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Abstract

Abstract
This thesis explores a very well understood area of physics: computational structural dynamics. The aim 

is to stretch its boundaries by merging it with another very well established discipline such as structural  

design and optimization. In the recent past both of them have made significant advances, often unaware 

one of each other for different reasons. It is the aim of this thesis to serve as a bridging tool between the  

realms of physics and engineering.

The work in divided in three parts: variational mechanics, structural optimization and implementation.

The initial part deals with deterministic variational mechanics. Two chapters are dedicated to probe the  

applicability  of  energy functionals  in  the  structural  analysis.  First,  by mapping  the  state  of  the  art  

regarding the vast field of numerical methods for structural dynamics; second, by using those functionals  

as a tool to compare the methods. It is shown how, once the methods are grouped according to the kind of  

differential equations they integrate, it is easy to establish a framework for benchmarking. Moreover, if 

this comparison is made using balance of energy the only parameter needed to observe is a relatively easy 

to obtain scalar value.

The second part, where structural optimization is treated, has also two chapters. In the first one the non-

deterministic  tools  employed  by  structural  designers  are  presented  and  examined.  An  important 

distinction between tools for optimization and tools for analysis is highlighted. In the following chapter, a  

framework for the objective characterization of structural systems is developed. This characterization is  

made  on  the  basis  of  the  thermodynamics  and energetic  characteristics  of  the  system.  Finally,  it  is  

successfully applied to drive a sample simulated annealing algorithm.

In the third part the resulting code employed in the numerical experiments is shown and explained. This 

code  was  developed  by  means  of  a  visual  programming  environment  and  allows  for  the  fast 

implementation  of  programs  within  a  consolidated  CAD  application.  It  was  used  to  interconnect 

simultaneously  with  other  applications  to  seamlessly  share  simulation  data  and  process  it.  Those 

applications were, respectively, a spreadsheet and a general purpose finite element.
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Introduction

1.1.- Motivation of the thesis
After a number of years undertaking projects in structural engineering for the building industry, the author 

of this thesis experienced a number of situations where the current state of the tools for structural design  

rendered to be insufficient or, in some cases, even counterproductive.

Despite the immense efforts of the scientific and academic community for developing faster and more  

reliable models,  modern structural  design and analysis is  yet,  to a great  extent,  exclusively based on  

statics  and  the  superposition  theorem,  hence  tied  to  linear  approaches  to  achieve  design  solutions. 

Buckling, vibrational response, terrain-structure interfaces, creeping, fatigue and many others are very 

important phenomena for which such models, although extensively adopted and canonical, give a fairly 

blurred picture.

On one side, the degree of elaboration achieved in the formulation of the models of elastodynamics often  

makes  it  preferable  to  resource  the  analysis  to  empirical  “simplified”  models  which  are  easier  to 

understand by the practitioner.

On the other, it seems evident that the very process of design, in many cases automatic and repetitive,  

could be greatly improved by the modern techniques of optimization. In the complex course that goes 

from object inception in the mind of the “shape” designer to the desk of the structural analyst, tools that  

objectively provide “best” solutions can be of much help to improve the dialogue between both parts.

The main problem with traditional optimization techniques, based on deterministic optimal criteria is their 

apparent  arbitrariness.  They supply an  exact  solution  in  a  reasonable  lapse  of  time  but  this  is  very 

sensitive to the chosen judgement of which result  is superior to another. Stochastic non-deterministic 

search algorithms are more attractive as they facilitate a whole range of “possibles”, sorted by order of  

fitness.

Methods  of  stochastic  optimization  (stochastic  hill  climbing and tunnelling,  evolutionary algorithms, 

swarm algorithms and many others) have been successfully applied in science and technology since the  

1950s.  Lately,  these  very methods,  combined with modern numerical  tools  (Finite  Element  Method, 

Applied Element Method, Discrete Element Method, among many others) are proving very helpful in 

automotive, aerospace and naval engineering to achieve sophisticated, reliable and precise designs.

To  make  them  practical,  though,  the  current  analysis  methods  must  be  made  more  efficient.  The 

variational principles of mechanics devised by Euler and Lagrange are currently implemented into many 

physics  engines.  This  field  of  research  is  under  constant  development  and  new and  more  efficient  

algorithms emerge every year. 

Variational mechanics are an extremely powerful tool because they replace the paradigm of the analysis 
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focused in  displacement  and force vectors  with  one  looking  at  energy change  scalars.  Not  only the 

resulting  implementations  benefit  from  this  but  also  the  degree  of  understanding  of  the  studied  

phenomena.

As it  will  be  shown in the  thesis,  countless  efforts  are being made in advancing and improving the 

aforementioned techniques. However, to the knowledge of the author, a comprehensive work addressing 

simultaneously variational mechanics, energy principles and stochastic techniques was yet to be made. 

There seems to be a strong need of bringing together science (variational mechanics) and technology 

(structural design), so that both fields of knowledge can benefit from each other.
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1.2.- Working hypotheses
In the preliminaries of this thesis, a series of assumptions were made around the two main ideas of non-

deterministic structural design and variational mechanics. These two articulated the discourse and can be 

seen reflected in the internal structure of the chapters as well as in the results of the thesis.

1.2.1.- The deterministic approach to structural design

Nowadays, structural engineering has a strong deterministic bias. However, one increasingly important  

aspect of structural analysis that deterministic design finds difficult to address is that of uncertainty in 

structural parameters and in loading and boundary conditions.

Deterministic single- point evaluation of the response may under many circumstances produce an over-

designed and excessively conservative  system if  the  presence  of  parameter  scatter  is  not  taken  into 

account.

It is very illustrative of this situation how building codes, initially conceived as good practice handbooks 

within the trade, have now become such a heavy reference that they can affect the production of building 

materials in a whole country.

Nowadays Limit States is the compulsory method for evaluating any building's performance (Eurocodes,  

ASCE,  ACI,  CTE,...).  They  are  provided  to  the  designers  and  are  obtained  under  probability 

methodologies but have to be necessarily included into a deterministic analysis in the form of safety 

factors.

The inclusion of these algorithms in their most sophisticated forms mean in concrete terms - referring 

exclusively to the field of structural analysis - that the issues may be raised in such terms that: 

• The  variables  (loads,  elastic  modulus,  yield  stress,  geometric  properties,  etc..)  may  be 

characterized by a probability distribution type (normal, lognormal, extreme value, etc..)  with 

their corresponding statistical parameters for the cases of discrete variables.

• The variables may hold random spatial distributions. For example loads, geometrical and physical 

properties randomly distributed in the domain of definition of the elements.

• One or more features of "performance" may be formulated to establish criteria or limits to be 

satisfied by the system or by its components (resistance, rigidity, etc.)

This should allow the engineer to establish the feasibility of the design or the need for changes on a basis  

much more comprehensive and objective-based methods than using in the safety factor.

Although computationally far more expensive,  stochastic design methods have two major advantages 
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over the deterministic ones: a deeper understanding of the designed product and a quantification of the 

level of uncertainty of the given answer.

This new approach is lately conforming a fairly strong corpus of research and many publications and  

applications can be found.

1.2.2.- Variational mechanics and physics simulations

Modern  structural  design  and  analysis  is  almost  exclusively  based  on  statics  and  the  superposition 

theorem, hence tied to linear approaches to achieve design solutions.

Buckling, vibrational response, terrain-structure interfaces, creeping, fatigue and many others are very 

important phenomena for which such models, although extensively adopted and canonical, give a fairly 

blurred picture.

Non linear intensive particle-based Lagrangian methods, on the other hand, is a relatively recent field of 

research, where the phenomena previously mentioned simply arises as a consequence of the simultaneous 

interaction of the simulated bodies or particles.

By means of these methodologies, it seems feasible to tackle and to achieve a further understanding of  

such phenomena.

From the practical point of view, much research has been done in order to obtain numerically stable and  

accurate simulations. There is also a good amount of work into the problem of rigid body collisions, 

provided it consumes a good amount of computational resources.

A more recent trend is combining Finite Element Method with Lagrangian and Hamiltonian dynamics, in 

order to account also for the deformational properties of the simulated bodies. This combination extends  

the  inherent  limitation  of  FEM  to  the  continua  with  the  capability  of  modeling  also  discontinuous 

interactions.

This  also opens new ways  to  structural  designers  for  it  means the possibility of  modeling materials  

different from steel and concrete, so environmentally unfriendly. Too often these building systems are the  

only way to go for the codes are the only ones that support. With new (and traditional) systems being  

safely modeled, broader possibilities open to design alternatives.

With enough computational  power,  these environments can be extended with the modeling of flows,  

giving a physical meaning to loads (i.e. wind, terrain, water). These loads, of inherent stochastic and non-

linear nature, currently mean a good amount of uncertainty for designers.

Moreover, thermodynamic properties can also be implemented, hence allowing for other non-structural 

related analysis.
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From the engineering point of view, available frameworks where the non-static and non-linear behavior of 

structures can be observed definitely would provide a far  deeper understanding that  should derive in  

better, more efficient and environmentally aware designs.

1.2.3.- Hypotheses

The working hypotheses can then be summarized a follows:

A The vast body of numerical integration algorithms for structural dynamics simulation can be 

encompassed within an intuitive scheme that simplifies its study.

B Variational  principles  help  to  better  understand  the  results  of  the  simulations  and  their 

application gives a wider ability to analyse.

C Energy principles already improve the performance of structural  dynamics simulations,  but 

could also be used in combination with non-deterministic design tools. In this manner, design objective 

functions could be devised that accounted for optimal uses of the energetic capacity of the materials.

D Theoretical  advances  gain value when they translate into practical  and concrete  tools.  The 

research must contemplate this possibility and exploit the experimental implementations so that they 

can eventually reach others.
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1.3.- Expected scientific contributions
The main target of this thesis is to obtain a clear and comprehensive view on how variational mechanics,  

combined with stochastic numerical methods, can be applied to change the paradigm of deterministic 

structural design.

It is not meant to substitute current procedures, but to complement them with expanded perception of the 

behaviour of structural systems.

As a side effect of this it was intended to achieve a computer tool with the following features:

• Real-time based physics computation for structural frames.

• Behaviour-monitored structural elements and parameters.

• Different  material  models,  and the possibility of creating new ones, considering physical and 

technological properties.

• Real-time design visualization and designer interaction.

• Stochastic methods applied to different structural systems and probability-based evaluation of  

their reliability.

• Stochastic models for non-deterministic non-linear loads (wind, earthquake, terrain, blast, snow, 

etc).

Further and practical applications of it would be:

• Building forensics of existing or failed buildings.

• Haptics for dynamic design of buildings.

• Interactive benchmarking of structural designs.

• Inmersive virtual buildings.
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2.- State of the art: Overview of numerical methods for structural  
dynamics analysis

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 22



State of the art: Overview of numerical methods for structural dynamics analysis

2.1.- Introduction
In this chapter the current state-of-the-art of the computational techniques for the simulation of structural 

dynamics  will  be  presented.  A preliminary  overview  of  concepts  will  be  used  to  justify  a  general 

framework of classification according to the multidisciplinary character of the topic.

Previous surveys exist where a rigorous mathematical background is provided. However, these present a  

certain  excess  of  specialization  towards  their  natural  trades,  so  [SHA1997]  and  [WAS2003]  have  a 

marked  inclination  towards  Robotics  and  [NEA2005]  and  [ERL2002]  are  excellent  reviews  for  the 

Computer Graphics community. This chapter aims to facilitate a comprehensive and more unified view on 

the subject of structural dynamics and the numerical methods employed to simulate them. For the sake of 

simplicity formulations have been considered unnecessary and only practical matters are discussed.

The  analysis  of  structural  dynamic  behaviour  is  a  topic  of  specialized  research  in  many  modern 

disciplines: Civil Engineering, Aeronautics, Automotive, Robotics, Medicine, Biomechanics, Molecular  

Dynamics and Graphics Animation are some of the industries currently developing with growing interest 

applications that allow to simulate the dynamics of structures and related literature about it.

Although, from a scientific point of view, this must be regarded as a great success and such diversity of  

points of view should be considered as positive , it also means that the intrinsic complexity of the subject 

increases somehow chaotically as each author contributes with a particular approach.

Furthermore, the already daunting list of numerical methods for the solution of problems of dynamics  

grows by means of mixed concepts making it  very difficult  to  understand what  they really do.  It  is  

common to encounter in the literature methods for the approximation of standard algebraic problems that 

are regarded as having “physical” properties or that some method to solve partial differential equations is  

enunciated as “explicit” referring to the ordinary differential equations also involved in the solution.

As  a  third  source  of  confusion  we  have  to  consider  the  mathematical  foundations  of  the  numerical  

methods, by means of which these are conceived as general and abstract as possible. It means that for a  

particular method its applicability can go from economics to electric flux analysis. For this reason, it is  

often easy to get diverted and dazzled when trying to approximate this fascinating area of research.

The following section aims to be a general reference framework where researchers and developers from 

diverse disciplines can asses, according to its performance, the main methods currently used for structural 

simulation. There is a need to make all this knowledge accessible in a more intuitive manner [ROS2006].

For this reason, these methods will be grouped according to three physical concepts: time, matter and 

constraints,  which  not  by  chance  correspond  to  very  well  defined  mathematical  areas:  Ordinary 

Differential  Equations  (ODEs),  Partial  Differential  Equations  (PDEs)  and  Differential-Algebraic 
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Equations (DAEs).

The last section discusses these methods as they are utilized in the main industrial environments, and 

provides some explanation as to how and why they have evolved in that particular manner.

2.1.1.- Elements of Applied Physics 

Physics  is  commonly  categorized  into  five  main  branches  (Classical  Mechanics,  Electromagnetism, 

Statistical  Mechanics,  Thermodynamics  Quantum Mechanics and Relativity)  which also have several 

ramifications. 

The main branch of our interest here is that of Classical Mechanics, where we can find the three main 

subjects  that  cover  most  of  the  developments  for  our  purposes:  Classical  Mechanics,  Rigid  Body 

Dynamics and Continuum Mechanics. 

2.1.1.1.- Classical Mechanics 

Classical mechanics is split  in three main segments: Statics, Dynamics and Kinematics. This division 

accounts for the state of motion of the studied phenomena.

Another  categorization  can  be  made  according  to  the  mathematical  formalism  of  the  description:  

Newtonian Mechanics, Lagrangian Mechanics and Hamiltonian Mechanics.

Lagrangian Mechanics were introduced by Joseph-Louis Lagrange in 1788 in his “Mécanique analytique” 

[HAN2004, NEU2006]. It is a refined algebraic version of a graphical method developed by Euler in  

1744 used to  solve mechanical  problems [EUL1744].  This revolutionary approach to  the solution of 

problems of Mechanics uses kinetic energy and work function (scalar magnitudes) instead of force and  

momentum (vectorial magnitudes) to predict motion of bodies [LAN1952]. 

Euler and Lagrange introduced the calculus of variations as a tool for finding maxima and minima of 
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interval A-Z represents a time lapse, while ordinates represent the variation of the difference between  
kinetic (K) and potential (U) energies. The area under the curve is the action functional (S).
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functionals (functions whose arguments are not just variables but functions) such as the ones appearing in 

mechanical problems. When the studied functional is that of the difference between kinetic and potential 

energies of a system (which are themselves a function of time), we refer to it as the  action functional 

(figures 2.1 and 2.2).

The equation of the action functional  S involves the monitoring of the kinetic  K,  and the potential  U 

energies for every time step between t1 and t2. Their difference is known as the Lagrangian, L.

These scalar magnitudes  K and  U can be obtained via many different formulations, depending on the 

coordinate system chosen by the analyst.

The above methodology of representing motion of a particle by means of the action functional provides 

the value of the action integral for one particular path. However, the set of possible paths followed by the  

particle between the points A and B is infinite. The Least Action Principle states that the path chosen by 

Nature is going to be no other but the one with a minimum value of the aforementioned integral. This is 

also called, in a more precise manner, the principle of stationary action. Thanks to it, the description of  

particle trajectories is simplified into a minimization problem [LAN1952].

The set of parameters which describe uniquely the kinematics (how things move) of a system is known as  

generalized coordinates. The minimum number of these coordinates necessary to completely describe a  

configuration is the degree of freedom of such system. 

Understanding of the properties of these coordinates is necessary because when we hit on a certain type of 
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Figure 2.2: Principle of Least Action. The sphere going from point A to point B could use any of the  
infinite paths. Its kinetic and potential energies would differ from one another. Euler and Lagrange’s  
variational mechanics, through the least action principle, establish that it would do it using only the one  
which minimizes the action integral. The chosen coordinates of the example are Cartesian, but any other  
would also be valid.
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coordinates called "cyclic” or "ignorable”, a partial integration of the basic differential equations is at 

once accomplished. If all our coordinates are ignorable，our problem is completely solved. Hence we 

can  formulate  the  entire  problem  of  solving  the  differential  equations  of  motion  as  a  problem  of 

coordinate transformation. Many approaches to the solution of mechanical problems just do so: instead of  

trying to integrate the differential equations of motion directly by means of variational methods they try  

to produce more and more ignorable coordinates [LAN1952].

The Gaussian principle of least constraint is a minimum principle comparable with the principle of least  

action, but simpler in not requiring an integration with respect to the time. By means of Gauss’s principle  

we use least squares to find action’s minimal value, whereas the principle of least action would lead us to 

an extremum value of the integral [LAN1952]. Although mathematically equivalent, this formulation has 

several  advantages  in  computational  terms  and  allows  for  the  consideration  of  frictional  dissipative 

constraints [UDW1992].

2.1.1.2.- Rigid Body Dynamics 

Rigid Body Dynamics studies the motion of bodies whose deformation is considered negligible with 

respect  of  their  displacement  or  rotation.  Unlike  particles,  where  only three degrees  of  freedom are  

enough to describe the kinematics, rigid bodies need also three more parameters to describe their rotations 

with respect to their centre of gravity [MIR1996].
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Figure 2.3: Kinematics and constraint formulation. Kinematics describe the movement by means of  
position with respect of a reference frame (in the picture, a cartesian one). Parameters such as distance  
or velocity are associated to the studied moving points (located in the center of the green spheres in the  
example). Cylinders represent longitudinal constraints, while spheres account for rotational ones.
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Kinematics deals with the study of how things move independently of the causes of the movement. For 

such purpose it employs the concepts of reference frame and coordinate system, position, displacement  

and distance, velocity, speed and acceleration, which account for the spatial configuration of the studied 

bodies.  In  order  to  simulate  body  interactions  and  motions,  it  is  needed  to  take  into  account  the 

environmental  constraints  that  affect  to  a  system of  rigid  bodies.  Constraint  formulation  implies  the 

correct fixing in the values of any or all of the aforementioned variables (figure 2.3).

Linear momentum p is the product of the mass m and the velocity v of a body. It is therefore a vectorial 

magnitude. Newton’s second law states that the rate of change of linear momentum of a body whose mass  

is constant equals the total of the forces exerted on the body.

Angular momentum L is the cross product of the linear momentum p and the position r vectors. It is an 

axial  vector or  pseudovector.  It  is  not  to  be mistaken with the  angular  momentum associated to the  

rotational movement of a body, where the inertia momentum of the body and its angular velocity are 

involved (figure 2.4).

Impulse,  I  accounts for the rate of change of linear momentum by means of Newton’s Second Law. In 

classical mechanics literature, also, impulse is just the integral in time of a force applied to a body, but it  

is commonly used to refer to a fast-acting force. This type of impulse is often idealized so that the change  

in momentum produced by the force happens with no change in time. This sort of change is a step change, 
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Figure 2.4: Different parameters of the movement of rigid solids. The red ball has a momentum p of 20 
kg m/s; the blue, 40 kg m/s and the box a null momentum due to its null velocity v. Their respective  
angular momentums L can be calculated through the vectorial product of their position r and momentum 
vectors p. After the collision, their particular linear and angular momentums will be modified, hence  
their impulses, but the system’s global momentum must remain invariant according to Newton’s Second  
Law.
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and  is  not  physically  possible.  However,  this  is  a  useful  model  for  computing  the  effects  of  ideal 

collisions and is widely used in many physics simulators [MIR1996, BEN2007]. 

Figure 2.4 illustrates the different parameters involved in the movement of a set of rigid bodies.

2.1.1.3.- Continuum Mechanics 

Continuum Mechanics  studies  the  behaviour  of  deformable  bodies,  as  opposed to  rigid  bodies.  It  is  

traditionally  subdivided  into  Solid  and  Fluid  Mechanics,  mostly  depending  on  the  deformational 

behaviour of the body. There are two main ways of kinematically describing the changes in configuration  

of the body: lagrangian and eulerian.

By means of the lagrangian description, continuum is represented as an atomic model where particles  

“float” in a vacuum and relate to each other in energetic terms. The eulerian approach makes a cellular  

division of this continuum and maps the changes that happen in constant locations, hence representing the 

flow implicitly, in the form of a field with its variations [SHA2008].

Figure 2.5: Motion of a material body of surface A and volume V in a Cartesian reference. v is the 
velocity vector resulting of applying a force F on the differential volume dV. Another velocity results from 
applying a tension T(n) on the differential surface dA.

In the theory of continuum mechanics, stresses are used as measures of the forces and pressures. As in the 

case of strains, different definitions can be used for the stresses. Some of these definitions are associated  

with a reference configuration, whereas others are associated with the current deformed configuration. 

The effect of the forces on the body dynamics can only be taken into consideration by using both stresses 

and strains. These stress and strain components must be defined in the same coordinate system in order to 

have a consistent formulation. Two basic types of forces are easily distinguished from one another: those 

acting on all volume elements, and distributed throughout the body, and those forces which act upon and 
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are distributed in some fashion over a surface element of the body [MAS1999]. The concept is illustrated 

in figure 2.5, as a basis for the different reference frames.

2.1.1.4.- Deformation and motion 

A change in the configuration of a continuum body results in a displacement. The displacement of a body 

has two components: a rigid-body displacement and a deformation. A rigid-body displacement consists of 

a simultaneous translation and rotation of the body without  changing its  shape or size.  Deformation 

implies the change in shape and/or size of the body from an initial or undeformed configuration to a 

current or deformed configuration [SHA2008].

The displacement field is the set of vectors that describe the change of a body from one configuration to 

another. It serves to represent changes in the position of the different points in a region or the whole body. 

Unfortunately, the mathematical notation associated to displacement fields makes them less intuitive than 

what they really are: a function involving many vectors and points at the same time. [MAS1999] 

The equations from which the behaviour of material points is described, and that need to be satisfied, are  

classified according to their nature: 

• Conservation of matter

• Conservation of linear and angular momentum

• Conservation of energy

• Constitutive equations

• Strain-displacement equations

The  possible  manners  of  expressing  these  equations  with  different  purposes  gives  place  to  the  

innumerable available formulations in literature, either optimizing the numerical methods associated or in 

the  search  for  more  general  descriptions  of  the  behaviour  of  materials.  Almost  invariably they  are  

formulated in the form of differential equations [SHA2008].

The balance laws express the idea that the rate of change of a quantity (mass, momentum, energy) in a  

volume must arise from three causes [MAS1999]: 

• The physical quantity itself flows through the surface that bounds the volume.

• There is a source of the physical quantity on the surface of the volume.

• There is a source of the physical quantity inside the volume.
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2.1.2.- Elements of Applied Mathematics

All the above physical concepts are idealizations of reality derived from pure observation. Eventually,  

these observations become relations between variables and parameters which are managed by means of  

mathematical tools. Such tools are mainly located in the fields of differential equations and linear algebra.  

Differential equations are involved in the representation of the continuum, while linear algebra is utilized 

to solve the energy minimization variational principles of Euler and Lagrange.

2.1.2.1.- Differential Equations 

A differential equation is any equation containing derivatives in it. The derivation can be ordinary (the  

function  has  only  one  independent  variable  on  which  we  can  derivate)  or  partial  (more  than  one  

independent  variable  is  present  so  we  derivate  just  on  one  variable  at  a  time  and leave  the  rest  as  

constants). Also, according to the number of derivations of the equation with respect of the variable, the  

equation can be first, second or higher order. In figure 2.6, an ordinary, second order equation is plotted.

Although  time,  matter  and  constraints  are  modelled  and idealized  as  a  continuum,  they need  to  be 

discretized  into  a  finite  integer  number  of  sub-elements  for  the  computer  to  process  them.  This  is 

important when numerical methods are considered for the solution of Differential Equations, as many 

analytical procedures give exact solutions which are impossible to achieve computationally. Likewise,  

there are problems that are not solvable analytically, hence the recurrence to numerical computational  

methods.

• Ordinary Differential Equations (ODEs): are those in which only the derivative with respect of 

one  independent  variable  is  present.  The  derivative  can  be  the  first,  the  second,  etc.  of  the  

function but only for one independent variable in the relation. For the solution of ODEs there is a  

whole  set  of  analytical  methods  that  account  for  the  form in  which the coefficients  and the 

variables are displayed in the equation. This leads to a series of classifications and definitions 

from which further association can be made. The more complex forms of ODEs out of these 

catalogues sometimes are not solvable, but often it is possible to manipulate their formulation in 

order to fit them into any known solvable scheme. It is important to distinguish between these  

analytical methods and the numerical ones further detailed in this chapter. 

• Differential-Algebraic Equations (DAEs): these combine the terms differential and algebraic, so 

as to express that  these are algebraic systems containing differential  equations.  Provided that 

engineering  normally  requires  conservation  laws  to  be  studied  altogether  with  constitutive 

equations and design constraints, it is much more efficient to do it by keeping these relations 

separate. This commonly leads to a set of differential and algebraic equations. 
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• Partial Differential Equations (PDEs): A PDE is a relation  u of several independent variables 

x,y,z,t,... and  the  partial  derivatives  of  the  relation  with  respect  of  these  variables.  A partial 

derivative of a function is its derivative with respect to one of its variables, with the others held  

constant. As an illustrative example, the graph of a function of more than one variable defines a 

surface when represented into Euclidean space (figure 2.7). In the literature, second order PDEs 
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Figure 2.7: Graphic representation of partial derivation. The function above has two independent  
variables (x and y). By fixing one of them (in the picture, x=8), we get the curve f(y)=64+8y+y2. This  
curve we can derivate, hence obtaining the partial derivative of f(x,y) with respect to y.

Figure 2.6: Graphic representation of a parabolic ODE. The ODE above happens to be a parabolic  
curve. It is ordinary because only derivatives with respect one variable appear (dx), and first order  
because there are only first derivatives in the equation (dy/dx). Its exact solution (analytically obtained)  
is the integral below. For each one of the possible values of c there is one possible curve. The whole set of  
possible curves is the general solution of the ODE. A particular value of c would define an Initial or a  
Boundary Problem.



State of the art: Overview of numerical methods for structural dynamics analysis

are  commonly  classified  as  one  of  three  types,  with  terminology  borrowed  from the  conic  

sections, given the resemblances of their formulas with that of the conics: Elliptic, Hyperbolic 

and Parabolic.

2.1.2.2.- Linear Algebra 

Linear algebra studies vectors. Its main structures are linear maps (functions that input vectors and output  

others) and vector spaces. For their representation matrices are typically used.

• Linear equations: Linear equations are algebraic relations in which each term is either a constant 

or the product of a constant and a single variable. If the power of the single variable is higher than 

one, then the equation is not considered linear any more, becoming quadratic (second power),  

cubic (third power), quartic (fourth power), etc. Linear equations can have one or more variables. 

When this happens they commonly group in a collection of equations that is easily representable 

in a matrix form. These matrix representations of the systems allows for algorithms such as Gauss 

or Gauss-Jordan leading to their solution. 

• Matrix  algebra:  these  allow  for  a  clean  and  straightforward  manner  of  representing  linear  

equations and transformations. Thanks to the modern computational tools, the tedious work of 

operating with them (addition, multiplication, inversion, etc,) is greatly facilitated to the engineer  

and  the  researcher.  Nevertheless,  for  the  study of  structural  dynamics  it  is  necessary to  be 

proficient  in  more advanced notions  such as  matrix  pseudo-inverse  and null  space or  kernel 

(utilized for the solution of linear equations), determinant (useful to characterize invertible square 

matrices), eigenvectors (those vectors whose direction is not affected by being multiplied with a 

square  matrix),  and  eigenvalues  (the  magnitudes  by  which  eigenvectors  are  scaled).  These  

concepts are extensively used throughout the literature and generally non-trivial. 

• Matrix Decomposition: A matrix can be decomposed into a product of matrices of special types, 

for an application in which that form is convenient (i.e. getting a system solved). This can be 

achieved  either  via  direct  or  iterative  methods.  Standard  direct  methods  use  some  matrix 

decomposition and comprise:

• Gaussian elimination

• LU decomposition

• Cholesky decomposition for symmetric and positive-definite matrix

• QR decomposition for non-square matrices. 

Iterative methods try to find the root of the system of equations by successive approximations 
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starting from an initial guess. These are generally the only choice for nonlinear equations. The 

most utilized are:

• Jacobi

• Gauss–Seidel's

• Newton-Raphson

• Successive over-relaxation

• Conjugate gradient

• Monte Carlo iterations

• Computations: Once associated to a matrix, there are other types of operations that can be made 

out of sets of linear equations, generally as sub-steps to the final purpose of solving them. When 

the set of equations is larger than the set of unknowns (i.e. the system is overdetermined), the 

method of the Least Squares can be used, either in its linear or non-linear form, to approximate 

the solution of the system. It is also possible to perform a Gram-Schmidt process over the system 

in order to orthonormalize its matrix, leading to a further QR decomposition and its eventual 

solution. The process of solving special kinds of systems by means of Monte Carlo iterations also 

requires some pre-processing in order to render a matrix into an equivalent, solvable one.
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2.2.- Methods for numerical integration of the equations of structural dynamics
In the previous chapter the conceptual elements required for understanding the dynamic behaviour of  

structural systems were briefly introduced. Here, an overview of the most relevant particular methods will  

be provided. 

For the simulation of structural dynamics three different physical concepts need to be integrated: time,  

kinematic  constrains  and  matter.  Each  one  of  these  notions  involves  the  simultaneous  solution  of 

Ordinary  Differential  Equations  (ODEs),  Differential-Algebraic  Equations  (DAEs)  and  Partial 

Differential Equations (PDEs), respectively. Their relationship to the areas of knowledge introduced in  

the previous chapter is illustrated in figure 2.8.

Figure 2.8: Visual display to the relationships between knowledge disciplines and numerical integration methods  
of the different kind. The complexity of the topic is better understood by grouping the different methods/principles  
around the physical concepts they solve.

The three main parameters that concern the engineer performing numerical simulations are the accuracy 

of the solution, the stability of the simulation and the efficiency of the calculation. The first problem 

derives from the fact that computational precision is finite, whereas the physical/mathematical models are 
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continuous hence only approximations to the behaviour can be obtained. By stable is meant that small  

errors due either to arithmetic inaccuracies or to the approximate nature of the derivative expressions will  

not accumulate and grow as one proceeds. Efficiency involves the speed of calculation and the occupied 

memory, which are also very sensitive to the design of the algorithms.

Generally, an early analytical approach is preferred to skip numerical issues along with the achievement 

of higher levels of precision. Nevertheless, the general problem of obtaining only approximations are  

inherent to the very description of any model and to any method. 

For a dynamics simulation to occur at least time and continuum (ODEs + PDEs) or time and constraints  

(ODEs + DAEs) have to be integrated. 

2.2.1.- Time Integration Methods: ODEs

Standard introductory differential equation courses focus on symbolic solutions, in which the functional  

form for the unknown function is to be guessed.  In contrast,  we will  be concerned exclusively with  

numerical solutions, in which we take discrete time steps starting with the initial value of the position.

The first  possible classification for ODEs solvers  distinguishes between explicit,  implicit  and hybrid  

methods. Explicit methods are the most immediate to formulate, but present the problem of the so called 

numerical stiffness Stiff ODEs require that the size of the adopted time step be so small that the time to  

convergence never arrives, or otherwise adopt time steps so large that the simulation becomes unstable.  

The stiffness can be produced by the physical characteristics of the multi-body system (components with 

large differences in their masses, stiffness and/or damping). However in many other instances, stiffness is  

numerically  induced  due  to  either  the  discretization  process,  the  large  number  of  components  and 

equations of motion, or sudden or accumulated violations in the constraint conditions. The advantage of 

implicit methods is that they are usually more stable for solving a stiff equation, meaning that a larger  

step size can be used. However, extra computations need to be done internally and it requires extra time. 

Hybrid methods will not be covered in this thesis.

Another division is made according to the order of the derivative of the equation of motion employed. So 

a method is characterized as first, second, third or higher orders accordingly. The higher the order the  

more accurate the result would be, though it limits the span of possible time steps due to instabilities.

The third possibility is that of the method being Single or Multi-Step. Single-step methods refer to only  

one previous point and its derivative to determine the current value. Multi-step methods attempt to gain 

efficiency  by  keeping  and  using  the  information  from  previous  steps  rather  than  discarding  it. 

Consequently, multi-step methods refer to several previous points and derivative values. In the case of  

linear multi-step methods, a linear combination of the previous points and derivative values is used. 
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The following does not intended to be a fully comprehensive list of methods but an illustration of the 

main issues that arise in the numerical computation of Ordinary Differential Equations applied to the  

specific field of Dynamics. A more detailed overview can be found in [PRE1992].

In the  following chapter,  variational  integrators  will  be  introduced as  an alternative formulated from 

Hamilton's principle of least action rather than integrating an ODE or a PDE. Variational integrators are a  

class  of  integration  methods  for  Lagrangian  systems  that  result  in  good  energy  behaviour  and 

conservation of momentum. These conservative properties makes them very attractive for they allow 

more accurate simulations at larger time steps [WES2004].

2.2.1.1.- Explicit Methods

Explicit methods use the the differential equation at time t to predict a solution at time t+dt. In structural 

dynamics, where stiff equations often arise, the required time step is very small to avoid unstabilities. 

Explicit methods are hence conditionally stable with respect to the time step size.

E Forward/Explicit  EulerMethod (EE):  In  practical  terms  this  method is  never  utilized  as  it 

presents problems of stability and accuracy, but has been included here for its pedagogical value. It is 

devised considering that from any point on a curve, it is possible to find an approximation of a nearby 

point on the curve by moving a short distance along a line tangent to the curve [MAR2009].

F Explicit  Runge-Kutta  Methods  (ERKn):  The  basic  idea  of  this  family  of  methods  is  to 

eliminate the error terms by evaluating the function in points located half way and including them in 

the current step. Higher order Runge-Kutta methods exist, being the 4th order Runge-Kutta the most  

commonly used. An n order Runge-Kutta implementation requires n evaluations of the function per 

step, so for most problems four is a good compromise between computational cost and accuracy. A 

mnemonic device known as Butcher's Tableau is used to arrange the data necessary to describe the  

different methods. The original formulation is that of a single step solver. In general this is adequate for 

non stiff problems and provides an acceptable level of accuracy. Lower order formulations provide 

lower accuracy [FIT2006]. Explicit  Euler's method (EE) can be also considered a 1st order Runge-

Kutta. Dormand-Prince method (RKDP), Fehlberg method (RKF) and Cash-Karp method (RKCK) are 

slight variations on this method.

G Adams - Bashfort – Moulton Method (ABM): This methodology employs multiple previously 

recorded steps to achieve a solution, hence being more efficient. Initial values need to be provided and 

are usually obtained from a Runge-Kutta scheme.  It  also presents an acceptable level  of  accuracy 

depending on the chosen step size and is meant to solve non stiff systems. Shampine-Gordon method 
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(SG) is based on this methodology [BUT2008].

H Chung-Hulbert method (CH): This algorithm is devised for structural dynamics calculations 

where high frequency dissipation is needed. It  uses a set of parameters to enable treating physical  

damping explicitly without reducing the accuracy [CHU1993].

I Leapfrog  /  Velocity  Verlet  Method  (LF):  Leapfrog  integration  is  a  simple  method  for 

integrating differential equations, particularly in the case of a dynamical system. The method is known 

by different names in different disciplines. In particular, it is similar to the Velocity Verlet method,  

which is a variant of Verlet integration. Leapfrog integration is equivalent to calculating positions and  

velocities at interleaved time points, interleaved in such a way that they 'leapfrog' over each other. For  

example, the position is known at integer time steps and the velocity is known at integer plus half time  

steps [BUT2008].

2.2.1.2.- Implicit Methods

For  implicit  methods  the  strategy consists  on  satisfying  the  differential  equation  at  time  t once  the 

solution at time t-dt is available. This requires the solution of a set of linear equations at each time step,  

but  allows  for  larger  time  steps  and  gives  further  stability  or  even  unconditionally  stable  schemes 

[WIL1996].

A Backward/Implicit Euler Method (IE): While forward Euler takes a step along the derivative at 

the current time and position the backward Euler method uses almost the same time stepping equation, 

but with an extra step. Backward Euler chooses the step, k, so that the derivative at the new time and 

position is consistent with k. Doing this requires solving this equation for k, which amounts to a root 

finding problem if f(x) is nonlinear. The forward Euler step is a common place to start the root finding 

iteration [MAR2009].

B Implicit Runge-Kutta methods (IRKn): Implicit Runge-Kutta methods are usually more stable 

than any explicit method of the same family. The simplest example of an implicit Runge–Kutta method 

is the backward Euler method enumerated above. Crank-Nicholson method (CN), also known as the 

trapezoid method is another example of implicit Runge-Kutta methods [CRA1947].

C Gear's / Backward Differentiation Formula Method (BDF): BDFs are formulas that give an 

approximation to a derivative of a variable in terms of its function values and earlier times (hence the  

"backward"  in  the  name).  They are  derived  by forming  the  k-th  degree  interpolating  polynomial 

approximating the function using the values up to the k-th value, differentiating it, and evaluating it.  
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Despite of being multi step, this is a generally less efficient method than RK4 of ABM. It is also often 

utilized for the solution of stiff problems and of Differential Algebraic Equations (DAEs) [GEA1984].

D Newmark-Beta Method (NB): The Newmark-Beta method is a particular one of several time-

step methods originally proposed by Newmark in 1959. It is commonly used for the solution of linear  

and non-linear equations and uses a numerical parameter designated as Beta. It is devised specifically 

for  structural  analysis.  The  general  method  additionally  contains  a  second  parameter  Gamma. 

Particular values of these parameters leads to well known methods for the solution of the differential  

equation of motion. Newmark's algorithms are unconditionally stable for linear problems,  but only 

conditionally stable for non linear problems [BRA1998]. The Hilbert-Hughes-Taylor method (HHT) is 

a generalization of the Newmark-Beta method.

2.2.2.- Kinematic Constraints Integration Methods: DAEs

When bodies are subject to kinematic constraints,  further equations besides to the purely time-related 

ones have to be satisfied. These constraints come in the taste of contacts between different bodies or as 

joints in particular chain configurations (planar constraints, cylindrical, spherical, rectangular, revolute or 

screw joints, etc). These chains can be opened or close, hence facilitating the use of optimized types of  

algorithms for the solution of the DAEs.

In order to numerically tackle these conditions the equations of motion are rearranged to obtain different  

schema from which construct stable, accurate and faster formulations. The possibilities encountered in the 

literature are to do it either in the acceleration level, the velocity level or the position level.

2.2.2.1.- Acceleration level schema

This is the most common, “classic” approach utilized to solve the constraint equations. The methods 

using this approach are considered Constraint Based. By means of this, at the beginning of each time step 

the  internal  forces  (elastic,  viscous  or  pressure)  and  the  external  ones  (gravity,  collisions,  etc)  are  

computed  and  accumulated.  Then,  by  means  of  Newton's  second  law,  they  are  transformed  into 

accelerations  and then velocities  and positions are updated for  each integration time step.  Given the  

tendency to numerical drift shown by these approaches, stabilization techniques are generally accessories 

to them, being Baumgarte's the most popular one [BAU1972].

A Penalty method (PM): This method adds a force to a multi-body system, if a constraint is not 

satisfied. The magnitude and direction of this force depends on the constraint violation. This numerical  

integration algorithm has the advantage of being much simpler than those shown below corresponding 

to other methods. However, it may not be the most efficient. In addition, as the numerical integration 
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proceeds  using  this  algorithm,  the  constraint  conditions  are  progressively  violated  leading  to 

unacceptable results in all but very short simulations. [JAL1994] 

B Lagrange  Multipliers(LM):  The  Lagrange  multipliers  are  numerical  artifacts  (additional 

algebraic variables) that enforce constraint conditions between the elements. Rather than eliminating 

the multipliers and obtaining coupled system coordinates, the values of the Lagrange multipliers are 

solved in  time  as  part  of  the  numerical  technique.  The constraint  equations  are  included into the 

acceleration term by derivation of them twice with respect to time. It allows for the solution of the  

dynamic problem at  the  expense of  solving for  an augmented set  of  (n+m) unknowns  [JAL1994, 

BLE1981].

C Reduced  Coordinates  Method  (RC):  A  reduced-coordinate  formulation  provides  a  more 

accurate simulation. Holonomic (redundant) constraints reduce the degrees of freedom of a multi-body 

system permanently. This property is used by reduced-coordinate methods. For a multi-body system a 

parameterization is required to reduce the number of coordinates that describe the system’s state to a 

minimum. For each degree of freedom one coordinate is needed [BEN2007]. 

D Udwadia-Kalaba formulation (UK): This method represents a more compact and general form 

of solving the DAEs by means of the Moore-Penrose generalized inverse matrix. It is based on Gauss' 

Principle of Minimum Constraint, which establishes that the explicit equations of motion be expressed 

as the solution of a quadratic minimization problem subjected to constraints, but at the acceleration 

level [UDW1992].

2.2.2.2.- Velocity level schema

Originated by the necessity of efficiently handle the collision constraints, these methods utilize the notion 

of impulse as a fast acting force, hence they are more commonly known as Impulse Based methods. In  

this approach, forces are systematically replaced by impulses so that no complex differential equations 

need to be solved. It is achieved thanks to the fact that the integration of a force over a time interval  

results in a change of impulse, hence the name.

A Impulse Based Method (IB):  Generally applied for the simulation of rigid solids and their 

collisions, its advantages include simplicity, robustness, parallelizability, and an ability to efficiently 

simulate classes of systems that are difficult to simulate using constraint based methods. The accuracy 

of impulse based simulation has been experimentally tested and is sufficient for many applications 

[MIR1996, BEN2007]. Currently under very active development, results particularly popular among 
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the Computer Graphics community given their remarkable speed.

B Tethered  Particle  System  (TPS):  For  the  simulation  of  deformable  biological  structures, 

tethered  particle  systems  capture  the  gradual  process  of  deformation  by  means  of  instantaneous 

impulses occurring in response to particle collisions. Unlike many other methods described above,  

requiring solutions to systemsof equations or inequalities, all the calculations in a TPS simulation are 

analytic [GOL2011].

2.2.2.3.- Position level schema

This paradigm integrates the equations of motion directly from the position terms. This permits avoiding 

the appearance of DAEs as geometric constraints get inserted in a straightforward manner as projections  

without further need of derivation. This skips many drifting problems caused by the numerical integration  

of differential terms. It offers a certain amount of generality, as a wide variability of geometric constraints  

can be added without  considering conservation laws,  etc [KEL2010, MUL2006].  This is  also a very 

recent line of research still subject to a good deal of discussion among Computer Graphics developers.

2.2.3.- Matter Integration Methods: PDEs 

To describe the dynamics  of  matter  we have an infinite  number  of  degrees  of  freedom because the  

particles that conform them can have arbitrary displacements with respect to each other. Such systems are  

described using partial differential equations where time and spatial coordinates are related. These general 

partial differential equations, which are applicable to any solid or fluid material, were outlined in the first 

section of this chapter. For their solution, two different approaches can be taken in order to control the  

number of degrees of freedom (i.e. discretize): creating a mesh where these displacements are limited 

(mesh based methods) or establishing the equations in the form of potential functions so the particles  

regulate each other (mesh free methods) [LIU2003a].

2.2.3.1.- Rigid Body Models (RBM)

Rigid Body Models (RBM) are idealizations of solids of finite size in which deformation is neglected.  

This is the simplest approach to modelling the continuum and implies that no PDEs are integrated. Rigid 

bodies, in contrast to particles, occupy space and have geometrical properties (centre of mass, moments of  

inertia,  etc.).  These  properties  characterize  motion  in  six  degrees  of  freedom  (translation  in  three  

directions  plus  rotation  in  three  directions).  When  rotational  motion  is  important,  but  material  

deformation does not  have a significant  effect  on the motion of the system it  is  broadly utilized for  

modelling physical systems and machinery. The generated geometric models are commonly built taking 

into account the later ease of computation of collisions between bodies.
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2.2.3.2.- Mesh based Methods 

As mentioned earlier the governing equations of continuum mechanics present two main possibilities: 

Lagrangian description and Eulerian description.

In the Lagrangian description, the material quantities mass, energy and momentum move along with the  

mesh  cells.  Because  the  mass  within  each  cell  remains  fixed,  no  mass  flux  crosses  the  mesh  cell  

boundaries.  When the material  deforms,  the mesh deforms accordingly [LIU2003b].  This description 

results efficient for computational solid mechanics problems, where small deformations occur, but is very 

difficult to apply when the mesh is heavily distorted. Also, the level of accuracy depends on the smallest  

element size, not on the chosen time step, leading to then less efficient solutions such as re meshing. It is  

typically represented by the Finite Element Method (FEM).

In the Eulerian scheme, the grid is fixed in space and the changes in material flow across. The shape and  

volume of a mesh cell remain unchanged along the whole simulation. However, the dependence on a 

regular grid is a source of trouble when dealing with irregular or complex geometry aiming for the precise  

location  of  inhomogeneities,  free  surfaces,  deformable  boundaries  and  moving  interfaces.  The  main 

exponent of the Eulerian description is the Finite Difference Method (FDM).

There  is  still  a  third  possibility  aimed  to  strengthen  the  advantages  of  both  while  avoiding  their  

drawbacks. These are the Arbitrary Lagrange Eulerian and the Coupled Eulerian Lagrange, but given their  

complexity will not be covered here.

A Finite Element Method (FEM): There are over 11,000,000 references to the FE method in the 

world wide web. Naturally, a section dedicated to the method can only cover some highlights of it and 

introduce some  of  the  more  basic  concepts  and  approaches.  FEM's  mathematical  abstraction of  a  

structure  is  that  of  a  continuum body being  formed  by a  set  of  points  called  nodes  with  certain  

mechanical  properties.  For  FEM analysis  the  body is  divided  into  elements.  Assuming  that  these 

elements are small one can use low-order polynomials to describe the set of vectors that describe the  

change of the element from one configuration to another (its displacement field). Once the polynomials 

are introduced the entire body equations of motion can be obtained by assembling those of its elements  

using the connectivity conditions at the finite element boundaries. In the literature there are many finite 

element  formulations  that  are  developed  for  the  deformation  analysis  of  mechanical,  aerospace, 

structural, and biological systems. Some of these formulations are devised for small-deformation and 

small-rotation  linear  problems  (dominating  in  structural  analysis),  some  for  large-deformation  and 

large-rotation  nonlinear  analysis,  and  others  for  large-rotation  and  small-deformation  nonlinear 

problems. This provides a very rich set of powerful tools that, however, presents some well known 

limitations [LIU2003b, BEL1996, VID2004]:
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◦ The dependence on nicely formed meshes consumes a substantial quantity of manpower.

◦ In stress calculations, the stresses obtained using FEM packages are less accurate.

◦ When  handling  large  deformations,  considerable  accuracy  is  lost  because  of  element 

distortions.

◦ Crack growth with arbitrary and complex paths has to be coincident with nodal lines, which 

is never known a priori.

◦ As FEM is based on continuum mechanics, fragmentation is very difficult to represent, hence 

many discontinuous materials can not be accurately modeled.

◦ The interfaces between bodies of different material properties and their coupled behavior is  

not completely accurate.

The answer to these limitations seems to be in the adaptive re-meshing approaches, that however  

only serves well on 2D meshes and also consumes a very high amount of computational power.

B Finite Differences Methods (FDM): Finite Difference methods apply a grid over the region and 

solve the Partial Differential Equation by approximating the derivatives via the Taylor series expansion 

and using differences as an approximation. For this method it is important that a uniform grid is applied 

over the region in order to reduce errors by the differencing method. FDM are thus less robust for  

irregular shaped bodies than finite element methods which divide the region into separate elements to  

fit the region and use a variational approach to solving the PDE. The benefits of FDM is that it is easy  

to understand, easy to explain, easy to program, meshing is simple, and the error is known in terms of 

the remainder from the Taylor series expansion of the derivatives. It used to be commonly used in fluid 

dynamic methods mainly because of its stability [NEA2005].

C Finite Volume Method (FVM)

The  finite  volume  method  is  a  discretization  method  which  is  well  suited  for  the  numerical  

simulation of various types of conservation laws (elliptic, parabolic or hyperbolic, for instance). It 

has been extensively used in several engineering fields, such as fluid mechanics, heat and mass  

transfer or petroleum engineering. Some of the important features of the finite volume method are  

similar  to  those  of  the  finite  element  method:  it  may be  used  on  arbitrary geometries,  using 

structured  or  unstructured  meshes,  and  it  leads  to  robust  schemes  [EYM1997].  The 

implementations of FVM methods for Computational Solid Mechanics can be classified into two 

categories:  the  cell  centered approach and the cell-vertex one.  In the cell-vertex approach,  the 

displacement and stress  variables are stored at  the vertexes  of  the  mesh which are  themselves 

enclosed by control volumes formed by the median duals of the mesh; whereas in the cell-centered 

method the variables are stored at the centroids of cells which are also used as control volumes  
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themselves.  Thus  the  cell-vertex  approach  needs  considerably  less  computational  effort  and 

memory for a given mesh. 

D Mass-spring systems (MSS)

Mass-spring systems have been widely used in computer graphics because they provide a simple 

means of generating physically realistic motion for a wide range of situations of interest.  Even 

though the actual mass of a real physical body is distributed through a volume, it is often possible  

to simulate the motion of the body by lumping the mass into a collection of points. While the exact  

coupling between the motion of different  points on a body may be extremely complex,  it  can  

frequently be approximated by a set of springs. As a result, mass-spring systems provide a very 

versatile simulation technique. In most  particle systems,  the forces derived from internal  strain  

energy are equivalent to spring forces. Hence, we can view the model as a network of particles  

connected by springs. Since particle systems already represent a discretization in space, only a 

system of ordinary differential equations has to be solved. The trajectory of each particle with mass 

m at position x is computed by Newton’s equation of motion.

2.2.3.3.- Mesh free Methods 

The key idea of the mesh-free methods is to provide accurate and stable numerical solutions for integral  

equations or PDEs with all kinds of possible boundary conditions from a set of arbitrarily distributed 

nodes (or particles) leaving aside any mesh that provides the connectivity of these nodes or particles. One  

important goal of the initial research is to modify the internal structure of the grid-based FDM and FEM 

to become more adaptive, versatile and robust. Much effort is concentrated on problems to which the 

conventional  FDM and FEM are  difficult  to  apply,  such  as  problems with  free  surface,  deformable  

boundary, moving interface (for FDM), large deformation (for FEM), complex mesh generation, mesh 

adaptivity,  and  multi-scale  resolution  (for  both  FDM  and  FEM).  Recently,  a  number  of  mesh-free 

methods have been  proposed for analysing solids and structures as well as fluid flows. These mesh-free  

methods share some common features, but are different in the means of function approximation and the 

implementation process.

The following is not a fully comprehensive list but just a short enumeration of the most important mesh-

less methods available according to literature [VID2004, EYM1997, LIU2003b].

A Smoothed Particle Hydrodynamics (SPH)

In  the  SPH method,  the  state  of  a  system is  represented  by a  set  of  particles  which  possess 

individual material properties and change according to the governing conservation equations. SPH 

was developed for hydrodynamics problems in the form of PDEs of field variables such as velocity, 
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density,  energy,  etc.  To  achieve  the  numerical  solution  of  the  mentioned  PDEs  one  needs  to  

discretize  the  problem  domain  where  they  are  defined.  Next,  a  method  for  obtaining  the 

approximated values and time derivatives at any point is need. The function approximation is then 

applied to the PDEs to obtain a set of ODEs in a discretized form with respect only to time. This set  

is  then  solvable  by using  one  of  the  standard  time  integration  methods  described  in  previous  

chapters.

B Diffuse Element Method (DEM)

An alternative but related approach to developing a meshless approximation is to use a moving 

least  square  approximation.  Moving  least  squares  is  a  method  of  reconstructing  continuous 

functions from a set of unorganized point samples via the calculation of a weighted least squares 

measure biased towards the region around the point at which the reconstructed value is requested.  

In computer graphics, the moving least squares method is useful for reconstructing a surface from a  

set  of  points.  Often  it  is  used  to  create  a  3D  surface  from  a  point  cloud  through  either 

downsampling or upsampling. This was employed by Nayroles and Touzot in 1992 to interpolate 

the material properties among nodes of a structre without need of predefining a mesh [NAY1992].

C Element Free Galerkin Method (EFG)

This method is an extension of the previous one in terms of mathematical rigour and accuracy. 

However,  it  still  requires  the  definition  of  a  series  of  background  cells  for  the  definition  of  

quadrature point. This eliminates its mesh-less characteristics and results in a computationally more  

expensive procedure. Besides, this method can yield non-positive definite systems of equations, 

reducing even further the efficiency.

2.2.4.- Evaluation of numerical methods

Tables 2.1 to 2.3 present in a condensed manner the methods enunciated above (abbreviations can be 

found in bold letters in the previous section). These tables intend to facilitate an approximated evaluation 

and comparison over the four most relevant aspects regarding numerical methods: accuracy,  stability,  

efficiency and ease of implementation. 

The values range between one and three points (one for low and three for high) for the sake of generality 

and correspond solely to the informed opinion of the author of this thesis. It is important to keep in mind 

that there is not an easy manner to objectively compare numerical methods. This explains why most 

references in literature focus on particular applications for particular methods. Conclusions obtained from 

these works are commonly too specific for our purposes. Chapter 2 of this thesis will try to address this  

situation by applying energetic principles to the comparison of some of the methods presented here.
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In terms of accuracy and stability ODE solvers depend directly on the time-step parameter and the order  

of the derivative. Paradoxically however, the higher the degree of accuracy of the simulation the smaller 

becomes its stability field.

For DAE methods, accuracy is directly affected by the previous choice of ODE parameters (time-step 

primarily). Besides, as they operate in the formulation level, for each of them exists a particular set of 

parameters. For instance the Penalty Method gains accuracy the more its penalty parameter approaches 

infinity. This value is obviously limited by the computer capabilities. Impulse Based methods require an  

extra iterative sub-process whose convergence is limited as to the type of problem to be solved. 

Regarding the accuracy of PDE solvers, the main defining factor is the density of the mesh for mesh 

based methods, and the density of interpolation points in the mesh-free schema. But also the form of the 

characterizing  functions  and  polynomials  should  be  finely  tuned  according  to  different  problems. 

Adjustment of these parameters depends highly on the choice of the analyst at the time of modelling, not 

so much in the method itself.

In terms of efficiency, in ODE methodologies there are obvious advantages for explicit schemes as they 

do not require extra computations. Implicit solvers, however, keep a higher degree of stability for larger 

time steps, which makes them eventually more attractive in simulations where low resolution is sufficient.

DAE methods generally involve extra algebraic sub steps, which are determinant in their computational 

cost, but they are not always applicable to every type of problem. For example, the Lagrange Multipliers 

method results  in  an  expansion of  the  underlying  system of  linear  equations  that,  depending on the 

number of constraints,  can be computationally more expensive.  However,  this  expansion reduces the  

potential numerical instability arising sometimes in the Reduced Coordinates method.

PDE methods have their most simplistic approach in the form of rigid bodies, where no differentiation nor 

operation is made, being the mesh free methods the least efficient as state computations have to be made 

over the whole population of approximating points on each time step.

Ease of implementation for each method is not only reflected in the number of sub algorithms contained  

but  also  in  the  conceptual  background,  intuitiveness  of  their  inherent  principles  and  availability  of  

information on how they work.

In general ODE methods are broadly available, extended and well documented, but given their generality 

it can result difficult to discriminate when to apply them for particular problems.

DAE methods are often entangled within the very formulation of ODE methods in some applications, and 

their mathematical approach and explanation results often awkward and counter intuitive.

PDE  methods  range  from the  easiest  Finite  Difference  to  the  very  complex  formulations  of  Finite 
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Elements and Smoothed Particle Hydrodynamics. In general, these are the most mathematically involved.

Table 2.1: Summary of ODE / Time integration methods

Scheme Method Accuracy Stability Efficiency Ease of implemen-
tation

Ex
pl

ic
it

EE * * * * * * * * *
ERKn * * * * * * * * *
RKDP * * * * * * * * * *
RKF * * * * * * * * * *

RKCK * * * * * * * * *
ABM * * * * * * * * *
SG * * * * * * * *
LF * * * * * * * * * *

Im
pl

ic
it

IE * * * * * * * *
IRKn * * * * * * *
CN * * * * * * * * *
BDF * * * * * * * * *
CH * * * * * * * * * *
NB * * * * * * * *

HHT * * * * * * *

Table 2.2: Summary of DAE / Constraint integration methods

Scheme Method Accuracy Stability Efficiency Ease of implemen-
tation

Ac
ce

le
ra

tio
n PM * * * * * * * *

LM * * * * * * * *
RC * * * * * * * *
UK * * * * * * * * *

Velocity
IB * * * * * * * * * *

TPS * * * * * * *
Position PBD * * * * * * * * *

Table 2.3: Summary of PDE / Matter integration methods

Scheme Method Accuracy Stability Efficiency Ease of implemen-
tation

Rigid Body RB * * * * * * * * * *

Mesh based

FEM * * * * * * * * * *
FDM * * * * * * * * *
FBM * * * * * * * * *
MSS * * * * * * * * * *

Mesh free
SPH *** *** * **
DEM *** *** * *
EFG ** *** * *
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2.3.- Industry tendencies
Table 2.4 enumerates some different scientific and engineering fields. By means of a sample of selected 

representative packages (either commercial or open source), and exposing the numerical methods in them 

implemented, it is shown how these industries are related to the integration concepts described in the 

previous section.

Table 2.4: Comparison of different disciplines, methods and implementations.

Field of Original Ap-
plication / Industrial 

Background
ODE DAE PDE Implementation 

Name

Mechatronics/Robotics

SG / ERK3 / ERK4 / 
ERK5 GC FEM SPACAR

ERKF2 / ERKF3 / 
ERKF4 / ERKF5 / 

RKDP / ABM / BDF
GC / LM RBM Sim Mechanics

Aerospatial CN / IE / BDF LM FVM MBDyn

Automotive
ERK2 LM RBM SimCreator

BDF / ABM / ERK4 IB / LM FEM Universal Mecha-
nism

Games / Graphics / Ani-
mation

EE IB RBM ODE

ERK4 IB / LM RBM IBDS

EE IB RBM / MSS Havok Physics

Multiphysics
ERK5 / IRK4 LM FVM / FEM OpenFOAM

BDF / ERK4 / ERK5 / 
IE LM FEM COMSOL

Medical / Biomechanics EE / ERK2 / ERK4 / 
IE PM / IB MSS / FEM / RBM 

/ SPH

SOFA (Simulation 
Open Framework 

Architecture)

Structural Engineering

NB / HHT / IRK / CH GC FEM SAP2000

NB / IE / HHT / IRK2 PM FEM DIANA

Explicit unspecified LM / PM FEM / FVM / SPH EUROPLEXUS

ERK4 / ERK5 / CN / 
NB LM / PM FEM / FVM / SPH ANSYS

NB / HHT GC / PM / LM FEM ABAQUS FEA

The selection of implementations was made purely with illustrative purposes, so many other important and well  

established names may have been omitted. A complete survey on the matter of computer software for structural  

dynamics would be the topic for a much longer thesis and is left open by the author.

It can be appreciated how mechatronics, robotics and aerospatial oriented packages, where a high level of  

accuracy and stability is compulsory, facilitate analysts a wide range of time solvers, whether implicit and  
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explicit, and rely on the more “classical” acceleration based methods for enforcing the constraints. The  

integration of continuum mechanics ranges from the simplistic Rigid Body Models, utilized in robotics, to 

the Finite Volume Method that allows for easier implementation of flow-solid interactions.

Automotive simulators and game engines, where real time experience and computer efficiency are the 

main concerns, make a wider use of explicit time integrators (lower accuracies), impulse-based methods 

(higher speed) to compute the constraints and show a dominating presence of the simpler Rigid Body 

Models. Also in the automotive field safety simulations and prototyping need top be carried away, hence  

the use of implementations with more sophisticated methods such as FEM.

Multiphysics packages, by means of which highly complex interactions are analysed (thermal, dynamic, 

electrical, etc.) utilize mostly FEM given its versatility in the solution of PDEs. General purpose time  

integrators either implicit and explicit are present, given the broad scope of these applications.

When it  comes  to  health  environments,  where  the  level  of  detail  is  focused  on  complex  tissue-like 

materials, the span of choices regarding matter integrators grows considerably. Given the need for real 

time interactivity in surgical simulations, the span of ODE integrators is fairly broad, along with the faster 

impulse based constraint solvers. Human limbs are approximated by means of Rigid Bodies for the study 

of the behaviour of articulations.

For the  Structural  Engineering field it  is  shown the dominance of FEM and the application of very  

specialized time integrators. It is remarkable how computational cost is not regarded so much as accuracy 

and numerical  stability,  as  the  choice  of  these  integrators  along  with  the  more  canonical  constraint  

enforcing methods can prove. Also the tendency towards analyzing fluid-structure interactions appears in 

the form of FVM and SPH methods.
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2.4.- Discussion
From the above chapters the interested reader might have achieved some perspective over the entangled 

subject of structural dynamics. This is an important contribution of this thesis as a comprehensive, clear  

and accessible introduction to the topic seems to be unavailable at the moment. This happens despite the 

existence of numerous specialized courses on non-linear structural analysis and also the huge amount of 

literature produced. It was not found by the author any organized scheme in terms of tangible concepts 

such as time, matter and constrains.

It is the opinion of the author that unfortunately the tendency appears to be that of over-specialization. It  

most likely discourages not only the newcomer but also those who try to look up into other branches of 

the same tree. Another perceived phenomenon is that of the over dominant position of the Finite Element  

approach, that relegates sometimes unfairly other equally effective methods.

It is suggested here that a better understanding of numerical methods utilized with simulation purposes 

can  provide  satisfactory and  safe  answers  to  structural  engineering  needs,  as  opposed  to  simplified 

methods and models. Such simplified methods, often encouraged from regulations and common practice, 

may have an apparent immediate advantage. However, they tend to obfuscate the global perspective given 

their tendency to prolificacy.

Table 2.4 enumerates some different scientific and engineering fields. By means of a sample of currently 

popular  packages  (either  commercial  or  open source),  and  exposing  the numerical  methods  in  them 

implemented, it is shown how these industries are related to the integration concepts described in section 

2.2.

The table displays how mechatronics, robotics and aerospace oriented packages, where a high level of  

accuracy and stability is compulsory, provide the user with a wide range of time solvers, either implicit 

and explicit, and rely on the more canonical acceleration based methods for enforcing the constraints. The 

integration of continuum mechanics ranges from the simplistic Rigid Body Models, utilized in robotics, to 

the Finite Volume Method that allows for easier implementation of flow-solid interactions.

Automotive simulators and game engines, where real time experience and computer efficiency are the 

main concerns, make a wider use of explicit time integrators (lower accuracies), the faster impulse-based 

methods to compute the constraints and show a dominating presence of the simpler Rigid Body Models.  

Also  in  the  automotive  field  safety  simulations  and  prototyping  are  made,  hence  the  use  of  

implementations with more sophisticated methods.

When it comes to health environments, where the attention is focused on complex tissue-like materials,  

the span of choices regarding matter integrators grows considerably. However, provided the need of also  
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efficient time and constraint simulations, more advanced techniques are made available.

Simulations of molecular dynamics mainly happen in academic and research environments (chemistry,  

biophysics, etc.), and in general do not imply constraints among bodies as the simulated elements are just 

particles. Explicit time integration is utilized as the common duration in this case is usually no longer than 

few seconds, hence short time steps can be taken to avoid numerical stiffness problems.

Regarding  structural  engineering  it  is  shown  the  dominance  of  FEM  and  the  application  of  very 

specialized time integrators. As computational cost is not regarded so much as accuracy and numerical  

stability, the choice of these integrators along with the more canonical constraint enforcing ones makes 

perfect sense within this field.

It permits also to clarify how FEM is a name too much generic for a very broad field of simulation tools.  

The fact that an implementation contains a continuum mechanics PDE solver by means of the FEM  

doesn’t make this engine into a FEM. It is a common case to find in literature mentions to implicit FEM  

when describing numerical methods using an implicit ODE integrator where FEM is the method of choice  

for approximating material behaviour (PDE), regardless how misleading and confusing that might be.

Finally, a benchmarking scheme in the conceptual side of the state-of-the-art methods has been shown for  

evaluation  and  comparison.  It  should  serve  to  locate  the  level  of  complexity  and  accuracy  of  the  

implementations used in structural dynamics. Insofar the trend within this discipline seems to be that of  

sacrificing computational efficiency in benefit of canonical schemes of higher accuracy.
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3.- Comparison and study of numerical methods by means of variational  
mechanics
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3.1.- Introduction
In this chapter it will be shown how focusing the structural analysis in energy changes instead of strains 

and stresses actually gives a better understanding of the studied phenomena. It is not meant to revise the  

existing  variational  integration  methodologies,  as  this  has  already  been  done  somewhere  else 

([MAR1999], [WES2004], [LEW2003]), but to give them a practical application to a common problem in 

engineering: the assessment of numerical methods.

As it was shown in the previous chapter, there is a preference in the practice of Structural Analysis to use  

forces and accelerations rather than energy concepts. Unfortunately this approach often restricts a global 

understanding of the phenomena, as for example, in the case of earthquakes, damage is a function of the 

square of the velocity, and not so much of the acceleration [HOU1956].

A consequence of this preference is that the magnitudes of energy and momentum, and the variational 

principles of mechanics, end up confined to the formulation of the different methods. For their robustness,  

energy principles are employed in the formulation of PDE methods like Galerkin's and FEM, but they 

quickly are put aside and in practice only strain and stress relationships are examined.

Variational mechanics date back as far as the Eighteenth Century, when Leibniz, Euler, Maupertuis and 

Lagrange  devised  the  calculus  of  variations  and the  principles  of  least  action.  This  methodology of 

treating physical phenomena is based on the notion that everything in Nature tends to a state of minimal 

energy [LAN1952]. 

The original formulation, that eventually led to the Hamiltonian theories and the Principle of Stationary 

Action [HAM1835], was enunciated in a general continuum hypothesis. Recently however, discretized 

versions of the principle of least action are giving place to a promising modern class of time integration 

algorithms named variational integrators, or, as they are also known, symplectic or geometric.

By means of the variational approach to the problems of discrete mechanics much of the previous existing 

literature is now being reviewed under a new perspective. Some of the important topics that come out 

naturally  from  this  method  are  symplectic-energy-momentum  methods,  error  analysis,  Newmark 

algorithms, constraints and forcing [MAR1999].

3.1.1.- Targets and interest of our research

In the beginning, a framework based on variational principles will be presented for the assessment of the 

quality of the numerical methods outlined in the previous chapter. This is meant to reach an audience less  

familiar with those principles by linking the abstract ideas involved with actual implementation elements.

It will also be proposed a systematic treatment of the numerical methods for structural dynamics in a  
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comprehensive manner based on the classifications made in the previous chapter. These methods have 

proliferated since the 1950s with the ever-increasing power of computers and have given place to a  

cumbersome mix of mathematics, physics and computer science that is often difficult to grasp. In this  

thesis, it is proposed a categorization according to the physical qualities which they represent instead of  

according to their mathematical properties.

Eventually, a series of combinations of methods will be compared and assessed under the scope of their  

energy-conservation properties in a set of non-trivial examples.

3.1.2.- Variational mechanics

According to the principles of variational mechanics [WUN2002], the difference between kinetic energy 

and strain energy in a structural system equals the applied work due to external forces. In this way, by 

computing the energy scalars and carefully accounting for this difference at each time step, one should be 

able to infer the degree of accuracy of a simulation [BUG1991].

The correct values should not in any case diverge much from zero, and deviations from this value would 

give us an idea about how accurate and stable a method is.

3.1.3.- Numerical methods for structural analysis

In the previous chapter, it was shown how the vast amount of existing numerical methods can be grouped 

into  three  main  sets  according  to  the  kind  of  physical  phenomena  they  represent  and  the  type  of 

differential  equations  they  discretize:  matter  integration  techniques  (Partial  Differential  Equations),  

constraint  integration  techniques  (Algebraic  Differential  Equations)  and  time  integration  techniques 

(Ordinary Differential Equations).

Based on this concept, we have chosen the following matter integration implementations: Finite Element  

(FEM), Finite Differences (FDM), and Mass Spring Systems (MSS). For the constraint integration we 

will limit ourselves to the Constraint Reduction (CR) technique, whereas in the case of time integration 

we will study the Newmark Beta (NB), Hilber-Hughes-Taylor (HHT), Chung-Hulbert's generalized-alpha 

(CH) and Wilson Theta (WTH) methods.

All these time integration methods are available in a general-purpose commercial package, so we were  

able to establish a comparative reference for our own implementations. In the case of matter integration, 

we implemented our own algorithms from the literature, and adapted them to our own purposes, also  

making a  previous benchmark  of  their  results  with  respect  to  those obtained  by the aforementioned 

software.
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3.1.4.- Numerical experiments

Three  simple  structural  models  under  four  dynamic  loadings  will  be  tested.  The  influence  of  the  

parameters time step, damping ratio and the number of integration points will be studied.

The work done by the load patterns, along with the internal elastic, kinetic and dissipative energies, will  

be computed at  each time step and combined together  to  verify the Hamiltonian energy balance.  Its  

integral through time will provide different values of the total Lagrangian action of the structure-loads 

system. The deviation from a proposed analytical value, whose computation is straightforward, would  

account for the level of accuracy of the implementations.

It will be shown how, whether used on single elements or complex systems with more elements, this  

methodology could be employed as a reference since the value of the action is a simple scalar which is 

easy to monitor.
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3.2.- Variational mechanics

3.2.1.- Principle of least action

In variational mechanics, the Lagrangian functional L, describing the dynamics of a system, is given by:

L=T−U 3.1

where T and U are the kinetic and potential energies of the system, respectively.

According to Hamilton's definition, action S is the integral through the studied time lapse of the Lagrangian,

S=∫
t1

t2

T−U dt 3.2

The correct path for a dynamic system is the one for which the value of the action integral is stationary. This leads to 

a minimization problem which is rooted in the variational principles of Lagrange and Euler.

3.2.2.- Euler-Lagrange equation and energy balance

For a single particle-spring system subjected to an external force, the Lagrangian can be written as:

L x , ẋ = 1
2 m⋅ẋ2−1

2 k⋅x 2 3.3

where m is the mass of the particle, k is the stiffness of the spring, x is the instantaneous position and the 

superscript dot indicates derivation with respect to time.

From Hamilton's principle of stationary action, and after some variational calculus, the evolution of a  

physical system is described by the solutions of the forced Euler-Lagrange equation for the action of the 

system:

d
dt
∂L x , ẋ 
∂ ẋ

−∂ L x , ẋ 
∂ x

=Qext  x , ẋ  3.4

where:

∂ L x , ẋ 
∂ x

=
dU x 

dx
= d

dx
 1
2

k⋅x2 3.5

∂ L x , ẋ 
∂ ẋ

=−
dT  ẋ

d ẋ
=− d

d ẋ
 1

2
m⋅ẋ 2 3.6

Qext  x , ẋ=−c⋅ẋ f ext  t 3.7 

Substituting  (3.4),  (3.5)  and  (3.6)  into  (3.3),  and  derivating  (3.4)  with  respect  to  time,  we  get  the 

Newtonian classical formulation:
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d
dt
∂L
∂ ẋ−

∂ L
∂ x =m⋅ẍc⋅ẋk⋅x− f ext t =0 3.8

where the externally applied force fext is generally known and the velocity dependent damping term is a 

non-conservative force defined in terms of d'Alembert's virtual work [WAN2012]  .

3.2.3.- Kinetic energy of a system, T

For a structural system under dynamic forces, the above equations are used in a vector-matrix fashion,  

where each of the points of the structure and its degrees of freedom are represented as terms of a vector  

and the mass and stiffness of the whole system characterized by a matrix. This leads to the following  

expression for the computation of the kinetic term:

T= 1
2⋅

˙{x}T⋅[M ]⋅ ˙{x} 3.9

In the present work, the construction of the mass matrix consists in the simple addition of the elements 

particular masses in their concurrent nodes (lumped mass matrix).

3.2.4.- Elastic potential energy, U

When a  body of  some  material  is  subject  to  external  forces,  its  internal  structure  is  deformed.  The 

displacement of these forces in the space are the source of a work.
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The scalar value of such work, in order to preserve balance of energy, must be equal to that of the internal  

forces in the body (stresses) times the internal displacements within the material (strains).

In general,  and for any engineering material,  this internal energy can be characterized by means of a  

stress-strain curve like the one depicted above.

Typically these curves present  two significant  parts,  one “elastic” (from point  O to point  A),  with a  

straight line whose slope corresponds to the material's Young modulus, E, and the remainder being the  

“plastic” part until final rupture. The area contained within this curve and the abscissas can be accounted  

for as the total work needed to cause the deformation of the body.

Given the fact that deformation within the elastic range is fully recoverable, we can assume that the same 

will apply for the energy, so it is considered a potential energy that remains “stored” within the material's  

volume. Its scalar value totals to the geometric area of the triangle defined by the points OAB in the 

figure 3.1.

The energy that is not recoverable is commonly dissipated in the form of heat. However, for the sake of 

simplicity the scope of this article will remain within the elastic range.

3.2.4.1.- Linearisation of the continuum in beams

In engineering practice, the material conforming a beam is modelled under certain simplifications that  

make possible the linearisation of the continuum's differential governing equations. This is made possible 

by including in the formulae the geometric properties of the cross section and mass distribution along the 

beam element.

These differential equations, when linearised into a beam of rectangular section, can be formulated in 

matrix form as follows [WUN2002]:

Kinematic equations:

[ xx

xy

xy


]=[d x 0 0 0

0 d x 1 0
0 0 d x 0
0 0 0 d x

]⋅[ u xx

wxy

xy

 x
] 3.10 

Material law:

[N x

Q y

M z

T x
]=[EA 0 0 0

0 k s GA 0 0
0 0 EI 0
0 0 0 G

]⋅[ xx

xy

xy


] 3.11
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Equilibrium equations:

−[ p x

p y

mx

m y
]=[d x 0 0 0

0 d x 0 0
0 −1 d x 0
0 0 0 d x

]⋅[ N x

Q y

M z

T x
] 3.12 

where:

xx is the axial strain
xy is the shear angle
xy is the moment curvature of the beam
 is the torsional angle of the beam
d x is the d /dx operator
uxx is the axial displacement towards x
w xy is the axial displacement towards y
xy is the rotation of the section
x is the torsional rotation of the section
Nx is the axial stress component
Qy is the shear stress component
Mz is the moment stress component
Tx is the torsional stress component
EA is the axial rigidity
k s is a section 's shape shear constant
GA is the shear rigidity
EI is the flexural rigidity
GJ is the torsional rigidity
px is the external force density towards x
py is the external force density towards y
m x is the flexural moment density
m y is the torsional moment density

3.2.4.2.- Elastic strain energy in beams

In elastic materials, the stored potential strain energy can be accounted for as half of the integral over the 

volume of the internal strains times the internal stresses, whose formula [ARG1960]:

U el=
1
2∫V {}

T {}dV 3.13

where:

{}T={ xx yy zz xyxz yz } 3.14 
{}T={ xx yy zz xy xz yz} 3.15 

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 58



Comparison and study of numerical methods by means of variational mechanics

In the case of the linearised beam described above,  we can then define four kinds of strain energies 

according to the four main stress components: axial (N), shear (Q), bending moment (M) and torsional 

moment (T).

From them, we can develop the analytical formulae for the elastic strain energies within a beam subjected 

to external loads, referred either to the internal forces or the deformations.

In table 3.1 the final formulae for each one of these strain energy components are enunciated. The given 

expressions can be either a function of the displacements along the beam or of the input forces. 

Table 3.1: Displacement and force based formulae of elastic strain energy in a beam.

For illustrative purposes, the development of the bending strain formula is provided next.  One of the 

appeals of the energy approach to structural mechanics is the consistency with which problems can be  

enunciated, being equally applied for 2D or 3D cases.

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 59

Figure 3.2: Stress-strain components in a beam. The directions of the infinitesimal strains and stresses  
are arranged according to the length of the beam. 
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3.2.4.3.- Bending elastic strain energy

From the small strain beam theory of Bernoulli-Euler, it is obtained that the strain and stress components 

are respectively, when deformations occur in the XY plane:

 xx=−w xy ' ' x ⋅y=−xy⋅y=
 xx

E
3.16

 xx=
−M⋅y

I
=E⋅ xx 3.17 

That substituted into the incremental form of (3.13) lead to the relations (force and displacement based, 

respectively):

dU B=
1

2⋅E
 xx

2 dV=1
2

M 2⋅y 2

E⋅I2 dAdl 3.18 

dU B=
E
2
 xx

2 dV=E
2
w ' '  x ⋅y 2 dAdl 3.19

that integrated under the assumption that the origin of the coordinate system lies on the neutral axis of the 

beam and the bending moment of inertia is I=∬
A

y2 dA  results in:

U B=
1
2∫l

M 2

E⋅I
dl 3.20

U B=
1
2∫l

EI w ' '  x 2 dl 3.21 
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Figure 3.3: Bending of a column. The energy needed to cause elastic deformation is a potential function  
of the constituent material properties (E), the shape of the section (I) and the exerted force (M).
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The remaining formulae from table 3.1 are obtained in a similar fashion, directly from the constitutive 

equations [ARG1960].

This allows for a coherent manner of treating the different numerical methods of the following chapter, 

whose formulations are so diverse and in general not possible to benchmark or compare under objective  

parameters.

For a structural system, where several elements are combined and attached in n nodes, the equations that 

establish the behaviour of each node with respect to others are defined in the stiffness matrix [K], whose 

size is n times the number of degrees of freedom. This number can be as large as six, when rotations and 

displacements are evaluated in all three directions, or just two, when only 2D displacements need to be  

known.

The coefficients that conform this matrix are obtained through the different matter integration methods 

(FEM, FDM, MSS, BEM, etc.)  by solving the above equations  in  combination for all  three kind of  

stresses in all three planes. When a model is 2D instead of 3D one simply limits the number of terms in  

equations (3.14) and (3.15), hence reducing the range of [K].

Eventually, in order to compute the total elastic energy U of the system, we use the following expression:

U= 1
2
{x }T⋅[K ]⋅{ x } 3.22

being {x} the vector of displacements obtained.

3.2.5.- Work done by dissipative forces

In every real structure the existence of damping is a known phenomenon whose nature is still not fully 

understood due to its inherent complexity. In order to incorporate it in a simulation, numerical artefacts  

are created that account for the energetic dissipation that it involves.

In general, a damping matrix [C] is defined that accounts for the dissipative properties of the structural 

elements. This matrix affects the velocity in the Newton equation as a force acting opposite to the external 

force.

The work done by this force can be accounted for by means of the following relation:

R= 1
2
{x }T⋅[C ]⋅ ˙{x } 3.23

The simplest model for dissipation in structural dynamics is due to Lord Rayleigh and is known as 'linear  

damping', 'Rayleigh damping' or 'classical damping'. In this idealization, the damping matrix is assumed 

to be a linear combination of the stiffness and the mass matrices. Despite the numerous criticisms this  
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model  receives  it  is  still  widely  used  for  its  convenience  when  combined  with  the  modal  analysis  

procedure  [ADH2000].  Once  the  stiffness  matrix  [K]  and  the  mass  matrix  [M] are  conformed,  the 

damping matrix [C] can be defined as follows:

[C ]=⋅[M ]⋅[K ] 3.24

The value of the coefficients being determined by the solution of the eigenvalues of the  [K] matrix 

[ADH2000].

3.2.6.- Work done by external forces

The total work exerted over the structure by the external applied forces can also be represented in a  

vectorial fashion as:

W ext=
1
2 {F ext }⋅{x } 3.25

Where the vector Fext represents the forces in a global coordinate system.

3.2.7.- Total action of the system, energy balance and the Lagrange-d'Alembert principle

In  order  to  account  for  the  correctness  of  a  simulation,  we  can  utilize  the  Lagrange-d'Alembert 

principle(11), that establishes the following relation:

∫
t1

t2

L dt∫
t1

t2

F ext x dt=0 3.26

If we withdraw the variation operator and rearrange terms this leads to:

∫
t1

t2

Ldt=−∫
t1

t2

F ext x dt 3.27

Which, in discrete form leads to:

∑
t1

t2

L dt=−∑
t1

t2

Fext x dt 3.28

Having defined previously each one of the terms, we can now write the elementary formula from which  

we can estimate the degree of exactness of a simulation:

∑
t1

t2

T−U dt=−∑
t1

t2

W extdt 3.29 

This is basically the computation of an energy balance where the Hamiltonian action is treated, in its  

discrete form, as an average over time of each instantaneous Lagrangian. In order to account for the 

external forces involved, we also integrate over time their work. According to d'Alembert's principle,  

these two measures should be equal when internal dissipative forces (hysteretic damping) are not present.
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Any divergence from this equality gives a measure on how inaccurate a numerical method is by means of  

a single value, without the need of finding simplified analytical models whose assumptions rarely fit the  

real problems of the engineering practice.
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3.3.- Numerical experiments
In  this  section  we  provide  the  results  of  our  numerical  experiments,  where  several  combinations  of 

methods  were used  in  diverse  simulations.  Three different  specimens of  increasing complexity were 

tested, and some engineering relevant parameters affecting each numerical method were systematically 

studied (time step, damping ratio and number of integration points).

In order to avoid excessive complexity, the specimens were treated as 2D models and kept within the 

elastic range, considering the shear effects in deformation to be negligible.

3.3.1.- Studied methods

As explained  earlier  in  chapter  1,  for  the  simulation  of  structural  dynamics  three  different  physical 

notions need to be integrated: time, matter and kinematic constrains. A series of methods was selected 

from the  enumerated  list  and  the  necessary code  was  written  in  a  custom-made  application.  These  

implementations are further described in chapter 5 of this this. In order to assess the correctness of these 

implementations,  a  third  party  general  purpose  commercial  software  was  also  used  to  make  the  

simulations in parallel with good agreement in the results.

Figure 3.4 is a diagram of a possible sequence of combined methods as they were coded for this thesis  

and in general in any available application.

The following is an overview of the main characteristics of our implementation.
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Figure 3.4: Schematic of some numerical methods and their associated physical notions. In bold letters  
those implemented for the numerical experiments of this thesis. The arrow represents a possible sequence  
of methods for a dynamics simulation.
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3.3.1.1.- Matter integration methods

To describe the dynamics  of  matter  we have an infinite  number  of  degrees  of  freedom because the  

particles that conform it can have arbitrary displacements with respect to each other. Such systems are  

described using partial differential equations (PDEs) where time and spatial coordinates are related. These 

general partial differential equations, which are applicable to any solid or fluid material, are derived from 

the constitutive laws of the material.

For their solution, two different approaches can be taken in order to control the number of degrees of  

freedom (i.e.  discretize):  creating a  mesh where  the material  displacements  are  limited (mesh based 

methods) or establishing the equations in the form of potential functions so that they compose a system of 

particles that regulate each other (mesh free methods) [LIU2003a].

We have particularized our study in three mesh based methods with different  discretization schemes:  

Finite Element Method (FEM), Finite Differences Method (FDM) and a Mass Spring System (MSS).

For the general computation of nodal displacements and rotations, a framework employing the Direct 

Stiffness Method (DSM) was prepared [AGU2005]. In our case, where beam elements were used, the 

analytical solution of Bernoulli-Euler is lumped into local element matrices that are ultimately assembled 

in a global stiffness matrix [PRZ1968].

For the FEM implementation, the description of the elastic deformation of the beam is based on a Hermite 

interpolation polynomial, obtained from reference [WUN2002].

FDM establishes the relations between stations along the beam as a sequence of equations that form a  

linear system easily invertible [AGU2005] [STI1978] .

MSS is a bit more complex as it requires a previous discretization of the beam into a set of connected 

tetrahedra, but from the point of view of Physics it results clearer as the assumptions are that the nodes  

are  simply  connected  by  bars  with  a  characteristic  Young's  modulus  and  area  [MUL2008].  Some 

adjustments had to be made to the position of the masses in the cross section so the inertia of the section  

would match the value assigned in the polynomial-based methods.

The  global  nodal  displacements  and  rotations  computed  by  means  of  the  DSM  were  transformed 

ultimately into local coordinates and served as input variables for each of the three methods above.

3.3.1.2.- Kinematic constraints integration

When bodies  are  subject  to  kinematic  constraints,  the  set  of  differential  algebraic  equations  (DAEs)  

defining the matter have to be satisfied besides from the purely time-related ones. In order to numerically 

tackle these conditions the equations of motion are rearranged to obtain different schema from which 

construct stable, accurate and faster formulations. The possibilities are to do it either in the acceleration 
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level, the velocity level or in the position level of the equation (3.8).

In the more common acceleration level schemes, the predominant ones are Constraint Reduction (CR),  

Lagrange Multipliers (LM) and Penalty Method (PM). 

In this case,  the strategy is  to alter  the stiffness and mass matrices in such a way that  they become  

invertible (after assembly, the stiffness matrix is symmetrical and singular).

This is achieved by either reducing the matrices (CR), or by expanding them, adding or removing those  
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Kg=[· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

]⇒Kg ext=[· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

][1 ·
· 1
· ·
· ·
· ·
]

[1 · · · · ·
· 1 · · · ·][0 0

0 0]
Figure 3.6: Lagrange multipliers scheme. The global stiffness matrix  

is made non singular by symmetrically adding columns and rows  
where ones are placed in the location of the constrained degrees of  

freedom.

Figure 3.7: Penalty Method scheme. The singularity of the global  
stiffness matrix is treated by scaling the diagonal elements of the  
constrained degrees of freedom with a very large number.

Kg=[· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

]⇒Kg sc=[∞ · · · ·
· ∞ · · ·
· · · · ·
· · · · ·
· · · · ∞

]

Figure 3.5: Constraint reduction. The global stiffness matrix is made  
non singular by symmetrically subtracting the columns and rows  
corresponding to the constrained degrees of freedom.

Kg=[ · ∉ · · · ·
∉ ∉ ∉ ∉ ∉ ∉
· ∉ · · · ·
· ∉ · · · ·
· ∉ · · · ·

]⇒Kgredd=[· · · · ·
· · · · ·
· · · · ·
· · · · ·

]
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rows  and  columns  where  the  degrees  of  freedom are  to  be  constrained  (LM)  or  by modifying  the  

corresponding values in the diagonal so their inversion gives a number as close to zero as possible (PM).

Figures 3.5 to 3.7 provide a visualization of these methodologies as they are commonly implemented.

3.3.1.3.- Time integration

Integration of time in a structural dynamics simulation reduces to the solution for each time step of an 

Ordinary Differential Equation (ODE). The first possible classification for ODEs solvers distinguishes 

between explicit, implicit and hybrid methods. From the available different schemes we have used for our  

comparison  those  provided  by the  SAP2000® (v15.0.0)  commercial  package:  Newmark  Beta  (NB), 

Wilson Theta (WTH), Hilbert Hughes Taylor (HHT), Chung and Hulbert (CH), all of them implicit. We 

implemented our algorithms from references  (19),  (22),  (23),(24)  and (25). Results were in very good agreement 

with those of the commercial package.

3.3.2.- The studied specimens

As mentioned above, and for the sake of simplicity, we omitted material and geometrical non-linearities 

from our analyses. The material and geometric properties shown in table 3.2 are common in engineering  

practice, with values similar to those of a 200x200x2 mm hollow extruded steel bar.

The geometric configuration of each model is displayed in Fig 3.8, in order of increasing complexity.

Table 3.2: Properties of the beam elements composing the specimens

Parameter Value

Area, A 144 cm2

Modulus of inertia, I 7872 cm4

Modulus of elasticity, 

E

21000 kN/cm2

Shear modulus, G 8076,92 kN/cm2

Density, d 7.892E-8 kN/cm3

Notwithstanding the obvious resemblance to a typical building engineering application, this work has a 

broad  generality  and  is  applicable  to  any structural  dynamics  problem.  It  has  potential  use  in  the  

simulation of any mechanical object regardless of size or shape.

Model A:

The simplest model of choice for our research was a 387,5 cm long cantilever column under a lateral  

loading acting in  its  tip.  The cantilever model  is  extensively utilized for the validation of numerical 
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methods in the literature. It is composed of two elements, each half the length of the column.

Model B:

A natural extension to this model from the structural engineering point of view is a simple moment frame,  

with identical geometrical and mechanical properties for each beam element as in the previous case. The 

load F is applied to the upper left corner.

Model C:

The more complex three bay – four storey frame is also shown in figure 3.8. Its properties are displayed  
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Figure 3.8: Geometry of the three studied models. Dimensions in cm. Three frames of increasing 
complexity consisting of beams, nodes and constraints.
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in table 3.2, and load F is also applied to the upper left corner.

In order to represent the structural dissipative behaviour, Rayleigh damping was implemented according 

to reference [ADH2000]. It is based on modal analysis and uses the first two natural frequencies of the 

structure under study. The ones applicable to our models are listed in table 3.3

Table 3.3: Modal frequencies for damping characterization

Model Mode Frequency (Hz)

A 1st 12.79

2nd 64.44

B 1st 11.37

2nd 33.52

C 1st 2.71

2nd 8.69

For comparison purposes, a frequency response function was computed for all three models. Its values are  

in agreement with those of the modal analysis of table 3.3 as can be seen in figure 3.9. It can be inferred  

from this figure that the more complex model C has the highest sensitivity to low frequencies, whereas 

models A and B should behave similarly as they have their strongest response to similar frequency values.
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Figure 3.9: Frequency response functions for the three tested models. Values are in good agreement  
with those of the modal analysis. Model C has the highest sensitivity to low frequencies, while models A  
and B should behave similarly.
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3.3.3.- Transient input forces

A load F of 10 kN applied to the tip of each specimen was scaled at each time step with an input signal of 

variable amplitude.

As presented in figures 3.10 to 3.12, four input signals were devised in order to stimulate the loading of  

our system: a simple sine function, a simple sine function suddenly interrupted, an incremental triangular 

function and a ramp pulse, all of them spanning through five seconds.

A sine function with such a low frequency is seldom encountered in engineering practice, but allows for 

the calibration and tuning of the combined methods given its smoothness and clarity.

For the second signal, after completion of the first period it is interrupted abruptly in order to allow for  

free vibration of the system. The point of interruption, in zero amplitude, allows for observation of the 

effect of kinetic energy on the simulation.

The  incremental  triangular  function  was  constructed  in  order  to  account  for  earthquake  engineering 

regulations, where sudden changes and peaks are to be simulated.
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Figure 3.10: Sine function, two cycles. f=0,4 Hz, T=2,5 s

Figure 3.11: Sine function, one cycle, then free vibration. f=0,4 Hz, T=2,5 s
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Regarding the last pulse, it enables the comparison in performance of the numerical methods simulating  

free vibration and the effect of resonance.

3.3.4.- Parametric sensitivity study

The significant  parameters involved in the numerical  computations have been iteratively modified in 

order to assess their influence in the simulations. For each type of integration the following parameters  

were studied:

• Time integration:

◦ Time step influence.

◦ Damping ratio influence.

• Matter integration:

◦ Number of integration points along the beam element.
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Figure 3.12: Incremental triangular function. f=1,2 Hz, T=0,83 s

Figure 3.13: Ramp pulse. F=0.625 Hz, T=1.6 s
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• Constraint integration:

◦ No comparison was available, as only the Constraint Reduction technique is implemented in 

the reference software.

Table 3.4 shows the values used for the characteristic parameters of each numerical method in all the 

simulations.

Table 3.4: Time integration parameters

Method alpha beta gamma alpha-m theta

NB - 1/4 1/2 - -

WTH - - - - 1.4

HHT -1/3 0.444 0.8333 - -

CH -1/3 1/4 1/2 -1/10 -

These values were not the subject of our study, and were fixed according to recommended values from 

the  literature  [BAT1995],  [NEW1959],  [HIL1977],  [CHU1993].  It  is  important  to  note  that  Chung-

Hulbert's method (also known as Generalized-Alpha) under certain combinations of parameters includes 

previous ones,  whose performances are,  according to [CHU1993],  less accurate when low frequency 

excitation is present.

3.3.5.- Methodology: Energy computation of a simulation

The  evaluation  of  instantaneous  energetic  magnitudes  provides  a  very  holistic  hindsight  into  the 

behaviour of a simulation, which is qualitatively superior to that of the displacement domain to which 

time history analysis is traditionally limited. 

Besides, in the case of the single cantilever beam choosing the tip as the observed target is generally 

straightforward, but for more complex arrangements like, for example, models B and C, this is not so  

trivial. The common choice of a “representative point” (the centre of mass of each storey, conversion to 

SDOF, etc.) has a definition which is always difficult and elaborate.

Simple observation of the displacement behaviour of the tip of Model A would mislead the analyst to the  

conclusion that the results for signal 4 in figure 3.14 are better approximations than those for signal 3, as  

the displacement values seem to be closer to the analytical ones given the fact that the graph is more neat  

and has less spikes.

Nevertheless, this can be proven to be less accurate than expected. figure 3.15 shows the same simulation 

in the energy domain, computing some operators of the different terms from chapter II. 
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Figure 3.14: Model A. Time history analysis of the displacement of the tip. Chung-Hulbert method,  
generalized alpha value=-0.1, dt=0.0025, damping ratio=2%.
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The application of equation (3.29) appears in figure 3.15 as W+T-U-R. From this operator one can obtain 

that, on average, under signal 4 the simulation ”creates” +0.69 N-cm of spurious energy on each time  

step, whereas the same model, under signal 3 -visibly more flurry in the displacement domain-, “absorbs” 

-1.12 N-cm from nowhere. In terms of absolute value, the first is closer to zero, apparently still showing a 

better approximation for signal 4. However, a rigorous computation should also take into account that the 

total amount of work applied by signal 3 is, on average, three times larger than that of signal 4. It is not  

equivalent  a  large  average  deviation  from  zero  with  large  values  as  it  is  with  smaller  ones.  The 

formulation of an independent normalization parameter will be provided.

To define our measure of error we use equations (3.9), (3.22), (3.23) and (3.25) at each time step to 

compute the respective instantaneous values of Kinetic Energy (T), Strain Energy (U), Dissipative Energy 

(R) and External Work (W). 

Our methodology, based on equation (3.29), uses the Hamiltonian action integral minus the average over  

time of the work due to the externally applied forces, thus measuring the difference to zero.

Moving the Hamiltonian action term to the right hand side we have:

t =W ext t T t −U  t 3.30

whose discrete integral in time gives:

∑
t1

t2

 t dt=∑
t1

t2

[W ext  t T  t −U t ]dt 3.31

As this value by itself is not very representative because different simulations often show still acceptable 

behaviour under different  external  signals despite high values of the total  added epsilon,  a reference 

parameter was devised.

It  is  based  on  the  total  work  done  by  the  external  forces,  but  computed  independently  from  the  

displacements, and based on equations (3.22) and (3.25). It  is obtained by isolating the displacement 

vectors on the external and internal work equations:

{x }2=2U⋅[K ]−1 3.32

{x }=2W ext⋅{F ext}
−1

3.33

which leads to the definition of the reference parameter:

W ref=2
W ext

2

U
={F ext }

T [K ]−1⋅{Fext } 3.34 

This parameter is completely self-contained and does not rely on the numerical method used to do the  

simulation, as the vector of external forces and the stiffness matrix are given data, hence becoming an 
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excellent reference for our benchmarking purposes.

In the following parametric studies, the total value of the computed epsilon is represented as a percentage 

of this  reference parameter,  hence giving an idea of the reliability of the different  studied numerical  

methods.

The applied formula for each of our simulations is as follows:

Error=
100⋅∑

t0

t1

dt

∑
t0

t1

W ref dt
3.35 

In figure 3.15 the difference between the calculated work due to external forces and the reference input  

work (Wext  -Wref) is presented together with the aforementioned energy indicators as it allows to trace 

discontinuities in the behaviour of the different methods through time.

Other options for the value of epsilon are also available. Similarly, one could compute the equation (3.29) 

using the Hamiltonian (T+U+R), and subtracting it from the applied work. Its time history is shown in 

figure 3.15 as W-(T+U+R). This operator provides a lower bound for the evolution of the Lagrangian 

(most clearly visible for signal 4), as it balances the kinetic energy of the system against the potential and 

the dissipative energies. Its evolution in time gives information about whether the absolute value of the 

kinetic term is overestimated at each step. Given that the mass is kept constant this operator permits to  

verify that instantaneous velocities are computed correctly. 

Yet  another possibility is  to calculate the instantaneous increment of the Hamiltonian,  d(T+U+R).  In  

systems where the energy is constant,  this value should be zero, but it is rarely the case in practical  

applications. Its main interest resides in the detection of segments in the simulation where the smooth 

transition from one time step to the next is lost.

One  could  also  define  the  epsilon  on  each  time  step  as  the  difference  between  the  time-dependent  

calculated work and our presented analytical reference work (Wref-W). In a way, this computation appears 

the most precise, as the involved terms are of the same kind and the reference work is derived from a  

numerically neutral relationship. Apart from the possible error in the inversion of the stiffness matrix, the  

term Wref is immune to the fluctuations caused by the time integrators. Still, this operator is not fully  

satisfactory. As the possible errors in the instantaneous work only depend on the computed displacement,  

its time history only provides information about irregularities in this matter.

The choice, then, of the Lagrangian (minus the damping energy when applicable) to balance the external 

work seems the most appropriate. 
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Not  only its  time  history is  a  valuable  source  of  information  for  the  analysis  of  irregularities  in  a 

simulation but also its integral in time provides a single scalar whose value should be zero. Given that the 

energetic  terms  are  all  positive,  a  positive  value  of  this  integral  can  only be  caused  by an  average  
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Figure 3.15: Model A. Time history for the variation of different energy operators.  Chung-Hulbert  
method, generalized alpha value=-0.1, dt=0.0025, damping ratio=1%.
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overestimation of the kinetic term (i.e.  the velocities) against the displacements. Similarly,  a negative  

value tells us to what degree displacements are unbalanced against velocities, as the internal potential  

energy is direct function of them.

3.3.6.- Numerical results: Influence of time step.

According to the methodology exposed above, a thorough parametric study was carried using the three  

models of choice. figures 3.16 to 3.18 present the values obtained from iteratively modifying the time 

step between values of 0,00125 s and 0,15 s, for each numerical method, with a constant damping ratio 

value of 2%.

As opposed to the analyst's intuition, in spite of dealing with linear models we obtained curves that vary 

significantly  from  one  method  to  another.  Nevertheless,  and  as  expected,  this  divergence  is  more  

pronounced with larger time steps and also increases with the complexity of the model.

The character positive or negative of the value of the error also provides a valuable source of information,  

as it tells us when the internal strain energy is larger or smaller than the sum of the kinetic energy plus the 

external work. As this term is dependent on velocity, it shows when the kinetic term is overestimated or  

underestimated. In other words, the higher the decoupling between velocity and displacement, the further 

the simulation is from correctness. 

When the time step is larger, it affects the velocity, which loses or gains in phase with the normal modes 

of the structure and with the input signal. In these cases the simulation might either dissipate or absorb  

energy artificially. This explains the ripple around the abscissa presented by all the methods in all the  

simulations.

In terms of evaluation of the particular methods, it is commonly accepted that CH has better performance 

than the others, as it gives the analyst control over the numerical damping for high frequencies without 

loss of accuracy. As the sensitivity to those parameters was not within the scope of this study, we cannot  

give a view about such effect, but we can point out how, in general, in this configuration they all show 

fairly similar results, only diverging significantly for larger and impractical time steps. Although all of  

them are of the implicit type, meaning unconditional stability regardless of the time step size, our results 

show how this set of methods in general tend to sacrifice energy conservation. In most linear structural  

dynamics  problems  it  is  still  not  an  issue,  but  for  the  analysis  of  non-linear  situations  we  strongly 

recommend the use of more modern integrators of the symplectic type, as those described in [KUH1999].
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Figure 3.16: Energy error analysis. Model A. Influence of time step size. Damping ratio=2%.
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Figure 3.17: Energy error analysis. Model B Influence of time step size. Damping ratio=2%.
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Figure 3.18: Energy error analysis. Model C Influence of time step size. Damping ratio=2%.
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3.3.7.- Numerical results: Influence of the damping ratio.

It should be noted that the damping considered in our experiments is of an external nature, given the fact 

that no material non-linearities have been taken in consideration. 

The corresponding Rayleigh mass  and stiffness coefficients defined in equation (3.24) were obtained 

according to reference [ADH2000]. Figure 3.19 shows the relationship of these values with the models 

used in the study.

The sensitivity of the numerical methods to variations in the damping ratio is presented in 3 figures 3.20 

to 3.22. For all three models the range of study was fixed between 0% to 10% of critical damping. In 

general, this is sufficient for all the methods to reach their asymptotic limit in almost every simulation.  

For models A and B a value of 2% of damping suffices to achieve stable behaviour with an error of less  

than 0.3%, which can be considered very acceptable.
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Figure 3.19: Rayleigh damping coefficients. The values are directly proportional to the value of the  
chosen damping ratio. For higher frequencies of the model, the value of the mass coefficient is higher,  
and vice-versa for the stiffness coefficient.
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Figure 3.20:  Energy error analysis. Model A. Influence of damping ratio. Time step=0.01 s.
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Figure 3.21: Energy error analysis. Model B. Influence of damping ratio. Time step=0.01 s.
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Figure 3.22: Energy error analysis. Model C. Influence of damping ratio. Time step=0.01 s.
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3.3.8.- Numerical results: Influence of the number of integration points for matter integration  
methods.

For the study of the matter integration techniques a similar approach based on the variational principle of  

action was adopted. However, here the definition of a reference parameter  Wref was not required as the 

analytical solution for beam elements is available applying the concepts of section 3.2.4.
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Figure 3.23: Comparison of angular momentum computation for matter integration methods against  
number of integration points. Analytical (ANA) vs Finite Differences (FDM) vs Finite Element (FEM) vs  
Mass Spring System (MSS).
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Instead, we computed a global action term, whose units are also those of angular momentum. It is defined 

as:

S=∫
t

U elas t dt 3.36

The charts in figure 3.23 were made by computing the instantaneous value of internal work corresponding 

to each different numerical method, and averaging it over time. The applied transient force was signal 1.

The measure of  the error  was computed as  a percentage of the difference to  the  analytical  value.  A 

positive error indicates numerical  spurious dissipation of energy,  whereas a negative error stands for  

artificial energy creation.

As expected, for an increasing number of integration points the methods converge towards the analytical  

value. However, they do it in an asymptotic fashion, reaching an almost flat parallel value after about 25 

integration points. In general, the obtained error values remain below 5% for all the methods, which is 

completely acceptable in practice.

Interestingly,  FEM presents the best behaviour only for the simple cantilever beam, creating spurious  

strain energy for the other two models.

FDM and MSS tend to dissipate energy in all  cases,  which means that,  in general,  they result  in an  

underestimated value of displacement by about 2%, remaining on the unsafe side.
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3.4.- Discussion
It was proven how methods of different nature and concept can be compared using the same theoretical  

background, in particular the variational principle of Least Action of Lagrange and Hamilton.

It was shown how variational principles and an energetic norm can be employed in an easy and efficient  

manner to benchmark and assess the accuracy and stability of different implementations. The accuracy 

and good performance of time and matter integration methods is generally taken for granted, as it is  

difficult, in the displacement domain, to assess it stringently.

The total Hamiltonian actions of three systems under transient loadings have been computed for each  

possible combination of methods. A comparison was made on the basis of energy principles.

The scheme provided, tested in three simple examples, is trivially extensible to more complex systems 

where more elements are present. The advantage of this approach is that it allows for the monitoring of 

the  global  behaviour  by  means  of  one  simple  scalar.  No  further  algebraic  artifacts,  common  in 

benchmarking, seem to be necessary, which greatly simplifies the assessment not just of a simulation, but  

of any method in general.
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4.- State of the art: non-deterministic methods for structural design

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 88



State of the art: non-deterministic methods for structural design

4.1.- Introduction
The purpose  of  this  chapter  is  to  present  the  main  tendencies  in  probabilistic  design applied to  the  

particular  case  of  structural  design  and its  potential  benefits.  It  is  not  intended to  be  an  exhaustive 

overview  but  an  introduction  to  the  topic,  emphasizing  the  difference  between  non-deterministic  

optimization and non-deterministic analysis.

This  differentiation is  important  as  new stochastic  methods  are  constantly being proposed under  the 

common umbrella of probabilistic design. However, these methods can be oriented towards the treatment 

of the inherent uncertainty of the design process or as search algorithms to obtain better designs.

The next  section explains  how,  by shifting from deterministic  criteria  to  the  definition  of  reliability 

targets, the parameters involved in the analysis (applied loads, material strength, manufacture defects,  

etc.) are researched and measured in order to give a statistical definition. With this data, a probabilistic  

analysis model can be made for the whole system and a set of failure probabilities can be obtained.

This  serves  to explain the  analysis  step within the design process and the three main approaches to 

account for uncertainty within it: fully deterministic, semi-probabilistic and fully probabilistic. At the end 

of the chapter, an example is given to illustrate the main characteristics of each approach and to allow for 

methodological comparison.

It is highlighted how, with the knowledge of the contributions of each parameter to the overall risk of 

failure, the designer is enabled to find those points where reliability is improved. Design objectives other 

than  safety such  as  economy,  quality,  functionality,  etc.  can  then  be  improved as  a  consequence  of 

applying probabilistic methods.

The third section is then dedicated to introduce the most commonly-used optimization techniques and 

their potential and drawbacks as tools for assistance in the design.

4.1.1.- The origins of deterministic structural design

In the two previous chapters of this thesis, emphasis was made only on the deterministic analytical part of  

structural  dynamics.  However,  simulations  generally  are  made  with  a  purpose.  In  the  fields  of  

Biomechanics, Molecular Dynamics or Graphics Animation, this purpose is commonly self-contained. 

The analyst devises a model and its simulation for better understanding of a given phenomenon or just to 

visually represent an interesting sequence.

However, in engineering disciplines (Civil , Aeronautics, Automotive, Robotics, etc.), the final result is a 

material  object and the virtual simulation is only an intermediate step in a longer process of design.  

Traditionally, the realm of Physics in this subject is considered to reach as far as the definition of models 
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goes. In this chapter and the next, however, it will be shown how also in the empirical side of their trade  

designers can be assisted by a physicist's mentality.

“Physics is defined as the scientific discipline that studies the properties of matter and energy, considering  

only those attributes that can be measured”. In this manner, physicists design and perform experiments  

that allow them to observe and analyse phenomena. With these, they attempt to unveil  the laws that  

describe  future  events  and  behaviours.  Before  that  is  achieved,  an  intense  work  of  abstraction  and 

detection of patterns is needed, often challenging their own intuitions. The target is, then, the description 

of unobserved behaviours of phenomena. The limits imposed to the task are no less than those of the 

already known laws of physics, which must be observed by any new theory. The employed language is 

that  of  mathematics,  and  the  main  sources  of  uncertainty in  their  job  are  methodological  errors  or 

inaccuracies in the measures.

Analogously,  design  is  the  process  of  creation  of  specifications  intended to  accomplish  the  goal  of  

construing an object.  Designers need to make a series of abstractions that will eventually lead to the  

creation of tangible objects. To such end, they specify relationships between elements subject to a given 

set of limitations. The similarity with physics appears more obvious when one sees that the target is also  

the description of (yet) unobserved things, subject to limitations (regulatory, economic, cultural, etc.),  

explained with a given language (not only graphic but often also mathematical) and liable to endless 

sources of uncertainty (material properties, manufacture defects, applied actions, modelling errors, etc.).

In  the  previous  chapters  of  this  thesis  we  presented  some  concepts  of  Physics  that  stretched  the  

boundaries of Newtonian Mechanics and how they can be effectively employed in modern analyses of 

structural  systems.  In short,  these  are  based on the treatment  of  energy as  a functional  and how by 

minimizing this functional we have a powerful tool to solve many problems of Physics.

This minimization process is called calculus of variations, hence the term Variational Mechanics. It was 

introduced late in the 18th century by Euler, Lagrange, Maupertuis and others and perfected in the first  

half of the 19th century by Hamilton. Together with the laws of Thermodynamics, these advances led to a  

highly prolific period of discoveries of natural phenomena that could be explained theoretically. When 

theoretical knowledge failed to explain the observations, it was common practice to attribute the failure to 

lack of accuracy of the instrumentation or errors in the methodology. 

During this period,  cause and effect  were intrinsically connected by the laws of nature and this idea  

prevailed in most doctrines. The beginning of the 20th century, however, brought serious doubts about the 

completeness  of  Classical  Mechanics,  as  not  even Maxwell's  principles  could  accurately predict  the  

results of the experiments in black body radiation or the photoelectric effect. 

The theories presented by Louis de Broglie solving the first, and the work of Einstein explaining the  
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second,  undermined  definitively those  beliefs  and  Modern  Physics  was  born  on  the  foundations  of 

Quantum Mechanics.  The  works  of  Heisenberg,  Born,  Jordan,  Pauli,  Dirac,  Schrödinger  and Planck 

established a series of principles that denied the possibility of fundamental causality, replacing it with  

probabilistic relationships between discrete states of the elementary subatomic particles.

As it is common case when a change of paradigm occurs, there was initial reluctance from many parts to 

accept the new perspective of things. Einstein himself refused the probabilistic approach by asserting that 

“God does not play dice with the universe”. As a result of this controversy, two sides were created. The 

supporters of Classical Mechanics kept maintaining that future events could be “determined” if enough 

data about past events (causes) is provided. This led to the coining of the term “determinism” and was 

presented in opposition of the “probabilistic” philosophical counterpart.

In parallel with the enormous advances in science of the 19th century, industry and commerce began the 

implementation of standards,  which became one of the cornerstones of the Industrial Revolution.  By 

implementing  standards,  engineers  maximized  key objectives  of  their  designs  such  as  compatibility, 

interoperability,  safety,  repeatability and quality.  Naturally,  the redaction of those standards happened 

under the strong influence of the aforementioned determinism. This influence, still persistent throughout 

the whole 20th century, has only been challenged lately with the extensive use of digital computers and the 

widespread development of the numerical methods introduced in chapter 1.

The particular case of safety, which is a key component of structural design, has seen some evolution in  

this aspect, as it is directly linked with the concept of uncertainty. Initially, the process of structural design 

was almost  based entirely on empirical  knowledge.  Safety was achieved by repeating already tested  

solutions or by doing small increments in scale.

Once  material  science  and the  theory of  structures  gained  some confidence,  design  guidelines  were 

implemented in the form of standards. Initially, uncertainties were taken care of by means of a safety 

factor. Later on, as different circumstances and failure modes were detected in the lifespan of structures of  

all  kinds  (ships,  aircraft,  buildings,  bridges,...),  the  notion  of  limit  state  design,  a  semi-probabilistic 

approach to the same problem, refined a bit on the matter.

The concept of using the probability of failure as a criterion for structural design can be credited to the  

Russians N. F. Khotsialov and N.S. Streletskii who presented the idea in the late 1920s. However, it was  

the  works  of  Emil  Julius  Gumbel,  Ernst  Weibull,  Alfred  Freudentahl  (not  to  be  mistaken  with  the 

mathematician Hans Freudentahl) and Maurice Frechet later in the 1950s century, that opened the doors  

to the theories of probability and risk assessment to structural design in Western countries. In the present  

day most design codes of any engineering discipline have abandoned the crude safety factor approach in 

favour of the slightly more refined limit state design practice. However, this approach is still subject to 

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 91



State of the art: non-deterministic methods for structural design

criticism as the choice of the values of the factors remains somewhat arbitrary.

4.1.2.- The iterative process of structural design

The design of structural systems is an iterative routine in which different configurations of elements are  

first proposed and then tested for their suitability in any aspects the designer considers adequate (safety,  

comfortability, cost, ...). The final purpose of these iterations is to achieve an optimized version of an 

object in which all or most of the design requirements are satisfied. This definition of design applies with  

equal accuracy to the discipline of physics, where the target is not the specification of characteristics of 

objects but those of laws of Nature. Both require the iteration of an  a priori reasoning –  a posteriori 

contrasting and the use of inference to measure, in the first case, the validity of a proposed design, and in 

the second, that of a given theory.

One  can  easily observe  many steps  in  the  process  of  structural  design.  However,  we  will  highlight 

basically four:

1. Definition of the function of the structural object (bearing loads, protect against wind, etc.)

2. Definition of the structural concept employed (frame-like, shell, etc.)

3. Optimization of the design (according to cost, weight, strength, performance, etc.)

4. Definition of details (constructive, aesthetic, etc.)

In the first  two stages, a series of properties and characteristics of the system are defined (geometric  

configuration, materials, etc.), composing a prototype that can be either physical or mathematical. These 

will  define  the  capacity  of  the  design  product.  In  this  stage  also,  circumstantial  and  environmental  

requirements are presumed, composing the demand. The definition of both capacity and demand involves 

a series of assumptions and simplifications which are the first source of uncertainty regarding the final  

result of the design.

Once an initial set of characteristics and solicitations is defined, they can be tested against each other. The 

testing procedure is called analysis, and it basically serves to contrast the demand against the capacity.  

This can be made under a deterministic or under a non-deterministic perspective, and is repeated as many 

times as it is necessary throughout the whole optimization process.

In itself, the optimization process can be regarded as indirect or as direct. The first type is characterized 

by an inherent resource to intuitiveness, in which the designer modifies the original pre-design according  

to his/her own epistemologic understanding of what the optimal result will be. The second type, also 

known  as  mathematical  optimization,  involves  the  definition  of  design  and  static  variables  and  of  

objective functions, leading to purely logic-based decisions regarding the design.
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In synthesis, as optimization (be it direct or indirect), is the sub-process within design where the best  

elements are selected according to functional and conceptual criteria, analysis is the sub-process within 

optimization where compliance with the requirements is investigated,. The other three steps suffer a great 

influence from societal and cultural inputs, and are the ones that make necessary the figure of the designer 

as an interpreter of the inputs and the outputs in the process.

The distinction made here between design,  optimization and analysis  is  necessary in order to clarify 

fundamental  differences  that  unfortunately too often,  appear  mixed in  the  literature,  even in  official  

regulations.  The scope of  this  thesis  is  fundamentally the  application of variational  and probabilistic 

methods to the analysis of structural systems. One must not be misled by the abundance of research made  

in the application of probabilistic and stochastic methods to structural optimization. The following is a  

brief outline of both concepts:

4.1.2.1.- Structural optimization

When structural optimization is dealt with in a direct, mathematical manner, there are mainly three types  

of problems that can be solved: size problems, shape problems and topology problems. Size problems 

refer to those in which the cross section of the structural elements is iteratively modified until the best 

possible ratio of capacity/demand is achieved subject to a set of given constraints. Shape optimization  

aims for the same target, but updating the boundaries of the structural system. When not only the shape 

but also the interconnections between elements is allowed to change, the problem becomes a topology 

optimization one.

The mathematical techniques to solve such problem range from calculus of variations, linear, non-linear  

or stochastic programming to game theory, simulated annealing, genetic algorithms or neural networks.  

Although the whole  mathematical  optimization discipline is  beyond the scope of  this  thesis,  a  short 

outline of the employed methodology will be given here.

A mathematical optimization problem has the form:

minimize f o  x 4.1 
subject to f i  x≤bi , i=1,.... ,m.

where the vector x is the optimization variable, the function fo the objective function, the m functions fi are 

the constraint functions and the constants b1, …, bm are the limits, or bounds, for the constraints.

In synthesis, an optimization problem is composed of:

• Design variables, which is the set of parameters describing the system (material properties, size,  

loads,...)

• An objective function, whose purpose is to give a benchmarking as to which design is better than 
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other (deflection, weight, cost,...)

• Design constraints,  within which the system must  perform and that can be influenced by the  

system (maximum and minimum limits that the design variables, or combinations of them, can 

adopt).

The key of a well formulated optimization problem is the correct identification of the design variables. A 

minimum number of independent definitions is needed in order to obtain a solvable formulation. These 

variables are represented as elements of a vector x.

The objective function  fo(x) is a scalar value depending on the vector  x, and it is common practice to 

choose in such a way that the solution of the problem is that of finding a minimum for it. One can also  

encounter  problems in which more  than one objectives  need to  be achieved:  these are  called multi-

objective functions.

A design meeting all the requirements is called a feasible design. If one or more constraints are not met,  

then the design in infeasible or unacceptable. These constraints can come in the form of linear or non-

linear equations that, themselves, can also be equalities or inequalities.

The standard optimization model, given the definition of equation (4.1), takes the following form:
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Figure 4.1: Schematic of a clothespin and simplified modelization in a structural design application.  
The geometrical dimensions are shown in (a), with the design variables h, L1 and L2. The simplified  
model shown in (b) is based on beam elements. Symmetry is applied to halve the computational effort.
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Where gi(x) is the set of m equality constraints and hj(x) is the set of p inequality constraints.

Let's  illustrate the idea by means of a simple optimization problem: that of the section of a wooden  

clothespin body depicted in figure 4.1. Given that these are manufactured by the thousands, every savings  

in material can have a large repercussion in the long run. The functioning mechanism is very simple, as  

can  be  seen  in  the  synthetic  model  of  figure  4.1(b).  The  spring  acting  in  one  third  of  the  body 

compensates the action of any applied load in the extreme, rotating around the axis of the peg whenever  

the load is larger than the force of the spring. The amount of rotation is limited to the angle of the edge of  

the body as long as the body behaves as a rigid solid. For lower stiffness, the action of the force applies  

only to deformation of the tip, hence eliminating the functionality.

The design variables for this particular problem can be enumerated in several ways. We will choose the  

following:

x1=K s (spring's force)
x2=L1 (spring's lever arm)
x3=F (applied force in the tip)
x 4=L2 (force's lever arm)
x5=Ewood (wood's elastic modulus)
x6=h (height of the peg's body) 
x7=I (moment of inertia of the body's section)
x8= (displacement of the tip) 4.3

With these parameters, it is possible to describe a set of relationships between them.

First, we will describe those constraints that are defined by equalities. The force exerted by the spring  

(x1), the spring and the force's lever arms (x2 and x4) and the modulus of elasticity of the wood (x5), can be 

taken as a fixed value, defining the following set of functions:

g1 x =K s=x1=5N
g 2 x =L1=x 2=20 mm
g3 x =L2= x4=30 mm
g 4 x =Ewood=x5=500 N /mm2 4.4 

By equilibrium of forces, we can define another equality function relating the spring force and the applied 

load:

g5 x =K s⋅L1−F⋅L2=x1⋅x2−x3⋅x4=0 4.5

And the relation between moment of inertia, area and the height of the section:
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g6  x=I= bh3

12
=

A⋅x6
2

12
4.6

Secondly, we can define the conditions with inequalities, such as the tension in the section should not 

exceed the strength capacity of the material and the geometric constraint, mentioned above, that limits the 

amount of displacement of the tip to the amount of opening being equal to the height of the body:

h1 x ==
My

I
=

F⋅L2⋅h
2⋅I
=

x 3⋅x4⋅x6

2⋅x7
− ywood≤0 4.7

h2 x ==
FL2

3

3EI


FL1

K s L2
=

x3⋅x 4
3

3⋅x5⋅x7


x3⋅x 2

x1⋅x 4
− x8≤0 4.8

This allows us to formulate the problem as that of finding the minimum average area for the cross section,  

leading to the following description of the problem in standard form:

minimize f o x = f  x2 , x 2 , ... , x n
subject to:
(a) g i x =gi  x1 , x2 , ... , xn=0, i=1 tom
(b) h j  x =h j x 1 , x2 , ... , x n≤0, j=1 to p 4.9

Given that the only variables whose value is not pre-defined are the moment of inertia and the height of 

the section (x6 and  x7), we can make the objective function dependent on them as per equation (4.6),  

leaving the objective function as follows:

f o x = f  x2 , x 2 , ... , x n=A=12⋅I
h2 =12

x7

x 6
2 4.10 

A plot of the objective function can be seen in figure 4.2. The selected variable for depicting the iterative 

approach was the section's height (x6). The objective function, as the relation between the area and the 

moment of inertia, can be seen as a straight line, whereas both the non-linear constraints h1(x) and h2(x)  

define lower bounds of the design space. Any point of the green region is a valid design. However, the  

optimum lies in the intersection between fo(x) and h2(x)<0, for being this a minimum of fo(x) still larger 

than the condition imposed by h1(x) and h2(x).

In our case, with a 5kg strong spring, a height of 4 mm should provide the body of the clothespeg with  

enough rigidity to open the other end without bending, hence rendering useless. This condition is visibly 

much more restrictive than that of resisting a given amount of tension, as the plot of h2(x) reveals.

4.1.2.2.- Structural analysis

An elementary step in the design process is the determination of the effects of the environment on the  

designed object and its components: the analysis.
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As explained earlier in this chapter, prior to this point an estimate of specifications of characteristics such 

as  geometry,  material  properties,  expected  cost  etc.  must  be  provided  for  each  element.  These 

specifications will account for the capacity of the design.

On the other hand demand, in structural design, is generally defined by a set of loads of different nature  

(permanent, variable, accidental, etc.) each of them with a different degree of associated uncertainty. An 

initial estimate of their values and characteristics is also needed to begin with the analytical process.

The very definition of an analytical model is in itself a source of uncertainty, given that a big amount of  

assumptions  and simplifications  needs  to  be  made.  The  necessity of  those  simplifications  has  many 

origins: computational efficiency, mathematical limitations, insufficient knowledge about the simulated 

phenomenon, etc.

In the process of analysis, the balance between demand and capacity is examined in order to detect the  

potential sources of failure of the design. To such end, the structural system is decomposed into isolated  

parts  that  are  studied  according  to  the  basic  physical  principles  and  natural  laws.  In  general,  this 

procedure  is  applied  recursively until  an  acceptable  level  of  equilibrium between both  demand  and 

capacity, subject to a set of requirements or constraints, is achieved. This iteration was introduced in the 

previous section as the optimization process.

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 97

Figure 4.2: Plot of the objective function and the inequality constraints. The feasible design is  
contained within the green area. The optimum, in the intersection of the blue line (h2(x)<0) and the red  
line (obective function).
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It is not uncommon to find in the literature the concepts of optimization mixed with those of the analysis,  

given that both share a great deal of common mathematical tools. However, as it was shown, there are  

substantial differences between them and their respective importance within the globality of the design  

process.  Analysis is the elementary subroutine within optimization,  which in itself is  one step of the 

design process. In the example given above, each of the points of the given curves was the product of one 

complete analysis. In this case, it could be simplified as two single functions (h1(x) and h2(x)), but in 

general analytical models acquire very high degrees of complexity.
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4.2.- The process of analysis in structural design
Despite the rigorous scientific methodology involved, there are many sources of uncertainty that arise in 

this  part  of  the  design,  namely  computational  error  (of  the  physical  model,  of  discretization,  of 

programming, round off errors...), material properties, random nature of the loads, manufacture defects or 

unexpected final usage.

Given the potentially catastrophic results of structural failure (not only economic, but also fatal), there  

have been, historically, countless efforts in the attempt to contain such uncertainty. In its most primitive  

form, uncertainty was restrained within the boundaries of a “safety factor”. With the development of 

applications  of  probabilistic  methods  of  risk  assessment  in  the  1950s,  more  sophisticated  semi-

probabilistic approaches were possible that led to the current Load and Resistance Factor Design / Limit 

States Design (LRFD/LSD) methodologies. In the past three decades, however, those approaches have 

also been challenged and fully probabilistic  procedures  to  deal  with uncertainty are  being proposed,  

replacing the concept of structural safety with that of structural reliability.

4.2.1.- Deterministic analysis: working stress approach

A deterministic design process is characterized by the a priori assumption that there is only one optimal  

designed object  to  cover  a given need (or  demand)  under  the  set  of  given limitations  (or  capacity). 

Accordingly,  demand and capacity themselves  are  considered to  be deterministically foreseeable  and 

predictable. Making an analogy with physics, this is equivalent to say that the trajectory of an object can 

be accurately described by averaging the time-history of its maximum and minimum possible locations at  

each time step. Before the advent of Quantum Mechanics, this assert was generally accepted in the belief  

that  the  span  between  the  observed  maximum  and  minimum,  given  the  right  time  to  improve  the 

measures, would become zero and the average would be coincident with the real trajectory.

In order to account for the many sources of uncertainty, a deterministically minded designer increases the 

capacity of the designed object and decreases the expected demands by means of safety factors whose 

values are given either by past experience or by convention. In the deterministic approach, uncertainty is  

not considered inherent to the designed object or the observed phenomenon, but an intrinsic flaw of the  

observation, hence subject to replaced by confidence and safety.

The term safety factor has many different usages among engineers of different disciplines and a precise  

definition of it is not possible in a general manner that satisfies all disciplines. In the particular case of  

structural design it refers to a measure of the reliability of a particular design.

Although deprecated worldwide in modern standards of practice, the value of this measure is commonly 

convened by means of standards and codes maintained by the respective industry the structural object 
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might be designed for (aircraft, building, bridge, etc.).

This value is normally symbolized as g and can be obtained in a straightforward manner by dividing the 

maximum load at which the structure is expected to fail (its capacity C) by the expected load the object  

will be submitted to (the demand D):

=C /D1 4.11

The rationale underlying this methodology is simple and straightforward: the larger the value of the factor  

g, the higher the safety achieved. 

If, for example, a structural configuration can withhold the maximum expected wind load demand for its  

given lifetime it will, most certainly, resist any other wind loads because they will be of lower intensity.

In design practice, however, the value of the capacity is unknown a priori as neither the object is built or a  

final model is set. Hence equation (4.1) has to be treated as the following inequality:

DC / 4.12

In this manner, an iterative process can be performed in which, departing from an initial configuration 

whose capacity can be estimated, one reaches the point where the condition imposed by equation (4.12) is 

accomplished.

Figure 4.3: Stress-strain diagram for a generic material. Capacity is defined according to the limits  
established in this curve. Point 1 is the ultimate strength limit. Point 2 is the elastic limit. The green line  
is the design limit.

A second a priori assumption of this approach must also be mentioned: the measure of demand is based 

on the amount of stress the members of the object are subjected to (hence the denomination working 

stress design). In this way, demand is calculated element by element by means of the numerical methods 

described in the first chapter. This happens as a result of the traditional definition of capacity provided by  

the science of resistance of materials, by virtue of which it can easily be defined by load-displacement 
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curves such as that of figure 4.3. Its convenience relies on the possibility of stating a nominal value,  

generally within the elastic limit (point 2 in figure 4.3), that can be factored by the  g safety factor to 

obtain the design limit.

In  the  working  stress  approach,  average  values  from  several  essays  are  considered  acceptable  as 

parameters for the definition of both capacity and demand.

4.2.2.- Semi-probabilistic analysis: Load and resistance factor / Limit state approach

Load and resistance factor analysis (LRFA) is also known as limit state analysis (LSA). It is globally  

accepted as  a  more refined version of  the  safety factor  approach and is  currently enforced by most  

regulations worldwide.

In this approach, the predictability of the demand (applied loads) and the variabilities of the capacity  

parameters (resistance parameters) are accounted for separately. In the case of the loads, each can have a  

different  factor  according  to  whether  their  nature  is  permanent  or  variable  in  time.  Moreover,  their 

simultaneities  are  also  studied  thoroughly in  order  to  find  a  worst  case  scenario.  For  the  results  of  

outranging  the  capacity,  a  series  of  “limit  states”  are  defined:  ultimate  if  the  result  is  collapse, 

serviceability if the result are minor defects (generally excessive deformation or vibrations), fatigue if the 

result is a wearing off due to cyclical loads or accidental if the demand is originated by explosions, fire,  

collisions, etc. Note that both fatigue and accidental limit states are actually defined by the nature of the 

demand. However, in the regulations they are considered to affect the capacity.

This leads to a new interpretation of equation (4.11):

∑ Di⋅D∑ C i /C 4.13

The load (demand) and strength (capacity) factors are different for each type of loading and strength. The 

higher the uncertainty associated with a load or a strength parameter, the higher the corresponding load 

factor. The factors are probabilistically defined so that they correspond to a prescribed safety level.

It is considered a semi-probabilistic approach because it maintains the basic assumption of the existence 

of a single optimal solution but both the values of capacity and demand are based on the extreme value  

theory introduced by Gumbel, Frechet and Weibul in the midldle of the 20th century. Figure 4.4 illustrates 

the sequence that leads to a Gumbel-like probability distribution in the case of wind speeds.

In a similar manner, the capacity can be associated with properties of the material that constitute the 

structure (mechanical, geometrical, etc.). 

These properties are also subject to statistical analysis. figure 4.5 shows the probability density function, 

superimposed to its histogram, of the compressive strength of concrete. Although in both cases the values  
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are obtained by means of statistical and probabilistic analysis, the methodology remains deterministic in 

the sense that it only studies one possibility, be it the average or that with the highest probability.

The  semi-probabilistic  approach  has  the  advantage  over  the  fully  deterministic  one  in  the  fact  that  

ultimate  limit  states  are  checked  against  factored  load  combinations  whereas  in  the  working  stress 

approach only one safety factor is employed. This allows for more economical designs with equivalent 

level  of  reliability  by  scaling  the  probabilities  of  exceeding  failure  modes.  Also,  the  second-order 

geometric  effects  resulting  from  deformation  and  material  behaviour  can  be  considered  in  a  

straightforward manner at the load levels associated with failure.
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Figure 4.4: Analysis of raw data for wind speed in Washington. The extreme value theory gives the  
probabilities of occurence of the maximum and minimun wind speeds. a) maximum annual wind speeds  
against time. b) histogram of relative frequencies for each recorded speed c) Gumbel-like probability  
density function.

Figure 4.5: Bell curve, superimposed over a histogram of pavement concrete compressive strength  
data. The average value has the highest probability of occurrence.
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4.2.3.- Fully probabilistic analysis: Reliability assessment approach

The semi -probabilistic approach defined earlier, however, does not allow for a direct evaluation of the  

probability of failure. By means of defining the reliability of a design iteration it is possible to achieve a  

more global and comprehensive understanding of the failure or safety violations.

However, to use this approach one needs to consider the multi-random variable input governing both 

capacity and demand, whose analytical mathematical solutions required to determine the design point can 

become very difficult, if not impossible to formulate.

To such end, reliability analysis methods use stochastic procedures to model both the variability in the 

demanding loads as in the properties characterizing the capacity: the variables are treated as probability 

distributions instead of single values. This replaces the notion of a safety factor with a probability of 

failure, leading to a probabilistic reinterpretation of equation (4.11):

P f=P {C-D≤0}P D 4.14

Where Pf is the probability of failure, conditioned to be smaller than a given design probability, Pd..

Figure 4.6 depicts the conceptual approach showing how both the capacity of the system and the demand  

are  understood  as  bounded  histograms  of  the  cumulative  probabilities  of  the  corresponding  input  

variables. The probability of failure is a 3-dimensional region where capacity is smaller or equal to the  

demand.

The two most common-approaches used in structural reliability analysis are the group of reliability index 
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Figure 4.6: Graphical representation of a probability region for a given structural system. Both 
capacity and demand are treated in a fully probabilistic way by means of bounded histograms. The red  
color covers the failure region where the ratio Capacity / Demand is bigger than unity. 
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methods (first and second order) and simulation methods (Monte Carlo).

In the category of reliability index, a limit state function is defined out of equation (4.14) as:

g  x =C−D 4.15

Whether the function g(x) is linear or non-linear, the analysis reduces to the calculation of the minimum 

distance of the line representing  g(x) to the origin. In the example of figure 4.4, where the problem is 

linear, First Order Reliability Method (FORM) is of application. When the limit state function is non-

linear,  more  complex  recursive  algorithms  are  used,  such  as  in  Second  Order  Reliability  Method 

(SORM).

Regarding simulation techniques, once defined the limit state function of equation (4.15) it is possible to 

formulate the probability of failure in the following manner:

P f= ∫
g  x=0

f x xdx 4.16

where  fx(x) is  the joint  probability density function of the random variables  X.  Stochastic  simulation 

methods  such  as  Monte  Carlo,  although  computationally  much  more  intensive  than  the  previously 

mentioned ones, are particularly suitable for approximating integrals.  They are mostly used when the 

limit state function is not differentiable or when several design point contribute to the failure probability.

A thorough study of those methodologies is beyond the scope of this thesis. However, it seems in order to 

clarify here  their  applicability only to  the  analysis  part  of  the  design.  There  is  a  certain  amount  of 

confusion in the literature, particularly under the Reliability Based Design Optimization publications,  

where  the  procedures  above  outlined  are  sometimes  mistakenly  presented  as  actual  optimization 

techniques. The optimization part of design is treated in the discipline of mathematical programming, and 

involves  objective functions  instead  of  limit  state  functions.  A particular  application of  optimization 

solving technique will be presented in the next chapter.

4.2.4.- The limits of accuracy: uncertainty quantification in numerical simulation

Both in the deterministic and the semi-probabilistic approaches there is a common flaw regarding the  

ubiquitous presence of uncertainty: it is treated in the same manner as errors. However, they are not the  

same thing.

While  an  error  is  an  identifiable  deficiency  either  in  the  model  or  in  the  introduced  parameters,  

uncertainty  is  a  potential  deficiency  due  to  lack  of  knowledge.  Errors  have  their  origin  in  the 

mathematical characteristics of the posed problem. Uncertainty in the other hand can be either epistemic 

(incertitude) or aleatory (variability), and is rooted in the very description of the physics involved.

In  order  to  tackle  errors,  common  deterministic  practice  relies  on  the  increasing  control  of  the  
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mathematics,  i.e.,  increase of the accuracy of the measures, floating point  precision,  reduction of the 

round off error, mesh refinements, etc. But lack of knowledge or aleatory behavior can not be treated in  

that manner because there is no way to know beforehand what is needed to be reduced. Regarding the 

epistemic uncertainty, it is still possible to treat oversimplified assumptions in a more rigorous manner, 

defining  new  sets  of  parameters  that  help  to  match  better  the  analysis  results  with  the  observed 

experiments.  Material  properties,  operation  conditions,  manufacture  tolerances  and  other  sources  of  

variability can not, however, be better foreseen by increasing the number of, for example, strength tests, if  

in the end only the average result will be employed.

In order to account for the degree of uncertainty associated with a given design function, we must first  

define  the  degree  of  uncertainty  of  its  defining  parameters.  When  no  prior  information  about  the 

parameters or their  relationship can be established,  the measurement of a function and its  maximum 

combined uncertainty is given by

f x 1, x2,... , xn ±U f=∣df
dx1
∣U x1

∣df
dx2
∣U x2

...∣ df
dxn
∣U xn

4.15

where  Uf is  the  total  associated  uncertainty  to  the  function  and  Ux1,  Ux2,...Uxn are  the  associated 

uncertainties of the particular parameters.

As an example, let us consider the calculation of the axial rigidity of a structural element, given by the  

analytical formula:

K=AE
L
= f  x1, x2, x3=

x1⋅x2

x3
4.16

where A is the area of the section, E is the modulus of elasticity of the material and L is the length of the 

element. In equations (3.11) to (3.14), this value would be regarded as a parameter describing the capacity  

of a given structural system (a vertical column, for example), and A, E and L its sub-parameters. 

Inserting equation (4.16) into equation (4.15) leads to:

f x 1, x2, x 3±U f=∣ df
dx1
∣U x1

∣ df
dx2
∣U x2

∣ df
dx3
∣U x3

=E
L
⋅U A

A
L
⋅U E

A⋅E
L2 ⋅U L 4.17

with  the  UA,  UE and  UL values  being  respectively the  associated  uncertainties  of  area,  modulus  of 

elasticity and length.

Table 4.1 gives nominal values for each parameter and its associated example uncertainties. For the sake  

of simplicity, we have use standard deviations in percentage as a measure of their particular variability. In  

the particular case proposed in the table, the final uncertainty obtained for the design parameter K would 

be exactly the sum of the three uncertainties, 11%, which is lower than that of 25% given in deterministic 
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steel codes.

Table 4.1: Design parameters of a column and their associated uncertainty

Parameter Value Uncertainty

Area (cm2) 144 4%

Length (cm) 300 2%

Modulus of elasticity (kN/cm2) 21000 5%

Figure 4.7 illustrates the linear relationship between the variation of the total added uncertainty and that 

of  a  particular  parameter.  In more complex functions,  a sensitivity analysis  of  the influence of each 

parameter  gives  valuable  information  regarding  the  importance  of  their  contributions  to  the  total  

uncertainty.  This allows the designer to take informed decisions as to how to minimize the epistemic 

uncertainty and also, to better understand the modeled physical reality.

Uncertainty quantification and sensitivity analysis can be carried away regardless of the deterministic or 

non deterministic character of the design approach. However, a probabilistic approach deals with them in 

a straightforward manner as parameters are given already in the form of distribution functions instead of  

single average values.
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Figure 4.7: Variation of the uncertainty of the axial stiffness function with respect to the variation of  
its variables A, E and L. The total uncertainty of the function increases linearly at a rate almost three  
times its composing variables, given that it is three of them contributing equally. Sensitivity analysis  

allows for the characterization of the degree of influence of the variables in the final total uncertainty of  
a model.
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4.3.- The process of optimization in structural design
In  the  introduction  to  this  chapter  the  mathematical  modelling  of  the  optimum design  problem was 

presented.  From the  very  definition  of  the  problem in  equation  (4.1),  it  is  fairly  obvious  that  the 

possibilities  for  formulating  it  are  quite  vast.  There  are,  however,  some  practical  limitations  to  the 

applicability of rigorous mathematical implementations given mostly their degree of abstraction. This has 

led to two main approximations that can be found in the literature, one using mathematical programming 

and other the so called optimality criteria.

4.3.1.- Mathematical programming techniques

Mathematical programming, or mathematical optimization, in the discipline that studies the solution of  

problems by systematically choosing input values from within an allowed set and putting them in an 

objective function, whose value is to be maximized or minimized.

Optimization problems in the field of mathematics have many applications, from logistics to economics, 

and originated also in  the work of Lagrange and Fermat.  Actually,  the  Lagrange Multipliers  method 

described in Chapter 2 of this thesis is one of them. The methods presented in the present chapter differ  

from the ones introduced previously in that they are “constrained”, which requires extra analytical effort  

and modifies slightly the  approach taken to  solve them.  The term “programming” in this context  in  

inherited from its use in military “programs” referring to training and logistics schedules of the U. S.  

Army in the first half of the 20th Century, and is not related to the contemporary notion of “computer  

programming”.

In general, they represent search algorithms that compute the gradient of the objective function and iterate 

from an initial point to a following point. The condition for “moving” into the next consecutive point is  

that the value of the design variables remains larger than a given threshold, terminating otherwise.

In the particular case of structural design, a few of these techniques have been employed with success.  

The following is a non-exhaustive list that, nonetheless, covers most of the approaches found in literature:  

Sequential Linear and Quadratic Programming (SLP and SQP), Penalty Function Methods (PFM) and 

Gradient Projection Method (GPM).

• SLP: in a geometric sense, this group of algorithms compute a line or a plane tangent to the curve  

or surface defined by the objective function in the current iteration point. Given that, in structural 

optimization, the constraints are normally non-linear, this method uses Taylor expansion series to 

transfer the non-linear programming problem into a linear programming one. It is also known as 

“cutting  plane  method”.  SQP,  on  the  other  hand,  approximates  the  original  non-linearly 

constrained problem with a quadratic sub-problem and successively solves this sub problem until  
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convergence. It has proven to be quite effective in solving large scale structural models.

• PFM: in this group of algorithms the techniques for unconstrained minimization described in 

chapter 1 of this thesis are employed. The idea is to replace the constraint equations with penalty 

values on constraint violations so that the efficiency advantages of unconstrained optimization 

can be exploited. Conceptually,  it only involves problems regarding the inequality constraints 

because the penalty can only apply to constraint violations. They have been proven reliable for 

structures of moderate complexity.

• GPM: in this method, iterations follow the boundary defined by the objective functions until the 

constraints are met. To such end, a gradient vector is computed and decomposed in its tangent and 

a normal components. Its values are then used in a series of Newton iterations to find the next  

feasible point.

Despite all  their theoretical generality,  none of the above listed methodologies succeed in effectively 

solving all  kinds of structural problems. Besides, they are mainly counterintuitive for the engineering 

practicioner as these methodologies are originally developed in other disciplines and contain a high level 

of mathematical abstraction. The fact that, commonly, their implementations are laborious and their use is 

very computational expensive does also not help to make them attractive to the structural engineering 

community despite their intellectual elegance.

4.3.2.- Optimality criteria techniques

Given the aforementioned limitations, in the late 1960s a method for optimal plastic design was proposed 

by Prager and subsequently extended to several elastic and plastic design problems. Optimality criteria 

are conditions which must be fulfilled at the solution of an optimal design problem. Their enunciation is 

dictated  by actual  experience  in  the  field  of  structural  design  and  can  contemplate  from regulatory 

constraints  to  minimum  strain  energy  or  combined  stresses  located  in  a  section.  In  the  numerical 

experiments section of this chapter an example using constant average strain energy criterion will  be  

shown. The current research work on structural optimization based on optimality criteria is an extremely 

prolific one and will not be reviewed here. The reader is referred to the excellent work of Saka and Geem 

[SAK2013].

In general, the optimality criteria approach tends to yield efficient optimization algorithms regardless of  

the complexity of the structures. They have proven useful in the optimum design of linear elastic, non-

linear elastic and elastic-plastic structures. 

However,  whether  one  chooses  any of  the  above  approaches to  solve a  design problem,  it  must  be 

considered  that  the  practical  realization  of  structural  objects  involves  a  discrete  set  of  possible  
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constructive solutions dictated by industry requirements. Whether beams, columns, walls or any other  

elements are made of aluminium, steel, wood or any other material, eventually the potential advantages of 

a refined optimized model can get diluted due to crude restrictions in the availability of a given section or  

profile. Although possible, adapting the deterministic approaches to contemplate discrete possibilities is  

algorithmically cumbersome. This explains the increasing popularity of stochastic search methods.

4.3.3.- Techniques of stochastic optimization of structures

Historically,  the  deterministic  approach  explained  earlier  has  prevailed,  originated  in  the  search  of  

finding solutions for problems of optimality as explained in the first  chapter of this thesis.  From the 

second  half  of  the  past  century  however,  stochastic  methods  have  proliferated  also  in  the  field  of 

optimization thanks to their versatility and algorithmic simplicity.

Stochastic methods, or statistical simulation methods, are a general family of numerical techniques that  

employ  sequences  of  random numbers  to  perform a  simulation.  As  opposed  to  the  “conventional”  

methods described in chapter 2, stochastic methods simulate physical processes directly, without explicit  

need of differential equations.

Largely three groups of methodologies have found application in the field of structural optimization:  

evolutionary algorithms,  simulated annealing and particle swarm strategies. For introductory purposes 

they are briefly described below:

4.3.3.1.- Evolutionary algorithms

The underlying analogy of these methods is that of Darwin's theory of evolution and survival of the  

fittest. On each iteration, a set of solutions called individuals, candidates or phenotypes is generated. For  

such generation,  the vector of random variables is  populated with random valid values that  define a  

feasible solution. This vector is called genome or chromosome. A new individual is obtained by simply 

changing one of the values of the vector. The fitness of each individual of an iteration set or generation is  

checked against a defined optimality criteria. Once the fittest is found, the next iteration is made taking it  

as a basis for the generation of all the following individuals.

Depending on how the chromosome is treated to pass the information to the following generation, we 

have different types of algorithms. The most popular among them are the so-called genetic algorithms,  

where techniques of crossover, mutation and recombination are used.

4.3.3.2.- Simulated annealing

This technique iterates through the space of feasible designs to find a global minimum even when the 

objective function has  several  local  minima.  It  employs  the analogy with the  metallurgic  process  of  
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annealing, where the properties of a given material are improved by adding a large amount of energy in 

the form of heat and slowly cooling of it. Algorithmically, the slow cooling means a narrowing of the  

probability of acceptance for consecutive solutions which are worse. Worse solutions are needed in the  

process as they allow for a more extensive search for the optimal solution. 

At each step, the simulated annealing algorithm considers some neighbouring state s' of the current state 

s,  and decides between moving the system to state  s' or staying in state  s.  To do so, it calculates an 

acceptance probability based on the current state and, if satisfactory, it keeps the value. Otherwise a new  

value is randomly generated and the iteration is made again. The process terminates when the temperature  

function reaches a predefined value. In our numerical experiments this technique is illustrated and applied  

to a structural optimization problem in combination with a statistical mechanics approach to the analysis.

4.3.3.3.- Multi-agent systems

This type of techniques involves a number of “particles” that move freely over the objective function. The 

“particles” or “agents” are actually candidate solutions that “move” over the search space according to a 

given set of rules. These “agents” communicate to each other in such a way that those located in poorer  

positions  are  “attracted”  towards  the  position  of  those  with  higher  values.  Coordinated  collective 

behaviours emerge from relatively simple interactions between the group and the individuals. Each single 

particle is programmed to respect certain restrictions regarding the locality, collision avoidance, velocity 

matching and centering in the flock.

Larger communities require higher computation effort, but also they scan faster the search space. This  

makes  this  kind  of  algorithms  very  interesting  for  parallel  computation.  Depending  on  how  the 

interactions of the individuals between each other and the search space are coded we have mainly two 

types of techniques:

• Particle  swarm:  in  this  case  the  search  space  is  associated  to  a  continuous  2-dimensional  

euclidean space where the particles have a position and velocity according to their fitness. This is  

defined by a fitness function that takes into account one or several optimality criteria. Taking into 

account the restrictions to their movement mentioned earlier, the particles swarm over the search 

space and the values associated to the fittest individual are retrieved after a number of iterations.

• Ant colony: for this methodology the search space must first be assimilated to a graph over which 

the particles jump from node to node, looking for cheaper paths. Using the analogy of pheromone 

traces employed by ants in their search of optimal paths, individuals “mark” each node according 

to a probability defined by the fitness function. It has some advantages over simulated annealing 

and genetic algorithms in what the graph is allowed to change dynamically as the procedure can 

run continuously and adapt to changes in real time.
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In the following sections of this chapter a methodological procedure combining the energy principles 

explained in chapter 3 with the simulated annealing technique will  be presented. The choice of such 

technique was dictated by its straightforward analogy with the thermodynamics principles, its claimed 

numerical superiority according to several authors and its algorithmic simplicity.
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4.4.- Discussion
In this chapter, it was explained how structural design is a process involving decisions based on a rigorous 

scientific  methodology  within  which  optimization  is  one  subroutine  that  incorporates  itself  several 

iterations of the process of analysis.  This important  distinction between optimization and analysis as 

processes within design was also made. It is frequent to find published work where these two concepts are 

not discriminated, leading to potential misconceptions on the topic.

It was also remarked how, both in the deterministic and the semi-probabilistic approaches to analysis, 

uncertainty is commonly disregarded and treated as errors,  although they are not the same thing.  By 

increasing the accuracy of the measures, implementing floating point precision, refining meshes, etc. can 

only account for the uncertainty originated in error. 

However, lack of knowledge or aleatory behavior can not be treated in that manner because there is no  

way to know beforehand what  is  needed to  be  reduced.  The tools  of  uncertainty quantification  and 

sensitivity  analysis  were  used  to  demonstrate  how  a  probabilistic  approach  deals  with  them  in  a  

straightforward manner as parameters are given already in the form of distribution functions instead of 

single average values.

An example was made illustrating the methodological aspects for all three approaches to the analysis  

(deterministic,  semi-probabilistic  and  probabilistic).  The  increasing  degree  of  sophistication  and 

computational effort from one approach to the next was made evident. Particularly with regard of the  

computational effort where, for large structural systems, it is not feasible to use probabilistic approaches 

despite all of their advantages.

Regarding the optimization part, the main tendencies in deterministic as well as in stochastic techniques  

we presented. This should serve to contextualize the simulated annealing algorithm employed in the next 

chapter.
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5.- A Statistical Mechanics framework for structural systems
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5.1.- Introduction
In the previous chapter the intrinsic relationship between structural analysis and structural optimization  

was described and, more importantly, the fundamental differences between both concepts were drawn and 

illustrated.

Being analysis an iterative subroutine within optimization, if the notions of probabilistic design are not  

introduced correctly in their respective segments of knowledge it is easy that they lead to confusion. Such 

is  the  case  found  in  many research  works,  where  stochastic  routines  are  attributed  to  optimization  

techniques when they are actually considering them only in the analysis part, and vice versa.

A  novel  approach  to  structural  analysis  will  be  introduced  based  on  statistical  mechanics  and 

thermodynamics. This framework will serve to explore the practical implications of the variations of the 

different energy parameters involved in the deformation of structures. The variables will be treated from 

the scope of thermodynamics and will be later on employed for the rigorous definition of an energy-based 

objective function. This objective function will be introduced within the context of a Simulated Annealing 

optimization algorithm.

Although based on deterministic static analysis, the Simulated Annealing approach must be regarded as 

stochastic as the algorithm uses random variations of the inputs to search for an optimized configuration.

It must be noted that no reference will be made to probabilistic analysis techniques, as the field itself is  

sufficiently explored elsewhere [MAY2008].

5.1.1.- Assessing a structural system in terms of energy

The next section will serve to describe a methodology for the quantitative characterization of structural  

systems  in  terms  of  performance,  stability,  resilience,  robustness  and other  design  objectives.  These  

parameters  are  obtained  from  quantities  traditionally  associated  to  thermodynamics  and  statistical  

mechanics (temperature, heat, entropy) and applied only to nanoscopic or microscopic systems. 

The necessary conceptualizations to make them usable also in a macroscopic level will be presented, with  

the double purpose of expanding the reach and understanding of such powerful disciplines and also for  

providing with yet another field for their practical applicability.

We  have  resourced  to  a  general  purpose  finite  element  application,  and  applied  the  aforementioned 

bridging concepts to yield substantially more valuable information about the modelled structures than 

merely the internal stresses and displacements relationships.

In the context of structural design, it is important to count on qualitative variables such as robustness, 

resilience or stiffness applied with a global perspective to the behaviour of the entire system. Moreover,  
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the  availability  of  a  quantitative  methodology to  compare  different  designs  makes  them even  more 

attractive. Robustness is here understood as the ability of the system to resist change without deforming.  

Resilience, its ability to absorb energy when deformed elastically. Stiffness is treated in a global sense,  

not just the ratio between applied force and produced displacement of one single point but for the whole 

structure. Statistical mechanics are widely used for the simulation and definition of material properties in  

many scientific disciplines. It is generally applied on the molecular level, where the amount of elements,  

N, has the order of Avogadro’s number. In models of structural systems, however, if one gives to N the 

value  of  the  amount  of  interconnecting  nodes,  such  value  never  exceeds  the  million  and  is  most 

commonly  within  the  tens  of  thousands.  In  this  discipline,  the  elements  are  molecules  or  atoms 

represented as point masses connected to each other by means of potential functions. These functions,  

together with the velocities, allow for the computation of the potential and kinetic energetic states from 

which statistical data can be obtained and be used to characterize macroscopic behaviours. 

From the engineering practice perspective however, the most extended discretization methods are those 

that replace the simulated matter with interconnected pieces interpolating the expected material behaviour  

(deformation, heat, etc.) between a series of nodes. Such are the techniques of Finite Elements, Finite 

Differences or Boundary Elements among many others. Commonly used, these methods divest the nodes 

from  information  and  focus  primarily  on  the  links  or  ”elements”  between  them (i.e.  rods,  beams,  

tetrahedra,  etc.).  Nevertheless,  their  mathematical  description  relies  strongly  in  the  construction  of 

matrices defined by the nodes of the system. For this reason, as the technique of our choice is the Finite  

Element Method,  we have resourced to a series of conceptual  and numerical  adaptations in order to 

retrieve the relevant  information and have it  “lumped” in  the  nodes.  This  will  permit  us  to  use  the  

techniques of statistical mechanics.

From the point of view of statistical mechanics, a further conceptualization arises due to the previously 

mentioned  number  of  involved  particles,  N.  Being  it  so  relatively  small,  we  find  ourselves  in  the 

particular  case  of  non-asymptotic  thermodynamic  ensembles,  where  Boltzmann’s  equation  for  the 

definition of probabilities doesn’t apply. Hence, for our definition of the value of Entropy,  S, and more 

specifically for the calculation of the probabilities we have had to resource to a frequency based model  

adapted from references [NIV2009a] and [NIV2009b].

Statistical  thermodynamics  seek  to  relate  microscopic  properties  of  individual  particles  to  the  bulk 

properties of the sample that contains them. Analogously,  if a structural system is treated as a set of  

interconnected nodes, global characteristics of its behaviour can be found when using probabilistic and 

statistical techniques.

By defining thermodynamic parameters for a structural system and establishing relationships between 

them it  is  possible  to  expand  our  understanding  of  it  in  a  more  global  manner.  Instead  of  merely 
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monitoring internal tension distributions of particular beam elements or the displacements of a defined 

node, one can achieve a general view on how the whole system responds to a set of loads by computing,  

for example, its “structural heat”, which summarizes in a single parameter both internal stress distribution 

and displacements.

In the present section the following thermodynamic variables have been computed:

• Number of nodes, N

• Internal energy, dU

• Internal strain energy, dW

• Added heat, dQ

• Entropy, dS

• Temperature, T

• Internal kinetic energy, KE

By defining the  proper  relationships  of  thermodynamic  variables,  it  is  possible  to  infer  whether  the 

behaviour of a structure under a given set of loads will be more or less robust than another, its degree of  

global stiffness or how much resilient it will be. These parameters are extremely valuable for the proper 

design of structures of any kind. For the sake of simplicity, we have limited to simple Timoshenko beam 

configurations in simple frame-like structures. Nevertheless, this scheme is general and admits any kind 

of structure and other types of discretization, as long they have a consistent means to transfer the internal  

energies to the nodes.

We  have  used  four  different  structures  of  variable  complexity  under  a  simple  lateral  load.  Their 

description was based on a widespread seismic regulation as it provides with an empirical basis to test our 

framework.

We have explored the space of possible states by means of random iterations over the magnitude of the  

applied load. These variations allow for the observation of particular tendencies and correlations between 

the variables previously enumerated. The range of calculated values of these variables (KE, W, S) are 

shown as  a  function  of  the  total  applied  energy (dU),  so  that  an  outline  of  their  behaviour  can  be 

observed. Our experiment aims to illustrate the purely elastic behaviour. In this case the emerging ratios 

of change with respect to the applied energy for all variables are expected to be linear. However, the  

slopes of the lines will be different for each model, representing unique properties of their configurations.
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5.2.- Statistical Mechanics of structural systems

Thermodynamics is mainly concerned with the changes that occur in internal energy of a system. Hence, 

the first law of thermodynamics is an equation of change:

dU=Q−W 5.1

where dU is the change in the internal energy of the system, dQ is the heat added to the system and dW is 

the work performed on the system.

In statistical mechanics, which is a slightly younger discipline, thermodynamic systems are conceived as 

assemblies of smaller units which relate to each other in such a way that these changes can emerge. 

Within the proposed framework of this chapter,  the systems which are under study consist of sets of 

interconnected Timoshenko beams under the effect of static loads. By means of a general purpose Finite  

Element  application,  the  linear  equations  which  yield  the  displacement  vector  are  solved,  and  the 

corresponding internal stresses and tensions are obtained. This allows us to compute the related internal  

energies of the beams and their particular contribution to each node.

5.2.1.- Internal energy, dU

As the presented mechanical  system is  considered to  be thermodynamically closed,  the value of  the  

change in the internal energy is computed from the actual value of external work. Given the solution of  

the displacement vector and the applied force vector, it can be stated that:

dU= 1
2
{F }T⋅{x} (5.2)

where  {F} is  the vector of the applied forces and  {x} represents the displacement of each degree of 

freedom. This value is equivalent to the expression involving the stiffness matrix [Kg]:

dU= 1
2
{x}T⋅[Kg ]⋅{x} (5.3)

as the displacement {x} is the solution of the system of equations defined by [Kg] and the vector {F}.

In figure 5.1 an interesting feature of this quantity is presented. It shows how the total internal energy is  

only inversely proportional to the stiffness while quadratically dependent on the applied force. As a result, 

flexible  structures  are  capable  of  dissipating  a  large  amount  of  applied  energy  in  the  form  of  

displacements. If such systems are only slightly more rigid, however, their dissipative capacity is rapidly 

reduced and must resource to other mechanisms in order to balance the energies.
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5.2.2.- Internal work, dW

In classical thermodynamics, this internal form of energy is associated with the mechanical part of the 

changing process. For the particular case of ideal gases or any non-viscous fluid, this term of the equation  

of change is generally assumed to be:

W=− p dV 4.4 

where  p is the pressure applied to the system and  dV the change in volume. For an elastic medium, 

however, this mechanical energy term must consider the work done by the internal stresses and the strains 

[LAN1986]. This means that our definition of the work performed on the system is:

W=−1
2∫V ⋅dV 5.5

where s represents the internal stresses and e the internal strains, integrated over the whole volume of the 

structure, V. The direction of this work is opposed to that of the total internal energy, hence the negative  

sign.  In  order  to  assimilate  the  above  concepts  to  a  structural  system,  where  several  elements  are  

combined and attached in N nodes, it is proposed that a straightforward connection be made between the 

nodes, acting as atoms or molecules, and the beam elements, taken as bonds between them. The formulae 

given in table 3.1, either as a function of the internal beam strains or as a function of the internal stresses  

[AND2013], can be used to such effect. Within the scope of our framework, the internal stresses (axial A,  

bending M, shear S and torsional  T) are commonly available from a general  purpose Finite Element 
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Method application. The stress-based integrals of table 3.1 can then be used in discrete form as a sum 

through the defined integration stations of each element. The degree of accuracy is higher for a smaller  

size of the stations, so the value of  ds becomes a trade-off between computational effort and precision 

[MOR2008].

The final nodal internal energy was approximated by summing the contributions of half of each connected 

beam. The total internal energy of the system is then computed as:

W=−∑
i=1

N

∑
j=1

bi 1
2
W AbW MbW SbW Tb  5.6

where  bi denotes  the  number  of  beams attached to  the  ith  node and  WAb,  WMb,  WSb and  WTb are  the 

respective internal energies of each beam as calculated from table 3.1.

5.2.3.-  Added Heat, dQ, Temperature, T and entropy change, dS

The heat added to a system is directly related to the amount of movement of its particles, which are in our  

case represented by the nodes of the investigated structure. Thus it involves the entropy gained by the 

system in the process and its temperature:

Q=T⋅dS 5.7

When dealing with the microscopic level, solids are treated as regular lattices of atoms, tied together with 

bonds which can't vibrate independently (see Einstein and Debye models for simple examples). In order  

to account for the energy associated with the movement of these atoms, the vibrations take the form of 

collective  modes  which  propagate  through  the  material.  Such  propagating  lattice  vibrations  can  be 

considered to be sound waves, whose speed is the speed of sound in the material. The average of this  

energy is  characterized  by  the  temperature,  T,  while  dS,  the  increase  in  entropy,  parameterizes  the 

“quality” of such energy, i.e. its degree of order.

On a macroscopic structural model, the heat magnitude,  Q, tells us how much of the work done by the 

external force is not absorbed internally by the structure. It is closely linked to the value of kinetic energy, 

which is described in the following section of this chapter.

In order to compute the value of the heat change we simply proceed to substitute the values of dU and dW 

previously obtained through equations (4.2) and (4.6), yielding:

Q=dUW 5.8

In an idealized situation where only elastic changes occur and all of the applied work is absorbed by the  

system without extra displacements or internal stresses, the value of the internal energy,  dU,  and the 

performed work on the system, dW, are exactly the same. As the sign of dW is negative, this yields a null 
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value of  dQ.  A more common case occurs when  dW is slightly smaller than  dU in a normal elastic 

deformation process. In this case, a certain amount of entropy is produced implying that some of the 

internal strain energy is reallocated through the structure. As long as all the bonds of the structure remain 

within the  elastic  regime,  this  variation of  entropy is  a  constant  regardless  of  the  magnitude of  the 

external work. In other words, when dealing with an elastic regime, the distribution of the internal strain  

energy to the nodes depends only on the configuration of the structural  system (i.e.  its  stiffness and  

topology). In the case of a more extreme situation, when plastic dissipative processes are studied, dU and 

dW  depend on each other to a lesser extent. As plastic joints begin to appear, the structure loses stiffness  

and the possible displacements become larger, so that the value of the kinetic energy is increased. As a  

consequence of this, the temperature of the system must also increase. Whereas the entropy of the system 

remains more or less constant under a constant value of the applied force, the temperature must increase 

in order to compensate for the larger amount of heat energy available to the system.

Another term involved in equation (5.7) is entropy,  S. Traditionally, it is considered to be an intrinsic 

property of  a  system.  However,  recent  treatments  of  this  quantity have revealed that  could be more  

correctly understood as a property of the description of the system [TSE2002]. From this point of view, 

and  taking  into  account  the  many  available  definitions  of  entropy,  we  decided  in  favour  of  an 

interpretation which is closer to the approach provided in thermodynamics. 

In this way our measure of entropy should be a monotonic function of the temperature, and be related to  

the mass of the nodes and to the internal energy, increasing as the mass increases and decreasing as the 

internal energy increases [TSE2002]. In order to compute the increase of entropy dS a frequency-based 

approach was adopted for the computation of the probabilities [ALE1976], [KNU2006]. First, each of the 

N nodal internal energies dWi was calculated, as defined in the previous section.
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Then a constant sized bin histogram representing the nodal energetic states could be created for each  

model out of a number of simulations sufficiently large. As an illustrative example, figure 5.2 shows the  

histogram  corresponding  to  Model  A,  which  is  further  described  in  the  next  chapter.  The  discrete 

probability of a node to be in an energy state dWi is then defined as:

pidiscr=
freq Wi

N tot
5.9

where Ntot is the number of nodes of the structure, N,  times the number of simulations (in our case 1000 

was considered to be enough). In statistical terms, this value of probability is just the frequency with 

which the value dWi is found in a population of Ntot nodal energy states, normalized to the total number of 

nodal states of the model.

Already  in  the  case  of  1000  simulations  it  is  possible  to  observe  the  long-tail  behaviour  of  the  

distribution. In our case this distribution is best approximated by the well known Pareto law. In figure 5.3  

the probability mass functions for the same example model  A has been plotted with a superimposed  

Pareto law as explained in [KAF2009], which can be described by the equation:

freq r=
ln 11

r 

ln R1
5.10

where r is an integer value between 1 and R, the total number of bins between the largest and the smallest 
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value of nodal energy for all the simulations. With this expression of the frequency it is now possible to  

recalculate, for each nodal state, the corresponding continuous probabilistic value as:

picont=
freq r

N
5.11

The probabilities can then be obtained for each node after each simulation iteration. Using the node's 

energy state from the density function from the fitted Pareto distribution, it was then possible to retrieve 

the continuous value of probability, picont. The increase in entropy was then iteratively computed as:

dS=∑
i=0

i=N

picont ln p icont 5.12

The value of the entropy given in equation (5.12) provides us with a measure of how much a particular 

configuration of a structural system under applied forces affects its capacity to absorb heat. It increases  

linearly with the number of nodes of the structure, N, and is related to the existence of disparities in the 

distribution of the internal strain energy.

Figure 5.4 illustrates the evolution of  dS for the different possible values of  picont. The highest possible 

value that a node could, any case, contribute is that of 0,367 units of entropy in and that would be so if the  

value of its probability were 37% regardless of the structural configuration the node would be immersed 

in. For a structural system, this means that unevenly shared stresses lead to concentrate high values of  

strain energy at certain points and low in others. According to the Pareto law of figure 5.3 this results in a 

lower value of the global entropy because both high and low nodal energies have, respectively, very low 

and very high probabilities. 
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It must be noted here the omission of Boltzmann's constant, kb, in the definition of equation (5.12). This 

happens as a consequence of the low number of entities involved, far below Avogadro's number, that 

makes the bulk scaling unnecessary. This also renders our definition of entropy dimensionless, as it is 

only a function of probabilities.

The remaining quantity involved in the description of a system's internal agitation is the temperature. In  

our case this value is not available as an element of the given data, and its definition for structural systems 

is  not  straightforward.  However,  it  is  easy  to  calculate  from  the  definition  given  by  classical 

thermodynamics in equation (5.7):

T=Q
dS 5.13

This value of temperature can be understood as a measure of the tendency of a structural  system to  

dissipate applied energy by displacement instead of concentrating it internally. Some authors define it as a  

measure of the quality of a state of a system [BRY1907], while others refer to it as the degree of "hotness" 

of a system [MAR2011]. In our case, higher values of temperature imply global deterioration of the static  

behaviour, whereas at lower values the system shows a higher degree of stiffness. This is directly related  

to the value of kinetic energy, and varies quadratically with it, as will be shown in the numerical examples  

provided. As follows from equation (5.13), and the fact that our definition of entropy has no dimensions,  

its units are those of energy.

5.2.4.- The kinetic energy of a system, KE

In  our  framework,  the  simulations  represent  quasi-static  processes,  where  changes are  homogeneous 

throughout the system, and slow enough as to maintain a constant state of equilibrium. Nevertheless, from 

the available data of a static simulation, using a general-purpose Finite Element application, it is possible 

to derive the following expression for the computation of the kinetic term:

KE= 1
2 { ẋ}

T⋅[M ]⋅{ ẋ} 5.14

Where the superscript dot denotes derivative with respect to time and the mass matrix [M] is assembled  

by simple addition of each beam elements' particular masses to their concurrent nodes (i.e. lumped mass 

matrix). In our case, however, this expression presents two problems:

• Stochastic methods lack an objective definition of time.

• The quasi-static  approach implies  that  the  inertia  forces  and kinetic  energy,  respectively,  are 

neglected in the equations of motion and energy balance.

Still, a unitary time step can be selected for every iteration, yielding:
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{ẋ}= d {x t }
dt

= d {x  t}
1

={x} 5.15 

which means that we can dismiss the time dependency of the structural response and obtain information  

purely  related  to  the  inertia  of  the  system,  and  its  resistance  to  change  in  its  motion.  With  this 

simplification it is now possible to rewrite the quasi-static equation for kinetic energy:

KEqs=
1
2 {x}

T⋅[M ]⋅{x} 5.16

This approach is necessary given the two limitations mentioned earlier, but will prove to be a good trade-

off between computational demand and valuable information.

In figure 5.5 the quasi-static kinetic energy is presented against mass. As occurred in Figure 5.1, between  

the stiffness Kg and the total energy dU, the relationship is inversely proportional to the displacement and 

quadratically dependent on the applied force, so that light structures tend to have much higher values of  

kinetic energy. It is worth noting that in both figures 5.1 and 5.5 the lines of the isoforces follow the same 

paths, since both dU and KEqs are functions of the same displacement. In both charts, different structures 

would have different constant stiffness (when limiting to elastic regime) or different mass, and when the  

same force was applied would give a different value along the isoforce line.
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5.2.5.- Rayleigh's quotient

A very interesting function of the elastic potential energy defined in equation (5.3) and in the kinetic term 

of equation (5.16) is commonly known as Rayleigh's quotient or the Rayleigh-Ritz ratio:

R= dU
KEqs

={x}
T⋅[Kg ]⋅{x}

{x}T⋅[M ]⋅{x}
5.17

This  parameter  is  more  commonly  used  in  iterative  numerical  techniques  for  the  computation  of 

eigenvalues and eigenvectors in many mathematical and engineering problems, assuming that  {x} is a 

mode shape. In our case, given that the Rayleigh quotient is well defined regardless of this condition  

[PAR1974], this ratio between energies also tells us about how much of the applied energy is involved in  

the  actual  displacements,  or,  inversely,  how  much  energy  is  stored  elastically  by  the  structural 

configuration.

Large values of this parameter imply either a large total energy dU or a small kinetic energy KE. As has 

been depicted in figures 5.1 and 5.5, this happens when the stiffness is small, even in situations when the 

mass  is  not  necessarily very large.  As it  will  be shown in the following numerical  examples,  global 

stiffness can be achieved either by means of beams with larger sections (hence more massive), or by a  

correct geometric disposition and nodal interconnection.

Rayleigh's quotient is complementary of heat as yet another measure of the amount of movement, but it 

omits information relative to the degree of disorder. Instead, Rayleigh's quotient gives an idea of the 

influence of the relationship between the connecting bonds (i.e. the beams' deployment) and the inertia of  

the system (i.e. the beams' masses). When this ratio is bigger then we have the case of stiffness dominated  

structures. For smaller ratios, the inertia of the system dominates the behaviour.

5.2.6.- Simulated annealing of structural systems

A straightforward application of the present  framework is  in the optimization of frame structures by 

means of simulated annealing. An algorithm was developed where the above concepts were implemented 

together with those of the first section of this chapter to solve a size optimization problem.

As it was explained earlier, simulated annealing allows for a stochastic search within the space defined by 

the objective function and the constraints.  In engineering practice, an optimal structure is that whose 

weight is a minimum, as it implies minimum use of material which, ultimately, is in direct relationship  

with its cost. Adapting equation (5.1) to our current description of the problem in terms of nodes instead 

of beam elements:

minimize f o  x=∑
i=1

N

∑
j=1

b i 1
2

w j=∑
i=1

N

∑
j=1

b i 1
2

A j⋅L j⋅ j 5.18

subject to f 1 x =A j={Values from a profiles table} , j=1,.... , bi.
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where wj is the weight of each beam element concomitant to the ith node, bi is the number of these beam 

elements and N is the number of nodes. Aj, Lj and rj are, respectively, the area, length and density of the 

aforementioned beam elements. It must be noted here how, in this application of a stochastic methodology 

to an optimization problem the parameters are considered in the analysis from the deterministic point of  

view. This means that we are only using their average values instead of treating them as probabilistic 

random variables. This leads to a formulation of the constraint f1(x) only dependent on the areas, as Lj and 

rj are treated as geometrical and material constants.

Nevertheless, equation (5.18) is difficult to solve other than by exhaustive iteration over all the values 

within the given profile table and the given beam elements. Even a stochastic approach for exploration of 

the whole design space would be computationally cumbersome.

To overcome this difficulty, we will combine the optimality criterion developed in [VEN1968], by means 

of which it can be stated that an optimum structural design is that where the average strain energy density 

is a constant throughout its elements. The evaluation of this quantity could be made in a probabilistic 

manner by including another sub-iteration within the analysis. For the sake of clarity, however, we will  

utilize only the deterministic value.

The definition of average strain energy density, once the parameters of the previous section have been 

introduced, is quite straightforward: it is the ratio of the internal work of a node, dWi , to the total volume 

Vi of its concurrent beam elements. It can be understood as a measure on how close to the elastic limit the 

node is, or more precisely, to what extent the available energy capacity is used.

The energy capacity of a node can be calculated as:

W ui=∑
j=1

b i ui
2

2 E i
⋅V j 5.19 

where sui and Ei are generally constant throughout a structure as material properties so the only variable 

affecting each node is the volume of its tributary beam elements. It is trivial to realize that the energy 

capacity of a node is then only dependent on its volume. The strain energy density, which depends on the 

state of deformation, can adopt different values for each node depending on the structural configuration.  

Unless the adopted beam's discretization is an infinitesimal value, the strain energy capacity is always 

many times larger than the strain energy density. Nevertheless, structures where the strain energy density 

varies little among nodes, i.e., the overall variance is small, utilize better the material than those with high  

fluctuations. This is in consonance with the previously explained notion of entropy, which is related to 

this variabilities, as a measure of the capacity to absorb heat.

Once the concept of nodal strain energy density has been introduced, it is possible to enunciate equation 
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(5.18) again considering yet another constraint that includes the strain energy density in the equation:

minimize f o  x=∑
i=1

N

∑
j=1

b i 1
2

w j=∑
i=1

N

∑
j=1

b i 1
2

A j⋅L j⋅ j 5.20 

subject to
f 1 x =A j={Values from a profiles table} , j=1,.... ,bi

f 2 x =stdev W uj≤ , j=1,.... , bi

The  solution  of  this  problem is  now possible  and  efficient  by means  of  deterministic  optimization 

procedures such as Lagrange Multipliers [VEN1968], but these are algorithmically quite involved and 

still require the constraint  f1(x) to be treated as a continuous range of values instead of taking discrete 

fixed values from a profiles table.

A solution to both the algorithmic complexity and the discrete value assignment is made possible using 

the  Simulated  Annealing  approach.  In  pseudocode,  this  algorithm  can  be  can  be  expressed  in  the  

following manner:

Table 5.1: Pseudocode for the Simulated Annealing algorithm

Given that all the variables of the algorithm have been defined in the previous section, only the value of 

Probability(Hk,  Hknew,  T) needs to be characterized.  We have used the original  acceptance probability 

function given by [KIR1983]:

Probability W ,W new ,T =e
−

H k−H k−1
T 5.21

where Hk and Hk-1 are respectively the current and the previous step measures of statistical dispersion of 

the nodal strain energy density. We have chosen the standard deviation at each iteration step as it is more 

adequate for single evaluations than entropy, which would require several sub-iterations to be properly 

characterized.
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s=s0; H k=H k (s) //Initial state, nodal strain energy's standard deviation
sbest=s ; H kbest=H k //Initial best solution
k=0 //Energy evaluation count
while k< kmax  and H k> H kmax //While there is time and solution is not good enough

T=temperature(k /kmax ) //Calculate temperature
snew=neighbour (s) //Pick some random neighbour
H knew=H k (snew) //Compute the energy state
if Probability(H k , H knew ,T )> random( ) then //Is it good to adopt this neighbour's state?

s=snew ; H k=H knew //Yes, change state
if H knew< H kbest then //Is it a new best?

sbest=snew ; H kbest=H knew //Store this new state as new best
k=k+ 1 //One more evaluation done

end while //Repeat the procedure
return sbest //Return the best solution found
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It must be remarked here how the limit states constraints defined in chapter 4 are not explicitly included 

the Simulated Annealing optimization algorithm. Moreover, the Capacity-Demand notions intrinsic to the 

analysis part of design have not been included. It is trivial, though, to establish a null probability value for 

those states whose capacity were estimated below a given demand threshold. This makes this approach 

suitable not only for deterministic analysis techniques but also for probabilistic ones. 

In the numerical examples provided in the next section, the limit  state constraint has been explicitly 

defined to make it more illustrative.
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5.3.- Numerical experiments and results
In this chapter the results of some numerical experiments are presented, together with some detailed 

observations. Four different specimens were tested, and the thermodynamic quantities described earlier  

computed using a general purpose finite element application. Their configurations were adopted from the 

seismic regulation Eurocode 8 (EC-8), where a behaviour factor q is defined for several different kinds of 

structural arrangements [ECS2004]. This behaviour factor serves, in a simplified calculation of the non-

linear response of a structure, to reduce the design forces obtained from a linear analysis. Higher values  

of this factor imply the assumption of better behaviour in the event of plastification of the elements. In  

other words, the behaviour factor accounts for the ability of the structure to dissipate energy by yielding.

In order to avoid excessive complexity, the specimens were treated as 2D models and kept within the 

elastic range, considering the shear effects to make a negligible contribution towards the deformation.  

Also for the sake of simplicity, geometrical non-linearities were omitted from the analyses. 

Two types of experiments were carried out: modification of the applied force in order to account for the  

energetic behaviour of the different configurations and modification of the sections using the simulated 

annealing scheme.

5.3.1.-  The studied specimens

The material and section properties shown in Table 5.1 are common in engineering practice, with values  

similar to those corresponding to a 200x200x2 mm hollow extruded steel bar.

The geometric configuration of each model is displayed in figure 5.6.

Table 5.2: Properties of the beam elements composing the specimens

Parameter Value

Number of nodes, N 47

Area (cm2) 144

Modulus of inertia (cm4) 7872

Modulus of elasticity (kN/cm2) 21000 

Shear modulus (kN/cm2) 8076,92

Material density (kN/cm3) 7.892E-8
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Some characteristic properties of the sample models, such as volume, mass, and moments of inertia, were 

calculated and are provided in Table 5.2. The total volume was computed by multiplying the section area 

given in Table 5.1 by the added length of every beam. Mass was obtained as the product of the volume 

and the material density (structural steel).

The inertia of an assembly of masses is given by the expression:

I=∑
i=1

N

mi r i
2 5.22 

where mi is the lumped mass of each node and ri the distance of the node to the centre of gravity of the 

system. For the computation of the values of inertia only the XZ plane was of interest.

Table 5.3: Properties of the studied specimens

Parameter Model A Model B Model C Model D

Volume (cm3) 500256 1078080 857808 833328

Mass (kNs2/cm) 0,0392 0,0798 0,0672 0,0653

Inertia XZ(kN cm s2) 5866 48235 33735 31916
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Figure 5.6: Schematic distribution of the nodes and beams whioch were the subject of the study. The 
behaviour of each model varies with the disposition of the braces as described in the seismic regulation  
Eurocode 8.
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5.3.2.- Experiment 1: Modification of the applied force

The value of the applied force F was randomly modified around an initial  value Fo by means of an 

exponential function:

F t=Fo⋅e
−⋅

F o 5.23

where r is a random value between 0 and 1 and a is a control parameter that was fixed as equal to 5. 

This leads to a random oscillation of the value of Ft, when Fo=100 N, between 0 N and 100 N.

As no probabilistic assumption can be made regarding the outcome of the samples, no rejection condition 

was defined for a Metropolis algorithm. All the calculated samples were in the elastic regime, so the 

outcome is purely deterministic. In fact, the choice of a random function for the definition of Ft was based 

on the practical advantage of the Montecarlo method for the exploration of larger search spaces more  

efficiently.

Figures 5.7 to 5.13 show the relationships of the parameters described in the previous chapter. In the  

elastic regime described in this experiment, all the variations are visibly linear and homogeneous, with 

differences  between  the  models  that  support  the  explained  concepts.  Given  the  large  differences  in 

internal  energy between the  models,  which  are  particularly relevant  in  Model  A,  in  some  cases  the 

ordinate axis has to be shown on a log10 scale.

In Figure 5.7 the internal elastic potential energy dW is compared to the total applied energy, dU. In all 
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Figure 5.7: Variation of internal elastic energy with respect to total applied energy. Robust  
configurations have a short span of values in the horizontal axis as they oppose to changes in total  
energy dU. Although shortened for graphical clarity, the line for Model A reaches values as high as 500  
kNcm. Models B and C, however, have much shorter trails and, for the same range of forces, oscillate  
only between 0 and 8 kNcm.
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the models the ratio between dW and dU is constant. Nevertheless, there are some differences between 

the systems with regard to the span of internal  energy that  they can develop.  In particular,  model  A 

reaches levels of internal energy that are orders of magnitude larger than the rest as a consequence of its  

much lower stiffness (it has no bracing whatsoever). On the other end of the scale, model C shows not 

only lower values in this case, but also a narrower span of possible values of total energy. Robustness,  

described as the persistence of a system to maintain a certain behaviour under changes, can be understood 

as the difference between the maximum and minimum values of  dU in this and subsequent charts. The 

more robust a system is, the narrower is the span.

From Figure 5.7 it is apparent that dU and dW: are proportional, so that:

W=−dU 5.24

where g has a value close to one. As seen earlier in equations (5.2) and (5.3), dU is also proportional to 

the square of the force and inversely proportional to the stiffness, which leads to:

dU=1
2 FT⋅Kg−1⋅F 5.25

from which it is possible to conclude that:

W=−
2

F T⋅Kg−1⋅F 5.26 

This means that, regardless of the g ratio, stiff systems will show lower values of dW than more flexible 

ones.  Figure 5.8 depicts the relationship defined in equation (5.26). The quadratic dependence on the  

applied force makes the differences between models even more clear.
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Figure 5.8: Variation of the internal elastic energy with respect to the force applied to the system. The 
ordinates presented by means of a log10 scale. In the linear regime, the internal work varies  
quadratically with respect to the applied force.
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Figure 5.9 shows variation of entropy with respect to applied force. The curves present a very interesting 

parallel decreasing behaviour, indicating that a rise in the energy in the system leads to a reduction of its 

entropy. Mathematically this means that, for lower energy states of the system, the individual probabilities  

of  each  nodal  state  are  higher.  This  makes  the  distribution  more  homogeneous,  leading  to  a  higher 

entropy. Assuming the existence of an elastic regime, the share of internal energy stored in the nodes of a 

structure does not change, only the quantity that they store. In other words, although the individual nodal 

elastic energy levels  dWi may change from one value of the external forces to another (i.e.  between 

simulation iterations), the relative internal ratio between them remains a constant. 

When the available energy is higher for all  the nodes, these must  also increase their  energy and the  

difference in probabilities from one another increases. This causes the entropy to decrease as, from the  

definition given in equation (5.12), the maximum value of the entropy is achieved for a system in which 

all the nodes share the available energy equally, and are equally probable. This maximum can be observed 

in the upper section of each curve, where flat behaviour is present. In a case of much disparity and the 

predominance of high values, the entropy tends to a minimum as the majority of the nodes have high 

values whose probability is lower according to the Pareto law. As defined in our work, the quantity dS is 

dimensionless. Structurally, it provides information about the degree of evenness in the distribution of the 

internal work, which is directly related to the internal distribution of the tensions. A higher value means a  

lower  likelihood  of  concentrated  tensions.The  chart  shown  in  figure  5.10  is  also  interesting  as  it  

summarizes much of the information provided by both figures 5.8 and 5.9. The value of  dQ expresses 

how close the values of the internal elastic energy dW and the total energy dU are. In other words, how 
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Figure 5.9: Variation of entropy with respect to to the force applied to the system. A higher force results  
in a higher total energy dU. As dU increases, the individual nodal energies reach higher values, whose  
probabilities are lower according to the Pareto law. This leads to lower values of the entropy.
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far from unity the ratio g=dW/dU is. In the elastic regime, g is constant regardless of the amount of total 

energy. For model A,  dU is 25% larger than dW, whereas for the rest of models the ratio remains very 

close to 1. Negative heat, i.e. a ratio smaller than 1, is present in models C and D. If, as explained earlier,  

higher entropy is associated with a more even distribution of the nodal energy, the reason why models C  

and D show a value of internal work dW larger than the total energy dU can only be derived from their 

particular beam configurations.

Keeping  in  mind  the  fact  that  all  four  models  have  the  same  number  of  nodes,  whose  topological  

relationships are dictated by the interconnecting beams, a larger number of connected nodes means also a  

more even redistribution of the internal work among them. This explains the difference not only in the  
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Figure 5.11: Variation of quasi-static kinetic energy with respect to force applied on the system. The 
slope of the line is the inverse of Rayleigh's quotient. Steeper lines indicate higher flexibility, flatter lines,  
higher stiffness. 

Figure 5.10: Variation of heat with respect to the force applied to the system. The large values of dQ 
represent big differences between the internal work dW and the total energy, dU. When positive, they  
reflect dissipative behaviour; when negative, internal accumulation in the nodes.
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internal  work  but  also  in  the  entropy between the  models.  Negative  values  of  dQ indicate  internal 

adsorption of the applied energy, whereas positive values indicate dissipation by means of displacement.

The magnitude of this characteristic is given by the absolute value of dQ.

The  plot  of  figure  5.11  reveals  yet  another  interesting  characteristic  of  a  structure's  behaviour:  the 

relationship between its global stiffness and its inertia. Model A, despite having much less mass to oppose 

in  the  direction of  the  applied force,  has  a  much larger  kinetic  component  as  a  result  of  its  greater  

flexibility. However, comparing the other specimens whose values range closer to one another, the higher  

mass of model B dominates over the effect of its smaller displacements. This can be perceived as a line 

above that of model C, with lower inertia but also lower mass.
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Figure 5.13: Variation of quasi-static kinetic energy with respect to force applied on the system. The 
relationship between kinetic energy and applied force is quadratic. Flexible structures present narrow  
paraboles. 

Figure 5.12: Temperature vs Kinetic energy. The quadratic relation between T and KE can be linearized  
to obtain the parameter tau when kinetic energies are low.
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 In the chart of figure 5.12 the same values of quasi-static kinetic energy are presented against the applied  

force. This case is similar as that of dW and dQ in that there is a linear relationship with the total energy 

dU and, by virtue of equation (5.21), a quadratic dependence on the force applied. Summarizing, the kind 

of information that can be extracted from the values of KE sq is related to whether a structure's behaviour 

is dominated by the mass of its elements or by their beams’ distribution.

Figure 5.13 shows a plot of the temperature against kinetic energy for all four models. Here it is possible 

to observe the quadratic dependence between these two variables although they were computed from 

mathematically independent relationships. In this situation, a linear approximation can be made in order 

to  describe  this  relationship  between  temperature  and  kinetic  energy.  If  the  linear  dependence  is 

characterized as a value t, and substitutes in equation (5.13):

T=Q
dS ≈⋅KE 5.27

that leads to:

=
Q

dS⋅KE 5.28

replacing heat by its definition from equation (5.8):

=
dU−W

dS⋅KE 5.29   

which is the coefficient that combines the independently obtained parameters dU,  dW,  dS and KE. This 

coefficient  summarizes  most  of  the  characteristics  described  above  independently  for  each  of  the 

parameters. Its positive or negative value indicates a predominance of internal work over total energy, 

meaning a nodal energy distribution which is even. A larger average absolute value stands for a higher  

degree of flexibility, which, as we have seen earlier, means a larger difference between the internal work  

and the total  energy (i.e.  a  larger heat),  being the kinetic energy compensated by the entropy in the  

denominator.

In figure 5.14, the deformed shapes of the four structures are shown. It is possible to see how models A 

and B maintain the same number of connected nodes, whereas C and D "activate" the rotational degrees 

of freedom of extra nodes, increasing not only their internal energy but also their entropy.  It  is also  

interesting to note how, since all four models have the same arrangement of points with different nodal  

connections, the range of dS is very similar in all cases.

As the total energy dU increases, if the value of  dQ remains close to zero this means that the relation 

established  in  equation  (5.13)  gets  closer  and  closer  to  zero  unless  the  entropy,  dS, also  decreases 
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correspondingly.  Given that  the  entropy is  fairly  similar  between  the  configurations,  this  forces  the  

temperature, T, to vary. However, in the case of model A, dQ is a sensibly large number compared to the 

others. As the temperature and kinetic energy are dependent on one another, this increment of temperature  

leads to a higher degree of nodal displacements. We can therefore establish that, in the case of similar and  

comparable values of the entropy, larger absolute values of heat also imply a lower degree of stiffness.

In table 5.4 a summary is made for comparison of all four models and the average values yielded after  

100 iterations of the experiment (only for entropy was given the maximum). The values provided in the  

Eurocode 8 for the behaviour factor  q of each structural configuration are also added for convenience. 

Interestingly, and despite their completely different behaviours, models A and D are given the same value.  

Also, they are favoured in the code as q is considered a factor of reduction of the applied loads.
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Figure 5.14: The deformed shapes of the models under the applied load. Model A was magnified by a  
factor of 1000, whereas models B, C, and D were magnified by a factor of 10000. Models A and B have  
the same amount of connected nodes, although B presents a much lower kinetic energy. C and D have  
more connected nodes that explain their negative heat as they store energy internally instead of  
dissipating it.
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Table 5.4: Summary of the average values after 100 iterations. 

Parameter Model A Model B Model C Model D

<dU> 115,6 1,45 1,36 3,92

<dW> 91 1,45 1,36 3,95

<dQ> 24 0,00016 -0,00007 -0,03

dSmax 13,45 14,38 14,38 14,38

<KE> 0,19 0,00005 0,00003 0,0003

<T> 7,4 0,00005 -0,00002 -0,01

<R> 595 28607 41321 11797

<t> 12,7 0,26 -0,18 -8,99

EC 8 Behaviour 

factor, q(*)
5 4 2,5 5

(*) The values of q are for a given ductility classification. For more details see [ECS2004].

5.3.3.- Experiment 2: Modification of the cross sectional properties

As it was explained in the point 4.1.2.1, the optimization procedure can take place mainly as three types 

of problems: size problems, shape problems and topology problems. This exercise will focus on the first  

type, applying it to the Model A.

By modifying the sizes of the beam elements' sections, the optimization problem reduces to an iterative 

procedure  such  as  the  one  described  by equation  (5.18).  We have  adapted  the  Simulated  Annealing 

algorithm provided in table 5.2 to make use of the parameters described in this chapter, namely:

• The ratio of nodal internal work dWi against the nodal volume Vi as the strain energy density and 

its variance throughout the structure.

• The structure's notion of temperature as calculated in equation (5.13).

On each iteration, the state of a structure is defined by the height,  width and thickness of the beam  

elements that integrate it. Table 5.5 gives the available sections from a commercial provider that were  

used to constraint the possible states of the structural configurations. The table was simply input in the  

program as a selection matrix. Provided that each element can adopt any type of sections from the table,  

the design space spans 2,5x109 possible states. In this manner, the neighbouring configurations would be 

selected by retrieving random indexes of the matrix until a valid profile would be returned for all the  

sections of the structures.

In figure 5.15 a  population of  10000 specimens was randomly generated.  The mass  of  each state  is  

depicted against the standard deviation of the nodal strain energy density.  An optimal solution is that  

where, respecting the feasibility conditions, a minimum mass is obtained. The feasible design space has  

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 138



A Statistical Mechanics framework for structural systems

been defined by those structural configurations whose tip deflection is less than 1/500 of the height of the 

structure. This limit is given in the regulations as a serviceability limit. Regarding the the minimum, it 

must be located in the boundary of the surface created by the possible points. It is interesting to note how 

the design space in this case is not continuous but presents itself as a grid of clustered solutions. This is a  

result of the discrete nature of the possible element sections given in table 5.5 and has obvious advantages 

from the practical point of view over the gradient-based methodologies described in the point 4.1.1.

Table 5.5: Available profile sections used in the Simulated Annealing optimization procedure
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Figure  5.16  shows  the  results  for  the  same  population,  but  comparing  the  relationship  between the  

standard deviation of the nodal strain energy density and the total energy of the system. The total energy,  
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Figure 5.15: Structure's mass vs standard deviation of the nodal strain energy density for a random  
population of 10000 specimens. The design space is a surface of 2,5x109 points.The optimal is a  
minumum in the boundary of this surface.Feasible and unfeasible designs are selected according to the  
maximum displacement serviceability limit state.
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in this particular experiment, is itself linearly dependent on the displacement, given that there is only one 

point  of  application  of  the  force.  The  different  solutions  are  banded  in  lines  following  a  quadratic  

tendency. This makes the standard deviation a better tool for measuring the optimality as it has a more  

straightforward interpretation than the entropy, requiring less computational effort. The main difference 

between both measures is that, while entropy focuses in the actual energetic states of each node and their  

relationship to the total structure, the standard deviation of the nodal strain energy density gives a single 

value  for  the  whole  structure  measuring  the  degree  of  solicitation  of  each  node  with  respect  to  its  

capacity.

Figure 5.16: Structure's total energy vs standard deviation of the nodal strain energy density for a  
random population of 10000 specimens. The standard deviation of the nodal strain energy density is a  
more effective measure of the dispersion of the nodal energy than the entropy as it only requires one  
calculation per state.

The chart  in  figure  5.17 gives  the  comparison between mass  and temperature  for  the  same  random 

population depicted earlier. As expected, larger masses imply lower capacity of movement hence lower 

values  of  temperature.  By means of  the  Simulated  Annealing  algorithm,  the  value  of  our  computed 

temperature intervenes as a control variable in the search. When the mass of the structure is small, its  

members have less stiffness hence it is subject to more displacements and its temperature is higher.

When the structure is more massive, it has lower temperature. It is clearly visible in the feasible region  

where the displacement constraint is very strict and the range of possible temperatures is very narrow.  

Simulated Annealing employs the temperature as a control parameter for the selection of the neighbour.

The higher the temperature, the larger the leap to a next state. This emulates the cooling effect in real 

annealing.
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Figure 5.17: Structure's mass vs temperature for a random population of 10000 specimens.. Larger  
masses imply lower capacity of movement hence lower values of temperature. By means of the Simulated  
Annealing algorithm, the value of our computed temperature intervenes as a control variable in the  
search.

In figure 5.18 the result of 50 iterations in our Simulated Annealing algorithm is presented. The global 

minimum for  the  standard deviation of  the  nodal  strain energy density is  quickly found and can be  

identified as the point from which most other iterations are tried. The optimum however is that whose 

mass is a minimum while its nodal strain energy dispersion is a minimum. As can be seen in figures 5.16 

and 5.18, these conditions are mutually incompatible and some intermediate solution must be adopted.  

Clearly, it is up to the designer to choose what criterion is most adequate to the particular application of  

our method.
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5.4.- Discussion
In this chapter a series of quantities from statistical mechanics have been used to describe and compare 

the properties of a set of structures. The values of these quantities were obtained by assimilating certain  

structural  systems  to  an  aggregate  of  interconnected  nodes  undergoing  a  quasi-static  process  of 

thermodynamic change. In this manner, it was also possible to define:

• The number of nodes, N, as the size of the assembled matrices,

• The internal energy, dU, as the amount of work done by the forces on the structural system,

• The internal strain energy, dW, as the amount of such work mechanically stored in the nodes,

• The added heat, dQ, as the energy dissipated in the form of displacements,

• The entropy,  S, as a measure of the degree to which  dW  is evenly distributed throughout the 

nodes.

• The temperature, T, as the ratio between the added heat and the entropy,

• The internal kinetic energy, KE, as a measure of the influence of the mass of the system,

• The Rayleigh quotient, R, as the ratio between the internal energy and the kinetic energy.

At the same time, a series of qualitative properties of the investigated structural systems was determined  

and observed within the scope of the above-listed quantities. These properties are the following:

• Robustness,  or  the  persistence  of  a  system's  characteristic  behaviour  under  perturbations, 

characterized by a small span of the possible values of dU,

• Resilience, which is complementary to the above, is the capacity of a system to absorb energy 

elastically, which is characteristic of systems with large values of dU,

• Stiffness, or the resistance of an object to deform, which is also related to a small span of dU and 

a dQ which is close to zero,

• Flexibility,  as  opposed to  stiffness,  being  the  ability to  deform elastically,  and  indicative  of 

systems with large and positive values of dQ.

These properties  have been identified in  a  group of  four  structural  configurations  obtained from the 

seismic regulation Eurocode 8. The choice of a structural engineering reference provides our framework 

with a sound background for the establishing of comparisons and, more importantly, a handy factor,  q, 

which is called a "behaviour factor". 
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A coefficient t which relates the temperature to the kinetic energy has also been defined. This coefficient 

provides more information about the behaviour of a structural system as it includes not only a magnitude 

but also a direction (positive or negative), and can indicate whether a design is dissipative or cumulative.

The framework has also been proven a valuable tool for structural optimization. Employing both the 

notions of nodal strain energy density and temperature, it has been applied in a straightforward manner to  

the implementation of a Simulated Annealing algorithm. Although this technique has been applied before 

for the optimization of structural designs, the physical foundations of its application appear to be quite 

vague in the literature found. With this work a more solid theoretical background is given.

It was concluded that the techniques developed for analysing systems from the point of view of statistical  

mechanics work very well with structural systems.

Within the framework presented in this chapter, it is possible to determine whether a structural system 

will require from its elements the ability to store applied energy or to deform in order to dissipate it, and 

to what extent. A numerical value associated with qualitative variables such as robustness or stiffness can 

be chosen matching those of total internal energy or heat, respectively.

We have also presented a novel application of entropy in order to define the degree to which internal  

energy is evenly distributed within a structure. Uniform distribution of this energy, being dependent on 

internal  stresses,  means  a  lower  likelihood  of  encountering  overstressed  points  while  underutilizing 

others. Structures with high values of entropy are less likely to present local failures and will do so only 

after resourcing all of its available elements. From our experiments, more flexibility also means lower  

entropy. However, a more flexible structure can also respond to a much wider range of applied energies. It  

is the trade-off between material economy, energetic capacity, and entropy which makes a good structural  

design. To complement the notion of entropy, the standard deviation of the nodal strain energy density 

was introduced as another measure of dispersion. In this case it refers to the ratio between the theoretical  

energy capacity of a node and its real demand. The lower this value, the higher the efficiency with which 

the material is being used.
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6.- Development of a computational environment for probabilistic  
structural design
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6.1.- Introduction
The experimental results shown in this thesis required a significant amount of computational effort due to 

the  number  of  involved specimens,  the  iterative  nature  of  the  researched methods  and the purposed 

amplitude of the parametric studies. In total, over 500 hours of processor time were used only in the 

calculations in an Intel ® Core ® 2 CPU 6600 at 2,4GHz each, with 1GB of RAM. Such job could only 

be completed by resourcing to automation of the process of assigning values to the studied parameters.  

Otherwise, human error and lack of time would have rendered the results unreliable.

On an initial stage of the research, attempts were made to implement a fully comprehensive Open Source 

application that contained most of the numerical methods defined in the previous chapters. The task soon 

proved itself  to be overwhelming and alternative solutions had to  be found.  A main concern of  this  

research was to provide with a didactic yet useful environment that narrowed the current gap between 

engineering practitioners and the concepts of physics. Eventually the option of adapting main stream 

applications to such purpose seemed optimal. One of the most common problems in design when it comes  

to experience new software is the familiarity with the interfaces.

In order to minimize such problem, the final solution was to develop an application that combined three  

main areas: CAD, Structural Analysis and Data Management. 

For the CAD part,  the package of choice was Robert  McNeel  and Associates'  Rhinoceros ®. It  is  a 

NURBS (Non Uniform Rational B-Splines) based CAD application common to industrial, architectural  

and automotive design. Among other, this software has the decisive characteristic of embedding a visual 

programming plugin named Grasshopper ®. This makes it unique for the graphical representation of the 

developed code and serves ideally the didactic purpose of this thesis.

The main benchmarking tool for validating our Structural Analysis results was the commercial general  

purpose software SAP2000 ©, for which a free research license was obtained. Other options were studied 

(OpenSees,  Autodesk  Robot)  but  none  provided  the  ability  of  straightforward  linking  with  other 

Windows-based programs via an available API. Despite being a proprietary solution, SAP2000 © met all 

our  requirements  of  reliability and,  most  importantly,  of  familiarity.  Also,  it  came with  CSI's  OAPI 

(Computers & Structures, Inc. Open Application Programming Interface), that allowed for the linking of  

the data with other software and the automation of some critical processes.

The  data  produced  by  the  software  was  then  processed  by  means  of  the  proprietary  spreadsheet 

application Excel and then treated with GIMP, the Gnu Image Manipulation Program. In this process, at 

least  three  different  applications  where  combined  by  manual  operations  which  led  to  considerable 

expense of research time.
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As a result, the central piece of our empirical research were three purpose-made open-source applications 

that combined several other proprietary solutions to collect, process and display the experimental data.  

For chapter 3 the simulation data was generated by means of an embedded application developed in the  

Rhinoceros'  Grasshopper  development  environment.  For  chapter  5,  model  data  was  generated  with 

SAP2000. This data was collected into an spreadsheet connected via its API.

To make this possible, the underlying software technology had to be based on the Microsoft Corporation's 

Windows operating system. Unfortunately, in the moment of writing this thesis the applications common 

to Structural Engineering practice are almost invariably based on such platform. Although a number of  

Open Source applications for structural engineers are being developed in the recent years, with equal or 

superior performance and characteristics, historical and practical reasons are imposed. It is yet difficult  

and time-costly to trust such delicate matter as structural analysis to potentially untested applications.

6.1.1.- The .NET framework

The low-level technology that enables the interconnection between applications used in this research was 

Microsoft's .NET Framework. It is a development kit of classes, interfaces and value types designed for 

building applications in Windows, Windows Phone, Windows Server and Windows Azure. It is currently 

in version 4.5.1.

The .NET Framework library copies mostly the Open Source Java platform, which is available as an 

implementation called OpenJDK. Basically,  the idea consists  on creating a body of routines (classes,  

methods and interfaces) that give access to the developers to the core operating system controlling the 

different hardware. The part in charge of doing this is named Java Runtime Environment (JRE) in the  

Java framework and, interestingly, Common Language Runtime (CLR) in .NET's. Unlike Java, .NET is 

available only for the Windows operating systems enumerated above. As a sort of compensation, it can be  

written in a number of different languages, including Visual Basic ®, and Visual C# ®, whereas Java  

programs can only be written in Java language.

According  to  Microsoft  documentation,  the  .NET Framework enhances  the  practical  development  of 

applications by giving access to the following services of the operating system:

• Memory management, so the programmer does not have to allocate and release memory as it is  

automated by the CLR.

• A common system of types to all languages, so the compiler can always be the same regardless of  

the chosen programming language.

• A well documented and extensive class library that covers from access to different  hardware  

devices to process parallelization and threading.
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• Version compatibility of programs regardless of the installed .NET Framework version.

Software applications developed for the Windows platform, including those enumerated above, make use  

of this framework. In many cases, these programs also expose an Application Programming Interface  

(API) that permits the linking between them. It is possible due to the fact that low-level Operating System 

structures are available to all of them.

6.1.2.- Integrating multiple software applications via .NET

In order to compute the results presented in the different chapters of this thesis, a set of applications was 

developed  linking  the  different  APIs  of  the  aforementioned  computer  programs:  Rhinoceros's 

Grasshopper, SAP2000 and Excel.

Each of them exposes a series of classes that permit the automation of the processes programmatically at  

any degree of complexity. Instead of accessing them via their Graphic User Interfaces (GUIs) and being 

limited by predetermined work flows, we could iterate our different experiments several hundred times  

and extract the necessary data in a much more efficient way.

6.1.2.1.- RhinoCommon .NET SDK and Grasshopper

Although the main application itself is  of proprietary code, Rhinoceros is  based on the openNURBS 

initiative. Perhaps for this reason, it still shows some degree of consideration for the developers which  

contribute  and give  feedback for  the  improvement  of  their  core  program.  The  whole  Rhinoceros  ® 

development package is a complex set of libraries fully accessible from many languages and IDEs.

In this philosophy, the Rhino Software Development Kit (SDK) is an Open Source tool accessible from 

the .NET Framework and also Mono, the Open Source adaptation of the .NET Framework. In the moment  

of writing this document it is delivered as RhinoCommon.dll and can be obtained from the Open Source 

repository GitHub [RHI2011].

By means of the RhinoCommon .NET SDK it is possible to extend and customize Rhino. This SDK can 

be included in other IDEs as a DLL in the form of a container for a set of identifiers or namespace. This  

namespace contains fundamental types that define commonly-used value types and classes used in Rhino.

One  excellent  example  of  this  extensibility  is  the  visual  programming  interface  Grasshopper.  This 

extension  allows  for  the  seamless  creation  of  geometry  within  the  CAD  application  by  means  of 

interconnected blocks of code that can be dragged on a canvas, known as components. 

Particularly interesting is the component that allows for running custom sequential code written either in  

C#  or  in  Visual  Basic  within  Grasshopper.  It  was  used  as  an  IDE itself,  since  it  offers  immediate 

compilation  of  the  code  as  well  as  automatic  code-completion.  Other  custom components  are  also  
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possible using more powerful IDEs like MonoDevelop or Visual Studio. For this thesis a set of these were 

implemented in order to be able to access both SAP2000 and Excel APIs. In this manner, model data was  

created iteratively from the structural analysis application and managed and presented using spreadsheets  

in a seamlessly 

6.1.2.2.- The SAP2000 API

The SAP2000 API allows third-party products to integrate with SAP2000 such that users may create 

custom engineering applications. SAP2000.exe is an Activex control which external applications may 

reference  [CSI2014].  It  is  named  CSI  OAPI  (Computers  And  Structures  Inc.  Open  Application 

Programming Interface),  and currently is in version 16. Being .NET based, it  can be programmed in  

several different languages, including the popular C# and Visual Basic.

In order to be able to use the OAPI it is necessary to be in possession of a functioning licence of the 

SAP2000 program and the required classes are automatically installed in the system as a Dynamic Link 

Library (DLL). The customized code can be easily implemented by means of an Interactive Development  

Environment  (IDE)  such  as  Visual  Studio  or,  as  Open  Source  alternatives,  the  one  included  in  the 

OpenOffice.org Basic, SharpDevelop, xacc.ide or MonoDevelop.

It has an extensive documentation that covers examples of usage for every exposed function. This comes  

in a SAP200_API_Documentation.chm file containing the full list of all provided functions with their 

exact syntax, detailed description of arguments and commented examples of usage [SEX2011].

6.1.2.3.- The Microsoft Excel API

The same degree of customizability is possible in the Microsoft's office suite. It comes with a language 

independent API which allows to program it by means of different programming languages. Moreover, by 

default it also includes its own Visual Basic for Applications (VBA) IDE. However, VBA compiles to an 

intermediate language exclusive of Microsoft called P-code, which is executed in a virtual machine. This  

makes the process less efficient from the point of view of computing speed.

For this reason, the interface of choice was once again Grasshopper using the access provided by the 

Office API. Analogously as SAP2000, all that is required to be able to use the Excel API is a functioning  

license of the Excel program and the required library becomes available within the very Excel executable. 

The accessed assembly is the Microsoft.Office.Interop.Excel library, and allows for the manipulation of 

all the objects normally present in Excel: worksheets, cells, ranges, rows, etc.

In this case, not only the documentation is exhaustive but also a large online users base is of assistance at  

any point of the development process.
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6.2.- Visual programming implementation of routines for variational mechanics 
As it is explained in the introduction, one of the objectives of this thesis is to narrow the gap currently 

found between the disciplines of structural design and computational physics. 

A first problem often encountered in bridging them is the different degrees of abstraction and approach to  

the mathematical modeling of the concepts. Graphical tools that give a visual perspective of the problem 

can  be  of  great  help  in  these  circumstances.  Fortunately,  in  the  recent  years  a  number  of  visual 

programming  IDEs  has  been  developed  that  are  currently  mature  enough  to  allow  for  the  fast  

development of useful yet easy to understand applications. 

Another problem is the prolificacy of the computational methods that, as it is shown in chapter 1, exist in  

great number making it difficult to follow the actual improvement that one contributes over the previous. 

The main point of chapter 3 is to resort to Variational Mechanics to have a benchmarking tool that allows 

for their neutral comparison in terms of accuracy and reliability, while presenting a significant number of 

them in a structured manner so their interactions can be understood.

In order to tackle both problems at once, we have resourced to the aforementioned Grasshopper ® IDE 

included  in  McNeel  and  Associates'  Rhinoceros  ®.  In  this  chapter  we  are  showing  how it  can  be  

employed intensively both for didactic as well as for practical purposes. Figure 6.1 gives a global view of 

the complete program that enabled the comparison of all combinations exposed in chapter 3. As it can be  

seen, the modularity and procedural sequence are explicitly included in the very implementation, making 

this programming approach both functional and easy to understand.
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6.2.1.- Simultaneous comparison of numerical methods

This first application shown in figure 6.2 contains all the modules required to obtain the data used in our  

numerical comparisons of section 3.3.7.

It can be read from left to right how first input data is prepared for each of the A, B and C models. 

Then the stiffness, mass and damping matrices are created by means of the Direct Stiffness Method so the 

boundary conditions can be applied by means of either the Penalty Method or the Lagrange Multipliers.

Only then  the  time  integration  procedures  can  be  iterated  over  the  constructed  matrices,  being  here 

examined the Newmark-Beta, the Houbolt and the Park's methods.
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Figure 6.2: Close-up of the group of input panel components used to define model characteristics.  
Each model is completely defined by four blocks of information: node positions, beam section  
characteristics, support boundary conditions and force magnitude.
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Eventually, the actual matter integration methods  of Finite Elements, Finite Differences and Mass Spring 

System receive the nodal coordinates and discretize the defined beams according to their mathematical  

criteria.

Figure 6.3 is a close-up of the input panel components employed to collect the necessary data that defines 

the geometry, loads and constraints of each model of study. Each model is easily represented by four blocks of 

data:  nodal  coordinates,  beam section  characteristics  and  nodes,  support  boundary  conditions  and  nodal  force 

magnitude. The black lines are links to the next components, where they are parsed and interpreted as text 

strings. Linking a different set of data is what originates a different resulting model.

In  figure  6.4  the  different  time-dependent  signals  are  generated  programmatically  as  iterations  with 

different characteristics. They were custom made from the available VB:NET component. The control  

parameters are shown in the left and the resulting transient input values can be visualized on the right,  

making the debug process very easy and immediate. The linking of a different signal component to a 

particular numerical method component gives the possibility of making different combinations.

The block presented in figure 6.5 is the Direct Stiffness Method component. It was also custom made for  

the purpose of this thesis using the VB.NET component available in Grasshopper ®. It takes the node 

coordinates and beam properties defined earlier and parses them as the data from which assemble the 

different stiffness and mass matrices. It also takes the necessary parameters for the construction of the  

Rayleigh  damping matrix  as  explained  in  chapter  3.  The  assembled  stiffness  matrix  implements  the 
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made by means of slider components and the results are easily visualized both numerically and  
graphically.
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equations for Timoshenko beams while the mass matrix lumps the masses of the tributary beams to each 

node. The BeamsOut variable is the whole collection of beam properties and nodes that need also to be 

passed as variable to the next steps of the program.
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Figure 6.4: Direct stiffness matrix assembly. This module contains the code for generating the necessary  
stiffness, mass and damping matrices.

Figure 6.5: Integration of boundary conditions. It is possible to link either to Penalty Method or the  
Lagrange Multipliers method. In the picture, Lagrange Multiplier is deactivated for efficiency reasons.
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In figure 6.6 the Penalty Method for integrating the boundary conditions is shown as linked to the time 

integration procedure while the Lagrange Multipliers appears as deactivated.  Both take as inputs the  

previously assembled stiffness, mass and damping matrices as well as the collection of beams and the 

nodal  constraints.  Then  they perform the  necessary modifications  to  the  matrices  so  that  the  linear  

systems of equations are solvable. The outputs are a new set of modified matrices and a force vector. In 

the case of LM, the matrix range is increased  in those equations indicated by the nodal constraints,  

whereas by means of the PM, the respective diagonal values are “scaled” by a number several orders of  

magnitude larger.

In figure 6.7 a “HUB” component is presented together with the common parameters that control the time 

integration  methods.  The  “HUB”  component  is  an  accessory  to  manage  the  possible  combinations 

between numerical  methods,  so  that  the  outputs  of  the  previous  component  can  remain  fixed  while  

switching between inputs in the next. This eases greatly the required labour of collecting results as the 

number  of  connections  to  make  is  much  smaller.  In  essence  this  component  takes  no  significant 

computational effort, as it just collects the beam collection and the different modified matrices and force  

vector and passes them unmodified.

Regarding  the  control  parameters,  they  are  used  for  debug  purposes.  They  give  the  possibility  of  

controlling the calculated transient displacement of a given node at a particular degree of freedom. They 

are linked to all the different methods so results can be simultaneously compared.

The components in  figure  6.8 are  those computing the results  for Newmark-Beta,  Park and Houbolt  

methods. They all take as inputs the collection of beams (BeamsIn), the transient input force (Fin), the  
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Figure 6.6: Intermediate linking component and common control parameters for time integration. In  
order to be able to make several combinations of methods, a connection hub was devised where links  
from one boundary constrain method could be fixed while switching time integration methods.
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damping,  mass  and  stiffness  matrices  (CgIn,  MgIn,  KgIn),  the  aforementioned  debug  controlling 

parameters (DOF and nodeout),  the time span (time) and time step (deltat).  Individually,  each one is 

designed with a different set of fine tuning parameters that are also accessible form the Grasshopper 

interface. 
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Figure 6.7: Time integration methods. It can be seen how most of the input variables are common to  
every method. Just a few calibration parameters differenciate the methods from one another. The time  
history of a selected node's displacement is presented for debug reasons. The total computed action is  
clearly presented and comparable.
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Figure 6.8: Intermediate linking component and common control parameters for time integration. In  
order to be able to make several combinations of methods, a connection hub was devised where links  
from one boundary constrain method could be fixed while switching time integration methods.

Figure 6.9: Matter integration methods. Finite Element, Finite Differences and Mass Spring System 
were compared. Boxes in grey are deactivated for computational efficiency.
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The  outcome  of  the  resulting  nodal  displacement  computations  is  easily  monitored  thanks  to  a  

QuickGraph component like the one mentioned in figure 6.4. Also a total value of the integrated action is  

given as an output and visualized in a panel component. This way coding errors and other anomalies are  

easily detected as the results are immediately obtained and visualized in a clear manner.

Figure 6.9 shows another switching component that was devised in order to easily study the different  

combinations of matter integration methods. In this case, the switching variables were only the global 

matrix with all the nodal displacements (Ut) and the beam collection (BeamsIn). The nodal displacements  

matrix contains the computed solution of the displacements for each time-step, and is passed into each 

matter integration method as a means to calculate the total elastic strain energy. 

A common parameter controlling the number of subdivisions in the case of MSS and of interpolation  

points in the case of FEM and FDM appears named as NumDivs.

In  figure  6.10,  the  last  part  of  the  program takes  the  computed  nodal  displacement  history and the 

“global” variables of time step and time span and passes them to the matter integration methods of Finite 

Differences, Finite Element and Mass Spring System. The aforementioned integer value controlling the 

amount of subdivisions is also taken as input as well as the description of the beams properties. The total  

strain energy is then calculated by each component using the displacements obtained by means of the  

Timoshenko beams mentioned in the DSM component. These displacements are then re-oriented in the 

local  coordinates  of  each  beam  and  used  as  boundary  conditions  for  integrating  the  respective 

interpolation equations that each method requires as explained in chapter 2.
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Figure 6.10: Energy balance of numerical methods for structural dynamics. The methods of Newmark 
Beta, Wilson Theta, hiulbert-Hugh-Taylor and Chung-Hulbert available in the SAP2000 application were  
seamlessly compared with two ad-hoc components. Resulting data was processed using Excel also  
programmatically.
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6.2.2.- Energy balance study of numerical methods for structural dynamics

In order to have a benchmarking test bed for the previously described components computing numerical  

methods, another application was made that involved linking SAP2000 and Microsoft Excel. This was the 

basis for obtaining the data exposed in sections 3.3.5 and 3.3.6. The matter integration basis for SAP2000 

is the Finite Element Method and no other option is available in this particular area. In time integrating, 

however, the program is fairly complete and offers a few state-of-the-art schemes, from which we chose 

Newmark Beta (NB), Wilson Theta (WTH), Hilber-Hugh-Taylor (HHT) and Chung-Hulbert for being the 

ones with the broadest documentation available. 

Figure 6.11 shows a Grasshopper definition featuring two custom-made components: one for collecting 

the pre-generated SAP2000 model file, to which the necessary geometry, material, constraints and time-

history data was input, and another one where the actual parametric study was carried away, gathering the  

results in an Excel worksheet.

The only input required for the GetSAPData component is the path to a valid working SAP2000 file. This  

component then opens the file and builds the stiffness, mass and damping matrices associated to this  

model from the outputs of the program. The program is run in the background and there is no need to  

show its user interface.

The second component, ComputeEnergy, receives the prepared data and the SAP2000 model and begins 

the  connection  with  Excel,  to  which  iteratively  sends  the  results  for  post-processing,  also  in  the 

background. It is noteworthy how the geometry of the SAP2000 model, in this case, could be arranged 

and linked directly to the geometry in Rhinoceros in case a different kind of study were necessary. The set 

of required parameters are the initial time step and damping values, but could be any other the researcher  

would consider of interest.

With these values, the internal routine of the component iterates over the SAP2000 model increasing 

linearly the value of the damping and of the time step. The results of the calculated displacements are then 

used to compute the energy balance as described in chapter 2 and then written in an Excel spreadsheet for  

its later display.

On  each  call  to  the  SAP2000  time  history  computation  the  displacement  vector  was  extracted  and 

multiplied  with  the  stiffness  matrix  to  compute  the  internal  strain  energy.  This  matrix-vector 

multiplication was made employing Excel's internal methods. This was chosen over the function already 

programmed in the components of figure 6.8 both for convenience in the treatment of the data as much as 

for reliability of the final results.
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6.3.- Visual programming implementation of routines for statistical mechanics 

6.3.1.- Montecarlo

Adapting the previous routine to the examples in chapter 5 is fairly straightforward once the connection 

between SAP2000 and Excel is established. In this case, instead of submitting the model to a transient  

input force the values of the force are randomly modified in order to maximize the spectrum of possible  

states.  This  was  made  iteratively  through  the  Grasshopper  component  into  the  SAP2000  file,  that 

remained outputting data in the background as well as Excel, which was collecting it. In this manner, the  

defined statistical mechanics variables could be studied and compared for their analysis. 

The GetSAPModel component was recycled and reused from the previous definition as it was the source 

of the SAP2000 model.

The ComputeEnergy component was slightly modified, replacing the calls to the time history analysis  

included in SAP2000 with an iterative procedure that altered randomly the value of the applied force. 
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Also the newly defined parameters  of chapter 5  were implemented and calculated on each iteration.  

Particularly important  was  the  calculation  of  the  internal  work  dW,  for  which  the  resulting  internal 

stresses had to be retrieved for each defined beam at each integration point. The resulting values were  

retrieved to the corresponding Excel spreadsheet in runtime and also for convenience in the input panels 

as it is shown.

In order to make the component consistent within the research, a conditional input was included as input  

to  allow  to  the  user  toggling  between  the  different  techniques  exposed.  Monte  Carlo  or  Simulated 

Annealing.

6.3.2.- Simulated Annealing

Simulated Annealing was introduced in the chapter 5 as an efficient optimization technique when applied  

to structural design. In this case the random variables were the section properties instead of the applied 

forces. The internal functions of the component were the same as the studied output values were still  

those defined in section 5.2.1. When the SA value was activated, only the iterations had to be adapted to  

reflect the algorithm presented in table 5.2
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6.4.- Discussion
Development of research software built around other existing applications was shown to be feasible and,  

most importantly, effective.

A tool  for  visual  programming  not  only  allows  for  a  powerful  combination  of  libraries  but  most 

importantly for a clear and step by step explanation of the involved concepts. This has an extraordinary 

didactic potential and greatly reduces programming errors. 

With visual programming environments, all the parameters involved are instantly recognized. Besides, if  

the outputs are graphically appealing and agile enough, the process of debugging can be made with much 

less effort.

All the code employed in this thesis was created by means of a visual interface integrated in a CAD 

application. This code was used to link a general purpose FEM program with the CAD and a general  

purpose spreadsheet.

Those are all commonly-used tools that most practitioners are familiar with. This should encourage the 

professional community to employ the advances made in this research and further develop these pieces of 

code. 

The programs developed in this thesis will be made publicly available under request subject to a Creative  

Commons GPL license.
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7.- Conclusions
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7.1.- Discussion
In chapter  2,  a  concise  yet  illustrative  road map of  the  current  methods of  structural  dynamics  was 

provided.  The purpose of this  road map is  to give some scope and to put  together common subjects 

which,  although  available,  seem too  abstract  and  inapplicable.  It  was  not  found  by  the  author  any 

organized scheme for these methods in terms of tangible and engineering concepts such as time, matter  

and constrains.

In chapter 3, it was shown how variational principles and an energetic norm can be employed in an easy 

and efficient manner to benchmark and assess the accuracy and stability of different implementations.  

The scheme provided, tested in three simple examples, is trivially extensible to more complex systems 

where more elements are present. The advantage of this approach is that it allows for the monitoring of 

the global behaviour by means of one simple scalar. It was also shown how methods of different nature 

and  concept  can  be  compared  using  the  same  theoretical  background,  in  particular  the  variational  

principle of Least Action of Lagrange and Hamilton. Accuracy and good performance of time and matter  

integration methods is generally taken for granted, as it is difficult, in the displacement domain, to assess  

it with certainty.

In chapter 4 it was explained how structural design is a process involving decisions based on a rigorous 

scientific  methodology  within  which  optimization  is  one  subroutine  that  incorporates  itself  several 

iterations of the process of analysis.  This important  distinction between optimization and analysis as 

processes within design was also made. It is frequent to find published work where these two concepts are 

not  discriminated,  leading  to  potential  misconceptions  on  the  topic.  The  main  tendencies  both  in  

optimization and non-deterministic analysis were enumerated and presented.

In chapter 5, a novel approach involving statistical mechanics was introduced. Within the framework  

presented in this chapter, it is possible to determine whether a structural system will require from its  

elements the ability to store applied energy or to deform in order to dissipate it, and to what extent. A 

numerical  value  associated  with  qualitative  variables  such  as  robustness  or  stiffness  can  be  chosen  

matching those of total internal energy or heat, respectively. Also, an optimization procedure based on the 

stochastic method Simulated Annealing was presented and tested.

In chapter 6, the code developed in a visual programming interface was presented. It was shown how a 

tool for visual programming not only allows for a powerful combination of libraries but most importantly 

for a clear and step by step explanation of the involved concepts.  This has an extraordinary didactic  

potential and greatly reduces programming errors. 

Rabindranath Andujar Variational Mechanics and Stochastic Methods Applied to Structural Design 162



Conclusions

7.2.- Revision of the working hypotheses
After all the work has been revised, the initial conceptions and misconceptions must be revisited and 

summarised. The working hypotheses established in the first chapter are now looker over.

A The vast body of numerical integration algorithms for structural dynamics simulation 

can be encompassed within an intuitive scheme that simplifies its study.

The first chapter of this thesis was devoted to the presentation of the methods for structural dynamics. 

A concise outline grouping them under the kind of differential equations they integrate and the physical 

notions they represent (ordinary, algebraic or partial for time, constraints and matter, respectively) was 

provided.

B Variational principles help to better understand the results of the simulations and their 

application gives a wider ability to analyse.

The main  drawback of  the  legacy of  Lagrange,  Hamilton,  D'Alembert  and the rest  is  that  it  only 

becomes intuitive once applied experimentally.  The formulations say very little about the might  of 

these principles, and perhaps for that reason they are still considered difficult to understand. Only by 

carefully attending at the changes in energy rather than in position or force real comprehension of the 

structural dynamics can be achieved.

C Energy principles already improve the performance of structural dynamics simulations, 

but could also be used in combination with non-deterministic design tools. In this manner, design 

objective functions could be devised that accounted for optimal uses of the energetic capacity of 

the materials.

In our case, the performance of the simulations was not really improved but more the opposite. The  

software application needed to be severely tweaked in order to retrieve values in magnitudes of energy.  

Nonetheless,  the  degree  of  understanding  of  the  phenomena  involved  in  structural  dynamics  was 

greatly  aided  by  the  outputs.  This  understanding  was  interpreted  in  a  framework  which  would 

ultimately be used for the optimization of structures.

D Theoretical advances gain value when they translate into practical and concrete tools. 

The research must contemplate this possibility and exploit the experimental implementations so 

that they can eventually reach others.
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Great effort was made in this thesis to make the studied topics clear and easy to understand. The use of 

visualization tools to illustrate the concepts has not been limited to graphs and charts but also the very  

programming of code was made with a pictorial mind.
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7.3.- Original scientific contributions
The task of developing this thesis was hard, intense and, in some situations, frustrating. However, the 

resulting work has proven very satisfactory and full of reward.

An experimental didactic methodology was put in practice in the form of weekly reports. Given the fact  

that the thesis was developed between Slovenia and Spain, with one mentor on each location, telematic  

tools were intensively used to keep track of the evolution of the research. A total of 111 reports was made 

giving details on a weekly basis of the different situations encountered during the research. Feedback was 

then discussed, also weekly, through meetings both online and in person. Further analysis of these reports  

will allow for deeper understanding of the study process and for recovery of potential ideas in the future.

On the initial phase of the thesis, a divulgative blog was published and maintained for two years with the  

aim  of  documenting  the  advances  in  the  research  (www.stochasticandlagrangian.blogspot.com). 

Currently, the attendance of the blog counts about 6000 annual visitors to posts related to Finite Elements  

and other numerical methods.

A number of articles were published in indexed international journals. Their references are given below:

• Andujar R., Roset J., Kilar V., 2011. “Beyond Finite Element Method: An overview on physics 

simulation tools for structural engineers“, TTEM 3 / 2011. BiH.

• Andujar  R.,  Roset  J.,  Kilar  V.,  2011.  “Interdisciplinary  approach  to  numerical  methods  for 

structural dynamics”, WASJ Vol 14 Num.8, Iran.

• Andujar R., Roset J., Kilar V., 2013 “Assessing Numerical Error in Structural Dynamics Using 

Energy  Balance”,  Advances  in  Mechanical  Engineering,  Volume  2013,  Article  ID  906120, 

Hindawi Publishing Corporation.

Another one on the topic of statistical mechanics characterization of structures, currently under revision, 

is expected.

Finally, the code presented in chapter 6, a total of four Grasshopper definitions, was released under a  

creative  commons  GPL license.  This  code  is  a  concrete  result  intended to  serve  as  basis  for  future 

research on the topic.
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7.4.- Further research
As it common case in the research, many questions have been answered that have only given place to  

more questions. Unfortunately, many had to remain unanswered and the following is only a brief list of 

the possible lines of research that this thesis has opened:

• The introduction of variational time integrators in the numerical comparisons.

• The study of applications to real built structures.

• Experimentation with different laws for the fitting of the probabilities in order to see how they 

affect the computation of entropy.

• Exploration of the statistical mechanics framework within the plastic range.

• Implementation of other techniques of stochastic optimization than Simulated Annealing.
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