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Abstract

Medical imaging methods —e.g., ultrasound, computer tomography (CT) or X-rays— are crucial
tools for the diagnosis and study of many diseases. DNA microarrays are one of such methods,
commonly employed in biological and biomedical laboratories around the world. In DNA microarray
experiments, two grayscale images are produced as an intermediate step. These DNA microarray
images are then analyzed to obtain the genetic data of interest. Since these analysis algorithms are
in constant development, it is convenient to save these images for future, more accurate re-analysis.
Thus, image compression emerges as a particularly useful tool to alleviate the associated storage
and transmission costs. This dissertation aims at improving the state of the art of the compression

of DNA microarray images.

A thorough investigation of the characteristics of DNA microarray images has been performed
as a part of this work. DNA microarray images exhibit much larger dynamic ranges, very differ-
ent pixel distributions and use a smaller fraction of all possible intensities, as compared to natural
images. Hence, algorithms not adapted to DNA microarray images typically attain only mediocre
lossless compression results. By analyzing the first-order and conditional entropy present in these
images, it is possible to determine approximate limits to their lossless compressibility. Even though
context-based coding and segmentation provide modest improvements over generic-purpose algo-
rithms, conceptual breakthroughs in data coding are arguably required to achieve compression ratios

exceeding 2:1 for most images.

Prior to the start of this thesis, several lossless coding algorithms that have performance results
close to the aforementioned limit were published. However, none of them is compliant with existing
image compression standards. Hence, the availability of decoders in future platforms —a requisite
for future re-analysis— is not guaranteed. Moreover, the adhesion to standards is usually a requi-
site in clinical scenarios. To address these problems, a fast reversible transform compatible with
the JPEG2000 standard —the Histogram Swap Transform (HST)- is proposed. The HST improves
the average compression performance of JPEG2000 for all tested image corpora, with gains rang-
ing from 1.97% to 15.53%. Furthermore, this transform can be applied with only negligible time
complexity overhead. With the HST, JPEG2000 becomes arguably the most competitive alterna-
tives to microarray-specific, non-standard compressors. The similarities among sets of microarray
images have also been studied as a means to improve the compression performance of standard and

microarray-specific algorithms. An optimal grouping of the images which maximizes the inter-group
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correlation is described. Average correlations between 0.75 and 0.92 are observed for the tested
corpora. Thorough experimental results suggest that spectral decorrelation transforms can improve
some lossless coding results by up to 0.6 bpp, although no single transform is effective for all copora.

Lossy coding algorithms can yield almost arbitrary compression ratios at the cost of modifying
the images and, thus, of distorting subsequent analysis processes. If the introduced distortion is
smaller than the inherent experimental variability, it is usually considered acceptable. Hence, the
use of lossy compression is justified on the assumption that the analysis distortion is assessed. In
this work, a distortion metric for DNA microarray images is proposed to predict the extent of this
distortion without needing a complete re-analysis of the modified images. Experimental results sug-
gest that this metric is able to tell apart image changes that affect subsequent analysis from image
modifications that do not. Although some lossy coding algorithms were previously described for this
type of images, none of them is specifically designed to minimize the impact on subsequent analysis
for a given target bitrate. In this dissertation, a lossy coder —the Relative Quantizer (RQ) coder—
that improves upon the rate-distortion results of previously published methods is proposed. Experi-
ments suggest that compression ratios exceeding 4.5:1 can be achieved while introducing distortions
smaller than half the inherent experimental variability. Furthermore, a lossy-to-lossless extension
of this coder —the Progressive RQ (PRQ) coder— is also described. With the PRQ, images can be
compressed once and then reconstructed at different quality levels, including lossless reconstruction.
In addition, the competitive rate-distortion results of the RQ and PRQ coders can be obtained with
computational complexity slightly smaller than that of the best-performing lossless coder of DNA

microarray images.
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Chapter 1

Introduction

1.1 DNA Microarrays

In recent years, medical imaging has become an indispensable tool for diagnosis and
disease understanding. Great efforts are being made to improve the available imaging
modalities —e.g., ultrasound, magnetic resonance, computer tomography (CT), X-rays
or visible light— and explore new ones. In spite of the constant struggle, important
challenges remain open in all modalities and stages of the imaging process, from
registration to analysis, also including storage and transmission of the images.

DNA Microarrays are an important imaging modality, widely employed in bio-
logical and medical research. In a single DNA microarray experiment, it is possible
to monitor the behavior of thousands of genes simultaneously, and even the whole
genome of an organism [1, 2]. Any species for which its genomic sequence is known
is eligible for being subject to a DNA microarray experiment. Human (Homo sapi-
ens), mouse (Mus musculus) and yeast (Saccharomyces cerevisiae) are among the
most common such species. The information obtained via these experiments can be
used to study the function and regulation mechanisms of virtually any gene. DNA
microarrays can also be used to analyze the physiological reaction to a given drug,
pathogen or environmental condition, or to compare species and subspecies in evolu-
tionary biology. For this reason, DNA microarrays have been regularly employed in

the research against Cancer [3, 4], HIV [5] or Malaria [6], among many other topics.
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Figure 1.1: Diagram of a DNA microarray image experiment.

The main steps of a typical DNA microarray experiment are depicted in Fig. 1.1.
Two biological samples, for instance coming from healthy and tumoral tissue, are
put on a DNA microarray chip (step A in the Figure). The chip is then scanned
to produce two grayscale images, the so-called green and red channels (step B in the
Figure). The name green and red for these images is due to the color of the fluorescent
markers that are applied to the biological samples prior to putting them on the chip.
Each of the images is obtained by laser stimulation of one of the markers and contains
information about one of the biological samples. Finally, the pair of images is then
analyzed jointly in order to generate genetic expression data (step C in the Figure).
Once these data are available, several statistical tools including normalization and
classification are applied on them depending on the scope of that particular DNA

microarray experiment.

The analysis of DNA microarray images is a very active research topic. Different
parts of the analysis process have been explored —and improved— in recent publi-
cations [7, 8, 9, 10, 11, 2, 12]. A review of the state of the art on the analysis of
microarray images can be found in [2]. As new, more accurate analysis techniques
are developed, it will be interesting to reanalyze the microarray images to obtain
more precise genetic expression data that can lead to more significant research re-

sults. However, repeating the whole DNA microarray experiment is most usually not
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Figure 1.2: Crops of a DNA microarray image with gamma levels adjusted for visualization:
(a) 800 x 800 crop at original resolution; (b) 100 x 90 crop at a 8x magnification.

a viable option because the needed biological samples may not be available anymore.
The biological samples are much less likely to be accessible if the reanalysis is to be
performed a long time after the first experiment or in a different laboratory. There-
fore, storing the DNA microarray images is paramount to guarantee the applicability
of future image analysis techniques. A single experiment using a last-generation DNA
microarray platform can be carried out in about half an hour, generating over 250 MB
of uncoded image data. At full capacity, a single DNA microarray scanner can pro-
duce over 5 GB of uncoded information everyday. As a result, large amounts of
data are being produced in laboratories around the world and a necessity for efficient
storage and transmission of DNA microarray images arises. Data compression —in
particular, image compression— is a natural approach to this problem. If microarray
images are represented in a more compact way, the costs associated to the manage-
ment of these data decrease and a fast sharing of the images among geographically
distant laboratories becomes feasible. The main goal of this thesis is to provide a
significant contribution to the state of the art in the compression of DNA microarray

images.
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1.2 DNA Microarray Image Compression

DNA microarray images possess several properties that render their compression a
challenging task. While natural images typically require 8 bits per sample, 16 bits are
needed for microarray images and microarray pixels can take any of the 2! possible
values. Furthermore, microarray images present irregular round regions of varying
brightness (the spots) on a dark background, as shown in Fig. 1.2. These abrupt
changes are very difficult to code, as compared to the smooth regions that natural
images typically present. In addition, between 6 and 9 of the least significant bit-
planes exhibit random-like distributions with entropies close to the maximum of 1 bit
per pixel (bpp). Altogether, these properties —further detailed in Chapter 2— make
microarray images very different from natural images. Hence, the direct application of
generic image compressors yields only poor results and microarray-specific techniques

need be developed.

Prior to the development of this thesis, several methods had been proposed for
both lossless [13, 14, 15, 16, 17, 18, 19, 20, 21] and lossy [14, 15, 22, 23] compression
of DNA microarray images. A detailed review of all these methods is available in [24],

and a brief description of their most important features is provided later.

Lossless compression guarantees perfect data fidelity. However, none of the pub-
lications previous to this thesis consistently attained compression ratios better than
2:1. Furthermore, none of the proposed methods is compliant with existing image
compression standards, which can limit the availability of compatible decoders when
new analysis techniques are developed in the future. Other desirable features such as
quality scalability —the possibility of recovering a low resolution version of the image
by decoding only part of the compressed information— and spatial scalability —the
possibility of recovering parts of the image at full resolution— are also absent from

previously published methods.

On the other hand, lossy compression allows almost arbitrary compression ratios
at the cost of introducing changes in the original images. In turn, these changes
can distort the results of analysis algorithms applied to microarray images, rendering

the compressed images unusable. Nevertheless, if these changes are sufficiently small,
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they can be considered acceptable [14, 16, 25]. However, previous publications dealing
with lossy compression do not generally assess the acceptability of their impact in the
analysis results in a rigorous way.

This work aims at finding solutions to the aforementioned issues regarding both

lossless and lossy compression of DNA microarray images.

1.3 Contributions and Thesis Organization

This thesis consists of several contributions to the state of the art of the compression of
DNA microarray images. The structure of the remainder of this document is detailed
next.

Chapter 2 contains a thorough description of the DNA microarray images em-
ployed in this work. This description allows for a deeper knowledge of these images
and sets some theoretical limits to their compressibility.

Chapter 3 describes the state of the art on the lossless compression of microar-
ray images and the contributions on this field accomplished in this thesis. These

contributions were originally presented in the following publications:

1. [26] Miguel Hernandez-Cabronero, Juan Munoz-Gémez, Tan Blanes, Joan
Serra-Sagrista, Michael W. Marcellin, "DNA microarray image coding,“ In pro-
ceedings of the IEEE Data Compression Conference, DCC, pp 32-41, 2012.

2. [27] Miguel Hernéndez-Cabronero, Francesc Auli-Llinds, Joan Bartrina-
Rapesta, Ian Blanes, Leandro Jiménez-Rodriguez, Michael W. Marcellin, Juan
Munoz-Goémez, Victor Sanchez, Joan Serra-Sagrista, Zhongwei Xu, "Multicom-
ponent compression of DNA microarray images,” In Proceedings of the CEDI
Workshop on Multimedia Data Coding and Transmission, WMDCT, 2012.

3. [28] Miguel Hernandez-Cabronero, Victor Sanchez, Michael W. Marcellin,
Joan Serra-Sagrista, "Compression of DNA Microarray Images', In Book "Mi-

croarray Image and Data Analysis: Theory and Practice', CRC Press, ch. 8,
pp 193-225, 2014.
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The first publication proposes a lossless point transform that is able to reduce the
performance gap between the standard, DICOM-compatible JPEG2000 [29] and the
best-performing lossless microarray-specific algorithms. The second contribution, first
presented in a Workshop in 2012, and then included as part of a book chapter in
2014, is an exploration of the effect of multicomponent decorrelation transform on
the lossless compression of microarray images.

Chapter 4 addresses the contributions of this thesis to the lossy compression of

these images, addressed in the following works:

1. [30] Miguel Hernandez-Cabronero, Victor Sanchez, Michael W. Marcellin,
Joan Serra-Sagrista, ”A distortion metric for the lossy compression of DNA mi-

croarray images,” In proceedings of the IEEE International Data Compression
Conference, DCC, pp 171-180, 2013.

2. [31] Miguel Hernandez-Cabronero, lan Blanes, Armando J. Pinho, Michael
W. Marcellin, Joan Serra-Sagrista, ”Analysis-Driven Lossy Compression of DNA

Microarray Images,” Submitted to IEEE Transactions on Medical Imaging.

3. [32] Miguel Hernandez-Cabronero, Ian Blanes, Armando J. Pinho, Michael
W. Marcellin, Joan Serra-Sagrista, "Progressive Lossy-to-Lossless Compression

of DNA Microarray Images, Submitted to IEEE Signal Processing Letters.

The first contribution proposes an image distortion metric able to predict the impact
on the analysis process based only on an original and a modified pair of microarray
images. The second contribution —currently under review— is a lossy compression
algorithm, which is based on an original quantization scheme. It is designed to limit
its impact on the image analysis results and the introduced distortion is assessed
by means of realistic analysis experiments. The third article describes a progressive
lossy-to-lossless extension to the aforementioned lossy compression algorithm.

Finally, Chapter 5.2 draws global conclusions for this thesis and provides some
insight on the future of the field of DNA microarray image compression.

A brief note on the quality and relevance of the publications is provided now.
The first two publications on lossless and lossy compression appear in the proceed-

ings of arguably the most important conference on data compression, i.e., the Data
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Compression Conference (DCC). This annual conference is ranked as A* (the highest
possible) in the Computer Research and Education (CORE) Conference Ranking!.
The second publication on lossless compression was included as a chapter in a book
edited by Luis Rueda, who has authored over 30 works on DNA microarrays since the
apparition of this technique, some of them in top-level Journals such as BMC Bioin-
formatics (first quartile of the "Mathematical & Computational Biology* category
in the standard IST Web of Science?). The second publication on lossy compression
is currently submitted to the IEEE Transactions on Medical Imaging, which had an
impact factor of 3.799 and ranked in the first quartile of five categories —including
"Computer Science: Interdisciplinary Applications“— in 2013 (the last year for which
data are currently available). Finally, the third publication on lossy compression is
currently under review at the IEEE Signal Processing Letters, which had an impact
factor of 1.639 and ranked in the second quartile of the "Engineering, Electrical &

Electronic” category of the ranking.

'http://www.core.edu.au/coreportal
2https://webofknowledge . com
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Chapter 2
DNA Microarray Images

When a image compression algorithm is designed, several assumptions about the
image properties are made. For instance, most efficient algorithms rely on the simi-
larity among neighboring pixels and the pixel intensity distribution. In many coding
schemes, it is assumed that the input data are natural images such as pictures taken
by a digital camera. However, when these schemes are applied to other types of
images, their efficiency is hindered sensibly. DNA microarray images differ from nat-
ural images in many aspects. Therefore, deep knowledge of their characteristics is
required to design efficient methods for their compression. In this chapter, a thor-
ough description of the DNA microarray images employed throughout this thesis is
provided.

2.1 Image Corpora

Several image corpora have been employed in literature for the benchmarking of DNA
microarray image compression algorithms. To the best of our knowledge, all related
works published prior to the beginning of this thesis employed one or more of the
following corpora: Yeast [33], ApoAl [34], ISREC [35], or MicroZip [36]. During the
development of this thesis, four additional corpora —representative of different or more
modern scanners— were also considered: Stanford [37], Omnibus [38], Arizona [39] and

IBB [40]. The properties of all these corpora are discussed next. In what follows,

9
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Table 2.1: Image corpora employed throughout this work.

Property Yeast ApoAl ISREC Stanford
Year 1998 2001 2001 2001
Images 109 32 14 20
Size 1024 %1024 1044x1041  1000x1000 > 2000x2000
Spot count ~9-103 ~6-103 ~ 2102 ~4-103
Spot layout square square square square
Avg. intensities 5.39% 39.51% 33.34% 28.83%
Property MicroZip Omnibus Arizona IBB
Year 2004 2006 2011 2013
Images 3 25 6 44
Size > 1800x1900 12200x4320 4400x13800  2019x6235
Spot count ~9-10% ~2-10° ~2-10° ~1.4-10*
Spot layout square hexagonal hexagonal square
Avg. intensities 37.711% 97.64% 82.82% 54.07%

they are employed for benchmarking the different compression techniques proposed

in this work.

A summary of some of the most important properties of the aforementioned image
corpora is provided in Table 2.1. The registration year, the number of images and
the image size of each set in pixels are shown in the corresponding rows of the table.
One main difference between regular images and DNA microarray images is their size.
Even though early image scanners produced relatively small images, state-of-the-art

scanners generate images significantly larger than most digital cameras.

As described in Chapter 1, DNA microarray images typically exhibit irregular
round regions of varying intensity —known as spots— over a dark background. These
spots are usually packed following a rectangular (matrix-like) grid or an hexagonal
(bee-hive-like) grid. The approximate number of spots and the spot layout is provided
in the Spot count and Spot layout rows, respectively. The abrupt intensity changes
induced by the spots are not commonly found in natural images and are difficult to

code and predict.

DNA microarray image pixels require 16 bits to be stored, whereas natural images
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typically employ 8 bpp for each color component. Therefore, microarray pixels can
take 65536 different values, i.e., 256 times more than natural images. Moreover, DNA
microarray image pixel distributions are strongly biased towards low intensities, as
opposed to the more uniform distributions of natural images. Histograms of example
images from all corpora are shown in Fig. 2.3. Due to this distribution, not all possible
intensities are employed in each image. The percentage of intensities used in each
image has been calculated. The average usage fraction across each set is shown in the
Avg. intensities row of the Table. As can be observed, a significant fraction of the
possible intensities remains unused in each image, except for the Omnibus set. Note
that any given intensity is typically present in several images of the same corpus,
although not necessarily in a given image. The large amount of possible intensities
along with the important fraction is in stark contrast with natural images, where all

intensities are typically employed.

2.2 Entropy

The entropy of a data source provides knowledge about the amount of information
present in the data. In particular, it is usually considered as the optimal bitrate
required to represent the data with a general-purpose coder. Hence, entropy is a very
relevant aspect in the field of data compression.

When dealing with images, pixels can be considered as the output of a discrete
random variable X with support supp(X) = {0,..., N — 1}. The first-order entropy

of an image is defined as

H(X)=—- > p()logp(z), (2.1)

xesupp(X)

where p(z) is the probability of a pixel having value x. The average first-order entropy
of all aforementioned corpora is provided in Table 2.2. It can be observed that all
image sets except for the Yeast set have entropies close to or larger than 8 bpp.
Since uncoded images require 16 bpp, the use of image compression techniques for

the storage and transmission of DNA microarray images is justified.
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Table 2.2: Average entropy results in bpp before segmentation (first-order entropy H(X)
and conditional entropy H(X|C)) and after segmentation (first-order entropy Hy(I) and
conditional entropy Hg(I|C)). The optimal threshold fpest, used in H(I) and H(I|C) for
each corpus is also provided.

Corpus No segmentation With segmentation
H(X) H(XIC) b H(I) H(IIC)
Yeast 6.63 5.68 29 5.86 5.28
ApoAl 11.03 10.38 210 10.42 9.97
ISREC 10.44 10.09 28 9.70 9.42
Stanford 8.29 7.46 20 7.70 7.11
MicroZip 9.83 9.20 28 9.28 8.85
Omnibus 7.87 6.86 26 6.91 6.32
Arizona 9.31 8.45 28 8.58 8.11
IBB 8.50 7.97 27 7.54 7.19

Many compression algorithms code the different bitplanes sequentially. Hence, it
is also interesting to measure the entropy of each bitplane. In this case, supp(X) =
{0,1} and H(X) is contained in [0, 1] The entropy of the bitplanes of sample images of
all corpora is provided in Fig. 2.2. It can be observed that between 6 and 9 of the least
significant bitplanes exhibit entropies close to the maximum of 1 bpp. Exceptionally,
the three least significant bitplanes of the Yeast corpus are almost constant (entropy
close to 0 bpp). This is due to the properties of the scanner employed to extract
this corpus only, and should not be taken as a general property of DNA microarray
images. These observations suggests that large amounts of uniform-like noise are
present in these bitplanes. As it is well known, the lossless coding of data with this
distribution is a very hard task. Thus, large lossless compression ratios should not
be expected unless a significant breakthrough in lossless compression technology is

made.

When calculating the first-order entropy, each pixel value is considered indepen-
dently from other neighboring pixels. In real compression algorithms, however, infor-
mation about nearby pixels —the conditioning event or context— is usually employed.
Therefore, conditional entropy can be a more accurate prediction of the maximum

compressibility of an image. In this scenario, the context can be modeled as the
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output of a random variable C'; and the conditional entropy is defined as

p(z)
zesupp(X) p(l‘, C)
cesupp(C)

where p(z, ¢) is the probability of a pixel having value = with a context —i.e., nearby
pixels— with value c¢. For this work, the conditional entropy the context has been
defined as [logy fineighbors |, WHeTe fineighbors 1S the average intensity of the 8 nearest
neighbors. In the case of edge and corner pixels, only 5 and 4 neighbors are considered
N fineighbors- Therefore, the context can be modeled with a scalar random variable C'
such that supp(C') = {0, ...,15}. The average conditional entropy for all corpora is
shown in Table 2.2. It can be seen that the conditional entropy is consistently smaller
than the first-order entropy for all sets. In particular, reductions of up to 1 bpp can
be observed. Hence, the use of context-based approaches for compression is justified.
Note that other context definitions with different impact on the entropy results are
possible. For instance, a larger or a smaller number of neighboring pixels can be
employed. According to our experiments, all tested alternatives produce very similar
entropy results. Thus, Table 2.2 shows results only for the aforementioned context
definition.

As detailed later in Chapter 3, many successful lossless DNA microarray image
compression methods segment the images into spots and background and then com-
press each part separately. Since spots and background exhibit different statistical
properties, better compression performance is usually attained. An estimation of the
compressibility of an image using this approach can be obtained by calculating inde-
pendently the entropy of each part of the image, and then computing the weighted
average of the entropies. If an image I is segmented into two sets of pixels modeled
by the output of the random variables X and Y, then the entropy after segmentation

is be defined as

RY Y

HD = O x e w

H(Y), (2.3)

where H(X) and H(Y) are, respectively, the first-order entropy of X and Y, as
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(a) B (©)

Figure 2.1: Sample images segmented with § = 512. Pixel values smaller than 6 are
represented in false color. Pixels larger than 6 are shown in black. (a) y744n89 ch1 from
the Yeast set; (b) Def667cy3 from the ISREC set; (¢) 2001-01-18 0010 from the Stanford
set;

defined in (2.1) and |X| and |Y'| are the number of pixels in each set. Analogously,

the conditional entropy after segmentation is defined as

RY
[ X]+ Y]

Y

HUIIO) = ] +]7]

H(X|C) + H(Y|C), (2.4)
In this work, images have been segmented using a hard-thresholding algorithm, as
suggested in [18]. The two segmented sets X and Y are defined as the pixels smaller
than and greater or equal than 6, respectively. As can be observed in Fig. 2.1, this
method yields acceptable segmentation results. The average first-order and condi-
tional entropy after segmentation, along with the best choice of § € {2' ... 20}
are also provided in Table 2.2. As obvious from the table, both the first-order and
the conditional entropy are smaller after segmenting the images. Notwithstanding,
entropy reductions are always smaller than 0.8 bpp. Thus, it is not very likely to
obtain great compression performance improvements due solely to segmentation.

In light of all gathered results, most corpora exhibit average entropies larger than 8
bits per pixel, even when segmentation and context information is considered. There-
fore, it will be very difficult to attain lossless compression ratios exceeding 2:1 for
most images. This is consistent with the compression limit predicted by Jornsten [14]

and with all existing experimental evidence, as described in Chapter 3.



2.2. ENTROPY 15

1.0 1.0 1,00
0.9 l 0. 0.9 s
0.8 | 0.8 038
So7 So7 So7
Los | Los Los
205 / 205 205 \
O 0.4 | O 0.4 O 0.4 \
c 0.3 c 0.3 c 0.3
oo / oo oo
0.1 0.1 - 0.1
0.00—1 0.0 0.0
1 9 1011121314 1516 1 9 10111213141516 1 9 10 111213141516
Bltplane (1 Ieast significant) Bltplane (1 Ieast significant) Bltplane (1 Ieast significant)
(a) (b) (c)
1 - 1.0 1.0
0 \ 0.9 \ 0.9 =
~0.8 \ ~0.8] \ 0.8
So7 So7 So7
Los6 \ Los6 \ Los6
205 ) 205 205
O 04 O 04 O 0.4
€03 €03 €03
Woo Wooz Wooz
0.1 0.1 0.1 <
0.0 0.0 0.0
123 4 9 10111213141516 1 9 10111213141516 1 9 10111213141516
Bltplane (1 Ieast significant) Bltplane (1 Ieast significant) Bltplane (1 Ieast significant)

(d) (e) (f)

1. 1
0. 0 mES
.08 .08
So07 o7
Los Los6
205 205
O 04 g 0.4
< 0.3 LIEJ 0.3]
0.2 = 0.2
0.1 0.1
0.0 0.0 T
1 1011121314 1516 1 9 10 111213141516
Bltplane (1 Ieast significant) Bltplane (1 Ieast significant)

() (h)

Figure 2.2: Bitplane entropy in bpp for sample DNA microarray images of all corpora.
(a) y744n101_chl from the Yeast set; (b) 1230ko1G from the ApoAl set; (¢) Def661Cy3
from the ISREC set; (d) TB3 95 llama_ 005 from the Stanford set; (e) arrayl from the
MicroZip set; (f) GSM346097 from the Omnibus set; (g) slide_ 1-red from the Arizona set;
(h) 134044018 _Cy3 from the IBB set.
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Figure 2.3: Pixel intensity distribution of different DNA microarray images using a semilog-
arithmic scale. (a) y744n101_chl from the Yeast set; (b) 1230ko1G from the ApoAl set;
(¢) Def661Cy3 from the ISREC set; (d) TB3 95 llama_ 005 from the Stanford set; (e)
arrayl from the MicroZip set; (f) GSM346097 from the Omnibus set; (g) slide I-red from

the Arizona set; (h) 184044018 Cy3 from the IBB set.



Chapter 3
Lossless Compression

The lossless compression of DNA microarray images had been addressed in several
publications before the beginning of this thesis. The two main approaches employed
in them are segmentation and context-based coding. As discussed in Chapter 2, there

exist a solid theoretical justification of using these approaches.

In the first approach, microarray image pixels are divided into spots and back-
ground. The underlying hypothesis is that spot pixels have an intensity distribution
essentially different from that of background pixels. Hence, if these two types of pixels
are coded separately, a performance gain can be expected. In all these methods, the
image is segmented into spot and background pixels, which are coded separately using
a lossless compressor. A binary mask signaling the position of the foreground also
needs to be losslessly coded so that the decoder can reconstruct the original image.
Fig. 3.1 depicts a general compression process using this approach. In 2003, Jorsten et
el. proposed a fixed segmentation based on a-priori information of the spot positions
and sizes [14]. Also in 2003, Faramarzpour et al. proposed a lossless coder whose
segmentation stage consists of two steps [13]. First, a square region is obtained for
each spot using the grid spatial regularity of microarray images, apparent in Fig. 3.2.
Second, the centroid of that region is found and a spiral scanning is started from that
point, which is assumed to be inside the spot. All pixels in the spiral path are tagged
as spot until a low-intensity pixel is found. Then the spiral scanning is stopped and

other remaining pixels are tagged as background. Later, in 2004, Lonardi and Luo

17
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Figure 3.1: Diagram of segmentation-based compression.

presented their MicroZip compression software [15]. They used a variation of Fara-
marzpour’s spot region finding idea, but they considered the existence of subgrids,
i.e., groups of spots isolated from one another, to improve the segmentation accuracy.
The boundary of four such subgrids can be observed in Fig. 3.2. Also in 2004, Hua et
al. proposed a segmentation technique that applies a statistical approach to decide
whether two independent sets of pixels share a common distribution [16]. Using this
technique, background pixels are grouped together and separated from background
pixels. In 2006, Bierman et al. described a simple segmentation method based on
thresholding. A threshold 6 is selected from {28 2% 20 211} 5o that approximately
90% of the pixels have intensities smaller than #. These pixels are tagged as back-
ground, and the rest as foreground. In 2007, Neekabadi et al. proposed another
threshold-based technique for segmentation [19], with the particularity that it di-
vided the image into three subsets —background, edge and spot pixels—, each of which
is coded separately. First, a threshold 6 is chosen to minimize the variance of pixels
with intensities smaller than #. The spot pixels are those with intensities larger than
6. Then morphological growing, erosion and intersection operations are applied so
that each connected group of spot pixels is totally surrounded by edge pixels. Fi-
nally, Battiato et al. described a techniqued that employs cellular neural networks
(CNN) for segmentation, and then palette reindexing for improving the compression

efficiency of the popular compressor PNG [20].

In the second main approach, context-based coding, each pixel is encoded using

information present in neighbor pixels, 7.e., the context. This information is used to
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(b)

Figure 3.2: Crop of a microarray image with gamma levels adjusted, exhibiting its grid
and subgrid structure. (a) 300 x 300 crop at 1x magnification; (b) 100 x 100 crop at 3x
magnification.

estimate the probability of the pixel being encoded and drive an entropy coder —e.g.,
an arithmetic coder—, whose efficiency depends on the accuracy of that prediction.
A diagram of this general approach is shown in Fig. 3.3. In 2005, Zhang et al.
defined a mixture probability model based on the gamma transform which is also
based on segmentation [17]. First, the image is segmented into spot and background
pixels and a different probability distribution is defined for each subgroup. When
coding a pixel, the probability distributions of the neighbors are combined —hence
the term mizture— to estimate the probability of that pixel. Later, in 2009, Neves
and Pinho [21] proposed an image-dependent context modeling algorithm. Before
coding the pixels, a greedy search is performed to find a nearly optimal finite Markov
model in which the number of considered neighbors and their position depend on the
particular image. The goodness of each model is measured by the conditional entropy
associated to the resulting contexts for that model in the image. Conditional entropy
is known to be a good predictor of the efficiency of context-driven arithmetic coding.

Once the Markov model is decided, it is signaled as header information so that both
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Figure 3.3: Coding of a single symbol (shown in green) using information from the context
(shown in blue).

coder and decoder can make the same probability estimations, a necessary condition
for lossless coding. To the best of our knowledge, Neves and Pinho’s method yields
the best reproducible lossless compression results for DNA microarray images.

As new analysis software is developed, working implementations of the decoders
of these algorithms will be required to recover the image data. However, all the
aforementioned algorithms require ad-hoc decoders that do not comply with existing
compression standards. Hence, the availability of decoders for future platforms is
not guaranteed. On the other hand, standard-compliant decoders are more likely to
be ported to future platforms. Hence, standard-compliance is an important feature
for the long-term storage of images such as DNA microarray images. In addition,
compatibility with the Digital Imaging and Communications in Medicine (DICOM)
standard [41] is paramount for compressed microarray images to be used in clinical
scenarios. Therefore, in spite of the competitive compression results of previous loss-
less algorithms, which reach the theoretical limit described in Chapter 2, efficient
standard algorithms for DNA microarray images are highly desirable. In order to
simultaneously comply with this standard and to provide valuable features such as
quality scalability and spatial random access to the compressed images, special at-
tention has been paid to the JPEG2000 [29] compression standard. The two main
contributions of this part of the thesis, consisting in the adaption and improvement

of standard compressors to DNA microarray images, are the following:
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e The lossless coding performance of different image compression standards was
previously addressed in the literature [42]. When applied directly to microar-
ray images, JPEG2000 exhibits poor compression results as compared to other
standard compressors. As described in Chapter 2, this is due to microarray
images having properties very different from those of natural images, for which
JPEG2000 was designed. In particular, the abrupt intensity changes and the
16 bit sample precision precludes the discrete wavelet transform (DWT) from
yielding good results. Furthermore, the pixel distribution of microarray images
is very different from that for which JPEG2000 produces optimal results. Sec-
tion 3.1 describes a lossless point transform —the Histogram Swap Transform
(HST)- able to improve the coding performance of JPEG2000 by adapting mi-

croarray image histograms with a very low computational cost.

e In Section 3.2, multicomponent decorrelation, a not previously explored ap-
proach to improving the lossless compression performance of standard or microarray-
specific coding algorithms, is researched. The redundancy present in similar
images is exploited in order to reduce the overall entropy and, consequently,
to improve the overall compression performance. In that section, an optimal
grouping of images is proposed to maximize the inter-group correlation. Fur-
thermore, the performance results of several spectral decorrelation transforms

are evaluated.
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Abstract

DNA microarrays are useful to identify the function and regulation of a large number of
genes in a single experiment, even whole genomes. In this work, we analyze the relationship
between DNA microarray image histograms and the compression performance of lossless
JPEG2000. Also, a reversible transform based on histogram swapping is proposed. Inten-
sive experimental results using different coding parameters are discussed. Results suggest
that this transform improves previous lossless JPEG2000 results on all DNA microarray
image sets.

1 Introduction

1.1 DNA microarrays

DNA microarrays are a state of the art tool in medicine and biology for the study of
genetic function, regulation and interaction [1]. Genome-wide monitoring is possible with
existing DNA microarrays, which are used in research against cancer [2] and HIV [3],
among many other applications. DNA microarrays consist of a solid surface on which
thousands of different known genetic sequences, the oligonucleotides, are bound. Each
sequence is contained in a single microscopic hole or spor and all spots are arranged con-
forming to a regular pattern, usually a rectangular or hexagonal grid. Example images for
these two layouts are shown on Figure 1. Two samples dyed with fluorescent markers,
usually Cy3 and CyS5 of the cyanine family, are made to react on the microarray. When one
sample has expressed a gene, part of it is hybridized and adhered to the spot corresponding
to that gene. The rest is washed away so that each dye is present in a spot proportionally to
the activity of a gene in the corresponding sample. After the hybridization, the microarray
is exposed to laser beams and the emissions from the fluorescent Cy3 and Cy5 dyes are
recorded independently as so-called green and red channel images, respectively. Compar-
ing the relative intensity of the green and red channels, it is possible to detect expression
differences between two samples, which can be employed to make hypothesis about the
function and regulation of thousands of individual genes.

Each microarray experiment outputs a pair of monochrome, single component images
corresponding to the green and red channels. Due to the microscopic size of the spots, the
produced images have a high spatial resolution: images from 1000 x 1000 onwards are
typically described in the literature, but sizes over 4000 x 13000 are common nowadays.
Since gene expression can vary in a very wide range and a high degree of precision is
desired, DNA microarray images have a intensity resolution of 16 bits per pixel (bpp).

1068-0314/12 $26.00 © 2012 IEEE 32 b colnE‘IEpEuter
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Figure 1: Example DNA microarray image: 600x600 crop with different spot layouts. a)
array3 image from the MicroZip set with square grid spot layout; b) slide_I-red from the
Arizona set with hexagonal grid spot layout. Gamma levels have been adjusted for better
viewing.

After the images have been recorded, they are computer analyzed to extract the genetic
information present in them. However, analysis techniques are not fully mature or univer-
sally accepted, so it is preferable to keep the original images and not only the extracted
genetic data because repeating an experiment is expensive and not always possible. Be-
cause of the high spatial and intensity resolutions, raw data for a single DNA microarray
image can require from a few to hundreds of Megabytes. Most experiments are carried out
under several different conditions, and with the increasing interest in DNA microarrays,
very large amounts of data are created each year around the world. DNA microarray im-
ages need to be kept and shared, so efficient storage and transmission methods are required.
In consequence, compression emerges as a natural approach.

Both lossy and lossless techniques have been proposed in the literature. Lossy ap-
proaches exhibit better compression performance on microarray images, but information
loss is not globally accepted because it could affect reanalysis with future techniques. On
the other hand, purely lossless methods guarantee perfect fidelity of the data, which is
preferable for future reanalysis, at the cost of poorer compression performance as com-
pared to lossy techniques. The efficient lossless compression of this type of image has
proved to be a difficult task. This is partly due to the considerable amount of noise and
the abundance of high frequencies present in this type of image. For this reason, origi-
nal approaches like the one proposed in this work are needed to achieve the storage and
transmission requirements for DNA microarray images.

1.2 State of the art in lossless compression

Many different techniques have been proposed for the lossy and lossless compression
of DNA microarray images. In this subsection, we discuss lossless schemes that have
been published in the literature. The typical image compression process consists of up
to five stages: preprocessing, transform, quantization, entropy coding and postprocessing.
Microarray image compression can be modeled likewise, but not all stages are equally rel-
evant if we focus only on lossless compression: the quantization stage, which consists of
dividing sets of values or vectors into groups, effectively reducing the total number of sym-
bols needed to represent them, is not usually considered for lossless compression; the same
happens for the postprocessing stage, consisting of processing images after compression to
enhance their visual quality, to provide new features or to analyze their properties. Lossless
techniques belonging to the rest of the stages are addressed next. A more exhaustive review
of the state of the art can be found in the literature [4].
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1.2.1 Preprocessing

The preprocessing stage comprises any computation performed on an image to prepare it
for the compression or analysis processes. It is very important in DNA microarray images
because many of the existing techniques rely heavily on the results of this stage to obtain
competitive coding performance. The main preprocessing method is segmentation and
consists in determining which of the image pixels belong to spots (i.e., the foreground), as
opposed to those that do not (i.e., the background).

In 2003, Faramarzpour et al. proposed a segmentation stage consisting of two steps [5]:
first spot regions are located by studying the row intensity sum minima, and then region
centroids are used to estimate the spot centers. Simpler versions of this spot region location
idea had already been used by Jornsten and Yu in 2002 [6]. Later, in 2004, Lonardi and
Luo presented their MicroZip software [7], which used a variation of Faramarzpour’s spot
region finding idea, but considering the existence of subgrids, which can be appreciated in
Figure la. In 2004, Hua et al. proposed a scheme with a segmentation technique based
on the Mann-Whitney U test [8]. In 2006, Bierman et al. described a simple thresholding
method for dividing microarray images into low and high intensities [9], determining the
lowest of the threshold values from 28, 2%, 210 or 2!! such that at least 90% of the pixels
fall within it. In 2007, Neekabadi et al. proposed another threshold-based technique for
segmentation [10] in three subsets (background, edge and spot pixels), using a threshold
that minimizes the total standard deviation of pixels above and below it. In 2009, Battiato
and Rundo published an approach based on Cellular Neural Networks (CNNs) [11].

1.2.2 Transform

The transform stage consists of changing the image domain from the spatial domain to
a domain where it can be more efficiently processed or coded. However, transform based
compression is not typically as efficient for DNA microarray images as it is for other types
of images not containing such sharp edges [12]. For this reason, transformations are not
frequently researched in microarray image compression, although they are used in some
works.

In 2004, Hua et al. [8] published a modification of the EBCOT algorithm, the basis of
the JPEG2000 standard [13], that included a tailored integer odd-symmetric transform. In
2004, Lonardi and Luo [7] made use of the Burrows-Wheeler transform [14] for lossy or
lossless compression in their MicroZip software.

Table 1: Classification of lossless microarray-specific techniques discussed on Subsec-
tion 1.2, sorted chronologically.

Preprocessing  Transform Entropy coding
Segmentation Segmentation Context
[6], 2002 [8], 2004 [5], 2003 [15], 2005
[5], 2003 [71, 2004 [9], 2006 [16], 2006
[8], 2004 [11],2009 [17], 2006
[7], 2004 [18], 2009
[9], 2006
[10], 2007
[11], 2009

1.2.3 Entropy coding

In this stage, data obtained from previous stages are expressed in an efficient manner to
produce a compact bitstream. Many techniques segment the image before compression,
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while others build contexts or try to predict the intensity of the next pixels based on the
previous ones. Purely lossless techniques using each approach are described next.

At least three different works that use segmentation can be found on lossless compres-
sion of DNA microarrays. In 2003, Faramarzpour et al. presented a prediction-based tech-
nique [5]. The image is gridded, and a linear prediction scheme is applied after creating a
spiral path from the estimated spot center. In 2006, Bierman et al. presented their MACE
(Micro Array Compression and Extraction) software [9]. The image is divided first using
a threshold-based method. The low intensity pixels are coded using standard dictionary-
based techniques, while the high intensity pixels are processed with a sparse matrix al-
gorithm and then compressed. In 2009, Battiato and Rundo published an algorithm [11]
based on image color reindexing after segmentation. Segmentation is made by means of
a CNN-based system to produce two complementary subimages. The foreground image
is compressed with a generic lossless algorithm and stored separately. The background
image is first transformed into an indexed image. Then its color palette is reindexed with
an algorithm that reduces the zero-order entropy of local differences, which are losslessly
coded.

In no less than four publications, context building is used to perform lossless DNA mi-
croarray image compression. In 2005 and in 2006 Zhang et al. [15, 16] proposed a context-
based lossless approach that also employs segmentation. Once the image is divided, a
simple predictive scheme is used for the most significant bytes of each pixel, while the
least significant bytes are coded using prediction by partial approximate matching (PPAM),
also proposed by Zhang and Adjeroh [19]. In 2006, Neves and Pinho [17] proposed another
context-based lossless approach. It is a bitplane-based technique that uses 3D finite-context
models to drive an arithmetic coder. In 2009, they improved this scheme so that specific
contexts are built for each image [18].

Table 1 presents a summary of all discussed methods classified attending to the stage of the
image compression process in which they make their contribution.

1.3 Paper structure

This paper is organized as follows. We discuss the use of lossless JPEG2000 on DNA
microarray images in Section 2. In Section 3, we analyze the typical histogram of a DNA
microarray image and propose a point transform based on histogram swapping. Results for
the application of this transform with lossless JPEG2000 are presented. Finally, we draw
some conclusions in Section 4.

2 Lossless JPEG2000 coding of DNA microarray images

In this section, we study the performance of lossless JPEG2000 compression on DNA
microarray images. We describe the image sets used for benchmarking in the literature
and some of their properties in Subsection 2.1. We show lossless JPEG2000 compression
results and compare them to previous data and other techniques in Subsection 2.2. We
analyze the impact of the number of DWT decomposition levels and quality layers on the
compression performance in Subsection 2.3.

2.1 Benchmark image sets
A number of different DNA microarray image sets have been used for benchmarking

compression performance. No set has been used across all publications on DNA microar-
ray image compression, but the MicroZip, ApoAl and ISREC sets are employed more
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Table 2: Image sets used in the literature.

Image set Images Size (px)
MicroZip [21] 3 > 1800 x 1900
Yeast [22] 109 1024 x 1024
ApoAl [23] 32 1044 x 1041
ISREC [24] 14 1000 x 1000
Stanford [20] 20 > 2000 x 2000
Arizona 6 4400 x 13800

Table 3: Compression results in bpp for the Kakadu and JJ2000 implementation of the
JPEG2000 standard, and for some other generic and microarray-specific techniques. Best
results are highlighted in green and worst results in red.

Algorithm MicroZip Yeast ApoAl ISREC Stanford Arizona
Kakadu (5 levels) 9.508 9.082 11.052  11.360 8.007 9.099
132000 (5 levels) 9.515 9.079 11.063  11.366 8.010 9.106
Bzip2 9.394 6.075 11.067 10921 7.503 8.944
CALIC 9.281 8.502 10.515  10.615 7.248 8.767
JBIG 9.297 6.888  10.851 10.925 7.411 8.858
JPEG-LS 8.974 8.580 10.608  11.145 7.204 8.646
Battiato’s [11] 8.369 - 9.52 9.49 - —

frequently. The Stanford set was obtained from the Stanford Microarray Database public
FTP [20] and the Arizona set has been kindly provided by David Galbraith and Megan
Sweeney from the University of Arizona. Table 2 shows key properties of all sets docu-
mented in the literature. All images are monochrome, unsigned, 16 bits per pixel (bpp),
and contain a single component per red/green channel.

2.2 Lossless compression performance

In this section, we report an experiment that we have conducted to test lossless JPEG2000
compression performance on DNA microarray images. We have compressed all images
from the sets described in Subsection 2.1 using the Kakadu v6.0 [25] and the JJ2000
v5.1 [26] implementations of the JPEG2000 standard. In both cases, we have used lossless
compression, 33 quality layers and 5 DWT decomposition levels. The number of quality
layers was chosen to be the same as in a previous work by Pinho [27]. All codestreams are
JPEG2000 part 1 compliant.

Table 3 shows compression results for the Kakadu and the JJ2000 implementation em-
ploying the mentioned configuration, and also for a generic compressor (Bzip2), some
general image compressors (CALIC, JBIG and JPEG-LS) and the best microarray-specific
compressor (Battiato’s), as reported in a previous work [4]. These results have been com-
puted dividing the total size in bits for all compressed files by the total number of pixels in
the images.

It can be seen that both JPEG2000 implementations exhibit very similar compression
performances, which are poor compared to the best microarray-specific technique, and
generally to the other compressors as well. The results obtained with the JJ2000 imple-
mentation are consistent to the ones published by Pinho [27].

2.3 DWT decomposition levels and quality layers

In our experiments, we analyze the impact of varying the number of DWT decomposi-
tion levels and quality layers when using Kakadu JPEG2000 on DNA microarray images.
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Table 4: Lossless compression results in bpp for different DWT decomposition levels using
Kakadu JPEG2000. Best results are highlighted in green and worst results in red.

DWT levels MicroZip Yeast ApoAl ISREC Stanford Arizona

0 10.027 6.829 11.525 10.888 8.567 9.548
1 9.542 9.089 11.088  11.476 8.146 9.221
3 9.472 9.042 10999  11.312 7.985 9.068
5 9.467 9.038  10.999 11314 7.969 9.064

Table 4 shows results for 0, 1, 3 and 5 DWT decomposition levels and 1 quality layer.

For most sets, compression is improved by approximately 0.5 bpp when the number of
decomposition levels is increased from O to 5, but most of that improvement is yielded
when increasing from O to 1 level. Only the Yeast and ISREC sets break that pattern:
for these two sets, using 0 decomposition levels produces the best results. Increasing to
1 decomposition level degrades measurably the performance, but further level increments
improve the performance slightly as happens for the other sets. For all sets, using more
than 5 decomposition levels does not modify the compression performance.

Increasing the number of quality layers from 1 to 33 decreases compression performance
slightly, between 0.03 bpp and 0.04 bpp for all tested DWT decomposition levels and sets.

3 DNA microarray image histograms and JPEG2000

This section is organized as follows. In Subsection 3.1, we describe the typical DNA
microarray image histogram and compare it to the histogram that JPEG2000 implicitly
assumes. In Subsection 3.2 we propose an original transform based on histogram swapping
and report compression results when employing lossless JPEG2000 after this transform.

3.1 Typical DNA microarray image histograms

DNA microarray images exhibit similar pixel intensity distributions across all data sets
in Table 2. In a typical image, most pixels belong to the background or to low-activity spots
and have very low values. Higher intensities are several orders of magnitude less frequent,
but among them the intensities close to the maximum are usually over ten times more
abundant. The histogram of a representative DNA microarray image from the Arizona set,
slide_I-red, is shown in Figure 2a.

/
10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000

(a) Original histogram. (b) Histogram after the proposed transform.

Figure 2: Pixel value distribution for original and transformed image slide_I-red from the
Arizona set using a semilog scale.
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The characteristic distribution of this type of images partly explains the poor lossless
compression results of JPEG2000 shown on Table 4. For unsigned image data with bit-
depth B, the first step carried out by a JPEG2000 Part 1 encoder is to subtract 25~ from
the value of each pixel [13]. This is known as the level offset stage and typically results
in pixel values nominally distributed symmetrically about the origin. DNA microarray im-
ages are unsigned. Thus, the subtraction is performed resulting in a highly asymmetrical
histogram, with the majority of pixel intensities taking values near -32768. Another prob-
lem is that microarray images have considerable high frequency content due to the many
edge discontinuities between spots and background. This type of data is not well treated
by the wavelet transform. In conclusion, JPEG2000 is receiving an input for which it is not
designed, so a high compression performance cannot be expected.

3.2 Histogram swapping and lossless JPEG2000 compression

DNA microarray images possess pixel value distributions that diverge from natural im-
ages. However, DNA microarray images can be modified so that their intensity histograms
become more similar to what JPEG2000 implicitly assumes. If the most significant bit of
each pixel of an image is flipped, the right half of the histogram is swapped for the left half.
This transformation, which we will call the histogram swap transform (HST), can be easily
reversed by flipping again the most significant bit of each pixel. Figure 2b shows the pixel
distribution of the transformed version of image slide_I-red. This histogram is much more
nearly symmetric about the origin.

We have conducted an experiment to test JPEG2000 lossless compression on DNA mi-
croarray images after applying the proposed transform. We have used 1 quality layer and
0, 1, 3, and 5 DWT decomposition levels, and we report the results on Table 5. It can be
observed that the compression performance is always improved when using the HST. Com-
paring the results for the best choice of decomposition levels before and after the HST, rate
improvements from 0.213 bpp to 0.918 bpp (1.97% to 15.53%) can be measured. It is also
noteworthy that the compression results follow a different trend after altering the image his-
tograms. When compressing the original images, the performance is generally improved
as the number of DWT decomposition levels is increased, as previously shown on Table 4.
However, after applying the HST, this pattern is reversed and performance is generally de-
graded when the number of DWT decomposition levels is increased. This behavior can
be explained via two observations. First, the histogram of Figure 2b is very peaked near
the origin, reminiscent of the Laplacian distribution often assumed for wavelet transform
coefficients [28]. This suggests that the bitplane coder of JPEG2000 may work well when
applied directly to the data obtained via the HST (without further transformation). Sec-
ond, when the HST is applied on an unsigned image with bit-depth B, pixel values slightly
smaller than 25~! become close to 25, while values slightly greater than 25~! become
close to zero. In other words, mid-gray values (pre HST) result in abrupt intensity differ-
ences between near black and near white (post HST). Examples of this behavior can be
appreciated in Figure 3. This adds to the abundant discontinuities already present in DNA
microarray images. Thus, increasing the number of DWT decomposition levels, which is
not very effective when high frequencies are present [7], results in a performance reduction.

There are other point transforms that lead to histograms similar to Figure 2b. In fact,
minor additional performance improvements might be obtained in this fashion. However,
the HST has a distinct advantage in terms of implementation. In fact, it is possible to
implement the HST without any explicit changes in JPEG2000 or the image data itself.
Indeed, if the original unmodified data are simply interpreted as twos-complement signed
values, they have exactly the same decimal values that result when the unsigned values are
subjected to the HST followed by the JPEG2000 level offset process. Specifically when
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(a) Detail of array3 image from
the MicroZip set after the HST.

(b) Detail of slide-1_red image
from the Arizona set after the
HST.

Figure 3: Details of sudden intensity changes after the HST.

Table 5: Lossless compression results in bpp applying Kakadu JPEG2000 after applying
the HST, using 1 quality layer and different DWT decomposition levels. Rate differences
in bpp as compared to compression of unmodified images. Differences between the best

results before and after HST are shown at the bottom.

DWT levels

MicroZip

Yeast

ApoAl

ISREC

Stanford

Arizona

NW— O

9.157 (-0.870)
9.297 (-0.245)
9.455 (-0.017)
9.466 (-0.001)

5911 (-0.918)
8.862 (-0.227)
9.026 (-0.016)
9.035 (-0.003)

10.786 (-0.739)
10.917 (-0.171)
11.003 (+0.004)
11.012 (+0.013)

10.624 (-0.264)
11.238 (-0.238)
11.300 (-0.012)
11.313 (-0.001)

7.685 (-0.882)
7.851 (-0.295)
7.950 (-0.035)
7.958 (-0.011)

8.795 (-0.753)
8.967 (-0.254)
9.058 (-0.010)
9.070 (+0.006)

Best

9.157 (-0,310)

5911 (-0,918)

10.786 (-0,213)

10.624 (-0,264)

7.685 (-0,284)

8.795 (-0,269)

interpreted as twos-complement values, pixels between 0x0000 and Ox7FFF yield decimal
values between 0 and 32767. Pixels between 0x8000 and OxFFFF yield values between
-32768 and -1. On the other hand, interpreting the data as unsigned and applying the HST
results in values between 0x0000 and Ox7FFF being transformed to values from 0x8000 to
OxFFFF, with decimal equivalents 32768 to 65535. After the JPEG2000 level offset, values
from O to 32767 are obtained. Similarly, values from 0x8000 to OxFFFF become 0x0000
to Ox7FFF (or 0 to 32767) after the HST and -32768 to -1 after the level offset. Thus, HST
followed by JPEG2000 can be performed by simply applying JPEG2000 to the data as if it
were signed, even though it is unsigned. Encoding, decoding and the resulting codestreams
are all JPEG2000 Part 1 compliant.

4 Conclusion

DNA microarray images are becoming commonplace for genome-wide monitoring, em-
ployed intensively in many medical treatments and biological research. The large size of
these images motivates the use of coding techniques to help storing and transmitting them.
Lossy coding approaches provide better performance than lossless coding techniques, but
they are not always accepted because of the possible negative influence on later classifica-
tion processes.

Lossless compression results for two different JPEG2000 implementations as well as for
other schemes have been discussed. We have tested the performance impact of using dif-
ferent numbers of quality layers and DWT decomposition levels and we have concluded
that, for most image sets, the best parameters choice is 1 quality layer and 5 DWT decom-
position levels. However, it has been observed that lossless JPEG2000 performance is poor
when compared to the best microarray-specific technique, and even to some general image
compressors.

A reversible transform based on histogram swapping, which draws images closer to
JPEG2000 assumptions for context modeling, has been proposed. With this modifica-
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tion, the performance of lossless JPEG2000 compression is improved for all image sets.
Rate improvements from 0.213 bpp to 0.918 bpp, corresponding to percentage increases
of, respectively, 1.97% and 15.53%, have been measured. The histogram swap transform
is easily implemented in a JPEG2000 part 1 compliant manner.
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3.2. MULTICOMPONENT TRANSFORMATIONS 35

3.2 Multicomponent Transformations

This section consists on the exploration of multicomponent transformation techniques
for the compression performance improvement for DNA microarray images. It was
published as a part of a book chapter in

@book{Hernandez13RuedaBook,
title = {Compression of DNA Microarray Images},
author = {Miguel Hern{\’a}ndez-Cabronero, and Victor Sanchez,
and Michael W. Marcellin, and Joan Serra-Sagrist{\‘a},}
booktitle = {In Book "Microarray Image and Data Analysis: Theory and Practice", CRC Press},
year = {2014},
pages = {193-225},
editor = {Luis Rueda},
publisher = {CRC Press},
url = {http://www.crcpress.com/product/isbn/9781466586826},

1,

which also describes other contributions of this thesis. For space economy and to
avoid duplicities among different parts of this thesis, only the contents of the following
reference are included:

@inproceedings{Hernandezi2Sarteco,
title = {Multicomponent compression of DNA microarray images},
author = {Miguel Hern{\’al}ndez-Cabronero, and Francesc Aul{\’i}-Llin{\‘a}s,
and Joan Bartrina-Rapesta, and Ian Blanes,
and Leandro Jim{\’e}nez-Rodr{\’i}guez,
and Michael W. Marcellin, and Juan Mu{\~n}oz-G{\’o}mez,
and Victor Sanchez, and Joan Serra-Sagrist{\‘a}, and Zhongwei Xu,}
booktitle = {Proceedings of the CEDI Workshop on Multimedia Data Coding
and Transmission, WMDCT},
year = {2012},

This alternative reference contains an equivalent description of the contributions on

spectral decorrelation, which were thereafter accepted as a part of the book chapter.
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Multicomponent compression
of DNA microarray images

Miguel Hernandez-Cabronero!, Francesc Auli-Llinas!, Joan Bartrina-Rapestal,
Ian Blanes', Leandro Jiménez-Rodriguez', Michael W. Marcellin!?, Juan Muiioz-Gémez",
Victor Sanchez!, Joan Serra-Sagrista! and Zhongwei Xu!

Abstract— In this work, the correlation present
among pairs of DNA microarray images is analyzed
using Pearson’s r as a metric. A certain amount of
correlation is found, especially for red/green channel
image pairs, with averages over 0.75 for all bench-
mark sets. Based on that, the lossless multicompo-
nent compression features of JPEG2000 have been
tested on each set, considering different spectral and
spatial transforms (DWT 5/3, DPCM, R-Haar and
POT). Improvements of up to 0.6 bpp are obtained
depending on the transform considered, and these im-
provements are consistent to the correlation values
observed.

Keywords— microarray images, microarray image
compression, JPEG2000, multicomponent compres-
sion

I. INTRODUCTION
A. DNA microarrays

DNA microarrays are a state of the art tool
in medicine and biology for the study of genetic
function, regulation and interaction [1]. Genome-
wide monitoring is possible with existing DNA mi-
croarrays, which are used in research against can-
cer [2] and HIV [3], among many other applications.
DNA microarrays consist of a solid surface on which
thousands of different known genetic sequences, the
oligonucleotides, are bound. Each sequence is con-
tained in a single microscopic hole or spot and all
spots are arranged conforming to a regular pattern,
usually a rectangular or hexagonal grid. Example
images for these two layouts are shown on Figure 1.
Two samples dyed with fluorescent markers, usually
Cy3 and Cyb of the cyanine family, are made to react
on the microarray. When one sample has expressed a
gene, part of it is hybridized and adhered to the spot
corresponding to that gene. The rest is washed away
so that each dye is present in a spot proportionally to
the activity of a gene in the corresponding sample.
After the hybridization, the microarray is exposed
to laser beams and the emissions from the fluores-
cent Cy3 and Cyb dyes are recorded independently
as so-called green and red channel images, respec-
tively. Comparing the relative intensity of the green
and red channels, it is possible to detect expression
differences between two samples, which can be em-
ployed to make hypotheses about the function and
regulation of thousands of individual genes.

1Dept. of Information and Communications Engineering,
Universitat Autonoma de Barcelona, Barcelona, Spain. Con-
tact e-mail: miguel.hernandezQuab.es

2Department of Electrical and Computer Engineering, Uni-
versity of Arizona, Tucson, AZ, USA

Fig. 1: Example DNA microarray image: 600x600
crop with different spot layouts. a) array3 image
from the MicroZip set with square grid spot layout;
b) slide_1-red from the Arizona set with hexagonal
grid spot layout. Gamma levels have been adjusted
for better viewing.

Each microarray experiment outputs a pair of
monochrome, single component images correspond-
ing to the green and red channels. Due to the micro-
scopic size of the spots, the produced images have a
high spatial resolution: images from 1000 x 1000 on-
wards are typically described in the literature, with
sizes over 4000 x 13000 being common nowadays.
Since gene expression can vary over a wide range, a
high degree of precision is desired, DNA microarray
images have a intensity resolution of 16 bits per pixel
(bpp).

After the images have been recorded, they are
computer analyzed to extract the genetic informa-
tion present in them. However, analysis techniques
are not fully mature or universally accepted, so it
is preferable to keep the original images rather than
only the extracted genetic data because repeating
an experiment is expensive and not always possible.
Because of the high spatial and intensity resolutions,
raw data for a single DNA microarray image can re-
quire from a few to hundreds of Megabytes. Many
DNA microarray studies consist of running several
experiments at different moments on similar biologi-
cal samples that have been exposed to different phys-
ical and chemical conditions. With the increasing
interest in DNA microarrays, very large amounts of
data are created each year around the world. DNA
microarray images need to be kept and shared, so
efficient storage and transmission methods are re-



quired. In consequence, compression emerges as a
natural approach.

Both lossy and lossless techniques have been pro-
posed in the literature. Lossy approaches exhibit
better compression performance on microarray im-
ages, but information loss is not globally accepted
because it could affect reanalysis with future tech-
niques. On the other hand, purely lossless meth-
ods guarantee perfect fidelity of the data, which
is preferable for future reanalysis, but at the cost
of poorer compression performance as compared to
lossy techniques. The efficient lossless compression
of this type of images has proved to be a difficult
task. Transform-based coding methods do not per-
form well on microarray images due to the consid-
erable amount of noise and the abundance of high
frequencies present in this type of images [4].

B. State of the art in lossless compression

Many different techniques have been proposed for
the lossy and lossless compression of DNA microar-
ray images. In this subsection, we discuss lossless
schemes that have been published in the literature.
The typical image compression process consists of
up to five stages: preprocessing, transform, quanti-
zation, entropy coding and postprocessing. Microar-
ray image compression can be modeled likewise, but
not all stages are equally relevant if we focus only
on lossless compression. For example, the quantiza-
tion stage, which consists of dividing sets of values
or vectors into groups, effectively reducing the to-
tal number of symbols needed to represent them, is
not usually considered for lossless compression. On
the other hand, the postprocessing stage is always
addressed for microarray images, since they are al-
ways analyzed to extract genetic data, but is not
described in this document. Lossless techniques be-
longing to the preprocessing, transform and entropy
coding stages are addressed next. A more exhaus-
tive review of the state of the art can be found in the
literature [5].

B.1 Preprocessing

The preprocessing stage comprises any computa-
tion performed on an image to prepare it for the com-
pression or analysis processes. It is very important in
DNA microarray image compression because many of
the existing techniques rely heavily on the results of
this stage to obtain competitive coding performance.
The main preprocessing method is segmentation and
consists in determining which of the image pixels be-
long to spots (i.e., the foreground), as opposed to
those that do not (i.e., the background).

In 2003, Faramarzpour et al. proposed a segmen-
tation stage consisting of two steps [6]: first, spot
regions are located by studying the minimum values
of the pixel intensity sum by rows, and then region
centroids are used to estimate the spot centers. Sim-
pler versions of this spot region location idea had
already been used by Jérnsten and Yu in 2002 [7].
Later, in 2004, Lonardi and Luo presented their Mi-

croZip software [4], which used a variation of Fara-
marzpour’s spot region finding idea, but considering
the existence of subgrids, which can be appreciated
in Figure la. In 2004, Hua et al. proposed a scheme
with a segmentation technique based on the Mann-
Whitney U test [8]. In 2006, Bierman et al. described
a simple thresholding method for dividing microar-
ray images into low and high intensities [9], deter-
mining the lowest of the threshold values from 2%,
29,210 or 211 such that at least 90% of the pixels fall
within it. In 2007, Neekabadi et al. proposed another
threshold-based technique for segmentation [10] in
three subsets (background, edge and spot pixels),
using a threshold that minimizes the total standard
deviation of pixels above and below it. In 2009, Bat-
tiato and Rundo published a segmentation approach
based on Cellular Neural Networks (CNNs) [11].

B.2 Transform

The transform stage consists of changing the im-
age domain from the spatial domain to a domain
where it can be more efficiently processed or coded.
However, transform based compression is not typi-
cally as efficient for DNA microarray images as it is
for other types of images not containing such sharp
edges [12]. For this reason, transformations are not
frequently researched in microarray image compres-
sion, although they are used in some works.

In 2004, Hua et al. [8] published a modification of
the EBCOT algorithm, the basis of the JPEG2000
standard [13], that included a tailored integer odd-
symmetric transform. In 2004, Lonardi and Luo [4]
made use of the Burrows-Wheeler transform [14] for
lossy or lossless compression in their MicroZip soft-
ware. In 2012, we proposed a novel reversible point
transform consisting in swapping the left and right
halves of the image histogram [15].

TABLE I: Classification of lossless microarray-
specific techniques discussed in Subsection I-B,
sorted chronologically.

Preprocessing Transform Entropy coding
Segmentation Segmentation Context
[7], 2002 8], 2004 [6], 2003 [16], 2005
(6], 2003 [4], 2004 [9], 2006 [17], 2006
(8], 2004 [15], 2012 [11], 2009 [18], 2006
[4], 2004 [19], 2009
(9], 2006
[10], 2007
[11], 2009

B.3 Entropy coding

In this stage, data obtained from previous stages
are expressed in an efficient manner to produce a
compact bitstream. Many techniques segment the
image before compression, while others build con-
texts or try to predict the intensity of the next pix-
els based on the previous ones. Purely lossless tech-
niques using each approach are described next.

At least three different coding proposals that are
based on segmentation can be found on lossless



compression of DNA microarrays. In 2003, Fara-
marzpour et al. presented a prediction-based tech-
nique [6]. The image is gridded, and a linear pre-
diction scheme is applied after creating a spiral path
from the estimated spot center. In 2006, Bierman et
al. presented their MACE (Micro Array Compres-
sion and Extraction) software [9]. The image is di-
vided first using a threshold-based method. The low
intensity pixels are coded using standard dictionary-
based techniques, while the high intensity pixels are
processed with a sparse matrix algorithm and then
compressed. In 2009, Battiato and Rundo published
an algorithm [11] based on image color reindexing
after segmentation. Segmentation is made by means
of a CNN-based system to produce two complemen-
tary subimages. The foreground image is compressed
with a generic lossless algorithm and stored sepa-
rately. The background image is first transformed
into an indexed image. Then its color palette is
reindexed with an algorithm that reduces the zero-
order entropy of local differences, which are losslessly
coded.

In no less than four publications, context build-
ing is used to perform lossless DNA microarray im-
age compression. In 2005 and in 2006 Zhang et
al. [17], [16] proposed a context-based lossless ap-
proach that also employs segmentation. Once the
image is divided, a simple predictive scheme is used
for the most significant bytes of each pixel, while
the least significant bytes are coded using prediction
by partial approximate matching (PPAM), also pro-
posed by Zhang and Adjeroh [20]. In 2006, Neves
and Pinho [18] proposed another context-based loss-
less approach. It is a bitplane-based technique that
uses 3D finite-context models to drive an arithmetic
coder. In 2009, they improved this scheme so that
specific contexts are built for each image [19].

Table I presents a summary of all discussed methods
classified attending to the stage of the image com-
pression process in which they make their contribu-
tion.

C. Paper structure

The rest of this paper is organized as follows. In
Section II, the correlation present among microarray
images that belong to the same set is analyzed. In
Section III, several multicomponent compression ex-
periments are described and discussed. Finally, in
Section IV, some conclusions are drawn.

II. CORRELATION BETWEEN DNA MICROARRAY
IMAGES

As it was pointed out in Section I, many DNA
microarray studies consist of running several experi-
ments at different moments on similar biological sam-
ples that have been exposed to different physical and
chemical conditions. In addition, each microarray
experiment produces two monochrome images which
are obtained by scanning the same microarray chip.
For this reason, it is natural to assume that some

TABLE II: Image sets used in the literature.

Image set Images Size (px)
Yeast [21] 109 1024x 1024
ApoAl  [22] 32 1044x 1041
ISREC [23] 14 1000x 1000
Arizona 6 4400x 13800

kind of correlation is present among the images pro-
duced within a study. Subsection II-A describes
the microarray image benchmark sets studied in this
paper and Subsection II-B analyzes the correlation
present among the images of each set.

A. Datasets

A number of different DNA microarray image sets
have been used for benchmarking compression per-
formance. No set has been used across all publica-
tions on DNA microarray image compression, but
the MicroZip, ApoAl and ISREC sets are employed
more frequently. Unfortunately, images of the Mi-
croZip set do not have the same size, so they have
not been used in our correlation and multicompo-
nent compression experiments. We have included
the Yeast set, which has been employed in a few
publications. Furthermore, we have gathered addi-
tional larger images, closer to what is employed in
laboratories today. These images, which come from
the Arizona set, have been kindly provided by David
Galbraith and Megan Sweeney from the University
of Arizona.

Table II shows key properties of all sets documen-
ted in the literature. All images are monochrome,
unsigned, 16 bits per pixel (bpp), and contain a sin-
gle component per red/green channel.

B. Image correlation

In this subsection, the correlation present among
images of the same set is analyzed. Two configura-
tions for this experiment have been tested. First, all
possible pairs of images from the same set are con-
sidered. After that, only red and green channels ob-
tained from the same microarray chip are analyzed.
The Pearson product-moment correlation coefficient
is the correlation metric used in our experiments. It
takes values in [—1, 1] and is defined as

LX) Y)
VI (X = X)2\ S, (v - V)2

where X; and Y; are the sequences of pixels obtained
by scanning two images in the same order, and X
and Y are the average pixel values of the first and
second images, respectively.

Figures 2 and 3 show the distribution of the
measured Pearson’s r values among all pairs and
red/green channel pairs, respectively. In these fig-
ures it can be observed which ranges of Pearson’s r
values are more common. Additionally, Tables III
and IV display statistical information about each of



the experiment configurations. It can be easily ob-
served that, in general, pairs of images of the same
set are not very correlated: most Pearson’s r values
are under 0.2 except for the Arizona set, which shows
larger measurements, but most of them are still be-
low 0.8. On the other hand, when considering only
red/green channel pairs from the same chip, correla-
tion is considerably larger. Attending to the average
Pearson’s r values of the sets, tenfold increases can
be observed, while variance is reduced. Comparing
the Max column in Tables III and IV, we see that
the largest correlation value in each set corresponds
to a red/green channel pair.

These results show that a certain amount of cor-
relation actually exists among images from the same
data set, to a larger extent when considering only
red/green channel image pairs, for which average val-
ues larger than 0.75 are consistently observed for all
sets.

1
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Fig. 2: Pearson’s r value distribution for all image
pairs from the same chip. The sum of the bars refer-
ring to each set is one.
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Fig. 3: Pearson’s r value distribution for red/green
channel image pairs from the same set.

III. MULTICOMPONENT COMPRESSION OF DNA
MICROARRAY IMAGES

Attending to the results discussed in Section II, it
seems reasonable to exploit the correlation present
among pairs of images from the same set, especially
among red/green channel image pairs. To do so,
we have designed several experiments using lossless

TABLE III: Statistical properties of the Pearson’s r
values obtained comparing all pairs of images in each
set. The sum of the bars referring to each set is one.

Set Max Min Average Variance
ISREC 0.8901 -0.0186 0.0735 0.0501
ApoAl 0.9678 0.0105 0.2043 0.0468
Yeast 0.8961  -0.0329 0.0390 0.0070
Arizona  0.9332 0.2845 0.6153 0.0383

TABLE 1IV: Statistical properties of the Pearson’s r
values obtained comparing red/green channel pairs
of images in each set.

Set Max Min Average Variance
ISREC 0.8901  0.3250 0.7822 0.0359
ApoAl 0.9678  0.7969 0.9229 0.0029
Yeast 0.8961  0.6084 0.7821 0.0048
Arizona  0.9332  0.5937 0.7508 0.0195

JPEG2000, since it is the only progressive lossy-to-
lossless scheme supported by the DICOM medical
image standard.

In these experiments, we have benchmarked the
lossless multicomponent compression performance
of Kakadu JPEG2000 when applied to DNA mi-
croarray images using different spatial and spectral
transforms. For the spatial transformations, we have
tested different numbers of 5/3 DWT decomposition
levels. For the spectral transform, we have also used
different numbers of 5/3 DWT decomposition levels
as well as the reversible Haar transform (R-Haar),
differential pulse code modulation (DPCM) and
the pairwise orthogonal transform (POT [24]).
Table V shows the average compression performance
expressed in bits per pixel when compressing all
images of a set together as a single multicomponent
image. The order in which the images are arranged
for the multicomponent compression affects the
performance only to a little extent, generally less
than 0.5 bpp. In this table, we show results only
for the R1G1 --- RyGn arrangement, where R; and
G, are the red and green channel images from the
i-th pair of a set, respectively. Table VI shows the
average results for compressing red/green channels
together as a 2-component image. For brevity’s
sake, these tables display only a representative set
of results from all the data obtained in our exper-
iments. A full description of the experiment with
data for all tested configurations can be downloaded
at http://deic.uab.es/~mhernandez/media/
reports/multicomponent_compression.pdf. Ta-
ble VII of this document displays compression
performance results of other lossless schemes,
including the best-performing microarray-specific
technique [11], for ease of reference.

It can be observed that one level of DWT spec-
tral transform does not generally improve compres-
sion performance, as compared to using zero wavelet
decomposition levels. When it does, the gain does
not exceed 0.3 bpp. The POT shows slightly better



results compared to using zero DWT levels for the
ApoAl set, with improvements up to 0.6 bpp. For
the Yeast and Arizona sets, the DPCM transform
produces improvements of up to 0.4 bpp, better than
any of the other transforms. For the ISREC set, no
transform is able to improve upon zero DWT decom-
position levels. It is also noteworthy that all spec-
tral transforms work better when considering only
red/green channel image pairs that when all images
in the set are compressed as a single multicomponent
image. This is consistent to the results discussed in
Section II because red/green channel image pairs ex-
hibit larger amounts of correlation.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have described DNA microar-
ray images and we have motivated the importance
of their compression. We have briefly described the
state of the art of the lossless compression of this type
of imagery. We have analyzed the correlation present
on pairs of microarray images from the same set us-
ing Pearson’s r as a metric. From that we have con-
cluded that there exists a certain amount of correla-
tion among image pairs, especially among green /red
channel image pairs. Based on these results, several
lossless multicomponent compression tests have been
run and described. The DWT 5/3, DCPM, the re-
versible Haar transform and the POT have been em-
ployed using several different configurations in the
experiments. No single spectral transform is able to
improve upon zero wavelet decomposition levels in
the spatial and spectral domain for all the sets, even
though the DPCM transform does so except for the
ISREC set. For all sets and transforms, the observed
compression performance is better when considering
only red/green channel image pairs. This is consis-
tent to the correlation values observed.

As future work, we plan to quantitatively analyze
the relationship between correlation and multicom-
ponent compression. In addition, we also plan to ap-
ply the histogram swap transform [15] together with
multicomponent compression.
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TABLE V: Average lossless multicomponent compression results in bpp considering all images of each set as
a single multicomponent image. Zero spatial DWT decomposition levels are assumed. In every case, using
more than zero levels of spatial DWT yields worse performance.

Set Spectral transform  Spectral levels Bpp
Yeast DWT 5/3 0 6.828
Yeast DWT 5/3 1 8.877
Yeast POT 1 9.883
Yeast DPCM 1 6.447
Yeast R-Haar 1 6.999
ApoAl DWT 5/3 0 11.524
ApoAl DWT 5/3 1 11.417
ApoAl POT 1 11.267
ApoAl DPCM 1 11.260
ApoAl R-Haar 1 11.160
ISREC DWT 5/3 0 10.887
ISREC DWT 5/3 1 11.932
ISREC POT 1 11.864
ISREC DPCM 1 11.870
ISREC R-Haar 1 11.451
Arizona DWT 5/3 0 9.548
Arizona DWT 5/3 1 9.804
Arizona POT 1 9.556
Arizona DPCM 1 9.575
Arizona R-Haar 1 9.629

TABLE VI: Average lossless multicomponent compression results in bpp for red/green channel image pairs.
Zero spatial DWT decomposition levels are assumed. In every case, using more than zero levels of spatial
DWT yields worse performance.

Set Spectral transform  Spectral levels Bpp
Yeast DWT 5/3 0 6.829
Yeast DWT 5/3 1 6.786
Yeast POT 1 9.279
Yeast DPCM 1 6.439
Yeast R-Haar 1 6.790
ApoAl DWT 5/3 0 11.524
ApoAl DWT 5/3 1 11.217
ApoAl POT 1 10.956
ApoAl DPCM 1 11.289
ApoAl R-Haar 1 11.218
ISREC DWT 5/3 0 10.887
ISREC DWT 5/3 1 11.451
ISREC POT 1 11.468
ISREC DPCM 1 11.203
ISREC R-Haar 1 11.452
Arizona DWT 5/3 0 9.548
Arizona DWT 5/3 1 9.649
Arizona POT 1 9.439
Arizona DPCM 1 9.386
Arizona R-Haar 1 9.649

TABLE VII: Average compression results in bpp for generic image compressors and individual image com-
pression. Results for the best microarray-specific technique (by Battiato) and the best general compressor
are also included at the bottom for ease of reference.

Algorithm MicroZip Yeast ApoAl ISREC Arizona
CALIC 9.582 8.502 10.515 10.615 -
JBIG 9.747 6.888 10.852 10.925 8.858
JPEG-LS 9.441 8.580 10.608 11.145 8.646
JPEG2000 (0 DWT 5/3 levels)  10.063 6.863 11.566 10.930 9.582
JPEG2000 (1 DWT 5/3 level) 9.577 9.128 11.134 11.517 9.253
JPEG2000 (5 DWT 5/3 levels) 9.508 9.082 11.052 11.360 9.099
Battiato [11] 8.369 9.52 9.49

Bzip2 9.841 6.075 11.067 10.921 8.944
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3.3 Result comparison

For ease of reference, lossless compression results for the best-performing previously
published algorithms and for the methods proposed in Sections 3.1 and 3.2 are pro-
vided in Table 3.1 and discussed next. Results for the Omnibus and IBB corpora,
included in our experiments after the publication of the publications in these sections,

and for the HEVC/H.265 compression standard are also considered for completeness.

It can be observed that JPEG2000 with the proposed HST is the best-performing
generic or standard algorithm for three of the corpora with differences between
0.16 bpp and 0.69 bpp. For the other image sets, JPEG2000 with the HST also
produces competitive bitrates, between 0.01 bpp and 0.27 bpp larger than the best-
performing generic or standard algorithm. Even though the spectral decorrelation
techniques from Section 3.2 can improve the best average results for JPEG2000 for
2 of the 6 in which they can be applied, the HST improves upon the best spectral
decorrelation techniques and can be employed for all methods. Hence, JPEG2000
with the HST is arguably better than any other generic or standard algorithm.

When non-standard microarray-specific are also considered, the methods by Bat-
tiato and Rundo [20] and by Neves and Pinho [21] yield the overall best results of
all coders. Significantly better results are reported in [20] for the ApoAl, ISREC
and MicroZip sets. For this reason, the only microarray-specific algorithm for which
data are reported in Sections 3.1 and 3.2 is [20]. Notwithstanding, the author has
not been able to replicate these results nor to obtain an implementation of this al-
gorithm from the authors. On the other hand, all results reported in [21] could be
replicated and extended to other corpora. If [20] is not considered, [21] produces
the most competitive compression results for 7 of the 8 corpora. JPEG2000 with
the HST is only up to 0.6 bpp behind. For the Omnibus set, all standard compres-
sion algorithms —including JPEG2000 with the HST— are able to improve upon [21].
Therefore, JPEG2000 with the HST —with all advantages of standard algorithms—

can be considered a competitive alternative to microarray-specific techniques.

Although not shown here, combining the HST and the proposed spectral decor-

relation techniques does not yield better compression results. Furthermore, none of
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these two approaches improves the results yielded by the best-performing microarray-

specific algorithm.

Table 3.1: Average lossless compression results in bits per pixel gathered for this thesis.
Results for standard image compressors include JPEG2000 using the best number of spatial
decomposition levels, the results for the HST (in the JPEG2000 (HST) row, as reported
n [26]) and for the best spectral decorrelation transform (in the JPEG2000 (MCT) row,
as reported in [27]). Note that spectral decorrelation results could not be computed for
some of the sests because they do not consist of pairs of images generated in the same
experiment. Results for microarray-specific techniques include results as reported in the
original papers except for [21], for which data were gathered using the author’s codec width
default parameters. Best results for each category are highlighted in bold font.

Algorithm Yeast ApoAl ISREC Stanford MicroZip Omnibus AZ IBB
Generic algorithms and standard image compressors

Bzip2 6.075 11.067 10.921 7.867 9.394 7.523 8.944 9.081
CALIC 8.502 10.515 10.615 7.592 9.582 6.929 8.767 9.327
JBIG2 6.888 10.852 10.925 7.776 9.747 7.198 8.858 9.344
JPEG-LS 8.580 10.608 11.145 7.571 9.441 6.952 8.646 9.904
HEVC/H.265 10.660 14.482 14.876 8.897 11.179 8.350 10.592  12.262
JPEG2000 6.829 10.999 10.888 7.969 9.467 8.121 7.549 9.064
JPEG2000 (HST) 5.911 10.786 10.624 7.685 9.157 7.103 8.795 8.392
JPEG2000 (MCT)  6.439  10.956  11.203 N/A N/A N/A 9.386  9.602

Microarray-specific techniques

[14] SLOCO 8.556 — — — — — — —
[13] Faramarzpour  9.091 — — — — — — —
[16] Hua 6.985 — — — — — — —
[15] MicroZip — — — — 9.843 — — —
[17] PPAM 6.601 — — — 9.587 — — —
[19] Neckabadi — 10.250  10.202 — 8.856 — — —
[20] Battiato — 9.520 9.490 — 8.369 — — —

[21] Neves 5.521 10.223 10.199 7.335 8.667 7.743 8.275 8.039




Chapter 4
Lossy Compression

The lossy compression of DNA microarray images can produce arbitrary compres-
sion ratios. This is in stark contrast to the limited performance of lossless coders,
described in Chapter 3. However, the lossy compression of microarray images has
received less attention than the lossless compression. The main reason for this is the
fact that making changes in the images generally introduces variations in the results
of the analysis process. If the introduced variations are too large, the images be-
come unusable for practical purposes. On the other hand, data extracted from DNA
microarrays is inherently subject to experimental variability. In theory, if a given
microarray experiment is replicated under the same conditions, the results should be
identical. In practice, they differ. Thus, analysis result distortions smaller than the
inherent experimental variability are considered acceptable [14, 16, 25]. In particular,
acceptable distortion results can be yielded by lossy compression methods [25]. Hence,
the research of lossy compression methods for DNA microarray images is justified as

long as the impact on the analysis results is assessed.

As discussed in Chapter 1, microarray images present thousands of round regions
called spots. Each of these spots contains information about a single gene of the
species being tested in the experiment. When a pair of images are analyzed, they are
first gridded into regions, each of which contains exactly one spot. Each region of one
image is then compared to the co-located region in the other image. Note that the

spot contained in both regions is associated to the same gene. As a result of these
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Repeated for each pair of spots

Image analysis

Microarray image pair Co-located spot regions results
- — - CRM

Y

»  Gridding 1 extraction

Figure 4.1: Diagram of the extraction of the corrected ratio of means (CRM) values.

comparisons, a numerical value —the corrected ratio of means (CRM)- is produced for

each spot positively detected by the griding algorithm. These CRM values constitute

the main output of microarray image analysis techniques. A diagram of the CRM

extraction process is shown in Fig. 4.1.

The main contributions of this thesis to the lossy compression of DNA microarray

images are the following:

e In the literature, the main way of assessing the impact on the analysis results

is by comparing the CRM values extracted from the original and the distorted
images. The most common way to achieve this is by analyzing plots of the
dispersion of the distorted results, as compared to the original results [14, 16, 25].

Measures based in the mean absolute error (MAB) and the mean squared error

(MSE) such as

N —_—
Z [log(CRM;) — log(CRM,) (4.1)

and

zNj (log(CRM;) — log(CRM,) ) (4.2)

1
N =1

have also been employed for this purpose [16]. Here, CRM; and C/R\MZ are the
CRM values associated to the i-th spot in the original and the distorted images,

respectively. Depending on the application of the DNA microarray experiment,

the extracted CRM values are subject to different classification algorithms. The
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disagreement introduced in these classifications by the modification of the im-
ages has also been employed to assess the impact on the analysis process [16, 25].
Even though these methods give very precise information about the distortion
introduced in the analysis results, they all require that the original and distorted
images are analyzed so that the CRM values can be compared. Furthermore,
if the distortion assessment is based on some classification process, it has to
be carried out for original and distorted CRM values. Therefore, these types
of distortion metric may not be useful for lossy compression methods such as
JPEG2000, which requires to evaluate repetitively the distortion metric to be
minimized. A main contribution of this thesis is the definition of a distortion
metric which does not require a full analysis of the original and distorted im-
ages. Instead, simulations suggest that the impact on the analysis process can
be predicted by considering only pixel values of the original and distorted im-
ages. The proposed metric —the microarray distortion metric (MDM)- appeared
first in [30] and it is fully described in Section 4.1.

Before the beginning of this thesis, several methods for lossy or lossy-to-lossless
compression methods for DNA microarray images had been published. In 2003,
Jornsten et al. proposed a modification of the near-lossless mode of the LOCO-I
algorithm [43], basis for the JPEG-LS standard [44]. The modification consists
in segmenting the image and coding spot and background pixels separately, as
described in Chapter 3. Once the image is coded allowing a maximum absolute
error of 9, their lossy-to-lossless scheme allows the coding of successive refine-
ment data until 6 = 0, equivalent to lossless compression. In 2004, Hua et
al. proposed a similar approach in which the EBCOT algorithm (basis for the
JPEG2000 standard [29]) is adapted to better code the segmented microarray
images. Also in 2004, Lonardi proposed an algorithm based on segmentation in
which the 8 least significant bits of the pixels tagged as background are coded
with a generic lossy image codec [15]. In their implementation, the SPTHT [45]
algorithm is employed. In 2007, Peters et al. presented a lossy compression

method [22] based on a direct application of the singular value decomposition
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(SVD) [22]. Finally, in 2011, Avanaki et al. directly applied fractal and wavelet-
fractal lossy compression methods [23]. As can be observed, all these works are
based on generic image compressors not specific for DNA microarray images.
However, generic compressors are designed to minimize the visual impact on
the images and not the impact on the analysis process that is applied to them.
Hence, the rate-distortion results (considering the distortion of the analysis re-
sults) are unlikely to be optimal. The second main contribution of this thesis
to the lossy compression of microarray images is the proposal of a lossy com-
pression scheme designed to minimize the impact on the analysis process. The
proposed method is based on a novel quantization scheme —the relative quan-
tizer (RQ)— that limits the maximum relative error introduced in the image and
devotes additional precision to low-intensity pixels. The rate-distortion results
yielded by this method are significantly superior than those produced by generic
image compressors used in the aforementioned publications. A manuscript de-
scribing this proposal is under revision at the IEEE Transactions on Medical

Imaging, and is reproduced in Section 4.2.

In spite of the competitive results of the aforementioned R() coder, the images
compressed with this algorithm can only be reconstructed with a fixed qual-
ity, determined by the parameter k. Therefore, if researchers need to access
or transmit the DNA microarray images with different qualities, several com-
pressed versions of the images need be stored. Clearly, this approach multiplies
the space and transmission time requirements and is not practical. In the last
contribution, this problem is solved. The regular structure of the quantizer
intervals for different values of k is exploited to create a progressive lossy-to-
lossless scheme based on [21]. This scheme is hereinafter referred to as the
Progressive Relative Quantizer (PRQ). The original context modeling system
of that work has been improved and support for a region of interest (ROI) con-
taining only spots has been added. The resulting coder is referred to as the
PRQ-ROI coder. With these enhancements, the rate distortion results of the

original RQ are significantly improved without diminishing the lossless compres-
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sion results. That is, the PRQ introduces smaller distortion in the microarray
image analysis than the RQ for equally large compressed file sizes. A paper
describing this contribution to the state-of-the art on the compression of DNA
microarray images has been submitted to the IEEE Signal Processing Letters

and is reproduced in Section 4.3.
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4.1 Microarray Distortion Metric
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Abstract

DNA microarrays are state-of-the-art tools in biological and medical research. In this work, we discuss the
suitability of lossy compression for DNA microarray images and highlight the necessity for a distortion metric to
assess the loss of relevant information. We also propose one possible metric that considers the basic image features
employed by most DNA microarray analysis techniques. Experimental results indicate that the proposed metric can
identify and differentiate important and unimportant changes in DNA microarray images.

I. INTRODUCTION

In this section, we motivate the need for introducing a distortion metric to evaluate the performance of
lossy compression on DNA microarray images.

A. DNA microarrays

DNA microarrays are used to analyze the function and regulation of the genes of an organism [1]. They
are state-of-the-art tools in biological and medical research, and are employed in many areas ranging from
the study of metabolism [2] and evolution [3] to the fight against cancer [4], HIV [5] and malaria [6].
Interest in DNA microarrays has grown in the last few years, and an exponential increase of DNA
microarray data has been observed [7].

In a DNA microarray experiment, the genetic expression level of two biological samples is compared.
In these two samples —for instance one coming from a healthy tissue and the other coming from a
tumoral tissue— the same genes might be expressed with different intensities. Analyzing these differences,
it is possible to identify genes related to a particular biological process. A DNA microarray experiment
consists of several steps, schematically summarized in Figure 1. The biological samples are first dyed with
fluorescent markers, usually Cy3 and Cy5 of the cyanine family, and are then left to react on the surface
of a DNA microarray chip (step A in Figure 1). The surface contains thousands of microscopic holes or
spots, each of which is related to an individual gene. This surface is then washed so that each of the
biological samples appears only inside the different spots. After that, the DNA microarray chip is scanned
using two lasers, each exciting only one of the fluorescent markers, so that one 16 bpp monochrome
image is produced for each of the two biological samples (step B in Figure 1). These two monochrome
images are usually known as the green and red channels due to the color of the laser needed to excite the
fluorescent dyes. The image intensity with which each spot is acquired is proportional to the amount of

1068-0314/13 $26.00 © 2013 IEEE 1 & computer
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biological sample that is contained in the spot; that amount is also proportional to the expression intensity
of the corresponding gene. Finally, these two images are analyzed to measure genetic expression intensity
differences, which are then processed statistically to identify relevant genetic expression alterations (step
C in Figure 1).

A 1]
— Ok Mrmarmy c
Iq:-ir;: -
o 't-:"?:

Biskogacs| namipas
Hicesaray images

Figure 1: A DNA microarray experiment. The biological samples are first put on a microarray chip, then
the chip is scanned to produce two microarray images and finally the images are processed to extract the
genetic data.

B. DNA microarray image analysis

DNA microarray images are an intermediate product of DNA microarray experiments: image analysis
is performed on these images to extract information about the genetic expression intensity. Unfortunately,
these image analysis techniques are not fully mature or universally accepted [8], so they are likely to
change in the future. As new image analysis techniques are developed, it will be highly desirable to
reanalyze the images to obtain more accurate genetic data. However, in such cases, repeating the whole
experiment is not an option because the needed biological samples are usually not available. For this
reason, it is important to store the DNA microarray images along with the extracted genetic data.

In spite of the increasing reproducibility of DNA microarray experiments, some variability is always
present. When samples from the same two tissues are used in different experiments, the produced images,
and thus the extracted genetic data, are not identical [9]. In addition, modern DNA microarray chips make
use of biological replication, that is, they contain several spots associated to a single gene; even though
theoretically these spots should express the same degree of gene activity, in practice they do not [8].

C. DNA microarray image lossless compression

In a DNA microarray experiment, two images —known as the green and red channels— are produced.
Nowadays, these images easily exceed 4000x 13000 pixels in size, with 16 bits per pixel (bpp) per channel,
so that raw file sizes over 100 Megabytes per image are common. Besides, when a DNA microarray study
is carried out, several DNA microarray experiments are performed. Thus, a considerable amount of data
are produced in laboratories around the world. It is therefore paramount to design efficient storage and
transmission methods for this type of images, and data compression comes as the best suited approach to
this problem.

DNA microarray images possess several characteristics that make compression a challenging task.
Figure 2 shows part of two example DNA microarray images. It can be observed that thousands of irregular
round spots of varying intensities are displayed on a dark background. These abrupt and irregular intensity
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changes produce high frequencies in the image which are hard to code or predict. Furthermore, the 16 bpp
needed to represent DNA microarray images increase the data entropy due to the larger amount of possible
pixel values. Altogether, these properties make the compression of DNA microarray images a challenging
task, in particular when using lossless compression methods.

Figure 2: Example DNA microarray images: 600x600 crops with different spot layouts. a) array3 image
from the MicroZip set with square grid spot layout; b) slide_I-red from the Arizona set with hexagonal
grid spot layout. Gamma levels have been adjusted for visualization purposes.

Table I: Image sets used for benchmarking in the literature. All original images are 16 bpp.

Image set Images Size (pixels)
MicroZip  [10] 3 > 1800% 1900
Yeast [11] 109 1024 x1024
ApoAl [12] 32 1044x 1041
ISREC [13] 14 1000x 1000
Stanford  [14] 20 > 2000x%2000
Arizona [15] 6 4400x 13800

Several authors have proposed compression techniques for DNA microarray images in the last few years.
A detailed review of the state of the art in the compression of DNA microarray images can be found
in the literature [16]. Both lossy and lossless techniques have been proposed, but lossless techniques are
more common. It has been argued that lossless compression is more suitable for DNA microarray images
because it guarantees that no relevant information will be missing when reanalyzing the decompressed
version of the images [17]. However, this data fidelity is obtained at the expense of poor compression
performance results. Table I displays basic information about the sets of images used for benchmarking
while Table II reports the lossless compression results yielded by both standard and the best performing
microarray-specific techniques.

It can be observed that even the best-performing techniques specific for DNA microarray images are only
approximately 1 bpp better than the best standard compression techniques. Moreover, compression ratios
equal or better than 2:1 are only found for two of the datasets. Considering these lossless compression
results, schemes with higher compression performance are needed.

D. Distortion metrics for DNA microarray image lossy compression

Lossy compression schemes can yield very good compression ratios and as long as the distortion
introduced by the lossy compression of DNA microarray images falls below the variability of DNA
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Table II: Average lossless compression results for different standard and microarray-specific techniques
for the benchmark image sets. All values are expressed in bits per pixel and all images are 16 bpp.
Bitrates for non-standard compression techniques are shown as reported by the original authors when
data are available for a set. Results for JPEG2000 have been obtained with the best number of wavelet
decomposition levels for each set [16].

Algorithm MicroZip Yeast ApoAl ISREC Stanford Arizona

Standard techniques

Bzip2 9.394 6.075 11.067  10.921 7.867 8.944
IJBIG 9.747 6.888  10.852  10.925 7.776 8.858
JPEG-LS 9.441 8.580 10.608  11.145 7.571 8.646
JPEG2000 9.508 6.863  11.050  10.930 8.007 9.099
JPEG2000 + HST [18] 9.157 5911  10.786  10.624 7.685 8.795

Microarray-specific techniques

MicroZip [19], 2004 9.843 — — — — —
PPAM [20], 2005 9.587 6.601 — — — —
Neves [21], 2006 8.840 — 10.280  10.199 — —
Neekabadi [22], 2007 8.856 — 10.250  10.202 — —
Neves [17], 2009 8.619 — 10.194  10.158 — —
Battiato [23], 2009 8.369 — 9.520 9.490 — —

microarray experiments (Subsection I-B), lossy coding can be regarded as an alternative to lossless coding.

An important number of both standard [24], [25] and microarray-specific [9], [19], [26], [27] lossy or
lossy-to-lossless compression techniques have been proposed and discussed in the literature. For lossy
coding, it is necessary to assess the loss of relevant information by employing a distortion metric, since
it can affect current and future DNA microarray analysis techniques.

To date, only full reference metrics —which need the original image to be calculated— have been
considered. Existing metrics based on pixel-wise errors or visual fidelity are not suitable for this purpose [9]
because they do not identify changes that could affect the subsequent analysis process. Metrics using pixel-
wise errors like MSE, PSNR or SNR consider every pixel in the image equally important [28], hence
they are unable to distinguish changes that significantly distort several spots from those that slightly
affect unimportant parts of the background. Metrics based on visual fidelity like SSIM or CW-SSIM
are designed to identify changes that can be detected by the human visual system [28]; however, DNA
microarray images are always computer analyzed —most usually without human intervention— so changes
applied to a spot can be difficult to recognize by the naked eye, but still affect greatly the analysis process.

At least two publications have addressed the problem of measuring the information loss due to the
compression of DNA microarray images. In [25], the authors propose several methods to evaluate the image
distortion based on comparing the results of different classification algorithms like linear discriminant
analysis when applied to the extracted mean intensity of each spot. Their methods rely completely on the
results of the selected image analysis and classification algorithms and do not explicitly consider image
properties used in most analysis algorithms. For this reason, their results are subject to the particularities
of the selected image analysis and data classification algorithms and it is unclear whether they would
be applicable when other present and future DNA microarray analysis techniques are employed. Even
though the authors provide intensive experimental results, they do not discuss which selection of intensity
extraction and classification algorithms could be the best as a distortion metric. In [9], a similar approach
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is used. Two different image analysis techniques are used on original and distorted DNA microarray
images to calculate the spot intensities. After that, simple functions of the extracted intensities are plotted.
These functions include the logarithm of the quotient of the intensities extracted for one spot in each of
the two DNA microarray images, which is a measure of gene activity. The plots are analyzed to assess
the variability using different intensity extraction and compression algorithms. As in [25], the authors do
not explicitly use any commonly used image feature nor propose a way to combine the plotted values in
order to construct a distortion metric.

E. Paper structure

The rest of this document is structured as follows. In Section II we describe the DNA microarray
analysis pipeline and highlight the image features that are commonly used for this analysis. In Section III
we propose a distortion metric that employs these image features to detect relevant changes in DNA
microarray images. Finally, in Section IV we provide some concluding remarks.

II. ANALYSIS PIPELINE OF DNA MICROARRAYS

In this section, we describe the analysis of DNA microarrays. We also identify which processes are
basic for any analysis process and what image features are considered in them.

A. Analysis pipeline

In Section I we briefly described how DNA microarray experiments are carried out, as schematically
summarized in Figure 1. We now focus on the analysis pipeline that is performed once the DNA microarray
images are obtained. The first two subsections describe how the images are analyzed while the third briefly
explains subsequent procedures.

1) Gridding and segmentation: The analysis of DNA microarray images begins by locating where
each spot is situated. As shown in Figure 1, spots are arranged following a regular grid which must be
identified first. This process is known as gridding and can be done either automatically without any prior
information [19], or using geometrical information provided by the DNA microarray manufacturer.

Once the grid is known, each spot is confined individually to a rectangular area. The next step is to
determine which pixels belong to the spot, and which ones are background. This process is known as
segmentation and is one of the most active research topics on the analysis of DNA microarray images [8].
Many different approaches have been used for this purpose, and it is possible to find clustering-based [29]—
[33], threshold-based [34], graph-based [35] and even wavelet-based [36] proposals in the literature.

2) Intensity extraction: The next step in the analysis pipeline is calculating the expression intensity
of each gene for each of the biological samples. As previously explained in Section I, the amount of
dyed sample inside one spot is proportional to the intensity of the corresponding gene for that biological
sample. For this reason, it is possible to estimate the genetic expression intensity by looking at the average
value of pixels inside each spot in the DNA microarray images. This process is performed automatically
by DNA microarray image analysis algorithms and is known as intensity extraction or feature extraction.

Unfortunately, in real DNA microarray experiments there are artifacts that distort the scanned images.
When the DNA microarray chip is washed, some residues can remain on the surface. To address this and
other artifacts, researchers have proposed several background-correction algorithms [37]. In their proposals
the average intensity of the local background (the pixels outside but near each spot) is calculated and
subtracted from the extracted intensity according to different algorithms. In addition, since the two images
produced in a DNA microarray experiment are obtained using two different lasers, it is possible that one
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of the two images produced in a DNA microarray experiment is globally brighter than the other. For this
reason, some analysis techniques compute the global intensity to identify brightness changes and modify
the extracted spot intensities accordingly.

3) Normalization and data analysis: After the spot intensities are extracted from the images associated
with each of the two biological samples, they are compared to detect relevant differences in the genetic
expression intensities. This is commonly know as data analysis. Before that, the intensities need to be
further processed in order to remove any systematic variation, due for example to dye bias. This step
—known as normalization— is an active research topic and several normalization techniques have been
proposed [8]. Both data analysis and normalization techniques employ only the extracted spot intensities
and do not directly consider the images, so they are out of the scope of this work.

B. Key image properties

Having in mind the processes described in Subsection II-A, it is possible to identify at least three key
image features that can greatly affect the outcome of a DNA microarray experiment. Since it is our goal
to design a distortion metric for DNA microarray images, we next describe these key features more fully
and discuss changes that can most alter experimental outcomes.

1) Spot intensity: The value of the pixels inside spots is the most important DNA microarray image
feature because it is employed to extract the genetic expression intensities that are employed in subsequent
steps of DNA microarray experiments. Only average pixel values are used for this purpose, so it is more
important to maintain these mean values unmodified than to achieve pixel-wise fidelity. If we call pp and
1 to the average intensity of the co-located spot in each of the two image channels of an experiment, then
the mean intensity ratio is defined as pg/pc. Later analysis steps [38] consider only the mean intensity
ratio of the spots, so relative errors in the average intensity values are much more relevant than absolute
errors.

2) Local background intensity: The mean intensity ratios are often corrected by subtracting the average
intensity of the local background, that is, the pixels that are close but do not belong to a spot. Even though
this subtraction can be done in different ways [37], the mean intensity of the local background is always
used. Therefore, it is important to keep these local background mean intensity values unmodified.

3) Global intensity: Some normalization techniques rely on the global intensity of each DNA microar-
ray image, i.e., the sum of all pixel intensities [39]. They are based on the assumption that this global
intensity should be the same for the images corresponding to each biological sample. As a consequence,
producing a deviation on the global intensity can affect the obtained mean intensity ratios proportionally.

To the best of our knowledge, these three features are the basis of every existing analysis technique to
the extent of our knowledge, and they are likely to remain fundamental in future techniques as well.

ITI. PROPOSED DISTORTION METRIC

In Section I, we motivated the compression of DNA microarray images and argued that traditional
image distortion metrics like MSE or SSIM are not suitable for DNA microarray images. In this section,
we propose a novel distortion metric for this type of imagery.

A. Metric definition

Our main goal is to define a distortion metric that is able to summarize information about the three
main image features with primary effect on the analysis process. As will be shown in Subsection III-B,
common natural image distortion metrics are not suitable for DNA microarray images because they do not
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consider these important image features. Since the main purpose of our metric is to detect image changes
that can affect present and future analysis, we have designed it to be as conservative as possible; we have
also assumed that a segmentation of the image into individual spots and background is provided as input
to the metric. Such segmentation may be produced using automatic methods or geometric information
from the manufacturer.

In order to produce a compact output that can be more easily interpreted, we have defined our microarray
distortion metric (MDM) after the well-known logarithmic metric PSNR:

(max_val)®

ME
To calculate the “signal-to-noise ratio” of our metric, the maximum value in the image (max_val) is used
as a measure of the signal, while the noise is estimated using our proposed microarray error (ME). The
ME must be sensitive to relevant changes in any of the three main features than can affect the analysis
process: the mean intensity ratio, the average intensity of the local background and the global image
intensity. As explained in the previous section, relative errors in those features are much more important
than absolute errors. To estimate the relative distortion in the mean intensity ratio of one spot, we do
not need to process both the red and green channel images. If the average intensity inside one spot is
multiplied by a factor ¢ in the distorted image, it can be easily proved that the intensity ratio for that spot
in the red and green channel images is multiplied by a factor smaller than § = max(q, 1/q). In order to
detect changes that can affect analysis results even if they appear in isolated spots, we consider only the
maximum value of ¢ among all spots. A similar conservative reasoning can be applied to the estimations
of the distortion of the local background and global intensity. For our metric, we employ the expressions
in (2)-(4) to calculate the distortion of the three key image features:

Tspot = max(max_spot_ratio, 1/min_spot_ratio), 2)
Tocape = max(max_localBG_ratio, 1 /min_localBG_ratio), 3)
Tglobal = max(global_intensity_ratio, 1/global_intensity_ratio). @)

Ideally, the MDM should produce high signal-to-noise ratios when the image is not distorted enough to
affect the analysis results. When such relevant distortions are introduced in any of the key image features,
the MDM should decrease toward 0. To achieve this, the definition of ME is based on max_val raised to
p, a logistic function of g6t TocaiBa and Tglobal:

p = 2/(1 + exp(_a(rspot + TlocalBG T T'global — 3)))7 (5)

ME = (max_val)’ — max_val + min(max_val, MSE;, age)- (6)

As is obvious from (5), when 7,0, TiocaBG and Tgona are all close to 1 —a scenario of irrelevant or
nonexistent distortions—, p is also close to 1. When distortions relevant to the analysis process are
introduced, 7gpot, TocaBG and Tglona are increased and p approaches 2. In consequence, the first term
of (6) varies between max_val and max_val®. The other terms in (6) are employed for normalization
purposes so that the MDM outputs only meaningful values and is able to differentiate lossless and lossy
compression by employing the global MSE of the image. The sensitivity of the MDM to changes in the
three key image features can be adjusted through the arbitrary parameter « in (5), which controls the
speed in which the signal-to-noise ratio is degraded. In our experiments, we have found o = 3 to be a
balanced choice. When smaller values of « are chosen, the MDM decreases too slowly when essential
parts of the DNA microarray images are modified. When larger values are selected, the MDM is too
sensitive and produces values close to 0 dB when the key image properties are only slightly modified.
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Further experimentation using real compression and analysis scenarios is necessary to elucidate optimal
values of « for realistic operating ranges.

B. Experimental results

In this subsection, we illustrate the behavior of our proposed metric and provide further evidence of its
suitability for the assessment of the information loss in DNA microarray images.

In our experiments, we have distorted three images from each set shown in Table I in three different
manners: we have modified the pixels inside each spot, the pixels inside the local background of each spot
and the pixels not inside any spot or local background. In this experiment, we have not modified the images
by applying lossy compression so that changes in the images can be more easily located and understood.
To identify spot and local background areas, we have employed a Matlab implementation of the circular
Hough transform [40], whose results have been further refined to obtain an accurate list of circle centers
and radii describing the spots. These results are used to calculate the three types of distortions as well
as the segmentation required as input to our proposed MDM. Figure 3a shows the results for the MDM
and the PSNR metrics when pixels inside all spots are multiplied by different coefficients. For each spot,
we define the spot ratio distortion as i3/ 1,, wWhere p; and 1, are the mean intensity for that spot in the
distorted and original images, respectively. Because of the definition in (2), spot ratio distortions in (0, 1)
are substituted by their inverse without loss of generality. In this figure, the horizontal axis represents the
average spot ratio distortion. In Figure 3b, we show the results for MDM and PSNR when only the pixels
inside local background of each spot are modified. In this figure, the horizontal axis represents the average
local background ratio distortion. In Figure 3c, we show the results for applying zero-mean additive white
Gaussian noise to pixels outside spots and local backgrounds as a function of noise variance. All results
shown in Figure 3 are for the ApoAl set only. Results for other image sets are similar.

It can be observed that when features that are relevant to the DNA microarray analysis process are
modified (Figures 3a and 3b), the MDM decreases rapidly toward O dB. The slope in which the MDM
decreases when spot ratios are modified can be controlled by the o parameter in (5). Comparing Figures 3a
and 3b, it can be seen that the slope is steeper in the former. This is due to the fact that there are more
pixels inside spots than inside local backgrounds and they have larger average intensity, SO 7,0 in (5)
grows faster. When unimportant changes are applied to the images (Figure 3c), the MDM decreases very
slowly. In this case, if the global intensity of the image is not modified, the MDM remains constant at
approximately 48 dB, independently of the actual MSE of the image.

These results suggest that the proposed MDM is able to detect changes in DNA microarray images that
affect image analysis, whereas unimportant changes do not affect the output of the MDM.

I'V. CONCLUSIONS AND FUTURE WORK

DNA microarray images are broadly employed in biological and medical research to analyze the function
of the genes of many different organisms. Large image file sizes motivate the use of coding techniques to
help with storage and transmission, but lossless compression has not proved to be effective. On the other
hand, lossy compression can provide more compression, but it is necessary to assess whether present and
future analysis techniques are affected by the information loss. Distortion metrics like PSNR or SSIM are
not suitable for this purpose, so microarray-specific metrics are needed.

The analysis pipeline of DNA microarrays has been discussed, and three key image features have been
identified that are the foundation of most current analysis techniques, and very likely for future techniques
as well. The identified features are the mean intensity of each spot, of each local background, and the
overall intensity of the image. Based on these features, one possible microarray-specific metric has been
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Figure 3: Distortion results for PSNR and our proposed MDM, when applied to three sample images from
the ApoAl set. a) Results after modifying pixels inside spots; b) Results after modifying pixels inside the
spot local backgrounds; c) Results after applying additive white Gaussian noise to pixels outside spots
and local backgrounds.

proposed, and evidence of its suitability to assess the information loss of DNA microarray images has
been provided.

Our future work involves assessing the suitability of the proposed metric to detect changes in the
output of standard DNA microarray analysis techniques when different types of distortion are introduced,
including the distortion produced by lossy compression.
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Abstract—DNA microarrays are one of the fastest-growing new
technologies in the field of genetic research, and DNA microarray
images continue to grow in number and size. Since analysis
techniques are under active and ongoing development, storage,
transmission and sharing of DNA microarray images need be
addressed, with compression playing a significant role. However,
existing lossless coding algorithms yield only limited compression
performance (compression ratios below 2:1), whereas lossy coding
methods may introduce unacceptable distortions in the analysis
process. This work introduces a novel Relative Quantizer (RQ),
which employs non-uniform quantization intervals designed for
improved compression while bounding the impact on the DNA
microarray analysis. This quantizer constrains the maximum
relative error introduced into quantized imagery, devoting higher
precision to pixels critical to the analysis process. For suitable pa-
rameter choices, the resulting variations in the DNA microarray
analysis are less than half of those inherent to the experimental
variability. Experimental results reveal that appropriate analysis
can still be performed for average compression ratios exceeding
4.5:1.

Index Terms—DNA microarray images, Image compression,
Quantization

I. INTRODUCTION

The lossy compression of DNA microarray images can at-
tain almost arbitrary compression ratios at the cost of distorting
the results of subsequent analysis algorithms performed on
them. Nevertheless, if the introduced distortion is smaller than
the experimental variability that is inherent to DNA microar-
rays, the lossy compression can be considered acceptable [1]-
[3]. Several generic image compression methods have been
adapted or directly applied to DNA microarray images [1], [2],
[4]-[6]. However, to the best of the authors’ knowledge, no
lossy compression technique specifically designed for microar-
ray images has been published. This work aims to introduce
such a technique with the goal of significantly outperforming
existing lossy compressors.

A. DNA Microarrays

DNA microarrays are widespread tools in biological and
medical research. They are useful to analyze the function and
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Fig. 1: Outline of an example DNA microarray image acqui-
sition procedure. Samples from healthy and tumoral tissue are
dyed with fluorescent pigments and put on a DNA microar-
ray chip (1), which is optically scanned using two different
wavelength lasers to produce two microarray images (2).

regulation of individual genes from many organisms, including
humans. The fight against Cancer, HIV and Malaria are among
their most important applications.

In a typical DNA microarray experiment, two biological
samples are compared. One sample corresponds to control
(e.g., healthy) cells, and the other sample corresponds to exper-
imental (e.g., tumoral) cells. A given gene can have different
expression intensities —i.e., different amounts of activity— in the
two biological samples. By studying the expression intensity
differences between these two biological samples, it is possible
to analyze the function of each gene in an illness or in other
biological processes.

Samples coming from the healthy and tumoral tissues are
first dyed with, respectively, green and red fluorescent markers
(step (1) in Fig. 1). After that, the biological samples are left
to react on the surface of the DNA microarray chip, which
contains microscopic holes or spots arranged in a regular grid,
as shown in Fig. 2a. Each of the spots is related to a single
gene of the organism, and the quantity of each dyed biological
sample that remains in it is proportional to the activity of that
gene in the corresponding biological sample. The chip is then
optically scanned while exciting the fluorescent marker used
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Fig. 2: Example DNA microarray images. (a) 100x100 crop
of slide_I-red image from the Arizona corpus with hexagonal
grid spot layout. Gamma levels have been adjusted for visu-
alization purposes; (b) Pixel intensity values of a 6x4 crop of
134044022_Cy5 from the IBB corpus. Pixels belonging to a
spot are highlighted in bold font.

to dye one of the biological samples (step (2) in Fig. 1). This
results in an unsigned 16 bit per pixel (bpp) grayscale image.
The chip is scanned again while exciting the other fluorescent
marker in order to produce a second 16 bpp grayscale image.
In each of these images —usually referred to as the green
and red channels because of the associated dye color— the
brightness of each spot is related to the activity of the gene
related to that spot in the corresponding biological sample.

Once DNA microarray images have been obtained,
microarray-specific image analysis software is employed to
quantify the genetic expression intensities in each of the
biological samples. Finally, the extracted data are processed
to detect relevant genetic expression differences between the
control and experimental tissue samples, which enables the
study of the function of individual genes.

DNA microarray image analysis is an active research
field [7]-[13]. As new analysis techniques are developed, it
will be possible to re-analyze existing images to obtain more
accurate genetic data. Since it is not practical to preserve
the biological samples indefinitely nor share them among
laboratories around the world, replicating the whole DNA
microarray experiment is usually not feasible or convenient. A
preferable alternative is to store the DNA microarray images.
Image coding techniques can help alleviate the costs associated
with the storage and management of this data, and can also
accelerate their transmission to other researchers wishing to
perform analysis (or re-analysis with new techniques).

B. Compression of DNA Microarray Images

DNA microarray images possess several properties that
render their compression a very challenging task. In each of
the grayscale images, thousands of round spots of varying
intensities are displayed on a dark background following a
regular pattern. A crop of an example DNA microarray image
with hexagonal grid is shown in Fig. 2a. As a consequence
of the abrupt pixel intensity variations induced by the spots,
as shown in Fig. 2b, DNA microarray images contain high
frequencies which are hard to code efficiently. Furthermore,
the original image data are represented with 16 bpp, and
typically 7 or more of the least significant bitplanes exhibit
binary entropy values close to 1 bpp [14].

A complete review of the state of the art in both lossless
and lossy compression of DNA microarray images can be
found in [14]. When lossless compression is employed, perfect
pixel fidelity is guaranteed. However, the best reported lossless
results (summarized here in Table IV) provide compression
ratios less than 2:1 for most corpora. This is believed to be a
practical bound to lossless compression methods [1], [15].

Lossy compression, on the other hand, can provide es-
sentially any desired compression ratio, but at the expense
of introducing changes (distortion) in the image data. De-
pending on this distortion, the results for current and future
image analysis methods may be severely affected, which may
render images unusable. For this reason, it is necessary to
assess the impact of lossy compression on the analysis of
DNA microarray images. Previous work has indicated that
lossy compression can produce acceptable results when the
distortion introduced is smaller than the variability observed
in replicated experiments [1]-[3].

To the best of the authors’ knowledge, no existing com-
pression technique in the literature has been designed to
directly take into account the DNA microarray image analysis
process (e.g., [1], [2], [4]-[6]). The aim of this work is to
provide significant improvements, compared to existing lossy
techniques, by the design of an approach informed by the
process employed in DNA microarray analysis.

C. Paper Structure

A Relative Quantizer (RQ) designed for DNA microarray
images is proposed in Section II and its impact on the
genetic data extraction process is addressed in Section III. The
effectiveness of (further) lossless compression on images that
have been quantized using the RQ is discussed in Section IV.
Some conclusions are drawn in Section V.

II. THE RELATIVE QUANTIZER
A. Motivation

In a DNA microarray image, the brightness of each spot is
related to the expression intensity of the gene (in the biological
sample) associated with that spot. In order to quantify the
expression intensities for the different genes under test, mi-
croarray image analysis techniques segment the red and green
channel to detect the position of the spots and differentiate spot
pixels from background pixels. A recent review of the state of
the art on microarray image segmentation can be found in [12].
The positions and shapes of the spots are not perfectly regular,
so that segmentation is a challenging task.

If the red and green images are subjected to lossy compres-
sion prior to analysis, the resulting distortion may cause the
segmentation process to fail to detect a spot and no genetic
information will be subsequently extracted from it. Even if a
spot is correctly detected, pixels belonging to the spot may
be incorrectly tagged as background and vice versa. Thus,
the segmentation step is crucial in the analysis process. Since
a large fraction of the spots have low intensities [14], the
absolute distortion introduced in low-intensity pixels should
be limited, so that spots can be accurately separated from the
dark background.



TABLE I: Original pixel values (Orig.), quantization indices (QI) and reconstructed values (Rec.) for the RQ using B = 4
and k = 2. Bits preserved in each value are highlighted in bold font. The interval midpoint rounded up is employed for the

reconstruction.
Ori. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
g 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
QI 0 1 2 3 4 4 5 5 6 6 6 6 7 7 7 7
Ree. 0000 0001 0010 0011 0101 0101 0111 0111 1010 1010 1010 1010 1110 1110 1110 1110
: 0 1 2 3 5 5 7 7 10 10 10 10 14 14 14 14

After the spots are segmented, the pixel values from the
co-located spots (i.e., the spot at the same location of the red
and green channel images) are compared to assess whether
the gene corresponding to that spot is expressed differently in
the two biological samples. To this end, professionals working
with DNA microarrays usually employ the corrected ratio of
means (CRM) of each spot [12], defined as
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CRM = green _green (1)
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Here, pispot and fiocaiBc are the average pixel intensity within
a spot and its local background, respectively. The latter is a
region of background pixels near the spot of interest. The exact
shape and size of the local background is determined by the
segmentation algorithm. The red and green superscripts refer
to each of the image channels being analyzed. The fijocaing 1S
subtracted from pisp0t to compensate for background noise and
unavoidable inaccuracies in the segmentation process. Since
posterior statistical analyses rely on the CRM, lossy coding
methods applied to DNA microarray images should minimize
their impact on it.

In what follows, the error introduced in the CRM is taken
as a measure of distortion introduced by lossy compression
within detected spots. Because the CRM is defined as a
quotient, the absolute error introduced in the image intensities
is not enough to characterize the impact on the CRM. For
instance, an absolute error of e, in the numerator of (1) will
induce different absolute errors in the CRM depending on the
value of the denominator of (1). For example, the absolute
error in the CRM will be 2 times larger for a denominator
of value d than for a denominator of value 2d. On the other
hand, if a relative error of €, is introduced in the numerator,
the same relative error is introduced in the CRM, regardless
of the value of the denominator. Therefore, it is arguably more
useful to limit the relative error than to limit the absolute error.
That is, the error introduced in each pixel should be bounded
by a certain percentage of the original pixel value. This is
in stark contrast to traditional lossy compression algorithms,
which attempt to limit the squared (absolute) error.

B. Definition and Properties

In what follows, we assume that DNA microarray images
are analyzed subsequent to lossy compression. Motivated by
the discussion above, we propose a Relative Quantizer (RQ)
designed to provide superior compression performance for
DNA microarray images while limiting the impact on the
analysis of these images. Specifically, the quantizer is designed

to have minimal impact on segmentation, as well as on CRM
values. The impact on segmentation is controlled by limiting
errors in the pixels having small values, while errors in the
CRM are controlled by limiting the pixel-wise relative error.

The fixed-rate scalar quantizer that minimizes relative error
for continuous-amplitude sources has been described in the
literature [16]. For sources with probability density functions
equal to f(z) = a/x, a € R, the optimal solution is a
logarithmic quantizer. DNA microarray image pixel distribu-
tions, in which low values are much more probable than high
values [14], can be approximated by such density functions.
Therefore, the design of the proposed RQ is based on the
logarithmic quantizer. On the other hand, the proposed RQ is
designed for discrete-amplitude (integer pixel) sources, rather
than continuous-amplitude (real number) sources. Addition-
ally, in order to minimize the impact on the spot segmentation,
the RQ further prioritizes low-intensity pixels. Specifically, as
described in detail below, low-intensity pixels that fall within
a prescribed range are guaranteed to be preserved perfectly.

The RQ is applied independently to each pixel of the
original image. Each such pixel is assumed to be an unsigned
integer of bitdepth B > 1. The RQ is parameterized by an
integer k in {1,..., B}, which controls the precision of the
quantizer. In order to describe the quantization intervals, it is
useful to consider pixel values in their binary representation.
For a given pixel, let IV be the position of its most significant
bit having value equal to 1, where B — 1 and O are the most
and least significant positions, respectively. For example, let
B = 4. Then pixels having values v; = 00012, vy = 01004
and v3 = 0101, have Ny = 0, No = 2 and N3 = 2,
respectively.

The main idea of the RQ is to then preserve only the bits
in positions B — 1,..., N — k + 1. Note that, by definition,
only the k bits in positions N, ..., N — k + 1, can be different
from 0. From this observation, it follows that if N < k, then
all bits of the pixels are preserved. That is, all pixels having

values in {0,1,...,2F — 1} are preserved losslessly.
Table I shows the operation of the RQ for B = 4 and
k = 2. The first two rows in the table show the decimal

and binary representations for each possible pixel value. The
bits to be preserved are highlighted in bold font. Pixel values
that are identical in the preserved positions are assigned to
the same quantization interval, and hence, have the same
quantization index, as given in the third row. The fourth and
fifth rows show the binary and decimal representations of the
reconstructed pixel values at the output of the dequantizer. The
interval mid-point rounded up to the next integer has been used



for reconstruction. As an example, two pixels taking values
01002 and 01015 belong to the same quantization interval.
They share a common quantization index of 4, and are both
reconstructed as 5. As expected, pixels having values less than
2% = 4 are preserved perfectly.

As seen in Table I, when B = 4 and k = 2, there are 8
distinct quantizer indices. To calculate the number of quantizer
indices for arbitrary B and k, it is illustrative to view the RQ
as a quantizer having non-uniform intervals. For any choice of
B, the first 2 intervals correspond to preserving all bits of any
pixel having value 0 < p < 2*. Each interval thus contains
only one value. That is, each interval is of size 20 — 1. The
next 2~ intervals correspond to preserving all but the least
significant bit of any pixel with value 2* < p < 2**!, Hence,
two values are assigned to each interval. That is, each interval
is of size 2'. The next 2"~ ! intervals correspond to preserving
all but the two least significant bits of any pixel with value
2k+1 < p < 2F+2 Each such interval is of size 22. Each
subsequent group of 251 intervals has size 23, 24, etc. Finally,
the 251 intervals of the last group each have size 25~*. This
last group of intervals preserves the k£ most significant bits of
any pixel having value 28-! < p < 25,

For any values of B and k, the exact number of quantization
intervals Ij, can then be easily calculated. Since there are 2%
intervals of size 1 and 21 intervals of each size s with s €
{2122 .. 2Bk} there are exactly 2% + (B — k)2~ ! =
(B — k + 2)2*—! quantization intervals. Table II provides I}
for several values of B and k.

TABLE II: Number of quantization intervals Ij, for the RQ
using B =4 and B = 16.

k 1 2 3 4 5 6 7
I, (B=4) 5 8 12 16 N/A N/A N/A
I, (B=16) 17 32 60 112 208 384 704

In summary, no error is incurred in the 2* lowest pixel
values. Additionally, several of the next quantization interval
groups have small lengths: 2, 4, 8, 16, etc., implying small
maximum errors. As discussed in Section II-A, low intensity
pixels are crucial for the spot segmentation. Thus, the small
maximum error introduced by the RQ in this intensity range
attenuates the impact on the segmentation process. Moreover,
the maximum relative error in each pixel is bounded. Specifi-
cally, pixels having values 287 < p < 2F+7+1 are quantized
using an interval of size exactly 2/*1, j = 0,1,..., B—(k+1).
It follows that the absolute error introduced in a pixel by
quantization/dequantization is at most £,,5 = 27, so that the
maximum relative error is bounded by &, = 27 /2F+7 = 27k,
As explained in Section II-A, limiting the pixel-wise relative
error helps control the distortion in the extracted CRM values.

III. IMPACT OF THE RELATIVE QUANTIZER ON GENETIC
DATA EXTRACTION

A. Distortion Metrics

The main drawback of lossy coding methods applied to
DNA microarray images is the possibility of distorting the
results of any subsequent genetic data extraction process. As

explained in Section II-A, the segmentation step may fail to
detect one or more spots. Also, the corrected ratio of means
(CRM) values extracted for detected spots may be distorted.

CRM values are usually classified into one of three cate-
gories: a) CRM € R = [«, 3], b)) CRM < « or ¢) CRM > §.
Typically, o = 0.5 and 3 = 2 [3] so that category a) indicates
roughly equal expression levels, while the other two categories
indicate that the gene of interest is more highly expressed
in one biological sample or the other. This classification is
usually the only output considered, and experts from the
Genomics and Bioinformatics Service of the Biology and
Biomedicine Institute (IBB) at the Universitat Autonoma de
Barcelona (UAB) agree that any lossy process for which no
detection errors occur and the extracted CRM values remain
unmodified is equivalent to a numerically lossless process.

Based on this, two full-reference distortion metrics are
defined below to assess the acceptability of the changes
introduced in the images by lossy processes, including the
proposed RQ. The first one is the average relative error in
the CRM (AREcrm). Given the analysis results of an original
and a distorted (e.g., quantized) image, it is defined as

1<~ |CRM; — CRM|
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i=1
Here, n is the number of spots positively detected in both the
original and the distorted images. The CRM extracted from the
i-th such spot i% original and distorted images are denoted
as CRM; and CRMj, respectively. The parameter § is set to
0.001 to stabilize the case CRM; = 0. As an example, a
value of AREcgrm = 0.5 would indicate that, on average, the
distorted CRM values differ by 50% of their original values.
This metric provides insight on the global distortion in the
analysis process. Similar analysis distortion metrics have been
employed in the literature [1], [2].
The second metric is the fraction of spots wrongly detected
or classified (FWDOC). It is defined as

FWDOC = (d + ¢)/m, 3)

where d is the number of spots that are detected differently
in the original and quantized images, c is the number of spots
that are positively detected in both the original and quantized
images but are classified differently, and m is the total number
of spots. Note that m includes both detected and not detected
spots and, hence, m > n. Similar approaches have been used
in [2] and [3]. This metric quantifies the probability of a spot
becoming unusable because of the introduced distortion. As
suggested by the IBB experts, the R = [o, ] = [0.5,2]
interval is employed in this work to perform all classification
operations.

B. Distortion Results

A number of tests have been carried out to evaluate the
performance of the RQ with respect to microarray images. The
first such test was to evaluate the distortion resulting from the
RQ for various values of k. This test was performed using
a corpus of 44 images, obtained from real experiments at the
IBB, hereinafter referred to as the IBB corpus. Specifically, all



images from the corpus were quantized by the proposed RQ
using £ € {1,...,7}. The images were then reconstructed
from quantization indices by employing interval mid-points
rounded up to the next integer. The original IBB corpus and
the 7 reconstructed versions were analyzed with the GenePix
software at the IBB [17]. The results for the original and
the quantized versions were compared using the two metrics
described in Section III-A.

In the IBB corpus, each spot is replicated, i.e., there are
2 spots devoted to each gene. Ideally, identical segmentation
and CRM results should be obtained for both spots. However,
in real experiments, they differ even in the original images
before quantization. Thus, two more metrics have been derived
from (2) and (3) to calculate the variability present between
pairs of replicated spots in the original images. Given the
analysis results of an original image, the replicate AREcrm
(Rep-AREpy) is defined as
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where CRM! and CRM are, respectively, the CRM of the first
and second spots of the i-th replicated pair, p is the number
of such pairs where both spots are positively detected, and
0 = 0.001. Similarly, the replicate fraction of spots wrongly
detected or classified (Rep-FWDOC) is defined as

Rep-FWDOC = (dpair + Cpair) /4, )

where dp,ir and ¢, are the number of pairs whose spots are
differently detected or classified, respectively, and ¢ is the
total number of pairs in the image. Since not all spots are
necessarily detected, ¢ > p.

Results for the quantized images and for the replicated
spots in the original images are provided in Table III. In
the most aggressive case (k = 1), large errors are apparent,
especially in the AREcrym. Nevertheless, rapid improvement
is observed as the parameter k is increased. For k& > 4,
the AREcgrm and the FWDOC are below 8.0% and 4.5%,
respectively. Significantly, for all £ > 1, the AREcgrym and
the FWDOC metrics show a better behavior than the Rep-
AREcrym and the Rep-FWDOC for the replicated spots in the
original images. In the literature on lossy compression of DNA
microarray images, distortions smaller than the experimental
variability are considered acceptable [1]-[3]. The distortion
among replicated spots can be understood as a measure of this
variability. In this light, the results of Table III suggest that
the proposed RQ yields acceptable distortions for all k£ > 1.

Arguably, the selection of a suitable value for & might be
specific to the scanner and analysis software employed. Given
a set of images and analysis software appropriate for the
scanner from which the images were acquired, a conservative
approach might be to select a value of k for which the average
distortion measured by the metrics proposed in (2) and (3) are
between one half and one third of the replicate variability as
defined in (4) and (5), respectively. For the IBB corpus, this
leads to the choice of k = 3 or k = 4.

Results for the test described in this section have not been
obtained for DNA microarray images from other corpora.

TABLE III: Average relative error in the CRM (AREgy) and
fraction of spots wrongly detected or classified (FWDOC) after
the RQ. Results have been averaged over all 44 images of the
IBB corpus. Average data for the pairs of replicated spots
in the original images (the Rep-AREcgy and Rep-FWDOC
metrics) are provided at the bottom.

Images AREcrm FWDOC
Original vs. RQ k =1 0.562 0.148
Original vs. RQ k =2 0.124 0.100
Original vs. RQ k =3 0.121 0.064
Original vs. RQ k =4 0.078 0.044
Original vs. RQ k =5 0.064 0.030
Original vs. RQ k =6 0.039 0.019
Original vs. RQ k =7 0.028 0.014
Images Rep-AREcrm Rep-FWDOC
Original 0.254 0.212

Other corpora employed in the literature either do not consist
of green/red channel pairs from the same DNA microarray
experiment, or no compatible analysis software is publicly
available. Thus, an exhaustive study on the impact of k& on
the analysis of such corpora is beyond the scope of this
work. Nevertheless, the properties of the RQ described in
Section II-B (bounded relative error for all pixels and small
absolute error for low-intensity pixels) do not depend on the
source of the image being quantized. Moreover, since the
maximum relative error of 27% quickly decreases as k is
increased, it is reasonable to expect the analysis distortion to
be a monotonically decreasing function of % for any image set,
and that a very small analysis distortion should be obtained
for any image whenever k& > 5.

Additional tests that employ the IBB corpus, as well as other
corpora from the literature, are discussed in the next section.

IV. LoSSLESS CODING OF RQ INDICES

In this section, several techniques are considered for the
coding of RQ indices. Only lossless coding strategies are taken
into account, so that the distortion of the entire resulting sys-
tem is due only to the RQ. Prior to describing the techniques
employed, the image corpora used in subsequent experiments
are discussed.

A. DNA Microarray Image Corpora

A total of 228 DNA microarray images in 7 corpora
produced by different types of scanners have been gathered to
evaluate the lossless compression of indices produced by the
proposed RQ. All images most often used for benchmarking
in the DNA microarray image compression literature —the
ApoAl, the ISREC and the MicroZip corpora— have been
included. Additionally, the Arizona and IBB corpora, which
contain images representative of the output of more modern
DNA microarray scanners, have been included. Table IV
summarizes some of the most important image properties. In
particular, the total number of grayscale images in each corpus
is provided in the Images row. All images are 16 bpp. Some
of the corpora do not contain green/red channel pairs, which
yields an odd number of grayscale images in some cases. The



TABLE IV: Image corpora used for benchmarking in this work. Original image pixels are unsigned 16-bit integers.

Property Yeast [18]  ApoAl [19] ISREC [20] Stanford [21]  MicroZip [4]  Arizona [22]  IBB [23]
Year 1998 2001 2001 2001 2004 2011 2013
Images 109 32 14 20 3 6 44
Size 1024%1024  1044x1041 10001000 > 2000%x2000 > 1800x1900 440013800  2019x6235
Spot count ~9.103 ~6-10° ~ 2102 ~4-103 ~9-.103 ~2.10° ~1.4-10*
Avg. intensities 5.39% 39.51% 33.34% 28.83% 37.71% 82.82% 54.07%
Avg. entropy (bpp) 6.628 11.033 10.435 8.293 9.831 9.306 8.503
Best rate (bpp) [24] 5.521 10.223 10.199 7.335 8.667 8.275 8.039

percentage of the 216 possible pixel intensity values that are
actually present in each image has been computed, and the
average percentage for each corpus is reported in the Avg.
intensities row. The average first-order entropy of each corpus
is reported in the row labeled Avg. entropy. Results for the best
method known for lossless DNA microarray compression [24]
are expressed in terms of bpp in the last row. These results
were obtained for the original unquantized images using an
implementation provided by the authors of [24]. For each
corpus, the reported results are better than the first-order
entropy, due to the fact that pixel dependencies are effectively
exploited by the coding method employed.

B. Compression Experiments

All images from the described corpora were quantized by
the proposed Relative Quantizer (RQ) for each k € {1,...,7},
and the quantization indices were stored as an image. The
resulting index images were then subjected to lossless coding
using several algorithms. Since k = 7 already yields analysis
distortions 10 to 20 times smaller than the experimental
variability (see Section III-B), larger values of k£ have not been
considered here.

The tested lossless coding algorithms include generic
data compressors (bzip2), image and video compressors
not specifically designed for DNA microarrays (JPEG-
LS [25], CALIC [26], lossless JPEG2000 [27] and lossless
HEVC/H.265 [28]), and the best lossless microarray-specific
image compressor (Neves and Pinho’s method [24]). Note
that publicly available CALIC codecs support images up to
8 bpp, i.e., 256 different pixel values. As can be seen from
Table II, the proposed RQ yields index images with 384 or
more intensities whenever k£ > 6. Therefore, CALIC has only
been applied for £ < 6. The H.264 standard has not been
included in this study since it does not support image sizes
large enough for many DNA microarray images [29].

In addition to the variable-rate methods listed in the previous
paragraph, fixed-rate coding is also considered. The simplest
such strategy is to assign to each index a fixed length codeword
of length [log, I} | bits. For example, when k& = 4, a codeword
length of [log, 112] = 7 bits will suffice. If a block of L
indices are coded together, a codeword of length [log, I}] will
suffice. The rate of the resulting code is then 7 [log, IF] <
logy I1, + % Thus, fixed length coding can approach log, I},
bits per pixel as closely as desired.

Table V presents the results obtained for each value of
k by the different coding techniques. Data for the original
images before quantization is also provided. Results are given

in bits per pixel, calculated as the combined size in bits
of all compressed images divided by the total number of
pixels in a corpus. The fixed-rate results do not depend on
the corpus and are reported once at the top of the table for
block size L = 2000. The Lossless JPEG2000 row contains
results for Kakadu v7.4 using the best choice of parameters for
each column!. As expected, the bitrate decreases (compression
ratio increases) as k is decreased for all tested coders. For
example, bitrate reductions of over 20% are observed for
k = 7, as compared to the original images. As another
example, 60% reductions are observed for & = 3. For a
specific corpus and specific value of k, the rates resulting from
different coders are typically within 0.5 bits per pixel, with
several notable exceptions. For example, the state-of-the-art
video coder HEVC/H.265? produces very poor results for the
original images, but provides more competitive performance
for RQ index images. For every value of k, the best-performing
coder for all image corpora is that of Neves and Pinho [24].
This should be expected, at least for the case of the original
DNA microarray images, for which it was designed.

C. Rate-distortion Analysis

The previous sections have demonstrated that compression
systems based on the proposed RQ can provide significant
compression with negligible effect on the DNA microarray
analysis. In what follows, we compare the performance of RQ-
based compression with more classical lossy compression ap-
proaches, using the distortion metrics developed in Section III.
As discussed in Section II-A, metrics based on the quadratic
pixel-wise error like the PSNR (or MSE) are not adequate
in this regard. Similarly, metrics based on the human visual
system such as SSIM [30] and HDR-VDP 2 [31] may not be
useful, since microarray images are analyzed by algorithms
and not by human observers.

To the best of the authors’ knowledge, all lossy algorithms
that report the distortions introduced in the DNA microarray
image analysis process [1]-[3] are based on either lossy
JPEG2000 or near-lossless JPEG-LS. The direct study of the
actual lossy microarray-specific methods in the literature [1],
[2], [4]-[6] is not possible due to the lack of available
software implementations and the image corpora used for
benchmarking. Therefore, standard lossy JPEG2000 and near-
lossless JPEG-LS are applied to the original images and used

ISsigned=no and 0 wavelet decomposition levels for 1 < k < 4;
Ssigned=no and 3 DWT decomposition levels for 5 < k < 6; Ssigned=yes
and 0 DWT decomposition levels for k£ = 7 and for the original images.

2Invocation instructions and configuration file are available at http:/deic.
uab.es/~mhernandez/media/software/hevc_lossless.cfg.



TABLE V: Compression results in bpp for RQ followed by different lossless coding algorithms. Lossless compression results
for the original images are also provided.

RQ index images

Corpus

Algorithm

Original images

k=1 k=2 k=3 k=4 k=5 k=6 k=7

Fixed-length coder 4.087 5.000 5.907 6.807 7.700 8.585 9.459 16.000

Average entropy 1.854 2474 3.272 4.156 5.074 5.945 6.294 6.628

bzip2 1.028 1.614 2.462 3.399 4.355 5.250 5.655 6.075

Yeast JPEG-LS 1.007 1.497 2.231 3.082 3.986 4.989 5.892 8.580
CALIC 0.977 1.503 2.268 3.075 3.940 - - -

Lossless JPEG2000  1.355 1.473 2.282 3.417 4.339 5.308 6.219 5.903

HEVC/H.265 1.241 1.844 2.632 3.532 4.495 5.532 6.650 10.660

Neves & Pinho 0.900 1.339 2.017 2.921 3.887 4.769 5.056 5.511

Average entropy 1.704 2.504 3.442 4.423 5417 6.415 7.414 11.033

bzip2 1.357 2.121 3.062 4.052 5.063 6.090 7.106 11.064

ApoAl JPEG-LS 1.258 1.921 2.746 3.691 4.680 5.728 6.698 10.606
CALIC 1.202 1.889 2.729 3.620 4.588 - - -

Lossless JPEG2000  1.404 1.930 2.822 3.758 4.859 5.896 7.518 10.787

HEVC/H.265 1.348 2.054 2.943 3.936 5.009 6.168 7.408 14.482

Neves & Pinho 1.041 1.715 2.604 3.565 4.562 5.557 6.565 10.223

Average entropy 2.674 3.617 4.597 5.585 6.543 7.442 8.277 10.435

bzip2 2.681 3.621 4.604 5.599 6.561 7.476 8.373 10.921

ISREC JPEG-LS 2.725 3.671 4.663 5.660 6.670 7.601 8.494 11.145
CALIC 2.639 3.526 4.482 5.471 6.464 - - -

Lossless JPEG2000  2.690 3.518 4.536 5.575 6.703 7.695 8.491 10.625

HEVC/H.265 2.623 3.618 4.705 5.880 7.102 8.503 10.077 14.876

Neves & Pinho 2.403 3.317 4.291 5.281 6.241 7.144 7.976 10.199

Average entropy 2.021 2.863 3.801 4.785 5.777 6.662 7.268 8.293

bzip2 1.415 2.205 3.107 4.090 5.098 5.982 6.553 7.887

Stanford JPEG-LS 1.343 1.974 2.839 3.802 4.796 5.700 6.241 7.597
CALIC 1.230 2.003 2.786 3.701 4.678 - - -

Lossless JPEG2000 1.524 2.048 3.053 4.120 4.946 5.865 6.589 7.685

HEVC/H.265 1.373 2.051 2.958 3.952 5.024 6.034 6.702 8.897

Neves & Pinho 1.105 1.793 2.695 3.653 4.659 5.512 6.053 7.335

Average entropy 1.859 2.729 3.679 4.665 5.662 6.661 7.639 9.831

bzip2 1.574 2435 3.380 4.370 5.381 6.408 7.379 9.394

Microzip JPEG-LS 1.448 2.149 3.037 4.013 5.011 6.028 7.005 8.974
CALIC 1.383 2.176 2.977 3915 4.904 - - -

Lossless JPEG2000  1.825 2.161 3.178 4.275 5.171 6.212 7.597 9.157

HEVC/H.265 1.609 2.403 3.339 4.343 5.447 6.638 7.893 11.179

Neves & Pinho 1.243 1.957 2.864 3.868 4.856 5.859 6.830 8.667

Average entropy 2.094 2.959 3.902 4.887 5.881 6.877 7.781 9.306

bzip2 1.577 2.398 3.321 4.304 5.309 6.331 7.234 8.944

Arizona JPEG-LS 1.491 2.270 3.139 4.102 5.093 6.125 7.005 8.646
CALIC 1.464 2.250 3.061 4.003 4.980 - - -

Lossless JPEG2000  1.742 2.216 3.273 4.351 5.241 6.274 7.424 8.795

HEVC/H.265 1.470 2.280 3.229 4.236 5.338 6.532 7.664 10.592

Neves & Pinho 1.201 1.976 2.874 3.878 4.870 5.867 6.766 8.275

Average entropy 3.168 3.906 4.651 5.386 6.095 6.756 7.340 8.503

bzip2 3.048 3.832 4.649 5.448 6.206 6.927 7.590 9.081

IBB JPEG-LS 3.571 4.490 5.373 6.227 7.029 7.733 8.429 9.904
CALIC 3.366 4.235 5.091 5.936 6.740 - - -

Lossless JPEG2000  3.179 3.880 4.788 5.646 7.271 8.076 7.261 8.392

HEVC/H.265 3.654 4.671 5.685 6.716 7717 8.863 9.991 12.262

Neves & Pinho 2.653 3.363 4.105 4.844 5.556 6.214 6.800 8.039

Average entropy 2.196 3.007 3.906 4.841 5.778 6.680 7.430 9.010

bzip2 1.817 2.610 3.519 4.473 5432 6.362 7.148 9.052

Corpora averages JPEG-LS 1.835 2.567 3.433 4.368 5.324 6.272 7.109 9.350
P £ caLIC 1752 2512 3342 4246 5.185 - - -

Lossless JPEG2000  2.006 2.745 3.596 4.532 5.511 6.483 7.392 9.759

HEVC/H.265 1.903 2.703 3.642 4.656 5.733 6.896 8.055 11.850

Neves & Pinho 1.507 2.209 3.064 4.001 4.947 5.846 6.578 8.321




=—o |ossy JPEG2000
Near-lossless JPEG-LS
+—+ Proposed
0.40
0.35
0.30
0.25

SIRep—ARK /2 N —
0.10 I
\
0.05 e ~
0.00

3 4 5 6 7
Bitrate (bpp)

(a)

Lossy JPEG2000
Near-lossless JPEG-LS

+— Proposed
0.20
0.15 .\ \
S |Rep—PWDOC/2 \
0 0.10 AN
= R
L
000 . \\
\‘\’
0.00 3 4 5 6 7
Bitrate (bpp)
(b)

Fig. 3: Distortion metrics versus bitrate: (a) average relative error in the CRM (AREcgrwm); (b) fraction of spots incorrectly
detected or classified (FWDOC). Half the average replicate CRM relative error (Rep-AREcgrym/2) and half the fraction of
replicated spots wrongly detected or classified (Rep-FWDOC / 2) are shown as horizontal lines in (a) and (b), respectively.

to provide comparisons with the proposed RQ-based coder
(using Neves and Pinho’s lossless compressor).

The resulting rate-distortion curves for the IBB corpus
are shown in Fig. 3. The average results for each value of
k € {1,2,...,7} (the proposed scheme), each target bitrate
R e {3,4,...,7} bpp (lossy JPEG2000), and each maximum
absolute error e € {4,16,32,64} (near-lossless JPEG-LS)
are shown. Note that the high AREcry yielded by k£ = 1
has been omitted in Fig. 3a. Results for the lossy JPEG2000
algorithm have been obtained without applying the level offset
and using 3 decomposition levels of the 9/7 irreversible DWT,
the best choice for this corpus. It can be observed that for
k > 1, the proposed system consistently yields better results
than both lossy JPEG2000 and near-lossless JPEG-LS for both
the AREcry and FWDOC metrics. At about only 3.4 bpp, the
proposed algorithm produces less than Rep-AREcrym / 2 and
Rep-FWDOC / 2, i.e., half the acceptable experimental vari-
ability. This should be compared to an average of 8.039 bpp
required to achieve strictly lossless compression of the original
images without quantization (see Table V).

V. CONCLUSIONS

DNA microarray images are usually stored so that they can
be re-analyzed with future algorithms or in different labora-
tories. Due to the large amount of DNA microarray image
information being currently generated, image compression is
a useful tool to cope with the storage and transmission of these
data. State-of-the-art lossless coding algorithms typically yield
compression ratios of only 2:1 or less. Lossy coding methods
can attain much higher compression ratios, however, some

distortion is introduced in the decompressed images. Thus,
it is necessary to assess the acceptability of this distortion in
regards to subsequent image analysis.

In this paper, a Relative Quantizer (RQ)-based lossy com-
pression method is proposed. The RQ is designed to limit
two quantities that are crucial to the analysis process: the
relative error of all pixels and the absolute error of low-
intensity pixels. The distortion introduced by the proposed
RQ results in errors in the analysis process that are smaller
than those due to the experimental variability inherent to DNA
microarrays. The proposed algorithm results in compression
ratios exceeding 4.5:1 without introducing any additional
analysis error. Furthermore, the k parameter of the RQ can
be adjusted to trade off compression bitrate for analysis result
precision. The rate-distortion results of the proposed coder
significantly outperform those of state-of-the-art lossy coding
algorithms.
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of DNA Microarray Images
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Abstract—The analysis techniques applied to DNA microarray
images are under active development. As new techniques become
available, it will be useful to apply them to existing microarray
images to obtain more accurate results. The compression of these
images can be a useful tool to alleviate the costs associated to
their storage and transmission. The recently proposed Relative
Quantizer (RQ) coder provides the most competitive compression
ratios while introducing only acceptable changes in the images.
However, images compressed with the RQ coder can only be
reconstructed with a limited quality, determined before com-
pression. In this work, a progressive lossy-to-lossless scheme is
presented to solve this problem. The regular structure of the
RQ intervals is exploited to define a lossy-to-lossless compression
algorithm called the PRQ coder. An enhanced version that
prioritizes a region of interest —the PRQ-ROI coder- is also
described. Experiments indicate that the proposed algorithms
achieve lossless compression results almost identical to those of
the non-progressive RQ coder. Moreover, the PRQ-ROI coder
yields better rate-distortion results than both the RQ and PRQ
coders.

Index Terms—DNA microarray images, Image compression

I. INTRODUCTION

DNA microarrays are a state-of-the-art tool in biology
and biomedicine. Laboratories around the world employ mi-
croarrays to monitor in parallel the function and regulation
of thousands of genes of an organism [1]. When a DNA
microarray experiment is performed, two biological samples
are put on a microarray chip, which is then scanned to produce
two grayscale images. Finally, the images are analyzed to
extract the genetic data of interest. The different parts of
the analysis process are under active development [2]-[8].
This work does not focus on the analysis of DNA microarray
images and, hence, a discussion of previous works is out of
scope. The interested reader can find a complete review of the
state of the art of this topic in [7]. As new analysis techniques
are developed, it will be desirable to apply them to obtain more
accurate genetic data from previously performed experiments.
However, repeating all parts of the experiment is usually not
an option because the required biological samples may not be
available some time after performing the original experiment,

This work has been partially funded by FEDER, the Spanish Government
(MINECO) and the Catalan Government under projects TIN2012-38102-C03-
03, FPU AP2010-0172 and 2014SGR-691.

*M. Herndndez-Cabronero, 1. Blanes and J. Serra-Sagrista are with the
Universitat Autonoma de Barcelona, Bellaterra 08193, Spain (e-mail: mher-
nandez@deic.uab.cat).

A. J. Pinho is with the Signal Processing Lab, DETI/IEETA, University of
Aveiro, 3810-193, Portugal.
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or because the re-analysis may need to be performed in
another laboratory. Therefore, storing the DNA microarray
images is paramount to enable future, more accurate genetic
data extraction. In order to facilitate the management and
transmission of these images, image compression emerges as
a valuable tool.

The lossless compression of DNA microarray images has
proven to be a very challenging task. Compression ratios
significantly better than 2:1 are not generally obtained even
by algorithms specifically designed for such images [9]. On
the other hand, lossy coders can yield arbitrary compression
ratios at the cost of modifying the images. Even though
subsequent analysis techniques may be distorted by these
modifications, sufficiently small distortions can be considered
acceptable [10]-[12]. Several generic image compression ap-
proaches (or adaptations thereof) have been applied to DNA
microarray images [10], [11], [13]-[16]. Since these coding
techniques are not specifically designed with the analysis
of microarray images in mind, results for these methods
may not be optimal. A lossy compression method expressly
designed for this type of images was recently proposed [9]. In
spite of its very competitive rate-distortion results, superior to
existing lossy and lossy-to-lossless compressors, this technique
does not offer a progressive reconstruction of the images. In
this work, a lossy-to-lossless compression scheme for DNA
microarray images is proposed.

The rest of this paper is structured as follows. Section II
describes the most relevant features of the technique presented
in [9]. A progressive lossy-to-lossless coding approach is
proposed in Section III and its compression performance
is analyzed in Section IV. Finally, Section V draws some
conclusions.

II. THE RELATIVE QUANTIZER

The lossy compression method presented in [9] is based on
a non-uniform scalar quantizer called the Relative Quantizer
(RQ). This quantizer is applied independently to unsigned
pixels of images of bitdepth B > 1. The quantization intervals
of the RQ are fully determined by an integer parameter
k € {1,..., B} that controls the precision of the quantization
process. The first 2F intervals have size 1 and, hence, pixel
intensities in {0,...,2%¥ — 1} are preserved losslessly. The
next 2°~1 intervals have each size 2! and the following 2¥~!
intervals have size 22. Each successive group of 2~ intervals
has size 23,24, etc until the last group, which contains intervals
of size 287F. A diagram of the quantization intervals of the
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Fig. 1: Quantization intervals of the RQ for B = 4 and
all possible values of k. The index of each interval is also
indicated.

RQ for B = 4 and all possible values of k is shown in
Fig. 1. The index associated to each of the intervals is also
provided in the figure. Note that the RQ for k£ = B corresponds
to a uniform quantizer of step size 1, i.e., not performing
any quantization. This definition allows the RQ to yield very
competitive compression performance while introducing only
an acceptable distortion in subsequent analysis results [9].
Thus, the lossy-to-lossless scheme proposed in Section III is
based on the RQ.

In [9], the quantization indices produced by the RQ are
coded with the lossless compressor described in [17]. The
bitplanes are compressed in raster order using an arithmetic
coder (AC), beginning with the most significant bitplane. The
probabilities used to drive the AC are computed based on
a model that employs information from previously encoded
bits. The position of the bits employed to extract that in-
formation is referred to as the context. A key property of
this algorithm is the fact that the actual context employed in
each bitplane is calculated at compression time. To calculate
the best context, a greedy algorithm evaluates each candidate
context by compressing a rectangular region of the center of
the image using that context. After that, the best-performing
candidate is selected. Thence, this image-dependent algorithm
is able to very accurately adapt to the individual properties of
each bitplane. As a result of this flexibility, this compressor
exhibits the best performance for this type of images and the
RQ-quantized versions thereof. Therefore, a version of this
algorithm is employed in the lossy-to-lossless coder proposed
in Section III.

The main drawback of the RQ coder is the fact that
compressed images can only be reconstructed up to a certain
precision determined by the chosen value of k. In particular,
the original image cannot be recovered for any k < B. If the
user wants to reconstruct the image losslessly or at different
qualities, several compressed versions of the image need be
kept. This approach multiplies the storage requirements and,
thus, is not practical. In what follows, a microarray-specific
progressive lossy-to-lossless scheme based on the RQ and
the compression algorithm from [17] is presented and its
performance is analyzed.

ITI. PROGRESSIVE LOSSY-TO-LOSSLESS CODING
A. Progressive Representation of DNA Microarray Images

In this section, the relationship between the quantization
intervals of the RQ for different values of & is exploited to de-
fine a lossless, progressive representation of DNA microarray

image pixels. As described in Section II, the quantization in-
tervals of the RQ for a given image bitdepth B are determined
by an integer parameter k € {1, ..., B}. The parameter k = 1
corresponds to the most aggressive (least precise) quantization
and k = B corresponds to not performing any quantization.
A key observation is that the RQ with parameter k£ = ko
with kg > 1 is actually a refined version of the RQ with
parameter k = ko — 1. More specifically, all quantizer intervals
that include more than one pixel intensity for k£ = kg — 1 are
divided in half for k = kg. For instance, let us consider the
case B = 4, shown in Fig. 1. The interval with index 3 for
k =1 is divided into the intervals with indices 4 and 5 for
k = 2. Likewise, the interval with index 6 for k = 2 is divided
into the intervals with indices 8 and 9 for £ = 3. On the other
hand, intervals that contain only one pixel intensity cannot be
further refined and their index is identical to the contained
pixel intensity. For example, for £ = 3, only intervals with
index ¢ > 7 can be refined. For k = B, all intervals contain
only one pixel intensity and their index is identical to that
intensity. Analogous relationships between the quantization
intervals apply for any B > 1 including B = 16, the bitdepth
of DNA microarray images.

The previous observations can be formalized to enable a
lossless, progressive representation of these type of images.
Given a pixel intensity p, let RQ,(p) be the quantization
interval corresponding to p for the RQ with parameter & and let
|IRQy (p)| be the number of intensities assigned to that interval.
Clearly, RQg(p) C RQp_1(p) C --- C RQ;(p). If the index
of the RQ,(p) interval is encoded, the decoder knows that
p € RQ,(p). However, if [RQ,(p)| > 1, the exact value of
p is not known. In this scenario, additional information can
be encoded to allow a more precise reconstruction of that
pixel. Since |[RQ;(p)| > 1, the interval RQ,(p) is divided
into two intervals of size |RQ;(p)|/2 for k = 2, as in the
example above. Therefore, only one refinement bit is needed
to signal which of these two intervals corresponds to RQ5(p).
Hereinafter, a refinement bit equal to O (resp. 1) is used when
RQp41(p) equals the lower (resp. upper) half of RQ,(p). By
encoding this bit, the range of possible reconstruction values
is halved and, hence, the precision is doubled. Likewise, if
RQ,(p) comprises more than one value, another refinement
bit can be encoded so that the decoder can determine which
candidate interval corresponds to RQs(p). By successively
applying this refinement process, it is possible to sequentially
determine RQ; (p), ...,RQp(p), i.e., the quantization indices
corresponding to p for all values of k. Recall that, by defini-
tion, RQz(p) allows a lossless reconstruction of the original
pixel intensity p.

Based on this, we define here a lossless, progressive RQ-
based (PRQ) representation of the pixel p as

PRQ(p) =RQ;(p), A152(p), ..., Ap—158(p), (h

where Ay x+1(p) is the refinement bit needed to obtain
RQp1(p) from RQ,(p). For instance let B = 4 and p = 11.
As can be seen in Fig. 1, RQ,(11) = 4, RQ,(11) = 6,
RQ;(11) = 9 and RQ,(11) = 11. Therefore, the refinement
bits are Aj_2(11) = 0 (lower half), As_,3(11) = 1 (upper
half) and As_,4(11) = 1 (upper half). Thus, PRQ(11) =



4,0,1,1. Note that |[RQ,,(p)| = 1 implies that the interval
need not be refined and, hence, A,,_.,,+1(p) need not be
signaled for any m > n. For instance, for B = 4 and p = 3,
PRQ(3) =2, 1.

The PRQ representation of any pixel p can also be ex-
pressed in binary form. As shown in [9], the total number
of quantization intervals of the RQ with parameter £ is
given by (B — k + 2)28=1. Hence, for DNA microarray
images (B = 16), 17 quantization intervals are employed
for k = 1. Thus, the index of RQ,(p) can be expressed
using [log, 17] = 5 bits. Once the first element of the PRQ
is signaled, each refinement bit Ay, 11(p) provides enough
information to recover the quantization interval index for the
RQ with the next value of k. Therefore, at most B — 1 = 15
such refinement bits need be coded to enable the recovery
of the original pixel value p. By sequentially appending the
refinement bits to the index of RQ,(p), any pixel can be
expressed in a progressive lossy-to-lossless way by signaling
at most 20 bits.

B. Progressive Compression

In what follows, a progressive lossy-to-lossless coder for
DNA microarray images based on the PRQ representation is
introduced. This coder is hereinafter referred to as the PRQ
coder.

When compressing an image, its 20-bpp PRQ representation
is first computed. The resulting data are coded with a version
of the algorithm introduced in [17]. This version includes two
modifications to adapt the original algorithm to the partic-
ularities of the PRQ representation and improve its coding
efficiency. As described in Section II, the compressor in [17]
proceeds by sequentially coding each of the image bitplanes,
beginning with the most significant bit. Hence, the elements
of the PRQ representation are coded in the order described in
Equation (1). As explained in III-A, some of the 15 refinement
bits are not needed for a given pixel p when |RQ,,(p)| = 1
for n < 16. Therefore, the first modification consists in not
coding any unneeded refinement bit of the PRQ representation.
As described in II, the original algorithm selects the optimal
context by comparing several candidates, each of which is
evaluated by compressing a rectangular N x M region in
the center of the image. If that region is not representative
of the whole image, a sub-optimal candidate context would
be selected. Thus, the second modification to [17] consists in
evaluating the candidate contexts by compressing N M pixels
uniformly sampled across the image. Since sampled pixels are
not confined in a relatively small region of the image, an over-
all more precise context can be selected, which can improve
the compression performance at a similar computational cost.

When the image is decompressed, the 20-bpp PRQ represen-
tation of the image is first obtained by applying a version of the
decoder presented in [17]. This version includes modifications
analogous to those described above to make it compatible
with the output of the encoder. For each pixel p, the index
of the RQ, (p) interval is then obtained from the 5 most sig-
nificant bits of its PRQ representation. Finally, the refinement
information contained in subsequent bitplanes is successively

applied until RQ,4(p) is recovered. By definition, the index
of this interval is identical to the original pixel intensity p
and, thus, the image can be losslessly recovered. As discussed
later in Section IV, the 20 bpp PRQ representation can be
losslessly coded with approximately the same performance as
the original 16 bpp pixels.

The correct decoding of truncated data is required to en-
able a progressive lossy-to-lossless coding pipeline. Since the
algorithm proposed in [17] is designed for purely lossless
coding, it needs be adapted to accept truncated versions of the
encoded data produced at the encoder. If 5 or more complete
bitplanes are decoded before the end of file (EOF) is reached,
RQ; (p) and possibly some refinement bits are available for
each pixel p. Hence, RQ,,(p) can be computed for some n
with 1 < n < 16, depending on the number of refinement
bits available. As in the original RQ, the recovered value of p
is calculated using the interval midpoint of RQ),,(p), rounded
up to the next integer. If less than 5 complete bitplanes are
available, then the index of RQ), (p) —corresponding to k = 1-
would need to be estimated for some pixels. Even though it
is possible to do so, this scenario should be generally avoided
due to the relatively high distortion introduced in subsequent
analysis processes for k£ =1 [9].

An additional enhancement is described now to improve
the coding performance of the progressive lossy-to-lossless
PRQ coder described above. The original algorithm introduced
in [17] assigns equal priority to all pixels of the image. Thus,
all bits of a bitplane are coded before proceeding to the
next bitplane. However, almost all information relevant to the
analysis of microarray images is contained in pixels inside the
so-called spots [1], which can be enclosed inside rectangular
regions of interest (ROIs). Due to the regular layout of the
spots in rectangular grids, whose geometry can be determined
a priori, defining the ROIs is a fast and easy operation. The
rest of the image —i.e., the background— contains data relatively
unimportant for subsequent analysis processes. If all bitplanes
of pixels inside a ROI are coded before the bitplanes of
background pixels, relevant information is placed closer to the
beginning of the compressed file. Therefore, the rate-distortion
performance of the PRQ coder can be improved by including
this enhancement. The version of the PRQ coder that includes
the ROI prioritization enhancement is hereinafter referred to
as the PRQ-ROI coder.

IV. COMPRESSION PERFORMANCE

The compression performance of the proposed PRQ and
PRQ-ROI coders is addressed in this section. First, the bitrate
required to obtain a lossless compression is surveyed. After
that, the rate-distortion results yielded by these lossy-to-
lossless algorithms is discussed.

To test the lossless compression efficiency, 228 real DNA
microarray images where compressed with the proposed
coders. This corpus contains most images used for the bench-
marking of microarray image compressors in the literature.
The average compression results in bpp —calculated as the
total number of compressed bits required for a lossless re-
covery of the images divided by the total number of pixels



TABLE I: Average lossless compression bitrate in bpp and
execution time expressed in relation to [17].

Neves and Pinho [17] PRQ coder PRQ-ROI coder
Bitrate 7.909 7.871 7.892
Time 100% 97.38% 99.76%

in all images— is provided in Table I. Results for the best-
performing lossless compressor for DNA microarray images
—first published in [17]- are also provided for comparison. The
average time for compressing and decompressing 4 times each
of the 228 images, expressed as a percentage of the execution
time of [17], is also provided in the table.

It can be observed that both the PRQ and the PRQ-ROI
coders achieve a slightly better lossless coding efficiency than
the best state-of-the-art lossless compressor [17], even though
the latter does not offer lossy-to-lossless capabilities. This can
be explained by the modifications described in Section III-B
(skipping of unneeded refinement bits and improved candidate
context evaluation). It can also be observed that the PRQ-ROI
coder yields a lossless compression performance almost iden-
tical to that of the PRQ coder. This suggests that the lossless
coding overhead due to the ROI prioritization capabilities is
negligible. As can be seen in the table, the PRQ and PRQ-ROI
coders are, respectively, 2.62% and 0.24% faster than the non-
progressive algorithm from [17]. These differences are due
to the fact that the PRQ-based coders skip the coding of all
unneeded refinement bits, which compensates for the larger
amount of bitplanes that need be processed.

Since the proposed PRQ coder is a progressive lossy-to-
lossless algorithm, it is paramount to analyze its rate-distortion
performance. To do so, it is necessary to assess the amount
of distortion introduced in the results of subsequent analysis
processes. Traditional image distortion metrics such as MSE
are not suitable for DNA microarray images because they do
not characterize the analysis result distortion [9]. Instead, the
microarray-specific metrics introduced in [9] —the AREcgrMm
and the FWDOC metrics— are hereinafter employed to assess
the distortion introduced in the images. Unlike traditional
metrics, these microarray-specific metrics directly compare
the data yielded by real analysis software when applied to
the original or the modified images. Hence, the AREcgrMm
and the FWDOC metrics provide an accurate measure of the
distortion introduced in subsequent analysis processes. In this
work, 44 of the 228 aforementioned DNA microarray images
are considered. The rest of the images could not be used
because of the lack of publicly available analysis software
compatible with these images.

First, the 44 images were compressed with the PRQ-
Uniform and the PRQ-ROI coders and the resulting code-
streams were truncated at 7 different lengths. The first trun-
cation point was selected so that only the first element of
the PRQ representation of each pixel is available. The next
truncation point was chosen so that the first refinement bit is
also available for all pixels. Each of the successive truncation
points was selected so that exactly one more refinement bit is
available for all pixels, as compared to the previous truncation
point. For each truncation point and coder, a reconstructed
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Fig. 2: Rate distortion results for the AREcry metric (left)
and the FWDOC metric (right).

version of the 44 images was then obtained. Finally, the two
aforementioned distortion metrics were calculated for each
reconstructed version. The average distortion results for the
PRQ and the PRQ-ROI coders as a function of the average
bitrate after truncation is provided in Fig. 2 for the AREcrm
and the FWDOC metrics, respectively. The rate-distortion
results for the non-progressive RQ coder for k& € {1,...,7}
are also provided for comparison.

It can be observed that the PRQ and the RQ coders yield
almost identical results for all tested bitrates. This suggests that
the PRQ representation introduces only a negligible overhead
even when only some of the refinement bits are coded. It
can also be seen that the PRQ-ROI coder generally yields
significantly better rate-distortion results than both the PRQ
and RQ coders. This can be explained by the fact that the
information important for subsequent analysis is coded before
the relatively unimportant information of the background. In
light of these data, it appears that the ROI-prioritization is an
effective way of enhancing the rate-distortion performance of
the PRQ coder.

V. CONCLUSIONS

Better analysis techniques for DNA microarray images are
being actively investigated. Hence, it is convenient to store
the images to enable future re-analysis of the data. The
compression of this type of images is a useful tool to reduce
the storage and management costs and to accelerate the sharing
of these images. Lossy coding algorithms can yield high
compression ratios introducing only acceptable distortion in
subsequent analysis processes. A lossy compression method
called Relative Quantization (RQ) was recently proposed. In
spite of its competitive compression performance, an image
coded with the RQ can only be reconstructed with a certain
quality level determined before compression and it is not
possible to recover the original image. This work introduces
an original solution to this problem. First, a lossless repre-
sentation of DNA microarray images is defined. Then the
PRQ coder, a progressive lossy-to-lossless coder based on
this representation, is proposed. Finally, an enhanced version
of this coder that includes region-of-interest prioritization —
the PRQ-ROI coder— is described. The proposed PRQ-ROI
exhibits significantly better rate-distortion results than the non-
progressive RQ coder without introducing any overhead in the
lossless compression bitrate nor in the average execution time.



(1]
(2]

(3]

(4]

(6]

(71
(8]

(91

REFERENCES

S. Moore, “Making chips to probe genes,” IEEE Spectr., vol. 38, no. 3,
pp. 54-60, Mar. 2001.

K. Blekas, N. Galatsanos, A. Likas, and I. Lagaris, “Mixture Model
Analysis of DNA Microarray Images,” IEEE Trans. Med. Imag., vol. 24,
no. 7, pp. 901-909, Jul. 2005.

J. Ho and W.-L. Hwang, “Automatic Microarray Spot Segmentation
Using a Snake-Fisher Model,” IEEE Trans. Med. Imag., vol. 27, no. 6,
pp. 847-857, Jun. 2008.

E. Zacharia and D. Maroulis, “An Original Genetic Approach to the
Fully Automatic Gridding of Microarray Images,” IEEE Trans. Med.
Imag., vol. 27, no. 6, pp. 805-812, Jun. 2008.

L. Rueda and I. Rezaeian, “A fully automatic gridding method for cDNA
microarray images,” BMC Bioinformatics, vol. 12, no. 1, p. 113, 2011.
G.-F. Shao, F. Yang, Q. Zhang, Q.-F. Zhou, and L.-K. Luo, “Using
the maximum between-class variance for automatic gridding of cDNA
microarray images,” IEEE/ACM Trans. Comput. Biol. Bioinformatics,
vol. 10, no. 1, pp. 181-192, Jan. 2013.

L. Rueda, Ed., Microarray Image and Data Analysis: Theory and
Practice. CRC Press, 2014.

L. Srinivasan, Y. Rakvongthai, and S. Oraintara, “Microarray image
denoising using complex Gaussian scale mixtures of complex wavelets,”
Journal of Biomedical and Health Informatics, vol. 18, no. 4, pp. 1423—
1430, 2014.

M. Herndndez-Cabronero, 1. Blanes, A. J. Pinho, M. W. Marcelling,
and J. Serra-Sagrista, “Analysis-Driven Lossy Compression of DNA
microarray images,” Submitted to IEEE Transactions on Medical Image,
2015.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Jornsten, W. Wang, B. Yu, and K. Ramchandran, “Microarray
image compression: SLOCO and the effect of information loss,” Signal
Processing, vol. 83, no. 4, pp. 859-869, Apr. 2003.

J. Hua, Z. Liu, Z. Xiong, Q. Wu, and K. Castleman, “Microarray
BASICA: Background adjustment, segmentation, image compression
and analysis of microarray images,” EURASIP Journal on Applied Signal
Processing, vol. 2004, no. 1, pp. 92-107, Jan. 2004.

Q. Xu, J. Hua, Z. Xiong, M. L. Bittner, and E. R. Dougherty, “The effect
of microarray image compression on expression-based classification,”
Signal Image and Video Processing, vol. 3, no. 1, pp. 53-61, Feb. 2009.
N. Faramarzpour and S. Shirani, “Lossless and lossy compression of
DNA microarray images,” in Proceedings of the IEEE International
Data Compression Conference, DCC, 2004, pp. 538-538.

S. Lonardi and Y. Luo, “Gridding and compression of microarray
images,” in Proceedings of the IEEE Computational Systems Bioinfor-
matics Conference, 2004, pp. 122—130.

T. J. Peters, R. Smolikova-Wachowiak, and M. P. Wachowiak, “Mi-
croarray image compression using a variation of singular value decom-
position,” in Proceedings of the Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, vol. 1-16, 2007, pp.
1176-1179.

M. R. N. Avanaki, A. Aber, and R. Ebrahimpour, “Compression of
cDNA microarray images based on pure-fractal and wavelet-fractal
techniques,” ICGST International Journal on Graphics, Vision and
Image Processing, GVIP, vol. 11, pp. 43-52, March 2011.

A. J. R. Neves and A. J. Pinho, “Lossless Compression of Microarray
Images Using Image-Dependent Finite-Context Models,” IEEE Trans.
Med. Imag., vol. 28, no. 2, pp. 194-201, Feb. 2009.



82

CHAPTER 4. LOSSY COMPRESSION



Chapter 5

Conclusions

5.1 Summary

Medical imaging has gained increasing importance in the diagnosis and research of
many diseases. DNA microarrays are state-of-the-art biomedical imaging tools ex-
tensively employed in laboratories across the world for the study of the function and
regulation of thousands of genes in parallel. The long-term storage of DNA microarray
images enables future, more accurate study of these genes. Thus, image compression
emerges as a natural approach to reducing the costs associated to their storage and
transmission.

DNA microarray images possess many properties that are different from those
present in natural images. Microarray images usually exhibit larger dimensions and
each pixel requires 16 bits to be stored without coding, whereas natural images usu-
ally require 8. Moreover, microarray images have very different intensity distributions
and typically employ only a fraction of all possible pixel values. All these differences
explain the relatively low compression performance obtained by general-purpose or
standard image compression algorithms when applied directly to DNA microarray
images. Hence, coding techniques specific for this type of images is required to attain
competitive results. The measurement of the entropy present in DNA microarray
images suggests that context-based segmentation-based approaches can yield perfor-

mance gains, as compared to generic data compression algorithms. Notwithstanding,
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according to the entropy results, compression ratios greatly exceeding 2:1 should not
be expected unless a significant breakthrough in lossless coding technology is made.
Lossless compression is the most commonly employed approach for DNA microar-
ray images. Several publications have addressed the problem of creating efficient loss-
less coding algorithms, most of which rely on image segmentation or context-based
approaches. However, none of these microarray-specific techniques is compliant with
existing image compression standards. Therefore, it is not possible to guarantee the
availability of compatible decoders in future platforms, hindering the main purpose
of storing the images. In [26], a compression approach fully compatible with the
JPEG2000 standard is proposed. By exploiting the statistical distribution of DNA
microarray image pixels, a reversible low-complexity transform —the Histogram Swap
Transform or HST- is able to consistently improve the lossless compression perfor-
mance of JPEG2000. Depending on the set, gains between 1.97% and 15.53% are
observed. With this transform, JPEG2000 becomes the overall best image compres-
sion standard, with results closer to microarray-specific algorithms. For convenience,
Table 5.1 summarizes the improvements due to the HST.
Table 5.1: Compression performance of JPEG2000 in bits per pixel with and without the

Histogram Swap Transform. All results are shown for the best number of spatial DWT
decorrelation levels.

Corpus Without the HST With the HST Difference

Yeast 6.829 5.911 0.918 (15.53%)
ApoAl 10.999 10.786 0.213 (1.97%)
ISREC 10.888 10.624 0.264 (2.48%)
Stanford 7.969 7.685 0.284 (3.70%)
MicroZip 9.467 9.157 0.310 (3.39%)
Omnibus 7.549 7.103 0.446 (6.28%)
Arizona 9.064 8.795 0.269 (3.06%)

IBB 9.182 8.392 0.790 (9.41%)

In order to improve the lossless compression performance of standard and spe-
cific techniques, the multicomponent compression of DNA microarray images is also
investigated. It was found that grouping together the two images produced in each

experiment is the optimal configuration in terms of correlation. With this approach,
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average correlations between 0.75 and 0.92 are observed for the different corpora.
Several methods for exploiting the spectral redundancy —including the DWT, the
RKLT, DPCM and the RHaar transforms— were surveyed in [28, 27]. The attained
results in bits per pixel for JPEG2000 using these transforms are provided in Ta-
ble 5.2. Results for the spectral transforms that improve the results for a given set,
as compared to not applying any spectral decorrelation transform, are highlighted
in bold font. Note that only the Yeast, ApoAl, ISREC, Arizona and IBB corpora
from Table 5.1 are included. The other corpora did not consist of pairs of images
of the same size, so the spectral decorrelation could not be applied. In spite of the
improvements yielded by some transform/corpus combination, it was not possible to
find any single decorrelation transform that consistently enhances the compression
performance.

Table 5.2: Compression performance of JPEG2000 for different spectral decorrelation trans-
forms and no spatial decorrelation.

Corpus No transform 5/3 DWT RKLT DPCM RHaar

Yeast 6.829 6.786 9.279 6.439 6.790
ApoAl 11.524 11.217 10.956 11.289 11.218
ISREC 10.888 11.451 11.468  11.203  11.452
Arizona 9.548 9.649 9.439 9.386 9.649

IBB 9.182 9.948 10.269 9.602 9.948

The lossy compression of DNA microarray images can provide significantly better
compression ratios than lossless algorithms. Moreover, the changes introduced in the
images can be small enough to produce only acceptable alterations in subsequent anal-
ysis processes, which justifies the use of lossy compression. Notwithstanding, these
alterations need to validated. In [30], a distortion metric —the Microarray Distortion
Metric (MDM)— was proposed to predict the impact on subsequent image analysis
results and assess the acceptability of a lossy compression process. Furthermore, this
metric does not require the application of any image analysis algorithm, facilitat-
ing its incorporation in any compression/decompression pipeline. Simulations reveal
that the MDM is able to differentiate important and unimportant modifications of

the image and to quantify the amount of distortion introduced.
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Even though several lossy compression techniques have been applied to DNA mi-
croarray images in the literature, most of them consist in the application of generic
image compression methods (or adaptations thereof) to these images. An original
microarray-specific compression algorithm —the Relative Quantizer (RQ) coder— was
first introduced in [31]. By using specially crafted quantization intervals, the RQ is
able to preserve the features that are more relevant to subsequent analysis processes.
With the RQ, the compression performance of DNA microarray images is greatly
improved while introducing only acceptable changes in the analysis results. Besides,
the amount of introduced distortion can be traded of for compression performance
by changing the value of an integer parameter k. For adequate values of k, average
compression ratios exceeding 4.5:1 are obtained without introducing significant anal-
ysis results distortion. This figure is to be compared with the 2:1 ratio that is usually

regarded as a practical limit to the lossless compression of DNA microarray images.

The proposed RQ method is purely lossless and the quality of the reconstructed
image is determined by the selected value of k. Hence, in order to recover image
versions of different quality (including the original data), several compressed versions
need to be stored. In [32], a progressive lossy to lossless scheme —the Progressive RQ
(PRQ) coder— was presented to solve this problem. With the PRQ coder, images can
be coded once and recovered at any quality (including lossless reconstruction) with
compression performance slightly better than the best lossless algorithm of the state of
the art. By prioritizing a region of the image that contains most information relevant
to subsequent analysis algorithms, rate-distortion results significantly better than
those of the non-progressive RQ coder are obtained. Moreover, the progressive lossy-
to-lossless coders proposed in [32] do not introduce any time complexity overhead.
Instead, execution time reductions of up to 2.62% are observed, as compared to the
best-performing lossless coding algorithm, on which the RQ and the PRQ coders are
based.
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5.2 Future Work

In light of all previous discussions, it is possible to for a big picture of DNA microarray

image compression and speculate about the future of this field.

The lossless coding of this type of images appears to be close to the practical
performance limit with current compression technology. Existing microarray com-
pressors already improve upon the first-order and conditional entropy of all tested
corpora and achieve performance only 0.8 bpp or less worse than the conditional en-
tropy after segmentation for 7 of the 8 corpora. Since the entropy after segmentation
does not take into account the overhead required to code the segmentation mask,
it is reasonable to state that existing compressors are close to the optimal coding
performance for the state-of-the-art decorrelation techniques. As discussed above,
many bitplanes exhibit properties similar to those of white noise, which is generally
considered to be incompressible. Of course, it is possible that a new highly effec-
tive decorrelation methods are found for DNA microarray images and more efficient
compressors can be implemented. Notwithstanding, there are compelling reasons to
think that significantly better lossless compression results cannot be obtained without

a large conceptual breakthrough.

On the other hand, the lossy compression of DNA microarray images has been
less thoroughly researched and several interesting questions remain open. One of the
most intriguing is the relationship between changes in the images and distortion in
subsequent analysis processes. Even though the microarray distortion metric (MDM)
proposed as a part of this thesis is able to distinguish important and unimportant
changes in the images, a fully quantitative method for predicting the impact on the
analysis results is yet to be found. Thus, a very attractive research line is to further
research the relationship between image changes and analysis distortion. Although
stimulating, this research is likely to be arduous due to the highly non-linear behavior
of the analysis algorithms, specially of the segmentation stage, when image pixel in-
tensities are modified. A deeper knowledge of the aforementioned relationship would
allow the definition of more precise distortion metrics, which, in turn, could be used to

significantly improve the rate-distortion results of standard coders such as JPEG2000
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via its post-compression rate-optimization (PCRD-op) mechanisms. Another appeal-
ing application of this knowledge is determining the extent to which an image can
be modified so that only a certain amount of distortion is introduced in the analysis.
This would help in the design of new lossy compression approaches and the improve-
ment of existing algorithms such as the RQ and PRQ coders proposed in this thesis.
For instance, the quantization scheme could be adapted to meet the maximum image
distortion criteria while allowing a more efficient coding of the quantization indices.

Finally, another interesting continuation line for this thesis would be to incorpo-
rate added-value features in the compression algorithms. For instance, Jornsten et
al. proposed in 2003 a compression algorithm that allows the individual decompres-
sion of each spot in the image. This functionality could be used to retrieve only the
spots corresponding to the genes of interest in future re-analysis processes. Analogous
functionality could be included in more recent lossless and lossy coding algorithms.
Another example of valuable functionality would be combining compression and vi-
sualization. Most modern scanners output a false-color representation of the two
grayscale channels that some researchers visualize to obtain qualitative information
about the experiment results. This extra output image could be avoided by com-
pressing the images so that the false-color representation can be displayed without
prior decompression. Standard tools such as JPEG2000-compliant viewers could be

used for this purpose.
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Acronyms

AC Arithmetic coder

bpp Bits per pixel

CNN Cellular neural network

CT Computer tomography

DICOM Digital Imaging and Communications in Medicine standard
DNA Deoxyribonucleic acid

DWT Discrete wavelet transform

EOF End of file

HST Histogram Swap Transform

KLT Karhunen-Loeve transform

MCT Multicomponent transform

PCRD-op Post-compression rate-distortion optimization
PRQ Progressive Relative Quantizer

RHaar Reversible Haar

ROI Region of Interest

RQ Relative Quantizer
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