
popular. First, it can manage a large range of devices. Second, it is a very
flexible and extensible management protocol. Third, it is also proved to
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be good under poor network conditions. However, it requires transferring
large amounts of management data between the manager and agents. This
can potentially result in high energy and bandwidth consumption.

Ad Hoc Network Management Protocol ANMP [24] is an extended
SNMP for wireless ad hoc networks, however, it can be used with certain
types of WSNs. ANMP uses a hierarchical clustering mechanism for data
collection to reduce the number of messages exchanged between the man-
ager and agents (mobile nodes). In ANMP, the cluster head is responsible
for collecting data from agents and forward them to the network man-
ager. The nodes serving as cluster head change over time to adapt to node
movements.

One of the earliest management systems for WSNs is MANNA [25].
It provides a general framework for policy-based management of WSNs.
In MANNA, management services are executed by a set of functions.
These functions are designed with a specific implementation for individ-
ual objectives in consideration of the unique features of WSNs. In order
to provide the desired management services, MANNA defines policies
that include conditions obtained from WSN models that should be satis-
fied, for which specific functions are executed. The relationship among
WSN models are defined in MIB which are updated frequently to adapt
to network changes promptly. It is critical to determine the right time to
query for management information and the right frequency for obtaining
management information to ensure the accuracy of collected information
while keeping low energy consumption.

In [26], Younis et al. divided the network into multiple clusters in
which each cluster has a gateway node that organizes and manages net-
work operations based on application requirements and the available en-
ergy in sensor nodes. However, their approach mainly focus on finding
data relay route and arbitrating medium access.

Song et al. [27] presents another management system for WSNs based
on Universal Plug and Play (UPnP) [28], the standard service discovery
protocol for network management. It consists of three main components:
control point, BOSS, and non-UPnP sensor nodes. The control point is
a powerful device to support UPnP protocol. BOSS (Bridge Of the Sen-
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sorS) is an UPnP agent, which is implemented in the base station and
lies between the UPnP controllers and the non-UPnP sensor nodes to be
managed. It contains the services of each sensor to provide them with
a control point. It interprets and transfers messages between the sensor
network and the control point.

Toller and Culer [29] proposed SNMS, a management system for
WSNs which provides two mechanisms: query-based health data collec-
tion and persistent event logging. The query based health data collection
mechanism allows users to collect the network data indicated in physical
parameters to monitor the network health. The event logging mechanism
allows nodes to store log events and send them to the users when they are
requested. An improvement of SNMS based on Remote Procedure Call
(RPC) mechanism is proposed in [30].

WinMS (Wireless Sensor Network Management System) [31] is an
adaptive policy-based management system for WSNs. In WinMS, net-
work states are monitored continuously to collect management data. When
management parameters exceeds predefined thresholds, WinMS executes
management tasks to reconfigure the network. In WinMS, individual sen-
sor nodes can perform management functions locally based on the net-
work state of their neighbors. The base station works as a central man-
ager which stores and analyzes the global state of the network to detect
interesting events and execute management maintenance.

2.4 Key Technologies

We have identified a set of enabling technologies that are used for WSN
network management. We will first examine policy based management
approaches. Then agent based approaches are discussed. Finally, we will
present some middleware approaches.
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2.4.1 Policy based management approaches

Policy-based management has emerged as a promising solution for the
management of large-scale and heterogeneous networks. In policy based
network management approaches, policies are defined as rules that gov-
ern the states and behaviors of the network system. Such policies are
device independent and human friendly. Policies would be automatically
updated to adapt to the changes of network state. Such automation is
an essential requirement for large networks with frequent changes such
as WSNs. However, one disadvantage of policy based management ap-
proaches is its functional rigidity, that is, we can not add new management
services to the system, unlike agent based management approaches.

Some early policy based management systems for WSNs are MANNA
[25] and WinMS [31]. In MANNA and WinMS, policies specify manage-
ment functions that should be executed if certain network conditions are
met. Both of them use the central server to analyze network states and
executes corrective and preventive management actions according to pre-
defined policies.

Other policy based management approaches for WSNs are introduced
in [32], [33]. In [32], Cha et al. proposed a hierarchical framework in
which the base station is responsible for interpreting high level manage-
ment policies and distributing them to sensor nodes. These policies are
then applied locally on each sensor node if its state matches. High level
policies are defined in XML schema. They are distributed and interpreted
to low level policy at sensor nodes. Le et al. [33] propose SRM, a hierar-
chical management architecture and policy-based network management
paradigm for WSNs. There are three levels of policies in SRM: node
level, cluster level, and base station level. At the node level, management
policies consist of rules that require less resources and can be perform
locally. The cluster level contains management polices that control the
reliability of the cluster. The highest level, the base station level, include
polices that control the entire network.

Zhu et al. [34] proposed Finger, an efficient policy based management
system. Finger supports interpretation and enforcement of both obliga-
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tion and authorization policies on all sensor nodes. Obligation policies
are event-condition-action rules that perform an action in response to an
event. Authorization policies define what resources or services a subject
can access on a target sensor. Each sensor node has a Policy Decision
Point (PDP) and a Policy Enforcement Point (PEP). The PDP is responsi-
ble for interpreting policies and making decisions. The PEP enforces the
policy that is the result of PDP decision.

Policy based management systems can be also found in [35][36] [37]
[38]. Matthys and Joosen [37] propose a policy driven middleware ar-
chitecture to manage distributed sensor applications in a network infras-
tructure that consists of several sensor networks to offer services for dif-
ferent types of users. The proposed architecture supports two types of
policies: functional policies, which are high level management goals and
non functional policies, which are concrete goals that can be executed.
Bourdenas and Sloman [38] describe the Starfish framework for specify-
ing and dynamically managing policies in sensor nodes. It uses Finger2
which evolved from the original Finger system [34] to interpreter and en-
force policies.

Policies based management approaches are also used to manage some
particular areas in WSNs. For example, policy based energy management
systems are presented in [39] [40]. Bourdenas et al. [41] present a frame-
work for autonomic task allocation in sensor networks based on Starfish
[38]. Waterman et al. [42] have described the Peloton OS architecture
that allows to distribute resource allocations to meet some desired poli-
cies. Misra and Jain [43] design a policy to activate the optimum number
of sensor nodes such that the application fidelity is not affected based on
the concepts of Markov Decision Processes (MDP).

2.4.2 Agent based management approaches

In agent based management approaches, a mobile agent is defined as is
a section of code that can distribute management tasks to be executed
on nodes locally and returns the resulting data to the central manager
[25]. The local processing can help to reduce the network bandwidth to
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the central manager server. However, some special nodes are required
to act as agents and perform management tasks. These nodes should be
placed intelligently to cover all the nodes in the network. In addition, the
manager has to wait for the agent to visit the node in order to retrieve its
status. This can cause delay. Some common examples of agent based
management systems for WSNs are presented in [25] [44] [45] [46] [47].

Erdogan et al. [44] propose sectoral sweepers (SS) for managing
a wireless sensor network. Each region of the network has a sectoral
sweeper. The sectoral sweeper allows the central server to enable or dis-
able tasks on nodes within a certain network region.

Agilla [45] is a mobile agent middleware designed to support self-
adaptive applications in WSNs. It enables applications to be locally and
autonomously self-adaptive by integrating the mobile agent and the tuple
space programming models. Each sensor node maintains a tuple space
that contains a set of predefined descriptors about that node. These tuple
spaces can be accessed remotely. Each sensor node can be monitored by
multiple agents. An agent can be cloned or moved across nodes. Agilla
was designed for TinyOS operating system [21].

There are several agent systems based on Java which are introduced
in [46] [48] [47]. MASPOT [46] is a brand new mobile agent system
natively designed for the Sun SPOTs (Sun Small Programmable Object
Technology) sensor devices [49]. Muldoon et al. [48] adopt Agent Fac-
tory Micro Edition (AFME), an intelligent agent framework for ubiqui-
tous devices to sensor nodes. In [47] Haghighi and Cliff propose a novel
middleware solution, which runs on Java (SE and ME) programming plat-
forms for easy task distribution and data gathering integrated in a modu-
lated architecture that supports the serving of multiple concurrent applica-
tions, dynamic reprogramming, good scalability, and multiple operational
paradigms.

2.4.3 Middleware approaches

Middleware approaches add an additional logic layers within the firmware
of motes in order to implement management services. These approaches
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provide a runtime environment that can support and coordinate multiple
applications. They also provide mechanisms that optimize the system
resources usage. In [50], Heinzelman et al. describe MILAN, a middle-
ware that allows applications to specify their quality needs and adjusts the
network operations to prolong network lifetime while still meeting these
required quality needs.

TinyDB [51] provides users a tool to query the network using SQL
languages. It collects and transmits sensing data from motes in the envi-
ronment to the sink. Impala [52] is a middleware architecture that enables
application modularity, adaptivity, and repair-ability in wireless sensor
networks. It allows software updates to be received via the node’s wire-
less transceiver and to be applied to the running system dynamically.

Mires [53] is a publish/subscribe middleware where the publish/sub-
scribe service acts as a bridge between the local application and the com-
munication components in a sensor node. Each node advertises topics
that can provide. The user application receives these topics and selects
the desired topics to be monitored. After this, nodes are able to publish
the collected data of interest. Another public/subscribe middleware is
presented in [54]. The middleware proposed in [54] provides application
specific communication channels and an approach to transform incoming
sensor data to the desired data representation.

As mentioned previously, Agilla [45] is a mobile agent middleware
that facilitates the user application deployment process. The RUNES
middleware [55] is a component-based programming model where units
of functionality and deployment are encapsulated in components. These
components interact with each other through interfaces. RUNES supports
dynamic reconfiguration that allows to upload and offload components
and code dynamically.

Shah and Kumar [56] have proposed DReL, a middleware framework
that provides mechanisms and data structures to allow support of appli-
cations with different QoS requirements and optimization goal based on
reinforcement learning and utility theory. In DRel, sensor nodes can de-
cide whether to host an application task based on their capabilities and
the utility of performing that task before. Ganz et al. [57] describe a mid-
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dleware architecture that uses context information of sensors to supply a
plug-and-play gateway and resource management framework for hetero-
geneous sensor networks.

There are several middleware systems that are proposed to support
IoT applications recently. For example, SNPS [58] is an OSGi [59] based
middleware that enable sensor nodes to be used and composed over the
Internet in a simple and standardized way. Another example is MobIoT
[60]. MobIoT is a service-oriented middleware that enables large-scale
mobile participatory sensing. A new device can only register its service if
it can provide new information that is not covered by the set of registered
devices.
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Chapter 3

A DISTRIBUTED SELF
ORGANIZING NETWORK
MANAGEMENT PLATFORM

This chapter presents DISON (DIstributed Self Organizing Network), a
generic management platform for Wireless Sensor Networks (WSNs).
The first objective of the DISON framework is to allow sensor nodes
to adapt autonomously to changes in application requirements and net-
work resources. The second objective is to provide a framework that en-
ables both the developer and the administrator of WSNs to choose what
management functions to perform, what conditions should trigger sensor
nodes’ adaption, and how to adapt in both the development and run-time
stages.

This chapter is further structured as follows: section 3.1 presents the
design goals of DISON, section 3.2 describes the multilevel management
architecture of DISON, and section 3.3 presents the new protocol stack of
sensor nodes designed for supporting DISON.
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3.1 Design Goals

DISON is designed to enable the self management in sensor networks.
We now list design goals for DISON.

Lightweight

Since sensor nodes have limited resources, a management system for
WSNs should be as lightweight as possible. The management functions
and the management process should only occupy a small memory size.
There should be a trade-off between the network traffic generated by a
management process and the benefit derived from it.

Self-detection

There are a variety of faults in WSNs. Simple faults which are caused by
hardware error or battery depletion should be detected locally by every
sensor node. A couple of simple faults from different nodes can lead to a
complex fault (e.g., network congestion or network partition). Complex
faults can have a high probability to cause a degradation on the network
performance. Therefore, sensor nodes should be able to collaborate to
detect complex faults from simple faults.

Self-configuration

Operation of sensor nodes should be optimized and able to adapt au-
tonomously to the changes in resources and application requirements to
prolong the network lifetime and prevent possible faults. For example,
sensor nodes in the same sensing area can collect and transmit sensed
data alternately. When a sensor node detects a fault, it should notify other
nodes. Depending on the importance of the fault, sensor nodes should be
able to adjust their operations to reduce negative effects caused by that
fault. For example, if the sensing component of a sensor node is broken,
it can have a more important role in the forwarding path since it does not
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need to collect data from the environment. Therefore, other nodes can
change their routing table to use that node as the forwarding node.

Sharing infrastructure

The deployment and maintenance of large WSNs with thousands of nodes
require a high cost and huge effort. In case many WSNs are deployed in
the same area, it would be efficient if they share their resources to support
multiple applications from the different authorities. This is clearly seen
in the two following examples:

• Single application. In a smart building, both the lighting system
and the security system use occupancy sensors in rooms and cor-
ridors. In the lighting system, occupancy sensors are used to turn
on/off the light depending on the presence of persons in the room.
In the security system, they are used to start monitoring. Much of
the same area is covered by both systems.

• Single authority. In a smart city, there are several organizations
(e.g., police, highway agency, and local city authorities) that need
to deploy their own camera networks on roads. However, these
networks can cover the same areas and therefore, they may generate
redundant information.

Therefore, it would be beneficial to have a single infrastructure sup-
porting multiple applications. The shared infrastructure can include many
different types of sensor nodes, in which some nodes support multiple ap-
plications. The management system of such an infrastructure should be
able to allocate resources among applications to optimize the network per-
formance. As the infrastructure can be shared by multiple authorities, it
needs an access classification mechanism that assigns different privileges
to different authorities to ensure the privacy.
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Service Monitoring

The QoS of running services in WSNs should be monitored and evaluated
periodically to detect whether it meets the predefined requirements. A
management system for WSNs should also provide detailed information
about the availability of the running services.

Context aware

As mentioned above, a WSN should support multiple applications. Since
each application has different requirements in terms of network resources,
and both the application requirements and the network resources change
over time, the network behavior should adapt to optimize its performance.
During the network lifetime, there might be some situations that can be
predicted before they happen. For example, there are more customers
at commercial centers during weekends than weekdays. Then, to offer
customers a comfortable shopping environment, the commercial centers’
smart systems (e.g., lighting and air conditioning) may increase the op-
erating power and the operating frequency autonomously every weekend.
In such cases, a management system for WSNs should be able to use in-
formation of the handled changes to process the current ones if they are
similar. For example, the adjustment of the operating power and the op-
erating frequency of the smart systems last weekend can be applied to the
current weekend if the number of guests and the outside air temperature
are similar.

Plug and Play

Due to the heterogeneity of WSNs, management functions should be as
independent as possible from hardware, network protocols and user ap-
plications. The same management function should be able to work with
different applications, different operating systems, different hardware and
different network protocols. This would help to reduce the developing
cost. In order to achieve this feature, management functions should be
parameterizable and configurable. This allows to interface easily with
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other network protocols, hardware functions and different applications.
In order to optimize the memory usage, management functions should be
only added to a node when they are needed, and therefore, they should be
able to be added or removed easily.

Interoperability

In order to enable the collaboration among different WSNs, a manage-
ment system for WSNs should support interoperability. It means the WSN
management system is able to communicate and exchange data with ones
of other WSNs. Data standards and public interfaces should be defined
and unified among the authorities of WSNs to facilitate the collaboration.

3.2 Network Architecture
One of most important aspects of the design of a network management
system is its architecture. In this section, we describe the network archi-
tecture of the DISON platform.

3.2.1 Background

There are many kinds of network management architectures for WSNs.
We can divide them into three groups: centralized architectures, dis-
tributed architectures and hybrid architectures.

Centralized approach

A centralized management server that processes the management data
and take management decisions may be the best option for small net-
works. This central management server collects information from all sen-
sor nodes and controls the entire WSN operation [61][62]. Due to its
abundant resources and the global knowledge of the WSN, it can perform
complex management tasks and provide accurate management decisions.
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Complex management tasks are actions that require a high amount of re-
sources and global knowledge of the network. For instance, controlling
the network topology is a complex task. However, for large WSNs, it is
difficult and costly to keep the management data from all the nodes in
the network up to date. Firstly, sensor nodes cannot send management
data frequently to the central server due to the high communication over-
heads of the multi-hop forwarding. Secondly, transmitting management
data frequently to the central server increases the traffic load of the nodes
close to the sink, which can cause network congestion and lead to high
packet losses.

Distributed approach

Distributed management approaches are more suitable than centralized
ones in large scale networks. Management decisions are taken by multi-
ple manager stations [25][32]. Each manager station controls part of the
network (i.e., a group of nodes), and can cooperate with other manager
stations if needed. However, the main disadvantage of the distributed ap-
proach is that manager stations do not have a global view of the network,
as they only know the state of their respective subnetwork. Therefore,
although their management decisions can be effective for their local sub-
network, they can affect negatively the operation of the overall network.
For example, some nodes are turned off by a manager station in its sub-
network to optimize the resource usage. If those nodes happen to be the
only connections to the rest of the network, the whole network will be
severely affected. The cooperation among manager stations can improve
somewhat this issue, but it may imply high overheads. For example, two
manager stations can cooperate to decide which nodes are going to sleep
without affecting the network connectivity. However, if the WSN has a
lot of subnetworks, the number of management packets exchanged among
manager stations will be high. Besides that, not all manager stations have
rich power sources or strong processing capabilities, which means that
the number of management functions or the complexity of management
functions at those stations is limited.

36



“trang˙thesis” — 2014/7/8 — 16:45 — page 37 — #59

Hybrid solution

Both centralized and distributed approaches have advantages and disad-
vantages. To take advantages of both approaches, a hybrid management
architecture could be designed for WSNs. In a simple term, a hybrid man-
agement architecture consists of both centralized management server and
manager stations to perform management functions based on the com-
plexity and the cost required by these functions. These are the following
advantages of a hybrid management architecture:

• Reliable. It can detect, handle, and isolate faults locally without
affecting the functioning of the rest of the network. In can also
provide accurate management decisions due to the existence of the
centralized management server.

• Scalable. It is easy to increase the size of the network by adding
new sensor nodes, without affecting the current network operation.

• Flexible. According to the changes in application requirements,
the network topology, and the network resources, sensor nodes can
have different management roles. For example, when the remaining
battery of a manager station is low, one of its neighbors can become
a new manager station to ensure the execution of management tasks
in that area.

• Effective. Manager stations can be selected based on their re-
sources or their roles in network (e.g., cluster head or parent node
in routing tree). Therefore, the delay of handling management de-
cisions and management overhead can be minimized.

Although the hybrid solution have many advantages, the design of a
hybrid management architecture is complex. It requires to have an effi-
cient algorithm to choose the manager stations. However, there are a lot
of clustering algorithms developed for WSNs [63] which can be used to
select manager stations, developed for WSNs. Another disadvantage of
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the hybrid solution is the management overhead. Exchanging manage-
ment data can cause high traffic and energy consumption. Due to the lack
of resources in WSNs, a hybrid management architecture should be de-
signed to ensure the trade-off between the management overhead and the
efficiency of the management system. The number of exchanging man-
agement data should be minimized while it still ensures the accuracy of
management decisions.

3.2.2 Multilevel management schema

Since we wish to be able to support a variety of networks, a multilevel
management schema is designed for DISON as depicted in Figure 3.1.
There are three levels of management in DISON. The lowest level is the
self management that is a must for every sensor nodes. Self management
is the ability of the node to deal with all that can happen with itself during
the lifetime including the degradation of the battery, broken hardware, the
lack of resources, and lost connections with its neighbors. Self manage-
ment ability aims to place the sensor node in control of its life and enable
it to be self adaptive.

The second management level is the group management. The net-
work is divided into groups of nodes. Each group has one manager while
others are the members. The manager node is responsible for helping its
member nodes to handle management situations that they can not do by
themselves. It has to ensure that the resources of its members are utilized
efficiently. Constant monitoring by the manager helps to ensure that all
members are working and any fault is detected promptly. Due to the re-
source scarcity of sensor nodes, the frequency of the constant monitoring
could not be too small. It is because the small frequency results in the
high traffic of management packets, hence, consuming more energy. Be-
sides, there might be some cases that require a manager node to have the
up to date information of its members. Therefore, a manager node should
be able to request its members to provide information when it needs in-
cluding the battery level, the sensing capabilities, the number of neighbor
nodes, and the number of running application tasks.
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Figure 3.1: Multilevel management schema

There are several approaches to divide the network into groups and
select manager nodes. One approach is using central servers (base sta-
tions) to choose which node is the manager node of a certain group of
nodes based on the network topology. This approach is efficient for net-
works which have a fixed topology and a small number of nodes. Another
approach is the use of clustering algorithms [64][65]. The chosen clus-
ter heads, which are elected by using a clustering algorithm, are suitable
to role as manager nodes. Since the clustering algorithms do not make
any assumptions about the presence of infrastructure, they are useful for
networks that do not have a fixed and stable topology, a common case in
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wireless sensor networks.
The number of member nodes in each group is variable. It depends on

several factors. One factor is the capability of the manager node. Because
the manager node needs to store the information of its members, the larger
number of member nodes is the larger memory space in the manager node
is occupied. It also takes more time and more computing operation to ac-
cess and process the information from the large number of member nodes.
The other factor is the approach that divides the network into groups and
chooses manager nodes for each group. In the central server approach,
the network administrator can decide the number of nodes in each group.
However, in clustering approaches this number is normally random and
different to ones of other groups. Network density and network connec-
tivity also affect the number of member nodes. Network areas that have
different network density and network connectivity can be divided into
groups with different sizes.

The last and the highest management level is the network manage-
ment. Due to the limited resources, sensor nodes can not perform man-
agement tasks that require a powerful processor, a large memory space
and a big energy source such as collecting network topology, maintaining
state of all nodes, and monitoring the quality of all provided services in
network. Therefore, the network management is assigned to sink nodes
or base stations.

In order to support the multilevel management schema, DISON de-
fines three management roles corresponding to three levels of manage-
ment. The first management role is SELF MANAGER ROLE, corre-
sponding to the self management level. It contains management func-
tions that executed on every sensor nodes such as configuring node’s
operation (e.g., adjust the transmitting power and turn on/off the radio
antenna or sensors), asking support from its manager node to validate
an application task, and scheduling multiple concurrent tasks. The sec-
ond role, GROUP MANAGER ROLE is assigned to manager nodes. It
includes management functions that monitor and coordinate network re-
sources and network operations of its members. For example, choos-
ing only few active nodes to perform a required service may reduce the
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Figure 3.2: The DISON protocol stack

power consumption and prolong the network lifetime. The last role, NET-
WORK MANAGER ROLE, provides global management functions such
as storing the network topology, monitoring the network state, merging or
simplifying the application requirements from users before passing them
to the network.

3.3 Node Architecture

In order to allow DISON to work independently to other network proto-
cols and user applications, we propose a new protocol stack for sensor
nodes. It includes 4 components: Hardware APIs, Communication Pro-
tocols, Application and DISON Management.

41



“trang˙thesis” — 2014/7/8 — 16:45 — page 42 — #64

3.3.1 Protocol stack overview
The protocol stack designed for DISON framework is shown in Figure
3.2. The components of this protocol stack can be summarized as follows:

• Hardware APIs provides access interfaces to the controller, com-
munication devices, storage resources, sensors and the power sup-
ply of the sensor node. Examples of these interfaces are switch
on/off the node, read/write the memory, switch on/off the radio. It
also perform management functions that process raw data received
from the hardware (e.g., converting voltage reading to the remain-
ing battery level, trigger alarms when the battery is low, or dropping
invalid sensor reading data) and establish the acknowledge mecha-
nism for data transport.

• Communication Protocols carries all network protocols that use to
transmit data packets from the source to the destination. Examples
are MAC, routing, location and time synchronization protocols.

• Application is responsible for collecting and aggregating sensing
data. It handles user requests including application tasks and man-
agement tasks. It schedules and coordinate tasks at runtime on sen-
sor nodes. It is also responsible for allocating network resources
among members in groups of sensor nodes.

• DISON Management is the core components of the DISON frame-
work. It provides management functions to access and modify man-
agement data including node’s state, neighbors’ information, link
connectivity, running task’s information, and members’ informa-
tion (in case of manager nodes). It is also responsible for grouping
nodes and selecting manager nodes. It provides management mech-
anisms to monitor, detects problems, find out the reasons, trigger
alarms, and suggests the solutions.

These components interact with each other through public interfaces.
This enables the independence among components. The change of one
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component does not affect other ones. For example, the resource allo-
cation protocol in the Application component can optimize its operation
depending on the application requirements to increase its efficiency. How-
ever, there are no changes needed in other components that use resource
allocation functions.

To ensure the independence of DISON with respect the application
and network protocols, management functions in the DISON components
in each sensor node interact with the same ones in another node. For
example, messages sent by the resource allocation protocol in the Appli-
cation component can only be processed by the corresponding one at the
receiver node.

3.3.2 Structure of components

We describe here in detail the structure of the Hardware APIs, Applica-
tion and DISON Management components in the DISON protocol stack.
In this thesis, the Communication component is out of scope. We use
existing communication protocols to transmit data in the network.

DISON Management Component

As mentioned above, the DISON Management Component is responsi-
ble for providing the basic functions of the DISON platform. Figure 3.3
depicts the structure of the DISON Management Component. It includes
five main parts.

• Management Data stores all information that uses in management
processes. There are four main types of management data: Con-
text, Policy, and Task. The Context data is used to indicate which
information can affect node’s operations. The Policy data is used
to determine which action needs to be executed when a predefined
context occurs. The Task data stores information of tasks provided
by the sensor node itself or its members if it is manager node.
The Node data stores information of nodes including node’s state,
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Figure 3.3: DISON Management Component Structure

neighbors’ information, link connectivity, and members’ informa-
tion (in case of manager nodes).

• Access Functions provides management functions that add, up-
date, access and remove management data. Most of these functions
support public interfaces to enable other components to access man-
agement data.

• Monitoring is responsible for collecting the information required
by the management system to monitor the running status of the
network, including the network topology, the remaining energy of
nodes in the network, and the quality of provided services, among
others. Depending on the management role, the Monitoring func-
tions can be different. For example, normal sensor nodes only mon-
itor their state while manager nodes monitor both their state and the
state of nodes in their group.

• Context detection and policy based reasoning mechanism is used
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to find out when a node needs to change its configuration. It works
with Context and Policy data.

• Role Election protocol divides network into groups of nodes and
selects which nodes are manager nodes. It also allows member
nodes to leave the group when they want.

Hardware APIs Component

Figure 3.4 depicts the structure of the Hardware APIs component. It con-
tains four parts.
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• Hardware Reading Functions interacts with Hardware Interrupts
to read and standardize node’s state. For example, it reads the volt-
age of the battery (12 bits number) and converts it to a percentage
battery level (8 bits number). It helps to reduce the memory stor-
age. It also provides functions to reconfigure node operations. For
example, it can change the duty cycle or turn on/off the radio con-
trol.

• FIFO Packet Queue is used to store packets before passing through
Communication Protocols. Since there are multiple sources of pack-
ets in DISON platform (e.g., election protocol and resource alloca-
tion protocol), it is essential to have a packet queue to avoid packet
losses when the radio is busy. DISON uses the First In First Out
structure (FIFO) to make the operations with the queue simple.

• Encapsulation is used to add the management packet header before
pushing to the FIFO Packet Queue. If the FIFO Packet Queue is
full, it signals a fail notice.

• Sending Function is responsible for sending all the packets in the
FIFO Packet Queue. In case a sender requires to have the confir-
mation from the receiver for the sending packet, Sending Function
passes the packet through Acknowledgment mechanism. Other-
wise, the packet is passed directly to the Communication Protocols.

• Receiving Function is executed when a packet is received from the
Communication Protocols. If the packet is not an ACK, it is passed
up to DISON Management or Application Components. Otherwise,
the Acknowledgment mechanism is triggered to process the packet.

• Acknowledgment mechanism enables a sender to know that its
packet is received successfully by all the expected receivers. In
DISON, we support 1 hop ACK for all kind of communications
including broadcast, multicast, and unicast.
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Application Component

The last component we present in this section is the Application Compo-
nent. The structure of the Application Component is illustrated in Figure
3.4. There are four independent parts.

• Sensing Data Collection is used to collect data from multiple sen-
sors. It drops sensing data that does not meet the application re-
quirements.

• Resource Allocation is responsible for deciding whether or not the
application service or task is host by the sensor network or sensor
nodes. It checks if the requested task is new and it has enough re-
sources to provide the requested task. In case a sensor node belongs
to a group, it can ask the support from its manager to make deci-
sion whether or not to offer the requested task. In case of manager
nodes, they can support or request its members to provide a task.

• Task Scheduler provides the ability to schedule the launch of mul-
tiple tasks so that the node’s resources are used efficiently.

• Data Aggregation combines data from multiple tasks to reduce the
number of small sent packets.

3.4 Discussion
Many network management architectures for WSNs have been presented
to solve management problems mentioned in the Chapter 1. Ruiz et al.
[25] describe MANNA, a generic architecture for managing WSNs. In
MANNA, management services are distributed to some manager nodes
and agents, for which it defines a specific mechanism to distribute effi-
ciently these management agents. The delay when performing a man-
agement task is also an issue in large scale networks since manager nodes
need to wait agents visit the nodes. In our framework, the simple manage-
ment tasks are embedded in all sensor nodes while complex management
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tasks are assigned to manager nodes which are easily setup by clustering
approaches. Thus, management tasks in a network area can be performed
easily and quickly. This feature allows our framework to adapt to large
scale networks.

Some policy based management approaches are introduced in [32],
[33]. In [32], Cha et al. proposed a hierarchical framework in which the
base station is responsible for interpreting high level management policies
and distributing them to sensor nodes. These policies are then applied lo-
cally on each sensor node if its state matches. Therefore, their approach
requires the base station to maintain an up-to-date global view of the net-
work which is not always feasible, especially in large scale networks. In
our framework, management tasks are distributed locally in each node and
each region (or each group of nodes). Since management data is mainly
exchanged among nodes and their closer manager nodes, our proposal
reduces the management overhead. Le et al. [33] proposed three level
management policies to distribute management tasks to the base station,
cluster heads and sensor nodes. However, their work only provides and
evaluates the management system for data reliability management at the
node level. In our approach, we discussed in detail the role of manager
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nodes in allocating network resources in sets of nodes.
In [26], the authors divided the network into multiple clusters in which

each cluster has a gateway node that organizes and manages network op-
erations based on application requirements and the available energy in
sensor nodes. However, their approach mainly focus on finding data relay
route and arbitrating medium access. A hybrid management solution is
presented in [31]. WinMS [31] allows individual sensor nodes to perform
management functions locally based on the network state of their neigh-
bors. In addition, the base station works as a central manager to store,
analyze the global state of the network and execute management main-
tenance operations if it detects any event. Thus, WinMS has the same
drawback as [32] when the number of nodes increases.

Reinforcement learning techniques are also used to support autonomous
and adaptive management in WSNs such as in [56]. Shah and Kumar [56]
have proposed a middle-ware framework in which sensor nodes can de-
cide whether to host an application task based on their capabilities and
the utility of performing that task before. The ongoing project TinyCubus
[66] proposes a cross layer framework that allows systems to adapt to the
evolution of the network and application requirements. They also devel-
oped algorithms to assign the network role (e.g., SOURCE, AGGREGA-
TOR, CLUSTERHEAD etc.) and distribute code updates to nodes ac-
cording to their roles. Other policy-based management systems are also
presented in [35][36]. However, none of them provide a detailed model
to represent data, analyze it and support at the same time both application
requirements and management tasks.

There is some research that focus on supporting multiple applications
in WSNs in recent days. SenShare [12] proposes a hardware abstraction
layer on each sensor node to allow multiple concurrent applications to
use the node’s hardware resources. In [11], Majeed and Zia provided a
switching mechanism to activate or inactivate a set of nodes depending on
which application has to be executed.

Agilla [45] is a mobile agent middleware designed to support self-
adaptive applications in WSNs. It enables applications to be locally and
autonomously self-adaptive by integrating the mobile agent and the tuple
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space programming models. A programming framework for WSNs has
been proposed in [67] to provide abstractions for object-centric, ambient-
aware, service oriented sensor network applications. More comprehen-
sive reviews and the comparisons of wireless sensor network program-
ming models can be found in [68].

The design idea of DISON framework is similar to Di-Sec and M-
Core, two security frameworks proposed in [69] and [70]. All of them
are aiming at providing a generic, easily extended, modular and flexible
framework for WSNs. However, Di-Sec and M-Core focus on solving
security problems while DISON works on management issues. Another
work which has some similar features with DISON has been proposed
in [71]. In [71], Prinsloo et al. designed a service oriented architecture
to allow WSNs applications to be developed faster and easier by reusing
generic components.

In [72] and [73], Octopus and NetViewer, two monitoring, visual-
ization and configuring tools for WSNs have been designed. Octopus
[72] enables the user to view the network topology and reconfigure net-
work parameters (e.g., change wake up duty cycle or application request).
Many of the graphical interface design choices in DISON stem from Oc-
topus. NetViewer allows to view the information of packets from different
applications based on their XML packet formats.

Different to other works in management systems for WSNs, DISON
aims at providing a generic and self-adaptive management framework.
Management functions not only allow WSNs to adapt to the changes on
both the network resources and application requirements, but also they are
self-adaptive. In DISON, management functions can be added, removed
or optimized according to the user requirements. Moreover, DISON also
allows to allocate network resources locally, to a group of sensor nodes.
This helps to optimize the resource usage while keeping the management
overhead low, especially in large scale and high density networks.
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Chapter 4

MANAGEMENT DATA
MODELS

The DISON framework supports three data models: Context, Policy and
Task. We define context as the knowledge indicating which information
can affect node’s operations. The policy is used to determine which ac-
tion needs to be executed when a predefined context occurs. Context and
Policy models can be represented in XML language [74] at the network
manager. However, it could not be applied in normal sensor nodes be-
cause they have very limited resources. The last model, Task Model, is
used to represent application tasks that are received or provided by sen-
sor nodes. In this chapter, we discuss how to represent three models in a
sensor node.

4.1 Context Model
The concept of context and context aware systems was early introduced
in [75]. There is a lot of research that developed context awareness pro-
tocols and frameworks for WSNs such as in [57] [76]. However, there is
still no comprehensive studies on the generic and formal representation
of contexts for WSNs, in particular, for sensor nodes.

As defined above, a context indicates which information can result
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in a reconfiguration action. For instance, a reconfiguration action can be
changing the transmit radio power or denying an application task, etc...
One example of a context is “The remaining battery of the node is low”.

There are a lot of factors that affect the node’s operation. However,
we can divide them into three following groups:

• Node Resource. This group includes information about node’s lo-
cal resource such as the sensing capabilities, the residual energy,
the memory usage.

• Application Requirements. This group includes information about
user’s requirements such as desired query, expected event.

• Network State. This group includes information such as neighbor
information, loss link rate.

Each context in DISON framework includes 5 elements:

• CONTEXT ID. CONTEXT ID is the unique identifier of a context
in the network. The intent of CONTEXT ID is to allow the network
administrator to add or update context easily. Because the sensor
nodes and sink nodes have different capabilities, we propose to use
1 byte for CONTEXT ID in sensor nodes, and 2 bytes for CON-
TEXT ID at sink nodes. To ensure the CONTEXT ID is unique,
identifiers from 0 to 127 at the sink nodes are reserved for contexts
which are used in sensor nodes.

• INF TYPE describes the source of the information. In our frame-
work, we use 2 bits to represent three above groups of information
sources.

• INF ID represents the identifier of each specific information such as
sensing capability, RF power, current voltage, query request. The
size of INF ID depends on the INF TYPE. For example, we pro-
pose to use 3 bits to represent INF ID for the Node Resource group
because there is few information in the node can be collected to use
in the management process.
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• OPERATOR indicates which logic operator (=, >, <, etc.) is used.
Since the computing capability of sensor nodes is limited, 4 bits is
enough to represent this field.

• VALUE represents the threshold to fire a management decision. If
the measures metric is higher than this threshold, a management
decision is requested. We propose to use 4 bytes for this field. The
unit of the VALUE field depends on the INF ID. In order to mini-
mize the memory storage, the threshold should be standardized to
a small number. For example, the voltage reading value of TelosB
and MicaZ is a 12 bits number. If we know the type of equipped
batteries (e.g., AA 2300mAh or AA 2800mAh), we can know the
maximum voltage which can be measured in each node. We can
assume that the maximum voltage is corresponding to the case in
which the battery is fully charged. From that, we can divide the
current voltage reading value by the maximum voltage to know the
percentage of the remaining battery.

Some examples of context are shown in Table 4.1. The first three
contexts are related to the remaining battery. The unit of the VALUE field
for the remaining battery is percentage. For example, the first context
means that “The remaining battery of the node is under 20%”.
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4.2 Policy Model
The second important data model is the policy model. We form a rule
based policy as the following formula:

POLICY ID [SET OF CONTEXTS] [SET OF ACTIONS] PRIOR-
ITY

The left hand side of a policy includes identifiers of contexts (CON-
TEXT ID) which are combined by conditional elements such as ’AND’,
’OR’, ’NOT’, etc. The right hand side is the set of actions to be executed
when the policy is applied. Each action is represented by a couple (Ac-
tionID, Parameters) where ActionID is the identifier of the action (e.g.,
reconfiguring networks, route discovery) and Parameters is the list of the
parameters used by the action. Each policy is identified by an unique
identifier POLICY ID. The PRIORITY field is used to select which task
is triggered when there are two policies that conflict between them. The
lower value that PRIORITY is, the higher priority the policy has. Some
examples of policies are shown in Table 4.2. When the context 1 “Battery
Level is under 20%” occurs, the policy 1 is triggered. Node executes the
function ALARM to notice to its manager node that its battery is low. If
the context 2, 3 and 9 occur concurrently, the policy 2 will be triggered
while the policy 3 is ignored because the policy 2 has higher priority.
Therefore, node denies the task and reduce the transmitting power.

4.3 Task Model
In shared sensor networks, application tasks arrive randomly. Each task
has different requirements. Since the main goal of WSNs is collecting
data when the user requests or a special event occurs, we use query lan-
guage to model application tasks. TinyDB [51] presented an acquisitional
query language for WSNs. One example of the query in TinyDB is as
follows:
SELECT nodeid, sensingtype
FROM sensors
WHERE temp > 20
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SAMPLE RATE 1s FOR 10s

The above query specifies each sensor node should report its own
identifier (id), light and temperature readings every 1s during 10s. In this
thesis, we extend the query language of TinyDB to support the shared
sensor networks by adding some new attributes including USERS, PRI-
ORITY, CELL, and a bit code of sensing type.

SET USER userid
SET TASK localtask_id PRIORITY priority_value
SELECT nodeid, sensingtype s
FROM sensors
WHERE condition
CELL sensing_area
SAMPLE RATE r FOR p

The SET USER clause indicates who requests the query task. Each
task has an localtaskid. The pair (userid, localtaskid) can be used as the
global identifier of the task in the network. The PRIORITY attribute is
used when a new task arrives while the number of running tasks in the
network reaches its limit. If the priority of the new task is higher than
the one of the running tasks, the network stops the task whose priority
is lower and executes the new task. When any running task terminates,
the network will restart the stopped task. The CELL attribute indicates
the sensing area of a sensor node. If two sensor nodes have same sensing
type and are placed in the same CELL, their collecting data should be
similar. For example, the temperature sensor of the thermostat and the
one in the air conditioner in one room should return the same temperature
value. The CELL attribute can be used to query data in a specific area. In
addition, sensor nodes that have same CELL can alternately provide an
application task. This can help to prolong the lifetime of each node while
meeting the application requirement.

We represent the sensing capabilities of sensor nodes as shown in the
Table 4.3. Each sensor node can have a single or a composed sensing
type. A composed sensing type means that the sensor node has several
sensing types. For example, sensor node can have both temperature and
light sensors. We used a limited number of bytes to represent both single
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Sensor Type Bits Meaning
NO SENSOR 0000000 No sensor is enabled

TEMPERATURE 0000001 Temperature sensor is enabled

LIGHT 0000010 Light sensor is enabled

HUMIDITY 0000100 Humidity sensor is enabled

ACCELEROMETER 0001000 Accelerometer sensor is enabled

MAGNETOMETER 0010000 Magnetometer sensor is enabled

MICROPHONE 0100000 Microphone sensor is enabled

SOUNDER 1000000 Sounder sensor is enabled

Table 4.3: Sensing Capability Value

and composed sensing types where each bit position is corresponding to
one type of sensor. The example in the Table 4.3 uses 1 byte to represent
7 different sensing types. This method is simple and fast with low mem-
ory cost since it can use bitwise operations such as AND, OR, XOR. For
example, a sensor node only needs to perform AND operation between
its sensing capability and the requested one to see if it can provide the
requested service. However, this representation method has one draw-
back. The number of representing bytes can be large when the number of
sensing types increases. Since each bit is corresponding to a single sens-
ing type, assume that there is n sensing types, the number of representing
bytes is n/8. In case there are 128 different sensing types, the number
of representing bytes is 16 bytes. We use 1 byte to represent the sensing
capabilities to support 8 different sensing types in our platform.

We now give some preliminary definitions. Let T = {T1, ..., Tn} be
the set of tasks on a sensor node. Each task Ti ∈ T has parameters si, ri,
pi, ci where si indicates what sensing type is needed, ri is the sampling
rate, pi is the period of collecting sensing data, and ci is the remaining
data that needs to collect.

Definition 1. Ti is an active task if Ti is executed, that is, the sensor node
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collects and transmits data to the sink as required in Ti. Let A is the set
of active tasks, A ⊂ T .

Definition 2. A sensor node can provide Ti fully if it has all the requested
sensors.

Definition 3. A sensor node can provide Ti partly if it has at least one
requested sensor but does not have all the requested sensors.

Definition 4. A task with parameters (s, r, p, c) is duplicated if following
conditions are satisfied:

• in case the role of the sensor node is SELF MANAGER ROLE, the
task is duplicated if and only if:

∃A′ ⊂ A | s ⊂
⋃
Ti⊂A′

si and p/r < min
Ti⊂A′

ci (4.1)

• in case the role of the sensor node is GROUP MANAGER ROLE,
the task is duplicated if and only if:

∃T ′ ⊂ T | s ⊂
⋃
Ti⊂T ′

si and p/r < min
Ti⊂T ′

ci (4.2)
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Chapter 5

MANAGEMENT PROTOCOLS
AND MECHANISMS

Management protocols and mechanisms are the fundamental parts of a
management system. This chapter describes several management pro-
tocols and mechanisms designed to use within the proposed platform.
The context detection and policy based reasoning mechanism provides
information that can trigger events at an appropriate time. In order to as-
sign management roles in a network, we design a role election protocol
to choose powerful sensor nodes as manager nodes. We describe a re-
source allocation (RS) mechanism to allocate resources among nodes in
groups of adjacent nodes when a new application task arrives. Finally, we
propose a local task scheduler mechanism to enable multiple application
tasks to be executed concurrently.

5.1 Context Detection and Policy based Rea-
soning Mechanism

In this section, we discuss how a node knows when it has to change its
configuration. In other words, we describe how to detect a context or
how to find a policy to trigger. As described in chapter 4, there are three
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sources of context information. Each source needs a different approach
to collect the information. For example, the Node Resource group only
needs to execute hardware functions to collect the remaining battery or
the radio state. But the Network State or Application Requirements group
may need to cooperate with other nodes to collect information such as the
last time it received a packet from its neighbors or the response of its
manager node to accept a task.

As soon as the information is collected successfully, the node replaces
the corresponding information in the existing context with the collected
one. If the logical expression returns true, that context occurs. One exam-
ple is if the remaining battery is 18% , the expression 18 <= 20 returns 1,
that is, the context 1 occurs (Table 4.1). Another example, the last time the
node A receives a packet from the neighbor B is at 30:10. Assuming that
the current time at node A is 30:15. So the NB LAST RECV PERIOD
will be 5 minutes. Therefore, the context 7 occurs (Table 4.1).

When a context occurs, it is easy to find the matching policy by search-
ing the CONTEXT ID in the list of policies. In case the policy needs more
contexts (e.g., in Table 4.2 the policy 2 needs both the context 2 and the
context 3 but only context 2 occurs), the node adds the current context 2
to its buffer. When the context 3 occurs, the node checks its buffer and
finds out that the policy 2 is satisfied. Then the node executes the func-
tions which are indicated in the policy 2. If there is a new context which
conflicts with the context in the buffer, the new one will be added to the
buffer and the old one will be deleted. For example, when the context 1
occurs, the context 2 is deleted (Table 4.1).

When a policy is satisfied and triggered, the POLICY ID is also added
to the buffer. If there is a new satisfied policy, the node checks if there is
any conflict with the active ones. The functions in the policy which has
higher priority will be kept or executed while the functions in the another
one will be canceled or ignored. For example, let us consider that the
policy 3 in Table 4.2 is satisfied and that the node approves the task (e.g.,
the query task) by starting to collect data. After a period, the remaining
battery is getting low and the policy 2 is satisfied. The node finds out that
it conflicts with the policy 3. Since the policy 2 has higher priority than

60



“trang˙thesis” — 2014/7/8 — 16:45 — page 61 — #83

the policy 3, the node cancels the collecting data process and adjusts its
transmitting power.

5.2 A Role Election Protocol

The core idea of the DISON platform is the multilevel management schema.
Therefore, organizing sensor nodes into groups or sub networks and choos-
ing manager nodes are ones of the basic functions that need to be executed
before any other management functions.

5.2.1 Background

As discussed in Chapter 3, there are two approaches to divide the network
into groups and select manager nodes. One is using central servers. An-
other is using clustering algorithms. In the scope of this thesis, we only
discuss the clustering approaches.

An extensive survey on clustering protocols proposed for WSNs is
presented in [77]. In most of clustering protocols, cluster heads are se-
lected randomly or based on a weight function [78] [65] [79]. The pa-
rameters used in the weight function can be the signal strength, residual
energy, and the intra cluster communication cost.

In order to elect manager nodes, we have designed and implemented a
simple manager election protocol based on [65]. We choose nodes which
have high capability as manager nodes. The capability of a node has
to include information about both local resource and network state. The
reason is that manager nodes have to store and process management infor-
mation of their members. If a manager node has not enough resources, it
can not perform complex management tasks that require much resources
or the accuracy of its management decisions can be affected. Similar, if a
manager node has good link connections to its members, the exchange of
management messages is easier and more reliable.

In order to enable the developer and the network administrator to
change which information is used in the election process, we define a
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general weight function that covers all possible information about a sen-
sor node. In addition, we allow a sensor node to leave its current group if
it receives a better joining group offer from other node.

5.2.2 Description of the protocol
We have defined the following equation to calculate the capability of a
node:

A =

n∑
i=1

γi · ai
n∑
i=1

γi

(5.1)

where ai is a value that represents the state of a certain node’s resource
such as CPU speed, free memory storage, battery level, etc., that is nor-
malized into range [0, 1]. The number n is the total number of different
resources used to evaluate the node’s capability. Each type of resource
has a priority γi that shows its importance. The value i is the unique
identifier of a resource. The users can configure the value of n and γi to
adapt to the network state or the application requirements. For example,
when the remaining battery of all nodes is high, the network connectivity
is more important than the remaining battery. But when the remaining
battery is getting low, it may become more important than to provide full-
connectivity to non-interesting areas.

In the scope of this thesis, to calculate the capability A, we only use
the remaining battery level, sign as a1, and the number of neighbors, sign
as a2, defined as follows:

a1 =

⌊
Current Voltage

Maximum Voltage

⌋
a2 =

⌊
Current Number of Neighbors

Maximum Number of Neighbors

⌋

The corresponding priorities are γ1 and γ2. Thus, the capability of a
node is calculated as following:
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A =
γ1 ·

⌊
Current Voltage

Maximum Voltage

⌋
+ γ2 ·

⌊
Current Number of Neighbors

Maximum Number of Neighbors

⌋
γ1 + γ2

In our protocol, a sensor node can have three possible states: it can be
a manger node, a member of a group or a free node. In the beginning, all
nodes are free.

At initialization, every node collects information which is used to cal-
culate the capability A. For example, every node broadcasts the HELLO
message to its neighbors to announce its presence. They also read the
remaining battery level from the hardware. Then, the node which has
capability higher than a predefined threshold becomes a manager candi-
date and broadcasts the Role Offer (ROF) message. The ROF message
includes the identifier and the capability A of the node that has sent it.
The broadcast is limited to 1 hop.

When a node receives a ROF message from one of its neighbors, there
are three possible situations. In the first situation, the node is a free node.
If the capability A in the ROF message is higher than its capability, it
accepts that neighbor as its manager. Then it sends a Role Confirm (ROC)
message which includes its identifier back to its manager to notice its
decision. In the second situation, the node belongs to a group. If its
manger has smaller capability than the received one, it sends a Group
Leave (GL) message to its current manager and a ROC message to the
new manager node. In the third situation, the capability A in the ROF
message is smaller than the one of the node or its manager, the node
ignores the received ROF message.

There are also two possible situations when a node M receives a ROC
message from a node S. First, if node M is a free node, it becomes a
manager node and adds node S to its member database. If the number of
node M’s members reaches its limit, the manager node M sends a Role
Denied (ROD) message to node S. In the second situation, node M is a
member of a group. If node M has not seen any message from its manager
for a long time, it sends a GL message to its old manager, and then sets
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itself as the manager of the new group. Otherwise, it ignores the received
ROC message.

If the manger node receives a GL message, it clears the information
of the corresponding node from its members. In case a member node
receives a RD message from its manager, it resets its state and becomes a
free node.

The process is executed periodically to ensure the balance of the net-
work resources since manager nodes consume more resources than nor-
mal nodes as they perform complex management tasks.

5.2.3 Summary
We present a role election protocol for organizing the sensor network into
disjoint groups of nodes. In each group, a node is selected to be the man-
ager node. The proposed protocol extends the weight function in existing
clustering protocols to contain all possible information for the manager
election. This weight function can be configurable by enabling/disabling
the presence of a resource state value or changing the corresponding pri-
orities. The proposed protocol also allows sensor nodes to be able to leave
their group to join other group which has more powerful manager node or
more activity. It means only active groups with powerful manager nodes
can exist.

5.3 An All-in-one Acknowledgment Mechanism
As we know, the data transmission in the WSNs is more unreliable than
it is in the traditional networks. In this section, we propose a simple and
efficient acknowledgement mechanism for reliable management message
exchange in DISON.

5.3.1 Background
In dense networks, there is a high probability of losing management pack-
ets due to the network collision, hence, leading to a decrease in perfor-
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Figure 5.1: A loss management message scenario

mance of both the management framework and the network. For example,
in Figure 5.1 the sink broadcasts a query to all nodes in the network. The
manager node chooses node A or node B to collect data. Assume that it
chooses node A. However, due to some reasons the management decision
message sent to node A is lost. Node A did not receive the query from
the sink either. So it did not know it has to collect data. Besides, node B
receives the management decision message from the manager node and
skips the requested query. Therefore, there is no node to support the re-
quested query.

There are several works that provide data reliable mechanisms for
WSNs. IEEE 802.15.4 standard [80] supports the ACK at MAC layer
level to improve the transmission reliability. However, it is only avail-
able for unicast communication. A reliable broadcast mechanism is in-
troduced in [81]. RBP [81] lets each node flood the received broadcast
message only once. The retransmissions are performed when the number
of ACKs seen by the node falls below a predetermined threshold. RBP
uses information of node density and topology information to adjust the
retransmission threshold and the number of retries. RBP is implemented
between the MAC layer and the routing layer. Works in providing ACK
mechanisms for multicast are still missing.
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5.3.2 Description of the protocol
We have designed and implemented a new ACK mechanism that supports
all three types of ACK including unicast ACK, multicast ACK and broad-
cast ACK. The proposed ACK mechanism is implemented as a module in
the Hardware APIs Component. Currently, our ACK mechanism is only
used in exchanging management messages. However, it is easily to apply
to other kinds of network messages.

In our ACK mechanism, each time the sender sends a message packet,
it can request the receiver to confirm that the packet is received by sending
an ACK message when necessary according to the importance of mes-
sage. For example, ACKs for HELLO messages are not necessary while
using ACKs when sending ROF and ROC messages is essential.

We added a new field noACK to the common management message
structure. We use 1 byte to represent this field. The meaning of the value
of the field noACK is as follows:

• noACK = 0: The ACK mechanism is not required.

• 0 < noACK < 255: The sender requires the receiver to send
back an ACK. When the number of ACKs received at the sender
is equal or larger than the one indicated in the noACK field, the
message packet is considered as sent successfully. If after a period
∆ACK , the sender has not received enough ACKs, it tries to send
the message packet again. If the sender can not receive enough
ACKs after MAX RETRIES TIMES, it considers that the message
transmission has failed.

– noACK = 1⇒ Unicast ACK

– noACK = number of neighbors⇒ Broadcast ACK

• noACK = 255: In this case, the sender only requires a subset of
its neighbors to send back ACKs (multicast ACK). The next byte
in the packet, the one after the noACK field, indicates the number
of neighbor nodes that need to send back an ACK, then the follow-
ing bytes are the identification of these neighbor nodes. When the
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receiver receives the multicast ACK request, it only sends back an
ACK if it is in the list of nodes indicated in the message packet.

After sending a message that requests ACKs, the node keeps the sent
message in the FIFO Packet Queue and sets a timer TACK to wait for
ACKs. If the node receives enough ACKs before the timer TACK expires,
the message is removed from the FIFO Packet Queue. Otherwise, the
node retransmits the message. After MAX RETRIES TIMES, the mes-
sage is removed from the FIFO Packet Queue.

5.3.3 Summary
We provide a simple ACK mechanism that uses only local density, i.e., the
number of neighbor nodes to increase the reliability for one hop transmis-
sion. Depending on the kind of management messages, the appropriate
type of ACK can be used.

5.4 Resource Allocation Protocol
In the previous chapters, we discussed the emergence of shared sensor
networks as an integrated infrastructure for multiple applications, and the
management challenges in such networks. In this section, we present a re-
source allocation protocol that efficiently allocates the network resources
to different applications.

5.4.1 Background
An efficient resource allocation protocol is necessary when multiple tasks,
from different applications, run simultaneously in the same node and net-
work. The goal of a resource allocation protocol is to assign network
resources to different applications in order to ensure the quality of the
provided services while prolonging the network lifetime.

There are some noticeable solutions for allocating tasks in WSNs
which have been proposed recently. A novel approach to adaptive re-
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source allocation in single sensor networks, called Self-Organizing Re-
source Allocation (SORA) is presented in [82]. Each sensor node acts as
a self-interested agent that selects actions to maximize profit, subject to
energy limitations. Nodes self-schedule their local actions in response to
feedback in the form of payments. This allows nodes to adapt to changing
conditions and specialize their behavior according to physical location,
routing topology, and energy reserves. Other works in resource alloca-
tions for single WSNs can be found in [83][42].

Adaptive Servilla [84] is a middleware that coordinates resources in
heterogeneous WSNs subject to the energy efficiency and network dy-
namics. It treats services as the basic unit of software modularity so
that they can be dynamically offered to different applications. Li et al.
[85] proposes the Resource Allocation in Heterogeneous WSNs (SACH-
SEN) algorithm to allocate applications (including simultaneous arrivals)
to sensor nodes based on the application utility which is decided by se-
lected QoS requirements. SACHSEN supports both application QoS and
network QoS. However, all of works only allow to allocate multiple tasks
locally. Based on the multilevel management schema of DISON, we pro-
pose a resource allocation protocol that allocates network resources to dif-
ferent applications among adjacent nodes, where manager nodes support
their members in making decision whether or not to provide an applica-
tion task.

5.4.2 Protocol overview

The resource allocation protocol is used to decide whether or not the ap-
plication service or task is host by the sensor network or sensor nodes.
Fig. 5.2 illustrates the task registration process. Initially, the node is in
the IDLE state. When a task arrives to a node from the user request, the
node firstly verifies if it can support that task by checking its on going
tasks list and its resources. In this stage, the node changes its state to
VERIFYING. If the answer of the verifying process is yes, the task is
executed and added to the on going task list. Concurrently, the state of
the node transits to APPROVED. In case the node can not decide to ac-
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cept the task by itself, it can ask for the support from its manager node
by sending a Task Register (TREG) beacon which includes the informa-
tion of the received task. Simultaneously, it starts a timer Tv and changes
the state to REFERRING. When it receives the Task Response message
(TREP) from the manager node, it accepts or denies the task depending
on the answer. If the task is denied, the node state transits to SKIPPED.
Otherwise, it changes the state to APPROVED.

In this function, a manager node is responsible for selecting which
sensor nodes in its group are candidates to perform the request task so
that the quality of service is not affected. After receiving TREG beacons
from nodes in its group, the manager node analyzes the capabilities of
each sensor node, and the requirements of the requested task. Based on
this information, it makes a list of candidates and broadcast the TREP
message including the list of candidates to the sensor nodes in its group.

Once a task is approved, the node adds the task to its ongoing task list.
If there are more than one task on the list, then the node executes a mul-
tiple task optimization mechanism which reschedules the running time of
the on-going tasks, aggregates the data generated from different tasks be-
fore transmitting them to the base station or generates a new common task
which substitutes the new and old tasks. Some examples of this mecha-
nism in case of multiple queries are presented in [86], [87]. Depending
on application requirements, the developer can implement the appropriate
multiple task optimization mechanisms to optimize the performance.

The resource allocation process enables sensor nodes to adapt to the
changes in application requirements. Every time there is a new applica-
tion task or a change in an old one the resource allocation process chooses
which sensor nodes will be used to perform that task based on the current
state of the network resources. This process is executed partially in each
group of sensor nodes to reduce the management overhead.

5.4.3 Description of the protocol

We now present the detail of the resource allocation protocol. The task
model used in this protocol is mentioned in Chapter 4. Since there might
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SKIPPED

IDLE

VERIFYING

APPROVED

receive task

REFERRING

send TREG
start timer Tv

expire timer Tv || (receive 
TREP && is_approve == true)

receive TREP &&
is_approve == false

confirm task

execute task

deny task

Figure 5.2: The state diagram of the task registration process

be multiple tasks which arrive at the same time, we use a simple FIFO
queue, naming it as DecisionQueue to store waiting decision tasks. The
decision process for the task that arrives later is only started when the pre-
vious one has been completed. The size of the DecisionQueue in man-
ager nodes should be larger than in normal sensor nodes because manager
nodes process not only its tasks but also tasks of its group members.

Each time the DecisionQueue has a task to process, the sensor node
verifies its sensing capabilities to see if it has enough requested sensors.
In case a normal sensor node can provide the requested task fully or partly,
it sends a TREG message to its manager node to ask for support, and then
schedules the decision process for that task. In case of a manager node,
it creates or updates the decision schedule. The interval of task decision
timer in manager node should not be smaller than the one in normal sensor
node; otherwise the response from the manager node might be lost. Let
τs and τg be the interval of the task decision timer on normal sensor node
and manager node respectively. To avoid missing a decision response
from the manager node, τs > τg is required.

When a manager node receives a TREG message from one of its mem-
bers, it pushes the requested task to its DecisionQueue if that task is
new. When the task decision timer fires, if the normal sensor node has

70



“trang˙thesis” — 2014/7/8 — 16:45 — page 71 — #93

not received the response from its manager node, it can accept or deny
the requested task according its sensing capability. In case of a manager
node, it chooses a subset of its member nodes which have more energy
and less active tasks to provide the requested task. Then it broadcasts a
TREP message that includes the identification of all nodes in that subset
to its member nodes. As receiving the TREP message, if a sensor node
belongs to the list indicated in TREP, it accepts the requested task.

The pseudo code of the resource allocation protocol is described in
Algorithm 1.

Algorithm 1 Resource allocation algorithm
1: function Sensor node: On arrival of a task Ti with parameters (ti, si, ri, pi)
2: isDuplicate← checkDuplicate(ti, si, ri, pi)
3: if isDuplicate == TRUE then
4: Ignore Ti
5: else
6: Add Ti to the list of tasks T
7: Push Ti to the DecisionQueue
8: if isWaitingDecision 6= TRUE then
9: isWaitingDecision← TRUE

10: Start processing task
11: function Task processing
12: if DecisionQueue is empty then
13: isWattingDecision← FALSE
14: return
15: Ti ← DecisionQueue.head()
16: if resources are fully or partly enough then
17: if Role of node is SELF MANAGER ROLE then
18: Send TREG message to manager node
19: Schedule decision making at time τs
20: if Role of node is GROUP MANAGER ROLE then
21: Schedule decision making at time τg
22: else
23: Ignore Ti
24: Remove Ti from DecisionQueue

The algorithm to choose a subset M of member nodes in a group to
provide the new task Ti should be designed based on the characteristics of
the network and application. For example, in a single task sensor network
which is deployed in high density of nodes, M can be chosen based on
the battery level and the link connection. However, in case of shared
sensor networks with multiple tasks, the number of ongoing tasks should
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Algorithm 2 Resource allocation algorithm (continued)
25: function Normal node: Receive a TREP message
26: if Node is requested to run a task Ti then
27: Add Ti to T in case Ti has not been seen before
28: Run Task Scheduler
29: if Ti == DecisionQueue.head() then
30: Stop decision making timer
31: Remove Ti from DecisionQueue
32: Process next task in DecisionQueue
33: function Manager node: Receive a TREG message which requests to register Ti
34: if Ti has not been seen before then
35: Add Ti to T
36: Push Ti to the DecisionQueue
37: if isWaitingDecision 6= TRUE then
38: isWaitingDecision← TRUE
39: Start processing task
40: function Decision making timer fired
41: Ti ← DecisionQueue.head()
42: if Role of node is SELF MANAGER ROLE then
43: if resources are fully enough then
44: Run Task Scheduler
45: if Role of node is GROUP MANAGER ROLE then
46: Choose a subset M of member nodes to provide Ti
47: Run Task Scheduler if the manager node ∈M
48: Send TREP to members in M
49: Remove Ti from DecisionQueue
50: Process next task in DecisionQueue
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be considered as a factor in choosing M .

5.4.4 Summary
We present a resource allocation protocol based on the multilevel manage-
ment schema of the DISON platform. Sensor nodes ask for the support
of their manager node to decide to offer an application task. It can reduce
the data duplication in dense networks where there are many nodes that
have the same sensing capability in a functional area. It also allows a sen-
sor node which does not have enough of the required sensing capabilities
to cooperate with other nodes to offer the requested task. This is efficient
when the nodes that have more energy can share the work with nodes with
lower values. Therefore, the network lifetime can be improved.
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5.5 Local Task Scheduler

We propose a Local Task Scheduler to align all application task execu-
tions on sensor nodes in time to accumulate idle time duration in the pro-
cessor schedule. This scheduler also enables to aggregate sensing data
from multiple tasks in order to reduce energy consumption because send-
ing bigger packets consumes less energy than sending multiple smaller
packets. The basic idea of the Local Task Scheduler is merging instances
of different tasks that are close on the time axis.

5.5.1 Problem formulation

For the ease of presentation, we first describe an example of three simul-
taneous application tasks as shown in Figure 5.3. These active tasks arrive
at different times. The tasks T1, T2, T3 have different sampling rate r1, r2,
r3 respectively. A instance tij is the time that task Ti needs to execute the
jth times. For example, T1 has instances t11, t12, t13, t14, t15.

Task T1 arrives earliest. It starts its first instance immediately at time
s1 and sets the next run time to s1 + r1. At time s2, task T2 arrives.
Since the arriving time of T2 is far to the next run time of the ongoing
tasks, T2 also starts t21 immediately at s2 and sets the run time for its next
instance. The time that task T3 arrives is close to the time executing t12.
Therefore, instead of starting t31 immediately, T3 delays and moves its
instances to t′31 and t′32. At time s3, the processor merges the requirements
of both tasks T1 and T3 (e.g. sensing types) to trigger required hardware
to perform the combined task. In the schedule, s4 is the time to execute
only t13. However, since the next run time of t22 is very close to s4, T2

moves its instances to earlier times t′22 and t′23. As a result, there are 2
task instances to execute t13 and t′22 at s4. There is no special at time s5.
Only the instance t14 is started. After rescheduling at previous times, all
of three tasks execute their next instance (t15, t

′
23, t

′
32) at the same time at

s6.
We now define the problem in general. Given a set of n active tasks

A = {Ti}, i = 1, 2, ..., n. Each task Ti has ni instances {tij}, j =
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1, 2, ..., ni. The interval between two continuous instances of a task Ti
is the sampling rate ri. The time slot to run a instance is sk, where
k = 1, 2, ...,m, 1 ≤ m ≤

∑n
i=1 ni.

Each time slot sk is corresponding to at least one task instance tij . The
problem is to minimize m, so that the accuracy of every task is still satis-
fied. To make the problem more clear, we make the following definitions.

Definition 5. Let ∆A be the acceptable error period. A new task instance
t′ij can replace the current instance tij without affecting the accuracy of
the task if

∣∣tij − t′ij∣∣ ≤ ∆A. For example, t′31 and t31.

Definition 6. Two instances of two different tasks are close if |tij − ti′j′ | ≤
∆A.

Now, our problem is to find all of the possible close task instances,
merge them and update the next instances of the corresponding tasks.
There are two merging types. The right merging happens when there is a
new arriving task at a time that is close to the next instance of the existing
tasks. For example, t31 and t12. The left merging happens when there
exists an instance of another task close to the current task instance. For
example, t13 and t22.

5.5.2 Algorithm design

Algorithm 3 shows the pseudo code of the Local Task Scheduler. In sum-
mary, the progress of the Local Task Scheduler includes three step:

• Step 1. Update the next run interval of existing active tasks.

• Step 2. Perform left or right merging if needed.

• Step 3. Choose current task instances to execute.
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Algorithm 3 Local Task Scheduler algorithm
1: When there is a new active task tid, do UpdateActiveTasks()
2: if nextRunInterval + lastRunT ime− currentT ime <= ∆A then
3: Add task to the list of active tasksA
4: else
5: Add task to RunningQueue
6: if currentT ime == nextRunInterval + lastRunT ime then
7: newRunInterval← −1
8: for i← 1, numActiveTasks do
9: A[i].nextRunInterval← A[i].nextRunInterval − nextRunInterval

10: ifA[i].nextRunInterval ≤ ∆I then
11: AddA[i] to RunningQueue
12: A[i].nextRunInterval← A[i].samplingRate
13: if newRunInterval == −1 or newRunInterval > A[i].samplingRate then
14: newRunInterval← A[i].samplingRate

15: else
16: if newRunInterval == −1 or newRunInterval > A[i].nextRunInterval then
17: newRunInterval← A[i].nextRunInterval

18: nextRunInterval← newRunInterval
19: Remove completed tasks

5.5.3 Summary
We formulated a general solution to find and merge instances of different
tasks whose start time are close on the time axis. The proposed scheduler
allows to merge tasks instances both when a new task arrives and when
they are running by using the left merging and the right merging.
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Chapter 6

CASE STUDY

This chapter demonstrates the feasibility of the proposed framework and
management mechanisms by means of two design examples. The scenar-
ios we have considered for the demonstration are data collection applica-
tions in a single sensor network and a shared sensor network. Since these
scenarios deal with different application requirements, we also demon-
strate the suitability of our management platform to support applications
in different domains.

6.1 Data Collection in a Single Sensor Network

The main job of WSNs is collecting data. Therefore, the first scenario
we considered is a typical data collection application. Each sensor node
samples at a particular frequency and the sampled data is transmitted to
the sink through multihops.

6.1.1 Scenario

Figure 6.1 illustrates the basic scenario of the data collection application
in a single sensor network. A sink broadcasts queries to sensor nodes in
the network. The sensor nodes collect data and transmit back to the sink.
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Sink

Task Request

Figure 6.1: Data collection in a single sensor network
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6.1.2 Performance evaluation in SENSE

For initial evaluation, we have implemented the above scenario in SENSE
[19]. We divide the network area into a grid of multiple adjacent cells.
The grid is symmetric or asymmetric. Nodes are deployed randomly in
each cell of the grid. We assume that each node can know the identifier
of the cell where it is located and its sensing radius covers that cell. For
comparison, we have implemented a data collection application where all
sensor nodes transmit data to the sink as soon as receiving the query as
the baseline, and refer to it as BDC. In BDC, the data relay path is built on
the query broadcasting process. Each node setups the node from which it
receives the query as the next node to forward data. We also have built the
forwarding mechanism in DISON based on the query request similarly
to BDC. However, DISON stores the identifier of the cell from which
it receives the query instead of the node identifier because DISON could
switch off some nodes which can be on the data relay route to save energy.
When the node need to send or forward data to the sink, it adds the cell
identifier to the data packet and broadcast to its neighbors. If the neighbor
nodes are in the indicated cell, they forward the packet. Otherwise, they
drop the packet.

In our experiments, we consider one symmetric scenario and one asym-
metric scenario. In the symmetric scenario, the network is deployed in a
10x10 grid, in which each cell has a radius of 40m. In the asymmetric
one, we use a 10x2 grid, that could be similar to the room structure of an
office building floor. Sensor nodes are randomly placed in each cell of
the grid with a density from 2 to 4 nodes. Moreover, in order to ensure
the reality of the performance results we have also placed sensor nodes
randomly through all the area and vary the number of nodes in case of the
asymmetric grid. The transmitting radius of a sensor node is 50m. The
battery level of each node is generated randomly in the range of [0, 106]J.
We define one special node as the sink and put it randomly in the grid. The
sink node is responsible for broadcasting a query at a specific time to col-
lect data from the network. The time to start querying is set randomly in
the range [80, 90] seconds. We set the sampling frequency to 10 seconds.
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Table 6.1: Network Settings

Parameters Value
Tx Power 24, 75 · 10−3J

Rx Power 13, 5 · 10−3J

Channel Error-free

Tx Rate 125 kbps

MAC layer IEEE 802.11 (DCF)

Transmitting Radius 50 m

Simulation Time 3000s

Threshold 0.8

The period of collecting sensing data is chosen randomly in the range
[1000, 1200] seconds. Every random number in the simulator is generated
by using a linear congruential algorithm and 48-bit integer arithmetic.
The simulation results are calculated based on the results from running
each scenario with 10 different seed numbers. The other parameters are
set as in Table 6.1.

In order to calculate the coverage ratio, we calculate the number of
packets including sensing data from each cell at the sink node. We de-
note recvi as the number of received packets including the sensing data
from ith cell. Assume that each sensor node transmits sensing data to the
base station in the interval T seconds with a rate APP RATE. To make it
clearly, T is the query period and APP RATE is the sensing data sampling
frequency. If the condition shown in the Equation 6.1 is satisfied, the ith

cell is considered as transmitting enough data to the sink. In other words,
ith cell is covered. The simulation area is fully covered if every cell in the
simulation area is covered.

recvi = Threshold ·
⌈

T

APP RATE

⌉
(6.1)
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Figure 6.2: Symmetric networks

We use the following metrics to evaluate our proposal:

• Average Node Used Energy. The average used energy of each
node.

• Packet Delivery Rate (PDR). The percentage of packets generated
at the sensor nodes that are successfully delivered to the sink.

• Coverage Percentage. The percentage of the number of covered
cells per total cells in the grid.

• End-to-End Delay. The average time taken for a packet to be trans-
mitted across the network from the node to the sink.

In case of the 10x10 grid scenario (Figure 6.2), the packet delivery
rate is improved significantly for all node density values, up to 30% at
node density 4. The end-to-end delay of the DISON solution is higher
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than BDC because there are more successfull received packets in DISON,
and these packets can be sent from nodes which are far from the sink.
Therefore it results in an increase of the average delay. It is important that
the used energy is reduced significantly, up to 23% at node density 4.

As shown in Figure 6.3a, DISON solution does not improve the used
energy comparing to BDC if there are only two nodes in each cell. How-
ever it increases the packet delivery rate slightly and reduces the end-to-
end delay significantly. It is because the energy that saves from switching
off some nodes is approximately the same as the required management
overhead in DISON. In addition, as the number of nodes that transmit
data to the sink decreases, it results in less traffic in the network. There-
fore the packet delivery rate and the end-to-end delay are improved. When
the node density increases to 3 and 4, we can see that DISON reduces the
power consumption from 18% to 29% because there are more redundant
nodes that can be switched off without compromising the network opera-
tion. Moreover, it also improves significantly the packet delivery rate and
the end-to-end delay. In case nodes are randomply placed in all the area,
DISON still achieve better performance than BDC (Figure 6.3b). The
used energy and the end to end delay of DISON is much lower than BDC
while the packet delivery rate is also slightly higher. In addition, it is easy
to see that the sensing coverage is ensured in all scenarios.

6.1.3 Performance evaluation on Testbed

In order to evaluate the feasibility and the efficiency of the proposed
framework, we have implemented DISON in TinyOS 2.1.2 [21], a popu-
lar operating system for WSNs. The implementation includes three parts:
DISON modules, main application, and user client.

The DISON modules implement the DISON Management and Hard-
ware APIs components in the proposed protocol stack. The connection
between DISON modules and network protocols is established in the
main application. This design allows the user to configure the DISON
framework easily. For example, the user can decide which clustering
algorithm to select manager nodes or which routing protocol is used to
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Figure 6.3: Asymmetric networks: (a) Variable Node density, (b) Variable
Number of Nodes
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Figure 6.4: DISON implemented blocks

send statistic data to the network manager. The main application makes
a demo of using DISON framework to allocate network resources in a
simple data collecting application. The user client provides a graphical
interface which allows users to set up queries and network configuration
requests. It displays the data it receives from motes in both text and chart
format. Fig. 6.4 shows our implementation. An example of our graphical
interface is shown in Fig. 6.5.

We have used Collection Tree Protocol [88] and Dissemination Proto-
col [89] which are included in TinyOS 2.x to broadcast or transmit mes-
sage over a multi hops network. The Collection Tree Protocol is used to
transmit data (sensor readings and management statistic data) from sensor
nodes to the base station. The Dissemination Protocol is used to broadcast
queries and management requests (e.g., reset network and adjust transmit-
ting power) from the user to all the nodes in the network.

In DISON modules, we have defined public interfaces that allows
other components to interact with management functions. These inter-
faces also enable developers to add or update functions easily without
changing other components. Each interface includes the declaration of
management functions and events. We have defined four public inter-
faces. The first interface DISONManagementAppI includes functions and
events which are used to interact with the application components.
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Figure 6.5: Graphical Interface of the user client application
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interface DISONManagementAppI{
command error_t registerTask(uint8_t taskid,

uint8_t sensingtype,
uint16_t period);

event void registerDone(uint8_t taskid, bool response);
command void configure(uint8_t cmd, uint16_t value);
}

The second interface DISONManagementHardwareI refers to man-
agement functions and events related to the node’s hardware. It helps
management process to be independent of hardware or low level compo-
nents such as the radio transceiver or the leds. Therefore, the developers
only need to update the functions which implement these interfaces to
support different node’s platforms without affecting to other parts of DI-
SON framework. It enables DISON to support multiple platform easily.

interface DISONManagementHardwareI{
command error_t readResource();
event void readResourceDone(error_t result, uint16_t data);
command error_t broadcastBeacon(message_t* msg, uint8_t len);
command error_t unicastBeacon(am_addr_t dst,

message_t* msg, uint8_t len);
event message_t* recieveBeacon(message_t* msg,

void* payload, uint8_t len);
command error_t setNodeSleep(uint16_t period);
command error_t setLocalWakeUpInterval(uint32_t interval);
command int8_t getRSSI(message_t* msg);
}

The third interface DISONManagementComI is responsible for con-
trolling network protocols. In current implementation, we only used this
interface to store the packet logs. Network protocols (e.g., CTP) can use
this interface in their components to record sent and received packets.

interface DISONManagementComI{
command void initLogs();
command error_t logPacket(uint8_t type, uint32_t value);
command error_t logBytes(uint8_t type, uint8_t size);
}
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The management requests from the user are handled in the last in-
terface DISONManagementUserI. For example, the user can request to
collect statistic data from the whole network by calling the function col-
lectLog.

interface DISONManagementUserI{
command error_t collectLog();

}

To use the management functions provided by DISON, the developers
of WSN applications simply have to add the corresponding interfaces to
their components and wire these interfaces to the DISON components.
For example, if they want to use the resource allocating function, they
add use interface DISONManagementAppI and then call the command
registerTask as illustrated in Figure 6.6.

We have also designed the required management messages which are
used in the resource allocating function. Fig. 6.7 shows the structure
of these messages 1. The first byte of the basic management message,
namely the Type field, indicates the type of the management message
(e.g., Task Register or Task Reply). Because each specific management
message has different structure with a different size, the length of man-
agement message is variable. We use the next field of the management
message, Payload length, to encode the length of the payload.

In the main application, we design the format of the query packet as
following:

typedef nx_struct {
nx_uint16_t queryID;
nx_uint8_t sensingType;
nx_uint16_t samplePeriod;
nx_uint16_t queryPeriod;
} query_t;

1The structures of HELLO, ROC, GL, ROD messages are not included because they
only include the identifiers of source node and destination node which are already con-
tained in TinyOS packet header
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configuration TestDisonApp{

}
implementation{
components MainC, TestDisonC,
...
//Management
components DisonC;
TestDisonC.ManagementControl -> DisonC;
TestDisonC.DISONManagementAppI -> DisonC;
...
}

Application configuration file module TestDisonC @safe()
{
uses {
...
interface StdControl as ManagementControl;
interface DISONManagementAppI;
...
}
}
implementation
{
...
call ManagementControl.start();
...
call DISONManagementAppI.registerTask(...)
...
event void 
DISONManagementAppI.registerDone(uint8_t 
taskid, bool response){
...

}
}

connect to Dison component

Start election process

call resource allocation 
function

event is triggered when the 
resource allocation is done

Application module file

Figure 6.6: An example usage of DISON

Type
Payload
Length

PayloadManagement Message

Capability

1 byte 1 byte

1 byte

ROF Message

Task Type Task ID
Payload
Length

PayloadTREG Message

1 byte 2 bytes 1 byte

Number
Nodes

Task ID Node List

2 bytes 1 byte

TREP Message

Figure 6.7: Message structure of DISON management messages
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The field sensingType is used to indicate what sensors are needed to
collect data. Each bit of this 8-bit field corresponds to one kind of sensors
as shown in Table 4.3. Therefore, when the node receives the query, it
simply performs the AND operator between its sensing capability and the
value of the field sensingType to know if it has the required sensor. The
samplePeriod field is the data transmitting rate to the base station. The
running period of the query is indicated in the queryPeriod field. If the
value of this field is 0, it means sensor nodes have to send data to the
base station periodically until their batteries are gone or they receive new
requests from the base station. The field queryID is the identifier of the
query.

Deployment Environment

In our evaluation, we have used 26 TelosB motes which are distributed
in an apartment of 90 square meters, as shown in Fig. 6.8. Each TelosB
mote is equipped with a CC2420 radio and use the default CSMA/CA
MAC layer in TinyOS 2.x. There is one mote which is connected to a
laptop by an USB cable. This mote roles as the gateway.

We have developed a Java client application to send the application
and management requests to the network. In addition, this client applica-
tion receives and shows the data from the mote on a graphical interface as
shown in Fig. 6.5. The users can choose which information they need to
collect and send that request to the sensor network. Because our TelosB
motes are not equipped with real sensors (e.g., temperature, humidity sen-
sors), we use the DemoSensor component in TinyOS to generate sensing
data. The parameters used in our evaluation are summarized in the Table
6.2.

To evaluate the benefits of DISON, we have considered two user appli-
cations. In the first user application, all the sensor nodes start to transmit
sensing data as soon as they receive the query. In the second application,
the resource allocating function supported by DISON framework is used
to choose a subset of active nodes. Only these active nodes will collect
and transmit sensing data to the sink. Both of applications use CTP as the
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Figure 6.8: Network deployment in an apartment

Parameters Value
TinyOS version 2.1.1

Nodes 26
Platform TelosB

Radio CC2420
Battery 2 x Energizer Extreme Rechargeable AA 2300mAh

Java JDK 1.6.0 38
Maximum Payload 60 bytes
Routing Protocol Collection Tree Protocol (CTP)

Table 6.2: Evaluation Environment
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routing protocol. We call the first application as CTP, and the second one
is DISON+CTP.

Performance metrics are used in our evaluation is presented in the
below section.

Evaluation Metrics

• Packet Delivery Ratio (PDR). The number of distinct received
packets divided by the number of packets sent.

• Duplicate Packets. The number of duplicate packets that are re-
ceived at the sink. We added a sequence number to each data
packet, and counted the number of received packets which have
the same sequence number.

• Control Overhead. The number of exchanged management pack-
ets and routing packets.

• Management Overhead. The number of exchanged management
packets.

• Network Traffic. The total number of packets sent and received in
the network.

• Energy Consumption. Because the voltage readings decrease when
the battery discharge, they reflect the battery’s level of charge. We
have estimated node’s energy consumption by monitoring the de-
crease in the voltage reading. TelosBs have a voltage sensor which
can be read from an 12-bit ADC (Analog Digital Converter) inter-
face. As defined in [90], the ADC value is converted to a voltage
reading with the following formula:

V =
ADC Value

4096
· Vref · 2 (6.2)

in which Vref is the maximum voltage of the batteries. For example,
if we use 2xAA 1.5V batteries, the value of Vref is 3 V. All nodes
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Module Memory Size
Clustering algorithm 5.5 KB

DISON Management Modules 36.1 KB
Main Application + DISON 36.762 KB in ROM, 5.706 KB in RAM

Table 6.3: Module code size

in the testbed are fully recharged before each experiment. Since the
transformation of the voltage reading is not stable in short time (i.e.,
it can go up and down depending on the working load or environ-
ment conditions), we ran the experiments which evaluate the energy
consumption for a long time (15 hours) to ensure that a decrease in
the voltage reading is caused by the battery consumption and not
by the measurement fluctuation. In these experiments, sensor nodes
transmit the voltage reading to the sink. The energy consumption is
the difference between the first and the last voltage readings in the
experiment.

DISON Code Size

As discussed above, the management system for WSNs must be light
weight due to the limited resources of sensor nodes. Table 6.3 shows
the code size of DISON implementation in TinyOS. The size of DISON
modules is small, approximately 36.1 kB. In addition, when DISON is
integrated into the user application, the memory usage is still small.

Network Performance

In order to evaluate the network performance of DISON, we broadcast a
query with a sampling period of 5 seconds to collect data during 15 min-
utes. The transmitting power of the node is set to its maximum value,
0 dBm. In this scenario, all nodes can communicate directly with each
other, which results in a high collisions probability. Therefore, the perfor-
mance of CTP is affected. As shown in Fig. 6.9a, CTP only achieves 90%
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PDR. Moreover, the number of duplicate packets2 is also high. However,
we can see that using DISON these problems of CTP can be overcome.
The PDR of DISON+CTP is higher than CTP, almost equal to 100%. The
number of duplicate packets in DISON+CTP is reduced significantly. The
reason why using DISON improves the performance of CTP is that DI-
SON switches off some nodes, which reduces the amount of traffic trans-
mitted over the network and, in turn, the number of collisions. It results
in an increase of the number of received packets at the sink, compared to
the number of transmitted packets, and a decrease of number of duplicate
packets.

Fig 6.10a shows the communication overhead of each node. The over-
head of DISON+CTP is higher than CTP because of the management
messages. However, the total traffic of DISON is lower than CTP (see
Fig. 6.10b and Fig. 6.10c). It means that using DISON does not represent
a higher traffic load.

Impact of transmitting power

Now we analyze the performance of DISON framework with different
transmitting powers. As mentioned in [91], the CC2420 has 8 discrete
power levels 31, 27, 23, 19, 15, 11, 7, 3 corresponding to output power
values 0, -1, -3, -5, -7, -10, -15, -25 dBm, respectively. We ran our exper-
iments with three power levels 31, 15 and 3. Fig. 6.11 shows the network
topology when the transmitting power is -25 dBm and -7 dBm. In case of
the maximum transmitting power, 0 dBm, all the nodes can communicate
with each other. In each experiment, the sink broadcasts 20 queries. Each
query is sent every 40 minutes to collect sensing data every 5 seconds
during 30 minutes. The total time of each experiment is approximately
15 hours.

As mentioned in [92], the packet delivery rate of CTP depends on the
network topology. The impact of network topology on the network per-

2One of disadvantages of CTP is that when the ACK is lost due to the network colli-
sion, especially in high density networks, the sender will resend the frame to the receiver.
It results in the packet duplication.
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Figure 6.9: (a) Packet Delivery Ratio, (b) Duplicate Packets
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Figure 6.10: (a) Control Overhead, (b) Network traffic in number of pack-
ets, (c) Network traffic in number of bytes
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Figure 6.11: (a) Transmitting Power -25 dBm, (b) Transmitting Power -7
dBm

formance is also shown in our experiments. We can see the variability of
the PDR when the network topology changes. However, using DISON
can improve the PDR of CTP in case it does not have good performance.
In Fig. 6.12a, the PDR of CTP without and with using DISON is al-
most similar because when the transmitting power is small, the number of
neighbor nodes of each sensor node is small (i.e., see Fig. 6.11a), which
results in a low collision probability. Therefore, the PDR in both cases is
almost 100%. However, when the transmitting power increases, the net-
work traffic in the same collision domain increases, which causes more
collisions and packet loss. The result is that the PDR of the original CTP
is reduced. When using DISON, some nodes are switched off. It helps to
reduce the traffic. Therefore, it improves the PDR of the original CTP.

Although DISON does not improve the PDR in case of a low transmit-
ting power, it still helps to reduce the number of duplicate packets since
it uses less network traffic. Especially, DISON reduces significantly the
number of duplicate packets in case of high density networks.

Next, we analyze the energy consumption of the nodes to show the
benefits of our proposed framework. Fig. 6.13a shows that using DISON
reduces the energy consumption in all cases. In Fig. 6.13b, 6.13c and
6.13d, it is easy to see that the energy consumption of most of nodes in
case of using DISON is smaller than the original CTP. However, there are
some nodes in DISON+CTP consuming more energy than in CTP. The
reason is that when some nodes are switched off, the network topology
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Figure 6.12: (a) Packet Delivery Rate, (b) Duplicate Packets
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changes and those nodes have to forward more packets. Therefore, they
consume more energy.

Impact of the manager election cycle

In this section, we consider the impact of the manager election cycle to
choose the manager nodes dynamically. In these experiments, the trans-
mitting power is set to -7 dBm. The sink broadcasts 20 queries with
parameters similar to the used ones in the previous experiments. We ran
the manager node election process every 1, 2, 4 queries. We also ran the
same experiment in which DISON is not used, that is, the election round
is not done. Fig. 6.14 shows that using DISON always improves the
PDR. Moreover, the energy consumption is reduced significantly when
the election cycle is large (see Fig. 6.15a). The reason is that the num-
ber of management packets is reduced when the manager election process
does not run frequently. It is shown clearly in Fig. 6.15b. However, since
manager nodes have to perform management tasks, they consume more
energy than normal nodes. Therefore, it would be necessary to elect new
manager nodes after a period of working time to ensure the balance of
network resources.

Scalability analysis

In order to evaluate the scalability of DISON framework, we have de-
ployed a new testbed in the second floor of the Tanger building in the
Poble Nou campus at Universitat Pompeu Fabra, in Barcelona. We run
experiments with a different number of TelosB motes, namely 20, 40, 60
and 80 motes placed in a corridor with offices at each side as illustrated
in Figure 6.16. The density of nodes per square meter was kept constant
for the case of 20 and 40 nodes. However, for 60 and 80 nodes, since
they were deployed in the same area used for the case with 40 nodes, the
network density was higher.

In these experiments, the latest version of TinyOS is used. The sink
node is connected to a computer placed in one of the offices through an
USB cable. In each experiment, the sink broadcasts a query to collect
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Figure 6.13: (a) Energy Consumption vs Radio Range, (b) Energy Con-
sumption vs Node ID when transmitting at -25 dBm, (c) Energy Con-
sumption vs Node ID when transmitting at -7 dBm, (d) Energy Consump-
tion vs Node ID when transmitting at 0 dBm
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Figure 6.14: Packet Delivery Rate vs Election Cycle
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Figure 6.15: (a) Energy Consumption vs Election Cycle, (b) Management
Overhead vs Election Cycle
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data every 5 seconds during 15 minutes. The DISON framework is used
to choose a subset of sensor nodes that will remain active and will be
responsible for collecting and transmitting data to the sink. In these ex-
periments, the transmitting power is set to −25 dBm. In addition, each
experiment is repeated 3 times to achieve reliable results.
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Table 6.4 shows the management overhead of DISON framework for
different number of sensor nodes. As expected, the management overhead
increases with the number of nodes, as there are more nodes performing
management processes. However, if we observe the average number of
management packets per cluster, we can see that it only depends on the
cluster size (i.e., the number of nodes that belong to the same cluster),
which in turn is related to the network density. From those results, we can
conclude that DISON is scalable, as regardless the number of nodes in the
network, it is able to kept the management overhead per cluster constant
if the network density is not altered. In that situation, metrics such as
the energy consumption or the network lifetime would not be severely
affected.

6.2 Data Collection in a Shared Sensor Net-
work

Suppose we would like to extend the scenario presented in section 6.1 to
support a shared sensor network where there are multiple applications and
multiple sinks.

6.2.1 Scenario
We discussed in Section 1.2 the potential of the shared sensor network in-
frastructure which supports multiple applications belong to different au-
thorities. The general scenario of a shared sensor network infrastructure
is illustrated in Figure 6.17. There are several sinks deployed around a
sensor network. Users can use PC, smart phone or tablet to send task
requests directly to sensor networks at different location. The problem
is how sensor nodes handle these requests efficiently. In this thesis, we
use management functions in DISON framework to allocate network re-
sources and schedule the run time for multiple application tasks.

When a new task arrives, the sensor node execute the resource allo-
cation protocol to find out if it needs to support this task. The resource
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Sink

Task Request

Task Request

Figure 6.17: Data collection application in a share sensor network

allocation protocol decides which nodes host the requested task accord-
ing nodes’ resources. After the decision process, the Local Task Sched-
uler refreshes the current schedule of running tasks to cover the new one.
During the run time, the Local Task Scheduler combines close task in-
stances. This allows to reduce the computing processes by combining
similar requests. For example, there are 2 queries. One requests to collect
temperature and light each 5s. Another requests to collect temperature
and humidity each 20s. The Local Task Scheduler combines 2 queries
each 20. Therefore, sensor node only needs to call temperature sensor
one time. Since shared sensor networks can have a lot of traffic to sup-
port different applications, the ACK mechanism is used to increase the
reliability of the management messages exchange.

6.2.2 TinyOS Interface
We have extended the implementation of the DISON framework which
presented in the previous case study to support the multiple queries sce-
nario. We added the following functions to the interface DISONManage-
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mentAppI support the new proposed mechanisms. The function getCur-
rentTasks is used to get all tasks that need to start collecting sensing data
while the function getActiveTasks returns the list of tasks that needs to
transmit data to the sink. The function triggerSensors allows to trigger a
set of sensors to collect data from the environment. When the collecting
process has done, the event collectDone is signaled.

interface DISONManagementAppI{
...
command error_t getCurrentTasks(uint8_t* sensingtype,

uint16_t* nextrunperiod);
command void getActiveTasks(nx_uint16_t* tasklist);
command void triggerSensors(uint8_t sensingtype);
event void collectDone(uint16_t* val);

}

Since application tasks can come from different sinks, the global iden-
tification of each task is represented as the pair of the sink identification
sid and the local task identification lid at that sink, that is, (sid, lid). To
save the memory and reduce the communication overhead, we use the
Canto pairing function [93] to generate an unique number from a pair of
two integer numbers. Therefore, the message structure of the query task
is the same as presented in the first case study, where the queryID field
is the output of the Canto pairing function with the inputs sid and lid.

6.2.3 Performance evaluation in TOSSIM

We firstly evaluate the effectiveness of the proposed mechanisms through
simulations in TOSSIM, a simulation tool in TinyOS. We have compared
the network performance of six applications. In the first application MQ,
only the local schedule mechanism is used. The second DA2 and the third
DA3 applications are similar to the first one, however, they aggregate the
data from two and three concurrent tasks respectively before transmit-
ting to the sink. Three last applications combine both the local schedule
mechanism and the resource allocation mechanism in handling multiple
concurrent tasks. We name them as RS, RSDA2, and RSDA3. In all ap-
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Parameter Value
∆ACK 1s
∆A 1s
MAX GROUP MEMBERS 10
MAX ACTIVE TASKS 5
MAX RETRIES TIMES 5

Table 6.5: Simulation Parameters

plications, five queries are broadcast sequentially each 20 seconds. Their
periods are 1900s, 1800s, 1700s, 1600s, 1500s respectively. Therefore,
there is a maximum of 5 concurrent task on a sensor node. The maximum
packet size is set to 40 bytes. Other parameters are summarized in the
Table 6.5.

All applications use CTP as the routing protocol. Ten network topol-
ogy are generated for each network size and each protocol are executed
ten times with each network topology. Each result is the average of 100
experiments. The network performance is evaluated based on the follow-
ing performance metrics:

• Packet Delivery Ratio (PDR). The number of distinct received
packets divided by the number of packets sent.

• Duplicate Packets. The number of duplicate packets that are re-
ceived at the sink. We added a sequence number to each data
packet, and counted the number of received packets which have
the same sequence number.

• Management Overhead. The number of exchanged management
packets.

• Network Traffic. The total number of packets exchanged in the
network.

• Response Time. The average time sinks receive the first packets of
each application from all nodes for all tasks.
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Impact of the sampling rate

In order to evaluate the impact of the sampling rate, two set of sampling
rates are used. The first set includes sampling rates that have common
divisor {5, 10, 15, 20, 25}. In the second set, sampling rates are generated
randomly in the range of [5, 30]. We generate randomly networks of 65
nodes in an area of 50x50m2. The communication range of each sensor
node is set to 15m. The sink is placed randomly in the area. It broadcasts
5 queries with the sampling rate from two above sets correspondingly.

In case of the common divisor sampling rates, the probability of oc-
curring simultaneous tasks is high. If the data from simultaneous tasks
is not aggregated in one packet, it can result in high traffic in a time slot.
Thus, the packet can be lost due to the collision. Using the RS mecha-
nism and data aggregation can overcome this problem since they reduce
the number of data packets. This can be seen in the Figure 6.18a. The
PDR of MQ in case of the common divisor sampling rates is lowest. It is
only approximately 93%) while the one in case of the random sampling
rates is ' 98%. The PDR of RSDA3 in both sampling rates are higher
than 99%, though. The Figure 6.18a also shows that our RS mechanism
can improve the PDR regardless of sampling rates. Moreover, our RS
mechanism reduces the network traffic and the duplicate packets signif-
icantly. Especially, in case of the common divisor sampling rates, using
RS and data aggregation can reduce more than 60% of the network traf-
fic and more than 50% of the duplicate packets (Figure 6.18c and Figure
6.18b). However, the response time when using RS is higher than without
RS (Figure 6.18d). This is because the network needs time to allocate
resources. The network traffic of RSDA3 is little higher than RSDA2 in
case of the random sampling rates. The reason is the PDR of RSDA3 is
higher than RSDA2 while the occurring probability of three simultaneous
queries is low.

Impact of network density

Next we evaluate the impact of node density on the efficiency of our
proposed mechanisms. In the simulations, the network area is set to
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Figure 6.18: (a) Packet Delivery Ratio (b) Duplicate Packets (c) Commu-
nication Overhead (d) Response Time
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50x50m2. The area is divided into 25 cells. The number of nodes in
each cell is equal and varies from 1 to 4. The communication range of
each node is set to 15m. The sink broadcasts 5 queries with sampling
rates from the set {5, 10, 15, 20, 25}.

When the node density increases, the data traffic increases. It results
in a higher probability of collision. As a result, the PDR of MQ decreases
significantly. Using RS and data aggregation mechanism can overcome
this problem. As seen in Figure 6.19a, the PDR is improved. Especially,
the PDR of RSDA3 is always approximately 100%. Although the man-
agement overhead increases, the network traffic of applications using RS
is still much lower than the ones without using RS (Figure 6.20a). The
network traffic of RSDA3 is only around 1/4 of MQ. The number of
duplicated packets is also reduced significantly, 50% in case of RSDA3
(Figure 6.19b). Figure 6.20b shows that the response time when using
RS is higher, however, the time difference decreases when the network
density increases.

Impact of network scale

In this section, we evaluate the impact of network scale. The network
size varies from 50x50m2 to 50x250m2. The network area is divided
into cells. The size of each cell is 25x25m2. There are three nodes in
each cell. Therefore, the number of nodes are 12, 24, 36, 48 and 60
nodes respectively. Each node has a communication range of 20m. There
is only one sink which are placed randomly in the network area. The
sink broadcasts 5 queries continuously with sampling rates from the set
{5, 10, 15, 20, 25}.

As seen in Figure 6.22a, the network scale does not affect the PDR.
However, the number of duplicate packets increases when the network
scale is bigger. Figure 6.23a shows that using RS can improve the network
performance in large scale networks. Figure 6.22 and Figure 6.23 indicate
that applications using RS have higher PDR, less duplicated packets and
less total network traffic. The management overhead in case of network
scale is similar to the case of network density (Figure 6.24). However,

111



“trang˙thesis” — 2014/7/8 — 16:45 — page 112 — #134

0 1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

P
a

c
k
e

t 
D

e
liv

e
ry

 R
a

ti
o

Network Density

 

 

MQ
DA2
DA3

RS
RSDA2
RSDA3

(a)

0 1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

D
u

p
lic

a
te

 P
a

c
k
e

ts

Network Density

 

 

MQ
DA2
DA3

RS
RSDA2
RSDA3

(b)

Figure 6.19: (a) Packet Delivery Ratio (b) Duplicate Packets
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Figure 6.20: (a) Communication Overhead (b) Response Time
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Figure 6.21: Management Overhead

since total network traffic when using RS is smaller than without using
RS, the increase of management overhead is acceptable. In the Figure
6.23b, the response time fluctuates when the network size changes. In
case of MQ and RS, the response time increases when the network size
increases because it takes more time to transmit packets from the nodes
which are far from the sink. However, it goes up and down in other cases
since the data aggregation can reduce the response time in some situa-
tions.

Impact of multiple sinks

The next evaluations is to evaluate the network performance when there
are multiple sinks. In the simulations, 200 sensor nodes are deployed in an
area of 200x200m2. The network is divided into 100 cells. Each cell has
two nodes. The position of each node is randomly. The communication
range is set to 40m. The number of sinks varies from 1 to 3. Each sink
is placed randomly in the network area. In case of one sink, the sink
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Figure 6.22: (a) Packet Delivery Ratio (b) Duplicate Packets
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Figure 6.23: (a) Communication Overhead (b) Response Time
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Figure 6.24: Management Overhead

broadcasts all 5 queries with sampling rates 5, 10, 15, 20, 25 respectively.
In case of two sinks, the first sink broadcasts the first three queries while
the second sink is responsible for the last two ones. In case of three sinks,
two first queries is sent by the first sink, the next two ones comes from the
second sink, and the last one is sent by the third sink.

In CTP protocol, the data packets are forwarded to the nearest sink.
We assume that sinks can communicate directly through a high speed
communication media such as WIFI or 4G. If the data packet is not for
that sink, the sink can forward it to the correct destination easily.

Figure 6.25a, 6.26a, and 6.26b show that using multiple sinks can help
to increase the PDR, reduce network traffic and response time. The reason
is multiple sinks are placed around the network while the routing protocol
(CTP) forwards the data packets to the nearest sink. This helps to reduce
the number of hops needed to reach a sink. However, the number of
duplicated packets increases when the number of sinks increases because
of the higher PDR (Figure 6.25b).
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Figure 6.25: (a) Packet Delivery Ratio (b) Duplicate Packets
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Figure 6.26: (a) Communication Overhead (b) Response Time
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Chapter 7

CONCLUSIONS AND
FUTURE WORKS

In this chapter we present the conclusions of the work presented in this
thesis, and we identify the topics that we recommend for future work.

7.1 Conclusions
This thesis has presented a self organizing management platform for WSNs
that is capable to meet the increasing needs of WSN applications. By
utilizing a multilevel management schema and an independent layer, the
platform is scalable and flexible. We have developed a role election proto-
col to assign management roles to sensor nodes. This protocol allows the
developer or the network administrator to change the manager candidate
requirements in both the development and run time stages.

We have defined the Context model and the Policy model to store
specific information and events that can cause a management function.
These two models are designed simple to be suitable for a limited resource
device as sensor node. We have also developed a context detection and
policy based reasoning mechanism to combine with the data models to
support the adaptability.

To validate the efficiency of the platform, we have designed a resource
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allocation protocol which coordinate network resources among adjacent
sensor nodes to support multiple application tasks from different author-
ities. A local task scheduler has also been developed to efficiently share
local node resources across multiple independent application tasks. Addi-
tionally, we have defined a general Task model that cover both requested
and running tasks in local node or in the member nodes that the node
manages.

Since not all of sensor node platform support the Acknowledgment
mechanism at MAC layer, we have developed a high level ACK mech-
anism to reduce the packet loss in dense networks. This mechanism
is independent to management functions and communication protocols.
Therefore, it is easy to enable or disable this ACK mechanism.

We have demonstrated the suitability of our proposed platform by
means of case studies. In the first case study, we considered a typical
data collection in a single WSN. We have customized the resource allo-
cation protocol to choose a set of active nodes to support the query task
while scheduling sleeping time for others. We have designed management
components in SENSE and in nesC, a programming language of TinyOS.
These components are independent. Each component provides and uses
public interfaces to/from other ones. Evaluation processes are perform on
both simulator and testbed with a large number of experiments. The re-
sults show that the proposed platform not only reduces the node’s energy
consumption but also improves other network performance metrics such
as the packet delivery rate and the end-to-end delay.

In the second case study, we validate the feasibility and the efficiency
of the platform when there are simultaneous applications from the same
sink or different sinks in a shared WSN. In this scenario, the resource
allocation protocol is customized to choose a set of nodes to support a
requested application task. The local task scheduler is enable to identify
when a task instance starts. We have also developed a simple data aggre-
gation mechanism that combines data from multiple tasks before sending
to the sink. We have extended the implementation in the first case study to
support new management functions. We have varied both network topol-
ogy and network parameters to see the impact of the proposed platform.
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Our experiment results showed that the proposed platform reduces signif-
icantly the network traffic, hence, leading to consuming less energy.

7.2 Future Works
The work started by this dissertation can be further continued in many
directions. They are summarized as below:

• The number of WSN applications is increasing rapidly. A lot of
applications require to sense events and report them to the sink in
an efficient and timely manner. A model that described the Quality
of Service for various applications should be defined. Each appli-
cation should have a priority according to its required QoS. When
multiple applications are executed concurrently in a single WSN,
the WSN management system should combine the QoS models of
all applications and generate a global QoS model to find the gen-
eral trade-off in case the required QoS of all running applications
can not be guaranteed. There should be a mechanism to arrange the
execution of application tasks to meet the overall QoS. The existing
resource allocation protocol and the local task scheduler mecha-
nism should be improved to cover the QoS issues.

• As mentioned previously, WSNs is one of key components of IoT.
The technologies that will enable sensor nodes to Internet directly
are being developed and tested. For example, the 6LowPAN stan-
dard, defined by IETF [94], enables the use of IPv6 packets in re-
stricted networks such as sensor networks. It is necessary to address
management issues when sensor nodes have Internet connectivity.

• One of the most interesting direction to work on in the future is the
development of protocols based on DISON framework to manage
power in harvesting sensor networks. Using energy harvesting as a
complement power source for battery is one of research directions
in WSNs that have attracted a lot of researchers recently. How-
ever, there are some limitations of the harvesting energy source.
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For example, the the harvested energy availability typically varies
with time in a nondeterministic manner and different nodes may
have different harvesting opportunity [95]. There should be a new
data model that stores information from harvesting energy sources.
Such a data model may be used to find out the energy transforma-
tion cycle (e.g. at what time in the day the energy is harvested more
or which location of node can collect more energy). The existing
resource allocation protocol should be also improved to be aware
the harvesting energy.

124



“trang˙thesis” — 2014/7/8 — 16:45 — page 125 — #147

Bibliography

[1] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart Cities in Europe,”
Journal of urban technology, vol. 18, no. 2, pp. 65–82, 2011.

[2] K. Su, J. Li, and H. Fu, “Smart City and The Applications,” in Elec-
tronics, Communications and Control (ICECC), 2011 International
Conference on, pp. 1028–1031, Sept 2011.

[3] H. Chourabi, T. Nam, S. Walker, J. Gil-Garcia, S. Mellouli, K. Na-
hon, T. Pardo, and H. J. Scholl, “Understanding Smart Cities: An
Integrative Framework,” in System Science (HICSS), 2012 45th
Hawaii International Conference on, pp. 2289–2297, Jan 2012.

[4] “Open Cities.” http://opencities.net/.

[5] “Smart Santander.” http://www.smartsantander.eu/.

[6] T. Naumowicz, R. Freeman, H. Kirk, B. Dean, M. Calsyn, A. Liers,
A. Braendle, T. Guilford, and J. Schiller, “Wireless Sensor Network
for habitat monitoring on Skomer Island,” in Local Computer Net-
works (LCN), 2010 IEEE 35th Conference on, pp. 882–889, Oct
2010.

[7] M. Bocca, J. Toivola, L. Eriksson, H. J., and H. Koivo, “Struc-
tural Health Monitoring in Wireless Sensor Networks by the Em-
bedded Goertzel Algorithm,” in Cyber-Physical Systems (ICCPS),
2011 IEEE/ACM International Conference on, pp. 206–214, April
2011.

125



“trang˙thesis” — 2014/7/8 — 16:45 — page 126 — #148

[8] D. Surie, O. Laguionie, and T. Pederson, “Wireless sensor network-
ing of everyday objects in a smart home environment,” in Intelligent
Sensors, Sensor Networks and Information Processing, 2008. ISS-
NIP 2008. International Conference on, pp. 189–194, Dec 2008.

[9] R. Wang, L. Zhang, R. Sun, J. Gong, and L. Cui, “EasiTia: A Per-
vasive Traffic Information Acquisition System Based on Wireless
Sensor Networks,” Intelligent Transportation Systems, IEEE Trans-
actions on, vol. 12, no. 2, pp. 615–621, 2011.

[10] M. Bottero, B. D. Chiara, and F. Deflorio, “Wireless Sensor Net-
works for Traffic Monitoring in A Logistic Centre,” Transportation
Research Part C: Emerging Technologies, vol. 26, no. 0, pp. 99 –
124, 2013.

[11] A. Majeed and T. Zia, “Multi-set Architecture for Multi-applications
Running on Wireless Sensor Networks,” in Advanced Information
Networking and Applications Workshops (WAINA), 2010 IEEE 24th
International Conference on, pp. 299–304, 2010.

[12] I. Leontiadis, C. Efstratiou, C. Mascolo, and J. Crowcroft, “Sen-
Share: Transforming Sensor Networks into Multi-Application Sens-
ing Infrastructures,” in Wireless Sensor Networks, pp. 65–81,
Springer, 2012.

[13] C. Cano, B. Bellalta, A. Sfairopoulou, and M. Oliver, “Low Energy
Operation in WSNs: A Survey of Preamble Sampling MAC Proto-
cols,” Computer Network, vol. 55, pp. 3351–3363, Oct. 2011.

[14] P. Santi, “Topology Control in Wireless Ad hoc and Sensor Net-
works,” ACM Computing Surveys, vol. 37, pp. 164–194, June 2005.

[15] Y. Manolopoulos, D. Katsaros, and A. Papadimitriou, “Topology
Control Algorithms for Wireless Sensor Networks: A Critical Sur-
vey,” in Proceedings of the 11th International Conference on Com-
puter Systems and Technologies and Workshop for PhD Students in

126



“trang˙thesis” — 2014/7/8 — 16:45 — page 127 — #149

Computing on International Conference on Computer Systems and
Technologies, CompSysTech ’10, (New York, NY, USA), pp. 1–10,
ACM, 2010.

[16] S. K. Singh, M. Singh, and D. Singh, “Routing Potocols in Wireless
Sensor Networks–A Survey,” International Journal of Computer
science and engineering Survey (IJCSES), vol. 1, no. 2, pp. 63–83,
2010.

[17] U. Prathap, P. D. Shenoy, K. Venugopal, and L. Patnaik, “Wireless
Sensor Networks Applications and Routing Protocols: Survey and
Research Challenges,” in Cloud and Services Computing (ISCOS),
2012 International Symposium on, pp. 49–56, IEEE, 2012.

[18] P. Horn, “Autonomic computing: IBM’s Perspective on the State of
Information Technology,” 2001.

[19] G. Chen, J. Branch, M. Pflug, L. Zhu, and B. Szymanski., “SENSE:
A Sensor Network Simulator,” Advances in Pervasive Computing
and Networking, pp. 249–267, 2004.

[20] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications,” in Proceedings
of the 1st international conference on Embedded networked sensor
systems, pp. 126–137, ACM, 2003.

[21] P. Levis, “TinyOS 2.0 Overview.” http://www.tinyos.net/ dist-
2.0.0/tinyos-2.0.0/doc/html/overview.html.

[22] S. Sudevalayam and P. Kulkarni, “Energy Harvesting Sensor
Nodes: Survey and Implications,” Communications Surveys Tuto-
rials, IEEE, vol. 13, no. 3, pp. 443–461, 2011.

[23] J. Case, “Management of High Speed Networks with The Simple
Network Management protocol (SNMP),” in Local Computer Net-
works, 1990. Proceedings., 15th Conference on, pp. 195–199, Sep
1990.

127



“trang˙thesis” — 2014/7/8 — 16:45 — page 128 — #150

[24] W. C. Nitin, W. Chen, N. Jain, and S. Singh, “ANMP: Ad hoc Net-
work Network Management Protocol,” IEEE Journal on Selected
Areas in Communications, vol. 17, pp. 1506–1531, 1999.

[25] L. B. Ruiz, J. M. Nogueira, and A. A. F. Loureiro, “MANNA: A
Management Architecture for Wireless Sensor Networks,” Commu-
nications Magazine, IEEE, vol. 41, no. 2, pp. 116–125, 2003.

[26] M. Younis, M. Youssef, and K. Arisha, “Energy-aware Management
for Cluster-based Sensor Networks,” Computer Networks, pp. 649–
668, 2003.

[27] H. Song, D. Kim, K. Lee, and J. Sung, “UPnP-Based Sensor Net-
work Management Architecture,” in The Second International Con-
ference on Mobile Computing and Ubiquitous Networking, Apr.
2005.

[28] “Universal Plug and Play (UPnP).”
http://tools.ietf.org/html/rfc6970.

[29] G. Tolle and D. Culler, “Design of an Application-Cooperative Man-
agement System for Wireless Sensor Networks,” in Wireless Sensor
Networks, 2005. Proceeedings of the Second European Workshop
on, pp. 121 – 132, jan.-2 feb. 2005.

[30] F. Yuan, W.-Z. Song, N. Peterson, Y. Peng, L. Wang, B. Shirazi,
and R. LaHusen, “A Lightweight Sensor Network Management Sys-
tem Design,” in Pervasive Computing and Communications, 2008.
PerCom 2008. Sixth Annual IEEE International Conference on,
pp. 288–293, 2008.

[31] W. L. Lee, A. Datta, and R. C. Oliver, “WinMS: Wireless Sensor
Network-Management System, An Adaptive Policy-Based Manage-
ment for Wireless Sensor Networks,” tech. rep., School of Computer
Science & Software Engineering, The University of Western Aus-
tralia, 2006.

128



“trang˙thesis” — 2014/7/8 — 16:45 — page 129 — #151

[32] S.-H. Cha, J.-E. Lee, M. Jo, H. Y. Youn, S. Kang, and K.-H.
Cho, “Policy-Based Management for Self-Managing Wireless Sen-
sor Networks,” IEICE Transactions, pp. 3024–3033, 2007.

[33] T. Le, W. Hu, S. Jha, and P. Corke, “Design and Implementation of
a Policy-based Management System for Data Reliability in Wireless
Sensor Networks,” in Local Computer Networks, 2008. LCN 2008.
33rd IEEE Conference on, pp. 762 –769, oct. 2008.

[34] Y. Zhu, S. L. Keoh, M. Sloman, E. Lupu, Y. Zhang, N. Dulay, and
N. Pryce, “Finger: An Efficient Policy System for Body Sensor Net-
works,” in Mobile Ad Hoc and Sensor Systems, 2008. MASS 2008.
5th IEEE International Conference on, pp. 428–433, Sept 2008.

[35] Y. Zhu, S. L. Keoh, M. Sloman, and E. Lupu, “A Lightweight Policy
System for Body Sensor Networks,” Network and Service Manage-
ment, IEEE Transactions on, vol. 6, pp. 137 –148, september 2009.

[36] Z. Wenbo and X. Haifeng, “A Policy Based Wireless Sensor Net-
work Management Architecture,” in Intelligent Networks and In-
telligent Systems (ICINIS), 2010 3rd International Conference on,
pp. 552 –555, nov. 2010.

[37] N. Matthys and W. Joosen, “Towards Policy-based Management of
Sensor Networks,” in Proceedings of the 3rd International Work-
shop on Middleware for Sensor Networks, MidSens ’08, (New York,
NY, USA), pp. 13–18, ACM, 2008.

[38] T. Bourdenas and M. Sloman, “Starfish: Policy Driven Self-
management in Wireless Sensor Networks,” in Proceedings of
the 2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS ’10, (New York, NY, USA),
pp. 75–83, ACM, 2010.

[39] X. Jiang, J. Taneja, J. Ortiz, A. Tavakoli, P. Dutta, J. Jeong,
D. Culler, P. Levis, and S. Shenker, “An Architecture for Energy

129



“trang˙thesis” — 2014/7/8 — 16:45 — page 130 — #152

Management in Wireless Sensor Networks,” SIGBED Rev., vol. 4,
pp. 31–36, July 2007.

[40] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal Energy
Management Policies for Energy Harvesting Sensor Nodes,” Wire-
less Communications, IEEE Transactions on, vol. 9, pp. 1326–1336,
April 2010.

[41] T. Bourdenas, K. Tei, S. Honiden, and M. Sloman, “Autonomic Role
and Mission Allocation Framework for Wireless Sensor Networks,”
in Self-Adaptive and Self-Organizing Systems (SASO), 2011 Fifth
IEEE International Conference on, pp. 61–70, Oct 2011.

[42] J. Waterman, G. W. Challen, and M. Welsh, “Peloton: Coordinated
Resource Management for Sensor Networks,” in Proceedings of the
12th Conference on Hot Topics in Operating Systems, HotOS’09,
(Berkeley, CA, USA), pp. 9–9, USENIX Association, 2009.

[43] S. Misra and A. Jain, “Policy Controlled Self-configuration in Unat-
tended Wireless Sensor Networks,” Journal of Network and Com-
puter Applications, vol. 34, no. 5, pp. 1530 – 1544, 2011. Depend-
able Multimedia Communications: Systems, Services, and Applica-
tions.

[44] A. Erdogan, E. Cayirci, and V. Coskun, “Sectoral Sweepers for Sen-
sor Node Management and Location Estimation in Ad Hoc Sensor
Networks,” in Proceedings of the 2003 IEEE Conference on Mili-
tary Communications - Volume I, MILCOM’03, (Washington, DC,
USA), pp. 555–560, IEEE Computer Society, 2003.

[45] C.-L. Fok, G.-C. Roman, and C. Lu, “Agilla: A Mobile Agent Mid-
dleware for Self-adaptive Wireless Sensor Networks,” ACM Trans.
Auton. Adapt. Syst., vol. 4, pp. 16:1–16:26, July 2009.

[46] R. Lopes, F. Assis, and C. Montez, “MASPOT: A Mobile Agent
System for Sun SPOT,” in Autonomous Decentralized Systems

130



“trang˙thesis” — 2014/7/8 — 16:45 — page 131 — #153

(ISADS), 2011 10th International Symposium on, pp. 25–31, March
2011.

[47] M. Haghighi and D. Cliff, “Multi-agent Support for Multiple Con-
current Applications and Dynamic Data-Gathering in Wireless Sen-
sor Networks,” in Innovative Mobile and Internet Services in Ubiq-
uitous Computing (IMIS), 2013 Seventh International Conference
on, pp. 320–325, July 2013.

[48] C. Muldoon, G. O’Hare, M. O’Grady, and R. Tynan, “Agent Mi-
gration and Communication in WSNs,” in Parallel and Distributed
Computing, Applications and Technologies, 2008. PDCAT 2008.
Ninth International Conference on, pp. 425–430, Dec 2008.

[49] E. Arseneau, R. Goldman, A. Poursohi, R. B. Smith, and
J. Daniels, “Simplifying The Development of Sensor Applications,”
Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA 2006), 2006.

[50] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, “Mid-
dleware to Support Sensor Network Applications,” Network, IEEE,
vol. 18, pp. 6–14, Jan 2004.

[51] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: An Acquisitional Query Processing System for Sensor
Networks,” ACM Trans. Database Syst., vol. 30, pp. 122–173, Mar.
2005.

[52] T. Liu and M. Martonosi, “Impala: A Middleware System for Man-
aging Autonomic, Parallel Sensor Systems,” in Proceedings of the
Ninth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’03, (New York, NY, USA), pp. 107–
118, ACM, 2003.

[53] E. Souto, G. Guimar&#x00e3;es, G. Vasconcelos, M. Vieira,
N. Rosa, C. Ferraz, and J. Kelner, “Mires: A Publish/Subscribe

131



“trang˙thesis” — 2014/7/8 — 16:45 — page 132 — #154

Middleware for Sensor Networks,” Personal Ubiquitous Comput.,
vol. 10, pp. 37–44, Dec. 2005.

[54] C. Seeger, K. Van Laerhoven, J. Sauer, and A. Buchmann, “A Pub-
lish/Subscribe Middleware for Body and Ambient Sensor Networks
that Mediates between Sensors and Applications,” in Healthcare In-
formatics (ICHI), 2013 IEEE International Conference on, pp. 199–
208, Sept 2013.

[55] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola,
G. Picco, T. Sivaharan, N. Weerasinghe, and S. Zachariadis, “The
RUNES Middleware for Networked Embedded Systems and its Ap-
plication in a Disaster Management Scenario,” in Pervasive Com-
puting and Communications, 2007. PerCom ’07. Fifth Annual IEEE
International Conference on, pp. 69–78, March 2007.

[56] K. Shah and M. Kumar, “DReL: A Middleware for Wireless Sensor
Networks Management using Reinforcement Learning Techniques,”
in Proceedings of the 5th International Workshop on Middleware
Tools, Services and Run-Time Support for Sensor Networks, Mid-
Sens ’10, (New York, NY, USA), pp. 1–7, ACM, 2010.

[57] F. Ganz, P. Barnaghi, F. Carrez, and K. Moessner, “Context-aware
Management for Sensor Networks,” in Proceedings of the 5th Inter-
national Conference on Communication System Software and Mid-
dleware, COMSWARE ’11, (New York, NY, USA), pp. 6:1–6:6,
ACM, 2011.

[58] G. Di Modica, F. Pantano, and O. Tomarchio, “SNPS: An OSGi-
Based Middleware for Wireless Sensor Networks,” in Advances in
Service-Oriented and Cloud Computing (C. Canal and M. Villari,
eds.), vol. 393 of Communications in Computer and Information
Science, pp. 1–12, Springer Berlin Heidelberg, 2013.

[59] O. Alliance, “Open Service Gateway Initiative, OSGi (2013).”
http://www.osgi.org/.

132



“trang˙thesis” — 2014/7/8 — 16:45 — page 133 — #155

[60] S. Hachem, A. Pathak, and V. Issarny, “Service-oriented Middle-
ware for Large-scale Mobile Participatory Sensing,” Pervasive Mob.
Comput., vol. 10, pp. 66–82, Feb. 2014.

[61] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Es-
trin, “Sympathy for The Sensor Network Debugger,” in Proceedings
of the 3rd international conference on Embedded networked sensor
systems, SenSys ’05, (New York, NY, USA), pp. 255–267, ACM,
2005.

[62] W. Zhao, Y. Liang, Q. Yu, and Y. Sui, “H-WSNMS: A Web-Based
Heterogeneous Wireless Sensor Networks Management System Ar-
chitecture,” in Proceedings of the 2009 International Conference on
Network-Based Information Systems, NBIS ’09, (Washington, DC,
USA), pp. 155–162, IEEE Computer Society, 2009.

[63] A. A. Abbasi and M. Younis, “A Survey on Clustering Algo-
rithms for Wireless Sensor Networks ,” Computer Communications,
vol. 30, no. 14 - 15, pp. 2826 – 2841, 2007.

[64] Y. P. Chen, A. L. Liestman, and J. Liu, “Clustering Algorithms for
Ad Hoc Wireless Networks,” in Ad Hoc and Sensor Networks. Nova
Science Publishers, 2004.

[65] O. Younis and S. Fahmy, “HEED: A Hybrid, Energy-Efficient, Dis-
tributed Clustering Approach for Ad Hoc Sensor Networks,” Mobile
Computing, IEEE Transactions on, vol. 3, pp. 366 – 379, oct.-dec.
2004.

[66] P. Marron, A. Lachenmann, D. Minder, J. Hahner, R. Sauter, and
K. Rothermel, “TinyCubus: A Flexible and Adaptive Framework for
Sensor Networks,” in Wireless Sensor Networks, 2005. Proceeed-
ings of the Second European Workshop on, pp. 278 – 289, jan.-2
feb. 2005.

133



“trang˙thesis” — 2014/7/8 — 16:45 — page 134 — #156

[67] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, and
J. Sztipanovits, “OASiS: A Programming Framework for Service-
Oriented Sensor Networks,” in Communication Systems Software
and Middleware, 2007. COMSWARE 2007. 2nd International Con-
ference on, pp. 1–8, 2007.

[68] L. Mottola and G. P. Picco, “Programming Wireless Sensor Net-
works: Fundamental Concepts and State of the Art,” ACM Comput.
Surv., vol. 43, pp. 19:1–19:51, Apr. 2011.

[69] M. Valero, S. S. Jung, A. S. Uluagac, Y. Li, and R. Beyah, “Di-Sec:
A distributed security framework for heterogeneous wireless sensor
networks,” in INFOCOM, 2012 Proceedings IEEE, pp. 585–593,
IEEE, 2012.

[70] M. Valero, S. Uluagac, S. Venkatachalam, K. Ramalingam, and
R. Beyah, “The Monitoring Core: A framework for sensor secu-
rity application development,” in Mobile Adhoc and Sensor Systems
(MASS), 2012 IEEE 9th International Conference on, pp. 263–271,
2012.

[71] J. M. Prinsloo, C. L. Schulz, D. G. Kourie, W. H. M. Theunissen,
T. Strauss, R. Van Den Heever, and S. Grobbelaar, “A Service Ori-
ented Architecture for Wireless Sensor and Actor Network Applica-
tions,” in Proceedings of the 2006 Annual Research Conference of
the South African Institute of Computer Scientists and Information
Technologists on IT Research in Developing Countries, SAICSIT
’06, (Republic of South Africa), pp. 145–154, South African Insti-
tute for Computer Scientists and Information Technologists, 2006.

[72] R. Jurdak, A. G. Ruzzelli, A. Barbirato, and S. Boivineau, “Octo-
pus: Monitoring, Visualization, and Control of Sensor Networks,”
Wireless Communications and Mobile Computing, vol. 11, no. 8,
pp. 1073–1091, 2011.

[73] L. Ma, L. Wang, L. Shu, J. Zhao, S. Li, Z. Yuan, and N. Ding,
“NetViewer: A Universal Visualization Tool for Wireless Sensor

134



“trang˙thesis” — 2014/7/8 — 16:45 — page 135 — #157

Networks,” in Global Telecommunications Conference (GLOBE-
COM 2010), 2010 IEEE, pp. 1–5, 2010.

[74] P. V. Biron and A. Malhotra, eds., XML Schema Part 2: Datatypes.
W3C Recommendation, W3C, second ed., Oct. 2004.

[75] A. K. Dey, “Understanding and Using Context,” Personal Ubiqui-
tous Comput., vol. 5, pp. 4–7, Jan. 2001.

[76] A. Taherkordi, R. Rouvoy, Q. Le-Trung, and F. Eliassen, “Sup-
porting Lightweight Adaptations in Context-aware Wireless Sen-
sor Networks,” in Proceedings of the 1st International Workshop
on Context-Aware Middleware and Services: affiliated with the
4th International Conference on Communication System Software
and Middleware (COMSWARE 2009), CAMS ’09, (New York, NY,
USA), pp. 43–48, ACM, 2009.

[77] X. Liu, “A Survey on Clustering Routing Protocols in Wireless Sen-
sor Networks,” Sensors, vol. 12, no. 8, pp. 11113–11153, 2012.

[78] M. Handy, M. Haase, and D. Timmermann, “Low Energy Adaptive
Clustering Hierarchy with Deterministic Cluster-head Selection,” in
Mobile and Wireless Communications Network, 2002. 4th Interna-
tional Workshop on, pp. 368–372, IEEE, 2002.

[79] P. Ding, J. Holliday, and A. Celik, “Distributed Energy-efficient Hi-
erarchical Clustering for Wireless Sensor Networks,” in Proceedings
of the First IEEE international conference on Distributed Comput-
ing in Sensor Systems, pp. 322–339, Springer-Verlag, 2005.

[80] “Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Net-
works (WPANs).”

[81] F. Stann, J. Heidemann, R. Shroff, and M. Z. Murtaza, “RBP: Ro-
bust Broadcast Propagation in Wireless Networks,” in Proceedings

135



“trang˙thesis” — 2014/7/8 — 16:45 — page 136 — #158

of the 4th international conference on Embedded networked sensor
systems, pp. 85–98, ACM, 2006.

[82] G. Mainland, D. C. Parkes, and M. Welsh, “Decentralized, Adap-
tive Resource Allocation for Sensor Networks,” in Proceedings of
the 2nd conference on Symposium on Networked Systems Design
& Implementation-Volume 2, pp. 315–328, USENIX Association,
2005.

[83] T. N’Takpe and F. Suter, “Concurrent Scheduling of Parallel Task
Graphs on Multi-clusters Using Constrained Resource Allocations,”
in Parallel Distributed Processing, 2009. IPDPS 2009. IEEE Inter-
national Symposium on, pp. 1–8, May 2009.

[84] C.-L. Fok, G.-C. Roman, and C. Lu, “Adaptive Service Provision-
ing for Enhanced Energy Efficiency and Flexibility in Wireless Sen-
sor Networks,” Science of Computer Programming, vol. 78, no. 2,
pp. 195 – 217, 2013. Coordination 2010.

[85] W. Li, F. C. Delicato, P. F. Pires, Y. C. Lee, A. Y. Zomaya, C. Miceli,
and L. Pirmez, “Efficient Allocation of Resources in Multiple Het-
erogeneous Wireless Sensor Networks,” Journal of Parallel and Dis-
tributed Computing, vol. 74, no. 1, pp. 1775 – 1788, 2014.

[86] S. Xiang, H. B. Lim, and K.-L. Tan, “Multiple Query Optimization
for Wireless Sensor Networks,” in Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on, pp. 1339 –1341, april
2007.

[87] N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman,
“Multi-query Optimization for Sensor Networks,” in Distributed
Computing in Sensor Systems (V. Prasanna, S. Iyengar, P. Spirakis,
and M. Welsh, eds.), vol. 3560 of Lecture Notes in Computer Sci-
ence, pp. 307–321, Springer Berlin Heidelberg, 2005.

[88] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Col-
lection Tree Protocol,” in Proceedings of the 7th ACM Conference

136



“trang˙thesis” — 2014/7/8 — 16:45 — page 137 — #159

on Embedded Networked Sensor Systems, SenSys ’09, (New York,
NY, USA), pp. 1–14, ACM, 2009.

[89] “Dissemination of Small Values.” http://www.tinyos.net/tinyos-
2.x/doc/html/tep118.html.

[90] “Telos Revision B Datasheet.”
http://www.dtic.upf.edu/ bbellalt/telosb-datasheet.pdf.

[91] T. Instruments, “2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF
Transceiver (Rev. C).” http://www.ti.com/lit/ds/symlink/cc2420.pdf.

[92] D. Puccinelli, O. Gnawali, S. Yoon, S. Santini, U. Colesanti, S. Gior-
dano, and L. Guibas, “The Impact of Network Topology on Col-
lection Performance,” in Proceedings of the 8th European confer-
ence on Wireless sensor networks, EWSN’11, (Berlin, Heidelberg),
pp. 17–32, Springer-Verlag, 2011.

[93] “Canto Pairing function.” http://en.wikipedia.org/wiki/Pairing function.

[94] N. Kushalnagar, G. Montenegro, D. E. Culler, and J. W. Hui, “Trans-
mission of Ipv6 Packets over IEEE 802.15. 4 Networks,” 2007.

[95] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power Manage-
ment in Energy Harvesting Sensor Networks,” ACM Trans. Embed.
Comput. Syst., vol. 6, Sept. 2007.

137



“trang˙thesis” — 2014/7/8 — 16:45 — page 138 — #160


