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Abstract

Abstract

This thesis explores a very well understood area of physics: computational structural dynamics. The aim
is to stretch its boundaries by merging it with another very well established discipline such as structural
design and optimization. In the recent past both of them have made significant advances, often unaware
one of each other for different reasons. It is the aim of this thesis to serve as a bridging tool between the

realms of physics and engineering.
The work in divided in three parts: variational mechanics, structural optimization and implementation.

The initial part deals with deterministic variational mechanics. Two chapters are dedicated to probe the
applicability of energy functionals in the structural analysis. First, by mapping the state of the art
regarding the vast field of numerical methods for structural dynamics; second, by using those functionals
as a tool to compare the methods. It is shown how, once the methods are grouped according to the kind of
differential equations they integrate, it is easy to establish a framework for benchmarking. Moreover, if
this comparison is made using balance of energy the only parameter needed to observe is a relatively easy

to obtain scalar value.

The second part, where structural optimization is treated, has also two chapters. In the first one the non-
deterministic tools employed by structural designers are presented and examined. An important
distinction between tools for optimization and tools for analysis is highlighted. In the following chapter, a
framework for the objective characterization of structural systems is developed. This characterization is
made on the basis of the thermodynamics and energetic characteristics of the system. Finally, it is

successfully applied to drive a sample simulated annealing algorithm.

In the third part the resulting code employed in the numerical experiments is shown and explained. This
code was developed by means of a visual programming environment and allows for the fast
implementation of programs within a consolidated CAD application. It was used to interconnect
simultaneously with other applications to seamlessly share simulation data and process it. Those

applications were, respectively, a spreadsheet and a general purpose finite element.

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 14



1.- Introduction

Rabindranath Andujar

Variational Mechanics and Stochastic Methods Applied to Structural Design

Introduction

15



Introduction

1.1.- Motivation of the thesis
After a number of years undertaking projects in structural engineering for the building industry, the author
of this thesis experienced a number of situations where the current state of the tools for structural design

rendered to be insufficient or, in some cases, even counterproductive.

Despite the immense efforts of the scientific and academic community for developing faster and more
reliable models, modern structural design and analysis is yet, to a great extent, exclusively based on
statics and the superposition theorem, hence tied to linear approaches to achieve design solutions.
Buckling, vibrational response, terrain-structure interfaces, creeping, fatigue and many others are very
important phenomena for which such models, although extensively adopted and canonical, give a fairly

blurred picture.

On one side, the degree of elaboration achieved in the formulation of the models of elastodynamics often
makes it preferable to resource the analysis to empirical “simplified” models which are easier to

understand by the practitioner.

On the other, it seems evident that the very process of design, in many cases automatic and repetitive,
could be greatly improved by the modern techniques of optimization. In the complex course that goes
from object inception in the mind of the “shape” designer to the desk of the structural analyst, tools that

objectively provide “best” solutions can be of much help to improve the dialogue between both parts.

The main problem with traditional optimization techniques, based on deterministic optimal criteria is their
apparent arbitrariness. They supply an exact solution in a reasonable lapse of time but this is very
sensitive to the chosen judgement of which result is superior to another. Stochastic non-deterministic
search algorithms are more attractive as they facilitate a whole range of “possibles”, sorted by order of

fitness.

Methods of stochastic optimization (stochastic hill climbing and tunnelling, evolutionary algorithms,
swarm algorithms and many others) have been successfully applied in science and technology since the
1950s. Lately, these very methods, combined with modern numerical tools (Finite Element Method,
Applied Element Method, Discrete Element Method, among many others) are proving very helpful in

automotive, aerospace and naval engineering to achieve sophisticated, reliable and precise designs.

To make them practical, though, the current analysis methods must be made more efficient. The
variational principles of mechanics devised by Euler and Lagrange are currently implemented into many
physics engines. This field of research is under constant development and new and more efficient

algorithms emerge every year.

Variational mechanics are an extremely powerful tool because they replace the paradigm of the analysis
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focused in displacement and force vectors with one looking at energy change scalars. Not only the
resulting implementations benefit from this but also the degree of understanding of the studied

phenomena.

As it will be shown in the thesis, countless efforts are being made in advancing and improving the
aforementioned techniques. However, to the knowledge of the author, a comprehensive work addressing
simultaneously variational mechanics, energy principles and stochastic techniques was yet to be made.
There seems to be a strong need of bringing together science (variational mechanics) and technology

(structural design), so that both fields of knowledge can benefit from each other.
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1.2.- Working hypotheses
In the preliminaries of this thesis, a series of assumptions were made around the two main ideas of non-
deterministic structural design and variational mechanics. These two articulated the discourse and can be

seen reflected in the internal structure of the chapters as well as in the results of the thesis.

1.2.1.- The deterministic approach to structural design
Nowadays, structural engineering has a strong deterministic bias. However, one increasingly important
aspect of structural analysis that deterministic design finds difficult to address is that of uncertainty in

structural parameters and in loading and boundary conditions.

Deterministic single- point evaluation of the response may under many circumstances produce an over-
designed and excessively conservative system if the presence of parameter scatter is not taken into

account.

It is very illustrative of this situation how building codes, initially conceived as good practice handbooks
within the trade, have now become such a heavy reference that they can affect the production of building

materials in a whole country.

Nowadays Limit States is the compulsory method for evaluating any building's performance (Eurocodes,
ASCE, ACI, CTE,..). They are provided to the designers and are obtained under probability
methodologies but have to be necessarily included into a deterministic analysis in the form of safety

factors.

The inclusion of these algorithms in their most sophisticated forms mean in concrete terms - referring

exclusively to the field of structural analysis - that the issues may be raised in such terms that:

* The variables (loads, elastic modulus, yield stress, geometric properties, etc..) may be
characterized by a probability distribution type (normal, lognormal, extreme value, etc..) with

their corresponding statistical parameters for the cases of discrete variables.

*  The variables may hold random spatial distributions. For example loads, geometrical and physical

properties randomly distributed in the domain of definition of the elements.

*  One or more features of "performance" may be formulated to establish criteria or limits to be

satisfied by the system or by its components (resistance, rigidity, etc.)

This should allow the engineer to establish the feasibility of the design or the need for changes on a basis

much more comprehensive and objective-based methods than using in the safety factor.

Although computationally far more expensive, stochastic design methods have two major advantages
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over the deterministic ones: a deeper understanding of the designed product and a quantification of the

level of uncertainty of the given answer.

This new approach is lately conforming a fairly strong corpus of research and many publications and

applications can be found.

1.2.2.- Variational mechanics and physics simulations
Modern structural design and analysis is almost exclusively based on statics and the superposition

theorem, hence tied to linear approaches to achieve design solutions.

Buckling, vibrational response, terrain-structure interfaces, creeping, fatigue and many others are very
important phenomena for which such models, although extensively adopted and canonical, give a fairly

blurred picture.

Non linear intensive particle-based Lagrangian methods, on the other hand, is a relatively recent field of
research, where the phenomena previously mentioned simply arises as a consequence of the simultaneous

interaction of the simulated bodies or particles.

By means of these methodologies, it seems feasible to tackle and to achieve a further understanding of

such phenomena.

From the practical point of view, much research has been done in order to obtain numerically stable and
accurate simulations. There is also a good amount of work into the problem of rigid body collisions,

provided it consumes a good amount of computational resources.

A more recent trend is combining Finite Element Method with Lagrangian and Hamiltonian dynamics, in
order to account also for the deformational properties of the simulated bodies. This combination extends
the inherent limitation of FEM to the continua with the capability of modeling also discontinuous

interactions.

This also opens new ways to structural designers for it means the possibility of modeling materials
different from steel and concrete, so environmentally unfriendly. Too often these building systems are the
only way to go for the codes are the only ones that support. With new (and traditional) systems being

safely modeled, broader possibilities open to design alternatives.

With enough computational power, these environments can be extended with the modeling of flows,
giving a physical meaning to loads (i.e. wind, terrain, water). These loads, of inherent stochastic and non-

linear nature, currently mean a good amount of uncertainty for designers.

Moreover, thermodynamic properties can also be implemented, hence allowing for other non-structural

related analysis.
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From the engineering point of view, available frameworks where the non-static and non-linear behavior of
structures can be observed definitely would provide a far deeper understanding that should derive in

better, more efficient and environmentally aware designs.

1.2.3.- Hypotheses

The working hypotheses can then be summarized a follows:

A The vast body of numerical integration algorithms for structural dynamics simulation can be

encompassed within an intuitive scheme that simplifies its study.

B Variational principles help to better understand the results of the simulations and their

application gives a wider ability to analyse.

C Energy principles already improve the performance of structural dynamics simulations, but
could also be used in combination with non-deterministic design tools. In this manner, design objective

functions could be devised that accounted for optimal uses of the energetic capacity of the materials.

D Theoretical advances gain value when they translate into practical and concrete tools. The
research must contemplate this possibility and exploit the experimental implementations so that they

can eventually reach others.
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1.3.- Expected scientific contributions
The main target of this thesis is to obtain a clear and comprehensive view on how variational mechanics,
combined with stochastic numerical methods, can be applied to change the paradigm of deterministic

structural design.

It is not meant to substitute current procedures, but to complement them with expanded perception of the

behaviour of structural systems.

As a side effect of this it was intended to achieve a computer tool with the following features:
* Real-time based physics computation for structural frames.
* Behaviour-monitored structural elements and parameters.

* Different material models, and the possibility of creating new ones, considering physical and

technological properties.
* Real-time design visualization and designer interaction.

» Stochastic methods applied to different structural systems and probability-based evaluation of
their reliability.

* Stochastic models for non-deterministic non-linear loads (wind, earthquake, terrain, blast, snow,

etc).
Further and practical applications of it would be:
* Building forensics of existing or failed buildings.
*  Haptics for dynamic design of buildings.
e Interactive benchmarking of structural designs.

* Inmersive virtual buildings.
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2.- State of the art: Overview of numerical methods for structural
dynamics analysis
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2.1.- Introduction
In this chapter the current state-of-the-art of the computational techniques for the simulation of structural
dynamics will be presented. A preliminary overview of concepts will be used to justify a general

framework of classification according to the multidisciplinary character of the topic.

Previous surveys exist where a rigorous mathematical background is provided. However, these present a
certain excess of specialization towards their natural trades, so [SHA1997] and [WAS2003] have a
marked inclination towards Robotics and [NEA2005] and [ERL2002] are excellent reviews for the
Computer Graphics community. This chapter aims to facilitate a comprehensive and more unified view on
the subject of structural dynamics and the numerical methods employed to simulate them. For the sake of

simplicity formulations have been considered unnecessary and only practical matters are discussed.

The analysis of structural dynamic behaviour is a topic of specialized research in many modern
disciplines: Civil Engineering, Aeronautics, Automotive, Robotics, Medicine, Biomechanics, Molecular
Dynamics and Graphics Animation are some of the industries currently developing with growing interest

applications that allow to simulate the dynamics of structures and related literature about it.

Although, from a scientific point of view, this must be regarded as a great success and such diversity of
points of view should be considered as positive , it also means that the intrinsic complexity of the subject

increases somehow chaotically as each author contributes with a particular approach.

Furthermore, the already daunting list of numerical methods for the solution of problems of dynamics
grows by means of mixed concepts making it very difficult to understand what they really do. It is
common to encounter in the literature methods for the approximation of standard algebraic problems that
are regarded as having “physical” properties or that some method to solve partial differential equations is

enunciated as “explicit” referring to the ordinary differential equations also involved in the solution.

As a third source of confusion we have to consider the mathematical foundations of the numerical
methods, by means of which these are conceived as general and abstract as possible. It means that for a
particular method its applicability can go from economics to electric flux analysis. For this reason, it is

often easy to get diverted and dazzled when trying to approximate this fascinating area of research.

The following section aims to be a general reference framework where researchers and developers from
diverse disciplines can asses, according to its performance, the main methods currently used for structural

simulation. There is a need to make all this knowledge accessible in a more intuitive manner [ROS2006].

For this reason, these methods will be grouped according to three physical concepts: time, matter and
constraints, which not by chance correspond to very well defined mathematical areas: Ordinary

Differential Equations (ODEs), Partial Differential Equations (PDEs) and Differential-Algebraic
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Equations (DAEs).

The last section discusses these methods as they are utilized in the main industrial environments, and

provides some explanation as to how and why they have evolved in that particular manner.

2.1.1.- Elements of Applied Physics
Physics is commonly categorized into five main branches (Classical Mechanics, Electromagnetism,
Statistical Mechanics, Thermodynamics Quantum Mechanics and Relativity) which also have several

ramifications.

The main branch of our interest here is that of Classical Mechanics, where we can find the three main
subjects that cover most of the developments for our purposes: Classical Mechanics, Rigid Body

Dynamics and Continuum Mechanics.

2.1.1.1.- Classical Mechanics
Classical mechanics is split in three main segments: Statics, Dynamics and Kinematics. This division

accounts for the state of motion of the studied phenomena.

Another categorization can be made according to the mathematical formalism of the description:

Newtonian Mechanics, Lagrangian Mechanics and Hamiltonian Mechanics.

Lagrangian Mechanics were introduced by Joseph-Louis Lagrange in 1788 in his “Mécanique analytique”
[HAN2004, NEU2006]. It is a refined algebraic version of a graphical method developed by Euler in
1744 used to solve mechanical problems [EUL1744]. This revolutionary approach to the solution of
problems of Mechanics uses kinetic energy and work function (scalar magnitudes) instead of force and

momentum (vectorial magnitudes) to predict motion of bodies [LAN1952].

Euler and Lagrange introduced the calculus of variations as a tool for finding maxima and minima of
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Figure 2.1: Original figure used by Euler in his derivation of the action functional. The abscissa
interval A-Z represents a time lapse, while ordinates represent the variation of the difference between
kinetic (K) and potential (U) energies. The area under the curve is the action functional (S).

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 24



State of the art: Overview of numerical methods for structural dynamics analysis

functionals (functions whose arguments are not just variables but functions) such as the ones appearing in
mechanical problems. When the studied functional is that of the difference between kinetic and potential
energies of a system (which are themselves a function of time), we refer to it as the action functional

(figures 2.1 and 2.2).
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Figure 2.2: Principle of Least Action. The sphere going from point A to point B could use any of the
infinite paths. Its kinetic and potential energies would differ from one another. Euler and Lagrange's
variational mechanics, through the least action principle, establish that it would do it using only the one
which minimizes the action integral. The chosen coordinates of the example are Cartesian, but any other
would also be valid.

The equation of the action functional S involves the monitoring of the kinetic K, and the potential U

energies for every time step between ¢/ and ¢2. Their difference is known as the Lagrangian, L.

These scalar magnitudes K and U can be obtained via many different formulations, depending on the

coordinate system chosen by the analyst.

The above methodology of representing motion of a particle by means of the action functional provides
the value of the action integral for one particular path. However, the set of possible paths followed by the
particle between the points A and B is infinite. The Least Action Principle states that the path chosen by
Nature is going to be no other but the one with a minimum value of the aforementioned integral. This is
also called, in a more precise manner, the principle of stationary action. Thanks to it, the description of

particle trajectories is simplified into a minimization problem [LAN1952].

The set of parameters which describe uniquely the kinematics (how things move) of a system is known as
generalized coordinates. The minimum number of these coordinates necessary to completely describe a

configuration is the degree of freedom of such system.

Understanding of the properties of these coordinates is necessary because when we hit on a certain type of
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coordinates called "cyclic” or "ignorable”, a partial integration of the basic differential equations is at

once accomplished. If all our coordinates are ignorable , our problem is completely solved. Hence we
can formulate the entire problem of solving the differential equations of motion as a problem of
coordinate transformation. Many approaches to the solution of mechanical problems just do so: instead of
trying to integrate the differential equations of motion directly by means of variational methods they try

to produce more and more ignorable coordinates [LAN1952].

The Gaussian principle of least constraint is a minimum principle comparable with the principle of least
action, but simpler in not requiring an integration with respect to the time. By means of Gauss’s principle
we use least squares to find action’s minimal value, whereas the principle of least action would lead us to
an extremum value of the integral [LAN1952]. Although mathematically equivalent, this formulation has
several advantages in computational terms and allows for the consideration of frictional dissipative

constraints [UDW1992].

2.1.1.2.- Rigid Body Dynamics

Rigid Body Dynamics studies the motion of bodies whose deformation is considered negligible with
respect of their displacement or rotation. Unlike particles, where only three degrees of freedom are
enough to describe the kinematics, rigid bodies need also three more parameters to describe their rotations

with respect to their centre of gravity [MIR1996].

Figure 2.3: Kinematics and constraint formulation. Kinematics describe the movement by means of
position with respect of a reference frame (in the picture, a cartesian one). Parameters such as distance
or velocity are associated to the studied moving points (located in the center of the green spheres in the
example). Cylinders represent longitudinal constraints, while spheres account for rotational ones.
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Kinematics deals with the study of how things move independently of the causes of the movement. For
such purpose it employs the concepts of reference frame and coordinate system, position, displacement
and distance, velocity, speed and acceleration, which account for the spatial configuration of the studied
bodies. In order to simulate body interactions and motions, it is needed to take into account the
environmental constraints that affect to a system of rigid bodies. Constraint formulation implies the

correct fixing in the values of any or all of the aforementioned variables (figure 2.3).

Linear momentum p is the product of the mass m and the velocity v of a body. It is therefore a vectorial
magnitude. Newton’s second law states that the rate of change of linear momentum of a body whose mass

is constant equals the total of the forces exerted on the body.

Angular momentum L is the cross product of the linear momentum p and the position » vectors. It is an
axial vector or pseudovector. It is not to be mistaken with the angular momentum associated to the
rotational movement of a body, where the inertia momentum of the body and its angular velocity are

involved (figure 2.4).
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Figure 2.4: Different parameters of the movement of rigid solids. The red ball has a momentum p of 20
kg m/s; the blue, 40 kg m/s and the box a null momentum due to its null velocity v. Their respective
angular momentums L can be calculated through the vectorial product of their position r and momentum
vectors p. After the collision, their particular linear and angular momentums will be modified, hence
their impulses, but the systems global momentum must remain invariant according to Newton's Second
Law.

Impulse, / accounts for the rate of change of linear momentum by means of Newton’s Second Law. In
classical mechanics literature, also, impulse is just the integral in time of a force applied to a body, but it
is commonly used to refer to a fast-acting force. This type of impulse is often idealized so that the change

in momentum produced by the force happens with no change in time. This sort of change is a step change,
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and is not physically possible. However, this is a useful model for computing the effects of ideal

collisions and is widely used in many physics simulators [MIR1996, BEN2007].

Figure 2.4 illustrates the different parameters involved in the movement of a set of rigid bodies.

2.1.1.3.- Continuum Mechanics

Continuum Mechanics studies the behaviour of deformable bodies, as opposed to rigid bodies. It is
traditionally subdivided into Solid and Fluid Mechanics, mostly depending on the deformational
behaviour of the body. There are two main ways of kinematically describing the changes in configuration

of the body: lagrangian and eulerian.

By means of the lagrangian description, continuum is represented as an atomic model where particles
“float” in a vacuum and relate to each other in energetic terms. The eulerian approach makes a cellular
division of this continuum and maps the changes that happen in constant locations, hence representing the

flow implicitly, in the form of a field with its variations [SHA2008].

T@
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Figure 2.5: Motion of a material body of surface A and volume V in a Cartesian reference. v is the
velocity vector resulting of applying a force F on the differential volume dV. Another velocity results from
applying a tension T(n) on the differential surface dA.

In the theory of continuum mechanics, stresses are used as measures of the forces and pressures. As in the
case of strains, different definitions can be used for the stresses. Some of these definitions are associated
with a reference configuration, whereas others are associated with the current deformed configuration.
The effect of the forces on the body dynamics can only be taken into consideration by using both stresses
and strains. These stress and strain components must be defined in the same coordinate system in order to
have a consistent formulation. Two basic types of forces are easily distinguished from one another: those

acting on all volume elements, and distributed throughout the body, and those forces which act upon and
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are distributed in some fashion over a surface element of the body [MAS1999]. The concept is illustrated

in figure 2.5, as a basis for the different reference frames.

2.1.1.4.- Deformation and motion

A change in the configuration of a continuum body results in a displacement. The displacement of a body
has two components: a rigid-body displacement and a deformation. A rigid-body displacement consists of
a simultaneous translation and rotation of the body without changing its shape or size. Deformation
implies the change in shape and/or size of the body from an initial or undeformed configuration to a

current or deformed configuration [SHA2008].

The displacement field is the set of vectors that describe the change of a body from one configuration to
another. It serves to represent changes in the position of the different points in a region or the whole body.
Unfortunately, the mathematical notation associated to displacement fields makes them less intuitive than

what they really are: a function involving many vectors and points at the same time. [MAS1999]

The equations from which the behaviour of material points is described, and that need to be satisfied, are

classified according to their nature:
*  Conservation of matter
* Conservation of linear and angular momentum
*  Conservation of energy
*  Constitutive equations
*  Strain-displacement equations

The possible manners of expressing these equations with different purposes gives place to the
innumerable available formulations in literature, either optimizing the numerical methods associated or in
the search for more general descriptions of the behaviour of materials. Almost invariably they are

formulated in the form of differential equations [SHA2008].

The balance laws express the idea that the rate of change of a quantity (mass, momentum, energy) in a

volume must arise from three causes [MAS1999]:
* The physical quantity itself flows through the surface that bounds the volume.
e There is a source of the physical quantity on the surface of the volume.

* There is a source of the physical quantity inside the volume.
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2.1.2.- Elements of Applied Mathematics

All the above physical concepts are idealizations of reality derived from pure observation. Eventually,
these observations become relations between variables and parameters which are managed by means of
mathematical tools. Such tools are mainly located in the fields of differential equations and linear algebra.
Differential equations are involved in the representation of the continuum, while linear algebra is utilized

to solve the energy minimization variational principles of Euler and Lagrange.

2.1.2.1.- Differential Equations

A differential equation is any equation containing derivatives in it. The derivation can be ordinary (the
function has only one independent variable on which we can derivate) or partial (more than one
independent variable is present so we derivate just on one variable at a time and leave the rest as
constants). Also, according to the number of derivations of the equation with respect of the variable, the

equation can be first, second or higher order. In figure 2.6, an ordinary, second order equation is plotted.

Although time, matter and constraints are modelled and idealized as a continuum, they need to be
discretized into a finite integer number of sub-eclements for the computer to process them. This is
important when numerical methods are considered for the solution of Differential Equations, as many
analytical procedures give exact solutions which are impossible to achieve computationally. Likewise,
there are problems that are not solvable analytically, hence the recurrence to numerical computational

methods.

* Ordinary Differential Equations (ODEs): are those in which only the derivative with respect of
one independent variable is present. The derivative can be the first, the second, etc. of the
function but only for one independent variable in the relation. For the solution of ODEs there is a
whole set of analytical methods that account for the form in which the coefficients and the
variables are displayed in the equation. This leads to a series of classifications and definitions
from which further association can be made. The more complex forms of ODEs out of these
catalogues sometimes are not solvable, but often it is possible to manipulate their formulation in
order to fit them into any known solvable scheme. It is important to distinguish between these

analytical methods and the numerical ones further detailed in this chapter.

* Differential-Algebraic Equations (DAEs): these combine the terms differential and algebraic, so
as to express that these are algebraic systems containing differential equations. Provided that
engineering normally requires conservation laws to be studied altogether with constitutive
equations and design constraints, it is much more efficient to do it by keeping these relations

separate. This commonly leads to a set of differential and algebraic equations.
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Figure 2.6: Graphic representation of a parabolic ODE. The ODE above happens to be a parabolic
curve. It is ordinary because only derivatives with respect one variable appear (dx), and first order
because there are only first derivatives in the equation (dy/dx). Its exact solution (analytically obtained)

is the integral below. For each one of the possible values of c there is one possible curve. The whole set of
possible curves is the general solution of the ODE. A particular value of ¢ would define an Initial or a
Boundary Problem.

f(x,y)=x*txy+y?

Figure 2.7: Graphic representation of partial derivation. The function above has two independent
variables (x and y). By fixing one of them (in the picture, x=38), we get the curve f(y)=64+8y+y2. This
curve we can derivate, hence obtaining the partial derivative of f(x,y) with respect to y.

» Partial Differential Equations (PDEs): A PDE is a relation u of several independent variables
x,y,zt,... and the partial derivatives of the relation with respect of these variables. A partial
derivative of a function is its derivative with respect to one of its variables, with the others held
constant. As an illustrative example, the graph of a function of more than one variable defines a

surface when represented into Euclidean space (figure 2.7). In the literature, second order PDEs
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are commonly classified as one of three types, with terminology borrowed from the conic
sections, given the resemblances of their formulas with that of the conics: Elliptic, Hyperbolic

and Parabolic.

2.1.2.2.- Linear Algebra
Linear algebra studies vectors. Its main structures are linear maps (functions that input vectors and output

others) and vector spaces. For their representation matrices are typically used.

* Linear equations: Linear equations are algebraic relations in which each term is either a constant
or the product of a constant and a single variable. If the power of the single variable is higher than
one, then the equation is not considered linear any more, becoming quadratic (second power),
cubic (third power), quartic (fourth power), etc. Linear equations can have one or more variables.
When this happens they commonly group in a collection of equations that is easily representable
in a matrix form. These matrix representations of the systems allows for algorithms such as Gauss

or Gauss-Jordan leading to their solution.

* Matrix algebra: these allow for a clean and straightforward manner of representing linear
equations and transformations. Thanks to the modern computational tools, the tedious work of
operating with them (addition, multiplication, inversion, etc,) is greatly facilitated to the engineer
and the researcher. Nevertheless, for the study of structural dynamics it is necessary to be
proficient in more advanced notions such as matrix pseudo-inverse and null space or kernel
(utilized for the solution of linear equations), determinant (useful to characterize invertible square
matrices), eigenvectors (those vectors whose direction is not affected by being multiplied with a
square matrix), and eigenvalues (the magnitudes by which eigenvectors are scaled). These

concepts are extensively used throughout the literature and generally non-trivial.

e Matrix Decomposition: A matrix can be decomposed into a product of matrices of special types,
for an application in which that form is convenient (i.e. getting a system solved). This can be
achieved either via direct or iterative methods. Standard direct methods use some matrix

decomposition and comprise:
*  Gaussian elimination
* LU decomposition
*  Cholesky decomposition for symmetric and positive-definite matrix
* QR decomposition for non-square matrices.

Iterative methods try to find the root of the system of equations by successive approximations
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starting from an initial guess. These are generally the only choice for nonlinear equations. The

most utilized are:
* Jacobi
*  Gauss—Seidel's
*  Newton-Raphson
*  Successive over-relaxation
*  Conjugate gradient
*  Monte Carlo iterations

* Computations: Once associated to a matrix, there are other types of operations that can be made
out of sets of linear equations, generally as sub-steps to the final purpose of solving them. When
the set of equations is larger than the set of unknowns (i.e. the system is overdetermined), the
method of the Least Squares can be used, either in its linear or non-linear form, to approximate
the solution of the system. It is also possible to perform a Gram-Schmidt process over the system
in order to orthonormalize its matrix, leading to a further QR decomposition and its eventual
solution. The process of solving special kinds of systems by means of Monte Carlo iterations also

requires some pre-processing in order to render a matrix into an equivalent, solvable one.
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2.2.- Methods for numerical integration of the equations of structural dynamics
In the previous chapter the conceptual elements required for understanding the dynamic behaviour of
structural systems were briefly introduced. Here, an overview of the most relevant particular methods will

be provided.

For the simulation of structural dynamics three different physical concepts need to be integrated: time,
kinematic constrains and matter. Each one of these notions involves the simultaneous solution of
Ordinary Differential Equations (ODEs), Differential-Algebraic Equations (DAEs) and Partial
Differential Equations (PDEs), respectively. Their relationship to the areas of knowledge introduced in

the previous chapter is illustrated in figure 2.8.

Figure 2.8: Visual display to the relationships between knowledge disciplines and numerical integration methods
of the different kind. The complexity of the topic is better understood by grouping the different methods/principles
around the physical concepts they solve.

The three main parameters that concern the engineer performing numerical simulations are the accuracy
of the solution, the stability of the simulation and the efficiency of the calculation. The first problem

derives from the fact that computational precision is finite, whereas the physical/mathematical models are
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continuous hence only approximations to the behaviour can be obtained. By stable is meant that small
errors due either to arithmetic inaccuracies or to the approximate nature of the derivative expressions will
not accumulate and grow as one proceeds. Efficiency involves the speed of calculation and the occupied

memory, which are also very sensitive to the design of the algorithms.

Generally, an early analytical approach is preferred to skip numerical issues along with the achievement
of higher levels of precision. Nevertheless, the general problem of obtaining only approximations are

inherent to the very description of any model and to any method.

For a dynamics simulation to occur at least time and continuum (ODEs + PDEs) or time and constraints

(ODEs + DAEs) have to be integrated.

2.2.1.- Time Integration Methods: ODEs
Standard introductory differential equation courses focus on symbolic solutions, in which the functional
form for the unknown function is to be guessed. In contrast, we will be concerned exclusively with

numerical solutions, in which we take discrete time steps starting with the initial value of the position.

The first possible classification for ODEs solvers distinguishes between explicit, implicit and hybrid
methods. Explicit methods are the most immediate to formulate, but present the problem of the so called
numerical stiffness Stiff ODEs require that the size of the adopted time step be so small that the time to
convergence never arrives, or otherwise adopt time steps so large that the simulation becomes unstable.
The stiffness can be produced by the physical characteristics of the multi-body system (components with
large differences in their masses, stiffness and/or damping). However in many other instances, stiffness is
numerically induced due to either the discretization process, the large number of components and
equations of motion, or sudden or accumulated violations in the constraint conditions. The advantage of
implicit methods is that they are usually more stable for solving a stiff equation, meaning that a larger
step size can be used. However, extra computations need to be done internally and it requires extra time.

Hybrid methods will not be covered in this thesis.

Another division is made according to the order of the derivative of the equation of motion employed. So
a method is characterized as first, second, third or higher orders accordingly. The higher the order the

more accurate the result would be, though it limits the span of possible time steps due to instabilities.

The third possibility is that of the method being Single or Multi-Step. Single-step methods refer to only
one previous point and its derivative to determine the current value. Multi-step methods attempt to gain
efficiency by keeping and using the information from previous steps rather than discarding it.
Consequently, multi-step methods refer to several previous points and derivative values. In the case of

linear multi-step methods, a linear combination of the previous points and derivative values is used.
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The following does not intended to be a fully comprehensive list of methods but an illustration of the
main issues that arise in the numerical computation of Ordinary Differential Equations applied to the

specific field of Dynamics. A more detailed overview can be found in [PRE1992].

In the following chapter, variational integrators will be introduced as an alternative formulated from
Hamilton's principle of least action rather than integrating an ODE or a PDE. Variational integrators are a
class of integration methods for Lagrangian systems that result in good energy behaviour and
conservation of momentum. These conservative properties makes them very attractive for they allow

more accurate simulations at larger time steps [WES2004].

2.2.1.1.- Explicit Methods
Explicit methods use the the differential equation at time ¢ to predict a solution at time ¢+dt. In structural
dynamics, where stiff equations often arise, the required time step is very small to avoid unstabilities.

Explicit methods are hence conditionally stable with respect to the time step size.

E Forward/Explicit EulerMethod (EE): In practical terms this method is never utilized as it
presents problems of stability and accuracy, but has been included here for its pedagogical value. It is
devised considering that from any point on a curve, it is possible to find an approximation of a nearby

point on the curve by moving a short distance along a line tangent to the curve [MAR2009].

F Explicit Runge-Kutta Methods (ERKn): The basic idea of this family of methods is to
eliminate the error terms by evaluating the function in points located half way and including them in
the current step. Higher order Runge-Kutta methods exist, being the 4th order Runge-Kutta the most
commonly used. An n order Runge-Kutta implementation requires n evaluations of the function per
step, so for most problems four is a good compromise between computational cost and accuracy. A
mnemonic device known as Butcher's Tableau is used to arrange the data necessary to describe the
different methods. The original formulation is that of a single step solver. In general this is adequate for
non stiff problems and provides an acceptable level of accuracy. Lower order formulations provide
lower accuracy [FIT2006]. Explicit Euler's method (EE) can be also considered a 1* order Runge-
Kutta. Dormand-Prince method (RKDP), Fehlberg method (RKF) and Cash-Karp method (RKCK) are

slight variations on this method.

G Adams - Bashfort — Moulton Method (ABM): This methodology employs multiple previously
recorded steps to achieve a solution, hence being more efficient. Initial values need to be provided and
are usually obtained from a Runge-Kutta scheme. It also presents an acceptable level of accuracy

depending on the chosen step size and is meant to solve non stiff systems. Shampine-Gordon method
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(SG) is based on this methodology [BUT2008].

H Chung-Hulbert method (CH): This algorithm is devised for structural dynamics calculations
where high frequency dissipation is needed. It uses a set of parameters to enable treating physical

damping explicitly without reducing the accuracy [CHU1993].

I Leapfrog / Velocity Verlet Method (LF): Leapfrog integration is a simple method for
integrating differential equations, particularly in the case of a dynamical system. The method is known
by different names in different disciplines. In particular, it is similar to the Velocity Verlet method,
which is a variant of Verlet integration. Leapfrog integration is equivalent to calculating positions and
velocities at interleaved time points, interleaved in such a way that they 'leapfrog' over each other. For
example, the position is known at integer time steps and the velocity is known at integer plus half time

steps [BUT2008].

2.2.1.2.- Implicit Methods
For implicit methods the strategy consists on satisfying the differential equation at time ¢ once the
solution at time #-dt is available. This requires the solution of a set of linear equations at each time step,

but allows for larger time steps and gives further stability or even unconditionally stable schemes
[WIL1996].

A Backward/Implicit Euler Method (IE): While forward Euler takes a step along the derivative at
the current time and position the backward Euler method uses almost the same time stepping equation,
but with an extra step. Backward Euler chooses the step, k, so that the derivative at the new time and
position is consistent with k. Doing this requires solving this equation for k, which amounts to a root
finding problem if f(x) is nonlinear. The forward Euler step is a common place to start the root finding

iteration [MAR2009].

B Implicit Runge-Kutta methods (IRKn): Implicit Runge-Kutta methods are usually more stable
than any explicit method of the same family. The simplest example of an implicit Runge—Kutta method
is the backward Euler method enumerated above. Crank-Nicholson method (CN), also known as the

trapezoid method is another example of implicit Runge-Kutta methods [CRA1947].

C Gear's / Backward Differentiation Formula Method (BDF): BDFs are formulas that give an
approximation to a derivative of a variable in terms of its function values and earlier times (hence the
"backward" in the name). They are derived by forming the k-th degree interpolating polynomial

approximating the function using the values up to the k-th value, differentiating it, and evaluating it.
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Despite of being multi step, this is a generally less efficient method than RK4 of ABM. 1t is also often
utilized for the solution of stiff problems and of Differential Algebraic Equations (DAEs) [GEA1984].

D Newmark-Beta Method (NB): The Newmark-Beta method is a particular one of several time-
step methods originally proposed by Newmark in 1959. It is commonly used for the solution of linear
and non-linear equations and uses a numerical parameter designated as Beta. It is devised specifically
for structural analysis. The general method additionally contains a second parameter Gamma.
Particular values of these parameters leads to well known methods for the solution of the differential
equation of motion. Newmark's algorithms are unconditionally stable for linear problems, but only
conditionally stable for non linear problems [BRA1998]. The Hilbert-Hughes-Taylor method (HHT) is

a generalization of the Newmark-Beta method.

2.2.2.- Kinematic Constraints Integration Methods: DAEs

When bodies are subject to kinematic constraints, further equations besides to the purely time-related
ones have to be satisfied. These constraints come in the taste of contacts between different bodies or as
joints in particular chain configurations (planar constraints, cylindrical, spherical, rectangular, revolute or
screw joints, etc). These chains can be opened or close, hence facilitating the use of optimized types of

algorithms for the solution of the DAEs.

In order to numerically tackle these conditions the equations of motion are rearranged to obtain different
schema from which construct stable, accurate and faster formulations. The possibilities encountered in the

literature are to do it either in the acceleration level, the velocity level or the position level.

2.2.2.1.- Acceleration level schema

This is the most common, “classic” approach utilized to solve the constraint equations. The methods
using this approach are considered Constraint Based. By means of this, at the beginning of each time step
the internal forces (elastic, viscous or pressure) and the external ones (gravity, collisions, etc) are
computed and accumulated. Then, by means of Newton's second law, they are transformed into
accelerations and then velocities and positions are updated for each integration time step. Given the
tendency to numerical drift shown by these approaches, stabilization techniques are generally accessories

to them, being Baumgarte's the most popular one [BAU1972].

A Penalty method (PM): This method adds a force to a multi-body system, if a constraint is not
satisfied. The magnitude and direction of this force depends on the constraint violation. This numerical
integration algorithm has the advantage of being much simpler than those shown below corresponding

to other methods. However, it may not be the most efficient. In addition, as the numerical integration
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proceeds using this algorithm, the constraint conditions are progressively violated leading to

unacceptable results in all but very short simulations. [JAL1994]

B Lagrange Multipliers(LM): The Lagrange multipliers are numerical artifacts (additional
algebraic variables) that enforce constraint conditions between the elements. Rather than eliminating
the multipliers and obtaining coupled system coordinates, the values of the Lagrange multipliers are
solved in time as part of the numerical technique. The constraint equations are included into the
acceleration term by derivation of them twice with respect to time. It allows for the solution of the
dynamic problem at the expense of solving for an augmented set of (n+m) unknowns [JAL1994,

BLE1981].

C Reduced Coordinates Method (RC): A reduced-coordinate formulation provides a more
accurate simulation. Holonomic (redundant) constraints reduce the degrees of freedom of a multi-body
system permanently. This property is used by reduced-coordinate methods. For a multi-body system a
parameterization is required to reduce the number of coordinates that describe the system’s state to a

minimum. For each degree of freedom one coordinate is needed [BEN2007].

D Udwadia-Kalaba formulation (UK): This method represents a more compact and general form
of solving the DAEs by means of the Moore-Penrose generalized inverse matrix. It is based on Gauss'
Principle of Minimum Constraint, which establishes that the explicit equations of motion be expressed
as the solution of a quadratic minimization problem subjected to constraints, but at the acceleration

level [UDW1992].

2.2.2.2.- Velocity level schema

Originated by the necessity of efficiently handle the collision constraints, these methods utilize the notion
of impulse as a fast acting force, hence they are more commonly known as Impulse Based methods. In
this approach, forces are systematically replaced by impulses so that no complex differential equations
need to be solved. It is achieved thanks to the fact that the integration of a force over a time interval

results in a change of impulse, hence the name.

A Impulse Based Method (IB): Generally applied for the simulation of rigid solids and their
collisions, its advantages include simplicity, robustness, parallelizability, and an ability to efficiently
simulate classes of systems that are difficult to simulate using constraint based methods. The accuracy
of impulse based simulation has been experimentally tested and is sufficient for many applications

[MIR1996, BEN2007]. Currently under very active development, results particularly popular among
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the Computer Graphics community given their remarkable speed.

B Tethered Particle System (TPS): For the simulation of deformable biological structures,
tethered particle systems capture the gradual process of deformation by means of instantaneous
impulses occurring in response to particle collisions. Unlike many other methods described above,
requiring solutions to systemsof equations or inequalities, all the calculations in a TPS simulation are

analytic [GOL2011].

2.2.2.3.- Position level schema

This paradigm integrates the equations of motion directly from the position terms. This permits avoiding
the appearance of DAEs as geometric constraints get inserted in a straightforward manner as projections
without further need of derivation. This skips many drifting problems caused by the numerical integration
of differential terms. It offers a certain amount of generality, as a wide variability of geometric constraints
can be added without considering conservation laws, etc [KEL2010, MUL2006]. This is also a very

recent line of research still subject to a good deal of discussion among Computer Graphics developers.

2.2.3.- Matter Integration Methods: PDEs

To describe the dynamics of matter we have an infinite number of degrees of freedom because the
particles that conform them can have arbitrary displacements with respect to each other. Such systems are
described using partial differential equations where time and spatial coordinates are related. These general
partial differential equations, which are applicable to any solid or fluid material, were outlined in the first
section of this chapter. For their solution, two different approaches can be taken in order to control the
number of degrees of freedom (i.e. discretize): creating a mesh where these displacements are limited
(mesh based methods) or establishing the equations in the form of potential functions so the particles

regulate each other (mesh free methods) [LIU2003a].

2.2.3.1.- Rigid Body Models (RBM)

Rigid Body Models (RBM) are idealizations of solids of finite size in which deformation is neglected.
This is the simplest approach to modelling the continuum and implies that no PDEs are integrated. Rigid
bodies, in contrast to particles, occupy space and have geometrical properties (centre of mass, moments of
inertia, etc.). These properties characterize motion in six degrees of freedom (translation in three
directions plus rotation in three directions). When rotational motion is important, but material
deformation does not have a significant effect on the motion of the system it is broadly utilized for
modelling physical systems and machinery. The generated geometric models are commonly built taking

into account the later ease of computation of collisions between bodies.
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2.2.3.2.- Mesh based Methods
As mentioned earlier the governing equations of continuum mechanics present two main possibilities:

Lagrangian description and Eulerian description.

In the Lagrangian description, the material quantities mass, energy and momentum move along with the
mesh cells. Because the mass within each cell remains fixed, no mass flux crosses the mesh cell
boundaries. When the material deforms, the mesh deforms accordingly [LIU2003b]. This description
results efficient for computational solid mechanics problems, where small deformations occur, but is very
difficult to apply when the mesh is heavily distorted. Also, the level of accuracy depends on the smallest
element size, not on the chosen time step, leading to then less efficient solutions such as re meshing. It is

typically represented by the Finite Element Method (FEM).

In the Eulerian scheme, the grid is fixed in space and the changes in material flow across. The shape and
volume of a mesh cell remain unchanged along the whole simulation. However, the dependence on a
regular grid is a source of trouble when dealing with irregular or complex geometry aiming for the precise
location of inhomogeneities, free surfaces, deformable boundaries and moving interfaces. The main

exponent of the Eulerian description is the Finite Difference Method (FDM).

There is still a third possibility aimed to strengthen the advantages of both while avoiding their
drawbacks. These are the Arbitrary Lagrange Eulerian and the Coupled Eulerian Lagrange, but given their

complexity will not be covered here.

A Finite Element Method (FEM): There are over 11,000,000 references to the FE method in the
world wide web. Naturally, a section dedicated to the method can only cover some highlights of it and
introduce some of the more basic concepts and approaches. FEM's mathematical abstraction of a
structure is that of a continuum body being formed by a set of points called nodes with certain
mechanical properties. For FEM analysis the body is divided into elements. Assuming that these
elements are small one can use low-order polynomials to describe the set of vectors that describe the
change of the element from one configuration to another (its displacement field). Once the polynomials
are introduced the entire body equations of motion can be obtained by assembling those of its elements
using the connectivity conditions at the finite element boundaries. In the literature there are many finite
element formulations that are developed for the deformation analysis of mechanical, aerospace,
structural, and biological systems. Some of these formulations are devised for small-deformation and
small-rotation linear problems (dominating in structural analysis), some for large-deformation and
large-rotation nonlinear analysis, and others for large-rotation and small-deformation nonlinear
problems. This provides a very rich set of powerful tools that, however, presents some well known

limitations [LIU2003b, BEL1996, VID2004]:
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© The dependence on nicely formed meshes consumes a substantial quantity of manpower.

o In stress calculations, the stresses obtained using FEM packages are less accurate.

© When handling large deformations, considerable accuracy is lost because of element
distortions.

© Crack growth with arbitrary and complex paths has to be coincident with nodal lines, which
is never known a priori.

©o As FEM is based on continuum mechanics, fragmentation is very difficult to represent, hence
many discontinuous materials can not be accurately modeled.

o The interfaces between bodies of different material properties and their coupled behavior is
not completely accurate.

The answer to these limitations seems to be in the adaptive re-meshing approaches, that however

only serves well on 2D meshes and also consumes a very high amount of computational power.

B Finite Differences Methods (FDM): Finite Difference methods apply a grid over the region and
solve the Partial Differential Equation by approximating the derivatives via the Taylor series expansion
and using differences as an approximation. For this method it is important that a uniform grid is applied
over the region in order to reduce errors by the differencing method. FDM are thus less robust for
irregular shaped bodies than finite element methods which divide the region into separate elements to
fit the region and use a variational approach to solving the PDE. The benefits of FDM is that it is easy
to understand, easy to explain, easy to program, meshing is simple, and the error is known in terms of
the remainder from the Taylor series expansion of the derivatives. It used to be commonly used in fluid

dynamic methods mainly because of its stability [NEA2005].

C Finite Volume Method (FVM)

The finite volume method is a discretization method which is well suited for the numerical
simulation of various types of conservation laws (elliptic, parabolic or hyperbolic, for instance). It
has been extensively used in several engineering fields, such as fluid mechanics, heat and mass
transfer or petroleum engineering. Some of the important features of the finite volume method are
similar to those of the finite element method: it may be used on arbitrary geometries, using
structured or unstructured meshes, and it leads to robust schemes [EYM1997]. The
implementations of FVM methods for Computational Solid Mechanics can be classified into two
categories: the cell centered approach and the cell-vertex one. In the cell-vertex approach, the
displacement and stress variables are stored at the vertexes of the mesh which are themselves
enclosed by control volumes formed by the median duals of the mesh; whereas in the cell-centered

method the variables are stored at the centroids of cells which are also used as control volumes
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themselves. Thus the cell-vertex approach needs considerably less computational effort and

memory for a given mesh.

D Mass-spring systems (MSS)

Mass-spring systems have been widely used in computer graphics because they provide a simple
means of generating physically realistic motion for a wide range of situations of interest. Even
though the actual mass of a real physical body is distributed through a volume, it is often possible
to simulate the motion of the body by lumping the mass into a collection of points. While the exact
coupling between the motion of different points on a body may be extremely complex, it can
frequently be approximated by a set of springs. As a result, mass-spring systems provide a very
versatile simulation technique. In most particle systems, the forces derived from internal strain
energy are equivalent to spring forces. Hence, we can view the model as a network of particles
connected by springs. Since particle systems already represent a discretization in space, only a
system of ordinary differential equations has to be solved. The trajectory of each particle with mass

m at position x is computed by Newton’s equation of motion.

2.2.3.3.- Mesh free Methods

The key idea of the mesh-free methods is to provide accurate and stable numerical solutions for integral
equations or PDEs with all kinds of possible boundary conditions from a set of arbitrarily distributed
nodes (or particles) leaving aside any mesh that provides the connectivity of these nodes or particles. One
important goal of the initial research is to modify the internal structure of the grid-based FDM and FEM
to become more adaptive, versatile and robust. Much effort is concentrated on problems to which the
conventional FDM and FEM are difficult to apply, such as problems with free surface, deformable
boundary, moving interface (for FDM), large deformation (for FEM), complex mesh generation, mesh
adaptivity, and multi-scale resolution (for both FDM and FEM). Recently, a number of mesh-free
methods have been proposed for analysing solids and structures as well as fluid flows. These mesh-free
methods share some common features, but are different in the means of function approximation and the

implementation process.

The following is not a fully comprehensive list but just a short enumeration of the most important mesh-

less methods available according to literature [VID2004, EYM 1997, LIU2003b].

A Smoothed Particle Hydrodynamics (SPH)

In the SPH method, the state of a system is represented by a set of particles which possess
individual material properties and change according to the governing conservation equations. SPH

was developed for hydrodynamics problems in the form of PDEs of field variables such as velocity,
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density, energy, etc. To achieve the numerical solution of the mentioned PDEs one needs to
discretize the problem domain where they are defined. Next, a method for obtaining the
approximated values and time derivatives at any point is need. The function approximation is then
applied to the PDEs to obtain a set of ODEs in a discretized form with respect only to time. This set
is then solvable by using one of the standard time integration methods described in previous

chapters.

B Diffuse Element Method (DEM)

An alternative but related approach to developing a meshless approximation is to use a moving
least square approximation. Moving least squares is a method of reconstructing continuous
functions from a set of unorganized point samples via the calculation of a weighted least squares
measure biased towards the region around the point at which the reconstructed value is requested.
In computer graphics, the moving least squares method is useful for reconstructing a surface from a
set of points. Often it is used to create a 3D surface from a point cloud through either
downsampling or upsampling. This was employed by Nayroles and Touzot in 1992 to interpolate

the material properties among nodes of a structre without need of predefining a mesh [NAY 1992].

C Element Free Galerkin Method (EFG)

This method is an extension of the previous one in terms of mathematical rigour and accuracy.
However, it still requires the definition of a series of background cells for the definition of
quadrature point. This eliminates its mesh-less characteristics and results in a computationally more
expensive procedure. Besides, this method can yield non-positive definite systems of equations,

reducing even further the efficiency.

2.2.4.- Evaluation of numerical methods

Tables 2.1 to 2.3 present in a condensed manner the methods enunciated above (abbreviations can be
found in bold letters in the previous section). These tables intend to facilitate an approximated evaluation
and comparison over the four most relevant aspects regarding numerical methods: accuracy, stability,

efficiency and ease of implementation.

The values range between one and three points (one for low and three for high) for the sake of generality
and correspond solely to the informed opinion of the author of this thesis. It is important to keep in mind
that there is not an easy manner to objectively compare numerical methods. This explains why most
references in literature focus on particular applications for particular methods. Conclusions obtained from
these works are commonly too specific for our purposes. Chapter 2 of this thesis will try to address this

situation by applying energetic principles to the comparison of some of the methods presented here.
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In terms of accuracy and stability ODE solvers depend directly on the time-step parameter and the order
of the derivative. Paradoxically however, the higher the degree of accuracy of the simulation the smaller

becomes its stability field.

For DAE methods, accuracy is directly affected by the previous choice of ODE parameters (time-step
primarily). Besides, as they operate in the formulation level, for each of them exists a particular set of
parameters. For instance the Penalty Method gains accuracy the more its penalty parameter approaches
infinity. This value is obviously limited by the computer capabilities. Impulse Based methods require an

extra iterative sub-process whose convergence is limited as to the type of problem to be solved.

Regarding the accuracy of PDE solvers, the main defining factor is the density of the mesh for mesh
based methods, and the density of interpolation points in the mesh-free schema. But also the form of the
characterizing functions and polynomials should be finely tuned according to different problems.
Adjustment of these parameters depends highly on the choice of the analyst at the time of modelling, not

so much in the method itself.

In terms of efficiency, in ODE methodologies there are obvious advantages for explicit schemes as they
do not require extra computations. Implicit solvers, however, keep a higher degree of stability for larger

time steps, which makes them eventually more attractive in simulations where low resolution is sufficient.

DAE methods generally involve extra algebraic sub steps, which are determinant in their computational
cost, but they are not always applicable to every type of problem. For example, the Lagrange Multipliers
method results in an expansion of the underlying system of linear equations that, depending on the
number of constraints, can be computationally more expensive. However, this expansion reduces the

potential numerical instability arising sometimes in the Reduced Coordinates method.

PDE methods have their most simplistic approach in the form of rigid bodies, where no differentiation nor
operation is made, being the mesh free methods the least efficient as state computations have to be made

over the whole population of approximating points on each time step.

Ease of implementation for each method is not only reflected in the number of sub algorithms contained
but also in the conceptual background, intuitiveness of their inherent principles and availability of

information on how they work.

In general ODE methods are broadly available, extended and well documented, but given their generality

it can result difficult to discriminate when to apply them for particular problems.

DAE methods are often entangled within the very formulation of ODE methods in some applications, and

their mathematical approach and explanation results often awkward and counter intuitive.

PDE methods range from the easiest Finite Difference to the very complex formulations of Finite
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Elements and Smoothed Particle Hydrodynamics. In general, these are the most mathematically involved.

Table 2.1: Summary of ODE / Time integration methods

Scheme Method Accuracy Stability Efficiency Ease Otfaltrir;;:llemen.
EE * * ok * ok ok * ok ok
ERKn * %* * % * % * k%
RKDP * * * k ok * %k k * %
% RKF * % * % % * % % * %
LI% RKCK * % * % * % % * %
ABM * * * % * k% * *
SG * % * % * % % *
LF * % * % * % % * % %
IE * % * % * % * %
IRKn * * * % * % *
CN * % % * % % * % *
%_ BDF * Kk * ok ok * % *
£
- CH * % % * % % * k k *
NB * % * % * % * %
HHT * % * % * % *
Table 2.2: Summary of DAE / Constraint integration methods
Scheme Method Accuracy Stability Efficiency Ease °tfa't?;|:‘leme"'
PM * * * % % * % %
c
RS
4@ LM * % * % * * % %
(%g) RC * % * % * % * %
< UK * % % * % % * % *
IB * % * % % * % * % %
Velocity
TPS * % * % * % *
Position PBD ** * % ** * ko
Table 2.3: Summary of PDE / Matter integration methods
Scheme Method Accuracy Stability Efficiency ek otfaltrirgellemen-
Rigid Body RB * * ok ok * k% * kK
FEM * % % * % % * % * %
FDM * % * % % * % * %
Mesh based
FBM * % * % % * % * %
MSS * k k * % % * % * *
SPH Fkdk Fkdk * wk
Mesh free DEM wekk Kkk * *
EFG *% *k%k * *
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2.3.- Industry tendencies

Table 2.4 enumerates some different scientific and engineering fields. By means of a sample of selected
representative packages (either commercial or open source), and exposing the numerical methods in them
implemented, it is shown how these industries are related to the integration concepts described in the

previous section.

Table 2.4: Comparison of different disciplines, methods and implementations.

Field of Original Ap- Implementation
plication / Industrial ODE DAE PDE P Name
Background
SG/ERK3/ERK4/
ERK5 GC FEM SPACAR
Mechatronics/Robotics ERKF2 / ERKF3/
ERKF4 / ERKF5 / GC/LM RBM Sim Mechanics
RKDP / ABM / BDF
Aerospatial CN/IE / BDF LM FVM MBDyn
ERK2 LM RBM SimCreator
Automotive ; _
BDF / ABM / ERK4 IB /LM FEM Universal Mecha
nism
EE 1B RBM ODE
Games / Graphics / Ani- ERKA B/LM RBM IBDS
mation
EE B RBM / MSS Havok Physics
ERKS5 / IRK4 LM FVM / FEM OpenFOAM
Multiphysics
BDF / ER:<E4 /| ERK5 / LM FEM COMSOL
SOFA (Simulation
Medical / Biomechanics EE/ERK2 /ERK4/ PM /1B MSS / FEM /RBM Open Framework
IE / SPH .
Architecture)
NB /HHT /IRK/CH GC FEM SAP2000
NB /IE /HHT / IRK2 PM FEM DIANA
. . Explicit unspecified LM/ PM FEM/FVM/SPH EUROPLEXUS
Structural Engineering
ERKATERIGTCN/ LM / PM FEM /FVM / SPH ANSYS
NB / HHT GC/PM/LM FEM ABAQUS FEA

The selection of implementations was made purely with illustrative purposes, so many other important and well
established names may have been omitted. A complete survey on the matter of computer software for structural

dynamics would be the topic for a much longer thesis and is left open by the author.

It can be appreciated how mechatronics, robotics and aerospatial oriented packages, where a high level of

accuracy and stability is compulsory, facilitate analysts a wide range of time solvers, whether implicit and
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explicit, and rely on the more “classical” acceleration based methods for enforcing the constraints. The
integration of continuum mechanics ranges from the simplistic Rigid Body Models, utilized in robotics, to

the Finite Volume Method that allows for easier implementation of flow-solid interactions.

Automotive simulators and game engines, where real time experience and computer efficiency are the
main concerns, make a wider use of explicit time integrators (lower accuracies), impulse-based methods
(higher speed) to compute the constraints and show a dominating presence of the simpler Rigid Body
Models. Also in the automotive field safety simulations and prototyping need top be carried away, hence

the use of implementations with more sophisticated methods such as FEM.

Multiphysics packages, by means of which highly complex interactions are analysed (thermal, dynamic,
electrical, etc.) utilize mostly FEM given its versatility in the solution of PDEs. General purpose time

integrators either implicit and explicit are present, given the broad scope of these applications.

When it comes to health environments, where the level of detail is focused on complex tissue-like
materials, the span of choices regarding matter integrators grows considerably. Given the need for real
time interactivity in surgical simulations, the span of ODE integrators is fairly broad, along with the faster
impulse based constraint solvers. Human limbs are approximated by means of Rigid Bodies for the study

of the behaviour of articulations.

For the Structural Engineering field it is shown the dominance of FEM and the application of very
specialized time integrators. It is remarkable how computational cost is not regarded so much as accuracy
and numerical stability, as the choice of these integrators along with the more canonical constraint
enforcing methods can prove. Also the tendency towards analyzing fluid-structure interactions appears in

the form of FVM and SPH methods.
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2.4.- Discussion

From the above chapters the interested reader might have achieved some perspective over the entangled
subject of structural dynamics. This is an important contribution of this thesis as a comprehensive, clear
and accessible introduction to the topic seems to be unavailable at the moment. This happens despite the
existence of numerous specialized courses on non-linear structural analysis and also the huge amount of
literature produced. It was not found by the author any organized scheme in terms of tangible concepts

such as time, matter and constrains.

It is the opinion of the author that unfortunately the tendency appears to be that of over-specialization. It
most likely discourages not only the newcomer but also those who try to look up into other branches of
the same tree. Another perceived phenomenon is that of the over dominant position of the Finite Element

approach, that relegates sometimes unfairly other equally effective methods.

It is suggested here that a better understanding of numerical methods utilized with simulation purposes
can provide satisfactory and safe answers to structural engineering needs, as opposed to simplified
methods and models. Such simplified methods, often encouraged from regulations and common practice,
may have an apparent immediate advantage. However, they tend to obfuscate the global perspective given

their tendency to prolificacy.

Table 2.4 enumerates some different scientific and engineering fields. By means of a sample of currently
popular packages (either commercial or open source), and exposing the numerical methods in them
implemented, it is shown how these industries are related to the integration concepts described in section

2.2.

The table displays how mechatronics, robotics and aerospace oriented packages, where a high level of
accuracy and stability is compulsory, provide the user with a wide range of time solvers, either implicit
and explicit, and rely on the more canonical acceleration based methods for enforcing the constraints. The
integration of continuum mechanics ranges from the simplistic Rigid Body Models, utilized in robotics, to

the Finite Volume Method that allows for easier implementation of flow-solid interactions.

Automotive simulators and game engines, where real time experience and computer efficiency are the
main concerns, make a wider use of explicit time integrators (lower accuracies), the faster impulse-based
methods to compute the constraints and show a dominating presence of the simpler Rigid Body Models.
Also in the automotive field safety simulations and prototyping are made, hence the use of

implementations with more sophisticated methods.

When it comes to health environments, where the attention is focused on complex tissue-like materials,

the span of choices regarding matter integrators grows considerably. However, provided the need of also

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 49



State of the art: Overview of numerical methods for structural dynamics analysis
efficient time and constraint simulations, more advanced techniques are made available.

Simulations of molecular dynamics mainly happen in academic and research environments (chemistry,
biophysics, etc.), and in general do not imply constraints among bodies as the simulated elements are just
particles. Explicit time integration is utilized as the common duration in this case is usually no longer than

few seconds, hence short time steps can be taken to avoid numerical stiffness problems.

Regarding structural engineering it is shown the dominance of FEM and the application of very
specialized time integrators. As computational cost is not regarded so much as accuracy and numerical
stability, the choice of these integrators along with the more canonical constraint enforcing ones makes

perfect sense within this field.

It permits also to clarify how FEM is a name too much generic for a very broad field of simulation tools.
The fact that an implementation contains a continuum mechanics PDE solver by means of the FEM
doesn’t make this engine into a FEM. It is a common case to find in literature mentions to implicit FEM
when describing numerical methods using an implicit ODE integrator where FEM is the method of choice

for approximating material behaviour (PDE), regardless how misleading and confusing that might be.

Finally, a benchmarking scheme in the conceptual side of the state-of-the-art methods has been shown for
evaluation and comparison. It should serve to locate the level of complexity and accuracy of the
implementations used in structural dynamics. Insofar the trend within this discipline seems to be that of

sacrificing computational efficiency in benefit of canonical schemes of higher accuracy.
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3.- Comparison and study of numerical methods by means of variational
mechanics
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3.1.- Introduction

In this chapter it will be shown how focusing the structural analysis in energy changes instead of strains
and stresses actually gives a better understanding of the studied phenomena. It is not meant to revise the
existing variational integration methodologies, as this has already been done somewhere else
(IMAR1999], [WES2004], [LEW2003]), but to give them a practical application to a common problem in

engineering: the assessment of numerical methods.

As it was shown in the previous chapter, there is a preference in the practice of Structural Analysis to use
forces and accelerations rather than energy concepts. Unfortunately this approach often restricts a global
understanding of the phenomena, as for example, in the case of earthquakes, damage is a function of the

square of the velocity, and not so much of the acceleration [HOU1956].

A consequence of this preference is that the magnitudes of energy and momentum, and the variational
principles of mechanics, end up confined to the formulation of the different methods. For their robustness,
energy principles are employed in the formulation of PDE methods like Galerkin's and FEM, but they

quickly are put aside and in practice only strain and stress relationships are examined.

Variational mechanics date back as far as the Eighteenth Century, when Leibniz, Euler, Maupertuis and
Lagrange devised the calculus of variations and the principles of least action. This methodology of
treating physical phenomena is based on the notion that everything in Nature tends to a state of minimal

energy [LAN1952].

The original formulation, that eventually led to the Hamiltonian theories and the Principle of Stationary
Action [HAM1835], was enunciated in a general continuum hypothesis. Recently however, discretized
versions of the principle of least action are giving place to a promising modern class of time integration

algorithms named variational integrators, or, as they are also known, symplectic or geometric.

By means of the variational approach to the problems of discrete mechanics much of the previous existing
literature is now being reviewed under a new perspective. Some of the important topics that come out
naturally from this method are symplectic-energy-momentum methods, error analysis, Newmark

algorithms, constraints and forcing [MAR1999].

3.1.1.- Targets and interest of our research
In the beginning, a framework based on variational principles will be presented for the assessment of the
quality of the numerical methods outlined in the previous chapter. This is meant to reach an audience less

familiar with those principles by linking the abstract ideas involved with actual implementation elements.

It will also be proposed a systematic treatment of the numerical methods for structural dynamics in a
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comprehensive manner based on the classifications made in the previous chapter. These methods have
proliferated since the 1950s with the ever-increasing power of computers and have given place to a
cumbersome mix of mathematics, physics and computer science that is often difficult to grasp. In this
thesis, it is proposed a categorization according to the physical qualities which they represent instead of

according to their mathematical properties.

Eventually, a series of combinations of methods will be compared and assessed under the scope of their

energy-conservation properties in a set of non-trivial examples.

3.1.2.- Variational mechanics

According to the principles of variational mechanics [WUN2002], the difference between kinetic energy
and strain energy in a structural system equals the applied work due to external forces. In this way, by
computing the energy scalars and carefully accounting for this difference at each time step, one should be

able to infer the degree of accuracy of a simulation [BUG1991].

The correct values should not in any case diverge much from zero, and deviations from this value would

give us an idea about how accurate and stable a method is.

3.1.3.- Numerical methods for structural analysis

In the previous chapter, it was shown how the vast amount of existing numerical methods can be grouped
into three main sets according to the kind of physical phenomena they represent and the type of
differential equations they discretize: matter integration techniques (Partial Differential Equations),
constraint integration techniques (Algebraic Differential Equations) and time integration techniques

(Ordinary Differential Equations).

Based on this concept, we have chosen the following matter integration implementations: Finite Element
(FEM), Finite Differences (FDM), and Mass Spring Systems (MSS). For the constraint integration we
will limit ourselves to the Constraint Reduction (CR) technique, whereas in the case of time integration
we will study the Newmark Beta (NB), Hilber-Hughes-Taylor (HHT), Chung-Hulbert's generalized-alpha
(CH) and Wilson Theta (WTH) methods.

All these time integration methods are available in a general-purpose commercial package, so we were
able to establish a comparative reference for our own implementations. In the case of matter integration,
we implemented our own algorithms from the literature, and adapted them to our own purposes, also
making a previous benchmark of their results with respect to those obtained by the aforementioned

software.
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3.1.4.- Numerical experiments
Three simple structural models under four dynamic loadings will be tested. The influence of the

parameters time step, damping ratio and the number of integration points will be studied.

The work done by the load patterns, along with the internal elastic, kinetic and dissipative energies, will
be computed at each time step and combined together to verify the Hamiltonian energy balance. Its
integral through time will provide different values of the total Lagrangian action of the structure-loads
system. The deviation from a proposed analytical value, whose computation is straightforward, would

account for the level of accuracy of the implementations.

It will be shown how, whether used on single elements or complex systems with more elements, this
methodology could be employed as a reference since the value of the action is a simple scalar which is

easy to monitor.
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3.2.- Variational mechanics

3.2.1.- Principle of least action

In variational mechanics, the Lagrangian functional L, describing the dynamics of a system, is given by:
L=T-U (3.1)
where T and U are the kinetic and potential energies of the system, respectively.

According to Hamilton's definition, action S is the integral through the studied time lapse of the Lagrangian,

2

S=[(T-U)at (3.2)

tl

The correct path for a dynamic system is the one for which the value of the action integral is stationary. This leads to

a minimization problem which is rooted in the variational principles of Lagrange and Euler.

3.2.2.- Euler-Lagrange equation and energy balance

For a single particle-spring system subjected to an external force, the Lagrangian can be written as:

L(x,x):%m-xz—%k-xz (33)

where m is the mass of the particle, & is the stiffness of the spring, x is the instantaneous position and the

superscript dot indicates derivation with respect to time.

From Hamilton's principle of stationary action, and after some variational calculus, the evolution of a

physical system is described by the solutions of the forced Euler-Lagrange equation for the action of the

system:
d OL(x,%) OL(x,x)_ .
dt ax ax _Qext(xlx) (34)
where:
8L(x,x)_dU(x)_il 2
ox  dx _dx(2kx) (3:5)
OL(x,x)_ dT(x)_ d 1 2
ox  dx  aia™Y) (3.6)
0,.(x,x)==—cx+f,, (1) (3.7)

Substituting (3.4), (3.5) and (3.6) into (3.3), and derivating (3.4) with respect to time, we get the

Newtonian classical formulation:
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Ea—a:m-x—kc-jc+k-x—fm(t)=0 (3.8)

where the externally applied force f.« is generally known and the velocity dependent damping term is a

non-conservative force defined in terms of d'Alembert's virtual work [WAN2012] .

3.2.3.- Kinetic energy of a system, T

For a structural system under dynamic forces, the above equations are used in a vector-matrix fashion,
where each of the points of the structure and its degrees of freedom are represented as terms of a vector
and the mass and stiffness of the whole system characterized by a matrix. This leads to the following

expression for the computation of the kinetic term:
{x) (M) {x) (3.9)

In the present work, the construction of the mass matrix consists in the simple addition of the elements

particular masses in their concurrent nodes (lumped mass matrix).

3.2.4.- Elastic potential energy, U
When a body of some material is subject to external forces, its internal structure is deformed. The

displacement of these forces in the space are the source of a work.

ir
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A
g
S
0 B | M N

——Parmanent set—

Figure 3.1: Stress-Strain diagram for a typical engineering material. The value of the area of the OAB
triangle is the elastic potential energy stored in the material due to strain. The triangle MHN corresponds
to a larger strain, passing through the plastic range. Its larger size is due to the “strain hardening”
phenomenon.
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The scalar value of such work, in order to preserve balance of energy, must be equal to that of the internal

forces in the body (stresses) times the internal displacements within the material (strains).

In general, and for any engineering material, this internal energy can be characterized by means of a

stress-strain curve like the one depicted above.

Typically these curves present two significant parts, one “elastic” (from point O to point A), with a
straight line whose slope corresponds to the material's Young modulus, E, and the remainder being the
“plastic” part until final rupture. The area contained within this curve and the abscissas can be accounted

for as the total work needed to cause the deformation of the body.

Given the fact that deformation within the elastic range is fully recoverable, we can assume that the same
will apply for the energy, so it is considered a potential energy that remains “stored” within the material's
volume. Its scalar value totals to the geometric area of the triangle defined by the points OAB in the

figure 3.1.

The energy that is not recoverable is commonly dissipated in the form of heat. However, for the sake of

simplicity the scope of this article will remain within the elastic range.

3.2.4.1.- Linearisation of the continuum in beams

In engineering practice, the material conforming a beam is modelled under certain simplifications that
make possible the linearisation of the continuum's differential governing equations. This is made possible
by including in the formulae the geometric properties of the cross section and mass distribution along the

beam element.

These differential equations, when linearised into a beam of rectangular section, can be formulated in

matrix form as follows [WUN2002]:

Kinematic equations:

£ d. 0 0 0 .

Yol|z| O dc 1 0w, (3.10)
K, 0 0 d, O 9xy

Yo 0 0 0 4|,

Material law:

N, EA 0 0 0f|e,

0, |- 0 £G4 0 0 1Y (3.11)
M, 0 0 EI 0O Ky

T, 0 0 0 G Yo
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p]d. 0 o olw,
_|py|=|0 dc 0 0110, (3.12)
m | |0 -1 d, o||M.
m| 0 0 o al|r,

£.. 1s the axial strain

Y., Is the shear angle

K,, 1s the moment curvature of the beam
Y4 1s the torsional angle of the beam

d, is the d/dx operator

u,, is the axial displacement towards x

w__ is the axial displacement towards y

Xy

X

0,, is the rotation of the section
. 1s the torsional rotation of the section
is the axial stress component
is the shear stress component
is the moment stress component

is the torsional stress component

X

Loz 5

y

M
T,
EA is the axial rigidity

k, is a section's shape shear constant
GA is the shear rigidity

El is the flexural rigidity

GJ is the torsional rigidity

px is the external force density towards x
p, is the external force density towards y
m_ is the flexural moment density

m, is the torsional moment density

z

3.2.4.2.- Elastic strain energy in beams

In elastic materials, the stored potential strain energy can be accounted for as half of the integral over the

volume of the internal strains times the internal stresses, whose formula [ARG1960]:

where:

Rabindranath Andujar

Ue,Z%J‘[U}T{e]dV (3.13)

(o) =lo, 0,0 T T .7,] (3.14)

zz Xy Xz yz

T _
[6} _{Exxgyyszz nyyxz sz}
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In the case of the linearised beam described above, we can then define four kinds of strain energies
according to the four main stress components: axial (N), shear (Q), bending moment (M) and torsional

moment (T).

From them, we can develop the analytical formulae for the elastic strain energies within a beam subjected

to external loads, referred either to the internal forces or the deformations.

In table 3.1 the final formulae for each one of these strain energy components are enunciated. The given

expressions can be either a function of the displacements along the beam or of the input forces.

Table 3.1: Displacement and force based formulae of elastic strain energy in a beam.

Displacement Force

I 2 I

1 du 1p F
Axial U,==|EA — d U,==| —=—d
Bk Y 2{ o T Ea ™

l l 2

. 1 2 1 o M
Bend U,==| EI “d U,==| —4d
ending u 2J0‘ X o 2‘! 77 by

! 2 ! 2

1 du 1p F
Sh U,==| 4G — d Ug==| —d
ar Hs 2{ a7 T2 Ag ™

¢ . d 1 ¢ 77
Torsion UT:E‘!)‘ GJ E dx UT:E ) de

Figure 3.2: Stress-strain components in a beam. The directions of the infinitesimal strains and stresses
are arranged according to the length of the beam.

For illustrative purposes, the development of the bending strain formula is provided next. One of the
appeals of the energy approach to structural mechanics is the consistency with which problems can be

enunciated, being equally applied for 2D or 3D cases.
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3.2.4.3.- Bending elastic strain energy
From the small strain beam theory of Bernoulli-Euler, it is obtained that the strain and stress components

are respectively, when deformations occur in the XY plane:

O-xx
Exx:_wxy”(x>'y:_ny'y:F (316)
UM:#:E'EM (3.17)

That substituted into the incremental form of (3.13) lead to the relations (force and displacement based

respectively):
(3.18)

1 o 1 M*?
dv=
2. g0 2 E-I

dUB_g ;deg(w”(x).deAdz

dU =
(3.19)

that integrated under the assumption that the origin of the coordinate system lies on the neutral axis of the

beam and the bending moment of inertia is /= ff y*d4  results in:

N

[ EK (3.20)

=1

2

1 2
U,y= E{EI( "(x)Vdl

(3.21)

Figure 3.3: Bending of a column. The energy needed to cause elastic deformation is a potential function
of the constituent material properties (E), the shape of the section (I) and the exerted force (M).
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The remaining formulae from table 3.1 are obtained in a similar fashion, directly from the constitutive

equations [ARG1960].

This allows for a coherent manner of treating the different numerical methods of the following chapter,
whose formulations are so diverse and in general not possible to benchmark or compare under objective

parameters.

For a structural system, where several elements are combined and attached in # nodes, the equations that
establish the behaviour of each node with respect to others are defined in the stiffness matrix /K/, whose
size is n times the number of degrees of freedom. This number can be as large as six, when rotations and
displacements are evaluated in all three directions, or just two, when only 2D displacements need to be

known.

The coefficients that conform this matrix are obtained through the different matter integration methods
(FEM, FDM, MSS, BEM, etc.) by solving the above equations in combination for all three kind of
stresses in all three planes. When a model is 2D instead of 3D one simply limits the number of terms in

equations (3.14) and (3.15), hence reducing the range of /K].

Eventually, in order to compute the total elastic energy U of the system, we use the following expression:
U= e K ]{x] (322)
being {x} the vector of displacements obtained.

3.2.5.- Work done by dissipative forces
In every real structure the existence of damping is a known phenomenon whose nature is still not fully
understood due to its inherent complexity. In order to incorporate it in a simulation, numerical artefacts

are created that account for the energetic dissipation that it involves.

In general, a damping matrix /CJ is defined that accounts for the dissipative properties of the structural
elements. This matrix affects the velocity in the Newton equation as a force acting opposite to the external

force.

The work done by this force can be accounted for by means of the following relation:
, .
e x (3.23)

The simplest model for dissipation in structural dynamics is due to Lord Rayleigh and is known as 'linear
damping', 'Rayleigh damping' or 'classical damping'. In this idealization, the damping matrix is assumed

to be a linear combination of the stiffness and the mass matrices. Despite the numerous criticisms this
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model receives it is still widely used for its convenience when combined with the modal analysis
procedure [ADH2000]. Once the stiffness matrix /K] and the mass matrix /M] are conformed, the

damping matrix /C] can be defined as follows:
[Cl=oc[M ]+B-[K] (3.24)

The value of the coefficients being determined by the solution of the eigenvalues of the /K] matrix

[ADH2000].

3.2.6.- Work done by external forces
The total work exerted over the structure by the external applied forces can also be represented in a
vectorial fashion as:

W=7 Fex|1X] (3.25)

Where the vector F,, represents the forces in a global coordinate system.

3.2.7.- Total action of the system, energy balance and the Lagrange-d'Alembert principle
In order to account for the correctness of a simulation, we can utilize the Lagrange-d'Alembert

principle!', that establishes the following relation:

2 2

5[ Ldt+[ F,,6xdi=0 (3.26)
tl

tl

If we withdraw the variation operator and rearrange terms this leads to:

12 2
[ Lai=—[F,, xdt (3.27)
tl tl
Which, in discrete form leads to:
2 12
> Ldt=-) F,, xdt (3.28)
tl tl

Having defined previously each one of the terms, we can now write the elementary formula from which

we can estimate the degree of exactness of a simulation:

12 12

2T =U)di==3 (W) di (3.29)

tl tl

This is basically the computation of an energy balance where the Hamiltonian action is treated, in its
discrete form, as an average over time of each instantancous Lagrangian. In order to account for the
external forces involved, we also integrate over time their work. According to d'Alembert's principle,

these two measures should be equal when internal dissipative forces (hysteretic damping) are not present.
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Any divergence from this equality gives a measure on how inaccurate a numerical method is by means of
a single value, without the need of finding simplified analytical models whose assumptions rarely fit the

real problems of the engineering practice.
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3.3.- Numerical experiments

In this section we provide the results of our numerical experiments, where several combinations of
methods were used in diverse simulations. Three different specimens of increasing complexity were
tested, and some engineering relevant parameters affecting each numerical method were systematically

studied (time step, damping ratio and number of integration points).

In order to avoid excessive complexity, the specimens were treated as 2D models and kept within the

elastic range, considering the shear effects in deformation to be negligible.

3.3.1.- Studied methods

As explained earlier in chapter 1, for the simulation of structural dynamics three different physical
notions need to be integrated: time, matter and kinematic constrains. A series of methods was selected
from the enumerated list and the necessary code was written in a custom-made application. These
implementations are further described in chapter 5 of this this. In order to assess the correctness of these
implementations, a third party general purpose commercial software was also used to make the

simulations in parallel with good agreement in the results.

Figure 3.4 is a diagram of a possible sequence of combined methods as they were coded for this thesis

and in general in any available application.

MATTER ) CONSTRAINTS TIME

Figure 3.4: Schematic of some numerical methods and their associated physical notions. In bold letters

those implemented for the numerical experiments of this thesis. The arrow represents a possible sequence
of methods for a dynamics simulation.

The following is an overview of the main characteristics of our implementation.
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3.3.1.1.- Matter integration methods

To describe the dynamics of matter we have an infinite number of degrees of freedom because the
particles that conform it can have arbitrary displacements with respect to each other. Such systems are
described using partial differential equations (PDEs) where time and spatial coordinates are related. These
general partial differential equations, which are applicable to any solid or fluid material, are derived from

the constitutive laws of the material.

For their solution, two different approaches can be taken in order to control the number of degrees of
freedom (i.e. discretize): creating a mesh where the material displacements are limited (mesh based
methods) or establishing the equations in the form of potential functions so that they compose a system of

particles that regulate each other (mesh free methods) [LIU2003a].

We have particularized our study in three mesh based methods with different discretization schemes:

Finite Element Method (FEM), Finite Differences Method (FDM) and a Mass Spring System (MSS).

For the general computation of nodal displacements and rotations, a framework employing the Direct
Stiffness Method (DSM) was prepared [AGU2005]. In our case, where beam elements were used, the
analytical solution of Bernoulli-Euler is lumped into local element matrices that are ultimately assembled

in a global stiffness matrix [PRZ1968].

For the FEM implementation, the description of the elastic deformation of the beam is based on a Hermite

interpolation polynomial, obtained from reference [WUN2002].

FDM establishes the relations between stations along the beam as a sequence of equations that form a

linear system easily invertible [AGU2005] [STI1978] .

MSS is a bit more complex as it requires a previous discretization of the beam into a set of connected
tetrahedra, but from the point of view of Physics it results clearer as the assumptions are that the nodes
are simply connected by bars with a characteristic Young's modulus and area [MUL2008]. Some
adjustments had to be made to the position of the masses in the cross section so the inertia of the section

would match the value assigned in the polynomial-based methods.

The global nodal displacements and rotations computed by means of the DSM were transformed

ultimately into local coordinates and served as input variables for each of the three methods above.

3.3.1.2.- Kinematic constraints integration

When bodies are subject to kinematic constraints, the set of differential algebraic equations (DAEs)
defining the matter have to be satisfied besides from the purely time-related ones. In order to numerically
tackle these conditions the equations of motion are rearranged to obtain different schema from which

construct stable, accurate and faster formulations. The possibilities are to do it either in the acceleration
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level, the velocity level or in the position level of the equation (3.8).

In the more common acceleration level schemes, the predominant ones are Constraint Reduction (CR),

Lagrange Multipliers (LM) and Penalty Method (PM).
& & & &

Kg = = Kgredd =

M A MRNRAR

Figure 3.5: Constraint reduction. The global stiffness matrix is made
non singular by symmetrically subtracting the columns and rows
corresponding to the constrained degrees of freedom.

Kg: e e :ngxt:

1 - - - - -{lo o
-1 - - - o o
Figure 3.6: Lagrange multipliers scheme. The global stiﬂn-ess matrix
is made non singular by symmetrically adding columns and rows

where ones are placed in the location of the constrained degrees of
freedom.

o0

Figure 3.7: Penalty Method scheme. The singularity of the global
stiffness matrix is treated by scaling the diagonal elements of the
constrained degrees of freedom with a very large number.

In this case, the strategy is to alter the stiffness and mass matrices in such a way that they become

invertible (after assembly, the stiffness matrix is symmetrical and singular).
This is achieved by either reducing the matrices (CR), or by expanding them, adding or removing those
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rows and columns where the degrees of freedom are to be constrained (LM) or by modifying the

corresponding values in the diagonal so their inversion gives a number as close to zero as possible (PM).

Figures 3.5 to 3.7 provide a visualization of these methodologies as they are commonly implemented.

3.3.1.3.- Time integration

Integration of time in a structural dynamics simulation reduces to the solution for each time step of an
Ordinary Differential Equation (ODE). The first possible classification for ODEs solvers distinguishes
between explicit, implicit and hybrid methods. From the available different schemes we have used for our
comparison those provided by the SAP2000® (v15.0.0) commercial package: Newmark Beta (NB),
Wilson Theta (WTH), Hilbert Hughes Taylor (HHT), Chung and Hulbert (CH), all of them implicit. We
implemented our algorithms from references - ?2- @9 and ®, Results were in very good agreement

with those of the commercial package.

3.3.2.- The studied specimens
As mentioned above, and for the sake of simplicity, we omitted material and geometrical non-linearities
from our analyses. The material and geometric properties shown in table 3.2 are common in engineering

practice, with values similar to those of a 200x200x2 mm hollow extruded steel bar.

The geometric configuration of each model is displayed in Fig 3.8, in order of increasing complexity.

Table 3.2: Properties of the beam elements composing the specimens

Parameter Value
Area, A 144 cm?
Modulus of inertia, I 7872 cm*
Modulus of elasticity, 21000 kN/cm?
E
Shear modulus, G 8076,92 kN/cm?
Density, d 7.892E-8 kN/cm?

Notwithstanding the obvious resemblance to a typical building engineering application, this work has a
broad generality and is applicable to any structural dynamics problem. It has potential use in the

simulation of any mechanical object regardless of size or shape.
Model A:

The simplest model of choice for our research was a 387,5 cm long cantilever column under a lateral

loading acting in its tip. The cantilever model is extensively utilized for the validation of numerical
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methods in the literature. It is composed of two elements, each half the length of the column.

F
A

387,5

F 500

387,5
vy

500 500

,387,5 300 y 300 300

Figure 3.8: Geometry of the three studied models. Dimensions in cm. Three frames of increasing
complexity consisting of beams, nodes and constraints.

Model B:

A natural extension to this model from the structural engineering point of view is a simple moment frame,
with identical geometrical and mechanical properties for each beam element as in the previous case. The

load F is applied to the upper left corner.
Model C:

The more complex three bay — four storey frame is also shown in figure 3.8. Its properties are displayed

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 68



Comparison and study of numerical methods by means of variational mechanics
in table 3.2, and load F is also applied to the upper left corner.

In order to represent the structural dissipative behaviour, Rayleigh damping was implemented according
to reference [ADH2000]. It is based on modal analysis and uses the first two natural frequencies of the

structure under study. The ones applicable to our models are listed in table 3.3

Table 3.3: Modal frequencies for damping characterization

Model Mode Frequency (Hz)
A Ist 12.79
2nd 64.44
B Ist 11.37
2nd 33.52
C Ist 2.71
2nd 8.69

For comparison purposes, a frequency response function was computed for all three models. Its values are
in agreement with those of the modal analysis of table 3.3 as can be seen in figure 3.9. It can be inferred
from this figure that the more complex model C has the highest sensitivity to low frequencies, whereas

models A and B should behave similarly as they have their strongest response to similar frequency values.

Frequency response function

e MODEL A e MIODEL B MODEL C
15
10 i
E A
L 5 f
E _.-/_ﬂ
E 0 === e mE— —
3
i}
2 .5
=
-10 i
-15

o 10 20 30 40 50 60 70 80 50 100
Frequency (Hz)

Figure 3.9: Frequency response functions for the three tested models. Values are in good agreement
with those of the modal analysis. Model C has the highest sensitivity to low frequencies, while models A
and B should behave similarly.
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3.3.3.- Transient input forces
Aload F of 10 kN applied to the tip of each specimen was scaled at each time step with an input signal of

variable amplitude.

As presented in figures 3.10 to 3.12, four input signals were devised in order to stimulate the loading of
our system: a simple sine function, a simple sine function suddenly interrupted, an incremental triangular

function and a ramp pulse, all of them spanning through five seconds.

A sine function with such a low frequency is seldom encountered in engineering practice, but allows for

the calibration and tuning of the combined methods given its smoothness and clarity.

SIGNAL 1
15

10

Force (N)
7
I

o N N

-15

0 0,5 1 1,5 2 2,5 3 3,5 4 45 5
Time (s)

Figure 3.10: Sine function, two cycles. =0,4 Hz, T=2,5 s

For the second signal, after completion of the first period it is interrupted abruptly in order to allow for
free vibration of the system. The point of interruption, in zero amplitude, allows for observation of the
effect of kinetic energy on the simulation.

SIGNAL 2
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b

N N~

-15

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5
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Figure 3.11: Sine function, one cycle, then free vibration. f=0,4 Hz, T=2,5 s

The incremental triangular function was constructed in order to account for earthquake engineering

regulations, where sudden changes and peaks are to be simulated.

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 70



Comparison and study of numerical methods by means of variational mechanics
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Figure 3.12: Incremental triangular function. f=1,2 Hz, T=0,83 s

Regarding the last pulse, it enables the comparison in performance of the numerical methods simulating

free vibration and the effect of resonance.
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Figure 3.13: Ramp pulse. F=0.625 Hz, T=1.6 s

3.3.4.- Parametric sensitivity study
The significant parameters involved in the numerical computations have been iteratively modified in
order to assess their influence in the simulations. For each type of integration the following parameters

were studied:
* Time integration:
o Time step influence.
o Damping ratio influence.
*  Matter integration:
o Number of integration points along the beam element.
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*  Constraint integration:

o No comparison was available, as only the Constraint Reduction technique is implemented in

the reference software.

Table 3.4 shows the values used for the characteristic parameters of each numerical method in all the

simulations.

Table 3.4: Time integration parameters

Method alpha beta gamma alpha-m  theta

NB - 1/4 172 - -

WTH - - - - 1.4

HHT -1/3 0.444 0.8333 - -

CH -1/3 1/4 172 -1/10 -

These values were not the subject of our study, and were fixed according to recommended values from
the literature [BAT1995], [NEW1959], [HIL1977], [CHU1993]. It is important to note that Chung-
Hulbert's method (also known as Generalized-Alpha) under certain combinations of parameters includes
previous ones, whose performances are, according to [CHU1993], less accurate when low frequency

excitation is present.

3.3.5.- Methodology: Energy computation of a simulation
The evaluation of instantaneous energetic magnitudes provides a very holistic hindsight into the
behaviour of a simulation, which is qualitatively superior to that of the displacement domain to which

time history analysis is traditionally limited.

Besides, in the case of the single cantilever beam choosing the tip as the observed target is generally
straightforward, but for more complex arrangements like, for example, models B and C, this is not so
trivial. The common choice of a “representative point” (the centre of mass of each storey, conversion to

SDOF, etc.) has a definition which is always difficult and elaborate.

Simple observation of the displacement behaviour of the tip of Model A would mislead the analyst to the
conclusion that the results for signal 4 in figure 3.14 are better approximations than those for signal 3, as
the displacement values seem to be closer to the analytical ones given the fact that the graph is more neat

and has less spikes.

Nevertheless, this can be proven to be less accurate than expected. figure 3.15 shows the same simulation

in the energy domain, computing some operators of the different terms from chapter II.
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Figure 3.14: Model A. Time history analysis of the displacement of the tip. Chung-Hulbert method,
generalized alpha value=-0.1, dt=0.0025, damping ratio=2%.
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The application of equation (3.29) appears in figure 3.15 as W+T-U-R. From this operator one can obtain
that, on average, under signal 4 the simulation “creates” +0.69 N-cm of spurious energy on each time
step, whereas the same model, under signal 3 -visibly more flurry in the displacement domain-, “absorbs”
-1.12 N-cm from nowhere. In terms of absolute value, the first is closer to zero, apparently still showing a
better approximation for signal 4. However, a rigorous computation should also take into account that the
total amount of work applied by signal 3 is, on average, three times larger than that of signal 4. It is not
equivalent a large average deviation from zero with large values as it is with smaller ones. The

formulation of an independent normalization parameter will be provided.

To define our measure of error we use equations (3.9), (3.22), (3.23) and (3.25) at each time step to
compute the respective instantaneous values of Kinetic Energy (T), Strain Energy (U), Dissipative Energy

(R) and External Work (W).

Our methodology, based on equation (3.29), uses the Hamiltonian action integral minus the average over

time of the work due to the externally applied forces, thus measuring the difference to zero.
Moving the Hamiltonian action term to the right hand side we have:

e(t)=w,_(t)+T(t)-U(1) (3.30)

ext

whose discrete integral in time gives:
12 12

Y e(t)dt= [W o ()+(T(1)-U(1))]dt (3.31)

tl tl

As this value by itself is not very representative because different simulations often show still acceptable
behaviour under different external signals despite high values of the total added epsilon, a reference

parameter was devised.

It is based on the total work done by the external forces, but computed independently from the
displacements, and based on equations (3.22) and (3.25). It is obtained by isolating the displacement
vectors on the external and internal work equations:

2

x]’=2U K] (3.32)

-1

\x|=2W | F (3.33)

ext|

which leads to the definition of the reference parameter:

2

IELERp

ol (3.34)

This parameter is completely self-contained and does not rely on the numerical method used to do the

simulation, as the vector of external forces and the stiffness matrix are given data, hence becoming an
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excellent reference for our benchmarking purposes.

In the following parametric studies, the total value of the computed epsilon is represented as a percentage
of this reference parameter, hence giving an idea of the reliability of the different studied numerical

methods.

The applied formula for each of our simulations is as follows:

tl

100-Y_ edr
Error=—-—"—— (3.35)

tl
Z Wref dt
10

In figure 3.15 the difference between the calculated work due to external forces and the reference input
work (We -W,e) is presented together with the aforementioned energy indicators as it allows to trace

discontinuities in the behaviour of the different methods through time.

Other options for the value of epsilon are also available. Similarly, one could compute the equation (3.29)
using the Hamiltonian (T+U+R), and subtracting it from the applied work. Its time history is shown in
figure 3.15 as W-(T+U+R). This operator provides a lower bound for the evolution of the Lagrangian
(most clearly visible for signal 4), as it balances the kinetic energy of the system against the potential and
the dissipative energies. Its evolution in time gives information about whether the absolute value of the
kinetic term is overestimated at each step. Given that the mass is kept constant this operator permits to

verify that instantaneous velocities are computed correctly.

Yet another possibility is to calculate the instantaneous increment of the Hamiltonian, d(T+U+R). In
systems where the energy is constant, this value should be zero, but it is rarely the case in practical
applications. Its main interest resides in the detection of segments in the simulation where the smooth

transition from one time step to the next is lost.

One could also define the epsilon on each time step as the difference between the time-dependent
calculated work and our presented analytical reference work (W.~W). In a way, this computation appears
the most precise, as the involved terms are of the same kind and the reference work is derived from a
numerically neutral relationship. Apart from the possible error in the inversion of the stiffness matrix, the
term W, is immune to the fluctuations caused by the time integrators. Still, this operator is not fully
satisfactory. As the possible errors in the instantaneous work only depend on the computed displacement,

its time history only provides information about irregularities in this matter.

The choice, then, of the Lagrangian (minus the damping energy when applicable) to balance the external

work seems the most appropriate.

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 75



Comparison and study of numerical methods by means of variational mechanics

SIGNAL 1
— WAT-U = (THU) e W-(T+U4R)  =—=Wana-W(t)
0,15 e
|
z 01 — i
G 0,05 | .
£
a 0 E P —
@ -0,05 -
5 - !
01 -
e !
0,15 = !
0 0,5 1 1,5 2 2,5 3 3,5 4 45 5
Time (s)
SIGNAL 2
e W4T-U e (T4U) = W-(T+U4R)  ====Wana-W(t)
0,15 —
— |
0,1 ST
A - 1

0,05 - "

0,05 v

Energy (N cm)
(=]

0,1 B
-y

-0,15

0 0,5 1 15 2 25 3 3,5 q 45 5

i g

Time (s)

SIGNAL 3

e WAT-U e d(T+U) s W-(T+U+R) e Wana-W(t)
20

10
20 —

20
40
60 ' = H
80 !

Energy (N cm)

0 0,5 1 15 2 2,5 3 3,5 4 45 5
Time (s)

SIGNAL 4

e W4T-U e d(T4U) e W-{T+U4R)  emmWana-W(t)
300

200

100

-100

Energy (N cm)

-200

-300

0 0,5 1 1,5 2 2,5 3 3,5 4 45 5
Time (s)

Figure 3.15: Model A. Time history for the variation of different energy operators. Chung-Hulbert
method, generalized alpha value=-0.1, dt=0.0025, damping ratio=1%.

Not only its time history is a valuable source of information for the analysis of irregularities in a
simulation but also its integral in time provides a single scalar whose value should be zero. Given that the

energetic terms are all positive, a positive value of this integral can only be caused by an average
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overestimation of the kinetic term (i.e. the velocities) against the displacements. Similarly, a negative
value tells us to what degree displacements are unbalanced against velocities, as the internal potential

energy is direct function of them.

3.3.6.- Numerical results: Influence of time step.

According to the methodology exposed above, a thorough parametric study was carried using the three
models of choice. figures 3.16 to 3.18 present the values obtained from iteratively modifying the time
step between values of 0,00125 s and 0,15 s, for each numerical method, with a constant damping ratio

value of 2%.

As opposed to the analyst's intuition, in spite of dealing with linear models we obtained curves that vary
significantly from one method to another. Nevertheless, and as expected, this divergence is more

pronounced with larger time steps and also increases with the complexity of the model.

The character positive or negative of the value of the error also provides a valuable source of information,
as it tells us when the internal strain energy is larger or smaller than the sum of the kinetic energy plus the
external work. As this term is dependent on velocity, it shows when the kinetic term is overestimated or
underestimated. In other words, the higher the decoupling between velocity and displacement, the further

the simulation is from correctness.

When the time step is larger, it affects the velocity, which loses or gains in phase with the normal modes
of the structure and with the input signal. In these cases the simulation might either dissipate or absorb
energy artificially. This explains the ripple around the abscissa presented by all the methods in all the

simulations.

In terms of evaluation of the particular methods, it is commonly accepted that CH has better performance
than the others, as it gives the analyst control over the numerical damping for high frequencies without
loss of accuracy. As the sensitivity to those parameters was not within the scope of this study, we cannot
give a view about such effect, but we can point out how, in general, in this configuration they all show
fairly similar results, only diverging significantly for larger and impractical time steps. Although all of
them are of the implicit type, meaning unconditional stability regardless of the time step size, our results
show how this set of methods in general tend to sacrifice energy conservation. In most linear structural
dynamics problems it is still not an issue, but for the analysis of non-linear situations we strongly

recommend the use of more modern integrators of the symplectic type, as those described in [KUH1999].
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Figure 3.16: Energy error analysis. Model A. Influence of time step size. Damping ratio=2%.
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Figure 3.17: Energy error analysis. Model B Influence of time step size. Damping ratio=2%.
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Figure 3.18: Energy error analysis. Model C Influence of time step size. Damping ratio=2%.
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3.3.7.- Numerical results: Influence of the damping ratio.
It should be noted that the damping considered in our experiments is of an external nature, given the fact

that no material non-linearities have been taken in consideration.

The corresponding Rayleigh mass and stiffness coefficients defined in equation (3.24) were obtained
according to reference [ADH2000]. Figure 3.19 shows the relationship of these values with the models

used in the study.

Rayleigh mass coefficient
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Figure 3.19: Rayleigh damping coefficients. The values are directly proportional to the value of the
chosen damping ratio. For higher frequencies of the model, the value of the mass coefficient is higher,
and vice-versa for the stiffness coefficient.

The sensitivity of the numerical methods to variations in the damping ratio is presented in 3 figures 3.20
to 3.22. For all three models the range of study was fixed between 0% to 10% of critical damping. In
general, this is sufficient for all the methods to reach their asymptotic limit in almost every simulation.
For models A and B a value of 2% of damping suffices to achieve stable behaviour with an error of less

than 0.3%, which can be considered very acceptable.
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Figure 3.20: Energy error analysis. Model A. Influence of damping ratio. Time step=0.01 s.
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Figure 3.21: Energy error analysis. Model B. Influence of damping ratio. Time step=0.01 s.
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Figure 3.22: Energy error analysis. Model C. Influence of damping ratio. Time step=0.01 s.
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3.3.8.- Numerical results: Influence of the number of integration points for matter integration
methods.
For the study of the matter integration techniques a similar approach based on the variational principle of
action was adopted. However, here the definition of a reference parameter W, was not required as the

analytical solution for beam elements is available applying the concepts of section 3.2.4.

MODEL A

= ANA === FDM FEM == MSS

6,9

6,8

6,7

65 EEE e
T
/

6,5

6,4

Angular momentum (KN-cm-s)

10 15 20 25 30

Number of integration points

MODELB
= e ANA == FDM FEM  e==VISS
{
$ 1,6
€15
€ 14
=]
€13
g ,
c 12 ————
€ 11 ——
857
Eo 1,0
3 10 15 20 25 30
Number of integration points
MODELC
- e ANA e FD VI FEM = VISS
{
€ 14,0
;
2 13,0
€ 120
=]
€ 110 !
g ’ | |
S 10,0 —
S 00 e
G ==:
ED 8,0
< 10 15 20 25 30

Number of integration points

Figure 3.23: Comparison of angular momentum computation for matter integration methods against
number of integration points. Analytical (ANA) vs Finite Differences (FDM) vs Finite Element (FEM) vs
Mass Spring System (MSS).
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Instead, we computed a global action term, whose units are also those of angular momentum. It is defined
as:

S=[ U ()t (3.36)

t

The charts in figure 3.23 were made by computing the instantaneous value of internal work corresponding

to each different numerical method, and averaging it over time. The applied transient force was signal 1.

The measure of the error was computed as a percentage of the difference to the analytical value. A
positive error indicates numerical spurious dissipation of energy, whereas a negative error stands for

artificial energy creation.

As expected, for an increasing number of integration points the methods converge towards the analytical
value. However, they do it in an asymptotic fashion, reaching an almost flat parallel value after about 25
integration points. In general, the obtained error values remain below 5% for all the methods, which is

completely acceptable in practice.

Interestingly, FEM presents the best behaviour only for the simple cantilever beam, creating spurious

strain energy for the other two models.

FDM and MSS tend to dissipate energy in all cases, which means that, in general, they result in an

underestimated value of displacement by about 2%, remaining on the unsafe side.
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3.4.- Discussion
It was proven how methods of different nature and concept can be compared using the same theoretical

background, in particular the variational principle of Least Action of Lagrange and Hamilton.

It was shown how variational principles and an energetic norm can be employed in an easy and efficient
manner to benchmark and assess the accuracy and stability of different implementations. The accuracy
and good performance of time and matter integration methods is generally taken for granted, as it is

difficult, in the displacement domain, to assess it stringently.

The total Hamiltonian actions of three systems under transient loadings have been computed for each

possible combination of methods. A comparison was made on the basis of energy principles.

The scheme provided, tested in three simple examples, is trivially extensible to more complex systems
where more elements are present. The advantage of this approach is that it allows for the monitoring of
the global behaviour by means of one simple scalar. No further algebraic artifacts, common in
benchmarking, seem to be necessary, which greatly simplifies the assessment not just of a simulation, but

of any method in general.
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4.- State of the art: non-deterministic methods for structural design

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 88



State of the art: non-deterministic methods for structural design

4.1.- Introduction

The purpose of this chapter is to present the main tendencies in probabilistic design applied to the
particular case of structural design and its potential benefits. It is not intended to be an exhaustive
overview but an introduction to the topic, emphasizing the difference between non-deterministic

optimization and non-deterministic analysis.

This differentiation is important as new stochastic methods are constantly being proposed under the
common umbrella of probabilistic design. However, these methods can be oriented towards the treatment

of the inherent uncertainty of the design process or as search algorithms to obtain better designs.

The next section explains how, by shifting from deterministic criteria to the definition of reliability
targets, the parameters involved in the analysis (applied loads, material strength, manufacture defects,
etc.) are researched and measured in order to give a statistical definition. With this data, a probabilistic

analysis model can be made for the whole system and a set of failure probabilities can be obtained.

This serves to explain the analysis step within the design process and the three main approaches to
account for uncertainty within it: fully deterministic, semi-probabilistic and fully probabilistic. At the end
of the chapter, an example is given to illustrate the main characteristics of each approach and to allow for

methodological comparison.

It is highlighted how, with the knowledge of the contributions of each parameter to the overall risk of
failure, the designer is enabled to find those points where reliability is improved. Design objectives other
than safety such as economy, quality, functionality, etc. can then be improved as a consequence of

applying probabilistic methods.

The third section is then dedicated to introduce the most commonly-used optimization techniques and

their potential and drawbacks as tools for assistance in the design.

4.1.1.- The origins of deterministic structural design

In the two previous chapters of this thesis, emphasis was made only on the deterministic analytical part of
structural dynamics. However, simulations generally are made with a purpose. In the fields of
Biomechanics, Molecular Dynamics or Graphics Animation, this purpose is commonly self-contained.
The analyst devises a model and its simulation for better understanding of a given phenomenon or just to

visually represent an interesting sequence.

However, in engineering disciplines (Civil , Aeronautics, Automotive, Robotics, etc.), the final result is a
material object and the virtual simulation is only an intermediate step in a longer process of design.

Traditionally, the realm of Physics in this subject is considered to reach as far as the definition of models
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goes. In this chapter and the next, however, it will be shown how also in the empirical side of their trade

designers can be assisted by a physicist's mentality.

“Physics is defined as the scientific discipline that studies the properties of matter and energy, considering
only those attributes that can be measured”. In this manner, physicists design and perform experiments
that allow them to observe and analyse phenomena. With these, they attempt to unveil the laws that
describe future events and behaviours. Before that is achieved, an intense work of abstraction and
detection of patterns is needed, often challenging their own intuitions. The target is, then, the description
of unobserved behaviours of phenomena. The limits imposed to the task are no less than those of the
already known laws of physics, which must be observed by any new theory. The employed language is
that of mathematics, and the main sources of uncertainty in their job are methodological errors or

inaccuracies in the measures.

Analogously, design is the process of creation of specifications intended to accomplish the goal of
construing an object. Designers need to make a series of abstractions that will eventually lead to the
creation of tangible objects. To such end, they specify relationships between elements subject to a given
set of limitations. The similarity with physics appears more obvious when one sees that the target is also
the description of (yet) unobserved things, subject to limitations (regulatory, economic, cultural, etc.),
explained with a given language (not only graphic but often also mathematical) and liable to endless

sources of uncertainty (material properties, manufacture defects, applied actions, modelling errors, etc.).

In the previous chapters of this thesis we presented some concepts of Physics that stretched the
boundaries of Newtonian Mechanics and how they can be effectively employed in modern analyses of
structural systems. In short, these are based on the treatment of energy as a functional and how by

minimizing this functional we have a powerful tool to solve many problems of Physics.

This minimization process is called calculus of variations, hence the term Variational Mechanics. It was
introduced late in the 18" century by Euler, Lagrange, Maupertuis and others and perfected in the first
half of the 19™ century by Hamilton. Together with the laws of Thermodynamics, these advances led to a
highly prolific period of discoveries of natural phenomena that could be explained theoretically. When
theoretical knowledge failed to explain the observations, it was common practice to attribute the failure to

lack of accuracy of the instrumentation or errors in the methodology.

During this period, cause and effect were intrinsically connected by the laws of nature and this idea
prevailed in most doctrines. The beginning of the 20™ century, however, brought serious doubts about the
completeness of Classical Mechanics, as not even Maxwell's principles could accurately predict the

results of the experiments in black body radiation or the photoelectric effect.

The theories presented by Louis de Broglie solving the first, and the work of Einstein explaining the
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second, undermined definitively those beliefs and Modern Physics was born on the foundations of
Quantum Mechanics. The works of Heisenberg, Born, Jordan, Pauli, Dirac, Schrédinger and Planck
established a series of principles that denied the possibility of fundamental causality, replacing it with

probabilistic relationships between discrete states of the elementary subatomic particles.

As it is common case when a change of paradigm occurs, there was initial reluctance from many parts to
accept the new perspective of things. Einstein himself refused the probabilistic approach by asserting that
“God does not play dice with the universe”. As a result of this controversy, two sides were created. The
supporters of Classical Mechanics kept maintaining that future events could be “determined” if enough
data about past events (causes) is provided. This led to the coining of the term “determinism” and was

presented in opposition of the “probabilistic” philosophical counterpart.

In parallel with the enormous advances in science of the 19" century, industry and commerce began the
implementation of standards, which became one of the cornerstones of the Industrial Revolution. By
implementing standards, engineers maximized key objectives of their designs such as compatibility,
interoperability, safety, repeatability and quality. Naturally, the redaction of those standards happened
under the strong influence of the aforementioned determinism. This influence, still persistent throughout
the whole 20" century, has only been challenged lately with the extensive use of digital computers and the

widespread development of the numerical methods introduced in chapter 1.

The particular case of safety, which is a key component of structural design, has seen some evolution in
this aspect, as it is directly linked with the concept of uncertainty. Initially, the process of structural design
was almost based entirely on empirical knowledge. Safety was achieved by repeating already tested

solutions or by doing small increments in scale.

Once material science and the theory of structures gained some confidence, design guidelines were
implemented in the form of standards. Initially, uncertainties were taken care of by means of a safety
factor. Later on, as different circumstances and failure modes were detected in the lifespan of structures of
all kinds (ships, aircraft, buildings, bridges,...), the notion of limit state design, a semi-probabilistic

approach to the same problem, refined a bit on the matter.

The concept of using the probability of failure as a criterion for structural design can be credited to the
Russians N. F. Khotsialov and N.S. Streletskii who presented the idea in the late 1920s. However, it was
the works of Emil Julius Gumbel, Ernst Weibull, Alfred Freudentahl (not to be mistaken with the
mathematician Hans Freudentahl) and Maurice Frechet later in the 1950s century, that opened the doors
to the theories of probability and risk assessment to structural design in Western countries. In the present
day most design codes of any engineering discipline have abandoned the crude safety factor approach in

favour of the slightly more refined limit state design practice. However, this approach is still subject to
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criticism as the choice of the values of the factors remains somewhat arbitrary.

4.1.2.- The iterative process of structural design

The design of structural systems is an iterative routine in which different configurations of elements are
first proposed and then tested for their suitability in any aspects the designer considers adequate (safety,
comfortability, cost, ...). The final purpose of these iterations is to achieve an optimized version of an
object in which all or most of the design requirements are satisfied. This definition of design applies with
equal accuracy to the discipline of physics, where the target is not the specification of characteristics of
objects but those of laws of Nature. Both require the iteration of an a priori reasoning — a posteriori
contrasting and the use of inference to measure, in the first case, the validity of a proposed design, and in

the second, that of a given theory.

One can easily observe many steps in the process of structural design. However, we will highlight

basically four:
1. Definition of the function of the structural object (bearing loads, protect against wind, etc.)
2. Definition of the structural concept employed (frame-like, shell, etc.)
3. Optimization of the design (according to cost, weight, strength, performance, etc.)
4. Definition of details (constructive, aesthetic, etc.)

In the first two stages, a series of properties and characteristics of the system are defined (geometric
configuration, materials, etc.), composing a prototype that can be either physical or mathematical. These
will define the capacity of the design product. In this stage also, circumstantial and environmental
requirements are presumed, composing the demand. The definition of both capacity and demand involves
a series of assumptions and simplifications which are the first source of uncertainty regarding the final

result of the design.

Once an initial set of characteristics and solicitations is defined, they can be tested against each other. The
testing procedure is called analysis, and it basically serves to contrast the demand against the capacity.
This can be made under a deterministic or under a non-deterministic perspective, and is repeated as many

times as it is necessary throughout the whole optimization process.

In itself, the optimization process can be regarded as indirect or as direct. The first type is characterized
by an inherent resource to intuitiveness, in which the designer modifies the original pre-design according
to his/her own epistemologic understanding of what the optimal result will be. The second type, also
known as mathematical optimization, involves the definition of design and static variables and of

objective functions, leading to purely logic-based decisions regarding the design.
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In synthesis, as optimization (be it direct or indirect), is the sub-process within design where the best
elements are selected according to functional and conceptual criteria, analysis is the sub-process within
optimization where compliance with the requirements is investigated,. The other three steps suffer a great
influence from societal and cultural inputs, and are the ones that make necessary the figure of the designer

as an interpreter of the inputs and the outputs in the process.

The distinction made here between design, optimization and analysis is necessary in order to clarify
fundamental differences that unfortunately too often, appear mixed in the literature, even in official
regulations. The scope of this thesis is fundamentally the application of variational and probabilistic
methods to the analysis of structural systems. One must not be misled by the abundance of research made
in the application of probabilistic and stochastic methods to structural optimization. The following is a

brief outline of both concepts:

4.1.2.1.- Structural optimization

When structural optimization is dealt with in a direct, mathematical manner, there are mainly three types
of problems that can be solved: size problems, shape problems and topology problems. Size problems
refer to those in which the cross section of the structural elements is iteratively modified until the best
possible ratio of capacity/demand is achieved subject to a set of given constraints. Shape optimization
aims for the same target, but updating the boundaries of the structural system. When not only the shape
but also the interconnections between elements is allowed to change, the problem becomes a topology

optimization one.

The mathematical techniques to solve such problem range from calculus of variations, linear, non-linear
or stochastic programming to game theory, simulated annealing, genetic algorithms or neural networks.
Although the whole mathematical optimization discipline is beyond the scope of this thesis, a short

outline of the employed methodology will be given here.

A mathematical optimization problem has the form:

minimize f(x) (4.1)
subject to f,(x)<b,, i=1,...,m.

where the vector x is the optimization variable, the function £, the objective function, the m functions f; are

the constraint functions and the constants b, ..., b,, are the limits, or bounds, for the constraints.
In synthesis, an optimization problem is composed of:

* Design variables, which is the set of parameters describing the system (material properties, size,

loads,...)
*  An objective function, whose purpose is to give a benchmarking as to which design is better than
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other (deflection, weight, cost,...)

* Design constraints, within which the system must perform and that can be influenced by the
system (maximum and minimum limits that the design variables, or combinations of them, can

adopt).

The key of a well formulated optimization problem is the correct identification of the design variables. A
minimum number of independent definitions is needed in order to obtain a solvable formulation. These

variables are represented as elements of a vector x.

The objective function f,(x) is a scalar value depending on the vector x, and it is common practice to
choose in such a way that the solution of the problem is that of finding a minimum for it. One can also
encounter problems in which more than one objectives need to be achieved: these are called multi-

objective functions.

\ L2 . | &
o = B h
Y 7

(@)

(b)
Figure 4.1: Schematic of a clothespin and simplified modelization in a structural design application.

The geometrical dimensions are shown in (a), with the design variables h, L1 and L2. The simplified
model shown in (b) is based on beam elements. Symmetry is applied to halve the computational effort.

A design meeting all the requirements is called a feasible design. If one or more constraints are not met,
then the design in infeasible or unacceptable. These constraints can come in the form of linear or non-

linear equations that, themselves, can also be equalities or inequalities.

The standard optimization model, given the definition of equation (4.1), takes the following form:
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minimize f (x)=f(x_2,x 2, ..,x_n)

subject to:
(@) g,(x=g(x_1,x2,.., x,)=0,i=1 tom
(b) hj(x):hj(xl,x2,...,xn)50,j=1top (4.2)

Where gi(x) is the set of m equality constraints and /;(x) is the set of p inequality constraints.

Let's illustrate the idea by means of a simple optimization problem: that of the section of a wooden
clothespin body depicted in figure 4.1. Given that these are manufactured by the thousands, every savings
in material can have a large repercussion in the long run. The functioning mechanism is very simple, as
can be seen in the synthetic model of figure 4.1(b). The spring acting in one third of the body
compensates the action of any applied load in the extreme, rotating around the axis of the peg whenever
the load is larger than the force of the spring. The amount of rotation is limited to the angle of the edge of
the body as long as the body behaves as a rigid solid. For lower stiffness, the action of the force applies

only to deformation of the tip, hence eliminating the functionality.

The design variables for this particular problem can be enumerated in several ways. We will choose the

following:

=K (spring's force)
x,= L, (spring's lever arm)
= F (applied force in the tip)
x,=L,(force's lever arm)
xs=FE,, . (wood's elastic modulus)
x,=h (height of the peg's body)
x,=1 (moment of inertia of the body's section)
x3 =6 (displacement of the tip) (4.3)

With these parameters, it is possible to describe a set of relationships between them.

First, we will describe those constraints that are defined by equalities. The force exerted by the spring
(x;), the spring and the force's lever arms (x; and x,) and the modulus of elasticity of the wood (xs), can be

taken as a fixed value, defining the following set of functions:

g,(x)=K —xl—SN

g,(x)=L,=x,=20mm

g;(x)=L,=x,=30mm

g4(x)=Ewwd—x5—500N/mm2 (4.4)

By equilibrium of forces, we can define another equality function relating the spring force and the applied
load:

gi(x)=K L —F-L=x,-x,—x;x,=0 (4.5)

And the relation between moment of inertia, area and the height of the section:

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 95



State of the art: non-deterministic methods for structural design

b’ A-x;
=]=—=
g6(x) 2 2

(4.6)

Secondly, we can define the conditions with inequalities, such as the tension in the section should not
exceed the strength capacity of the material and the geometric constraint, mentioned above, that limits the
amount of displacement of the tip to the amount of opening being equal to the height of the body:

_My_ F-L2~h: x3~x4~x6_(r
1 2-1 2:x, M

hl(X):O' dSO (47)

3 3
FL, FL, x3-x4+ Xy Xy

= —+ =
3E1 K,L, 3x5:x; X X4

h,y(x)=6 x<0 (4.8)

This allows us to formulate the problem as that of finding the minimum average area for the cross section,

leading to the following description of the problem in standard form:

minimize [ (x)=f(x,,x,,..,x,)

>n

subject to:
(@) g,(x)=g,(x,, x,,...,x,)=0, i=1tom
(b) hi(x)Zhl.(xl,xz,...,xn)SO, j=l1top (4.9)

Given that the only variables whose value is not pre-defined are the moment of inertia and the height of
the section (xs and x;), we can make the objective function dependent on them as per equation (4.6),

leaving the objective function as follows:

12-1 X
fo(x)= f(xy, %5, ., x,)= A= P =12- (4.10)

Xe

A plot of the objective function can be seen in figure 4.2. The selected variable for depicting the iterative
approach was the section's height (x5). The objective function, as the relation between the area and the
moment of inertia, can be seen as a straight line, whereas both the non-linear constraints #4,(x) and 4,(x)
define lower bounds of the design space. Any point of the green region is a valid design. However, the
optimum lies in the intersection between f,(x) and /,(x)<0, for being this a minimum of f,(x) still larger

than the condition imposed by h;(x) and hy(x).

In our case, with a Skg strong spring, a height of 4 mm should provide the body of the clothespeg with
enough rigidity to open the other end without bending, hence rendering useless. This condition is visibly

much more restrictive than that of resisting a given amount of tension, as the plot of hy(x) reveals.
4.1.2.2.- Structural analysis
An elementary step in the design process is the determination of the effects of the environment on the

designed object and its components: the analysis.
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As explained earlier in this chapter, prior to this point an estimate of specifications of characteristics such

as geometry, material properties, expected cost etc. must be provided for each element. These

specifications will account for the capacity of the design.

On the other hand demand, in structural design, is generally defined by a set of loads of different nature
(permanent, variable, accidental, etc.) each of them with a different degree of associated uncertainty. An

initial estimate of their values and characteristics is also needed to begin with the analytical process.

e

— A=fo(x)

/ —h2(x)<0
/ hi(x)
= = h2(x)
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Figure 4.2: Plot of the objective function and the inequality constraints. The feasible design is

contained within the green area. The optimum, in the intersection of the blue line (h2(x)<0) and the red
line (obective function).

The very definition of an analytical model is in itself a source of uncertainty, given that a big amount of
assumptions and simplifications needs to be made. The necessity of those simplifications has many

origins: computational efficiency, mathematical limitations, insufficient knowledge about the simulated
phenomenon, etc.

In the process of analysis, the balance between demand and capacity is examined in order to detect the
potential sources of failure of the design. To such end, the structural system is decomposed into isolated
parts that are studied according to the basic physical principles and natural laws. In general, this
procedure is applied recursively until an acceptable level of equilibrium between both demand and

capacity, subject to a set of requirements or constraints, is achieved. This iteration was introduced in the

previous section as the optimization process.
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It is not uncommon to find in the literature the concepts of optimization mixed with those of the analysis,
given that both share a great deal of common mathematical tools. However, as it was shown, there are
substantial differences between them and their respective importance within the globality of the design
process. Analysis is the elementary subroutine within optimization, which in itself is one step of the
design process. In the example given above, each of the points of the given curves was the product of one
complete analysis. In this case, it could be simplified as two single functions (h;(x) and hy(x)), but in

general analytical models acquire very high degrees of complexity.
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4.2.- The process of analysis in structural design

Despite the rigorous scientific methodology involved, there are many sources of uncertainty that arise in
this part of the design, namely computational error (of the physical model, of discretization, of
programming, round off errors...), material properties, random nature of the loads, manufacture defects or

unexpected final usage.

Given the potentially catastrophic results of structural failure (not only economic, but also fatal), there
have been, historically, countless efforts in the attempt to contain such uncertainty. In its most primitive
form, uncertainty was restrained within the boundaries of a “safety factor”. With the development of
applications of probabilistic methods of risk assessment in the 1950s, more sophisticated semi-
probabilistic approaches were possible that led to the current Load and Resistance Factor Design / Limit
States Design (LRFD/LSD) methodologies. In the past three decades, however, those approaches have
also been challenged and fully probabilistic procedures to deal with uncertainty are being proposed,

replacing the concept of structural safety with that of structural reliability.

4.2.1.- Deterministic analysis: working stress approach

A deterministic design process is characterized by the a priori assumption that there is only one optimal
designed object to cover a given need (or demand) under the set of given limitations (or capacity).
Accordingly, demand and capacity themselves are considered to be deterministically foreseeable and
predictable. Making an analogy with physics, this is equivalent to say that the trajectory of an object can
be accurately described by averaging the time-history of its maximum and minimum possible locations at
each time step. Before the advent of Quantum Mechanics, this assert was generally accepted in the belief
that the span between the observed maximum and minimum, given the right time to improve the

measures, would become zero and the average would be coincident with the real trajectory.

In order to account for the many sources of uncertainty, a deterministically minded designer increases the
capacity of the designed object and decreases the expected demands by means of safety factors whose
values are given either by past experience or by convention. In the deterministic approach, uncertainty is
not considered inherent to the designed object or the observed phenomenon, but an intrinsic flaw of the

observation, hence subject to replaced by confidence and safety.

The term safety factor has many different usages among engineers of different disciplines and a precise
definition of it is not possible in a general manner that satisfies all disciplines. In the particular case of

structural design it refers to a measure of the reliability of a particular design.

Although deprecated worldwide in modern standards of practice, the value of this measure is commonly

convened by means of standards and codes maintained by the respective industry the structural object
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might be designed for (aircraft, building, bridge, etc.).

This value is normally symbolized as ¥ and can be obtained in a straightforward manner by dividing the
maximum load at which the structure is expected to fail (its capacity C) by the expected load the object

will be submitted to (the demand D):

y=CID>1 (4.11)

The rationale underlying this methodology is simple and straightforward: the larger the value of the factor

v, the higher the safety achieved.

If, for example, a structural configuration can withhold the maximum expected wind load demand for its

given lifetime it will, most certainly, resist any other wind loads because they will be of lower intensity.

In design practice, however, the value of the capacity is unknown a priori as neither the object is built or a

final model is set. Hence equation (4.1) has to be treated as the following inequality:
D<Cly (4.12)

In this manner, an iterative process can be performed in which, departing from an initial configuration
whose capacity can be estimated, one reaches the point where the condition imposed by equation (4.12) is

accomplished.

0 Strain
Figure 4.3: Stress-strain diagram for a generic material. Capacity is defined according to the limits

established in this curve. Point 1 is the ultimate strength limit. Point 2 is the elastic limit. The green line
is the design limit.

A second a priori assumption of this approach must also be mentioned: the measure of demand is based
on the amount of stress the members of the object are subjected to (hence the denomination working
stress design). In this way, demand is calculated element by element by means of the numerical methods
described in the first chapter. This happens as a result of the traditional definition of capacity provided by

the science of resistance of materials, by virtue of which it can easily be defined by load-displacement
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curves such as that of figure 4.3. Its convenience relies on the possibility of stating a nominal value,
generally within the elastic limit (point 2 in figure 4.3), that can be factored by the 7/ safety factor to

obtain the design limit.

In the working stress approach, average values from several essays are considered acceptable as

parameters for the definition of both capacity and demand.

4.2.2.- Semi-probabilistic analysis: Load and resistance factor / Limit state approach
Load and resistance factor analysis (LRFA) is also known as limit state analysis (LSA). It is globally
accepted as a more refined version of the safety factor approach and is currently enforced by most

regulations worldwide.

In this approach, the predictability of the demand (applied loads) and the variabilities of the capacity
parameters (resistance parameters) are accounted for separately. In the case of the loads, each can have a
different factor according to whether their nature is permanent or variable in time. Moreover, their
simultaneities are also studied thoroughly in order to find a worst case scenario. For the results of
outranging the capacity, a series of “limit states” are defined: ultimate if the result is collapse,
serviceability if the result are minor defects (generally excessive deformation or vibrations), fatigue if the
result is a wearing off due to cyclical loads or accidental if the demand is originated by explosions, fire,
collisions, etc. Note that both fatigue and accidental limit states are actually defined by the nature of the

demand. However, in the regulations they are considered to affect the capacity.

This leads to a new interpretation of equation (4.11):

Y. Diyp<). Cilye (4.13)

The load (demand) and strength (capacity) factors are different for each type of loading and strength. The
higher the uncertainty associated with a load or a strength parameter, the higher the corresponding load

factor. The factors are probabilistically defined so that they correspond to a prescribed safety level.

It is considered a semi-probabilistic approach because it maintains the basic assumption of the existence
of a single optimal solution but both the values of capacity and demand are based on the extreme value
theory introduced by Gumbel, Frechet and Weibul in the midldle of the 20™ century. Figure 4.4 illustrates

the sequence that leads to a Gumbel-like probability distribution in the case of wind speeds.

In a similar manner, the capacity can be associated with properties of the material that constitute the

structure (mechanical, geometrical, etc.).

These properties are also subject to statistical analysis. figure 4.5 shows the probability density function,

superimposed to its histogram, of the compressive strength of concrete. Although in both cases the values
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are obtained by means of statistical and probabilistic analysis, the methodology remains deterministic in

the sense that it only studies one possibility, be it the average or that with the highest probability.
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Figure 4.4: Analysis of raw data for wind speed in Washington. The extreme value theory gives the
probabilities of occurence of the maximum and minimun wind speeds. a) maximum annual wind speeds
against time. b) histogram of relative frequencies for each recorded speed c) Gumbel-like probability

density function.

The semi-probabilistic approach has the advantage over the fully deterministic one in the fact that

ultimate limit states are checked against factored load combinations whereas in the working stress

approach only one safety factor is employed. This allows for more economical designs with equivalent

level of reliability by scaling the probabilities of exceeding failure modes. Also, the second-order

geometric effects resulting from deformation and material behaviour can be considered in a

straightforward manner at the load levels associated with failure.
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Figure 4.5: Bell curve, superimposed over a histogram of pavement concrete compressive strength
data. The average value has the highest probability of occurrence.
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4.2.3.- Fully probabilistic analysis: Reliability assessment approach
The semi -probabilistic approach defined earlier, however, does not allow for a direct evaluation of the
probability of failure. By means of defining the reliability of a design iteration it is possible to achieve a

more global and comprehensive understanding of the failure or safety violations.

However, to use this approach one needs to consider the multi-random variable input governing both
capacity and demand, whose analytical mathematical solutions required to determine the design point can

become very difficult, if not impossible to formulate.

To such end, reliability analysis methods use stochastic procedures to model both the variability in the
demanding loads as in the properties characterizing the capacity: the variables are treated as probability
distributions instead of single values. This replaces the notion of a safety factor with a probability of

failure, leading to a probabilistic reinterpretation of equation (4.11):
P,=P{C-D=<0}<P, (4.14)
Where P; is the probability of failure, conditioned to be smaller than a given design probability, Py.

Figure 4.6 depicts the conceptual approach showing how both the capacity of the system and the demand
are understood as bounded histograms of the cumulative probabilities of the corresponding input
variables. The probability of failure is a 3-dimensional region where capacity is smaller or equal to the

demand.

Capacity

“c-D=0

-
Demand

Figure 4.6: Graphical representation of a probability region for a given structural system. Both
capacity and demand are treated in a fully probabilistic way by means of bounded histograms. The red
color covers the failure region where the ratio Capacity / Demand is bigger than unity.

The two most common-approaches used in structural reliability analysis are the group of reliability index
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methods (first and second order) and simulation methods (Monte Carlo).
In the category of reliability index, a limit state function is defined out of equation (4.14) as:
g(x)=C-D (4.15)

Whether the function g(x) is linear or non-linear, the analysis reduces to the calculation of the minimum
distance of the line representing g(x) to the origin. In the example of figure 4.4, where the problem is
linear, First Order Reliability Method (FORM) is of application. When the limit state function is non-
linear, more complex recursive algorithms are used, such as in Second Order Reliability Method

(SORM).

Regarding simulation techniques, once defined the limit state function of equation (4.15) it is possible to

formulate the probability of failure in the following manner:

P= [ f.(x)dx (4.16)
g(x)=0

where fi(x) is the joint probability density function of the random variables X. Stoch