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Resumen

La utilizacién de redes de comunicacién para entornos industriales ha incrementado
la flexibilidad de conexionado de nuevos dispositivos a los sistemas existentes de
monitorizacién, supervision y control industriales reduciendo ademas el coste de
explotacién y mantenimiento. Sin embargo, a diferencia de la comunicacién punto a
punto donde se tienen mediciones continuas y sin retardos, la transmision de datos a
través de una red de comunicacién puede sufrir retardos temporales e incluso pérdidas
debido a diversos motivos. Ademads, la reciente expansion de dispositivos inalambricos,
introduce todavia mas flexibilidad en la explotacién del sistema en detrimento de una
transmision de datos eficaz desde el punto de vista de la monitorizacién, supervision y
control de procesos.

Con el auge de la utilizacion de las redes de comunicacién para sistemas
industriales también se ha visto incrementada la cantidad de recursos necesarios para
garantizar ciertas prestaciones de comunicacién. Por ejemplo, en el caso de transmisores
inalambricos, para aumentar la fiabilidad de las transmisiones de datos y asi mejorar
las prestaciones del sistema, es necesario utilizar una mayor potencia en la transmisién.
Sin embargo, estos dispositivos estan alimentados por baterias que son caras y dificiles
de cambiar, donde ademas el proceso de transmisién es el més costoso en términos de
energia. Esto muestra que, ademés de afrontar el disefio de sistemas monitorizacién,
supervisién o control de procesos con retardos temporales y pérdidas de datos, también
es necesario actuar sobre el funcionamiento de la red para ahorrar recursos, lo que se
conoce como problema de codiseno del sistema de procesamiento.

Esta tesis aporta contribuciones novedosas para resolver los problemas de estimacion
y diagnéstico de fallos para sistemas discretos lineales, donde tanto las acciones de control
como las mediciones de los sensores se envian a través de redes de comunicacién. Ademads,
también aborda el problema conocido como codiseno donde se realiza el diseno conjunto
de estimadores y del funcionamiento de la red.

Mas concretamente, la presente tesis tiene los siguientes objetivos generales:

e Modelado de los efectos inducidos por la redes de comunicacién industriales en la
transmisién de datos como pérdidas, retardos temporales, transmisién sin acuse de
recibe, entre otros.

e Diseno de estrategias de estimacion de senales y diagnéstico de fallos de bajo coste
computacional que adapten su funcionamiento a las caracteristicas de transmision
de la red de comunicacién.

e Analisis del compromiso entre las prestaciones de las estrategias estimacion de
seniales y diagndstico de fallos frente a la complejidad computacional de las mismas.

e Anadlisis de estrategias de bajo coste computacional para la implementacion de
transmisién de datos basada en eventos.

e Diseno de estrategias de estimacion de senales para transmisiéon de datos basada
en eventos a través de redes de comunicacion.

e Modelado del coste asociado a la transmision de datos a través de redes de
comunicacion.



e Diseno conjunto de estimadores y algoritmos para decidir las caracteristicas de
transmisién de tal forma que se minimice la necesidad de utilizacién de recursos de
red a la vez que se asegure ciertas prestaciones de estimacion.

La metodologia seguida para conseguir estos objetivos se ha basado en cuatro puntos
fundamentales: estudio bibliografico de los antecedentes de los problemas tratados;
establecimiento de las hipotesis de trabajo; modelado matemaéatico del problema y
verificacion de los resultados obtenidos mediante simulaciones.

Los resultados de la investigacién llevada a cabo para cumplir con los anteriores
objetivos, asi como los conceptos y resultados previos necesarios, se han plasmado en el
presente documento que contiene cuatro partes diferenciadas por su contenido. En los dos
primeros capitulos se describen y se motivan en detalle los problemas de interés. En esta
primera parte también se presenta el marco teérico de trabajo, modelando los posibles
escenarios de transmisién de datos para diferentes tipos de redes de comunicacién asi
como de politicas de envios (periédicas o basadas en eventos).

En la segunda parte (Capitulos 3, 4, 5 y 6) se estudia el problema de estimacién.
Con el propdsito de reducir el coste computacional de implementacion de estimadores de
Luenberger, se propone el uso de observadores con ganancias predefinidas que dependen
de las diferentes condiciones de transmisién de la red.

En general, en esta tesis se proponen estimadores con ganancias conmutadas que
dependen de los diferentes escenarios de recepcién de mediciones ocasionados por la red.
Asi se define la complejidad del estimador en funcién del ndmero de ganancias diferentes
almacenadas. Bajo probabilidades constantes de éxito en las transmisiones, se disefian
observadores con ganancias conmutadas de forma que se garantiza un compromiso
aceptable entre su complejidad y sus prestaciones de estimacién. El problema de diseno
se expresa mediante un problema de optimizacién basado en desigualdades lineales
matriciales (LMI). Utilizando este tipo de estimadores se muestra que se pueden obtener
prestaciones de estimacién similares a las ofrecidas por el filtro de Kalman, con un coste
computacional muy inferior.

Sin embargo, la probabilidad de llevar a cabo una transmisién con éxito puede variar
con el tiempo y ademas ser desconocida a priori. En este caso, siempre se puede llevar
a cabo una estimacién de ésta utilizando los instantes de adquisicion de nuevos datos.
Bajo este supuesto, se propone un estimador con planificaciéon de ganancias a partir de
funciones racionales dependientes de la estimacion de la tasa de llegada de datos. El
problema de diseno se expresa mediante un problema de optimizacién sobre polinomios
que se resuelve numéricamente utilizando técnicas basadas en suma de cuadrados (SOS).
Asi, a medida que se va aumentando el orden de los polinomios de las funciones racionales,
este tipo de estimadores ofrecen prestaciones de estimacion similares a las del filtro de
Kalman pero con un menor coste computacional de implementacién.

En la tercera parte (Capitulos 4 y 6), con el propésito de reducir la necesidad de
utilizacion de recursos de red asegurando ciertas prestaciones de estimacién, se estudia
el diseno conjunto de las condiciones de transmisién de la red asi como del estimador
con ganancias conmutadas a utilizar (codiseno). Este paradigma de disefio se aborda
considerando redes de comunicacién inalambricas con nodos alimentados por baterias,
donde el mecanismo de transmisién es el mayor responsable del consumo de energia.
Para reducir el niimero de transmisiones, y asi aumentar la vida 1til de los dispositivos



inalambricos, se analizan dos opciones: transmisiones basadas en eventos y transmisiones
de potencia controlada.

Como transmisiones basadas en eventos, se utiliza un protocolo de bajo coste de
implementacién conocido como Send-on-Delta (SOD). El SOD sélo transmite nuevas
mediciones cuando la diferencia entre el valor de la medicién actual con respecto a la
ultima enviada sobrepasa cierto umbral. Al aumentar el valor del umbral, se consigue
reducir el nimero de envios y por lo tanto incrementar la vida ttil de los dispositivos
inalambricos. Sin embargo, el problema de esta estrategia de envio es que impide conocer
a priori cudl va a ser la probabilidad de envio de nuevos datos ya que ésta depende de
la evolucién del proceso. Asi, bajo el supuesto de una transmisién ideal durante el envio
de nuevos datos, se obtienen cotas sobra la probabilidad de nuevas transmisiones. Esto
reduce el conservadurismo al efectuar el codiseno y obtener los umbrales de transmisién
y las ganancias del estimador. El codisenio se aborda con un algoritmo que resuelve
iterativamente problemas de optimizaciéon sobre polinomios, los cuales a su vez se
resuelven numéricamente utilizando técnicas basadas en SOS.

El control de la potencia de transmisién se analiza para redes inaldmbricas multisalto
con canales sujetos a desvanecimiento. En este tipo de redes, los datos se transmiten desde
el emisor hasta el receptor a través de nodos repetidores aumentando asi la fiabilidad
de transmision pero introduciendo un retraso unitario al pasar por cada uno de éstos.
Ademas, debido al efecto de desvanecimiento en los canales de comunicacién se producen
pérdidas en los envios que pueden aliviarse incrementando la potencia de transmisién.
Sin embargo, cuanta mas potencia de transmisién se use, mas rapido se consumiran las
baterias. En este caso, se consideran funciones de control de potencia paramétricas que
pueden depender del estado del canal. Asi, el resultado del codiseno estard compuesto por
las ganancias del estimador y por los pardmetros que definen las funciones de control de
potencia. El codiseno se aborda con un algoritmo que resuelve iterativamente problemas
de optimizacién sobre restricciones LMI.

Finalmente, en la cuarta parte (Capitulos 7 y 8), con el propdsito de garantizar
la seguridad del comportamiento de los procesos controlados a través de redes de
comunicacion, se estudia el problema del diagnéstico de fallos. Se propone de nuevo el uso
de estimadores con ganancia conmutada para estimar los fallos. Con la estimacién de los
fallos se construye un residuo cuya comparacion con un umbral alertara de la presencia
de fallos en el sistema. En esta tesis se estudia y se pone en evidencia el compromiso
existente entre la deteccién rapida de un fallo y la capacidad de estimar su evolucién con
precision. Las estrategias de diseno de diagnosticadores de fallos desarrolladas permiten
elegir al usuario los fallos minimos detectables, la tasa de falsas alarmas y el tiempo
de respuesta frente a fallos deseado. El procedimiento de disefio se expresa mediante
un problema de optimizacién basado en LMIs. Ademads, imponiendo cierta estructura al
residuo se logra caracterizar su distribucién de probabilidad obteniendo una cota sobre
la tasa de falsas alarmas més precisa que las existentes.

También se analiza el caso en que tanto las acciones de control como las mediciones
se envian a través de redes de comunicaciéon sin acuse de recibo. En este caso el
diagnosticador de fallos desconoce cudl es el valor exacto de las acciones de control que se
estan aplicando en el proceso. Entonces, se propone un diagnosticador de fallos basado en
un estimador con planificacién de ganancias a partir de funciones racionales dependientes
de un estadistico finito de la diferencia entre las acciones de control aplicadas en el proceso
y las utilizadas en el estimador (error de control). De nuevo, el disefio se expresa mediante



un problema de optimizacion sobre polinomios que se resuelve numéricamente utilizando
técnicas basadas en SOS. Se muestra que la estrategia propuesta mejora las prestaciones
del clasico diagnosticador de fallos disenado para el peor caso cuando el valor del error
de control es inferior a su maximo.

Las aportaciones de esta tesis abren camino a numerosas lineas de trabajo futuro
(detalladas en la memoria) entre las que se destacan las siguientes:

e Caracterizacion analitica del compromiso entre complejidad y prestaciones de
estimacién para estimadores con ganancias conmutadas. Esto podria desarrollarse
efectuando un analisis de sensibilidad de la funcién de optimizacién correspondiente
a través de los multiplicadores de Lagrange. En este caso, los multiplicadores de
Lagrange indicarian el coste de introducir una restricciéon de igualdad en el conjunto
de las ganancias del estimador (aliviando asi el coste computacional) sobre las
prestaciones de estimacién.

¢ Extension de los resultados obtenidos para sistemas con incertidumbre de modelado.

e Diseno de la topologia de la red multisalto. Este problema consistiria en decidir el
emplazamiento de los nodos retransmisores para minimizar el consumo de energia
mientras se asegura ciertas condiciones de recepcién de datos. Se puede ver este
problema como una extensién del problema de codisefio aqui presentado, donde
ademds de obtener las ganancias del estimador y las leyes de control de potencia,
también se obtendrian las localizaciones de los nodos intermediarios, es decir, se
estaria imponiendo ciertas caracteristicas en los canales sujetos a desvanecimiento.

e Analisis del uso de polinomios homogéneos para reemplazar las condiciones de tipo
SOS que aseguran la positividad de polinomios. Las técnicas basadas en polinomios
homogéneos permiten derivar condiciones menos conservadores que las derivadas
de utilizar SOS para polinomios sin estructura definida.

e Desarrollo de técnicas de diagnédstico de fallos en sistemas de control en red con
transmisiones basadas en eventos.

e Diseno de controladores inferenciales que usen los estimadores aqui propuestos para
cerrar el lazo de control.



Abstract

Communication networks increase flexibility of industrial monitoring, supervisory and
control systems. However, they introduce delays or even dropouts on the transmitted
information that affect the performance and robustness on the decision and control
mechanisms in the system. This thesis contributes theoretically to the state estimation
and fault diagnosis problem over networks.

First, we study the state estimation problem. Motivated by reducing the implemen-
tation computational load of Luenberger-type estimators, we focus on predefined gain
approaches for different network transmission conditions.

In general, we propose jump estimators whose gains are related to the different
network-induced data reception scenarios. We define the estimator complexity in terms
of the number of different stored gains. Considering constant successful transmission
probabilities, our main contribution here is the design of jump linear estimators to attain
favorable trade-offs between estimation performance and estimator complexity. We show
that one can reduce the estimator complexity while guaranteeing a similar performance
than the optimal Kalman Filter.

When dropouts are governed by a non-stationary stochastic process, the successful
transmission probability is time-varying and may be unknown. For this case, we propose
an estimator whose gains are scheduled in real-time with rational functions of the
estimated packet arrival rate. We turn the design procedure into an optimization
problem over polynomials that is numerically solved employing sum-of-squares (SOS)
decomposition techniques.

Second, motivated by reducing the network resource consumption without consider-
ably degrading the estimation performance, we study the jointly design of jump linear
estimators and predefined network operation conditions (co-design) to guarantee a favor-
able trade-off. Focusing on wireless networks with self-powered nodes, where transmitting
is the most energy consuming task, we analyze two approaches for the network operation:
event-based transmissions and power control.

For the event-based approach, we use a Send-on-Delta protocol which reduces the
number of transmissions with respect to transmitting at each sampling instant. However,
it leads to an unknown successful transmission probability. For this framework, we
contribute by characterizing this uncertainty and including it on the stochastic behavior
of the estimator by means of a SOS-based design.

Power control strategies are developed over a multi-hop wireless network with fading
channels. Instead of reducing the number of transmission, power control acts directly on
the transmission power. Higher transmission powers imply higher successful transmission
probability values.

Finally, motivated by the need of assuring a reliable operation of the networked
system, we study the fault diagnosis problem. We explore and point out the trade-offs
between fast fault detection and fault tracking conditions. We design jump estimator-
based fault diagnosers in which we can specify the minimum detectable faults, false alarm
rate and response time to faults. Another contribution is a tightened version of existing
false alarm rate bounds.

Moreover, we also address the case when the control input is transmitted through
a network without delivery acknowledgement. In this case, we improve fault diagnosis



vi

accuracy by scheduling in real time the estimator jumping gains with rational functions
that depend on a statistic of the control input error (difference between the control
command being applied in the process and the one being used in the estimator). Again,
we use a SOS-based solution approach to make the design problem tractable.
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Chapter 1

Introduction

Control engineering relies on the possibility to acquire information from a system state
for decision-making on control undertakings and to transmit the control decisions to act
on the system. Traditional control methods consider an ideal information transmission
between sensors, controllers and actuators that can only be obtained in practice
with a wired point-to-point connection. However, breaking free of these point-to-point
communications by employing a wired or wireless communication network can benefit
tremendously the operation and maintenance of modern industries containing many
decentralized processes [44, 150]. When the transfer of information is performed through
a network, then the control system is defined as a Networked Control System (NCS),
see Fig. 1.1.

Py Py

Network

Figure 1.1: Network Control System architecture. A: actuator, P:
process, S: sensor, C: controller.

Communicating through networks introduces numerous advantages with respect to
point-to-point communication. For instance,

Low cost: Using a shared network decreases the number of wires and connections. Then,
both maintenance and operation costs are cut.

Operation: Accessing to the whole system information and performing new acting
strategies can be done from a single position without visiting each process.

Maintenance: Reducing the wiring complexity alleviates the maintenance operation on
the system.

Flexibility: Including additional elements (sensors, actuators, controllers or processes)
in an existing installation takes little effort as neither software, nor hardware
significant changes have to be made.

Accessibility: Employing wireless devices allows transferring information from and to
unreachable locations where wired connections cannot arrive.



2 1. Introduction

Such advantages have been extensively exploited in many real-life applications
through different kinds of networks. Nowadays vehicles use a Controller Area Network
(CAN) bus to transmit data between the different modules, e.g., break, engine,
transmission, steering and climate control [61]. Other applications can be found in remote
surgery [88], water transportation systems [12], industrial automation [94] and wind
farms [62].

But, in addition to the aforementioned advantages, the introduction of communication
networks bring some network-induced issues [51, 14] such as,

Time delays: Delays appear due to the congestion of the network and may cause the
reception of disordered data in time.

Dropouts: Data can be lost after transmission because of collisions or can be corrupted
by the communication environment causing a rejection by the reception mechanism.

Accessibility constraints: When multiple devices share a network and try to transmit,
a competition between them is performed and some of them may not be able to
communicate during their allocated transmission time-slot.

These problems may degrade the system operation performances or even cause its
instability. So, how do we design control methods providing some performance guarantees
to work under communication networks?

A first approach that may rise in ones mind is to focus on the network itself and
improve the communication reliability so traditional control methods can be applied.
This is usually known as control of network. Contrarily, we can develop new control
theories leading to robust designs that overcome the network-induced issues, which is
regularly called control over network. An intermediate approach between both of
them is to design both controllers and networks to operate in harmony, leading to the
so-called co-design. Therefore, the study of NCS implies dealing with three different
research areas: control theory, telecommunications systems and computer science (see

Fig. 1.2).

Control Theory

o I o I o

PSRN
Ve |
| |

Telecommunications .
Computer Science

Systems
Figure 1.2: NCS as a multidisciplinary research field.
Not only control methods are affected by the use of the networks and need to be

adapted. The state estimation problem, which is of great importance for control or
fault diagnosis purposes, must be also readdressed to deal with the network-induced
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issues. Moreover, owing to the need for reliability, safety and efficient operation in control
systems, it is required to adapt conventional fault diagnosis methods to the networked
environment,.

This thesis discusses in further details the network-induced problems, proposes some
methods to address the problem of estimation and fault diagnosis over networks and gives
some approaches to deal with the co-design. In this chapter, we first give a motivation
example to show how control performances can be deteriorated when using traditional
control methods to control a process over a network. In this example, we also illustrate
how estimation helps to overcome the design of new controllers. After that, we present
the main challenging problems with which we deal in this thesis. Finally, we conclude
the chapter with the thesis outline and contributions, and give a list of notation and
abbreviations.

1.1 Motivation Example

The aim of this example is to show that traditional control techniques are not suitable
for networked environments. Consider the NCS in Fig. 1.3 where we want to control some
process with a discrete-time transfer function given by

- 0.06z71 + 0.0522
 1—-1.612"140.612"2

P(2)

where the sampling time is 7' = 65ms. In this case only measurements are sent through
a network that can only assure a 50% of successful transmissions without following any
pattern (see Fig. 1.4). Control input transmissions are loss-free.

Disturbance
Noise
tracking control 1
reference £ error o) input P(2) output
z z
A\
|| Network

Figure 1.3: A simple networked control system with data losses.

Without any doubt, the most deployed controller in the industry is the PID. One of the
most common techniques to tune it is using relay feedback auto-tuning techniques [5].
With that, the discrete-time version of the PID controller has the following transfer
function [2]

—1
g qa(l—27")
C(z)= K +
(2) P 1—2z71  14pgz—!
Proportional v
Integral Derivative

where the parameters for the studied problem are K, = 1.06, ¢; = 0.08, ¢4 = 3.02, pg =
0.11.



4 1. Introduction

Fig. 1.4 shows the reference tracking performance provided by the PID when the
communication is ideal (without losses) and when the network is used to transfer the data.
We appreciate that the control performances are deteriorated when using the network
leading to a high overshoot of 140%. However if we estimate the system output by means
of a Kalman Filter (KF) adapted to the network scenario [129] (which is implemented in
the controller) and use this estimation to close the loop, then we obtain a similar behavior
than when there was no measurement losses. This shows that traditional control methods
can be used under networks scenarios if we are able to estimate properly, for instance,
the process outputs., what will require the knowledge of a model of the process.

g
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s 0 PID + KF + losses
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new measurement g
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Figure 1./4: Networked effects over reference tracking PID with 50% of
measurement losses.

1.2 Challenging Problems

This thesis deals with the problems of state estimation and fault diagnosis of Linear
Time-Invariant (LTI) Discrete-Time Systems (DTS) over networks with different
characteristics. Moreover, we discuss some techniques to address the co-design problem
for the proposed scenarios. In the following we briefly describe the major concerns of the
current thesis. For brevity let us just focus on the estimation problem. However, all the
next also applies to the fault diagnosis case.

Network-based estimation methods

In the last decades much effort has been put into developing recursive estimation
techniques to work under network-based communications [14, 35]. KF solutions have
been greatly employed since the seminal works [78, 129] to overcome issues such as
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measurement dropouts and delays. However, even if these approaches may give optimal
estimation performance, they lead to time-varying filter gains that must be computed
in real time even for LTI systems. Seeking to reduce the on-line computational effort,
in [130] the authors showed that the gains obtained with a KF depend on the history
of combination of measurement availability and proposed a finite history jump linear
estimator. Several questions arise from this observation:

Q1 How can we model the effects of network on the data transmission as dropouts,
delays and unknown deliverance state?

Q2 How can we design estimation strategies with low implementation cost that adapt
their behavior to the network?

Q3 Can we explore the trade-offs between the performance and the complexity of these
estimation methods?

Event-based measurement transmissions

With the increasing use of network technologies for process control, researchers have
focused recently on the reduction of the network data flow to increase flexibility under the
addition of new devices [14, 93]. For instance, sensors can reduce their data transmission
employing an event-based sending strategy [85], what furthermore helps to decrease
maintenance costs. Then, new promising problems come out:

Q4 Which event-based strategies should be implemented to keep a low sensor
computational effort?

Q5 How can we adapt the previous estimation methods to deal with event-based
transmissions? How the network-induced problems affect these strategies?

Co-design

In the last two topics we only focused on the design of estimators to work over
networks. However network operation efficiency has gained much interest in the last
years. As mentioned before, event-based transmissions help to alleviate the data traffic,
but as we reduce the available data, we also reduce the estimation performance. In a
similar aim, with the growth of wireless networks, a great deal of attention has been
focused on reducing the power consumption, where data transmission is the most power
expensive task [34]. This shows the existence of a compromise between network resource
consumption and estimation performance that make us ask about:

Q6 How can we model the network resource consumption?

Q7 How can we approach both the design of estimation methods and the network use
to guarantee a favorable trade-off between estimation performance and network
operation efficiency?
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1.3 Thesis outline and Contributions

The main goal of this thesis is to develop techniques to design estimators and fault
diagnosers to work under diverse network scenarios, as well as to derive methods to
design them together with the network use.

The current thesis follows a reasonable base line. First, we model some network
scenarios (Chapter 2). Second, we address the estimation problem (Chapter 3, 4, 5 and 6).
Third, we deal with the fault diagnosis problem that can be seen as the estimation
problem of an unknown input signal (Chapter 7 and 8). Co-design strategies are included
in some chapters (Chapter 4 and 6). Finally we draw conclusions and give some directions
for future works (Chapter 9). Details on preexisting theory used to develop the results
on this thesis is collected in the appendixes.

Note that each chapter is self-consistent and can be mostly read independently of the
others. Let us now introduce an extended summary of the thesis with references to the
publications related to each chapter.

Chapter 2: Background

This chapter aims to give a common framework for the studied problems. We first give
further details on network control systems. We then study different kinds of networks
and derive models to describe the effects of the network on the data transmission.
More specifically, we analyze a multi-hop network with fading channels. After that, we
introduce an event-based sending mechanism and discuss its choice. Finally, we present
the estimation and fault diagnosis problems, as well as the co-design, and give some
discussion on the main contributions.

Chapter 3: Jump state estimation with multiple sensors with packet
dropping and delaying channels

In this chapter we address questions Q1-Q3. We deal with the estimator design for
systems whose outputs are measured through a communication network. The samples
from each sensor node are assumed to arrive randomly on time, scarcely and with a time-
varying delay. We model the plant and the network sample scenarios such as we cover
the cases of multiple sensors, out-of-sequence measurements, buffered measurements on
a single packet and multi-rate sensor measurement samples. We derive jump estimators
that select a different gain depending on the number of time instants elapsed between
successfully received samples and on the available data. A finite set of gains is
precalculated off-line with a tractable optimization problem, where the complexity of
the estimator implementation is a design parameter. The computational effort of the
estimator implementation is much lower than in the KF, whilst the performance is
similar. Numerical examples are provided to illustrate the effectiveness of the theory
in the chapter.
The results of this chapter were mainly addressed in:

e D. Dolz, I. Pefiarrocha, and R. Sanchis. Jump state estimation with multiple sensors
with packet dropping and delaying channels. International Journal of Systems
Science, pages 1-12, 2014
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e D. Dolz, I. Pefiarrocha, and R. Sanchis. Estrategias de control y estimacion robustas
para sistemas de control en red. In XI Simposio CEA de ingenieria de control, pages
67-73, 2013

e [. Penarrocha, D. Dolz, and R. Sanchis. Estimacién éptima en redes de sensores con
pérdida de datos aleatoria y retardos variantes. In XXXII Jornadas de Automdtica,
2011

Chapter 4: Co-design of jump estimators for wireless multi-hop
networks with fading channels

In this chapter we address questions Q1-Q3 and Q4-Q5. We study transmission power
budget minimization of battery-powered nodes in the remote state estimation problem
over multi-hop wireless networks. Measurement samples from distributed sensors may hop
through several relay nodes until arriving to the estimator node. Passing through a relay
introduces an additional unitary delay in the end-to-end transmission. Communication
links between nodes are subject to block-fading generating random dropouts. Motivated
by offering low computational implementation cost estimators, we propose a jump
estimator whose modes depend on the measurement sample transmission outcome over
a finite interval. We also give some necessary estimator existence conditions on the
network behavior. Transmission power helps to increase the reliability of transmissions
at the expense of reducing the lifetime of the node batteries. Motivated by reducing
the power budget, we also address the design of power control laws of the form of
parametric functions that may depend on the fading channel gain values. We derive
an iterative tractable procedure based on semi-definite programming problems to design
the precalculated finite set of estimator gains and the power control law parameters
to minimize the power budget while guaranteeing a certain estimation performance.
This procedure allows us to trade the complexity of the estimator implementation for
achieved performance and power budget. Numerical examples are provided to illustrate
the effectiveness of the theory in the chapter.
The results of this chapter were mainly addressed in:

e D. Dolz, D. E. Quevedo, I. Penarrocha, A. S. Leong, and R. Sanchis. Co-design of
Markovian jump estimators for wireless multi-hop networks with fading channels.
To be submitted for journal publication, 2014

e D. Dolz, D. E. Quevedo, I. Penarrocha, and R. Sanchis. Performance vs complexity
trade-offs for markovian networked jump estimators. In 19th World Congress of
The International Federation of Automatic Control, pages 7412-7417, 2014

Chapter 5: Polynomial observers in networked control systems with
unknown packet dropout rate.

In this chapter we address questions Q1-Q3. We study the observer design for systems
operating over communication networks with previously unknown packet arrival rate
(PAR). We assume that the PAR is time-varying and that can be estimated on-line by
means of the acknowledgement on new data arrival. The observer gains depend on the
estimated PAR and are designed by minimizing the H,, norm from disturbances and
measurement noises to estimation error over all the possible PARs. The observer gains
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are rational functions of the estimated PAR. Exploiting sum-of-squares decomposition
techniques, the design procedure becomes an optimization problem over polynomials.
Numerical examples are provided to illustrate the effectiveness of the theory in the
chapter.

The results of this chapter were mainly addressed in:

e [. Penarrocha, D. Dolz, and R. Sanchis. A polynomial approach for observer design
in networked control systems with unknown packet dropout rate. In 52nd IEEE
Conference on Decision and Control, pages 59335938, 2013

Chapter 6: Co-design of H-infinity jump observers for event-based
measurements over networks

In this chapter we address questions Q4-Q7. We present a strategy to minimize the
network usage and the energy consumption of wireless battery-powered sensors in the
observer problem over networks. The sensor nodes implement a periodic Send-on-Delta
(SOD) approach, sending a new measurement sample when it deviates considerably from
the previous sent one. The estimator node implements a jump observer whose gains
are computed off-line and depend on the combination of available new measurement
samples, leading to few computational resources in both the estimator and sensor nodes.
We bound the estimator performance as a function of the sending policies and then
state the design procedure of the observer under fixed sending thresholds as a semi-
definite programming problem. We then bound the network usage and obtain an iterative
procedure for the design of the policy for message sending, guaranteeing a prescribed
estimation performance. Numerical examples are provided to illustrate the effectiveness
of the theory in the chapter.
The results of this chapter were mainly addressed in:

e [. Penarrocha, D. Dolz, J. A. Romero, and R. Sanchis. Co-design of H-infinity
jump observers for event-based measurements over networks. Submitted for journal
publication, may 2014

e [. Penarrocha, D. Dolz, J. A. Romero, and R. Sanchis. Codesign strategy of
inferential controllers for wireless sensor networks. In 4th International Congress
on Ultra Modern Telecommunications and Control Systems and Workshops, pages
28-33, 2012

e [. Penarrocha, D. Dolz, J. Romero, and R. Sanchis. State estimation and Send
on Delta strategy codesign for networked control systems. In 9th International
Conference on Informatics in Control, Automation and Robotics, pages 499-504,
2012

e . Penarrocha, D. Dolz, J. A. Romero, and R. Sanchis. Estrategia de codisefio de
controladores inferenciales para su implementacién mediante sensores inaldmbricos.
In XXXIIT Jornadas de Automdtica, pages 361-367, 2012

Chapter 7: Performance trade-offs for networked jump observer-based
fault diagnosis

In this chapter we address questions Q1-Q3. We study the fault diagnosis problem
for discrete-time multi-sensor networked control systems under dropouts. We use the
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measurement sample outcomes to model the sample reception scenarios. Based on this,
we propose the use of a jump observer to diagnose multiple faults. We model the faults as
slow time-varying signals and introduce this dynamic in the observer to estimate the faults
and to generate a residual. The fault detection is assured by comparing the residual signal
with a prescribed threshold. We design the jump observer, the residual and the threshold
to attain disturbance attenuation, fault tracking and detection conditions and a given
false alarm rate. The false alarm rate is upper bounded by means of Markov’s inequality.
We explore the trade-offs between the minimum detectable faults, the false alarm rate
and the dynamic of the fault diagnoser. By imposing the disturbances and measurement
noises to be Gaussian, we tighten the false alarm rate bound which improves the time
needed to detect a fault. Numerical examples are provided to illustrate the effectiveness
of the theory in the chapter.
The results of this chapter were mainly addressed in:

e D. Dolz, I. Penarrocha, and R. Sanchis. Performance trade-offs for networked
jump observer-based fault diagnosis. Submitted for journal publication, may and
november 2014

e D. Dolz, I. Penarrocha, and R. Sanchis. Accurate fault diagnosis in sensor
networks with markovian transmission dropouts. Submitted for journal publication,
september 2014

Chapter 8: Networked gain-scheduled fault diagnosis under control
input dropouts without data delivery acknowledgement

In this chapter we address questions Q1-Q3. We investigate the fault diagnosis problem
for discrete-time networked control systems under dropouts in both control and sensing
channel with no delivery acknowledgment. We propose to use an observer-based fault
diagnoser collocated with the controller. The observer estimates the faults and computes
a residual signal whose comparison with a threshold alarms the fault appearance. We
employ the expected value of the arriving control input for the open loop estimation and
the measurement sample reception scenario for the correction with a jump observer. The
jumping gains are scheduled in real time with rational functions depending on a statistic
of the difference between the control command being applied in the plant and the one
being used in the observer. We design the observer, the residual and the threshold to
maximize the sensitivity under faults while guaranteeing some minimum detectable faults
under a predefined false alarm rate. Exploiting sum-of-squares decomposition techniques,
the design procedure becomes an optimization problem over polynomials. Numerical
examples are provided to illustrate the effectiveness of the theory in the chapter.
The results of this chapter were mainly addressed in:

e D. Dolz, I. Penarrocha, and R. Sanchis. Networked gain-scheduled fault diagnosis
under control input dropouts without data delivery acknowledgement. Submitted
for journal publication, july and november 2014

Chapter 9: Conclusions and future work

This last chapter draws conclusions on the current thesis and discusses exciting research
problems for further development on a near future.
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Contributions by the author

The results presented in this thesis correspond mainly to works developed with the
author’s supervisors where the author has played a key role. Results in Chapter 4 were also
developed in collaboration with D. E. Quevedo and A. S. Leong, while the problematic
presented in Chapter 6 was also addressed in collaboration with J. A. Romero.

The author has also collaborated and contributed in other fields of the NCS research
area, such as control or estimation of uncertain systems:

e R. P. Aguilera, R. Delgado, D. Dolz, and J. C. Agiiero. Quadratic MPC with
lo-input constraint. In 19th World Congress of The International Federation of
Automatic Control, pages 10888-10893, 2014

e [. Peniarrocha, D. Dolz, and R. Sanchis. Inferential networked control with
accessibility constraints in both the sensor and actuator channels. International
Journal of Systems Science, 45(5):1180-1195, 2014

e D. Dolz, D. E. Quevedo, I. Penarrocha, and R. Sanchis. A jump filter for uncertain
dynamic systems with dropouts. In To appear in 53rd IEEE Conference on Decision
and Control, 2014

These works can be seen as a first approach for future lines of research.
Other contributions of the author during these years on a completely different research
area, but that have been helpful to develop new tools adopted in this thesis, are:

e [. Penarrocha, D. Dolz, N. Aparicio, and R. Sanchis. Synthesis of nonlinear
controller for wind turbines stability when providing grid support. International
Journal of Robust Nonlinear Control, 2013

e D. Dolz, I. Penarrocha, N. Aparicio, and R. Sanchis. Virtual torque control in wind
generation with doubly fed induction generator. In 38th Annual Conference on
IEEE Industrial Electronics Society, pages 2536-2541, 2012

e D. Dolz, I. Penarrocha, N. Aparicio, and R. Sanchis. Control de aerogeneradores
mediante controladores dependientes de la velocidad y turbulencia del viento. In
XXXIII Jornadas de Automdtica, pages 443-450, 2012

e [. Penarrocha, D. Dolz, N. Aparicio, R. Sanchis, R. Vidal, and E. Belenguer. Power
analysis in wind generation with doubly fed induction generator with polynomial
optimization tools. In 20th Mediterranean Conference on Control & Automation,
pages 1316-1321, 2012
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1.4 Abbreviations

A/D
CAN
CDF
D/A
DTS
FAR
FLOP
ii.d.
KF
LTI
NCS
PAR
PDF
PDR
PID
SOD
SOS
TCP
TDMA
UDP
ZOH

Analog-to-digital converter
Controller area network
Cumulative distribution function
Digital-to-analog converter
Discrete-time systems

False alarm rate

Floating-point operation

Independent and identically distributed

Kalman filter

Linear time-invariant
Networked control system
Packet arrival rate
Probability density function
Packet dropout rate
Proportional-integral-derivative
Send-on-Delta
Sum-of-squares

Transmission control protocol
Time division multiple access
User datagram protocol

Zero order holder



12

1. Introduction

1.5 Notation

R and RZO
X
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|zl rns
([P
¢[00
E{z;}
Pr{z; >y}

2T

APB

diag(A)

vec(A)
(

vec™!

7)

A(A), A(A)
p(A)

A<B,A>B

Real and real positive numbers set

Cardinal of the set X

Continuous-time signal at time 7
Discrete-time signal at discrete-time instant ¢

Discrete-time signal at sample reception ¢ = t,

. [e'e) T
£ norm of z over time, /> "z ¢

{3 norm of z; at instant ¢, \/a] z;

. . / T—1
RMS norm of x; over time, limp_, o % Yoo x] x

loo norm of z; over time, max; (max (|z|))
l norm of z; at instant ¢, max (|a¢|)
Expected value of x; at instant ¢

Probability of the event x; > y at instant ¢

Transpose of vector x
Block diagonal matrix with A and B on its diagonal

Column vector with the main diagonal of matrix A

Generates a vector by stacking the columns of matrix A.

Generates a matrix by reordering the elements of vector = into

columns.
Maximum and minimum eigenvalue of A.

Spectral radius of matrix A

Matrix A— B is negative definite. Matrix A— B is positive definite

Matrix A — B is negative semi-definite. Matrix A — B is positive

semi-definite

logical “or” operator
logical “and” operator

logical “not” operator

Operator that rounds its argument to the nearest integer towards

infinity



Chapter 2

Networked Control Systems

We present a general NCS architecture in Fig. 2.1. Some sensors send some
information of a process to a central unit through a network. We call this communication
link as the sensing link. This central unit process the acquired information to perform
some desired operation (control, estimation, etc.) and send some control inputs, to be
applied on the process, to some actuators through a network (which can be different from
the one in the sensing link). This communication link is the so-called control link.

In this thesis we consider networks with stochastic events, such as data dropouts
and random delays that can be modeled in a probabilistic framework. Such events may
happen, for instance, on Ethernet [36, 22] or IEEE 802.15.4 networks (such as Zigbee or
WirelessHART) [133, 43] that have been widely used in the industry.

Actuator

Process Sensor

sensing link

Network Network

control link

Central Unit

Figure 2.1: Simplified NCS architecture.

This chapter aims to provide a common framework for the problems that will be
addressed in the next chapters. First, a full description of the considered types of processes
is given. Second, we characterize in general both sensing and control link, and model the
influence of possible network-induced problems on the data availability. Moreover, we
examine one specific type of network. After that, we present an event-based strategy for
sending measurements that allows reducing the network traffic. Finally we discuss the
main design problems focused on this thesis and give some hints on the adopted solutions
highlighting the differences with related works.

2.1 Process model

Industrial processes can be modeled by continuous-time differential equations that can
be linear or nonlinear. In this last case, a linearization around an equilibrium point
can be carried out to obtain a linear model. Then, we will consider linear continuous-
time processes with several control inputs u(7) applied by some actuators and several

13
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controlled outputs y(7) that can be measured by some sensors. One way to describe the
dynamic of the process is through a state-space representation such as

(1) = A (1) + Beu(7) 4+ Bu,cwe(7), (2.1a)
y(r) = Cx(r) (2.1b)

where all the signals are continuous-time, being u(7) € R™ the input of the process,
y(7) € R™ the output, (1) € R™ the state and w.(7) € R™ the process disturbance.
Ac, Be, By, ¢ and C are matrices of proper dimensions. Some sensors measure the process
outputs and introduce some measurement noise v(7) € R™ leading to a continuous-time
measurement

m(7r) = Cx(r) + v(r). (2.2)

Even if the process operates in continuous-time it can only be controlled changing
its inputs at discrete intervals. Then, it is convenient to obtain a discretization of the
process. If the continuous-time control input signals of the actuators u(7) are updated
every T seconds through a zero-order holder (ZOH) with the value of each correspondent
discrete-time u[t] (see Fig. 2.2) and the sensors measurements m(7) are sampled every T
seconds (see Fig. 2.3), then, considering that both mechanisms are synchronized, we can
obtain an equivalent sampled data model of (2.1) at sampling period T as

zt + 1] = Ax[t] + Bult] + By, wlt], (2.3a)
mlt] = C z[t] + v[t]. (2.3b)

where all the signals are discrete-time sampled data signals, being w[t] = w(tT") the
control inputs, m[t] = m(¢tT) the sampled outputs, z[t] = z(tT) the discrete state,
B, w[t] = ft(TtH)T eAe(T=7)B,, w.(1)dr the equivalent discrete process disturbance and
v[t] = v(tT) the sensor measurement noise at time tT'. A, B, B,, are matrices of proper
dimensions that can be obtained from the matrices of the continuous model by

T
A=erT B= / eAT=T) B dr. (2.4)
0

and B, = ng)T eAU(T’T)Bw,CdT if w.(7) is constant. We write each single sample as
ms[t] from sensor s =1 to sensor s = n, with

ms[t] = cs x[t] + vs[t] (2.5)

where ¢; and wvs[t] are the s-th row of C' and v[t], respectively. Note that we do not
consider quantization errors in the analog-to-digital (A/D) conversion, however we can
implicitly include these errors in the measurement noise.

From now on we will only focus on LTI DTS defined by equation (2.3). When possible
we will write z[t] as z; to alleviate notation. Further discussions on process model and
discretization can be found in references [42, 2].

2.1.1 Faulty process

Industrial processes are complex systems with many parts that must offer a reliable,
safe and efficient operation. However, malfunctions in the process can appear due for
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w(7)
] T Process
u|t .
P I ISV s e U fir) = Flalr),u(e), wir) |4
y(r) = g(a(7))
Actuator
digital discrete - time continuous - time
control input control input control input

Figure 2.2: Control procedure. Functions f(-) and g(-) refer to the
state-space model in (2.1). A solid line denotes continu-
ously transmitted signals while a dashed line denotes a pe-
riodically transmitted signal.

w(r)
l v(T)
|
Process (")
u(t . Yy mlt
0 Jitr) = 1), ur), wi)|y B L Y R
y(1) = g(x(7)) \
Sensor
continuous - time continuous - time discrete - time digital
output measurement sample sample

Figure 2.3: Measure procedure. Functions f(-) and g(-) refer to
the state-space model in (2.1). A solid line denotes
continuously transmitted signals while a dashed line
denotes a periodically transmitted signal.

instance to fatigue fracture of some pieces. Moreover, actuators and sensors can also
present failures that constraint the process behavior (see Fig. 2.4). One possible way
to model a faulty process, is to rewrite the linear discrete-time system (2.3) to include
possible faults as additive signals:

z[t + 1] = Az[t] + Bult] + By, w[t] + By f[t] (2.6a)
mlt] = Cx[t] + H f[t] + v]t] (2.6b)

where f[t] € R™f is the fault vector and By and H matrices of appropriate dimensions.

In the current thesis, we model the fault signal as a slow time-varying one
(cf. [13, 149]), i.e

flt+1] = flt] + Af[E] (2.7)

where Af[t] is the variation of the fault from instant ¢ to ¢ + 1. Equation (2.7) allows

modeling, for instance, step signals (Af[t] only takes a nonzero value at the time the

fault appears) or ramp signals (A f[t] takes a constant value), that have been widely used
in the literature to analyze the behavior of fault detection algorithms [15, 58].

Remark 2.1. The appearance of faults will be addressed in Chapter 7 and Chapter 8.
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J fa f;v Jf‘?

Actuator

Process »  Sensor

Figure 2.4: Plant model with possible faults on the actuators (fa), on
the process (fp) and on the sensors (fs).

2.2 Sensing link

We present a general NCS architecture in Fig. 2.5 that extends the control update and
measurement procedure described in Fig. 2.2 and Fig. 2.3. Let us focus on the sensing
link in this section.

Receiver ult] u(7) y(7)
+ eoe Process eee — o—p! Transmitter
Buffer .
Actuator - Sensor
* \ B
acquired control . - melt] & .
. digital digital \ transmitted sample
message control input sample N message
transmitted control . — acquired sample
message ¢ . message
Central Unit
R uc[t] Processing m*[t] i :
*| Transmitter [e= &= = = Unit - - \ . Receiver |«-}-
transmitted control acquired sample
input

Figure 2.5: NCS detailed architecture. A solid line denotes continu-
ously signals, a dashed line denotes a periodically signals
and dotted line denotes sporadic signals.

We assume that all sensors and actuators are synchronized. At each instant of time ¢,
each sensor s encapsulates its measurement sample m;[t] in a time-tagged packet m&|t]
and sends it, independently of the others sensors, to a central unit through an unreliable
network that induces time-varying delays and dropouts. We denote by

nlf €N (2.8)

the induced delay on the delivery of the ¢-th sample from sensor s, where 75[t] = oo
represents a sample loss. The induced delay 74[t] is unbounded but we assume that
the central unit implements an acceptance protocol. Samples with higher delays than
a certain d will be discarded. Then, the network induced delay for all sensors can take
values in a finite range 7[t] € {0,1,...,d, o}.
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Remark 2.2. The role of d in the estimation problem will be analyzed in depth in
Chapter 3. Note that d = 0 corresponds to the dropout case without delays, i.e., a
sample either arrives without delay or is lost (discarded if arrives with some delay).

Current available samples

The available information at instant ¢ at the estimator unit is the pair (m¢ ;[t], s alt])
foralls=1,...,n, and d=0,1,..., d being the induced delay, where
mg 4[t] = asalt] mS[t —d], (2.9)
and
coalt] = 1 if meft - d] is received at instant ¢, (2.10)
0 otherwise.

Note that as 4[t] = 1 represents that the induced delay of the measurement from sensor
s sampled at instant t — d is 74[t — d] = d. We consider m? ,[t] = 0 if m¢[t — d]| does not
arrive at instant . /

We model the current available samples, also called as the sampling scenario, at
instant ¢ with the reception state of each sample (2.10) by means of the matrix oy
defined as

Ty d
alt] =P asalt] | (2.11)
s=1 \d=0
where the values of the current acquired samples are in the vector
m?t] = [mi,[t], ..., m{ 4t], ..., mzy}g[t]]T, (2.12)

The possible values of «; are within a known finite set

alt] € 2= {no,m, -, Mg}, (2.13)

where n; (for i = 1,...,¢q) denotes each possible available sample combination, being 7
the scenario without available samples, (i.e., 7o = 0). In the general case, any combination

of available sensor sample and delay is possible, leading to ¢ = 2"v —1 with 71, = n, (1+d).

Remark 2.3. This network description will be used in Chapter 3.

Consecutive sample receptions

We call sampling instant, and write it as t; = t, to the instant of some sample reception,
i.e., when oy # 0. Then, we denote by Nj = NJt;] the number of instants between two
consecutive sample reception, i.e.,

N =t —trp_1 (2.14)

With that, Ny — 1 is the number of consecutive instants without sample reception
(consecutive dropouts).

Remark 2.4. This network description will be used in Chapter 3.
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Historic available samples

While ay describes the current sampling scenario (without history), Ny, refers to a serie
of past events (consecutive losses). Let us now model the sample reception history over
a finite interval, which may include the scenarios described by both «; and Ny.

Let us define vector 65 4[t] which represents the transmission outcomes of sample
mS[t — d] at instants {¢t — d,...,t}, i.e.,

Os.alt] = [solt —d] asalt—d+1] - agaqlt]]. (2.15)

Considering all the possible sample delays and sensors we can derive vector ¢;, which
captures the sample transmission outcomes at times {¢t — d, ..., t}, as follows:

0,111 = [Buolt] -+ 6,411 (2.16a)

o) = [0u]t] - 6n,1]]" (2.16b)

f; is a binary column vector of length ng = w. Note that a; is the result of applying
a surjective function on 6, that leads to (2.11).

We assume that the central unit will only accept sample mé[t —d] once, i.e., duplicated
copies of m¢[t — d] with higher delays will be discarded. This implies that ||6s 4[t][l1 < 1

with (|05 q4[t]|l1 = Z§=o as 5[t — d + d]. With that, 0[t] that can take values in the finite
set

0, € © = {Y9,91,...,9,}, r=((d+2))"™ -1 (2.17)
where 9; (for ¢ = 0,...,7) denotes each possible combination of the historical
measurement transmission outcomes. Y9 = 0 denotes the case where neither of the

samples from t — d to t is received.

Remark 2.5. Parameter d can describe both the presence of induced time-varying delays
and the history of sample receptions.

Remark 2.6. The pair (ag, V), at sampling instant ¢, = ¢, may represent events that
are not included in 6. Let us assume some d and N, = N. If d+ 1 < N then 6}, do not
include the information given by (as, Ni). To include it, we can increase d at the expense
of increasing the elements of the set © in (2.17).

Remark 2.7. This network description will be used in Chapter 4.

Packetized samples

What we have presented until now is the case when samples are sent independently from
each other. This is sometimes called as the multi-sensor case. Another possibility, which
reduces the modeling complexity and the data traffic, is that all the sensors aggregate
their samples on a single packet and send it to the central unit. This is known as the
packetized case. In this case, considering that the reception state is given by

1 if me[t—]1i ived at instant ¢
ad[t]z{ if me[t—] is received at instant ¢, (2.18)

0 otherwise.
we can easily extend the previous models.
Remark 2.8. This network description will be used in Chapter 5.

Further discussion of these models will be given in later chapters. Let us now present
a brief example to illustrate the different defined variables.
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Example 2.1

Let us consider a system with one sensor and d = 1. In this case 0; and «; model the

reception state of the following samples

m; at t
0, = |my_1 at t—11, diag(at)—{

mf—1 at t

my at t
me_1 at t|’

Then the sets © in (2.17) and = in (2.13) are as follows

o] 11 [o] [1] [o] [1
oe=<lol,lo|,|1],]|1|,lo],]o
0 ol lo] [1] |1

==Ll o] 8] o] B B3 = 0] ] - L

where only the diagonal terms of n; have been represented. Fig. 2.6 illustrates some
possible transmission outcomes and the values that 6;, oy and N would take. For
instance, at instant ¢ + 3 the central unit receive myy1 (with d = 2) and myy; (with
d = 1), however m; is discarded as the maximum allowed delay is d = 1. In this case,
the pair (a¢43, Niy3) describes the fact that central unit receives a sample with a unitary
delay after have not being able to acquire any sample in two consecutive time instants.
However, with 6; we can only know that in the last instant nothing was received. To
include this case we can increase the maximum considered delay to d = 2 at the expense
of increasing the elements of © from 6 to 24. Finally let us remark the differences between
t and t. As shown in the example, t refers to each instant of time, while ¢ is only defined

at certain events, when we received some samples.

t—1 t t+1 t+2 t+3 t+4 t+5

Sensor l

Central Unit }

e il
diag(cv) [(1)] [8] [8] [?] B

Ny, 1 - - 3 1

tx to — t1 to

Figure 2.6: Example of received sample scenarios for n, = 1 and d = 1.
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2.2.1 Probabilistic framework

There exist different possibilities to characterize the sample transmissions in a
probabilistic framework. In the following we present the options used in this thesis.

Node-to-node

Let us first focus on a node-to-node transmission between one sensor and the central
unit, which is the most basic communication process. As we remarked in the beginning
of the section, we consider networks where dropouts and delays are governed by some
stochastic process.

For ease of explanation, let us just consider the dropout case (i.e., when d = 0). In
the vast majority of the networked literature, the probability of receiving a sample is
time-invariant, i.e., Pr{a[t] = 1} = 5. From a practical point of view, this probability
is computed by implementing an experiment with the common network conditions and
then taking the time-average, over a large enough time-window, of the outcomes of «][t],
ie.,

T

. 1
B= Tlgnoo?;a[t]. (2.19)

This approach meets the probability of receiving a sample at each instant ¢, i.e.
Pr{aft] = 1}, when the dropouts are governed by a stationary stochastic process as the
expected value of the reception state variable E{«[t|} = 0 is constant, see Fig. 2.7(a).

This practical approach, which takes the temporal average behavior of the network,
is useful to avoid time-varying probabilities that appear when the dropouts are governed
by a non-stationary process, i.e. Pr{a[t] = 1} = S[t], see Fig. 2.7(b). By the moment, let
us study the case of time-invariant probabilities. The time-varying case will be analyzed
at the end of this section.

In a network with time-varying delays and dropouts the probability of receiving a
given sample with a given delay can be modeled in different ways. We consider the
following two alternatives:

e The delays 74[t] are independent and identically distributed (i.i.d.) random variables
with
Bs,a = Pr{rs[t] = d} (2.20)

ford =0,...,d where Zgzo Bs,a < 1. Note that Pr{a; q[t] = 1} = Pr{7[t] = d} =
Bs,q- Let us denote the tail probabilities by

Bs.a = Pr{z[t] > d} (2.21)
where Pr{7[t] > d} = Pr{||6, 4[t]||1 = 0}.

e The delays 7t] follow a mutually independent Markovian process with transition
probabilities given by
Asyij = Pr{rs[t + 1] = j|7s[t] = i} (2.22)

fori,j7=0,...,d.
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Figure 2.7: Node-to-node probability scenarios.

Current available sample and consecutive dropouts, (ay, Ni)

Let us consider the description on the network given by the pair (ay, Ni). The probability
of having a given sampling scenario at instant ¢ is given by

pi = Pr{a; = n;}, (2.23)

where 7; € Z in (2.13). The probability pg denotes the probability of having no sample.
Once some samples arrive at t; = t at the central unit, the probability of having N — 1
consecutive instants without data is given by

thr(Nfl)
Pr ﬂ ="y p = p(])vfl. (2.24)
t=tp+1

For instance, if the arrival of samples from each sensor with a given delay is governed
by an i.i.d. process (which implies the independency of each s 4[t]), we compute the
probabilities of each sampling scenario as follows. Let us denote by B € R™ the vector
containing all the 8, 4 probabilities defined in (2.20) such as

—

T
B= 8o Bra e Bugo - Bu, ] (2.25)

where ,6_’} refers to the j-th row of ,67 With that, te probability of having no sample
available at a given instant is
po =Pr{oy =no} = [[(1 - 5)). (2.26)

j=1
The probability of having some sensors available is Pr{alt] € é}, = 1 — pg, and the
probability of having a given combination of available sensors 7; € Z is

N T

pi=Pr{ay=n}=| [[ -5 I 3] i=t....r (2.27)
j=1 j=1
Vni,5=0 ni, =1
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where 7); ; refers to the j-th diagonal entry of ;.

Example 2.2

Let us consider a system with one sensor and d = 1. The probability of having o; =
with diag(nm1) = [1 0]7 can be computed as

Pr{a: =m} =Pr{iaglt] =1, ay[t] = 0} = Bo(1 — p1),
where we have considered that ag[t] and «4[t] are independent. |

Remark 2.9. This network characterization will be used in Chapter 3.

Historic available samples, 9,

After describing the probabilistic framework of the pair (ag, Ni), let us consider now 6,
that, as we mentioned before, may generalize the events described by (ay, Ni).

The behavior of 8; can be described by an ergodic’ Markov chain where the transition
probability matrix is A = [p; ;] with p; ; = Pr{0[t + 1] = ﬁj‘ﬁ[t] = 9, }. For instance, if
the arrival of samples from each sensor with a given delay is governed by an i.i.d. process,
the transition probabilities can be calculated as

Ty

Pr{0[t + 1]|0[t]} = [ 9(t +1.d,s)/g(t,d - 1,5), (2.28)
s=1
where
~ d ~ d
g(t,d,s) = II B I Bl (2.29)
d=0 d=0
d: 1|05 a[t+1]]11=0 d: ag g[t+1]=1

The result from equation (2.28) is only nonzero for feasible transitions. A transition is
feasible if s 4[t — h] have the same value in both 0[t] and [t + 1], for all s = 1,...,n,,
d=0,...,d—1land h=0,...,d—1—d.

Example 2.3

Let us consider a system with s = 1 and d = 1. The transition probability
Pr{0[t + 1] = ¥1|0[t] = Jo} of the events illustrated in Fig. 2.8 can be calculated as follows

Pr{r[t+ 1] =0,7[t] > 1|7[t] > 0,7[t — 1] > 1} = Pr{r[t + 1] = 0, 7[t] > 1|7[t] > 0}
= Pr{7[t + 1] = 0} Pr{r[t] > 1|7[t] > 0}

= Pr{ao[t + 1] = 1}Pr{|91[t + 1]”1 = 0|||90[t]||1 = 0}

= Pr{aolt + 1] = 1} Pr{]|61[t + 1][}» = 0}/ Pr{||6o[t][l. = 0} = BoB1/Po-

Remark 2.10. This network characterization will be used in Chapter 4.

In an ergordic Markov chain every state can be reached from every state in a finite time.
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Figure 2.8: Markovian transitions example.

Time-varying probability

In the above descriptions we have considered time-invariant probabilities, either because
the stochastic process was stationary or because we have considered the time-average
probability (see (2.19)). However, taking into account the possibility of time-varying
ones is a novel and challenging problem.

For ease of analysis, let us just focus on the dropout case (with d = 0) for packetized
samples. If the dropouts are governed by a non-stationary stochastic process, then the so
called packet arrival rate (PAR) at each instant ¢ is a time dependent probability defined
as

6,5 = PI'{O[t = 1}, (230)

The probability 8; can change on time with a bounded rate of change as
Br = Bi—1+ e, el <€, (2.31)

where g4 is the rate of change and & its bound.

Moreover, we can go further and consider that the probability is unknown but can be
estimated in real time by means of an estimator B = fB(Bt_l, o) that makes use of the
arrived packets a;. A simple estimator is the following first order filter

Be=aB-1+ (1 - a)ay, (2.32)

where 0 < a < 1 is a tuning parameter that should produce soft variations of Bt, but fast
enough to fit the variations of 3; along time. The actual PAR estimation error is defined
as

315 = Bt - Bt; (233)

and it is assumed that, as a consequence of the chosen estimator f3 (i.e., the value chosen
for @ in the case of the first order filter) and of the bound on PAR variations &, the error
is bounded by a value 0 < 1 < 1 as

1Bl < i (2.34)

Remark 2.11. This kind of network description will be analyzed in Chapter 5.
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2.3 Specific sensing link: wireless multi-hop networks with
fading channels

In Section 2.2 we have just studied and described the behavior of general networks without
entering into details on the network topology. In this section we present a specific wireless
network architecture used to transmit measurement samples. More information about
wireless networks can be found in [92].

Wireless communication technologies have been considerably upgraded in the last
years in terms of reliability and transmission rate [147], which have favored their use for
control and estimation purposes [142, 14] instead of wired technologies.

Briefly, transmitter wireless nodes broadcast a signal with some energy trough a
wireless digital link. Receiver nodes will acquire the signal if it is strong enough, i.e.,
if the signal to noise ratio for the digital communication channel is high enough. The
strength of the signal can be attenuated due to the phenomenon of fading leading to
dropouts. Fading may be due to multi-path propagation or to the presence of obstacles
in the path. Using higher transmission power levels alleviates the fading effect leading to
lower dropouts. But, transmission is the most power expensive task [34].

Due to the distance between transmitters and receivers or to the presence of obstacles
in the path, point-to-point transmissions through wireless fading channels may be highly
unlikely or extremely power consuming [92]. In the aim to improve sample delivery and
reducing power budget, we will derive a model for multi-hop wireless networks where
some nodes (called relays) consciously help to transmit the information from the source
to the final destination. These topologies profit from the fact that node data broadcasts
are more likely to be acquired from intermediate nodes.

We assume that the multi-hop network topology is given and fixed, i.e. the nodes
that comprise the network and the communication links between them are known and
fixed. In the interest of simplicity, we assume that nodes work in a half-duplex mode
with mutually orthogonal wireless links [92], i.e., simultaneous transmissions on different
channels are allowed and there is no interference between nodes. Moreover, we suppose
that the nodes access the communication channels with a time division multiple access
(TDMA) method using a predefined protocol. Thus, we assume that nodes are time-
driven and synchronized.

In this thesis, we consider multi-hop wireless networks that can be described via an
acyclic directed graph [7], see Fig. 2.9. This implies the absence of cycles in the network
topology. We denote the set of network nodes by N' = {Ny,..., Nps, Nysy1} being M the
number of transmitter nodes, where S = {Ny,..., Ny, } C N corresponds to the sensor
nodes set and Njsy1 to the central unit. The network topology is classified and ordered
by node layers depending on the maximum number of hops (longest path) for a sample
to arrive to the central unit from each node. We assume that the number of different
layers is bounded by d+ 2 (which defines the depth of the graph). The set of nodes in the
d-layer are denoted by My C N and a node N, belongs to the d-layer if N, € Ny. The
0-layer refers to the central unit, (d + 1)-layer alludes to only sensor nodes and all the
other layers may contain relay nodes (intermediate node that helps to retransmits the
data) and sensors, see Fig. 2.9. While relay nodes are used to retransmit data, sensors
can only send their own samples (this allows keeping sensors simple).

The central unit sends to each node through a reliable channel (without dropouts and
delays) their transmission powers when necessary (not necessarily at each instant ¢). If a
node transmission power is not updated the node keeps its previous transmission power.
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Figure 2.9: Multi-hop wireless network with 8 nodes and 4 layers

(d=2).

Each node N, aggregates all its available samples in a single time-stamped packet and
broadcasts it with the assigned transmission power, but only some nodes will listen to
its transmission. Nodes belonging to the same layer degree or to a higher layer degree
than the transmitter node (i.e. between d;-layer and da-layer with do > dq) will ignore its
transmission. Only nodes with lower layer degree will listen to it (i.e. between nodes in d;-
layer with do-layer, with do < dy). With that, a node may receive multiple measurement
sample packets from higher layer degree nodes and may forward its information to many
lower layer degree nodes. Whenever a relay node has nothing to retransmit it frees its
channel. We denote the whole set of wireless links by Z.

In the aim of [126, 17], we assume that communicating through each relay introduces
an additional unitary delay (equivalent to one sampling period) on the data reception
at the next receiver node. Considering this, a sample being transmitted at ¢t by sensor
N, € S belonging to the (d+1)-layer, i.e. Ny € Nz, ;, may arrive with an end-to-end
delay up to d depending on the number of intermediate layers it went through.

The central unit will discard measurement samples already received, i.e., only the
samples that have hopped with the least number of times will be accepted (smallest
delay). Let us denote by Zs g = {Z; 4, ..., Z¢ 4} the ordered set of links for a sample from
sensor s to arrive to the central unit with d + 1 hops.

Example 2.4

The multi-hop wireless network of Fig. 2.9 has 8 nodes and 3 layers. The depth
of the graph is given by d = 2 and the sensor nodes set is S = {Nj, Na, N3}.
A sample leaving sensor Np may hop twice (e.g., through Nj) or three times (e.g.,
through N5 and N7) before arriving to the central unit. The available links for a
sample from sensor N to hop twice until reaching the central unit are Zp; =
{{(N2, Ny), (N4, Ns)}, {(Na, N5), (N5, Ng)}}. If the same sample from sensor N3 (taken
at t) arrives directly to the central unit (at ¢) and through relay Ng (at ¢t + 1) , this last
one will be discarded. [ |
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2.3.1 Fading channel characterization

In this thesis, we model the fading wireless channels as i.i.d. block fading ones, where
the channel gains remain invariant over a block (representing the coherence time of the
channel [11]), but may vary i.i.d. from block to block. The channel fading gain can be seen
as the attenuation or amplification of the signal transmitted power at the receiver node
due to the state of communication link. We denote the channel fading gain associated
to the communication link (N,, N;) € T by hg [t]. We assume that the value of all the
fading channel gains at each instant ¢ are known, which can be attained in practice by
means of channel estimation algorithms (see references in [115]), where

ha7l[t] EQ(LJ CRZO’ Qa = {Q(L,l)"'7Qa,O}7 Q= {Ql,...,QM} (235)

with a,l,0 € {1,..., M 4 1} such that (N,, N;) € Z and (N,, N,) € T.
To model the unreliable transmission through the wireless links, we introduce the
following binary variable

(2.36)

] 1 if node Nj receives an error-free packet from node N, at t,
1t = . . .
Ta, 0 if packet from node N, received at node IN; contains errors at t.

Whenever a packet contains errors, it will be rejected. Then, the success probabilities of
acquiring a transmitted packet are defined by the state of the communication link A, ;[¢]
and, with abuse of notation, by the transmission power w,,[t] € [0, 4] such that

Pr{v,:[t] = 1|hqe[t] = h, ua[t] = u} = fa,i(hu) (2.37)

where the function f,; is monotonically increasing and differentiable, and depends on
the employed modulation scheme (see [114]).

Remark 2.12. If we consider that the digital communication uses binary phase shift
keying (BPSK) transmission [114] with b bits per packet, we have

LT ’
fai(hu) = < : Ee*’“ /2dk> : (2.38)

Note that as the transmission power increases, the successful transmission probability is
higher. Moreover, assuming Rayleigh fading, the fading channel gains are exponentially
distributed with probability density function (PDF)

Ja,i(h) = efh/ﬁa h € Rxo, (2.39)

> =

with A being its mean.

Let us denote by H,[t] € Q, the vector that defines the fading channel gains of the

links through which node N, can transmit at instant ¢, i.e, Hy[t] = [hau[t] -+ haolt]]T
with {(Ng, N;),...,(Na, No)} C Z. Then, the vector containing all the fading gains
involved in the communications at instant t is H[t] = [Hi[t]T --- Ha[t]T]? where

H[t] € Q. We use Y,[t] to represent whether node N, have received any sample at

instant ¢
Y. [t] = \ alt]. (2.40)
Vi:(N;,N,)ET
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With that, we denote by D,[t] the vector containing all the available data characterizing
the broadcast of node N, at instant ¢, i.e.

Dalt] = [Ha[t]” walt] Talt — 1))7 (2.41)

where D[t] = [Di[t]T --- Dy[t]T]T. Taking into account that when node N, has no
available information it does not try to transmit, the probability of acquiring a packet
from node N, at node Nj is

faalhu) i Toft —1] =1,

0 if Tyt —1]=0. (2.42)

Pr{ya..[t] = 1|D,[t] = D} = {

where T, is always one when the transmitter node is a sensor, i.e., when N, € §. When
there is nothing to transmit, the transmitted power is considered to be u,[t] = 0. Let us
assume that the transmission outcomes from node N, to node N; at instant 1 (yq,[t1])
and from node N, to node Nj at instant t2 (7,,j[t2]) are conditionally independent given
D,[t1] and D,[ts].

Remark 2.13. The sample successful transmission probability depends on the value
of fading gain channel when transmitting, which is governed by a stochastic process,
see (2.37) and (2.42). Then, this probability may vary over time. However in this thesis,
we will adopt the practical point of view and consider that the successful transmission
probability between nodes is time-invariant with a value given by its expected value, i.e.,

Ba, = / g(Hg) Pr{vs.1[t] = 1|ha,[t], ualt]}dH, (2.43)

a

where

g )= ] gau(hay). (2.44)

Vi: (Na,Ny)ET

is the joint PDF of all the fading channel gains of the communication links available for
node N,.

2.3.2 End-to-end transmission

To conclude this section, let us show how the historic available sample description 6;,
introduced in Section 2.2, can be used in this context.

Considering that the number of layers is bounded by d + 2 (and so the hops),
the maximum possible end-to-end delay is d, which means that the induced delay is
7[t] € {0,1,...,d,00}. Then 7,[t] > d (equivalent to 7,[t] = oc) means that the sample
sent at t is lost. Let us denote by I';(7[t]) the boolean combinations (logical “and”, “or”
operations) of variables v, ;[t + d] that define the possible paths a sample from sensor Ny
sent at ¢ may take to arrive to the central unit with 7[t] € {0,1,...,d, 0o} delays. Based
on I's(7[t]) the next lemma shows how to compute the transition probabilities of 6,.

Lemma 2.1. The transition probabilities p; ; = Pr{6, = 19j|9t_1 = 9;} of 0 can be
computed as

pij =Pr{pt,d)|e(t—1,d)} (2.45)



28 2. Networked Control Systems

with
- Ty d d
o(t,d) = )\ A N TsGlt=d =6 [ A\ N\ Ts(lt—d > d)
s=0 d=0 §=0 d=0
{d,6}: as 5[t —d+6]=1 d: [|0s,q[t][|1=0

(2.46)

Proof. From the definition of the binary variable a; 4[t — d] in (2.10) and of vector 0[t]
(see (2.15)-(2.16b)) we know that o s[t —d + 6] = 1 models that 75[t — d] = 0 and that
10s,alt]]l1 = O states that 75[t — d] > d. Then, exploring the whole vector 6; and taking
into account that I's(7[t]) models the state of the links that characterize the end-to-end
transmission outcome, one can obtain (2.46). [

Example 2.5

O Sensor nodes . . ..
T L

O Relay nodes . .V@

Wl

ARl
O Central Unit @ et
el 2,40 2 L.
2 - layer 1 - layer 0 - layer

Figure 2.10: Multi-hop wireless network with 4 nodes and 3 layers

(d=1).

Let us consider that the network topology on Fig. 2.10, where n, = 2 and d = 1.
With that 6; represents the following reception events:

mqlt] at t
mift —1] at t—1
mift —1] at ¢
malt] at ¢ ’
maolt —1] at ¢t —1
maolt — 1] at ¢

where sample m; comes from sensor node N7 and sample msy comes from sensor node
N,. For instance, let us analyze what represents

olt—1]=[1 0 0 0 0 1]"

in terms of the communication occurrences between the different nodes. In this case,
0[t — 1] models the following:
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e mq[t — 1] from sensor node N7 has been directly acquired by the central unit at
t — 1, which implies 7 [t — 1] = 0 and 1 4[t] = 1.

e m1[t — 2] from sensor node N7 has not been received neither directly nor through
relay node N3 (sample is lost), which implies 71[t — 2] > 1. This might have
happened because neither N3 nor Ny have acquired mq [t —2] at ¢t —2 (which implies
1 ,4[t —2] = 0 and 71 3]t —2] = 0) or because communication through N3 has failed
at instant ¢ — 1 (which implies 1 4[t —2] = 0, 71,3[t — 2] = 1 and 3 4[t — 1] = 0).

e mo[t — 1] from sensor node N3 has not has not been received yet, which implies
To[t —1] > 0. This means that direct communication has failed, 2 4[t — 1] = 0, and
the sample may arrive or not at t.

e mo[t—2] from sensor node N3 has only arrived through relay node N3 at t—1 (direct
communication with the central unit failed at ¢ — 2), which implies [t — 1] = 1,
’)/274[t - 2] = 0, ’)/2’3[15 - 2] =1 and ’)/374[t — ].] =1.

Considering that v, ;[t] denotes v,,[t] = 1 while —y,,;[t] = 0, Table 2.1 extends the
above comments and shows the different possible node to node transmission scenarios
(outcomes of v,,;) causing the delayed state of a sample sent from sensor node Ny sent
at instant ¢, Ts(7[t]).

To conclude the example let us show how to compute the transition probability
between the states

0ft—1=[1 0 0 0 0 1]", and 0]=[0 1 0 1 0 1] .
In this case 0[t] models the reception scenario where
([t] > ) A ([t —1] =0) A (=]t = 0) A (2]t — 1] =1).
Applying the definition of conditional probability, expression (2.45) leads to

Pr{g[|olt — 1)) = - {;iif’{i?(? = (f 1_>; -

where

et 1) Ap(t —1,1) ==yra[t] Avialt — 1 Ayzalt] A =y2alt = 1 Avzslt — 1] Avsat]A
“Yalt = 20 A st = 2] A y2aft — 2] Avas[t — 2] Avsalt — 1],
Pt —1,1) =y1a[t = A —yalt = 2] A=y st = 2] A =24t — 1] A =y2,4[t — 2JA
Yo,3[t — 2] A ys.aft — 1].

Finally using (2.42) and (2.43), we get

Pr{0[t]|0[t — 1]} = (1 — B1,4) B2,4 B2,3 B3,4.

Remark 2.14. This kind of network will be employed in Chapter 4.
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Table 2.1: End-to-end transmissions for Fig. 2.10

Case From sensor node N7 From sensor node Ny
T, (r[]] = 0) Y1,4[t] Y2,4(t]
Ls(r[t] =1) “Y1,a[t] Ay1,3[t] Aysalt +1] Y2,4[t] A v2,3[t] Ay alt + 1]
sl A s (ol n | (ol A e (ol
—y1,4t] A —y1,30E)) V (01,4t A —y2,4t] A —y2,3(t)) V (02,4t A
La(rlt] > 1) Y1,3[H A j%A[t +1]) Y2,3[t] A 3V3,4[t + 1)

2.4 Control link

Let us now turn our attention to the control link illustrated in Fig. 2.5. Let us describe
the considered control input update. At each instant ¢ — 1, the controller sends to the
actuators (through the network) a single packet with all the control inputs to be used at
instant t2. We denote with u§ the control input transmitted from the controller (at ¢ — 1)
to be applied at instant t. We will only consider the dropout case and then, we model
the control input reception at instant ¢ — 1 with

(2.47)

u {1 if uy is received at instant ¢ — 1,
Tt-1 =

0 if uf is lost.

Each actuator implements a ZOH strategy (see Fig. 2.2) , i.e.,

e 'f u —
A (2.48)
us—1 otherwise.

With this control input update procedure, in this thesis we consider two cases
depending on whether there exist a control reception acknowledgement.

TCP-like networks

TCP-like networks provide to the central unit a delivery acknowledgment on the control
input transmission, and therefore the central unit knows which are the control inputs
being applied on the process at each instant of time. This is the most frequently considered
case in the works on estimation and fault diagnosis over networks.

UDP-like networks

When the communication network implements an UDP protocol (motivated by
reducing the network resource consumption, e.g., power and bandwidth) there is no
acknowledgement of successful delivery and we ignore at the central unit the exact value of
the control input being applied at each instant. Here, we will assume that the probability
of being applying at instant ¢ the control input transmitted at ¢t — 7 — 1 is known, i.e.

or =Pr{us =u;_ .}, T=0,..., Ny, ZapT =1, (2.49)

2This control strategy is used to overcome delays up to one instant, see [110].
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where N,, denotes the maximum integer number of consecutive packet dropouts from the
central unit to the actuators.

Remark 2.15. Let us suppose that the dropouts in the controller to actuator link follow
a Markovian process with

Pr{~; =0}y, =0} = qu,
Pr{v =1yt =1} = pu.

If the actuators implement a time-triggered protocol that forces the controller to assure
the successful control command transmission when the consecutive number of packet
dropout is N, then the probabilities in (2.49) can be obtained as

1
Yo = — Tlu,
Po,u

1 _
Yr = —qz 1(1_pu)7rl,uv V7 >0
DPo,u

where

N‘ll,
Po,u = T1u t Z n (1= pu) T
T=1

denotes the tail probability originated by the bounded number of consecutive dropouts
N,. m1 4 is the probability of updating the control inputs (i.e., 71, = Pr{y;* = 1}) that
can be computed as 7, = 7, Ay, where m, = [, 71,,] and A, is the associated transition
probability matrix of v;* (being mg ., = Pr{vy}* = 0}).

The value of the real control input being applied to the system is unknown, but the
central unit has acces to its expected value E{u;}. Let us denote E{u;} by u{ where

N'U/
uf = Zg@d Ug_g- (2.50)

d=0

With that definition, the control error @; = us — uy can be expressed as

N,
Uy = up — Z Odug_g- (2.51)
d=0

The next lemma characterizes some statistics of ;.
Lemma 2.2. The control error u; has the following properties:

E{i;} =0, (2.52a)

N, Ny Ny,
BT =S <u:d—z¢du:d) <ufd—z¢du:d). (2.52b)
d=0 d=0 d=0
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Proof. The expected value of i is zero by definition of u§, see (2.50). The expected
value of @} ii; can be expressed as

N, r N,
E{u] 4} =E <ut - Z ©d ufd> <ut - Z ©d ufd>
d=0 d=0

T

Ny, Ny Ny,
= Z Pluy = ui_4} E (ut - Z ¥Pd ufd) (Ut - Z Pd ufd) U = Up_g
d=0 d=0 d=0
where the total probability law has been applied, proving (2.52b). |

Remark 2.16. UPD-like networks on the control link will be considered in Chapter 8.
The rest of the chapters deal with TCP-like networks.

2.5 Event-based sampling

Data traffic is an important issue in NCS due to the increasing number of processes that
are branched to the same communication network. Usually, sensors send their sample
periodically (at each sampling instant t) in a time-triggered strategy. However some
of this information may be redundant, for instance, when the process is stabilized at a
certain point and there is no disturbance. In the aim to reduce sensor transmission we can
rather use and event-based strategy where an event triggers the transmission. Moreover,
this will also help to increase battery lifetime of wireless sensor nodes. In the work [4] a
comparison between periodical and event-based sampling is done. In [67, 77| a survey of
different event-based strategies are presented.

In this thesis we focus on the periodical Send-on-Delta (SOD) strategy [90] where the
sensor node decides to send a new sample if the current one differs more than a given
threshold with respect to the last sent one, see Fig. 2.11. The main motivation to use
this approach is to keep the sensors as simple as possible. Other strategies, as the one
presented in [49], needs sensors with additional computational capabilities to preprocess
the samples, which increase the cost of the sensors.

In the following we describe the SOD strategy. Let us assume that the sensor node
s has sent a sample to the central unit through the communication network at instant
t = ty, and we call it m§, = mg[ty,] (where ks enumerates the sent data from sensor
s). Then, a new sample will be sent if the following condition holds

|ms[t] — m§’k5| > A, Ay >0, t >t (2.53)

where A; is the allowed deviation threshold, see Fig. 2.11. In that case, the sensor sends
the (ks + 1)-th measurement, and mg[t] becomes mg ; . If there is no dropout neither
delays induced by the network, the s-th component of the acquired samples m®[t] at the
central unit remains constant while there is no new sample from sensor s, i.e.,

ma[t] = m;ks, Tk, <t< thot1-

With that, we can reuse the sample state reception variable presented in (2.10) to
describe when the central unit receives a new sample as follows
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1 if there is a new sample received at instant ¢,
aslt] = (2.54)

0 otherwise.

Note that a higher value of A; will reduce the number of transmitted samples from
sensor s.

yslt]

Figure 2.11: Send-on-Delta sampling.

Remark 2.17. SOD sampling will be employed in Chapter 6.

2.6 Estimation over networks

Traditional estimation methods must be adapted to overcome the issues induced by the
use of communication networks such as packet dropout, delays or intermittent partial
observations when acquiring samples from sensors. For ease of explanation let us focus
here on the estimation problem with packetized dropouts. A common Luenberger-type
estimation algorithm for this case is given by

G- = Ady_1 4+ By up_1, (2.55a)
JA?t = i‘t— + Lt(mf — Ot Cf?t—). (255b)

At each instant of time ¢, we run the open loop estimation (2.55a) using the control
input being applied at the plant u;_;. When some measurements are available at the
central unit oy # 0, we update the estimation by means of the updating gain matrix L,
see (2.55b). Otherwise, we hold the open loop, i.e., &; = Z;— (note that m{ is zero under
dropouts, see (2.9)).

The KF approach is one of the most employed methods to obtain gains L; [64]. Tt
tackles the state estimation over networks problem updating the estimator gain at each
instant of time with the corresponding observation matrix. In [129] the authors provided
the following modified optimal KF

P, = AP, AT + B, W BT, (2.56a)
Li=P-CT(CP-CT+V) (2.56b)
Pt = (I—Ozt Lt C) Pt* (256C)
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Figure 2.12: Components of the updating gains given by the Kalman
filter applied to the double integrator system with
dropouts presented in [130].

where W = E{w,w!'} and V = E{vv]} are the disturbance and measurement noise
covariances (or tuning parameters if the covariances are unknown). As we can see, this
approach leads to a time varying gain that must be computed on-line even for LTI
systems. The on-line computational burden of the KF may be unaffordable for some
applications, what motivates the search for computationally low cost alternatives.

Jump estimators

The authors in [130] showed in their motivation example that the gains of the KF depend
on the history of combination of samples availability. Based on this observation, they
proposed a finite history jump linear estimator with pre-calculated gains that depend on
the historical transmission outcomes. The use of pre-calculated gains reduce the on-line
computational effort, but increases the estimation error and requires both storage and a
mechanism to choose the appropriate gain at each sampling time.

Let us reproduce their motivation example and show the obtained KF gains in
Fig. 2.12. As we can see from Fig. 2.12(a), it is obvious that there exists a high correlation
between the KF gains and the sample reception history. In this case it extremely depends
on the outcomes of the last four reception instants, i.e., on [ay—3 a2 ay—1 ay]. Using
their approach this would lead to 8 different observer gains. Note that their finite history
jump linear estimator is similar to relate the observer gain to our 6, defined (2.16b),
where in this case d defines the considered history.

However, one can observe that there exist other relationships between the KF gains
and the sample reception scenario. For instance, as illustrated in Fig. 2.12(b), the gains
also depend on the number of instants between two consecutive sample reception Ny
(see (2.14)). In this case, relating the observer gains to N will lead to 7 different gains
(one less than before). It is obvious that as we consider more reception scenarios, and
assign a different estimator gain to each of them, we improve the estimation performance.
Therefore, is there any set of possible sample reception scenarios that allows reducing
the number of stored gains while guaranteeing some estimation performance?

Motivated by reducing the jump linear estimator complexity (in terms of storage
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and selection mechanism), in Chapter 3 and Chapter 4 we study the design of a set
of estimator gains that gives favorable trade-offs between estimator complexity and
estimation performance for different network scenarios with multi-sensor transmission
with both time-varying delays and dropouts (in [130] only the packetized case with
dropouts were studied). In order to be able to compare the results with the KF we
address the estimator design through a covariance-based procedure. Moreover, we also
show how the models for the sensing link presented in Section 2.2 can describe other
transmission policies used on the networked estimation literature.

Dealing with delayed samples

In the literature there exist mainly two approaches to deal with delayed measurements
in the estimation problem with KF methods:

e Stack solutions: augment the state and the measurement space with the
maximum number of possible delays, e.g. [84, 91], as

Z[t 4+ 1) = Az[t] + Bult] + By wlt], (2.57a)
m®[t] = alt] (C z[t] + v[t]) (2.57b)
where zft] = [2[]7 - zft—d"]", oft) = [l - w,[4], Bl =
[vs[t] -+ ws[t —d]] and
(A0 0
Az |l 0 B—[ﬁ‘], Bw—m, (2.58a)
0 I o
[ e Cs,0
C= , Cs= ) Es,d:[lendcsolx”.(d’_d)]. (2.58b)
_Eny ESJ

This approach can be seen as incorporating additional fictitious sensors for
each actual sensor with a different constant delay and therefore the estimation
method (2.56) with the KF in (2.55) can be directly used. However, even if it
could be very computationally expensive due to the increased size of the involved
matrices, its sparsity can be used to reduce the computational load.

e Re-compute solutions: re-compute all the state estimations from the more
delayed measurement, e.g. [123, 45]. This approach requieres the inversion of each
of the involved KF gains, which could be a very computational consuming task.

Considering the stability of systems with delays, in [52] the authors demonstrateed
the equivalence between the Lyapunov-Krasovskii methods and the use of a common
Lyapunov function with the stack approach. Motivated by this and in the aim of
simplicity, in this thesis, in Chapters 3 and Chapter 4, we adopt the stack solution
to design jump estimator over networks with delays.



36 2. Networked Control Systems

SOD-based estimators

Following the same research line (relating estimator gains to the sampling scenarios), in
Chapter 6 we introduce the SOD mechanism to transmit multi-sensor samples through
a network with dropouts and propose a jump linear estimator whose gains are related to
the sample reception scenarios. Moreover, we characterize in a probabilistic framework
the SOD-based transmission. As we shall see, the probability of having available a new
sample turns to be time-varying and a priori unknown, but bounded. Therefore, we design
the estimator to guarantee some estimation performances under these circumstances.

Gain-scheduled estimators

In the previous items, sample losses and therefore the different reception scenarios
(if samples are transmitted at each instant of time) are due to the unreliability of
the communication link where there exists some probability of being able to perform
a successful transmission. So, this probability is the fundamental process behind the
reception scenarios. In the previous sections, we considered that dropouts were governed
by a stationary process that leads to a time-invariant dropout probability. But, what
would happen if the PAR, as described in Section 2.2, is time-dependent and we only
have access to an estimated value (see (2.32))7 Can we relate the estimator gains to the
origin of dropouts?

Motivated by adapting the estimator to the changes produced on the network, in
Chapter 5 we study the design of estimators where their gains are scheduled in real time
with rational functions depending on the estimated PAR.

2.7 Fault diagnosis over networks

Let us first introduce the following definitions borrowed from [15, 58].
e Fault: forbidden deviation of at least one characteristic of the system.

e Fault detection: to determine the presence of faults with a binary decision and
time of detection.

e Fault isolation: to determine the kind, location (e.g. sensor or actuator) and time
of detection.

o Fault identification: to determine the size and time-variant behavior of a fault.

e Fault diagnosis: to determine the kind, size, location and time of detection of the
fault. Include fault detection, isolation and identification.

The needs for reliability, safety and efficient operation in control systems, make the design
of model-based fault diagnosis methods a key issue. In this thesis we focus on observer-
based methods. Fault detection when using an observer-based fault detection scheme
is addressed by the comparison between a residual signal generated with the estimated
system outputs and a threshold. The residual is conceived to balance the robustness
against disturbances and the sensitivity to faults. Fault isolation is usually guaranteed
by assigning a residual signal to each possible fault that is insensitive to the other faults.
Finally, estimating the fault signals leads to fault diagnosis. Further information can be
found in [15, 58].
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Unlike in the state estimation problem where we know the dynamic of states and
have some knowledge about the behavior of the disturbances and measurement noises
(e.g., their covariances), in the fault diagnosis problem we aim to estimate a completely
unknown input signal. We may want to reliably detect as fast as possible the presence
of faults (higher response time to faults) to prevent damages or we may need to
estimate accurately the magnitude and time behavior of the fault to decide whether
the malfunction is important. Therefore, the performance of a fault diagnosis algorithm
can be defined by means of the trade-off between the fault tracking conditions (that
includes the minimum detectable fault), the response time to faults and the false alarm
rate [57, 55]. Let us define these concepts:

e Fault tracking conditions: refers to how accurate the estimated faults follow the
real faults.

e Minimum detectable fault: refers to the fault that drives the residual to its
threshold, provided no other faults, disturbances and measurement noises are
present.

¢ Response time to faults: refers to the sensitivity to faults which affects
indistinctively the time elapsed between the appearance of a fault and its detection,
and the response time of the fault estimation algorithm under faults.

e False Alarm Rate (FAR): refers to probability of alarming of the presence of
fault when in fact there is no fault.

The ideal fault diagnoser would provide a fast response time to faults (fast detection), a
low (or null) FAR and an accurate fault estimation. We can obtain a fast response under
faults by increasing the sensitivity of the algorithm. Then, both the residual signal and
the estimated fault signal become more aggressive and react faster under faults. However,
this reduces the robustness against disturbances leading to an increasing number of
false alarms and to more disturbed estimated fault signals (as well as higher minimum
detectable faults). Decreasing the sensitivity of the algorithm reduces the false alarm rate
and leads to a smooth estimated fault behavior (as well as lower minimum detectable
faults). But, this increases the response time to faults.

The use of a network to transmit information enhances the difficulty of meeting the
ideal goals and makes more evident the compromise between them. How can we detect
faults under measurement sample dropouts? How can we assure a given false alarm rate
under the loss? Can we assure the detectability of some desired fault magnitudes? Can we
relate explicitly the compromise between these three goals under the network paradigm?
How far can we push the fault diagnosis algorithm? These five last questions do not have
proper answers on the networked fault diagnosis literature.

In Chapter 7 we show how to adapt the estimator (2.55) to perform fault diagnosis
over networks and give an answer to the above questions. Following the research line of
the last section, we also relate the estimator gains to the sample reception scenarios.

UDP-like networks

Fault diagnosis is carried out using an extended version of the estimator (2.55) that uses
the control input being applied in the process. If the control action is sent through a
TCP-like network then the central unit (where the fault diagnosis is performed) knows
which are the control inputs being applied to the process. However, if the control link
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Figure 2.13: Fault diagnosis objectives: response time to faults, false
alarm rate and fault tracking conditions.

is given by an UDP-like network, then the central unit ignores the control inputs at the
plant and only knows the sent ones, as described in Section 2.4. Then, how this affects
the fault diagnosis performance?

In Chapter 8 we extend the results presented in Chapter 7 for the case when the
control input is transmitted through an UDP-like network. We use the expected value of
the real control input being applied to the system to update the open-loop estimation.
In the aim to relate the estimator gains to the network conditions, we propose the use
of jumping gains that are scheduled in real time with rational functions depending on a
statistic of the difference between the control command being applied in the plant and
the one being used in the observer, see (2.52b).

2.8 Co-design

In the last two sections we have presented the estimation and fault diagnosis over networks
problem. Let us just focus on the estimation problem. In Section 2.6 the data transmission
context was fixed and we gave some hints on the addressed methodologies to overcome
the network induced problems. But, what if we can control the data transmission rate?

Saving network resources is a key issue. Reducing the data traffic over a network
increases its reliability and favors the inclusion of new devices that share the network.
This can be achieved by increasing the threshold A, of the SOD sending mechanism
(see Section 2.5) or by assigning lower transmission power levels to the transmitter
nodes (see Section 2.3). Moreover, decreasing the number of transmissions helps to
increase the battery lifetime of wireless self-powered nodes. However, having less data
available at the central unit deteriorates the performance of the estimation methods.
These observations arise the following question: would it be possible to design both
the transmission mechanisms and the estimators to minimize the network resource
consumption while guaranteeing a prescribed estimation performance? This is the so-
called co-design problem.

In Chapter 4 we address the co-design problem considering the minimization of the
power budget consumed by the wireless nodes, while in Chapter 6 we deal with the
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minimization of the sensor transmissions that implements a SOD policy. The approaches
presented in these chapters can be adapted to the fault diagnosis problem with not much
effort.
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Chapter 3

Jump state estimation with
multiple sensors with packet
dropping and delaying channels

ABSTRACT: This chapter addresses the estimator design for
networked multi-sensor systems. Samples from each sensor mode are
considered to arrive randomly on time, scarcely and with a time-
varying delay. The derived model of the plant and the network
sample scenarios covers the cases of: multiple sensors, out-of-sequence
measurements, buffered measurements on a single packet and multi-rate
sensor measurement samples. We propose jump estimators that select a
different gain depending on the number of time instants elapsed between
successfully received samples and on the available data. Then, we
precalculate a finite set of gains with a tractable optimization problem,
where the complexity of the estimator implementation is a design
parameter. The computational effort of the estimator implementation
is much lower than in the KF, whilst the performance is similar.

In the last years many processes in industry are controlled or supervised through
sensors, actuators and controllers connected to a shared network (wired or wireless),
see [44]. The use of a network causes packet dropout, delays or intermittent partial
observations when acquiring data from sensors, and the control and estimation through
a network must overcome these problems.

The KF tackles the state estimation over networks problem updating the observer
gain at each sampling time with the corresponding observation matrix. This approach
leads to a time varying gain that must be computed on-line even for linear time invariant
systems (e.g. [129, 122, 123]). The computational cost of the on-line implementation is
unaffordable for some applications, what motivates the search for computationally low
cost alternatives.

The use of precalculated gains reduces the implementation cost in terms of computing
capacity, but increases the estimation error and requires both storage and a mechanism
to choose the appropriate gain at each sampling time (e.g. [130, 119, 101]). A constant
gain approach leads to lower storage requirements but also to lower performance. The
jump linear estimator approach [37] improves the estimation with a set of precalculated
gains that are used at each sampling time depending on the actual available measurement
samples, requiring both storage and the implementation of a selection algorithm. If the set
of gains is also a function of the history of sample availabilities (called finite loss history
estimator in [130]) a better performance is achieved at the cost of more implementation
complexity in the selection of the appropriate gain. An intermediate approach in terms of
storage and selector complexity consists of a dependency on the current available samples
and on the number of consecutive dropouts since last available sample ([101, 110]).

43
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Computing the gains off-line requires prior knowledge about the network dropout.
When the network behaves as a Markov chain, the design uses the transition probabilities
([130]), and when the Markov chain is irreducible and aperiodic (i.e., Bernoulli
distribution), the reception probabilities (stationary distribution of the Markov chain)
give enough information for design or analysis purposes ([129]). Under unknown
statistic information and scarce measurement samples, the maximum possible number
of consecutive dropouts, if it is assumed to be bounded, gives useful information for the
design ([101]).

In this chapter we propose a jump linear estimator that leads to low cost
implementation and acceptable performance for networks with Bernoulli distributions.
The gains depend on the combination of actual available measurements and on the
number of consecutive time instants without data since the last data arrived. As that
number is unbounded for Bernoulli distributions, we propose to use a constant gain when
the number of consecutive dropouts exceeds a given threshold, and derive an expression
to determine the effect of this threshold on the achievable performance. Furthermore, we
propose to reduce the number of stored gains by means of sharing the use of each gain
for different combinations of available samples.

The main difference with the work [130] is an important reduction in the number of
gains and in the complexity of the gain selection mechanism under scarce measurements,
while leading to a similar performance. With respect to work [101], the main differences
are that we do not need to assume that the number of consecutive packet dropouts is
bounded, and that we do not discard the samples from which the state is not detectable.
Other differences with those previous works are the integration of delayed measurements
and irregular sampling scenarios as out-of-sequence or buffered measurements, and the
proposal of different strategies to reduce the complexity of the observer in order to find
a compromise between implementation cost and performance.

The chapter has the following structure: in Section 3.1 we describe the process,
present the observer algorithm and derive the estimation error. In Section 3.2 we develop
the convex optimization based observer design, and demonstrate the convergence of
the estimator. In Section 3.4 we propose some possible grouping scenarios to find
a compromise between implementation cost and performance. In Section 3.5 several
examples show the validity of the proposal, compared to the KF approach. Finally, the
main conclusions are summarized in Section 3.6.

3.1 Problem approach
Let us assume a LTT DTS defined by equations
Tt41 :AJTt +B’U,t+Bw Wt (31)

where x € R™ is the state, u € R™ is the input, and w € R™» is the state disturbance,
assumed as a random signals with zero mean and known covariance E{w; wl} = W.
Throughout this chapter we assume that the control input is causally available at all
times (see Fig. 3.1).

Let us assume that samples from several sensors are taken synchronously with the
input update but received through a network with packet dropouts and induced time-
varying delays. We denote by t; the instant of sample reception, and define the acquired
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Figure 3.1: Estimation over networks problem.

measurement value by
mf;k = Cs,k[tk] J)[tk — ds,k] + Vs k) s=1,....nm (3.2)

where my ;. represents the k-th measurement sample of sensor s, and vs 5, the sensor noise
on the k-th sample, assumed an independent random signal with zero mean and known
variance E{vZ,} = 02. We assume synchronization between sensors and the estimator
unit and time-tagged message sending, that allows us to know the transmission delay.
ds . € Nis the network induced delay measured in number of time instants. We introduce
an extended order model to avoid running backwards the model when dealing with
delayed measurements. We take into account in the model delays up to a value d € N
that must be selected in the estimator design procedure.

Remark 3.1. In the observer to be designed we discard samples with a delay higher than
d. Note that d is not a network parameter (the network could have unbounded delays),
but an observer design parameter (see Fig.2 in [123]). As d may be lower than the bound
on the real delays, reducing d may decrease the probability of having available samples,
but will also reduce the model order and hence, the complexity of the estimator. For a
given delay distribution, the selection of d is a trade-off between estimator complexity
(related to the order) and achievable performance (related to the amount of available
data used by the estimator to be designed). Example 3.5.2 illustrates this compromise in
the choice of d.

The model including the delayed states is

Tiy1 = AZy + Buy + By, wy, (3.3)
T
where Ty41 = [J?tT_H e xtTfJH} and
A 0 0
- 1 0 = B 5 By
A_ ) B_|:O:|) BUJ_|:0:|7
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with the acquired measurement equation

mg = [01x(n)d, , €5 O1x(n)(d=d, )] Tk + Vs k- (3.4)

Cs,k

As ¢, can take d + 1 different values (depending on the delay ds 1), we enumerate
with j € [1,n,,(1 + d)] each combination of sensor s = 1,...,n,, plus possible delay
d=0,...,d, and consider each one of those combinations as if they were measurements
from different (fictitious) sensors. The enumeration we choose follows the law j =

(s = 1)(1 +d)+ (d+ 1), and we express the acquired measurement equations of the
fictitious sensors j with a constant output matrix as

= a

Mg = Tk + Uik, J= 1ol (3.5)

with iy, = nn (1 4 d) the number of total (real and fictitious) sensors, and

¢ = [01x(n)d i O1x(n)(d—a))-

This notation allows us to deal with out-of-sequence received measurements, with
received packets including measurements from one sensor sampled on different instants
(i.e., buffered measurements), and avoids the use of time varying matrices cs .

We propose the following state estimation algorithm. At each instant ¢, the model is
run in open loop leading to
‘%t_ = Ai‘tfl + But,l. (36)

If no measurement sample is received, the best estimation of the system state is the open
loop one, i.e., T; = Z; . If some messages arrive at time ¢t = ¢, the state is updated as

Nm

T = i‘]; + Zlm(m?’k — Cji‘];), (37)
j=1

where [; 1 is the updating gain that applies to the k-th sample of sensor j if available at
the estimator node. The design of [; ;. is one of the main concerns of this chapter and it
will be discussed later in detail.

Let us define the sensor availability factor «;; of the j-th sensor (j =1,...,7,y) for
every instant ¢ (similar to (2.10)) as

(3.8)

1 when mj is acquired in ¢,
Q¢ — A
7 0 otherwise.

Let us define the availability matrix (cf. (2.11)) as a; = @?;"1 ¢, that is a binary
diagonal matrix with ones only at positions jj such that «;; = 1. Using this matrix, we
rewrite the acquired samples at instant ¢ as

mi = oy (CTy + )

with m§ = [m$, --- m%m,t]T; Uy = [U14 -+ Ua,,4)7, where a null value is assumed when
a sample is lost, the rows of C are ¢;, and where v, is the measurement noise vector with

covariance
1+d

E{0,0.} =V = ém; Po:? (3.9)

i=1 \ j=1
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assuming a non correlated noise. An instant ¢ in which all information from sensors is
lost leads to ap = 0. If at a given instant ¢ all the information from each sensor is
available, then a; = I (as we assume delayed sample, this means an arrival of a packet
with information of each sensor from t — d to t).

With the previous notation, and considering a null value on the unavailable samples,
we rewrite the update equation (3.7) as

-%k = i‘k— + Lkak(mk — C.%k—), (3.10)

where Lj is the updating matrix. Defining the estimation error at the updating instant
as T = Ty — Tk, the estimation error dynamic is

=0

Ni—1
f?k :([7 Lkaké) <ANki'k_1 + Z Aiwa[tk_l +Z]> — Lkakz’)k, (3.11)

where Ny denotes the number of consecutive time instants without samples, i.e.,
Ny =t —tp—1. To obtain equation (3.11) we firstly run the estimator (3.6) in open loop
from ¢, to t; and apply the update equation (3.10), secondly we run the model (3.3)
from tr_1 to t, and finally we subtract the two results.

Each combination of available samples leads to a different value of matrix aft] at each
instant. These values are within a known set

(677 c=E= {7707771)"'5777'}7 (312)

where 7, denotes each possible combination (sampling scenario). In the general case,
any combination of available sensor measurements and delays is possible, leading to
r = 2™m — 1. Matrix ny denotes the scenario without available measurements, i.e.,
no = 0, and the set of scenarios including some available samples is denoted by

E=E\no={m,..,0}

Remark 3.2. In each real application, the set = gathers the possible cases, and becomes
a parameter design if the sensors have some processing capabilities. If the sensor nodes
collect samples on a buffer of size b and transmit the full buffer every instant (as in
works [123, 91, 152]), then each 7; will have ones in the positions related to the sensors
from which the gathered delayed samples are sent, if they are received for the first time
and their associated delay is lower than d . In the multi-rate approach of [75], each n;
will represent the possible measurement sample combinations in the global time instant.

The probability of each case on Z characterizes the network and is the prior knowledge
that allows us to make a design with stochastic properties. Let us denote the probability
of having a given set of samples at time instant ¢ by

pi = Pr{a; = n;}, (3.13)

where py denotes the probability of having no measurements. Once a packet with data
from several sensors arrives at tj, the probability of having N — 1 consecutive instants
without data is given by

thr(Nfl)

Pr ﬂ ="y p = pév_l. (3.14)
t=t+1
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Remark 3.3. If the arrival from each sensor with a given delay is an i.i.d. process (as
in [140, 145, 60]), we compute the probabilities of each sampling scenario as follows (see
Section 2.2). Let us denote by §; the probability of a sample from fictitious sensor j
being available at a given instant, i.e. 5; = Pr{«;, = 1}. The complementary probability
of failing on receiving an output sample from sensor j is Pr{a;; = 0} =1 — 3;, and the
probability of having no sample available at a given instant is
Am
po=Pr{a; =no} =[] (1 - 5;). (3.15)

j=1

where we have considered the independency of each «j;. The probability of having
some sensors available is Pr{a; € Z} = 1 — po, and the probability of having a given
combination of available sensors n; € = is

Mom, Tm

pi=Pr{o;=n}=| ] -5 II s|.i=1....r (3.16)
j=1 j=1
Vni,5=0 Vni, =1

where 7; ; refers to the j-th diagonal entry of 7;.

The aim of this chapter is to compute the gain matrices Lj that minimize the
state estimation error in the mean square sense requiring low computing and storage
capabilities (see Section 3.2). We first differentiate the computational cost of on-line
and off-line gains computing, and then differentiate the storage requirements between
precomputed gains approaches.

Using a KF [123] leads to a time varying gain Ly whose on-line implementation
requires 212 + 120y, + AnZ, + 40, + 2002, 4+ 503, + 202 + iy, + 200, + 12, + 27+ iy,
(where 7 = n(d+ 1)) floating-point operations (FLOPs) per time instant, leading to high
computation requirements and to possible numerical problems due to the inversion of a
matrix of at most 7, X 7,,. Using a jump linear estimator with a finite set of stored
gains leads to 72 + An, + 2AA,, + 27 + A,y FLOPs per instant, that is much lower than
the previous one.

In the motivation example in [130] (which has been further developed in Section 2.6),
the authors show that the gains obtained with a KF depend on the history of combination
of sensor availability . From this observation they propose a finite history jump linear
estimator whose gains depend on «ft], t = t — h,...,tr, and chose a history bound
h, what requires storing (27m — 1)27m ("=1) gains. In that motivation example, the
gains depend also strongly on the number of consecutive instants without data between
receptions (Ny). From that observation, we propose a jump linear estimation that depends
both on Nj and «y, and stores at most (2" —1) N gains, with N our history bound that
must be chosen as a compromise between observer complexity (number of stored gains)
and achievable performance. We define the gains as follow

o LNJ‘ ika:N<Nandak:m
Lk_{ Ly, if N, > N, and ap =1, (3.17)
for a, = m1, ..., . The matrices are computed off-line leading to the set of matrices
LkEl::{L171,...,L177ﬂ,...,LN’T}, (318)

that will be used to implement the jump linear estimator.
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Remark 3.4. In this chapter, N, is assumed to be unbounded and N is a tuning
parameter that affects to the number of stored gains, but it is not a parameter that
describes the network behaviour. In [120, 101] the nodes are assumed to guarantee
somehow that Nj remains below N = max{N}}, where N defines both the network
behavior and the number of stored gains.

3.2 Observer design

In the following theorem we obtain the recursion that defines the evolution of the
covariance matrix of the state estimation error. We will use this result later to compute
the observer gains.

Theorem 3.1. Let P,_1 = E{fkqu,l} be the covariance matriz for the state
estimation error updated at the sampling instant tix_1. Then, the expected value of the
covariance matriz at the measurement instant ty is given by

2

-1 T
p0 Y pilnimiVnl Ly,
1 i=1

T

ZPiLN,ime‘TLTN,i

i=1

E{P} =

(]

-2
Il

Py
1—po

2

-1 r
+> ! ZpiFN,i (AN Py (AN + Swon) R,

1 i=1

(]

b4
T

+ 3 piFy (o) AN Sp g (AV)T + Sw)FY ; (3.19)

i=1

where Sp_1 = Z;’io ph A P, 1 (AN, expressed as
Spr-1= vec ™! ((I —poA® fl)*lvec(Pk,l)) , (3.20)

fulfills Sp—1 — poASpr—1AT = P,_1, and

Fyi=1-Ln,iniC, (3.21)
N

Swn => AT'B,WBL(AHT, (3.22)
=1

_ pﬁfl - o

Sw = 2o (Sw.x + oA iy o (A7) (3.23)

1 =po ’ ’
S{/V,oo = vec ! ((I — oA ® fl)_lvec(BwWBg)) ) (3.24)

Proof. See Appendix C.3.1.
|
The previous theorem shows a recursion on the covariance matrix that we write
P, = &{P;_1}, being E{P,_1} the linear operator that returns the right hand of
equation (3.19). In order to compute the observer gains off-line, one must find the stable
solution to equation €{Py_1} = Py_1, but the relationship between Spj_1 and Py_1
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in (3.20) prevents from using standard Riccati solvers. We compute the set of gains £
solving the optimization problem
minimize  tr(P)
£.p (3.25)
subject to &{P} — P =<0,

that allows us to include different constraints on the set of gains to reduce the observer
complexity. We present the following numerical solution to this problem based on linear
matrix inequalities and bilinear equality constraints that makes it easy to include different
constraints over observer gains.

Theorem 3.2. If there exist matrices P, @, R and a set of matrices L =
{L11, L1y, Ly} such that

P MA MW XV

AT MT Q@ 0 0

- e =0 3.26
wrarr o w0 |0 20
vTXT 0 0 v
PQ=1,SpR=1, (3.27)

with
Sp=vec™ ! (I — ppA® A) 'vec(P)),
X =[ypiLiam - VPiliene -+ /PNLy . r],
M =[M; - Mg, Mn = [\/piFn1 -+ /PrFNr),
r

N=1 =1
B N—-1 r T
W= ! <@ SW,N> @ (@ SW> ,
N=1 =1 i=1

N-1 r T p]\_/'—l
N=1 i=1 i=1 Po

o= (N_lpfl (écz) 5 (@pNR> |

N=1 i=1

then, recursion €{-} over P fulfills €{ P} — P =< 0. Furthermore, the optimization problem

minimize tr(P)
L.p (3.28)
subject to  (3.26), (3.27),

is a solution of (3.25).

Proof. Applying extended Schur complements on (3.26) and taking into account (3.27)

makes problem (3.25) and (3.28) equivalent.
|

We show next that if we apply the gains £ obtained from problem (3.28), then the
sequence { P} converges to the unique solution P obtained in (3.28).
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Theorem 3.3. Suppose that the set L in (3.18) solves problem (3.25), i.e., exists P > 0
such that €{ P} < P. Then, for any initial condition Py = 0 the sequence { P} is bounded,
i.e., {Pk} j Mp.

Proof. Considering the linear operator on Lemma C.1 (see Appendix C.3), we have
£(P) < ¢{P} < P. Thus, £ meets the condition of Lemma C.1. The evolution of Py is
expressed as P11 = E{Py} = £(Py) + U. Since U contains the disturbance and noise
covariance (both positive definite), then U > 0, leading that { Py} is bounded.

|

Theorem 3.4. Suppose that the set L in (3.18) solves problem (3.25). Then, for any
initial condition Py = 0, the iteration Pyy1 = E{P} converges to the unique positive
semi-definite solution P obtained in problem (3.25), i.e., limg 00 Py = limy_s00 €F{ Py} =
P =0, where P = ¢{P}

Proof. See Appendix C.3.2.
|
Problem (3.25) minimizes the expected value of the state estimation error covariance
matrix at the updating instants t;. However, a more representative measure of the
estimation performance is the value of the covariance matrix at each instant ¢. The
following theorem allow us to obtain this value.

Theorem 3.5. Given P = E{Z,&1}, the covariance matriz of the estimation error at
each instant t is given by

P =E{Z[t)z[t]"} = (1 — po) P + (3.29)
povec ' (I —poA® A)~'vec(S.))

where Sc = (AP AT + (1 — po) ' B,WBL) .

Proof. See Appendix C.3.3.
|

Remark 3.5. Matrix P, = E{Z[t]Z[t]”} is a linear combination of P = E{Z[tx]Z[tx]"}.
We refer to the right hand of (3.29) as a linear operator §{-} that applies to P as
P, = F{P}. The set of observer gains £ obtained as the solution of the optimization
problem
minimize  tr(F{P})
£.p (3.30)
subject to  (3.26), (3.27),

minimizes the expected value of the covariance matrix at each instant ¢ (with or without
measurement samples).

3.3 Numerical computation

Optimization problem (3.28) is a nonconvex optimization problem because of the terms
Q=P 'and R = S;l. One approach to obtain the solution of this problem is the
reformulation as a rank-constrained LMI problem, leading to constraints

. Aq. AT
rank({sp pO;lSPA é})<ﬁ7 rank<ﬁ2 ;P:|><T_L.
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In this chapter, we address the rank-constrained LMI problem (3.28) with a cone
complementarity linearization algorithm (CCL) [33], leading to

tr(P SpR
Eiims, w(PQ+ SR

(3.31)
subject to  (3.26), tr(P) <1, ["; é] =0, [SIP }T{] =0,

where Sp is the matrix defined in (3.20) and ~ is a real positive value. Condition tr(P) < ~y
can be replaced by tr(F{P}) < - to minimize the expected value of the covariance matrix
at every time instant (see Remark 3.5). We solve the nonlinear minimization problem
with a bisection algorithm over the CCL as follows.

Algorithm 3.1. CCL algorithm.

Step 1 Choose a large enough initial 7, such that there exists a feasible solution to LMI
conditions (3.26), (3.31) with v = ~,. Set 7, =0, and v = %('yl + Yu)-

Step 2 Set £ = 0 and find a feasible solution set [PO, Q% S%, RO, EO], satisfy-
ing (3.26), (3.31).

Step 3 Solve the following LMI problem for the decision variables P, @, Sp, R and L:

minimize tr(P*Q 4+ Q*P + SER + R*Sp)

L,P,Q,Sp,R
subject to  (3.26), (3.31),
set k=k+1, [P* Q% Sk RF=[P,Q,Sp,R).

Step 4 If £ < kpax for a given prescribed maximum number of iterations kpax,
and (3.26) is unsatisfied after replacing @ by P~! and R by S;l, then return
to Step 3. If & < Ekmax and (3.26) are satisfied, update the upper bound on ~ as
Yu = 7, store the actual observer gains Ly ;, and go to Step 5. If k = kmax, update
the lower bound on v as «; = v and go to Step 5.

Step 5 If v, — v > 4, for a given small §, update v with v = %('yl + 7v.) and go to Step
2. If 4, — v < § exit with the last stored set of gains £ in Step 4.

3.4 Complexity reduction

The solution of the previous section leads to a number of stored matrices equal to
|| = N -r, each one used for a different pair (N,7n;). We can reduce the complexity
of the observer in terms of storage choosing a small N and imposing some equality
constraints over the set £ as Ln ; = Ly ;. Problem (3.28) allows to easily include equality
constraints over the set £, and the choice of N only affects on the construction of the
matrices of the LMI problem. Reducing the number of gains also simplifies the numerical
burden of (3.28), as the number of decision variables and the size of the matrices are
decreased. Sharing gains has also implications on the implementation of the selection
mechanism. In the aim of implementing an observer with a simple on-line looking-up-
table procedure and low storage, we propose the following preconfigured sets of equalities
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over the possible sensor availability combinations. The gain selection mechanism is mainly
based on counting the number of available sensors and the number of consecutive instants
without data.

e S1. The observer gains depend only on the intersample instants, leading to
|Lsi| =N, ie., Ly; = Ly, ; for any pair i # j.

e S2. The observer gains depend on the number of real sensors from which samples

arrive successfully at an instant, leading to |Lg2| = ny, - N.

e S3. The observer gains depend on the number of real and fictitious sensors from

which samples arrive successfully at an instant, leading to |Lg3| = 7y, - N.

e S4. The observer gains are different depending on the sampling scenario (this is
the general case), leading to [Lg4| = (2" — 1) - N.

The selection of one of the previous gain grouping alternatives, together with the
choice of N, allows to define a compromise between implementation cost and performance.
The lowest cost and worst performance is obtained for S1 and a low value of N, while
the highest cost and best performance corresponds to S4 and a high value of N. The
examples illustrate this idea.

3.5 Examples

3.56.1 Example 1

In this example we analyze the different gain scheduling strategies proposed in Section 3.4,
as well as the relationship between number of stored gains and achieved performance.
We consider three different state matrices

4 _ 08821 —0.0351]  _ [0.8373 —0.7207
L7 1-0.0351  0.7347 |72 7 |0.7207  0.8373 |’

A | 16684 03197
37 1-0.1003 0.6782]°

where Ajp, Az, As have real stable, complex conjugate unstable and one unstable
eigenvalue, respectively. In the three cases we use

B —0.3359 = 0.5325 0.3987
T 103466 |7 T 7 |0.7258 0.3584

B. — 0.0121 0.1347
Y 10.0112 0.0831]| "

and state disturbance and sensor noises with covariances

0.2632  —0.0027] [of] _ [0.0086
—0.0027  0.2466 | |o3| — |0.0079]"

W= {

03
The samples are independently acquired through a communication network that induces
a delay that varies from 0 to 1 time instans. The amount of fictitious sensors is 4, and
the number of possible sampling scenarios is 2* = 16. Table 3.1 details the availability
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Table 3.1: Probabilities assignment.

sensor | delay | Ba,,a, Bas
1 0 0.1391 | 0.3340
1 1 0.1751 | 0.3064
2 0 0.1397 | 0.3761
2 1 0.1334 | 0.3403

probabilities that are assumed for each of the fictitious sensors in each example. They
are defined such that the problem (3.30) is feasible.

Let us first analyze the observer performance as a function of the number of stored gain
matrices in the set (3.18), according to the scheduling approaches detailed on Section 3.4.
Fig. 3.2 shows the dependency of the trace of the expected covariance matrix at time
instants ¢, P; (3.29), with respect to the number of gain matrices for the four proposed
scheduling approaches. We considered different intersample instans N = 1,..., 7, leading
to different number of stored gains (each point in the plot means a given value for N).
For the system with state matrix A; (stable with real eigenvalues), increasing the number
of observer gains either by increasing N or due to the possible scheduling approaches do
not improve significantly the performance, because the estimation performance (tr(P;)) of
the constant gain approach (S1) is only a 1.7% worse than the optimal performance (with
scheduling S4 and N — oo, tr(P})). In this case, a constant gain approach (S1) would
be a good compromise between estimation performance and storage or implementation
cost. For the system with state matrix As (unstable with complex eigenvalues), the
performance of the estimator can be increased significantly by using N > 2 with respect
to N = 1. The effect of using a more complex approach than S2 (with set S3 or S4) is
negligible for the performance, but implies a high number of stored gains. In this case,
selecting S2 and N = 2 (storing only 4 gains) leads to an acceptable compromise solution.
For the state matrix Ag it is better to increase the considered scenarios in the scheduling
approach in terms of performance and memory storage, rather than increasing N. In this
case a good compromise could be to select S3 and N = 1 (storing only 4 gains).

Now, let us compare for the case of state matrix A3 the results of the implementation
of a KF algorithm adapted from [123] and the proposed algorithm (in the cases indicated
with a black filled symbol in Fig. 3.2(c)). Table 3.2 shows, for each studied case, the
number of needed observer gains, the obtained trace of the covariance matrix for the
state estimation error at the time instans ¢ (through simulation) and the computational
cost (upper-bound of FLOPs per iteration). The KF gives the best performance but
needs almost fifteen times more operations than the proposed algorithm, with a slight
improvement in performance. Regarding the proposed approach, it can be noticed that

Table 3.2: Observers comparison for system As.

Case S1 S2 S3 S3 S4 KF
|£] 1 2 4 8 60 -
tr(P;) | 0.1585 | 0.0781 | 0.0553 | 0.0498 | 0.0451 | 0.0423
FLOP 64 64 64 64 64 976
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Figure 3.2: Quotient between the trace of the expected value of the
estimation error covariance matrix at each time instant
tr(P;) and the minimum reachable value (with scheduling
S4 and N — oo, tr(P;)) for different number of observer
gains and for different scheduling approaches.

increasing the number of gains improves the performance (getting closer to the Kalman
one) but the storage requirement is also increased. Furthermore, the numerical values
for tr(P;) obtained from simulations (shown in Table 3.2) converge to the optimal values
presented graphically in Fig. 3.2(c).

Case S4 with N = 1 corresponds to the same approach presented in [130] with
no history loss. However, adding only one instant of history to improve the estimation
performance of [130] implies the use of 15 - 2+ (2~1) = 240 different gains. Our approach
needs to store only 60 gains to achieve a performance, tr(P;), just a 6% higher than the
one obtained with the KF, and just 8 gains to perform an 18% worse (Table 3.2).

This example shows a compromise between the estimation performance, storage and
scheduling complexity. The designer can use this information to decide a maximum
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number of observer gains to be stored and then to chose its dependency either on the
intersample time instant or on the possible scenarios to minimize the estimation error.

3.5.2 Example 2

This example analyzes the influence of parameter d on the estimation performance and on
the computational cost. Let us consider the system defined by A; and that only samples
from the first sensor are available. We assume that the probability of having a sample
available from the first sensor with a given delay, i.e §; = Pr{a; = 1},Vj =1,...,00,
is given by a negative binomial distribution where the probability of success is 0.5 and
the number of failures is 3. The assumed probability distribution of the network induced
delays is shown in Fig. 3.3. Only the values for d < 20 have been plotted as the probability
of higher delays is negligible.
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Figure 3.3: Probability distribution of the delays, which follow a
negative binomial distribution where the probability of
success is 0.5 and the number of failures is 3.

Fig. 3.4 shows the values of tr(P;) (defined in (3.29)), the number of FLOPs per time
instant (presented in Section 3.1) and the values of the probability of having no sample
available py (defined in (3.15)), for different choices of d in the set {0,1,...,6} within
case S4. Choosing a higher d reduces py and leads to a better performance (tr(P;) is
lower). However, the order of the observer increases with d as well as the computational
effort to obtain a solution for problem (3.30) and the number of FLOPs used in the
on-line implementation. Moreover, at a given point incrementing the value of d does
not significantly improve the estimation performance. Therefore, parameter d must be
chosen as a trade-off between estimation performance and observer complexity (number
of FLOPs) plus computational effort to solve the optimization problem.

For the examined example, the case d = 4 could be a good choice if there is enough
on-line computational capability available because the obtained estimation performance
is only 7% worst than the optimal (with d — oc). If the number of FLOPs is an important
constraint, the cases with d = 3 and d = 2 reduce the number of FLOPS in a 29% and
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53% respectively at the expense of increasing the estimation error to a 20% and 51%

above the optimum.
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Figure 3.4: Normalized trace of the expected value of the estimation
error covariance matrix at each instant tr(P;), number of
FLOPs, and probability of having no sample available po

for different maximum considered delay d.

3.6.3 Example 3

In this example, we design the observer assuming the application of the buffer approach
presented in [123] and explained in Remark 3.2. Let us consider the detectable and
unstable system defined by Az in the first example. Let us assume that each sensor has
a probability of sending a buffered packet (with the actual and the last b samples) of
B1 = 0.66 and 2 = 0.11, respectively, but when the packet is received, the delay is 0. A
parameter d = b is selected in this case, to take into account all the measurement samples
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present in the received packets. The value of tr(P;) decreases when the buffer is enlarged
(with scheduling approach S4), and therefore the estimation is improved (Fig. 3.5).
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Figure 3.5: Trace of the expected value of the estimation error
covariance matrix at each instant tr(P;) as a function of

the maximum intersample instant N (with S4) for different
buffer lengths b.
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Figure 3.6: Trace of the expected value of the estimation error
covariance matrix at each instant tr(P;) (with S4) as
a function of the probability of having available the
measurement sample for different buffer lengths (d = 0

and d = 3) and different intersample instants (N = 1 and

N =4).
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The buffer approach allows to reduce the use of the network. To illustrate this
phenomena, let us consider that only the first sensor of the considered systems is
available and that we want a performance tr(P;) < 0.03, with the lowest network
resources (measured as the probability of available measurement samples). We search
for the minimum probability (network usage) with different buffer lengths b and different
intersampling instants N. The achievable performance varies with each strategy and with
the value of probability 8; (see Fig. 3.6, with approach S4). Thus, for tr(P;) = 0.03, the
probability of having available samples from the sensor can be decreased in a 12% from
the worst case (N = 1, b= 0, 81 = 0.9730) to the best one (N =4, b= 3, 5, = 0.8530).

3.6 Conclusions

In this chapter we designed a jump state estimator for networked control systems where
the complexity in terms of storage requirements and selection mechanism is a design
parameter, and we quantified the degradation that comes with the reduction of the
observer complexity. The proposed approach allows to find a compromise between on-line
computational implementation cost and performance. The result is a finite set of gains
that are applied depending on the number of consecutive time instants without samples
and on the available samples. We modeled the sampling scenario due to the network
through the probabilities associated to the successful reception of each sample. As a
consequence, the number of instants between consecutive samples, Nj, is unbounded,
and the associated delays are time-varying. We used a model that accepts out-of-
sequence measurements, buffered measurements on a single packet or multi-rate sensor
measurements. The computational cost of the on-line implementation is lower than KF
approaches with extended model, while the achieved performance is close to that one.
The performance is better than the constant gain approaches at the cost of more storage
requirements, and is similar to the one obtained with finite history loss jump estimators,
while requiring less storage. Next chapter extends these results to become applicable
under Markov chain models of the missing data.






Chapter 4

Co-design of jump estimators for
wireless multi-hop networks with
fading channels

ABSTRACT: This chapter studies the transmission power budget
minimization of battery-powered nodes in the remote state estimation
problem over multi-hop wireless networks. Transmitting measurement
samples through an intermediate node (relay) introduces an additional
unitary delay in the end-to-end transmission. Communication links
between modes are subject to block-fading generating random dropouts.
We propose a jump estimator whose modes depend on the measurement
sample transmission outcome over a finite interval. Higher transmission
powers increase the reliability of the transmissions at the expense of
reducing the lifetime of the node batteries. Motivated by reducing the
power budget, we derive an iterative tractable procedure to design the
precalculated finite set of estimator gains and the power control laws to
minimize the power budget while guaranteeing a predefined estimation
error. This procedure allows us to trade the complexity of the estimator
implementation for achieved performance and power budget.

Wireless networks offer several advantages in contrast with wired ones, such as ease
of manoeuvre, low cost and self-power. However, they are subject to channel fading that
may lead to time-varying delays and packet dropouts [51]. These network-induced issues
must be overcome when designing networked control system.

Considering remote estimation over networks, KF approaches may yield to optimal
performance at the cost of notable implementation computational complexity, because
the time-varying filter gain is computed at each instant in real time (e.g. [129, 123]).
Motivated by offering low cost alternatives, we explore in this chapter the use of
precalculated gains that alleviates the implementation computing requirements, but
needs both selection mechanism and storage to choose the suitable gain [130, 119, 101,
45, 26]. The authors in [130] proposed a Markovian jump linear estimator approach
whose gains depend on the history of measurement sample transmission outcomes due to
packetized dropouts. Estimation performance improvement is achieved at the expense of
enlarging the estimator complexity (storage demands and gain selection mechanism).
Intermediate complexity approaches were presented in [45, 26]. In [45] the authors
employed a gain dependency on the possible arrivals instants and delay for packetized
samples in a finite set, while in [26] (see Chapter 3) we considered the multi-sensor case
where the estimator gains jumped with the measurement sample availability and the
number of consecutive instants without acquiring any sample.

Recently, a great deal of attention has been focused on designing both the estimator
and the network conditions that exploit the relationship between transmission power and
dropouts. This problem is sometimes called the co-design problem. Higher transmission

61
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power leads to lower dropouts, which improves estimation performance. But, battery
lifetime is of great importance as battery replacement can be difficult and expensive,
and transmission is the most power consuming task [34]. Power control helps to save
transmission power [116, 115, 68, 127, 73]. Briefly, in these works the authors presented
methodologies to minimize the estimation error using a KF while guaranteeing a certain
power budget. These works considered point-to-point communication, i.e., only two nodes
(sensor and estimator) are concerned in data communication. However, due, e.g., to the
distance between transmitters and receivers or to the presence of obstacles in the path,
the point-to-point transmission through wireless fading channels may be highly unlikely
or extremely power consuming [92].

In the aim to improve measurement sample delivery and reducing power budget, we
focus on multi-hop wireless networks, see Section 2.3. In the works [117, 69] the authors
studied the estimation (with KF) and power control problem through multi-hop fading
networks. However, they neglected any transmission delay when hopping. This is not the
case when estimating the states of a fast dynamic system (for instance communicating
between nodes through IEEE 802.15.4 networks take typically 10 ms [38, 100]). Motivated
by this fact and in the aim of [126, 17], we consider that hopping through a relay
introduces a unitary additional delay on the data. While in [126] the authors presented a
two-hop network with two power levels (direct transmission or transmission through
relay), we analyze more general network structures where multiple relays nodes are
present leading to multiple communications paths between sensors and the estimator
node (see Section 2.3).

In this chapter we study the transmission power budget minimization of wireless self-
powered nodes in the remote state estimation problem for multi-sensor systems over
multi-hop networks. The wireless communication links are block-fading and produce
random dropouts, while hopping through intermediate nodes introduce an additional
unitary delay in the end-to-end transmission. We obtain a finite measurement sample
transmission outcome parameter representing the network effects that follows a finite
Markov chain. Based on the network average behavior, we propose a Markovian jump
linear filter (which extends the one studied in Chapter 3) that provides propitious trade-
offs between filter complexity (implementation computational burden) and estimation
performance. We also present some necessary conditions related to the network average
conditions for the existence of such a filter. We propose the use of power control laws of
the form of parametric functions that may depend on the real time channel fading gain
values to decide the power transmission of all the nodes (sensors and relays). We study the
co-design problem of minimizing the power budget while guaranteeing some estimation
performance. As this optimization is nonlinear, we derive a greedy algorithm that solves
iteratively semi-definite programming problems to obtain a solution. Furthermore, we
analyze the effects of decreasing the number of stored gains (i.e., complexity) and of
using diverse power control policies (power budget) on the estimation performances. We
show that as the filter complexity is increased (higher number of different gains) we can
obtain similar estimation performance as the KF and the power budget can be reduced
for a prescribed state estimation error.

Compared with the studied literature, the main contributions on this chapter can be
summarized as follows.

1. Differently from [130] and [45] we consider the multi-sensor case with multiple time-
varying delays and we present a flexible way to deal with different gain dependency
strategies to get a compromise between estimation performance and implementation
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cost. Moreover, we consider that the measurement sample transmission outcomes
follow a Markov chain, while in [32] they were considered to be independent.

2. To the best of the author’s knowledge, the preexisting power control works dealing
with state estimation are addressed through KF while here, motivated by reducing
the real time computation burden, we employ predefined filter gains and derive a
greedy algorithm to solve the co-design problem.

This chapter extends the last one by considering a Markovian model of the network,
introducing the estimator necessary existence conditions and dealing with power control
issues.

The remainder of this chapter has the following structure. Section 4.1 introduces the
problem in hands. In Section 4.2 we remind about the multi-hop network and its operation
seen in Section 2.3. The jump filter design and its stability conditions are addressed in
Section 4.3. Section 4.4 defines the power control policies considered while in Section 4.5
we present how to deal with the co-design problem. Numerical studies are included in
Section 4.6 and Section 4.7 draws conclusions.

4.1 Problem description

We consider LTI DTS defined by

z[t + 1) = Az[t] + B, wlt], (4.1a)
ms[t] = cs z[t] + vs[t] (4.1b)
where z € R” is the state, ms; € R is the s-th measured output (s = 1,...,n,) with
mlt] = [malt] -+ my, [t]]7, w € R™ is the state disturbance assumed to be a random

signal of zero mean and known covariance E{w[t]w[t]T} = W, and vs; € R is the s-th
sensor noise considered as an independent zero mean random signal with known variance
E{v,[t]*} = 02. Note that in this chapter we do not consider the control input on (4.1).
This is motivated by alleviating notation when dealing with the power control problem.

In this chapter, we study the remotely estimation of the system states (4.1) where
the received samples at the estimator node (central unit) arrive through an unreliable
multi-hop wireless network with fading channels, see Fig. 4.1. We assume that diverse
sensors samples the system outputs synchronously with the input update and sent the
samples independently through the network to the estimator (which is in the central
unit). We aim to explore the trade-offs between power control, estimation performance
and estimator complexity.

4.2 Multi-hop wireless network

Let us consider that the samples from different sensors are transmitted (i.e., m&[t] =
ms[t]) through the multi-hop network with fading channels described in Section 2.3. In
this section we just give a brief reminder on how we can describe the available samples
at the estimator node.

The available information at instant ¢ at the estimator node is the pair (mg 4[t], cvs,a[t])
forall s=1,...,ny and d=0,1,...,d, where

mi qlt] = asaltf m[t — dj, (4.2)
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Figure 4.1: Estimation over networks problem.

and a g[t] is a binary variable such as

coall] = {1 if m&[t — d] is received and accepted at instant ¢ (4.3)

0 otherwise

When o 4[t] = 1 the sample sent at ¢ — d from sensor node N, has an induced delay
of 75[t — d] = d. If mg[t — d] has not arrived yet at instant ¢, then mg ,[t] = 0. We can

describe the sample transmission outcomes from ¢ — d to t with vector @[t] such as

o[t = [u[t] - 0, 18]" (4.4)
with 6[t] a binary column vector of length ng = Wny and where 0,[t] captures
the sample reception and acceptance at times {t — d, ..., ¢t} from sensor N,

Os[t] = [Os0lt] -+ 0,4lt]] (4.5)
gs,d[t] = [Oés7o[t — d] Oés71[f, — d + 1] s Oés7d[t]] . (46)
0s,4[t] stands for the transmission outcome of sample m¢[t — d] at times {¢t — d, ..., t}.

Remember that measurement samples delayed copies will be discarded. This implies that
10s.alt]]l1 <1, where

d
16s,alt]ll =Y cvs,slt — d + 9] (4.7)
6=0
The outcomes of 6[t] are governed by an ergodic Markov process and can take values in
the finite set ~
0[t] € © = {09, D1,..., 0}, r=((d+2))" -1, (4.8)

where ¥; (for i = 0,...,r) is one of the possible combinations of the historical sample
transmission outcomes. We write 9 = 0 for case where none of the samples from t — d
to t is received.

As explained in Section 2.3, we just consider the average behavior of the network
which leads to time-invariant probabilities (instead of time-varying ones). The probability
matrix A = [p; ;] with p; ; = Pr{d[t + 1] = ﬁj‘ﬁ[t] = ¥;} can be calculated as shown in
Lemma 2.1. With that, the total probabilities of being at a given state m; = Pr{0[t] = v;}
can be calculated solving 7 = 7A with >, m =1 and 7 = [m -+ 7).
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Finally, let us define the sample availability matrix at instant ¢ as

Ty

Oé[f,] = w @ @as alt] | - (49)

s=1 \d=0
The possible values of a[t] belong also to a known set

Oé[t] €EE= {770;7717~~~777q}a q:2ﬁy -1 (410)

where n; (for ¢ = 1,...,q) denotes each possible combination, being 7 the scenario
without available samples, (i.e., no = 0). a4 is the result of applying a surjective function
¥ : 0 — = on 0.

4.3 Markovian jump filter

To take into account the reception of delayed samples, we propose employing an
aggregated model such as

z[t + 1] = Az[t] + Bywlt], (4.11)
where z[t] = [z[t]T --- z[t—dT]" and
A 0 0
R -
0 I 0

We express with vector m$|[t] the availability of the sample at instant ¢ from sensor s
sent from ¢t — d to t as
malt] = [mgoft] -~ m 4[], (4.12)
where mg ¢[t] is as defined in (4.2). With that, m®[t] = [mff[t]T g [t]T]T has a
length of n, = n,(1+d). Using oy, we rewrite the received sample information at instant
t as

m®[t] = alt] (Cz[t] + v]t]) (4.13)
where o[t] = [01[t] -+ U, [t]T and Us[t] = [vs[t] -+ vs[t — d]]. ES = [ES,O -+ g g]" with
Cs,d = [01xn-d Cs 01 xp. (- d)]T are the rows of matrix C. In (4.13), 9[t] is the measurement

noise vector with covariance E{o[t]o[t]T} =V = @, (@d 09 )

4.3.1 Proposed filter

We propose the next state estimation algorithm
Al‘t 1 +Lt( —OétCAJ?t 1) (414)

When no sample is available, the estimator is run in open loop. Otherwise, the state
estimation is updated with the updating gain matrix L;.
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Considering (4.11) and (4.13)-(4.14), the dynamic of the estimation error, defined as
jt =T — Ji?t, is

i’t = (I - LtatC') (Ai'tfl + watfl) - Lt()ét’l_)t. (415)

One of the aims of this chapter is to compute matrices L; to obtain acceptable
estimation performances while requiring low computing and storage capabilities. Using
predefined gain filters [130, 32] instead of KFs [123] helps to alleviate the on-line
computation burden. The authors in [130] illustrated that the KF gains depend on the
history of combination of sensor availability. In the current chapter we extend their result
to include multi-sensor transmission and delayed measurement samples. Thus, we propose
relating the gains with 0; as Ly = L(0;). We define the filter gains as

L(6,) - 0 if-w(Ht) = 0, (no measurement sample received) (4.16)
We compute the gain matrices off-line leading to the finite set
L(Gt) eL= {LQ,...,LT}. (417)

4.3.2 Filter design

The next theorem states the evolution of the state estimation error covariance matrix.

Theorem 4.1. Let P, ; = E{z,2] |0[t] = ¥;} (with j = 1,...,7) be the state estimation
error covariance matriz updated at instant t with information 0[t] = 9, that can be
recursively obtained as

P = Zpi,j:—; (Fj(AP,1, A" + B,WBI)FF + X,V XT), (4.18)
=0

with
Fp=1—-Ljy®;)C, X;=Ljy;). (4.19)

Then, the total expected value of state estimation error covariance matrix at instants
t, E{7:al}, is given by

i E{&,a] |0]t] = 9;} Pr{O]t] = ¥;} = i P, j7;. (4.20)
j=0 §=0

Proof. See Appendix C.4.1.
[
The above theorem defines a recursion on the covariance matrix that we write as
Py = ¢{Pi_1}, where Py £ (Pro,..., Prr), €{-} £ (€o{-},...,€.{-}), being &;{-} the
linear operator that gives (4.18). To compute a steady state off-line solution, one must
address the problem of finding a set of filter gains that satisfies the Riccati equation
E{P;} = Pr. When the filter gains jump with all the states of the Markov chain, [130]
and [45] show how to get their explicit value. Their methods are not valid if the filter
shares the same gain for different modes of the Markov chain, and therefore do not allow
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to explore the trade-offs between storage complexity and estimation performance. To
address this issue, we adopt the following alternative optimization problem

T
minimize tr E Pjm;
L,P -
j=0

(4.21)
subject to E{P} —P =<0,
with P & (P, ..., P).
We shall prove next that the constraint
¢{P}—-P =0 (4.22)

is a key for guaranteeing the boundedness of E{7;7] }, and therefore the mean square
stability of the filter. The next results are independent on the constraints over L.

4.3.3 Boundedness of the error covariance

In the following we present the theorems that demonstrate that applying the gains £
obtained from problem (4.21), the sequence {P;} (and thus {E{z;z!}}) converges to
the unique solution P £ (Py, ..., P,) obtained in (4.21). Let us write P = 0 to denote
P, =0,Vi=1...,r and &{.} to define the recursion of &{-}.

Theorem 4.2. Let L in (4.17) be a set that fulfills (4.22), i.e., there exists P = 0 such
that €{P} =< P. Then, for any initial condition Py = O the sequence {P:} is bounded,
i.e., {Pt} = Mp, with Mp = (Mpo, .. .,Mpr),

Proof. Taking into account the linear operator in Lemma C.2 (see Appendix C.4),
Theorem 4.1 and constraint (4.22), we have 7 (P) < €{P} < P. Therefore, 7 (-) meets the
condition of Lemma C.2. P; evolves as Pry1 = E{P;} = T(P:) + U. Because U contains
the disturbance and noise covariance (both positive definite and bounded), thus, U > 0
that assures that {P;} is bounded.
[
Considering the above theorem, the next result states that {P;} converges to the
solution of problem (4.21).

Theorem 4.3. Let £ in (4.17) be a set that solves problem (4.21). Then, for any initial
condition Py = 0, the iteration Piy1 = E{P:} converges to the unique positive semi-
definite solution P obtained in problem (4.21), i.e., limy_,oo Py = limy_, oo EH{Po} =P =
0, where P = ¢{P}.

Proof. See Appendix C.4.2

4.3.4 Necessary network conditions

Theorem 4.2 and Theorem 4.3 show that the feasibility of problem (4.21) is a sufficient
condition to guarantee the boundedness of E{7;Z]}. Now, we give some necessary
conditions (affecting the power transmissions) to assure some network reliability
performances that may allow solving (4.21). If these conditions are not fulfilled,
problem (4.21) is infeasible.
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Theorem 4.4. A necessary condition to find a solution for problem (4.21) is that the
transition probabilities of 0; fulfill the following constraints

pij - p(A)? —1<0, Vj: ;) =0, (4.23)
pij - p(A)? =1<0, Vj:¢(9;) =m, L € ND, (4.23D)

being pi; the probabilities defined in (2.45), p(A) the spectral radius of matriz 1{1, ND
the set of reception scenarios 1y from which the system is not detectable and p(A4;) the
spectral radius of the unobservable subspace of matriz A from reception scenario m;*.

Proof. See Appendix C.4.3.
[

Remark 4.1. If the system is unstable, and non detectable from the reception scenario
7, the transition probabilities must hold (4.23a) and (4.23b). If the system is unstable,
but it is detectable from each possible reception scenario 7; , the transition probabilities
must fulfill (4.23a). However, if the system is stable, then it is always possible to find a
solution for problem (4.21).

4.3.5 Numerical computation

Problem (4.21) can be solved using the following linear matrix inequalities and bilinear
equality constraints,

T

minimize  tr E P
LPR «
]:

P; A MW X;V
ok . 0 (4.24)
subject to I = =0, Vj=0,...,m,
wT M]T 0 w 0
vTXT 0 0 v
PR=1I.
with

%= [\/po,jm/mjwwn \/pr,jm/mmwn] ,
M; = { po,jmo/miFy -+ \/Pr,ﬂr/ﬂij]a A=

T

W=@B.WBL V=PV, R=PR,
j=0 j=0 j=0 j=0

]l
1
u

R £ (Ry,...,R,) and F; as defined in (4.19). Applying extended Schur complements on
the matrix inequality constraint makes problem (4.21) and (4.24) equivalent.

14, = OTAO where O = ker([(mC_')T mcAHT ... (mC_’A"_l)T}T> is the unobservable
subspace.
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The optimization problem (4.24) is a nonconvex optimization problem because of
the terms R; = P{l involved in the equality constraint. We address this problem with
the cone complementarity linearization algorithm [33] over a bisection algorithm. The
algorithm is omitted for brevity; an example can be found in Chapter 3.

4.4 Power allocation

One of the goals of the current chapter is to explore the benefits of power control in the
estimation problem over multi-hop networks. Note that, from (2.37) (see Section 2.4),
the power transmission level alleviates the occurrence of errors and improves the link
reliability. However, transmitter nodes are usually self-powered and power control plays
a trade-off role between power budget and transmission reliability (that affects the
estimation performances). The power level of each transmitter node is calculated at the
central unit (estimator node), and sent back to them before the measurement sample
transmission procedure. We consider power control laws that may use the channel fading
gains to decide in real time the power transmission level as

ua[t] = Ka(Halt]), (4.25)

with ug[t] € [0, 4] and k4 : Q4 — [0, @] is an integrable function over the domain €, where
H,[t] € Q4. We denote by U, the vector of power levels, i.e., Uy = [ui[t] --- unml[t]].
We write as U, the set that contains the parameters of function k.(-) where U =
{Us,...,Un}. Using the PDF of the fading channel gains g(-) (2.44), we can compute
the expected value of transmission power (i.e. when Y, = 1) from each node N, as

E{ug|To =1} = / 9(Ho)ka(Ha)dH,. (4.26)

a

For ease of notation let us denote E{uq|Y, = 1} by E{u,}.

Remark 4.2. The proposed control power laws include the case when instead of a
continuous range of power levels only some finite number of predefined discrete power
levels are available (as proposed in [127]). For instance, one can discretize the fading
gain value set of the most favorable communication link and schedule the power levels
with the discretized resulting sets. In this case, the parameters of power control functions
would be the fading gain value ranges of each discretized set.

4.5 Co-design

Battery life is an important setback for the widespread adoption of wireless based
control systems in industry. Batteries need replacement, so reducing power consumption
of wireless devices is a key issue. Motivated by this, we aim to compute off-line the
parameters that define the power control functions to minimize the network power budget
(when transmitting) and the set of filter gains that guarantees a certain estimation
performance. Let us characterize the power budget by a function of the expected value
of the transmission power of each node as

M
J(U) = paB{ua} (4.27)

a=1
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where p, € R are some real constants. Then, the problem in hands can be formulated
(when taking into account the average behavior of the network) as

minimize  J(U)
L,PU

T
subject to tr ZPﬂrj <~p,
§=0
e{P} -P =0,
uglt] €0, @], Va=1,..., M,

(4.28)

where yp is a prescribed estimation performance to be assured.

This is a nonlinear optimization problem as the transitions probabilities of between
the modes of 6; are also a decision variable (that depends on the power control strategy).
This kind of problem can be solved, for instance, by brute force using a gridding approach,
by means of heuristic optimization with genetic algorithms, or by implementing a greedy
algorithm. To give a fast way to obtain a solution, in this chapter, we propose the use of a
greedy algorithm. A greedy algorithm is a tree search where at each step only the branch
that locally optimize the problem fulfilling some heuristics is explored, in the hope that
this choice will lead to a globally optimal solution. So, this kind of algorithm never comes
back to previous solutions to change the search path. Therefore global solutions are not
guaranteed. The proposed greedy algorithm is as follows

Algorithm 4.1. Greedy algorithm.

Step 1 For a given 1, choose each set of power control parameters U2 to maximize
the power transmission of each node N, (i.e., the one the leads to the maximum
E°{u,}). For some given constants i, define index J° as

M
= Z o B {ug}.
a=1

Choose a small positive parameter value £ 2 0.

Step 2 Set k =k +1 and J¥ = J¥~1 — ¢ For a = 1 to M repeat step 3, then go to step
4.

Step 3 Set UF = Z/{ik*l for all i # a with i = 1,..., M. Obtain U* as a power control
parameter set resulting from the optimization problem

magnice ] [ st o
Na,N;)EI
subject to  J* — ZWE{%} — naB{uf} =0,
iZa
ugft] € 0, @), Va=1,..., M.

where EF{u;} is the obtained power transmission with (4.26) for the set UF. If
this problem has no solution set the auxiliary variable 7, to 7, = co. Otherwise,
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compute the transition probabilities given in (2.45) and check conditions (4.23). If
they are not fulfilled, set 7, = co. Otherwise solve optimization problem (4.21),

asla

T
minimize  tr Z P, jm;
§=0
subject to  &{P,} — P, <0,

If the problem is infeasible set v, = co. Otherwise, store P,, L, and

T
Ya = tr Z Pj’lTj
§=0
Step 4 Set a = argmin ~y,.
a

If 7o < yp, then
set  UF =UFT! for all i # a, store U* = {UF, ... . UL}, P =Pk
and £*¥ = £F; and go to step 2.

Else, exit, best solution found in iteration k& — 1.

As it can be appreciated, the algorithm starts by considering the most favorable
power control deliverance where the probabilities of receiving packets are higher (higher
transmission power). Then, the power budget J = 224:1 o E{us} is minimized while
possible. Each time it can be decreased, M sets containing the power control parameters
that would lead to the obtained cost are calculated in such a way that each of them
maximizes the expected value of probability of successful transmissions through all its
communication channels. Then, the proposed heuristic to choose the path selects the
solution with the lowest 7,, i.e., the solution that allows a larger future search before the
algorithm ends.

Remark 4.3. We can use the MATLAB function fmincon to solve the optimization
problem presented in the third step of the greedy algorithm (that may be nonlinear)
to obtain each of the power control parameter sets that allows to reduce the network
consumption to the given extent. Note that the obtained solution may not be unique.

Remark 4.4. The presented method is not restricted to power budgets in the form
of linear functions, more complicated functions can be also explored. The proposed
approach also allows including further constraints related to the chosen power control
laws. Moreover, one can easily rewrite the algorithm to solve the problem of minimizing
the estimation error for a constrained power budget (as proposed in [68, 73, 118]).

4.5.1 Co-design trade-offs

In this chapter, we explore the trade-offs between estimation performance, estimator
complexity and power budget.

Let us first analyze the estimator complexity. Because the filter gains jump with the
outcomes of 6y, the solution of the problem (4.21) leads to a number of nonzero different
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gains of | €| = (d + 1)1 ((d+2)™ —1), where £ = £(J{0} (see (4.17)). We can reduce the
filter complexity by imposing some equality constraints over some gain matrices of the set
L as L, = L; in problem (4.24). Decreasing the number of gains alleviate the numerical
burden of (4.24). To implement a jump filter with a simple gain selection procedure and
low storage requirements, we suggest the following predefined sets of equalities over the
possible historical measurement sample transmission outcomes:

e S1. The filter gain is independent of the sampling scenario, |£g1]| = 1.

e S2. The filter gains depend on the number of sensors from which samples arrive
successfully at each instant, |Lg2| = ny.

e S3. The filter gains depend on the sampling scenario at a given instant oy,
|[€g3| = 2™ — 1.

e S4. The filter gains are related to the historical sample transmission outcomes 6y,
[Csal = (d+ )" ((d +2)" ~ 1),

Let us now examine some power allocation strategies. In this chapter, we will study
two specific ones:

e Constant power (P1). Each of the transmitter nodes deploy a time-invariant
strategy defined as
ugft] = u (4.29)

if some samples are available to transmit, otherwise u,[t] = 0. Then, the set of power
control parameter for each node is U, = {@}. This strategy can be implemented
directly in the nodes, helping to not overload the traffic in the network.

e Saturated inverted channel gain (P2). The power control law for each
transmitter node is given by

a if ha[t] > Ry,

ha,ilt]
ug[t] = (4.30)
dq .
otherwise,
h
if some samples are available to transmit, otherwise u,[t] = 0. We consider that

channel gain h,; refers to the link (Ng, N;) € Z that has the best communication
conditions, i.e, the lowest E{hy ;} = th ] g(ha,1)ha,1dhe,. Then, the set of power

control parameters for each node is Uy, = {4, h}, ;}-

The example section explores these ideas.
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4.6 Example

We consider the following system (randomly chosen)

1.05 —0.1 0.01 0.13 0.53 0.39
A‘[O.M 1.05]’ Bw_[o.m 0.08}’ C‘[O.n 0.35}’

with B, = [—0.33 0.34]T. The state disturbance and sensor noises covariances are

il Birie ey B R i

—0.003  0.25 o3 0.0079
Samples are acquired through the multi-hop network in Fig. 4.2 that may induce up to
one unit delay in the end-to-end transmission. Thus, the number of different outcomes
of 0, is |©] = (1 + 2)!* = 36 (see (4.8)). Nodes transmit using a BPSK modulation with
b = 4 bits and a transmission power bounded by @ = 10 through Rayleigh fading channels
(see Remark 2.12) with

his = 0.01, hiz =1, hoy = 0.1, hoz = 0.3, hgs = 0.5.

Ui, U2, U3
V1,4, By, :
........................... !
1
@- 1, 1
O Sensor nodes e /51,3 1
TR L
O Relay nodes ..y®
hed.e’
APl
O Central Unit @
frell, 2,45 hZA'.'
2 - layer 1 - layer 0 - layer

Figure 4.2: Multi-hop wireless network with 4 nodes and 3 layers.

Let us first analyze the effect of having a relay node helping to retransmit the
samples. Let us denote the estimation performance index tr (E?io C,PCT m) as vy where

Cy = [15, 0,5 (n.q)] selects the covariance corresponding to z[t] — Z[t[t]. When the nodes
deploy a constant power control strategy equal to its maximum available power (i.e.
uglt] = u for all ¢ and a € 1,2,3), we obtain v = 0.023, which is the best estimation
performance index that can be achieved with the proposed methods. If the relay node is
not available, then we obtain v = 0.075. This means that the relay node allows improving
the estimation performance by a factor of 3 with respect to the case when no relay is

available.
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Figure 4.3: Co-design trade-offs between power budget, estimation
performances and filter complexity for different power
control strategies.

We now explore the co-design trade-offs between power budget, estimation perfor-
mances and filter complexity for different power control strategies presented in Section 4.5
that can be obtained using the greedy algorithm developed in Section 4.4. Let us define
the power budget J as J = Zi:l E{u,} (average power) where the best estimation
performance index 4 = 0.023 is achieved when J = 30. Fig. 4.3 shows the compromises
between transmitted power, estimation performance and power budget for all the the
described cases in Section 4.5. We appreciate that at the expense of only a 10% deteri-
oration from the best estimation performance, we can reduce the power budget by 25%
when deploying approach S4, which will increase the node battery lives. Note that for the
given example the saturated inverted channel gain power control law (P2) is only able
to decrease up to a 5% the power budget with respect to a constant power level (P1).
In this case, it is more interesting to deploy strategy P1 to reduce the network traffic.
The main obtained differences lie in the estimator complexity. To obtain the same power
consumption reduction as case S4, cases S2 and S1 need to deteriorate 10% and 20% more
the best estimation performance than case S4. However case S4 uses 32 different gains
which increases the estimator complexity (storage requirements). A reasonable trade-off
could be to choose case S3 because it reduces the number of stored gains in by 50% and
increases the power budget only up to 10% with respect to S4.

Finally, let the transmission powers be wu;[t] = 4.84, uz[t] = 10 and wug[t] = 8 for all ¢
(which correspond to the solution of the co-design problem for case S4 with v/5 = 1.1).
Fig. 4.4 compares the results of implementing in simulation the KF algorithm adapted
from [123] and the proposed jump filters. The estimation performance index obtained
with the KF is yka = 0.0242 (where vx = tr(C,E{Z;#] }CT). We can appreciate that
as the number of stored gains becomes higher, the jump filter performs nearly as well
the KF. However, the KF needs to execute at most 976 floating-point operations per
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1.3 T

Estimation performance deterioration, v/vkal

1 L
10° 10 102
Number of non null different gains, |£|

Figure 4.4: Deterioration of the estimation performance w.r.t. the
Kalman filter for transmission powers u1[t] = 4.84, us[t] =
10 and us[t] = 8 (for all t).

instant, while the off-line methods only need 64 (see Chapter 3 for further information
about FLOPs).

4.7 Conclusions

In this chapter we used the model for multi-hop networked estimation with fading
channels developed in Section 2.3. Random dropouts are generated due to the fading links
while delays are introduced while hopping through relay nodes. We introduced a vector
that captures the network behavior by keeping the measurement sample transmission
outcomes on an interval, which is governed by Markovian finite process. With the average
network behavior, we conceived a jump filter where its complexity can be selected as
a trade-off between storage requirements and estimation performance. Moreover, we
gave necessary filter existence conditions based on the network conditions. To keep the
network operation power-efficient we studied the use of power control laws of the forms
of parametric functions. We designed the power policies and the finite set of filter gains
to minimize the power budget while guaranteeing a certain level of state estimation
error. The design is carried out with an iterative procedure based on semi-definite
programming problems. We explored the trade-offs between estimation performance,
estimator complexity (by reducing the number of different filter gains) and power budget.
Numerical results showed that: 1) intermediates relays helps to reduce the power budget
for prescribed estimation performance, 2) increasing estimator complexity allows saving
power for prescribed estimation performance, and 3) for the same network conditions the
on-line computational burden of the jump filter can be much lower than Kalman filter
approaches, while achieving similar estimation performances.
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In Chapters 4 and 3 we considered the stationary behavior of the network by assuming
constant successful transmission probabilities. In the next chapter we develop a result for
the case when the successful transmission probabilities are time-varying.



Chapter 5

Polynomial observers in
networked control systems with
unknown packet dropout rate.

ABSTRACT: This chapter studies the estimator design problem for
networked systems with previously unknown successful transmission
probability. We consider a time-varying PAR that can be estimated
in real time by means of the acknowledgement on new data arrival.
The estimator gains are rational functions of the estimated PAR
and are designed by minimizing the Ho, norm from disturbances and
measurement noises to estimation error over all the possible PARs.
The design procedure is an optimization problem over polynomials that
s numerically solved using SOS decomposition techniques.

In the last years many processes in industry are controlled or supervised through
sensors, actuators and controllers connected to a shared network (wired or wireless). One
of the interesting control problems that arise in those scenarios is the state estimation
from measurement samples that are acquired through a network. The main difficulties
are the problems of packet dropout, network induced delays, or intermittent partial
observations. Most of the proposals in the literature can be classified in two generic
groups: KF based algorithms (e.g. [129, 122, 123]), in which the estimator implements a
modified KF to compute on line the gains of an estimator, and off-line computed gains
strategies (e.g. [119, 132, 76]) in which the estimator gains are previously computed and
stored.

The use of a KF with irregular observations that follow a Bernoulli distribution
was firstly studied in depth in [129], where the conditions for the existence of an
estable estimator were addressed, demonstrating the existence of a critical value for
the measurement samples arrival probability to get a bounded filter when dealing with
transmission of a packet containing samples from several sensors. The main drawback
is that the on-line computation of the gains requires a high computer power, and,
furthermore, the algorithm does not give as a result a value of the bound of the estimation
error.

On the other hand, the off-line computed gains approaches lead to a low computer
cost algorithm and allow to obtain in advance a bound of the estimation error. Previous
works (as [119, 132, 76, 86, 53]) propose a constant gain, or a set of constant gains, that
are not a function of the packet dropout rate or the successful transmission probability.
When these are not known in advance, or are time varying, the resulting observer is very
conservative.

In this chapter, we address the design of a rational gain-scheduled observer for
networks with packet dropout whose successful transmission ratio is unknown in advance
and time-varying. The implemented observer gain at each instant is a function of
an estimation of the packet arrival rate on the observer node, as a difference with

77



78 5. Polynomial observers in networked control systems with unknown packet dropout rate.

previous chapters. This leads to a better estimator performance with a slight increase
in the computational cost. We perform the design assuring stochastic stability and H
performance over the disturbance, noises and time-varying and uncertain packet dropout
rate. Then, an LMI optimization problem is derived from an optimization over polynomial
constraints that tries to minimize the state estimation error covariance for the overall
packet successful transmission rate. The degree of the polynomials of the proposed
Lyapunov function and the observer gains is a tuning parameter that can be selected
as a compromise between the computational complexity of the optimization problem to
be solved, and the achievable performance.

In order to overcome the optimization over polynomials, we use the sum-of-squares
(SOS) approach (see [16, 113, 59, 99] and [80] or [113] for a tool that allows to implement
these methods). The conceptual novelty introduced with respect to previous works with
SOS methods is to use them to schedule the observer with the estimation of PAR that
depends on the behavior of the network, which is known in real time, and as we shall
see, enters on the Lyapunov function.

The chapter has the following structure: in Section 5.1 the system is defined including
the characteristics of the network and the proposed state estimation algorithm. In
Section 5.2 the proposed solution for the polynomial observer design is presented,
including the necessary existing results about SOS decomposition. Finally, in Section 5.3
some examples show the validity of the approach.

5.1 Problem statement

5.1.1 System description
Let us assume a linear time invariant discrete time system defined by equations

Tt4+1 = A.l?t + But + wat7 (51&)
my = Cxt + v, (51b)

where z € R™ is the state, u € R"« is the input, w € R"» is the state disturbance,
m € R™ are the sampled measured outputs and v € R™ the measurement noise.
Throughout this chapter we assume that the control input is causally available at all
times, Let us assume that the samples m;a re encapsulated on a single packet m§ and
transmitted through a network with packet dropout, and let us define the binary variable
called availability factor of new data as

= { 0, if m{ is not received, (5.2)

1, if m§ is received.

Let us define the packet arrival rate (PAR) as the probability of having available new
data at a given sampling time as

B =Pr{a; =1}, Vt>0, (5-3)

and the packet dropout rate (PDR) (its complementary) as the probability of having no
new data at a given sampling time P{a; = 0} = 1 — Pr{oy = 1} = 1 — §. Differently
from the last chapters, in thi chapter the PAR is assumed to be non-stationary and, at
each sampling time a time dependent probability [; is defined as

6,5 = PI'{O[t = 1}, (54)
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We assume that probability 8; can change slowly on time with a bounded rate of change
as

Bt - 61571 + 6t; |5t| S 57 (55)

where &, is the change of rate and § its bound (assumed to be known). We also assume
that a PDF g¢(B;) is previously known for the possible values of the probability 8; along
time. The global packet availability rate will be given by

1
8= Pr{a, = 1,V1) = /0 Bog(Be)dBe.

If this PDF is not available, the proposed method can be applied assuming a uniform
function.

5.1.2 Proposed state estimation algorithm

The aim of this chapter is to define an state estimator that depends on the previous state
estimation, on the availability of new data and on an estimation of the actual PAR as

Bt = fo(@r1, w1, o, Br). (5.6)

The binary variable oy is available at each sampling period (simply checking that
there are new measurements on the central), and we use it to estimate the actual PAR
with a given estimator 8, = fg(B:, ). A simple estimator is the following first order
filter

Bt = a/S)t—l +(1—a)ay, (5.7)

where 0 < a < 1 is a tuning parameter that should produce soft variations of Bt, but fast
enough to fit the variations of 3; along time. The actual PAR estimation error is defined
as

B = Be — B, (5.8)

and we assume that, as a consequence of the chosen estimator fg (i.e., the value chosen
for a in the case of the first order filter) and of the bound on PAR variations 4y, it is
bounded by a known value 0 < 1 < 1 as

1B < . (5.9)

The estate estimation algorithm is computed as follows. Initially, the state is estimated
in open loop
i‘; = Ai‘t_l + But—l- (510)

If the sample m§ is not available, the state estimation is the open loop one (i.e. & = & ),
but, if new data is available, m{ = m§ when oy = 1, the state is updated by

i‘t = JA?; + Lt(m? — CJAT;), (511)

where L; is the updating gain. As shown in previous chapters, we can relate L; to the
sampling scenario o to improve estimation performances. In this chapter, we relate L,
to the fundamental process behind the dropouts, i.e., to the PAR. As the real value of
the PAR is not available, we relate L, to its estimation, i.e., L; = L(Bt).
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This estimation algorithm can be rewritten including the availability factor oy as

Ci't = A(lAft,1 + But,1 + oy L(ﬂt)(mf - C(Aii'tfl + Butfl)). (512)

The state estimation error Z; = x; — 2+ can be easily derived, leading to

Zr = (I — oy L(B)C)(AZy—1 + Bywi_1) — ay L(By)vy. (5.13)

The aim of this chapter is to define a law for the state observer gain L(3;) such that
stability and performance in the presence of state disturbance and noise measurement is
robustly achieved taking into account the possible PAR variations and the error on its
estimation, i.e., for any B;, B and 4, fulfilling {Bs, 5t,Bt} € 51 x S9 x S3 x Sy with

Sl = {6,5 10 S ,Bt S 1}, (514&)
Sy = {6 : 0¢] < 6}, (5.14b)
S3 = {Btvét 0< B -6, < ]-}a (5~14C)
Sy ={B:0< B, <1}, (5.14d)
Sy = {51:7& B — Bt| < Qi}} (5.14e)

Membership to sets S7, S3 and Sy are always fulfilled as the variables are probabilities
(in the case of f; and B;—1 = Bt — d:) or the filtered value of a binary variable (in the
case of ().

5.2 Observer design

In this section we address the design procedure that allows to obtain the law L(Bt).
First, we state a sufficient condition for the observer existence in terms of parameter-
dependent matrix inequalities. Then we show that if we choose a Lyapunov function
dependent polynomially on the PAR, and a rational gain function L(Bt), the problem
can be solved with numerically efficient algorithms using the SOS approach. The degree
of the polynomials is a design parameter to be chosen as a trade-off between achievable
performance and complexity of the observer to be implemented.

The next theorem presents the observer design based on parameter-dependent matrix
inequalities.

Theorem 5.1. Let us assume that there exists a positive definite matriz depending on
the PAR P(B:), two matrices depending on the estimated PAR G(f3¢) and X (f;) and two
positive scalar functions depending on the PAR ~y,,(B:) and v,(Bt) such that the following

matriz inequalities hold for any {pt, 6,5,/3’t} €51 x Sy x S3 xSy

P(j:) > 0, (5.15)

My My Mz My

A *x My My 0
M (B, fe60) = | *22 sz 0 | 70 (5.16)

* * * Myy
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with entries

My = B (G(B)T +G(B) - P(B))
Mz = B (G(B) — X (B
Mz = B (G(Br) — X (B,
My = B X(Br),
Mg = P(By — &) — I — (1= ) ATP(8,)A,
Mss = —(1— B,) A"P(3)B,
M3z = v (Be)I — (1 = Be) BT P(B¢) Bu,
My = 7, (Bt)-
Then, if the observer gain is defined as L(B,) = G(B:) ' X (B:), the following conditions

are fulfilled: (i) under null disturbances, the system is asymptotically mean square stable;
(i) under null initial conditions, the state estimation error is bounded by

E{17120s} < Folw]Zas + 7o 0] 2us: (5.17)

with )
5= / 9B (BB, i = {w, o). (5.18)

0

Proof. See Appendix C.5.1.
[

Remark 5.1. The previous theorem also states that, for a constant (;, the bound
achieved for the estimation error will be the one expressed by

12 1lEns < ¥(Be) = v (Bo)llwllFnas + 7o (Be)[v]lRs- (5.19)

The solvability of the previous condition (5.16) is infinite-dimensional, as it is the
solution space, and the major difficulty is how to verify that condition over the entire
parameter space. To approximate the infinite-dimensional functional space, we restrict
matrices and functions to be polynomial functions of S, B, and &, of a fixed order.
Then, the computationally tractability of the SOS decomposition can be used to derive
a numerical solution for the proposed PAR dependent gain.

5.2.1 Proposed optimization procedure

With the basis of the presented SOS decomposition in Appendix B, the following theorem
presents a sufficient condition that allows to find numerically the parametric functions
and matrices that assure the properties established in Theorem 5.1. We will use 3 to
denote independent SOS variables representing de possible values of ;.

Theorem 5.2. Let us assume that there exist polynomial matrices

dp
P(B) =) Bp, GB) =) G, XPB)=> X, (5.20)
=0 i
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polynomial functions

do dy
’Yw(ﬁ) = Z'Ywm@iv ’Yv(ﬁ) = Z%},iﬁia (5'21)
i=0 1=0

where d;, i = {P,G,X,w,v} denotes the order of the polynomial function, and that
there also exist eight SOS polynomials s, and some vectors , v such that the following
conditions hold*

¢TP(B)C — sp(B,0) h(B) € B(8B,0), (5.22a)
VI M(B, B,8)v — sai (B, B, 8,v) b (B) — sa2(B, B, 8,v) ha(8) — sars (B, B, 8,v) ha(B, 9),

— sara(B, B, 8,v) ha(B) — sus (B, B, 8,v) hs (B, B) € B(B, B, 8, v), (5.22b)
Yw(B) = sw(B) h1(B) € S(B), (5.22¢)
Y0(B) = su(B) ha(B) € X(B), (5.22d)
sp € 2(8,0), ,su,...m5(8, 8,0,v) € S(B, B,6,v), (5.22¢)
sw(B), su(B) € Z(B), (5.22f)

being M(B,B,é) the matriz defined in (5.16), and where polynomials hi(B,B,é) (i =
1,...,5) are

hi(B) = B(1 - B), (5.23)
ho(8) = 62 — &2, (5.24)
hs(B8,6) = (B —96)(1 — B +9), (5.25)
ha(B) = B(1 - B), (5.26)
hs(8,8) = 1 — (8 - B)° (5.27)

Then, conditions of Theorem 5.1 are fulfilled.

(5.15)-(5.16) are fulfilled for any {f;, 5t,Bt} € 51 x Sy x S3 x Sy, and, therefore, the
stability condi
Proof. First note that each of the sets S; (i = 1,...,5) can be rewritten with its
corresponding polynomial h; as S; = {8, 8,6 : hi (B, B, 0) > 0}. Then applying Lemma B.3
and Lemma B.4 it follows that the conditions on Theorem 5.1 are fulfilled for any g = S,
B:Bt and(5:(5t.
|
In the above feasibility SOS problem ( and v are scalarization vectors used to
transform polynomial matrices in polynomials (see Lemma B.4). The decision variables
are matrices H;, G;, X; and coefficients v, ; and 7, ; plus the coefficients of the SOS
polynomials s_ whose degree has not been specified in the previous result. In order to
state a feasible SOS problem, the degrees of these polynomials must be first defined.
The simplest choice is to select degree zero, i.e., transforming polynomials s_ on positive
constants. In order to maximize the degrees of freedom of the previous problem, we choose

IThe set of SOS polynomials in ¢ is denoted by 3(¢).
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the following degrees on the polynomials s_ :

deg sp(5,¢) = deg{ﬁ“’“{dp—“h ¢, (5.280)
deg su1 (B, B,6,v) = {ﬁmax{dﬁ 201 s 5ir } (5.28b)
deg sn2(8, 8,6, v) = deg {W s gmaxidp—2,0} } (5.28¢)
deg sua(B, . 6,v) = deg{ﬁ“’“{dﬂ 208, s, guactdr =20} 2}, (5.284)
deg sya(B, B, 6,v {ﬂdﬁ fmax{ds 2,0} gdp 1/2} (5.28¢

B = deg ﬂmax{dw—Q,O}7
B

deg sy 5.28¢g

) =

deg sa15(8, 3,0, ) = deg { grx{do=20), grox{dy=20} v 24 (5.28¢
) (
) = deg gmaxtdv =201, (5.28h

)
)
( )
deg s,( )

where deg returns the maximum degree for each variable in the involved polynomial and

ds = max{l +dp,dw,dv}, dz=max{dg,dx}. (5.29)

The values of dg and dﬁ refer to the degree of 5 and B, respectively, in matrix M (3, /3’, 9).

The degree of § in M (B, B, 0) is always dp. The idea is to assure that all the addends in
problem (5.22) have the same degree on all the variables. Note that the problem stated in
Theorem 5.2 does not involve products or inversions of decision variables and, therefore,
it can be transformed into a tractable LMI problem.

Remark 5.2. If the RMS values of the disturbance and noises are assumed to be known,
then the minimization of the sum

J= / 9(8)(r(B) 10 Zags + 70 (B) [0 2ngs )3

over constraints (5.22) leads to the gain-scheduled observer that minimizes the RMS
value of the state estimation error that can be achieved with the polynomial approach. If
the RMS values of the disturbances and noises are not available, then, they can be used
as tuning parameters to achieve a given desired behavior. If the PFM g(3) is not known,
we can assume a uniform distribution.

Remark 5.3. The previous theorems assume that 5 can take values from 0 to 1. If the
probability is known to belong to a range Bmin < 8 < Bmax then the optimization can
be changed straightforwardly to give less conservative results. This applies for example
when the system is unstable but the pair (A, C) is detectable. In those cases, previous
results, as [129], show that a necessary condition for the existence of a solution for the
previous observer design procedure with a constant §; is that 5, > 1 — ﬁ being
p(A) = max;(|A\;(A)]) and A;(A) the eigenvalues of matrix A. Therefore, when the system
is unstable, it must be assumed that the network fulfills this bound.
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5.3 Examples

Let us consider a stable LTI DTS defined by (5.1) with

0.3147 04134 —-0.2215 0.9649
A= {04058 0.1324 0.0469 {, B= B, = |0.1576| ,
—0.3730 —0.4025 0.4575 0.9706

C = [0.9572 0.4854 0.8003],

with a sampling period of T = 10ms and where |w||%\g = 0.25 and ||v|%yg = 0.04
with zero mean.

Let us assume that the samples are acquired through a network where the PAR may
vary in the range 0.1 < £, < 0.9, with a uniform distribution. We also assume that
the maximum variation in one time instant is bounded by § = 107¢ (defined in (5.5)).
In order to show the effectiveness of the proposed approach, a three hour simulation
is carried out where the PAR decreases its value from 0.5 to 0.3 with the prescribed
maximum rate. The tuning parameter of (5.7) has been heuristically fixed to a = 0.9999
and the maximum computed PAR estimation error is 0.0157 for the previous simulation.
The bound i = 0.02 (defined in (5.9)) is assumed for the observer design.

0.6

PAR

0 1 2 3
time (hr)

Figure 5.1: Evolution of the real PAR (8;) and its estimation ;.
Maximum estimation error obtained of 0.0157.

To evaluate the benefits of using a polynomial dependency on the PAR, four cases
are considered depending on which variables (P, G, X, vw,7») depend polynomially on
the PAR or not. Table 5.1 summarizes the cases, where the numbers represent the degree
of the polynomial. Note that L = G~'X, and hence, in case C1 the observer gain L is
a rational function of the PAR, in C2 it is a polynomial one and in C3 it is simply a
constant value. Finally C4 is used to analyze the convenience of using a dependency on
the PAR in variables 7,, and 7,. In this example, the degree of the polynomial has been
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chosen to be 4, but in general, it can be selected as a compromise between performance
and computation efforts (i.e., high degrees lead to better performances but imply a higher
computational cost).

Table 5.1: Considered cases (polynomial degrees)

Case dp dG dX dw dU J

C1 4 4 4 4 4 1 0.4619
C2 4 0 4 4 4 | 0.4672
C3 4 0 0 4 4 | 0.5907
C4 4 4 4 0 0 | 1.0614

Fig. 5.2 and Fig. 5.3 show the results of applying Remark 5.2 to the cases presented
in Table 5.1. Case C2 is not included because it is almost coincident with case C1. This is
an interesting issue, because the on-line computational cost of case C2 is lower than case
C1, while leads to a similar performance. It can be appreciated from these figures that
the use of an observer gain depending on the PAR improves the obtained performance
with respect the constant gain case. However, the most significant improvement results
from considering the variables v,, and +, as polynomial functions of the PAR, instead of
constant values.

0.1 0.3 0.5 0.7 0.9
PAR

Figure 5.2: Design results. Elements of observer gain L(3) as a function
of B for the different cases.

Table 5.2 shows the value of ||Z||4,g during the proposed simulation, indicating the
RMS during the instants of time in which (; is constant, as well as the total RMS
for the whole simulation. As it can be observed, when 3; = 0.5 the case C4 results in
the worst performance because in its design +,, and -, are constants and therefore the
synthesis is not optimal for the whole range of the PAR. However, for 5; = 0.3 the worst
performance is given by C3 due to the non dependency on the PAR in the observer
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Figure 5.3: Design results. Obtained bound on ||#||%yg as a function
of B for the different cases.

gain. No significant difference appears between cases C1l (rational observer gain) and
C2 (polynomial observer gain) leading always to the best performances. Table 5.2 also
includes the achieved performances using the KF presented in [129], which improves the
performance only in a 7% but with a higher on-line computational effort.

Table 5.2: Simulation Results

[ enss
Bt =0.5 Bt =0.3 all
C1 0.3751 0.5039 | 0.4371
C2 0.3798 0.5084 | 0.4395
C3 0.3910 0.6013 | 0.4901
C4 0.4616 0.5219 | 0.4854
[129] | 0.3587 | 0.4734 | 0.4141

Case

Comparing the results from Fig. 5.3 and Table 5.2, we appreciate that the bounds
on ||Z||%ys Obtained during the observer design for constant 3; are less conservative for
the cases C1, C2 and C3, while the ones obtained for C4 are very conservative. This fact
justifies the benefits of including a polynomial dependency on v,,(8:) and ~,(5;) in the
observer design.

Finally Table 5.3 shows the trade-off between performance (J, see Remark 5.2) and
the degree of the polynomials when the gain L is a rational function of the PAR (case

c1).
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Table 5.3: Polynomial degrees versus performances (case C1)

d 0 1 2 3 4
J | 1.4029 | 0.6085 | 0.5251 | 0.4892 | 0.4619

5.4 Conclusions

In this chapter, we designed a rational gain-scheduled observer for systems whose samples
are acquired through a network with packet dropout phenomena. We assumed that the
probability of successful packet arrival is time-varying and unknown during the design
procedure. We proposed an estimator for the PAR, and a state estimator with a rational
gain that depends on the PAR. Sufficient conditions for the existence of that observer have
been established leading to an optimization with SOS constraints that are traduced into
a tractable LMI problem. The validity of the proposal has been demonstrated through
an example, where we illustrated the trade-offs between achievable performance and the
complexity of the rational observer.

This chapter and previous ones consider periodical measurement sample transmissions
at each sampling instant ¢. The irregular data availability is due to dropouts and delays
caused by transmitting through a network. In the next chapter we extend the obtained
results to the case when measurement samples are transmitted sporadically, in order to
reduce the network usage.






Chapter 6

Co-design of H-infinity jump
observers for event-based
measurements over networks

ABSTRACT: This chapter presents a strategy to minimize the
network usage and the energy consumption of wireless battery-powered
sensors in the estimation problem over metworks. The sensor modes
transmit with a periodic Send-on-Delta (SOD) approach, sending a new
measurement sample when it deviates considerably from the previous
sent one. We derive a jump observer whose gains are computed off-line
and depend on the combination of available new measurement samples.
We bound the observer performance as a function of the sending policies
and then state the design procedure of the observer under fized sending
thresholds. We then bound the network usage and obtain an iterative
tractable procedure for the design of the sending policy, guaranteeing a
prescribed estimation performance.

Previous chapters considered a periodic sensor sample transmission at each instant
of time. However, sensor nodes can reduce their data transmissions with an event-based
sending strategy (see [85]), what alleviates the the network data flow and increase the
flexibility to include new devices over NCS (see [14, 93]).

State estimation plays a key role in NCS as the state of the plant is rarely directly
measured for control purposes and because the sampled output measurements are
irregularly available due to communication constraints or packet dropouts (see [14]).
The approaches found in the literature to address the state estimation problem with
event-based sampling can be classified depending on the sending policy, and on the
communication or computational resources required on the sensor nodes. The authors
in [95, 134] use a Send-on-Delta (SOD) strategy where the sensor node decides whether
to send a new sample if the current acquired one differs more than a given threshold
with respect to the last sent one. With those samples, the estimator node implements a
modified KF that uses the last acquired data and modifies the update equation to account
the lack of data by means of including a virtual noise. In the work [96] each node uses the
integral of the difference between the last acquired sample and the last sent one to decide
whether sending a new sample (Send-on-Area), while the authors in [128] combine SOD
and time-triggered strategies in the sensor nodes. In other works like [6, 89] the authors
include an state estimator in each sensor node to decide the sending of new data (output
or state estimation), while in [144] the authors impose the sensor node to receive and
process several information to decide whether it should send the sample.

Under the motivation of reducing the computational effort of the estimator and the
sensor nodes, we use a jump linear estimator that at each instant uses a precomputed gain
that depends on the availability of new samples, and the nodes implement a SOD strategy
with fixed thresholds. With the aim of extending the approaches found in the literature

89
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to a wider class of disturbances, we obtain the gains that guarantee an H., attenuation
level based on a LMI problem. With the aim of having less conservative results, we also
obtain the range of probabilities of having new samples with the SOD mechanism. In this
case we bound the H, attenuation level for all the possible probabilities in the range
with SOS techniques [16].

Some works have shown that there is a trade-off between communication rate and
estimation quality [144]. The authors in [136, 19, 40, 56] named the problem of optimizing
the network usage while assuring an estimation performance as the co-design problem.
The works [128, 97] addressed this problem with the time-triggering condition, and [134]
addressed it deciding the threshold levels of sensors implementing a SOD strategy. In the
last work the authors modeled the network usage with a Gaussian probability distribution
of the system outputs.

Motivated by extending the applicability of the co-design procedure to more general
cases, we use the bounds on the probability of having new transmissions to measure
the network usage, and to guarantee tight bounds of the achievable performance of the
estimator.

This chapter is organized as follows. We define the problem in Section 6.1, and present
the jump linear estimator design in 6.2. In Section 6.3, we present the co-design iterative
procedure. Section 6.4 explores some examples that shows the main differences between
the approaches and, finally, in Section 6.5 we summarize the main conclusions.

6.1 Problem Statement

Consider a NCS that updates the control action synchronously with the output
measurement and the process model

zt + 1] = Ax[t] + Bult] + By, wlt], (6.1a)
mlt] = C z[t] + v[t], (6.1b)

where z € R" is the state, u € R™ is the known input vector, w € R™ is the
unmeasurable state disturbance vector, m € R™ is the sampled measured output, and
v € R™ the measurement noise. Throughout this chapter we assume that the control
input is causally available at all times, see Fig. 6.1.

Let us remember the SOD mechanism presented in Section 2.5. Let us assume that the
sensor node s has sent a sample to the central unit through the communication network
at time instant ¢ = ¢, and we call it m¢ ;= mg[ty,| (where ks enumerates the sent data
from sensor s). Then, a new sample will be sent if the following condition holds

Ims[t] —mg | > As, Ay >0, t>tg, (6.2)

where Ay is the allowed deviation threshold. In that case, the sensor sends the (ks +1)-th
measurement, and mj[t] becomes mg ; ;.

The central unit implements a state estimator that estimates the system state using
the acquired samples and the equations

#[t7]) = Adft — 1] + Bult — 1], (6.3)
&[t] = &[t7] + L[t} (m®[t] — C 2[t7)), (6.3b)
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where L|t] is the observer gain. m?[t] includes both the information of the received samples
(mg ) and the information of the measurement uncertainty. The s-th component of the
acquired samples m?[t] at the central unit remains constant while there is no new samples
from sensor s, i.e.,

mglt] =mg ., tg, <t <ti,+1

and we model its relation with the actual state as

“[t]—{ Cs x[t] + vst], t=ty,,

=\ Coalt] +volt] 4 6lt], te, < £ < toin, (6.4)

being C; the s-th row of matrix C, and where 0;[t] is a virtual noise fulfilling ||0s]|c0 < As,
as we have |m;[t] —mg, | <A for ty, <t <tg, 1.

ult] Network
Plant -—— -

T

! Lut]

1 : , ¢
mg [t] Mk, mg [t]

Sensor ¢ [===»| SOD |-¢+---- L | ERRERRE »| Central Unit

Sensor Node s

Figure 6.1: Send-On-Delta based networked state estimator.

Let us define aj[t] as the availability factor for each sensor s, that is a binary variable
that takes a value of 1 if there is a new sample received from the sensor node s and 0
otherwise. The availability matrix is the matrix including in its diagonal the availability
factor of each sensor, i.e.,

alt] = diag{ai[t], ..., anm,[t]}.
We then model the available samples as
m®[t] = Cz[t] + v[t] + (I — «[t]) d[t], (6.5)

with 0[t] = [01[t] -+ 0, [t]]7, Os[t] € (—As, Ay).
Matrix «ft] can take different values depending on the sample successful transmission
possibilities and they belong to a known set

Oé[t] EE:{UO)”DJ?(]}) (66)

where 7; denotes a possible combination of available samples at each instant ¢t. We recall
those combinations as sampling scenarios. Matrix 79 denotes the scenario with unavailable
samples and ¢ the number of different scenarios with available samples. In the general
case, any combination of available sensor samples is possible, leading to ¢ = 2™ — 1.
The first of our goals is to define an observer that uses the scarcely received distributed
data and the uncertainty knowledge. We propose the observer equation (6.3) and define
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the gain observer law L[t] as

Llt] = L(eft]), (6.7a)
L(Oé[t]) = Lj, if Oé[t] =1, (67b)

what leads to a jump observer. The gains take, in general, g + 1 different values within
a predefined set, i.e.,
L(aft]) € £L={Lo,...,Lq}. (6.8)

The gains are computed off-line once, and the observer chooses the applicable gain
depending on the availability of new samples (see [130, 26] for other jump observers
applicable on NCS).

With the estimator defined by (6.3) and (6.7), we obtain the state estimation error
dynamics given by

z[t] = A(aft])z[t — 1] + B(a[t])&[t], (6.9)

€[t = [wlt =17 o[” 87",

Afalt)) = (I - L(@l)O)A,
(I - L@)C)B., — Llaft]) — L(al)(I - alt))] -

=

=,

)
I

As we restrict L(a[t]) to take g+ 1 different values depending on the value of matrix at],
we get a jump linear system with discrete state aft] and with a finite number of modes.

The second of our goals is to design the observer gains and the thresholds Ay that
minimize the network usage while guaranteeing a predefined estimation performance.
The network usage is proportional to the rate in which (6.2) occurs, so we achieve
this goal by minimizing a cost function related to the sending thresholds Ag. In this
chapter, we present alternatives to bound the estimator performance and the network
usage depending on Ag. For each of them we calculate the minimum probability of
receiving a sample and the maximum variance of the resulting virtual noise J[¢].

We reformulate the main objective of this chapter as the simultaneous design of the
g+ 1 gains L; and thresholds A, that minimize the network usage, at the same time that
guarantee a given bound on the estimation error.

6.2 Observer design

We present two jump observer design approaches for SOD policy with fixed A4 that assure
stability and H., attenuation level. We propose first a deterministic strategy that does not
require any assumption on the output statistics. Then, we propose different assumptions
about the statistical information of the output, and then develop a stochastic strategy
that allows us to relax the bound on the achievable performance.



6.2. Observer design 93

6.2.1 Deterministic approach

Theorem 6.1. Let us consider that observer (6.3) with gain (6.7) estimates the state of
system (6.1) that sends its sampled outputs with the SOD policy. If there exist matrices
P, Q;, X; (j=0,1,...,q), and positive values v, Vv, and vs, (s =1,...,ny) such that
P;j =P}~ 0, and for all i,j € {0,...,q} x {0,...,q}!

Qi+Qf — P * x k%
(Qj — XjC)A)T P—-1 * ok
D= |((Q —X;C)B,)" 0yl * x| >0, (6.10)
—X 0 0 T, =x
—(I = )XY 0 0 0 Ts

being 'y = diag{vv,, .-+, }» I's = diag{vs,,...,7s,,}, then, defining the observer
gains as L; = Q;lXj (7 =0,...,q), the following conditions are fulfilled: under null
disturbances, the system is asymptotically stable, and, under null initial conditions, the

state estimation error is bounded by

Ty ny
171 %ars < vwllwlFars + D o llvsll? (6.11)
s=1 s=1
Proof. See Appendix C.6.1.
|

6.2.2 Stochastic approach

The previous theorem leads to conservative results due to the consideration of all the
possible sequences of new data reception with the same probability. For instance, it
can respond satisfactorily to the situation of acquiring just a first samples at the start-
up of the observer and then working indefinitely with that unique measurement. If the
disturbances and noises are not negligible, we can assume that there is a small probability
of acquiring new data, and that is the key in the stochastic approach to reduce the
conservativeness. The probability of having available new data at a given sampling instant
is
Bs = Pr{alt] = 1} = Pr{my[t] —m ; | > Ag}, t>tg,.

The difference m[t] — m$, depends on the achieved state x[tx,] during the last sent
measurement, the inputs, disturbances and number of elapsed time instants from tk,, let
us call it N, as

myt] _mgk. = mg[tg, + N] _m;ks =

N—
Cs Z AN (Bulty, 4§ — 1]+ Buwlty, + 1) | + oltr, + N] — olte,].
7=0

The dependency of that difference on the inputs leads us to a non-stationary probability
that can change at every sampling instant, i.e.,

Bs[t] = Pr{|ms[t] — m;ks| > A, >t

lthe symbol  refers to the required element to make the matrix symmetric.



94 6. Co-design of H-infinity jump observers for event-based measurements over networks

As the difference include the stochastic values w[t] and v[t], we assume that the
probability belongs to the set

Bslt] € Ss = {Bst] - B, < Baft] < 1}

Bs[t] = 1 applies when the control action or the state evolution are sufficiently high
to assure a new samples transmission. 3s[t] = (. applies during the less excited time
instants (with x[t;,] = 0 and u[t] = 0 for ¢ > ¢, ) that leads to the less favorable scenario
to acquire new data, when only the disturbance and noise excite the SOD mechanism. If
we choose 8] = 0 we face again the deterministic approach, but choosing 8, > 0 implies
assuming that there is at least a small probability of acquiring new data, thus reducing
conservatism.

In this chapter, we choose the lower bound 3, as an explicit function of A;. We first
note that during the less excited time instants we have the difference

N-—1
mslt] —mS g, = Cs > AN BLwlty, + j] + vft, + N] - vlte,].
=0

The lowest probability of having a new sample is in the first new instant, i.e., when
N = 1. Therefore, we characterize now the lower bound of the probability of having a
new sample with the difference

mg|t] — mg,ks = CsBywlty,] +vlty, + 1] — v[t,],

and then compute the probability of having new samples from that sensor at instant
t = ti, + 1 with law (6.2). This probability is tedious to obtain as it requires to obtain
the density function of the sum of several signals with different distribution laws. For this
reason, we present a simplification of the computation of the lower bound £, that allows
us to relate it with Ay with tractable expressions. We compute an approximation of /.,
with two different assumptions on the outputs (proofs are given in the Appendix C.6):

o If we assume symmetrically bounded disturbances and noises, we can bound the
difference m[t] — mg ;. (in the less excited scenario) within [—rs, 75| with

7s = [|Cs Buwlloo + 2[|0] oo (6.12)
Expression |CsBwl||« (s =1,...,ny) can be computed as
N n
1CsBuwlloo = Z (Z |CS,ka7:,j|> [w;]loo-
j=1 \i=1

with w; the j-th element of vector w, and ||w;||s and ||v|« are assumed to be
known. If the outputs are uniformly distributed and fulfill ms[t] —mg ;€ [=7s,7s]
the probability of having a new measurement is bounded by

1 2

Bult) = Pr{ma[f] = mS | = A} > Bl = —(ry = A,

(6.13)

o If the disturbances and noises are distributed with covariances W and V; and they
have zero mean, in the less excited scenario we have that the difference m;[t|—mg ;
is distributed with variance

0? = C,B,WBICT 1 2v,. (6.14)
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If our knowledge is the RMS norm of vector w and noises v,, we can bound o? as
0% < t1(ByC{ CsBu)wlims + 2[vsllRus. (6.15)

If we assume that the difference between two consecutive samples follow a normal
distribution with zero mean and variance o2, the probability of having a new
measurement is bounded by

Bult] = Pr{lmaft] = m | > A} > B = 1 —ert < gg) , (6.16)

being erf(z) = % Iy e~*dt the error function.

The probability of obtaining a sampling scenario n; (j = 1,...,¢) is also non-
stationary and is given by

ol = Prial] =n} = [[ -l [] A0, (6.17)
s=1 s=1
vnj,s=0 vnj,s=1

where 7;, refers to the s-th diagonal entry of 7;. The probability of having no
measurement available at t is given by

Ny

polt] = Pri{aft] =no} = [J(1 - Bi[t]), (6.18)

s=1

and the probability of sending some samples is 1 — po[t].
With the probabilities of the sampling scenarios we can obtain the set of gains that
assure an attenuation level for any probability within the set.

Theorem 6.2. Let us consider that observer (6.7) estimates the state of system (6.1)
that sends its sampled outputs with the SOD policy. Consider that there exist matrices
P=PT~0,Q;, X; (j =0,...,q), and positive values Yo, Yo, and Vs, (s =1,...,ny)
such that for any {B1,...,0n,} € S1 X Sz2--- X Sy,

My * * * %
My P—1 * * %
U(B) = | Ms 0 Yol * % | =0, (6.19)
M4 0 0 FU *
Ms 0 0 0 T

where

M, = diag{po(Qo + Qs — P), ..., ps(Qq + Qf — P)},

My = [poAf -+ pgAY], Mz =[poB; - pBL],

My =[—poXy -+ —pgX, ],

M5 = [-po(I — WO)XOT o = pg(I = 77q)XqT]a

A =(Q; - X;0)A, Bj =(Q;j — X;C)Buy, j=0,...,q,
Iy = diag{vo,,--- Y., 1, Ts =diag{vs,,-.-,7%,, }
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and
pi= ] -89 [[ 8- (6.20)
Vnsg,:s1= Vni:f:

Then, if the observer gains are defined as L; = Q;lXj (7 =0,...,q), the system is
asymptotically mean square stable and, under null initial conditions, the state estimation
error is bounded by

Ty Ty
12| %ars < YwlwlEars + D Yoo l0sllzars + D 76, 10slars (6.21)
s=1 s=1
Proof. See Appendix C.6.3.
|

In order to solve numerically the previous problem we use the sum of squares (SOS)
decomposition ([16, 109]) to define sufficient conditions to accomplish with the previous
guaranteed performance (see Appendix B). We will use 8, and 8 = [B1 --- B,,], to
denote independent SOS variables representing de possible values of f§;[t] and S[t] =

[Bilt] --- Bn,[t] for all ¢.

Theorem 6.3. Let us assume that there exist matrices P = PT = 0, Qj, X; (j =
0,...,q), positive values Yy, Yo, and vs, (s =1,...,ny) and SOS polynomials ss(5,2) of
fived degree (with z a vector of proper dimensions) such that?

U — 3 56, )h(B) € (6, v), (6.22)
with
BB = (B — A1 - o) (6.23)

and 3 = [B1 - -+ Bn,]. Then, conditions of Theorem 6.2 are fulfilled.

Proof. First note that each of the sets S; (i = 1,...,n,) can be rewritten with its
corresponding polynomial hs as Ss = {8s : h(8s) > 0}. Then, applying Lemmas B.3
and B.4 in Appendix B, it follows that the conditions on Theorem 6.2 are fulfilled for
any (s = fs [t]
|
In the above feasibility SOS problem v is scalarization vectors used to transform the
polynomial matrix in polynomial (see Lemma B.4). The decision variables are matrices
P, Q;, X; and scalars v, v, and s, plus the coefficients of the SOS polynomials s.
In order to maximize the degrees of freedom of the previous problem, we choose the
following degrees on the polynomials sg:

deg 53(6, V) — deg {/é)k‘r;nax{ny73,0}7 6;1;8;)({ny*1,0}, VQ} ) (624)

The idea is to assure that all the addends in problem (6.22) have the same degree on all
the variables.

2The set of SOS polynomials in z is denoted by (z).
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6.2.3 Optimization design procedure

If we know the values of ||d;||rMms, ||vs|rMs and ||w||rums, the optimization problem

Osllfars

ny Ny
minimize 7y, [|w]|%s + Z Yo, 105l Rars + Z Vs,
s=1 s=1

(6.25)
subject to © > 0,

leads to the jump observer that minimizes the RMS value of the state estimation
error for that assumption, where © = ®;; (6.10) for the deterministic approach and
© = U(B) (6.19) for all f; € S5 for the stochastic one. If the RMS values of the
disturbances are unavailable, they can be used as tuning parameters to achieve a desired
behavior.

The previous optimization procedure also applies when we can only bound the
disturbances and sensor noises by the norms |w||s of ||vs|lec, s the RMS norm is
bounded by the (o, norm: |w|rms < ||[w|leo and ||vs||rms < [|vs]|loo- In this case, we
substitute the RMS norm of the previous optimization procedure by its corresponding
{5 norm.

In the deterministic approach, we have the bound |[|ds||rms < ||0s]|cc < As from the
definition of the virtual noise signal. Under the assumption of uniform distribution of d5t],
using the bound ||d,||rms < As/v/3 relaxes the optimization problem. This distribution
assumption is not hard as we assume it over the virtual noise, as generally found in the
literature [134].

In the stochastic approach, we compute a bound on ||ds %y under the argument of
the less excited instant and the same assumptions as in the probabilities computation
(the proofs are in Appendix C.6):

o If we assume that the outputs are uniformly distributed and fulfill ms[t] —mg ; €
[—7s,7s], we bound the RMS norm with

2A3 [ A
2 2 s 's /s
Iooss < o3, = 25 (5 - ). (6.26)

o If we assume that the difference ms[t] — mg, is normally distributed with zero
mean and variance o2 we bound the RMS norm with

A 2A —a2
H(sSH%{MS < Ui = aferf (ﬁz > - \/_\/;USG 202
S

If the system outputs do not follow the previous distributions, we use the values r;
and o, as tuning parameters. In that case, we must choose sufficiently small values 7
and o to assure that the computed probability of having new measurements is below the
RMS norm of the real virtual noise, and such that the computed variance for the virtual
noise is higher than the real one. With that choice, we can at least compute a tightener
upper bound of the state estimation error than the one obtained with the deterministic
approach.

In any of the previous design approaches we can reduce the computational cost of the
observer implementation by means of imposing some restrictions on the gain matrices.
We achieve the lower computational cost when the matrices are forced to be equal, thus
Ly =Lj for all 4,5 = 1,...,¢. This can be achieved imposing equality constraints over
matrices @); and matrices X in problems (6.10) and (6.19).

(6.27)
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6.3 Observer co-design

Once we have developed the design procedure to minimize the estimation error for a
given SOD policy, we now address the minimization of the network usage guaranteeing a
desired estimation error. We first propose the cost indexes to measure the network usage.

For the deterministic approach, without statistical information of the outputs, we

propose the index
Ty

gs
J(Alzny) = - (6.28)
s=1 AS

where g, are some free weighting factors, that can be used to account for the different
range of variation of the different sensors, and Ay.,, = [Ay --- Ay, ].

For the stochastic approach, we propose to use as the cost index, the probability of
network usage in the lowest excitation case, that is:

Ty

J(Arn,) =1—po=1-](1-BL(A) (6.29)

s=1

where 8L(Ag) (i =1,...,n,) depends on A, by means of (6.13) or (6.16).

The actual probability of network usage will be close to this cost index only in the case
of the lowest excitation (when the change of the output is minumim). When the output
change is larger (for example when the input u changes), the probability of network usage
will be higher. However, this network usage will be proportional to the cost index, and
hence, minimizing the cost index results in minimizing the network usage for the desired
estimation error in any case.

We then obtain the observer that assures a prescribed performance and minimizes
the network usage J(A1.n,) by solving the following optimization problem:

minimize  J(A1.y,)
subject to  ©(A1.,,) > 0,
: . (6.30)

Yoo w0l fents + Z (Yoo llosllfems + 75,05, (A1in, ) < 2Rt ma-

s=1

The new decision variable A, appears both on the cost index and in the definition of
o3, used to bound ||d,||%ys- In the deterministic approach, we express J(Ay.,, ) as (6.28),
O(A1n,) = ®j; as in (6.10), and we use the bound Ui(ALny) = Af Under the
assumption of uniform distribution of d4[t], we can relax the problem using the bound
3, (Arn,) = AZ/3.

In the stochastic approach, we express J(Ai.,,) as (6.29), O(Apn,) = ¥(Arg,)
as (6.19), and we express o3 (Ay.,) as (6.26) or (6.27), depending on the output
assumption. In this case A, appears in the bound of the probabilities 8, for which U(5)
in (6.19) must be positive definite.

The optimization problem (6.30) is nonlinear in the variables Ay, but reduces to a
LMI problem if we fix the values of A;. Some of the approaches to solve this nonlinear
optimization are brute force with a griding approach over Ag, heuristic optimization
with genetic algorithms, and greedy algorithms. If we use a genetic algorithm and the
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stochastic approach, the optimization problem can be written as
minimize J(Alzny )
subject to  2*(A1.p,) — ||33H%%MS max < 0,

¥ (Arp,) = minimize v, [|wl|Fys + 3eLi (o
rn subject to O(A1.,,) =0

vsllfus + 75,07, (As))

(6.31)

In this chapter, we propose a greedy algorithm (similar to the one proposed in

Section 4.5) as an alternative to the previous optimization problem. The greedy algorithm
is as follows.

Algorithm 6.1. Greedy algorithm.

Step 1 Take a small ¢ > 0. Take an initial small A2 > 0 (s = 1,...,n,) such that
|Z|lrms < ||Z]| Rars,max is achievable. Set k = 0 and Ak AY and JO — J(AY.,,,)-

Step 2 Set k =k + 1 and J¥ = JF~1 —

Step 3 For s =1 to n, repeat:
Set Aj = A?il, j#s.
Set Ay = AF = arg{J* = J(A1in,)}
Compute agj = agj (Aj), 7=1,...,ny.
Compute? B =B5(A;),j=1,...,ny,and p;, [ =0,...,q
Solve optimization problem (6.25).
Store 2% = Yu [wllFus + 22521 (0, IjllRns + 76,05, (A5)).

Step 4 Set s = arg msin x%.

If xg < ”‘%H?%Ms,max’ then
set AR =arg{J" = J(A1m,), A = A?_laj # s},
Ak Aklj_]- nyvj?'ésa
and go to step 2.

Else, exit.

The algorithm starts considering small values of A; and 5, < 1, what leads to the
standard periodic sampling case. Then it reduces iteratively the communication cost
index while possible. At each step, it calculates the n, new sets Ay.,, that lead to the
new cost, changing one of the Ay in each set. Then, it selects the set that led to the
lowest xg, i.e., the solution allowing a larger future search before the algorithm ends. It
changes only one value Ay at each step.

30nly in the stochastic approach.
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6.4 Examples

In the following example we aim to show the performance of the proposed approaches.
For brevity, we will only explore the deterministic approach and the uniform output
distribution assumption one.

We consider the following discrete-time process (randomly chosen)

[1.005 0.221 0.171 —0.229 0.023
A=1-0.031 1.008 0.136|, B, = | 0.231 0.211],
| 0.049 0.038 1.028 —0.186 0.245

[0.658 0.919
B= 10342 0.584|,C = 8'%3 _06233 0'%95.
0481 0.845 '

The measurement noises are assumed Gaussian signals with zero mean and ||vs||rms =
0.032 (for s = 1, 2) while the disturbances are the combination of a Gaussian noise plus a
sinusoidal such that ||w||rms = 0.447. The Matlab code used for generate the disturbance
is

1

0.010 0.004
- | :

0.004 0.003} randn(2,1) +0.43 [

] sin(5- 1077 t),

while the control input is generated by
ult] = =8 (y[t —1] > 8) + 8- (y[t — 1] < —8),

which is a relay-based control with dead zone.

The aim of this example is to show the performance of the co-design approach from
Section 6.3, i.e., minimize the network usage while guaranteeing that the estimation
error is lower than a prescribed one. For this purpose, the following four approaches are
analyzed:

C1 Deterministic approach with jump observer (see Section 6.2.1).
C2 Deterministic approach with constant gain.

C3 Stochastic approach based on uniform distribution assumption for a jump observer
(see Section 6.2.2).

C4 Stochastic approach based on uniform distribution assumption for constant gain.

We choose the parameters r, that define the uniform distribution assumption for each
output using expression (6.12). The maximum value of the disturbances and noises are
[lwi]loo = [0.8 0.7] and ||vt]|cc = [0.15 0.15]. Then we obtain r = [0.9 0.75].

We quantify the network usage with the two cost functions presented in Section 6.3.
For the deterministic cases C1 and C2 we use J = z- + z= (see (6.28)). However, when
we characterize the measurement transmission by its probability (cases C3 and C4), we
use J =1 — pg that is the probability of having any successful data transmission in the
lowest excitation case (see (6.29)).

We denote by i* the error ||Z||3yg resulting from the standard measurement
transmission (i.e. A = 0). In this example we analyze the results of the co-design
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procedures when fixing different values of ||£H2RMS max 1 (6.31). We denote by & the

i
ratio between the desired performance and Z*, i.e., u = ””’iﬁ”ﬁ

Fig. 6.2 compares the thresholds Ay resultlng from conducting the co-design procedure
(see Section 6.3), by imposing a ratio in the range 1 < p < 3. The deterministic
approaches C1 and C2 are both conservative and lead to the lowest thresholds, while
the stochastic approaches C3 and C4 lead to the highest thresholds, and therefore, to
the lowest network usage. The thresholds in C1 and C2 remain equal, what implies that
using a jump observer in the deterministic approach does not improves the co-design
with a constant gain. However, when we have some knowledge about the probability of
the different sampling scenarios (stochastic approach), the use of a jump observer (case
C3) enlarges A, at the expense of a higher computational complexity with respect to C4.

0.5 0.5

Ay

0
1 12 14 16 1.8 2 22 24 26 28 3 1 12 14 16 1.8 2 22 24 26 28 3

I p

Figure 6.2: Thresholds A obtained for the co-design approach as a
function of the ratio p.

Fig. 6.3 shows the time-average probability of having a new measurement from a
given sensor 35 and its virtual noise RMS norm 05 as a function of the A presented in
Fig. 6.2 resulting from a Monte Carlo simulation. It also displays the obtained results of
assuming uniform distributed outputs (see (6.13) and (6.26)) and the use of the criterion
in [134] (03, = A2/3). The choice of r = [0.9 0.75] results in lower probabilities and higher
variances than in simulation. Therefore the stochastic design will be conservative, but will
guarantee the prescribed bound on the estimation error (see Section 6.2.2). The result
proposed in [134] for bounding the virtual noise RMS norm assuming it as a uniform
variable (i.e. where ||8;]|Zyg < AZ/3) is more conservative than the one resulting from
the difference of uniform output signals assumption that we propose in this chapter.

Simulating the estimation algorithm with the SOD procedure for the thresholds in
Fig. 6.2 we obtain the number of sent samples indicated in Fig. 6.4 and the performances
indicated in Fig. 6.5.

Fig. 6.4 reasserts the conclusions extracted from Fig. 6.2. The case C3 leads to
the lowest network consumption, while case C4 improves the network usage of the
deterministic approaches requiring less computational requirements than case C3.

Fig. 6.5 shows whether the imposed bound on the estimation error in the co-design
procedure is fulfilled in simulation. The deterministic approaches C1 and C2 are far below
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Figure 6.3: Probability of having a new measurements 8 and variance
(RMS norm) of the virtual noise o as a function
of A. ’simulation’: time-average probability and virtual
noise RMS norm obtained from simulation, ’uniform’:
probability and virtual noise variance bounds from the
uniform output distribution assumption, *’A?/3’: bound of
the virtual noise RMS norm proposed in [134].

the maximum allowed estimation error. This is due to the conservativeness introduced
by the virtual noise variance estimation proposed by [134]. The stochastic approaches
C3 and C4 are also below the maximum allowed estimation error, but closer to it. The
conservativeness in the stochastic design is introduced by the choice of the parameter r
(see Fig. 6.3). Note that the use of a jump observer (C1 and C3) leads to less conservative
results (estimation errors closer to the allowed one) than the use of a constant gain
observer (C2 and C4). This rapprochement to the allowed error is what allows the jump
observer to reach higher thresholds and to reduce the network usage.

In conclusion, this example shows that if no information about the output is known,
the deterministic approach is the only option. However, making some assumptions on the
output distribution, we can use a stochastic approach during the co-design procedure,
that reduces the resulting network usage. We have shown that if we use a jump observer
the measurement transmissions can be reduced at the expense of more computational
complexity, with respect the use of a constant gain.
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Figure 6.4: Number of total measurement transmission divided by the
number of simulation time instants as a function of the
ratio .
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Figure 6.5: Ratio from the ||Z||kyg obtained in simulation to the the
standard Ho, observer performance bound as a function of
the ratio u.
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6.5 Conclusions

In this chapter, we addressed an observer co-design procedure for state estimation over
networks when using event-based measurements. We used a low computational cost
estimation strategy that consists on using a simple Send-on-Delta strategy on the sensor
nodes, and a Ho, jump linear estimator that uses a gain within a predefined set depending
on the combination of available samples at each instant. We included a virtual noise to
update the state estimation when new samples are not available. We developed a strategy
based on linear matrix inequalities to obtain the observer gains when the thresholds of
the sensor nodes are fixed. To reduce conservativeness, we derived a lower bound on the
probability of receiving a measurement and an upper bound on the RMS norm of the
resulting virtual noise. In this case, we addressed the design of the jump observer by using
optimization over polynomial techniques to include the uncertainty on the measurement
receiving probability. We then defined two characterizations of the network usage and
used them to derive the co-design problem, consisting on finding the thresholds of the
sensor nodes and the corresponding observer gains that led to the lowest network usage
allowing to reach a prescribed performance on the state estimation error.
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Chapter I

Performance trade-offs for
networked jump observer-based
fault diagnosis

ABSTRACT: This chapter addresses the fault diagnosis problem
for multi-sensor NCS under dropouts. We propose the use of a jump
observer, whose gains depend on the transmission measurement sample
outcome, to diagnose multiple faults. We model the faults as slow time-
varying signals and introduce this dynamic in the observer to estimate
the faults and to generate a residual. We design the jump observer,
the residual and the threshold to attain disturbance attenuation, fault
tracking and detection conditions and a given FAR. The FAR is upper
bounded by means of Markov’s inequality. We explore the trade-offs
between the minimum detectable faults, the FAR and the response time
to faults. By imposing the disturbances and measurement noises to be
Gaussian, we tighten the FAR bound which improves the time needed
to detect a fault.

7.1 Introduction

NCS have been extended to many industrial applications due to the diverse offered
advantages, as the reduction on the installation cost or the increase on the flexibility,
provided by the communication network [44]. In these kinds of systems, the controller
unit, the sensors and the actuator are not collocated and the exchange of information is
done through a shared network, leading to some network-induced issues as time delays
and dropouts [51, 141]. Owing to the need for reliability, safety and efficient operation in
control systems, model-based fault diagnosis methods [15] have been recently introduced
in NCS [35, 121].

Fault detection over networks when using an observer-based fault detection scheme
is addressed by the comparison between a residual signal generated with the estimated
system outputs and a threshold. The residual is conceived to balance the robustness
against network effects and disturbances, and the fault sensitivity [87, 139, 72, 137, 82].

Assuring a predefined false alarm rate (FAR) is a key problem. In the majority of
the fault detection proposals for NCS the threshold is choosen to reduce the FAR to the
minimum [112, 135], but without quantifying it. Some works as [139, 71, 72| characterize
the mean and variance of the residual and use Markov’s inequality to impose a desired
FAR bound. However, Markov’s inequality is known to be conservative [98]. The main
problem to get a proper FAR bound is to obtain the probability distribution of the
residual signal. In [18] the residual was computed as a quadratic form of the outputs
estimation error by means of the inverse of the outputs estimation error matrix covariance

107
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given by a Kalman filter. With that, their residual signal follows a chi-squared distribution
and an exact FAR can be fixed. But, to the best of the author’ knowledge, the extension
to observers with predefined gains (which have less implementation cost, see Chapter 3)
for NCS with dropouts has not been addressed.

Regarding the fault estimation problem, the most common approach is to make the
residual track the fault or a weighted fault signal by guaranteeing some performances
of the fault estimation error under disturbances and the network issues [54, 70, 146,
148, 125]. Recently, to improve the fault estimation performances, the authors in [149]
introduced a dynamic of the fault signal on the fault estimator. Fault detection and
estimation can be combined to attain fault diagnosis.

According to [55], the performance of a fault detection algorithm is defined by means
of the trade-offs between the time to detect a fault and the FAR. This definition can
be extended to the fault diagnosis case by considering also the convergence speed of
a norm of the fault estimation error. The authors in [151] show that there exists a
trade-off between the fault detection rate and the FAR. More recently, the existence
of a compromise between the time to detect a fault and the fault sensitivity has been
demonstrated in [138]. Nevertheless, none of them explores the compromises between the
minimum detectable faults, the FAR and the fault diagnosis (detection and estimation)
speed.

The dropouts in the fault diagnosis problem have been mainly studied in the
packetized case [139, 54, 72]. The multi-sensor case was studied in [47] with an invariant
observer gain approach, however the use of jump observers that adapt their gains to
the network scenario has been proved to enhance the estimation performances [130] (see
Chapter 3). Networked jump observer-based fault estimators have recently started to
receive attention [87, 72], but have not been extensively employed.

Motivated by the previous analysis, in this chapter we face the fault diagnosis problem
for multi-sensor systems with dropouts through the combination of fault detection and
fault estimation. The faults are characterized as slow-time varying signals and the network
dropouts are modeled with the combination of available samples at the fault diagnoser.
We introduce a jump observer to estimate the faults and define the residual signal as a
quadratic form of the estimated fault vector. The design of the jump observer and residual
is addressed through an iterative LMI procedure that allows obtaining the predefined set
of observer gains and the fault detector parameters. The design is carried out to achieve
disturbance and measurement noise attenuation, and fault diagnosis performances under
a prescribed FAR. We propose two design strategies: the first one consists of fixing the
response speed to faults and minimizing the minimum detectable fault, and the second
one consists of fixing the minimum detectable fault and minimizing the response time.
The trade-offs between the minimum detectable faults, the FAR and the delay between
fault occurrence and detection (response time of the fault estimator) are highlighted.
Furthermore, we derive two ways of bounding the FAR depending on whether the residual
signal probability distribution is unknown (Markov’s inequality approach) or known
as a result of assuming Gaussian disturbances and measurement noises (chi-squared
approach).

This chapter is organized as follows. We define the problem in Section 7.2, and present
the observer-based fault diagnoser design in Sections 7.3 and 7.4. The fault diagnosis
strategies are addressed in Section 7.5. Section 7.6 explores some examples and, finally,
in Section 7.7 we summarize the main conclusions.
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7.2 Problem Formulation
Let us consider linear time invariant discrete-time systems defined by equations
slt +1] = Azlt] + By ult] + Bu wlt] + By f), (7.1)

where x € R™ is the state, u € R™ is the vector of known inputs, w € R" is the
state disturbance assumed as a random signal, uncorrelated in time, with zero mean and
known covariance matrix E{w[t]Tw[t]} = W for all ¢, and f € R™ is the fault vector.
Throughout this chapter we assume that the known input u is causally available at all
times, see Fig. 7.1. This general model includes as a particular case a system without
known inputs, by simply taking B, = 0.

1 fsl,t

Jo 1 ( m‘f,t
v (7) Sensor 1 [=====- |
/ 1
m Process 1
=== + ya(T fs2,t !
1 Actuators ya(7) . !
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i transmission outcome 1 1
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Figure 7.1: Networked fault diagnosis problem for two sensors with
possible faults in the plant (f, for actuators and other
faulty components) and in the sensors (fs1, fs2).

The system has n,,, measurable outputs. Different sensors with different characteristics
on sampling rate or noise, that may have faults, can be connected to one single measurable
output, but at least each measurable output is measured by one sensor, having n,, > n,
sensors. We define the transmitted sampled measurement as

ms[t]:Csx[t]+hsf[t]+vs[t]a s=1,...,nn, (72)

where m[t] € R represents the ¢-th measurement of the s-th sensor and v;[t] € R the s-th
sensor noise assumed as a zero mean random signal with known variance E{v,[t]*} = o3
for all ¢, that is uncorrelated with respect to the time index t. We also consider that
v; is mutually uncorrelated with vsx;. ¢s denotes one row of matrix C' (several ¢, could

be equal and correspond to the same row of C') and h, denotes each one of the rows of
matrix H.
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In the current chapter, we model the fault signal as a slow time-varying one
(cf. [13, 149]), i.e.,
fle+1] = f[t] + Af[t] (7.3)

where Af[t] is the variation of the fault from instant ¢ to ¢ + 1. Equation (7.3) allows
modeling, for instance, step signals (Af[t] only takes a nonzero value at the time the
fault appears) or ramp signals (Af[t] takes a constant value), that have been widely
used in the literature to analyze the behavior of fault detection algorithms [15]. Along
this chapter, we consider that wt], v;[t] for all j = 1,...,n,, and Af[t] are mutually
uncorrelated for all ¢.

We introduce an extended order model to include the fault dynamic as

z[t + 1] = Az[t]+ Byu[t]+ Byw(t] + By Af[t] (7.4)

with z[t] = [2[t)7 f[17]" and

= A Byl 5 _|Bu|l 5 _|Bw| 5 _ |0
e O R
where z € R™ with . =n + ny.

In this chapter we intend to detect and estimate (diagnose) the possible system faults
(represented by vector f[t]) when the measurement samples are transmitted through
a communication network that may induce dropouts. In this case, the system output
measurements are not available at every discrete time instant. When the dropout rate is
high, the fault estimation problem becomes more difficult and the importance of a fast
response to faults and a low FAR becomes more evident.

The transmitted sampled measurements from sensor s at instant ¢ is

mglt] = csz[t] + vs[t], (7.5)

with ¢ = [cs hs] and s = 1,...,ny,. We assume that the pair (A, C) is detectable (being
C' the matrix whose rows are ;).

Remark 7.1. If the pair (4, C) is not detectable (i.e., ny > n,,), only a combination of
the faults can be detected. Then, a previous transformation of the system, as proposed
in [74], must be done (leading to new 7y faults such that iy < n,,) before the proposed
technique becomes applicable.

7.2.1 Network transmissions characterization

Each sensor samples its output synchronously with the known input update and sends
independently a time-tagged packet with the measurement sample m¢[t] to the fault
diagnoser station, through an unreliable communication network with packet dropouts.

We define the binary variable a;[t] that indicates the availability of the s-th sensor
measurement sample (s =1,..., nm) at each instant ¢, as.

aslt] =

{ 0 if m&[t] is not received at t, (7.6)

1 if m&[t] is received at t.

Then, the availability matrix a[t] = @.™ as[t] is a binary diagonal matrix that can only
have ones in its diagonal. Thus, using «/[t] we can redefine the available samples at instant

t as
m®[t] = oft] (Cz[t] + v[t]) . (7.7)
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Note that a component of vector m®[t] is null when the corresponding sample is not
available. v[t] = [vi[t] -+ vn,, [t]]7 is the measurement noise vector with covariance
E{v[th[t]"} =V = @], o2 (for all t).

The possible values of alt] at each instant ¢ belong to a known finite set

aft] € E={no,m1,---,ng}, g¢=2""—1, (7.8)

where 7; denotes each possible combination of the available samples at the fault diagnoser
station (sampled measurement reception scenario). Matrix 79 denotes the scenario in
which there is no measurement sample available, i.e., no = 0. We characterize the
network behavior using the total probability of each scenario in Z. We denote by
p; = Pr{aft] = n;} the probability of having the sample reception scenario 7; at instant
t. po denotes the probability of having no samples.

In the current chapter, we assume that the arrival probability from each sensor is
governed by an independent and identically distributed process [140]. We denote by (s
the probability of having available the measurement samples from sensor s at instant ¢,
i.e., Bs = Pr{as[t] = 1}. Then, the probability of having a given combination of available
samples 7; € = is

pi = Pr{aft] = n;} = H (1—8s) H Bs (7.9)
SEZ(n;) SEZ(n:)

for all i = 0,...,q where Z(n;) = {s|n:(s,s) = 0}.

7.2.2 Fault diagnosis method

We propose the following fault estimation algorithm for system (7.4)-(7.5). At each
instant ¢, the model is run in open loop leading to

2t7] = A2t — 1] + Buult — 1]. (7.10)

If no measurement sample is received, we keep the open loop estimation, i.e., Z[t] = Z[t7].
If a measurement sample arrives at instant ¢t = ¢, the state is updated as

£lta) = 2lt7] + Lita] (m? ] — afti) € 21t7), (711)
where L[ty] is the updating gain matrix and m®[ty] is defined in (7.7).

Remark 7.2. While ¢ € N refers to each time instant, ¢ (with k¥ € N) enumerates only
the instants where some samples are received. For instance, if we receive some samples
only at instants t; = 8 and tx41 = 10, but not at ¢ = 9, then instant ¢, + 1 = 9 (or
tg+1 — 1 =9) refers to instant 9, when no measurement samples is received.

Let us denote z[t;] by z. Defining the extended state estimation error at updating
instants as Zx = zx — 2k, the estimation error dynamics is given by

Zr =(I — Lkosz_')f_lN’“ék_l — Lo
N
+ Z(I — Loy, CYA ' ByW(ty 1 +1—1] (7.12)
=1
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being Bw = [B,, By| and Wity_1 +1—1] = [wlty—1 +1 — 1T Af[tp—1 +1— 17T, Ny,
denotes the number of consecutive instants without samples (which is unbounded), i.e.,
N =1t —tp_1.

The fault detection algorithm uses the estimated faults to compute a residual signal
at instants t = t;, as

i = fTF~ fi, (7.13)

where the common fault detection decision is given by

if r, < rth No fault
if 7, > rt Fault

being r** > 0 a threshold to be defined. Then, fault isolation is achieved by means of the
combination of fault detection and fault estimation, allowing us to identify which is the
origin of the fault.

Remark 7.3. According to [15], the minimum detectable fault is a fault that drives
the residual to its threshold, provided no other faults, disturbances and measurement
noises are present. Then, assuming a zero fault estimation error (i.e. f = f), each
diagonal element of F' in (7.13) multiplied by ! defines the minimum detectable fault
as fming = r'®F(1,1) for the corresponding channel (I =1,...,n¢).

Considering the fault detection logic, the FAR is defined as the average probability
of rising false alarms over an infinite-time window, i.e.

K-1
U= lim Y Pr{r,>r"[f =0} (7.14)
k=0

K—oo

The aim of this chapter is to compute the gain matrices L, the matrix F', and the
threshold 7" such that the fault diagnoser attains disturbance and measurement noise
attenuation, and fault diagnosis performances for a given FAR. These objectives can be
reached with an invariant observer gain (as in the majority of reviewed works), or with a
jump one (e.g. [87, 72]). In this chapter, we relate the gain Ly to the sampling scenario
ag, as Ly = L(ay), with the law Ly = L; when oy = n; for ap = m1,...,74. Then, the
matrices are computed off-line leading to the finite set

Lye L={Ly,...,Lg}. (7.15)

7.3 Fault diagnoser design: dropout-free

Let us first consider the case without measurement dropouts, i.e., 3; = 1 for all
j=1,...,npy. In this case, o[t] is always the identity, which implies that each instant ¢
is a measurement instant (¢, = t) leading to Ly = L and Ny, = 1, for all k. The following
theorem presents how to design the observer gain L and the matrix F' that defines the
residual (7.13) based on the Hy norm of system (7.12).
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Theorem 7.1. Consider the estimation algorithm (7.10)-(7.11) applied to system (7.1)-
(7.3) with standard sampling. If there exist symmetric matrices P, F, T'y,, T'y, 'y, and
Sfull matrices X fulfilling

PoA 0
AT P By| =0, (7.16a)
0 Bf F

P B

with
A=(P-XC)A, By=(P-XC)By, B,—=-X, B;=(P-XC)B,
then, defining the observer gain matrices as L = P™1X, the following statements hold:

1) In the absence of disturbances, faults, and measurement noises the extended state
estimation error (7.12) converges to zero.

it) Under null initial conditions, the fault estimation error is bounded by

E{|[flEms} < AEF) (6(T) + AT A ras) (7.17)
where T = Ty,W + T,V and |Af|lco < Af pax-

Proof. See Appendix C.7.1.
[
The above theorem states that F' is related to the expected value of the squared RMS
norm of the fault estimation error. We can extract from (7.17) that the fault estimation
(and therefore the residual signal) is more sensitive to disturbances and measurement
noises when the maximum of the minimum detectable faults (by means of A(F)) is
higher. Furthermore, the lower the value (T t), the lower the effect of the faults on
the estimation error. The next theorem extends the results of the previous one to bound
the FAR.

Theorem 7.2. For a given threshold > 0 and 0 < ¢ < 1, and under the premisses
of Theorem 7.1, if

tr(TWW) + tr(T, V) = ¢r'h, (7.18)
and constraints (7.16) are fulfilled, then, the following additional statement holds:

iii) In the absence of faults and under null initial conditions, the fault detection algorithm
assures a FAR (7.14) bounded by ¢.

Proof. See Appendix C.7.2.
|
The next theorem extends the previous one showing how the fault estimation error
decays at each measurement instant.

Theorem 7.3. For a given threshold " > 0 and 0 < ¢ < 1, and under the premisses
of Theorem 7.2, if

Iy — BfPBy =0, (7.19)
and constraints (7.16), (7.18) are fulfilled, then, the following additional statement holds:
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w) The fault estimation error given by B{| fk||3} decays with

1
p=1-— X(TJ»F) (7.20)

Proof. See Appendix C.7.3.
|
The above theorem shows that E{||f||2} decays with p, from the initial conditions
to the steady state region (see (C.25)). p depends on the maximum eigenvalue of the
product I'yF'. If F' is fixed to assure the detection of some given minimum faults, I'y
determines the response time of the fault estimator (by means of p) and therefore the
time to detect a fault (as the residual is defined with the estimated faults).

Remark 7.4. Under a step-like fault, the number of instants with measurement
reception, denoted by /X, until the initial value of the fault estimation error is decreased
below a 2%, characterizes the settling time of the fault estimation vector (time to
achieve the 98% of the final value). K can be obtained approximately by solving equation
PPl =0.02, (see (C.25)) leading to

where [-] is the operator that rounds its argument to the nearest integer towards infinity.

(7.21)

Remark 7.5. For a fixed value of F, increasing the FAR by means of ¢ leads to an
increase in the values of 'y, and T, see (7.18). Higher values on these variables alleviate
the constraints over P in (7.16b), increasing the solution space in the search for a feasible
matrix P. This would allow, for instance, structure constraints over matrix P. Matrix
I'; in (7.19) constrains the last diagonal block on P. Then, increasing ¢ can enlarge the
solution space to find lower values on I'y, i.e., to lead to lower values of p (faster fault
diagnosers). These ideas are analyzed on the examples section.

We used Markov’s inequality in Theorem 7.2 to bound the FAR. However, it is well
known that the bound yielded by Markov’s inequality may be very conservative (see [98])
because it does not consider the probability distribution of the residual ri. This may result
in a real FAR that is some orders of magnitude lower than the desired one, which, as shown
in the examples, may lead to a very slow response of the fault diagnoser (characterized by
p in Theorem 7.3). Most of the works in the literature share this important drawback. In
order to overcome this, a more accurate bound on the FAR must be attained. Assuming
that the disturbances wj; and the measurement noises v; are Gaussian, we show in the
next theorem how to impose an appropriate value to matrix F to force the residual rg
follow a chi-squared distribution, which allows us to tighten the FAR bound.

Theorem 7.4. For the fized threshold r'" = ny and for a given 0 < ¢ < 1, under the
premisses of Theorem 7.3, if
F=¢'%y (7.22)

and constraints (7.16), (7.18), (7.19) are fulfilled, with
vec(Xy) = (I - GA® G;l)_l vec (Y1), (7.23)
Y) = GB,WBLGT + P! XV (P'X)T,
G=(I-P'X0),
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then, in the absence of faults, under null initial conditions and Gaussian disturbances
and measurement noises, if the fault diagnoser gain is defined as L = P~'X, then the
FAR is given by
Fth
U=1- CDFX,%;f <?> (7.24)

Tth

where CDFng( 5) =Pr{% < %} denotes the cumulative distribution function (CDF)

of a chi-squared random variable with ny degrees of freedom, Xﬁf.

Proof. See Appendix C.7.4.
[

Remark 7.6. Following the definition of the CDF of a chi-squared random variable, the
value of ¢ needed to obtain a desired FAR 1 with the chi-squared approach is always
higher (for any value of ny) that the one required with the Markov’s inequality approach.
For instance, if ny = 2 and ¢ = 103 using Theorem 7.2 requires ¢ = 1073 while
Theorem 7.4 requires ¢ = 0.145. Following Remark 7.5, this implies that using the chi-
squared approach could lead to fault diagnosers with a faster response to faults than
employing the result on Theorem 7.2. However, unconstraining F' and using Markov’s
inequality is a more general approach, in the sense that it is valid when disturbances and
noises are not Gaussian.

Theorem 7.4 has shown how to reduce the conservatism of the approach when
assuming Gaussian disturbances, but at the cost of including new nonlinear equality
constraints that are hard to handle. We will show in the design strategies section how to
overcome this issue.

7.4 Application to networked transmission

In the previous section we presented how to design the fault diagnoser and to characterize
the obtained FAR and response time to faults for sampled measurement transmission
without dropouts. In this section we extend the previous results to a more interesting
case where measurement information is not always available due to network dropouts.
This will stress the need of fast fault detection with a low FAR. The following theorem
extends Theorem 7.3 and shows how to find the set of observer gain matrices (7.15) and
the matrix that defines the residual (7.13).
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Theorem 7.5. For a given threshold v > 0 and 0 < ¢ < 1, consider the estimation
algorithm (7.10)-(7.11) applied to system (7.1)-(7.3), and assume that there can be q
different measurement reception scenarios n; (i = 1,...,q) with a probability p;, being
po the probability of failing on the reception of data in a given instant. If there exist
symmetric matrices P, Q, F', I'y, I'y, T'y, and full matrices X; fulfilling

[P— M, By
I — BEMyB,, =0, (7.25b)
_69?71 P MB}
= =0, 7.25
MI T, < (7:25¢)
Iy — B} (M5 + Mg)By = 0, (7.25d)
DL, P Mﬂ
= =0, 7.25
R (7.25¢)
tr(Ty W) + tr(T, V) = ¢r'h, (7.25f)
I'y—BfPB; = 0, (7.25g)
with
vec(M;) = @(A)_lvec([lTQ/_l),
Po 1
My = (1—po)Ms+ ———M;, My=—"—
2= (1—po) 5+1—p0 15 5 (1_p0)2Q,
1 X _
Topo P1 X171 VPi(P — X1mO)
M3 = ;o My = )
E— VPP = Xy C)
vec(Mg) = 30(14)_1 (vec(f_lTM5f_1) + 1 pop Vec(M1)> ,
— PO

and (A) = I — poAT @ AT, then, defining the observer gain matrices as L; = P~1X;,
the following statements hold:

1) In the absence of disturbances, faults and measurement noises, (7.12) converges to
zero in average.

it) Under null initial conditions, the fault estimation error is bounded by
~ - - —2
B fliRas} < X(F) - (67 + 0 X)) B ) (7.26)

where Af o is_a_constant thal depends on the faull magnitude that bounds vector
AfL €R™ as [[Af]loc < Afax being Af, a vector that fulfills for all k that

0o N-1
D oNp Y (0 Q (A'ByASh +1))
N=1 =0

00 N-—1
=A7," < Npy—1 Z BJ?(AI)TQAle> Af,. (7.27)
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i11) Under null initial conditions and in the absence of faults, the residual evaluation
assures a FAR (7.14) bounded by ¢.

w) The fault estimation error given by E{||fil|3} decays with

1
p=1-— X(TJ»F) (7.28)

Proof. See Appendix C.7.5.
[

Remark 7.7. The existence of vector Af, defined in (7.27) is assured because it
represents an equality constrained problem with one equation and n; degrees of freedom.
For instance, under ramp-like faults (Af[t 4 {] is constant), Af[ty 4+ 1] = Af,, (for all
1=0,1,...) and Af .. = [|Af|leo. Furthermore, the exact value of Af, . is not relevant
for the analysis.

In the aim of reducing the conservativeness introduced by Markov’s inequality to
bound the FAR, the next theorem extends Theorem 7.4 by forcing r; to follow a chi-
squared distribution when measurement samples are subject to dropouts.

Theorem 7.6. If the threshold is set as r't = ny and for a given 0 < ¢ <1, under the
premisses of Theorem 7.5, if
F=¢'% (7.29)

and constraints (7.25) are fulfilled fori=1,...,q, with

Y= BJT(R —poflR/_lT)Bf, vec(R) = Y| 'vec(Yz),
Vi = p(A) - sz (G:A) ® (G;A)),

p(A) =1~ poAT ® AT,
1 q
Y, — piLi iV LT + sz )G

]__
1,1 i=1

SW = (BwWBZ: +p0ASW,ooAT) )

1—po
vec(Sw,eo) = go(fl)*lvec(BwWBg),
Li=P'X;, G;=1-LnC

then, in the absence of faults, under null initial conditions and Gaussian disturbances
and measurement noises, the FAR is given by (7.24).

Proof. See Appendix C.7.6.
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7.5 Fault diagnosis strategies

Based on the derived results on Theorem 7.5, we propose the following two strategies to
address the design of a fault diagnoser depending on the needs of the application.

First, let us consider that we desire to detect faults over a certain value, i.e to fix the
minimum detectable fault on each channel fuin; (for I =1,...,ny), with a guaranteed
FAR, and to detect as fast as possible the appearance of faults (i.e., with the lowest p).
The next optimization problem deals with this design problem.

Strategy 7.1. For a given threshold r*" > 0, let 1/ be the desired FAR, fix ¢ to be ¢ = 1),
and let F be a diagonal matrix such that F = @', int/ 7. Then, the minimization
problem

minimize v

7.30
subjectto Xy = {(7.25), F X F, I'yF < ~I} (7.30)

along variables v, P, Q, F, T'y, 'y, 'y, and X; (with ¢ = 1,...,¢), leads to the fault
diagnoser with the fastest response under faults, able to detect faults over fmin,; (Wwith
l=1,...,n5) with a FAR below 1.

Second, let us assume that we desire to impose the response speed under the
appearance of faults (by means of p) with a guaranteed FAR. Then, the minimum
detectable faults can be minimized through the next optimization problem.

Strategy 7.2. For a given threshold 7** > 0, let ¢ be the desired FAR, fix ¢ to be
¢ =1, and let p be the given upper bound on how the fault estimation error decays, i.e.,
p < p. Then, the minimization problem
minimize 7y
. (7.25), tr(F) <~, (7.31)
bjectto Xy =
subjectto AXj {I‘fF<(1—ﬁ)1I

along variables v, P, Q, F, T',, Iy, I'y and X; (with ¢ = 1,...,¢), leads to the fault
diagnoser with the minimum value of the sum of the squared minimum detectable faults
(defined by matrix F) with p < p and a FAR below 1.

Remark 7.8. Optimization problem (7.31) is nonlinear because of the bilinear matrix
inequality (BMI) that affects the product I'yF. This can be solved with the following
rank constrained problem

_ -1
{(1 g? F i}io, Y:[I‘If /I\]EO, rank(Y) < ny

where a new symmetric decision matrix A has been added. This problem can be
iteratively handled with the well known cone complementarity linearization algorithm
(see Appendix A.3.1).

Both design strategies are still valid when including nonlinear equality con-
straints (7.29) but need more computational effort. The next strategy extends the previ-
ous ones to consider the chi-squared approach presented in Theorem 7.6.



7.6. Example 119

Strategy 7.3. The minimization problem
minimize vy
subjectto  Xj, (7.29),

(7.32)
th
1 =1 — CDF 2 <—>
g ¢
along variables v, P, Q, F, Ty, T, Ty, and X; (withi =1,...,q) with 7" = n;, extends
the design made in Strategy 7.1, if j = 1, or in Strategy 7.2, if j = 2, to tighten the FAR
bound with the chi-squared approach.

Remark 7.9. Optimization problem (7.32) is nonlinear due to constraint (7.29). This
optimization problem can be solved iteratively with LMI constraints by forcing matrix F'
at each step k to be as F < ¢~ 1S (LF1), until X¢(£*~1) converges to a constant value,
where X ¢(£F71) is the covariance matrix in (7.29) evaluated with the observer gains at
step k — 1.

Remark 7.10. Strategy 7.3 will lead, in general, to minimum detectable faults under
fming (forl=1,...,ny). If we do not intend to detect faults under fin ;, we can first solve
the optimization problem involved in Strategy 7.3 and then use 7, = fkT F1 fk in the
real-time implementation (where F includes the original prescribed minimum detectable
faults, fmin,;). In this case, as we impose in the design that QS’lEf =< F, the obtained
FAR will be upper-bounded by (7.24).

7.6 Example

Let us consider an industrial continuous-stirred tank reactor process (borrowed from [41])
where the discretized state-space model is

A [0.972 —0.001] B, = [—0.084 0.023} 7

—0.034 0.863 0.076 0.414
1 0

We desire to detect faults from the second actuator and the first sensor, i.e.
0.023 0 0 1
By = [0.414 o}  H = [o 0]'
The state disturbances and measurement noises are Gaussian with covariance matrices

0.11 0.03} V= {0.01 0 } .

W_{o.oza 0.13 0 0.0l

We consider that the sampled measurements are independently acquired through a
communication network where the probabilities of having available the measurements
from each sensor are 5 = [0.58 0.46].

For ease of analysis, in this example we will only explore the case when we impose
that the minimum detectable faults are below some given values and we try to obtain the
fastest response to faults of the fault diagnoser, i.e. we will only analyze Strategies 7.1
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Figure 7.2: Trade-offs on the observer-based fault diagnoser design.

and 7.3. For ease of notation, let us assume that the requirement over the minimum
detectable faults is such that F' < fuin/. In the next, we impose the threshold to be
rth =mn;.

First, let us study the compromises between the minimum detectable faults fp,in,
the desired FAR v and the speed of the fault diagnoser by means of p in the design
procedure. Fig. 7.2 illustrates these trade-offs for five different desired FARs with
¥ = [1071 1072 1072 10~* 10~°] and for the two presented approaches to assure
them: through Markov’s inequality (left hand side figure, Strategy 7.1) and through
characterizing the probability distribution of the residual signal (right hand side figure,
Strategy 7.3). We perceive that imposing smaller minimum detectable faults or lower
FARs results in a slower response time to faults (p higher). We also appreciate that forcing
F to be as defined in (7.29) (chi-squared approach) results in a faster response under
faults (p smaller) for the same minimum detectable faults than using Markov’s inequality
approach. Furthermore, Fig. 7.2 shows an asymptotic behavior of p with respect to fuin,
leading to a minimum achievable value.

Second, let us study the behaviour of some fault diagnosers in simulation, where
u[t] = 0 for all ¢. Table 7.1 compares the fault diagnosis performances for the case when
F' is unconstrained, case C1 (where Markov’s inequality approach is used, Strategy 1)
and when F' is constrained to be as in (7.29), case C2 (where the chi-squared approach
is used, Strategy 3). For both cases we impose ¢ = 1072 and fi, = 0.6. We also include
in Table 7.1 a case C3 where we reduced the fu,i, from case C2 to the half. The matrices
F obtained for the three cases are:

5. [018 0 £ [ 0161 —0.025
C1=1 0 018" "7 |-0.025 0.107 |’
7 _ | 0022 —0.008
C3=1-0.008 0.041 |°

As illustrated in Table 7.1, for case C3, we can detect smaller faults than in case C2
at the expense of being slower than in case C2. However, we still are much faster than
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in case C1 where the guaranteed detectable faults were higher. Moreover, as stated in
Remark 7.10 cases C2 and C3 can detect faults below the imposed fmin (fmin,1 for the
actuator fault and fmin 2 for the sensor fault).

After a simulation of 10® instants with no faults, we verify that the FAR obtained in
simulation (by dividing the number of risen alarms by the total number of simulation time
instants) for case C2 and case C3 is the same as forecasted in the design, but for case C1 is
much lower (several orders of magnitude) than the imposed bound. This conservativeness
of the Markov’s approach results in an extremely slow residual dynamics (as seen in
Fig. 7.3), and a huge time to detect the fault (characterized by 6101 measurement
instants, see (7.21)), that is useless in practice. To alleviate this conservativeness, we
add to the analysis a fourth case C4 (with Foy = Fe1) where, as a difference from case
C1, we impose ¢ = 0.1 (¢» < 0.1). Then, we obtain a fault diagnoser similar to C2 with
a FAR in simulation of 10~* (see Table 7.1), which is under the desired one of 1073.
This shows that we can compensate the conservativeness of the Markov’s approach by
increasing the value of ¢ and then verifying in simulation if the prescribed bound is
fulfilled, but we cannot guarantee a priori a given tight false alarm rate or minimum
detectable faults.

Table 7.1: Fault diagnosers comparison.

Case Design Simulation
fmin fmin,l fmin,2 ¢ Z/J P K FAR
C1 0.6 0.6 0.6 1073 | 1073 | 0.999 | 6101 0
C2 | 056 | 0.46 0.52 | 0.145 | 102 | 0.808 | 18 1073
C3 | 021 0.29 0.29 | 0.145 | 1072 | 0.977 | 167 1073
C4 0.6 0.6 0.6 0.1 0.1 | 0798 | 17 1074

Fig. 7.3 and Fig. 7.4 show the fault estimation and fault detection performances
resulting from simulating the fault diagnosers from Table 7.1 under the appearance of
two step faults, one for each channel, of an amplitude of 0.7 at time ¢ = 100 (disappearing
at t = 400) for f1, and at ¢ = 200 (disappearing at ¢t = 500) for fs.

The fault diagnosers for case C2 and C4 are the fastest ones to detect the faults and
their estimation of the faults have the lowest settling time. However they are the most
sensitive under state disturbances and measurement noises (as they have the highest
dA(F) product, see (7.26)). For case C1, the fault detector cannot detect the faults on
time because it has a too slow dynamic due to the conservativeness introduced by the
Markov’s inequality. Case C3, is an intermediate case between C1 and C2. Even if for
case C3 the estimated faults converge slower to the faults than for cases C2 and C4, the
detection mechanism only takes 6 more instants to detect the fault. This is due to the
fact that C3 can detect lower faults than C2 and C4 (note that the diagonal of F,; are
higher than the ones of FCTQI and F541) Finally, note that the settling time at the 98%
for the fault estimation, measured in terms of the number of measurement instants, is
in the order of K (defined in (7.21)). For example, for case C3, the settling time is of 60
measurement instants for f1 and of 130 for fg, while it was characterized by I = 167
from (7.21).
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Figure 7.3: Fault estimation performances for the analyzed cases on
Table 7.1.
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Figure 7.4: Fault detection performances for the analyzed cases on
Table 7.1.

7.7 Conclusion

In the current chapter, we designed a jump observer-based fault diagnoser to detect and
estimate faults under sampled measurement dropouts. We constructed the residual signal
using a quadratic form of the estimated faults. A finite set of observer gains is used to
estimate the faults and each gain is applied depending on the sampling scenario. We
employed the sample successful reception probabilities from each sensor to describe the
possible sampling scenarios.
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The proposed design method allows finding a trade-off between the achievable
minimum detectable faults and the response time to faults, while guaranteeing a
prescribed false alarm rate. Two design strategies can be used: fixing the minimum
detectable faults and then minimizing the response time, or fixing the response time
and then minimizing the minimum detectable faults.

We developed two ways of imposing a desired false alarm rate depending on the
assumed knowledge about the probability distribution of the residual signal. If no
information is assumed to be known, the Markov’s inequality leads to a very conservative
bound on the false alarm rate. If the disturbances and noise are assumed to be Gaussian,
a certain condition imposed on matrix F' leads to a chi-squared residual distribution. In
this case a very precise bound on the false alarm rate is attained, improving the fault
diagnosis performance.

In this chapter, we considered that the control input was causally available at the
central unit. Next chapter addresses the case when the control input being applied at
the process is unknown at the central unit, due to possible dropouts in the transmissions
between central unit and actuators trough a network without delivery acknowledgement.






Chapter 8

Networked gain-scheduled fault
diagnosis under control input
dropouts without data delivery
acknowledgement

ABSTRACT: This chapter investigates the fault diagnosis problem
for NCS under dropouts in both control and sensing channel with no
delivery acknowledgment. The observer-based fault diagnoser and the
controller are collocated. The observer estimates the faults and computes
a residual signal whose comparison with a threshold alarms the fault
appearance. We use the expected value of the arriving control input
for the open loop estimation and the measurement sample reception
scenario for the correction with a jump observer. The jumping gains are
scheduled in real time with rational functions depending on a statistic of
the difference between the control command being applied in the plant
and the one being used in the observer. We design the observer, the
residual and the threshold to mazximize the sensitivity under faults while
guaranteeing some minimum detectable faults under a predefined FAR.
We use a SOS-based solution approach to make the design problem
tractable.

Control systems in industry are becoming more complex and communication
networks enhance flexibility and ease of manoeuvre [44]. However, in NCS, where the
elements of the control architecture are not collocated, these benefits are achieved
at the expense of introducing some new issues as time delays and dropouts in the
information transmission [51, 14]. With the appearance of these network-induced
problems, guaranteeing a reliable, safe and efficient operation of NCS has become
a challenging concern in the last years, and researches have being adapting and
improving traditional model-based fault diagnosis methods [15] to operate in networked
environments [35, 121].

Generally, when dealing with dropouts, the existing observer-based fault detection
and estimation algorithms only consider sampled measurement losses either by focusing
on filter design or by assuming that the control input being applied at the plant is
known when updating the observer [87, 48, 72, 146, 83, 81] (see Chapter 7). Concerning
samples dropouts, the use of jump observers whose modes are related to the sampled
measurement transmission outcome improves estimation performances (with respect to
gain invariant approaches, see Chapter 3) and have been employed to fault detection
in [87, 72]. But, when the controller and fault diagnoser are collocated, and the controller
to actuator link is offered by a network without successful delivery acknowledgement
(differently from Chapter 7), the above mentioned methods are not applicable and lead
to poor performances.

125
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Some works as [135] and [139] have addressed the problem of dealing with the control
error induced by dropouts in the control channel, i.e., with the difference between the
applied control input in the process and the one used in the observer. The authors of [135]
used the expected value of the control command at the process to update the state
estimation and designed the residual signal to guarantee some performances under faults
and disturbances. After describing the involved residual signal in terms of the control
error, [139] went one step beyond by generating a time-varying threshold adapted in real
time to some control error statistics, allowing them to assure a predefined false alarm rate
(FAR). However, in both works [135, 139] an observer-based residual generation schema
with invariant gains was employed. Owing to guarantee robustness against all possible
control errors, those approaches lead to conservative fault detection performance for
control errors smaller than foreseen.

In the current chapter, we employ the expected value of the control input being
applied at the process to run the open loop fault estimation. We then derive a control error
statistic available in real time that can be modelled by a bounded time-varying parameter.
Based on [111, 55], the performance of a fault diagnosis algorithm can be defined by means
of the trade-offs between the sensitivity to faults and the FAR. Seeking to improve fault
diagnosis performances (e.g., time to detect faults), we introduce a gain-scheduled jump
observer to estimate the faults. The observer gain jumps with the sampling scenario,
modeled as a Markov chain, and follows a function of the aforementioned control error
statistic. We define the residual signal as a quadratic form of the estimated fault vector
whose comparison with a threshold guarantees fault detection. The major novelty of this
chapter lies in scheduling in real time the observer gains with the control error statistic.

We design the gain-scheduled jump observer, the residual and the threshold in order
to minimize the response time to faults, by minimizing the H,, norm from fault to fault
estimation error subject to attain disturbance and measurement noise attenuation and to
guarantee fault detection over some minimum detectable faults with a prescribed FAR for
all the possible control error occurrences. To handle this optimization procedure we fix
the gain-scheduling function to be polynomial and then, we exploit sum-of-squares (SOS)
decomposition techniques (see [50, 16]). Some previous works have applied SOS methods
to nonlinear polynomial systems [102], to linear parametric varying (LPV) systems [143]
or to quasi-LPV systems [3]. The conceptual novelty introduced with respect to those
works is the employment of SOS methods (in the aim of Chapter 5) to schedule the
observer-based fault diagnoser with a time-varying control error statistic that depends
on the behavior of the network and is known in real time.

This chapter is organized as follows. We define the problem in Section 8.1, and present
the observer-based fault diagnoser design in 8.2. Section 8.3 explores some examples and,
finally, in Section 8.4 we summarize the main conclusions.

8.1 Problem setup
We consider LTI DTS of the form

ZTe41 = Axy + Buy + By we + By fe, (8.1)
where x € R" is the state, u € R™ is the control input, w € R™ is the state disturbance,

and f € R™f is the fault vector. The system has n,, measurable outputs. Each measurable
output can be measured by at least one sensor (that may introduce faults), having
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Ny > Ny, sensors. We write the measured and transmitted value as
mgy = csTy +hs fr +vst, s=1,...,n (8.2)

where mg ; € R is the {-th sampled measurement of the s-th sensor and v, € R is the
s-th sensor noise. ¢, denotes a row of matrix C' = [¢f --- ¢ |7 (different ¢, can refer to
the same row of C') and h each of the rows of matrix H. Both the state disturbance input
and the measurement noise are assumed to be wide-sense stationary stochastic processes’
with bounded variances where their RMS norms are bounded by ||w||rms < @Wrms and

||UHRMS S Urms (Wlth Ut = [vl,t e Uny,t]T)~

fet 1 I l Jst 1
u(T) y(7)
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fault ? ; fe ;

Figure 8.1: Networked fault diagnosis problem under dropouts with
possible faults in the actuator (f.), faulty components in
the plant (fp) and faulty sensor (fs).

In the current chapter, we model the fault as a slow time-varying signal (cf. [13, 149]),
ie.,

firr=fe+ Afe, |Afllo <Af (8.3)

where A f; is the bounded fluctuation of the fault from instant ¢ to ¢ + 1. This allows us
to model, for instance, step signals (A f; would only be different from zero when the fault
appears) or ramp signals (Af; has a constant value) that have been widely used to test
fault detection algorithms [15, 58].

We aggregate the evolution of the system state (8.1) and the fault (8.3) leading to an
extended order model defined by

Zt4+1 :flzt—i—But—i—wat—i—Bf Aft (84)

with 2 = [2f ftT]T and

A—{f} %f]’B_[ﬂ’Bw_ﬁwny_m

LIf 24 is wide sense stationary its RMS norm becomes ||z|rys = 1/E{xzxt}, which is a constant
value.
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where z € R™ with 7 = n + ny. Then, the sampled measurements are
mg, =Csz + Vs, S=1,...,ny (8.5)

with & = [cs hs]. We consider that the pair (A, C) is detectable (being C' the matrix
whose rows are &), otherwise (i.e., ny > n,), only a combination of the faults can be
detected.

Remark 8.1. A transformation of the system when the pair (A,C) is undetectable
must be carried out (leading to new 7y faults, a combination of the original faults, with
fiy < ny) before the methods on this chapter become valid, as proposed in [74].

In the current chapter, we consider that the fault diagnoser and the controller
are collocated in a central unit. We assume that sensors, central unit and actuators
communicate through a network without successful delivery acknowledgement of sent
packets (e.g. UDP-like networks) where dropouts are likely to occur (see Fig. 8.1). The
control input sent to the actuators is assumed to be known.

8.1.1 Sampled measurement reception modeling

Each sensor measures its output synchronously with the control input update and
transmits, independently from each other, a time-tagged packet with the sample mg ,
to the central unit through the network (see Fig. 8.1). We model the reception state of
each sample from sensor s = 1 to n, at instant ¢ with

Qg t = (86)

)

1 if mg, is acquired at instant ¢,
0 if mg, is lost.

Then, the available information at instant ¢ at the central unit is the pair (mg,, as )
for all s = 1,...,ny, where mg, = a;:mg,. We use process a; to model the sampled
measurement reception scenario at instant ¢, where a; = @Zil o ¢ is a diagonal matrix
with binary variables in its diagonal elements. Thus, we can redefine the acquired samples
at instant ¢ as

my = oy (C‘ 2z + vt) , (8.7)

where v; = [Ul,t e vnwt]T is the measurement noise vector.
We assume that the outcomes of a; are governed by a finite ergodic? Markov chain [9]
whose modes are in the set

atEE:{UOanla"'7nq}a q:2ny_17 (88)

where 7; (for i = 0,...,q) represents each possible measurement reception scenario.
denotes the case when o = 0. The transition probability matrix A = [p; ;] with

pij = Pr{owi1 = njjar = ni}

is assumed to be known.

2In an ergodic Markov chain every state can be reached from every state in a finite time.
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Remark 8.2. Assuming mutually independent Markovian processes for the packet
dropouts, i.e.,

Pr{as; = 0las -1 =0} = gs,
Pr{os: = 1l|as—1 =0} =1 —gs,
Pr{a,; = 1|asi—1 =1} = ps,
Pr{os: =0|asi—1 =1} =1—p,,

for all s =1,...,ny, each probability of matrix A = [p; ;] (for,j =0,...,¢q) is computed

as
Ty

pij = [ Price: = nejloci1 = nei}
s=1

where 75 ; is the s-th diagonal element of ;.

8.1.2 Control input update modelling

Let us remember here how to model the transmission of control inputs through an UDP-
like network (see Section 2.4). At each instant ¢ — 1, the controller sends to the actuators
(through the network) a single packet with all the control inputs to be used at instant
t3. We denote by u¢ the control input transmitted from the controller (at ¢t — 1) to be
applied at instant t. We model the control input reception at instant t — 1 with

V-1 = (8.9)

u 1 if uf is received at instant t — 1,
0 if uf is lost.

Each actuator implements a zero order hold strategy, i.e.,

T L (8.10)
us—1 otherwise.

As the network involved in the communication has no acknowledgement of successful
delivery, we ignore at the central unit the exact value of the control input being applied
at each instant. We assume that the probability of being applying at instant ¢ the control
input transmitted at t — 7 — 1 is known, i.e.

or =Pr{us =u;_,}, T=0,..., Ny, ZapT =1, (8.11)
7=0

where N, denotes the maximum integer number of consecutive packet dropouts from the
central unit to the actuators. In Remark 2.15 (in Section 2.4) we showed how to obtain
each ;.

As the value of the real control input being applied to the process is unknown, we
propose the use of its expected value E{u;} to update the open loop observer estimation.
Let us denote E{u;} by uf where

Nu
u§ = pau§_y. (8.12)
d=0

3This control strategy is used to overcome delays up to one instant, see [110].
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With that definition, the control error 4; = wu; — uf (the difference between the
control input being applied in the process and the one being used in the observer) can
be expressed as

Ny
iy =ue— Y Qa4 (8.13)
d=0
Lemma 2.2 (in Section 2.4) stated that
E{i,} =0, (8.14)
N, N, T N,
E{uf .} = Z ©d (ute—d - Z Pd Uf—d) (ute—d - Z ©d Uf—d) : (8.15)
d=0 d=0 d=0

Let us use &; to denote E{al@,;}. Note that the value of §; is known and can be
calculated in real time with (8.15) since the transmitted control input u§ is available at
the central unit. In the present chapter, we assume that §; is a bounded time-varying
signal fulfilling 6; € S with

S={6:0<4 <6, Vk}. (8.16)

Remark 8.3. The upper bound 6 can be calculated analyzing the system and controller
dynamic that may include magnitude saturation and rate limitation. However, the
accurate calculation of this bound is not really necessary, since & only defines the search
space of the optimization problem (that will be described later), and hence 6 may simply
be selected to be a high enough value.

8.1.3 Fault diagnosis algorithm

Taking into account the previous analysis, the proposed fault estimation algorithm is as
follows:
2, =A% 1+ Buf_y, (8.17)
=2 +Li(m{ —a, C2). (8.18)
At each instant ¢, we run the model in open loop using the expected value of the control
input being applied at the process uf_;. When some samples are available at the central
unit, we update the estimation by means of the updating gain matrix L;. Otherwise, we

hold the open loop, i.e., 2 = £, (note that m¢ is zero under dropouts). Defining the
extended state estimation error as z; = z; — 2, its dynamic is given by

Z=I-Lia,C)(AZ—14+ ByWi1) — Liay vy (8.19)
where By = [B,, By Bland W,_1 = [wl_; AfL, al |7

Using the estimated faults from (8.18), as fi = [0 I] 2;, we define the residual signal
of the fault detection algorithm as

re=fLFT (8.20)
where F' is some matrix to be defined. Then, the fault detection law is

: < th
{ ifry <r no fault, (8.21)

if r, >t fault,
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being r*" a constant threshold to be defined. Then, fault isolation is attained by combining
fault estimation and fault detection, allowing us to identify the source of the faults.

Remark 8.4. Extending the definition of a minimum detectable fault given in [15], we
define a minimum detectable fault as a fault that makes the residual cross a unitary
threshold (i.e., r*" = 1), provided no other faults, disturbances, measurement noises and
control errors are present. Then, under zero fault estimation error (i.e. f = f), each
diagonal element of F' in (7.13) multiplied by r*" defines the minimum detectable fault
as fming = r'F(1,1) for the corresponding channel (I =1,...,n¢).

Considering the fault detection decision, a false alarm is produced if r; > 7" when

ft = 0 and the FAR is defined as the average probability of rising false alarms over an
infinite-time window, i.e.

=
\I/:TIEI;OT;PI{rt>rth|ft:O}. (8.22)

The aim of this work is to compute gain matrices L;, matrix F, and threshold r*" such
that the fault diagnoser attains disturbance and measurement noise attenuation, reaches
some fault diagnosis performances, assures a given FAR and overcomes the uncertainty
introduced by the control input dropouts for any §; € S.

Using jump linear estimators that relate their jumps to the measurement reception
improves the estimation performance with respect to employing invariant gain estima-
tors [130] and have been recently adapted to fault detection algorithms [87, 72]. When
dealing with the uncertainty of the control input update, the authors of [139] propose to
adapt the threshold to the mean and variance of the control error in order to improve the
performance of their fault detector. However, they used an invariant gain observer ap-
proach that leads to conservative fault diagnosis performances for control errors smaller
than anticipated. In the current work, in order to improve the fault diagnosis performance,
we propose a Markovian jump estimator with a gain-scheduled approach depending on
the real time values of d, i.e.

Li(A ifag=mn;fori=1,...,q,
Lo = L{ay, A_y) = { FilBe1) ifac=m ¢ (8.23)
0 if ay = 1.
where .
A1 =[6m1 bi2] (8.24)

We schedule the updating gain L; with both the current control error statistic d;_1
(at instant k) and the past one d;_o (at instant k — 1) to consider the present control
uncertainty d;_1 as well as the variation it has suffered from §;—o to d;—1. Note that, as
the updating gain L(ay, A¢—1) is scheduled with a; and A;_q, the residual signal r; is
also related to these parameters.

8.2 Fault diagnoser design

In this section we address the design of the gain-scheduled Markovian jump observer
with law L(ay, As—1) as well as the residual r, and its threshold r* with an H.,-based
procedure. We first present a sufficient condition for the existence of such a fault diagnoser
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based on matrix inequalities that depend on the control error statistic A;. This condition
allows bounding the RMS norm of the fault estimation error vector. Second, we derive
how to bound the FAR given by the fault diagnoser. Finally, we show that by restricting
the dependences to be polynomial, we can solve the design problem in polynomial time
through SOS methods.

The next theorem presents the H., observer design based on a parameter-dependent
matrix inequality.

Theorem 8.1. Consider the fault estimation algorithm (8.17)-(8.18) applied to
system (8.1)-(8.3). If there exist positive definite symmetric matrices Pj(Ay) and F', full
matrices Gj(A¢) and X;(A), and positive scalar functions vuw(At), Yo(A¢), Yu(A¢) and
Ve(Ay) for alli,j=0,...,q and &; € S fulfilling

Q(Ay) Mai(Ay) Mgpi(Ay) 0

) _ Ma z(At) Pi(Ai—1) 0 By
Tz(AtaAtfl) = MBZ(At) 0 F(At) 0 =0, (825)
0 0 BY F

being Ay as in (8.24), with

Mai(A¢) = [/PioMao(A)" - \/]T,qMA,q(At)T]T,

Maj(Ar) = (Gj(A) = X;(Ay) n; C) A,

Mg i(A) = [yBroMpo(A)T -+ BiaMpq(A)T]"

Mp j(Ar) = [(Gj(A¢) = Xj(A)n; O) [Bw Bu By] —Xj(Adn],
T(A¢) = yw(A¢) In, @ Yu(A¢) In, ©75(A¢) Iny © Y0 (A¢) In,,,

then, defining the observer gain matrices as Li(Ay) = Gi(Ay) ' Xi(A,), the following
statements _are fulfilled for all oy € E, 6 € S, |lwllrms < Wrms, ||[V||lrMs < Orms and
[Aflle <Af:

i) In the absence of disturbances, faults, control errors and measurement noises, the
extended state estimation error (8.19) converges asymptotically to zero in average.

it) Under null initial conditions, the expected value of the squared RMS norm of the
fault estimation error is bounded by

~ ~ o _ _ _ ——2
E{| flas} < MNF) (Ju@is + o2+ Tu + g BT ), (826)
where
1 K-1 1 K—-1
Yu=lim =D u(B)6, Fy= lim - > (A, x={wo, fh (827)
k=0 k=0

Proof. See Appendix C.8.1.
|
Let us clarify and make some comments on the role of the decision matrix F' and
decision polynomials v, (A¢), Yu(A¢), vr(As) and v,(A) in Theorem 8.1:
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e Our approach uses updating gains L(a¢+1, A;) depending on the value of the control
error statistic §; and d6;—1 . Then, gains v (A;) (with v = {Vw, Yu, Vo, 75}) are
also related to Ay to better characterize the propagation of the state disturbances,
control errors, measurements noises and fault changes to the fault estimation error
characterized in (8.26) for all 6; € S.

e If we fix F to assure some minimum detectable faults, we can extract from (8.26)
that minimizing v (A;) increases the sensitivity of the fault diagnoser to faults (i.e,
decreases the response time to faults) for all the possible d; € Sy (as it minimizes
the upper bound of E{||f|&xs})- If &; is time-invariant (6; = &,_1 for all k, and
thus vector A; has equal row values), then (8.26) and (8.27) lead to

E{H‘f”%{MS} < X(F) (r}/w(ét)w?ms + 7@(515)773115 + 'yu(ét)ét + 'Yf(ét) nr A_f2) .
(8.28)

The next theorem extends the previous one showing how to bound the sensitivity
of the fault diagnoser to state disturbances, measurement noises and control errors to
bound the FAR given by the fault detection law (8.21).

Theorem 8.2. For a given threshold >0 and 0 < ¢ < 1, and under the premisses
of Theorem 8.1, if constraints (8.25) and

D(Ay) = Y (Ar) Wing + Vo (A¢) Vomg + Yu(Ar) 6 < @™ (8.29)

are fulfilled for all 6; € S, ||w|lrms < Wems and ||v||rMs < Trms, then, the following
additional statement holds:

iii) In the absence of faults and under null initial conditions, the fault detection
logic (8.21) assures an upper bound of the FAR (8.22) given by ¢.

Proof. See Appendix C.8.2.
[

Remark 8.5. In this work we propose a gain-scheduled fault diagnosis schema where
the sensitivity to faults, through v¢(A:), is adapted to the control error (to improve
the time response to faults) while the threshold r** and the minimum detectable faults,
defined by F', remain constant to guarantee the same minimum detectable faults over all
the possible control errors. In the aim of [139], the presented method can be extended
with not much effort to an adaptive threshold fault diagnosis procedure with a constant
sensitivity to faults by imposing an invariant v; and a control error dependent matrix
F(A;). Then, the minimum detectable faults (which can also be seen as a part of the
threshold, see (8.20) and (8.21)) would depend on the control error as proposed in [139]
but with an observer that is also scheduled with the control error.

8.2.1 SOS decomposition

Conditions (8.25) and (8.29) lead to an infinite-dimensional problem. The main difficulty
is how to verify the conditions over the entire parameter space. To deal with a finite-
dimensional problem, we restrict the matrices and scalar functions in Theorem 8.2 to
be polynomial functions of §; of fixed degree. Then, we can take advantage of SOS
decompositions to turn the initial problem into a computationally tractable one.
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Making use of the SOS decomposition results and notation in Appendix B, in the
following theorem we present a sufficient condition to numerically find the parametric
matrices and functions that guarantee the properties stated in Theorem 8.1. We will use
01, 02, 03, A = [(51 52}T and Ay = [52 (53]T to denote independent SOS variables
representing de possible values of d;, d;_1, d;—2, Ay and A;_; respectively where §; € S
for all ¢.

Theorem 8.3. For a given threshold r'" > 0 and 0 < ¢ < 1, if there exist a symmetric
positive definite matriz ' € R™ " symmetric polynomial matrices

P = (Al o Iﬁ)T P (Al o 1,) (8.30)
Pi(As) = (Ag‘“’} ® Iﬁ)T j (Ag“’} ® Iﬁ) (8.31)

with symmetric matrices P; € R™7(2:dr)xn0(2.dp) for i =0, ... ¢, polynomial matrices
Gi(A)) = Gi (Aidc} ® Iﬁ) . Xi(A) = X (Aidp} ® Inm> , (8.32)

with G € R0 (2:dc) gnd X; € RM*"mo(2dx) fori=0,... q, and polynomial functions

Yo(A1) = 4D A A = 4T A TH D A =AF AN ) =47 Al
(8.33)

with v, € RZ4) 4, e ROGd—1) vy € ROZ45) and ~, € R4 where
2dp, dg, dx, dv, dy—1 and dy are the degrees of the involved polynomials, that fulfill the
following constraints

uh Pi(Ay) p— sp1i(61, 1) h(61) — spa.i(da, 1) h(82) € B(Ay, ), (8.34a)
sp1,i(01, 1) € X(01, 1),  sp2,i(2, 1) € X(2, i), (8.34b)
v Ti(Ar, Ag) v — s11.i(61,v) h(81) — s12.i(2, ) h(d2)

= 573,i(d3,) h(03) € (A1, Az, v) (8.34c¢)
sv1,i(01, ) Y(01,v), Srvei(d2,v) € X(62,v), st3i(d3,v) € X(ds,v),  (8.34d)
((b rth — ) — $71(01) h(61) — $r2(02) h(d2) € B(A1), (8.34e)
sr1(d1) € E(51)7 sr2(02) € X(d2), (8.34f)
v (A1) = 551(61) h(01) — 552(d2) h(d2) € B(A1), (8.34g)
sj1(01) € X(61), s42(d2) € B(d2), j={w, u, f, v}, (8.34h)

for i = 0,...,q with T;(-) as in (8.25), ®(-) as in (8.29), u € R™, v € R™ (with
ny, :ﬁ(q+2)+2nf+nw+nu+nm) and

h(6) =0 (6 —9),, (8.35)
then constraints of Theorem 8.2 hold.

Proof. First, note that the set S is rewritten with its corresponding polynomial h as
S ={d : h(d) > 0}, see (8.35). Independent SOS variables d;, d2, 63 must fulfill ~A(-) > 0
as §; € S. Second, by Lemma B.3 and Lemma B.4 constraints (8.34c) and (8.34d) assure
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the positive definiteness of T;(A1,As) for any 41,092,935 € S, which guarantee (8.25)
in Theorem 8.1. Third, by Lemma B.3 constraints in (8.34e) and (8.34f) asserts (8.29)
in Theorem 8.2 for any d1,d2 € S. Finally, by Lemma B.3 and Lemma B.4 it follows
that by constraints (8.34a), (8.34b), (8.34g) and (8.34h), we guarantee the positive
definiteness of P;(A1), Yw (A1), Yu(A1), v7(A1) and v, (A1) for any 61,62 € S as required
in Theorem 8.1.
|
In the above feasibility SOS problem p and v are scalarization vectors used to
transform polynomial matrices in polynomials (see Lemma B.4). The decision variables
are matrices P;, Gy, X, F', Yw, Yu, 7f and 7,; and also the coeflicients of SOS polynomials
s_in (8.34). We propose to choose the degree of these SOS polynomials in such a way
that all the addends in each SOS expression have equal degree on all the variables. This
can be performed by choosing dp, da, dx, dy and dy, and then setting for all j = 1,2
and 1 =0,...,q

deg sp;ji(6;,pn) = deg {6max{2dp 2.03 uz}, (8.36a)
deg sv;,i(0j,v) = deg {5“”"{2‘1’3 ~2da=2,dx=2,0} 1/2}, (8.36D)
deg sy3,;(d3,v) = deg { gmax{2dp—2,0} 1/2} (8.36¢)
deg 5,j(3;) = deg 671D >0, (8.36d)
deg su;(d;) = deg s,;(d;) = deg 5mwx{d - O} (8.36¢)
deg su;(d;) = deg 6714730 (8.36f)
(95) )

deg 5‘“‘”‘{df 2.0 (8.36g

deg s5;(4;
where deg returns the maximum degree for each variable in the involved polynomial.

Remark 8.6. We have set the degree of polynomial 7, (A1) to be dy — 1 in order to
assure the same degree on J; in the addends of expression (8.29).

Remark 8.7. The polynomial degrees defined by dp, dg, dx, dy and dy can be seen
as trade-off parameters between conservativeness and computational effort. Moreover, if
dg = 0 and dx = 0, the resulting updating gain L does not depend on A;. If dg = 0
and dx > 0, matrix L has a polynomial form on A; while if dg > 0 and dx > 0 it has a
rational expression. Therefore, dg and dx define the dependency of L on A;.

8.2.2 Fault diagnosis design strategy

Taking into consideration the fault diagnosis performances derived from Theorem 8.1
and Theorem 8.2, we propose the following strategy based on an optimization problem
to design the fault diagnoser.

We force the fault diagnoser to only detect faults beyond some values (avoiding to
rise alarms when faults are small), i.e., we impose each of the minimum detectable faults
fming (for { = 1,...,ny), while we intend to detect the presence of faults as fast as
possible (higher fault sensitivity under faults) with a guaranteed FAR. We address the
fulfillment of these constraints in the next optimization procedure.
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Problem 8.1 (OP1). For a unitary threshold r** = 1 and a given desired FAR v, fix ¢
to be ¢ = 9. Let F be a diagonal matrix such as F' = @7:11 fiin’l where fmin,; stands for
the minimum detectable fault. Then, the minimization problem
minimize J
subjectto  (8.34),
J = v5(A1) = 551(01) h(01) — 552(02) h(d2) € (A1),
8]1(51) S 2(51), SJQ((sg) S 2(52)

(8.37)

with deg s;1(61) = deg 5Enax{df72’0} and deg s2(d2) = deg 52max{df72’0}, assures fault
detection over fmin; (With I = 1,...,ny) with a FAR below ¢ and maximizes in the
worst case the sensitivity to faults of the resulting fault diagnoser for any possible §; .

Including constraints (8.34) in the above optimization problem guarantees the results
of Theorem 8.2 as stated in Theorem 8.3. The new constraint imposes that

’)/f(Al) < J, VA, € {51,(52 : h(51) >0, h((sg) > 0},

which means that J is an upper bound of v¢(A;) for any k with §; € S (worst case).
Then, 75 < J (see (8.27)) and by minimizing J we minimize the upper bound of || f||% s
(see (8.26)) in the worst case.

Remark 8.8. Setting zero degree polynomials, (8.37) can be rewritten as a LMI
optimization problem (worst case LMI design) such as

minimize J

subjectto Y; = 0,
. , _ (8.38)
Yw wrms + Yo Urms + Yu 5 < 17

vr < J
for all i =0,...,¢ with T; as in (8.25).

The previous optimization (8.37) may lead to quite conservative results because
~vf(A1) is minimized for the worst case. In order to obtain less conservative results,
we propose as an alternative to introduce some weighting function g(A;) over v¢(Aq)
such that

= [ ga)ranaa. (5.39)
SxS

The next optimization problem shows how to modify OP1 to include the weighting
function g(Aq).

Problem 8.2 (OP2). Consider some weighting function g(A;), for a unitary threshold
r® = 1 and a given desired FAR ¥, fix ¢ to be ¢ = 1. Let F be a diagonal matrix
such as ' = @ln:f 1 fﬁlin’ ; where fiin, stands for the minimum detectable fault. Then, the
minimization problem
minimize J
subjectto (8.34), (8.40)
Ff < J,
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where I'; is defined in (8.39), assures fault detection over fumin; (with I =1,...,ny) with
a FAR below ¢ and maximizes the sensitivity to faults of the resulting fault diagnoser
under the weighting function g(Aq).

Remark 8.9. An interesting choice for function g(A;) is the one that represents the case
when ¢; is time invariant (constant or ramp-like transmitted control inputs, see (8.15)),
that is 6; = J2, and all the possible values of 0 < §, < § are equally weighted (i.e.,
assuming no knowledge about which value is more likely). This weighting function can
be defined as 1

= if52=51 and0§51§5,

g(A))=<(6 (8.41)
0 otherwise.

8.3 Examples

8.3.1 Example 1

For ease of analysis, let us first consider a simple linear time invariant discrete time
system defined by (8.1)-(8.2) with

0.48 0.11 —0.5 0.2
A= [0.11 0.97] 0 Bu= {0.7} » Bu= [_0.6} , C=018 03],

where the measurable output is measured by just one sensor.
The state disturbances and measurement noises are Gaussian noises with zero mean
and bounded RMS norms given by

lw|lrms = 0.05,  ||v|]|rms = 0.01.
The dropouts on the sensor to central unit link follow a Markov chain with
Pr{oi; =0|a1,-1 =0} =04, Pr{oi;=1la;—1 =1} =0.7.
The transition probability matrix of the possible measurement transmission outcome is

given by
0.4 0.6
A= {0.3 0.7] '

The dropouts in the central unit to controller link follow a modified version of the
above Markov chain with a maximum number of consecutive dropouts of N, = 6 (see
Remark 2.15). Then the probabilities of being using the control input sent 7 — 1 instants
before are

= [0.668 0.2 0.08 0.032 0.0128 0.005 0.002} ,

where ¢ = [po ©1 Y2 w3 Y1 ©5 we]. Let us assume that in the worst case the control
error statistic &; is bounded by 0 < §; < 0.1 for all k, i.e. 6 = 0.1.

We address the problem of detecting possible faults from the actuator over 1.2 with
a FAR under 0.1, which is the most interesting case due to the control input dropout
(without delivery acknowledgement), i.e.

Bf—{_o(.)ﬂ, H=0, F=f2 =122 ¢=0.1.
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Table 8.1: Analyzed cases in Example 8.3.1.

Case | OP | dp | dg | dx | dy | dy J
C1 1 0 0 0 0 0 | 154
C2 1 1 2 2 2 2 154
C3 2 1 2 2 2 2 63

1
$1.2 £1.2
= = T
< 4 =
— = -
I [ 2
. = 0.6
<11 1811 =
9 = =t
~ ~ N
el =
= = =5
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. . . . . . . . 0 . . . .
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5 5 5

Figure 8.2: Comparison of the results given by optimization procedures
C1, C2 and C3 normalized with respect to outcomes from
C1 (see Table 8.1) when §; is time-invariant.

Let us first analyze the differences between using observer constant gains via the
optimization problem in Remark 8.8 (worst case LMI design) and scheduling ones with
second degree polynomials via design procedure OP1 (worst case SOS design) and OP2
with g(A1) as defined in (8.41), see cases C1, C2 and C3 in Table 8.1 (all with r*® = 1).
We represent the gain L(c, A1) as L(a, A1) = [Ly, (o, A1) Loy (o, A1) L(a, Aq)]T (we
discard the analysis on L, (a, A1) as its variation is not significant). Let us remember that
Al = [(51 52}T, where ¢; models the current control error statistic and do de previous
one. Fig. 8.2 illustrates, when d = §; (i.e., §; time invariant), how the observer gains
and the value of v(A1)|;,_s adapt their value to 61 when a measurement is received
(ie., L(a =1, A1)|s,—s, ). The values displayed in Fig. 8.2 have been normalized dividing
them by the results from C1. Design C1 (constant gains) is the most conservative one as
it keeps s constant at the highest value for all §;. C2 improves the performance of C1
reducing vy up to a 5% (which increases the sensitivity under faults) when ¢; = 0 thanks
to employing a scheduling observer gain. Design C3 requires selecting the weighting
function g(A1), but even with the simple choice proposed in Remark 8.9, it leads to the
least conservative results, dividing by 10 the value of vy when J; = 0 with respect to
its maximum value. Fig. 8.2 also shows that the proposed polynomial methods allow to
obtain more sensitive fault diagnoser to faults (improving fault detection and estimation
response) with respect to the constant gain observer, whenever §; is smaller than its
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upper bound §. From now on, we will only focus on C1 and C3.

Let us now examine for case C3 the full behavior of Lf(a =1,A;) for any 61,02 € S
normalized with respect to the correspondent gain of C1. Fig. 8.3 shows that the updating
gain value becomes smaller as the control error increases. The maximum value of the gain
occurs when there is no control error §; = §; = 0, while the minimum corresponds to the
case when the control error is maximum (§; = 62 = ).

Normalized L¢(a =1, Ay)

Figure 8.3: Normalized scheduled observer gain for C3 with respect to
the one resulting from C1 in Table 8.1.

Finally, let us evaluate the behavior in simulation of the fault diagnosers for C1 and
C3 under the appearance of step faults a 25% higher than fiin at ¢t = 10 and ¢ = 60
(vanishing at ¢ = 30 and ¢ = 80 respectively). Fig. 8.5 presents the involved control
inputs in the networked fault diagnosis schema u;, uy and u§, as well as the evolution in
time of the squared control error %7 and its statistic §;. We appreciate that while %7 may
have abrupt changes, d; changes slowly and smoothly. Fig. 8.4 shows the fault estimation
and fault detection performances of the analyzed situation. The first fault appears when
d¢ is near 0 and almost constant. Then, thanks to its scheduled updating gain the fault
diagnoser for C3 reduces the fault detection time in a 40% and the fault estimation
settling time (at the 95%) in a 50% with respect to C1. When the second fault occurs d;
is more time-dependent and its value is near 0.07. In these conditions both fault diagnosers
have the same performances. This proves that using a gain scheduling approach allows
to improve the fault detection and estimation performances when §; is small, while for
high ¢; values (near its maximum), our method retrieves the performances of the Ho,
constant gain design.
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Figure 8.4: Fault estimation and fault detection performances in
simulation for cases C1 and C3 in Table 8.1. Markers e and
o denote instants when a measurement sample is received.

8.3.2 Example 2

Let us now consider a more complex system by extending the previous one with

—-05 —0.3 0.18 0.8 —0.5 0 0 1
B“_[ov 0.2}’ C‘[o 1}’ Bf_[ov 0]’ H_[o 0]'

In this example, the system has two measured outputs, two control inputs and we desire
to diagnose faults from the first actuator and first sensor. The successful transmissions
from the new sensor to the central unit follow a Markov chain with

Pr{as; =0|agi—1 =0} =03, Pri{ags;=1laz;—1 =1} =0.5,

which is different and independent of the successful transmission from the existing sensor.

Similar than in Example 8.3.1 we aim to diagnose faults over fui, = 1.2 (for both
channels, F' = 1.22 @ 1.22) with a FAR under 0.1 (¢ = 0.1). However, now we examine
the obtained performances resulting from adapting the observer gain to the measurement
reception scenarios oy in addition to scheduling it with A;, see cases C4 and C5 in
Table 8.2.

Fig. 8.6 shows the estimation and detection performances of the fault diagnosers from
C4 and C5 under the appearance of two faults given by

0, if0<t<10 0, if0<t<20
fie=14 2sin(=Y), if10<t<8 , far=1< 3exp(—132%), if20<t<85
0, ift > 85 0, if t > 85
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Control inputs: uf, u,

c
t

Control inputs: uf,

0.4 F time to detect C3 time to detect €3 —— 3 |1

02} - : : i

Control errors: @2, &

simulation instants, ¢

Figure 8.5: Control inputs involved in the NCS (control input applied
in the plant u, transmitted control input uy and control
input used in the observer uf), squared control error ;
and its statistic d; in the simulation of Example 8.3.1.

Table 8.2: Analyzed cases in Example 8.3.2.

Case | Obsv.gain | OP | dp | dg | dx | dy | dy J
C4 | Loy, A¢1) 2 1 2 2 2 2 42
C5 L(Ay_4) 2 | 12| 2] 2]|2]104

From Table 8.2 and Fig. 8.6 we appreciate that using an observer gain that jumps with
the measurement reception scenarios (C4) improves the fault estimation and detection
performances with respect to employing an observer gain that do not depend on «y. For
the analyzed case in Fig. 8.6, with C4 we reduce the RMS norm of the fault estimation
error in simulation by a 23% with respect to C5.
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Figure 8.6: Fault estimation and fault detection performances in
simulation for cases C4 and C5 in Table 8.2. Markers e and
o denote instants when a measurement sample is received.

8.4 Conclusion

In the present chapter, we designed an observer-based fault diagnoser to operate under
control input and measurement dropouts without successful delivery acknowledgement.

We characterized the sampling scenario with a Markov chain and described the control
error between the control input being applied in the process and the one being used in
the observer. With that, the observer gain is related to the sample transmission outcome
and is scheduled in real time with a rational function of a control error statistic. We
generated the residual signal using a quadratic form of the estimated faults provided by
the observer, whose comparison to a threshold leads to fault detection.

The proposed design method allows minimizing the response time under faults while
guaranteeing fault detection over some minimum detectable faults for a prescribed false
alarm rate. We showed that our gain scheduling approach retrieves the performance of
the worst case design with constant gains when the scheduling parameter is near to its
upper bound, but improves it whenever the control error statistic is lower.
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Chapter 9

Conclusions and future work

In this final chapter, we present a short summary of the contributions of this thesis
and conclude with some interesting future research lines.

0.1 Contributions

In this thesis we first studied the state estimation problem over networks. We focused
on how to relate the gains of a Luenberg-like estimator to the network-induced data
reception scenario. We proposed jump linear estimators whose gains are related to the
data availability and gain-scheduled estimators whose gains are scheduled with the real
time packet arrival rate estimation when it is time-varying. Second, we addressed the
co-design estimation problem that consists of jointly designing the network operation
conditions and the estimator, by minimizing the network resource consumption while
assuring a predefined estimation performance. For the network operation, we analyzed
two cases: event-based transmissions using the SOD protocol and power control of self-
powered wireless nodes. Finally, we studied the fault diagnosis problem over networks.
We developed fault diagnosis strategies that allow specifying the minimum detectable
faults, the FAR and the dynamics of the fault diagnoser. Moreover we improved existing
bounds on the FAR and extended the results when transmissions are performed through
networks without delivery acknowledgement.

State estimation with jump observers

In Chapter 3 and Chapter 4 we designed jump state estimators for networked control
systems where transmitted data is subject to time-varying delays and dropouts. In
Chapter 3 the gains jump depending on the number of consecutive time instants without
samples and on the available samples, while in Chapter 4 the gains are related with
the measurement sample transmission outcomes on a finite interval. In both chapters,
we analyzed some predefined cases to reduce the set of stored gains that allowed us
exploring the trade-offs between estimator complexity, in terms of storage requirements,
and estimation performance. We showed that the on-line computational effort of the
jump estimators can be much lower than the optimal Kalman Filter, while achieving a
similar estimation performance.

State estimation with gain-scheduled observers

In Chapter 5 we considered the case when the successful packet arrival probability varies
slowly over time and is a priori unknown. We designed a gain-scheduled estimator whose
gains are scheduled in real time with rational functions that depend on the PAR value. We
formulated the problem as an optimization over polynomials that was then solved using
tractable SOS-based techniques. In the example we illustrated the trade-offs between
estimator complexity, in terms of polynomial degrees, and estimation performance.

145



146 9. Conclusions and future work

Co-design

In Chapter 4 and Chapter 6 we studied the co-design problem by minimizing the number
of successful data transmissions while guaranteeing a predefined estimation performance.

In Chapter 4 we considered that the sensor samples are transmitted over a multi-hop
network with fading channels. Dropouts were induced by the fading links while delays
were introduced when hopping through relay nodes. Higher power transmission levels
alleviated the effect of the fading and reduced the end-to-end delay at the expense of a
higher power budget. We jointly designed the power control policies and the jump linear
estimator to minimize the power budget while guaranteeing a predefined state estimation
erTor.

In Chapter 6 we used a simple SOD strategy to reduce the number of sensor
transmissions and therefore alleviate the network resource consumption. Under this
framework, we considered ideal transmissions without dropouts and delays. To reduce
conservativeness, we derived a lower bound on the probability of receiving a measurement
sample that is a priori unknown. We handled this uncertainty with SOS-based design. We
jointly designed the transmission thresholds of the sensor nodes (which define the SOD
strategy) and the jump estimator to minimize the network usage while guaranteeing a
prescribed state estimation error.

Fault diagnosis with jump observers

In Chapter 7 and Chapter 8 we designed jump observer-based fault diagnosers to detect
and estimate faults under transmission dropouts.

In Chapter 7 the design method allowed finding a favorable trade-off between the
achievable minimum detectable faults and the response time to faults, while guaranteeing
a prescribed FAR. In general, we bounded the FAR using Markov’s inequality, which
allows neglecting the probability distribution of the residual signal. Under the assumption
of Gaussian disturbances and noises, we forced the residual to follow a Chi-squared
distribution providing then an accurate FAR bound.

As a difference with Chapter 7, in Chapter 8 we considered networks without delivery
acknowledgement which implied that the observer-based fault diagnoser ignored the
control action being applied at the process. To improve fault diagnosis performance,
we related the observer gains to the sampling scenario and scheduled them in real time
with a rational function of a control error statistic (between the control input being
applied at the process and the one at the observer). As in Chapter 7 the design procedure
allowed trading between response time under faults and minimum detectable faults for a
prescribed FAR. Again, we formulated the problem as an optimization over polynomials
and solved it with a SOS-based tractable approach.
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9.2 Future work

The following promising future work directions arise from the developed contributions
of this thesis and other related works in which the author has participated during these
years:

e Analytical characterization of the trade-offs between estimator complexity and
estimation performance for jump linear estimators. This may be achieved by
performing a sensitivity analysis of the optimized function through Lagrange
multipliers. In that case, Lagrange multipliers can be seen as the cost of introducing
an equality constraint over the estimator gain set on the estimation performance.

e Analysis of the a priori feasibility of the jump linear estimator design depending
on the network transmission conditions and on the estimator complexity. This may
be achieved by combining the Elimination Lemma with a similar analysis than the
one proposed in the above item.

e Extension of the networked jump linear estimators design to uncertain systems. A
preliminary work can be found in [31].

e Further research on reducing the gap between telecommunication theory and
practice. Standard TEEE 802.15.4 transmitters send packets with at least 120
bits. The successful transmission probability expression (for a binary phase shift
keying transmission) used in Chapter 4 has the number of used bits as the
exponent, which narrows the power control values range to assure intermediate
successful transmission probabilities between 0 and 1. Furthermore, IEEE 802.15.4
transmitters has at most 15 different discrete power control values to choose
which may imply the impossibility of imposing intermediate probabilities. Then
a good idea is to study the real degrees of freedom to impose a certain successful
transmission probability between two node with discrete transmission power values.

e Extension of the co-design problem for the multi-hop network with fading channels
where the channel fading gains are known with uncertainty.

e Design of the topology of a multi-hop wireless network with fading channels. This
problem would consist on deciding the location of the relay nodes to minimize the
power budget while assuring a certain end-to-end packet arrival rate. It can be
seen as en extension of the presented co-design problem, where besides designing
the estimator gains and the power control policies, we also decide the location of
the relays, i.e., somehow the channel fading gains.

e Exploration of homogeneous polynomial methods to improve the SOS-based results.
Homogeneous polynomials techniques alleviate conservativeness and provide
necessary and sufficient conditions, while with SOS-based methods we can only
derive sufficient ones.

e Design of estimators for networked multi-sensor systems where the data is
transmitted through a network without delivery acknowledgement and time-varying
packet arrival rate.
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Extension of the probability characterization of the SOD-based transmissions to a
Markov framework instead of a Bernoulli one. This may be a reasonable extension,
that would lead to less conservative results, as the probability of transmitting a
new measurement sample at a given instant depends on whether we have just sent
the previous one.

Extension of the SOD-based jump linear estimation where transmission are subject
to dropouts and time-varying delays. Dropouts can be seen as a reduction of the
successful transmission probability, and therefore, as an increase of the virtual noise.

Further characterization of the probability distribution of the considered residual
signals to improve the FAR bound and enlarge the applicability domain of the
fault diagnosis methods. One idea is to study whether we can apply the central
limit theorem to characterize the probability distribution of the residual signal,
which will imply that the proposed Chi-squared method is valid for a wider type
of disturbances and measurement noises.

Development of fault diagnosis procedures to deal with event-based measurements.

Design of observer-based controllers that close the loop for the considered network
scenarios. A preliminary work can be found in [110].

Design of networked sparse controllers. A sparse controller controls a process with
a reduced number of control inputs (less than the available ones) that may vary
over time. A preliminary work can be found in [1].
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Appendix A

Linear matrix inequalities

In this appendix we present a brief review on convex optimization. First, we describe
a general convex optimization problem and focus on linear matrix inequality (LMI)
constraints. Second, we present some results that give necessary and sufficient conditions
to fulfill a LMI constraint. Finally, we introduce some methods to deal with nonconvex
constraints.

A.1 Convex optimization
A convex optimization problem is as follows

minimize fo(x)
subjectto  fi(z) <b;, i=1,...,m, (A1)

where the functions fo,..., fm : R™ — R are convex, i.e., satisfy

filox + By) < afi(x) + Bfi(y)

for all z,y € R™ and all o, 8 € R with a4+ 5=1,a >0, § > 0.
A specific convex constraint is the one given by

F(z) 2 Fo+ Y xF; =0 (A.2)

i=1

where F; = F/' € R"*", The convexity is assured because the set {z|F(z) = 0} is convex.
This constraint is a LMI one that constrains F'(x) to be positive definite . Expression (A.2)
is equivalent to a set of n polynomial inequalities in x.

In mathematical programming terminology an optimization problem as in (A.1) with
LMI constraints as in (A.2) is called a semi-definite programming problem.

A.2 Matrix inequalities

In this section we present some interesting reformulations of LMI providing necessary
and sufficient conditions to fulfill it. Proofs can be found in the given literature.

The following lemma gives equivalent conditions to check the positive definiteness of
a partitioned matrix.

Lemma A.1 (Schur’s Complements [8]). Let M be a partitioned matriz as

)

C D

then, the following conditions are equivalent

151
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(i) M >0,
(ii) D =0, A— BD'C = 0,
(iii) A= 0, D—CA™'B ~ 0.
[

The next lemma allows reformulating LMI conditions. It can be used to transform
bilinear matrix inequalities (BMIs) into LMIs.

Lemma A.2 (Dualiation Lemma [124]). Let P be a non-singular symmetric matriz in
R™ " and let U, V be two complementary subspaces whose sum equals R™. Then

2T Pr < 0Ve eU\{0} and z"Pxr>0VreV (A.3)
is equivalent to
eTP 1z >0Ve e Ut\{0} and 2TP 'z <0VeeVt (A4)

where *+ refers to the orthogonal subspace.
[

Corollary A.1. Suppose P = PT = [SC?T f%] is non-singular with R > 0, and let

P=p1l= {SC:?T ]%} witthO. Then
T T
A AR Ll 1 L s
[ ]

The following three lemmas provide the possibility of rewriting LMI conditions by
eliminating some of the variables.

Lemma A.3 (Finsler Lemma [21]). Let z € R", P = PT € R™" V € R™*" such
that rank(V) < n, and V* be a basis matriz of ker(V), i.e. im(VL) = ker(V). Then the
following statements are equivalent:

(i) 27 Px <0 YWz =0, x #0.
(i) (VHTPVE <o0.
(iii) There exists i € R such that P — uVTV < 0.
(iv) There exist Z € R"*™ such that P+ ZV +V1ZT < 0.
|

Remark A.1. V= is a basis for the null space of V. That is, all 2 # 0 such that Va = 0
is generated by some z # 0 in the form z = (V1)z.

Lemma A.4 (Projection Lemma [39]). Suppose P = PT, and let U+, V+ be matrices of
ker(U), ker(V), i.e., im(U+) = ker(U), im(V+) = ker(V). Then the following statements
are equivalent:
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(i) Uxr =0 or Vo =0 imply 27 Px <0 or z = 0.
(i) (UHTPUL <0 and (VHTPVL <0.
(iii) There exist Z such that P+UTZV + VT ZTU < 0.
|

Q

Lemma A.5 (Elimination Lemma [124]). Suppose P = PT = {ST

S is non-singular
R g

with Q < 0. Let UL, V- be matrices of

T U

with R > 0, and let P = P~ = {

Q
ST R
ker(U), ker(V), i.e., im(UL) = ker(U), im

T -
I I
{UTZV + W] Plyrzv + W} <0, (4.6)

L) =ker(V). Then there exists Z such that

—~

if and only if

(VT [I ]TP [I] V<0 and (UM)T {WT}TP [WT] Uls0. (A7)

A.3 Solving nonconvex inequalities

Sometimes, when dealing with complex problems, one encounters nonconvex inequality
conditions. A first approach to solve these kind of problems is by using the results in
precedent section.

For the cases where lemmas in Section A.2 cannot be applied, we present in the
following some procedures that handle optimization problems with nonconvex constraints
by iteratively solving convex ones.

A.3.1 Convexifying algorithm

Let us consider the following optimization problem.

Problem A.1. Let ¥ be a convex set, a scalar convex function f(X), a matrix function
J(X) (set of convex inequalities) and H (X)) (set of nonconvex inequalities) be given, and
consider the nonconvex optimization problem:

min f(X), ¥ £ {X|J(X) +H(X) < 0}. (A.8)

Suppose J(X) is convex, H(X) is not convex, and f(X) is a first order differentiable
convex function bounded from below on the convex set .

A possible approach to solve this nonconvex problem is by a linearization of the
nonconvex term. We next present the convexifying algorithm proposed in [46].
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Theorem A.1 (Convexifying Linearization Algorithm [46]). Problem A.1 can be solved
(locally) by iterating a sequence of convex sub-problems if there exists a matriz function
G(X, Xk) such that

Xir1 = arg min f(X) (A9)

{X|J + LIN(X, X;) + G(X, X}) <0
H(X) < G(X, Xi) + LIN(H(X), X&)}

(>

Wy

where LIN(x, Xi) is the linearization operator at given Xj,.

Proof. First note that every point Xj11 € Wy is also in VU since
J(X)+H(X) < T +LIN(X, X))} + G(X, X) <O0.

As long as X, € Uy, f(Xkt1) < f(Xk) holds strictly until Xyy; = Xi. The fact that
f(X) is bounded from below ensures that this strictly decreasing sequence converges to
a stationary point.
|
The convexifying linearization algorithm is used to obtain a sufficient condition to
guarantee the inequality conditions. This approach is conservative, but the conservatism
will be minimized since we shall solve the problem iteratively. Due to the lack of convexity,
only local optimality is guaranteed. This algorithm can be generalized using the results
on [20] where the convexifying algorithm presented is based on finding a convexifying
potential function.
The most frequent nonconvex term when dealing with matrix inequalities is the
presence of inverse matrices. The following lemma provides the linearization of an inverse
matrix.

Lemma A.6. The linearization of X1 € R™ " about the value Xj = 0 (where X = 0)
18

LIN(X 1 X)) = X' — X (X - X)X, ! (A.10)
If the convex part is zero, thus the matriz function is G(X, Xj) = 0.

Proof. As X is positive definite, according to Theorem A.1, H(X) = —X~1 < 0.
LIN(—X 1 X}) can be easily developed using the Taylor series expansion for matrix
variables. Then we have to find some G(X, X},) such that

—X' - LIN(X Y X)) < G(X, Xg).
Operating

~XT'-LINX LX) =X+ X - XX - X)X =
=X MN-T+2XX ' - XX XX = - XXX, - 1)?
As X7t >=0and (XX, ' —1)2 =0, then — X 1XX, ' = 1)2<0. So G(X, Xy) = 0.

|
For further information and examples the reader is referred to [20, 46].
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Cone Complementarity Linearization algorithm

A particular case on inverse matrix convexification, more extended in the academic world,
is the well known Cone Complementarity Algorithm (CCL).
Let us rewrite (A.8) as a feasibility problem such as

find X,S € W st ¥ 2 {X|j(X), K(X,S) = ﬁ( ﬂ - o} (A.11)

where S € R™*™ and rank(IC(X, S)) < n + m. We seek to solve the above problem for
m=0 (ie. S=X"1).

To solve such a problem, a linearization method can be used. At a given point (X°, SY),
a linear approximation of tr(X.S) takes the form

LIN(tr(X S), (X°,S%)) = constant + tr(S°X + X°S).
The linearization algorithm is conceptually described as follows.

Algorithm A.1. Cone Complementarity Algorithm.

Step 1 Find a feasible point X°, SO. If there are none, exit. Set k = 0.
Step 2 Set V¥ = S* W* = X% and find X**!, S**! that solve the LMI problem

minimize tr(V*X + W*S) subject to (A.11).

Step 3 If a stopping criterion is satisfied, exit. Otherwise, set kK = k 4+ 1 and and go to
Step 2.

For further information on the algorithm the reader is referred to [33].

Remark A.2. As the CCL only searches for feasibility, one may have to use an extern
optimization procedure to search for an optimal solution, e.g., a bisection algorithm.

A.3.2 Rank-constrained problems

As we have seen, dealing with an inverse matrix is reduced to solve a rank-constrained
problem. A rank-constrained LMI problem is an NP-hard optimization problem for which
much work has been done and many iterative techniques have been developed to solve
it. In the following we present an algorithm developed in [65, 66] to deal with rank
constraints.

Let us rewrite a general rank-constrained LMI problem as

min /(X)

st. W(X) =0, J(X)>0, rank(W(X)) <r (A.12)
where X is the decision vector, W(X) = W(X)T € R™" and J(X) = J(X)T € R
are symmetric matrices that are affine functions of X. The rank r is assumed to be less
than the full rank of W(X).

In [65, 66] a Penalty Fuction Method (PFM) [10] is proposed to solve this kind of
problems. In their PFM, the rank-constrained problem (A.12) is first converted to an LMI
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optimization problem without the rank condition by incorporating a penalty function into
the objective function. Then, a sequence of convex LMI optimization problems are solved
using an existing LMI solver. To select a penalty function reflecting the violation of the
rank condition, they used the fact that the rank condition in (A.12) is satisfied if and
only if the n — r eigenvalues of W (X) are zero. The following lemma provides the basis
of their PFM.

Lemma A.7 ([65, 66]). The rank of a symmetric positive semi-definite matriz W € R™ is
less than or equal to 1 if and only if there exists a matriz V € R™* (=) with VTV =1,,_,
such that tr(VIWV) = 0.

Also, notice that if rank(W) > r, then tr(VIWV) > 0. Therefore, they used
tr(VIWYV) as a penalty function for the rank condition of the optimization problem.
The following theorem present their PFM.

Theorem A.2 ([65, 66]). Problem (A.12) can be solved (locally) by iterating a sequence
of convex sub-problems such that

X* = arg H}}n{cﬁ(X;pk,,uk,Vk*l) : XeU}, k=1,2,... (A.13)
where
¢(Xsp,p, V) = p f(X) +tr(W) + p p(a; W), (A.14)
p(z; W) = tr(VIWV), (A.15)
U={X:W(X)=0, J(X)=O0}. (A.16)

p(z; W) is the penalty function with V. € R VTV = I, .. uF > 0 is the
penalty parameter and p* > 0 is the optimization weight. Also, Vi,_1 is constructed from
the eigenvectors corresponding to the n — r smallest eigenvalues of W (X*~1) since the
eigenvectors of W can be taken to be orthonormal to each other.

For further information on the method the reader is referred to [65, 66].



Appendix B

SOS decomposition

This appendix aims to provide some useful definitions and results about SOS
decomposition, which have been borrowed from [16, 50]. Le us first show how to build
polynomials of a given degree.

Lemma B.1. Let x € R™ be a vector. z1% is the vector of different monomials in x of
degree not greater than d where its number is given by

(n+d)!

o(n.d) = = o

With that, polynomial matrices Q(z) € RN*M and polynomial symmetric matrices
P(z) € RV*N of degree 2d can be built with

Qz)=Q (m{Qd} ®IM) ,
P(a) = (+ & IN)T P (o1 @ Iy),

being matriz Q as Q € RN*Ma(n2d) gnd symmetric matriz P as P € RNo(md)xNo(nd)
Le us now characterize when a polynomial is said to be SOS.

Lemma B.2. Let p(x) be a polynomial in x € R™ of degree 2d. Let Z(x) € R™ be a
vector with all the monomials in x of degree < d as entries. Then, p(x) is said to be SOS
if and only if there is a positive semidefinite matriz Q fulfilling

pla) = Z(x)" QZ (x).
The set of SOS polynomials in x is denoted by ¥(x).

The next results are derived from the Positivstellensatz (see [16, 50]) that states that
polynomial feasibility conditions can be addressed by checking whether the condition is
SOS.

Lemma B.3. Let p(z) be a polynomial in x € R™, and let
X={zeR": gj(x)>0,j=1,...,m}.
Suppose there exist SOS polynomials
sj(z) e E(z), j=1,...,m, ze€R"
fulfilling .
p(x) =Y (@) g;(w) € 2(x),

Jj=1

then, the following condition holds:
p(z) >0, Ve X.
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Lemma B.4. Let P(x) € RV*N be a symmetric polynomial matriz in x € R™ and let
X={zeR": gj(x)>0,j=1,...,m}.
Suppose there exist SOS polynomials
sj(z,v) € ¥(z,v), j=1,...,m
fulfilling -
v P(z)v — Z sj(z,v) gj(z) € (z,v)

j=1
with v € RN a scalarization vectors used to transform polynomial matrices in polynomials,
then, the following condition holds:

P(z) =0, VzeX.

The above lemmas show that verifying whether a polynomial function or a polynomial
matrix is nonnegative over a domain defined by polynomial constraints can be formulated
by means of sufficient LMI conditions. This kind of problems are handled by several LMI
parsers as [80] and [113].



Appendix C

Auxiliary results and proofs

C.3 Proofs of Chapter 3

Let us first introduce the following lemma borrowed from [129].

Lemma C.1. Define the linear operator

N-1 T
LY)=> po "D piFni ANY (AN)TFY,
N=1 =1

T

oo
+ Yo vy Y piFy  AVY (AN)TEE

N=N =1
Suppose that there exists Y = 0 such that £(Y) < Y. Then,
a) For all W = 0, limy_, o £¥(W) = 0.

b) Let U = 0 and consider the linear system Yi11 = £(Yy) + U, initialized at Yy, then
the sequence {Yj} is bounded.

C.3.1 Proof of Theorem 3.1

Let us assume that at ¢ = t;_1 a new sample is available and the state estimation is
updated with equation (3.7) leading to a covariance matrix for the estimation error
E{Z[tx-1]Z[ts—1]"} = Pr—1. The expected value of the covariance matrix for the
estimation error at the next update time instant is

T
)

E{Pi} = E{(I - LyaxC) AN Py (AM) (1 = Lyoy,C)" |

Nip—1

+E {(I — Ly C) . A'B,WBL(A) (I - LkakC_’)T}
1=0

+ E {LkakVaka} ,

considering the independency between x[t;_1], vi, and w[ty_1+i] fori =0,..., Ny—1, and
assuming wlt] an uncorrelated noise. We express the different expectations considering the
probability of the number of intersample instants Ny, the gain matrix dependency (3.17),
and the rule of average conditional expectations. After algebraic computation and variable
substitution it follows (3.19).

1¢k{.} represents the recursion of £{-}.
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C.3.2 Proof of Theorem 3.4

First, let us show the convergence of sequence { Py} with initial value Qo = 0. Let Qx =
¢{Qr_1} = €*{Qo}, then from (3.19), Q1 = Qo = 0 and Q1 = E{Qo} = ¢{Q1} = Q2.
By induction, {@Qx} is non decreasing. Also, by Lemma C.1, {Q} is bounded and by
Theorem 3.3 there exists an Mg, such that @ < Mg, for any k. Hence, the sequence
converges and limy_ o, Qx = P = 0, where P is a fixed point, i.e, P = &{P}.

Second, we state the convergence of Gy = €¢*{Gy}, initialized at Gy = P. Since
G1 = &{Go} = €{P} = P, then G}, = P for any k. Moreover

0= Grsr — P = €[Gy} — €[P} = £(G), — P).

As Gy — P = 0, following the results on Lemma C.1, then 0 < limj,_,o. (Gx — P) =0, i.e.,
the sequence {G} converges to P.

We demonstrate now that for any initial condition Py = 0, the iteration P, = ¢{Py_1}
converges to P. Since 0 < Qp =< Py < Gg, we derive by induction that 0 < Qi < P, < Gy.
Therefore, as {Qx} and {Gy} converges to P, then {Py} also converges to P and the
convergence is demonstrated.

Finally, we demonstrate that

P =arg m}in tr(P) subject to (3.26), (3.27).

Suppose this is not true, i.e. P solves the optimization problem but P #* Qf{p} Since P

is a feasible solution, then P > ¢{P} = P. However, this implies tr(P) > tr(P), which
contradicts the hypothesis of optimality of matrix P. Therefore P = QE{P} Furthermore
P is unique since for a set of observer gains such that

[P, L] = argrerii[r:itr(P) subject to (3.26), (3.27),

)

we have shown that the sequence converges to P, and this concludes the theorem.

C.3.3 Proof of Theorem 3.5

The expected value of the covariance matrix of the estimation error at instants ¢
(E{z[t] Z[t]T}) is computed as

e’} N
Pr=(1-po)P+ > pp (ANP(AN)T +)° AileWBg(A“)T>

N=1 i=1

= —po)P+ ZPéVANP(AN) + po <Zp0> Zp AIB,WBL(ANT,

N=1 i=0 §=0
where the infinite addends can be written respectively as
vec™! ((1 —poA® A)vec(poAPAT)) , (C.1)
vec™! ((1 — poA @ A)vec(B,W BE )) . (C.2)

Then, it finally leads to (3.29).
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C.4 Proofs of Chapter 4

Let us first introduce the following lemma borrowed from [129] (which is similar to
Lemma C.1).

Lemma C.2. Define the linear operator

Ty Zp” FAYATFT

=0

where T(-) £ (To(-)y..., To(-)) and Y & (Yo,...,Y,). Suppose that there evists Y =
(YO, ... ,Yr) = 0 such that T(Y) < Y. Then,

a) For al W= (Wo,...,W,) =0, limy_,o, T*(W) = 02

b) Let U = 0 and consider the linear system Vi1 = T (Vi) + U, initialized at Yy, then
the sequence {J,} is bounded.

C.4.1 Proof of Theorem 4.1

Considering the independency between x;_1, ¥, and w;_1, P, ; = E{#;&}|0; = ¥,} can
be computed as

Z Pr{f; 1 = 0:|0; = 0,V E{&:3] |0, 1 = 0:, 0, = 9} =
= ZPH AE{xt 1$t 1101 =17; }AT + E{w— 1wf 1})

—i—Zp” X JE{v0] }XT
=0

which leads to (4.18) after having used
Pr{@t_l = 197,|9t = 19]} = Pr{Ht = 19j|0t_1 = 191} Pr{@t_l = 191}/ PI'{Ht = 193}

Finally, expression (4.20) can be derived with the law of total probabilities.

C.4.2 Proof of Theorem 4.3

Let us first show the convergence of sequence {P;} with initial value Qy = 0, where
Q1 2 (Qr.05- -, Qrr). Let Q= &{Q; 1} = & {Qy}, then from (4.18), Q; = Qp = 0 and
Q1 = ¢{Qp} =< ¢{Q1} = Q2. By induction, {Q;} is non decreasing. Also, by Lemma C.2,
{Q,} is bounded and by Theorem 4.2 there exists an Mg = (Mg,, ..., Mg,) such that
Q; < Mg for any t. Thus, the sequence converges and limy_,oo Q; = P = 0, where P is
a fixed point, i.e, P = &{P}. Second, we demonstrate the convergence of G, = QE {Gov},
initialized at Gy = P where G; = (Gy0,...,Gy,). Since G; = €{Gy} = &{P} = P, then
G, = P for any t. Moreover, we have that

0=Gii1—P=C¢E{G}—E{P}=T(G —P).

27t{.} represents the recursion of 7{-}.
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As Gy — P = 0, following the results of Lemma C.2, then 0 < limy ,o.(G; — P) = 0, i.e.,
the sequence {G;} converges to P.

We prove now that the convergence of iteration P, = &{P;_1} to P for any
initial condition Py = 0. Since 0 <X Qy =X Py = Gy, we derive by induction that
0 =< Q¢ <X P; < G;. Therefore, as {Q;} and {G;} converge to P, then {P;} also does, and
the convergence is shown. Finally, we need to show that

T
P = argmin tr Z Pjm; | subject to (4.22).
P ;
7=0

Suppose this is false, i.e. P solves the optimization problem, but P #* 03{75} Since
P is a feasible solution, then P = &{P} = P. But, this implies tr (Z;:O Pjﬂj> >
tr (E;ZO ijj), which contradicts the hypothesis of optimality of matrix P. Then,
P = ¢{P}. Furthermore P is unique since for a set of filter gains such that

T
[P, L] = argmin tr Zijj subject to (4.22),
P.L pr

we have shown that the sequence converges to P, and this concludes the proof.

C.4.3 Proof of Theorem 4.4
Constraint (4.22) can be rewritten as
T
p;.iFjAPATF] — P; < me-% (Fj(ARA" + B,WBL)F + X;VX]) — P; 20Vj,
i=0 J
with j = 0,...,r. Therefore, a necessary condition for (4.22) to hold is
pig(I = Ly (9;)C)AP;AT(I — L (9;)C)" — Py < Vi, (C.3)
Let us first prove inequality (4.23a). When ¢ (¢;) = 0, we have that
pj AP AT — P; <0, Vi :y(9;) =0.
Then a necessary condition for the existence of the filter is that
piip(A)? =1<0, Vj:u(;) =0,

which proves (4.23a). Let us now prove constraint (4.23b). Following the elimination
lemma result (see Appendix A), the existence of matrices L; and P; such that the strict
inequality (C.3) holds is equivalent to the existence of a matrix P; with ¢(¢;) = n; such
that
(mCAY" (pyy (A P A~ P;) (nC A -0,

where (n,CA)* is a basis for the null space of (7,CA) containing a basis of the
unobservable subspace from reception scenario 7;. Then a necessary condition for the
existence of the filter is that

Py ip(A)? =1<0, Vj:9p(d;) =m,
which proves (4.23b).
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C.5 Proofs of Chapter 5

C.5.1 Proof of Theorem 5.1

If (5.16) holds, then, it is obvious that G(/S’t)T + G(Bt) — P(B:) > 0 and, therefore, G(/S’t)
is a nonsingular matrix. In addition, as P(/3;) is a positive definite matrix, it is always
true that

(P(8r) = G(B))T P(B) " (P(B) = G(Br) = 0
implying that G(3,)T + G(B;) — P(8;) = G(B)TP(8;) " *G(f3;). Using this fact,

replacing X (3;) by G(3:)L(B;) in (5.16), performing congruence transformation by matrix
G(Br) '@ I®Id1 and applying Schur complements it leads to

P(Br—61) =1 0 0 (= L(ﬁt)C)A)T
0 Yo(Be)L 0 | =B | (I = L(B)C)Bu)" | P(Be)x]"
0 0 %(B) —L(B)"
*;T
—(1=8,) |BL| P(B)[xx+T =0. (C.4)

0
——

Kk ok

Now, let us define a Lyapunov function depending on the actual PAR as V; =
V (%4, 8t) = @ P(B;)%;. Multiplying expression (C.4) by [Z1_;,wl 1, v]] by its left, and
by its transpose on the right it leads to

(1= B)Vijo + BiVin = Vier + &1 811 < Yo (B)wi_ywi—1 + Yo (Be)v{ e, (C.5)

being V}; the value of the Lyapunov function when oy = 4, i = {0,1}. The first two
addends of the previous expression can be interpreted as the expected value of the
Lyapunov function over a; for a given S

E{Vi|B:} = Pr{a; = 0B} Vyjo + Pr{a: = 1|8} Vi

If we assume null disturbances, (C.5) leads to E{V;|8:} < V;_1, i.e., the asymptotical
mean square stability of the observer is assured for any S;. Now, if expression (C.5) is
multiplied by the PDF ¢(5;) and integrated from 8; = 0 to 1, the expectation over S is
obtained leading to

E{Vi} — Vi1 + &1 131 < Fww] jwi—1 + Fov] v, (C.6)

Where E{V,} = fo (Be)E{V;|B: }d s, fo (Bt)Zt—1dB: = T¢—1, and 7, and 7, as defined
n (5.18). Assuming a null initial state estimation error (Z_; =0, V_; = 0), and adding
the previous expression from t = 0 to ¢ = T one obtains

T-1
E{VT}—i—Z (E{V;} -V; +th 141 <Z FuwWi_Wi—1 + YoV Vt) - (C.7)

§=0 t=0 t=0
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Dividing by T and taking the limit when 7T tends to infinity, and taking into account
that E{Vy} > 0 and that

T-1
) 1
Jim 2_()) (E{V;} = Vj) =0,

condition E{Vr} > 0 leads to (5.17).

C.6 Proofs of Chapter 6

C.6.1 Proof of Theorem 6.1

If (6.10) holds, then Q; + Q]T — P;j >~ 0 and @ is a nonsingular matrix. If P; is a positive
definite matrix, then (P; — Qj)TPj_l(Pj — Q;) = 0, implying that Q; + Q]T - P =
Q]Tijle. If we replace X; by Q; L;, in (6.10), perform congruence transformation by
matrix Q; ® 1 ® I @ I @I and apply Schur complements, we obtain that

P—1 % x =x (I = L;C)A)T
* * — Ly g

8 %61 L, *| " —L(if))fw) Pi(x)" -0 (C8)
0 0 0 Ty —(I —n5) - (Ly)"

Consider a Lyapunov function depending on the sampling scenario as
V[t] = V(&[t], aft]) = 3[t]" P(alt)[t],
with P(aft]) taking values on the set {Pp, ..., P,} depending on the value aft] as
P(alt]) =PF;, ifaltj=mn;, Vjel0,...,q].

Multiplying expression (C.8) by [Z[t]T, w[t]T, v[t]*, 5[t]T] on the left, and by its transpose
on the right, and assuming aft + 1] = j and «aft] = i, it leads

[t + )T Pzt + 1] — #[t] Poaft] + #[t] 2] < yww[t] w[t] + v[t] Tyolt] + 5[t]TFaES[t] |
C.9

for any pair ¢, in {0,...,q} x{0,...,¢}. If we consider null disturbances, then V[t+1] <
V[t], demonstrating the asymptotic stability of the observer. If we assume null initial state
estimation error (z[0] = 0, V[0] = 0) and we add expression (C.9) from ¢ = 0 to T, we
obtain

VIT+ 1]+ > &t &t < Y (ywwlt +o[t] " Tolt] + 1) Tsd[t])

As VT + 1] > 0, if we divide by T and take the limit when T tends to infinity, we
obtain (6.11).
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C.6.2 Probabilities and variances computation

On the following results we derive the expressions used in Chapter 6 to compute the
probability of sending new samples and the associated variance of the virtual noise during
the less excited instants.

Theorem C.1. Let us assume that each sample from sensor s is independent and
uniformly distributed within the range Mg min < My < Mg max, DEING Ts = Mg max —Ms, min
as given in (6.12), for the instants ty, and ty, +1, thus fulfilling ms[t]—mg ; | € [=rs,7s].
Then, the probability of having a new sample from sensor s at instant t = ti, + 1 with
law (6.2) is given by

mzpqmgﬂ_m@JzAgzggm_Ag% (C.10)

The variance of the virtual noise related to this Ag is given by

3
o = varlat) = B0 = 250 (5 - ). )

Proof. Let us call the random variable mg , as u, denoting the sample at ¢, the last
time it was sent from sensor to the Central unit. Then, the PDF of u is

1 _ _
_ .y U S [ms,mim ms,max]
fuu) { 0, otherwise

Let us also call the random variable m;|[t] as v, denoting the posterior sample at t = ¢ +1,

with a PDF L

_ s S [ms,min; ms,max]
fv(v) { 0, otherwise

The PDF of the random variable w = m,[t] — m¢ ;= u — v is given by the convolution

_[xh@+mﬁ@m)

Since fy(v) = 1/rs if Mg min < v < M5 max and 0 otherwise, this becomes

1 ms,rnax
fww) = r_/ fu(v 4+ w)dv.
S JMs min

The integrand is 0 unless Mg min < v+ w < Msmax (€., unless Mg min —w < v <
Msmax — W) and in that case, it is T— So it leads

1 M, max 1 errw _
r fm@ min—wW r;dv - > rs <w <0,
= 1 mb max ~W 1 - T;—w
Jw(w) s fmb min s 2 0<w<rg,
0 w? > Ts.

The probability of having two consecutive samples with an absolute difference greater
than A, is

Bs = Pr{|mt] —m$ ;| > As} =1 -Pr{-A, <w < A}
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Using the above probability density function this can be computed by

A _ 2
6521_[A fW(w) = (TS TQAS)

The virtual noise signal can be obtained as a function of the previous random variable

w as
Ay <w < Ag

0, otherwise

Its expected value is given by

E{6[t]} = / w)dw = 0,

and the variance is given by

Vartsld) = B} = [ otwlfwtoytn = 222 (228

Theorem C.2. Let us assume that the difference ms[t] —mg,; —is normally distributed

with zero mean and variance o2 given by (6.14) for t =t + 1. Then, the probability of
having a new sample from sensor s at each instant t =ty + 1 with law (6.2) is given by

By = Pr{malt] - m | > A} = 1—erf < = ) , (C.12)

being erf(zx) = % fox e~ dt the error function. The variance of the virtual noise related
to this Ag is given by

A, 2,0, =2
: )— V2A50s ¥ (C.13)

V20, VT
Proof. The variable w = m[t] — mg ; has the PDF

o3 = Var{S[t]} = E{0[t]*} = oZerf (

1w
Jw(w) = —=e % .

oV 2T

The probability of having a new sample available is

68—1—/ fw (w dwfl——/ B (w)e™ )’ g

with h(w) = 75, and W (w) = \/—2# and where we accounted that fy (w) is symmetric

with respect to w = 0. Applying the definition of the error function, it leads (6.16).
We express the virtual noise signal as a function of the previous random variable w

as
Ay <w < Ag

otherwise
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Its expected value is given by

oo

zmw=/gwmwm=o

—00
and the variance is given by (with E{[t]?} = 0)

[e.¢] As

w2
mwmmm:/ w2 BT qu

A, 0sV2m

Var{o[t]} = /

—0o0

Integrating this expression, it follows straightforwardly (6.27).

C.6.3 Proof of Theorem 6.2

Following similar steps than those in the proof of Theorem 6.1, inequalities (6.19) imply
E{V[t+ 1]} — V[t] + [t]" &[t] < vew[t] w[t] + v[t] T yo[t] 4+ §[t]" T56[t], (C.14)

where E{V[t + 1]} is the expected value of the Lyapunov function V[t] = z[t]T PZ[t] at
the next time instant over the possible modes of the system (at] = {no,...,nq} in (6.9)).
Assuming null disturbances we obtain E{V[t + 1]} < Vt], assuring the asymptotical
mean square stability of the observer. Assuming initial state estimation error (z[0] = 0,
V[0] = 0) and adding expression (C.14) from ¢ = 0 to T, we obtain

~

T
E{V[T+1]} + Y &l [l <Y (vwwt]"wlt] + v[t] Tyv[t] + 5[] Ts6[]) . (C.15)

t=0 t=0

As E{V[T + 1]} > 0, dividing by T and taking the limit when T tends to infinity, one
finally obtains (6.21).

C.7 Proofs of Chapter 7

Let us first introduce the following lemmas to be used in the proof of Theorem 7.5.

Lemma C.3 ([131]). Let w be a stochastic vector with mean p and a covariance matriz
W, and P a symmetric matriz. Then

E{w"Pw} = p" Pu+ tr(PW). (C.16)
Lemma C.4 ([79]). Let P be a positive semidefinite matriz, x; a vector with appropriate

dimensions and p; > 0 scalar constants (with i = 1,2,...). If the series concerned is
convergent, then we have

o0 T o0 o0 o0
<Z uixi> P (Z ,uia:i> < (Z m) Z ,uixiTPa:i. (C.17)
i=1 i=1 i=1 i=1
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C.7.1 Proof of Theorem 7.1

Let us define the Lyapunov function at instant ¢t = t; as V = ZgPék.

i) In the absence of disturbances, faults and measurement noises, after taking Schur’s
complements on (7.16a) and premultiplying the result by ékT and postmultipliying by its
transpose, we obtain that V41 — Vi < 0 that assures that the extended state estimation
error (7.12) converges to zero under standard sampling,.

ii) Performing similar steps on (7.16b) (Schur’s complements and operations with w}
v,{ and Af, ), taking expected value on the results and adding the obtained constraints
with the one from (7.16a) we get

E{Vit1} — B{Vi} + E{f{ F ' fi} - BE{wi Tyuwi}
—E{vf} Dok} — AfTTrAS), <0 (C.18)
where we have considered the uncorrelation between Zy, wy, vg+1 and Afi. Applying

Lemma C.3 over w} and v}, considering null initial conditions (V' (0) = 0) and adding
the result from k£ =0 to K — 1 we get

K-1 K-1

STE{fIF Y < K@)+ ) AfET AL (C.19)
k=0 k=0

where we have taken into account that P > 0 and that I' =T',W +I',V. Dividing the
above expressions by K, taking the limit when K — co and considering that

E{f{ F7'fi} = MFOE{f i},

AfTEAS, < npAXT )AL < npATp)A s

and that A(F~!) = 1/A(F) (as F is a positive definite matrix), it leads to (7.17), which
concludes this proof.

C.7.2 Proof of Theorem 7.2

If there is no fault on the system (i.e. fr = —fx and Afy = 0 for all k), we have
that E{fkTF_lfk} = E{fkTF_lfk} = E{r;}. Then, following the proof of Theorem 7.1,
dividing expression (C.19) by K, taking the limit when K tends to infinity and considering
constraint (7.18), we obtain

K-1
1
: < th
lim — ,;,0 E{ry} < ¢r. (C.20)

Considering the above result and the FAR definition given in (7.14), we can employ
Markov’s inequality® to obtain

K—1
. 1 E{Tk}
¥ < lim 7 E ~h < ¢,

K—o0
k=0

proving that ¢ bounds the FAR.

31f x is a positive random variable and a > 0, then Pr{z > a} < @
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C.7.3 Proof of Theorem 7.3
Let us define vector f,g by f,g = F*%fk. With that, (C.18) can be rewritten as
E{Vii1} —E{Vi} < —E{|I/7l13} + ™ + n AT A Faxe (C.21)

Inequality (7.19) implies that Iy minus the diagonal block of P corresponding to the
fault estimation error is positive semidefinite. Then, there exists a finite real constant
dy > 0 that fulfills

E{(Vi} < B{fIT /i) + d = B{fTF T,FE /) + dy
<X F)E{IFLIZ} + da (C.22)

T
for all k, considering the fact that I'y F' and F: T fF% are similar matrices*. From this
expression we can upper bound —E{|| f/||3} allowing us to rewrite expression (C.21) as

E{Vii1} <pE{Vi} +e+ (1 —p)di, (C.23)
for all k with p as defined in (7.20) and
e ="+ AT p)AS

Expressions (7.16a) imposes that B?PBJ» = F~! which combined with (7.19) leads to
I';F = I guaranteing that 0 < p < 1. Going backwards from k to k = 0, expression (C.23)
becomes

k
E{Vin} <pP"E{V}+ > 0 e+ (1 - p)da).
=0

k
Taking into account that Zf:o o= 1_1’1: < Tlp, then

1

E{Vii1} <p"ME{Vo} + T

e+d. (024)

Constraint (7.16a) implies also that E{Viy} > E{|fi||3}. Considering this, inequal-
ity (C.22) and the fact that

AFEDIlE < UFNZ < MEHITIE,

expression (C.24) leads to

7 1_R(F) ; X(F)
B{llfin B} < P TS EUAIE + T

where x(F) = XNF)/A(F) is the condition number of matrix F and where we have
considered that A(F'~1) = 1/A(F) because F is positive definite. Expression (C.25) proves
that E{||fx|3} decays with p.

e+ \(F)d, (C.25)

4Matrices A and B are similar if B = C~1AC. Similar matrices share the same eigenvalues.
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C.7.4 Proof of Theorem 7.4

First, in the absence of faults and under null initial conditions, f) is normally distributed
and has zero mean because the disturbances and measurement noises are normally
distributed with zero mean. Second, let Zx_1 = E{Zk,lig_l} be the covariance matrix
for the state estimation error updated at instants tx_; (which is also the covariance at
instants ¢, since we are dealing with standard sampling). Then, its expected value at
instant tj is given by

E{Z} =G(AZ,_ A" + B,WBL)GT + LV L". (C.26)

As the observer gain L assures the stability of (7.12) (by Theorem 7.1), the series in (C.26)
converges to a symmetric positive definite matrix ¥y = E{Z;} = Z;_1 when k — oo
(see Chapter 3) given in (7.23). Then we have that fkTEJTIfk is distributed as Xﬁf
(see [63]). Considering (7.22), the signal 71, /¢ = fif F~'f, is then distributed as X2
From Theorem 7.2 we know that E{ry}/¢ < I see (C.20). As the expected value of
random variable that follows a bef is ny, if we fix the threshold to be rth = ny, then we
have that the FAR is
I
¥ =Pr {— > —

¢ &
and using the definition of the CDF, we obtain (7.24).

fr = o} (C.27)

C.7.5 Proof of Theorem 7.5

Let us define the Lyapunov function at instant ¢ = t; as Vi = é,fPék. Let us first study
the evolution of the Lyapunov function. The expected value of the Lyapunov function at
the next update instant ¢ = tx4; given that a measurement was obtained at t;, denoted
by E{VkJrl}, is

%) q
ST P B{EL  PEen [Nk = Ny g = 15}

N=1 i=1
=E {sz (Z pév_l(AN)TQAN> zk}
N=1
o) N—-1
+E{w;:: <2p§-1 (2 BT (1) QAle)) w}
N=1 =0
+E{U%<ZP6VZ?L PL1771> }
N=1 i=1
e’} N—-1
+ Z AR C ko) < A'ByAflt, + l]) (C.28)
N=1 =0

*

considering the uncorrelation between Z[ty], wlty + 1 — 1], v[tr41] and Af[tr + 1 — 1]
for I = 1,..., Ny — 1 and the uncorrelation in time of w[t]. Matrix Q is defined by
Q=1 pGI'PG;, where G; =1 — L;n;C and L; = P7'X,.
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Le us denote by V41 the result of replacing in (C.28) Q by @ where Q < Q. We
rewrite Vi1 as
Vi1 = Vigr + Vil + Vi + Vi
Since @ < @, we have that E{Vj+1} < Viy1. If poA(A)? < 1, the series involve in (C.28),

and therefore in Vj1, are convergent. Then, the summatory in V,{ 41, which implies
dealing with cross products between the different Af[ty + ], can be bounded with

Lemma C.4 as V,{_H < Viﬂ with V£+1 given by (7.27). Therefore, defining Vj1 as

Yl z w v 3/
Vk-l—l = Vk+1 + Vk-i—l + Vk—i—l + Vk+17 (029)

we have that E{Viy1} < Vi1 < Vii1. Let us now analyze constraints (7.25a)-(7.25¢).
If (7.25e) holds, then matrix @ is such as Q = Q. Matrices My, My, M5, Mg can be
rewritten as

= ipév_l(AN)TQle,

e’} N—-1
=Syt (Z BT (AZ)TQAZBU,> :
N=1 =0
o) N—1
Ms+Mg=> Np)' ' (A)TQA.
N=1 7=0

Then taking Schur’s complement from (7.25a) to (7.25d); premultiplying the result by

zZF, wl, of and Af k and postmultipliying by its transpose respectively; and taking
expected values in both sides, we obtain

E {5 M5} <E{Vi}-E{fIF i},
E {wk Mgwk} <E {wk Fwwk} )

{ (ZpéVlZnTLTPLmz) } E {v{T v},

Afy (Bf (M5 + Mg)By) Af), <
Adding all the above expressions leads to
T =V — E{Vi} +E{fIF ' fi}
— B{w!Towy} — B{oITyur} — Af, TfAf, <0 (C.30)
where V.41 is as defined in (C.29). Let us define © as
O="T-Vi1+E{Vi1} <0.

Therefore, as E{Vi11} < Vii1, if (C.30) holds, then we have that © < 0 (analogous
0 (C.18)), since © < T < 0.

Using the fact that ® < 0 and following similar steps than in the proofs of
Theorems 7.1, 7.2 and 7.3 we can prove with not much effort that the statements of
Theorem 7.5 hold.
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C.7.6 Proof of Theorem 7.6

Let Z;,_1 = E{ék,lékal} be the covariance matrix for the state estimation error updated
at the measurement instant ¢;_1. Then, its expected value at instant t; is given by

E{Zk} sz ARk 114 +Sw)GT

szL mVnl LT (C.31)

where % _, pd' "t =1/(1—po) and Ry—1 = 350 phA' Zy—1(A")T expressed as
vec(Ry—1) = (I — poA @ A) 'vec(Zy_1).

Following similar arguments than in the proof of Theorem 7.4, the series in (C.31)
converges to a symmetric positive definite matrix Xy and r /¢ = f 2;1 [ is distributed

as bef, leading to a FAR given by (7.24).

C.8 Proofs of Chapter 8

C.8.1 Proof of Theorem 8.1

If (8.25) holds, then we have G;(A;) + Gj(Ay)T — Pj(A;) = 0 and thus, G;(A;) is a
nonsingular matrix. As Pj(A;) is a symmetric positive definite matrix, we can always
state that

(Pj(As) = G5(Ar) Pi(A) ™ (Pi(Ar) — Gi(A)"

which implies that G (A)+G; (A" —P;(Ar) < Gj(A;) Pij(Ar) ™" Gj(A,)". Substituting
X;(A¢) by G;(A¢) Lj(A¢), applying a congruence transformation on (8.25) by matrix

q
Pcia)t|ererer,

taking Schur’s complements and premultiplying the result by [2] w{ @ Aff vfi]
and postmultiplying by its transpose leads to

pr ) 2+ Bi(A) W) T Pi(Ar) (A (D) Z+ Bi(A) Wh) — 2] Pi(A—1) Z
+ ft F'f— Y (A¢) th wr — Yu(Ay) ﬂtT ar — 5 (Ar) AftT Afi — () ’UtT_H v < 0,
(C.32)
forall i =0,...,q and é; € S, where
Aj(A¢) = (I — Lj(Ar)n; O)A,
Bij(Ay) = [(I = Lj(A)n; C) [Bw Bu By] —Lj(Ad)ny],
Wi = [wl @l AfF ol
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Now, let us define the Lyapunov function as V; = V (3, a4, A1) = ZF Pi(Av_1) %
foray =m;and i =0,...,q.

i) In the absence of disturbances (w; = 0), faults (Af; = 0), control errors (% = 0)
and measurement noises (v; = 0), expression (C.32) leads to

zq:pm«“j(ﬁt)T Pi(A) A;(A) | 20— 2 Pi(Av-1) 2 < 0 (C.33)

foralli=0,...,q and 0; € S, which assures E{V;11|a; = n;} — Vi < 0 guaranteeing that
the extended state estimation error (8.19) converges asymptotically to zero in average
for all the possible parameter values. This proves the first statement.

ii) For ease of notation let us write E{Vi11]|az = n;} as E{Viy1|a:}. Then, taking
conditional expectation given a;_1 over expression (C.32), remembering that «a; is known
at instant k, leads to

E{Vitila} —E(Vi} +E{f F7' fi} — v (A0) [wlfms
—Yu(Ar) 6 = 7 (D) AFTASe =70 (Ar) 0]l s <O, (C.34)
for all oy € Z and é; € S, where we have considered the assumptions on w; and vy,
and that 6, = E{a] @;}. For brevity, let us not include in the next the fact that the
inequalities are fulfilled for all a; € E and 6, € S. If (C.34) is fulfilled, then
E{Vipilar} — BV} + E{f] F7' fi} — yu(As) ©hs
- VU(At) 5t - 'Yf(At) AftT Aft 'YU(At) Urms < 0 (035)

holds because ||w||Zys < Wanes [V]Ems < 024s- Under null initial conditions (Vy = 0),

adding the above expression from t = 0 to T — 1 we obtain that

T-1 T-1 T-1
E{Vrlar 1} + > (B{Vilar 1} —B{Vi) + D _E{/F F' i} = > vu(A)wk,,

t=0 t=0 t=0

- Zvu Ag)o; — Zw A)AFE A - Z% Vrms < 0. (C.36)

t=0

Considering that E{Vpri1|ar} > 0, dividing (C.36) by T and taking the limit when
T tends to infinity we get

T-1 T-1

1 1
hm T Z E{ft F~ ft} < 'ywwrms + 'Yu + 'YU rms + = Z 'Yf At Aft Aft (037)
t=0

where we have taken into account the definition of 4_ given in (8.27) and that

1 T-1

lim — > (B{Vilar-1} — B{V;}) =

T d 30
Finally, due to the facts that
E{f{ F~' fi} = MFE ) E{f] [},
1 (A0 AFF AT < 35D g [AfI < 35(A)ng BT

and that A(F~1) = 1/A(F) (as F is a positive definite matrix), expression (C.37) leads
o (8.26).



174 C. Auxiliary results and proofs

C.8.2 Proof of Theorem 8.2

Following the proof of Theorem 8.1, taking into account constraint (8.29), expres-
sion (C.37) leads to

T-1 T-1

.1 s 1 1
Jim ; E{ff P fi} <or™+ z_; V(D) AT AS (C.38)
In the absence of faults (i.e. fi = —f; and Af, = 0 for all k), we have that

E{fT F~' f,} = E{fT F~! f,} = E{r;}. Then, in the fault free case, (C.38) becomes

T-1

3 1 _ th
Jim ; E{r|f; =0} < ¢l (C.39)

Considering the above result and the FAR definition given in (8.22), we can employ
Markov’s inequality® to obtain

T-1 T-1
. th 1 E{n|fe =0}
U= lim — E_OPr{rt>7" |ft:0}§TlgI(1>O? E T<d), (C.40)

T—>oon

which ends this proof.

51f x is a positive random variable and a > 0, then Pr{z > a} < @
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