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A special mention should go also to researchers from different places with
whom I had the opportunity to collaborate: Waldo Nogueira, Massimiliano
Zanin, Sergio Toral.

Finally, infinite thanks to Anna Xambó, who helped me in more ways than
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Abstract
The rapid adoption of Internet and web technologies has created an op-
portunity for making music collaboratively by sharing information online.
However, current applications for online music making do not take advan-
tage of the potential of shared information. The goal of this dissertation is
to provide and evaluate algorithms and representations for interacting with
large audio databases that facilitate music creation by online communities.
This work has been developed in the context of Freesound, a large-scale,
community-driven database of audio recordings shared under Creative Com-
mons (CC) licenses. The diversity of sounds available through this kind of
platform is unprecedented. At the same time, the unstructured nature of
community-driven processes poses new challenges for indexing and retriev-
ing information to support musical creativity. In this dissertation we pro-
pose and evaluate algorithms and representations for dealing with the main
elements required by online music making applications based on large-scale
audio databases: sound files, including time-varying and aggregate rep-
resentations, taxonomies for retrieving sounds, music representations and
community models. As a generic low-level representation for audio signals,
we analyze the framework of cepstral coefficients, evaluating their perfor-
mance with example classification tasks. We found that switching to more
recent auditory filter such as gammatone filters improves, at large scales, on
traditional representations based on the mel scale. We then consider com-
mon types of sounds for obtaining aggregated representations. We show
that several time series analysis features computed from the cepstral co-
efficients complement traditional statistics for improved performance. For
interacting with large databases of sounds, we propose a novel unsupervised
algorithm that automatically generates taxonomical organizations based on
the low-level signal representations. Based on user studies, we show that
our approach can be used in place of traditional supervised classification
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approaches for providing a lexicon of acoustic categories suitable for cre-
ative applications. Next, a computational representation is described for
music based on audio samples. We demonstrate through a user experiment
that it facilitates collaborative creation and supports computational analy-
sis using the lexicons generated by sound taxonomies. Finally, we deal with
representation and analysis of user communities. We propose a method for
measuring collective creativity in audio sharing. By analyzing the activity
of the Freesound community over a period of more than 5 years, we show
that the proposed creativity measures can be significantly related to social
structure characterized by network analysis.



Resumen

La rápida adopción de Internet y de las tecnoloǵıas web ha creado una
oportunidad para hacer música colaborativa mediante el intercambio de
información en ĺınea. Sin embargo, las aplicaciones actuales para hacer
música en ĺınea no aprovechan el potencial de la información compartida.
El objetivo de esta tesis es proporcionar y evaluar algoritmos y representa-
ciones para interactuar con grandes bases de datos de audio que faciliten
la creación de música por parte de comunidades virtuales. Este trabajo ha
sido desarrollado en el contexto de Freesound, una base de datos de graba-
ciones sonoras compartidos bajo licencia Creative Commons (CC) a gran
escala, impulsada por la comunidad de usuarios. La diversidad de sonidos
disponibles a través de este tipo de plataforma no tiene precedentes. Al
mismo tiempo, la naturaleza desestructurada de los procesos impulsados
por comunidades plantea nuevos retos para la indexación y recuperación de
información en apoyo de la creatividad musical. En esta tesis proponemos y
evaluamos algoritmos y representaciones para tratar con los principales ele-
mentos requeridos por las aplicaciones de creación musical en ĺınea basadas
en bases de datos de audio a gran escala: archivos de sonido, incluyendo
representaciones temporales y agregadas, taxonomı́as para buscar sonidos,
representaciones musicales y modelos de comunidad. Como representación
de bajo nivel genérica para señales de audio, se analiza el marco de los
coeficientes cepstrum, evaluando su rendimiento en tareas de clasificación.
Encontramos que el cambio a un filtro auditivo más reciente como los filtros
de gammatonos mejora, a gran escala, respecto de las representaciones tradi-
cionales basadas en la escala mel. Después consideramos tres tipos comunes
de sonidos para la obtención de representaciones agregadas. Se demuestra
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que varias funciones de análisis de series temporales calculadas a partir de los
coeficientes cepstrum complementan las estad́ısticas tradicionales para un
mejor rendimiento. Para interactuar con grandes bases de datos de sonidos,
se propone un nuevo algoritmo no supervisado que genera automáticamente
organizaciones taxonómicas basadas en las representaciones de señal de bajo
nivel. En base a estudios con usuarios, mostramos que nuestro enfoque se
puede utilizar en lugar de los sistemas tradicionales de clasificación super-
visada para proporcionar un léxico de categoŕıas acústicas adecuadas para
aplicaciones creativas. A continuación, se describe una representación com-
putacional para música creada a partir de muestras de audio. Demostramos,
a través de un experimento con usuarios, que facilita la creación colabora-
tiva y posibilita el análisis computacional usando los léxicos generados por
las taxonomı́as de sonido. Finalmente, nos centramos en la representación
y análisis de comunidades de usuarios. Proponemos un método para medir
la creatividad colectiva en el intercambio de audio. Mediante un análisis de
la actividad de la comunidad Freesound durante un periodo de más de 5
años, se muestra que las medidas propuestas de creatividad se pueden rela-
cionar significativamente con la estructura social descrita mediante análisis
de redes.



Resum

La ràpida adopció d’Internet i de les tecnologies web ha creat una oportu-
nitat per fer música col·laborativa mitjançant l’intercanvi d’informació en
ĺınia. No obstant això, les aplicacions actuals per fer música en ĺınia no
aprofiten el potencial de la informació compartida. L’objectiu d’aquesta
tesi és proporcionar i avaluar algorismes i representacions per a interactuar
amb grans bases de dades d’àudio que facilitin la creació de música per part
de comunitats virtuals. Aquest treball ha estat desenvolupat en el context
de Freesound, una base de dades d’enregistraments sonors compartits sota
llicència Creative Commons (CC) a gran escala, impulsada per la comu-
nitat d’usuaris. La diversitat de sons disponibles a través d’aquest tipus
de plataforma no té precedents. Alhora, la naturalesa desestructurada dels
processos impulsats per comunitats planteja nous reptes per a la indexació
i recuperació d’informació que dona suport a la creativitat musical. En
aquesta tesi proposem i avaluem algorismes i representacions per tractar
amb els principals elements requerits per les aplicacions de creació musi-
cal en ĺınia basades en bases de dades d’àudio a gran escala: els arxius
de so, incloent representacions temporals i agregades, taxonomies per a
cercar sons, representacions musicals i models de comunitat. Com a rep-
resentació de baix nivell genèrica per a senyals d’àudio, s’analitza el marc
dels coeficients cepstrum, avaluant el seu rendiment en tasques de classifi-
cació d’exemple. Hem trobat que el canvi a un filtre auditiu més recent com
els filtres de gammatons millora, a gran escala, respecte de les representa-
cions tradicionals basades en l’escala mel. Després considerem tres tipus
comuns de sons per a l’obtenció de representacions agregades. Es demostra
que diverses funcions d’anàlisi de sèries temporals calculades a partir dels
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coeficients cepstrum complementen les estad́ıstiques tradicionals per a un
millor rendiment. Per interactuar amb grans bases de dades de sons, es
proposa un nou algorisme no supervisat que genera automàticament or-
ganitzacions taxonòmiques basades en les representacions de senyal de baix
nivell. Em base a estudis amb usuaris, mostrem que el sistema proposat es
pot utilitzar en lloc dels sistemes tradicionals de classificació supervisada
per proporcionar un lèxic de categories acústiques adequades per a aplica-
cions creatives. A continuació, es descriu una representació computacional
per a música creada a partir de mostres d’àudio. Demostrem a través d’un
experiment amb usuaris que facilita la creació col·laborativa i dóna suport
l’anàlisi computacional usant els lèxics generats per les taxonomies de so.
Finalment, ens centrem en la representació i anàlisi de comunitats d’usuaris.
Proposem un mètode per mesurar la creativitat col·lectiva en l’intercanvi
d’àudio. Mitjançant l’anàlisi de l’activitat de la comunitat Freesound du-
rant un peŕıode de més de 5 anys, es mostra que les mesures proposades
de creativitat es poden relacionar significativament amb l’estructura social
descrita mitjançant l’anàlisi de xarxes.
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Chapter 1

Introduction

Information and communication technologies keep rapidly transforming the
way we create and enjoy music. Current usage patterns make it possible
to support online collective creation of music based on large-scale audio
databases. This thesis aims to provide the computational framework to
model and support this practice, making it available to people with the
most diverse backgrounds.

1.1 Motivation

Our approach is motivated first in the current context of change in the social
habits and structures related with music creation and appreciation. Second,
we analyze the continued shift towards networked technologies, which re-
flects in the increased support for connectivity in music creation tools. In
this context, we consider the existing practice of sharing audio clips under
Creative Commons (CC) licenses as an opportunity for supporting collabo-
rative music creation based on information sharing.

1.1.1 Social context

During the last decades, the music business has changed dramatically. The
recording industry had emerged from technical advances that allowed music
to be recorded, packaged and distributed. These technological advances in-
troduced many changes in how music was produced. For one, they changed
the distribution of roles in music production, introducing new ones such as
the producer or the engineer, and modifying the concept of authorship in
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2 introduction

popular music. For another, they fostered the evolution of new forms of mu-
sic that would not have been possible before, and radically changed existing
ones. In the same way, the evolution and adoption of new technologies,
mainly the generalization of Internet access, rendered the business of physi-
cal distribution of recorded music obsolete. While in the past cassette tapes
allowed music listeners to duplicate and distribute music recordings, a turn-
ing point occurred when home duplication of digital CDs became cheaper
(and then much cheaper) than the acquisition of commercial copies. Once
most people connected to the Internet, the cost of duplication of digital mu-
sic files became virtually zero. Thus, business models that try to continue
with the idea of assigning a value to copies of the original recording are
generally disappearing. At the same time, the renewed popularity of vinyl
signals the loss in tangibility that music lovers have perceived in the new
regime, which seems to indicate that the revolution has not finished.

It can be expected that these technology-driven changes will also result in a
new distribution of roles in music creation, as well as in new forms of music.
Given the large amount of people interested in music creation, the division
between professionals and amateurs, which was mainly supported by the
business model of the recording industry, has become blurry. This change
can also be observed in other media, where participatory genres have be-
come increasingly successful. Many television programs now involve and/or
focus on common people rather than professional actors or journalists. In
this context, it may be expected that, in a foreseeable future, music pro-
duction and music consumption will be more intermingled. As the audience
becomes more active and participatory, an opportunity exists for music that
is no longer delivered as a finished product, but is created and appreciated
collectively as it evolves. This idea can be seen as a (perhaps less solitary)
reminiscence of Jaques Attali’s utopian concept of Composition, as the stage
(network) that follows Repetition (the period dominated by the recording
industry):

Finally, we can envision one last network, beyond exchange, in
which music could be lived as composition, in other words, in
which it would be performed for the musician’s own enjoyment,
as self-communication, with no other goal than his own pleasure,
as something fundamentally outside all communication, as self-
transcendence, a solitary, egotistical, noncommercial act. In this
network, what is heard by others would be a by-product of what
the composer or interpreter wrote or performed for the sake of
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hearing it, just as a book is never more than a by-product of
what the writer wrote for the sake of writing it. (Attali, 1985)

1.1.2 Technological context

The idea of using Internet connections to enhance collaboration in music
production is certainly not new. It has been tested in many ways both in
engineering and artistic domains. During the 90s, Digital Audio Worksta-
tions (DAWs) took over the task of recording and producing music, and
hard disks replaced analog and digital tapes. The interface of these DAWs
combined the “piano roll” interface, that had been used for editing MIDI
scores, with the multi-track digital audio editor inspired by tapes. Virtual
instruments and effects could be added to each track, and an interface re-
sembling hardware mixers was used for mixing tracks to the delivery format.
This common environment allowed different levels of involvement with the
possibilities of computer music, from the recording and mixing of acous-
tic instruments to music that was generated exclusively by computational
means. However, computer workstations were designed for a single user.
When Internet connections became available, attempts to add connectiv-
ity to DAWs were made, but failed to attract a significant user base. An
example of it is the history of the company Rocket Networks1.

As Internet has become more and more prevalent in most people’s daily life,
such attempts have re-emerged. Examples include the addition of networked
collaboration to Ableton Live2, a very popular DAW for audio-based cre-
ation, or the recently released Ohm studio3. One common feature of these
programs is that they preserve the same interface and representation that
served the single-user case. Social organization in collaborative DAWs is
often limited to having tracks contributed by different authors. Also, some
of the mentioned programs can render sections to non-editable clips that
can be shared. However, the general idea of enforcing tracks limits the pos-
sibilities for sharing music fragments, for instance, by forcing that all effects
and instruments are assigned to a given track for the whole project. Thus,
the notion of tracks perpetuates the division of labour inherited from tradi-
tional instrument-based music, where each musician is expected to produce
a sound stream. In this thesis, we propose a greater emphasis on supporting
multiple hierarchical levels in music composition, allowing different levels of

1http://www.jamwith.us/about_us/rocket_history.shtml
2http://www.ableton.com
3http://http://www.ohmstudio.com

http://www.jamwith.us/about_us/rocket_history.shtml
http://www.ableton.com
http://http://www.ohmstudio.com
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collaboration. Large-scale online information sharing and remixing (also
known as “peer production” (Benkler, 2006)) is a relatively recent practice
that has not been fully studied. Thus, our work does not focus on specific
collaboration workflows, but on algorithms and representations that can be
used to support many different models of collaborative music creation.

Another trend has been the development of web-based music creation. Dur-
ing many years, web browsers have been very limited with respect to audio
and video, and relied on third-party plug-ins. The situation contrasts with
the level of standardization of HTML and Javascript, which supported the
rapid evolution of web application development. More recently, some func-
tionality for low level audio processing (necessary for the development of
music creation applications) was added to the Adobe Flash platform. A
more comprehensive API for audio has been developed by the W3C stan-
dards body during the development of this thesis, and an implementation
is already available in several web browsers (Adenot et al., 2013). These
developments will allow leveraging the specific affordances of web applica-
tions that have become prevalent (e.g. relying on shared storage, as well as
social and collaborative functionalities) for music creation.

Finally the potential of smartphones and tablets for music creation has
generated great expectations. In these platforms, programs that rely on
network services behave similarly to web applications: interaction is often
determined by the rhythm of the HTTP requests and responses. Mobile
apps take advantage of multi-touch screens and other sensors available in
current smartphones. However, since it is generally simpler to sell client-
only products, sharing is often limited to emailing your creations. In some
cases, music creations can be shared through centralized storage, but the
possibility of remixing existing compositions is rare. Due to the limitations
in current mobile interfaces, mobile music applications are still regarded as
mere toys by some users, but this situation is rapidly changing.

One important factor in the increased usage of Internet technology has been
reliance on centralized storage. In recent times, the storage aspect of “cloud
computing” has become mainstream and accepted to some extent by a large
portion of computer (and especially smartphone and tablet) users. The op-
position of centralized vs distributed (e.g. peer-to-peer) storage can be seen
as a political one. This is especially true when centralized storage gives
one party (typically a big company) the power to control and leverage the
data. However, few people doubt about the need of centralized storage for
many applications, especially for sharing data asynchronously. It would be
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very difficult to imagine the world today without commodities such as web
search engines. In this thesis, we focus on a specific model of centralized
storage inspired by CC licenses, as implemented in Freesound. This site,
created in 2005 in the context of the International Computer Music Con-
ference (ICMC) has grown to become perhaps the most popular source of
audio clips for music and media creators. Users from around the world
upload recordings of the most diverse kind, along with textual descriptions
that allow other users to easily find any sound they can imagine. Freesound
was developed and keeps to be maintained at the Music Technology Group
of Universitat Pompeu Fabra, where this thesis has been developed. The
community of the site has always been at the center of any policy, and users
retain the intellectual property of the content they upload (as per the CC
license). It should be noted that many possibilities of social organization
exist for centralized storage technologies. Some centralized resources such
as web forums, emerge in a bottom-up fashion, and some achieve very large
scales. Others are supported by start-up or established companies. Large
audio repositories can also be used privately by music groups or collectives.

Our point of departure is then a large, shared database of audio clips. In
this thesis we propose algorithms and data representations that allow ex-
ploring the possibilities of such resource for collective music creation. Per-
haps the most useful developments that can be exploited for this purpose
come from Information Retrieval, and particularly Audio Information Re-
trieval. However, the focus on music creation requires attention to many
aspects that are not usually considered in this discipline. We will then use a
multidisciplinary approach, with inputs from Human-Computer Interaction,
Computer Music, and Computational Creativity research.

1.1.3 Audio as music material

The idea of using recordings as material for music creation was formu-
lated by many artists and composers shortly after the popularization of the
phonograph. As an example, hungarian artist Lázsló Moholy-Nagy specu-
lated about producing music by direct inscription on wax discs as early as
1922 (Cox and Warner, 2004). Shortly after, in 1932, Rudolph Pfenninger
had developed a technique for drawing sound waves on film (Levin, 2003).
In 1936, Rudolph Amheim wrote:

The rediscovery of the musicality of sound in noise and in lan-
guage, and the reunification of music, noise and language in or-
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der to obtain a unity of material: that is one of the chief artistic
tasks of radio (Battier, 2007).

The actual implementation of a music based on recordings is usually at-
tributed to Pierre Schaeffer and the development of Musique Concrète. By
cutting and splicing magnetic tape, the idea of making music out of existing
recordings became practical. However, as demonstrated by Schaefer’s writ-
ings, a systematic account of the new possibilities comparable to existing
musical theory proved to be a complex issue (Chion, 1983).

Perhaps the most characteristic aspect of making music with existing record-
ings is that, unlike with other electronic means, such as synthesizers, one
deals with a rigid medium, which tends to preserve its own acoustic quali-
ties. At the same time, the recording affords the perception of a “unity of
material”, which allows thinking of music as a discourse, not unlike text or,
nowadays, digital video4. The specific affordances and constraints of au-
dio as a material have characterized many musical genres, such as hip-hop
or plunderphonics. With the evolution of digital technologies, audio sam-
pling has become just another tool in the palette of the electronic musician.
However, the use of audio keeps signaling a certain change with respect to
authorship and creativity. The different attitudes of musicians that face
the authorship dilemma in the use of recorded audio (particularly when
recorded by someone else or including sounds produced by someone else)
could be classified in the following categories:

• Solipsism: the musician refuses to use any work that is not produced
by herself. This attitude can be associated to a romantic view of
creativity, where the artist is a creator that produces music out of
nothing.

• Extreme transformations: the musician processes the samples up to
the point that the original would be impossible to recognize. The
result can be considered her own work by the choice of the transfor-
mations.

• Collage/citation: the use of recognizable samples with some degree of
musical elaboration is accepted and the original author credited. This
attitude is often associated with collage aesthetics.

4The idea of Remix as discourse has been recently investigated in the context of digital
humanities (Navas, 2012)
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• Anti-copyright activism: recognizable copyrighted music samples are
used very explicitly as a way to criticize copyright law.

• Plagiarism: another author’s work is used without credit or publicity,
sometimes as a way to obtain an economic benefit.

In the end, the use of audio affords, perhaps more than other music creation
techniques, a certain social perspective on musical creativity. A musician
using a digital drum machine is effectively using a sample designed by some-
one else. This can extend to more sophisticated presets in digital instru-
ments. Thus, the difference between using a digital instrument and using a
sound downloaded from a website such as Freesound is not a difference in
authorship but merely a licensing issue.

1.2 Aim of this thesis

The concept of “Remix Culture” has been proposed notably, among others,
by Lawrence Lessig as a framework that permits and encourages derivative
works. With the design of CC licenses, Lessig provided the tools for such
culture to coexist with the current dominant culture, based on strict copy-
right laws. In Remix (Lessig, 2008), the concept was generalized to the idea
of Read-Write (RW) culture, as opposed to Read-Only (RO) culture, and
the world wide web, as originally designed by Tim Berners-Lee for sharing
text documents, is described as an example of RW culture. Our aim is
to help towards achieving a similar support for RW culture in the case of
audio-based music.

Remix based on audio affords an inclusive framework, where very little back-
ground is necessary in order to start being creative. This contrasts with
classical music training, where the student needs several years of training
in order to be considered a valid interpreter of the work of established com-
posers. While the democratization of composition may seem an aberration
to some, this idea is hardly new, and can be easily related to evolution of
popular music. The perspective depends probably (once more) on what one
considers as “composition”:

In the Andaman Islands everyone composes songs, and children
begin to practice themselves in the art of composition when they
are still young. A man composes his as he cuts a canoe or a bow
or as he paddles a canoe, singing it over softly to himself, until
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he is satisfied with it. He then awaits an opportunity to sing it
in public, and for this he has to wait for a dance. . . . He sings
his song, and if it is successful he repeats it several times, and
thereafter it becomes a part of his repertory. If the song is not
successful, the composer abandons it and does not repeat it.
(Radcliffe-Brown, 1948) ap. (Attali, 1985)

Current practices in sharing recordings, such as in Freesound, provide an
opportunity for online, audio-based, collective composition. An online com-
munity dedicated to composing and sharing music creations can be seen as
a Community of Practice (Lave and Wenger, 1991; Johnson, 2001), where
novices progress by learning from experts based on a shared interest.

Our aim is then to use and adapt techniques from information retrieval to
the case of creative applications under this perspective. This includes differ-
ent levels of musical elaboration, as well as user information. Particularly
we distinguish three levels of information:

• Sound objects are samples that can be used as musical building blocks.

• Music fragments are, in the context of this thesis, groups of sound
objects organized using some specific computational representation.

• Music creation communities are groups of users who create and share
sounds and music fragments.

1.3 Thesis outline

The structure of this thesis follows the different kinds of information re-
quired for the aim of supporting online remix communities.

Chapter 2 reviews existing literature related with the aims of the thesis.
First, it introduces the field of network music, with an emphasis on the web
as a music creation platform. After an introduction to audio clip databases
it summarizes relevant developments in audio retrieval that are relevant
in order to leveragie these platforms for online music creation. Then it
discusses existing approaches to music representation in computers, with
an emphasis on grammars and support for nested structures. The chapter
ends with a review of some models of collective creativity that have appeared
in different domains.
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In Chapter 3, we describe several approaches for indexing and retrieval
of different kinds of audio samples. We deal specifically with the case of
“unstructured” data, this is, audio data accumulated collectively without a
predefined editorial process. We analyze representations based on analysis
of the audio spectrum, and their summarization for dealing with the three
main kinds of recordings that can be found in online databases: long field
recordings, sound events and musical loops.

In Chapter 4, we describe both supervised and unsupervised machine learn-
ing approaches that can automatically produce taxonomical organizations
of sounds with little or no textual information about what they contain.
The described technologies can be used for leveraging large audio databases
in online music creation.

In Chapter 5, we propose a representation for music artifacts as assemblages
of audio samples, suitable for analysis and generation of music in web envi-
ronments. We describe the framework of graph grammars as the foundation
for this representation, and the algorithms that can be used for detecting
frequent patterns.

In Chapter 6 we describe initial work towards designing for collective cre-
ativity in communities of practice based on sharing audio. We present a
study based on the Freesound community that demonstrates the potential
of complex network analysis for understanding the creative outcome of a
community. We propose automatic measures derived from computational
creativity models as guidance for the design and evaluation of software
intended to support music creation communities, and show they can be
predicted by analyzing their activities.

Chapter 7 concludes with some reflections about the potential and chal-
lenges involved in the proposed use case, and enumerates the novel contri-
butions of this thesis.





Chapter 2

Background

2.1 Overview

The aim of supporting collective music creation on the basis of shared audio
requires input from a number of disciplines. This chapter reviews prior work
that is relevant for this purpose.

Online music creation can be seen as a form of network music, a field that
has been investigated over the last decades. We start by introducing network
music and reviewing prior work on web-based music creation.

We then focus on the potential of large audio databases originated from
the established practice of sharing audio clips. The first requirement is
then finding suitable sounds. We consider developments in content-based
audio retrieval, which affords intuitive, non-verbal interaction with audio
databases.

Storage and retrieval of musical artifacts based on those sounds should be
based on some computational representation. We briefly review some rep-
resentations relevant to our project that have been proposed in the context
of computer music composition and musicological analysis.

Finally, we consider the challenge of designing systems for collective usage.
Such systems require the specification of collective goals, as individual goals
can be different and conflicting. We propose the notion of collective creativ-
ity, and describe some models that have been proposed for understanding
such a complex process.

11
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2.2 Network and web music

Network music is a small research area in computer music, which encom-
passes efforts to use computer networks in music creation. This work started
as soon as it was feasible to set up a computer network on stage. Barbosa
(2006) surveyed the field and proposed a classification space employed by
the Computer-Supported Cooperative Work (CSCW) community to clas-
sify different works, according to the type of interaction (synchronous or
asynchronous) and the spatial proximity (co-located vs remote interaction).
Another classification was proposed by Weinberg (2005) depending on the
level of interconnectivity. Rohrhuber (2007) distinguished two main modes
of sharing information: shared objects vs distributed objects.

In practice, a broad distinction can be traced between networked music per-
formance (potentially at different levels of improvisation) and networked
creation. Most work has been done in the former problem, mostly from
an artistic perspective, including co-located performers (e.g. laptop ensem-
bles) and remote performers (often using general purpose video-conferencing
software). Technically speaking, both synchronous and asynchronous inter-
action can be (and are) used in a performance.

In this thesis, we focus on the possibilities of the web as a platform for
networked music creation. Web technologies afford concurrent interaction
with large quantities of data in an asynchronous framework involving users
from different locations and time zones. In this context, the border between
performance and creation can be sometimes difficult to draw, particularly in
projects where there is no more audience than the performers themselves. In
practical terms, we can associate performance with quasi-synchronous inter-
action, when participants need to be using the system at the same absolute
time. In the case of web-based environments this is necessarily an approx-
imation, given the potentially long latencies and inherently asynchronous
technologies. In turn, when participants are not required to interact at the
same time, we can think of the system as a composition tool, allowing the
user more time for thinking, revising and evolving a musical artifact before
others have the chance to listen to it. However, because of the potential
for conceptual continuity between both cases, it is worth to review previous
work in both areas.
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2.2.1 Web-based music performance

Web browsers are an atypical tool for music performance, but even more in
the case of public performances. Many projects have explored performance
on web environments, most of the time relaxing the requirement for strict
synchronization, which often results in “jamming” style interfaces. Most
of the systems are more oriented towards the collective experience of the
performers than to public performances.

TransJam (Burk, 2000) is an early example of a web-based architecture.
A generic http server allows multiple applications, each one is assigned a
virtual room with chat capabilities. Applications make use of the Jsyn
java library so they can be embedded in web pages as applets. An example
application is webdrum, a drum sequencer that can be edited collaboratively
in real-time. Also using transjam, auracle (Freeman et al., 2005) allows
casual web users to control the music generation with their voice.

In DaisyPhone (Bryan-Kinns, 2004), a music loop is shared among par-
ticipants who collectively add and remove notes with a choice of four dif-
ferent timbres. The initial project stressed HCI concepts such as localiza-
tion, mutual awareness, mutual modifiability and shared representation. It
has later been used to investigate decay (contributions of users that fade
over time) (Bryan-Kinns and Healey, 2006) and mutual engagement (Bryan-
Kinns, 2012).

In Jam On (Rosselet and Renaud, 2013) remote performers with no assumed
music background interact asynchronously in real time by drawing lines on
a canvas. Lines and their updates are distributed to HTML5 clients by a
server.

2.2.2 Web-based music creation

While web-based performance usually relies on servers that support real-
time messaging between clients, in web-based creation the role of the server
is extended to storing the productions of users, which can then be re-used
in collaborative workflows. Approaches to using the web as a platform for
music creation can be drawn on in two main groups: on one hand, some com-
posers have become interested in the web for involving web users in their
own open compositions. Examples of this include William Duckworth’s
Cathedral (Duckworth, 2005), or Jason Freeman’s Graph Theory (Freeman,
2008). Other projects have focused on analyzing the potential for collabo-
ration in a more open setting. These are more related to the goal of this
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thesis. However, the number of projects reported in an academic context is
scarce.

FaustMusicOnline (Jordà and Wüst, 2001) was a pioneer project which ex-
plored collective composition over internet in 2001. An emphasis was put on
allowing casual internet users and enforcing collaboration. The project was
based on a native browser plug-in that allowed music creation by graphical
interaction with a set of virtual vibrating strings. Compositions could be
evolved from others, and a composition tree was used to store and browse
the available compositions.

The CODES project (Miletto et al., 2005) proposed the concept of Music
Prototype, an analogy of music with software prototyping that aims at facili-
tating music creation for people with different musical backgrounds through
collaboration. Through the analogy with software development, several fea-
tures that improve collaboration were imported, such as revision histories
and logs. The system has been further used to understand how to support
novices in music creation (Miletto et al., 2011).

CC-Remix and Malleable Mobile music (Tanaka et al., 2005) were two
projects that explored the potential for bridging between music reception
and social creativity using CC licenses. The first project was a web appli-
cation that allowed a group of up to four users to engage in a collective
remix session by choosing among previously segmented loops of a collection
of CC-licensed songs. In the second project, the possibilities of portable de-
vices for social interaction were explored, along with their sensors as sources
for music control. Online chats were used to allow users forming groups.
Content generation was also based on re-organization of segmented songs.
The authors enumerate several HCI design concepts for analysis and eval-
uation of collective music creation: shared goals, reciprocity, engagement,
awareness and belonging.

2.3 Freesound and audio clip sharing

Community-driven databases for sharing audio clips have become a resource
with great potential for online music making. As an example, Freesound1

now provides an HTTP API available to developers for accessing a large
database of sounds, currently holding more than 200.000 audio files. The
number of usable sounds could grow into much larger numbers if we consider

1http://freesound.org

http://freesound.org


2.4. content-based audio retrieval 15

existing methods for audio segmentation, such as the one we describe in
chapter 3. On the other hand, the diversity that results from the activity of
users around the world would be very difficult to achieve by other means.
Other sites where one can find Creative Commons (CC) or royalty-free
samples include Looperman2 or Soundsnap3. Since the promotion of the CC
licenses, sites like CC-mixter4 or indaba-music5 have focused on enabling
collaboration mainly through sharing audio tracks. As we have mentioned,
this can be seen as a direct affordance of the multi-track audio editor/
sequencer interface for traditional music workflows. However, the potential
for applying existing research on content-based audio retrieval to this kind
of resources remains largely unexplored.

2.4 Content-based audio retrieval

The concept or content-based audio retrieval can be seen as a general term
encompassing different developments related with audio signals sharing a
common framework. The objective is being able to find relevant audio files
for a given task. To this aim, the audio signal is analyzed for obtaining
meaningful representations. This process can be seen as “recognition” of
high level concepts in the raw signal. In this sense, many of the develop-
ments in audio retrieval can be traced back to work on representation of
speech signals, either for Automatic Speech Recognition (ASR) (Rabiner
and Juang, 1993), speaker identification or even coding and transmission.
Another field that has greatly developed audio recognition is content-based
Music Information Retrieval (MIR) (Casey et al., 2008), usually dealing
with polyphonic music signals available to consumers. On the other hand,
indexing or recognition of environmental sounds can be seen from the point
of view of Computational Auditory Scene Analysis (CASA) (Brown and
Cooke, 1994). In the end, CASA can be seen as the most general case,
as auditory scenes can contain any type of sound including environmental
sounds, music and speech. In this thesis, we deal with the type of sounds
that are most commonly shared for re-using, as opposed to files containing
finished music or long speeches. This was the principle behind sites like
Freesound, where finished songs are explicitly discouraged. The sounds in
this site are still widely diverse, and a very general approach is necessary.

2http://www.looperman.com
3http://www.soundsnap.com
4http://ccmixter.org
5http://www.indabamusic.com

http://www.looperman.com
http://www.soundsnap.com
http://ccmixter.org
http://www.indabamusic.com
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In this section, we analyze prior work dealing with three main classes of
sounds, which can be associated with established practices in audio-based
music creation. Long recordings are frequently used in soundscape composi-
tion. From a perceptual point of view, these recordings can be regarded as
auditory scenes. Events occurring in such recordings, and all sorts of short
recordings of any kind of sounds, can be related to the practice of sampling
and musique concrète. Finally, it is very common to share music loops.
Music loops can of course be seen as auditory scenes composed of many
musical events, but we will consider them separately in order to account for
their specific musical features.

2.4.1 Sound scenes

Since the popularization of flash-based digital recorders, obtaining reason-
able quality recordings of environmental sounds has become easy and afford-
able. Thus, it is not surprising that long field recordings are among the most
common type of audio files shared in sites like Freesound. From a music cre-
ation perspective, such recordings can be used in soundscape composition, a
musical practice originated by Murray Schafer (Schafer, 1977) influenced by
acoustic ecology. Soundscapes can be used for acousmatic music, but also
in narrative or interactive audiovisual content such as video games, vir-
tual environments, or movies. From a CASA perspective, such recordings
would be defined as auditory scenes where several sound sources are usu-
ally combined into one perceptual stream or, sometimes, into a background
and foreground. In recent times, research efforts on recognition of audi-
tory scenes have grown, mostly inspired by potential applications in mobile
platforms. Two tasks can be broadly identified across different applications
and fields: one is the segmentation of long recordings into consistent scenes,
and the other is the classification of scenes into distinct categories. Seg-
mentation of long recordings into distinct scenes as been analyzed mainly
in the context of movies and TV (Cai, 2005), and personal logs (Ellis and
Lee, 2006). In this thesis, we focus on recordings that are shared by inter-
net users, and assume a minimal manual segmentation to produce already
consistent scenes.

The idea of classifying scenes into discrete categories has met growing in-
terest with potential applications in robotics (Chu et al., 2006) and ubiq-
uitous computing (Eronen et al., 2006). Most approaches can be classified
in two groups: in the first case, some descriptors are computed from the
audio signal using short overlapping windows. The most common are Mel
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Frequency Cepstral Coefficients (MFCCs), which aim at capturing the spec-
tral envelope in a compact way to approximate timbre sensations. Then,
some statistical model is trained directly from the frame-level features. One
helpful assumption is that scenes are mainly stationary signals, since their
identification does not rely so much on long-term temporal evolution of au-
dio features. Thus, in this case Gaussian Mixture Models (GMMs) are a
common choice (Aucouturier et al., 2007) (Dargie, 2009). Low-order Hidden
Markov Models (which become a GMM in the single-state case) have also
been used (Eronen et al., 2006). The second approach consists in summariz-
ing the entire recording into a single feature vector, and training the classi-
fication model with these vectors. Again, given the stationarity assumption
it is common to use simple statistics of MFCC features. Support Vector Ma-
chines (SVM), K-Nearest neighbor (KNN) and GMMs are popular choices
for the classification model (Chu et al., 2006). Other than traditional MFCC
features, promising results (although very different depending on the class)
have been obtained with matching-pursuit features (Chu et al., 2009), how-
ever, their computational cost may make them unpractical in the context of
large audio databases. Methods based on vector-quantization of frame-level
descriptors have also been tried in the context of consumer videos (Lee and
Ellis, 2010).

One general problem in comparing different methods is the lack of com-
mon datasets and benchmarks. During the development of this thesis,
the AASP D-CASE challenge (Giannoulis et al., 2013) was proposed and
conducted for benchmarking different methods for recognition of auditory
scenes and events. The baseline system proposed by the organisers was
based on MFCCs and a frame-level GMM classifier, while systems with
best performance used SVMs. The best score was achieved by our system
(described in chapter 3) using a novel set of features for summarizing the
evolution of MFCCs in intermediate windows of 400ms. Another approach
achieved similar performance using a wavelet variant of MFCCs and other
features averaged over windows of 4s, with an extra classifier to decide
for the class of the whole recording (Geiger et al., 2013). Such intermedi-
ate “texture windows” are commonly used in MIR (Tzanetakis and Cook,
2002).

2.4.2 Sound Events

Zooming into scenes, we can decompose them into background and sound
events. Sound is always the result of an interaction between objects or ma-
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terials, and conveys information about some physical event (Gaver, 1993).
Since the first experiments of Pierre Schaeffer, the idea of a “Sound Object”
was central to the theory of Musique Concrète. However, it is difficult to
find a clear definition in Schaeffer’s work. At one point, the sound objects
is simply defined as an “energetic event” (Schaeffer, 1966). From an acous-
tic ecology point of view, the distinction between background and events
was proposed by Schafer (Schafer, 1977). The distinction has also been
supported from experimental psychology (Guastavino, 2007). In CASA
it is also customary to distinguish between auditory scenes and auditory
events, the later being related with the theory of auditory streams (Breg-
man, 1994). Here, the problem is understanding how do we group simple
elements resulting from the analysis of our hearing system, such as har-
monic structures, clicks and modulations, so that they represent distinct
events. This process is influenced by subjective learning, which makes it
difficult to define precisely what is an auditory event. However, in practice
short samples representing different “sounds” have been used for many ap-
plications. Intuitively, the idea of “a sound” can be related with a certain
action performed on a resonant object, such as a musical instrument. Thus,
sound events can often be recognized by a consistent spectral pattern and
a time-varying energy envelope.

Like in the case of field recordings, two main tasks can be identified: de-
tection of events and classification into discrete categories. In the case of
sound events, both tasks can be carried on simultaneously. However, in
this thesis, we will look at both tasks separately. The advantage is that
this allows unsupervised indexing of segmented but unidentified events, i.e.,
finding consistent groups of sounds that can be used in the context of music
creation, even if no labels are available. Joint detection and classification is
usually done either using HMMs, or running a generic classifier such as an
SVM over sliding windows (Xu et al., 2003).

The task of segmentation, this is, finding the location of sound events in
longer recordings, has been approached from several disciplines. In speech
recognition, effective techniques have been developed for Voice Activity De-
tection (VAD) (Ramirez et al., 2007), which have many applications in
communication technologies. In MIR, a long tradition exists for the de-
tection of either pitched or percussive events. From the perspective of en-
vironmental sound, systems have been developed for applications such as
surveillance (Clavel et al., 2005), or indexing of video content (Xu et al.,
2003). An important issue is whether the system can detect sound events
that overlap in time. Literature on detection of overlapping events is scarce,
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as this is a much more complex problem. In the context of this thesis, we as-
sume non-overlapping events, on the basis that multiple simultaneous events
(such as e.g. musical chords) can be usefully considered as individual sound
objects for music creation.

The task of classification of sound events can be traced back to early ex-
periments with audio indexing, mainly in the context of sound effects li-
braries. Initial works focused on small datasets assigned to a handful of
concepts (Wold et al., 1996). Very high classification accuracies were ob-
tained using HMMs (Zhang and Kuo, 1999). For larger scales, it is more
common to aggregate features at the file level and use generic machine learn-
ing models. For example, statistics of a large set of features have been used
along with K-NN classifiers for large scale applications (Cano et al., 2005).
While SVMs are perhaps the most established generic classifiers, some con-
cerns have been raised about their cost. For very large scales, this can be
mitigated by using sparse features and linear kernels. Vector quantization
can be a simple yet effective way to obtain such sparse features (Chechik
et al., 2008) (Lee and Ellis, 2010).

Most of the described approaches are supervised, this is, aimed at recog-
nizing pre-specified classes of events. Some work has been devoted to the
problem of unsupervised discovery of short sound clips. In this case, most
projects explored the use of Self-Organizing Maps (SOM) for clustering and
presenting large collections of sounds. For example Pampalk et al. (2004)
used a SOM for visualizing drum sample collections. An application to mu-
sic files was described in (Pampalk et al., 2002). In (Brazil et al., 2002) a
system for browsing sound effects using SOMs is described.

Finally, an important body of work has dealt with music creation using
large databases of small audio fragments, in the tradition of corpus-based
oncatenative synthesis (Schwarz, 2007) and musical mosaicing (Zils and Pa-
chet, 2001). These systems work by defining a target sound or score, or
any data that can be described as a sequence of audio descriptors, and
retrieve an optimal sequence to reconstruct the target from a database of
sound segments. Segmentation is usually done either by fix intervals (usu-
ally short segments in the tradition of granular synthesis), score alignment
or note onset detection. The problem of finding the optimal sequence of
units (samples in the database) that match the target as closely as possible,
is seen as a Constraint Satisfaction Problem (CSP). Although the original
application was realistic instrument and voice synthesis, many approaches
have been described for real-time operation (Schwarz et al., 2007). Ulti-
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mately, the corpus-based paradigm affords a general perspective on the use
of audio as a material for music (Schwarz, 2006).

2.4.3 Music loops

Music loops are very popular for music creation in many genres. During the
1990s a market emerged for CDs of audio loops. Currently, online stores for
DJs such as Beatport6 offer catalogs of loop packs. Community-supported
sites like Looperman or Freesound also contain thousands of loops. Litera-
ture on indexing and retrieval of loops is, however, relatively scarce. Once
more, we can distinguish between the task of identifying loops, and indexing
them for retrieval.

With respect to identification of music loops, there has been work on the
isolation of loops in polyphonic music (Ong and Streich, 2008). Here, fre-
quently repeated patterns in music files are identified through the autocorre-
lation of chroma features. Detection of loops in polyphonic music, however,
is a different problem from indexing databases of (already cut) loop files.
The former is more related to music structure and to an interpretation of
what constitutes a “relevant” loop in the context of repetitive music, al-
though from a practical point of view, an infinite number of loops could
be extracted from the same track. In this thesis, we deal with sound clips
which may have been cut as loops or not. Our problem, then, is identify
loopable material in the context of unstructured and possibly unlabeled
data. This opens the possibility to find rhythmic patterns in all kinds of
sounds, including environmental sound recordings.

Some works have explored indexing and retrieval of music loops. Au-
diocycle (Dupont et al., 2009) was a prototype that implemented analy-
sis of musical loops, restricted to 4/4 rhythm meters and specific instru-
ment classes. Although the dataset size is not explained, scaling to large
databases is reported as future work. Other projects have focused specif-
ically on drum loops, which affords a transcription approach (Gillet and
Richard, 2004). Most of the mentioned works describe some kind of in-
terface, either by using information visualization techniques to map the
sounds to a 2D plane (Dupont et al., 2009; Ong and Streich, 2008) or us-
ing a Query-by-Example(QbE) approach (Kapur, 2004; Gillet and Richard,
2005). In general, research on indexing and retrieval of music loops lacks
public datasets and evaluation metrics that facilitate comparison of different
approaches.

6http://www.beatport.com

http://www.beatport.com
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2.5 Music representation

The idea of music representation can be linked primitively to the need of
memorizing music. In this sense, several cultures developed music notation
systems in parallel to writing. These notations abstract and encode the
music experience, and need to be interpreted by a performer. In a similar
way, the phonograph and the magnetic tape provided more accurate ways
of storing and reproducing music. Computers allow for many different ways
of representing music.

In the 1990s, the issue of music representation on computers was extensively
researched. Wiggins et al. (1993) surveyed the field while proposing an
evaluation framework based on two dimensions: expressive completeness
(where ultimately the most complete representation would be the waveform)
and structural generality, which is better achieved by symbolic notations.
Dannemberg (Dannenberg, 1993) surveyed a number of issues related with
representation of different aspects of music. Here, waveform and symbolic
representations such as scores are viewed as different abstraction levels, each
one containing different information.

With the popularization of music programming languages, a general distinc-
tion can be made between “process-oriented” representations, i.e. when the
computer program is itself a music piece, and “data-oriented” representa-
tions, when the musical information is encoded in some data structure that
the program will use. In this thesis, we focus on on data-oriented represen-
tations, under the assumption that, as a natural fit for audio-based music
they can lead to simple and easily understandable tools for casual web users
that leverage the potential of large-scale audio databases.

2.5.1 Hierarchical representations and music grammars

Music often contains repetitions and hierarchical structures or groupings.
Representation of these aspects is particularly required for enabling different
participants to collaborate in the creation process. The simplest represen-
tation used for audio-based music creation, a list of time-stamped events,
contains no hierarchy. Therefore, it stores no information on the different
parts that may form a musical composition, including e.g. repeated parts
or motifs. The piano-roll representation used in most audio sequencers can
be considered as a collection of event lists. Thus, hierarchical information
is limited to distinguishing between parallel tracks. A representation that
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includes hierarchical information can be used for analyzing music pieces in
addition to composition (Smaill et al., 1993).

Representation of hierarchical relationships is especially important for sup-
porting collaborative creation, which requires division of labor and the ex-
change of parts of a musical composition. In this sense, many hierarchical
representations have been proposed based on formal grammars. Formal
grammars were introduced by Noam Chomsky in the 1950’s as a means
for formal analysis of natural language (Chomsky, 1957). The view of
grammars as mathematical devices has since then remained at the foun-
dation of formal languages and computer science. From the point of view
of linguistics it was an important revolution that introduced a generative
perspective: grammars served as language theories that could explain and
predict linguistic phenomena by generating them from a formally defined
set of laws. Chomsky classified grammars into four classes according to
the level of restriction and generative power, from the most comprehensive
type 0 (unrestricted), to the smallest subclass, type 3, which can parse only
regular languages. Context-free grammars (type 2) are the basis of most
programming languages, including those used to create music. In the 1970s
and 1980s, the idea of modeling music with grammars became very popular.
In web environments, traditionally with limited interaction capabilities but
with access to shared data storage, analysis and generation can be used for
computer-aided composition. Thus, reviewing these classic works can shed
new light on the design of systems for representing sample-based music in
web environments.

One of the first documented efforts to use formal grammars in music com-
position is due to researcher and composer Curtis Roads. In Composing
Grammars (Roads, 1978) he described a system for music composition based
on context-free grammars augmented with control procedures. The system
provided the composer with a workflow for experimenting with structural
and semantic aspects of composition. First, the composer would specify
a grammar using a specialized language (Tree) and an associated compiler
(Gram). The program would generate a compiler for the specified grammar.
The composer would then work on valid derivations according to the gram-
mar to create the “syntactic surface”. A second language (CoTree), and
its corresponding compiler (GnGram), would aid in the generation of the
score. A final task, the “lexical mapping”, consisted in pairing the termi-
nals of the grammar with sound objects previously created by the composer.
Such amount of relatively low-level tasks reflects the kind of interaction that
computers supported at that time. Still, the use of concrète sound objects
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and focus on nested structures makes this pioneering work relevant in the
context of this thesis, so we will adopt part of this terminology.

In Grammars as representations for music, Roads and Wieneke (1979) pre-
sented a synthesis of formal grammar theory and surveyed the use of gram-
mars for music analysis. Perhaps more importantly, they summarized the
powers and limitations of the grammar approach. Considering iconic (i.e.
based on analogies) and symbolic (based on convention) representations, it
is quite obvious that, as symbolic representations, grammars rely on a dis-
cretization of the sound material. This limitation is however less restrictive
for compositional purposes (where discrete symbols can be associated to
arbitrary sounds) than for analysis of existing audio. A second limitation is
the compromise in complexity, as the most complex types of grammars are
often too complex to parse, while simple grammars can be too trivial and
less effective than other models. A third limitation is that grammars are
purely structural and hence they don’t deal with the semantic and social
implications of music. Despite these limitations, grammars have continued
to be used in a number of computer music projects and studies, both for
analysis and generation. Perhaps the best known is the system developed
by Jackendoff and Lerdahl for the analysis of tonal music (Jackendoff and
Lerdahl, 1981).

Holtzman’s Generative Grammar Definition Language (GGDL) was devel-
oped as a tool for investigation of structural aspects of music using a com-
puter (Holtzman, 1980). The language could be used both by composers
and musicologists. GGDL supported “phrase structure rules” (standard
string rewriting rules) and “transformational rules” (transformations such
as transposition or inversion). It also provided a means for mapping ab-
stract symbols to actual sounds synthesized with the possibilities offered by
computers of the time. The system focused on unrestricted (type 0) gram-
mars, and as a consequence it encouraged manual experimentation, offering
limited automation capabilities.

Kippen and Bel’s development of the Bol processor system (Bel and Kip-
pen, 1992) has been extensively documented along different phases. The
system was originally conceived for linguistic analysis of north-indian tabla
music, where bol mnemonic syllables are used. Tabla music is usually im-
provised, typically involving permutations of a reference pattern. Expert
musicians can assess whether a given permutation is correct or not. On this
basis, the authors tailored several formal grammars that reflected correct
variations. A second iteration of the Bol processor, named BP2 targeted
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grammar-based music composition from a more general perspective, allow-
ing composers to specify their grammars to generate compositions with ar-
bitrary sound objects. Because of this focus on composition, BP2 omitted
the parser mechanism and allowed a more free approach to grammar spec-
ification, subordinating the issue of correctness to aesthetic considerations.

Finally, one of the most well-known uses of grammars for music composition
is David Cope’s Experiments in Music Intelligence (EMI) (Cope, 2004).
Over the years, Cope has refined a database-driven system that imitates the
compositional style of classic composers. The works of the target composers
are segmented and described in a database, and each fragment is assigned
to a category according to a system called SPEAC: Statement, Preparation,
Extension, Antecedent and Consequent. Such categories attempt to define
a basic formalization of the dynamics of tension and relaxation in western
tonal music. Thus, the system defines a set of rules that make a sequence
of patterns of different categories correct. The music generation engine is
based on an Augmented Transition Network (Woods, 1970), which allows
for faster parsing and generation of context-sensitive rules.

In more recent times, many projects have explored the application of L-
Systems (Lindenmayer, 1968) to music generation. L-Systems are formal
grammars where the derivation is done in parallel (i.e. derivation rules are
applied to a string of symbols simultaneously, so not taking into account
their respective outputs). This feature was originally used to model the
growth of algae, and has since been applied to the generation of realis-
tic fractal images of different kinds of plants (Prusinkiewicz and Linden-
mayer, 1996). Initial applications to music were based on these graphical
interpretations, applied to scores (Prusinkiewicz, 1986). From there, most
work has focused on how to interpret the strings produced by the algorithm
to generate melodies or rhythms, either from pre-defined schemes (Worth
and Stepney, 2005), interactive systems (McCormack, 1996) or evolutionary
techniques (Lourenço et al., 2009) (Kaliakatsos-Papakostas et al., 2012).

2.5.2 Representations for the web

As more and more people got connected to the Internet, interest has grown
on music representations that support the exchange of music information.
After the success of HTML as the base language of the web, eXtensible
Markup Language (XML) was developed as a more general and formal
markup language for exchanging information between different programs
and web services. Many XML representations have been proposed for
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traditional western notation. Because of its hierarchical structure, music
scores can be represented naturally in XML as hierarchies. Popular ex-
amples include MusicXML (Good, 2001) and Music Description Language
(MDL) (Hewlett and Selfridge-Field, 2001). Still, there is a wide variety
of musical practices that cannot be represented with western notation. An
audio-oriented representation can be used in some cases. For example, the
MPEG-7 standard (Salembier and Sikora, 2002) included the definition of
the Segment Descriptor Scheme (DS), a description scheme for multime-
dia objects that allows defining them as compositions of segments. The
MPEG-7 Segment DS allows the definition of hierarchies and arbitrary re-
lationships between media segments such as audio. Still, the standard is
more oriented to the description of existing content (e.g. for indexing and
navigation) than to the creation of the new content. On the other hand, the
standard addresses all kinds of multimedia content, including video, images
and 3D. This generality adds a lot of overhead (which may be the cause that
has precluded the standard from being generally adopted) and introduces
several complexity layers that are not needed for music composition.

In the last few years, JavaScript Object Notation (JSON) has gained pop-
ularity as a simpler data representation for web applications, becoming the
de-facto standard for JavaScript-centric applications. However, the use of
JSON has been less prone to standardization than in the case of XML. As
an example, MusicJSON, a JSON-based music representation has been pro-
posed (Alvaro and Barros, 2012). Like MusicXML, MusicJSON focuses on
traditional western music notation. Another trend has been the develop-
ment of javascript-based music programming languages that take advantage
of the web audio API (Roberts and Kuchera-Morin, 2012).

2.6 Models of creative communities

Applications for supporting collaborative work need to deal with collective
objectives. The notion of collective creativity may be useful for modeling
communities of online music creators and defining unified design criteria.
Creativity is usually defined as the human ability to ‘create’ things that
are new and have some sort of relevance. Beyond this definition there is
generally little agreement. A general trend is to consider at least two lev-
els (personal and historical creativity) at which novelty and relevance are
evaluated. Personal creativity refers to ideas that are new and interest-
ing to their author, while historical creativity refers to ideas or products
that are considered innovative by a larger audience (Boden, 2003). While
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the traditional discourse focuses on individuals and their mental processes,
some researchers have emphasized the social dimension of creativity (Csik-
szentmihalyi, 1999) (Montuori and Purser, 1995). During the last decade,
networks (mathematically formalized as graphs) have become widely used
for formal analysis of social groups. Some researchers have analyzed collab-
oration and social networks in an attempt of gaining a better understanding
of collective creativity.

A common hypothesis is that small-world network structures favor creativ-
ity and innovation (Cowan and Jonard, 2003). This idea has been tested
empirically in different domains (Verspagen and Duysters, 2004) (Uzzi and
Spiro, 2005) (Fleming et al., 2007). Small-world networks were formally
defined by Watts and Strogatz (Watts and Strogatz, 1998), who character-
ized them as a crossover between a regular lattice (a graph where nodes are
connected uniformly) and a random graph (where nodes are connected with
a certain probability). Their model captured a property of many real world
networks, where the average distance between any two nodes (computed
from the shortest path length, i.e. the smallest number of edges connecting
two given nodes) tends to be as low as in a random graph, while the clus-
tering coefficient (in this case defined as the average of the fraction of nodes
within the neighborhood of each node that are connected among them) is
much higher. The general assumption when judging the small-world struc-
ture is that short path lengths benefit innovation by allowing the flow of
information. The effects of high clustering are less obvious. Clustering is
generally associated with the flow of redundant information, but also to
grouping of similar agents which may improve collaboration (Cowan and
Jonard, 2003). When analyzing the network of teams that produced Broad-
way musicals in the 50s, Uzzi and Spiro considered both short path lengths
and clustering to impact creativity following a U-shape, in the sense that
both properties are beneficial up to a certain point, from which they become
detrimental due to homogenization (Uzzi and Spiro, 2005). Here, clustering
is associated to the formation of conventions, and hence more related to the
relevance than to the innovation component of creativity. A study based
on collaboration networks in a patent database (Fleming et al., 2007) found
no significant effect of clustering, and discussed the potential detrimental
effects of clustering on innovation. A similar trend is observed for the inter-
action between high clustering and short path length, which is only shown
to have an impact when clustering is relevant.

While coming from very disparate domains, studies of network creativity
seem to coincide in that small-world network properties, especially short
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path lengths, have an influence in the development of creativity. This idea
can be used in the design of collaborative music creation applications based
on networks of collaborators. We further develop this idea in chapter 6.

2.7 Open issues

1

4

Audio
�les

2
Sound 
taxonomies

3

Online
users

Musical
artifacts

Figure 2.1: Elements involved in web-based music creation

In this chapter, we have reviewed existing research that is relevant for en-
abling the web as a medium for music creation based on shared audio data.
We now recap the main issues involved in this use case and how we will deal
with them in the following chapters (Figure 2.1).

The first problem is accessing audio databases. Content-based retrieval of-
fers an opportunity for automatically indexing unstructured audio such as
what we can currently find in sites like Freesound, without the need of man-
ually labeling sound clips. In order to deal with general audio, this is, with
any kind of recording that can be uploaded to a website, we consider three
general classes of sounds: field recordings, sound events, and music loops.
Also, in order to deal with this uncertainty about the type of uploaded au-
dio, we follow a generic approach with separate steps for feature extraction
and indexing. Chapter 3 covers strategies for automatic description of each
of these three kinds of signals. In Chapter 4, we analyze generic strategies
for indexing sounds based on these low-level descriptors.
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A second problem is representing music during the creation process. In the
case of music based on audio, this involves defining sequences and superpo-
sitions of audio clips. One open issue is how to represent different levels of
music structure in order to allow sharing intermediate music products. We
propose a suitable representation in Chapter 5.

Finally, designing applications for collaborative music making at a large
scale requires representing and understanding user communities. We explore
the notion of collective creativity as a global property that can be computed
from data in existing audio sharing sites. In Chapter 6, we analyze how this
property can be related to measures computed from user networks, which
may in turn be determined by the design of web applications.



Chapter 3

Audio description in
unstructured data

3.1 Introduction

In this chapter we explore the automatic extraction of content-based de-
scriptors from unstructured audio data. In Chapter 2 we have reviewed
content-based audio retrieval and its potential for audio-based music cre-
ation. By extracting low-level representations of audio signals, we can au-
tomatically index audio recordings and interact with them based on their
acoustic properties, bypassing the need of manual annotation. This allows
applications to integrate access to large audio repositories without breaking
the creative flow.

Perhaps the main problem with this idea in the case of user-driven applica-
tions is the unstructured nature of the resulting database. Particularly in
Freesound we can find almost any kind of recording that can be imagined.
In order to deal with this diversity, we propose extracting a generic low-level
representation that allows us to distinguish three main kinds of audio files:
long field recordings, sound events and music loops. From the same low-level
descriptor we can then adopt different strategies for obtaining summarized
descriptions that can be used by indexing and retrieval algorithms.

Parts of this chapter have been published as (Roma et al., 2013)

29
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3.2 Generic low-level description

Content-based audio retrieval relies on features computed from the sampled
audio signal. Many features have been devised in the ASR, CASA, and MIR
literature. Our aim is to work with completely unrestricted audio data,
thus potentially containing music, speech, and environmental sounds. This
means that a generic low-level representation is needed in order to learn at
least what kind of sounds we are dealing with.

Probably the most common generic low-level representations are based on
Mel Frequency Cepstral Coefficients (MFCC). MFCCs were initially defined
by Mermelstein (1976) citing ideas from Bridle and Brown (1974) in the
1970s, in the context of ASR. However, they have also been extensively ap-
plied in the classification and clustering of both music (as a representation
of monophonic or polyphonic timbre) and environmental sounds. MFCCs
were based on the Mel scale, a logarithmic map of frequency defined in 1937
based on psychoacoustic experiments of pitch perception. While MFCCs
have become standard in many disciplines, it is common to find low-level
features inspired in more recent frequency scales. From a signal processing
point of view, many of these proposals can be considered in the same frame-
work defined by MFCCs. In this framework, a frequency domain, frame-
level representation is first obtained from the Short-time Fourier Transform
(STFT). This implies slicing the audio waveform into overlapping segments
of equal length, to which a windowing function is applied for smoothing the
boundary discontinuities. The length of the segment determines a trade-off
between time and frequency resolution. The magnitude spectrum obtained
from the Fourier transform of the windowed segment (usually using the Fast
Fourier Transform, FFT) is then quantized by passing it through a bank of
band-pass filters, with center frequencies distributed according to some per-
ceptual scale. Applying the filter bank requires merely a multiplication in
the frequency domain. The result can already be used as an audio feature,
which can be easily interpreted visually as a spectrogram. In order to im-
prove the performance of further computations, Mermelstein introduced a
compression step, by computing the log of the filtered magnitudes. Finally,
the Discrete Cosine Transform (DCT) is computed in order to de-correlate
the log magnitudes. The result is defined as the cepstrum, which has the
property of telling apart fast oscillations in the spectrum, usually associ-
ated with pitch in the case of voiced sounds, from its envelope associated
with timbre. Thus, the first DCT coefficient represents energy (DC of the
spectrum), and successive ones represent progressively faster oscillations.
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A common configuration is taking the first 13 coefficients of a 40 bands
filterbank. This representation of the spectral shape gives a very generic
and efficient description of audio. The de-correlated features allow more ac-
curate computation of distance measures, which are needed for most tasks
related with indexing and retrieval. Several descriptors can be described
under the MFCC framework depending on the frequency scale and shape
of the filters, and whether the raw filterbank or cepstral features are used.
We now describe three commonly used approaches.

3.2.1 Mel Frequency Cepstral Coefficients

MFCCs were developed in Mermelstein’s original framework. The scale
used for the center frequencies of the filterbank is the Mel scale, which was
developed from experiments involving judgments of distance among pitched
tones. These follow a logarithmic curve. While several formulas have been
proposed to approximate this scale, one of the most commonly used is:

fmel = 1127log(
1 + f

700
) (3.1)

The filters follow a triangular shape with centers uniformly spaced along
the mel scale, reaching the max in its own center frequency and ending
in the next one. Hence, in theory, bandwidth depends on the number of
filters, although it can also modified by some factor. The triangles are
calculated to have either constant height or constant area. All of this can be
trivially implemented from the result of the DFT. One advantage of MFCCs
is that a plethora of implementations is available for any platform. At the
same time, these introduce many details and parameters that may have an
impact depending on the task at hand. For example, the rastamat matlab
package (Ellis, 2005) used in our experiments can be used to reproduce the
results of several implementations. A comparative evaluation for the task
of speaker identification found small variations in results (Ganchev, 2005).
As we have seen in Chapter 2, MFCCs are probably the most ubiquitous
features in speech, music and environmental sound recognition.

3.2.2 Bark bands

Another frequency scale, the Bark scale, was proposed by Zwicker, after
the initial experiment by Fletcher defining critical bands of hearing (Fastl
and Zwicker, 2001). In short, such experiments determined the bandwidth
at which a noise signal is able to mask a pure tone at a given frequency.
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This gives an intuition of the resolution limits in frequency selectivity of the
cochlea, the “critical band”, from which the notion of a bank of “auditory
filters” can be derived. Zwicker initially published a table with the measured
frequency bands, which has allowed direct implementations by quantizing
the magnitude spectrum according to these bands. However, he stressed
that the relevant fact in those numbers was the bandwidth, and not the
specific frequencies of thefilters, as the hearing system is able to adapt the
central frequencies to incoming sounds. Hence, we can use the bark scale
in the same framework as MFCCs. Simple formulas for the bark scale have
also been poposed (Traunmüller, 1990):

fbark = 13arctan(0.00076f) + 3.5arctan((
f

7500
)2) (3.2)

The filter shape is usually a rectangular or trapezoidal shape in the loga-
rithmic (dB) space. The bandwidth should thus be given by the distance
between two whole barks. Bark bands, as raw features based on the bark
scale and rectangular filters have been used in many occasions for audio
indexing and retrieval, especially for creative applications (Herrera et al.,
2003; Pampalk et al., 2004; Jehan, 2005). The advantage of using raw bands
is that their values are easy to understand and relate with sound perception.
They have also been used for obtaining cepstral coefficients, or considered
as an alternative filterbank for MFCCs (Shannon and Paliwal, 2003; Ellis,
2005).

3.2.3 Frequency domain ERB gammatone filterbank

The Equivalent Rectangular Bandwidth (ERB) scale was presented by
Moore and Glasberg (1996) as an improvement over the Bark scale devised
by Zwicker, which they attributed to a measurement error. The underlying
model, developed mainly by Patterson et al. (1992), offered a better expla-
nation on the relationship between loudness, frequency and masking in the
auditory system. The filter bandwidth can be expressed as a function of
frequency (Moore, 2012):

ERB = 24.7(
4.37f

1000
+ 1) (3.3)

Here, the constant term can be interpreted as the minimum bandwidth
(minBW ), and the term multiplying the central frequency, as the reciprocal
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of the auditory filter’s Q (EarQ) (Slaney, 1993):

ERB =
f

EarQ
+minBW (3.4)

A frequency mapping scale analogous to the mel and bark scales can be also
derived:

fERB = 21.4log10(
4.37f

1000
+ 1) (3.5)

Patterson’s model also included the gammatone filter of nth order, with
impulse response

gt(t) = at(n− 1)e(−2πbt)cos(2πft+ Φ) (3.6)

for a given carrier signal with frequency f , phase φ and amplitude a, where b
is the bandwidth of the filter. This is generally considered to be a better ap-
proximation of the auditory filter shape. Features based in the time-domain
gammatone filterbank have been used in several works, e.g. (McKinney and
Breebaart, 2003). On the other hand, gammatone filters can also be ap-
proximated by multiplication in the frequency domain (Ellis, 2009). This
approximation can be fit in the MFCC framework to provide a more ac-
curate version with respect to the psychoacoustic model, while providing a
computationally cheaper representation than time-domain filters. Such fea-
tures, which can be named GFCC have also been used in speech recognition
(Shao and Wang, 2008)(here, the authors use the acronym for Gammatone
Frequency Cepstral Coefficients, but Gammatone Filterbank Cepstral Co-
efficients would equally work).

Figures 3.1, 3.2 and 3.3 show the magnitude response of the filter bank for
each of the three commonly used features. In this thesis, we adopt GFCC
as a generic low-level audio representation. Thus, from here on, we use
G to denote the sequence of spectral frames G1, G2, G3... that make the
frequency domain gammatone spectrogram, and Gc to denote the sequence
of cepstral coefficients derived from G.

3.3 Feature aggregation

One general problem for content-based indexing of audio files is feature
aggregation. Most common set-ups require the integration of frame-level
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Figure 3.1: Mel scale filterbank (with constant area)

features over some period of time in order to obtain a single vector that
can be fed in to algorithms for classification and clustering. The typical
approach consists on averaging the frame-level features, a process in which
information about the temporal evolution and distribution of the features
is lost. The development of features that describe the temporal evolution
of the sound is still an open issue. In this thesis, we adopt a different
perspective for the three general classes of sounds mentioned in Chapter 2.
It is clear that summarizing the temporal evolution of frame-level features
must be done differently for field recordings, sound events, and music loops.

In the case of field recordings, summarization can be done statistically,
as the signal may be considered stationary. Field recordings may contain
different events, but the identification of the context, typically associated
with locations (a busy street, a park, a beach . . . ) is done in the long term.
Contrastingly, recognition of events can be done by analyzing the temporal
evolution of the frame-level features, for example in the energy envelope.
Finally, summarizing music loops will be more useful if the regularities
in the evolution of the features are taken into account. In order to apply
different summarization strategies to each kind of sound, it will be necessary
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Figure 3.2: Bark scale filterbank

to identify them first. We now describe our strategies for recognizing and
then summarizing each type of sound.

Sound scenes

Recognition Field recordings are the longest and most diverse type of
recordings that we consider in this thesis. This type of recording is tradi-
tionally performed in locations where interesting sounds can be captured.
Traditionally, the recording equipment stays in the same place for all of
the recording. However nowadays it easy to make continuous recordings
where the equipment (e.g. a mobile phone) moves around locations. From
a CASA point of view, an ensemble of sounds recorded in a given location
can be regarded as an auditory scene. However, in order to refer to the
recording (and not to its perception), we will refer to sound scenes. Recog-
nition of different sound scenes in the same recording has been considered
in the context of TV audio or personal logs, as described in chapter 2. In
the first case, a movie or a long video recording of TV programs can contain
different scenes. In the second, a recording of a person moving through the
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Figure 3.3: ERB scale gammatone filterbank

day with a portable recorder may contain audio from different locations.
Here, we analyze sounds that users contribute to a database because they
regard them as reusable material for music or audiovisual creation. Thus,
we assume that in the worst case they will contain a consistent sound scene.

Telling apart long environmental recordings from other sounds in an un-
structured database can be done simply based on heuristics. We take
Freesound as a case in point. Since finished songs are not allowed in the
site, it is unlikely that long recordings will contain music (note that even so,
music could be considered a type of sound scene, and methods for indexing
them based on statistics would still work in some way, although critically
failing to take into account music features). Also, recordings of a single
sound event will be generally limited in time by the ability of the resonating
object to preserve energy. Thus, duration can already be a valid heuristic.
To illustrate this, we may consider the field-recording tag in Freesound. Fig-
ure 3.4 shows the probability that a sound contains this tag as a function of
its duration (quantized to seconds). This probability quickly grows for files
lasting more than a few seconds. Considering that tags are freely assigned,
even the probabilities of at least 30% are a high value (“field recording” is
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Figure 3.4: Duration of sounds tagged as “field-recording” in Freesound

actually the most common tag in the site). Another heuristic can be simply
the number of detected events contained in a recording. By using some
event detection algorithm (such as the ones described later), the number of
events can also be used to decide if a sound is treated as a sound scene. In
the end, all recordings can be related to a sound scene of some sort, so the
decision is mainly pragmatic.

Aggregation In the case of sound scenes, aggregation can be based on
statistics. While the scene can contain several events, we assume that hu-
man recognition of the secene will be based on long term statistics. However,
we can still consider the general “texture”, and characterize its short-term
variations. For example, traffic noise may be characterized by short-term
periodicities of car engines, while a background where wind or water dom-
inate may characterized as filtered noise. We propose Recurrence Quan-
tification Analysis (RQA) (Zbilut and Webber, 2006) to characterize these
short term temporal dynamics as an addition to traditional statistics. RQA
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is a set of techniques developed during the last decade in the study of chaos
and complex systems. The basic idea is to quantify patterns that emerge
in recurrence plots. RQA has been applied in a wide variety of disciplines,
although applications to audio recognition are scarce. To the best of our
knowledge there has been no prior work using RQA on time series of spec-
tral or cepstral coefficients. RQA features derived from frame-level chroma
features have been tested in the cross-recurrence setting, where two different
series are compared, for cover song detection (Serrà et al., 2009). The orig-
inal technique starts from one-dimensional time series which are assumed
to result from a process involving several variables. This multidimension-
ality is recovered by delaying the time series and embedding it in a phase
space. The distance matrix of the series is then computed and thresholded
to a certain radius r. The radius represents the maximum distance of two
observations of the series that will still be considered as belonging to the
same state of the system. In our case, we already have a multivariate signal
to represent the audio spectrum via cepstral coefficients. Hence, we adapt
the technique by computing and thresholding the distance matrix obtained
from the GFCC representation using cosine distance. Thus, if we denote
the series of feature vectors as the multivariate time series Gc of length N
as Gc = Gc1, Gc2, Gc3...GcN , then the recurrence plot R is defined as

Ri,j =

{
1 if (1− Gci·Gcj

||Gci||||Gcj ||) < r

0 otherwise
(3.7)

Figure 3.5 shows the different steps of the process from the gammatone
spectrogram up to the recurrence plot. The main intuition is that diagonal
lines represent periodicities in the signal, i.e. repeated (or quasi-repeated,
depending on the chosen radius) sequences of frames, while vertical lines
(or horizontal, since the plot is symmetric) represent stationarities, i.e. the
system remains in the same state. From this idea, several metrics have been
developed that quantify the amount and length of lines of contiguous points
in the matrix. Most features were developed by Webber and Zbilut (1994).
We extract the most commonly used ones and add some more variables in
order to obtain more features for classification and clustering.

• Recurrence rate (REC) is just the percentage of points in the recur-
rence plot.

REC = (1/N2)
N∑

i,j=1

Ri,j (3.8)
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• Determinism (DET ) is measured as the percentage of points that are
in diagonal lines.

DET =

∑N
l=lmin

lP (l)∑N
i,j=1Ri,j

(3.9)

where P (l) is the histogram of diagonal line lengths l

• Laminarity (LAM) is the percentage of points that form vertical lines.

LAM =

∑N
v=vmin

vP (v)∑N
v=1 vP (v)

(3.10)

where P (v) is the histogram of vertical line lengths v

• The ratio between DET and REC is often used. We also use the ratio
between LAM and REC, so we define them as

DRATIO = N2

∑N
l=lmin

lP (l)

(
∑N

l=1 lP (l))2
(3.11)

V RATIO = N2

∑N
v=vmin

vP (v)

(
∑N

v=1 vP (v))2
(3.12)

• LEN and Trapping Time TT are the average diagonal and vertical
line lengths

LEN =

∑N
l=lmin

lP (l)∑N
l=lmin

P (l)
(3.13)

TT =

∑N
v=vmin

vP (v)∑N
v=vmin

P (v)
(3.14)

• Another common feature is the length of the longest diagonal and
vertical lines. The inverse of the maximum diagonal (called Diver-
gence) is also used. We use the inverse of both vertical and diagonal
maximum lengths

DDIV =
1

max(l)
(3.15)

V DIV =
1

max(v)
(3.16)



3.3. feature aggregation 41

• Finally, the Shannon entropy of the diagonal line lengths is commonly
used. We also compute the entropy for vertical line lengths.

DENT = −
N∑

l=lmin

P (l)ln(P (l)) (3.17)

V ENT = −
N∑

v=vmin

P (v)ln(P (v)) (3.18)

In order to analyze long series, a windowed version is often used, which
consists in computing the recurrence plots from overlapping windows of
fix size. This is computationally much more efficient, while giving similar
results in our case. As will be seen in the experiments section, different
window sizes can actually be used to obtain good results. Our hypothesis
about this result is that, in the case of scenes, relevant recurrences happen at
a short time scale. These diagonal and horizontal lines will also be counted
in larger recurrence plots.

In general audio recognition, the most useful feature aggregation is usually a
vector composed of the global mean and variance of the frame-level features.
In some cases, statistics of the derivative, which reflects the rate of change
of the frame-level features, are also used. In this case, since we look at long
series, the average rate of change does not help in recognition. However,
since we look at short windows, it may be expected that other statistics
can be computed, particularly the local variance of the features inside the
window (the local means will obviously average to the global mean). As
the experiments will show, both local variance and RQA features provide
complementary descriptions of the short-term evolution of the spectrum,
which can be used to increase accuracy with respect to using only global
statistics.

Sound events

Segmentation As we have mentioned earlier, the distinction between
events and background in sound scenes can be supported from a psychoa-
coustic perspective (Bregman, 1994). We view the physical world as a com-
position of objects that vibrate and produce sound as a result of different
interactions. When large quantities of events overlap, we are no longer
able to identify them, and we perceive them as background noise. From
a musical perspective, sound events found in recordings are particularly
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useful, as they can be used in a similar way as samples from traditional
musical instrument notes. For example, any event resulting from an impact
can be used as a percussive sound to make rhythms. However, while the
effort required to record a scene is small, manually identifying and annotat-
ing different events is a tedious task. For this reason, blind segmentation
of scenes to find events can be especially useful. While the identification
of sound events has been investigated in several disciplines, from the per-
spective just described it has some different and specific requirements. For
instance in MIR, many onset detection methods have been developed, either
for analysis of polyphonic or monophonic signals. However, in MIR offsets
are usually ignored, since the rate of onsets is typically fast (at least in the
types of music that are commonly analyzed in MIR), and offsets are masked
by reverberation and subsequent onsets. In speech recognition, Voice Ac-
tivity Detection (VAD) (Ramirez et al., 2007) is usually performed by a
binary probabilistic model that considers events and background. While
this coincides with the perspective we have described, these models may
not generalize beyond speech, as a weak sound can produce the probability
to jump to a high level. This can be useful for a telephone conversation,
where the background noise is suppressed but it is preferable to include it
if there is any possibility of an informational event. However, in the case of
fishing events for music in long recordings, it may be preferable to be more
restrictive and select only the most salient events. Moreover, some VAD
systems focus exclusively on voiced events by exploiting the pitched quality
of the human voice (Tucker, 1992). Finally, most systems for environmental
sound detection have been developed to recognize specific kinds of sounds
in a supervised fashion (i.e., a machine learning model is trained for every
kind of sound), which restricts their use for blind segmentation. Within
the framework of cepstral coefficients, a simple but effective approach is to
adapt the High Frequency Content (HFC) onset detection function that is
often used in MIR. Among several versions, the simple weighted sum of the
spectrum magnitudes proposed by Brossier (2006) performed best in our
experiments. One of the main advantages of this function is that, since it
follows the energy envelope it has a smoother decay and can be used to de-
tect offsets better than other common functions. Our modification consists
simply in approximating it from the output of the frequency domain gam-
matone filterbank described above. This reduces the computational cost,
and actually results in better performance. Thus, from the matrix G of raw
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filterbank features, we define the fliterbank-based HFC measure as:

HFCfb(j) =
∑
i

iGi,j (3.19)

Following Bello et al. (2005), we post-process the onset detection function
in the following way: first, the function is z-scored, then smoothed with
a 5 point moving average filter, and then a long term (400 point) moving
median filter is subtracted from the resulting signal. Figure 3.6 shows this
measure computed on a short indoor sound recording, (which is used for
evaluation in section 3.4.4) compared to energy (obtained from the mag-
nitude spectrum and post-processed in the same way) and a classic VAD
implementation (Sohn et al., 1999)(in this case, post-processing is not per-
formed since the function is a probabilistic measure). While the VAD algo-
rithm performs best in our evaluation with this simple case, this algorithm
is problematic for more complex cases, as shown in Figure 3.7 (a short clip
of a recording in a bus). Clearly, the VAD function will tend to jump also
for very low energy events.

From the HFCfb, events can be isolated simply by cutting above some
threshold (close to 0). This contrasts with standard practice in MIR, where
onsets are detected as peaks in the onset detection function.

Aggregation Identified segments corresponding to events can be ex-
tracted from the sequence of frame level descriptors of the recording and
described as separate entities. Like in the case of scenes, obtaining a fixed-
length vector representation is especially useful for indexing sounds in large
databases, as generic machine learning algorithms can be applied. In the
case of sound events, aggregation can be regarded as a simpler task. If we
think about the case of pitched musical instrument timbres, it is traditional
to describe their sound in terms of the spectrum corresponding to the stable
part. Thus, the average of the spectrum (or its compression in the cepstral
coefficients) can be a starting point for describing the sound coming out of a
resonant body. Classic studies on timbre (Grey, 1977) proposed the embed-
ding of musical instrument timbre into a space composed of the log attack
time (i.e. the logarithm of the time it takes for the signal to reach its maxi-
mum), the spectral centroid (the baricentre of the spectrum for one frame)
and the spectral flux (the difference between two consecutive spectra). A
generic description for sound events can be obtained by simple statistics of
the cepstral coefficients with the addition of some measures of the energy
envelope, which can be obtained from the first cepstral coefficient. Clearly,
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Figure 3.6: Example of onset detection functions

as in the case of the HFC measure, the spectral centroid could be approxi-
mated from the filterbank, and its cepstral coefficients can be seen as a more
detailed description of the spectrum shape, where the centroid reduces it
to one dimension. In a similar way, the statistics of the first derivative of
the cepstral coefficients, which is often used in many recognition tasks, will
provide more detailed information on the rate of change than the spectral
flux. Hence, in addition to common statistics of the cepstral coefficients, we
extract more detailed measures of the energy envelope, representd by the
0th GFCC: log attack time, temporal centroid, strong decay and tempo-
ral kurtosis and skewness(Herrera et al., 2002; Haro, 2008). Finally, RQA
features can also be used for describing the temporal evolution of audio in
short events. These features are more robust than envelope measures to
different segmentation situations, which can be very varied in unstructured
data.
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Figure 3.7: Example of the different behaviour of the VAD and the HFCfb
functions

Pitched events For music creation applications, the presence of pitch in
sound events is obviously a very relevant aspect for many people. In this
thesis, we focus on timbre, as the most general property of events, and the
feature space that allows us to distinguish different sound sources (includ-
ing musical instruments). Timbre is commonly represented using cepstral
coefficients. However, by integrating the spectrum into filter bands of larger
bandwidth, we loose the detail on the finer oscillations of the spectrum that
correspond to the fundamental frequency and its harmonics. This may be
regarded as a compromise: in order to describe timbre we must discard
pitch and focus on the general spectral shape. Thus, for describing the
pitch of events, we should go back to the spectrum. In our experience with
the Freesound database, the spectral-domain version of the YIN algorithm,
YIN-FFT (Brossier, 2006) can be useful for dealing with pitched events.
This algorithm provides a measure of confidence that can be used as pitched-
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ness, which is essential when dealing with unstructured data. Since pitch
is already a musical feature, sounds with a stable pitch (such as musical
notes) can be directly queried by their pitch value. In order to determine if
a sound has a stable pitch, the variance of the evolution of pitch (computed
in logarithmic pitch space) can be used along with pitch confidence from
YIN-FFT. Apart from sounds with stable pitch, many sounds can exhibit
characteristic pitch movements, such as vibrato, or glissandi. A systematic
categorization of this kind of sounds is outside the scope of this thesis. The
interested reader is referred to existing literature on morphological descrip-
tion of sound (Ricard, 2004; Peeters and Deruty, 2010). Finally, we may
consider acoustic events containing multiple harmonic pitches, also known
as chords. Indexing polyphonic tonality is also relevant in the case of music
loops, as many loops shared by internet users have some defined tonality.
Description of polyphonic tonality has been developed in the form of chroma
features and Harmonic Pitch Class Profile (HPCP) features (Gómez, 2006).
However these are generally applied in MIR, where tonality is assumed. In
our case, a measure of tonal strength is crucial. A measure of key strength
is the correlation of a HPCP vector with a tonality profile. However, this
is not necessarily a good measure of tonal strength, since HPCP vectors
of environmental sounds may correlate by chance. In our experience, in-
dicators of peakiness of a probability mass function, such as Entropy, or
Crest (commonly used to describe the peakiness of the raw spectrum) can
be applied to HPCP vectors to identify chords, as these will display strong
peaks. Since all pitched sounds will have some peak in the HPCP vector,
the number of peaks can be used to distinguish chords from single notes.
In general, features derived from HPCP vectors work well for unstructured
audio where one may find all sorts of sounds, including monophonic and
polyphonic melodies, notes, chords and chord sequences. However, a formal
evaluation for this kind of sounds is out of the scope of this thesis.

Music loops

Loops are samples that can be played repeatedly to create rhythm. If we
leave aesthetic considerations aside, anything could be a loop, as any au-
dio sample will produce some sort of pulse when repeated. In practice,
though, loops are popular in many electronic music styles, and for this
reason it is common to find samples created with synthesizers and drum
machines (and also traditional musical instruments) in online collaborative
databases. Loops can be seen as monophonic or polyphonic segments that
the author considers appropriate for repeating in a musical composition.
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Compared to environmental sounds, loops are more complex and usually
are based on musical features. Hence, many MIR techniques developed for
beat and tempo tracking can be used to analyze loops. However, because
of the traditional focus of MIR on music, there are several problems that
complicate the use of many of these techniques: some require longer dura-
tions than what can be assumed for reusable fragments. On the other hand,
many MIR techniques for rhythm analysis are based on onset detection so
they rely on percussive or pitched events.

Foote’s Beat Spectrum (Foote and Uchihashi, 2001) is a rather “classic”
method for rhythm analysis. However, it has many interesting qualities
that justify its use in the context of unstructured audio. First, like the
rest of features that we have analyzed, it can be computed from the matrix
of cepstral coefficients Gc (it could also be computed from the matrix of
raw filterbank features G, but since it is based on distance computations it
makes more sense to use cepstral coefficients). Thus, it allows us to detect
and describe loops from the same base generic feature that we use for scenes
and events. Second, since it is obtained from the similarity matrix of the
sequence of cepstral coefficients vector, it does not make assumptions about
the musicality of the sound, and it actually can be used to detect patterns in
other feature domains such as HPCP. Similarly to the case of RQA features,
we first compute the similarity matrix using cosine distance:

Di,j =
Gci ·Gcj
||Gci||||Gcj ||

(3.20)

From this matrix, the beat spectrum can be obtained by summing all the
diagonals in the matrix:

B(l) =
M−1∑
k=0

D(k, k + l) (3.21)

where M is the length of the Gc time series and l is the time lag in frames.
Recall that diagonals represent pairs of time points in the sequence of de-
scriptors that share the same time lag, so a peak in the beat spectrum rep-
resents a typical repetition period in the underlying feature (in this case,
timbre).

Figure 3.8 shows an example similarity matrix and the corresponding beat
spectrum. From this base representation we can accomplish two important
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Figure 3.8: Similarity matrix and beat spectrum from a rhythmic sample

tasks in dealing with loops: we can identify them from other non-loopable
samples in unstructured databases, and we can index them according to
their most common repetition periods for rhythmic music creation applica-
tions.

Identification

Since the decision about what is and what is not a loop can easily become
complicated, we propose a pragmatic heuristic to identify loops in unstruc-
tured data: we assume that loops will have some rhythmic content, and that
they have been devised so that the duration of the sound has a harmonic
relation with the main pulse of this rhythm. This is in practice what defines
loops in electronic music creation since it will create the rhythm sensation
when repeating the sound. Thus, we analyze the main N peaks in the beat
spectrum and look for a peak whose position is harmonic with the total
duration of the file (this is, the position of the peak is related to the dura-
tion by an integer ratio), with some error threshold. Note that in the case
that there are silences at the beginning or end of the file, the file may not
loop properly unless it is clipped, and it will be discarded by this method.
These files can be preprocessed in order to remove silence. If we find such
a peak among the most prominent ones, we can decide that the sound is a
loop. Both parameters (the number of peaks and the threshold) can then
be used to adjust the sensitivity and so that we are more or less strict in
the selection of loops. As will be shown in the experiments section, slightly
better detection can be achieved by using a SVM classifier with some fea-
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tures extracted from the beat spectrum: in addition to the presence of a
harmonic peak, the value of that peak (the spectrum is normalized by the
peak at zero lag), and the entropy of the beat spectrum (Lartillot et al.,
2008): since loops contain rhythmic pulses, the spectrum will be peaky,
while environmental sounds with no clear pulse will tend to be flat. These
measures retain the advantage of not being directly related with timbre or
other musical features that could be used to distinguish between “typical”
loop sounds (e.g. with timbres associated to drum or synthetic sounds) and
environmental sounds, so that classification is purely based in rhythmic as-
pects of the sound, and any loopable sound (at least with regularities in the
GFCC sequence) can be identified, regardless of its source.

Timbre classification

While defining discrete classes of loops may be a tricky issue, timbre classifi-
cation is a common way to index them, often based on the description of the
instruments used to produce the loop. Here, we use general statistics from
the matrix of cepstral coefficients, like in the case of general scenes, with
the difference that derivatives do provide useful information for classifying
loops, while RQA features do not (from the set of RQA features described,
we could be interested in the recurrence rate from a rhythmic perspective,
but the beat spectrum already uses the diagonals in the similarity matrix
with more detail than the quantized version of the recurrence plot). Results
for timbe classification of loops are shown in the experiments section.

Tempo indexing

One of the most important aspects of music loops is the possibility to sync
them to a given music context. Tempo in BPM is the most used measure.
Here, we explore an alternative approach based on the beat spectrum. The
idea is that since this analysis does not focus on percussive or specific in-
strumental sounds, it can be used to detect unexpectedly loopable material
in recordings not originally intended for music creation. However, detecting
the exact tempo may be tricky unless the beat spectrum reveals a very clear
structure. Given the method used for detecting loops based on harmonic
peaks, our approach simply focuses on finding loops that can be played
together in sync. The intuition is that if two sounds are repetitive with
the same repetition period, they will produce some coherent rhythm sensa-
tion when played in sync. An experimental prototype based on this idea is
described in section 3.4.4.
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3.4 Experiments

3.4.1 Overview

In this chapter we have described our framework for content-based indexing
of community-contributed sounds based on audio descriptors. First, we have
described the cepstral coefficients framework as the most ubiquitous frame-
level description generally used for content-based retrieval of all kinds of
audio. Then, for each kind of sound (sound scenes, sound events and music
loops) we have described aggregation strategies, extracting the features that
are most relevant for applications dealing with each kind of sounds.

This section presents several experiments to evaluate and compare the dif-
ferent possibilities and parameter sets in the described approaches. First,
we describe several datasets used in our experiments. Then we compare
the different types of bands, and their cepstral coefficients, to establish a
generic base frame-level descriptor that can be used for all kinds of sounds.
The advantage of this is obvious, as it allows analyzing large scale databases
without knowing the types of sounds that they contain. In the following
sections, we evaluate our approaches for identifying and summarizing sound
scenes, sound events, and music loops.

Both supervised unsupervised indexing can be evaluated with datasets that
represent different classes of sounds. Obtaining ground truth data is diffi-
cult, since consistently labelling recordings of different sounds with sufficient
scale requires effort. However, it is essential to validate methods with as
many datasets as possible in order to avoid overfitting specific characteris-
tics of one dataset. We now describe several datasets obtained from different
sources that are later used to evaluate the different proposed descriptors and
algorithms. The purpose is to reflect the different use cases and types of
data mentioned, so mainly they contain field recordings, sound events and
music loops. Table 3.1 provides a summary.

d case scenes

This dataset was distributed to participants in the D-CASE challenge for
scene classification (Giannoulis et al., 2013). It contains 100 30s. recordings
corresponding to different environments: busy street, quiet street, super-
market/store, restaurant, office, park, bus, tube/metro, tube station and
open market. The recordings were done using a binaural micophone during
2 months in the same geographical area.
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in house scenes

This dataset was created by one of the authors of the publication where we
first demonstrated the use of RQA features for sound scene classification
in the context of the D-CASE challenge (Roma et al., 2013). The classes
are the same as for the previous dataset, but recordings were obtained from
different commercial CDs and online sources, and sound quality and bit rate
varies between files.

dares scenes

This dataset was collected by a team at the university of Groningen (Nether-
lands), using the same equipment for all recordings (van Grootel et al.,
2009). The concepts are very similar to the d case scenes dataset, but the
number of examples for each class is very variable. We selected the classes
that had a minimum of 9 examples each.

d case events

The D-CASE challenge included an event detection task. The dataset sup-
plied to participants for development of their own detection/classification
algorithms consisted of two parts: a labelled database of events for training,
and a set of three scenes with annotated events of the same classes of the
training set. As explained in the previous sections, our system considers
segmentation and classification separately, so the training dataset can also
be used to evaluate classification of sound events. We then use the test files
to evaluate the joint segmentation/classification framework.

gaver events

This dataset was compiled from several sample CDs and sounds from
Freesound by a team of 4 people (Roma et al., 2010). Sounds are classified
according to the sound event taxonomy proposed by William Gaver (Gaver,
1993).

looperman

This dataset was crawled from the popular loop sharing site looperman.com
for research purposes. The original dataset containing more than 20.000
sounds was sampled to a more manageable size so that different descriptors
and parameter sets could be compared. All loops in the site are labelled
according to “category”, “genre”, key and tempo. Categories describe the
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main or single instrument in the loop, so we use these categories to evaluate
timbre-based classification of loops. Tempo is used to evaluate the system
described for rhythm indexing.

indaba

This dataset was downloaded from the music mixing site indaba-music.com.
This site originally included an online, flash-based, DAW-style interface,
which allowed basic multi-track audio editing, and promoted community
activity mainly through remix contests. Recently the activity seems to be
focused on the contests and challenges, and the DAW interface has been re-
moved. The site includes a library of sound clips, although the descriptions
are very sparse. The dataset contains only a few loops that are described
according to instrument classes, like in the case of the looperman dataset,
but much smaller in size. The loops also have a tempo annotation that we
use to validate our rhythm indexing approach.

freesound tags

Sounds in Freesound are generally required to have a textual description
and a set of at least three tags. Over the years, this has resulted on a rich
folksonomy, in which some tags have become very popular. We sampled the
6 most popular tags: field-recording, drum, voice, noise, loop and ambient.
The number was chosen as to avoid clear overlaps, as the next most popular
tag is percussion. By definition, this dataset contains scenes, events and
loops, and so it is only useful for the first experiments analyzing generic
audio features.

freesound packs

In addition to the description and tags, sounds in freesound.org can be
assigned to packs, which authors can use to group related files. These packs
can then be downloaded as zip files. It can be expected that packs contain
consistent similar sounds, not only because the author has followed some
criterion, but also because the recording equipment or procedure will usually
be the same or very similar. This dataset contains sounds from the 15 largest
packs in Freesound. Like in the case of tags, it contains mixed sounds so it
is only used to evaluate generic features.
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Table 3.1: Datasets used for evaluation

Name Classes Instances

d case scenes 10 100

in house scenes 10 150

dares scenes 8 72

d case events 16 320

gaver events 9 1608

looperman 20 2000

indaba 3 371

freesound tags 6 1034

freesound packs 15 2164

3.4.2 Generic features

In this chapter we have described MFCCs as the most widely used descriptor
for audio analysis. We have also seen that within the same framework there
are several variants that have been used in other works. In this experiment,
we compare mel bands, bark bands and erb bands for obtaining a generic
representation. We also analyze the performance of raw filterbank features
and cepstral coefficients for classification tasks.

Methodology

We compare the different feature sets using an SVM classifier for all the
described datasets. In order to find optimal parameters for the base features,
we first evaluate by averaging the raw filter bank features over time (i.e. the
“bag of features”) and analyze the performance with different numbers of
bands, ranging from 10 to 128, for each type of band and for all datasets.
Then we fix the number of bands and test in the same way for different
numbers of cepstral coefficients. We then choose the number of bands and
coefficients for the feature aggregation experiments.

In all classification experiments, we evaluate using a 10-fold cross-validation.
For each fold, we run a grid search to optimize the γ and C parameters of
the RBF kernel, training each parameter set on 20% of the training data.
In order to account for the variability in the results, each classification
task is run 10 times. We report the mean and standard deviation of the
classification accuracy of the 10 runs.
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Results and discussion

Figures 3.9 and 3.10 show the classification results for each dataset with
the raw filter bank features. Shaded areas indicate standard deviation of
the 10 runs. The first observation that can be made is about the different
classification performances achieved with each dataset, with the most basic
aggregation method - the average of the frame-level features. This indicates
how easy is to discriminate each type of sound (given the number of training
examples) on the basis of the average spectral shape. Thus, we can see
that the indaba dataset (where classes correspond to musical instruments
- hence timbre) can be easily classified. Also, the classifier achieves good
performance with the freesound packs dataset, which is expected to be a
consistent division. Contrastingly, it is very difficult to discriminate among
the main freesound tags. This is due to the mentioned problems with free
tags. With respect to the type of band, results indicate that the difference
between the three types of band is not significant in the smaller datasets (i.e.
less than 1000 sounds). However, in the larger datasets, the erb-gammatone
bands tend to perform better. Finally, it is easy to notice a saturation effect
at about 40 bands, the standard number of bands used in the most common
MFCC implementations.

We then repeat the test using cepstral coefficients computed from 40
bands. Figures 3.11 and 3.12 show classification accuracy for both groups of
datasets. In comparison with the raw bands, by using cepstral coefficients
results improve very noticeably. This is to be expected from their orthogo-
nality, which results in more accurate distances. With respect to the type
of band, again the slight improvement of erb bands can be observed only
for larger datasets, with the exception of the more difficult freesound tags
dataset.

Finally, and perhaps surprisingly, there seem to be little or no significant
gain in adding cepstral coefficients, in many cases from the very start. A
safe choice seems to be around 25 coefficients. After this there is generally
little improvement.

From these experiments we conclude that a generic descriptor of 25 coef-
ficients computed from 40 ERB bands is a reasonable choice for general
classification within the general framework of cepstral coefficients.

We now describe our experiments with respect to feature aggregation for
each of the three types of sounds described: sound scenes, sound events,
and music loops.



3.4. experiments 55
cl

as
si

�c
at

io
n 

ac
cu

ra
cy

number of bands

mel
bark
erb46

40

44

38

36

34

32

42

20 40 100 12060 80

(a)

cl
as

si
�c

at
io

n 
ac

cu
ra

cy
number of bands

mel
bark
erb

76

74

68

72

66

64

62

60

70

20 40 100 12060 80

(b)

cl
as

si
�c

at
io

n 
ac

cu
ra

cy

number of bands

mel
bark
erb40

30

25

35

20 40 100 12060 80

(c)

cl
as

si
�c

at
io

n 
ac

cu
ra

cy

number of bands

mel
bark
erb

58

56

50

54

48

46

44

42

52

20 40 100 12060 80

(d)

cl
as

si
�c

at
io

n 
ac

cu
ra

cy

number of bands

mel
bark
erb96

98

90

94

88

86

84

82

92

20 40 100 12060 80

(e)

Figure 3.9: Classification accuracy using raw filterbank features for the
smaller datasets: d case scenes (a), dares scenes (b), inhouse scenes (c),
d case events (d) and indaba (e), as a function of the number of filters
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Figure 3.10: Classification accuracy using raw filterbank features for the
larger datasets: looperman (a),freesound packs (b), freesound tags (c) and
gaver events (d) datasets, as a function of the number of filters
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Figure 3.11: Classification accuracy using cepstral coefficients computed
from 40 bands for the smaller datasets: d case scenes (a), dares scenes (b),
inhouse scenes (c), d case events (d) and indaba (e), as a function of the
number of filters
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Figure 3.12: Classification accuracy using cepstral coefficients computed
from 40 bands for the larger datasets: looperman (a),freesound packs (b),
freesound tags (c) and gaver events (d) datasets, as a function of the number
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Figure 3.13: Classification accuracy using RQA features without whitening,
as a function of parameters W and r for the scenes datasets

3.4.3 Sound Scenes

As we have described in previous sections, our approach to describing sound
scenes is based on both their long term and short term statistics. To the
best of our knowledge, the RQA features described for analysis of audio
spectra have not been previously used for audio recognition (RQA features
have been used with raw audio waveforms for pathological analysis of the
voice (de A Costa et al., 2012), which is a very different case). For this
reason, an analysis of the main parameters used for RQA may be relevant.
The most important ones are the radius r (the distance threshold used to
transform the distance matrix in the binary recurrence plot) and W, the
size of the window within which the features are computed. Webber and
Zbilut (1994) provide some hints for the choice of suitable parameters.

Methodology

We analyze the accuracy of a classification task using different sets
of features and parameters for the datasets containing sound scenes
(d case scenes, in house scenes and dares scenes). The classification ap-
proach is the same as in the previous experiment. In order to find appro-
priate values for the parameters, we first perform a grid search for window
sizes from 4 to 2048 spectral frames (we generally use 10ms hops between
frames, so this means 40ms to 20s) and radius values between 0 and 1. We
then compare the different sets of features for summarizing sound scenes.

Results and discussion

In the implementation of these features, we noted that z-scoring the features
of each window to zero mean and unit standard deviation could produce
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Figure 3.14: Classification accuracy using RQA features with whitening, as
a function of parameters W and r for the scenes datasets

some small improvements. In the original RQA theory, the multivariate
feature used for the distance matrix is obtained from an embedding of a
one-dimensional feature, and this step is not used. The distance matrix is
normalized by the maximum distance value, which we apply after computing
the matrix from standardized features. One interesting aspect of this step,
in our case, is that it makes it easier to choose a a fix set of parameters
for all datasets. Figure 3.13 shows a color map of classification acuracy
for a grid search of W and r using the three scenes datasets, where color
represents the average classification accuracy over 24 runs. In this case
only the standard normalization was used. Figure 3.14 represents the same
search, using the feature whitening step. In the second case, the maximum
classification accuracies are slightly better, and the areas formed by good
parameter combinations tend to be larger. Also, the pattern seems to be
more uniform across datasets. In general, by z-scoring features it is possible
to select larger window sizes, as the resulting distances are not so dependent
on the size of the window, and longer term recurrences can be counted. In
the non-whitened case, the optimal window sizes are very small (in the order
of 160 milliseconds).

The values for W and r can generally set to 128 frames and 0.6 respectively,
for sound scenes. We now analyze classification accuracy using different fea-
ture aggregation sets: global mean (gm), global variance (gv), local variance
(lv), RQA (rqa), and several combinations (gm + gv, gm+ gv + lv, gm+
gv + rqa, gm+ gv + lv + rqa). Figure 3.15 shows the results for each set of
features. It can be seen that, with the exception of the dares scenes dataset,
local statistics can be used to improve accuracy when added to global statis-
tics, and that lv and rqa increast the overall accuracy when added together,
which indicates that they provide complementary information. In the case
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of dares scenes, relatively good results are already obtained only by averag-
ing the frame-level features, and no significant improvement is made by any
other feature set, which seems to indicate a ceiling effect. Unlike the other
scenes datasets, this dataset contains several classes of indoor scenes, which
can be seen as a very different problem to recognizing outdoor recordings,
as the background is usually not so relevant when identifying indoor scenes.
The overall set of features, computed over 25 cepstral coefficients, amounts
to a vector of 86 features for describing sound scenes.

3.4.4 Sound Events

We have described a method for identifying sound events in longer record-
ings, as well as different aggregation features based on cepstral coefficients.
In the following set of experiments, we analye the tasks of blind identifica-
tion and classification, and the recognition task combining both.

Methodology

The methodology follows the taks proposed in the D-CASE challenge (Gi-
annoulis et al., 2013). We first focus on segmentation, comparing different
algorithms for VAD and onset detection. We then focus on the classification
of discrete events into classes, analyzing the performance of different feature
sets. Finally, we perform both steps within the evaluation framework of the
challenge.

Segmentation

For evaluating segmentation algorithms, we used the scripts provided in the
office live task of the D-CASE challenge. These are 1 minute recordings of
an office environment that contain several non-overlapping events. While
the audio is not synthetic, it is not a completely realistic case, since it has
been devised to avoid overlapping events and to ensure that all events corre-
spond to classes in the ground truth. We convert the ground truth annota-
tion, containing the locations and classes of the events, into a binary signal
of the same length of the waveform, where 1 signals the presence of an event
and 0 background. We then approximate the same signal using the different
algorithms, and compute the jaccard distance between both signals. This
distance measures the overlap between binary variables. Hence, the lowest
the distance, the better the algorithm is approximating the ground truth.
Table 3.2 shows the results for several common onset detection functions.
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Clearly, HFC tends to perform better than the other onset detection func-
tions because of the longer decay. Also it can be noted that the filterbank
version performs even better than using the raw spectrum. Finally, the
VAD algorithm generally gives good results in two of the scripts. It seems
that for this task, using VAD would be the best option. However, this may
be probably due to the simplicity of the evaluation data, since the scripts
contain very sparse and recognizable events.

Table 3.2: Jaccard distance of different onset detection functions with the
ground truth segmentation

Algorithm script 1 script 2 script 3

HFC 0.2725 0.3478 0.2754

HFCfb 0.2207 0.3030 0.2766

energy 0.4048 0.4900 0.5953

spectral flux 0.4394 0.5228 0.6252

vad 0.2224 0.2553 0.3194

Classification

We now analyze several features for classification of events. We use the
training set provided for the D-CASE challenge, and the gaver events
dataset. The following descriptor sets are compared: mean (m), variance
(v), mean derivative (dm), variance of the derivative (dv), envelope descrip-
tors (env), RQA (rqa), and several combinations of these (mv+dm+dv,
mv+rqa, mv+env, all).

Figure 3.16 shows classification accuracy for each set of features with the
two events datasets. It can be clearly seen for both databases that the
envelope features provide relevant information, achieving greater accuracy
than the derivatives and the RQA features. The derivatives only seem
to work for the d case events dataset, but not for the larger gaver events
dataset. Aggregating all these statistics results in accuracies above 70%, far
above the corresponding random baseline in both cases.

Recognition

We now combine both tasks into a recognition task. In this task, we seg-
ment the same scripts as in the previous section, and classify the resulting
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Figure 3.16: Classification accuracy using mean (m), variance (v), derivative
mean(dm), derivative variance (dv), envelope features (env), RQA (rqa),
and combinations for the events datasets
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events into the different classes defined in the training set. In this case,
we adopt the methodology used in the D-CASE challenge, and analyze
the frame-based F-measure of the classifier. This means that using the
script recordings used in the segmentation experiment, we consider whether
each 10ms frame has been correctly assigned to its labelled class (note that
many different evaluation measures were used in the challenge(Giannoulis
et al., 2013), we selected this measure for simplicity). Figure 3.17 shows the
results for the different feature sets and segmentation algorithms used in
previous experiment, including also “ideal” segmentation (i.e. the ground
truth annotations are used for deciding the event boundaries instead of a
segmentation algorithm). In general, results seem to differ slightly from the
classification experiment, and not so much with respect to the segmentation
experiment. It should be noted that in this case we are analyzing a relatively
small test set (in the order of 30 events per script, results being averaged
across three scripts) where the classes are not balanced. Contrastingly, the
gaver events dataset used in the classification experiments contains more
than 1500 instances. Interestingly, RQA features provide an improvement
in most cases, which was not so clear in the plain classification task, while
the event-based features tend to perform worse. Since this also happens in
the ideal segmentation case, this difference seems to be more related to the
presence of background noise in the script recordings than due to segmenta-
tion issues. With respect to the segmentation experiments, differences are
not very important. Considering all three experiments, and our qualitative
insights on the performance of the VAD algorithm, it seems that the HFCfb
segmentation with RQA features (in addition to traditional statistics) can
be a reasonable choice for event detection. However, the generality of these
results are limited by the size of this dataset.

Music loops

With respect to loops, we have identified three different tasks required for
indexing loops in the context of unstructured audio databases. The first one
is identifying loopable samples. Remind that in this case we focus on loops
created and shared (but not necessarily with an appropriate description)
by internet users, so our problem is identifying loop files from other non-
loopable files. We then analyze classification of loops based on timbre, in
the same way we cosidered events and scenes. Finally, we analyze the beat
spectrum method for tempo-based indexing.
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Figure 3.17: Frame level F-measure for event detection using different seg-
mentation algorithms and feature sets

Methodology We evaluate the proposed algorithms in a set of experi-
ments. While the classification task is based in the same methodology of
the previous experiments, we followed different approaches for the case of
identification and rhythm indexing. We describe the methodology in the
corresponding sections.

Identification of music loops In order to evaluate our method for iden-
tification of loops, we created two ad hoc datasets divided in 100 loops
and 100 non-loopable files. The first dataset was obtained by querying the
freesound database for sounds tagged as loop, and then using a general query
and avoiding sounds that have this tag for the negative class. In addition,
the “group by pack” of Freesound’s search engine is used to avoid sounds
from the same pack, and in each case, 100 sounds are randomly sampled
from a larger result set to eliminate any effects of the order of search results.
The second dataset consists of 100 sounds from the looperman dataset and
100 from the in house scenes dataset. We compare two different strategies:
in the first case, classification is purely based on the first harmonic heuris-
tic: if one of the 20 top peaks in the beat spectrum is a harmonic of the
file duration (with an error threshold of 0.1), then the sound considered a
loop. In the second case we add the beat spectrum entropy and the value
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Figure 3.18: Loop detection accuracy using either the harmonic method
and the SVM classifier for the looperman and indaba datasets

of the harmonic peak (along with the former binary variable) as features
to a SVM classifier, and evaluate via 10-fold cross-validation. Results are
shown in figure 3.18. It can be seen that this simple approach gives very
good results in the case of the looperman vs in house scenes dataset, with
a significant improvement when using the SVM classifier. In the case of
the freesound dataset it should be noted that labels are noisier: a sound
not labelled as “loop” may be actually loopable even if it’s not described
as such, and sounds labelled as loops may be incorrectly cut. This method
should give good results in practice, as false positives (sounds that were not
intended to be loops) will generally be loopable material, and false nega-
tives (discarded loops) will possibly lack rhythmic clarity, at least in the
timbre domain. Further improvements can be done by analyzing the beat
spectrum of other features, such as HPCP.

Timbre classification While defining discrete classs of loops may be a
tricky issue, timbre classification (i.e. often based on the instruments or
sounds they contain) is perhaps the most common way. Both the loop-
erman and the indaba datasets contain non-overlapping labels related to
musical instruments. We analyze the potential for classification in the same
way we did for the scenes and events datasets. Results are shown in figure
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3.19. Clearly (as can also be understood by listening to some examples), the
labels in the looperman dataset are not as consistent with the actual sounds
as it may seem. This suggests that the problems inherent in free tagging
are not necessarily solved by imposing a set of fixed categories in the site
interface. In the case of the indaba dataset, both the number of classes and
the number of instances are much smaller. Unlike in the case of scenes and
events, statistics from the derivative of the cepstral coefficients seem to add
relevant information in both cases, which is consistent with their extended
use in MIR. Since loops contain mixtures of different instruments or sounds,
unsupervised classification could provide more interesting results than su-
pervised classification based on single-instrument labels. Another common
approach that could be automated would be electronic music genres, which
would require a large and consistent training dataset and joint analysis of
timbre and rhythmic features.

Rhythm indexing As we have described, the beat spectrum does not di-
rectly give BPM values, but the harmonic peaks used to identify loops will
very likely be physically related to the main rhythmic pulse perceived in
the loop. Here, instead of focusing on BPM values, we can just index loops
according to their characteristic repetition periods. The following experi-
ment can help showing the potential of this method. The main assumption
is that, as long as loops can be played together, in a creative context oc-
tave errors do not matter much. This is, a loop labelled at 60 BPM can
be perfectly played with another one labelled as 120 BPM. Since we search
for harmonics of the file duration (which can contain one or several bars),
the first harmonic (typically one half or one third of the file duration) will
be a period containing several beats. We analyzed 200 sounds from the
looperman dataset and computed the ratio between the duration of this pe-
riod and the duration of one beat according to the labelled tempo in BPM.
We then computed the error as the decimal part of this ratio. Figure 3.20
shows the distribution of the error for 500 sounds, with most sounds below
0.05 (mean 0.09, sd 0.12). This indicates that the periods are generally re-
lated to the labelled tempo. Typically the ratio between the beat spectrum
harmonic and the duration of one beat derived from the BPM is 2, 4 or 8.

Experimental prototype We implemented a web-based prototype in
order to test the proposed method for rhythm indexing, using loops from
Freesound. While we didn’t conduct a formal evaluation, the development
of the prototype helped clarifying the potential and limitations of the pro-
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Figure 3.19: Classification accuracy using mean (m), variance (v), derivative
mean(dm), derivative variance (dv) and combinations for the loop datasets:
looperman (a) and indaba (b)
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Figure 3.20: Distribution of the error in detecting labelled tempo harmonics
with the looperman dataset

posed approach. The index, computed as described above, contains about
30.000 loops. We used several information visualization techniques in order
to present loops in a web environment. First, we computed a histogram of
all the harmonic periods of loops in the database. Since the beat spectrum
is computed from frame-level descriptors, harmonic periods are measured in
frames, and the histogram is discrete. Peaks in this histogram correspond to
frequent periods related with typical tempo values (e.g. 120BPM). This is a
consequence of the social nature of the database. The histogram is used as
an interaction device, so that selecting one bar from the histogram would
load all sounds that share the same harmonic period. When queried for
sounds with a given period, the server creates a k-nearest neighbors graph
of the sounds according to their timbre similarity, as computed by cosine
distance over the average of MFCC features. The graph is returned to the
client, where a force-directed layout is used to display all the sounds in the
page. Since the graph is built according to timbre similarity, the layout
will tend to group similar sounds together, which helps in the exploration
process. It should be noted that this is an approximation to our clustering
approach described in chapter 4, as modulartiy has been shown to be re-
lated to force-directed layout (Noack, 2009). This kind of layout has been
used in the context of corpus-based synthesis for large databases (Schwarz
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Figure 3.21: Screenshot of the prototype

et al., 2009). Loops are represented via the small spectrogram thumbnails
available for all sounds in Freesound. This allows the user to quickly iden-
tify sounds with a strong pulse, as they will contain vertical lines. Sounds
with melodies are also easily identified. Playback of the loops is quantized
to the selected loop period.

While the prototype is still in development, reactions in initial demonstra-
tions were very positive. The interface allows maintaining a certain creative
flow, as all sounds and can be used as a musical instrument, as well as an
exploration of the sounds uploaded by the Freesound community. The main
limitation is that some sounds are indexed according to harmonic periods
that do not necessarily start at the beginning of the file. Foote proposed
that the ”phase” of the beat spectrum can be computed as a novelty curve
from the similarity matrix (Foote, 2000), which can be seen as an onset
detection function. This feature could be used to improve the index.
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3.5 Conclusions

In this chapter we have faced the problem of low level audio representation
in the context of user-driven databases without a pre-defined editorial pro-
cess. In such platforms it is possible to find any kind of sound, including
speech, music, environmental audio, and all possible mixes of these. Among
the literature of the respective disciplines that study each kind of sounds,
perhaps the most ubiquitous low-level representation are MFCCs. Other
common descriptions, based on more recent studies of the auditory filter,
such as bark or ERB bands, can be incorporated in the same framework
to obtain cepstral representations. Our experiments show that swapping
the filter bank does make a difference, although not very large, especially
with larger datasets. This seems to imply that more accurate filterbanks
motivated by psychoacoustic studies allow for better generalization. We
have then proposed to distinguish three main kinds of sound files that are
common in online audio databases: sound scenes (usually field recordings),
sound events, and music loops. Within the framework of cepstral coeffi-
cients, we have proposed a way to identify each kind of sound, and for each
kind, we have analyzed different ways to aggregate the time series of cepstral
coefficients in order to obtain a summary representation. These representa-
tions can be used for indexing and retrieval for creative applications, such
as described in Chapter 4. At the same time, we hope that these results can
be useful in different fields, particularly in analysis of environmental sound
recordings, where it is also possible to find all kinds of sounds.



Chapter 4

Automatic taxonomical
organization of audio

4.1 Introduction

During the last decades, many web applications have allowed users to share
information generated or captured by themselves. These applications are
typically less structured than traditional media with well defined editorial
processes, curated by companies with well defined role hierarchies. This
feature can be related to the success of the decentralized design of the In-
ternet and its protocols. The notion of unstructured data is commonly
associated with text. It can be argued that web search engines have helped
people to become accustomed to interacting with unstructured and diverse
information by way of short text queries. Most popular social media ap-
plications, such as flickr or youtube, are rather laid-back with respect to
information organization. Free tags have become a popular way to organize
content, even for private use. From the content creation perspective, an
emphasis on structure may be problematic: most web users who create and
share content usually do it for fun and are not likely to commit themselves
to the tedious work of labeling their data in a very detailed or repetitive
way. Moreover, decisions about the global information structure may be
questioned and subject to debate. Wikipedia can be seen as an intermedi-
ate model, which works according to an elaborate governance system. It is
quite obvious that the possibility of indexing and retrieving unstructured
data has boosted Internet adoption and thus helped disrupting the way we
use information. At the same time, a bit of agreement and coordination are
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helpful for making sense of information on the web. Very often, the use and
mis-use of unstructured data services call for something more elaborate. As
an example, Freesound.org heavily relies on free tags. Describing sounds
is usually a tedious task, and many users try to minimize their efforts by
repeating the same tags and descriptions for many sounds. Some popular
tags include ‘A’, ‘120’ and ‘Zoom H2’, which refer respectively to a musical
note or key, a musical tempo, and a portable audio recorder model. These
and many similar examples suggest that a more structured model would
help to describe the sounds. The Semantic Web vision (Berners-Lee et al.,
2001) has received a great deal of attention in academic Information Re-
trieval. One core idea of the Semantic Web was that if information was
described in compatible ways across different web services, we would be
able to make programs that automatically relate information from different
sources and process it in intelligent ways. For this purpose, labels should
conform to web ontologies, which allow to formally describe relationships
between concepts in an application domain. The adoption of Semantic Web
technologies, however, has been slow. In a way, the irruption of users into
content creation and the generalization of unstructured processes conflicts
with the complex formalisms proposed by Semantic Web researchers. In
this chapter we explore taxonomical organization as an intermediate solu-
tion that is well known to most users and can be seen as a simple form of
ontology.

4.2 Taxonomical organization

Taxonomical organization is perhaps one of the oldest ways of structuring
knowledge, and is central to most scientific disciplines. Any computer user
is accustomed to organize files in a hierarchical fashion. Taxonomies may be
unnecessary for some applications. For example, current mobile operating
systems (which are increasingly used by people with little or no experience
with personal computers) tend to deliberately hide the file system from the
user, and applications such as gmail offer free tags as opposed to traditional
folder structures. In this sense, taxonomies can be thought as a compromise
between the complexity of semantic web ontologies and the randomness of
free tags. Taxonomies are, of course, a simple form of ontology, but one
that all computer users can easily understand, and that can be created by
domain specialists without a computer science background. Taxonomical
organization of sound has been studied from many different perspectives.
Before electronic means of sound production existed, the sounds used in
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music were limited to traditional instruments, and musical timbre was asso-
ciated to instruments. Musical instruments were organized into taxonomies
usually according to their production mechanism, which influences the kind
of sounds that the instrument can produce (Kartomi, 1990). An example is
the Hornbostel-Sachs taxonomy, which is widely accepted in Western coun-
tries. At the beginning of the 20th century, avant-garde artists started to
see that technological progress would allow creating music with different
sounds. In his manifesto for a Futurist Music, Russolo (Russolo, 1986) de-
scribed a taxonomy of urban sounds that suited the futurist aesthetics, and
invented a number of instruments (the intonarumori) that could produce
those sounds. In his Traité des Objets Musicaux, Schaeffer (1966) discussed
how sounds could be described and categorized, but from a more open per-
spective which included many different criteria. In the 1970s, Schafer (1977)
also proposed a taxonomy of sounds in The tuning of the world. Like Rus-
solo’s, Schaffer’s taxonomy is heavily influenced by aesthetics, and includes
impossible or unheard sounds (such as the sound of creation or the sound of
apocalypse). In the 1990s, while researching on sound icons, Gaver (1993)
proposed a general taxonomy of sounds motivated by acoustic ecology. The
general idea is that in everyday listening (as opposed to musical listening)
we use sound to extract information from the environment, and so we try
to understand the mechanism of sound production. Thus, he proposed a
general division of sound according to interactions between basic materials
(Figure 4.1). While in theory his idea is to cover all kinds of sounds, the
taxonomy is especially suited for environmental sounds, as it does not deal
with the specific significance of pitched sounds such as human and animal
voices, musical instruments or alarms and signals. Although a universal
taxonomy of sounds seems an impossible task, Gaver’s proposed taxon-
omy is simple enough and has been widely adopted in sound design (Van
Den Doel et al., 2001; Rocchesso and Fontana, 2003; Hermann et al., 2011).
In this chapter, we adopt this taxonomy as a paradigmatic example of top-
down approaches for labeling audio, which can be supported by supervised
algorithms for content-based audio indexing. In general, taxonomies can
be devised specifically depending on the application, including instrument
taxonomies, electronic genres for loops, sound effects, and so on.

4.3 Content-based indexing

Text (or more specifically hypertext) is the original and still most promi-
nent type of content of the web. Text in web pages is used by most search



76 automatic taxonomical organization of audio

AERODYNAMIC SOUNDSVIBRATING SOUNDS

INTERACTING MATERIALS

WIND

WHOOSH EXPLOSIONSCRAPING DEFORMATION

LIQUID SOUNDS

DRIP

POUR SPLASH

RIPPLEIMPACT ROLLING

MUSICAL
SOUNDS

HUMAN & ANIMAL
VOICES

Figure 4.1: Gaver’s proposed taxonomy of sounds

engines for indexing all kinds of content. However, there are several prob-
lems with using textual descriptions in unstructured, user-contributed sound
databases, such as Freesound, for music creation. Textual descriptions, for
instance in the form of social tags or keywords, are always incomplete and
inconsistent. The same word is used by different people in different ways.
Sounds obtained in radically different ways and with very different seman-
tics may have very similar perceptual qualities, while sounds with the same
description may be completely different. As an example, a query for “car”
will retrieve the sounds of car horns, engines, doors and crashes. Percep-
tual qualities of sounds, rather than text, are usually considered as the
main musical material. This was, after all, the first observation of Pierre
Schaeffer when considering the use of recordings for music creation. Scha-
effer proposed the concept of “reduced listening” in order to abstract and
isolate the perceptual aspects of sound from the semantic references to the
sound source (Schaeffer, 1966). For these reasons, in this thesis we focus on
content-based approaches to audio retrieval. Content-based audio retrieval
and discovery is based on automatic descriptions obtained from the audio
signal. Such descriptions are intended to represent perceived qualities of
the recorded sound. On top of signal descriptors, it is common to use ma-
chine learning techniques to label sounds with higher-level concepts. In the
case of creative applications, simple and abstract labels can be used. An
analogy can be drawn with traditional musical theories, where some con-
cepts (such as e.g. notes in western music or bols in indian music) are used
merely as indicators of some perceptual sound quality that has been parti-
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tioned into discrete classes. The distinction between this kind of classes and
more complex semantic categories can be related to the distinction between
perceptual and categorical learning in psychology (Mandler, 2000). Our ap-
proach consists in grouping user-contributed sounds in discrete classes that
can be assigned simple text labels for reference. From a machine learn-
ing perspective, these groupings can be obtained using two main types of
methods: supervised and unsupervised.

Supervised approaches are implemented as top-down processes: they start
from an already established set of labels and try to assign some of these
labels to audio fragments. This requires the availability of a training set of
already labeled sounds, from which the algorithm must learn how to label
the rest. The amount and quality of training data has a critical impact on
the result. However, obtaining large quantities of training data can be a
complex and time-consuming task.

Unsupervised approaches can be seen as bottom-up processes, where the
groupings are assumed to be present in the distribution of the data. Thus,
they don’t require additional training data. However, the quality of the
result will also depend on the amount of data and their distribution (e.g.
whether sounds are evenly spread with respect to a certain quality). It
can also be challenging to interact with a set of sound clusters without
referencing any specific theory or model.

4.4 Unsupervised indexing

Unsupervised indexing is useful for analyzing data that has not been la-
beled or classified. As we have mentioned, bottom-up, collaboratively-built
databases can be seen as “unstructured data”, which are not organized or
curated according to a predefined structure. In these cases, even when labels
such as free tags are used, noise appears as a consequence of different points
of view, expertise levels, goals and attitudes. A data clustering algorithm,
able to find inherent structures that are not explicit, can be especially useful
in such situation. When derived from content-based descriptors, partitions
generated by data clustering can be especially suited for music creation, as
sounds are grouped according to their acoustic similarity, which seems a
natural way to conceptualize and manipulate sound collections. Clustering
algorithms can also be used to automatically index long recordings with
different events and/or sections that have not been labeled, in combination
with the event detection methods proposed in chapter 3.
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Classic algorithms are usually divided between partitional (such as K-
means) and hierarchical (e.g. agglomerative clustering) (Jain and Dubes,
1988). However, classic hierarchical clustering algorithms are impractica-
ble for large datasets due to their computational cost. On the other hand,
many algorithms are not well suited for noisy data, especially when the
feature space has very different densities. As an example, in a collaborative
audio database, it is quite likely that many users will upload a particular
kind of sound (e.g. bass drum), while other types of sound are scarce. For
such data it is common to use graph-based algorithms. Graphs based on
the number of Nearest Neighbors (k Nearest Neighbors or kNN graphs) can
adapt to areas of different densities, since no fixed distance is assumed.
This approach also helps with the Curse of dimensionality related with the
size of the feature space, as features are not directly used in the clustering
step. In recent years, the concept of modularity has originated a number of
graph partitioning algorithms, each with different characteristics, and for
which open source implementations are available. These algorithms can be
used to automatically index sounds according to different needs, including
taxonomical organization.

4.4.1 Construction of the kNN graph

As mentioned, a common approach in document clustering is to construct a
graph that links each document to its k nearest neighbors. Clusters can then
be identified by partitioning the graph. The advantage of the kNN approach
is that it allows identifying clusters of different densities. In an area with
high density, neighbors will be chosen among very close documents, while
in areas of low density, the nearest neighbors of a given point may not be
so close.

One common problem for large datasets is that the construction of the
graph may require computing the whole distance matrix, which becomes
quickly prohibitive in both space and time complexity. One solution is
to use some Approximate Nearest Neighbors (ANN) data structure, such
as a Kd-tree (Bentley, 1975) or a Cover tree (Beygelzimer et al., 2006).
Such strategies have also been applied to direct navigation of large audio
databases for creative applications (Schwarz et al., 2009). In early experi-
ments, we found that this approach provided similar results to computing
the whole matrix with euclidean or cosine distance. Another problem is
that for many dimensions, the distance measure may become meaningless.
This may be partially alleviated by using the cosine or Jaccard distance in-
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stead of euclidean. Another solution, used in the Shared Nearest Neighbors
(SNN) algorithm (Ertoz et al., 2002) is using the number of neighbors as
a distance measure. However, in our preliminary experiments this did not
improve the results in the case of audio clustering.

There are several variants: the constructed graph may be directed or undi-
rected, weighted or unweighted. For weighted graphs, the original distance
or the number of shared neighbors can be used. In our experiments, ignor-
ing weight tended to give best results. With respect of the directedness of
the graph, the choice depends on the algorithm used for partitioning the
graph. For example when using algorithms based on random walks, such as
walktrap (Pons and Latapy, 2005), directed edges are important.

4.4.2 Clustering

Once built, the kNN graph can be treated as a complex network, and com-
munity detection algorithms can be used to find clusters. The most com-
mon methods are based on modularity optimization. Modularity evaluates
a given partition of the network by counting the number of links between
nodes in the same partition compared to their total degree. Here we consider
modularity of an undirected multigraph. Given the adjacency matrix A of
a graph where Aij is the number of links between nodes i and j, modularity
is defined as

Q =
1

2m

∑
ij

[Aij −
kikj
2m

]δ(vivj) (4.1)

where ki is the degree of node i, m is the total number of edges in the
network, and δ(vivj) is a function that returns 1 if node i and node j are in
the same group and 0 otherwise.

While direct optimization of modularity is computationally hard (Brandes
et al., 2006), many approximate algorithms have been proposed. Some of
them (such as Walktrap) can output a dendrogram and thus can be used
like traditional hierarchical clustering algorithms. A very fast modularity
optimization method that specifically searches for hierarchical community
structures is the so-called Louvain method (Blondel et al., 2008). This
algorithm works as follows: each node in the network is initially a com-
munity on its own. Then each iteration is divided in two phases. In the
first one, each node is moved to its neighboring community that produces
the highest modularity. In the second phase, communities are simplified
into nodes. The iterations continue until no further gain in modularity
is obtained. This produces a multi-level community structure that is not
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restricted to a binary tree, and thus can be used as a taxonomical organi-
zation without further processing. While the complexity of the algorithm
is not known, the authors assess that it “seems to run in O(n log n)”1. The
Waltrap algorithm depends on the sparsity of the graph, but it is expected
to run in O(n2 log n). In our experience, the Louvain method can be used
to cluster the whole of the Freesound database (200.000 sounds) in a few
seconds (in addition to computing the graph). Walktrap can be used for
smaller subsets but it is limited by space complexity (expected to be O(n2).
Other modularity optimization algorithms are not so well suited for these
scales. In all, clustering audio by modularity optimization of kNN graphs is
a very versatile method: it is almost parameter-free (except for the number
of neighbors), it can be used to generate full dendrogram (from which an
arbitrary number of clusters can be obtained), and it can also be used to
find the most likely division of the data (i.e without specifying the number
of clusters in advance) by using the division with maximum modularity.

4.5 Supervised indexing

4.5.1 Automatic classification

Supervised Machine Learning algorithms have seen great development in
recent years. With the evolution of computer hardware and the possibil-
ities for accumulating large quantities of information, such algorithms are
becoming crucial to facilitate automatic organization of information. We
focus on automatic classification algorithms, which aim to predict the class
(or label) of some piece of information, in our case audio recordings. Su-
pervised algorithms learn from a set of training examples that have been
manually labeled, and are able to predict the labels for unlabeled signals.
Labeling the training examples is a labour-intensive task, and the quality
of a supervised system depends critically on the size of the training set for
applications with high variability and dimensionality such as audio indexing.

Classification algorithms have been extensively applied to musical audio sig-
nals in MIR, for tasks where some sort of consensus is assumed. Examples
include musical genres (Guaus, 2009) or mood (Laurier, 2011). A similar ap-
proach can be used when indexing audio recordings for the purpose of music
creation. For example, supervised techniques have been applied to classi-
fication of musical instrument sound samples (Herrera et al., 2002; Martin
and Kim, 1998). However, outside of musical instruments, it may be diffi-

1http://perso.uclouvain.be/vincent.blondel/research/louvain.html

http://perso.uclouvain.be/vincent.blondel/research/louvain.html
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cult to find a social agreement on how to classify sounds. As mentioned, this
can be observed by analyzing the use of free tagging in communities such as
Freesound. In general, the choice of a classification scheme can be regarded
as an application-dependent decision. As an example, the Looperman com-
munity does rely on a fixed set of mutually-exclusive labels that allow classi-
fying music loops into categories where one instrument dominates (i.e. bass
loops, piano loops, and so on). For such cases, the use of supervised classi-
fication algorithms could significantly lower the cost of labeling sounds, as
the categories could be automatically learnt and suggested by the system
by training a classifier on an initial set of labels. While a number of ma-
chine learning classification algorithms exist, we adopt a generally accepted
intuition in the MIR community: that most development is needed in the
area of features, as opposed to new or more specialized classification algo-
rithms (Herrera-Boyer et al., 2006). During the last decade Support Vector
Machines (SVM) have become overwhelmingly popular, proving very effec-
tive in many domains, including text (Joachims, 1998), images (Chapelle
et al., 1999), video (Schuldt et al., 2004) and audio (Guo and Li, 2003).
In each area, researchers need to find an appropriate set of features that
the SVM can use. In this sense, we have already evaluated different sets
of features through SVM classification in chapter 3. A detailed description
of the base SVM algorithm is outside the scope of this thesis, but a basic
description can be useful to introduce the different options and parameters
in our experiments.

SVM is a linear classification technique, which is extended by the so-called
“kernel trick” to non-linear feature spaces. In SVM classification a training
example is represented using a vector of features xi and a label yi ∈ {1,−1}.
The algorithm tries to find the optimal separating hyperplane that predicts
the labels from the training examples. A hyperplane with parameters w
and b that separates two classes is defined as:

yi(w
Txi + b) ≥ 1 (4.2)

Since data is often not linearly separable, it is mapped to an infinite dimen-
sion space by a kernel function where such separation is possible. The most
common choice is a Radial Basis Function (RBF) kernel with parameter γ:

K(xi, xj) = e(−γ|xi−xj |
2), γ > 0 (4.3)
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Using the kernel function, the C-SVC SVM algorithm finds the optimal
hyperplane by solving the dual optimization problem:

min
α

1

2
αTQα− eTα (4.4)

subject to

0 ≤ αi ≤ C, i = 1, ....N (4.5)

yTα = 0

where Q is a N×N matrix defined as Qij ≡ yiyjK(xi, xj) and e is the vector
of all ones. C is a cost parameter that controls the penalty of misclassified
instances given linearly non-separable data.

This binary classification problem can be extended to multi-class using ei-
ther the one vs. one or the one vs. all approach. In the former approach a
classifier is trained for each pair of classes, while in the later the classifier is
trained for each class using examples from all the other classes as negative
examples. The one vs. one method has been found to perform generally
better for many problems (Hsu et al., 2001). In the experiments section,
we use the libsvm (Chang and Lin, 2001) implementation, which uses one
vs. one classification. Suitable values for C and γ are found through grid
search with a portion of training examples for each experiment.

4.5.2 Hierarchical classification

With the extension of the classification problem to multi-class classifica-
tion, there are two straightforward possibilities for obtaining hierarchical
classifications. Perhaps the most intuitive approach is to train a classifier
for each ramification. Taking Gaver’s taxonomy as an example, this would
imply having a model to discriminate sounds from solids, liquids and gases,
and then three more models to distinguish the different types of interac-
tions within each level. The main problem with this approach is that when
predicting the class of a given unlabeled sound, errors produced at the first
level will add up to errors in the second level. Hence, an alternative ap-
proach suitable for small taxonomies is to train a single model for the lowest
level, and simply infer the location of the sound in the other levels from the
definition of the taxonomy. In our experiments with Gaver’s taxonomy, this
approach tends to give better results.
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4.6 Experiments

4.6.1 Human vs. computational factors

As we have discussed, in this chapter we explore the use of content-based
techniques to organize large databases of sounds for music creation. Our
focus is not necessarily obtaining semantic labels, in the sense of describing
the source of the sound, but obtaining abstract categories that are consistent
with respect to their acoustic properties.

We performed a preliminary user experiment in order to test this idea
of abstract audio lexicons as content-based groupings of sounds generated
through machine learning (in this case graph-based clustering). Our aim
was to understand what are the factors that influence the ability of users to
learn a particular lexicon. To this end, we analyzed the task of predicting to
which grouping does a given sound belong. Particularly, we expected that
qualitiy measures from the clustering solution would be determinant for this
task. We were also interested in what human factors would influence the
result.

Most of this work was published in (Roma et al., 2012b).

Methodology

Clustering The experiment was carried out before the development
of the modularity-based approach described in section 4.4. We used
Chameleon (Karypis et al., 1999), an algorithm based on kNN graphs that
optimizes the minimum cut of the graph. Roughly speaking, a minimum
cut is a partition of the graph that crosses the minimum possible number of
edges. A partial implementation is available in the closed-source CLUTO
package (Karypis, 2002). In contrast, open source implementations of sev-
eral modularity optimization algorithms are available for different platforms.
In order to obtain a test dataset, we first clustered a large database of 10.000
sounds obtained from Freesound, all shorter than one second in order to
avoid sounds with many sound events and timbre variation.

Internal quality measures are often used to evaluate the obtained clustering
solution. One common approach is to analyze the similarities within each
cluster to understand how compact it is, and the similarities between points
of each cluster and all points in the others to measure how well separated
are the different clusters in the solution. For this purpose, the vcluster pro-
gram in the CLUTO package outputs z-scored values of the similarity (in
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our case cosine similarity) between each point and the rest of points in its
cluster (internal similarity) as well as to the points in other clusters (exter-
nal similarity). From these values we computed several quality measures:
Cisim(Cn), Cimax(Cn) and Cimin(Cn), respectively the mean, minimum and
maximum similarity between points within cluster Cn. The mean similarity
gives an indication of how compact is the cluster overall. The minimum
similarity corresponds to the maximum distance between two points, which
can indicate the presence of outliers. The maximum similarity in the cluster
can be used as a hint of the maximum density inside the cluster, i.e. if the
maximum similarity is not very high then the cluster will be sparse, whereas
a dense cluster with some outliers will have a high maximum similarity even
if the average is not so high.

Analogously, Cesim(Cn), Cemin(Cn) and Cemax(Cn) are based on external
similarities, i.e. similarities between points in Cn and points in all other
clusters.

Determining an optimal number of clusters is a non-trivial issue that was
not the focus in this work. Note that the number of clusters can be cho-
sen automatically using the Louvain algorithm as described in section 4.4.
In this case, we determined empirically a number of clusters that provided
consistent results while allowing a manageable size for the lexicon (in the
order of e.g. the size of the latin alphabet or the number of keys in a key-
board). In this preliminary analysis, it became clear that a larger number
would give smaller and more consistent clusters. Yet, in real world applica-
tions we can not expect the user to learn hundreds of sound categories. We
ran our algorithm to produce 40 clusters. Of these, we discarded clusters
with less than 50 instances and chose a random sample of 6 clusters for
each user. This number seems well aligned with acceptable cognitive load
in short term memory (Miller, 1956). Of these clusters, we randomly chose
6 example sounds for each and again chose 20 random sounds from the pool
of chosen clusters as test for that user.

Prototype For the experiment, we implemented a simple prototype on
a Microsoft Surface multi-touch table, using Adobe Air technology (Figure
4.2). The interface showed 6 colored rectangles representing the different
clusters, each of which could be unfolded to visualize and play the sounds.
Hence, the only potential visual cues with respect to the clusters were the
sound waveforms of the examples. These images are the same that are used
for sound lists in Freesound (except that we removed the color). Test exam-
ples were showed as a pile of black and white waveform objects resembling
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Figure 4.2: Picture of the prototype

a deck of cards. Dragging each card to the vertical area below the color
shape corresponding to each cluster colored the object to the cluster color,
which signaled that the sound was assigned to that cluster.

The experiment was divided in two main tasks. In task 1, participants were
asked to listen to the sound examples of each cluster. In addition, they
were asked to annotate any words or tags needed to identify and remember
each cluster in sticky paper notes that were attached to the table above
each cluster area. This allowed us to analyze how the users understood
the clusters. In task 2, participants were asked to classify the stack of test
sounds into the clusters according to their similarity by dragging them to
the appropriate area.

The use of a large multi-touch table provided a more embodied interaction
that allowed us to observe and analyze participants movements and strate-
gies. Video was recorded with two cameras positioned non-intrusively: gen-
eral view and close-up view. Video output from the device was also captured
for complementing the analysis.

Finally, a questionnaire was filled in with basic demographic information,
as well as some questions about their own confidence in the performed task
and the criteria they followed for the classification.
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The study took part in the Computing department of the Open Univer-
sity (UK). Most of the participants were familiar with computers, although
not necessarily with music or audio-related topics. In total there were 14
participants (9 males, 5 females) with ages from 21 to 50 and a diversity
of nationalities and cultural backgrounds. Most had some kind of musical
training: 4 reported no training at all, 4 some degree of music training and
6 of them more than five years. With respect to familiarity with electronic
music creation, 8 of them reported no previous experience, 5 of them had
some familiarity, and one of them was a regular user of electronic music
creation tools.

Data analysis After the experiment, we had several sources of data for
analysis. The prototype logged the classification choices performed by users,
and kept the information about the clusters that were presented. On the
other hand, the footage from the cameras was used for video analysis, which
is a common tool in human-computer interaction studies (Jordan and Hen-
derson, 1995). This technique allows for a great deal of detail if compared
to more traditional HCI methods, but requires time and a clear focus with
respect to the problem at hand. We followed observations made during the
experiment and an initial overview of the video to define our target variables
(described in the next section). The Elan2 software was used for the video
analysis. The main advantage of this program is that it allows hierarchical
specification of the code for annotating the video. We used the annotations,
along with the data from the questionnaire, for qualitative and quantitative
analysis of user-related factors. Finally, we used the data from the cluster-
ing and the logged results for quantitative analysis of factors related with
the clusters.

Results and discussion

We analyzed both qualitative and quantitative aspects of the experiment in
order to understand which factors could determine the correct assignment
of sounds to their own cluster as computed by the clustering algorithm.
This assignment was encoded as a binary variable for each of the tested
sounds. Each participant was given 20 sounds, so in total there were 280
assignments. We aggregated the results in order to analyze the data from
the point of view of the user and from the point of view of the clustering
algorithm. In the first case, the target variable was the fraction of correctly

2 http://www.lat-mpi.eu/tools/elan, developed at the Max Planck Institute for Psy-
cholinguistics, Nijmegen, The Netherlands Sloetjes and Wittenburg (2008)
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Table 4.1: Variables obtained from the experiment

Cluster level

Csize Cluster size (|Cn|)
Cimean Average internal similarity

Cimax Maximum internal similarity

Cimin Minimum internal similarity

Cemean Average external similarity

Cemax Maximum external similarity

Cemin Minimum external similarity

User level

St1s1 Pre-listening of all table

St1s2 Listening to neighbor clusters

St2s1 Listening to examples again

assigned sounds by each user, and in the second, the fraction of correctly
assigned sounds for each cluster. Table 4.1 shows a summary of all variables
resulting from the experiment. To understand human factors related to
the proposed task, we did a qualitative analysis of the responses to the
questionnaire, as well as an analysis of the video footage. The fraction of
successfully assigned sounds in each user oscillated around 40% (mean =
0.44, sd = 0.5).

We found several recurrent themes in the analysis of the questionnaire and
paper notes, as well as the responses referring to the criteria used to classify
the sounds. They are summarized in Table 4.2. Most popular criteria could
be classified as Sound sources and Sound properties.

In the video analysis we observed some relevant aspects related with the
behavior of participants. Our main observation was that participants fol-
lowed different strategies in both tasks. In task 1, there were 3 participants
who started by pre-listening to all or most of the sounds on the table before
starting. This group devoted more time in the two tasks, and one of them
scored the best result. Another difference was found between those partici-
pants who explored neighbor clusters before labeling a given one, and those
who did not. In task 2, we observed that some participants tended to rely
on their written notes, while others went back to listening to the examples
when deciding to which cluster they would assign the sound. All but one
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of the participants who correctly assigned more than 50% of the sounds
followed this strategy of constantly comparing the test sound with exam-
ples. We confirmed the significance of these differences through two-sample
t-tests over the three binary variables: users who followed strategy St1s1
(pre-listening to the whole table) took longer (p < 1e−15) and did better
(p < 1e−04), as well as users who followed strategy St1s2 (looking at contigu-
ous clusters) (p < 1e−07). The result for St2s2 showed that the group that
kept listening to sounds performed better (p < 0.02). We further counted
the number of times the example sounds and test sounds were played for
the first 10 test sounds (after that, users tended to classify without playing
the examples again). The overall count of plays of the examples in task
2 for each user correlates with the recognition rate (r = 0.64), while the
correlation of number of plays of the test sound was very small (r = 0.122).
In all, we were able to extract more significant variables from the learning
phase (task 1), and the relevant outcomes in the classification phase still
seemed to refer to learning strategies, which reflects the importance of this
step.

We focused with some more detail on the three participants that scored
best. All of them referenced concepts related to sound sources as their
criteria in the questionnaire. Their notes taken during task 1 tended to
be more consistent and easier to compare. During each classification task,
they tended to maintain attention until they located the target cluster. One
technique that was particular to these users was fast pre-listening of several
example sounds in a cluster, which produced a quick audio summary of that
cluster. After some iterations, the different clusters had been learned and
pre-listening was no longer necessary.

When looking at the results aggregated from the point of view of clusters,
recognition rate was similar but with less variation (mean = 0.48, sd = 0.2).
In order to understand the importance of different measures of cluster qual-
ity defined above, we built a multiple linear regression model using these
measures as independent variables and the recognition rate as dependent
variable. One common problem with linear regression is multicollinearity
due to correlation of the independent variables, which can give mislead-
ing results. We checked the Variable Inflation Factor (VIF), for controlling
multicollinearity problems, and ensured that it was below 10, which is the
usually recommended threshold (Hair et al., 2010). This forced us to re-
move the Cimin and Cemin variables, which represent the maximal internal/
external distance (minimal similarity) and thus are highly related to the
corresponding mean variables. We also removed Cemax, as it didn’t make
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Table 4.2: Themes and classification criteria followed by users extracted
from the questionnaire and paper notes (italics indicate verbatim quotes)

Themes Classification criteria

Source of the sound (16)

· instruments (5): e.g., bass (2), drums (3)

· onomatopoeias (1): e.g., click click (1)

· speech/vocal (2)

· non-speech (1)

· physical source (2): physical phenomena
(1) / physical objects (1)

· electronic sounds (4): e.g., synthesizer
banks (1), base/moog (1), sound effect (1)
/ synthetic or futuristic sounds (1)

· everyday sounds (1)

Sound properties (10)

· pitch/brightness (2) / tone (2)

· length (3)

· dichotomies (2): e.g., hard/soft (1),
loud/low (1)

· sound envelope (1)

Experiential (5)

· general feel (1)

· instinct/intuition (2)

· stories (1)

· music experience/knowledge (1)

Acoustic / visual similarity (5)

· sound similarity (2): e.g., similar sound
features (2)

· similarity (1)

· visual similarity (2): e.g., waveform (1) /
waveform icons (1)

Sound description (3)
· categories/tags (3): e.g., my own postits
(1), categories (2)

Overall sound (1) · mainly the sound (1)
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any significant contribution to the model. Table 4.3 shows the coefficients
of the model. Perhaps surprisingly, Cimax, the maximum similarity within
the cluster, has the highest significant impact over the recognition rate,
much higher than the average similarity. This means that clusters with
high maximum similarity were easy to learn while clusters with low maxi-
mum similarity were difficult. In relation with the lower weight of the mean
similarity, this suggests that clusters containing high-density areas allow
an easier association of acoustic features with a single label, while sparse
clusters, where the closest two points are not particularly close (even if the
average similarity stays high) should be avoided. The rest of coefficients are
more or less predictable. The size of the cluster has a small but significant
negative effect, which suggests that smaller clusters are to be preferred.

Table 4.3: Regression analysis for cluster-level variables

Variable Estimate Std. Error t value p

Cimean 1.1229 0.6682 1.68 0.1048

Cimax 22.5082 9.6593 2.33 0.0278

Csize -0.0009 0.0004 -2.19 0.0378

Cemean -2.1158 0.8856 -2.39 0.0244

R2R2R2 0.3666

In all, the experiment provided valuable insights with respect to the possi-
bility of using automatic indexing of sounds into abstract lexicons defined
by acoustic properties.

From the point of view of users, the result of our experiment stressed the
importance of the learning phase, where most significant differences between
users were observed. This suggests that interfaces for applications based on
clustering could make use of a specialized interface for learning the clusters.
Also, interfaces should make it easy to compare the sounds of different
clusters. Finally, it seems that both references to sound sources and key
acoustic properties in each cluster are common labels that users associate
with the partitions.

From the point of view of the clustering algorithm, the experiment highlights
the ability of clustering algorithms to find areas of high density. Still, this is
not a trivial issue with heterogeneous data such as the sounds in Freesound,
as preserving diversity is also important for creative applications.
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4.6.2 Clustering through modularity optimization

As introduced in section 4.4, modularity-based clustering of knn graphs can
be used for automatically indexing large audio databases in musical applica-
tions. In this experiment, we compare this approach to common clustering
algorithms. While finding datasets labelled with hierarchical structure is
difficult, the datasets described in chapter 3 allow us to evaluate the mod-
ularity clustering scheme to some extent with flat partitions (note that the
dares scenes dataset was obtained after completing this experiment, so it
is not included). It should be noted that the idea of graph clustering is es-
pecially suited for unstructured and unevenly distributed data, where other
algorithms fail. Among the available datasets, the ones extracted from
community-driven sites (Freesound, Looperman and Indaba) are the most
interesting in this case.

Methodology

Evaluation of clustering is always a tricky issue, as whether the groupings
found by the algorithm are a good representation of the data may be very
subjective. However, when labels are available, several measures can be
used to compare the partition found by the algorithm with the original
set of labels. These are called external validity measures, as opposed to
internal validity measures, which require no labels. Internal measures are
a bad choice for comparing algorithms, since many algorithms are actu-
ally based on optimization of some of these measures. The adjusted Rand
index (Hubert and Arabie, 1985) is a commonly used external clustering va-
lidity measure. Given two partitions (the ground truth and the clustering
solution) of the same set of elements, if a is the number of pairs of objects
that are in the same set in both partitions, b the number of pairs that are
in different sets in both partitions, and c, d, the number of pairs that are in
different sets in one partition and in the same in the other and vice-versa,
the rand index is defined as

R =
a+ b

a+ b+ c+ d
(4.6)

The adjusted-for-chance version (with E(R) as the expected value of R) is
then:

AR =
R− E(R)

Max(R)− E(R)
(4.7)
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While both indices take values from zero to one, the adjusted version is
typically lower.

With respect to the features, our initial experiments were based on raw
filterbank features, with the idea that they would result in more easily
interpretable results than standard cepstral features, in a context where
subjective evaluation is important such as clustering. A cluster centroid ob-
tained from raw filterbank features can be readily interpreted as a quantized
spectrum. However, whenever distance calculations are involved, cepstral
coefficients will always give a better result.

We compared modularity clustering to several classic partitional clustering
algorithms: K-means, Self-organizing maps (Som), Clara, and Partitioning
around Medioids (Pam) (Kaufman and Rousseeuw, 2009), as well as the
partial implementation of Chameleon (Karypis et al., 1999) that was used
in 4.6.1. All of these algorithms require the number of clusters as a param-
eter, so we passed the correct number of clusters. In order to get a fair
comparison to the modularity-based approach, we used the Walktrap mod-
ularity optimization algorithm which generates a dendrogram, and obtained
the desired number of clusters by cutting the dendrogram. For all datasets,
we computed mean and variance of both raw filterbank features and cep-
stral coefficients. One classic issue with clustering algorithms is that they
tend to have problems with larger feature dimensions. In order analyze the
robustness of different algorithms to the curse of dimensionality, we tested
the algorithms with a growing number of features, like in our experiments
in chapter 3.

Results and discussion

Figures 4.3 and 4.4 show the results for all datasets with raw features.
One general observation is that increasing the number of features rarely
changes the result. Thus, clustering can be done more efficiently using
the minimal amount of features. In most cases, the difference between
graph-based and partitional algorithms is large. The only exception is the
indaba dataset, which seems to be problematic for clustering, while with
the SVM approach we were able to obtain high accuracies. One possible
interpretation is that the supervised approach is able to focus on the specific
features that allow discriminating the different instrument sounds in this
dataset, while in the clustering algorithms all features have the same weight.
After the graph-based approaches, the SOM (which has been previously
used for exploration of audio databases) tends to perform better than other
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traditional clustering algorithms. With respect to graph-based algorithms,
modullarity works generally better than Chameleon as implemented in the
CLUTO package (Karypis, 2002).
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Figure 4.3: Comparison of graph-based clustering to classic clustering algo-
rithms for the smaller datasets, as a function of the number of features
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Figure 4.4: Comparison of graph-based clustering to classic clustering algo-
rithms using raw filterbank features for the larger datasets, as a function of
the number of features
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Figure 4.5: Comparison of graph-based clustering to classic clustering algo-
rithms using cepstral coefficients for the smaller datasets, as a function of
the number of features
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Figure 4.6: Comparison of modularity clustering to classic clustering algo-
rithms using cepstral coefficients for the larger datasets, as a function of the
number of features
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With respect to using cepstral coefficients, the results are not so clear (Fig-
ures 4.5 and 4.6). Graph-based algorithms still provide a better result in
most cases, but the difference in many cases is small. This can be due
to some ceiling effect, since all algorithms generally achieve good scores.
The difference in the case of the freesound tags dataset (which was par-
ticularly difficult also for supervised classification) supports the idea that
in the other datasets classes have an homogeneous distribution of cepstral
coefficients, which makes them an easy task for clustering. On the other
hand, partitional algorithms heavily rely on distance computations, which
are more reliable when using cepstral coefficients, so the difference between
both cases is larger. Graph-based algorithms only rely on distance com-
putations for constructing the kNN graph, and in that case only the rank
of distances (for selecting the nearest neighbors) is relevant, and not the
actual distance values. Another noticeable difference can be apprecaited
between Chameleon and modularity in the in house scenes dataset, which
is composed of very diverse recordings. The difference is likely related with
the fact that Chameleon removes some outliers (even if we tried to minimize
this effect through the parameters, following the documentation, to ensure
a fair comparison). Outlier removal could hence be applied to improve
modularity clustering.

In all, our results indicate that graph-based clustering works better than
traditional partitional algorithms for clustering audio, particularly in dif-
ficult situations such as unstructured data. The freesound tags dataset is
a good example of this, as the same tag may be applied in different ways
by users, and distances between sounds can be different for each tag de-
pending on the generality of the term. In addition, the Louvain method for
modularity clustering can be used to automatically find non-binary hierar-
chical structures. This is uncommon in hierarchical clustering algorithms,
which usually output a dendrogram. We compare this approach to a parti-
tion obtained via supervised classification on a large dataset in experiment
4.6.4.

4.6.3 Flat vs. hierarchical supervised classification

In the supervised case, we have described the use of SVM classifiers for
automatic taxonomical indexing. As we have mentioned before, SVMs are
already ubiquitous for audio classification, so it is not necessary to evaluate
them for audio classification in general. For application to taxonomical
classification, we have mentioned two straightforward approaches: we may
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train a hierarchy of multi-class classifiers, or we may just train one single
multi-class classifier at the lowest level, and infer the higher levels from the
taxonomy itself. In this experiment we compared both approaches with the
gaver taxonomy described in section 4.2.

Methodology

The methodology is similar to the experiments of chapter 3. In this case,
to compare both approaches, we randomly partitioned the database into a
training and a test set (80% and 20% respectively) and repeated the process
10 times. In each round, we trained either the flat classifier or the set of
hierarchical classifiers with the training set, and computed the predictions
for the test set. We extracted mean, variance and RQA features, computed
from GFCC coefficients, from the gaver dataset, in this case taking into
account the two levels of the taxonomy for the labels. The flat classifier
was trained using the one-to-one approach with the 11 base classes of the
taxonomy. For the hierarchical classification approach, we trained one one-
to-one classifier for the three kinds of material (solid, liquid and gas), and
then another classifier for each one, using only the training examples of the
corresponding material. For each test sound in the hierarchical approach,
we first predicted the top class with the first classifier, and then applied
the second-level classifier depending on the result. Because of the random
partition, the number of examples per class was not balanced. In both
cases, we computed the average F-measure, which is more appropriate than
accuracy for dealing with unbalanced datasets. We averaged the F-measure
between classes, and again for each round.

Results and discussion

Figure 4.7 shows the F-measure for the flat and the hierarchical approach.
Both classifiers tend to choose the correct class about 70% of the times,
which is not a bad result considering the generality of the concept of gaver’s
taxonomy and the number of classes, which implies a baseline of 9% for a
random classifier. Particularly in the case of music creation applications,
some the errors may be acceptable as they are still based on content de-
scriptors. A more detailed view is provided by (row-normalized) confusion
matrices for both levels (Figure 4.8). Here, numbers indicate the fraction of
correctly classified sounds for each class. In the case of the top level, both
approaches perform very well, and the flat approach (where the top level
label is inferred from the lower level label) can perform even better than di-
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Figure 4.7: Flat vs. hierarchical classification (F-measure)

rect classification of materials. In general, the performance of a hierarchical
approach will depend on the coherence of the top-level concepts with respect
to audio features, which may be complicated for very general concepts. At
the lower level, the hierarchical approach makes more errors, particularly
on some difficult categories (deformation, splash), and the errors are spread
among different classes. The errors of the flat approach are also related to
the same difficult classes but are more localized and scarce. In general, flat
classification performs better, which can be attributed to the propagation
of errors across the levels in the case of the hierarchical approach.

4.6.4 Supervised vs. unsupervised indexing

In this chapter, we have introduced two methods for automatical taxonomi-
cal organization of sounds, which can be applied to the case of unstructured
audio databases for supporting music creation. Unsupervised and unsu-
pervised approaches have very different implications and uses. The main
difference is that supervised methods require some training examples that
may require a significant amount of effort, while unsupervised methods rely
on the distribution already present in data. Thus, supervised approaches
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Figure 4.8: Row-normalized confusion matrices

can be seen as top-down, in the sense that somebody (typically an expert)
has to devise the taxonomy that will be used to index sounds. Unsuper-
vised approaches can be seen as bottom-up and, particularly in the case of
community-driven databases, reflect groupings that emerge from different
views, so in a way they depend on self-organization of the community. In
order to compare both approaches for the case of unstructured audio data,
we performed a user experiment, where we asked users to find sounds using
a visual representation of a taxonomy without labels. The idea was to test
the usefulness of the supervised and the unsupervised indexing approaches
for interacting with large audio databases in an intuitive way, for classes of
sounds that are derived from content descriptors, and not from semantic
descriptions. Our hypothesis is that bottom-up clustering based on modu-
larity optimization can at least match the results of a top-down classification
approach for indexing sounds in unstructured databases, without the need
of labelling training examples. The experiment focused on sound events,
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extracted from the Freesound database.

Methodology

We analyzed all of the Freesound database, and identified all sounds con-
taining a single event using the HFCfb onset detection function described
in chapter 3. However, we did not segment the original sounds but re-
tained just the ones containing a single event. This resulted in a database
of 28.295 sounds, which were analyzed in the same way as in the previous
experiment. We then used the gaver taxonomy dataset to train a flat classi-
fier, and indexed all sounds according to the gaver taxonomy. The classifier
was trained with probability estimates, which allowed us to know, for each
sound, the probability that it belongs to a given category in the taxonomy.
In order to obtain a comparable taxonomy using the modularity clustering
approach, we used the Louvain algorithm to obtain a multi-level partition,
and then discarded the nodes containing less sounds, allowing a maximum
of 4 children for each taxonomy node.

Figure 4.9: Screenshot of the prototype

We developed a web prototype where the taxonomies were displayed graph-
ically (Figure 4.9). Nodes in the taxonomy could be unfolded and folded
to display or hide their children. For each node in the taxonomy, 10 ex-
ample sounds were selected as “previews”. The examples were selected at
the lowest level of the taxonomy and then, for higher levels, examples were
sampled uniformly from children nodes. In the case of the SVM-based ap-
proach, examples were the sounds with maximum probability estimates. In
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the unsupervised approach, we computed the centroid of each cluster and
sorted the sounds according to their distance to the centroid. Rolling the
mouse over the taxonomy nodes allowed the user to listen to the examples
for each class, in the same fast-skipping style that some participants used
in the first experiment. When a final node (with no children) was selected,
a list of 20 sounds corresponding to that node was presented. These were
sorted using the same criteria as the examples described above. The pro-
tocol was as follows: each user was presented a series of 20 challenges, 10
for each taxonomy (in random order). For each challenge, a target sound
was presented, and the task was to locate the sound among the final lists of
20 sounds by navigating through the tree and playing/listening to sounds.
Sounds could be played as many times as needed. The taxonomy was meant
to help in the process of finding a sound in a sample of the database (the
sample size was adapted to so that the user could do the task in about 20
minutes). In order to keep the duration of the experiment to a manageable
range, users were instructed to find the most similar sound they could find
to the target sound, so that they would not spend to much time finding the
exact sound.

With this set-up, we measured several variables corresponding to the cost of
navigating the taxonomy: the number of visited nodes (V N), the number
of unfolded nodes (UN), the number of times that the target sound was
played (TP ), and the number of candidates played (CP ). We also computed
the distance between the target and the chosen sound in the taxonomy
(as the number of common ancestors, TD) and the content-based distance
between both (CD). We then performed several ANOVA tests using these
measures as dependent variables, in order to see if their variances could be
explained significantly depending on the type of taxonomy. Perhaps more
than the cost of navigation, we were interested in the users ability to learn
the taxonomical organization, in the light of the findings in experiment 4.6.1.
In order to understand how users were able to learn each taxonomy, we
divided the 10 trials in two groups and computed the mean of each variable
for each group of 5 trials. For each user and taxonomy, we computed the
difference between the first and the second group of trials. The hypothesis
was that users would require each time less visits to the different nodes
in the taxonomy in order to find the target sound (with some fluctuation
given the different relative difficulties of the random target sounds). We
also analyzed the user as a potentially relevant factor, and whether the
exact sound had been found or not (which can help understanding why a
user spends a lot of time browsing the taxonomy). The experiment also
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included a final questionnaire with some demographic information and a
question about what part of the experiment was found to be easier.

After a pilot test, the experiment was completed by 16 participants, only
one of them female. Ages ranged from 20 to 50. Most of them (12) had more
than 5 years of music training, and the same number considered themselves
experts in music technology.

Results and discussion

Figure 4.10 shows box plots to summarize the distribution of each of the
aforementioned variables with respect to each of the taxonomies. The values
for the corresponding ANOVA tests are shown in table 4.4. Clearly, there
is a significant effect of the taxonomy over the navigation costs, with the
supervised approach requiring less user interaction, which indicates that
users spent less time navigating the taxonomy. Also, the number of cor-
rectly identified sounds was higher for the supervised approach. However,
this approach also required significantly more time to be spent on the list
of candidate files. This is precisely what the taxonomical indexing tries to
avoid: to have users listen to the sounds one by one. Instead, they are
expected to learn the taxonomy in order to find sounds. After listening to
the sounds selected by each approach, it seems clear that the unsupervised
approach tends to find clusters of very similar sounds. This seems to be the
reason that users allowed themselves to settle on a similar sound instead of
the original sound. Hence, with respect to the content-based distance, the
sounds selected using the unsupervised taxonomy were in the end signifi-
cantly closer to the original. Also, with respect to the direct question of
which part was easier, 44% of users opted for the unsupervised taxonomy,
25% for the supervised taxonomy and 31% found them equally difficult (note
that the order of the parts was randomized, users were asked if they had
found part 1 or part 2 easier). Thus, the cost of listening to the candidate
sounds seems to be what relates to the perception of difficulty of the task.

Figure 4.11 and the corresponding table (4.5) show the box plots and
ANOVA tests for the difference between the first and the second half of
the trials of each taxonomy, with respect to all of the cost variables. In
most cases, the type of taxonomy is shown to be relevant for explaining
the variance in the cost variables, with a higher weight than the user vari-
able. In general, the unsupervised approach tends to have positive values,
indicating that the costs decreased between the first and the second part of
each round for each user. Thus, the results indicate that the longer time



104 automatic taxonomical organization of audio
0

50
10

0
15

0
20

0

supervised unsupervised

VN

5
10

15
20

25
30

35
supervised unsupervised

UN

0
10

20
40

30
50

supervised unsupervised

TP

0
10

0
20

0
30

0
40

0

supervised unsupervised

CP

0
20

40
60

80

supervised unsupervised

CD

Figure 4.10: Box plots for the experiment variables with respect to the two
taxonomies
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Table 4.4: Results of the ANOVA tests with the cost variables and the
binary found variable

Df Sum Sq Mean Sq F value p

taxonomy 1 1.51 1.51 6.37 0.0121

user 1 1.38 1.38 5.82 0.0164

Residuals 317 75.30 0.24

FOUND

taxonomy 1 12115.50 12115.50 22.60 0.0000

user 1 5813.63 5813.63 10.84 0.0011

found 1 806.02 806.02 1.50 0.2211

Residuals 316 169416.34 536.13

VN

taxonomy 1 70.31 70.31 1.88 0.1713

user 1 9.64 9.64 0.26 0.6120

found 1 11.80 11.80 0.32 0.5746

Residuals 316 11815.73 37.39

UN

taxonomy 1 784.38 784.38 15.55 0.0001

user 1 611.10 611.10 12.11 0.0006

found 1 15.44 15.44 0.31 0.5805

Residuals 316 15941.33 50.45

TP

taxonomy 1 14311.25 14311.25 3.10 0.0793

user 1 4266.03 4266.03 0.92 0.3373

found 1 8868.18 8868.18 1.92 0.1668

Residuals 316 1459632.02 4619.09

CP

taxonomy 1 63.90 63.90 96.81 0.0000

user 1 4.43 4.43 6.71 0.0101

found 1 129.58 129.58 196.30 0.0000

Residuals 316 208.59 0.66

TD

taxonomy 1 1710.93 1710.93 9.79 0.0019

user 1 3038.52 3038.52 17.38 0.0000

found 1 46960.03 46960.03 268.65 0.0000

Residuals 316 55236.65 174.80

CD
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Table 4.5: Results of the ANOVA tests with the relative change in variables

Df Sum Sq Mean Sq F value p

taxonomy 1 2051.20 2051.20 6.70 0.0148

Residuals 30 9190.01 306.33

VN1-VN2

taxonomy 1 84.50 84.50 4.07 0.0526

Residuals 30 622.46 20.75

UN1-UN2

taxonomy 1 52.53 52.53 6.56 0.0157

Residuals 30 240.32 8.01

TP1-TP2

taxonomy 1 8450.00 8450.00 2.91 0.0986

Residuals 30 87218.56 2907.29

CP1-CP2

taxonomy 1 0.06 0.06 0.11 0.7420

Residuals 30 16.65 0.55

TD1-TD2

taxonomy 1 0.16 0.16 0.00 0.9688

Residuals 30 3060.83 102.03

CD1-CD2

spent pre-listening to the taxonomy examples was associated to a better
understanding of the taxonomy, which resulted in less time spent playing
the candidate examples. Our general interpretation of the experiment is
that a top-down approach provides easily understandable concepts, which
require less time to understand, but leave no room for improvement. Part
of this success can be attributed to the strategy of selecting the best ex-
amples with the probability estimates of the SVM classifier. However when
reaching down to the last level, sounds are less uniform and users need to
play more sounds in order to find what they are looking for. Contrastingly,
the bottom-up approach does not require labeling training examples and
is based on the existing groupings in the data. Interacting with this type
of taxonomical organization may require some learning, and the choice of
appropriate strategies for selecting examples will be critical. However in the
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end searching sounds using the unsupervised approach is perceived as an
easier task, as when the final sounds are reached, the groupings are more
consistent.

4.7 Conclusions

In this chapter we have analyzed automatic organization of sounds into
taxonomies, using machine learning methods with the low-level representa-
tions described in the previous chapter. The main ways to obtain such tax-
onomies are either top-down classification, based on predefined categories,
or bottom-up clustering based on the data distribution. We have presented
a novel method for clustering audio by modularity optimizattion on kNN
graphs. Graph-based clustering helps adapting to different densities found
in user-driven databases. Many algorithms based on modularity optimiza-
tion exist, some of which can deal with large scales such as currently found
in online audio databases. This provides a flexible framework that can es-
timate the number of clusters, find a partition for a user-specified number,
or even compute a non-binary hierarchical partition. We have also shown
that modularity-based clustering tends to perform better than traditional
partitional clustering algorithms. With respect to supervised classification,
we have analyzed the use of conventional SVM classifiers with a general
environmental sound taxonomy. We have seen that direct classification of
the last level in the taxonomy tends to perform slightly better than using
different classifiers at each level. Finally, we have conducted a user ex-
periment comparing top-down and bottom-up methods for generating tax-
onomies. The results indicate that top-down classification, as described in
this chapter, helps in finding representative sounds that make taxonomies
understandable. However, at lower levels they do not provide consistent
groupings as clustering algorithms for large databases. Taxonomies based
on clustering, again using our proposed method, are more easily learnt so
they seem more appropiate for long-term users.

In all, the techniques described in this chapter should be useful for inter-
acting with large databases, affording a different interaction style than text
search or Query by Example (QbE). In this case, users can learn sound
taxonomies that are created without the need of manually annotating all
the sounds, and find interesting sounds by memory. However, there is still
work to do in order to understand how this kind of taxonomies could work
in practice for very large datasets. Particularly of interest is choosing ap-
propriate representatives for clustering-based taxonomies. Bottom-up and
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top-down approaches could be combined in order to otain the benefits of
each method. In addition to navigating databases, these taxonomies can
also be used for obtaining symbolic representations of music based on audio
samples. We analyze this possibility in chapter 5.





Chapter 5

Representing music as work in
progress

5.1 Introduction

In chapter 1, we have commented on the opportunities that shared storage
opens for music creation based on audio. Practically any audible sound
can be captured into an audio recording, and thus audio samples can po-
tentially be used in any musical genre, at the expense of flexibility. Most
music produced nowadays involves at some point editing digital audio, so
the boundaries between specifically audio-based musical practices and other
kinds of music have become fuzzy.

In this thesis we analyze audio-based music creation on the web. In this con-
text, separation of musical structure from the audio samples allows the use
of hosting services and shared databases for the audio data, while musical
structure can be represented and exchanged using text markup formats such
as XML or JSON (Figure 5.1). In creative activities, music structure can be
typically stored in lightweight documents that may change frequently, and
transmitted through established text communication channels, such as stan-
dard web technologies or email, including environments with constrained or
expensive bandwidth (e.g. mobile connections). Multiple revisions of text
documents can also be managed using existing revision control systems,
including WebDAV (Whitehead Jr and Wiggins, 1998). The use of ver-
sion control for music collaboration has been investigated in the CODES
project (Miletto et al., 2009). Version control is also obviously used often
for music represented as computer programs. In this chapter, we propose

111
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a music representation based on text markup, where each text document
may make reference to a number of bigger sized audio files. Transmission
and local caching of these files can be managed independently between each
participant and the remote location through standard web technologies and
services, which avoids the need of potentially complex specialized p2p tools
for the synchronization of audio collections among different participants.

<txt>

v1

v2

v2b

Figure 5.1: Markup plus audio representation

In recent times, JSON has generally replaced XML as the de facto repre-
sentation for exchanging data in web applications and services, although
without the emphasis on interoperable standards. On the other hand Mu-
sicXML has become a successful standard for applications using classical
western music notation, including online tools such as Noteflight1. How-
ever, there are many musical practices that cannot be represented using
classic western notation. In this chapter we propose a representation for
audio-based music that can be easily encoded as JSON or XML, and af-
fords the definition of simple grammars for organizing collaboration. We
describe a proof-of-concept experiment where this representation was used
in a collaborative music creation prototype. The proposed approach allows

1http://www.noteflight.com

http://www.noteflight.com
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the identification of common patterns in user-submitted musical artifacts
based on audio samples.

Part of this chapter was published in (Roma and Herrera, 2010b) and (Roma
and Herrera, 2013).

5.2 Grammar framework

For the case of collaborative music composition, grammars provide a suit-
able framework for sharing, reusing and assembling parts of music compo-
sitions. In this sense, a grammar can serve as the formal representation of
nested musical fragments, and eventually support the metaphor of a com-
mon language. As an example, a group of users or a program could establish
some rules with respect to music compositions, such as defining a fixed set
of instruments for all pieces, or some common structural elements. This
could be interpreted as a set of grammar rules for music creation. From the
point of view of analysis, grammars can be used for computational modeling
of the style of different participants or groups in collaborative applications.
From the perspective of generation, they can serve to facilitate creativity
by producing new combinations of sounds, or to assist the search of suitable
sounds for a given musical context. Thus, while the main concepts of for-
mal grammars can be found in any textbook, we now provide a summary in
order to introduce the idea of using grammars for audio-based online music
creation.

5.2.1 Formal grammars

A formal grammar is usually defined as a 4-tuple (V,Σ, S, P ), where:

Σ is a terminal alphabet, a set of symbols that are used to form sentences in
the language. In common music notation, terminals could be note pitches,
note durations or chords, while in sample-based music they can be sound
objects (Roads, 1978), or specific sound object classes. V is an alphabet of
non-terminal symbols or variables. Variables represent strings of terminal
or non-terminal symbols in intermediate stages of the generation. In a
music composition process, variables can be used, for example, to represent
groups of terminals that are often used together, such as chords or rhythmic
patterns. S is the start symbol, a special variable that is used to begin the
generation process. P is a set of production rules that allow a given string
to be replaced by another string. For example they can specify how a part
of a musical piece can be replaced by its subparts.
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In summary, a formal grammar can be described as a set of rules that rewrite
a string of symbols with another one. For example the rule A →AB defines
that a string composed of the symbol “A” can be replaced (rewritten) by
the string “AB”. This rule can be used to generate the string “AB” in
presence of string “A”. Thus, the rule could be applied recursively to “AB”
to produce “AAB”, and so on. Also, it can give one possible explanation of
how the string “AB” (or “AAB” for that matter) was produced in a given
language.

Intuitively, grammars can be understood as a formal way to specify struc-
tural groupings of a language. For example we can state that all sentences
in a natural language are composed of a “noun”’ sub-sentence and a “verb”
sub-sentence, and then define a rule that describes this decomposition us-
ing abstract symbols (say S → NV). The application to common structures
such as typical pop song structures is straightforward.

5.2.2 Graph Grammars

One issue of music grammars that is not covered by linguistics or formal
languages literature is parallelism (Baffioni et al., 1984). Some of the ex-
periments with grammars for music generation in the 70s and 80s involved
the use of parallel rules, where two parallel tokens are meant to start at the
same time (Roads, 1978; Holtzman, 1980). However, parallel rules in string
grammars introduce some ambiguity. For example if we have a musical se-
quence “AB” and a parallel rewriting rule “A → D/E” (meaning that D
and E start at the same time), it is not clear, upon replacement of A, if B
will follow after D or after E. Graph grammars provide a general framework
that allow us to deal explicitly with sequential and parallel structures.

Graph grammars were introduced by Pfaltz and Rosenfeld in the late
1960s (Pfaltz and Rosenfeld, 1969) as an extension of traditional gram-
mars to languages of directed graphs. A directed graph is defined as a tuple
(N,E) where N is a set of nodes and E a set of edges that connect nodes
in a certain direction. Clearly, strings are a class of directed graphs where
symbols are nodes and edges define the sequence of symbols. In this sense,
edges of a string define a total order relation. For acyclic graphs, the set
of edges defines a partial order relation on the nodes, which allowed the
generalization of string grammars to acyclic directed graphs.

A graph grammar can be defined in similar terms to string grammars. How-
ever, graph rewriting productions are more complex than string rewriting
productions as they have to define how to connect the result of the pro-
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duction to the enclosing graph. Thus, productions are defined as triples
(α, β,E) where α is the (sub)graph to be replaced and β is the replacement,
while E defines the embedding of β in the host graph. Graph grammars
can be categorized in the same way as string grammars. In addition, graph
grammars can focus in nodes or edges in different ways. For example, node
replacement grammars (Engelfriet and Rozenberg, 1997) are context-free
graph grammars where the left hand of each production is restricted to a
single node.

Development of graph grammars has continued over the years both at a
theoretical and at a practical level, fostered by applications in very diverse
fields such as image recognition or graphical languages for engineering (An-
dries et al., 1999). The extension of strings to graphs seems naturally suited
for music representation by explicitly dealing with parallelism. However, ex-
periments with graph grammars for music are rare in the literature. Some
works (Holder and Cook, 2009; Madsen and Jørgensen, 2003) have used
them for mining classical music scores represented as graphs with multiple
possible connections between consecutive notes. Since these connections are
not specified in the score, accounting for all potential connections bears a
complexity that may be avoided in the context of music creation.

5.3 Tree representation

For the case of online creation, graphs can be used to represent music struc-
tures where nodes represent sounds from a shared database. We name
these musical artifacts as “sample patches”. A simple representation for
such patches is a rooted tree. A rooted tree can be defined as a directed
acyclic graph with a root node where there is a unique path from the root
node to any node. Vertical rooted trees are commonly used to represent
monophonic melodies or rhythms, as well as music structure. An exam-
ple of music representation with a vertical hierarchy is MusicXML (Good,
2001). On the other hand, a horizontal tree allows representing multiple
tracks and can be used to encode music in real-time, when the end of the
piece is not known, without backtracking. In this chapter, we explore the
use of horizontal rooted trees for audio-based music representation. Fig-
ure 5.2 shows two example representations for a drum pattern. Figure 5.3
shows an example of a vertical tree to represent the drum/snare pattern for
comparison.

The use of horizontal rooted trees affords an intuitive playback model but
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implies two main limitations. On one hand, no cycles can exist in the
graph. This means that edges define a partial order relation, which allows
them to represent unambiguous time sequences. Also acyclic graphs are
contractable (Pfaltz and Rosenfeld, 1969), which allows the definition of
grammar expansion rules. One limitation of this approach is that it is
quite common in music to use cyclic structures. This means that musical
cycles should be understood as repetitions of a single node, potentially
representing a contracted subgraph (Figure 5.4). A second restriction of
this representation is that a given node can only be the target of one edge.
Two edges arriving at the same target would imply the scheduling of the
same node (and all the following structure) at two different moments in
time, which has the effect of creating multiple audible tracks from the same
graph specification, and breaking the intuition of the temporal sequence
of the representation. Given these restrictions, reproducing music encoded
in the graph can be thought as a tape head spawning copies of itself at
the bifurcations of the tree. The main issue is how to generate the links
between samples, since in traditional sequencer representations, links are
not specified. The two alternatives are either to get the user to specify
the links as part of the music creation process, or to create them in the
interface according to some predefined rule. For example in a drum machine
interface, the rule could be to generate always a string for each type of sound
(i.e example a in Figure 5.2).

5.4 Lexical generality level

Historically, the interest in formal grammars for music composition was
influenced by their success with natural language. In natural languages,
the meaning of words has generally nothing to do with their written or
phonetic representation, it is defined by convention. The same happens with
many musical symbols such as notes, which refer to a discretized accoustic
property in an abstract manner. This parallelism in the use and articulation
of discrete symbol systems has been related to a more general principle of
self-diverifying systems, which enables music creativity (Merker, 2002).

The concept of a lexical map between terminal tokens of a grammar and
actual sound objects was investigated by Roads (1978). Roads defined three
general forms of lexical mapping: arbitrary, injective and polymorphic. In
the first case, a symbol was arbitrarily mapped to a sound object. The two
other types required a lexicon of sound objects that is grouped according
to some acoustic features. In injective mapping each terminal mapped to
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Figure 5.2: Two representations for the same drum pattern using horizontal
rooted trees

Figure 5.3: Bass/snare drum pattern represented as a vertical tree
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Figure 5.4: Loop represented as repetitions of the contracted subgraph

one sound from the ordered lexicon. Polymorphic mappings were regarded
as a complex situation (equivalent to context-sensitive rules), allowing one-
to-many and many-to-one correspondences with the lexicon.

Using current content-based audio analysis techniques, these ideas can be
applied for symbolic representation of audio-based music. In this sense
we may consider the alphabet of symbols used for grammar rules to be a
partition of a collection of sound objects, so that all elements of the database
are mapped to some symbol of the alphabet. If the partition is hard (i.e.,
each sound belongs to only one group), the mapping is equivalent to a
polymorphic “one-to-many” mapping in Roads’ terminology (“injective”
mapping being a particular case when there is one sound per group). Soft
partitions, such as fuzzy or overlapping partitions would pose additional
problems. For example mining patterns in musical graphs where each node
can have more than one label would result in a combinatorial explosion.
A perhaps more sensible approach is to consider different perceptual facets
(e.g. pitch, timbre, loudness) where hard partitions can be used to obtain
a discrete symbol system, and use different grammars for each facet.

As we have seen in chapter 4, one way of dealing with large databases is to
automatically compute taxonomies from content descriptors. This means
that the same sound will belong to different (hard) classes depending on the
level of the taxonomy. Thus, for dealing with large audio databases, it is
convenient to define different lexical generality levels, corresponding to sets
of nodes that are considered to be at the same height in the taxonomy. At
the top level, all sounds would be labelled with the same label, which defines
purely structural patterns. As we descend in the taxonomy, we obtain larger
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alphabets, and more specific patterns. This approach allows the extraction
of patterns with different levels of detail.

5.5 Finding patterns

We have described how grammars are commonly used both to parse or
analyze the structure of musical compositions and to generate new compo-
sitions. In the context of online music making, grammar rules can be used
to analyze and model the style of different users or groups, and suggest po-
tential interesting combinations of sounds. Grammars can also be seen as
an agreement between remote collaborators working in different parts of a
musical work, and they can be implicitly or explicitly enforced or supported
through music creation interfaces.

A graph grammar rewriting rule defines that a node of the host graph can be
replaced by a subgraph. In Node Label Controlled (NLC) grammars (En-
gelfriet and Rozenberg, 1997) embedding rules are defined globally for all
rules as relations among nodes with some specific labels. This mechanism
can be used as a simple approach to define musical grammars for collabora-
tion. For example, one may concede that any music fragment (represented
as a horizontal tree) has a starting point and an ending point, represented
by virtual terminating nodes. A node replacement grammar can then be
defined so that when a node is replaced by a graph, the starting point in-
herits incoming edges of the replaced node, and the ending point inherits its
outgoing edges. The ending node does not need be the one that ends last,
but the node that conceptually ends a given pattern. This strategy does
not allow maintaining parallel connections among “tracks” in each patch.
Still, it can be argued that the need of such parallel connections implies the
need of separate rules.

In this simplified setting, grammar expansion rules consist in trees that can
be collapsed and contained in other trees. There are two main alternatives
for defining such rules: user-defined groupings, and automatic groupings.
User-defined groupings allow sharing sample patches for embedding into
other patches. This can be done by defining virtual start and end nodes for
the embedding (Figure 5.5). In addition, automatic groupings can be found
inside patches for analysis purposes.
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Figure 5.5: Illustration of the process of embedding a patch into another
patch
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5.5.1 User-defined groupings

In the first case, groupings can be supported by the interface as part of the
creation activity, so that parts can be exchanged between participants. In
this case, expansion rules are defined structurally by these groupings, and
grammars can be inferred at different lexical levels. Here, frequent patterns
can be identified as isomorphic trees. Two trees are considered isomorphic
if there exists a mapping between the nodes and the edges of both trees
that preserves the structure. In practice, it can be said that they are the
same tree but can be drawn in different layouts. Isomorphic labelled trees
can be found using algorithms such as VF2 (Cordella et al., 2004), which
builds and explores a search space of partial mappings between two graphs.
Also, for user-defined groupings it is possible to use edit distances to define
similarities between sample patches. Tree edit distances (Bille, 2005) work
in the same way as string edit distances, by defining a set of operations for
converting one tree into another (node addition, node removal, and node
relabeling). Ideally, different costs can be defined for these operations. In
our case, since labels are generated by content-based audio analysis, relabel-
ing cost can be defined by distances between content-based representations
of clusters or classes, such as the distance between cluster centroids. The
most classic algorithm for computing tree-edit distances was based on the
simplification of assuming that the order between siblings in trees is mean-
ingful (Zhang and Shasha, 1989). However, this limitation does not make
sense for sample patches. More recently, the distance for unordered trees
has been related to the problem of isomorphic subgraph matching (Bunke,
1997) which has allowed the definition of unordered tree edit distance algo-
rithms (Torsello and Hancock, 2003).

5.5.2 Automatic groupings

Another use case for defining grammar rules is assuming larger trees gen-
erated by user activity, such as in real-time music performance sessions
where users do not explicitly define groupings in the generation of the tree,
although they may be implicitly repeating patterns. In this case, the iden-
tification of frequent patterns can be done through Frequent Subgraph Dis-
covery (Kuramochi and Karypis, 2001) algorithms. Several algorithms have
been defined that can deal with rooted trees: gSpan (Yan and Han, 2002),
Sleuth (Zaki, 2005) or Subdue (Holder et al., 1994).
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5.6 Experiments

Evaluation of music representations is complicated, especially by the fact
that many are proposed on aesthetic grounds. Early experiments with gram-
mars for music composition, and particularly the idea of mapping grammar
alphabets to sound objects Roads (1978) were motivated by aesthetic fac-
tors. With respect to the framework proposed by Wiggins et al. (1993), the
representation proposed in this chapter would achieve a level of structural
generality comparable to symbolic notations, and the maximum level of ex-
pressive completeness, attributed to waveform representations. Ultimately,
fully evaluating the potential of the possibilities for finding patterns enabled
by the approach proposed in this chapter would require larges quantities of
user-generated data. However, development and support of a large scale web
application are out of the scope of this thesis. As a proof of concept, we im-
plemented a basic prototype that allows the creation of musical works using
the described representation on top of Freesound. The user experiment was
done before the development of content-based indexing approaches defined
in Chapters 3 and 4, and thus search was based on text queries. Analysis
of user creations was done at a later stage using content-based indexing.
The interface consisted of a flash application that connected to a python
back-end. This interface was based on three panels that describe a cre-
ative workflow, and a tray shared by all panels to keep a palette of samples
(Figure 5.6):

• Sample tray: By default, the tray contained a blank node that repre-
sents silence. The tray allowed duplicating any object and particularly
silence objects of different durations could be created.

• Search panel: The search panel allowed retrieving samples and ex-
isting patches from the database. Sounds could be searched by tag,
file name or user name, and a sound duration limit was specified (by
default 10 seconds). Patches could be searched by file name or user
name. Selected objects were dragged to the tray.

• Edit panel: The edit panel allowed the user to modify the start and
end points of a sample, thus creating a new clip. This operation pro-
duced a new entry in the global alphabet of terminal nodes. Since the
user might be interested in adding several instances of this terminal
to the patch, the edit settings modified a master copy represented by
the visual element in the tray.
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(a)

(b)

(c)

Figure 5.6: Screenshots of the user interface of the prototype: a) edit panel
b) search panel c) composition panel
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• Composition panel: In the composition panel the user could edit a
sample patch with the samples and patches in the tray. Two rectan-
gles in this panel represented the start and end terminal nodes. The
user was then asked to create a composition where a path existed
from the start to the end. When saving the patch the user decided
whether to share it with the community or to keep it for herself.
Users could continue to edit their own patches as long as they were
not shared. When loading a patch to the tray, all the sounds and sub-
patches used in that patch were also loaded. Shared patches could no
longer be modified (although new versions could be created through
duplication). The reason was that modifying a shared patch could
unexpectedly modify someone else’s patch. Given more communica-
tion features, modification of shared patches could have been enabled
in some cases for faster collaborative creation.

When the user saved a patch, the object structure was encoded in a JSON
file, the patch was rendered to an audio waveform, and a thumbnail of
the composition panel was generated. All files were sent and stored in the
server.

5.6.1 Case study

In order to test the idea of rooted tree grammars for undirected collabo-
ration, we put the prototype online with some baisc usage explanations.
During the initial trial period, we collected about 65 patches from 15 users.
Of these users, most generated one or two patches, and two went on to
create 16 and 21 patches respectively. We will call these users “A” and
“B”. The first one recognized himself as an expert using music production
tools, but didn’t have any programming or computer science background,
while user B is a music technology graduate student. During this informal
test, it was clear that people understood and used the possibility of nesting
compositions at different levels. However we also found that more intensive
use of this feature would require a pre-existing motivation for collaborating,
for example an already established team. For example, Figure 5.7 shows a
patch created by user A, who reportedly forgot about the possibility of nest-
ing patches. Editing this kind of patch quickly becomes tedious, although
adding some features to the interface could help. As a comparison, the
patch below exploited this feature conveniently, which allows concentrating
on the higher level structure and, in the case of individual use, the modifi-
cation of the repeated portions of the piece at once. It became clear that
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this may require some practice. With the data collected during the test,
69% of patches contained no nested structures, 18% contained one level and
the remaining 8% more than one level. Almost half of the patches with a
syntactic level higher than zero were generated by user B. On the other
hand, some users nested other patches in their first creations. In all, 54%
of all patches participated in some nesting relation, either contained or as
containers. These tend to have a lower number of nodes (mean 6.9,sd 4.8)
than patches with no nesting relation (mean 10.5,sd 7.6).

(a)

(b)

Figure 5.7: Examples of a) using / b) not using nested structures

5.6.2 Data analysis

In order to test the ideas about pattern detection based on sample patches
explained in this chapter, we labelled the sample patches by applying the
Louvain modularity clustering algorithm described in chapter 4. In to-
tal, 356 samples were used, which represents a very small fraction of the
Freesound database. Also, the experiment was previous to our work on the
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identification of different kinds of sounds reviewed in chapter 3, and the
prototype did not focus on any specific type of sound. In order to adapt
to this situation, we restricted the clustering to the sounds that were used
in the experiment. The same ideas could be applied at a larger scale to
applications based, for example, on music loops. The clustering done with
mean and variance of 13 MFCC coefficients available at the time from the
Freesound database. Using a value of 5 neighbors for k resulted in a taxon-
omy of 2 levels with 8 and 19 clusters respectively. For the sake of simplicity,
we use the first level in our diagrams. Table 5.1 shows the size and the three
most representative tags from Freesound for each of the clusters. Label 0 is
reserved for start and end nodes, and 1 for silence, while -1 means that a
sound had been deleted (by its author) from the database.

Table 5.1: Clusters from sounds used in the experiment

Label N sounds Tags (occurrences)

2 50 voice (7), horror (6), scream (6)

3 10 talk (7), vocal (7), female (7)

4 47 synth (9), pad (7), clarinet (6)

5 33 barcelona (10), boqueria (5), market (5)

6 53 loop (10), kick (7), drum (6)

7 49 hit (7), processed (6), noise (5)

8 38 echo (4), loop (4), noise (4)

9 41 percussion (7), loop (5), effect (5)

10 15 loop (7), street (3), ambient (3)

User-defined groupings

As we have seen, the restrictions imposed by the representation imply that
sample patches can be directly interpreted as the rules of a grammar, at
different levels defined by the lexical mapping. Figure 5.8 shows several
nested patterns labelled at the first lexical level defined by the modularity
clustering. The nested structures reflect the unorganized collaboration of
three different users, authors of the 5 patches, as well as the authors of all
sounds involved. In this case, different music pieces could be generated by
choosing different sounds from the same clusters. On the other hand, char-
acterization of users and groups could be done based on frequent isomorphic
patches, which could also be automatically exchanged. We checked the pos-
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Figure 5.8: Rules defined by the patches of 3 different users
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Figure 5.9: Repeated patterns found using VF2

sibility for finding isomophic patches using the VF2 algorithm to compare
all terminal patches (this is, without nested subpatches) between them. In
this case, there were only some basic repeated isomorphic patches the top
lexical level (figure 5.9). Clearly, finding isomorphic patches would require a
much larger quantity of user-generated data. In this sense, the experiment
serves as a proof of concept. On the other hand, it is also possible to find
automatic groupings as frequent subgraphs inside user-generated patches.
We explored this possibility in the next experiment.

Automatic groupings

In order to analyze the possibility of finding sub-patch level patterns, we
ran the Subdue program (Holder et al., 1994) on a file with all the patches
labelled according to different lexical levels. Subdue accepts a minsize op-
tion to specify the minimum number of nodes of the identified subgraph.
Obviously, the larger this number, the harder it will be to find frequent
patches. By using several lexical generality levels (the top level that la-
bels all sounds with the same value, two clustering levels, and the lowest
level where each sound is labelled with its own node id) we could test the
intuition that this number makes it possible to adjust the number of pat-
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terns that are identified. Figure 5.10 shows the results for different minsize
values on a logarithmic scale. Clearly, the number of detected subgraphs
decreases monotonically for all sizes with the lexical level. This implies
that this technique can be used to adjust for detecting patterns at different
levels, potentially controlling for the number of sounds and users involved.
For example characterizing individual users could be done by finding fre-
quent patterns at lower levels, while large user groups would require higher
levels. Figure 5.11 shows the most frequent subgraphs identified by Subdue
with minsize=4. Considering that clusters 4 and 9 contain typically loops
and electronic sounds (table 5.1), it seems clear that at larger scales this
kind of analysis would allow to characterize the music style and composition
strategies of users, in this case predominantly repetitive electronic music.
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Figure 5.10: Number of identified subgraphs as a function of the lexical
generality level for different graph sizes
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Figure 5.11: Frequent subgraphs identified by Subdue with minsize=4
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5.7 Conclusions

The idea of music creation based solely on audio recordings should not be
surprising for anyone familiar with electronic music tools. Considering a
nascent medium with important limitations such as web audio, there are
some specific affordances that can be exploited. One is taking advantage
of large audio databases in traditional web development architecture mod-
els. Another is enabling collaboration. In this chapter we have presented a
representation that can be used in web-based environments to create con-
catenations of audio samples. We proposed “sample patches”, defined as
rooted trees where nodes represent audio samples, as horizontal represen-
tations that are easy to understand and can be manipulated by computer
programs. By defining an embedding mechanism for sample patches, it
is possible to specify grammars that organize colaborative music making.
While we have not analyzed specific workflows, it is clear that this repre-
sentation would enable different musical practices with different levels of
agreement between internet users. We conducted a proof-of-concept ex-
periment that shows how this idea can be used to represent collaborative
work. At the same time, it was clear that further investigation of spe-
cific workflows would be necessary in order to create engaging experiences.
With data generated by users, we could also validate the idea of finding
patterns in rooted trees using available implementations of graph mining
algorithms. The notion of lexical generality level can be used for adjusting
the generality of identified patterns using the approaches for taxonomical
organization described in chapter 3. We expect that representations such as
the one presented in this chapter can play an important role in collaborative
applications by allowing them to take advantage of information sharing.





Chapter 6

Understanding networked
creativity

6.1 Introduction

Social networks have become a very prominent usage of the web. Many
flavors of social networking applications are frequently used by millions of
users, many of them related to professional or hobby activities. It can be
expected that, in a near future, user networks will play an important role
in any activity based on computers, including music production. Social
networks, and social phenomena in general are, however, complex and hard
to understand. This makes it difficult to foresee the consequences of a
particular feature or design in an application driven by social interaction.
In addition, different users may have different goals and requirements, which
challenges the definition of a general guiding principle for such applications.
In this chapter, we experiment with the concept of collective creativity
as a tool for understanding and devising applications for collective music
making based on shared data. As reviewed in chapter 2, several authors
have worked on the hypothesis that collective creativity is influenced by
network topologies, particularly small-world network structures.

At the time of this writing, social networks for music creation are still in
early development. Data on music creation networks (i.e. where the net-
work facilitates the creation process) is generally not available. However,
some analysis can already be done on communities for sharing audio clips
that have been running for several years. Some already mentioned examples
are Freesound or Looperman. Sharing audio can be seen as an initial step
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towards audio-based collaborative music production. Audio clip sharing
websites offer an interesting example of a collective process which produces
a value that goes beyond individuals. The motivations that lead people to
record and upload sounds for free are clearly related to social factors. The
notion of creativity, as a concept that involves both innovation and rele-
vance, can serve as a measure of the success of this process. We hypothesize
that the analysis of several implicit user networks that can be extracted
from audio sharing sites can give an insight on how this collective creative
process works, and test these ideas analyzing data from Freesound. Most
of the information used in our experiments is generally accessible through
the website and could be extracted automatically from the web pages or,
in many cases from the web API available for developers. For a user, this
includes the sounds she has downloaded, the tags used for her own sounds,
comments and ratings assigned to sounds, and the posts in Forums. In
Freesound, all this information is publicly shared, which can be related to
the open philosophy of the site, especially with respect to content licensing.
For the case of music creation, it may be possible that users are interested in
greater privacy, at least in some phases of the creation process. In any case,
the analyses described in this chapter are based on statistics of anonymized
data, and can be applied without compromising user privacy.

Most of the chapter was published in (Roma and Herrera, 2010a) and
(Roma et al., 2012a).

6.2 Implicit networks in audio sharing

The three main entities that are stored in repositories of audio clips are
audio files, users, and textual descriptions of audio files. Most sites use free
tags as textual descriptions of the audio content. This structure is very
similar, although not equal, to general tagging systems, which are tradi-
tionally studied as tripartite hypergraphs (Mika, 2005). In tagging systems,
an annotation is seen as a link between a user, a resource and a label. From
this representation, several networks can be extracted, for example between
users on the basis of their shared resources or on the basis of shared tags.
Audio clip sharing sites are different in that users normally describe the files
they create and not those of other users. For example in Freesound, tags
are mainly generated as part of the file uploading process and, while it is
possible for any user to tag sounds, 99% of the tags are assigned by the au-
thor of a sound. A possible explanation may be that, while in tagging sites
such as delicio.us or music radios like last.fm users act as active receivers
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of information and their main activity is consuming and describing that
information, in audio clip sharing there is a more practical motivation in
using these files (i.e, the creation of music or audiovisual content) and less
in directly enjoying them online. Following the idea that the community
motivates and influences users in their contributions, we hypothesize that
implicit user networks contain valuable information in order to understand
the dynamics of audio clip file sharing.

6.2.1 Download networks

We define the download network of an audio clip sharing system as a graph
where each node is a user and each edge represents a file that has been
downloaded between two users. A user may download many files from the
same other user, and thus the network is a multigraph. This network can
be seen as an analogy to directed citation networks (White et al., 2004).
However, for consistency with the rest of networks and with most of the
small-world literature, we convert this graph to an undirected one. In this
case, downloads between two users in both directions become a number of
undirected edges that represent the strength of the similarity between both
users.

6.2.2 Semantic networks

The semantic network of users of an audio clip sharing site can be derived
from the concepts they employ to describe their sounds. In this case, nodes
are also users, but edges represent the similarity between two users based
on their tags. Thus, if we represent a user with the vector vi = vi0...vin
where vij is the number of files that the user i has annotated with tag j,
the adjacency matrix can be defined using cosine similarity:

ai,j =
vi · vj
||vi||||vj ||

(6.1)

This network can also be seen as a multigraph by considering a minimum
weight unit (Newman, 2004) so that similarity is expressed in integer values.

6.2.3 Shared interest networks

Another kind of network can be extracted by counting the number of sounds
that two users have downloaded in common. This type of co-occurrence
tie can be thought of as an analogy to tagging systems (Mika, 2005). A
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user is represented by a sparse vector that represents the sounds she has
downloaded. We define the shared interest network by computing cosine
distances between these vectors.

6.2.4 Forum and communication networks

Yet another way to represent the community can be made by measuring
the amount of communication between users, for example analyzing the
activity in a Forum. Forums are a common feature of online community
sites for sharing content. We follow standard practice by linking users that
have participated in the same threads. Hence again cosine similarity can be
computed using the vector of threads.

6.3 Network analysis

Several properties can be used to characterize the described networks. We
now describe some of the properties that can be related to creativity mea-
sures.

Density

The density of a network measures the number of links with respect to the
amount of possible links given by the number of nodes. Thus it is simply
defined as

D =
nmd

n(n− 1)
(6.2)

where md is the mean degree and n the number of nodes. Thus, density re-
flects the level of activity in networks that represent or involve interactions,
regardless of the number of nodes.

Assortativity

Assortative mixing refers to the tendency of nodes to connect to similar
nodes, which can be measured by different criteria (Newman, 2003). One
common measure is degree correlation, this is, the Pearson correlation of
node degrees. In weighted networks, another possible measure is strength
correlation, where strength is the sum of the weights of the edges connected
to a node.
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Efficiency

The traditional small-world network model defines that the average shortest
path length is similar to the random graph. The average shortest path
length measures the minimum number of edges that join any two nodes in
the network,

SPL =
1

n(n− 1)

∑
i,j

d(vi, vj) (6.3)

where d(vi, vj) is the length of the shortest path between nodes vi and vj .
The problem with this property is that when the network includes discon-
nected components, the distance between disconnected nodes is theoretically
infinite. A solution is to compute Efficiency, defined as the average of the
inverse of the shortest path lengths:

Eff =
1

n(n− 1)

∑
i,j

1

d(vi, vj)
(6.4)

When no path exists between two nodes, the efficiency is simply zero. Effi-
ciency obviously grows with the number of edges of a network. In order to
determine the significance of a certain efficiency value, it must be compared
to an equivalent random graph. This graph is usually built according to
the Erdős-Renyi (ER) model, which randomly wires a specified number of
nodes given a probability p. Following the standard practice (Humphries
and Gurney, 2008) with the average shortest path length, we compute the
ratio of efficiency with that of the random graph:

Effr =
Eff

Effrand
(6.5)

Clustering coefficient

In the original model by Watts and Strogatz, the clustering coefficient was
computed as the average fraction of neighbors of a vertex that are connected
between them. This is now usually known as the local clustering coefficient.
For undirected graphs this is defined as

Ci =
2Ei

ki(ki − 1)
(6.6)

where ki is the degree of node i, and Ei counts the number of edges between
the nodes connected to node i. The clustering of the network is then com-
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puted as the average of the local clustering for all nodes. Like in the case
of efficiency, we compute the ratio CCr with the equivalent ER graph.

Small-world coefficient

Clustering and average path length are usually combined to give a measure
of “small-worldness”, defined as the quotient of CC

SPL . Here we follow the
convention but using efficiency, so we define the small-world coefficient as

SWC = CCrEffr (6.7)

Modularity

We have already described modularity for clustering networks of similar
sounds in chapter 4. This measure was originally developed for partitioning
social and complex networks. Here, we use modularity clustering for finding
groups of users, and modularity value obtained for the best partition as a
measure of how divided is the network. For the case of user networks, we
use modularity as defined for undirected multigraphs, which means that
we take into account the strength of the edges as an integer representing
the number of connections (e.g. downloads) between two nodes. Given the
adjacency matrix A of a graph where Aij is the number of links between
nodes i and j, modularity is defined as

Q =
1

2m

∑
ij

[Aij −
kikj
2m

]δ(vivj) (6.8)

where m is the total number of edges in the network, and δ(vivj) is a
function that returns 1 if the group of node i and node j are the same and
0 otherwise. Values above 0.3 are usually considered to indicate a modular
structure (Newman and Girvan, 2004)

Given this definition, many algorithms have been described for partition-
ing a network by directly optimizing modularity. We use the Louvain
method (Blondel et al., 2008) described in chapter 4.

6.3.1 Static vs dynamic analysis

All of the described measures can be extracted from networks that are stud-
ied as static entities. Complex networks analyzed in many disciplines can be
seen as a snapshot of a given state of a complex system, or as the final state
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of some process. Analysis of the evolution of the network through different
states is also common (Carley, 2003). In the case of audio clip sharing sites,
the network can change significantly over time as new users register and
upload more files, while other users stop visiting the site. In order to cap-
ture the interactions of active users, in addition to traditional static analysis
we consider a dynamic approach where we extract the networks using only
information about events happening in a given time period. In the case of
the downloads network, this sample will include users that have uploaded
sounds but not logged in that time frame. For the rest of networks, only
active users appear as nodes in the network. For the purposes of this study,
initial experiments with “accumulated” networks (where all past events are
considered at each sample) yielded similar results at much higher computa-
tional cost, but the extracted measures suffered from high multicollinearity,
which made them unfeasible for regression analysis. Hence, only interac-
tions happening within one sample period are considered.

6.4 Creativity measures

The concept of creativity can be helpful in understanding online behavior
in online audio clip sharing. This notion is commonly considered to be
composed of a novelty aspect and a relevance aspect. These properties can
be attributed to creative artifacts in the context of a given community. One
sound can be more novel and/or relevant for the community regardless of
who has uploaded it, and the same individuals can be more or less creative
depending on the moment and the community who judges their creations.
For accounting the novelty component, in the next section we consider an
automatic approach that objectively describes the originality of a given
sound. Since no user is assumed to have listened to all of the sounds in the
database, it would be difficult for anyone to judge the originality of a sound
for the whole community. Whether a sound is relevant or not seems a much
more difficult question for a computer so we consider feedback measures
provided by the community.

Novelty

The issue of determining the novelty of a document has been considered in
text retrieval (Tsai, 2010). A simple approach to document level assessment
of novelty is to simply consider the distance to the closest neighbor of a
document. In the context of audio clips, the distance can be computed
using content-based descriptors as described in previous chapters. This
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allows us to compute the originality of a sound in a dataset as the distance
to its closest neighbor. In order to obtain a novelty value for a given time
frame, we use a KD-tree data structure (Bentley, 1975), where we add all
sounds of the first time frame. For each subsequent time frame, we average
the distance of each sound introduced in that time frame with the closest
one in the tree. This average gives us an estimate of the amount of novel
information introduced in the database for that period. After all sounds in
a given time frame have been processed, they are added to the tree ad the
next time frame is processed.

Relevance

A common feature in web applications is to allow users to participate at least
in the form of comments and ratings. Depending on the sites, some of these
functionalities may be available. On the other hand, an objective measure
of the success of a sound is the number of times it has been downloaded.
In the case of comments and ratings, the situation may vary. In the case of
Freesound.org, comments and ratings are sparse and always very positive,
so their mere presence is always an indicator of value of a sound. Thus,
in this case we can use three measures: number of downloads, number of
comments and number of ratings as indicators of the relevance of a clip to
the community. Since the number of people who download, comment or
rate sounds is much larger (by a factor of 500) than that of the users who
upload sounds, we can consider these measures as measures of the success
of the community of uploaders among their audience. The value for a given
time frame is obtained in the following way: for the sounds that are added
in that time frame, we consider the number of downloads, comments and
ratings that the sound gets during its life since then until the last date of the
analysis. Since the probability of getting feedback and downloads increases
with the age of a sound, we normalize these values by the number of days
that sound have been in the database. We then average for all sounds in
the time frame to obtain an indicator of the creative performance of the
community for that month.

6.5 Experiments

6.5.1 Community structure in Freesound

In recent years, networks have been increasingly studied as a means for
understanding complex phenomena such as social groups and processes.
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Several characteristics have been observed in real world networks as op-
posed to basic mathematical models such as regular lattices or random
graphs. Particularly, many real world networks can be characterized as
small worlds, and it is also common to find modular structures. Groupings
in these networks are usually referred as “communities” in the complex net-
work litterature. Thus, from this point we will have to use this concept in
a more technical way, signifying a group of nodes in a user network that
have more connections between them than they have with the rest of the
network. An early experiment with the Downloads and Semantic networks
extracted from Freesound revealed that the social structure of the site re-
produces these common findings, and provided some hints about the kind
of social organization that can emerge from audio sharing tools. In order to
characterize the user communities identified by network analysis, we used
the tags employed by users to describe their sounds. As expected, the se-
mantic network, built using those tags, shows more clearly defined themes
in this respect, but it is also interesting to see whether the communities of
the download network are related with different semantic topics. We use the
probability of a tag in a community Pi|Ck

=
ni|Ck
nCk

(the number of documents

annotated by tag i in community k divided by the total number of docu-
ments in that community) and the analogue for the whole network Pi = ni

n .
The ratio PC/PG indicates if a tag is commonly used in the community with
respect to its normal use in the whole site. Values above 1 indicate a more
specific use in this community, and tags with large values are used to char-
acterize the community. On the other hand, the entropy of a community
with respect to tags can be described using the local probabilities:

SCk
= −

∑
i∈Ck

Pi|Ck
logPi|Ck

, (6.9)

in the same sense as the genre entropy used in studies of music communities
(Jacobson et al., 2008). An average of this quantity over all communities
(SC) provides a hint about the quality of the partition with respect to
tags. A low value of the entropy of tags in the community indicates a
greater homogeneity with respect to tags. Note that, usually, tags are not
necessarily as general and comprehensive as genres are in music. However,
for this measures we limited tags to the most popular ones, with a frequency
of more than 1000 in the database. On the other hand, since the value of
entropy depends on the size of the community, we computed the entropy of
a proportional random partition of the network as a baseline.
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Download network

One thing that stands out when building the download network of
Freesound, is that a vast majority of users are only interested in down-
loading files. The reason is that, in order to download files at their original
quality, the site requires people to sign in. These users could be represented
by nodes with zero in-degree. However, the purpose of this study was to
characterize the network of users who upload sounds, and we discarded
users who did not upload sounds. This gives us a reduced network of 2234
nodes (out of the more than a million of registered users) and 60342 edges.
In this reduced network, we find a strongly connected component of 1836
nodes, about 80% of people who have uploaded some sound. The remaining
20% is mainly split among users who have zero in-degree (this is, people
whose sounds have not been downloaded by any other author) or zero out-
degree (users who have uploaded sounds but that have not downloaded any
sound), with a remainder of nodes that mostly have either one incoming
or one outgoing link. This structure mimics the bow tie structure that has
been found to characterize the World Wide Web (Broder et al., 2000)(Table
6.1).

Table 6.1: Global structure of the download network: Strongly Connected
Component (SCC), nodes with zero in-degree (IN) and nodes with zero
out-degree (OUT)

Average Average

Part N of nodes Percent in-degree out-degree

SCC 1836 82% 32.33 31.68

IN 145 6.5% 0 21.04

OUT 187 8.4% 11.24 0

Other 66 2.9% 10.47 14.32

On the other hand, the network of authors can be characterized as a small
world. Table 6.2 shows the average shortest path length and clustering co-
efficient of the network compared to the equivalent ER graph. While the
average distance between nodes is roughly the same than for the random
graph, the clustering coefficient is an order of magnitude larger. Interest-
ingly, assortativity is negative, which means that nodes tend to associate
with nodes of different degree.

The application of the Louvain method for community detection to this net-
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Table 6.2: Main properties of the download network (in parenthesis, values
for the equivalent ER graph)

Download network properties Values

Nodes 2234

Edges 61697

Mean degree 27.62

Diameter 5

Assortativity -0.181

SPL 2.23 (2.22)

Clustering Coefficient 0.28 ( 0.024)

work reveals a structure dominated by a large community with a modularity
of 0.29. Table 6.3 shows the different communities and their characteristic
tags. While this structure may seem similar to the global structure de-
scribed by the component analysis, as a matter of fact the proportion of
nodes of each community that belong to the strongly connected compo-
nent is very similar (around 80% for all communities). This discards that
the modularity partition merely replicates the division between the giant
component and the rest. At the second level, this large component loses
some nodes to small sibling communities, but the trend is preserved. An
analysis of the most characteristic tags in the top level (Table 6.4) shows,
however, that there are some differences in the topics preferred by each
community. The main community, while more heterogeneous in the tags,
is characterized by one of the most popular tags of the site: field recording,
and generally concepts related to environmental sounds. Contrastingly, in
the smaller communities, concepts related with musical uses of sounds are
more salient. However, the general entropy of the partition is not much
lower than the entropy of the equivalent random partition.

Semantic network

The semantic network is itself an undirected, weakly connected component,
although it contains less nodes (2161) than the download network. The
missing 27 users are disconnected from this network because they use few
and very specific tags that nobody else uses. On the other hand, the number
of edges is higher (75607) which makes a very dense network.

An analysis of the average shortest path length and the clustering coefficient
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Table 6.3: Number of communities, modularity, entropy and average en-
tropy of equivalent random partition in download network

Download network tags Values

Communities 5

Modularity 0.29

SC 3.02

SC (random) 3.17

shows that this network can also be characterized as a small world (Table
6.5). This feature is even more pronounced than in the download network.
Again, assortativity is strongly negative, which is understandable from the
construction of the network: users who use many words to describe their
sounds will be linked to users who use less (but similar) words and therefore
have a smaller degree.

Modularity-based community detection reveals a more pronounced and also
more balanced division of the network with respect to the download net-
work, with a modularity of 0.35 (Table 6.6). Here, the distribution of topics
is clearer among the different communities (Table 6.7), as could be expected
from the construction of the network (for example, techno appears in a com-
munity with related topics, while in the download network it appeared in
the larger community along with concepts related to environmental sounds).
Also, the average entropy is significantly lower than the value for the equiv-
alent random partition. Several groups are related to percussive sounds
used for creating rhythms in electronic music, while others seem more re-
lated with voice (another popular tag of the site) or environmental sounds.
The case of voice samples is characteristic: a tradition exists in Freesound
to provide recordings of voices with specific utterances upon request. This
community could be considered to reflect this activity. Some of the detected
communities are very small and do not contain any of the more popular tags,
so they are omitted from Table 6.7.

Confusion of communities in both networks

Table 6.8 shows the amount of users in each community of both the semantic
and download networks. Row and column indexes correspond to indexes of
the communities in each network. Both partitions seem to be related, with
the main group of the download network splitting equally into two of the
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Table 6.4: Characteristic tags in communities of download network (prob-
ability ratio)

Download network communities Probability ratio Characteristic tags

Community 0, Size: 33, Entropy: 2.58

5.49 human

8.67 acoustic

2.92 short

2.01 percussion

1.55 field-recording

1.28 noise

Community 1, Size: 294, Entropy: 3.26

5.26 analog

2.52 drums

2.10 percussion

1.91 drum

1.80 beat

1.80 glitch

Community 2, Size: 32, Entropy: 2.38

6.90 percussion

6.18 metal

5.45 drum

4.66 hit

2.45 guitar

2.30 drums

Community 3, Size: 1644, Entropy: 3.48

1.59 birds

1.59 nature

1.53 male

1.50 ambience

1.42 field-recording

1.37 techno

Community 4, Size: 231, Entropy: 3.41

2.84 reaktor

2.76 multisample

2.22 drone

2.08 space

1.61 fx

1.54 electronic
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Table 6.5: Main properties of the semantic network (values for the equiva-
lent ER graph)

Semantic network properties Values

Nodes 2161

Edges 75607

Mean degree 69.97

Diameter 5

Assortativity -0.25

SPL 2.07 (2.07)

Clustering Coefficient 0.54 ( 0.032)

Table 6.6: Number of communities, modularity, entropy and average en-
tropy of equivalent random partition in semantic network

Semantic network tags Values

Communities 6

Modularity 0.36

SC 1.94

SC (random) 2.79

semantic communities. For the rest, a majority of users of a community in
one network belongs to a community of the other. A χ2 test on this matrix,
as a contingency table with 20 degrees of freedom returns a very small value
(p = 9.5 · 10−24) which gives support to the rejection of the null hypothesis
stating that both assignments are independent.

Conclusions about network structure

This first study analyzed two implicit user networks with data accumulated
over time in the Freesound database. The analysis allowed us to learn
about the structures that emerge from the community based on the rules
for sharing audio under CC licenses (note that we now switch back to the
more general concept of community). Both networks can be characterized
as small worlds with a modular structure, as commonly observed in real-
world networks and related with complex social phenomena. The downloads
network allowed us to have a general understanding of the structure of the
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Table 6.7: Characteristic tags (probability ratio) in communities of semantic
network (communities with less than 10 nodes are omitted)

Semantic network communities Probability ratio Characteristic tags

Community 0, Size: 757, Entropy: 3.04

8.00 metal

7.34 water

6.35 hit

3.58 birds

2.56 percussion

2.38 ambience

Community 1, Size: 128, Entropy: 2.62

11.90 human

7.91 male

7.71 voice

3.18 short

2.29 acoustic

1.90 effect

Community 3, Size: 332, Entropy: 2.5

5.53 nature

5.40 field-recording

4.62 birds

2.97 male

2.78 water

1.79 voice

Community 5, Size: 990, Entropy: 3.46

1.32 techno

1.32 multisample

1.31 electro

1.31 reaktor

1.29 analog

1.28 glitch
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Table 6.8: Confusion matrix: count of nodes in the detected communities
of the download (rows) and semantic (columns) networks

0 1 2 3 4 5

0 5 3 0 7 0 17

1 61 12 1 36 2 171

2 5 2 0 1 0 24

3 640 98 6 268 3 601

4 34 11 0 19 0 162

site as a giant component with appended IN and OUT components. On the
other hand, the semantic network allowed a better identification of groups
of users interested in different topics, which intuitively can be expected from
the wide variety of sounds in the site. Another interesting fact is that these
networks tend to show negative assortativity, which reflects that users do
not group according to their degree (which can be related with social status
in social networks), but tend to interact or share concepts with users that
are different in this respect.

6.5.2 Predicting creativity

Beyond structural analysis, we were interested in the relation of these struc-
tural aspects with the ability of the community to provide increasingly
novel and good quality sounds. We computed all of the described implicit
networks, as well as the described creativity measures, by sampling the
database monthly over a period of 66 months, from April 2005 to October
2010. We then related network properties with creativity measures through
regression analysis. Table 6.9 shows the mean and standard deviations of
the different properties of these one-month networks averaged over time.
All of the described networks exhibit similar characteristics. With a few ex-
ceptions, they have negative assortativity in both degree and strength. Also
with one exception (the shared interest network) they have high modularity,
above the empirical threshold of 0.3 commonly considered to indicate the
presence of modular structure (Newman and Girvan, 2004). The clustering
coefficient ratios show that the networks tend to be much more clustered
than the equivalent random graph, while the efficiencies are similar to ran-
dom graphs, and so the efficiency ratios revolve around 1. Hence, the small-
world coefficients (the product of efficiency and clustering) generally follow
the clustering coefficient. This reflects that the measured networks follow
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the small-world network model. Since the evolution of small-world coeffi-
cient is strongly tied to the clustering coefficient, and it does not make sense
to include it in the same models as its factors, we omitted this property from
the regression analysis.

Table 6.9: Mean (standard deviation) of the described properties for the
different networks: degree correlation (dc), strength correlation (sc), mod-
ularity (m), clustering coefficient ratio(cc), efficiency ratio (ef), small-world
coefficient (swc) and density (den)

Variable Downloads Semantic Shared Forum

dc -0.13 (0.05) -0.17 (0.06) 0.33 (0.31) -0.22 (0.15)

sc -0.01 (0.00) -0.01 (0.01) -0.01 (0.02) 0.04 (0.10)

m 0.45 (0.06) 0.40 (0.05) 0.17 (0.16) 0.55 (0.16)

cc 5.17 (1.52) 3.33 (0.73) 7.31 (2.55) 4.87 (2.07)

ef 1.14 (0.05) 0.97 (0.02) 0.85 (0.08) 0.71 (0.16)

swc 5.91 (1.86) 3.22 (0.68) 6.19 (2.16) 3.66 (2.19)

den 0.01 (0.02) 0.21 (0.05) 0.09 (0.05) 0.10 (0.14)

Regression analysis

In order to test the influence of the small-world properties of all four net-
works on the creativity measures we performed ordinary least squares re-
gression analysis with the described variables for each of the networks. Our
aim is to understand to which extent the properties of each network can
model the creative outcome of the community. In order to account for po-
tential causal relationships, we introduce a lag of one time period between
the predictors and the dependent variables. For each model, we checked
the variance inflation factor (VIF) to ensure that there are no collinear-
ity problems. All of the VIF values were below 10, which is the usually
recommended threshold (Hair et al., 2010) with the single exception of
modularity in the shared interest network which went up to 10.8.

Tables 6.10 - 6.13 show the main regression data for predicting either nov-
elty, downloads, ratings or comments, using the 4 different networks we
have studied (downloads, semantic, shared interest and forum). For each
dependent variable, the coefficients of the predictors are listed. Sign indi-
cates the direction of the relationship (direct or inverse) and high absolute
values indicate that the factor is relevant to predict that target variable.
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Statistical significance is indicated with the usual asterisk coding (see cap-
tion for details). The bottom cell presents the determination coefficient R2

which indicates the predictive accuracy of each regression function.

Table 6.10: Regression analysis coefficients for the downloads network. Sig-
nificance codes: * (p < 0.5), **(p < 0.1), ***(p < 0.01)

Variable Novelty Downloads Ratings Comments

dc -26.36 ∗ -0.08 -0.01 0.00

sc -62.72 8.09 ∗∗ 0.29 ∗∗ 0.05 ∗∗

m -20.01 0.53 ∗∗∗ 0.02 ∗∗∗ 0.00 ∗∗

cc 0.41 0.002 ∗∗∗ 0.00 0.00 ∗∗

ef 7.44 0.008 0.00 0.00

den 450.05 ∗∗∗ 5.86 ∗∗∗ 0.15 ∗∗∗ 0.03 ∗∗∗

R2R2R2 0.85 0.41 0.25 0.19

Table 6.11: Regression analysis coefficients for the semantic network

Variable Novelty Downloads Ratings Comments

dc -38.18 ∗∗∗ -0.24 ∗ 0.00 0.00

sc -731.71 ∗∗∗ 2.92 ∗∗ 0.15 0.02

m 20.82 0.20 0.01 0.00

cc 3.78 ∗ 0.00 0.00 0.00

ef -15.07 -1.48 ∗∗ -0.05 0.00

den 111.23 ∗∗∗ 1.51 ∗∗∗ 0.04 0.00

R2R2R2 0.76 0.49 0.36 0.09

Discussion

The results show similar patterns with respect to the accuracy of the models,
as measured byR2. Novelty can be predicted with better accuracy in most of
the networks. This seems more understandable if one takes into account that
novelty is calculated using information from the same time period (except
for the introduced lag) than the predictors. The rest of variables count the
numbers of downloads, ratings and comments that sounds have received
over time, which is a rough indicator of their quality but can obviously be
influenced by other factors. On the other hand, network density appears to
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Table 6.12: Regression analysis coefficients for the shared interest network

Variable Novelty Downloads Ratings Comments

dc 1.50 -0.11 0.00 0.00

sc -87.23 -1.91 ∗ -0.02 0.00

m 20.08 ∗ -0.24 -0.01 0.00

cc -0.03 -0.01 0.00 0.00

ef -5.11 0.18 0.01 0.00

den 114.30 ∗∗ -0.28 -0.01 0.00

R2R2R2 0.76 0.40 0.24 0.05

Table 6.13: Regression analysis coefficients for the forum network

Variable Novelty Downloads Ratings Comments

dc -21.45 ∗∗∗ -0.17 ∗∗ 0.00 0.00

sc 32.11 ∗∗ 0.04 0.00 0.00

m -6.97 -0.20 ∗∗ -0.01 0.00

cc -0.92 ∗ -0.01 ∗ 0.00 0.00

ef 4.06 0.00 0.00 0.00

den 52.69 ∗∗∗ -0.19 -0.01 0.00

R2R2R2 0.60 0.36 0.27 0.05

be a generally dominant factor, along with strength correlation as a negative
factor.

Novelty

The downloads network shows the highest accuracy with respect to the
novelty variable, explaining almost 85% of its variance. The most important
factor in this model is network density. This indicates that a higher number
of downloading interactions between users may have a positive effect on
innovation (recall that the network is computed only for active users who
upload sounds). However, in the case of novelty, there is no reason to think
that such potential causality would not go in the opposite direction. On the
other hand, degree correlation has a negative impact, which could indicate
that interactions among different users (in terms of degree) are positively
related to novelty. This tendency is reinforced in those of the other networks
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that best predict novelty. In the semantic network model, the strength
correlation appears also as a negative significant factor. Modularity and
clustering coefficient appear as small positive contributions in the semantic
and shared networks. On the contrary, the effect of clustering of forum posts
seems to be negative. In summary, novelty of uploaded sounds seems to be
positively correlated with high connectivity, in some cases with a small bias
towards clustering, and disassortative mixing.

Relevance

With respect to the relevance measures, the semantic network seems to have
the greatest predictive power, followed by networks based on downloads
(downloads and shared interest). For example almost 50% of the variance
in the average number of downloads of a sound can be explained by the
semantic network properties. In all of the networks, strength correlation
appears along with density as an important positive factor. Also noticeable
are the significant correlations of modularity and clustering in the downloads
network. In contrast, degree correlation has a significant negative contribu-
tion in the semantic and also in the forum networks. This seems to point
towards connectivity among active users (who should have higher strength
regardless of the degree) as a factor for the relevance measures. Particularly
in the semantic network, strength reflects the level of agreement of a user
with other users in the tags that they use for the sounds. This describes
an important connection between the people who upload sounds, which will
affect the findability of sounds in the database. In contrast, efficiency (i.e.
the harmonic mean of the average shortest path length) in the semantic net-
work has a negative effect, which could mean that connecting remote users,
who could be interested in different topics, with respect to text descriptions,
is not beneficial. In conclusion, relevance seems to be also very related to
network density in general and slightly with local density. Moreover, the
agreement between users when describing sounds, reflected by strength cor-
relation and density of the semantic network, seems to be among the most
important factors for predicting relevance.

Relation to the small-world hypotheses

While the studied networks have shown to follow the small-world network
model, our results show some differences with respect to the hypotheses
reviewed in chapter2. The referenced works all analyzed real world social
networks, which may follow different rules than networks mediated by in-
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formation technology. In real world social networks, connections between
distant clusters seem more difficult to achieve and therefore more valuable
for diffusing information. In contrast, in internet-based communities, find-
ing different people is very usual. In these communities, the difficulty lies
in finding people with similar interests. In the context of the Freesound
community this seems a reasonable explanation, since the site poses no re-
strictions or biases with respect to the kinds of sounds that can be uploaded,
which results in a melting pot of many different cultures. Given network
density as a general factor for the creative outcome, it would seem that lo-
cal density and clustering, as reflected by the clustering coefficient ratio and
modularity, are to be preferred to short path lengths. Our study also points
towards the importance of assortative mixing, which is not usually covered
in the small-world creativity literature. An interesting pattern in the ana-
lyzed data is that, while degree correlation (i.e. assortative mixing among
nodes of similar number of connections to different users) is negatively cor-
related to creativity measures, strength correlation (which better reflects
the level of activity of users in valued networks) has a positive influence in
some cases.

Conclusions about networked creativity

It is often difficult to define the goals of a community based system, where
each user may have different motivations.This makes it difficult to design
and develop software for community usage. For the case of audio clip shar-
ing, we have proposed a set of indicators of the creative outcome of the
active community (users who create, or record, and upload sounds) us-
ing data from the larger community of information consumers. We have
hypothesized that these measures partly depend on the dynamics of the
community, which can be measured using the different networks of inter-
actions in a given time frame. Our results show that part of the variance
of these measures can in fact be explained by network measures. The pro-
posed method, as well as the results of our empirical study, can be used to
improve the design and functionalities of audio clip sharing sites. In this
sense, it seems that features that try to maximize the density of the differ-
ent networks, i.e. by facilitating actions that connect users, would impact
on the quality and novelty of sounds that are uploaded. Similarly, features
that promote connectivity among most active users, which would reflect
on strength correlation, and features that promote clustering of users with
similar interests are to be preferred.

As future work, the relationship between assortative mixing and creativity
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could be further explored using other measures of similarity between users
(beyond degree and strength), such as similarities between the sounds they
download. Another possibility is analyzing the outcomes of individuals or
smaller communities and their relationship to their network positions and
centralities.

With respect to music creation based on audio, the described experiments
should be a useful starting point, in the sense that collaborative audio-based
music making is in itself at least an exchange of audio clips. However, music
creation can be considered, in general terms, as a more complex activity
than recording sounds (this obviously depends on the kind of music and
the kind of recording). It may be expected that more complex relationships
can be observed by considering similarities in music strucutre. In this sense,
music representations such as the one proposed in chapter 4 could be used
for computing novelty in the sense of music structure, detecting common
patterns and similarities between users, and analyzing music collaboration
networks using the methodology described in this chapter.

6.6 Conclusions

In this chapter we have analyzed users, as the last major type of entity
implied in the use case of online music making communities. These com-
munities can be seen as networks of users that create music by sharing
information. By applying network analysis techniques, it is possible to
gain a better understanding of the structure and dynamic behavior of the
community. While users in online applications have diverse goals, we have
proposed the concept of social creativity as a potential collective goal, that
can be seen as the ability of the community to innovate with respect to
the information stored in the database. We have tested these ideas by us-
ing information from the Freesound database, by defining user networks
that are implicit to the activity of sharing sounds. While we hope that
these methods can be applied to music creation communities in the future,
the popularity of Freesound allowed us to test our ideas with a large-scale
dataset. Our preliminary experiment showed that the proposed implicit
networks exhibit characteristics found in other real world networks. On
the other hand common network analysis measures can be used to describe
the general structure of the audio sharing activity. We then performed a
large scale experiment analyzing the dynamics of the implicit networks of
the Freesound community. We analyzed how the proposed measures for
analyzing creativity (an automatic content-based measure of novelty and
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mesures of relevance based on downloading users) depend on properties of
the networks. Our results indicate that high connectivity, represented by
graph density, and negative assortativity (the tendency of nodes to interact
with nodes of different degree) are indeed positively correlated with the cre-
ativity measures. This result should be of interest for supporting creative
communities in general, and points towards a different behavior of online
small-world creative networks with respect to existing literature analyzing
networks of companies or teams creating musicals.





Chapter 7

Conclusions

During the last few years, the Internet, and particularly the web, has become
even more of a crucial part of people’s lives. Especially mobile platforms,
basically smartphones and tablets, have contributed to fulfill the idea that
everyone needs access to the web. At the same time, perhaps fostered by
these developments, the adoption of new capabilities in web browsers has
accelerated. At the time of this writing, the first edition of the first Web
Audio Conference is about to start. The Web Audio API has been incorpo-
rated into most browsers. While audio software has traditionally remained
in computer desktops, the specific affordances of the web are based on col-
laboration and information sharing. Advances in browser technologies, in-
cluding mobile browsers, will necessarily improve our ability to collaborate
in computer-based music creation. In recent news, the owners of the popu-
lar ProTools DAW software are announcing a new version with support for
cloud-based storage. The general reliance on cloud computing may signal
a second coming of efforts for developing internet-connected music creation
tools.

This thesis explores the idea of using web applications based on large-scale
shared data stores, particularly containing audio recordings, for music cre-
ation. This idea is backed by the success of existing platforms for sharing
audio using CC licenses, such as Freesound. In this context, sharing audio
affords a great potential for facilitating the creative development of users
with diverse backgrounds on the basis of a long tradition of music based on
audio recordings.

We started with the aim of adapting information retrieval techniques to
support the use case of audio-based music creation by online communities.

157
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In order to fulfill this goal, we analyzed three main entities that intervene
in our use case: sounds, music fragments or pieces, and users. Providing
and evaluating suitable representations and algorithms for this purpose has
proved to be a challenge, particularly because of the unstructured nature of
user-driven processes. One important axis of this work has been dealing with
two opposite poles: at one side, we are interested in diversity, as a major
component of creativity and innovation. At the other end, uniformity and
consistency allow us to learn and efficiently take advantage of large-scale
databases. Another important aspect of this thesis has been the cross-
pollination resulting from the need to confront the different subjects in
the use case of collective music-making based on shared data. The use of
networks for modeling user communities has been applied to the sounds
produced by these communities. Clearly, the distribution of audio features
is derived from a certain social and cultural structure of users that share a
given resource, such as Freesound. We have found that network analysis,
and especially the concept of modularity, are particularly useful for dealing
with this tension between uniformity and diversity.

In face of the complexity of the task, the development of this work has
not necessarily followed the order of the dissertation. The later has been
structured to follow the logic that can be used to design future applications
for fostering musical creativity on top of shared audio. First, we have de-
signed a framework that allows compact representations of different kinds
of sounds, in a way that is useful for content-based retrieval. We expect
that different kind of applications can be developed on the basis of different
kinds of sounds commonly contributed by online users such as sound scenes,
sound events and music loops. At the same time, we have provided algo-
rithms for identifying these general kinds of sounds. We have then analyzed
the two main machine learning paradigms (supervised and unsupervised al-
gorithms) for facilitating access to large-scale audio databases in form of
sound taxonomies. Both approaches can be used depending on the applica-
tion, but for the case of unsupervised processes, a bottom-up approach such
as modularity clustering shows promise for music creation applications. We
have then proposed a representation for audio-based music that is simple
enough for browser-based applications. We have shown that the grammar-
based approach affords collaborative music-making based solely on the es-
tablished practice of audio remix. At the same time, we have shown that
in combination with taxonomical sound classifications, this representation
allows the identification of common patterns in users creations. Finally, we
have analyzed the structure of online communities currently sharing audio
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files. In order to deal with the struggle between agreement and diversity,
we have proposed the use of automatic measures of creativity, derived from
computational creativity research, as a guide for applications that aim at
fostering online music creativity based on shared audio.

Addressing this challenge lead us to investigate both existing and novel ap-
proaches to indexing and retrieval of each of the entities involved in the
addressed use case. We now summarize the novel contributions of this the-
sis, which can be useful for information retrieval research and development
focusing on large audio databases and audio sharing platforms.

7.1 Summary of contributions

7.1.1 Evaluation of low level generic features

MFCC features are very widespread and are commonly used without ques-
tion alongside other frequency domain representations inspired by auditory
filters. Our experiments with 9 different datasets showed that a change in
the filterbank model can lead to some improvements in audio classification,
which may not be visible with smaller datasets. This result should be of
interest to content-based audio retrieval in general beyond our target use
case.

7.1.2 Novel methods for feature aggregation

We have also shown methods for identification and summarization of differ-
ent types of audio signals commonly found in online sharing sites, mainly
environmental sounds and loops. We have adapted Recurrence Quantifica-
tion Analysis features from research on nonlinear time series analysis and
shown that they allow improving in audio classification tasks when added
to traditional feature statistics.

7.1.3 Modularity-based audio clustering

The concept of graph modularity is often used for finding communities in
social networks. We have shown that it is also useful for clustering audio
in community-driven databases, where nearest neighbor graphs can be used
to adapt to the uneven densities of the feature space. Using the Louvain
multilevel modularity optimization algorithm allows creating automatic tax-
onomies of audio files. Comparing this method to a traditional supervised
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method for taxonomical classification has shown that users find it easier to
learn automatic unsupervised taxonomies.

7.1.4 Formal representation of audio-based music
fragments

We have proposed a novel representation for music fragments defined by
sequences and superpositions of audio files. The proposed representation
specifically affords nesting music fragments at different levels using a graph
embedding mechanism. We have shown that this representation supports
the identification of frequent patterns in user creations by labelling similar
sounds with content-based approaches such as modularity-based clustering.

7.1.5 Evaluation of sharing communities by creative
outcome

Finally, we have proposed a method for measuring the creative outcome of
an audio sharing community, using ratings from a larger audience commu-
nity and an automatic content-based novelty measure. We have shown that
these measures correlate significantly with measures extracted from analy-
sis of user activity networks, particularly graph density and disassortative
mixing. These results should be of interest for the design of applications
aimed at fostering creativity such as online music creation platforms.

Some of these contributions have been published in conference proceedings
and peer-reviewed journals. A list of the author’s publications is available
in Appendix A.

7.2 Future directions

With respect to the algorithms and representations proposed in this the-
sis, many possibilities remain for exploration. In dealing with a real world
scenario such as the sounds existing in Freesound, we have faced the com-
plexity of environmental audio, and proposed a segmentation approach. In
addition to temporal segmentation, current research in source separation
(which can be seen as spectral segmentation) could be used to expand the
creative potential of audio contributed by internet users for music creation.
From an implementation perspective, we haven’t dealt with the issues of
expanding a large database like Freesound using the event detection scheme
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we have proposed. At larger scales, indexing approaches used for music such
as locality-sensitive hashing should be investigated.

Regarding automatic taxonomies, we have generally avoided the analysis
of labels used for audio collections. We have dealt with the generality of
labels from a purely content-based perspective, but clearly a semantic anal-
ysis informed by natural language processing could help developing systems
that are easily understandable to users. Also, in the case of unsupervised
taxonomical organization, there are two important aspects that remain to
be explored: one is choosing appropriate exemplars for each class in the
taxonomy. Another is automatically finding intuitive labels, which could
be helped by existing labels in sounds, or using automatic classifiers. In
general combining bottom-up with top-down approaches could help deal-
ing with data generated by unorganized user activity. In the case of music
representation, we have dealt with the most basic case for enabling col-
laboration based on audio files. We have not investigated a way to derive
probabilistic grammars that can be used for computer-aided composition.
Also we have not dealt with more complex mappings potentially including
transformations of audio files. Finally with respect to user communities,
this thesis has only scratched the surface. We are in general still very far
in understanding social behavior, particularly with respect to creative ac-
tivities such as music. We hope that this thesis has contributed to the
general objective of understanding music as a social phenomenon. Our con-
tributions for defining similarities and groupings of user creations, and their
relationship with social interaction, could be useful for future research on
the social dimension of music creation.
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