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1. 1. Scope 

Qualitative methods have constituted an effective and potential tool over 

the years in routine laboratories, mainly for its screening potential. They 

have been applied to different fields such as environmental, clinical or 

food analysis to deal with quality and safety. These methods are used to 

address problems that require a binary response (yes/no). In this way, 

the number of quantitative characterizations, which are usually more 

expensive, is reduced and decision-making is made quicker by the use of 

simple and low-cost analytical instrumentation [1]. 

It is quite usual to use ‘screening method’ as a synonym for ‘qualitative 

method’ despite this may not always be the case. Screening methods 

generally implies low-time of analysis, permitting a high throughput of 

samples at low cost, making them suitable for routine analysis. Moreover, 

they have to demonstrate low false compliance rate (generally < 5%) [2].  

Qualitative analysis can be achieved with a specific measurement 

(univariate) or with multiple non-specific signals used as a fingerprint 

(multivariate), which, after chemometric treatment, produces the binary 

response. Spectroscopic data are one of the most common data sources 

used in multivariate methods. Infrared (IR) and Near-Infrared (NIR) 

spectroscopies are the most widely used, although Ultraviolet (UV) and 

Fluorescence spectroscopies are also common. 

Other instrumental techniques less common in the analytical field need to 

be explored since these new spectroscopic data can have a potential 

impact on multivariate methods. Examples of such techniques are 

Surface-enhanced Raman Spectroscopy (SERS), the use of which has 

increased in the field of electronics, and Nuclear Magnetic Resonance 

(NMR), which is widely used in the omic and clinical fields. Their 
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analytical applications have been increasing and some studies have 

focused on both qualitative and quantitative analysis. 

A key step in the development of multivariate qualitative methods is the 

selection of a suitable chemometric treatment. Classification techniques 

have been widely used to obtain mathematical rules aimed at 

characterising samples with respect to categorical properties. The 

techniques can be used, for example, to distinguish between groups of 

samples according to their designation of origin. The many classification 

methods that exist can be divided into two main blocks depending on 

their modelling or discriminant power, as illustrated in Figure 1-1 [3].  

 

Figure 1-1. Scheme of two class classification using a discriminant (a) and 

modelling (b) approach. 

Discriminant methods divide space into separate regions, each of which 

corresponds to one class section. At least two classes need to be 

defined. A wide range of discriminant techniques exist in the 

chemometric literature, including Linear Discriminant Analysis (LDA) and 

Partial Least Squares Discriminant Analysis (PLS-DA).  

Discriminant analysis gives excellent results regarding many analytical 

problems. However, a weakness of this approach is that it is difficult to 
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deal with outliers or ambiguous samples because all samples must 

belong to one of the predefined class. Moreover, delimiters have to be 

reformed if new classes are introduced. Furthermore, some problems, 

such as those related to food fraud, cannot be tackled from a 

discriminant perspective since this would require the collection of a 

representative set of all possible products that can be used to make 

frauds. As this is rarely feasible in practice, the set is under-

representative, which inevitably leads to biased decision rules. 

Class-modelling methods, on the other hand, build independent models 

for each class from the samples belonging to the class to be modelled. 

This allows a new sample to be assigned to one, more than one, or none 

of the predefined classes. The main drawback with this approach lies in 

the complicated interpretation of the results when many classes are 

predefined. The two most common techniques in this category are Soft 

Independent Modelling of Class Analogy (SIMCA) and Unequal 

Dispersed Classes (UNEQ).  

Both types of classification techniques are mainly used to address 

multiclass problems (targeted approaches) in which at least two classes 

are defined. As stated earlier, when the samples from one of the classes 

are extremely difficult or impossible to collect, the modelling of just one 

class (the untargeted approach) is a suitable strategy. Class-modelling 

methods are the only ones that can tackle these kinds of problems by 

modelling just one class. However, the application of this strategy is less 

extended. 

An important aspect of the implementation of qualitative methods is the 

development and application of validation protocols. Validation, a critical 

step for ensuring reliability in the results, has to be carried out in any 

analytical application. 
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Validation protocols are relatively available for univariate qualitative 

analysis but their multivariate analogues are not so common in routine 

analysis. One reason for this is that multivariate validation protocols are 

not so well established in the legislative framework defined in 

Commission Decision CD/657/EC 2002 [2]. Over the last few years, 

however, several efforts have been made to develop and implement such 

protocols since they can be used complementary to univariate qualitative 

analysis. 

Multivariate qualitative methods can be applied to numerous disciplines, 

including medicine, environmental, and food fields. This thesis focuses 

on food fraud since this is a problem that gravely concerns both the 

general population and the authorities. 

The food industry is a complex business that supplies the world’s food 

demand. Dealing with large quantities of food can endanger food quality 

and lead to the use of non-regulated food additives, which represents a 

safety concern [4,5]. Such practices, which are largely motivated by 

financial profits, care not only end consumers but also producers and 

distributors. 

Of the multiple kinds of food fraud, adulteration is gaining interest as an 

emerging risk, given the increasingly complex and global nature of food 

supply chains. Food adulteration and contamination involves intentionally 

adding a non-declared substance to a food in order to improve some of 

its properties (taste, appearance, length of conservation, etc.) and/or 

change its composition in order to increase the volume of production. 

Detecting food adulteration is important for economic reasons but it is 

especially important when the non-declared substance involves a health 

risk. 
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Another key issue in food fraud is food authentication. This type of fraud 

involves non-compliance with established legislative standards, the 

implementation of unacceptable processing practices (e.g. freezing) 

and/or the mislabelling of geographical, botanical or species origin. Due 

to the increasing complexity and length of the food chain and the 

increased public sensitivity regarding the origin of food, traceability has 

become a cornerstone of European Union policy. Similarly, fraudulent 

practices have forced government institutions to establish regulatory 

measurements and develop tools to ensure that foods are both of a high 

quality and safe to be eaten when they reach the consumer. 

1. 2. Objectives 

The general purpose of this doctoral thesis is to further develop 

multivariate qualitative methods and its validation. This includes studying 

and applying several spectroscopic techniques that are generally used 

with low sample pre-treatment and novel classification approaches in the 

food field. The experimental developments that shape this overall 

objective lead to three separate sub-objectives: 

1. To evaluate Raman signal in the Surface-enhanced Raman 

spectroscopy (SERS) modality for its use in multivariate approaches.  

Unlike other comparable spectroscopic techniques such as infrared (IR) 

or near-infrared (NIR) spectroscopy, Raman signal is, despite its 

possibilities, not so much used in multivariate analysis today. Our 

research group has already performed some initial work. This thesis 

extends this work, firstly by characterising the SERS support and 

secondly by evaluating SERS as a potential data source for its use in 

multivariate qualitative analysis. 
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2. To develop multivariate qualitative methods based on untargeted 

modelling. 

Most studies based on multivariate qualitative analysis have focused on 

the multiclass approach (targeted) rather than the one-class approach 

(untargeted) when dealing with analytical problems. This doctoral thesis 

exploits the significant possibilities of the one-class approach to address 

food fraud problems. In order to accomplish it, well-established class-

modelling techniques such as SIMCA and UNEQ have been used in 

addition to a newly developed one (partial least square density modelling, 

PLS-DM). 

3. To establish validation protocols for multivariate qualitative analysis in 

accordance with the indications of the European directives and to 

calculate the performance parameters associated with them. 

The implementation of multivariate qualitative methods is constantly 

growing. However, there is no established worldwide criterion for their 

validation. This thesis applies generic univariate concepts to the 

multivariate environment and presents a way to establish performance 

parameters with quantitative connotation such as the unreliability region 

and limits related to concentration. 

1. 3. Structure of the thesis 

This thesis is divided into five chapters: Chapter 1 the introduction, 

Chapter 2 to 4 the core of it and Chapter 5 the conclusions. The scientific 

contributions are presented in the three main chapters (Chapters 2 to 4), 

all three with an introduction and results section: 
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 Introduction: It includes the state-of-the-art subsection, in which a 

recent bibliographic research has been carried out. Moreover, those 

theoretical fundamentals that the authors consider not enough 

explained or established in the papers but relevant for a proper 

understanding of the work are presented in the background 

subsection. 

 Results: It is presented in published papers format. These papers 

have been edited to provide the thesis a uniform format. 

Given the thesis’ structure, including a theoretical chapter can be seen as 

redundant. Thus, this chapter has been omitted to make the reading 

more bearable.  

Chapter 1: Introduction. This chapter introduces the general scope of 

the thesis, defines its objectives and details its structure. 

Chapter 2: Analytical study of SERS spectroscopy. This chapter is 

related to the first objective and assesses the use of Surface-enhanced 

Raman spectroscopy (SERS) as data source for multivariate analysis. 

The state-of-the-art includes a recent overview of the application fields of 

SERS and its use in multivariate analysis, in addition to some review of 

the studied analyte: Sudan dye. The background subsection gives 

theoretical fundamentals about Raman spectroscopy and Sudan dyes 

structure. The results are presented by the published paper; M.I. López, I. 

Ruisánchez, M.P. Callao, Spectrochim. Acta. A., 111 (2013) 237–241. 

Chapter 3: Class-modelling approach for adulteration & 

authentication. This chapter is related to the second objective and 

describes some food applications of multivariate qualitative analysis. It is 

mainly focused on untargeted modelling. The state-of-the-art reviews the 

use of discriminate versus class-modelling approach to finally focus on 
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the one-class modelling approach. The background subsection includes 

a comparative study of the class-modelling techniques used in the 

chapter. The results are presented by the two published papers; M.I. 

López, E. Trullols, M.P. Callao, I. Ruisánchez, Food Chemistry, 147 (2014) 177-181 

and P. Oliveri, M.I. López, M.C. Casolino, I. Ruisánchez, M.P. Callao, L. Medini, S. 

Lanteri, Anal. Chim. Acta, 851 (2014) 30-36. 

Chapter 4: Validation protocols for multivariate qualitative analysis. 

This chapter is related to the third objective and proposes a validation 

methodology for multivariate qualitative applications. The state-of-the-art 

presents the actual validation scenario for analytical methodologies, 

including qualitative and quantitative analysis as well as univariate and 

multivariate approaches. The background subsection is presented as a 

tutorial paper, which includes an overview of method validation applied to 

qualitative analysis, including both univariate and multivariate analysis; 

M.I. López, M.P. Callao, I. Ruisánchez, Anal. Chim. Acta, Submitted. The results are 

presented by the published paper; M.I. López, N. Colomer, I. Ruisánchez, M.P. 

Callao, Anal. Chim. Acta, 824 (2014) 28–33. 

Chapter 5: General conclusions. This chapter contains the general 

conclusions of the thesis. 

Appendix. This part of the thesis contains: (A) summary of main 

abbreviations used in this thesis, (B) list of papers presented by the 

author in this thesis, (C) contributions made to international meetings 

attended during this period and (D) research stay and training courses 

attended during this period. 
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2. 1. Introduction 

2.1.1. State-of-the-art 

Raman Spectroscopy 

Since the Surface Enhanced Raman Spectroscopy (SERS) was 

discovery several decades ago it has experienced substantial changes, 

ranging from theoretical and technical developments to practical 

analytical applications [1]. Figure 2-1 shows the percentage of recent 

publications (since 2003) that have used SERS, grouped in different 

application fields. ‘Not specified’ category corresponds to those results 

which were found in the chemistry field but was neither included in 

univariate not multivariate after adding the corresponding specific 

keywords for each category. 

 

Figure 2-1. Percentage of scientific publications (between 2003 and mid-2014) 

obtained by searching the scientific database ISI Web of Knowledge (WoK) 

and using ‘SERS’ or ‘Surface Enhanced Raman Spectroscopy’ as keywords. 

This pie chart indicates a modest percentage of published work 

conducted in chemistry and biochemistry fields but only some of them 
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address analytical purposes. Thus, Raman spectroscopy can be still 

considered an emerging technique in the analytical field. In comparison 

with univariate analysis, multivariate analysis constitutes just a small 

proportion of those analytical applications and Table 2-1 lists some 

recent works, including examples of quantitative and qualitative analysis.  

Table 2-1. Examples of applications of SERS in multivariate analysis 

using different chemometric techniques. 

Study Chemometric technique Analyte Sample Reference 

Quantification 

Multivariate curve 
resolution 

(MCR) 
Antibiotics Urine [2] 

Quantification 

Partial least-squares 

regression (PLS), artificial 

neural networks (ANNs), 

and support vector 

regression (SVR) 

Sudan Food [3] 

Classification 

Soft independent 
modelling of class analogy 

(SIMCA) 
Viruses 

Food/ 
Water 

[4] 

Optimization 
Experimental design 

(factorial design) - 
SERS 

roughness 
[5] 

Unsupervised 

trace detection 

Principal component 
analysis 
(PCA) 

Chemicals Explosives [6] 

Sudan Food [7] 

Sudan dyes 

The analytical problem to which SERS is applied follows a previous study 

conducted by our research group that was based on the detection of 

Sudan dyes, a potential adulterant commonly used in spices [7]. 
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Since the reporting of the first adulteration case in 2003, interest has 

increased in the development and application of methods for detecting 

and analysing Sudan dyes and their derivates in foodstuffs as well as in 

the study of their effect on human health. In 2005 the European Food 

Safety Authority (EFSA) reviewed the toxicology of numerous dyes found 

illegally in foods in the European Union (EU). Particularly with regard to 

Sudan I, there is strong evidence both of genotoxicity and 

carcinogenicity. Because of structural similarities between Sudan I and 

the other Sudan dyes, the latter ones are presumed to have the same 

deleterious effects [8,9]. The EU therefore issued Decision 2005/402/EC, 

which requires chilli, curcuma and palm oil products imported into Europe 

to be tested for Sudan dyes [10].  

The pie chart in Figure 2-2 shows the percentage of scientific 

publications (since 2003), classified in different fields, using “Sudan dye” 

as keyword. 

 

Figure 2-2. Percentage of scientific publications (between 2003 and mid-

2014) obtained by searching the scientific database ISI Web of 

Knowledge (WoK). 

Several methods have been proposed for determining the presence of 

Sudan dyes and quantifying them. Many of these methods are based on 

chromatographic techniques with different detection systems and pre-
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extraction methods [11–14]. Advances have also been made in the direct 

analysis of Sudan dyes based on surface-sensitive techniques such as 

SERS, Electrochemistry, or Quenched Fluorescence methods, where the 

analytical response is sensitive to the surface or support used [15–17]. 

2.1.2. Background 

Raman Spectroscopy 

Raman spectroscopy is based on the inelastic scattering, or Raman 

scattering, of monochromatic light, usually from a laser source. 

Vibrational, rotational, and other low-frequency changes caused by laser 

radiation therefore provide a fingerprint of the sample under study. This 

technique is non-destructive, relatively simple to perform and requires no 

special sample preparation. However, as its signal is normally too weak, 

later research has been conducted to improve it. 

Several Raman modalities are available. These include Confocal Raman 

Microscopy, which improves space resolution, and Resonance Raman 

(RR) spectroscopy, which has been extensively used in the field of 

bioinorganic chemistry to elucidate the coordination environment of 

metals. This chapter focuses on Surface Enhanced Raman Spectroscopy 

(SERS), which deals with molecules that are adsorbed onto metal 

surfaces or colloids that, under certain conditions, greatly enhance the 

Raman signal, thus increasing sensitivity.  

The modality used in this thesis is a combination of Confocal Raman 

Microscopy with the signal enhancement of the SERS substrate, shown 

in Figure 2-3. 
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Figure 2-3. Schematic drawing of a Confocal Raman Microscopy 

combined with SERS system. 

Sudan dyes 

Sudan dyes belong to a family of synthetic azo orange-red dyes that are 

used to give colour to industrial materials such as plastics, oils, and 

waxes. The low price of Sudan dyes leads to them being illegally used to 

enhance and maintain the colour of certain foods, especially spices. 

Figure 2-4 shows the structure of four commonly used Sudan dyes.  

 

 

 

 

 

 

Figure 2-4. Chemical structure of Sudan I, II, III, IV dyes. 

Sudan I 

Sudan II 

Sudan III 

Sudan IV 
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The common structure motif in the family of Sudan dyes is represented 

by Sudan I which consists in a beta-napthol ring linked by an azo group 

in the alfa position to a phenyl ring. Methylation in one ortho-position and 

the para- position of the phenyl ring produces Sudan II.  

On the other hand, Sudan III is directly related to Sudan I, the phenyl 

group bears and additional azo functionality in the para-position which 

connects it to another phenyl group. Finally, Sudan IV preserves the 

backbone from Sudan III but methylation occurs in one ortho- position of 

each phenyl ring. 
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2. 2. Results 
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Figures of merit of a SERS method for Sudan I 
determination at traces levels 
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Figures of merit of a SERS method for 

Sudan I determination at traces levels 

M. Isabel López, Itziar Ruisánchez, M. Pilar Callao 

Chemometrics, Qualimetric and Nanosensors Group, Department of Analytical and Organic 

Chemistry, Rovia i Virgili University, Marcel·lí Domingo s/n, 43007 Tarragona, Spain 

 

ABSTRACT______________________________________________________________________ 

A substrate for Surface-Enhanced Raman Scattering spectroscopy (SERS), electropolished Al, is 

proposed as a tool for a rapid and low cost determination of Sudan I. This dye has been used as an 

additive in some foodstuffs but it is now banned because of the health risk associated with its 

carcinogenic and mutagenic properties. Despite the presence of fluorescence, Raman spectra of 

Sudan I can be obtained using excitation lasers at 633 and 785 nm. To get rid of the spectral noise 

and fluorescence background, Savitzky-Golay smoothing and polynomial corrections were applied, 

respectively. The Raman signal was proved to be enhanced. A linear dependence was found 

between the logarithmic intensity at 1598 cm
-1
 peak versus the logarithmic concentration. The figures 

of merit were studied obtaining high sensitivity and low detection limits (10
-7 

M). A multivariate 

exploratory analysis (PCA) was used to study the ability of SERS to distinguish Sudan I from other 

similar compounds. Therefore, results show that SERS is a potential tool to determine Sudan I 

quickly and effectively. 

________________________________________________________________________________ 

 

Keywords: SERS, Sudan I determination, Figures of merit, Raman spectroscopy 

 

1. Introduction 

Since Surface-Enhanced Raman Spectroscopy (SERS) was discovered 

by Fleischmann et al. in 1974 [1], it has been increasingly used as a 

powerful method for the fast detection and direct analysis of chemicals 

[2-5]. SERS spectroscopy detects lower analytical concentrations than 

conventional Raman because it significantly amplifies Raman effects by 
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several orders of magnitude when analyte molecules are adsorbed onto 

nanoparticles [6] or metal surfaces with nanoscale roughness [7]. The 

enhancement effect is assumed by two generally accepted mechanisms: 

chemical enhancement, which is the transference of charge between the 

adsorbed molecules and the metal substrate; and electromagnetic 

enhancement, considered as the main effect, which is associated with 

the large local field enhancement close to metallic surfaces when 

localized surface plasmon resonances are excited by the laser [8-10]. 

Various methods have been used to obtain a SERS substrate that can 

provide a huge enhancement. The preparation of metal colloid solutions, 

predominantly made of Ag and Au, are well established [11-13]. Also, 

rough metal surfaces prepared by chemical etching or electrochemical 

treatment, are used as SERS active substrates. The later, give irregular 

structures but they are easy to produce with relatively good Raman 

signal [8, 9]. 

The SERS applications cover current areas in science, such as physical 

chemistry, analytical chemistry, biomedicine and materials. In fact, most 

current investigation focuses on theoretical and technological 

development [8, 14, 15] and application in bioscience [5, 16], but few 

studies have been made in analytical chemistry. Some of them use 

qualitative approaches [3, 17-21] whereas others are based on a 

multivariate quantitative analysis [22, 23]. 

Our group has recently proposed SERS as screening tool for detecting 

Sudan I (1-phenylazo-2-naphthol) in culinary spices [3]. Sudan I is a 

synthetic azo orange-red dye, used as a colouring agent in such 

commercial applications. Unfortunately, in some countries, it has been 

used for commercial benefits as an additive to improve the colour of 

some foodstuffs. It has been considered as genotoxic [24] and classified 

as class three carcinogen by the International Agency for Research on 

Cancer (IARC) [25]. 
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The previous work was focused in the qualitative detection of the Sudan I 

and the goal of the present work is to develop the quantitative 

methodology. Two excitations lasers were proved and for both the same 

protocol have been established. Firstly, a pre-treatment of the spectra 

was done to get rid of the fluorescence and spectral noise. Secondly, the 

most notable analytical figures of merit such as reproducibility, sensitivity, 

limit of detection, and selectivity in front of other Sudan together with the 

enhancement factor (EF), was studied in this work for the quick 

determination of Sudan I at low concentration levels. All parameters have 

been established with two different excitation lasers. We consider that 

the establishment of figures of merit is required for SERS method to 

become a current method for trace analysis. 

2. Experimental 

2.1 Al substrate 

Aluminium (Al) foils from Goodfellow (99.999% Al) were electropolished 

under 20 V in a 1:4 (v:v) mixture of perchloric acid (HClO4) 60 wt% and 

ethanol (EtOH) for 4 min at 5ºC. 

2.2 Reagents and samples 

Sudan I standard was purchased from ACROS (Geel, Belgium) and the 

other Sudan dyes were purchased from SIGMA (St. Louis, MO, USA). 

HPLC grade chloroform was provided by SDS (Carlo Erba Reagents 

SDS S.A., Spain). 

A set of stock solution was prepared within the concentration range of 

4.0x10-4 M to 2.01x10-6 M. To obtain the SERS spectra, 5µL of each 

solution was dropped onto the aluminium SERS substrate and dried at 

30ºC for 15 minutes to get rid of the solvent completely. For the 

selectivity study, a solution of other Sudan dyes was prepared in the 

same way as for Sudan I. 
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The Al support can be reused numerous times. The analyte was 

removed by washing with CHCl3 drops followed by a chloroform bath for 

half an hour. 

2.3 SERS spectra collection 

SERS spectra were collected using a Renishaw in Via Reflex Raman 

confocal microscope (Gloucestershire, UK), equipped with an Ar-ion 

laser at 514 nm, an He-Ne laser at 633 nm, a diode laser emitting at 785 

nm and a Peltier-cooled CCD detector (-70ºC) coupled to a Leica DM-

2500 microscope. Calibration was carried out daily by recording the 

Raman spectrum of an internal Si standard. Spectra were recorded with 

the accumulation of three scans of ten seconds each one and using a 

50x low working distance to focus the laser light on the samples. The 

Raman data were the averaged value of five different points on the 

surface. 

2.4 Data treatment 

As a spectral pre-processing, vertical offset correction and Savitzky-

Golay smoothing [26] was applied to all data sets to suppress the 

instrumental noise. Then, the presence of fluorescence was removed by 

polynomial baseline correction. For selectivity, principal component 

analysis (PCA) [27] was used as an exploratory analysis tool. All data 

treatment was carried out using MATLAB 6.5 (The MathWorks, MA, 

USA). 

3. Methodology 

3.1 Preliminary SERS studies 

For excitation laser selection, some working lasers were checked to 

obtain a well defined Raman spectrum. Then, reproducibility was studied 
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by measuring a sample of Sudan I at several random places on the 

SERS substrate. Moreover, substrate-to-substrate reproducibility was 

studied by comparing SERS spectra obtained from two supports.  

3.2 SERS performance 

The enhancement factor (EF) is the parameter used to assess the SERS 

performance. It shows the capacity of a SERS substrate to amplify the 

Raman signals with respect to a non-SERS substrate. This magnitude 

(EF) was estimated according to the following equation [10]: 

   
           

           
                                                 

where ISERS and IRef are the Raman intensities of the same band under 

SERS and reference Raman conditions, respectively. NSERS and NRef are 

the number of Sudan I molecules illuminated by the laser focus spot 

under SERS and reference Raman conditions, respectively.  

3.3 Intensity and concentration relationship 

The univariate linear dependence of SERS intensity over Sudan I 

concentration was studied at a robust peak with high intensity. Since a 

good relationship between both parameters was not possible, a data 

transformation to a logarithmic relationship was carried out as it is 

described in the following equation [17]:  

                                                 

where I is the intensity, C is the concentration and b0 and b1 are the 

regression coefficients. 
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3.4 Figures of merit 

Sensitivity can be defined as the variation of intensity caused by the 

variation in the concentration. Thus, sensitivity (ΔI/Δc) was assessed 

considering the increase in intensity obtained at two Sudan I 

concentration levels relating to this increment of concentration. 

Limit of Detection (LOD) is the lowest analyte concentration likely to be 

reliably distinguished. Traditionally, the LOD concentration has been 

calculated measuring replicates of a blank sample from which a limit 

signal is obtained by Eq. 3 that is finally converted in concentration (LOD) 

by means of linear regression. 

                                                                       

where      is the limit intensity, above which is considered there is 

analyte,         is the mean value of blank replicates at a specific intensity 

and         is the standard deviation.  

In this study, a sample which contains low concentration of Sudan I 

giving not recognized Raman spectrum was used instead of blank. Then, 

the LOD was calculated from the log-log regression line established 

between intensity and concentration described in section 3.3 under 

Methodology (Eq. 2). 

Selectivity can be defined as the ability of SERS to distinguish Sudan I 

from other similar compounds. It was carried out by a multivariate 

exploratory analysis (PCA) with the spectra of the Sudan I and the ones 

of potential interferers, all measured in the same spectroscopic 

conditions. 
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4. Results and Discussion 

4.1. Preliminary SERS studies 

First, a test was carried out to evaluate if a spectra could be obtained 

with available lasers (514 nm, 633 nm and 785 nm). The results are 

shown in Fig. 1. The spectra recoded at 633 nm and at 785 nm showed 

good signals although fluorescence was present. Since a lack of 

spectrum was obtained using the excitation laser at 514 nm, this laser 

was subsequently kept out of the following experimentation. 

 

Fig. 1. Row SERS spectra of Sudan I obtained at 4x10
-4

 M using 785 nm (i), 

633 nm (ii) and 514 nm (iii) as the excitation laser. 

As a second step, the reproducibility was studied by measuring the 

spectra of Sudan I at five different random points of the substrate. As 

there was some vertical displacement, the raw spectra were corrected by 

forcing all the spectra to end at the same point. This was done by 

subtracting the minimum intensity at 2000 cm-1. Fig. 2(i) shows the 
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baseline-corrected spectra obtained working at 633 nm and it can be 

seen that the main variations are due to the effect of fluorescence. 

To get rid of the florescence, some corrections have to be made to the 

spectra. The raw spectra shown in Fig. 1 (recorded with both lasers) are 

both affected by fluorescence, as expected. The proposed correction was 

based on fitting a polynomial function through specified points (marked 

with arrows in Fig. 2), selected because no signal should be present. 

Once the polynomial had been adjusted, it was subtracted from the 

spectra. In our particular case, a third-order polynomial was the optimal 

choice. The corrected spectra are shown in Fig. 2(ii) where it is possible 

to see that the florescence background was removed and that the 

Raman peaks were not significantly altered. 

 

Fig. 2. SERS data (i) and baseline corrected data (ii) of Sudan I at 4x10
-4

 M 

obtained at five randomly selected places with 633 nm excitation laser. 

Similar results (not shown) were obtained with the 785 nm excitation 

laser, although the resulting polynomial is different due to the different 

fluorescence behaviour. 
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To estimate the reproducibility, standard deviations (SDs) for raw and 

corrected spectra were computed. Fig. 3 shows the SD values along the 

Raman shift on the same scale as the raw spectrum for better 

understanding of the real variation. Moreover, for the sake of clarity, the 

figure also includes an amplification showing that SD followed the same 

shape of spectrum and that major variability was found between 1200 

and 1700 cm-1 were the major peaks appeared while it is really low 

between 200 and 1000 cm-1. In particular, the magnitude of SD was 

greater for uncorrected spectrum since it was affected by fluorescence. 

The relative SD of the major spectral peaks were lower than 5%. 

Therefore, the reproducibility of the Al substrate was acceptable. The 

results for the substrate-to-substrate reproducibility were similar.  

 

Fig. 3. Standard deviation (SD) and SERS data (i) and baseline corrected data 

(ii) of Sudan I at 4x10
-4

 M obtained with 633 nm excitation laser. 
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4.2 SERS performance 

The intensity used to estimate the enhancement factor (section 3.2 under 

Methodology, Eq. 1) was the peak intensity measured at 1598 cm-1 since 

it is a robust peak with high intensity. The reference condition was the 

corresponding Raman spectra of Sudan I on a glass substrate. Assuming 

that molecules are uniformly dispersed, the N values can be calculated 

by the following equation:  

  
             

 
                               

where V is the volume deposited on the SERS or reference support 

which was 5 µL. C is the concentration, 4x10-3 M was used for reference 

whereas the SERS concentration was 4x10-5 M. A is the areas of 

dispersion, which were 5 mm2 and 7 mm2 for reference and SERS, 

respectively. Finally, Spot is the area lit up by the laser, which is related 

to the wavelength of the laser and the numerical aperture of the 

microscope in the following way; 1.22·λ/NA. The objective used in this 

study was 0.75 NA./50x. 

Table 1 summarizes the EF together with its respective errors obtained 

for the Al support at 633 nm and 785 nm laser excitation. In general 

terms, SERS was enhanced by a power of three and four order of 

magnitude at 633 nm and 785 nm, respectively. These EF values could 

be considered as normal for this kind of supports [9]. 

4.3 Intensity and concentration relationship 

The dependence of SERS spectral intensities over concentration was 

studied at low concentration, taking five repetitions of each standard. The 

logarithmic relationship (Eq. 2) was established between both 

parameters considering the intensity values at 1598 cm-1 peak because 

of a good univariant linear regression was not possible. 
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Table 1. Analytical characteristics of SERS support with 633 nm and 

785 nm laser excitation.  

 633 nm 785 nm 

EF 6x10
3
  ±  2x10

3
 1x10

4
  ±  9x10

3
 

Working range (M) 2.0x10
-6

  -  4.0x10
-5

 4.0x10
-6

  -  8.0x10
-5

 

Slope 1.09 0.95 

Intercept 9.29 8.43 

Correlation, r 0.8648 0.9405 

LOD (M) 2.6x10
-7

 9.4x10
-8

 

Sensitivity(ΔI/Δc) 5.7x10
8
 4.0x10

8
 

The results for both lasers are shown in Table 1. The second row shows 

the specific concentration range used in this study, the one at 633 nm 

being slightly lower than the one at 785 nm. As far as the regression 

parameters are concerned, there are no significant differences between 

the data provided by the two lasers. Both regression models have 

acceptable correlations, as is expected for Raman measurement, but the 

results obtained at 785 nm are slightly better.  

4.4 Figures of merit 

The sensitivity (ΔI/Δc) was assessed considering the decrease in 

intensity obtained when the concentration was decreased from 4.0x10-5 

M to 4.0x10-6 M. As Table 1 shows, sensitivities were comparable for 

both lasers.  

The LOD was calculated from the established regression line explained 

in section 3.4 under Methodology. The limit intensity signal to be 

converted into a concentration is the intensity at 1598 cm-1 peak plus 

three times the standard deviation corresponding to the Sudan I sample 

at 1x10-7 M which presents not distinguishable spectrum (Fig. 4). Table 1 

shows the LOD results for both studied lasers, sensitivities were high and 

detection limits were low being the LOD at 785 nm slightly lower. 
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Fig. 4. Spectra of Sudan I at different concentration levels. Laser wavelength 

633 nm. 

Selectivity was assessed by collecting five spectra of Sudan II, III and IV 

dyes in the same spectroscopic conditions as Sudan I at 785 nm. Fig. 5 

shows the spectra for all four Sudan dyes along with their respective 

molecular structure. In their structure, Sudan III and IV have additional 

azo and benzene groups. On the other hand, Sudan II and IV have two 

methyl groups more than Sudan I and III. It can be seen that the spectra 

of the four Sudan dyes have some similarities because part of the 

structure is the same. However, no specific peak can be assigned for 

each of the four Sudan dyes analysed.  

The amount of 20 samples have been analysed, 5 for each Sudan dye. 

An exploratory analysis based on PCA was made to visualize the 

distribution of the samples after the spectra were mean centred. Fig. 6 

shows the score 3D plot of the third principal components (PC) which 

accounted for  over  84% of the total  variance of the data. It can be seen  
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Fig. 5. SERS spectra of Sudan I, II, III and IV together with the corresponding 

molecular structures. Laser wavelength 785 nm. 

 

Fig. 6. PCA score plot from SERS spectra acquired from four Sudan. The ellipses 

are drawn as a guide and have no statistical meaning. 
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from this plot that the first PC (50.29% of total variance) was not enough 

to distinguish between dyes. However, when the second PC was 

included (23.68% of total variance), Sudan II could be distinguished from 

the other dyes. Moreover, the other dyes tended to group together. 

Finally, when the third PC was included (10% of total variance) Sudan IV 

could be differentiated from the other dyes. To differentiate between 

clusters of Sudan I and Sudan III, the three PCs had to be considered. 

On the basis of these results, it seems that SERS is selective enough to 

detect Sudan I in matrixes that contain the studied interferences. 

5. Conclusions 

Analytical methods with electropolished aluminium as a SERS substrate 

and excitation lasers of 633 and 785 nm had been established for Sudan 

I determination. 

The Raman signals were significantly enhanced (around an 

enhancement factor of 104) at both 633 and 785 nm lasers. The 

enhancement was slightly higher with 785 nm laser excitation. 

Fluorescence was removed by polynomial baseline correction. Repeated 

measures on the same substrate and different substrates showed that 

reproducibility was good. 

Our work has also demonstrated that a linear relation can be established 

between the logarithmic intensity versus the logarithmic concentration for 

the vibrational band at 1598 cm-1. Low detection limits around 3x10-7 M 

can be obtained.  

The study of selectivity against potential interferences (substances of 

similar molecular structure) by multivariate analysis (PCA) showed that 

the technique can be used to detect Sudan I in the presence of 

interferences. 
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These results together with the recent implementation of portable Raman 

systems open up the way to quick and low-cost detection of Sudan I 

using a simple SERS substrate. 
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3. 1. Introduction 

3.1.1. State-of-the-art 

As has been stated previously in Chapter 1, talking about multivariate 

qualitative methods generally means using classification techniques, 

which can be divided into two main blocks. One block focuses on class-

modelling analysis (also known as ‘soft modelling’), which models each 

class independently. The other main block refers to discriminant analysis 

(also referred to as ‘hard modelling’) that aims to divide data space up 

into separate regions, each of which corresponds to one class. In this last 

case, at least two classes must be defined.  

A bibliographic search over the last ten years shows that whereas only a 

small amount of research has looked at the class-modelling approach, a 

substantial body of literature can be found regarding the discriminant 

approach. Figure 3-1 is a bar chart showing the percentage of scientific 

contributions corresponding to each approach. 

 

Figure 3-1. Percentage of scientific publications (from 2004 to mid-2014) obtained 

through a search on the scientific database ISI Web of Knowledge (WoK), using 

‘discriminant’ or ‘class-modelling’ related keywords in the analytical field. 
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According to the published research, among the reasons why the 

discriminant approach is preferred is the fact that they were developed 

first [1] and they are intuitive in the sense that a sample is always 

assigned to a one of the predefined classes. This last characteristic can 

be both an advantage and a drawback. Let us consider an example, the 

authentication of edible olive oil, for which two categories are defined: 

‘hojiblanca olive oil’ and ‘arbequina olive oil’. As mentioned, new samples 

will be classified to the closest class, i.e. assigned to the class whose 

characteristics are the most similar. Because they are always classified, 

the detection of outlier sample (e.g. a blend of both olive oils) is almost 

difficult. Alternatively, the analyst could consider the class-modelling 

approach, which allows samples to be classified into any defined 

category. However, this outline could be also classified in both 

categories, giving an ambiguous or inconclusive result. In fact, there is no 

established rule about whether the discriminant approach or the class-

modelling approach is more effective because both approaches have 

their advantages and disadvantages. 

Focusing on class-modelling techniques, they offer the possibility of 

modelling only one class (untargeted modelling) and are thus more 

useful when samples of only one class are available because it is 

impossible to cover all other areas. For example, when authenticating 

Priorat wine, the ‘Priorat wine’ class can be defined from that samples, 

but how can the other category (‘not Priorat wine’) be defined? Using 

only Spanish or Mediterranean wines for the ‘not Priorat wine’ class is 

inappropriate because this would exclude wines from all around the world 

from the ‘not Priorat wine’ category. This is a case where it is impossible 

to cover all the possibilities. 
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The untargeted approach basically builds a class from the training set 

samples and detects which new samples resemble this training set. 

Although this is not a new approach, its application has recently been 

increased. Figure 3-2 shows the rise over the last ten years in studies 

that have adopted the one-class modelling approach in chemical 

applications. 

 

Figure 3-2. Number of papers (from 2004 to mid-2014) obtained through a search 

on the scientific database ISI Web of Knowledge (WoK), using ‘one-class 

classification’ related keywords. 

The one-class approach has been applied in many different ambits [2]. 

Of these, it is particularly suited to the detection of food fraud because 

this is a situation where it is impossible to take into account all existing 

types of fraud. 

3.1.2. Background 

There are several class-modelling techniques described in the literature. 

The two most widely used are Soft Independent Modelling of Class 

Analogies (SIMCA) [3] developed by Wold in 1970s, and Unequal 

Dispersed Classes (UNEQ) [4] introduced by Massart in 1986.  
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Nonetheless, other modelling techniques have also been developed. 

Recent examples from the last decade include Fuzzy Grid Encoded 

Independent Modelling for Class Analogies (FIMCA) [5], Support Vector 

Machines (SVM) [6,7] and One-Class Partial Least Squares (OCPLS) 

[8,9]. All of these have been successfully applied to food fraud problems. 

Classification techniques used in this thesis are all class-modelling 

techniques. They differ in the way the data are processed, in the way 

boundaries are set and/or in the steps used to obtain the output from the 

classification. Figure 3-3 gives a schematic idea of the types of models 

obtained for each technique and Table 3-1 summarizes the main 

differences between them. 

UNEQ and SIMCA are PCA-based methods, although UNEQ can also be 

applied to original variables when the ratio object/variable is large 

enough. Thus, the distances to the centroid of the class are measured in 

the principal components (PCs) space, which are new orthogonal 

uncorrelated linear combinations of the original variables that describe 

the maximum variance. The differences between them are outlined in the 

model definitions: 

- UNEQ defines the class model as a centroid vector, which is the 

mean vector of the training set samples. The boundaries define 

the class space and are determined by the critical T2 Hotelling, 

thus giving an ellipse (two variables or PCs, see Figure 3-3) or a 

hyper-ellipsoid (more than two variables or PCs). define 

- SIMCA defines the class model as the resulting combination of 

vectors obtained from the projections of the training set samples 

to each PC. In this way, the model shapes a vector (one PC), a 

plane (two  PCs, see  Figure 3-3) or a hyper-plane  (three or more  
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Figure 3-3. Examples of two dimensional models obtained with the different class-

modelling techniques used in this thesis. Inner ellipses and boxes correspond to 

the class space at different confidence levels.  

 

Table 3-1. Comparison of class-modelling techniques. 

 UNEQ SIMCA OCPLS PLS-DM 

Data distribution Normal-like Normal-like Normal-like Complex-like 

Compression 
data 

None/PCA PCA PLS PLS 

Residuals 
consideration 

No Yes Yes Yes 

Data centering Yes Yes No Yes 
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PCs). Finally, the class space is defined by a pre-set distance to 

the model and by the distance of the full multidimensional 

residuals. 

In contrast, OCPLS and PLS-DM perform the variable reduction by using 

the PLS method which maximises covariance between the multivariate 

data matrix, for example spectral data, (X-bloc) and the response vector 

that indicates to which category the samples belong (y-bloc). As shown 

in Figure 3-3, the new variables are called latent variables (LV). These 

two methods differ in the y-bloc input: 

- OCPLS considers y=1 (constant). According to reference [8], X-

bloc should not be column-centred otherwise all the features 

would be orthogonal to y. It should be noted that the class model 

and class space definition are similar in certain ways to those of 

SIMCA, except for the PCs-space, which in this method is LVs-

space (see Figure 3-3). 

- PLS-DM computes y as an estimation of sample density on the 

basis of inter-sample distances in the multivariate space. For this 

method, the class model is defined by a probability density 

distribution in which the residuals are used to define the class 

space.  

PLS-DM is a density-based method that can be used for complex sample 

distributions whereas the other techniques have are all probabilistic and 

distance-based methods. Moreover, they require a multivariate normal 

sample distribution. This difference is shown in Figure 3-3 where PLS-

DM is depicted with irregular geometrical shapes but the others have 

different but always regular geometric figures. 
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ABSTRACT______________________________________________________________________ 

Two multivariate screening strategies (untargeted and targeted modelling) have been developed to 

compare their ability to detect food fraud. As a case study, possible adulteration of hazelnut paste is 

considered. Two different adulterants were studied, almond paste and chickpea flour. The models 

were developed from near-infrared (NIR) data coupled with soft independent modelling of class 

analogy (SIMCA) as a classification technique. Regarding the untargeted strategy, only 

unadulterated samples were modelled, obtaining 96.3% of correct classification. The prediction of 

adulterated samples gave errors between 5.5% and 2%. Regarding targeted modelling, two classes 

were modelled: Class 1 (unadulterated samples) and Class 2 (almond adulterated samples). 

Samples adulterated with chickpea were predicted to prove its ability to deal with non-modelled 

adulterants. The results show that samples adulterated with almond were mainly classified in their 

own class (90.9%) and samples with chickpea were classified in Class 2 (67.3%) or not in any class 

(30.9%), but no one only as unadulterated. 

________________________________________________________________________________ 

 

Keywords: Multivariate screening, Untargeted modelling, SIMCA classification, Food fraud, 

Hazelnut, Adulteration 

 

1. Introduction 

Fraud in food sector has been common since ancient times. Food 

adulteration tends to be economically motivated and is achieved through 
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the addition, substitution or removal of food ingredients [1]. It is an issue 

that concerns not only consumers, but producers and distributors as well. 

In the recent past, food fraud has become more sophisticated due to the 

use of unconventional or synthetic adulterants, which has resulted in 

growing concern about associated health risks [2]. To guarantee food 

safety and quality, most analytical strategies are based on the knowledge 

of the contaminants [3,4]. The ever-increasing range of analytes that can 

be used in food fraud together with the impossibility of covering them all, 

make these strategies not always suitable for food adulteration problems. 

Otherwise, covering the widest possible range of analytes usually 

requires sophisticated analytical equipment such as chromatographic or 

mass spectrometry devices [5–7]. 

There is increasing demand for the development of fast, easy-to-use and 

low-cost analytical methods to test for adulteration. Methods based on 

spectroscopic techniques offer these advantages and their combination 

with multivariate chemometric techniques turns into a powerful tool for 

adulteration testing [7,8]. Some examples of ultraviolet (UV) [9], infrared 

(IR) [10], Raman [11,12], fluorescence [13] and nuclear magnetic 

resonance (NMR) [14,15] techniques can be found in the literature. 

Within the field of spectroscopy, one of the most widely used techniques 

in the food industry is near-infrared (NIR) spectroscopy, which has shown 

successful results in testing food quality as well as food adulteration [16–

20]. 

Several multivariate techniques are based on their discriminating power, 

such as the K-nearest neighbour algorithm [9], linear discriminant 

analysis [4] and partial least squares discriminant analysis [14,20]. All of 

these methods require at least two classes to be defined, which implies a 

priori knowledge of the possible adulterant. Other multivariate techniques 

are based on their modelling ability. Soft independent modelling of class 

analogy (SIMCA) and unequal dispersed classes (UNEQ) are the most 
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well known of these [21,22]. Unlike the discriminant techniques, these 

approaches can be used in problems that have only one class of interest. 

Despite the potential of these class-modelling techniques, they are not 

commonly used in one-class modelling approaches [21–23]. 

In this paper, two methodologies for multivariate screening are proposed 

considering their different purpose. When the goal is to test whether a 

sample is adulterated or not, regardless of which adulterant might be 

present, a one-class modelling strategy is proposed. Therefore, a SIMCA 

model is established considering only the unadulterated class 

(untargeted strategy). Nevertheless, in some cases of food adulteration, 

one might have information about the possible adulterant, most of the 

cases based on experience or literature information. Therefore targeted 

modelling is proposed in which, in addition to the unadulterated class, a 

class for the known possible adulterant is modelled. 

In this work, the feasibility of NIR spectroscopy coupled with SIMCA was 

assessed to test for adulteration, using a hazelnut paste problem as a 

case study. Hazelnuts and their derivatives (oils and pastes) are widely 

used as ingredients in many desserts, ice creams and chocolates or can 

be eaten alone as a snack. The hazelnuts price depends on the market 

and several ingredients can be added to reduce it being one of the often 

used paste or flour almond, since it is usually much cheaper. However, 

adulteration studies for this kind of nut are not extended in the literature 

[24]. There is, therefore, a need to develop analytical procedures to 

verify the quality of hazelnut paste and food safety, identifying any type of 

fraud motivated primarily by economic gain. For this work, two different 

adulterants were considered: (1) a similar product (almond paste) and (2) 

an unexpected product (chickpea flour), both present in a low percentage 

in the hazelnut paste. 
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2. Materials and methods 

2.1 Samples 

A total of 28 row hazelnuts (Corylus avellana) from different geographical 

origins were provided by La Morella Nuts S.A.U. The set contains sixteen 

samples from Spain, seven from Italy, three from Georgia and two from 

Azerbaijan. The nuts were first processed in a microwave and then 

ground until the oil exuded in a food processor, resulting in a coarse 

paste. 

The adulterants used in this work were ecological chickpea flour from a 

commercial supplier and almonds from La Morella Nuts S.A.U. 

Adulterated samples were obtained from non-contaminated samples by 

adding almond paste or chickpea flour at 7%. In addition, a 

representative sub-set of 14 samples of each adulterant was selected 

using Kennard-Stone algorithm [25] to obtain new samples with other 

adulteration percentages (3% and 5%). 

2.2 Instrumentation and software 

NIR measurements were performed using a Bruker VECTOR 22/N in 

diffuse reflectance working condition. Spectra were recorded in the 3650-

12000 cm−1 range at 8 cm−1 resolution. The spectral profile of the sample 

was acquired as the mean of 32 scans recorded during the rotation of the 

cylinder. 

Data measured was processed with Matlab 6.5 software (Version 6.5, 

The Math Works, Inc., Natick, USA) and PLS Toolbox 3.5 (Eigenvector 

Research Incorporate). 
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3. Data analysis 

3.1 Pre-processing 

An offset correction was applied to the original data to eliminate any 

vertical shift in the spectra. It involves subtracting the absorbance value 

at 10538 cm−1 where no peak is observed from the values of absorbance 

at each wave number. This treatment was applied at each individual 

spectrum. 

3.2 Exploratory analysis 

Principal component analysis (PCA) was used as an unsupervised 

exploratory analysis tool to visualise the sample distribution in the 

multivariate space. Data was autoscaled before the chemometric 

treatment. 

PCA decomposes the multivariate response arranged in an X matrix into 

a product of two new matrices as indicated in the Eq. 1 [26]: 

      
                                      

Tk being the matrix of scores, Pk the matrix of loadings, k the number of 

factors included in the model and E the matrix of residuals, which 

contains the information not retained by the model. 

3.3 Modelling analysis 

SIMCA, introduced by Wold in 1976 [27], is based on PCA, as each 

class is modelled independently from any other. In order to assess how a 

given sample fits in each model, two scalar statistics are evaluated, Q 

and the Hotelling T2. 
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Qi-statistic is defined as the sum of squares of the residuals and can be 

calculated according to Eq. 2 [26]. Therefore, it is related to the amount 

of original information not included in the model. 

       
                                         

where ei is the residual of sample i after applying the SIMCA model. The 

limit of the Q, Qlim, can be calculated for the model under construction at 

a specific significance level (α), often set to 0.05. 

The Hotelling Ti
2 measures the information of each sample within the 

SIMCA model and is calculated by means of Eq. 3 [26]. It therefore 

provides a measurement of how well each sample fits the model. 

  
                                                

where I is the number of samples in the training set, xi the multivariate 

measurement of a sample i,     the column mean value of the training set 

and S the corresponding standard deviation. The limit of T2 can be 

calculated at a specific α, often set to 0.05 (T2
lim). 

The reduced Hotelling T2 (Tr
2) and the reduced Q-statistic (Qr) values can 

be calculated from the ratio between the corresponding statistic of the 

sample i and the corresponding limit at α=0.05. 

According to the “basic SIMCA”, boundaries are defined considering the 

reduced statistics. A sample must have values under 1 for both statistics 

to be considered “within the model”. 

A newer version called “restrictive-SIMCA” takes the distance defined by 

Eq. 4 [28]. In this case, the boundary considered as “within the model” 

forms a semi-circle with a radius of 1. 
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where dij is de distance of a sample i to a model j. 

4. Results and Discussion 

Fig. 1a shows the corrected NIR data of the unadulterated hazelnut 

samples. A slightly vertical variability between samples can be seen 

where one of them has a spectrum more differentiated from the others. 

Fig. 1b displays the unadulterated spectrum of a randomly chosen 

sample together with the corresponding spectra of the spiked samples 

with almond paste and chickpea flour at 7%. No visual difference 

between unadulterated and adulterated samples can be observed. 

Therefore, a multivariate treatment of spectral data by chemometrics is 

needed to distinguish between them. 

4.1. Untargeted modelling 

Firstly, an exploratory analysis of the unadulterated samples was made 

using PCA. Fig. 2 shows the PCA scores, being an 84.3% of the total 

variance explained by the first two principal components. Looking at the 

first PC, the figure shows that one of the samples is clearly far away of 

main block. So, this sample could be considered suspicious due to its 

different behaviour within the main PC. Regarding the second PC, three 

samples have slightly higher values than the main block, which can be 

explained by their specific geographical origin (Georgia). 

All unadulterated samples were used to build the SIMCA model at 95% 

of confidence level, which was validated by leave-one-out cross 

validation. The number of PCs required to build the SIMCA model was 

determined plotting the percentage of correct classification versus the 

number  of PC’s  which usually  increases until  no significance change is  
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Fig. 1. (a) Vertical off-set corrected NIR data of unadulterated hazelnut pastes. 

(b) NIR spectra of a randomly chosen unadulterated sample (i), adulterated at 7% 

with almond paste (ii) and adulterated at 7% with chickpea flour (iii). For the sake of 

clarity, a vertical shift was applied to the adulterated samples. 
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observed when another PC is added. The usual criterion is to choose the 

minimum number of PC which gives similar correct classification value. 

Accordingly, in our particular case the model was developed considering 

the first three PCs which presents 96.4% of correct classification. 

 

Fig. 2. PCA score plot from corrected NIR data of hazelnut samples. 

Fig. 3 shows the results of Tr
2 versus Qr values for the unadulterated 

samples. The acceptance of a sample as “within the model” is marked by 

the square area, whereas samples plotted at any point outside of this 

area are rejected. If more restrictive criterion is imposed, then the area is 

reduced to the marked semicircle. As shown, one sample has a high Tr
2 

value and is out of the bounds defined by both approaches. As the 

suspicious sample was the same sample in both the exploratory analysis 

(the visual inspection of spectra and PCA) and the SIMCA model, it was 

got rid of the data set because keeping the sample could negatively 

affect the modelling process. On the other hand, another sample is 
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placed at the limits of the restrictive criterion, but very close to the 

boundary. In this case, this sample was maintained in the development of 

the model 

So, a new 3PCs-based SIMCA model without the outlier was built at 95% 

of confidence level. This model was validated using two strategies: leave-

one-out cross validation and training (20 samples) and test set (7 

samples) randomly selected. The prediction results showed not 

significant differences and, considering the reduce number of available 

samples, we think that the leave-one-out cross validation is more reliable. 

 

Fig. 3. Plot of the resulting Tr
2 

Hotelling and Qr-statistic parameters from untargeted 

model, based on 3-PC space. 

Table 1 shows the classification results obtained with the untargeted 

model in the predictions of the 27 unadulterated samples and 54 samples 

of each adulterant (27, 14 and 13 samples with 7%, 5% and 3% of 

adulterant, respectively). The results show a correct classification of 
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about 95% is achieved whereas the success in the prediction ability is 

about 74%. Regarding the predictions of adulterated samples, a general 

success of more than 94% is achieved. No relevant changes were 

observed when basic and restrictive SIMCA criteria were considered. 

Table 1. Classification ability obtained using the untargeted model. 

Percentage of success in the application of untargeted model. 

 
Basic-SIMCA (%) Restrictive-SIMCA (%) 

Hazelnut samples  74.1 (96.3)
a 

69.7 (92.6)
a 

Almond adulterated samples 94.5 94.5 

Chickpea adulterated samples 98.2 100 

a
 Percentage of correct classification in brackets 

These percentages of success have different meanings and 

consequences based on whether the samples were adulterated or not. 

Around 25% of the unadulterated samples were not considered as such. 

This kind of error has economic consequences, as these samples would 

be unnecessarily removed from the market and a confirmatory or further 

analysis would probably be required. On the other hand, 5% of the 

samples adulterated with almond paste and about 1% of the samples 

adulterated with chickpea were considered unadulterated. This error is 

more important than the previous one since it implies fraud not only for 

consumers, but also for producers and distributors. Since almonds are 

more closely related to hazelnuts than chickpeas are, they are more 

likely to be mistaken for hazelnuts, which is why the error rate is slightly 

lower for chickpeas. No trends related to the percentage of adulteration 

present in the sample were found in neither of adulterants. Nevertheless, 

the results of the analysis satisfactorily distinguished between 

adulterated and unadulterated samples. 
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Finally, a deeper look at the Tr
2 and Qr statistics shows that the 

adulterated samples are considered “not in the model” mainly due to their 

Qr value, which means that the adulterated samples have information not 

included in the model: the contribution of the adulterant in the spectra 

(results not shown). 

4.2 Targeted modelling 

In this part of the study two classes were modelled: Class 1, 

corresponding to the unadulterated hazelnut samples, and Class 2, 

corresponding to the samples adulterated with almond paste. This 

adulterant was selected for modelling because its use has been reported 

in the literature. Based in our experience is one of the most common 

adulterants used to decrease the final hazelnut price, being one of the 

main reasons its similarity to hazelnut. But it is not the only possible 

hazelnut adulterant reported so, to check the model prediction behaviour 

in front of an unknown or not modelled adulterant, an unexpected 

adulterant has been chosen as is the case of using chickpea, which of 

course also allows decreasing the final hazelnut price. 

The SIMCA classification models were built in accordance with the 

methodology described in section 4.1 (exploratory analysis and selection 

of number of PCs), being each class developed based on the first three 

PCs. Because in the previous study both SIMCA strategies (basic and 

restrictive) gave similar results, the use of the restrictive approach was 

not justified. Therefore, the following results are given based on the 

“basic SIMCA”. 

The classification results are presented as a contingency table in Table 

2. It can be seen that unadulterated hazelnut samples were mainly 

classified in their own class (Class 1), but among these, there were a 

large number that so are in Class 2 (double classification). The samples 

adulterated with almond were mainly classified in their own class, and a 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT AND VALIDATION OF MULTIVARIATE QUALITATIVE METHODS IN THE FOOD FIELD 
Maria Isabel López Vilardell 
Dipòsit Legal: T 893-2015 



Class-modelling approach for Adulteration & Authentication 65 

Food Chemistry, 147 (2014) 177-181  

 

 

few were double classified or considered as “not in any model”. Samples 

adulterated with chickpea were mainly assigned to Class 2 (adulterated 

samples) or “not in any class” (samples different from the modelled 

ones). No trends related to level of adulteration were found in neither of 

adulterants. 

Table 2. Contingency table obtained from whole samples. 

 
Hazelnut 
samples

 

Almond  
adulterated 

samples
 

Chickpea  
adulterated 

samples 

In Class 1
 

10/27 0/0 0/0 

In Class 2
 

1/27 49/54 36/54 

Double classification 
(In Class 1 and Class 2) 

16/27 3 /54 1/54 

Not in any class 0/0 2/54 17/54 

Double classified samples should undergo a confirmatory analysis. Prior 

to this, the in-depth study of the distance between the sample and the 

models could perhaps help to define the assignation. Fig. 4 shows the 

distances of the doubly classified samples to each class (according to 

Eq. 4, section 3.3). Most of the unadulterated samples (triangle) are 

closer to their own class (Class 1), with values between 0.3 and 0.5, than 

to Class 2, with values over 0.6. They therefore most likely belong to 

Class 1. However, four unadulterated samples are plotted equidistantly 

between the two classes and close to the line. So, in this case the study 

of the distance could not help to the final assignation of them. This 

additional information could significantly reduce the number of samples 

that need to undergo a confirmatory analysis. 

Among the samples adulterated with almond paste (circles) only one 

sample is plotted closer to its own class (0.5 to Class 2 compared to 0.9 

to Class 1), so it can be considered as properly assigned to Class 2. 
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Meanwhile the distance of the other two to both models is similar. Finally, 

the adulterated chickpea sample is nearly equidistant to both models, but 

with quite high distance values (between 0.9 - 1), so it is near the 

boundaries of both models. It has to be remarked that the four 

adulterated samples with double classification are the same four samples 

wrongly assigned by the untargeted SIMCA model. With the targeted 

model they were identified as ambiguous due to the double classification, 

whereas this was not possible with the untargeted model because once a 

sample is assigned as not adulterated (fits the model), no further studies 

are conducted. 

 

Fig. 4. SIMCA distance to each model in targeted modelling. The upper triangle 

corresponds to less distance to the unadulterated class whereas the 

bottom triangle represents less distance to the adulterated model. The 

dashed line indicates the same distance to both models. Unadulterated 

samples (▼), adulterated with almond paste (●) and adulterated with 

chickpea flour (■). 
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5. Conclusions 

A multivariate screening method based on NIR spectroscopy coupled 

with the SIMCA technique was developed to test for adulteration in 

hazelnut pastes by means of two approaches: untargeted and targeted 

modelling. Both approaches gave satisfactory results. 

If the main interest is to find out whether a sample is adulterated or not, 

untargeted modelling is a good approach. Some of its advantages are 

that the classification model can be established by only analysing the 

unadulterated samples. The model is easy to implement and, once it has 

been established, it can be used to predict any sample, even when there 

is a lack of knowledge about the potential adulterants. 

Targeted modelling is a suitable approach in situations where testing is 

required for a common or known adulterant. One of the main advantages 

of this approach is that it can provide detailed information about the 

problem. Our results show suitable assignations even though the two 

defined classes are very similar, as hazelnut was the primary basis (more 

than 93%) in all of them. When a sample containing a non-modelled 

adulterant was predicted, it was not assigned to the unadulterated class, 

which is the most important. In our particular case, some of those 

samples were not assigned to any class, although most of the samples of 

this type were wrongly assigned to the adulterated class. 

Comparing both approaches, untargeted modelling is more restrictive, as 

it offers a single response: a sample either fits or does not fit the model. 

On the other hand, with targeted modelling a sample can have several 

responses or assignations: fits the model of just one class, fits the model 

of more than one class (double classification) or does not fit any model. 

Therefore, the targeted model provides more information about the 

tested samples than the untargeted model. 
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ABSTRACT______________________________________________________________________ 

A new class-modeling method, referred to as partial least squares density modeling (PLS-DM), is 

presented. The method is based on partial least squares (PLS), using a distance-based sample 

density measurement as the response variable. Potential function probability density is subsequently 

calculated on PLS scores and used, jointly with residual Q statistics, to develop efficient class 

models. The influence of adjustable model parameters on the resulting performances has been 

critically studied by means of cross-validation and application of the Pareto optimality criterion. The 

method has been applied to verify the authenticity of olives in brine from cultivar Taggiasca, based 

on near-infrared (NIR) spectra recorded on homogenized solid samples. Two independent test sets 

were used for model validation. The final optimal model was characterized by high efficiency and 

equilibrate balance between sensitivity and specificity values, if compared with those obtained by 

application of well-established class-modeling methods, such as soft independent modeling of class 

analogy (SIMCA) and unequal dispersed classes (UNEQ). 

________________________________________________________________________________ 

 

Keywords: Class-modeling; One-class classifier; Density estimation; Partial least squares (PLS); 

Potential functions. 
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1. Introduction 

Class-modeling and discriminant classification methods are widely 

employed to build mathematical models aimed at characterizing samples 

with respect to qualitative properties. Discriminant classification 

techniques are used to determine to which class, among a number of 

pre-defined classes, a sample most probably belongs, by setting a 

delimiter between the pairs of classes. Each new sample is then always 

assigned to one of the categories, even in the case of samples that do 

not belong to any class studied. Also, class-modeling techniques can be 

used for multiclass classification but, in this case, each new sample can 

be either assigned to one, more than one or none of the predefined 

classes. The suitable selection of the classification strategy depends on 

the problem to be solved and it may represent an important issue to be 

considered when working with these techniques [1]. As a matter of fact, 

the modeling of a single class of interest, to verify whether a sample is 

compatible or not with the characteristics of that class [2,3], is only 

allowed by the class-modeling techniques, which – for this reason – are 

also referred to as one-class classifiers [4] or untargeted modeling 

methods [5]. 

In multi-class classification, the discriminant approach is followed more 

frequently than the class-modeling one. A discriminant classification 

method which has gained increasing attention in the last years is based 

on partial least squares (PLS) regression, and it is usually referred to as 

discriminant PLS (D-PLS) or PLS discriminant analysis (PLS-DA) [6–8]. 

In the recent years, a number of attempts have been addressed to 

develop class-modeling techniques exploiting the advantages offered by 

the PLS method [9–12].  

In particular, a method called one-class PLS (OC-PLS) has been recently 

presented, in which a PLS model is built using a constant response 

(y=1), i.e., identical values for all of the training samples belonging to the 
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class of interest [13]. Hotelling’s T2 and Q statistics are used to verify 

compliance of test samples with the class model. Such a method proved 

to be efficient on different data sets [14–16]. Nonetheless, some issues 

have to be considered. First of all, PLS regression on column-centered x-

block data leads to degenerate solutions when the response variable is 

constant [13]. Secondly, this strategy gives equal importance to all 

samples in the class model definition, without taking into account class 

heterogeneity. Finally, the use of T2 statistics on the PLS scores implies 

the underlying hypothesis of a normal distribution. 

In order to manage data with non-normal and non-uniform distributions, 

some class-modeling methods have been proposed. Among the most 

efficient, potential function methods (PFM) [17], a family of probabilistic 

non-parametric techniques, define the class model by empirically 

estimating a probability density distribution for a class of interest [18,19]. 

An important limitation of such techniques is related to the impossibility of 

direct application to data sets with high variable dimensionality. In fact, 

the higher the number of variables, the lower the reliability in the 

estimation of the probability density, as well as the establishment of the 

critical value for the decision rule. In order to overcome this hurdle, PFM 

are commonly applied after unsupervised variable reduction by means of 

principal component analysis (PCA) [19]. 

In the present study, a new PLS-based class-modeling strategy is 

presented, called partial least squares density modeling (PLS-DM), which 

combines the features of PLS and PFM, together with Q statistics, to 

obtain highly efficient class models. The method was applied on a set of 

near-infrared (NIR) spectra recorded on samples of olives in brine, with 

the purpose of verifying the authenticity of olives from cultivar Taggiasca. 

In this application – like in most of the cases involving verification of food 

authenticity claims – the focus was on a single class (cultivar Taggiasca). 

In such a case, the discriminant approach would require the collection of 
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two sets of training samples: one representative of the Taggiasca olives 

and a second representative of the entire production of all of the olives 

potentially usable to make frauds. Such a condition is rarely realizable in 

practice, and collected sets of non-compliant samples would be under- 

representative of the whole non-compliance possibilities. This 

inadequacy would inevitably lead to biased decision rules, the outcomes 

of which being heavily dependent on those samples included in the non-

compliant set. For this reason, in such a case, decisions regarding 

sample conformity based on class-modeling strategies are more robust 

and suitable than those based on discriminant approaches [20]. 

Olives from cultivars Leccino and Coquillo, being morphologically very 

similar to Taggiasca, are suspected to be used in fraudulent 

manufactures and, therefore, they were considered in this study as 

potential adulterants.  

Model performances are evaluated in terms of sensitivity and specificity 

and by application of the Pareto optimality criterion. Results are 

compared with those achieved by unequal dispersed classes (UNEQ) 

[21], soft independent modeling of class analogy (SIMCA) [22] and OC-

PLS [13]. UNEQ and SIMCA are the class-modeling techniques most 

commonly applied in chemometrics, while OC-PLS represents the most 

recent modeling method based on PLS. 

2. Theory 

2.1 Partial least squares 

Partial least squares (PLS) is a multivariate regression technique which 

computes directions in the space of the predictors (X) characterized by 

the maximum covariance with the response variable (y). Such directions, 

called latent variables (LVs), are employed to define the regression 

model: 
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where I is the number of samples, V is the number of original predictor 

variables, T and U are the matrices of scores (i.e., projections) of X and 

y, respectively, P and q contain the loading terms, E and f contain the 

error terms. The most appropriate number of LVs (L) is usually 

determined in a cross-validation (CV) cycle, by studying the evolution of 

the quality parameter – such as the prediction error – as a function of the 

increasing number of LVs [23]. 

2.2 Residuals and confidence limit 

Q statistics is related to the residuals, i.e. the fraction of the information 

about samples not explained by the L latent variables retained in the final 

PLS model: 

T

iii eeQ                                  

where ei is the vector of residuals of sample i after applying the PLS 

model. Its confidence limit, Qα, is computed according to Jackson [24]: 
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where zα is the value of the standard normal deviate corresponding to the 

upper (1-α) percentile, and θj terms and h0 are defined as: 
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The θj terms are the sums of the eigenvalues (λ) raised to the jth power 

for the LVs that have not been retained in the regression model. It has to 

be remarked that Eq. (4) assumes the residuals to be normally 

distributed, a condition that is approximately verified, as it can be 

demonstrated [24]. 

2.3 Potential function methods 

Potential function methods (PFM) for class-modeling are based on the 

estimation of the probability density distribution for a class c composed 

by Ic objects. Each object i belonging to the class is assumed to 

contribute to the global class probability as electrical charges contribute 

to a potential field. So, the global probability function is determined as the 

sum of such individual contributions in the multivariate space normalized 

by Ic [25,26]. Compliance of a new object with class c is determined by 

comparing its probability density value with the critical value of the 

probability density distribution at a selected confidence level [27].  

The global probability function, f(x), is commonly obtained by summing 

the individual contributions fi(x) defined as: 
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where a is the smoothing coefficient that applies to all of the variables 

within class c, and sv is the standard deviation of variable v within the 

training set of class c. The smoothing coefficient cooperates in 

determining the shape of the distribution, being higher the smoothness 

when increasing a (which usually ranges between 0 and 1.5).  
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In order to define the class boundary, the critical value (fα) of the 

probability density distribution f(x), at a selected confidence level (1-α), is 

obtained from the critical value of the chi-squared distribution ( 2

 ) by 

the so-called equivalent determinant method [17], according to: 
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where V is the number of variables and Ĉ  is the estimation of the 

determinant corresponding to the variance-covariance matrix of the 

multivariate normal distribution equivalent to the probability distribution 

estimated by PFM, computed as:  
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According to Forina et al. [17], the term “equivalent” is used in this 

context to indicate distributions with the same mean value. 

3. Data and methodology 

3.1 Olive samples and data sets 

Representative samples of olives in brine from the cultivars under study 

were collected by the Special Company for Professional Training and 

Technological and Commercial Promotion of the Chamber of Commerce 

of Savona (Albenga, Italy). Samples from 2010–2011 and from 2011–

2012 harvests were randomly split into a training set formed by 187 

samples (83 Taggiasca and 104 Leccino and Coquillo) and a test set 

containing the remaining 21 samples (9 Taggiasca, 12 Leccino and 

Coquillo). Samples from 2012-2013 harvest were used as an external 
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test formed by a total amount of 25 samples (19 Taggiasca and 6 from 

different cultivars). 

Olives were washed with water, dried with tissue paper and pitted. Then, 

the pulp was ground and 30 g were placed in a Petri dish and analyzed. 

3.2 Data acquisition and data treatment 

NIR measurements on olive samples were performed in the chemical 

laboratory of Albenga, by a FT-NIR Thermo Scientific spectrometer 

(Thermo Scientific, AntarisII™ FT-NIR Analyzer). Spectra were recorded 

in the 4,000–10,000 cm−1 range, at 4 cm−1 resolution. Samples were 

analyzed in the reflection mode using standard glass Petri dishes with 9 

cm diameter. The spectral profile of the sample was acquired as the 

mean of 64 scans recorded during rotation of the glass dish. Systematic 

differences among Petri dishes – mainly due to small variations in glass 

thickness – were corrected by dividing point by point the reflectance 

spectrum of each sample by the spectrum of a certified reference 

material (Spectralon®) with 99% reflectance in the entire NIR region, 

recorded on the same dish. The whole analytical procedure was 

repeated on three different aliquots of each sample and the resulting 

average spectrum was submitted to data analysis. 

All the chemometric data processing was performed by means of in-

house Matlab routines (The MathWorks, Inc.). 

3.3 Partial least squares density modeling (PLS-DM) 

The strategy deployed for developing PLS-DM models is schematized in 

Fig. 1. 

Initially, a PLS model is developed using analytical data as X predictor 

matrix and a density vector as the y response vector. The response 
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value (yi) – for each sample i of the training set of the class to be 

modeled – is computed as an estimation of sample density (di), based on 

inter-sample distances in the multivariate space. In more detail, all the 

Euclidean distances from the sample i to each of the other training 

samples are computed. Such distances are, therefore, ordered, and the 

density value (di), obtained as the sum of the k smallest (i.e., lowest-

order) distances, was studied varying k. Moreover, parameter k 

influences the smoothness of density function, which evolves from a 

sharper to a smoother shape while increasing k. 

 

Fig. 1. Scheme of the PLS-DM strategy. Red parameters between brackets 

show the features to be optimized.  

After PLS modeling, the PLS scores of the training set on the first L latent 

variables selected are used as input to estimate the PFM probability 

density of the class, with different smoothing coefficients (a). Then, the 

critical value, fα, of the probability density distribution is computed, at a 

preselected confidence level (1-α). In addition, the PLS residuals are 

used to compute the critical value of Q statistics, Qα, at the same 
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confidence level. In this way, compliance of each object with the class 

model is granted when it satisfies both fα and Qα criteria.  

The algorithm calculates models with all of the different parameter 

combinations – i.e., the k distance, the a smoothing coefficient and the L 

latent variables as well as the suitable X-block pre-processing. Then, the 

procedure selects the optimal parameter combination by: (1) fixing the 

number of L through the efficiency criterion and (2) evaluating the rest of 

parameters applying the multicriteria Pareto’s decision method. 

Efficiency gives a global evaluation of the modeling performances, 

computed in this study as the geometric mean of sensitivity and 

specificity. Sensitivity is defined as the percentage of samples belonging 

to the modeled class which is correctly accepted by the class model 

whereas specificity is the percentage of samples not belonging to the 

modeled class which is correctly rejected by the model [28].  

According to Pareto-optimality method, each class model can be 

represented in a bidimensional scatter plot reporting sensitivity and 

specificity on the two axes, respectively. A theoretical example of Pareto 

diagram is shown in Fig. 2. The triangle represents the ideal – usually 

utopic – solution. A point on this graphic is defined as Pareto efficient 

when no other points show better results in one criterion without showing 

worse results in the other one. Point A is dominated (Pareto inefficient) 

by point B as it has higher values in both objectives (i.e. sensitivity and 

specificity). Moreover, point A is dominated by point C because both of 

the points have the same specificity, but point C has a higher sensitivity 

value. The Pareto front is the dashed line that connects all the Pareto 

efficient results [29]. In the end, the operator chooses the final optimal 

solution among the Pareto efficient solutions, looking for the best 

compromise between sensitivity and specificity, and depending on what 

is preferable for a particular problem under study. 
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Fig. 2. Example of a Pareto diagram. 

All the optimization steps in model building were performed by means of 

a cross-validation (CV) procedure with five deletion groups (Venetian-

blind scheme), using only the training set samples. The optimal values 

for the different parameters were selected by examining all the different 

outcomes in terms of model efficiency and optimal solutions according to 

Pareto methodology. The optimal class model was validated by means of 

the test sets described above, to obtain final sensitivity and specificity 

estimations. 

4. Results and Discussion 

4.1. Spectra 

The raw NIR spectra of olive samples from different cultivars and 

different harvests are shown in Fig. 3a. The principal differences 

observable among spectra consist in baseline shifts and effects 

ascribable to light scattering phenomena. To correct for such undesired 
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effects, data were pre-processed by the standard normal variate (SNV) 

transform [30]. eliminate regions that previous studies demonstrated to 

be non-informative for the characterization of olives in brine [31]. 

Corrected data are depicted in Fig. 3b. 

 

 

Fig. 3. (a) Original NIR spectra acquired for all the Taggiasca (red), Leccino and 

Coquillo (blue) olive samples. Vertical lines mark the boundaries of the reduced 

spectral range. (b) SNV corrected spectra. 

4.2. PLS-DM 

According to the methodology described (Fig. 1), several parameters 

were settled in order to define the optimal model – namely, the pre-

processing, k, L, and a. In more detail, four possibilities were considered 

for variable pre-processing: no pre-processing, mean centering, scaling 

and autoscaling. As for the k parameter, integer values from 1 to 7 were 
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considered. The number L of latent variables was varied from 1 to 15. 

Finally, the smoothing coefficient a was varied from 0.3 to 0.8, with 0.1 

increments. These parameters were varied within the specified ranges 

and the results of all of the combinations were tested by a cross-

validation scheme to select the optimal model.  

As a first step, the optimal number of LVs was selected, for each 

condition, by considering the maximum efficiency of the resulting class 

model, evaluated by cross-validation. By way of example, one of the 

evaluated models was randomly selected to illustrate how sensitivity, 

specificity and efficiency evolve at increasing the LV number (Fig. 4). In 

this particular case, 4 LVs were selected, according to the maximum 

efficiency criterion. Examination of such profiles may allow excluding 

solutions potentially associated to data overfitting. 

 

Fig. 4. Example of evolution of sensitivity (red triangles), specificity (green squares) 

and efficiency (blue circles) at increasing the LV number.  

In a second step, models at fixed LVs were evaluated by the Pareto 

diagram. The effect of each parameter on the Pareto results was 

analyzed in detail. Fig. 5a depicts the effect of varying k from 1 to 7. In 

this case, no clear tendencies were noticeable; however, optimal Pareto 
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solutions (Table 1) are associated with lower k values (ranging from 1 to 

3). Regarding the effect of the pre-processing, more marked tendencies 

can be observed (see Fig. 5b). In particular, it can be noticed that results 

corresponding to scaled (S) or autoscaled data (A) are characterized by 

higher sensitivity values than original or mean-centered data (N and M, 

respectively). Fig. 5c shows the effect of the smoothing coefficient a 

employed in the potential function probability estimation, increasing from 

0.3 to 0.8, with 0.1 increments, codified by capital letters from A to F. A 

definite positive correlation between a values and sensitivities of resulting 

class models can be observed. Such outcomes could be expected since 

the smoothing coefficient determines the shape of probability density-

based class spaces and, specifically, the class boundaries become larger 

at increasing a values. For the same reason, a concomitant reduction of 

specificity values should be expected. Nevertheless, the contribution of Q 

statistics softens this effect, maintaining elevate specificity values. 

Pareto solutions, summarized in Table 1, correspond to the Pareto front 

(points connected by the black line in Fig. 5). The final model was 

selected among the solutions laying on the front, looking for a balance 

between sensitivity and specificity, whose certified producers have to be 

recognized as compliant by the models. Accordingly, three coincident 

solutions marked in bold are the most suitable, characterized by 96.4% 

sensitivity and 93.1% specificity in cross-validation. It has to be remarked 

that such three equivalent optimal solutions correspond to slight 

variations on the smoothing parameter (a = 0.6, 0.7 and 0.8, 

respectively). The following optimal conditions were chosen: k = 1, 

preprocessing = scaling; L = 2; a = 0.7. 

Finally, it can be noted that slight variations of model parameters lead to 

not significantly different results, and such a feature can be considered 

as a significant proof of robustness of PLS-DM models towards soft 

perturbations of the adjustable parameters. 
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Fig. 5. Sensitivity vs. specificity Pareto diagram. The effect of the parameters on the 

results is evidenced by coding: (a) k: integers from 1 to 7; (b) pre-

processing: N = no- preprocessing, M = mean centering, S = scaling, and A 

= autoscaling; (c) a: A = 0.3, B = 0.4, C = 0.5, D = 0.6, E = 0.7, F = 0.8. 

Pareto front is marked with the black solid line. 

4.3. Validation 

The final model was applied on the test sets in order to evaluate its 

performances in the prediction of new samples, as well as the stability 

along time. Fig. 6 illustrates the results of the optimal PLS-DM class 

a) b) 

a) b) 

c) 
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model, showing compliance of samples according to both the PFM 

probability density and Q statistics. 

Table 1. Conditions corresponding to the points on the Pareto front.  

Pre-processing k a LV % Sensitivity  % Specificity 

Autoscaling 2 0.8 1 97.6 92.1 

Scaling 1 0.6 2 96.4 93.1 

Scaling 1 0.7 2 96.4 93.1 

Scaling 1 0.8 2 96.4 93.1 

Mean-centering 4 0.6 4 92.8 95.4 

Mean-centering 4 0.7 6 91.6 97.1 

Mean-centering 3 0.7 7 86.7 97.5 

No pre-processing 1 0.7 8 83.1 97.7 

 

Fig. 6. Sample compliance with the model according to the probability density 

and the residual Q statistics criteria. Taggiasca samples are represented by 

solid (test set) and empty (external test set) green squares, while samples 

from other cultivars are represented by solid (test set) and empty (external 

test set) red circles. 
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On the other hand, results achieved by the PLS-DM method were 

compared with those obtained by application of well-established class-

modeling methods (i.e., SIMCA and UNEQ) and of OC-PLS on the same 

data sets. Models obtained with all of these methods were optimized by 

the same cross-validation scheme used for PLS-DM (data not shown) 

and the final models were validated on the same test sets. The outcomes 

of all the optimal models are summarized in Table 2.  

As it can be noticed looking at the first two columns of Table 2, PLS-DM 

was able to provide more balanced results, in terms of cross-validation 

sensitivity and specificity, compared with those obtained by the other 

modeling techniques studied. Also considering validation on the test sets, 

overall higher efficiency value was obtained by PLS-DM. In particular, 

results achieved on the external test set reflect the stability of the model 

developed overtime, showing 100% of both sensitivity and specificity for 

PLS-DM. 

Table 2. Results obtained in cross-validation and on the two test sets 

with different class-modeling methods. (SENS, sensitivity; 

SPEC, specificity). 

  PLS-DM
a
 SIMCA

b
 UNEQ

c
 OC-PLS

d
 

 
% 

SENS 
% 

SPEC 
% 

SENS 
% 

SPEC 
% 

SENS 
% 

SPEC 
% 

SENS 
% 

SPEC 

Training 
(CV) 

96.4 93.1 65.1 97.7 96.4 84.6 95.2 91.3 

Test set 100 91.7 77.8 100 100 83.3 100 83.3 

External 
test set 

100 100 63.2 100 100 100 73.7 100 

a 
Data were scaled and the model was built with k=1, L = 2 and a=0.7.

 

b 
Data were autoscaled and the model was built with 2 PCs. 

c 
Data were autoscaled and the model was built with 3 PCs. 

d 
Data were not pre-processed and the model was built with L = 10. 
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5. Conclusions 

The new class-modeling method described in the present study 

combines the supervised features of PLS regression, the efficient 

modeling power of potential function techniques and the analysis of 

residuals, typical of the SIMCA method. Application on a complex data 

set of NIR spectra of olives in brine showed that the new strategy 

described is appropriate for authentication of cultivar Taggiasca, being 

able to provide highly efficient models. Elevate balance between 

sensitivity and specificity values was achieved, as well as high stability 

overtime if compared with classical class-modeling methods. 

The effect of parameters that can be adjusted in the model was 

thoroughly studied, evidencing the key role of data preprocessing (basic 

step in any chemometric treatment) and of the proper setting of the 

smoothing coefficient a. At the same time, models developed by the PLS-

DM method showed to be robust and stable towards soft perturbations of 

such parameters. Therefore, PLS-DM can be considered as a foremost 

untargeted method to be efficiently used for modeling complex analytical 

data. 
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4. 1. Introduction 

4.1.1. State-of-the-art 

Validation is a basic requirement to guarantee the quality, and 

trustworthiness of the results obtained by any analytical method. 

Although it is assumed as a key point for any analytical method, there is 

little literature on qualitative methods and it is mainly focused on 

univariate approach. 

Since most of the research focuses on developing new ‘in-house’ 

analytical methods, the state-of-the-art will also focus on the validation 

proposals, guidelines and/or protocols of those methods. 

A bibliographic search of the last ten years shows how keywords as 

‘validation protocol’, ‘validation method’ or ‘validation guideline’ are 

increasingly found within the scientific contribution’s titles. Figure 4-1 

shows the rise of publication in the chemical field by the last ten years. 

This search has focused on validation, understood as quality assurance. 

 

Figure 4-1. Number of scientific communication obtained through a search on the 

scientific database ISI Web of Knowledge (WoK) using ‘validation’ related words 

in the title of the scientific communications. 
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Based on above results, a deep search has been carried out adding 

specific keywords to determine the percentage referred to quantitative 

and qualitative analysis, specifying in each case the univariate and 

multivariate ratio. Figure 4-2 depicts the results in a pie chart format, 

showing that method validation studies, guidelines and procedures have 

focused mainly on quantitative methods of analysis although several 

efforts have also been made to develop validation protocols for 

qualitative ones. Nonetheless, there are a big percentage of results that 

after adding specific keywords, they are not included to any of four 

specified categories. They have been enclosed in the category called 

‘other’.  

 

Figure 4-2. Percentage of scientific publications (between 2004 and mid-2014) 

obtained by searching the scientific database ISI Web of Knowledge (WoK). 

Since the objective of this chapter focuses on the multivariate qualitative 

validation, a deeper check of the references found in this category was 

carried out. The results showed that papers use the term ‘validation’ to 

refer the use of training/test sets or cross-validation strategies. Some 

recent examples can be found in the literature [1,2].  
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multivariate approach 
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Chemometrics, Qualimetric and Nanosensors Group, Department of Analytical and 

Organic Chemistry, Rovia i Virgili University, Marcel·lí Domingo s/n, 43007 Tarragona, 
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ABSTRACT______________________________________________________________________ 

This tutorial provides an overview of the validation of qualitative analytical methods, with particular 

focus on their main performance parameters, for both univariate and multivariate methods. We 

discuss specific parameters (sensitivity, specificity, false positive and false negative rates), global 

parameters (efficiency, Youden’s index and likelihood ratio) and those parameters that have a 

quantitative connotation since they are usually associated to concentration values (decision limit, 

detection capability and unreliability region). 

Some methodologies that can be used to estimate these parameters are also described: the use of 

contingency tables for the specific and global parameters and the performance characteristic curve 

(PCC) for the ones with quantitative connotation. To date, PCC has been less commonly used in 

multivariate methods. 

To illustrate the proposals summarized in this tutorial, two cases study are discussed at the end, one 

for a univariate qualitative analysis and the other for multivariate one. 

________________________________________________________________________________ 

 

Keywords: Method validation, Qualitative analysis, Screening, Multivariate classification techniques, 

Performance parameters  

 

1. Introduction 

Laboratories have to guarantee the quality and trustworthiness of the 

results of any analytical method. Then, its validation is fundamental to 

ensure the reliability, traceability or comparability of results.  
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Most analytical problems require the amount of one or more substances 

present in a sample to be determined (quantitative analysis). Other 

analytical problems require semi-quantifiable or non-quantifiable 

information: i.e. to authenticate a substance/product or verify if a 

substance is present above or below a pre-established concentration 

level (cut-off value). In these cases, using qualitative methods that 

provide a binary response (positive/negative) might be suitable. They 

have commonly been used in systems that require immediate decisions 

to be taken since they are an appealing alternative to quantitative 

analysis, which generally gives more but often unnecessary sample 

information and requires a greater investment of money and/or time. For 

some time now, qualitative methods have been increasingly developed 

and applied in such fields as clinical medicine, biology and chemistry [1–

4].  

The performance of quantitative methods has been the subject of 

numerous studies, which have resulted in the production of international 

guidelines. By contrast, there is still no consensus about the validation 

protocol and the terminology used for qualitative methods. Several 

authors have tried to make proposals or guidelines about various aspects 

of the validation of qualitative methods using the information available in 

the literature [5–7]. In 2005, the International Union of Pure and Applied 

Chemistry (IUPAC) promoted a project that aimed to draft an 

internationally harmonized protocol (guidelines) for the organisation and 

interpretation of collaborative trials for the validation of qualitative 

methods [8]. All the effort that has been made (and is still being made) 

focuses mainly on univariate analytical methods whereas the multivariate 

ones are hardly developed.  

This tutorial presents an overview about the validation of qualitative 

methods, both univariate and multivariate, focusing on the performance 

parameters and the strategies used to establish them. 

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT AND VALIDATION OF MULTIVARIATE QUALITATIVE METHODS IN THE FOOD FIELD 
Maria Isabel López Vilardell 
Dipòsit Legal: T 893-2015 



Validation protocols for Multivariate Qualitative Analysis 103 

Analytica Chimica Acta, Submitted  

 

 

2.  Fundamentals: general terminology 

2.1. Method Validation 

The development and validation of a method are closely related since 

performance parameters are often evaluated as part of method 

development. When approaching an analytical problem, analysts have to 

consider several issues, which are schematised in Fig. 1 [9,10]. The 

problem’s solution must be regarded as a cyclic and iterative process of 

checking and evaluating the method, which does not stop until the 

method is deemed capable of meeting the requirements. The process 

starts with the study of the analytical problem at hand, what is known 

about it and what the analytical requirements are. The analytical method 

that best responds to these requirements must be chosen. When no 

existing analytical method responds to the requirements, then an existing 

methodology has to be redesigned or a new one developed. Before a 

method is validated, it must first be assessed whether it satisfies the 

requirements (fits the purpose) or not. If it does, the method has to be 

validated. The method is considered to be fully validated when all the 

requirements are satisfied and the whole process has been documented.  

According to the Handbook for the Quality Assurance of Metrological 

Measurements, “method validation consists of documenting the quality of 

an analytical procedure, by establishing adequate requirements for the 

performance criteria, such as accuracy, precision, detection limit, etc. 

and by measuring the values of these criteria” [11]. Thus, the validity of a 

method must be proven in its documentation, which must describe how 

the method is performed, which parameters have been investigated 

during the validation process, what the results of the validation study are. 
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Fig.1.  Diagram of method development and validation (adapted from 

EUROCHEM The Fitness for Purpose of Analytical Methods [9]). 

In ISO/IEC 2005, method validation became the “confirmation by 

examination and provision of objective evidence that the particular 

requirements for a specified intended use are fulfilled” [12]. In general 

terms, it establishes the concept of ‘fitness-for-purpose’ since it evaluates 

the fitness of the analytical method for its purpose. As a result, the 

performance characteristics to be established depend on the 

requirements of the analytical problem.  

In this regard, validation is considered as the process of ensuring that an 

analytical procedure is reliable and can fulfil the expectations of a 

particular application. In short, it means that it can be used with 

confidence. 

2.1.1. Validation level 

Depending on the needs of the laboratory, several levels of validation 

can be considered.  
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Single-laboratory method validation: Laboratories have to take 

internal measures to ensure the quality of the data they provide. There 

are several circumstances in which internal validation is carried out: to 

ensure the viability of methods developed in-house, to assess a method 

developed in other laboratories and to estimate the quality of long-term 

results. Internal quality control is also considered as internal validation 

[13].  

Most of the research work carried out has been on single-laboratory 

validation since laboratories are continuously modifying and improving 

methodologies to achieve, for example, lower detection limits, to consider 

novel interferences or to reduce time and costs. This tutorial will also 

focus on single-laboratory validation. 

Interlaboratory method validation: Different laboratories agree to carry 

out the same analytical trial under the supervision of a coordinator, who 

sets out the goals, the conditions and, obviously, the parameters to be 

studied. The aims of an interlaboratory study can be: (1) to assess the 

performance of an analytical method and (2) to compare laboratories. 

The process followed is schematized in Fig. 2. 

 

Fig.2.  Diagram of the steps followed for an interlaboratory trial. 

Collaborative studies are the best way to assess and verify the quality of 

the work done by a laboratory on the validation of a method. They can be 

used only after the method has already been fully validated in single-
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laboratory trials [10,14]. These studies enable all of the participants to 

determine parameters such as bias, precision or robustness and 

compare them with statistically assessed results.  

Generally, higher levels of validation require a greater investment of time 

and money, and the final results are of greater quality in terms of 

trustworthiness, reliability and consistency. So, it is fundamental to 

decide what level of validation is the most suitable. 

2.1.2. Performance parameters 

Performance parameters are a set of measurable attributes that define 

the quality of an analytical method. Thus, methods must be validated by 

establishing their performance parameters, which depend on the type of 

analytical method. 

Quantitative performance parameters are established on the basis of 

statistical fundamentals. Since qualitative methods are based on binary 

response (positive/negative), their performance parameters cannot be 

established using the same fundamentals. Instead, they have to be 

established on the probabilities that arise from four possible binary 

response scenarios [5]: 

- True positive (TP) result, when the qualitative method gives a 

positive output for a sample that is positive. 

- False positive (FP) result, when the qualitative method gives a 

positive output for a sample that is negative.   

- True negative (TN) result, when the qualitative method gives a 

negative output for sample that is negative. 

- False negative (FN) result, when the qualitative method gives a 

negative output for a sample that is positive. 
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Table 1 shows the performance parameters considered in both 

qualitative and quantitative analyses. Depending on (1) the nature of the 

analytical problem, (2) the analytical method purpose or (3) the level of 

validation; the required performance parameters to be estimated could 

be several or all of the parameters presented in Table 1. It should be 

pointed out that quantitative performance parameters will not be 

discussed in this tutorial. 

Table 1. Quality performance parameters. 

Quantitative Qualitative 

 Accuracy: trueness, precision 

 Uncertainty 

 Sensitivity and specificity 

 Range and linearity 

 Limits: limits of 

detection/quantification 

 Selectivity/interferences 

 Ruggedness or robustness 

 Stability 

 

 

 Trueness 

 False positive (FP) and false 

negative (FN) rates  

 Sensitivity and specificity 

 Efficiency, Youden’s Index and 

Likelihood ratio 

 Limits: Decision limit/Detection 

capability and other related 

terminology 

 Unreliability region 

 Selectivity/interferences 

 Ruggedness or robustness 

 Stability 

The parameters in bold are evaluated in the same way in both types of 

analysis. They have been extensively defined in EC/657/2002 [15]. For 

instance, trueness is achieved by using certified reference material or, 

when this is not possible, another reliable reference.  

Qualitative parameters that are not in bold are derived directly or 

indirectly from binary response and, therefore, from the four scenarios 
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defined above. Worthy of special mention are the underlined parameters 

which have the same name in both types of analytical method although 

the concepts they represent and their evaluations are slightly different.  

Sensitivity, in quantitative methods, indicates how the response changes 

when the analyte concentration varies whereas in qualitative methods it 

refers to the ability of the method to recognise truly positive samples (and 

so is directly related to the TP response).  

The same occurs with the term specificity. In quantitative methods, it 

refers to the ability of a method to distinguish between the analyte being 

measured and other substances whereas in qualitative methods it is the 

ability of a method to detect truly negative samples (and so is directly 

related to the TN response).  

False positive and false negative rates assess the probability of error, 

which is directly related to the FP and FN responses, respectively. They 

complement sensitivity and specificity (i.e., sensitivity = 1- false negative 

rate). On the other hand, efficiency, Youden’s Index and the likelihood 

ratio assess the overall suitability of the method since they are a 

combination of true responses (directly related to the parameters of 

sensitivity and specificity). Further information will be given in section 3 

and Table 5. 

According to 2002/657/EC, detection capability (CCβ) is “the smallest 

amount of a substance that can be reliably detected, identified and/or 

quantified in a sample with a statistical certainty of 1 – β” [15]. β error is 

“the probability that the tested sample is truly non-compliant, even though 

a compliant measurement has been obtained (false compliant decision)” 

[15]. This probability of error is usually set at 5% (significance level 0.05). 

To clarify concepts, let us consider the case of a contaminant regulated 

by legislation. For instance, a sample is non-compliant when the 

contaminant is present and compliant when it is not. Therefore, CCβ is 
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the concentration limit at which the qualitative method detects the 

contaminant (it is present) with a 5% of error of stating that the 

contaminant is not present when in fact it is (false compliant decision or 

false negative result). Belter et al. [16] has recently published a review of 

the wide range of terms used for this parameter, the most widespread of 

which is “limit of detection”.  

According to 2002/657/EC, decision limit (CCα) means “the limit at and 

above which it can be concluded with an error probability of α that a 

sample is non-compliant” [15]. α error is also usually set at 5% 

(significance level 0.05) and it is defined as “the probability that the 

tested sample is compliant, even though a non-compliant measurement 

has been obtained (false non-compliant decision)” [15]. Following the 

same example discussed above, CCα is the concentration limit at which 

the qualitative method detects the contaminant (it is present) with a 5% of 

error of stating that the contaminant is present when in fact it is not (false 

non-compliant decision or false positive result). This parameter is also 

referred to as threshold, cut-off, critical value, limit of detection [16,17]. 

Note that this tutorial shall refer to decision limit with the abbreviation DL.  

It should be pointed out that in the literature the term limit of detection is 

used to refer to both CCβ and DL. This may be due to the fact that in 

quantitative analysis it is defined as “the smallest amount or 

concentration of analyte in the test sample that can be reliably 

distinguished from zero” [13]. It is usually estimated by simultaneously 

considering both probabilities of committing error, α and β. In qualitative 

analysis, due to the particularity of binary response, the probabilities of 

false positive (error α) and false negative (error β) are independent. As a 

consequence, two concentration limits are defined, one for each kind of 

error. The one referred to as limit of detection will depend on what is the 

main interest: to restrain the errors of saying that a sample contains a 

substance when in fact it does not (false compliant) or to restrain the 
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errors of saying that a sample does not contain a substance when in fact 

it does (false non-compliant).  

The unreliability region is defined by the two limits: DL and CCβ. In 

between those two limits, the probability of making a wrong decision is 

higher than a fixed percentage, usually 5% (false positive and false 

negative rates). In this regard, unreliability could be related to uncertainty 

in quantitative analysis. But, unreliability cannot be considered as 

dispersion around a value as the response in qualitative analysis is not 

quantifiable [18]. 

The unreliability region and limit parameters have a quantitative 

connotation since they are associated to the amount of substance. For 

this reason, they cannot be established for qualitative analysis based on 

categorical propriety such as a food authentication problem. Further 

information will follow in section 3. 

2.2. Qualitative analysis 

Qualitative analysis has been defined by several recognised international 

organisations. The International Union of Pure and Applied Chemistry 

(IUPAC) stated  that it is “the analysis in which substances are identified 

or classified on the basis of their chemical or physical properties” [19]. 

Other organisms such as the U.S. Food and Drug Administration (FDA) 

and the Association of Official Analytical Chemists (AOAC International) 

have reformulated the definition. Thus, qualitative analysis is a “method 

in which substances are identified or classified on the basis of their 

chemical, biological or physical properties. Its response is either the 

presence or absence of the analyte(s) in question, detected either 

directly or indirectly in a specified test” [20,21]. 

As can be easily inferred from the definitions, qualitative analysis is 

characterised by its binary response (positive/negative outputs). Although 
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it is not specifically mentioned in the official definitions, qualitative 

analysis might also be related to a categorical propriety of the samples 

instead to the presence or absence of an analyte(s). 

Nowadays, it is quite usual to use ‘screening method’ as a synonym for 

‘qualitative method’ even though this may not always be the case. 

Screening methods “are used to detect the presence of a substance or 

class of substances at the level of interest. These methods have the 

capability for a high sample throughput and are used to sift large 

numbers of samples for potential non-compliant results. They are 

specifically designed to avoid false compliant results”. Legislation 

recommends a false compliance rate lower than 5% (1% for banned 

substances and 5% for substances with a maximum permitted level) [15]. 

Thus, they generally involve short analysis times, which lead to a high 

throughput of samples at low cost and mean that they are suitable for 

routine analysis. In this scenario, non-compliant samples are usually 

submitted to confirmatory analysis if the specific amount of substance 

present in the sample needs to be known. This requires an in-depth 

study of the sample, which is time and cost consuming. 

Depending on the nature of the data used, we will refer to univariate or 

multivariate methods: 

Univariate qualitative methods provide a binary response from only one 

analyzed variable. This variable should provide enough information to 

solve the analytical problem at hand (Fig. 3a) [22]. The binary response 

can be obtained from a specific instrumental signal (i.e., an absorbance 

value at specific wavelength). It can also be obtained through visual 

observation of colour change or development (i.e., test kits which are 

prepared to detect/identify substances at a specific threshold 

concentration).  
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In the same way, multivariate qualitative methods provide a binary 

response from two or more analyzed variables (Fig. 3b) [22]. These 

variables might come from an instrumental signal (for example, an 

absorbance spectrum, hence, a vector of absorbance values recorded in 

a defined wavelength range) or from a non-instrumental signal (for 

example, sensory panels). Since the analysed variables are non-specific, 

a data treatment step is always required to obtain the binary response. 

Data are treated using chemometric tools, mainly by the application of 

classification techniques. 

 

Fig. 3.  Scheme of a qualitative analysis using (a) univariate and (b) 

multivariate approaches. 

Regardless of the number of variables analyzed, binary responses — 

positive/negative outputs — are obtained using a decision criterion, 

which can be related to either a quantifiable value or to a categorical 

property (see Table 2). In the first case, there is a threshold, generally 

imposed by regulation or clients. In the absence of any other verifiable 

information, it is set by the analysts on the basis of their knowledge of the 

analytical problem.  

A common qualitative analysis (univariate or multivariate) is the detection 

of an analyte above/below a threshold concentration. One particular case 
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is the detection and identification of compounds, which imply the 

presence/absence of the analyte. In this case, the threshold is set at 

concentration value equal zero.  

Another goal of the qualitative analysis is related to a sample 

compliment/not compliment regarding any intrinsic property (categorical 

property), i.e. authentication problem: sample assignation to a protected 

designation of origin (PDO). Since the decision criterion is not related to 

a quantifiable value, it has no associated threshold value. This kind of 

analysis has to be carried out using the multivariate approach. 

Table 2. Types of qualitative analysis. 

Focus of the 
study 

Decision 
Criterion  

Threshold  Data Examples  

Analyte/Index 
Related to 
quantifiable 
value 

Above/below a 
certain value ≠ 0 

Presence/absence 
(value = 0) 

Univariate/ 
Multivariate 

Maximum 
permissible amount 
(e.g. Content of 
biodiesel in diesel) 

Banned substances 
(e.g. doping in sport) 

Sample 
Related to 
categorical 
property 

- Multivariate 

Authentication (e.g. 
Protected 
Designation of 
Origin, PDO) 

3.  Univariate qualitative analysis 

Univariate qualitative analyses are used to detect a substance or group 

of substances. Thus, the decision criterion — how positive and negative 

responses are defined — is directly related to a threshold concentration. 

The analysis of samples that have the substance at the threshold level 

will provide a specific signal (threshold signal): (i) if the signal is 

instrumental, the output is generally positive when the sample signal ≥ 
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threshold signal (i.e., contaminated sample) whereas the output is 

negative when the sample signal < threshold signal (i.e., non-

contaminated sample); ii) if the signal is visual, the output is positive 

when colour is developed while the output is negative if there is no 

colour, or the other way around.  

A full validation process consists of estimating both mandatory and any 

other performance parameters by analysing truly positive and negative 

samples (Table 3). The parameters related to concentration limits are 

established after mandatory performance parameters achieve satisfying 

values. 

Table 3. Summary of the main methodologies that can be used to 

evaluate a qualitative method. 

Validation step 
Performance 
Parameters 

Methodology 

Mandatory 

FP and PN rates, 

sensibility and 

specificity 

Bayes’ Theorem 

Statistical Hypothesis Test 
Efficiency, Youden’s 

Index and Likelihood 

ratio Contingency Table 

(if applicable) 
Unreliability region, 

Limits (xccβ, xDL)  

Performance characteristic 
curves 

Statistical Hypothesis Test 

Several methodologies can be used to estimate the mandatory 

performance parameters: Bayes’ theorem, statistical hypothesis tests 

and contingency tables. They provide an overall characterization of the 

qualitative method at a specific concentration level (static situation), and 

they all estimate the same performance parameters. Nonetheless, the 

terminology in each case is slightly different.  
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This tutorial will explain how contingency tables can be used to estimate 

mandatory performance parameters. Detailed information on Bayes’ 

theorem [23] and statistical hypothesis tests [24,25] can be found 

elsewhere. 

Contingency tables are based on Bayes’ theorem and are widely used 

since they are easy to work with and can be applied to solve any 

qualitative analytical problems. They consist of a 2x2 table which is 

obtained by analysing actual samples (positive and negative) which are 

then compared with the outcomes of the qualitative analysis (Table 4). 

The expressions used to calculate the main performance parameters are 

shown in Table 5. Sensitivity, specificity, false positive and false negative 

rates are obtained from the frequencies of each respective response 

divided by the total number of samples. Global indexes (efficiency, 

Youden’s index and the likelihood ratio) are obtained by a combination of 

the previous parameters.  

If the mandatory performance parameters satisfy the requirements 

stipulated by the analyst, additional performance parameters can be 

estimated when the threshold value is related to a quantifiable property 

(see Tables 2 and 3). This tutorial will explain how performance 

characteristic curves (PCC) can be used to estimate additional 

performance parameters which provide quantitative information about the 

qualitative analytical method. To do so, the PCC curves assess the 

method in a dynamic situation instead of a static situation like other 

methodologies, and consider values around (above and below) the pre-

set threshold value. Note that in the literature, PCC curves have also 

been referred to as performance curves [26], logistic regression [5] or 

the generalized linear model [27]. 
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Table 4.  2x2 contingency table. 

Predictions 

 Actual  

 Positive Negative 

Positive  TP FP 

Negative  FN TN 

Total analysed samples  TP+FN FP+TN 

TP, true positive; TN, true positive; FP, false positive; FN, 

false negative  

 

Table 5. Description of the performance parameters. 

Sensitivity 
  

     
 

False negative (FN) rate 

(1-sensitiviy) 

  

     
 

Specificity 
  

     
 

False positive (FP) rate 

(1-specificity) 

  

     
 

Efficiency 
     

           
 

Youden’s index                               

Likelihood ratio 
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To illustrate how PCC curves are used, let us consider the case of a 

contaminant which is regulated by legislation, so it has a threshold value 

(i.e. maximum content 5mg/L). This value leads to an instrumental 

threshold signal, which is obtained experimentally. Positive output is 

defined as a contaminated sample when sample signal > threshold signal 

and negative as a non-contaminated sample when sample signal   

threshold signal. To establish the PCC curve, samples with 

concentrations around 5 mg/L (i.e. 3, 4 and 6, 7 mg/L) are considered. 

Several samples are analyzed for each level concentration. The 

probability of getting a positive result, P(x), is obtained by the frequency 

of positive outputs for each concentration studied. The experimental PCC 

curve is obtained by representing the probabilities of positives, P(x), 

versus the corresponding concentration. As Fig. 4a shows, the ideal 

qualitative analysis would be 100% sure to give a positive response, 

P(x), when the amount of contaminant is > 5 and a negative response, 

N(x), when the amount of contaminant is  5.  

Real behaviour, however, is different from the ideal one (see Fig. 4b). 

The experimental P(x) values are fitted to a sigmoid function, minimizing 

the root mean square of the residuals, obtaining the PCC curve. To 

obtain the concentration limits two horizontal lines have to be drawn. The 

upper line is usually set at P(x)=95 % and the lower line at P(x)=5%.  

From the intersection of those horizontal lines with the PCC curve, the 

concentration limits are obtained:  

- xccβ (detection capability): it is obtained from the intersection 

between the lower horizontal line — which corresponds to the 

probability of committing an FP error, P(x) 5% — and the sigmoid 

curve.  

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT AND VALIDATION OF MULTIVARIATE QUALITATIVE METHODS IN THE FOOD FIELD 
Maria Isabel López Vilardell 
Dipòsit Legal: T 893-2015 



118 Chapter 4 
  

 

 

 

Fig.4.  (a) Ideal graph and (b) real graph for a binary response whose 

decision criterion corresponds to a threshold value ≠ 0. P(x): probability of 

getting a positive response, N(x) =100- P(x): probability of getting a 

negative response, FN rate: false negative rate, FP rate: false positive rate, 

xDL: Decision Limit, xCCβ: Detection capability and x0.5: when P(x) = N(x)= 

50%. 
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- xDL (decision limit): it is obtained from the intersection between the 

upper horizontal line — which corresponds to the probability of 

committing an FN error, P(x)= 95%=1-FN — and the sigmoid 

curve.  

- unreliability region: it is the region between the two previously 

defined limits where there is the probability of false compliance.  

The region 0 < x < xccβ is considered the reliable negative region since at 

concentrations lower than xccβ (x < xccβ) the probability of getting a true 

negative result is > 95%, and the rate of getting a false negative result 

decreases (lower than 5%). Similarly, the region x > xDL is considered the 

reliable positive region since there is a 95% or higher probability of 

getting a true positive result at concentrations higher than xDL. 

4. Multivariate qualitative analysis 

As mentioned before, multivariate analysis is required when the problem 

at hand cannot be solved by a specific measurement. Thus, multivariate 

qualitative methods can also be applied to detect the presence of a 

substance or a group of substances. The analytical problem previously 

described in the univariate analysis — to detect whether a sample is 

contaminated or not, in accordance with a threshold value set by 

legislation (5 mg/L) — can be, hence, solved from a multivariate point of 

view. Using multivariate analysis, two categories have to be defined: 

category A (sample is compliant or not contaminated; concentrations 5 

mg/L) and category B (sample is not compliant or contaminated; 

concentrations 5 mg/L).  

However, multivariate approaches are commonly used to solve analytical 

problems related to an intrinsic property of the samples, which is usually 

known as categorical property. Thus, the decision criterion — how 

positive and negative responses are defined — is not directly related to a 
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threshold concentration but to a sample belonging to a predefined 

category (this is also known as class assignation). As example, the 

detection of cancerous tissue, quality control of a manufacturing process 

or the determination of the origin of a wine among some other examples.  

Let us take as example a wine authentication problem (i.e., PDO Priorat 

wine). Hence, the compliant category (category A) is defined as ‘Priorat 

wine’. Depending on how the non-compliant category (category B) is 

defined, this authentication problem can be tackled from two different 

points of view: 

- unspecific category B: In this case, the analyst has a lack of knowledge 

of the kind of wine that could be use to commit fraud. Thus, the non-

compliant category is not focused on specific type of samples, thus, it is 

defined as ‘not Priorat wine’. 

- specific category B. The difference compared to previous case is that 

the analyst is awarded of the kind of fraud that can be committed. So, the 

analyst knows that another similar and usually cheaper wine (i.e. 

Montseny wine) can be dishonestly labelled as a PDO Priorat. In this 

case, the non-compliant category is well defined by Montseny wine 

samples, thus, it is defined as ‘Montseny wine’. 

Regardless the problem to be solved, the process followed to perform 

multivariate qualitative analysis implies three steps: (1) sampling and 

analysis, (2) classification rule and (3) validation. Mention to wine 

examples will be done in order to facilitate understanding. 

1) sampling and analysis. 

The sampling must be representative of the total population to ensure 

accuracy in the result. Thus, samples representative of both category A 

(i.e., Priorat wine) and category B (i.e., Montseny wine) must be 

collected. When the category B is unspecific (i.e., ‘not Priorat wine’), it is 
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hardly representatively sampled because no set can include all the 

different sorts of wine from around the world that are not Priorat. Thus, 

‘not Priorat wine’ will be always under representative. 

To guarantee representativeness in the category, several factors should 

be taken into consideration during the sampling (i.e., harvests, cellars, 

wine-ageing, among others). A minimum number of samples (i.e, 20 - 30) 

must be selected for each category, depending on the availability of 

samples, the cost of analysis, the factors considered, etc. The higher the 

number of samples, the better the total population is represented, thus, 

the better are the conclusion obtained from the analysis. 

The analysis of all samples is carried out after the sampling process, 

getting a data vector for each sample. Ranging the vectors, an n-by-p 

data matrix is obtained, where n is the sample size, and p is the number 

of variables measured.  

2) classification rule 

By applying a classification technique, a class for each category is 

mathematically defined. It is beyond the scope of this tutorial to discuss 

in detail all the classification techniques available, and detailed 

information can be found elsewhere [28–30]. Unlike the univariate case, 

the decision criterion is not related to a threshold signal but to a 

mathematical function (classification rule) which allow assigning the 

samples to the predefined categories: sample belongs to category A 

(positive) or to category B (negative). Fig. 5 depicts the different type of 

classification rules obtained depending on the classification techniques 

used.  

When a discriminant classification technique is used, the decision 

criterion is called delimiter (Fig. 5a). Both categories A and B have to be 

defined, obtaining a unique delimiter for sample assignation. When 
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unknown samples are predicted ( , Fig. 5a) they are always assigned to 

one of the predefined categories, ‘Priorat’ or ‘Montseny’, even if the 

analysed wine correspond to neither them. Positive/negative outputs can 

be defined according to Eq. 1, being x a sample: 

                                                                                       

                                                            

 

Fig. 5.  Example of decision criterion obtained depending on the type of classification 

technique used. Discriminate technique (a). Class-modelling technique: two classes (b) 

and one class (c). Samples belonging to Category A (■), samples belonging to Category 

B (●) and unknown sample used in prediction ( ).  

When class-modelling techniques are applied, the decision criterion is 

called model boundary (Fig. 5b). Two categories must be defined 

although a model is built for each category individually by using only the 

samples belonging to the category. At the end, two models are 

characterized, each one with different model boundary. When unknown 

samples are predicted ( , Fig. 5b), they can be assigned to one 
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category, to both categories or to neither of them. This kind of 

classification techniques can be interesting since the analyst can detect a 

wine which is neither Priorat nor Montseny. If a sample belongs to both 

categories or to neither of them, the result is considered to be 

inconclusive. Then, the sample might be submitted to a confirmatory 

analysis to check which type of wine is, if this information is required. 

Positive, negative and inconclusive outputs are defined according to Eq. 

2, being x a sample: 

                                                                                       

                                                            

                                               

A particular case of class-modelling techniques is when only one class is 

modelled, either because the analyst is interested in characterizing only 

one category or because only samples from one of the categories can be 

collected. This could be a good option to tackle the authentication PDO 

wine problem when dealing with unspecific category B (‘not Priorat 

wine’). 

Fig. 5c shows an example in which only one category is modelled 

(‘Priorat wine’). When unknown samples are predicted ( , Fig. 5c), they 

can be recognised by the model (compliant) or not (non compliant) Thus, 

positive and negative outputs are defined according to Eq. 3, being x a 

sample: 
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Although the model is built only using samples belonging to the category 

under study, the specificity must be checked by submitting non-compliant 

samples to the model.  

Note that classification techniques can characterize two or more 

categories; however, we had focused on those cases in which only two 

possible outputs (binary response) are considered.  

3) validation 

In the field of classification techniques, the term ability is used to assess 

the quality of the class assignation. The ability is calculated by dividing 

the number of samples correctly classified in the category by the total 

amount of samples of the category. Similarly, the assignation error is 

obtained by dividing the number of samples misclassified by the total 

amount of samples of the category. This ability — and error — can be 

calculated individually for each defined category (i.e., A and B), but also 

for all samples independently of the category (global ability). 

If those abilities are computed from the set of samples used to build the 

classification rule (training set), the performance parameters are named: 

classification ability of category A, category B and global. These 

parameters are often optimistic since they are obtained from the training 

set (autopredictive). For this reason, predictions of new well-categorised 

samples (test set) are generally more realistic, being a key step in 

assessing model success. Depending on the sample size, two strategies 

can be used to assess predictions:  

- If the initial dataset is large enough, it is randomly split into training 

and test sets: the training set is used to build the classification rule 

and the test set to assess prediction ability. Similarly to the 

classification ability, three prediction abilities are obtained: prediction 

ability of category A, category B and global. 
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- If the initial dataset is not large enough, an alternative is to follow the 

cross-validation strategy to assess the prediction ability. It requires a 

single dataset — which is the training set. One (or more) samples are 

removed from the dataset and the model is built with the remaining 

samples. Then, the prediction ability of the model is tested with the 

removed samples. This procedure is repeated until all the samples 

have been left out of the dataset. Cross-validation can be carried out 

through several strategies: contiguous blocks, leave-one-out, random 

subsets, etc. [28]. Thus, three prediction abilities are obtained: 

prediction ability of category A, category B and global. 

The relationship between the performance parameters terminology used 

in univariate (Table 5) and multivariate qualitative analysis is the 

following: 

- Sensitivity: It is the classification and/or prediction ability obtained 

from the category defined as positive (in our example category A, 

hence, ‘Priorat wine’). The key point is that sensitivity is computed 

from positive samples (positive output). 

- Specificity: It is the classification and/or prediction ability obtained 

from the category defined as negative (in our example category B, 

hence, ‘Montseny wine’). Again, the key point is that specificity is 

defined from negative samples (negative output). 

- Efficiency: It corresponds to the global classification and/or prediction 

ability. 

Note that when dealing with class-modelling techniques in which two 

classes are modelled (case corresponding to Fig. 5b), this relationship 

could not be strictly correct if there are samples classified to any of the 

categories.  

UNIVERSITAT ROVIRA I VIRGILI 
DEVELOPMENT AND VALIDATION OF MULTIVARIATE QUALITATIVE METHODS IN THE FOOD FIELD 
Maria Isabel López Vilardell 
Dipòsit Legal: T 893-2015 



126 Chapter 4 
  

 

 

On the other hand, if only one category is modelled (case corresponding 

to Fig. 5c), it is necessary to analyse non-compliant (negative) samples 

to assess the specificity and the global ability.  

Efficiency (Table 5) is not the only term used among the scientific 

community since it is commonly known as accuracy [31]. Also, some 

authors use the term efficiency but it is calculated geometrically [32] 

(Eq.4): 

 
     

               
                   

Finally, instead of expressing parameters as abilities (usually in %), other 

authors prefer to express the parameters as % of error, which is just 1 

minus the corresponding ability values [33].  

Once the mandatory performance parameters (both autopredictive and 

predictive) satisfy the requirements, PCC curves can also be used when 

the problem under study is related to a quantitative value (i.e., 

adulteration problem). In practice, this has rarely been done because 

multivariate qualitative analysis is primarily used for the authentication of 

samples, for which PCC curves cannot be used. 

5. Cases study 

The first case study deals with a univariate qualitative analysis based on 

a visual signal obtained from a test kit designed to detect a regulated 

compound in nuts [17]. Other examples of univariate methods based on 

visual and instrumental signals can be found elsewhere [2,34–36]. 

The second case study considers a multivariate qualitative methodology 

based on spectroscopic signals designed to detect adulterants in nuts 
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[37]. Other examples of this kind of method can be found in the following 

references [33,38–44]. 

5.1. Example 1: Univariate qualitative analysis 

The analytical problem to be solve is the determination of Aflatoxin B1 in 

fried ready-salted peanuts [17]. A commercial test kit was used that had 

been specially designed for this kind of compound and which gave a 

visual response. According to the European Union, the maximum 

concentration of this compound permitted in nuts is 2.0 ng/g. Thus, 

commercial kit has been developed to indicate a negative result by 

displaying colour when concentrations are < 2.0 ng/g, and a positive 

result by not displaying colour when concentrations are ≥ 2 ng/g. Positive 

samples are submitted to confirmatory analysis. 

Several performance parameters were established. From contingency 

tables: false positive and negative rates, sensitivity and specificity were 

obtained at the maximum permitted concentration (static situation at 2.0 

ng/g). Results were successful, both sensitivity and specificity value were 

100%.  

To build the PPC curve (Fig. 6), a total of 84 samples containing Aflatoxin 

B1 with concentrations ranging from 0.6 to 2.6 ng/g were analysed. The 

obtained probabilities of positives, P(x), at each studied concentration are 

fitted to a sigmoid function and the performance parameters are 

estimated. The detection capability (xccβ) is set at 0.8 ng/g, indicating that 

at lower concentrations the probability of truly negative output is equal to 

or higher than 95%. Similarly, the decision limit (xDL) is set at 1.6 ng/g, 

indicating that at higher concentrations the probability of truly positive 

output is equal to or higher than 95%. Therefore, the unreliability region 

is between 0.8 and 1.6 ng/g. It should be pointed out that the unreliability 

region is far away from the maximum allowed by law. 
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In practice, the probability of a real false positive is almost zero since the 

decision limit is at 1.6 ng/g, much lower than the value claimed by the 

kit's manufacturer. Since we are dealing with a contaminant food product, 

it is desirable to control and minimize the error of considering a 

contaminated sample as non-contaminated. Thus, the bias in the 

decision limit can be regarded as an advantage. This fact is in 

accordance with screening method definition which as it has been stated 

previously (section 2.2), they are specifically designed to avoid false 

compliant results. 

 

Fig. 6.  Adaptation from [17] with permission. Probability of positive 

responses, P(x), is plotted versus the concentration levels tested. Upper 

limit: xDL; Lower limit: xCCβ. 

Considering that the Aflatoxin B1 contamination has to be a minor fact in 

the global context of commercialized samples, the majority of the 

analysed samples should have Aflatoxin B1 levels below 2.0 ng/g, hence, 

negative samples. Therefore, using this screening method, the number of 

samples submitted to confirmatory analysis is highly reduced. 
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5.2. Example 2: Multivariate qualitative analysis 

The analytical problem to be solve deals with the adulteration of hazelnut 

pastes with other substance that are not contaminants but which are 

used mainly for economical reasons to reduce the cost [37]. The price of 

hazelnuts depends on the market and it can be kept down by adding 

such ingredients as almond paste or flour, since it is very similar to 

hazelnut but usually much cheaper. Another cheap adulterant that can be 

used is chickpea flour. Although this adulterant is more unexpected, it 

can be used because its physical properties are similar to those of the 

hazelnut. Experience shows that the most common percentage of 

adulteration is around 7%. 

The qualitative method combines infrared spectroscopy with a 

classification technique named soft independent modelling of class 

analogies (SIMCA). The one-class modelling strategy was used (as 

described in Fig. 5c), thus, the output is positive when a sample is 

recognised as model compliant and negative when a sample is 

recognised as model non-compliant. 

To build the model, 28 hazelnut samples from different geographic 

origins were used. The sensitivity and false negative rate were assessed 

by cross-validation. The specificity, false positive rate and global 

parameters were assessed by predicting adulterated samples at 7% (28 

adulterated samples with almond and 28 adulterated samples with 

chickpea). Table 6 shows the performance parameters values. Results 

show successful sensitivity and specificity results, even when considering 

almond adulterant, which has similar properties to hazelnut. 

Since obtained performance parameters showed successful values, the 

PCC curves were attempted to be established since this kind of problem 

allows it. To do so, different percentages of adulteration were studied (1-

8% in intervals of one). Finally, around 13 samples were studied at each 
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adulteration level and for each adulterant, being about 104 the total 

amount of samples. 

Table 6. Adapted from [37] with permission. Performance 

parameters obtained for each adulterant, expressed in %. 

For simplicity, false positive (1-sensitivity) and false negative 

(1-specificity) rates are omitted. 

 Sensitivity Specificity Efficiency 
Youden’s 

Index 

Hazelnut 93 - - - 

Almond - 100 97 93 

Chickpea - 98 93 91 

In this particular case, the additional performance parameters — 

unreliability region and the limits — were not able to be estimated. 

Although the percentages of adulteration were from 1 to 8% (in intervals 

of one), all sample were correctly recognised as model non-compliant 

(true negatives). Thus, from 0% to 1% of adulterant, there was a sudden 

drop in the probability of positives (from P(x)=93% to close to 0%), 

making no sense trying to fit a PCC curve. To be able to fit the curve, 

additional experimentation at percentages in between 0 and 1 should be 

required. In practice, and again in this particular case, it makes no sense 

to experiment at very low percentages of adulterant and in a narrow 

range, since the economic impact might not be significant. 

6. Concluding remarks 

In this tutorial, univariate and multivariate qualitative method validation is 

discussed in the context of international and official legislation. 

Qualitative performance parameters and the methodologies used to 

estimate them are also discussed. It should be borne in mind that there is 

no consensus about the terminology used, and we have attempted to 

reflect the most common terms.   
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Researchers must be aware of the performance parameters that can be 

established for each analytical problem. The methodology used to 

estimate them should be chosen for its suitability to the problem at hand.   

This tutorial aims to encourage researchers who work in multivariate 

qualitative analysis to fulfil the validation by establishing performance 

parameters that involve quantitative information (unreliability region and 

concentration limits). 
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ABSTRACT______________________________________________________________________ 

Multivariate screening methods are increasingly being implemented but there is no worldwide 

harmonized criterion for their validation. This study contributes to establish protocols for validating 

these methodologies. We propose the following strategy: (1) Establish the multivariate classification 

model and use receiver operating characteristic (ROC) curves to optimize the significance level (a) 

for setting the model’s boundaries. (2) Evaluate the performance parameter from the contingency 

table results and performance characteristic curves (PCC curves). The adulteration of hazelnut paste 

with almond paste and chickpea flour has been used as a case study. Samples were analyzed by 

infrared (IR) spectroscopy and the multivariate classification technique used was soft independent 

modeling of class analogies (SIMCA). The ROC study showed that the optimal a value for setting the 

SIMCA boundaries was 0.03 in both cases. The sensitivity value was 93%, specificity 100% for 

almond and 98% for chickpea, and efficiency 97% for almond and 93% for chickpea. 

________________________________________________________________________________ 

 

Keywords: Multivariate screening validation, ROC curves, Performance characteristic curves, Food 

fraud, Performance parameters 

 

1. Introduction 

Screening methods have been used with increasing success in routine 

analysis, thanks to their ability to identify the properties of samples at 

considerably reduced costs and times. They are characterized by their 

binary output – presence/absence, yes/no, etc. – according to a pre-set 
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threshold. Screening methods were first used in univariate analysis, 

which usually require specific measurement (i.e., test kits) [1]. More 

recently, screening methods have been developed for multiple 

measurements (i.e., analysis of different properties) or nonspecific 

signals (i.e., spectroscopic data). In these cases, proper multivariate data 

treatment is required if the output is to be binary. 

In the field of food, multivariate screening methodologies have increased 

in importance ever since it became important to detect anomalous 

samples as well as ensure quality and safety [2,3]. 

According to the literature, analytical and classification techniques have 

been successfully combined in food fraud in both adulteration [4–8] and 

authentication [9–12]. We recently reported a multivariate screening 

methodology based on two classification approaches for a food 

adulteration problem [13]. 

As any analytical method, multivariate screening has to be validated to 

be implemented as routine methods in control laboratories. This involves 

establishing performance parameters. However, validation protocols for 

qualitative methods are not as developed as quantitative methods. For 

qualitative methods, the main guide is established in the Commission 

Decision CD/657/EC 2002 [14]. Nevertheless, this CD/657/EC 2002 has 

been interpreted ambiguously, which has led to a confusion in the 

terminology [15]. 

Multivariate validation is not as well established as univariate validation. 

There is considerable consensus about the definition of such 

performance parameters as sensitivity and specificity [16] but no 

agreement has been reached about other related indexes [2,17,18]. In 

addition, while a positive output in univariate analysis means the 

‘presence of the analyte under study’, a positive output in multivariate 

analysis means that the ‘sample belongs to the pre-established model’. 
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Therefore, some performance parameters might have to be re-defined 

according to the compliance definition. 

The goal of the present study is to establish a strategy for validating a 

multivariate screening methodology based on a parametric classification 

technique. In the proposed strategy, the steps were the following: (1) 

Establish the classification model. We propose using receiver operating 

characteristic (ROC) curves to optimize the significance level (α) for 

setting the model’s boundaries. (2) Evaluate the performance 

parameters, some of which can be obtained directly from the output of 

the screening model. In this study, we propose using the performance 

characteristic curves (PCC curves) to obtain additional quality 

parameters such as the unreliability region and limits related to 

concentration (decision limit and detection capability). A hazelnut 

adulteration problem is considered as a case study. The price of 

hazelnuts depends on the market and can be reduced by adding such 

other ingredients as almond, because of its similarity, but other 

unexpected products might be added (for example, chickpea). 

ROC curves have been extensively described by Fawcett in 2006 [19]. 

They have mainly been used in such fields as biomedicine, clinical 

analysis and biometrics [20,21] to set the cut-off value of a test or to 

compare the performance of different tests. However, their application in 

the field of food is less extensive, and they are usually used to select 

variables in multivariate classification techniques [22–24]. 

PCC curves have mainly been used to obtain performance parameters 

other than the ones obtained by contingency tables in the quality 

characterization of univariate screening methodologies [18,25–27]. No 

references have been found in which PCC curves are used in 

multivariate screening validation. 
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This paper takes a further step in several aspects. Firstly, we use ROC 

curves to optimize the significance level (α) used to establish the 

boundaries of the model. This α value is usually set to 0.05 by default. 

Secondly, we propose to adapt PCC curves to a multivariate 

methodology, for the first time, when dealing with modelling classification 

techniques. 

2. Experimental 

2.1 Samples 

The unadulterated set is composed of 28 hazelnut pastes. Experience 

shows that the most common percentage of adulteration is around 7%. 

So, representative samples were selected and spiked with almond paste 

or chickpea flour at different levels (1– 8%) so that the PCC curves could 

be established. In total, there were around 13 adulterated samples at 

each adulteration level and for each adulterant studied. 

Additional details about hazelnuts, adulterants and sample preparation 

can be found in our previous study [13]. 

2.2 Instrumentation and software 

The spectra data was acquired by an infrared (IR) spectrophotometer 

(FTIR 680 Plus JASCO) equipped with a diamond crystal in the 

spectrophotometer ATR cell, which was continuously purged with N2. 

Spectra were the average of 32 scans, recorded in the spectral range of 

4000–600 cm-1 every 2 cm-1. The CO2 and H2O contributions were 

removed with the control software Spectra Manager before the spectra 

were exported to Matlab [28] and treated with PLS Toolbox [29]. 
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3. Strategy 

We propose a multivariate screening strategy based on one class 

approach, so only the unadulterated samples are modeled. Once the 

model is established, the performance parameters are evaluated. The 

algorithm used in the present work is soft independent modeling of class 

analogies (SIMCA), which has been widely applied for classification 

problems and it is of great interest whenever dealing with spectroscopic 

data since it is not influenced by working with collinear variables (highly 

correlated). 

SIMCA was introduced by Wold in 1976 [30]. It is a classification 

technique based on principal component analysis (PCA) that 

characterizes each sample in relation to the build model by calculating 

two scalar statistics, Q and the Hotelling T2. The Q-statistic is related to 

the amount of original information of each sample not included in the 

model whereas Hotelling T2 measures the information of each sample 

considered by the model. Like any parametric classification technique, 

some limits, Qlim and T2
lim, must be set to delimit SIMCA boundaries, 

which depend on the significance level (α) [31]. 

3.1 Screening output 

In a food adulteration problem such as the one being studied, the 

proposed multivariate screening methodology is used to establish a one-

class model since the main interest is to describe the compliant samples. 

Therefore, the one-class model was built with the unadulterated samples. 

From prediction step a binary output is obtained for each sample: positive 

(sample belongs to the model) or negative (sample does not belong to 

the model). Whether the output is positive or negative depends on the 

boundaries of the model, which depends on the significance level (α). For 

a given sample i, the decision criterion, (D), is defined according to: 
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Comparing actual data and output results, four responses are obtained 

which are organized in a contingency table (see Table 1). In the case 

under study, a true positive (TP) result is when a positive output is 

obtained from an actual unadulterated sample and a false positive (FP) 

result is when a positive output is obtained from an actual adulterated 

sample. In like manner, similar reasoning is followed for TN and FN. 

Table 2 shows some of the performance parameters that can be 

calculated from the contingency table results. As can be seen, sensitivity 

is defined as the ability of the model to recognize its own samples and 

specificity as the ability of the model to distinguish external samples. 

Both have a maximum value of 1 and a minimum of 0. False negative 

(FN) and false positive (FP) rates are related to sensitivity and specificity, 

respectively. Other parameters such as efficiency and Youden’s index 

assess the overall suitability of the model. Once more, there is some 

terminological confusion as, according to some authors, efficiency is 

referred to as accuracy [2,18]. 

Table 1.    2x2 Contingence Table. 

Predictions 
 Actual  

 Positive Negative 

Positive  TP FP 

Negative  FN TN 

TP, true positive; TN, true positive; 

FP, false positive; FN, false negative  
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Table 2. Description of the performance parameters. 

Sensitivity 
  

     
 

False negative (FN) rate 
(1-sensitiviy) 

  

     
 

Specificity 
  

     
 

False positive (FP) rate 
(1-specificity) 

  

     
 

Efficiency 
     

           
 

Youden’s index                              

3.2 Screening strategy 

The strategy for establishing the screening model is summarized on the 

left-hand side of Fig. 1. It consists of several steps: (1) Establish the 

SIMCA model and define its boundaries considering different significance 

levels (α); (2) obtain a contingency table at each α, according to the 

screening outputs; (3) calculate the specificity and the sensitivity at each 

α; (4) use ROC curves to select the optimal confidence limit (α) of the 

model that shows the best sensitivity and specificity values. 

ROC analysis is a comprehensive visual tool for summarising the relation 

between sensitivity and specificity. The ROC curves depict sensitivity 

against ‘1-specificity’ for each of the thresholds studied [19]. The 

theoretical curves are shown in Fig. 2a. They begin at (0, 0), which 

corresponds to (sensitivity = 0, specificity = 1), and end at (1, 1) 

indicating (sensitivity = 1, specificity = 0). The optimal threshold is the 

one that shows highest values for both sensitivity and specificity. The 

diagonal line (Fig. 2a(i)) is called the “chance diagonal”, which represents  
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Fig. 1. Scheme of the multivariate screening strategy 

 
Fig. 2. (a) Theoretical ROC curves showing increasing goodness (from i to iii), 

being (i) the worse one called the "diagonal chance line". (b) Theoretical 

PCC curve with 'Ƨ'shape. 
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the ROC curve with the same probability of classifying a sample as true 

positive and false positive.  The area under the curve (AUC) is frequently 

used to compare the overall performance of different curves. It is close to 

1 when it shows maximum classification ability (Fig. 2a(iii)), whereas the 

diagonal line (Fig. 2a(i)) indicates the minimum AUC = 0.5. 

3.3 Validation 

Once the model boundaries are established by setting the optimal α 

value, the final quality parameters are calculated according to Table 2 

and PCC curves (right-hand side of Fig. 1). 

Quality parameters such as unreliability region, decision limit (also 

referenced as threshold, cut-off, LOD and CCα [15]) and detection 

capability (CCβ), all of which are concentration parameters, can be 

estimated from the PCC curves. Their definition depends on the 

screening criteria (see Section 3.1). In the present study, the unreliability 

region is a concentration interval in which there is some probability of 

having false outputs. The decision limit is a concentration value below 

which the screening system will give a positive output with high 

probability. The detection capability is a concentration value from which 

the screening method gives negative outputs with highest reliability or 

smallest probability of error [14]. Finally, another interesting 

concentration value is the one from which the probability of getting a 

negative output (being true negative, TN) is higher than getting a positive 

output (being false positive, FP) [32]. 

To obtain the PCC curve, samples at different concentrations of 

adulterant have to be predicted by the SIMCA model. Then the rates of 

positive, p(x), and negative, n(x), outputs are calculated (both rates are 

related: n(x) = 1 - p(x)). The p(x)*100 values are plotted versus the 

concentration of adulterant, and the experimental points are fitted to a 
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sigmoid function, according to Eq. 1, minimizing the root mean square of 

the residuals (RMSE) [33]. 

     
 

         
                                  

This PCC curve has an ‘Ƨ’-shape from 1 to 0, where p(x) is the rate of 

having a positive output, x is the adulterant concentration, and a 

(amplitude of the curve) and b (slope) are the regression coefficients 

which are fitted to minimize the RMSE. 

Fig. 2b shows a theoretical PCC curve that corresponds to a screening 

system such as the one defined in Section 3.1. Once the curve has been 

plotted, to obtain the concentration limits two horizontal lines have to be 

drawn. The upper line is usually set at p(x) = 0.95 which corresponds to a 

FN rate of 0.05 (p(x) = 1 - FN (0.05) = 0.95). The intersection between 

the upper horizontal line and the sigmoid curve sets a limit on the 

concentration (x0.95). This is the decision limit (xDL = x0.95) since for 

concentration values lower than the xDL (x ≤ xDL) the rate of having a TP 

is ≥ 0.95, and the rate of having a FN decreases (lower than 0.05). 

Similar reasoning was used to set the bottom horizontal line at p(x) = 

0.05, which corresponds to a FP rate of 0.05 (p(x) = 0.05). Once more, 

the intersection between the bottom horizontal line and the sigmoid curve 

sets another concentration limit (x0.05) which is the detection capacity 

(xCCβ = x0.05) since for concentration values higher than the xCCβ (x ≥ xCCβ), 

the rate of positive outputs is lower than 0.05 (being FP) and the rate of 

negative outputs is higher than 0.95 (being TN). 

The concentration region in between these two limits (xDL < x < xCCβ) is 

the unreliability region and is the central part of the sigmoid curve where 

most of the screening errors occur. In Fig. 2b, a third concentration value 

(x0.5) has been marked because it is highly informative. This value 

corresponds to the concentration at which there is the same rate (0.50) of 
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having a positive output (being FP) than a negative one (TN). This value 

is in accordance with some of the definitions of limit of detection for 

qualitative methods [32]. 

Indeed, all three concentration limits can be calculated from Eq. 2, just by 

setting the value of p(x). 

       
   

 
    

   

 
                                  

where xlimit is the concentration limit (either decision, detection capability, 

etc.), p(x) is the rate of obtaining a positive output (usually set at 0.95, 

0.05 or 0.50) and a and b are the estimated sigmoid regression 

coefficients. 

Although the rates of committing errors are usually set by default to 0.05, 

they can be set according to other criteria. For instance, take into 

account the best sensitivity while having specificity above a predefined 

threshold; consider FN and FP misclassifications, among others. We 

propose to set them by taking into account the errors obtained from the 

model at optimal α, being, therefore, the upper horizontal line plotted at 

p(x) = 100 - FNα and the bottom horizontal line at p(x) = FPα. 

4. Results and Discussion 

4.1. Pre-processing 

A vertical offset correction was applied to original IR spectra to eliminate 

any vertical shift. It involves subtracting the absorbance at 3822 cm-1, 

where no peak is observed, from the absorbance at each wavenumber. 

Then, a Savitzsky–Golay smoothing [34] was applied to all data using a 

29 datapoint window and a second-order polynomial to suppress the 

instrumental noise. 
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Fig. 3 shows the corrected IR spectral data of whole samples. For clarity, 

the spectra of adulterated data have been shifted in the y-axis direction. 

As can be seen, some regions of the spectra show no peak. Keeping 

redundant spectral information can negatively affect the performance of 

the modeling step, so these variables were removed. The IR spectra, 

then, were reduced to the ranges 600–1864 cm-1 and 2630–3137 cm-1 

through visual variable selection, which involves 3673 final variables. 

 

Fig. 3. Corrected IR spectra data of unadulterated (i) and adulterated 

samples with almond (ii) and chickpea (iii). Vertical discontinuous 

lines mark out the ranges of the spectra that were removed. 

4.2. Screening strategy 

The model was built with unadulterated data and validated by leave-one-

out cross-validation (LOO-CV). The number of principal components 

needed to describe the model was chosen by plotting the percentage of 

correct classification as a function of the number of PCs. In our case, the 

model was developed on the basis of the first two PCs. 
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To obtain the contingency table data, the unadulterated samples and the 

samples adulterated with almond paste and chickpea flour were 

predicted. Since the expected adulteration level is around 7%, the first 

part of this study was performed using samples with adulteration levels of 

6, 7 and 8%, giving a total number of 38 and 41 samples adulterated with 

almond and chickpea, respectively.  

ROC curves were established for each adulterant (plot not shown). 

Experimental data are obtained by setting α value from 0.90 to 0.10 in 

tenth and from 0.09 to 0.01 in hundredth. The AUCs of the ROC curves 

were close to 1 in both cases (0.9736 and 0.9728 for almond and 

chickpea, respectively), which is almost the ideal behavior. 

Table 3 summarized the performance parameters obtained for α value 

between 0.09 and 0.01, as this is the region of interest. Generally 

speaking, maximum values for both sensitivity and specificity are sought 

but, in practice, a compromise has to be reached as it is not usually 

possible to obtain an α value with a maximum value for both parameters. 

When dealing with a hazardous contaminant, specificity is obviously the 

key point since the main goal is not to consider an adulterated sample to 

be unadulterated. In our case, as we are dealing with an adulterant that 

only has economic implications, the global performance parameters 

could be useful for the final decision. 

For almond, the performance parameters were best, with very slight 

differences, with α = 0.03 or α = 0.02 (indicated in bold). For chickpea, 

the performance parameters were best with α = 0.09–0.06 or α = 0.03 

(indicated in bold). So, taking into account the four parameters 

considered, α = 0.03 is our choice in both cases. Note that the value of 

the performance parameters is slightly different and the end user could 

use other criteria to set the α value. 
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Table 3. Performance values obtained at different α values. Bold 

values correspond to the discussed values being the 

underlined the ones chosen. 

Threshold  
(α value) 

Almond 

Sensitivity Specificity Efficiency Youden’s Index 

0.10 0.82 1.00 0.92 0.82 

0.09-0.06 0.86 1.00 0.94 0.86 

0.05-0.04 0.86 1.00 0.94 0.86 

0.03 0.93 1.00 0.97 0.93 

0.02 0.96 0.95 0.95 0.91 

0.01 0.96 0.92 0.94 0.88 

     

Threshold  
(α value) 

Chickpea    

Sensitivity Specificity Efficiency Youden’s Index 

0.10 0.82 1.00 0.93 0.82 

0.09-0.06 0.86 1.00 0.94 0.86 

0.05-0.04 0.86 0.98 0.93 0.84 

0.03 0.93 0.98 0.93 0.91 

0.02 0.96 0.90 0.88 0.86 

0.01 0.96 0.80 0.83 0.76 

4.3. Validation 

Once the boundaries of the model had been set to α = 0.03, the final 

performance parameters were the ones underlined in Table 3. Obviously, 
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sensitivity is the same for both adulterants as it depends on the type of 

sample used to build the model (unadulterated). The other performance 

parameters, which depend on the external samples (adulterated), have 

similar values, indicating that the adulterant type does not matter. 

Considering that quality performance ability of the model is the goal, we 

try to fit the PCC curve with both adulterant outputs. We have proposed 

setting the p(x) values, at which the horizontal lines on the PCC curve 

should be drawn (Fig. 2b), from the estimated parameters (Table 3). In 

our case, the FN rate (1 - sensitivity) was 0.07, so the upper horizontal 

line should be drawn at p(x) = 1 - FN (0.07) = 0.93. The FP rate obtained, 

however, was slightly different for each adulterant and we propose to 

take the less restrictive value, so the horizontal line should be drawn p(x) 

= 0.02. 

In the case under study, the percentage of positive outputs was 93% for 

the unadulterated samples (0% of adulterant) and 0% for samples at the 

lower level of adulterant studied (1% of adulterant). The same tendency 

is observed for higher percentages of adulterant (from 2 to 8%) present 

in the hazelnuts samples (p(x) values close to 0). With that experimental 

data, it makes no sense trying to fit a PCC curve, since p(x) should 

gradually decrease from 100% to 0% as the percentage of adulterant 

increases. Several points in between are required, therefore, additional 

points should be analyzed for a proper definition of the PCC curve. From 

a practical point of view, again in that particular case, it makes no sense 

to experiment at very low percentages of adulterant and in a narrow 

interval, since the economic impact might not be significant. This fact 

agrees with the characteristics of the developed multivariate screening 

model which has very high values for both, sensibility and specificity 

(Table 3). As it has been shown, as far as the percentage of adulterant 

decreases, the specificity still has very high values. 
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5. Conclusions 

In the validation of a multivariate screening methodology based on one-

class modeling, it has to be taken into account that the positive (or 

negative) output might have to be re-defined according to the compliance 

definition. Usually, in a univariate approach, positive output always 

means “presence of analyte” while in the multivariate approach it 

depends on the class modeled. For instance, if the class modeled 

corresponds to an unadulterated situation, positive output means “no 

presence of adulterant”. 

ROC curves have proved to be a useful tool for setting the significance 

level (α) required for establishing the model boundaries. They give the 

end user the chance to optimize the model boundaries in accordance 

with the best performance parameters thus giving more importance to 

sensitivity or specificity depending on the problem under study.  

PCC curves (well known in univariate approaches) have been used to 

calculate some performance parameters in a multivariate methodology. 

This allows calculating the performance parameters of concentration 

(decision limit, detection capability and unreliability region). There is no 

other way of doing so. Two points should be mentioned: there is no 

agreement on the definition of those concentration limits and the shape 

of the PCC curve might change according to the positive output 

definition. 

The proposed screening strategy to determine adulteration in hazelnut 

paste allows choosing the α value to set the model’s boundaries. In our 

case, the traditional α value set to 0.05 was not the best option. Instead, 

higher sensitivity and specificity were obtained by reducing the 

significance level to α = 0.03. This underlines the importance of this step. 

From a practical point of view it has not been possible to fit a PCC curve 
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because the specificity is very high for any studied percentage of 

adulterant. 
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CHAPTER 5 

General conclusions 
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This chapter summarises the main conclusions of the work developed in 

this doctoral thesis. Specific conclusions drawn from each individual 

study are presented at the end of the corresponding research paper.  

This thesis deals with multivariate qualitative methodologies to detect 

food fraud. The general goals and therefore its conclusions, cover the 

different steps in a multivariate qualitative methodology: (1) data source: 

studies working with different spectroscopic techniques have been 

presented: NIR, IR and SERS spectroscopies; (2) classification models: 

studies working with different classification techniques (SIMCA, UNEQ, 

OCPLS and PLS-DM) as well as different strategies (targeted and 

untargeted) have been assessed; (3) method validation: a validation 

proposal for multivariate qualitative methodologies has been presented 

indicating the way to estimate the performance parameters. 

The specific objectives described in Chapter 1 and the conclusions 

associated to them are the following: 

1. To evaluate Raman signal in the Surface-enhanced Raman 

spectroscopy (SERS) modality for its use in multivariate approaches.  

The characterisation of the SERS support shows the high potential of 

SERS technique in the qualitative and quantitative analysis, meaning that 

it can be regarded as a good alternative or as a complement to other 

spectroscopic techniques. In our work, the complete figures of merit have 

been established, which it is rarely performed when working with SERS 

technique. This constitutes just a mid-step for the final goal, which aims 

for multivariate analysis. 

Regarding its application as multivariate qualitative analysis to check 

adulteration of Sudan in spices (i.e., mild and hot paprika), some 
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reproducibility problems were found when dealing with real samples. Our 

group is working to solve them, considering SERS hyperspectral imaging 

modality as data source for the multivariate qualitative purposes. 

2. To develop multivariate qualitative methods based on untargeted 

modelling. 

The classification models developed in this thesis have given suitable 

results, making possible to detect food fraud, either authentication or 

adulteration. The new developed classification technique (PLS-DM) has 

shown to be successful when dealing with complex class distribution 

(class heterogeneity). 

Untargeted (or one-class) approach has shown to be a useful approach 

either if the analyst is focused on characterizing only one category or if 

only samples from one of the categories can be representatively 

collected. Samples that are non-compliant with the modelled 

requirements (adulterated) are suitably detected regardless the 

adulteration source.  

By contrast, targeted (or multi class) modelling provides information that 

otherwise would not be available. If an adulteration source is known as 

probable, it can be controlled by modelling this class whether a non-

compliant sample contains this specific adulterant. 

3. To establish validation protocols for multivariate qualitative analysis in 

accordance with the indications of the European directives and to 

calculate the performance parameters associated with them. 

An attempt to clarify the terminology regarding qualitative method 

validation in accordance with international and official definitions has 
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been presented, considering both univariate and multivariate 

approaches.  

The key steps in a multivariate method validation have been described, 

introducing the performance parameters that involve quantitative 

information (unreliability region and concentration limits). Our proposal 

has addressed the estimation of those parameters by means of the 

performance characteristic curves, which represent a novelty in 

multivariate analysis. In this regard, it brings multivariate qualitative 

analysis closer to the performance parameters that international 

directives propose to be set.  

As a final conclusion, this thesis has presented several methodologies 

that can be extrapolated to other analytical applications (environmental, 

biological, etc.) and can be implemented by using other analytical 

techniques, instrumental modalities and classification techniques. 
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Appendix A: Summary of Main 
Abbreviations 

Chemometrics 

  
CV Cross-Validation 

LDA  Linear Discriminant Analysis 

LOO-CV Leave-One-Out Cross-Validation 

LV  Latent Variable 

OCPLS One-Class Partial Least Squares 

PC Principal Component 

PCA  Principal Component Analysis 

PFM Potential Functions Method 

PLS Partial Least Squares 

PLS-DA Partial Least Squares Discriminant Analysis 

PLS-DM Partial Least Squares Density Modelling 

SIMCA Soft Independent Modelling Of Class Analogies 

UNEQ Unequal Dispersed Classes 

  Instrumentation 

  
FTIR-ATR Fourier Transform Infrared Spectroscopy Attenuated Total Reflection 

FT-NIR Fourier Transform Near-Infrared Spectroscopy 

IR Infrared Spectroscopy 

NIR Near-Infrared Spectroscopy 

SERS Surface-Enhanced Raman Spectroscopy 

  Quality Performance 

  
CCβ Detection Capability  

FN False Negative 

FP False Positive 

LOD Limit of Detection 

N(x) Negative Response Rate 

P(x) Positive Response Rate 

PCC Performance Characteristic Curves 
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ROC Receiver Operating Characteristic  

TN True Negative 

TP True Positive 

DL Decision Limit  
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 Papers presented by the author in this thesis 
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Chemistry, 147 (2014) 177-181. 
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Medini, S. Lanteri Partial least squares density modeling (PLS-DM) – a 
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Appendix C: Meeting Contributions 

 Oral Communications 

M.I. López, M.P. Callao, I. Ruisánchez 

Untargeted versus targeted modelling in a food adulteration problem. 

VIII Colloquium Chemiometricum Mediterraneum, Bevagna (Italy, 2013) 

M.I. López, N. Colomer, I. Ruisánchez, M.P. Callao 

Validation of screening multivariate methodology for testing 

adulteration. V Workshop Quimiometría, Badajoz (Spain, 2013) 

P. Oliveri, M.I. López, M.C. Casolino, S. Lanteri, L. Medini 

Authentication of Taggiasca olives in brine by application of a novel 

PLS-based class-modelling method on NIR spectra. XXV Congresso 

Nazionale della Società Chimica Italiana, Calabria (Italy, 2014) 

 Poster Communications 

M.I. López, N. Colomer, I. Ruisánchez, M.P. Callao 

Food adulteration study by a multivariate screening approach. XVIII 

Reunión de la Sociedad Española de Química Analítica, Jaén (Spain, 

2013) 

P. Oliveri, M.I. López, M.C. Casolino, L. Bagnasco, S. Lanteri, L. 

Medini 

Near infrared characterisation of Taggiasca olives in brine by a PLS-

based class-modelling method. VI Simposio Italiano Di Spettroscopia 

Nir, Modena (Italy, 2014) 
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Appendix D: Research stay and training 
courses 

 Research stay 

Genoa (January - April 2014) 

Objective: Development and application of new chemometric tools for class-
modelling problems. Supervised by Dr. Paolo Oliveri 

University of Genoa, Department of Drug and Food Chemistry and 

Technology, Via Brigata Salerno, 13, I-16147 Genoa, Italy. 

 

 Training courses 

Herramientas quimiométricas para PAT, June 2012.  

University of Barcelona, Chemistry Faculty, Diagonal, 645. 08028 

Barcelona, Spain. 

Scuola di Chemiometria, January 2014. 

University of Genoa, Department of Drug and Food Chemistry and 

Technology, Via Brigata Salerno, 13, I-16147 Genoa, Italy. 
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<< It was a wonderful tree that promised exquisite and 

generous fruits. Certainly, it gave the best of itself. >> 

Everyone plays a part 
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