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2 Chapter 1 Introduction

1.1 Complexity Science: a biased introduction

This section is a brief and biased introduction to some aspects of Complexity Science. It
is biased because it aims at introducing only those aspects of complexity on which the
rest of the Thesis sits: the concept of universality and the concept of scale invariance.
Certainly much more was left out than included, but what was included is mostly
self-contained, and it should suffice for the understanding of the developments of §3.

There are numerous books and review articles that aim at introducing Complexity Science,
and each has its own view on the subject. Let us just cite, for instance, Bak (1996);
Holland (2000); Albert and Barabási (2002); Bar-Yam (2003); Solé and Manrubia (2009);
Mitchell (2009); Newman (2010) or Newman (2011).

I shall not attempt to establish when or where did Complexity Science originate –nor
if it really constitutes a scientific discipline of its own– for this is surely a matter prone to
endless debate. But it might be fair to consider the seminal works of Anderson (1972)
and Kadanoff (1986) as marking the beginning of what is known as Complexity Science
nowadays: an interdisciplinary field of study that combines ideas and methods mostly
from statistical physics and critical phenomena, and applies them to study problems in
almost any other field: from Biology (Gisiger, 2001) and Chemistry (Rao et al., 2010) to
Economics (Boyd et al., 2003), to Geoscience (Peters et al., 2002) or even Sports Science
(Balague et al., 2013). Complexity Science is concerned with the study of complex systems,
a term used (and abused) to describe such a variety of systems, that it is difficult to give
a precise definition. Actually, there seems to be no agreement on what the precise and
formal definition of Complex System should be. But in general terms, it is usually said
that Complex Systems are formed by a large number of elements that interact, giving rise
to some emergent, global phenomena (which should, in principle, not be directly encoded
in the interaction rules, or at least not in a very obvious way).

In essence, Complexity Science attempts to challenge the reductionist approach to
scientific inquiry by claiming that “the total is more that the sum of its parts” and that,
therefore, reductionism shall ultimately fail: When a problem or system is analyzed by
studying its constituent units, and these units are subsequently analyzed in terms of even
simpler units, and so on, then a descending hierarchy of realms of study is formed. And
while the system might be somewhat understood in terms of different concepts at each
different level, from the coarser description down to its most elementary units, there is
no guarantee of a successful bottom-up, comprehensive “reconstruction” of the system.
Reductionism only provides a way down the hierarchy of theories, i.e., towards those
supposedly more basic and elementary; Complexity aims at finding a way back home,
that is, from the basic elementary units up to the original object of study.

The section is organized as follows: §1.1.1 introduces the concept of universality,
starting from some simple mathematical examples and then moving to phase transitions
in critical phenomena; and §1.1.2 covers the notion of scale invariance and some basic
results concerning scale-invariant functions in one and two dimensions.
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1.1.1 Universality

The famous mathematician and Field-medalist Terence Tao published in 2012 a non-
technical survey on the concept of universality in complex systems (Tao, 2012). Unlike
most of the literature available, Tao offers a more mathematically-oriented view on the
subject, and being him one of the greatest mathematicians of our times, I cannot resist
to begin this Chapter by quoting him. Tao’s abstract reads:

In this brief survey, I discuss some examples of the fascinating phenomenon of
universality in complex systems, in which universal macroscopic laws of nature
emerge from a variety of different microscopic dynamics. This phenomenon
is widely observed empirically, but the rigorous mathematical foundation for
universality is not yet satisfactory in all cases.

The survey, published in Dædalus, the Journal of the American Academy of Arts &
Sciences, walks us from the simplest universal laws in statistics, the law of large numbers
and the central limit theorem, to Zipf’s law, to phase transitions, and to random matrix
theory and the Riemann hypothesis. And while Tao’s definition of universality is not much
different from the ones that can be found elsewhere (Binney et al., 1992; Stanley, 1999;
Sethna, 2006), his survey of examples and his unique perspective are truly enlightening.

Indeed, it is difficult to further define universality without discussing specific examples,
precisely because universality is observed in such a broad repertoire of systems. In
what follows, we will first see some examples of “universality without complexity”, i.e.
universality arising in systems composed of many non-interacting elements, to then turn
to phase transitions in ferromagnetic materials, where interactions play a prominent rôle
in the emergence of certain universal properties.

Universality without complexity

Let us come back to a definition of universality: a universal macroscopic feature of a system
is one which does not depend on its microscopic details. But macroscopic observables
are generally defined from the individual elements, e.g. by means of an average over the
whole system or more complicated formulae. In other words, there are lots of degrees of
freedom that need to be integrated out, if one wants to be left with a low-dimensional,
global observable. So how can a macroscopic feature possibly be independent of the
microscopic details? The key point is that it is not completely independent, it is only
almost independent. That is, the global, universal feature depends only on a small number
of parameters of its microscopic constituents, but not on the rest (i.e. the vast majority)
of degrees of freedom.

Consider the simplest “complex” system possible: a collection of N independent,
identically distributed random variables x1, . . . , xN , with N � 1, xi ∼ X and X a
random variable1 with law F (x). We now look for universal features of this toy model,
i.e. features that do not depend on the precise form of F (x) (the microscopic details), but
rather only on a few parameters, such as the average or the standard deviation. The first
two were already shown by Tao (2012), but they still deserve to be mentioned. Consider

1Let us assume that the first and second moments of X are finite.
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first the law of large numbers. That is, the fact that the average over the system, SN ,
converges to the expected value of X:

SN =
1

N

N∑

i=1

xi; lim
N→∞

SN = E[X] (1.1)

It is obvious that the observable SN does not depend on the precise form of the law F (x):
It does not matter if X is a normal, an exponential, or a Poisson random variable2: as
long as N is large enough, all that matters is the value of E[X]. In this sense, SN is a
universal “macroscopic” property of our system. Similarly, the second example in Tao
(2012) is the central limit theorem.

We shall now give a third example of our own, but this time, we will present it “masked”
in the form of an observable of our toy complex system. Suppose that the variables of
our system, x1, . . . , xN , represent the “intensity” of some elements, say luminescent cells,
sitting on sites in a one-dimensional regular lattice. Further suppose the presence of a
barrier separating the lattice in two regions, left (L) and right (R), with N/2 sites on each
side of the barrier3. Cells are assumed to be “active” only if xi < h for some externally
fixed level h. Figure 1.1 illustrates this setup. Finally, assume that the observable of
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Figure 1.1 A pictorial representation of the toy model. The height of the bars represents
the intensity of the elements of the system, which are placed in a 1-dimensional lattice of size
N = 50. A barrier (not drawn) separates the left region (red) and the right region (blue). Dark
colouring indicates active sites, i.e., those whose intensity is below h. In this example, we chose
X ∼ U([0, 1]) for simplicity.

interest of the system is the “maximum activity asymmetry” AN , defined as the maximum
difference of active sites between the two regions (divided by the system size), when h
is varied along the domain of X. From the definition given above, AN is computed as
follows:

AN =
2

N
sup
h

∣∣∣∣∣∣
∑

i∈L
Θ(h− xi)−

∑

j∈R
Θ(h− xj)

∣∣∣∣∣∣
, (1.2)

with Θ(·) the Heaviside step function, and L and R the two regions separated by the
barrier.

In the toy model’s world, this observable could be of interest e.g. because it gives a
simple estimate of the degree of inhomogeneity in the system. Because we know that

2Or any other random variable, provided it has finite first moment.
3Placing the barrier in the middle, thus giving regions of equal size, is not essential for the result that

will follow, but it simplifies the algebra.
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xi ∼ X for all i, in both sides of the barrier, it is obvious to us that there is no real
asymmetry in terms of activity besides statistical fluctuations, but the point is to imagine
that this is not known in the toy model’s world. To complete this thought exercise,
suppose that several kinds of cells are put to test in the laboratory; because each kind of
cell has different luminescent patterns, each gets a different underlying parent distribution
F (x) in the model. Wouldn’t it be unexpected, for the inhabitants of the toy model’s
world, to find out in the laboratory that the distribution of AN is independent of the
kind of luminescent cell used? What if any kind of cell ever tried gave exactly the same
results? That would certainly be considered a universal feature of the system.

Well, it turns out the observable AN is just the two-sided Kolmogorov-Smirnov statistic
for samples of equal size (Gnedenko and Korolyuk, 1951), and it asymptotically converges
to a limiting random variable, provided F (x) is continuous. In particular,

lim
N→∞

Prob[AN ≤ z
√

4/N ] = 1− 2
∞∑

k=1

(−1)k+1e−k
2z2 (1.3)

which has no parameters and, besides the particular form of Eq. (1.3), can also be written
as a scaling law (see §1.1.2),

Prob[AN ≤ y] ' G
(√

Ny
)

; N � 1 (1.4)

So it could happen, in the imaginary world where the toy model lives, where the absence
of interactions is unknown, and where only the values of AN are available to researchers,
that the scaling law in Eq. (1.4) is considered a striking, universal law of the system,
which holds for a wide range of cell-types.

Admittedly, the observable AN was artificially planted in advance, and the whole toy
model would not even be considered “complex” at all, due to the absence of interactions.
However, it has almost all other typical characteristics of complex systems: a large number
of elements giving rise to universal emergent macroscopic properties (AN ), independently
of the microscopic properties of the system (the parent distribution F (x)). The three
examples presented so far have in common that they are asymptotic statements, exact for
N →∞, and provide very good approximations for large but finite N . And so it seems
that, indeed, having a very large number of elements is enough to obtain universality
and, in this sense, complex systems –formed of a large number of elements– are good
candidates to display universality. But complex systems are more than just a large
number of elements: usually, the elements are required to interact in some or another
way, and it is expected that these interactions are the ones that truly give rise to some
emergent, universal macroscopic feature. So our second example of universality will
include interactions, and it will be, instead of purely mathematical, purely physical.

Phase transitions and critical phenomena

We briefly introduce phase transitions and critical phenomena as a paradigmatic example
of universality. Indeed, the core ideas of critical phenomena and phase transitions have
had, and still have, a deep impact in Complexity Science.
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A simple example of a phase transition is found in ferromagnetic materials. It turns
out that when ferromagnetic materials are heated up, they eventually loose their magnetic
properties. This can be understood, intuitively, because magnetism is a state of order
in a material; of many internal small magnets, if one wishes, pointing in the same
direction. When heat is introduced in the system, it excites the particles that form the
material, inducing certain disorder and disturbing the global alignment. Thus it is not
surprising that the total magnetization M of a ferromagnetic material decreases when
the temperature T is raised. What is more surprising, thought, is that it does so in
a very peculiar way: there is a special temperature, Tc, called the critical temperature,
above which the magnetization is always zero. If the ferromagnetic material is heated
up to Tc, its magnetization will drop to zero. If it is further heated, the magnetization
stays at zero. And conversely, when the material is then cooled down, as long as T > Tc,
the magnetization will be zero, and only when T reaches Tc will the magnetization M
start to raise. Because this happens in a continuous way, i.e., without sudden changes of
magnetization, this phase transition is called continuous or of second-order (discontinuous
ones being called of first order)4.

In addition, if the temperature is close to the critical temperature Tc, then the
magnetization turns out to be a power law of the distance to the critical point,

M ∝ |T − Tc|α (1.5)

with ∝ denoting proportionality, and α called the scaling exponent. The really exciting
thing, however, is that instead of finding a different exponent for each material, experimen-
talists find that only a few exponents keep turning up again and again, no matter which
materials they put to test. In addition, when the temperature and the magnetization
are rescaled in certain ways, some scaling functions arise, see §1.1.2, and these scaling
functions are also shared by many materials see Figure 1.2. The whole picture is much
more complicated, see Binney et al. (1992) for a proper introduction to the subject, but
this is the basic idea: first, ferromagnetic materials can be classified in a few universality
classes on the basis of their scaling exponents5 and scaling functions; and second, these
same exponents are also found in other phase transitions, such as the liquid-gas transition.

To finish, let us revise how our notion of universality fits with phase transitions in
ferromagnetic materials: we have a system (say, a macroscopic sample of some ferromag-
netic material), which is composed of a large number of elements (the particles that form
the material). And this elements interact (via their local magnetization), giving rise to a
macroscopic feature of the system (the global magnetization), whose behavior close to the
critical point, characterized by scaling exponents and scaling functions, is independent of
the microscopic details of the system (the specific composition of the material). Thus
phase transitions in ferromagnetic materials are an example of universality in a purely
physical system.

4Quite confusingly for mathematicians, second-order phase transitions have a discontinuity in the
first derivative of the magnetization as a function of temperature. But everything becomes more clear
when one learns that the terms first and second order actually refer to discontinuities in the first and
second derivatives of the free energy.

5Actually, α is not the only scaling exponent in a phase transition, nor is Eq. (1.5) the only power
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Figure 1.2 The (scaled) magnetization against the (scaled) temperature for five different
materials close to their critical temperatures. The zero in the x axis corresponds to T = Tc.
The symbols correspond to experimental measurements, while the solid line is calculated via a
theoretical model. Reproduced from Stanley (1999), where more details can be found.

1.1.2 Scale Invariance

In plain words, scale-invariant objects are those that do not change when we zoom in or
zoom out. Such “zoom” can be in spacial coordinates –as with a microscope or telescope–;
but sometimes also in time, frequency or other coordinates. The object in turn can also
take many forms: it can be a purely mathematical object, like Cantor’s set; or a physical
concept, like pink noise; or something found in nature, like coastlines or romanesco
broccoli. In fact, it is often not the object itself that is scale-invariant, but to be more
precise, a property or description of that object. For instance, in the example of pink
noise, the scale invariance lies in its power spectral density, which takes the form of a
power law; and for romanesco broccoli, it is its shape what is, indeed, scale invariant.

A direct consequence of scale invariance is the so-called “lack of characteristic scale”: if
the object does not change when we zoom in or out, we cannot know the size of what we
are seeing –unless somebody tells us beforehand. And so in the hypothetical case of perfect
scale invariance, there is no notion of "typical size", just like the there is no notion of
“typical position” in systems with translational invariance. In any case, it turns out that in
nature there are a great deal of examples with (approximately) scale-invariant properties,
and given that we tend to describe these properties with mathematical functions, we shall
first study scale invariance in mathematical functions.

law: others are defined, for instance, in terms of the correlation length, the susceptibility, the specific
heat, etc. but their exponents are related via scaling relations.
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Scale-invariant functions

A function f : Rn → R is called scale-invariant if it is invariant under a scale transformation.
A scale transformation is defined as a functional T : f → T [f ] that acts on a function
f(x1, . . . , xn) as follows:

T [f ](x1, . . . , xn) :=
1

λ0
f(λ1x1, . . . , λnxn), (1.6)

with λ0, λ1, . . . , λn ∈ R+. The condition of scale invariance T [f ] = f then reads:

λ0f(x1, . . . , xn) = f(λ1x1, . . . , λnxn) (1.7)

While Equation (1.7) can be understood in an abstract setting, i.e., simply as a condition
imposed on a function f , it is good to keep in mind some physical interpretation: Suppose
that the variables xi are observables of a physical system, and think of f as a property of
the system. For instance, f could be a density function, thus giving the probability of
finding the system in a given state:

Prob[X1 = x1, . . . , Xn = xn] ≡ f(x1, . . . , xn) (1.8)

Or f could be expressing a relation between x1, . . . , xn and yet another observable, x0,

x0 = f(x1, . . . , xn). (1.9)

But in both cases, we think of f as property of the system. With this setup in mind, the
scale transformation T is simply a dilation (or contraction) of the observables xi,

xi → xi/λi, (1.10)

including x0 in the case of Eq. (1.9) and including the probability density function in the
case of Eq. (1.8). The meaning of the scale-invariance condition becomes clear now: it
implies that the property f extends to all scales of the system, because if we dilate or
contract our observables xi by arbitrary factors λi6, the property continues to hold.

This is by no means a conventional feature: usually, properties of physical systems
have a range of validity, in the sense that they hold in certain range of the observables,
but they fail outside it. Such a range might be defined in a blurry way, i.e. sometimes one
cannot establish precise values for the boundaries of the range of validity, but nonetheless,
the range exists, in the sense that there is always a large enough or small enough value
of xi where f fails. In contrast, scale invariant properties hold at all scales, that is,
their range of validity is unbounded (at least in theory), which makes them particularly
interesting: By extending to all length scales, scale-invariant properties provide a bridge
between different realms of physics, thus connecting the microscopic world with the
macroscopic one. It is obvious that this greatly limits the functional forms f can take:

6We will see however that the dilation factors λi must be related between them in particular ways.
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the scale invariance condition, T [f ] = f , is not fulfilled by most functions. For instance,
if we take f(x) = e−x

2 , then scale invariance would imply that

T [f ](x) = f(x),

1

λ0
e−λ

2x2 = e−x
2
, (1.11)

e(1−λ
2)x2 = λ0,

which cannot hold for all x and all λ simultaneously. Hence f(x) = e−x
2 is not a

scale-invariant function.
A natural question to ask then is which are the scale-invariant functions, because any

scale-invariant property of a physical system must take their form. We will first respond
this question for one-dimensional functions, for which the solution is somewhat more
explicit, and then look at two-dimensional functions.

Scale-invariant functions in one dimension

We will now determine the set of functions f : R → R that fulfill the scale-invariance
property, Eq. (1.7), which in one dimension reads:

λ0f(x) = f(λx); λ0, λ ∈ R+;x ∈ R. (1.12)

It is important to interpret this equation properly: it must hold for all λ and all x
simultaneously, but λ0 is allowed to depend on λ, i.e. λ0 = λ0(λ). Taking the x−derivative
of Eq. (1.12), and dividing by Eq. (1.12) itself, we find:

λ0f
′(x)

λ0f(x)
=
f ′(λx)λ

f(λx)
, (1.13)

and multiplying both sides by x,

f ′(x)

f(x)
x =

f ′(λx)

f(λx)
λx, (1.14)

which implies that the function xf ′(x)/f(x) must be constant, because the equation
above must hold for all λ > 0. The solution then follows easily,

f ′(x)

f(x)
x = b ∈ R =⇒ f(x) = axb. (1.15)

Thus, scale-invariant functions in one dimension are power laws. This proof can be found
in Corral (2008), and equivalent ones in Christensen and Moloney (2005); Takayasu (1989).
Notice that substituting Eq. (1.15) back into Eq. (1.12) fixes the dependence λ0 = λ0(λ),

λ0ax
b = a(λx)b =⇒ λ0 = λb. (1.16)

This is important, because it relates the exponent of the power law, b, with the scaling
factors λi. The exponent b is usually known as the scaling exponent and, in plain words,
it tells us under which rescaling does scale invariance hold: if we rescale the x-axis by a
factor of λ, then we must rescale the y-axis by a factor of λb. Under this transformation,
f(x) = axb is invariant.
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Scale-invariant functions in two dimensions

We will now see that, in two dimensions, power laws are not the only scale-invariant
functions. Instead, we will reach a more general form, usually known as a scaling law.
The distinction between scaling laws and power laws is important, and will play a key
rôle in the developments of §2.2.

Let us consider functions f : R2 → R under a scale transformation T ,

T [f ](x1, x2) =
1

λ0
f(λ1x1, λ2x2). (1.17)

Let us write λ0 ≡ λ, and λ1 ≡ λb1 , λ2 ≡ λb2 , with b1, b2 ∈ R fixed. That its, we are
looking at transformations of the form

x1 → x1/λ
b1 , (1.18)

x2 → x2/λ
b2 , (1.19)

and the scale-invariance condition reads,

f(x1, x2) =
1

λ
f(λb1x1, λ

b2x2). (1.20)

It is worth mentioning that Eq. (1.20) is also the definition of a generalized homogeneous
function of two variables. Following Christensen and Moloney (2005), we will now show
that all functions fulfilling Eq. (1.20) are of the form

f(x1, x2) = |x1|1/b1f
(
±1,

x2

|x1|b2/b1

)
. (1.21)

To see that Eq. (1.20) implies Eq. (1.21), one takes λ = |x1|−1/b1 . The converse is seen by
verifying that |x1|1/b1f

(
±1, x2/|x1|b2/b1

)
fulfills the scale-invariant property, Eq. (1.20).

With this, we have characterized the set of two-dimensional scale-invariant functions,
as defined by Eq. (1.20). Because f(±1, ·) is actually a function of one argument, it
customary to relabel it as G±(·), so that the general form of a function f : R2 → R
invariant under a scale transformation is:

f(x1, x2) = |x1|1/b1G±
(

x2

|x1|b2/b1

)
. (1.22)

The function G±(·), which is an arbitrary function of one argument, is usually called the
scaling function, b1, b2 are the scaling exponents, and Equation (1.22), altogether, is called
a scaling law.

Data collapses

Summarizing, so far we have shown that any one-dimensional function fulfilling scale-
invariance must be a power law, and that any two-dimensional function fulfilling scale-
invariance must be a scaling law. In the one-dimensional case, checking scale-invariance
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with graphical methods7 is straightforward, as one simply checks whether or not f(x) is
a power law of x: Plotting f(x) against x in a double logarithmic scale should render a
straight line of slope +b. For this, knowledge of the scaling exponent b is not required a
priori.

In the two-dimensional case, however, things are slightly more complicated: because the
scaling function G can take any form; plotting f(x1, x2) as a surface in 3-dimensional space
is unlikely to be helpful. Instead, a popular method consists in plotting f(x1, x2)|x1|−1/b1
against x2/|x1|b2/b1 . Obviously, this requires knowledge of the scaling exponents a priori.
If Eq. (1.22) holds, this procedure yields a single, unique curve which corresponds to the
scaling function G. Such a procedure is known as a data collapse because it creates the
effect of different curves to collapse into a single one, if the correct scaling exponents are
chosen.

Let us illustrate the process of data collapse with a simple example. Suppose that
f(x1, x2) = e−x1/x2 1

x1
. To convince ourselves that this is truly a scale-invariant function,

we notice that
f(x1/λ, x2/λ) = e−(x1/λ)/(x2/λ)

λ

x1
= λf(x1, x2), (1.23)

which in turn means that the scaling exponents are b1 = b2 = −1. Figure 1.3 (top) shows
a 3-dimensional plot of f(x1, x2) for (x1, x2) ∈ [1, 3] × [1, 3] ⊂ R2. As said above, it is
difficult to asses the scale-invariance of f(x1, x2) solely on the basis of this plot. The
next step consists in plotting f(x1, x2) as a function of x1, for different values of x2. In
Figure 1.3 (bottom), we chose x2 ∈ {1, 2, 3}, and obtain three different curves (bottom
left). But if we rescale our variables appropriately, the three curves collapse into a single
one (bottom right): We are left with the scaling function, and scale-invariance has been
“verified” (at least with what graphical methods can provide).

Obviously, the only way to strictly prove scale-invariance is by checking the mathe-
matical definition, i.e., verifying that indeed T [f ] = f , but this is only an option if the
function f(x1, x2) is known a priori, which is rarely the case. Instead, one typically has
access to a dataset, say

S = {(xi, yi, zi) : i = 1, . . . , N} , (1.24)

and conjectures, for instance, that x, y, and z are related via a scale-invariant function,
z = f(x, y). It is in this circumstances where the notion of data-collapse becomes useful:
by trying to “guess” the scaling exponents b1, b2, or by using the exponents predicted
from a theoretical method, one can attempt a data collapse of the data.

7A related but different matter, which we do not treat here, concerns the case where f(x) represents a
density function and one wants to fit the exponent b with maximum-likelihood methods and validate the
results with e.g. the Kolmogorov-Smirnov test. This has been a subject of certain debate. See Clauset
et al. (2009); Deluca and Corral (2013).
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Figure 1.3 Top: A 3-dimensional plot of the function f(x1, x2) = e−x1/x2/x1. Bottom: (Left)
the function f(x1, x2) versus x1, for different values of x2. (Right) A data collapse of f(x1, x2),
revealing the scaling function G(y) = e−1/y.
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1.2 Linguistic laws

This section is concerned with linguistic laws. First, a short discussion on how linguistic
laws differ from physical laws is laid out via a simple example. §1.2.1 discusses the two
main perspectives under which linguistic laws have been investigated: the perspective
of Quantitative Linguistics (QL); and the perspective of Complexity Science. Finally,
Zipf’s law (§1.2.2) and Heaps’ law (§1.2.3) are introduced.

To give an illustrative example of what a linguistics law is, consider the following question:
if a given document, say an article in the encyclopedia, has a total length of L words,
how many different words does it have? The answer to this question is known as Heaps’
law, see §1.2.3 for details, but for now, let us approach it in a more informal and didactic
way. A rather blunt answer to it would be that it depends on the article: for instance, the
article for Linguistics in the English version of the Wikipedia has a total length of 6 353
words, of which only 1 501 are different, but the article for Mathematics has a length of
10 184 words, totaling 1 436 different ones. That is very accurate, but not very interesting,
because it applies only to those two particular articles. But if we could claim that when
an article in the Wikipedia has a total length of L words, then it has approximately L4/5

different ones, that would certainly be more interesting. At the cost of less accuracy, that
second answer gains in broadness, because it applies –presumably– to any article in the
Wikipedia. Of course, we would then try to quantify in a more precise way what does
approximately exactly mean in the sentence above, and we would try to determine the
limits of its applicability (e.g. does it hold only for articles in English, or is it valid for
any language?).

The gist of the example, however, is that linguistic laws are statements based on
experimental findings. Some of them, such as Zipf’s law (see §1.2.2), have been reported in
numerous corpora, spanning tens of languages, and are therefore considered experimental
laws. It seems clear, however, that they must belong to a different category than e.g. the
laws of classical Physics. Altmann and Gerlach (2015) debate this question, stating that
“a creative and persistent daemon, trained in the techniques of constrained writing, can
generate understandable and arbitrary long texts which deliberately violate any single law
[...]”, among other insightful remarks. Thus linguistic laws can be violated, while e.g. the
laws of classical Physics cannot8. This has consequences at many different levels: from the
epistemological level –can falsifiable theories, in a strict Popperian sense, be constructed
from linguistic laws?– to the methodological one –how should we interpret deviations
from the “predictions” of linguistic laws? are in this sense p-values meaningful?– which,
admittedly, are not covered in Thesis. I would like however to make an informal remark,
focusing for a second on the bright side of things: Putting aside daemons9, exercises of
constrained writing, and so on, it seems to me that linguistic laws such as Zipf’s law
(§1.2.2) are fulfilled with a surprising degree of accuracy, specially given the fact that they
can, indeed, be violated.

8At least, not for macroscopic object at speeds not comparable to the speed of light.
9Here, and in the preceding quote: making reference to Maxwell’s daemon
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1.2.1 From Quantitative Linguistics to Complexity Science

According to Köhler et al. (2005), Quantitative Linguistics shares its subject, aims and
issues with general Linguistics, but differs from it in the methods, which include “all
of the mathematical tools, i.e., especially quantitative methods” (Köhler et al., 2005, pp.
viii). Hence we might say – even if that sounds slightly tautological– that Quantitative
Linguistics is the study of language with quantitative methods. Such quantitative methods
range from mere counting processes to sophisticated mathematical modeling, and the
field expands into almost all of the classic branches of linguistics, including phonology,
morphology, syntax and semantics. Hence from the QL perspective, the linguistic laws
studied in this Thesis, Zipf’s law and Heaps’ law, are only two out of a multitude. But
they are particularly interesting due to a series of parallelisms, analogies or perhaps
simple resemblances with findings in other fields outside linguistics, which fall under the
umbrella of Complexity Science.

In a nutshell, the main interest of “complexologists” in some linguistic laws lies in the
fact that these can been seen as scaling laws, in the traditional meaning this has in e.g.
the theory of critical phenomena (CP) and as introduced in §1.1.1. We will see that Zipf’s
and Heaps’ law take the form of scaling laws, which is considered a sign of complexity. In
addition, some of the basic facts of CP, such as the presence of long-range correlations
when the system is close to the critical point, have been also observed in natural languages
(Ebeling and Pöschel, 1994; Montemurro and Pury, 2002; Altmann et al., 2012). All of
this builds up a view in which natural language is just another system, conjectured to be
in a critical state. And while it is remarkable how accurate this parallelism is in the case
of natural language –in comparison with other systems–, it is not clear what lessons can
be learned from such analogies. If we were to further stretch them, then we might be
tempted to say that “language is in a critical state, at the edge of order and disorder”,
or even that “language is a self-organizing system, posed at the critical point without
the need of external fine tuning”. Perhaps these sort of claims are appealing to some
because of the aforementioned analogy with critical phenomena or even with the theory
of Self-Organized Criticality (SOC) (Bak, 1996); but their meaning beyond the analogy
itself is certainly unclear. Nevertheless, there are a series of technical prerequisites for
the whole analogy to even make sense, and it is on this prerequisites that we shall now
concentrate. In particular, in relation to the notion of scaling exponent and universality
classes (see §1.1):

Firstly, in critical phenomena the notion of universality class is expected to be robust:
In particular, scaling exponents should not be influenced by external scales, i.e., their
value should not depend on the system size. Hence, if an analogy as outlined above is to
be drawn, it is necessary that the exponent γ of Zipf’s law (see §1.2.2) does not dependent
of the system size, i.e. the length of the document L. Otherwise, the very concept of
scaling exponent would not even be properly defined, in the case of natural languages,
and the chances of further relating language and criticality would vanish, at least via this
approach. In (Font-Clos et al., 2013, §3.1), we discuss this matter at depth, in relation to
some prior claims of Bernhardsson et al. (2009)10, and conclude that Zipf’s exponent γ is

10 Admittedly, some controversy followed: see the comment by Yan and Minnhagen (2014) and the
subsequent reply in Font-Clos and Corral (2014).
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independent of the document length11 L.
Secondly, if one accepts that proper scaling exponents can be defined (for natural

languages), the question of whether or not one can also establish the existence of univer-
sality classes follows naturally. This matter has not been investigated in this Thesis, but
the following remark is worthwhile. There are many candidates for what the universality
classes would be. For instance, the most ambitious result one could dream of would be
that all corpora ever analyzed displayed exactly the same scaling exponents, for say, at
least, Zipf’s law. But the evidence suggests otherwise: Figure 1.4 shows the distribution of
the exponent γ across 37 078 documents from the Project Gutenberg database, of which
around 80% are tagged as being written in English. And although this only constitutes
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Figure 1.4 Distribution of Zipf’s exponent γ across the Project Gutenberg database. Fits where
done as explained in Deluca and Corral (2013). A total of 37 078 documents where included in
the analysis.

a preliminary analysis, it indicates that there are important variations in the value of
γ, even within the same language. A much more conservative claim would be to equate
universality classes to authors, so that all works of a given author would display the same
exponent. And while in this case more research would certainly be needed to establish
a result, it could only ever be a very weak result: in critical phenomena, one typically
finds a few universality classes under which all models can be categorized irrespectively
of their microscopic details. This is the gist of universality. But finding thousands of
universality classes, as would be the case if they were to be equated with authors, would
be of limited interest, and probably would not qualify as universality at all. It might
happen that in-between one unique universality class –which the evidence defies– and
thousands of universality classes –which would be uninteresting– there is, perhaps, hope
for a middle ground.

11Note that this refers to the length of a document as it is being read, that is, to the value of Zipf’s
exponent as subsets of increasing size of a fixed docum are considered

https://www.gutenberg.org/
https://www.gutenberg.org/
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In summary, linguistic laws are fascinating phenomena that provide a bridge between
Linguistics and Complexity Science. These disciplines have different long-term goals:
Linguistics aims at the general study of language in all of its facets, and hence tends
to put linguistic laws in relation to its whole body of knowledge; Complexity Science,
on the other hand, envisages to relate linguistic laws with scaling laws, and with other
systems that also display them. And while both fields are actively and separately pursuing
research on the topic, the dialogue between linguists and complexologists is certainly in
its infancy.

1.2.2 Zipf’s law

Zipf’s law (Zipf, 1949), named after George Kingsley Zipf, is without doubt the most
famous and well-studied experimental law in Quantitative Linguistics. It has been
reported numerous times in a variety of corpora and languages (Zipf, 1949; Zanette and
Montemurro, 2005; Zanette, 2012; Corral et al., 2015), animal communication systems
(McCowan et al., 1999; Hanser et al., 2004), and beyond (Czirók et al., 1995; Serrà et al.,
2012). And yet it can be announced in a few lines, and anyone with a computer and some
scripting skills can put it to test in a few minutes.

In its broader sense, Zipf’s law has been found to hold –with varying degrees of
rigor– in a wide range of systems. Indeed, gathering an exhaustive list of such examples
is in itself a daunting task; here we shall rather give a non-exhaustive, but hopefully
representative, list of empirical examples of Zipf’s law beyond linguistics: In the field of
economics, the income distribution (Malevergne et al., 2011) is the most notable example,
but see also (Axtell, 2001; Clauset et al., 2009). In biology, let us cite the abundance of
proteins in a cell (Furusawa and Kaneko, 2003), the presence of insects in plants (Pueyo
and Jovani, 2006), or the distribution of organism’s mass in ecosystems (Camacho and
Solé, 2001). Finally, in the social sciences, the examples of visitors or links in web pages
(Adamic and Huberman, 2002) or telephone calls to users (Newman, 2005) are typical
examples.

In light of the quantity and diversity of systems that exhibit Zipf’s law, it is fair
to, at least, raise the following questions: What do all these systems have in common?
Is there a “unifying principle”, perhaps just a heuristic argument, that can be used to
explain the origins of Zipf’s law? Obviously, this is an open question, but at a theoretical
level, certainly a great number of mechanisms have been proposed (Ferrer i Cancho and
Solé, 2003; Miller, 1957; Li, 1992; Simon, 1955; Zipf, 1949; Corominas-Murtra et al.,
2011; Ferrer i Cancho, 2005; Bak, 1996), and Zipf’s law has been “unzipped” (Adamic,
2011; Baek et al., 2011), “explained” (Gabaix, 1999), or “understood” (Corominas-Murtra
et al., 2015) far too many times, to the extend that no mechanism is considered good
enough by anyone. But this is by no means a negative sign: it is rather a sign of the
exceptional interest that the complex-systems community has in Zipf’s law. The curious
functioning of the academic world and its increasing pressure to publish in high-impact
factor journals might be accountable of some exaggerated claims, but nobody truly
believes to understand the origins and mechanisms leading to Zipf’s law. A very good
review of generative mechanisms, although now somewhat outdated, is (Mitzenmacher,
2004). See also (Newman, 2005; Saichev et al., 2009; Zanette, 2012).
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Due to the broad repertoire of systems exhibiting Zipf’s law, mechanisms depending too
much on the details of a given system are of limited interest for the general understanding
of the law. But explanations that try to accommodate a broader set of systems tend to
be, by necessity, based on very abstract, undefined concepts, such as “entities”, “groups”,
“elements”, etc., and the law usually arises after imposing principles or rules of similar
vagueness, all of which renders the mechanism of dubious applicability. Obviously, this
is a “paradox” not specific of Zipf’s law 12, but the wide range of systems where Zipf’s
law has been observed, and hence that any generative model should try to accommodate,
makes the paradox particularly problematic. But in the end, each mechanism provides
its share of insight, be it for the gradual understanding of Zipf’s law, or for a specific
example it is based on. In this sense, theoretical research on Zipf’s law is still, and will
be in the forthcoming years, of great interest for the complex-systems community.

Definition

Although Zipf’s law seems to pervade a variety of systems, it is customary and perhaps
more instructive to announce it in the original setting of natural languages. In its simplest
form, the law can be stated as follows: given a corpus of natural language, the frequency
of a word is inversely proportional to its rank, i.e.,

n ∝ 1

r
, (1.25)

where ∝ denotes proportionality, n the frequency of a word in the corpus and r its rank,
i.e., the position it occupies in the list of sorted frequencies 13,14. In other terms, Zipf’s
law says that the most common word appears twice as much as the second most common
word, and three times as much as the third most common word, etc. A slightly more
refined version of the law introduces a parameter β ' 1,

n(r) ∝ 1

rβ
. (1.26)

Obviously, more complicated versions of the law are possible (Baayen, 2001; Li et al.,
2010), but Eq. (1.26) is what is generally known as Zipf’s law. We shall however refer to
Eq. (1.26) as the rank-count representation of Zipf’s law for reasons that will become
clear soon. There is an alternative representation of the law in terms of frequencies of
frequencies. This might sound confusing at first, but it is actually very simple: let N(n)
be the number of different words that have frequency n in a corpus. Then Zipf’s law can
also be stated as follows:

N(n) ∝ 1

nγ
(1.27)

12This applies more generally to scientific modeling: very concrete, detailed models give rise to
conclusions that can difficultly be extrapolated to other systems, while very broad, abstract models can
hardly be applied to specific examples.

13That is, the most common word has rank 1, the second most common word has rank 2, and so on.
14In case of several words having exactly the same frequency n, ties are solved either at random or

alphabetically. While the later seems slightly more arbitrary, it has the advantage of yielding reproducible
results.
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with γ ' 2. To this second representation of the law, Eq. (1.27), we shall refer as the
frequency-count representation. Note that N(n) is proportional to the probability mass
function15 of n, if n is regarded as a random variable. That is, suppose that we choose
a word at random from the list of all available different words. Then, with probability
(proportional to) N(n), the chosen word will have frequency n, i.e. it will appear n times
in the corpus. The frequency-count representation of Zipf’s law, Eq. (1.27) is saying that
there are many words with very low frequency, and very few words with high frequency.

These two representations of Zipf’s law, Eqs.(1.26) and (1.27), are not equivalent in
the most strict sense, but before discussing the relation between them, and under which
conditions they are equivalent, let us show a few examples of Zipf’s law. Figure 1.5,
reproduced from the original book of George Kingsley Zipf, Human behavior and the
principle of least effort (Zipf, 1949) shows the rank-count representation of Zipf’s law
for the book Ulysses, which G. K. Zipf called “rank-frequency distribution of words”.
In contrast, Figure 1.6 shows the frequency-count representation, i.e. the (normalized)

Figure 1.5 The rank-count representation of Zipf’s law for the book Ulysses. Reproduced from
(Zipf, 1949) (curves B and C have been shaded for clarity).

probability mass function of the frequencies of words in the books Moby Dick and Ulysses.
Fitting a lower-truncated power law yields, following the method of Corral et al. (2012),
a value for Zipf’s exponent of γ̂ = 1.95 for the former, and γ̂ = 1.98 for the later, and

15Or the empirical probability mass function. This distinction is usually overlooked in the literature,
and generally the sample and the population are not properly distinguished. See however (Mandelbrot,
1961).
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nmin = 6 in both cases. Thus Zipf’s law in the frequency-count representation does not
hold on the entire regime of frequencies for Moby Dick nor for Ulysses, but it holds in the
regime n ≥ nmin = 6 in both cases.
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Figure 1.6 Zipf’s law in the frequency-count representation for the books Moby Dick (top) and
Ulysses (bottom). Red symbols correspond to the probability mass function of the frequencies n.
The solid black line corresponds to fitting a lower-truncated power law, following (Corral et al.,
2012), which yields fitted values of γ̂ = 1.95 (top) and γ̂ = 1.98 (bottom) and nmin = 6 (both).
The dashed thin black line extends the power law outside the fitted range, as a guide to the eye.

Comparing Figure 1.6 (bottom) with Figure 1.5 serves to exemplify the relation
between exponents of the two representations 1/β = γ − 1, see Equation (1.32), although
the fitted value γ̂ = 1.98 ' 2 for the frequency-count representation cannot be compared
in a fair way to the visually estimated one, β ' 1, of the rank-count representation.
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Relation between the two representations

This section starts with a classic derivation relating the rank-count and the frequency-
count representations of Zipf’s law, Eqs. (1.26) and (1.27). While the derivation is fairly
elementary, it also shows that the two representations are only asymptotically equivalent,
for n→∞. Thus, they can only be considered approximately equivalent in the regime
of large frequencies, n� 1, and they are definitely not equivalent for small frequencies,
n ∼ O(1).

The key point in the derivation is to realize that the rank r of a word with frequency
n can be expressed as follows16:

r(n) =
∑

n′≥n
N(n′) (1.28)

That is, the rank r of a word with frequency n is the total number of words with a
frequency n′ greater than or equal to n. Once this is clear, the result follows easily. First,
invert Eq. (1.26),

n(r) ∝ 1

rβ
=⇒ r(n) ∝ 1

n1/β
, (1.29)

and then insert Eqs. (1.29) and (1.27) into (1.28),

1

n1/β
∝
∑

n′≥n

1

(n′)γ
. (1.30)

Assuming n� 1, we can approximate the sum by an integral,

1

n1/β
∝
∫ ∞

n′=n
dn′

1

(n′)γ
∝ 1

nγ−1
, (1.31)

and the relation between exponents becomes apparent,

1

β
= γ − 1. (1.32)

It is difficult to establish who was the first to publish this (elementary) result, but similar
or equivalent derivations can be found in (Mandelbrot, 1961; Baayen, 2001; Adamic and
Huberman, 2002; Kornai, 2002; Zanette, 2012; Ferrer i Cancho and Hernández-Fernández,
2008; Font-Clos et al., 2013). Is is also worth mentioning that G. K. Zipf himself was
aware of both representations of the law, and of the relation between their exponents,
at least for the case β = 1, γ = 2, see (Zipf, 1949, Chapt. 2, Sec. IV). In any case, it is
important to bear in mind what was assumed throughout the derivation: mainly, the
scaling n � 1 was used to approximate a sum by an integral. The result is exact only
in the asymptotic limit of n→∞, but of course, this is never attained in reality, as all

16 Note that Eq. (1.28) only recovers the maximum rank for a given frequency n. While for small
n there are many words with the same frequency, and hence strictly speaking r(n) is a multi-valued
function, in the regime of n � 1 (which will be assumed in the next steps) this is rarely the case, i.e.
r(n) is single valued in that regime, and no problems arise in this respect.



1.2 Linguistic laws 21

corpora are of finite length. Hence discreteness effects, if one wishes, must be incorporated
in the analysis from the very beginning.

To sum up, we have just shown that the rank-count and the frequency count represen-
tations of Zipf’s law are approximately equivalent in the regime of very large frequencies,
hence small ranks, and that their exponents are related by Eq. (1.32) in this regime. The
coexistence of these two representations of Zipf’s law, and their approximate equivalence,
have caused a somewhat surprising amount of confusion. If the rank-count and the
frequency-count representations of Zipf’s law are assumed to be equivalent too far away
from the large n regime, then obviously incorrect results can be derived –or to put it
mildly, one gets to very bad approximations. Indeed, the non-equivalence of the two
representations is key to the developments of §3.2, which deals with the relation between
Zipf’s law and the vocabulary growth curve (see §1.2.3).

Once it has been established that the two representations are not exactly equivalent,
it is natural to ask which provides a better description of a given corpus. This matter
is outside the scope of this thesis, but (Moreno et al., 2015) covers it with great detail,
analyzing a (non-aggregated) database of thousands of books in the public domain. Large
aggregated corpora were previously analyzed by Ferrer i Cancho and Solé (2001) and more
recently by Petersen et al. (2012) and Gerlach and Altmann (2013), all reporting the
presence of two separate scaling regimes, with different scaling exponents17.

Comparison of the two representations

A different matter worth mentioning is the pros and cons of working with rank-count
or frequency-count representations. The discussion that follows is not restricted to the
power-law forms of Eqs. (1.26) and (1.27); in the sense that it would equally apply to
other, more refined functional forms. We shall then speak about “rank-count relation”
and “frequency-count relation” in this broader sense, making reference to some unspecified
functions n(r), N(n) although it is helpful to keep in mind the paradigmatic case of a
non-truncated power law. The discussion can be divided in the following two main points:

1. Regarding the initial exploratory analysis of a dataset

Admittedly, rank-count relations offer some practical advantages, which might
explain their popularity. For visual inspection purposes, the rank-count relation
comes in handy: once the frequencies have been obtained, one only needs to sort
them in decreasing order, and the ranks can be readily assigned. This gives a set
of paired data-points, say {(r1, n1), (r2, n2), . . . }, which are then typically plotted
in double logarithmic scale together with the function n(r). In the case of Zipf’s
law as stated in Eq. (1.26), this should render a straight line of slope −β ' −1,
which is easily distinguished at naked eye. While this is obviously not enough
to establish the validity of the law, it certainly helps in the exploratory stage of
analysis. In contrast, working with a frequency-count relation would require more

17Notice that in aggregated corpora frequencies of words across many documents are added up.
Recently, Williams et al. (2015) have investigated the effects the aggregation process, finding strong
correlations between the crossover that separates the two regimes and the average size of the aggregated
documents.
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work in this stage: one would need to first count the frequencies n of the words,
and then the frequencies of the frequencies, N(n). The resulting data-points, say
{(n1, N(n1)), (n2, N(n2)), . . . } would typically be very sparse for high frequencies,
so some sort of binning would be needed –and the binning procedure in itself can be
a delicate matter, specially for discrete variables, see for instance Pruessner (2009);
Christensen and Moloney (2005). In this sense, it is to some extent understandable
that rank-count relations have their share of popularity in the community.

2. Regarding parameter estimation and statistical validation

Frequency-count relations are statements about the probability mass function of
n, which can be regarded as a random variable, so that e.g. standard maximum
likelihood methods to fit the parameters and goodness-of-fit tests to validate them
can be used without further difficulties18. In contrast, rank-count relations are in
principle a functional relationship between ranks and frequencies. Notice how the
rank of a word has the peculiarity of depending on the frequencies of all other
words in a corpus, because it is defined as the position it occupies in the sorted
list of frequencies. It has been argued (Altmann and Gerlach, 2015) that the ranks
can be regarded as a “hidden” random variable19, and that this allows the use
of maximum likelihood and hypothesis testing methods. Altmann and Gerlach
(2015) acknowledge the problems of this approach (mainly, the fact that one gets
an overestimation in the p-values), but they judge them to have no significant effect
on the final results.

In summary, the rank-count relation offers a practical advantage during the initial
exploratory analysis of a dataset, while the frequency-count relation is more appropriate
for proper statistical fitting.

1.2.3 Heaps’ law and the vocabulary growth law

Heaps’ law (Heaps, 1978), named after Harold Stanley Heaps, is usually announced as
follows:

V ∝ Lα, (1.33)

with V the number of different words in a corpus, L the total number of words or corpus
size, and α ∈ (0, 1) the scaling exponent. Together with the Menzerath-Altmann law
(Altmann, 1980), Heaps’ law is probably the second most famous law in Quantitative
Linguistics (the top position, of course, is occupied by Zipf’s law, see §1.2.2).

Heaps’ law is known at least since 1954, when H. Guiraud announced it with α = 0.5
in (Guiraud, 1954). A few years later, G. Herdan (Herdan, 1960) “rediscovered” it, but it
was not until 1978 that Heaps published his book (Heaps, 1978). The law came to be

18 There is however some controversy associated to the fitting of power-law distributions, see (Corral
et al., 2012; Deluca and Corral, 2013; Corral et al., 2011) in relation to (Clauset et al., 2009).

19In this approach, each word would have a “universal” rank r∗, corresponding to the position it
occupies in the sorted list of “universal” frequencies, i.e. some idealized, true frequencies of words, and
the observed ranks r would be only an approximation, r ' r∗.
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known after Heaps rather than Herdan20 or Guiraud, but as Stigler (1980) would claim a
few years later, this is a common process in science21,22.

Similarly as with Zipf’s law, researchers have found that Heaps’ law holds –or at least
approximately holds– in a variety of systems. In the case of Heaps’ law, however, the
evidence is not always fully convincing. Indeed, the very interpretation of Eq. (1.33) is
problematic. In principle, there are two ways of understanding (1.33), and whether or
not they are equivalent is a delicate issue. §3.2 analyses the relation of Zipf’s law and
Heaps’ law, or rather, the vocabulary growth curve, see below. Here we shall only expose
the two interpretations of the law, and briefly discuss their equivalence.

The first interpretation of the law assumes the existence of a collection of say N
documents, i.e. of a number of disjoint instances of natural language. Each document
i = 1 . . .N has a given number of different words or vocabulary Vi, and a total number
of words or length Li. In this setting, Equation (1.33) is understood as a functional
relationship that the set of paired values {(L1, V1), (L2, V2), . . . , (LN , VN )} fulfills,

Vi ∝ Lαi , i = 1, 2, . . . ,N . (1.34)

We shall refer to this interpretation of Eq. (1.33) simply as Heaps’ law.
In contrast, the second interpretation of the law applies to a single, unique document.

It understands that Eq. (1.33) describes the growth of vocabulary along a given document,
i.e. that L in the right-hand side means “the first L words of the document”, and that V
in the left-hand side means “the number of different words found in the first L words of
the document”. In plain terms, as a book is read, the vocabulary grows, and Eq. (1.35)
describes this growth. To avoid misapprehensions, it helps to rewrite the vocabulary
growth curve with lower-case letters,

v(`) ∝ `α, ` = 1, 2, . . . , L (1.35)

To this second interpretation of the law, we shall refer as the vocabulary growth law.
It is fair to say that, in principle, the vocabulary growth law and Heaps’ law are not

equivalent statements. It could happen, of course, that given a collection of documents,
both laws are fulfilled 23, but this is not granted in advance. Without further assumptions,
all we can say is the following: in a collection of documents where the vocabulary growth
law is fulfilled, with α and the proportionality constant fixed along all documents, Heaps’
law will also be fulfilled. This is easy to see, by simply assuming that the vocabulary
growth curve holds for a collection of documents,

vi(`i) ∝ ` αi , `i = 1 . . . Li ; i = 1 . . .N (1.36)

and then simply taking `i = Li ∀i,
vi(Li) ∝ L α

i , i = 1 . . .N (1.37)
20Although the law is sometimes referred to as Herdan’s law in the field of Linguistics
21According to Stigler’s law, “No scientific discovery is named after its original discoverer”. Stigler

provided an explanation for this fact in (Stigler, 1980), building upon ideas of R. K. Merton, the father
of the sociology of science.

22Zipf’ law is no exception to this fact, see Petruszewycz (1973) for a historical review of Zipf’s law.
23 In the sense that the vocabulary growth curve would hold at the level of all individual documents,

and at the same time Heaps’ law would hold at the collection level.
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Defining Vi = v(`i) in Eq. (1.37) renders it equal to Eq. (1.33), Heaps’ law. It is clear
from this (elementary) proof that the conditions αi ≡ α, and that of the proportionality
constant, are necessary. The reciprocal, however, does not hold in general. Indeed, it
is possible to construct synthetic datasets fulfilling Eq. (1.34) but not Eq. (1.35), see
Figure 1.7. Therefore, Heaps’ law and the vocabulary growth law are not equivalent

100
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100 101 102 103
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(`
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`

Figure 1.7 A pictorial representation of a collection of documents whose vocabulary growth
curves vi(`), marked with solid coloured lines, are not power laws, but that fulfill Heaps’ law,
marked with symbols, in the sense of Eq. (1.34)

statements. Unfortunately, the distinction between both interpretations of the law is
usually unclear in the literature. But if this distinction is taken into account, certain
results concerning the relation between Zipf’s law and Heaps’ law24 can be revisited.
This is undertaken in §3.2, where we derive the exact form of the vocabulary growth law
for systems where the frequency-count representation of Zipf’s law holds exactly, and
conclude that in this case, the vocabulary growth law is not a power law, but rather a
more complicated expression in terms of the poly-logarithm function. Our results are
confirmed with real corpora from the Project Gutenberg database.

24In the classic, ambiguous sense.

https://www.gutenberg.org/
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1.3 Bursty phenomena and thresholds

This section starts by introducing the “black-box” approach (§1.3.1), where the internal
dynamics of a system are purposely disregarded, in favor of the study of a signal that
emerges from the system. In the case of bursty phenomena (§1.3.2), this leads to the
definition of events that turn out to display scale-invariant properties. The need to
define the events via a threshold is exposed, and the consequences of this for the scaling
exponents are briefly discussed (§1.3.4).

1.3.1 The “black-box” approach

Consider a signal that changes with time, say a(t) > 0. We use the label a to denote that
a(t) is “monitoring” the activity level or intensity of some underlying process, which is
inaccessible to us and considered a “black-box”. This is not to mean that we have zero
information about the process behind the signal; rather, such a “black-box” approach
is a choice that we do, and there might be several reasons for that. For example, it
might happen that the physics behind the process are not quite well understood, or that
there is some controversy in the literature regarding the mechanisms driving the process.
Or it might be the case that, even if the process is thought to be well understood, the
microscopic, internal mechanism cannot be observed, or observing them is too costly.
In any case, these are just factors that might motivate our choice; but in the end, the
approach is as legitimate as any other.

Let us take the case of financial markets as an example. Financial markets can be
seen as complex systems where a large number of individual agents interact by buying
and selling stock options, derivatives or other financial products. On top of this, there are
plenty of external factors influencing the system in non-trivial ways: regional regulations,
national political circumstances, international relations, war-related events, catastrophic
natural events, lobbying, etc. Neither the interactions between agents nor the external
factors are understood well enough to allow for a clear modeling strategy, which would
in any case be quite involved. In addition, even in our times of big data, gathering and
processing data at the level of the microscopic interactions would probably be out of
reach. However, as a result of both the microscopic interactions between agents and the
external factors, certain “global” quantities emerge: for example, the market price of a
given commodity. This is a well-defined “observable”, to which we have direct access, and
from which we can obtain abundant and precise data. Thus in this example the financial
market would be taken as a “black-box” process that generates a signal, the price a(t) of
a given commodity over time.

The key idea, however, is that by studying the properties of the signal, one can gain
some insight on the nature of the underlying process. In the framework of Complexity
Science, scale invariance (§1.1.2) and universality (§1.1.1) are properties considered of
special interest; and thus if the signal a(t) displays these properties, then this tends to
be interpreted as a “mark” or “indication” of an underlying complex behavior. Clearly,
this approach cannot by itself uncover the dynamics or any details of the underlying
process, because no assumptions are made a priori about it. It is in this sense a more



26 Chapter 1 Introduction

conservative approach, which can be used in a more ample repertoire of situations, but
whose conclusive power is more limited.

1.3.2 Bursty phenomena

We now focus our attention on certain phenomena that we dub, for lack of a better term,
bursty phenomena. These are characterized by a tendency to occur in “bursts” of activity,
combining periods of inactivity or very weak activity with periods of high-intensity activity,
and the fact that such periods can last from very short times to extremely long ones,
with all intermediate scales of duration and intensity being possible. Perhaps a good
example is the case of rainfall: In plain words, sometimes it rains only for 5 minutes,
sometimes it rains for an hour, and sometimes it rains for the whole day. We also know,
from our every-day experience, that the intensity of rain seems to vary as well: it can go
from very light rain where we might not even need an umbrella, to extremely intense rain
that causes floods and, in some extreme cases, has devastating consequences. Besides the
example of rainfall (Andrade et al., 1998; Peters et al., 2002; Peters and Christensen, 2002,
2006; Peters et al., 2010; Deluca and Corral, 2014), other examples of bursty phenomena
in geosciences are earthquakes (Sornette and Sornette, 1989; Davidsen and Kwiatek, 2013;
Kagan, 2010; Lippiello et al., 2012), and hurricanes (Corral, 2010); and –at least at a
qualitative level– also solar flares (Baiesi et al., 2006; Boffetta et al., 1999; Paczuski et al.,
2005), volcanic eruptions (Grasso and Bachélery, 1995), rock avalanches (Turcotte and
Malamud, 2004) and forest fires (Malamud et al., 2005; Corral et al., 2008).

To put this qualitative description in a sound quantitative framework, let us say that
the signal a(t) corresponds to the rain rate in a given site, in units of e.g. millimeters
per hour, mm/h. A typical plot of the rain rate over a long period of time is show in
Figure 1.8. Notice that the signal a(t), the rain rate in this example, is defined for all
times, even if it takes the value 0 when it does not rain. Indeed, the bursty nature of rain
makes it natural to think in terms of rain events rather than on a continuous, ongoing
rain-rate time series: loosely speaking, a rain event starts “when it starts raining”, and
ends “when it ends raining”. So it is all up to what is considered rain and what is not,
which is actually a very delicate matter25. In any case, let us assume that we agree on
how to define the start and the end of the rain events. Then it is easy to transform a rain
rate time-series a(t) into a series of “rain events”, which we shall index by i = 1, 2, . . . ,
and which are characterized by a series of start-times and end-times, say {t1, t2, . . . } and
{t′1, t′2, . . . } respectively, so that the i-th rain event starts at time ti and ends at time t′i.
Then typically two observables are defined for each rain event: the event duration τi and
the event size si,

τi ≡ t′i − ti; si ≡
∫ t′i

ti

a(t) dt (1.38)

where the integration is generally substituted by a discrete sum if one deals with real
datasets. The observable τ corresponds to the duration, in units of time, of one rain
event, while s corresponds to the rain depth, i.e., the total volume of rain per unit of

25For instance, it might be difficult to distinguish very weak rain from moisture
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Figure 1.8 A real example of a rain-rate time series, shown at three different scales. The x-axis,
time, is measured in minutes, while the rain rate in the y-axis is in units of mm/h. The dataset
has a resolution of 1 minute. Missing points correspond to a recorded value of 0.

area. Now, assuming that we have collected rain data over a long period of time26, and
that we have an agreement in how to define the start and end of the rain events, we can
construct a very large collection of rain events and, therefore, of associated durations {τi}
and sizes {si}. If s and τ are regarded as random variables, then {τi} and {si} constitute
samples of s and τ , and we can estimate the probability distribution of s and τ ,

P(s)ds ' Prob[s ≤ si < s+ ds] (1.39)
P(τ)dτ ' Prob[τ ≤ τi < τ + dτ ]. (1.40)

In the examples of bursty phenomena mentioned above, it turns out that P(s) and P(τ)
display scale-invariant properties, in the form of scaling laws as defined in §1.1.2. The fact
that e.g. rainfall seems to display a scale-invariant distribution of event sizes, durations,
or dry spells27, see Figure 1.9, is considered interesting in the general complex systems

26There are datasets that span a period of over 10 years, with a 1 minute resolution of rain rate
27This observable, which we have not defined, measures the time between subsequent events.
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Figure 1.9 Data collapse of probability density functions of rain event sizes (left) and durations
(right). Colors correspond to data from different stations in Catalonia (NE Spain), from the
database maintained by the Agència Catalana de l’Aigua. Reproduced from Deluca and Corral
(2014).

framework, but it is of particular interest for advocates of the theory of Self-Organized
Criticality (SOC), see (Bak, 1996; Jensen, 1998; Pruessner, 2012) and many others. In
short, SOC tries to give a good explanation of how and why the “critical point”, a concept
borrowed from the theory of critical phenomena, see §1.1.1, would be reached in other
systems where some some analogies to critical phenomena have been drawn28.

In this Thesis, however, we will not analyze real-world dataset of the aforementioned
phenomena, nor will we enter the discussion of the case of rainfall or any other phenomena
being a real-world example of SOC, or any other theory, on the basis of the possible
scale invariance of some observables. Our interest will be in the thresholding procedure,
which we introduce in what follows, and which we will analyze at a purely theoretical
level. The findings of (Font-Clos et al., 2015, §3.3) provide a “warning”, if one wishes, of
the unexpected consequences that thresholding might have; in particular, the possibility
that spurious exponents are measured due to the introduction of the threshold. This
is discussed at depth in (Font-Clos et al., 2015, §3.3), but let us emphasize now how it
relates with what we have explained so far: if e.g. rainfall is conjectured to be in some
sense analogous to a critical phenomenon, for instance in the SOC-sense, then the scaling
exponents are of capital importance, specially if one envisages to establish the existence
universality classes as well. But we will see the threshold can, on the one hand, disturb
the value of measured exponents in non-negligible ways; but it also is, on the other hand,
an unavoidable step in the analysis of many real-world datasets.

28The issue is the following: while with ferromagnetic materials the critical temperature Tc is obviously
not reached spontaneously, i.e., we must heat the material to its critical temperature; it seems that with
other systems the “critical point” is reached spontaneously, that is, the systems somehow poses itself into
a “critical state”. Obviously, this needs a sound explanation as to how it happens, and the theory of SOC
gives one possibility for that.
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1.3.3 Zero-defined events

So far we kept the example of rainfall explicit, but obviously the idea can be generalized
to any signal a(t). In short, a signal a(t) can be transformed into a series of events as long
as there is a convention on what marks the start and the end of events. In the case of
bursty phenomena, which we are specially interested in, it seems natural to define events
in the simplest possible way: the periods of inactivity, a(t) = 0, separate the events, and
the periods of activity a(t) > 0, constitute the events. An illustrative depiction of this
idealized situation is shown in Figure 1.10 (top). We will argue in what follows that
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Figure 1.10 Representation of the signal generated by a bursty phenomenon, displaying large
variability in its intensity a(t) and in the patterns of activity/inactivity. Top: The original, raw
signal. In this idealized example, the signal takes non-negative values, a(t) ≥ 0, including a(t) = 0,
and hence it defines in a natural way the periods of activity/inactivity, marked with alternating
red/white strips below the a(t) = 0 line. Bottom: Alternatively, events can be defined via a
threshold, set to h = 70 in this example.

such a procedure, although perfectly reasonable in theory, can be quite problematic when
one deals with real-world measurements of certain phenomena. The technical reasons
that render this “naïve” approach ill-advised vary from case to case, and are by necessity
related to the nature of each phenomenon, the technical characteristics of the devices
used to measure them, etc., We shall however briefly explain the most common reasons in
a general manner. In short, using the value of intensity or activity zero to define events
involves distinguishing a(t) = 0 from a(t) 6= 0, and this is problematic in many senses:

1. In a strict sense, the notion a(t) → 0 involves crossing all length scales: from a
macroscopic level to the mesoscale to the molecular and atomic scale; to the extend
that the magnitude measured, a, might not be clearly defined at some point.

2. Even in the regime where a(t) is well-defined in a physical sense, the meaning that
we give to it cannot be distinguished from what is being measured. For example, in
the case of rainfall, devices can measure the volume of water collected, but cannot
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distinguish that from humidity and moisture, which contribute as well to the total
volume of water, and which in principle we do not want to consider as rain.

3. The measuring devices have always a finite resolution, so that zero intensity can
only be distinguished from non-zero intensity, in practice, up to certain degree.

1.3.4 Threshold-defined events

To solve the problems exposed above, an alternative way of defining events is the use of
a threshold. The idea is simply to set a finite value h > 0, which we call the threshold,
and below which the signal is regarded as zero. Formally, we can say that thresholding a
signal a(t) at threshold level h > 0 consists in the transformation:

a(t)→ ãh(t) := Θ(a(t)− h)a(t), (1.41)

where Θ(·) denotes the step or Heaviside function. The thresholding procedure solves
the problem of distinguishing zero from non-zero intensities by setting the signal to zero
when it is below certain value h, and allows for an unambiguous definition of events.
It obviously introduces new problems, because the threshold level h is in some sense
arbitrary, and the new, thresholded signal, âh(t), and the events thereof defined, depend
on the value h. But before entering this discussion, which is what motivated the research
exposed in (Font-Clos et al., 2015, §3.3), let us insist on the necessity of using thresholds
in the analysis of real-world datasets.

First, catalogues of historical data often come with an implicit threshold, which
cannot be “eliminated”. This is sometimes related to the technical limits of the measuring
devices, but also due to the necessity (in the past mostly) of limiting the amount of data
stored. Second, the value of implicit thresholds is not always known due to incomplete (or
missing) technical documentation. And finally, in large datasets that have been created
by combining several datasets, or in studies that aim at comparing different datasets,
each might have a different threshold. In all these cases, it might be desirable to further
threshold the data, i.e., to introduce a new threshold that, although by necessity higher
than the implicit threshold(s), at least will be known, and will be homogeneous along the
different datasets. Finally, let us mention the cases of solar flares and financial markets,
where the signal a(t) actually never ceases, i.e., a(t) > 0∀t. In such a situation, one
cannot possibly define events without introducing a threshold.

In summary, thresholding is a procedure that allows for an unambiguous definition of
events and that, in many cases, cannot be avoided. But the introduction of the threshold
has the consequence that, in principle, all measured quantities, including those of interest
for us like the distribution of event sizes and durations, become threshold-dependent,

P(s)→ Ph(s); P(τ)→ Ph(τ). (1.42)

In particular, this includes the values of scaling exponents, in the cases where s, τ or
other observables display scale invariance. Notice that the values of the scaling exponents
must be fitted from finite-length datasets, so the picture becomes quite involved: to the
not-so-simple issue of fitting power-law distributions, see again Clauset et al. (2009);
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Deluca and Corral (2013), we must now add the issue of the dependence of the exponent
with the value of the threshold.

Interestingly, a simple heuristic argument can be constructed to conclude that scaling
exponents should not depend on the value of threshold h, and it goes as follows: the
scaling exponent is actually a statement about the asymptotically large events, and given
that the value of h must be finite, those large events will be almost unaffected by the
threshold. The key point behind this argument is that for any finite value of h, there are
always large enough events whose value (size, or duration) does not change significantly
due to the introduction of the threshold at level h. The drawback of this argument, which
otherwise seems to stand perfectly, is that it implicitly assumes infinite amount of data:
it admits that the threshold might modify the distribution of interest, say Ph(τ), up to
certain finite scales of τ , but that, for fixed h, there are always large enough events whose
duration τ is effectively unaffected by h. And because these are the events that determine
the value of the asymptotic scaling exponent, the argument concludes that the exponent
should not depend on the threshold.

This view is challenged in detail in (Font-Clos et al., 2015, §3.3) by means of a simple
stochastic process (the birth-death process). It is shown that the asymptotic exponents,
when measured in a finite dataset, can be greatly disturbed by the introduction of the
threshold. Interestingly, in the case of the birth-death process, a new scaling region, with
a new, well-defined exponent, appears in the “intermediate” region of event durations.
Further analysis and conclusions related to this publication are placed in §2.4.





CHAPTER 2
Conclusion

The main results of this Thesis are discussed in relation to the notion of scale invariance,
and within the wider framework of Complexity Science. The chapter starts with a
summary of the results of the three publications composing this Thesis. It is then
shown that certain results can be recast into scaling laws of two variables, and a table
summarizing the associated scaling exponents and scaling functions is provided. Finally,
some further conclusions are outlined.
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2.1 Summary of results

The first publication of this Thesis, (Font-Clos et al., 2013, §3.1), studies the dependence
of Zipf’s exponent γ with the system size, i.e., the document length L. This is of
particular interest in relation to the concept of universality in critical phenomena, see
§1.1.1, where universality classes are established on the basis of scaling exponents and
scaling functions. The main result of (Font-Clos et al., 2013, §3.1) can be stated as follows:

The exponent of Zipf’s law γ in the frequency-count representation is in-
dependent of the document length L. This is a consequence of the fact that the
word-frequency distribution DL(n) has a shape that is independent of the system size
L and the vocabulary VL, and it is only the scale of DL(n) that depends on L and VL
as follows:

DL(n) =
g(n/L)

LVL
, (2.1)

with g(·) an arbitrary function of one variable (presumably containing the power law
tail with exponent γ).

The rest of results are summarized as follows:

1. Equation (2.1) is seen to yield to excellent data collapses, see §1.1.2, both for
non-lemmatized and for lemmatized texts.

2. In the case of lemmatized texts, a double power law approximates well the analyzed
corpus. In this case the scaling function g(·) takes the form

g(x) ∝ 1

x(a+ xγ−1)
, (2.2)

3. A rough approximation of the vocabulary growth law, see §1.2.3, can be obtained
from Equation (2.1):

VL =

∫ ∞

1/L
g(x)dx (2.3)
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The second publication of this Thesis (Font-Clos and Corral, 2015, §3.2), studies
the vocabulary growth curve of Zipf’s systems. Although the case of language is a
natural example, the scope of the paper is more general, and includes any system where
certain tokens can be grouped into types, and where Zipf’s law is known to hold in the
frequency-count representation (which is assumed to be a pure power law with exponent
γ). The main result of (Font-Clos and Corral, 2015, §3.2) is the following:

The vocabulary growth curve v(`) fulfills a universal data collapse that
depends only on Zipf’s exponent γ, after proper rescaling. Its exact form
is predicted theoretically and yields excellent agreement with real data. In
particular, in a system of size `, total size L and total vocabulary V , the vocabulary
growth curve v(`) is given by

v(`) ' V
(

1− Liγ(1− `/L)

ζ(γ)

)
. (2.4)

This theoretical prediction is derived by assuming that Zipf’s law in the frequency-count
representation holds strictly, as well as a random placement of tokens in the system. In
addition:

1. The theoretical prediction that Eq. (2.4) constitutes yields to excellent agreement
with real data drawn from the Project Gutenberg database. This is remarkable,
because of the presence of long-range correlations in real documents, contrary to
the randomness assumption in the theoretical derivations.

2. A careful analysis of inter-occurrence distance distribution reveals that the first
instance of a word behaves as in a random system, while subsequent occurrences
display signs of clustering or long-range correlations.

3. It is hence understood why a prediction based on the randomness hypothesis
yields to such a good agreement when tested against a dataset drawn from a real,
non-random system.
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The third and last publication of this Thesis (Font-Clos et al., 2015, §3.3), studies the
possible effects of applying thresholds to time-series of bursty phenomena. In particular,
it provides a counter-example to the claim that the threshold cannot change the scaling
exponent of some relevant observables of the events, which are defined via the threshold
itself. The main result of (Font-Clos et al., 2015, §3.3) is the following:

Thresholding the birth-death process introduces a spurious scaling region
in the distribution of event durations. This scaling region has a scaling exponent
of −3/2, while the scaling exponent of the original birth-death process is well-known to
be −2. In addition, the distribution of durations of a thresholded birth-death process,
with threshold level h, fulfills the following scaling law:

Pgs (gs;h) ' 2g−2s G> (gs/h) ; for gs � 1/h, (2.5)

where gs is the duration of the process, h the threshold level, and G> the scaling
function.

The rest of results are summarized as follows:

1. The Laplace transform of Pgs (gs;h) can be analytically computed for gs � 1,

P̂(u;h) =

∫ ∞

0
dgse

−gsu Pgs (gs;h) =

√
u(h+ 1)K1

(
2
√

2
√
u(h+ 1)

)

√
uhK1

(
2
√

2
√
uh
) , (2.6)

with K1(·) the modified Bessel function of the first kind. This allows to numerically
evaluate the scaling function G>(·).

2. An alternative scaling law, valid for short durations, can be formulated as follows:

Pgs (gs;h) ' g
−3/2
s√
2πh
G< (gsh) ; for gs � 8πh. (2.7)

3. The original scaling region of the process, with scaling exponent −2, is recovered
only for gs � 8πh. Thus the crossover between the two scaling regions scales
linearly with the threshold.

4. If the sample size is not large enough, even sophisticated fitting methods fail to
capture the “true” asymptotic exponent of -2. Instead, fitted values close to the
“spurious” exponent −3/2 are obtained.

5. The origin of the −3/2 spurious scaling is understood to lie in the random walk em-
bedded in the process. For high enough values of the threshold h, relative changes
in position are small, and the additive nature of the random walk “supersedes” the
multiplicative nature of the original birth-death process. It is conjectured that
the above discussion applies more generally to other multiplicative processes.
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2.2 Results as scaling laws: a unifying picture

It is shown that some of the main results of this Thesis might be expressed in the form
of scaling laws. Thus, the scale-invariance of certain properties of the systems under
study is established.

As demonstrated in §1.1.2, a scale-invariant function of two variables f(x1, x2) must take
the form

f(x1, x2) = |x1|1/b1G±
(

x2

|x1|b2/b1

)
, (2.8)

which is known as a scaling law. The function G(·) is the scaling function, and b1, b2 ∈ R
are the scaling exponents. The triplet {G; b1, b2} hence completely determines the scaling
law, and the function f(x1, x2) is invariant under the scale transformation

x1 → x1/λ
b1

x2 → x2/λ
b2 (2.9)

f(x1, x2)→ f(x1, x2)/λ

for any λ ∈ R+. We will now show that the main results of §3.2 and §3.3, Equations
(2.4) and (2.5) respectively, can be expressed as scaling laws. The main result of §3.1,
Equation (2.1), does not fit into the definition of a scaling law if no additional assumptions
are taken. To proceed in a clear and consistent manner, let us adopt the following
convention: we will keep the original notation of the publications for the variables, but
we will adopt the notation of Eq. (2.8) for the functions. Thus x1, x2 in Eq. (2.8) will be
substituted by the corresponding variables of each publication, but the scale invariant
function f and the scaling function G± will not.

The vocabulary growth of Zipf’s systems as a scaling law

The main result of (Font-Clos and Corral, 2015, §3.2),

v(`) ' V
(

1− Liγ(1− `/L)

ζ(γ)

)
, (2.10)

gives the (average) vocabulary growth curve v(`) in a system where Zipf’s law in the
frequency-count representation holds strictly, i.e.,

N(n) ∝ 1

nγ
; n = 1, 2, . . . (2.11)

The system comprises V types, with frequencies {n1, . . . , nV } drawn from Eq. (2.11),
which yield a total of L tokens,

L =
V∑

i=1

ni. (2.12)

In this sense, L is regarded as the sum of V random variables, and is hence also a random
variable. We now discuss the asymptotic scaling of L with V , which was not treated in
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(Font-Clos and Corral, 2015, §3.2). This will allow us to rewrite Eq. (2.10) as a scaling
law. If n, as a random variable, has finite mean, i.e., if γ > 2, then it is trivial to see that
L scales linearly with V . To be precise,

lim
V→∞

L

V
= E[n] <∞, (2.13)

which is basically the law of large numbers. We will simply write L ∼ V to denote such an
asymptotic scaling. However in the case of 1 < γ < 2 the mean diverges, and the above
reasoning cannot be applied. Intuitively, one needs to rescale L with some power of V ,
say V µ with µ > 1, because otherwise L grows “too fast”, and the sum does not converge.
If the right power is chosen, then L/V µ converges to a non-degenerate distribution. The
Generalized Central Limit Theorem, see Bouchaud and Georges (1990), says that the
right power is µ = 1/(γ − 1). More precisely, if 1 < γ < 2, then

lim
V→∞

L

V
1

γ−1

→ S(γ), (2.14)

where S(γ) is a random variable1 that does not depend on V . We will write L ∼ V
1

γ−1 ,
or, equivalently, V ∼ Lγ−1, to denote this asymptotic scaling relation. In summary, we
have just shown that, for large V and hence large L,

V ∼
{
Lγ−1 for 1 < γ < 2
L for γ > 2

(2.15)

Notice that Eq. (2.15) is a statement2 about Heaps’ law, in the sense of Eq. (1.34) in
§1.2.3 and hence it does not contradict our original result Eq. (2.10), which refers to the
vocabulary growth law in the sense of Eq. (1.35). We can finally go back to the main
result of (Font-Clos and Corral, 2015, §3.2), substituting (2.15) into (2.10), to obtain

v(`, L) ∝





Lγ−1
(

1− Liγ(1−`/L)
ζ(γ)

)
for 1 < γ < 2

L
(

1− Liγ(1−`/L)
ζ(γ)

)
for γ > 2

(2.16)

Notice that we have made explicit the dependence of v with L, because strictly speaking v
is a function of ` and L, v ≡ v(`, L). It is now clear that (2.16) is a scaling law. Defining
G1(y) ≡ aγ(1− Liγ(1− y)/ζ(γ)), with aγ a proportionality constant that depends on γ,
v(`, L) ≡ f<1 (`, L) for 1 < γ < 2, and v(`, L) ≡ f>1 (`, L) for γ > 2, we get to

f<1 (`, L) ' Lγ−1G1(`/L); 1 < γ < 2 (2.17)
f>1 (`, L) ' L G1(`/L); 2 < γ (2.18)

Therefore, the vocabulary growth curve is a scale-invariant property of Zipf’s systems,
under the assumption of a perfect power-law distribution of frequencies, independence
between frequencies of different types, and random ordering in the system.

1In particular, S(γ) is known as a stable distribution, and it has a power-law tail with exponent γ.
2Under the following assumptions: a strict power law for Zipf’s law in the frequency-count represen-

tation, and {ni}Vi=1 a set of i.i.d random variables.
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The distribution of durations of a thresholded birth-death process as a
scaling law

We now turn to the main data collapse in (Font-Clos et al., 2015, §3.3),

P (g, h) ' 2g−2G> (g/h) ; for g � 1/h. (2.19)

where we have defined g ≡ gs and P(g, h) ≡ Pgs(gs;h) to ease the notation. Remind that
g corresponds to the duration of events in a birth-death process, and that the events are
defined via a threshold at level h. Clearly, Eq. (2.19) is already in the form of a scaling
law, but we might as well define G2(y) ≡ 2y−2G>(y) and f2(g, h) ≡ P(g, h), to get to an
equivalent formulation:

f2(g, h) ' h−2G2 (g/h) ; for g � 1/h. (2.20)

The alternative data collapse,

P (g, h) ' g−3/2√
2πh
G< (gh) ; for g � 8πh, (2.21)

can also be recast into another scaling law, by considering G3 ≡ (2π)−1/2y−3/2G<(y), so
that

f3(g, h) ' hG3 (gh) ; for g � 8πh. (2.22)

Notice that these manipulation had the sole objective of bringing the results of §3.2 and
§3.3 into the same form, so that scaling exponents, scaling functions and the rôle that
the different variables play can be compared, but the original scaling laws presented in
(Font-Clos et al., 2015, §3.3) are more appropriate to discuss the effects of thresholding
the birth-death process. The asymptotic properties of the scaling functions G2(·), G2(·)
are given in Table 2.1.

In summary, it has been shown how certain results of this Thesis can be expressed as
scaling laws. Table 2.1 summarizes the scaling laws obtained, Equations (2.17,2.18,2.20)
and (2.22), including the scaling functions and the scaling exponents.
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2.4 Further conclusions

This section is concerned with conclusions beyond the ones of §3.1, §3.2 and §3.3. The
publications that form this Thesis have each their specific context (natural language,
general Zipf’s systems and bursty phenomena) and their conclusions are hence framed
accordingly. It is hence only left, but also, mandatory, to give a more global, encompassing
view of the results of this Thesis, in light of the unifying picture just presented.

The object of this Thesis was the study of the scale invariance of certain complex
systems. It has been shown that, under certain hypothesis, the vocabulary growth
curve v(`, L) of Zipf’s systems and the distribution of durations P(g, h) of a thresholded
birth-death process take the form of a scaling law, and are hence scale invariant. The
distribution of frequencies D(n,L) ≡ DL(n) as defined in the first publication of this
Thesis, however, cannot be cast into a scaling law without further assumptions, and hence
cannot be said to be scale-invariant (in a strict sense).

The notion of scale invariance tends to be associated with power-law distributions
or power-law functional relations, and this is probably because, in one dimension, all
scale-invariant functions are power laws. However, as explained in the introduction, when
more variables are taken into account, then scale-invariant functions take the more general
form of scaling laws. Notice how much richer are scaling laws compared to power laws:
the scaling function G(·) can take any form.

The distribution of durations of a thresholded birth-death process P(g, h) provides a
very good example: if one only looks at g, then it looks like scale invariance is “broken”:
P(g, h) is not a power law of g, the threshold has introduced a characteristic scale (given
by 8πh) and scale invariance is not fulfilled, in this sense. But if the threshold h is
incorporated into the system as a variable, then scale invariance is “recovered”: P(g, h) is
a scaling law, Eq. (2.20), and the scaling function takes as argument the combination
g/h. Indeed, one might say that, if the durations are measured “in units of the threshold”,
then the characteristic scale introduced by the threshold disappears, and scale-invariance
is preserved. But notice that, the scaling function has another power-law (left) tail,
with a different exponent. All together, we learn that systems displaying several scaling
regimes, each with a different exponent (i.e., “double power laws”, or beyond), might still
be susceptible of being scale-invariant, if the right variables are taken into account.

As for the vocabulary growth curve, the scaling function is visually similar to a power
law, but it displays certain convexity in log-log space. In the past, this (slight) convexity
has been either purposely ignored, or attributed to other factors, or simply considered an
approximate result, all in an attempt to claim –no matter what the evidence showed– that
the vocabulary grows as a power law of the text length. But the interest, from a Complexity
Science point of view, should be (among other things) on the scale invariance of the systems
under study, not their “power-lawness”. After all, power laws are not a priori better than
other functions –it is their relation with scale invariance that makes them more interesting.
Why then this “bias” towards finding power laws when the evidence suggests otherwise



42 Chapter 2 Conclusion

and when, actually, a scaling law could better accommodate the data? This seems rather
unjustified, particularly in cases such as the vocabulary growth law, where under some
assumptions the scaling law can be theoretically derived, and the scaling function exactly
calculated.

In summary, scale invariance cannot be ruled out just on the basis of a deviation from
a power law in the observations: the analysis might be missing an important variable that,
when taken into account, allows for the results to fall under the umbrella of a scaling law.
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Abstract. The dependence on text length of the statistical properties of word
occurrences has long been considered a severe limitation on the usefulness of
quantitative linguistics. We propose a simple scaling form for the distribution of
absolute word frequencies that brings to light the robustness of this distribution
as text grows. In this way, the shape of the distribution is always the same, and it
is only a scale parameter that increases (linearly) with text length. By analyzing
very long novels we show that this behavior holds both for raw, unlemmatized
texts and for lemmatized texts. In the latter case, the distribution of frequencies is
well approximated by a double power law, maintaining the Zipf’s exponent value
γ ' 2 for large frequencies but yielding a smaller exponent in the low-frequency
regime. The growth of the distribution with text length allows us to estimate the
size of the vocabulary at each step and to propose a generic alternative to Heaps’
law, which turns out to be intimately connected to the distribution of frequencies,
thanks to its scaling behavior.
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1. Introduction

Zipf’s law is perhaps one of the best pieces of evidence about the existence of universal physical-
like laws in cognitive science and the social sciences. Classic examples where it applies include
the population of cities, company income and the frequency of words in texts or speech [1]. In
the latter case, the law is obtained directly by counting the number of repetitions, i.e. the absolute
frequency n, of all words in a long enough text, and assigning increasing ranks, r = 1, 2, . . ., to
decreasing frequencies. When a power-law relation

n ∝
1

rβ

holds for a large enough range, with the exponent β more or less close to 1, Zipf’s law is
considered to be fulfilled (with ∝ denoting proportionality). An equivalent formulation of the
law is obtained in terms of the probability distribution of the frequency n, such that it plays the
role of a random variable, for which a power-law distribution

D(n) ∝
1

nγ

should hold, with γ = 1 + 1/β (taking values close to 2) and D(n) as the probability mass
function of n (or the probability density of n, in a continuous approximation) [2–6]. Note that
this formulation implies performing double statistics (i.e. doing statistics twice), first counting
words to get frequencies and then counting repetition of frequencies to get the distribution of
frequencies.

The criteria for the validity of Zipf’s law are arguably rather vague (long enough text,
large enough range, exponent β more or less close to 1). Generally, a long enough text means
a book, a large range can be a bit more than an order of magnitude and the proximity of the
exponent β to 1 translates into an interval (0.7,1.2), or even beyond that [6–8]. Moreover, no
rigorous methods have been usually required for the fitting of the power-law distribution. Linear
regression in double-logarithmic scale is the most common method, either for n(r) or for D(n),
despite the fact that it is well known that this procedure suffers from severe drawbacks and can
lead to flawed results [9, 10]. Nevertheless, once these limitations are assumed, the fulfillment
of Zipf’s law in linguistics is astonishing, being valid no matter the author, style or language
[1, 6, 7]. So, the law is universal, at least in a qualitative sense.
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At a theoretical level, many different competing explanations of Zipf’s law have been
proposed [6], such as random (monkey) typing [11, 12], preferential repetitions or proportional
growth [13–15], the principle of least effort [1, 16–18], and, beyond linguistics, Boltzmann-type
approaches [19] or even avalanche dynamics in a critical system [20]; most of these options have
generated considerable controversy [21–23]. In any case, the power-law behavior is the hallmark
of scale invariance, i.e. the impossibility to define a characteristic scale, either for frequencies
or for ranks. Although power laws are sometimes also referred to as scaling laws, we will make
a more precise distinction here. In short, a scaling law is any function invariant under a scale
transformation (which is a linear dilation or contraction of the axes). In one dimension the only
scaling law is the power law, but this is not true with more than one variable [24]. Note that
in text statistics, other variables to consider in addition to frequency are the text length L (the
total number of words, or tokens) and the size of the vocabulary VL (i.e. the number of different
words, or types).

Somehow related to Zipf’s law is Heaps’ law (also called Herdan’s law [25, 26]),
which states that the vocabulary VL grows as a function of the text length L as a power
law

VL ∝ Lα

with the exponent α smaller than one. However, even simple log–log plots of VL versus L do
not show a convincing linear behavior [27] and therefore, the evidence for this law is somewhat
weak (for a notable exception see [5]). Nevertheless, a number of works have derived the
relationship β = 1/α between Zipf’s and Heaps’ exponents [2, 5, 28], at least in the infinite-
system limit [29, 30], using different assumptions.

Despite the relevance of Zipf’s law, and its possible relations with criticality, few systematic
studies about the dependence of the law on system size (i.e. text length) have been carried
out. It was Zipf himself [1, pp. 144] who first observed a variation in the exponent β when
the system size was varied. In particular, ‘small’ samples would give β < 1, while ‘big’ ones
yielded β > 1. However, that was attributed to ‘undersampling’ and ‘oversampling’, as Zipf
believed that there was an optimum system size under which all words occurred in proportion
to their theoretical frequencies, i.e. those given by the exponent β = 1. This increase of β with
L has been confirmed later, see [25, 31], leading to the conclusion that the practical usefulness
of Zipf’s law is rather limited [25].

More recently, using rather large collections of books from single authors, Bernhardsson
et al [32] find a decrease of the exponents γ and α with text length, in correspondence with
the increase in β found by Zipf and others. They propose a size-dependent word-frequency
distribution based on three main assumptions:

(i) The vocabulary scales with text length as VL ∝ Lα(L), where the exponent α(L) itself
depends on the text length. Note however that this is not an assumption in itself, just
notation, and it is also equivalent to writing the average frequency 〈n〉 = L/VL as 〈n(L)〉 ∝

L1−α(L).

(ii) The maximum frequency is proportional to the text length, i.e. nmax = n(r = 1) ∝ L .

(iii) The functional form of the word frequency distribution DL(n) is that of a power law with
an exponential tail, with both the scale parameter c(L) and the power-law exponent γ (L)
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depending on the text length L . That is

DL(n) = A
e−n/c(L)

nγ (L)

with 1 < γ (L) < 2.

Taking c(L) = c0L guarantees that nmax ∝ L; moreover, the form of DL(n) implies that,
asymptotically, 〈n(L)〉 ∝ L2−γ (L) [24], which comparing to assumption (i) leads to

α(L) = γ (L) − 1,

so, 0 < α(L) < 1. This relationship between α and γ is in agreement with previous results if L
is fixed [2, 29, 30]. It was claimed in [32] that α(L) decreases from 1 to 0 for increasing L and
therefore γ (L) decreases from 2 to 1. The resulting functional form

DL(n) = A
e−n/(c0 L)

n1+α(L)

is in fact the same functional form appearing in many critical phenomena, where the power-
law term is limited by a characteristic value of the variable, c0L , arising from a deviation
from criticality or from finite-size effects [24, 33–35]. Note that this implies that the tail of the
frequency distribution is not a power law but an exponential one, and therefore the frequency
of most common words is not power-law distributed. This is in contrast with recent studies that
have clearly established that the tail of DL(n) is well modeled by a power law [9, 36]. However,
what is most uncommon about this functional form is the fact that it has a ‘critical’ exponent
that depends on system size. The values of exponents should not be influenced by external
scales. So, here we look for an alternative picture that is more in agreement with typical scaling
phenomena.

Our proposal is that, although the word-frequency distribution DL(n) changes with system
size L , the shape of the distribution is independent of L and VL , and only the scale of DL(n)

changes with these variables. This implies that the shape parameters of DL(n) (in particular, any
exponent) do not change with L; only one scale parameter changes with L , increasing linearly.
This is explained in section 2, while section 3 one is devoted to the validation of our scaling
form in real texts, using both plain words and their corresponding lemma forms; in the latter
case an alternative to Zipf’s law can be proposed, consisting of a double power-law distribution
(which is a distribution with two power-law regimes that have different exponents). Our findings
for words and lemmas suggest that the previous observation that the exponent in Zipf’s law
depends on text length [25, 31, 32], might be an artifact of the increasing weight of a second
regime in the distribution of frequencies beyond a certain text length. Section 4 investigates the
implications of our scaling approach for Heaps’ law. Although the scaling ansatz we propose
has a counterpart in the rank-frequency representation, we prefer to illustrate it in terms of the
distribution of frequencies, as this approach has been deemed more appropriate from a statistical
point of view [36].

2. The scaling form of the word-frequency distribution

Let us come back to the rank-frequency relation, in which the absolute frequency n of each
type is a function of its rank r . Defining the relative frequency as x ≡ n/L and inverting the
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relationship, we can write

r = GL(x).

Note that here we are not assuming a power-law relationship between r and x , just a generic
function GL , which may depend on the text length L . Instead of the three assumptions
introduced by Bernhardsson et al we just need one assumption, which is the independence
of the function GL with respect to L; so

r = G(n/L). (1)

This turns out to be a scaling law, with G(x) a scaling function. It means that if in the first 10 000
tokens of a book there are five types with relative frequency larger than or equal to 2%, that is,
G(0.02) = 5, then this will still be true for the first 20 000 tokens, and for the first 100 000 and
for the whole book. These types need not necessarily be the same ones, although in some cases
they might be. In fact, instead of assuming as in [32] that the frequency of the most used type
scales linearly with L , what we assume is just that this is true for all types, at least on average.
Notice that this is not a straightforward assumption, as, for instance [5], considers instead that
n is just a (particular) function of r/VL .

Now let us introduce the survivor function or complementary cumulative distribution
function SL(n) of the absolute frequency, defined in a text of length L as SL(n) =

Prob[frequency> n]. Note that, estimating from empirical data, SL(n) turns out to be essentially
the rank, but divided by the total number of ranks, VL , i.e. SL(n) = r/VL . Therefore, using our
ansatz for r we get

SL(n) =
G(n/L)

VL
.

Within a continuous approximation the probability mass function of n, DL(n) =

Prob[frequency = n], can be obtained from the derivative of SL(n):

DL(n) = −
∂SL(n)

∂n
=

g(n/L)

LVL
, (2)

where g is minus the derivative of G, i.e. g(x) = −G ′(x). If one does not trust the continuous
approximation, one can write DL(n) = SL(n) − SL(n + 1) and perform a Taylor expansion, for
which the result is the same, but with g(x) ' −G ′(x). In this way, we obtain simple forms for
SL(n) and DL(n), which are analogous to standard scaling laws, except for the fact that we have
not specified how VL changes with L . If Heaps’ law holds, VL ∝ Lα, we recover a standard
scaling law, DL(n) = g(n/L)/L1+α, which fulfills invariance under a scaling transformation, or,
equivalently, fulfills the definition of a generalized homogeneous function [24, 37]

DλL L(λnn) = λD DL(n),

where λL , λn and λD are the scale factors, related in this case through

λn = λL ≡ λ

and

λD =
1

λ1+α
.
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Table 1. Total text length and vocabulary before (L tot, Vtot) and after (L (l)
tot, V (l)

tot )
the lemmatization process, for all the books considered (including also their
author, language and publication year). The text length for lemmas is shorter
than for words because for a number of word tokens their corresponding lemma
type could not be determined, and they were ignored.

Title Author Language Year L tot Vtot L(l)
tot V (l)

tot

Artamène Scudéry siblings French 1649 2 078 437 25 161 1 737 556 5008
Clarissa Samuel Richardson English 1748 971 294 20 490 940 967 9041
Don Quijote Miguel de Cervantes Spanish 1605–1615 390 436 21 180 378 664 7432
La Regenta L Alas ‘Cları́n’ Spanish 1884 316 358 21 870 309 861 9900
Le Vicomte de Bragelonne A Dumas (father) French 1847 693 947 25 775 676 252 10 744
Moby-Dick Herman Melville English 1851 215 522 18 516 204 094 9141
Ulysses James Joyce English 1918 268 144 29 448 242 367 12 469

However, in general (if Heaps’ law does not hold), the distribution DL(n) still is invariant under
a scale transformation but with a different relation for λD, which is

λD =
VL

λVλL
.

So, DL(n) is not a generalized homogeneous function, but presents an even more general form.
In any case, the validity of the proposed scaling law, equation (1), can be checked by performing
a very simple rescaled plot, displaying LVL DL(n) versus n/L . A resulting data collapse support
the independence of the scaling function with respect to L . This is undertaken in section 3.

3. Data analysis results

To test the validity of our predictions, summarized in equation (2), we analyze a corpus of
literary texts, comprised by seven large books in English, Spanish and French (among them,
some of the longest novels ever written, in order to have as much statistics of homogeneous
texts as possible). In addition to the statistics of the words in the texts, we consider the statistics
of lemmas (roughly speaking, the stem forms of the word; for instance, dog for dogs). In the
lemmatized version of each text, each word is substituted by its corresponding lemma, and
the statistics are collected in the same way as they are collected for word forms. Appendix A
provides detailed information on the lemmatization procedure, and table 1 summarizes the most
relevant characteristics of the analyzed books.

First, we plot the distributions of word frequencies, DL(n) versus n, for each book,
considering either the whole book or the first L/L tot fraction, where L tot is the real, complete
text length (i.e. if L = L tot/2 we consider just the first half of the book, no average is performed
over parts of size L). For a fixed book, we observe that different L leads to distributions with
small but clear differences, see figure 1. The pattern described by Bernhardsson et al (equivalent
to Zipf’s findings for the change of the exponent β) seems to hold, as the absolute value of the
slope in log–log scale (i.e. the apparent power-law exponent γ ) decreases with increasing text
length.

However, a scaling analysis reveals an alternative picture. As suggested by equation (2),
plotting LVL DL(n) against n/L for different values of L yields a collapse of all the curves onto
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Figure 1. Density of word frequencies DL(n) (y-axis) against absolute frequency
n (x-axis), for six different books, taking text length L = L tot/10, L tot/104/5,
L tot/103/5, . . ., L tot. The slope seems to decrease with text length.

a unique L-independent function for each book, which represents the scaling function g(x).
Figure 2 shows this for the same books and parts of the books as in figure 1. The data collapse
can be considered excellent, except for the smallest frequencies. For the largest L the collapse is
valid up to n ' 3 if we exclude La Regenta, which only collapses for about n > 6. So, our scaling
hypothesis is validated, independently of the particular shape that g(x) takes. Note that g(x) is
independent of L but not the book, i.e. each book has its own g(x), different from the rest. In any
case, we observe a slightly convex shape in log–log space, which leads to the rejection of the
power-law hypothesis for the whole range of frequencies. Nevertheless, the data does not show
any clear parametric functional form. A double power law, a stretched exponential, a Weibull
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Figure 2. Rescaled densities LVL DL(n) (y-axis) against relative frequency n/L
(x-axis), for the same books and fractions of text as in figure 1. The rescaled
densities collapse onto a single function, independently of the value of L ,
validating our proposed scaling form for DL(n) (equation (2)) and making it
clear that the decrease of the log–log slope with L is not a consequence of a
genuine change in the scaling properties of the distribution.

or a lognormal tail could be fit to the distributions. This is not incompatible with the fact that
the large n tail can be well fit by a power law (the Zipf’s law), for more than two orders of
magnitude [36].

Things turn out to be somewhat different after the lemmatization process. The scaling
ansatz is still clearly valid for the frequency distributions, see figure 3, but with a different kind
of scaling function g(x), with a more defined characteristic shape, due to a more pronounced
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Figure 3. Same rescaled distributions as in previous figure (LVL DL(n) versus
n/L), but for the frequencies of lemmas. The data collapse guarantees the
fulfillment of the scaling law also in this case. The fit resulting from the double
power-law distribution, equation (3), is also included.

log–log curvature or convexity. In fact, close examination of the data leads us to conclude that
the lemmatization process enhances the goodness of the scaling approximation, specially in
the low-frequency zone. It could be reasoned that, as lemmatized texts have a significantly
reduced vocabulary compared to the original ones, but the total length remains essentially
the same, they are somehow equivalent to much longer texts, if one considers the length-to-
vocabulary ratio. Although this matter needs to be further investigated, it supports the idea that
our main hypothesis, the scale-invariance of the distribution of frequencies, holds more strongly
for longer texts.
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Table 2. Values of the parameters na, γ and a for the lemmatized versions
(indicated with the superscript (l)) of the seven complete books. The fits are
performed numerically through MLE, while the standard deviations come from
Monte Carlo simulations, see appendix B.

Title na ± σna γ ± σγ a ± σa

Artamène(l) 129.7 ± 12.6 1.807 ± 0.026 (4.65 ± 0.91) × 10−4

Clarissa(l) 32.70 ± 2.17 1.864 ± 0.021 (1.40 ± 0.24) × 10−4

Don Quijote(l) 7.91 ± 0.75 1.827 ± 0.020 (1.35 ± 0.22) × 10−4

La Regenta(l) 9.45 ± 0.66 1.983 ± 0.021 (3.68 ± 0.62) × 10−5

Bragelonne(l) 14.56 ± 1.23 1.866 ± 0.018 (9.10 ± 1.37) × 10−5

Moby-Dick(l) 8.21 ± 0.53 2.050 ± 0.024 (2.42 ± 0.47) × 10−5

Ulysses(l) 5.38 ± 0.31 2.020 ± 0.017 (1.79 ± 0.28) × 10−5

Due to the clear curvature of g(x) in the lemmatized case, we go one step further and
propose a concrete function to fit these data, namely

g(x) =
k

x(a + xγ−1)
. (3)

This function has two free parameters, a and γ (with γ > 1 and a > 0), and behaves as a
double power law, that is, for large x , g(x) ∼ x−γ (we still have Zipf’s law), while for small
x , g(x) ∼ x−1. The transition point between both power-law tails is determined by a (more
precisely, by a

1
γ−1 ), and k is fixed by normalization. But an important issue is that it is not g(x)

which is normalized to one but DL(n). We select a power-law with exponent one for small x
for three reasons: firstly, in order to explore an alternative to the power law in the VL versus L
relation (which is not clearly supported by the data, see next section); secondly, to allow for a
better comparison of our results and those of [32]; thirdly, to keep the number of parameters
minimum. Thus, we do not look for the most accurate fit but for the simplest description of the
data.

Then, defining na = a
1

γ−1 L , the corresponding word-frequency density (or, more properly,
lemma-frequency density or type-frequency density) turns out to be

DL(n) ∝
1

n
(
1 + (n/na)γ−1

) (4)

with na the scale parameter (recall that the scale parameter of g(x) was a
1

γ−1 ).
The data collapse in figure 3 and the good fit imply that the Zipf-like exponent γ does

not depend on L , but the transition point between both power laws, na, obviously does. Hence,
as L grows the transition to the ∼ n−γ regime occurs at higher absolute frequencies, given by
na, but fixed relative frequencies, given by a

1
γ−1 . In table 2 we report the fitted parameters for

all seven books, obtained by maximum likelihood estimation (MLE) of the frequencies of the
whole books, as well as Monte Carlo estimates of their uncertainties. We have confirmed the
stability of γ fitting only a power-law tail from a fixed common relative frequency, for different
values of L [36].
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Regarding the low-frequency exponent, one could find a better fit if the exponent was
not fixed to be one; however, our data does not allow this value to be well constrained. A
more important point is the influence of lemmatization errors in the characteristics of the low-
frequency regime. Although the tools we use are rather accurate, rare words are likely to be
assigned a wrong lemma. This limitation is intrinsic to current computational tools and has to
be considered as a part of the lemmatization process. Nevertheless, the fact that the behavior at
low frequencies is robust in front of a large variation in the percentage of lemmatization errors
implies that our result is a genuine consequence of the lemmatization. See appendix A for more
details.

Although double power laws have been previously fit to rank-frequency plots for
unlemmatized multi-author corpora [27, 38, 39], the resulting exponents for large ranks (low
frequencies) are different than the ones obtained for our lemmatized single-author texts. Note
that [27] also proposed that the crossover between both power laws happened for a constant
number of types, around 7900, independently of corpus size. This corresponds indeed to
r = 7900 and therefore, from equation (1), to a fixed relative frequency. This is certainly in
agreement with our results, supporting the hypothesis that rank-frequency plots and frequency
distributions are stable in terms of relative frequency.

4. An asymptotic approximation of Heaps’ law

Coming back to our scaling ansatz, equation (2), the normalization of DL(n) will allow us
to establish a relationship between the word-frequency distribution and the growth of the
vocabulary with text length. In the continuous approximation

1 =

∫
∞

1
DL(n) dn =

1

VL

∫
∞

1
g(n/L)

dn

L
=

1

VL

∫
∞

1/L
g(x) dx =

1

VL
G

(
1

L

)
,

where we have used the previous relation g(x) = −G ′(x), and have additionally imposed
G(∞) ≡ 0, for which it is necessary that g(x) decays faster than a power law with exponent
one. So,

VL = G

(
1

L

)
. (5)

This just means, compared to equation (1), that the number of types with relative frequency
greater or equal than 1/L is the vocabulary size VL , as this is the largest rank for a text of
length L . It is important to notice the difference between saying that GL(1/L) = VL , which is
a trivial statement, and stating that G(1/L) = VL , which provides a link between Zipf’s and
Heaps’ law, or, more generally, between the distribution of frequencies and the vocabulary
growth, by approximating the latter by the former. The quality of such an approximation will
depend, of course, on the goodness of the scale-invariance approximation. In the usual case of a
power-law distribution of frequencies extending to the lowest values, g(x) ∝ 1/xγ , with γ > 1,
then G(x) ∝ 1/xγ−1, which turns into Heaps’ law, VL ∝ Lα, with α = γ − 1, in agreement with
previous research [2, 5, 29, 30, 32].

However, this power-law growth of VL with L is not what is observed in texts, in general.
Due to the accurate fit that we can achieve for lemmatized texts, we can explicitly derive an
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Figure 4. The actual curve VL (solid black with triangles) for the lemmatized
version of the book Artamène, together with the curves VL = G(1/L) obtained
by using the empirical inverse of the rank-frequency plot, r = G(n/L), with
L i = L tot/10(6−i)/5 (colors), and the analytical expression (7) with parameters
determined from the fit of DL tot(n), equation (6) (dashed black).

asymptotic expression for VL given our proposal for g(x). As we have just shown, g(x) is not
normalized to one, rather,

∫
∞

1/L g(x) dx = VL . Hence, substituting g(x) from equation (2) and
integrating

VL =

∫
∞

1/L

k

x(a + xγ−1)
dx =

k

a

∫
∞

1/L

ax−γ

ax1−γ + 1
dx =

=
k

a(1 − γ )
ln(ax1−γ + 1)

∣∣∣∞
1/L

=
k

a(γ − 1)
ln(aLγ−1 + 1). (6)

In this case VL is not a power law, and behaves asymptotically as ∝ ln L . This is a direct
consequence of our choice for the exponent 1 in the left-tail of g(x). Indeed, it seems clear that
the vocabulary growth curve greatly deviates from a straight line in log–log space, for it displays
a prominent convexity, see figure 4 as an example. Nevertheless, the result from equation (6) is
not a good fit either, due to a wrong proportionality constant. This is caused by the continuous
approximation in equation (6).

For an accurate calculation of VL we must treat our variables as discrete and compute
discrete sums rather than integrals. In the exact, discrete treatment of DL(n), equation (6) must
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be rewritten as

VL = G

(
1

L

)
= G

(
L tot/L

L tot

)
=

∑
n>L tot/L

g(n/L tot)

L tot

=
1

L tot

∑
n>L tot/L

k(
n

L tot

) (
a +

(
n

L tot

)γ−1
) , (7)

where we have used the fact that SL tot(n
′) =

∑
n>n′ DL tot(n), with n′

= L tot/L (notice that in
the discrete case, g(x) 6= −G ′(x)). This is consistent with the fact that, indeed, the maximum
likelihood parameters γ and a have been computed assuming a discrete probability function
(see appendix B), and so has the normalization constant. We would like to stress that no fit is
performed in figure 4, that is, the constant k in g(x) is directly derived from the normalizing
constant of DL(n), and depends only on γ and a.

5. Conclusions

In summary, we have shown that, contrary to claims in previous research [25, 31, 32], Zipf’s
law in linguistics is extraordinarily stable under changes in the size of the analyzed text. A
scaling function g(x) provides a constant shape for the distribution of frequencies of each text,
DL(n), no matter its length L , which only enters into the distribution as a scale parameter
and determines the size of the vocabulary VL . The apparent size-dependent exponent found
previously seems to be an artifact of the slight convexity of g(x) in a log–log plot, which is
more clearly observed for very small values of x , accessible only for the largest text lengths.
Moreover, we find that in the case of lemmatized texts the distribution can be well described
by a double power law, with a large-frequency exponent γ that does not depend on L , and a
transition point na that scales linearly with L . The small-frequency exponent is different than
the ones reported in [27, 38] for non-lemmatized corpora. Further, the stability of the shape of
the frequency distribution allows one to predict the growth of vocabulary size with text length,
resulting in a generalization of the popular Heaps’ law.

The robustness of Zipf-like parameters under changes in system size opens the way to more
practical applications of word statistics. In particular, we provide a consistent way to compare
statistical properties of texts with different lengths [40]. Another interesting issue would be the
application of the same scaling methods to other fields in which Zipf’s law has been proposed
to hold, as economics and demography, for instance.
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Table A.1. Coverage of the vocabulary by the dictionary in each language, both
at the type and at the token level. Remember that we distinguish between a word
type (corresponding to its orthographic form) and its tokens (actual occurrences
in text).

Title Types (%) Tokens (%)

Clarissa 68.0 96.9
Moby-Dick 70.8 94.7
Ulysses 58.6 90.4
Don Quijote 81.3 97.0
La Regenta 89.5 97.9
Artamène 43.6 83.6
Bragelonne 89.8 97.5
Seitsemän v. 89.8 95.4
Kevät ja t. 96.2 98.3
Vanhempieni r. 96.5 98.5
Average 78.4 95.0

Appendix A. Lemmatization

To analyze the distribution of frequencies of lemmas, the texts needed to be lemmatized. To
manually lemmatize the words would have exceeded the possibilities of this project, so we
proceeded to automatic processing with standard computational tools: FreeLing5 for Spanish
and English and TreeTagger [41] for French. The tools carry out the following steps:

1. Tokenization. Segmentation of the texts into sentences and sentences into words (tokens).

2. Morphological analysis. Assignment of one or more lemmas and morphological
information (tag) to each token. For instance, found in English can correspond to the past
tense of the verb find or to the base form of the verb found. At this stage, both are assigned
whenever the word form found is encountered.

3. Morphological disambiguation. An automatic tagger assigns the single most probable
lemma and tag to each word form, depending on the context. For instance, in I found the
keys the tagger would assign the lemma find to the word found, while in He promised to
found a hospital, the lemma found would be preferred.

All these steps are automatic, such that errors are introduced at each step. However, the
accuracy of the tools is quite high (e.g. around 95–97% at the token level for morphological
disambiguation), so a quantitative analysis based on the results of the automatic process can
be carried out. Also note that step 2 is based on a pre-existing dictionary (of words, not of
lemmas, also called a lexicon): only the words that are in the dictionary are assigned a reliable
set of morphological tags and lemmas. Although most of the tools used heuristically assign
tag and/or lemma information to words that are not in the dictionary, we only count tokens of
lemmas for which the corresponding word types are found in the dictionary, so as to minimize
the amount of error introduced by the automatic processing. This comes at the expense of losing
some data. However, the dictionaries have quite a good coverage of the vocabulary, particularly
at the token level, but also at the type level (see table A.1). The exceptions are Ulysses, because

5 FreeLing (http://nlp.lsi.upc.edu/freeling).
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of the stream of consciousness prose, which uses many non-standard word forms, and Artamène,
because 17th century French contains many word forms that a dictionary of modern French does
not include.

Appendix B. Maximum likelihood fitting

The fitted values of table 2 have been obtained by MLE. This well-known procedure consists
firstly in computing the log-likelihood function L, which in our case reads

L=
1

VL

VL∑
i=1

ln DL(ni) = ln K −
1

VL

VL∑
i=1

ln
(

ni(b + nγ−1
i )

)
with ni the VL values of the frequency and the normalization constant K in the discrete case
equal to

K =

[
nmax∑
n=1

1

n(b + nγ−1)

]−1

.

Note that we have reparameterized the distribution compared to the main text, introducing
b = nγ−1

a = aLγ−1. Then, L is maximized with respect to the parameters γ and b; this has
been done numerically using the simplex method [42]. The error terms σγ and σb, representing
the standard deviation of each estimator, are computed from Monte Carlo simulations. From the
resulting maximum-likelihood parameters γ ∗ and b∗, synthetic data samples are simulated, and
the MLE parameters of these samples are calculated in the same way; their fluctuations yield
σγ and σb. We stress that no continuous approximation has been made, that is, the simulated
data follows the discrete probability function DL(n) (this is done using the rejection method,
see [36, 43] for details for a similar case). In a summarized recipe, the procedure simply is:

1. numerically compute the MLE parameters, γ ∗ and b∗;

2. draw M datasets, each of size VL , from the discrete probability function DL(n; γ ∗, b∗);

3. for each dataset m = 1, . . . , M , compute the MLE parameters γ m, bm;

4. compute the standard deviations σγ and σb of the sets {γ m
}

M
m=1 and {bm

}
M
m=1;

The standard deviations of na and a are computed in the same way using their relationship
to b and γ .
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It is traditionally assumed that Zipf’s law implies the power-law growth of the number of different
elements with the total number of elements in a system - the so-called Heaps’ law. We show that a
careful definition of Zipf’s law leads to the violation of Heaps’ law in random systems, with growth
curves that have a convex shape in log-log scale. These curves fulfil universal data collapses that
only depend on the value of the Zipf’s exponent. We observe that real books behave very much
in the same way as random systems, despite the presence of burstiness in word occurrence. We
advance an explanation for this unexpected correspondence.

PACS numbers:

A great number of systems in social science, econ-
omy, cognitive science, biology, and technology have
been proposed to follow Zipf’s law [1–6]. All of them
have in common that they are composed by some “el-
ementary” units, which we will call tokens, and that
these tokens can be grouped into larger, concrete or
abstract entities, called types. For instance, if the
system is the population of a country, the tokens are
its citizens, which can be grouped into different con-
crete types given by the cities where they live [7].
If the system is a text, each appearance of a word
is a token, associated to the abstract type given by
the word itself [8]. Zipf’s law deals with how tokens
are distributed into types, and can be formulated in
two different ways, which are generally considered as
equivalent [1, 3, 8, 9].

The first one is obtained when the number of tokens
associated to each type are counted and the types are
ranked in decreasing order of counts. We call this the
rank-count representation. If a (decreasing) power law
holds between the number of tokens of each type and
the rank of the type, with an exponent close to one,
this indicates the fulfilment of Zipf’s law. An alterna-
tive version of the law arises when a second statistics
is performed, considering the number of types that
have the same number of counts; as the counts play
the role of the random variable what one gets is the
distribution of counts. If a (decreasing) power law is
obtained, with an exponent around two, one gets a
different formulation of Zipf’s law, in principle.

However, in general, the fulfilment of Zipf’s law has
not been tested with rigorous statistical methods
[2, 10]; rather, researchers have become satisfied with
just qualitative resemblances between empirical data
and power laws. In part, this can be justified by the
difficulties of obtaining clear statistics from the rank-
count representation, in particular for high ranks (that
is, for rare types), and also by poor methods of esti-

mation of probability distributions [2]. Despite the
lack of unambiguous empirical support, from the the-
oretical point of view the search for explanations of
Zipf’s law has been extensive, but without a clearly
accepted preferred mechanism [1, 11–14].
The presence of temporal order is an important fea-
ture in many Zipf-like systems, but this is not cap-
tured in Zipf’s law. Indeed, this law only provides a
static picture of the system (as the law is not altered
under re-ordering of the data). In contrast, a suit-
able statistic that can unveil some of the dynamics is
the type-token growth curve, which counts the total
number of types, v, as a function of the total number
of tokens, `, as a system evolves, i.e., as citizens are
born or a text is being read. Note that ` is a measure
of system size (as system grows) and v is a measure
of richness or diversity of types (with the symbol v
borrowed from linguistics, where it stands for the size
of the vocabulary).
It has long been assumed that Zipf’s law implies also
a power law for the type-token growth curve, i.e.,

v(`) ∝ `α, (1)

with exponent α smaller than one, and this is referred
to as Heaps’ law in general or Herdan’s law in quanti-
tative linguistics [15–17]. Indeed, Mandelbrot [18] and
the authors of Ref. [19] obtain Heaps’ law when tokens
are drawn independently from a Zipf’s system. Baeza-
Yates and Navarro [16] argue that, if both Zipf’s law
and Heaps’ law are fulfilled, their exponents are con-
nected. A similar demonstration, using a different
scaling of the variables, is found in Ref. [20], and with
some finite-size corrections in Ref. [9]. Other authors
have been able to derive Heaps’ law from Zipf’s law
using a master equation [21] or pure scaling arguments
[22]. Alternatives to Heaps’ formula are listed in Ref.
[23], but without a theoretical justification.
However, even simple visual inspection of the log-log
plot of empirical type-token growth curves shows that
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Heaps’ law is not even a rough approximation of the
reality. On the contrary, a clear convexity (as seen
from above) is apparent in most of the plots (see, for
instance, some of the figures in [9, 24, 25]). This has
been attributed to the fact that the asymptotic regime
is not reached or to the effects of the exhaustion of the
number of different types [26]. Nevertheless, the effect
persists in very large systems, composed by many mil-
lions of tokens, and where the finiteness of the number
of available types is questionable [22].

In the few reported cases where there seems to be
a true power-law relation between number of tokens
and number of types, as in Ref. [20], this turns out to
come from a related but distinct statistics. Instead of
considering the type-token growth curve in a single,
growing system (v(`) for ` = 1 . . . L), one can look
for the total type-token relationship in a collection or
ensemble of N systems (Vj versus Lj , for j = 1 . . .N ,
with Vj = v(Lj)), see also Refs. [21, 27–29]. We are,
in contrast, interested in the type-token relation of a
single growing system.

The fact that Heaps’ law is so clearly violated for the
type-token growth, given that this law follows directly
from Zipf’s law, casts doubts on the very validity of
the latter law. But one may notice that, although the
two versions of Zipf’s law mentioned above are usu-
ally considered as equivalent, they are only asymptot-
ically equivalent for high values of the count of tokens
(i.e., for low ranks) [15, 17, 18]. However, the type-
token growth curve emerges mainly from the statis-
tics of the rarest types (i.e., the types with n = 1, for
each value of `), as it is only when a type appears for
the first time that it contributes to the growth curve
[22], and these are precisely the types for which the
usual description in terms of the rank-count represen-
tation becomes problematic. So, the election of which
is the form of Zipf’s law that one considers to hold
true becomes crucial for the derivation of the type-
token growth curve and the fulfilment of Heaps’ law
or not.

Although most previous research has focused in Zipf’s
law in the rank-count representation, i.e., the first ver-
sion mentioned above, we argue that it is the second
version of the law, that of the distribution of counts,
the one that becomes relevant to describe the real
type-token growth curve, at least in the case of writ-
ten texts. Indeed, let us notice that the previously
mentioned derivations of Heaps’ law were all based on
the rank-count representation [9, 16, 18–22]; therefore,
the violation of Heaps’ law for real systems invalidates
the (exact) fulfilment of Zipf’s law for the rank-count
representation.

In contrast, when the viewpoint of Zipf’s law for the
distribution of counts is adopted, we prove that Heaps’
law cannot be sustained for random systems and we
derive an alternative law, which leads to “universal-

like” shapes of the rescaled type-token growth curves,
with the only dependence on the value of the Zipf’s
exponent. Quite unexpectedly, our prediction for ran-
dom uncorrelated systems holds very well also for real
texts. We are able to explain this effect despite the
significant clustering or burstiness of word occurrences
[30, 31], due to the singular role that the first appear-
ance of a type plays in the type-token growth curve,
in contrast to subsequent appearances.
Let us consider a Zipf’s system of total size L, and a
particular type with overall number of counts n; this
means that the complete system contains n tokens of
that type (and then L is the sum of counts of all types,
L =

∑
i ni). In fact, Zipf’s law tells us that there can

be many types with the same counts n, and we denote
this number as NL(n). Quantitatively, in terms of the
distribution of counts, Zipf’s law reads

NL(n) ∝ 1

nγ
, (2)

for n = 1, 2, . . . with the exponent γ close to 2. Note
that NL(n) is identical, except for normalisation, to
the probability mass function of the number of counts.
For a part of the system of size `, with ` ≤ L, the
number of types with k counts will be N`(k). The de-
pendence of this quantity with the global NL(n) will
be computed for a random system, which is under-
stood as a sequence of tokens where these are taken
at random from some underlying distribution. The
NL(n) words with number of counts n in the whole
system will lead, on average, to NL(n)hk,n types with
counts k in the subset, with k ≤ n and hk,n given by
the hypergeometric distribution,

hk,n =

(
n
k

)(
L−n
`−k
)

(
L
`

) . (3)

This is the probability to get k instances of a cer-
tain type when drawing, without replacement, ` to-
kens from a total population of L tokens of which
there are n tokens of the desired type. The depen-
dence of hk,n on ` and L is not explicit, to simplify
the notation. The average number of types with k
counts in the subset of size ` will result from the sum
of NL(n)hk,n for all n ≥ k, i.e.,

N`(k) =
∑

n≥k
NL(n)hk,n. (4)

We will use this relationship between N`(k) and
NL(n) to derive the type-token growth curve. For
a subset of size ` we will have that, out of the total
V types, v(`) will be present whereas N`(0) will not
have appeared (and so, their number of counts will be
k = 0); therefore, v(`) = V −N`(0), and substituting
Eq. (4) for k = 0 and using that NL(0) = 0, then,

v(`) = V −
∑

n≥1
NL(n)h0,n. (5)
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FIG. 1: Main: Type-token growth curve v(`) for three
random systems with number of counts drawn from a dis-
crete power-law distribution NL(n) ∝ n−γ , and γ = 1.8
(green diamonds), 2.0 (red circles) and 2.2 (blue triangles).
The black lines correspond to our theoretical predictions,
Eq. (9) for γ ≥ 2 and Eq. (10) for γ < 2 (plotted with the
help of the GSL libraries). No average over the reshuffling
procedure is performed. Curves are consecutively shifted
by a factor of

√
10 in the x-axis. Inset: The ratio v(`)/`α

is displayed, with α = min{1, γ − 1}, showing that an ap-
proximation of the form v(`) ∝ `α is too crude.

This formula relates the type-token growth curve
with the distribution of counts in a random system,
where it is exact, if we interpret v(`) as an average
over the random ensemble.

We now show that a power-law distribution of type
counts does not lead to a power law in the type-token
growth curve, in other words, Zipf’s law for the dis-
tribution of counts does not lead to Heaps’ law, in the
case of a random system. Assuming that n � L, the
“zero-success” probability h0,n can be approximated
as follows (see SI for details),

h0,n =

(
L−n
`

)
(
L
`

) ='
(

1− `

L

)n
, (6)

which in practice holds for all types; in fact, the small-
est number of counts, for which the approximation is
better, give the largest contribution to Eq. (5), due
to the power-law form of NL(n). This is given, taking
into account a normalisation constant A, by

NL(n) = V
A

nγ
, (7)

for n = 1, 2, . . . (and zero otherwise), with∑
n≥1NL(n) = V . Let us substitute the previous ex-

pressions for h0,n and NL(n) into Eq. (5), then

v(`) ' V


1−A

∑

n≥1

(1− `/L)n

nγ


 . (8)

Although there exists a maximum number of counts
nmax beyond which NL(n) = 0, as a first approxima-
tion the sum can be safely extended up to infinity, and
hence we reach the following expression:

v(`) ' V
(

1− Liγ(1− `/L)

ζ(γ)

)
, (9)

where we have made use of the polylogarithm func-
tion, Liγ(z) =

∑∞
n=1 z

n/nγ , defined for |z| < 1, and
of the fact that the normalisation of Zipf’s law is given
by A = 1/ζ(γ), with ζ(γ) the Riemann zeta function,
ζ(γ) = Liγ(1). Notice that, for random systems with
fixed γ, Eq. (9) yields a “universal” scaling relation-
ship between the number of types v(`), if expressed
in units of the total number of types V , and the text
position ` expressed in units of the total size L.
In fact, Eq. (9) can lead to an overestimation of v(`)
due to finite-size effects, but this is rarely noticeable
in practice. If one wants a more precise version of
Eq. (9), then, going back to Eq. (8) and limiting the
sum up to nmax gives, after some algebra (see SI for
details),

v(`) = V

(
1− Liγ(q)− qnmax+1Φ(q, γ, nmax + 1)

ζ(γ)− Φ(1, γ, nmax + 1)

)
,

(10)
with q = 1 − `/L, and Φ(z, γ, a) =∑∞
n=0

zn

(a+n)γ , |z| < 1; a 6= 0,−1, . . . the Lerch

transcendent. Obviously, Eq. (10) gives better results
at the cost of using an additional parameter, nmax.
As a rule of thumb, it appears to be worth the cost
in cases where γ < 2, ` � L and L is not too large.
In most practical cases Eq. (9) gives an excellent
approximation; nevertheless, we include its more
refined version, Eq. (10), for the sake of completeness.
In order to test these predictions, we simulate a ran-
dom Zipf’s system as follows: Let us draw V =
104 random numbers n1, n2, . . . nV , from the discrete
probability distribution NL(n)/V = n−γ/ζ(γ), with
γ = 1.8, 2.0 and 2.2. Each of these V values of n rep-
resents a type, with a number of counts given by the
value of n. For each type i = 1, . . . , V , we create then
ni copies (tokens) of its associated type, and make a
list with all of them,

1, . . . , 1︸ ︷︷ ︸
n1

, 2, . . . , 2︸ ︷︷ ︸
n2

, . . . , V, . . . , V︸ ︷︷ ︸
nV

. (11)

Then, the list is reshuffled in order to create a random
system, of size L = n1 + n2 + · · · + nV . Figure 1
shows the resulting type-token growth together with
the approximation given either by Eq. (9), which only
depends on γ, or by Eq. (10), which depends on γ and
nmax. The agreement is nearly perfect, except for very
small `.
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FIG. 2: The rescaled vocabulary-growth curve of
28 books from the PG database with exponents γ =
{1.8, 2.0, 2.2}±0.01 fitted for n ≥ 1 or n ≥ 2. The values of
L and V range from 27, 873 to 146, 845 and from 5, 639 to
30, 912 respectively. As it is apparent, all books with the
same exponent collapse into a single curve, which Eqs. (9)
and (10) accurately capture. For the case of Eq. (10), we
have used a value of nmax/L = 0.05. The dotted straight
lines (shifted for clarity) indicate the behaviour predicted
by Heaps’ law.

So far we have shown that Eqs. (9) and (10) capture
very accurately the type-token growth curve for syn-
thetic systems that have a perfect power-law distri-
bution of counts but are completely random. Real
systems, however, can have richer structures beyond
the distribution of counts [30–32] and so one wonders
if our derivations can provide acceptable predictions
for them. In the following, we show that this is indeed
the case when the system considered is that of natu-
ral language, and provide a qualitative explanation of
this remarkable fact.

We analyse books from the Project Gutenberg (PG)
database [33], selecting those whose distribution of fre-
quencies NL(n) is statistically compatible with a pure,
discrete power-law distribution. We fit the γ exponent
with rigorous methods, see Refs. [34, 35]. In analogy
with the previous section, we plot in Fig. 2 v(`)/V ver-
sus `/L for a total of 28 books for which γ = 1.8, 2.0,
or 2.2. Books with the same Zipf’s exponent collapse
between them and into the corresponding theoretical
curves, Eqs. (9) and (10). This is rather noticeable,
as it points to the idea that the vocabulary-growth
curve is unaffected by clustering, correlations, or by
syntactic or discursive constraints. In other words,
the vocabulary-growth curve of a real book fulfilling
Zipf’s law as given by Eq. (2) is not a power law
but can be predicted using only its associated Zipf’s
exponent.

In order to understand why a prediction that heav-
ily depends on the randomness hypothesis works so

well for real books, we analyse the inter-occurrence-
distance distribution of words. Given a word (type)
with frequency n, we define its k-th inter-occurrence
distance τk as the number of words (tokens) between
its k − 1-th and k-th appearances, plus one; i.e.,

τk = `k − `k−1 (12)

(with `k the position of its k-th appearance and k ≤
n). For the case of k = 1, we compute the number of
words from the beginning of the text up to the first ap-
pearance, i.e., τ1 = `1. If real books were completely
random, then τk would be roughly exponentially dis-
tributed, and the rescaled distances

τ̂k =
τk
〈τk〉

(13)

would be, for any value of n, exponentially distributed
with parameter 1. Deviations from an exponential dis-
tribution for inter-occurrence distances in real books
are well-known when all k > 1 are considered together,
and constitute the so-called clustering or burstiness ef-
fect: instances of a given word tend to appear grouped
together in the book, forming clusters and hence both
very short and very long inter-occurrence distances are
much more common than what an exponential distri-
bution predicts [30, 31].
In contrast to previous works [30, 31], our analysis in-
troduces the distinction between k > 1 and k = 1.
Note that for what concerns the vocabulary-growth
curve, all that matters is k = 1, as it is only the first
appearance of each word that adds to the vocabulary.
Figure 3 shows the (estimated) probability mass func-
tion P(τ̂k) of the rescaled inter-occurrence distance for
the book Moby Dick as an example (top), and for the
one hundred longest books in the PG database (bot-
tom). As it is apparent, for k > 1, the distributions of
distances are not exponentially distributed, and we re-
cover a trace of the clustering effect; however the case
k = 1 displays a clearly different shape, much more
close to an exponential distribution. This explains, at
a qualitative level, why our derivations, based on a
randomness assumption, continue to work in the case
of real books that display clustering effects.
In conclusion, we have shown that Eqs. (9) and (10),
which are not power laws but contain the polyloga-
rithm function and the Lerch transcendent, provide
a continuum of universality classes for type-token
growth, depending only on the value of Zipf’s expo-
nent for the distribution of counts. We have verified
our results both on synthetic random systems and on
real books, showing that despite correlations or clus-
tering effects, they remain valid as long as Zipf’s law
is fulfilled for the distribution of counts. Our results
open the door to investigations in other contexts be-
yond linguistics, where the validity of Heaps’ law could
be questioned in a similar manner.
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FIG. 3: Distribution of the rescaled inter-occurrence dis-
tances τ̂k, see Eq. (13). The scale parameter 〈τk〉 was
computed from the data of each book (types with n = 1
or with N(n) = 1 were not included in the analysis). The
original books (red) display clear deviations from an expo-
nential distribution for k > 1, but not for k = 1. Shuffled
versions of the books (green) do not show, as expected, any
clustering effect, and hence their rescaled inter-occurrence
distances are roughly exponentially distributed. Top: The
book Moby Dick, by Herman Melville, as an illustrative ex-
ample. Bottom: The one hundred longest books in the
PG database.

Acknowledgements. The authors appreciate com-
ments from E. Beltran-Saez and M. Gerlach. A. C.
has enjoyed a long-term collaboration with G. Boleda
and R. Ferrer-i-Cancho. Research projects in which
this work is included are FIS2012-31324, from Spanish
MINECO, and 2014SGR-1307 and 2012FI-B-00422,
from AGAUR.

[1] M. E. J. Newman. Power laws, Pareto distributions
and Zipf’s law. Cont. Phys., 46:323 –351, 2005.

[2] A. Clauset, C. R. Shalizi, and M. E. J. Newman.
Power-law distributions in empirical data. SIAM
Rev., 51:661–703, 2009.

[3] L. A. Adamic and B. A. Huberman. Zipf’s law and
the Internet. Glottometrics, 3:143–150, 2002.

[4] C. Furusawa and K. Kaneko. Zipf’s law in gene ex-
pression. Phys. Rev. Lett., 90:088102, 2003.

[5] R. L. Axtell. Zipf distribution of U.S. firm sizes. Sci-
ence, 293:1818–1820, 2001.

[6] J. Serrà, A. Corral, M. Boguñá, M. Haro, and J. Ll.
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Token Growth in Zipf’s Systems”. It consists of two sections that give details of derivations and algebraic
manipulations used to reach equations (6) and (10) in the main text.

DERIVATION OF THE APPROXIMATION FOR THE “ZERO-SUCCESS” PROBABILITY h0,n

Equation (6) in the main text gives an approximation for the zero-success probability h0,n.

h0,n =

(
L−n
`

)
(
L
`

) '
(

1− `

L

)n
, (S1)

While the derivation is fairly elementary, some caution must be taken in order to get the desired result. Note
that other approximations are possible, but they are not useful for our purposes.
The first equal sign in Eq. (S1) is just the definition of h0,n, i.e. the probability mass function of a hypergeometric
random variable that takes value k = 0 (number of successes), with parameters ` (number of draws), L (total
population) and n (number of successes in the population). To get to the desired result, we write the binomial
coefficients in terms of factorials, cancel out one `! term, and regroup the rest of terms as follows:

(
L−n
`

)
(
L
`

) =

[
(L− n)!

(L− n− `)! `!

]/[ L!

(L− `)! `!

]
(S2)

=
(L− n)!

L!
× (L− `)!

(L− `− n)!
. (S3)

Notice that each fraction in equation (S3) has n terms, so that

(
L−n
`

)
(
L
`

) =
(L− `)(L− `− 1) . . . (L− `− n+ 1)

L(L− 1) . . . (L− n+ 1),
(S4)

=

n−1∏

j=0

(
L− `− j
L− j

)
. (S5)

The first term, j = 0, is equal to (1− `/L). If n is small compared to L, then L− j ' L for all j = 0, . . . , n− 1,
and each of the n terms in the above product can be approximated by the first one. The result then follows
easily, as

h0,n =

(
L−n
`

)
(
L
`

) =

n−1∏

j=0

(
L− `− j
L− j

)
'
n−1∏

j=0

(
L− `
L

)
=

(
1− `

L

)n
. (S6)

It is important to bear in mind that the only assumption used was L − n ' L, or equivalently, n � L, but
nothing was assumed regarding the ratio `/L, and thus the approximation should work equally well for any `,
once L and n are fixed. In practice, the most common type, with nmax counts, will give an upper bound to
the error that this approximation introduces. In the case of written books, nmax/L ' 0.05 is a typical value
for many languages, so that even in the worst case, the approximation is already quite good. In addition, most
types have low counts (this is in essence Zipf’s law), and hence the sum of equation (8) in the main text will be
dominated by terms where the approximation is very good.
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DERIVATION OF THE TYPE-TOKEN GROWTH CURVE v(`) WHEN nmax IS TAKEN INTO
ACCOUNT

Equation (10) in the main text offers a more refined version of the type-token growth curve, equation (8), by
limiting the sum up to a given maximum value of the number of counts nmax. Let us denote q = 1 − `/L and
introduce the Lerch transcendent Φ(z, γ, a), defined as

Φ(z, γ, a) =

∞∑

n=0

zn

(a+ n)γ
, |z| < 1; a 6= 0,−1, . . . . (S7)

We first perform the sum
∑nmax

n=1 q
n/nγ as follows:

nmax∑

n=1

qn

nγ
=

∞∑

n=1

qn

nγ
−

∞∑

n=nmax+1

qn

nγ
(S8)

= Liγ(q)− qnmax+1
∞∑

n=nmax+1

qn−nmax−1

nγ
, (S9)

and defining m = n− nmax − 1,

nmax∑

n=1

qn

nγ
= Liγ(q)− qnmax+1

∞∑

m=0

qm

(m+ nmax + 1)γ
(S10)

= Liγ(q)− qnmax+1Φ(q, γ, nmax + 1). (S11)

The normalization constant can be similarly computed,

A−1 =

nmax∑

n=1

1

nγ
=

∞∑

n=1

1

nγ
−

∞∑

n=nmax+1

1

nγ
(S12)

= ζ(γ)− Φ(1, γ, nmax + 1), (S13)

and the result in the main text follows:

v(`) = V

(
1−A

nmax∑

n=1

(1− `/L)n

nγ

)
(S14)

= V

(
1− Liγ(q)− qnmax+1Φ(q, γ, nmax + 1)

ζ(γ)− Φ(1, γ, nmax + 1)

)
. (S15)

As discussed in the main text, this improved version of the type-token growth curve makes use of an additional
parameter, nmax, and so it is not surprising that it gives better results. However, in practice only for γ < 2 is
this usually noticeable. This is related to the tail of the distribution of counts, as for fixed nmax, `/L the overall
weight given to the types with n > nmax [1] increases if γ is decreased. In any case, it is worth noting that
(i) the additional “parameter” nmax is usually known in practical cases, so that it does not need to be fitted,
and (ii) the polylogarithm function, Riemman’s zeta function and the Lerch transcendent are functions with
well-studied properties and usually can be found in most numerical packages.

[1] Obviously, these types are not present in the system, but the simple version of the type-token curve, Eq. (9) in the
main text, includes them in the sum.
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Abstract
The thresholding of time series of activity or intensity is frequently used to define and differentiate
events. This is either implicit, for example due to resolution limits, or explicit, in order tofilter certain
small scale physics from the supposed true asymptotic events. Thresholding the birth–death process,
however, introduces a scaling region into the event size distribution, which is characterized by an
exponent that is unrelated to the actual asymptote and is rather an artefact of thresholding. As a result,
numerical fits of simulation data produce a range of exponents, with the true asymptote visible only in
the tail of the distribution. This tail is increasingly difficult to sample as the threshold is increased. In
the present case, the exponents and the spurious nature of the scaling region can be determined
analytically, thus demonstrating theway inwhich thresholding conceals the true asymptote. The
analysis also suggests a procedure for detecting the influence of the threshold bymeans of a data
collapse involving the threshold-imposed scale.

1. Introduction

Thresholding is a procedure applied to (experimental) data either deliberately, or effectively because of device
limitations. The thresholdmay define the onset of an event and/or an effective zero, such that below the
threshold the signal is regarded as 0. An example of thresholding is shown infigure 1. Experimental data often
comeswith a detection threshold that cannot be avoided, either because the device is insensitive below a certain
signal level, or because the signal cannot be distinguished fromnoise. The quality of ameasurement process is
often quantified by the noise to signal ratio, with the implication that high levels of noise lead to poor (resolution
of the) data. Often, the rationale behind thresholding is toweed out small events which are assumed irrelevant
on large scales, thereby retaining only the asymptotically big events which are expected to reveal (possibly
universal) large-scale physics.

Most, if not all, of physics is due to some basic interactions that occur on a ‘microscopic length scale’, say the
interaction betweenwater droplets or the van derWaals forces between individual watermolecules. These
length scales separate different realms of physics, such as betweenmicro-fluidics andmolecular physics or
betweenmolecular physics and atomic physics. However, these are not examples of the thresholds we are
concernedwith in the following. Rather, we are interested in an often arbitrarymicroscopic length scale well
above the scale of themicroscopic physics that governs the phenomenonwe are studying, such as the
spatiotemporal resolution of a radar observing precipitation (which ismuch coarser than the scale set by
microfluidics), or the resolution of themagnetometer observing solarflares (which ismuch coarser than the
scale set by atomic physics and plasmamagnetohydrodynamics).

Such thresholds often come down to the device limitations of themeasuring apparatus, the storage facilities
connected to it, or the bandwidth available to transmit the data. For example, the earthquake catalogue of
SouthernCalifornia is only complete abovemagnitude 3, even though the detection-threshold is around
magnitude 2 [1]. One fundamental problem is the noise-to-signal ratiomentioned above. Even if devices were to
improve to the level where the effect of noise can be disregarded, thresholdingmay still be an integral part of the
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measurement. For example, the distinction between rainfall and individual drops requires a separation of
microscale andmacroscale which can be highly inhomogeneous [2]. Solar flares,meanwhile, are defined to start
when the solar activity exceeds the threshold and endwhen it drops below, but the underlying solar activity never
actually ceases [3].

Thresholding has also played an important rôle in theoreticalmodels, such as the Bak–Sneppenmodel [4] of
self-organized criticality [5], where the scaling of the event-size distribution is a function of the threshold [6]
whose precise valuewas the subject ofmuch debate [7, 8]. Finite size effects compete with the threshold-
imposed scale, which has been used in somemodels to exploit correlations and predict extreme events [9].

Often, thresholding is tacitly assumed to be ‘harmless’ for the (asymptotic) observables of interest and
beneficial for the numerical analysis.Wewill argue in the following that this assumptionmay be unfounded: the
very act of thresholding can distort the data and the observables derived from it. To demonstrate this, wewill
present an example of the effect of thresholding by determining the apparent scaling exponents of a simple
stochastic process, the birth–death process (BDP).Wewill show that thresholding obscures the asymptotic
scaling region by introducing an additional prior scaling region, solely as an artefact. Owing to the simplicity of
the process, we can calculate the exponents, leading order amplitudes and the crossover behaviour analytically,
in excellent agreement with simulations. In doing so, we highlight the importance of sample size since, for small
samples (such asmight be accessible experimentally), only the ‘spurious’ threshold-induced scaling region that
governs the process at small scalesmay be accessible. Finally, we discuss the consequences of ourfindings for
experimental data analysis, where detailed knowledge of the underlying processmay not be available, usually the
mechanismbehind the process of interest is unclear, and hence such a detailed analysis is not feasible. But by
attempting a data collapse onto a scaling ansatz that includes the threshold-induced scale, we indicate how the
effects of thresholding can be revealed.

The outline of the paper is as follows: in section 2we introduce themodel and the thresholding applied to it.
To illustrate the problems that occurwhen thresholding real data, we analyse in detail some numerical data. The
artefact discovered in this analysisfinds explanation in the theory present in section 3.We discuss these findings
and suggest ways to detect the problem in thefinal section.

2.Model

In order to quantify numerically and analytically the effect of thresholding, we study the BDP [10]with
Poissonian reproduction and extinction rates that are proportional to the population size.More concretely, we
consider the population size n(g) at (generational) time ⩾g 0. Each individual in the population reproduces
and dieswith the same rate of 1 2 (in total unity, so that there are n(g) birth or death events or ‘updates’ per time
unit on average); in the former case (birth) the population size increases by 1, in the latter (death) it decreases by
1. The state =n g( ) 0 is absorbing [11]. Because the instantaneous rate withwhich the population n(g) evolves is
n(g) itself, the exponential distributions fromwhich the randomwaiting times between events are drawn are
themselves parameterized by a random variable, n(g).

Because birth and death rates balance each other, the process is said to be at its critical point [12], which has
the peculiar feature that the expectation of the population is constant in time, 〈 〉 =n g n g( ) ( )0 , where 〈 〉·

Figure 1.Example of thresholding of a time series. An event beginswhen the signal exceeds the threshold (dotted lines,
=h 10, 20, 30) and ends as soon as the signal falls below the threshold. Increasing levels of the threshold lead (non-monotonically) to

different numbers of events and, provided the signal eventually ends,monotonically smaller total event durations. Themain focus of
this paper is on the statistics of the individual event durations, as exemplified by the two intervals for the intermediate threshold.

2
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denotes the expectation and n g( )0 is the initial condition, set to unity in the following. This constant expectation
ismaintained by increasingly fewer surviving realizations, as each realization of the process terminates almost
surely.We therefore define the survival time as the time −g gs 0 such that >n g( ) 0 for all ⩽ <g g gs0 and

=n g( ) 0 for all ⩾g gs. For simplicity, wemay shift times to =g 00 , so that gs itself is the survival time. It is a
continuous randomvariable, whose probability density function (PDF) is well known to have a power law tail in
large times,  ∝ −g g( )g

s s
2

s [12, as in the branching process].
In the following, wewill introduce a threshold, whichmimics the suppression of somemeasurements either

intentionally or because of device limitations. For the BDP thismeans that the population size (or, say, ‘activity’)
below a certain, prescribed level, h, is treated as 0when determining survival times. In the spirit of [3, also solar
flares, 13], the threshold allows us to distinguish events, which, loosely speaking, start and endwhenever n(g)
passes through h.

Explicitly, events start at g0 when ϵ− =ϵ→ +n g hlim ( )0 0 and = +n g h( ) 10 . They end at gswhen
=n g h( )s , with the condition >n g h( ) for all ⩽ <g g gs0 . This is illustrated infigures 1 and 4.No thresholding

takes place (i.e. the usual BDprocess is recovered) for h= 0, inwhich case the initial condition is =n g( ) 10 and
termination takes place at gswhen =n g( ) 0s . For >h 0 onemay think of n(g) as an ‘ongoing’ time series which
never ceases andwhichmay occasionally ‘cross’ h frombelow (starting the clock), returning to h some time later
(stopping the clock). In a numerical simulation onewould start n(g) from = +n g h( ) 10 at =g 00 andwait for
n(g) to arrive at =n g h( ) from above. The algorithmmay be summarized as

for i=1... do

n ← h+1

←gi 0

while n > hdo

←g gi i +ξ(n)

n ← n+b

endwhile

end for

where ξ n( ) is an exponential randomvariable with rate n, and b stands for a randomvariable that takes the
values −{ 1, 1}with probability 1/2. In our implementation of the algorithm, all randomvariables are handled
with theGNUScientific Library [14].

2.1. Numerics and data analysis
Monte-Carlo runs of themodel reveal something unexpected: The exponent of the PDF of the thresholded BDP
appears to change from  ∝ −g g( )g

s s
2

s at h=0 to  ∝ −g g( )g
s s

3 2
s at h=100 or, in fact, any reasonably large

≳h 10. Figure 2 shows  g( )g
s

s for the case of h=100 and two different sample sizes,  = 101
3 and  = 102

10,
corresponding to ‘scarce data’ and ‘abundant data’, respectively. In the former case, the exponent of the PDF is
estimated to be γ = ≈ˆ 1.52(3) 3 21 ; in the latter, the PDF splits into two scaling regimes, with exponents
γ = ≈ˆ 1.50070(2) 3 21 and γ = ≈ˆ 1.998(4) 22 . This phenomenon can be investigated systematically for

different sample sizes  and thresholds h.
We use thefitting procedure introduced in [15], which is designed not only to estimate the exponent, but to

determine the range inwhich a power law holds in an objective way. It is based onmaximum likelihood

Figure 2. (a): the PDF  g h( ; )g
s

s of the survival time gs of a thresholded BDP,with a threshold of h=100, estimated fromMonteCarlo

simulations using a limited sample size of  = 103. Fitting a power law yields an exponent of γ =ˆ 1.52(3)1 over the range
×[0.031, 1.259 10 ]5 , with a p-value of 0.71. (b): same as above, but using a sample size of  = 1010. In this case, two power laws can

befitted in two different regimes: below X π=g h8 , wefind γ =ˆ 1.50070(2)1 in the (fixed) range −[10 , 10 ]2 3 , while above Xg , thefit

leads to γ =ˆ 1.998(4)2 over the range × ×[1.99 10 , 3.16 10 ]5 8 , with a p-value of 0.55.Monte Carlo simulations are shown as symbols,
while the small (large) regime power-law fit is plottedwith full black lines, and the fitted rangemarkedwith red (blue) shading.
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methods, theKolmogorov–Smirnov (KS) test andMonteCarlo simulations of the distributions, see appendix A
for details. Infigure 3we show the evolution of the estimated large scale exponent, γ̂2, for different  and for
different h. Thefits aremade by assuming that there is a true power law in afinite range [a, b]. For values of the
exponent between 1.5 and 2 larger error bars are observed. For these cases, less data isfitted but thefitting range
is always at least two orders ofmagnitudewide.

It is clear from figure 3 that  has to be very large in order to see the true limiting exponent. Even the
smallest h investigated, h= 20, needs a sample size of at least  = 107, while for =h 5000 the correct
exponent is not foundwith less than about  = 1010. It is natural to ask how large the applied thresholds are
compared to the average signal amplitudeA ormaximumM. Focusing on the case shown in figure 2(a), where
h= 100 and  = 103, we find that ≃ 〈 〉 ≃ 〈 〉h A M0.07 0.02 , so that in this sense, the thresholds can be
regarded as ‘small’.

Themere introduction of a threshold therefore changes thePDFof events sizes significantly. It introduces a
new, large scaling regime,with an exponent that ismisleadingly different from that characterizing large scale
asymptotics. In fact, for small sample sizes ( = 101

3, seefigure 2(a)), the only visible regime is that inducedby
thresholding (in our example, γ = 3 21 ),while the second exponent (γ = 22 ),which, aswill be demonstrated
below, governs the large scale asymptotics, remainshiddenunlessmuch larger sample sizes are used (figure 2(b)).

In the inset offigure 3we plot the fitted values γ̂2 as a function of the rescaled sample size  h. The data
collapse is remarkable: the sample size required to recover the exponent γ̂2 grows linearly with the threshold h.
This is in agreementwith the scaling of the crossover that separates the two scaling regimes, X ∝g h, see
section 3.2.1.

Although the algorithm is easy to implement, finding the two scaling regimes numerically can be
challenging. There are a number of caveats:

(1)The crossover point Xg between the two scaling regimes scales linearly with the threshold, X π=g h8 (see

section 3.2.1), effectively shifting thewhole −gs
2 asymptotic regime to larger and thus less likely values of gs.

Tomaintain the same number of events above X ∝g h, one needs
X

 ∫ =∞ −g gd const
g s s

2 , i.e.  ∝ h.

(2)Because the expected running time of the algorithm diverges, one has to set an upper cutoff on themaximum
generational timescale, say <g Gs . If the computational complexity for each update is constant, an

individual realization, starting from = +n h(0) 1and running up to =n g h( )s with <g Gs , has

complexity  g( )s
2 in large gswhere gs

2 is the scaling of the expected survival time of themapped random
walker introduced below. The expected complexity of realizations that terminate beforeG (with rate ∼ g1 s

2 )
is therefore linear inG, ∫ = −−g g g Gd 1

G

s s s1
2 2 .With the randomwalkermapping it is easy to see that the

expected population size n(g) of realizations that terminate afterG (and therefore have to be discarded as gs
exceedsG) is of the order ∼n g G( )s for =g Gs . These realizations, which appear with frequency ∝ G1 ,
have complexity  G( )2 , i.e. the complexity of realizations of the BDP is  G( )both for those counted into
thefinal tally and those dismissed because they exceedG. There is no point probing beyondG if  is too
small to produce a reasonable large sample on a logarithmic scale,  ∫ =−g gd const

G

G

s s

2 2 , so that  ∼ G

Figure 3.Estimated large scale exponent γ̂2 for different thresholds h and sample size  . The error bars correspond to one standard
deviation and are inversely proportional to the number of datawithin thefitted range. Inset: estimated large scale exponent γ̂2 as a
function of a ‘rescaled sample size’  h.
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and thus the overall complexity of a sample of size  is  ( )2 and thus  h( )2 for X∼ ∼G g h and  ∝ h
from above.

That is, larger hnecessitates larger  , leading to quadratically longer CPU time. In addition, parallelization
of the algorithmhelps only up to a point, as the (few) biggest events require asmuchCPU time as all the smaller
events taken together. The combination of all these factors has the unfortunate consequence that, for large
enough values of h, observing the  ∝ −g g( )g

s s
2

s regime is simply out of reach (even formoderate values of h,

such as h= 100, to show the crossover as clearly as infigure 2, a sample size as large as  = ×9 109 was
necessary, which required about 1810 h of CPU time).

3. Results

While it is straightforward to set up a recurrence relation for the generating function if the threshold is h=0, the
same is not true for >h 0. This is because the former setup (h=0) does not require an explicit implementation
of the absorbingwall since the process terminates naturally when =n g( ) 0 (there is no individual left that can
reproduce or die). If, however, >h 0, the absorbingwall has to be treated explicitly and that is difficult when the
evolution of the process (the effective diffusion constant) is a function of its state, i.e. the noise ismultiplicative.
In particular, amirror charge trick cannot be applied.

However, the process can bemapped to a simple randomwalk by ‘a change of clocks’, amethod detailed in
[16]. For the presentmodel, we observe that n(g) performs a fair randomwalk rt by a suitablemapping of the
generational timescale g to that of the randomwalker, =r g n g( ) ( )t with ∈ t g( ) . In fact, because of the
Poissonian nature of the BDprocess, birth and death almost surely never occur simultaneously and a suitable,
unique t(g) is found by =t (0) 0 and

ϵ ϵ ϵ ϵ+ − − = + − −
ϵ ϵ→ →+ +t g t g n g n glim ( ) ( ) lim ( ) ( ) (1)

0 0

i.e. t(g) increases whenever n(g) changes and is therefore an increasing function of g.With thismap, rt is a simple
randomwalk along an absorbingwall at h, see figure 5. The challenge is to derive the statistics of the survival
times gs on the time scale of the BDprocess from the survival times ts on the time scale of the randomwalk.

Figure 4.Magnification of the right interval infigure 1. The clock starts when n(g) exceeds the threshold and stops when n(g) returns
to the threshold.

Figure 5.The same data as infigure 4 but on themapped time scale of the randomwalker, which evolves in equally spaced, discrete
steps. The survival time is necessarily odd, = −t T2 1s , ∈ T (ts=29 in this example).
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In the following, we first approximate some important properties of the survival times in a handwaving
manner before presenting amathematically sound derivation in section 3.2.

3.1. Approximation
The expectedwaiting time6 between two events in the BDP is n1 , if n is the current population size, with

= +n n hx such that nx is the excess of n above h. As discussed in detail in section 3.2, nx is a time-dependent
randomvariable, and so taking the ensemble average of thewaiting time is a difficult task. But on themore
convenient time scale t, the excess nx performs a randomwalk and it is in that ensemble, with that time scale,
wherewe attempt tofind the expectation


∑= +=

−
( )

( )
g t h

n t h
;

1

( )
, (2)s s

t

t

x t0

1s

s

which is the expected survival time of a thresholded BDprocess given a certain return (or survival) time ts of the
randomwalker. In this expression nx(t) is a time-dependent randomvariable and the ensemble average 〈 〉· t( )s

is taken over all randomwalker trajectories  t( )s with return time ts. To ease notation, wewill include the
argument of  t( )s onlywhere necessary. Replacing the randomvariable gs by itsmean g t h( ; )s s , the PDFs for ts
and gs are approximately related via,

 ≈( ) ( )g
t

g t h t( )
d

d
; . (3)g

s
s

s s
t

ss s

Thismapwill bemade rigorous in section 3.2, avoiding the use of g t h( ; )s s in lieu of the random variable.
In amore brutal approach, onemay approximate the time dependent excess nx(t) in equation (2) by its

expectation conditional to a certain survival time ts,

  




+ = + + −
+

= + +

h n t h n t n t n t

h n t

h n t

1

( )

1

( )

1

1
( ) ( )

( )

1

( )
(higher order terms) (4)

x x x x

x

x

so that the expected survival time g t( )s s given a certain return time ts is approximately + 〈 〉t h n t( ( ) )s x .
The quantity 〈 〉n t( )x is the expected excursion of a randomwalker, which is well-known to be


π≈n t t( )
8

(5)x s
1 2

in the continuum limit (with diffusion constant1 2 ) (e.g. [17, 18]). Thus

π
≈ +( )g t h

t

h t
;

8
. (6)s s

s

s

At small times, π≫h t 8s , the relation between gs and ts is essentially linear, ≈g t hs s , whereas for large times,

π≪h t 8s , the asymptote is π≈g t8s s .Writing the right-hand side of equation (6) in the form

π
π+t8 s

h t

1

1 8 ( )s
2

allows us to extract the scaling of the crossover time. The argument of the square root is of

order unity when X π=t h8 2 , for which X π≈g t h h( , ) 4s .Moreover, one can read off the scaling form

≈ ( )( )g t h t t h; , (7)s s s s
1 2 2

with  π π= +x x( ) 8 (1 8 ( ) ) and asymptotes  ≈x x( ) for small x and  π=→∞ xlim ( ) 8x .
The PDF of the survival time


π

= −( )t
Dt

a

Dt

a

Dt

1

4
exp

4
(8)t

s
s s s

2
s

⎛
⎝⎜

⎞
⎠⎟

of a randomwalker along an absorbingwall is well-known to be a power law ∝ −ts
3 2 for times ts large compared

to the time scale set by the initial condition, i.e. the distance a of the randomwalker from the absorbingwall at
time t=0. The precise value of a is effectively determined by the details the continuum approximation, here
a=1, =D 1 2, and sowe require ≪ t1 2 s .

6
In a numerical simulation this would be the time increment.
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Toderive the PDF of the BDprocess, note that equation (6) has the unique inverse = π
πt g( ) ( )s s

g h

g16

16s

s

2

,

where  = + + +y y y( ) 1 1 2 . Evaluating the crossover time by setting y=1 yields X π=g h16 . The PDF of
the survival time of the BDprocessfinally reads

  


π∼ − ′− −( )g h y g
y y

y
;

16
( ) 2

( )

( )
, (9)g

s s

1 2
2s ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

where
π

=y
h

g

16

s

. For small y, the last bracket converges to 2, so  π∼ −g h g( ; ) 2 8g
s s

2
s for large gs. For large y,

the last bracket converges to 1, so  ∼ −g h h g( ; ) (1 )g
s s

3 2
s for small gs.

This procedure recovers the results in section 3.2: for π≪g h16s the PDF of the survival times in the BD

process goes like −gs
3 2, and for π≫g h16s like −gs

2, independent of h. Equation (9) also gives a prescription for

a collapse, since  g h g( ; )g
s s

2
s plotted versus g hs should, for sufficiently large gs, reproduce the same curve, as

confirmed infigures 7 and 8.
Applying a threshold introduces a new scale, πh16 , belowwhich the PDFdisplays a clearly discernible

power law, −gs
3 2, corresponding to the return time of a randomwalker. The ‘true’ −gs

2 power law behaviour (the
large gs asymptote) is visible onlywell above the threshold-induced crossover.

3.2.Detailed analysis
In the previous sectionwemade a number of assumptions, in particular the approximation of replacing the
randomvariable by its expectation, and the approximation in equation (4), which both require further
justification.

In the present sectionwe proceedmore systematically. In particular, wewill be concernedwith the statistics
of the BD survival time g ( )s given a particular trajectory  = …r r r{ , , , }t0 1 s of the randomwalk, where

= −t T2 1s , necessarily odd, ∈ T , see figures 5 andB1 .Wewill then relax the constraint of the trajectory and
study thewhole ensembleΩ of randomwalks terminating at a particular time −T2 1, denoting as Ωg T( ( ))s a
survival time drawn from the distribution of all survival times of a BDprocess with amapping to a random
walker that terminates at −T2 1or, for simplicity, just Ωg ( )s . This will allow us to determine the existence of a

limiting distribution for Ωg T( )s and tomake a quantitative statement about itsmean and variance.Wewill
notmake any assumptions about the details of that limiting distribution; in order to determine the asymptotes of
 g h( ; )g

s
s weneed only know that the limit exists.
For a given trajectory  of the randomwalk, the resulting generational survival time g ( )s may bewritten

as

 ∑ ξ= +
=

−
( )g r h( ) , (10)s

t

T

t t

0

2 2

where ξ α( )t is a randomvariable drawn at time t from an exponential distributionwith rate α, i.e. drawn from
α αξ−e , and rt is the position of the randomwalk at time t, with initial condition =r 10 and terminating at −T2 1
with =−r 0T2 1 (see figure B1).

Themean and standard deviation of ξt are +r h1 ( )t , necessarily finite, so that by the central limit theorem

the limiting distribution of g T( )s given a trajectory  is Gaussian (for ≫T 1 ). This ensures that

Ωg T( )s has a limiting distribution (see appendix C).
It is straightforward to calculate themean and standard deviation of g ( )s for a particular trajectory  that

terminates after −T2 1 steps. Slightlymore challenging is themean μ Ω( ) and variance σ Ω( )2 of Ωg ( )s for the
entire ensembleΩ of such trajectories. The details of this calculation are relegated to appendix B.Here, we state
only the key results. For themean of the survival time, wefind

μ Ω π ψ≃ +T h
h

T
( ) 2 2 (11)

⎛
⎝⎜

⎞
⎠⎟

(see equation (B.22)) with ψ π= −−x x ıx ı( ) e (Ei( ) ( ) )x2
and asymptotes

μ Ω π≃ ≫
≪

T T h

T h T h
( )

2 for

2 for
(12)

2

2

⎧⎨⎩
see equation (B.24). The variance is

 σ Ω μ Ω≃ − +T x x( ) ( ) ( ) ( ) (13)2 2
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(see equation (B.27)) with integrals  x( ) and  x( )defined in equation (B.28a) andwith asymptotes

σ Ω
π π

≃
− ≫

≪
T T h

T h T h

( )
4

3

3
for ,

2 for ,

(14)2
2

2 2

⎧
⎨⎪
⎩⎪

see equation (B.32). All these results are derived in the limit ≫T 1 inwhich themapped randomwalker takes
more than just a few steps, corresponding to a continuumapproximation. However, as shown in the following,
the results remain valid even forT close to one.

To assess the quality of the continuum approximation and the validity of the asymptotes, we extracted the
mean μ Ω T( ( )) and variance σ Ω T( ( ))2 of the survival time Ωg T( ( ))s from simulated BDPs startingwith a
population size = +n h(0) 1and returning to =n g h( )s after −T2 1updates (births or deaths), i.e. the
process was conditioned to a particular value ofT. In particular, we set the threshold at h=100, and simulated a
sample of 105 constrained BDPs for values = =T k2 , 0 ... 20k . The results are shown infigure 6 and confirm the
validity of the large ≫T 1approximation in equations (11) and (13), as well as the asymptotes (12) and (14).
Remarkably, as previously stated, equations (11) and (13) are seen to be valid evenwhen the condition ≫T 1
does not reasonably hold.

3.2.1. Distribution of gs
For largeT, the generational survival time gs given a survival time −T2 1of themapped randomwalk has PDF


σ Ω

Φ
μ Ω

σ Ω
≃ −

( )g h T
T

g T

T
; ;

1

( ( ))

( ( ))

( ( ))
, (15)g

s
s

2 2
s

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where Φ x( )denotes the limiting distribution of the rescaled survival time μ Ω σ Ω−g T T( ( ( ))) ( ( ) )s
2 , and

themean μ Ω T( ( )) and variance σ Ω T( ( ))2 are given by equations (11) and (13).We demonstrate thatΦ exists
andfind its precise (non-Gaussian) form in appendix C for completeness, but wewill not use this result inwhat
follows: to extract the asymptotic exponents and first order amplitudes, see below, knowledge of themean μ Ω( )
and variance σ Ω( )2 is sufficient.

As the ensembles Ω T( ) are disjoint for differentT, the overall distribution  g h( ; )g
s

s of survival

generational times is therefore given by the sumof the constrained distribution  g h T( ; ; )g
s

s weighted by the
probability of themapped randomwalk to terminate after −T2 1 steps. In the limit of largeT, as assumed
throughout, that weight is π−T (2 )3 2 [19]. Therefore

 ∑
π σ Ω

Φ
μ Ω

σ Ω
= −

=

∞ −
( )g h

T

T

g T

T
;

2

1

( ( ))

( ( ))

( ( ))
. (16)g

s
T

s

1

3 2

2 2
s

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

To extract asymptotic behaviour for ≪T h2 and ≫T h2 wemake a crude saddle point, or ‘pinching’
approximation, by assuming that Φ x( ) essentially vanishes for ∣ ∣ >x 1 2 and is unity otherwise. This fixes the
randomwalker timeT via μ Ω− =g T( ( )) 0s , while the number of terms in the summation is restricted to

satisfy μ Ω σ Ω∣ − ∣ ⩽g T T( ( )) ( ( ))s
2 . After some algebrawe find


π

π

π

=

+ ≪

≪ ≪
≫

−

−

( )g h

h
g h

g

h
h g h

g g h

;

1

2
for 1 ,

2
for 1 8 ,

2 for 8 .

(17)g
s

s

s

s

3 2

2

s

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

The qualitative scaling of these two asymptotes was anticipated after equation (9). The crossover time

X π=g h8 , shown in figures 7 and 8, can be determined by assuming continuity of  g h( ; )g
s

s and thus imposing

X X=
π

− −g g2
h

1

2

3 2 2. Figure 7 shows  g h g( ; )g
s s

2
s versus g hs for varying h, comparingMonte Carlo simulations

for varying hwith the numerical evaluation of equation (16) for h=100, thus confirming the validity of the data
collapse proposed in equation (9). In particular, the shape of the transition between the two asymptotic regimes,
predicted to take place near X π=g h 8 , is recovered from equation (16)with great accuracy. As an alternative to
the numerical evaluation of equation (16), we introduce in appendixD a complementary approach that
provides the Laplace transformof  g h( ; )g

s
s , see equation (D.4). Unfortunately, inverting the Laplace transform

analytically does not seem feasible, but numerical inversion provides a perhaps simplermeans of evaluating
 g h( ; )g

s
s in practice.
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In addition to the two asymptotic regimes discussed so far, one notices thatfigure 8 displays yet another
‘regime’ (left-most, green shading), which corresponds to extremely short survival times. This regime is almost
exclusively due to thewalker dying on the firstmove via the transition = +n h(0) 1 to =n g h( )s . In this case,
the sum in equation (10) only has one term, and hence the PDF of gs can be approximated as

 = + ∼− + +g h h( ; ) ( 1)eg
s

h g h1

2
( 1) 1

2
s s , where the factor1 2 corresponds to the probability ofT=1, and the

limit of small gs has been taken. Thus, for very short times ≪g h1s , the PDF of gs is essentially ‘flat’. In order to
estimate the transition point to this third regime, we impose again continuity of the solution, so that

XX π+ = −h g h( 1) 2 23 2 and hence (dropping the constants) XX =g h1 , as shown in equation (17) aswell as
figures 7 and 8.

Given the three regimes shown infigure 7,  g h( ; )g
s

s can be collapsed either by ignoring the very short scale,
(see equation (9))

 ≃ ≫− >( )( )g h g g h g h; 2 for 1 (18)g
s s s

2s

with  => x( ) 1 for large x and  π=> x x( ) (8 ) in small x, or according to

 
π

π≃ ≪
−

<( )g h
g

h
g h g h;

2
for 8 (19)g

s
s

s

3 2

s

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

with  =< x( ) 1 for large x and  π=< x x( ) 23 2 for small x. Power-law scaling (crossover) functions offer a
number of challenges, as they affect the ‘apparent’ scaling exponent [20]. Also, there is no hard cutoff in the
present case, i.e. moments ∫〈 〉 =g g g h gd ( ; )s

m
s

g
s s

m
s do not exist for ⩾m 2.

4. Summary anddiscussion

Themain goal of the present paper has been to understand how thresholding influences data analysis. In
particular, how thresholding can change the scaling of observables and howonemight detect this.

To this end, weworked through the consequences of thresholding in the BDP, which is known to have a
power-lawPDF of survival timeswith exponent γ = 2.We have shown, both analytically and via simulations,
that the survival times gs for the thresholded process include a new scaling regimewith exponent γ = 3 2 in the
range π≪ ≪h g h1 8s (see figure 8), where h is the intensity level of the threshold.

Wewould like to emphasize how difficult it is to observe the asymptotic γ = 2 exponent, even for such an
idealized toymodel. For large values of the threshold, =h 5000, sample sizes as large as 1010 are needed in order
to populate the histogram for large survival times. Real-worldmeasurements are unlikely tomeet the demand
for such vast amounts of data. An illustration of whatmight then occur for realistic amounts of data that are
subject to threshold is given by figure 2, where only the threshold-induced scaling regime associatedwith
exponent −3 2 is visible.

Intriguingly, a qualitatively similar scaling phenomenology is observed in renormalized renewal processes
with divergingmean interval sizes [21]. The randomdeletion of points (that, together with a rescaling of time,

Figure 6.Numerical comparison of the approximations equations (11) and (13) (shown as full lines), their asymptotes equations (12)
and (14) (dashed) and the numerical estimates based on a sample of 105 realizations per datapoint in aMonte-Carlo simulation of a
birth–death process constrained to −T2 1updates, with h=100 and = =T k2 , 0 ... 20k .
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constitutes the renormalization procedure) is analogous to the raising of a threshold. It can be shown that the
non-trivialfixed point distribution of intervals is bi-power law. The asymptotic scaling regime has the same
exponent as that of the original interval sizes. But, in addition, a prior scaling regime emerges with a different
exponent, and the crossover separating the two regimesmoves outwith increasing threshold.

A fundamental difference between theoreticalmodels and the analysis of real-world processes is that in the
former, asymptotic exponents are defined in the limit of large events, with everything else dismissed as
irrelevant, whereas real world phenomena are usually concernedwith finite event sizes. In our example, the
effect of the threshold dominates over the ‘true’ process dynamics in the range π≪ ≪h g h1 8s , and growswith

increasing h before eventually taking over thewhole region of physical interest.
Of course, real datamay not come from an underlying BDP. Butwe believe that the specific lessons of the

BDP applymore generally to processes withmultiplicative noise, i.e. a noise whose amplitude changes with the
dynamical variable (the degree of freedom). Let us cite two specific examples from the literature to illustrate our
point: in [22], Laurson et al apply thresholds to Brownian excursion, but since noise is additive in Brownian
motion, the asymptotic exponent of −3 2 is recovered at any threshold level. On the other hand, Larremore et al
[23] apply thresholds to networks of excitable nodes and critical branching processes, i.e. to processes with
multiplicative noise, and report strong effects of the threshold on the asymptotic exponents.

Figure 7.Collapse of the PDFs for different thresholds h for large ≫g h1s , plotting  g h g( ; )g
s s

2s against g hs , according to
equations (9) and (18), capturing equation (17). Symbols correspond to simulations at different threshold levels =h 20, 200, 500
and 2000. The black full lines indicate the asymptotes according to equation (17), the dashed lines show the crossovers at π=g h 8s

and =g h h1s
2 for h=100 . Finally, the black thick dashed line corresponds to the analytical solution computed from equation (16)

for h=100, while coloured full lineswere computed by numerically inverting the Laplace transform given in equation (D.4), see
appendixD. Another collapse is possible according to equation (19).

Figure 8.The PDF of survival times  g h( ; )g
s

s for h=100. Three scaling regimes partitioned by Xg (thin dashed line) and XXg (thin
dotted line) exist: for very short times ≪g h1s (green shading), the exponential waiting time to the first (death) event dominates, so
that  ∼ +g h h( ; ) ( 1) 2g

s
s . For ‘intermediate’ times (red shading) π≪ ≪h g h1 8s , the effect of the threshold dominates, and

hence  π∼ −g h g h( ; ) 2g
s s

3 2s . For long times (blue shading) π≫g h8s ,  ∼ −g h g( ; ) 2g
s s

2s , independently of h.Monte-Carlo
simulation results are shown as symbols, asymptotes of  g h( ; )g

s
s , equation (17), as solid lines, and the analytical solution  g h( ; )g

s
s ,

computed via equation (16) as a black thick dashed line, and via numerical inversion of the Laplace transform, equation (D.4), as a red
solid line.
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Indeed, in a process withmultiplicative noise, at large thresholds small changes of the dynamical variable are
negligible and an effectively additive process is obtained (the plain randomwalker in our example). Only for
large values of the dynamical variable is the original process recovered. These large values are rare, in particular
when another cutoff (such as, effectively, the sample size) limits the effective observation time ( −T2 1above).
In theworst case, thresholdingmay therefore bury the asymptotics whichwould only be recovered formuch
longer observation times.However, if the threshold can easily be changed, its effect can be studied systematically
by attempting a data collapse onto the scaling ansatz  = γ−g h g g h( ; ) ( )g

s s s
Ds , equations (9) and (18), with

exponents γ andD to be determined, as performed infigure 7with γ = 2 andD=1. The threshold plays an
analogous role to the system size infinite-size scaling (albeit for intermediate scales). In the present case, the
exponents in the collapse, together with the asymptote of the scaling function, identify two processes at work,
namely the BDP aswell as the randomwalk.
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AppendixA. Power lawfitting procedure

Weuse afitting procedure valid for both truncated and non-truncated power-law distributions [15, 24]. It is
based onmaximum likelihood estimation of the exponent, the KS goodness-of-fit test, andMonte Carlo
simulations.

A continuous randomvariable x is power-law distributed if its probability density is given by

γ= −
−γ γ

γ

− −P x
a b x

( )
1

1

1
, (A.1)

1 1
⎜ ⎟⎛
⎝

⎞
⎠

where >a 0 and b are the lower and upper ends of the range, respectively. If b is finite, the distribution is
truncated, while if → ∞b , the distribution is non-truncated. In the latter case, γ > 1 is required for a
normalizable distribution.

The key tofitting power-law distributions properly to real-world data is to have an objective criterion for
decidingwhen the power law starts (and, in the truncated case, when it ends); this is thefitting range. Given a
sample …X X X, , , n1 2 , wewould like to estimate the parameter γ and determine the interval a b[ , ]where the
power-law holds. In order to obtain a reliable estimate of the exponent γ, we usemaximum likelihood
estimation, with a and b fixed. The log-likelihood reads

ℓ γ γ γ γ= −
− − − ≠

γ−r

g

a
a( ) ln

1

1
ln ln , ( 1), (A.2)

1

where r= a/b and g is the geometricmean. The value γ̂ whichmaximizes ℓ γ( ) is themaximum likelihood
estimator of the exponent.

Having estimated γ, we quantify the goodness-of-fit via a KS test [25]. TheKS statistic is the absolute value
between the theoretical and empirical cumulative distributions, where the empirical cumulative distribution is
given by the fraction ofXi smaller than x, within the interval [a, b].

Using the γ̂ obtained from the data, we generate surrogate power law samples viaMonte Carlo in order to
assign a p-value to theKS statistic. Under the null hypothesis, the p-value is the probability that theKS statistic
takes a value larger than that obtained empirically. Next, we apply the same procedure for all possible ranges
a b[ , ]and retain thosefits (i.e., the triplets γa b{ , , ˆ}) with p-values greater than pc. In this analysis we have taken
pc=0.5, which is quite conservative. Under the null hypothesis, the p-value is uniformly distributed such that
half of the correctmodels would be rejected.

Finally, we select one fitting range among all the listed triplets. For non-truncated power laws ( = ∞b ), we
select the largest interval, i.e., the smallest a. For truncated power laws, one can either select the interval that
maximizes the number of data points containedwithin, or the size of the log-range b a, see [15] for a discussion.
In this analysis, we havemaximized the log-range, which tends to select power laws nearer to the tail of the
distribution.

Appendix B.Mean and variance of the survival time

This appendix contains the details of the calculations leading to the approximation (in largeT), equations (11)
and (13), as well as their asymptotes equations (12) and (14), for themean μ Ω( ) and the variance σ Ω( )2
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respectively, averaged over the ensemble Ω T( ), orΩ for short, of themapped randomwalkswith the constraint
that they terminate at −T2 1, see figure B1.

In the following, wewill use the notation ξt for ξ +r h( )t t , but it is important to note that any two ξ +r h( )t t

are independent, even though the consecutive rt are not. The random variable g ( )s in equation (10) is thus a
sumof independent randomvariables ξt , whosemean and variance at consecutive t, however, are correlated due
to rt being a trajectory of a randomwalk. Because + >h r 0t for < −t T2 1, the limiting distribution of

  μ σ−g( ( ) ( )) ( )s
2 as → ∞T is aGaussianwith unit variance.Mean μ ( ) and variance σ ( )2 are

defined as

   ∑μ ξ= =
=

−
g a( ) ( ) , (B.1 )s

t

T

t

0

2 2

  
 

  ∑
σ

ξ ξ ξ ξ

= −

= −
′=

−
′ ′

( )g g

b

( ) ( ) ( )

(B.1 )

s s

t t

T

t t t t

2 2 2

, 0

2 2

and are functions of the trajectory with 〈 〉· taking the expectation across the ensemble of ξ for given, fixed
, i.e. ξ〈 〉 = +r h1 ( )t t and  ξ ξ〈 〉 − 〈 〉 = +r h1 ( )t t t

2 2 2. Because   ξ ξ ξ ξ〈 〉 = 〈 〉 〈 〉′ ′t t t t for ≠ ′t t the
mean and the variance are in fact just

 ∑μ = +=

−

r h
a( )

1
, (B.2 )

t

T

t0

2 2

 ∑σ =
+=

−

( )r h
b( )

1
. (B.2 )

t

T

t

2

0

2 2

2

If ρ ( )n counts the number of times rt attains a certain level

 ∑ρ δ=
=

−
( ) (B.3)n

t

T

n r

0

2 2

, t

then δ ρ∑ = ∑ ∑ = ∑=
−

=
−

=
∞

=
∞f r f n f n( ) ( ) ( ) ( )t

T
t t

T
n n r n n0

2 2
0

2 2
0 , 0t

, so

 ∑μ
ρ= +=

− +

n h
a( )

( )
, (B.4 )

n r

T r
n

1

0

0

 ∑σ
ρ= +=

− +

n h
b( )

( )

( )
. (B.4 )

n r

T r
n2

1

2
0

0

wherewe used the fact that within time −T2 2 our randomwalker cannot stray further away from r0 than
− +T r1 0, as illustrated infigure B1.
In the same vein, we can nowproceed tofindmean and variance of gs over the entire ensemble Ω Ω= T( )of

trajectories  that terminate at −T2 1. In the following 〈 〉Ω· denotes the ensemble average over all
trajectories  Ω∈ , each appearingwith the same probability

Figure B1. Sample path of a randomwalk along an absorbingwall at 0. Thewalker starts at t=0 from r0 and terminates at −T2 1by
reaching thewall =−r 0T2 1 , i.e. =−r 1T2 2 . By construction, it cannot escape from the region demarcated by the dashed line.When
counting distinct paths, the number of paths terminating at =−r 0T2 1 equals the number of paths passing through =−r 1T2 2 .
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 ∑ξ
Ω

ξ=
Ω

( ) ( )f f
1

, (B.5)t t

where ξf ( )t is an arbitrary function of the randomvariable ξt .We therefore have

 




∑ ∑ ∑

∑ ∑ ∑

μ Ω ξ
Ω

Ω
ρ ρ

= = +

= + = +

Ω

Ω

=

−

=

−

=

− +

=

− +

r h

n h n h

( )
1 1

1 ( ) ( )
, (B.6)

t

T

t

t

T

t

n r

T r
n

n r

T r
n
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2 2

0

2 2

1 1

0

0

0

0

where ρ〈 〉Ω( )n is in fact the expected number of times a randomwalker terminating at −T2 1attains level n.
The variance turns out to require a bitmorework. The secondmoment




∑ ∑ ∑ξ
Ω

ξ ξ= =
Ω

Ω
=

−

′=

−
′g ( )

1
(B.7)s
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t t
2
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2 2 2

, 0

2 2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

simplifies significantly when ≠ ′t t inwhich case the lack of correlationsmeans that the expectation factorizes

  ξ ξ ξ ξ〈 〉 = 〈 〉 〈 〉′ ′t t t t , so that we canwrite

    ∑ ∑ ∑ξ ξ ξ ξ ξ ξ= + −
′=

−
′

′=

−
′

=

−
( ). (B.8)
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0
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Obviously   ξ ξ ξ∑ 〈 〉 〈 〉 = ∑ 〈 〉′=
− ′ =

−( )t t
T

t t t
T

t, 0
2 2

0
2 2 2

, but that is not a useful simplification for the time being.

The square of thefirstmoment, equation (B.6), is best written as


 

 ∑ ∑
Ω

ξ ξ=
Ω ′ ′=

−
′ ′g ( )

1
(B.9)s
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so that
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Thefirst and the last pair of sums can bewritten as

 
  ∑ ∑

Ω
ξ ξ ξ−

′ ′=

−
′ ′ ′( )1

(B.11)
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using  Ω∑ ∣ ∣ =(1 ) 1, so that
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2 2

In thefirst sum, the two terms can be separated into those in t′ and one in t. Using the same notation as above,
equation (B.3)we have

 
 ∑ ∑ξ ξ

ρ ρ− = − ′
′ +′=

−
′ ′ ′

′=

− + ′ ′
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0
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=
−

=
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+t
T
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2 2 1 ( )n

0

0 .
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The second sum recovers the earlier result in equation (B.4b), as ξ〈 〉 = +t r h

2 2

( )t
2
and ξ〈 〉 = +t r h

1

t
, so that


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and therefore
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Wenowhave themean μ Ω( ), equation (B.6), and the variance σ Ω( )2 , equation (B.15), in terms of ρ〈 〉Ω( )n
and  ρ ρ〈 〉Ω′( ) ( )n n . In the following, wewill determine these two quantities and then return to the original

task offinding a closed-form expression for μ Ω( ) and σ Ω( )2 .

B.1. ρ〈 〉Ω( )n
and  ρ ρ〈 〉Ω′( ) ( )n n

Of the two expectations, ρ〈 〉Ω( )n is obviously the easier one to determine. In fact, ρ∑ = −T( ) 2 1n n implies

  ρ ρ ρ∑ 〈 〉 = − 〈 〉′ ′ T( ) ( ) (2 1) ( )n n n n , i.e. ρ〈 〉Ω( )n is a ‘marginal’ of  ρ ρ〈 〉Ω′( ) ( )n n .
To determine ρ〈 〉Ω( )n , we use themethod of images (ormirror charges). The number of positive paths

( >r 0i ) from =t r( 0, )0 to (t, n) are − + − + +
t

n r t
t

n r t

2 2
0 0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ for + +n r t0 even and >n 0. By

construction, the number of paths passing through n= 0 is exactly 0, thereby implementing the boundary
condition. The set of paths (to be considered in the following)which terminate at time −T2 1by reaching

=−r 0T2 1 is, up to thefinal step, identical to the set of paths passing through −T(2 2, 1), i.e. =−r 0T2 1 . The
number of positive paths (seefigure B1) originating from =r(0, 1)0 and terminating at

= − =−t T r( 2 1, 0)T2 1 therefore equals the number of positive paths from =r(0, 1)0 to = − =t T n( 2 2, 1),
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again for + +n r t0 even. This is the number of positive paths from (0, 1) to (t, n) and by symmetry also the
number of paths from − −T t n(2 2 , ) to −T(2 2, 1), given that the walk is unbiased (see figure B1). If

ρ〈 〉Ωt( ; )n is the expected fraction of paths passing through (t, n) (illustrated in figure B1), we therefore
have
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which is normalized by construction, i.e. ρ∑ 〈 〉 =Ωt( ; ) 1n n . Thefirst binomial factor in the denominator is
due to the normalization, whereas of the last two, the first is due to paths from (0, 1) to (t, n) and the second due
to paths from (t, n) to − −T t(2 2 , 1). In the followingwe are interested in the fraction of times a random
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walker reaches a certain level during its lifetime,  ρ ρ〈 〉 = ∑ 〈 〉Ω Ωt( ) ( ; )n t n . Using

π≃ − −−( ) ( )a
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a b2 ( 2) expa
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a1 2 2

2

2
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wherewe have used ≫T 1and = +t t˜ 1. Simplifying further gives
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with the sum running over the t̃ with the correct parity and τ = t T˜ and ν = n T . In the limit of large ≫T 1
wefind [28]
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where the parity has been accounted for by dividing by 2. In the last step, the integral was performed by some
substitutions, as τ τ−(2 ) is symmetric about 1. It follows that in the limit of large ≫T 1
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Using that expression in equation (B.6) gives equation (11), namely
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with [29, equation 27.6.3]
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wherewe have used =r 10 . The second integral is known as the exponential integral function

⨍ = −−∞
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y xd Ei( )x y

e y

and thefirst as (amultiple of) the imaginary error function 2 ∫π π=s ıx ıd e ( ) .
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2
In

the limit of large arguments x, the function ψ x( ) is π π− + − + + −x x x x x1 (2 ) 1 ( )2 3 4 5 , in the limit
of small arguments by γ + x2 ln( ), where γ is the Euler-Mascheroni constant.We conclude that
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(see equation (12)) providedT is large compared to 1, which is the key assumption of the approximations used
above. It is worth stressing this distinction:Thas to be large compared to 1 in order tomake the various
continuumapproximations (effectively continuous in time, so sums turn into integrals and continuous in state,
so binomials can be approximated byGaussians), but no restrictions weremade regarding the ratioT h2.

The correlation function  ρ ρ〈 〉Ω′( ) ( )n n can be determined using the samemethods, startingwith
equation (B.17):
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 

  
  

  

  

  
  

  

  
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. (B.25)
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Because both t and t′ are dummy variables, onemight be tempted towrite the entire expression as twice the first
double sum,which is indeed correct as long as ≠ ′n n . In that case, the case ′ =t t does not contribute because
the ‘middle chunk’ (from (t, n) to ′ ′t n( , ) ) vanishes. However, if = ′n n thatmiddle chunk is unity and therefore
needs to be included separately. This precaution turns out to be unnecessary once the binomials are
approximated byGaussians and the sums by integrals.

The resulting convolutions are technically tedious, but can be determined in closed formon the basis of
Laplace transforms and tables [29, equations 29.3.82 and 29.3.84], resulting finally in

 ρ ρ ≃ −
Ω′ − − + ′( )T( ) ( ) 8 e e (B.26)n n

n T n n T( )2 2

to leading order inT.
We proceed to determine equation (B.15) using equations (B.21) and (B.26) in the limit of largeT. Again, we

interpret the sums as Riemann sums, to be approximated by integrals, resulting in equation (13),

 σ Ω μ Ω≃ − +T x x( ) ( ) ( ) ( ) (B.27)2 2

with =x h T and

 ∫ π ψ= + = − + + −∞ −
x n

n

n x
x x x a( ) d

4 e

( )
4 4 2(2 1) ( ), (B.28 )

n

0 2
2

2

 ∫ ∫= ′ −
+ ′ +

∞ − − + ′
x n n

n x n x
b( ) 16 d d

e e

( )( )
(B.28 )

n n n n

0 0

( )2 2

(for the definition of ψ x( ) see equation (B.23)). Unfortunately, wewere not able to reduce  x( ) further.
Because of the structure of equation (B.27), where  μ Ω−T x r( ) ( )2 scale linearly inT at fixed =x h T ,

whereas  x( ) remains constant, a statement about the leading order behaviour inT is no longer equivalent to a

16
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statement about the leading order behaviour in x1 2. This is complicated further by the assumptionmade
throughout thatT is large. The limits we are interested in, are in fact ≫T h2 with ≫T 1and ≪ ≪T h1 2. In
the following, we need to distinguish not only large x from small x, but also different orders ofT.

It is straightforward to determine the asymptote of  x( ) in large x, where the denominator of the integrand

is dominated by x2 while the numerator vanishes at least as fast as −e n2
, because

− = − ′− − + ′ − − ′−e e e (1 e )n n n n nn n( ) 22 2 2
2

and ⩽ − ′ <− ′−0 (1 e ) 1nn n2
2

, so [28]
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
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× − + + ⋯ − ′ + ′ + ⋯
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n
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x
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x x x
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( )
16
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1 1

4 4 34

3
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Similarly, or using the expansion of ψ x( ) introduced above, we find  = + −x x x( ) 2 ( )2 3 . Since
μ Ω π= − + + ⋯T x x x( ) (2 2 )2 3 , the first two terms in the expansion of  x( ) for large x cancel, andwe
arrive at

 σ Ω π

π

= + + − + +

= + − + ⋯

( ) ( )
x

x T
x x

x

T

h h
T

( )
2 34

3

8

2 10 3
(B.30)

2
2

3
4 4
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2 4
3

⎜ ⎟⎛
⎝

⎞
⎠

for ≪T h2, containing the rather unusual looking (‘barely positive’, onemight say) difference π−10 3 . The
second term in equation (B.30) is clearly subleading in large x and no ambiguity arises in that limit, not even if

≫T 1.
The limit = →h T x 0, on the other hand,  x( ) is

 π= +x x( )
4

3
( ) (B.31)2

using [29, equation 27.7.6] so that  μ Ω π π− = − +T x T x( ) ( ) (4 3 4 ( ))2 2 , whereas
 γ= − − −x x( ) 4 ln( ) 4 2 diverges in small x. Although this latter term therefore dominates in small x, the
former,  μ Ω−T x( ) ( )2, does for large ≫T h2 atfinite, fixed h.

We are now in the position to determine the relevant asymptotes of σ Ω( )2 , as stated in (14),

σ Ω
π π

≃
− ≫

≪

T T h

T

h
T h

( )
4

3

3
for ,

2
for .

(B.32)2

2

2
2

⎧
⎨
⎪⎪

⎩
⎪⎪

AppendixC. Limiting distribution of Ωg T( )
s

In this second appendix, we explicitly find the limiting distribution of Ωg T( )s .We begin by noting that, for

≫T 1, Ωg ( )s can be approximated as ∫Ω ≃ +g t( ) ds

T

x t h0

2 1

( )
, where x(t) performs a Brownian excursion of

length T2 . While for large but finiteT this is clearly an approximation (e.g. the exponential random variables
have been replaced by theirmean), in the limit of → ∞T the approximation becomes exact. In particular,
the ‘noise’ due to the variance of the exponential random variables scales like Tlog , see equation (B.28a),
and thus vanishes after rescaling with respect to T . In addition, owing to the scaling properties of Brownian
motion,

∫ ∫Ω = + =
→∞ →∞

g T t
x t h T

t
x t

lim ( ) lim d
1

( )
d

1

( )
, (C.1)

T
s

T 0

2

0

2

where x(t) is a Brownian excursion of length 2. Functionals of this kind have recently been discussed in detail in

[30]. Tofind the distribution of this quantity, wefirst define ∫= ′ ′y t t x t( ) d 1 ( )
t

0
, and the propagator
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Z x y x y t( , , , , )0 0 , i.e. the probability for a Brownian particle to go from x y( , )0 0 to (x, y) in time t, without
touching the line x=0.Using standard techniques [31], the associated Fokker–Plank equation for the
propagator takes the form

∂ + ∂ − ∂ =
x

Z x y x y t
1 1

2
( , , , , ) 0, (C.2)t y xx 0 0

⎡
⎣⎢

⎤
⎦⎥

with initial condition

δ δ= − −( ) ( ) ( )Z x y x y x x y y, , , , 0 , (C.3)0 0 0 0

and boundary condition

=( )Z y x y t0, , , , 0. (C.4)0 0

Taking the Laplace transformwith respect to t yields

δ δ+ ∂ − ∂ = −s
x

Z x y x s x x y
1 1

2
ˆ ( , , , ) ( ) ( ), (C.5)y xx 0 0

⎡
⎣⎢

⎤
⎦⎥

=( )Z y x sˆ 0, , , 0. (C.6)0

Wefirst solve the associated homogeneous equation, fromwhichwewill be able to construct the solution to the
inhomogeneous problem. After substituting the ansatz Ψ ρ=Z x y s x s y sˆ ( , , ) ( , ) ( , )hom , the equation separates
into

Ψ λ Ψ− ∂ + − =x s s x x s1 2 ( , ) ( ) ( , ) 0, (C.7)xx

ρ λρ−∂ + =( ) ( )y s y s, , 0, (C.8)y

where λ is an arbitrary real constant. Equation (C.7) is an eigenvalue problem forΨ x s( , )with respect to the

weight x1 . The solutions that vanish at infinity take the form Ψ λ∝ −λ
− ( )x s U s s x( , ) e 2 , 0, 2 2s x2 , but

only for λ = =s k k2 , {1, 2 ,...}k do they vanish at x=0. The correctly normalized eigenfunctions that satisfy
boundary conditions are therefore

Ψ = −
−

− ( )
x s

U k s x

k k
( , )

e , 0, 2 2

!( 1)!
. (C.9)k

s x2

These functions are an orthonormal set with respect to theweight x1 , ∫ Ψ Ψ δ=∞
x x s x sd ( , ) ( , )j k x j k0

1
, , and the

corresponding closure relation reads Ψ Ψ δ∑ ′ = − ′=
∞ x s x s x x( , ) ( , ) ( )k k k x1

1 . One can use this to construct the
solution of the original equation. In particular

∑Θ Ψ Ψ=
=

∞
−Z x y x s y x s x sˆ ( , , , ) ( ) ( , ) ( , )e . (C.10)

k

k k
s ky

0

1

0
2

Wenow return to the original problemoffinding the probability of a Brownian excursionwith functional

∫ ′ ′ =x t t y t1 ( )d ( )
t

0
.Wemake use of the device ϵ= =x x0 , and let ϵ → 0 only after normalization. In short

Ω
ϵ ϵ= =

ϵ ϵ→∞ → =
( )g T y

Z y t

Z
lim Prob ( ) lim

( , , , )
, (C.11)

T
s

t
0

2

where = −ϵ π
ϵ−Z (1 e )

t
t1

2
2 2

is thewell-known normalizing constant (see e.g. [18]). From (C.10) and

expanding for small ϵ= =x x0 termby term,wefind

∑ϵ ϵ
π

Ψ ϵ≃
−ϵ ϵ=

∞

−
−

( )
( )Z y s
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1 e
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Using the fact thatΨ ϵ ϵ≃s sk( , ) 8k
2 2 for small ϵ, wefinally arrive at

∑ϵ ϵ
π ϵ
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Inverting terms involving s yields

∑
Ω

π π π

=

= −π

→∞

=

∞
−
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( )

( )( )

g T y

t

y
k k t y
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(2 ) e (2 ) 3 (C.14)

T
s

k

k t y

t

3 2 2

6
1

2 (2 ) 2 2 2

2

2 2
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑= −
=

∞
−

=
( )y

t
k k y t

2
e 3 . (C.15)

k

ky t

t
2

1

( ) (2 ) 2 2 2

2

2
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Thefirst equation is obtained by collecting residues fromdouble poles, and is useful for a small y expansion. The
second equation is obtained by expanding (C.13) and inverting termby term, and is useful for a large y
expansion. Both expressions converge rapidly and, evaluating at t=2, are in excellent agreement with
simulations, see figureC1.

AppendixD. Laplace transformof  g h( , )g
s

s

In thisfinal appendix, we take yet another route in the calculation of  g h( , )g
s

s byfinding its Laplace transform.
The key point in this approach is to approximate the embedded randomwalk of the process by standard
Brownianmotion. Therefore, we expect our approximation to hold as long as ≫T 1. The approach is very
similar in spirit to that of appendix C, but bothAppendices are self-contained and can be read independently.

Let x(t) denote the trajectory of a Brownian particle starting at =x x(0) 0, and tf itsfirst passage time to 0.
Thenwe argue that, in the Brownianmotion picture, the original observable of interest of the process gs
corresponds to the quantity h,

 ∫= tU x td ( ( )), (D.1)h

t

h
0

f

with = +U x x h( ) 1 ( )h . Effectively, the underlying exponential random variables ξ x t( ( )) are replaced by their
average. Such an approximation, which can be seen as a self-averaging property of the process, is well-justified
because (i) the Brownian particle visits any state infinitelymany times, and (ii) the exponential distribution has
finitemoments of any order.We are hence left with computing the distribution of the integral of a function
Uh(x) along a Brownian trajectory starting at =x x(0) 0 and ending at =x t( ) 0f . As usual, the problem ismost
conveniently solved by taking the Laplace transformof h (see the excellent review byMajumdar, [18]). In
particular, the Laplace transformof  ( )h , whichwe denote by  u h xˆ ( ; , )0 , fulfills the following differential
equation:

 ∂
∂ − =( ) ( )

x
u h x u U x u h x

1

2
ˆ ; , ( ) ˆ ; , 0 (D.2)h

2

0
2 0 0 0

with boundary conditions  =→∞ u h xlim ˆ ( ; , ) 0x 00 and  =→ u h xlim ˆ ( ; , ) 1x 0 00 . Note that this is a differential
equationwith respect to the initial position x0. The general solution to this differential equation is given by

FigureC1.The distribution of ∫=y t x td 1 ( )
0

2
, where x(t) is a Brownian excursion of length 2. The red full line is the analytical

result and black symbols correspond to simulations.
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+ +

− + +
( )

( )
( ) ( )

( ) ( )

C u h x I u h x

C u h x K u h x

2 2 2

2 2 2 , (D.3)

1 0 1 0

2 0 1 0

where I x( )1 and K x( )1 aremodified Bessel functions of thefirst and second kind respectively, andC1 andC2 are
constants to be determined via the boundary conditions. Because I x( )1 0 diverges for → ∞x0 ,C1must be zero,
andC2 is thenfixed via the other boundary condition. Finally, by setting =x 10 we reach a remarkably simple
expression for the Laplace transformof  g h( , )g

s
s ,

 = + +( )
( )

u h
u h K u h

uh K uh
ˆ ( ; )

( 1) 2 2 ( 1)

2 2
. (D.4)

1

1

This result is not only of interest in itself, but also provides a convenient way of evaluating  g h( , )g
s

s by
numerically inverting equation (D.4) (see figure 7 in themain text).We can also recover the asymptotic
exponents γ γ,1 2 of  g h( , )g

s
s directly from its Laplace transform, equation (D.4). To see this, we consider the

first and second derivatives of  u hˆ ( ; ),

−∂ ∼ ≪u h hu hˆ ( ; ) 2 ( ) for 1 , (D.5)u

∂ ∼ ≪u h
u

uˆ ( ; )
2

for 1. (D.6)uu

Thefirst equation assumes large h, while the second does not; this allows us to recover the two scaling regions
mentioned in themain text. Then it is easy to check that an application of a Tauberian theorem [32, p 192] leads
to equation (17) in themain text, recovering not only the asymptotic exponents γ γ,1 2, but also their associated
first order amplitudes.
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