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Chapter 1 

Introduction 

The task of this work is to discuss issues conceming the specification, estimation, inference 

and forecasting in multivariate dynamic heterogeneous panel data models from a Bayesian 

perspective. Three essays linked by a few conraion ideas compose the work. 

Multivariate dynamic models (mainly VARs) based on micro or macro panel data sets 

have become increasingly popular in macroeconomics, especially to study the transmission 

of real and monetary shocks across economies. This great use of the panel V A R approach 

is largely justified by the fact that it allows the docimientation of the dynamic impact 

of shocks on key macroeconomic variables in a framework that simultaneously considers 

shocks emanating from the global enviromnent (world interest rate, terms of trade, common 

monetary shock) and those of domestic origin (supply shocks, fiscal and monetary policy, 

etc.). 

Despite this empirical interest, the theory for panel V A R is somewhat underdeveloped. 

The aim of the thesis is to shed more light on the possible applications of the Bayesian 

framework in discussing estimation, inference, and forecasting using multivariate dynamic 

models where, beside the time series dimensión we can also use the information contained in 
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the cross sectional dimensión. The Bayesian point of view provides a natural environment 

for the models dlscussed in this work, due to its flexibility in combining diíferent sources 

of information. Moreover, it has been recently shown that Bayes estimates of hierachical 

dynamic panel data models have a reduced small sample bias, and help in improving the 

forecasting performance of these models. 

L i the íirst essay, Forecasting and Turning Point Predictions in a Bayesian Panel VAR 

model, we provide methods for forecasting variables and predicting turning points in such 

an environment. After specifying a flexible model which accounts for both interdependen-

cies in the cross section and time variations in the parameters, we first obtain posterior 

distributions of the. parameters for a particular type of diffuse, for Miimesota-type and for 

hierarchical priors, and then provide formulas for multistep, multiunit point and average 

forecasts. A n application to the problem of forecasting the growth rate of output and of 

predicting turning points in the G-7 illustrates the approach. The method proposed is 

then compared with altemative approaches. It is shown that by allowing interdependencies 

and some degree of information pooling across units in the model specification, i.e., by 

introducing an additional level of flexibility with respect to the traditional approaches, the 

forecasting ability of the model improves substantially. 

The second essay, Asymmetries in the Transmission Mechanism of European Monetary 

Policy, investigates the transmission mechanism of European monetary policy by means of 

dynamic heterogeneous multivariate models. Ideally, one would like to apply the empirical 

framework proposed in the first essay to a small panel S V A R for output, inflation, interest 

rates, and the nominal exchange rate. However, the Identification of V A R s estimated with 

panel data is a tricky matter because of the restrictions on the variance-covariance matrix 

of the residuals. Therefore, we combine the methodology developed in the first paper, with 
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the two-stage approach followed by Dombusch, Pavero, and Giavazzi (1998) and do not 

model inflation and the exchange rate explicitly. In the first stage, a measure of monetary 

policy is extracted from the data by estimating a reaction fiinction for each central bank, 

allowing for simultaneity and interdependence in short-term interest rates, and parameters' 

variation across coimtries and across time periods. In the second stage, the impact of this 

measm:e of monetary policy is analyzed by estimating a dynamic equation for a measure 

of real economic activity allowing also for parameters' variation both across countries and 

time periods. Based on pre-EMU evidence from Germany, Prance, Italy, and Spain in the 

1990s, we show that: (i) there are differences in the timing of the effects of monetary policy 

on economic activity, but their cumulative impact after two years is rather homogeneous 

across countries; (ii) the transmission mechanism of monetary policy seems to have changed 

over time in the run up to EMÚ, but its degree of heterogeneity has not decreased; (iii) 

the 'European-wide' effects of monetary on economic activity have become faster in the 

second half of the 1990s, taking about 6-7 months to appear, peaking after 12-16 months, 

and disappearing within 18-24 months; (iv) Spain is the most different country among those 

considered. These results are robust to changes in crucial prior assumptions. 

In the third essay, Testing Restrictions in Normal Data Models Using Gibbs Sampling, 

we consider the problem of testing a set of restrictions R{q) = O in a complex hierarchical 

model of the kind discussed in the two previous papers. We propose a different approach 

from the standard P O ratio test. This method can be considered as the Bayesian analogous 

to the classical Wald type test. W i t h respect to the P O ratio, it has the advantage of being 

easier to implement and, unlike the P O ratio test, it can be computed also when some prior 

in the hierarchy is diíFuse. Several Monte Cario simulations show that the procedure scores 

very well both in terms of power and unbiasedness, generally doing as well as the standard 
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P O ratio approach, or even better in cases where the degree of coefficient heterogeneity is 

not high. Moreover, because it is cióse in spirit to the Wald test and given that the study of 

íts properties is undertaken to a large extent using the sampling propertles of the estimators 

involved, this approach could be usefiíl also to classical econometricians. 



Chapter 2 

Forecasting and Turning Point 

Predictions in a Bayesian Panel 

VAR model 

with Fabio Canova 

- Queste dovrebberv essere calze che non si smagliano,- disse. 

- Tutto dovrehhe essere qualcosa, ma non lo é mai. E' la natura dell'esistenza. 

(Don Dehllo, Libra) 

2.1 Introduction 

Panel V A R models have become increasingly popular in macroeconomics to study the trans-

mission of shocks across countries (Ballabriga, Sebastian and Valles (1995)), the propaga-

tion effects of monetary policy in the European Union (Gerlach and Smets (1996)) and the 

average differential response of developed and underdeveloped countries to domestic and 
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external disturbances (Hoffmaister and Roídos (1997), Rebucci (1998)). A t the same time, 

recent developments in computer technology have permitted the estimation of increasingly 

complex multicountry V A R models in reasonable time, making them potentially usable for 

a variety of forecasting and policy purposes. 

Despite this interest, the theory for panel V A R is somewhat underdeveloped. After the 

works of Chamberlain (1982, 1984) and Holtz-Eakin et al. (1988), who specify panel V A R 

models for micro data, to the best of oiu- knowledge only Pesaran and Smith (1995), Canova 

and Marcet (1997) and Hsiao et al. (1998) have considered problems connected with the 

specification and the estimation of (univariate) dynamic macro panels. Garcia Ferrer et al. 

(1987), Zellner and Hong (1989), Zellner, Hong and M i n (1991), on the other hand, have 

provided Bayesian shrinkage estimators and predictors for similar models. In general, a 

researcher focuses on the specification 

yu = A (L) Vit-i + Eit 

where ya is a G-dimensional vector, i = l,..., N\ A{L) \s & matrix in the lag operator; en = 

oíi 4-5t + where 6t is a time eífect; Oj is a unit specific eífect and uu a disturbance term. 

In some cases (see e.g. Holtz-Eakin et al. (1988)) a specification with time varying slope 

coefñcients and a íixed eífect is used. Two main restrictions characterize this specification. 

First, it assumes common slope coeíficients. Second, it does not allow for interdependencies 

across units. Wi th these restrictions, the interest is typically in estimating the average 

dynamics of the system in response to shocks (the matrix A(L)). 

Garcia Ferrer et al., Canova and Marcet and Pesaran and Smith, instead, use a univariate 

dynamic model of the form 

yu = + Piyu-i + x'itlSi + v[Si + Su 
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where yu is a scalar, xu is a set of k exogenous unit specific regressors, Vt is a set of h 

exogenous regressors common to all units while pj, Pi and Si are unit specific vectors of 

coefficients. In some specifications these vectors of coeñicients are assumed to have an 

exchangeable prior. Two restrictions are implicit also in this specification. First, no time 

variation is aUowed in the parameters. Second, there are no interdependencies either among 

diíferent variables within units or among the same variable across units. 

The task of this paper is to relax these restrictions and study the issues of specification, 

estimation and forecasting in a macro-panel V A R model with interdependencies. Our point 

of view is Bayesian. Such an approach has been widely used in the V A R Hterature since the 

works of Doan, Litterman and Sims (1984), Litterman (1986), and Sims and Zha (1998) 

and provides a convenient framework where one can allow for both interdependencies and 

meaningful time variations in the coefficients. The specification we consider has the general 

form 

ya = Ait{L)Yt--í + £it 

where Ys (s < t) is a vector of GN elements (G variables for each unit i = 1,... N). Because 

coefficients vary across units and along time, estimation of the parameters is impossible 

without imposing restrictions. However, instead of constraining the coefficients to be the 

same across units, we assimie that they are random and a prior distribution on Ait{L) 

is introduced. We decompose the parameter vector into two components, one which is 

unit specific and the other which is time specific. We specify a flexible prior on these two 

components which parsimoniously takes into accoimt possible interdependencies in the cross 

section and allows for time variations in the evolution of the parameters over time. The 

prior shares features with those of Lindley and Smith (1972), Doan, Litterman and Sims 

(1984) and Hsiao et al. (1998) and it is specified to have a hierarchical structure, which 
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allows for various degrees of ignorance in the researcher's information about the parameters. 

Besides important considerations concerning the specification of the model, Bayesian 

VARs are known produce better forecasts than unrestricted V A R and, in many situations, 

A R I M A or structural models (Canova (1995) for references). B y allowing interdependencies 

and some degree of information pooling across imits we introduce an additional level of 

flexibility which may improve the forecasting abiUty of these models. 

We analyze several special cases of our specification and compute Bayesian estimators 

for the individual coeíficients and for their mean valúes over the cross section. In some cases 

analytical formulas for the posterior mean are available using standard formulas. Whenever 

the parameters of the prior are unknown, we employ the predictive density of the model 

to estimate them and plug-in our estimates in the relevant formulas in an empirical Bayes 

fashion. 

In the case of fully hierarchical priors, a Markov Chain Monte Cario method (the Gibbs 

sampler) is employed to calcúlate posterior distributions. Such an approach is particularly 

useful in our setup since it exploits the recursive features of the posterior distribution. We 

provide recursive formulas for multistep, multiimit forecasts, consistent with the information 

available at each point in time using the posterior of the parameters or the predictive density 

of future observations. The predictive density of future observation is also used to compute 

turning point probabilities. 

To illustrate the forecasting ability of the proposed approach, we apply the methodology 

to the problem of predicting output growth, of forecasting turning points in output growth 

and computing the probability of a recession in the G-7 using three variables (output growth, 

real stock returns and real money growth) for each country in the panel. To evalúate the 

performance of the model we also provide a forecasting comparison with other specifications 
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suggested in the literature. We show that our panel V A R approach improves over existing 

univariate and simple B V A R models when we measure the forecasting performance using 

the Theil-U and the M A D criteria, both at the one step and at the four steps horizons. The 

improvements are of the order of 5-10% with the Theil-U and about 2-4% with the M A D . 

The forecasting performance of our specification is also slightly better then the one of a 

B V A R model which mechanically extends the Litterman prior to the panel ceise. In terms 

of tuming point predictions, the two versions of om: panel approach are able to recognize 

about 80% of turning points in the sample and they turn out to be the best for this task, 

along with Zellner's g-prior shrinkage approach. The simple extensión of the Litterman's 

prior to the panel case does poorly along this dimensión and, among all the procedures 

employed, is the second worst. Finally, we show that the proposed method is competitive 

with the best specifications in predicting the peak in US economic activity occurred in 

1990:3 when using the Information available in 1988:4, a peak which was missed by many 

of the commercial and government forecasting procedures. Depending on the specification, 

our approach finds 20-55% probability of a downward turn at that date. 

The rest of the paper is organized as follows. The next section gives the general model 

specification and the assimiptions we make. Section 3 provides the generalities óf Bayesian 

estimation of the model. Section 4 specifies the prior and discusses the computational issues 

involved. Section 5 describes formulas for multi-step, multi-imits forecasting. Section 6 

contains the forecasting application to a panel V A R model for the G-7. Section 7 concludes. 
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2.2 The general specification 

The statistical reduced form model we use is of the form: 

N p 

i=i í=i 

where i = 1,...,N; t = 1,...,T; yu is a G-dimensional vector for each i, 6̂ ^̂  are G x G 

matrices, du is G x q, Vt is a q x 1 vector of exogenous variables common to all vmits and 

uu is a G-dimensional vector of random disturbances. Here p is the munber of lags, G the 

number of endogenous variables and q the number of exogenous variables. 

The generality of (2.1) comes from at least two features. First, the coeíficients are 

allowed to vary both across units and across time. Second, there are interdependencies 

among units, since iP.^^ ^ Q iox j ^ i and for any l. Both features constitute the main 

diíFerence with the literature (Holtz-Eakin at al. (1988), Rebucci (1998)) that considers 

panel V A R models. It is easy to verify that if we set duvt = at, bu = bt V i , uu = fptfi+^it, 

bj^i = 0, j ^ i, VZ, our specification collapses to the one used by Holtz-Eakin et al. 

(1988). 

We rewrite (2.1) in a stacked regression manner 

Yt = Wt-ft + Ut (2.2) 

where Wt = ING ® X^; Xt = {y't_i, y't^^r • • v't-p, v[)'; 7t = {iu, • • • ,im)' and -fu = 

(/?//,... ,/5jf')'. Here {s < ¿) is a A^'G-dimensional vector, /?fj are A;-dimensional vectors, 

with A; = NGp + q, containing, stacked, the G rows of the coefficient matrices bu and du, 

while Yt and Ut are NG x 1 matrices containing the endogenous variables and the random 

disturbances of the model. 

If the 7¿t are difí'erent for each cross-sectional unit in diíferent time periods, there is 

no way to obtain meaningful estimates of them. One possibility is to view each coefficient 
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vector as random with a given probability distribution. We make the foUowing assumptions: 

1. For each i, the Gkxl vector 7it has a time invariant and a time varying component, 

that is 

lit^ai + Xit (2.3) 

2. For each i, the Gk x 1 vector of time invariant components foUows a normal 

distribution 

air^N{R,á,^i) (2.4) 

where Ri = IG®EÍ, ¿^i = V® EÍQIEÍ, and the OxG matrix V and the fc x fc matrix 

Í2i are symmetric and positiva definite. Here £'j is a fc x fc matrix that commutes the 

fc coefficients of unit i for each of the G equations with those of unit one. We also 

assume that cov {ai, aj) = 0 íov i ^ j. 

3. The mean vector á is common to all units and is assumed to have a normal distribution 

ár^N{^,^) (2.5) 

4. For each i we write the vector of the time varying components as Xa = RiXt, where 

At is independent of ai for any i. The Gfc x 1 vector Xt evolves according to 

Xt = BXt-i+et, (2.6) 

where B = p*lGk and, conditional on Ut and Wt, etN(O,E^), with Es = V® 0,2, 

and 0,2 is a positive definite, symmetric matrix. The initial condition is such that 

5. Conditional on Wt, the vector of random disturbances Ut has a normal distribution 

C / t - i V ( 0 , S „ ) . (2.7) 
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We assume that T,u = T,®H, where S is a A'' X iV matrix and H is a. G x G matrix, 

both positive definite and symmetric. 

Given the previous assumptions, the structure of the model (2.1) can be summarized 

with the following a-prioñ hierarchical scheme 

Yt I Ft,a,Xtr^N{Wta + ZtXt, llu) 

a I F t ~ i V ( 5 i v a , A ) 

á I Ft N {fi, <¡/) 

Xt I Ftr^N(Xtit-iA\t-i) (2.8) 

where Ft is the information set at t (which includes i o , the pre-sample information, and 

Wt)\ SN = eN®Ri\ Zt^ WtSN\ A = d i a g ( A l , . . ,A„) , Át|t_i = BXi_^\t-\\ %t-i = 

BQi_m_iB' + Ef, ejv is a vector of ones of dimensión N and the notation t\t — 1 indicates 

valúes at t predicted with information at í — 1. 

Assumptions 1-4 decompose the parameters vector in 2 components: one is unit specific 

and constant over time; the other is common across units but varíes with time. The prior 

possibility for time-variation increases the flexibility of the specification and provides a 

general mechanism to account for structural shifts without explicitly modelling the source 

of the shift. The fact that the time-varying parameter vector is common across units does 

not prevent imit-specific structural shifts, since 7¿t can be re-written as 

7it = (1 - + Plit-1 + eu (2.9) 

where unit specific variations of time occur through the common coeíBcient p. 

Assumptions 2 and 3 can be used to recover the vector a or the mean coefficient vector 

á . In this sense, we can distinguish between "fixed" and "random" effects, following the 
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terminology of Lindley and Smith (1972). By fixed effects we mean the estimation of the 

vector 7it, while the term random effects refers to the estimation of 7t = a + At. For 

example, in the context of a V A R without interdependencies, (i.e. 6¿f j = O, j i), we 

may be more interested in the relationships among the variables of the system for a "typical" 

unit, in which case interest centers in the estimation of the random effect If, instead, 

we are interested in the relationships across imits, for example, wishing to find the effect of 

a shock in the g variable of vmit j on the variables of unit i, we better est ímate 'yu for each 

imit i. In the context of forecasting, we may be concerned with point prediction using the 

average coefñcient vector 7t or in predicting future valúes of the variables of interest using 

Information available for each imit. 

The assumed Kronecker structure for the variance-covariance matrices is convenient 

to nest interesting hypothesis. Por instance, when íli = O, there is no heterogeneity in 

the cross sectional dimensión of the panel, lí B = Ick^ coefficients evolve over time as a 

random walk, while when B = lok and Q2 = O, the model reduces to a standard dynamic 

panel model with no time-variation in the coefñcient vector. Finally, when V = O neither 

heterogeneity ñor time variation are present in the model. 

The prior specification is fully symmetric in the sense that it is the same regardless of 

the variables and of the units we are considering. In some applications where it is interesting 

to consider some prior asymmetries, this restriction may not be needed. In that case we set 

Ei = IN S O that Ri = IG®IN and (2.3) becomes 'yu = a¿ + At where ai ~ N{á, A ) and the 

prior distributions for á and At are the same as before. 

As compared to standard B V A R models, we allow for some degree of a-priori pooling of 

cross sectional Information via the exchangeable prior on a. This may be important if there 

are some similarities in the time series characteristics of the vector of variables considered 
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across units since coefficients of other units may contain useful information for estimating 

the coefficients of the unit under consideration. A single coimtry V A R with fixed coeñicients 

is nested in our specification and can be obtained by setting fef^, = O, Vj 7̂  ¿,VZ and letting 

A , 9, go to zero. 

2.3 Posterior Estimates 

2.3.1 Fixed effects model 

Given prior information on 7t, and assuming that Ao, n and the covariance matrices are 

known, we can obtain the posterior distribution of the parameter vector by combining the 

likelihood function conditional on Ft with the prior distribution for 7Í in the usual way. 

Prom (2.8) the likelihood is 

L(Yt I 7t, Ft) = N(Wta + Zth, E„) 

and the prior, given information at time t, is 

PÍ7t\Ft) = N(jt~i, Ht-i) (2.10) 

where jt-i = ^^r (yU + Xt\ í - i ) and Ht-i = (SN^S'J^ + A ) + SNÚ^ t_:^S'^. 

Standard calculations give us that the posterior 7r(7t \ Ft, Yt) is normal with mean 7̂ * 

and variance where: 

Yt = H¡{wiT.-'Yt + H;}fy-i) 

m = 'H;}, + Wl^Z^Wt\ ' (2.11) 

Henee 7̂ * is a standard weighted average of prior and sample information. W i t h a known 

Su and starting from initial conditions 70 and HQ we can also obtain posterior moments for 
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7t using the foUowing recursive formulas: 

1-1 
7* = 7 t _i+^ t - i^ f ' WtHt-iWl + Eu {Yt-Wat-i) 

1-1 (2.12) 

Here information about 7j and is updated in a Kalman filter fashion. 

In some cases attention may be centered in obtaining posterior distributions of a and 

Ai separately. It is straightforward to show that: 

/ 

Yt 

\ 
N 

I 

/ 

Zt(/x + At | t - i ) 

011 012 

^ 021 022 j 

where 0ii = (5jv^5jv + A) ; 0i2 = <Í>xxW[; 02i = Wí0n; 022 = Wt0nl^t'+-^tñ(|í_iZÍ+E„. 

Using the properties of multivariate normal distributions, the conditional marginal 

and variance 7ri(a I Ft, Yi) is normal with mean a* = +012022̂  Yt — Zt(jx + Xi^t-ij 

V¿ = 011 - 012022̂ 021-

Repeating the same argument we obtain that the conditional marginal 7r2(At | Yt, Ft) 

and variance fí^ = is normal with mean = Xtit-i + ÍÍf|t-i^í022^ - Zt(^fi + \\t-i^ 

^ í | t - i ~ ^tlt-i^t^n ^t^t\t-i- As usual, the mean of the posterior distribution is used as a 

point estímate for the parameter vector while the variance provides a measure of dispersión. 

For the formulas to be operational we need at time ¿ = 1 a specification for and for 

the prior distributions of a and A(, which in turn requires the specification of the matrices 

B, Ee, A , í», Oo and of the vectors / i and A. We will return on this issue in the next section. 

2.3.2 R a n d o m effects model 

When interest centers on the estimation of the mean vector 7 = a + At, we rewrite the 

model as 

Yt = Zt^t + r]t (2.13) 
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where ^t = á + Xt and T]t = ut + Wtv. 

The posterior distributions of á and At can be obtained by combining the priors and the 

respective likelihoods. The sum of the posterior means of á and Xt then gives us a point 

estimate of the mean coefficient vector at each t. 

Standard manipulations give us that the posterior TTSÍCÍ | Yt, Ft) ~ Ar(á*, ^*) and the 

posterior 7r2(Aí | Yt, Ft) N{X¡,n¡) where 

a* = /X - ^Zí [Zt + Clt¡ t-i) Zí + Eu + WtAwij ~'[Yt- Zt (/i + A ,̂ (2.14) 

^* = - ̂ ífZÍ Zt{^^ + ñ,¡t-i)z¡ + i:u + WtAWÍ]^ ^ Zt^ (2.15) 

while the expressions for A^ and füj are the same as before. This implies that the posterior 

7r4(7í I Yu Ft) ̂ Ni^;,HÍ) where 

7; = [fx + Xt¡t-i) + {^ + Cit¡t-i)z¡[zt[^ + ñt¡t-i)zí + i:u + WtAW¡] 

x^Yt-Zt(^tx + Xt\t-i)] (2.16) 

+ - (^^ + ñt¡t-i) Z[ \Zt ( 'í ' + Í2í |t-i) Z[ + S„ + WtAW'^ 

x Z t ( í ' + f2t|t_i) (2.17) 

2.4 Setting up the priors 

For the formulas described in the previous section to be operational, we need to specify 

the vector C = (//, A Q , fio, Su, S E , B, ^, A ) . The results of section 3 were obtained under the 

assumption that this vector of parameters was known. In practice, this is hardly the case: 

to get posterior distributions for the parameters we need to make assumptions on the C 

vector and to obtain marginal posteriors we need to intégrate nuisance parameters out of 
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the joint posterior density. This integration, in general, is difficult, even with brute forcé 

numerical methods, given the large number of parameters typically contained in C-

There are several ways to proceed. One is to assimie a difñise prior on some of the 

components of the parameter vector, while still assuming that others are known. Another 

is to specify a Litterman-type prior where the imknown elements of C depend on a small 

vector of hyperparameters to be estimated from the data in Empirical Bayes fashion. The 

third is to assume explicit prior distributions for the parameter vector and proceed directly 

to the numerical integration using Markov Chains-Monte Cario methods. We examine these 

approaches in turn. 

2.4.1 DifFuse Priors 

Imposing diffuse priors is interesting in our context as a way to describe the ignorance of a 

researcher on some aspects of the prior distribution. It is well known (see Zellner (1971)) 

that a joint diffuse prior for all the elements of C leads to posteriors which contain the 

sample Information simimarized in a least square fashion. Also, as shown by Kadiyala and 

Karlsson (1997), such prior produces posterior dependence among the coeíHcients of different 

equations, i.e. the joint posterior for the NGk x 1 vector of coefficients does not factor into 

the product of the posterior for the k coefficients of each of the N G equations. Here we 

concéntrate attention on two special cases of interest: one where there is no Information 

on the location of the mean of the unit specific effect = O) and one where there 

is no Information on the time varying component of the coefficients either at time zero 

A U other components of the 

vector of parameters are assumed to be known. 
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Case 1: Ignorance about o 

When the prior distribution of the second stage of the hierarchy is proportional to a constant, 

the posterior distribution changes according to the following proposition: 

Proposition 2.4.1 Given the prior (2.8), if^~'^ = O, conditional on Yt and Ft, 

(i) The posterior distribution 7r3(d ¡ Ft, Ft) is normal with mean d** and variance 

where 

a** = 9**ZÍ [ZtQt] t-iZÍ + -£u + WtAWÍ\ ~' {YÍ - Zt\t\ t-i) 

í ' — i = Z[ IZtCit^t-iZ't + E„ + WtAWl 
1-1 

Zt 

(ii) The posterior distribution 7ri(a | Yt, Ft) is normal with mean a** and variance V¿* 

where 

a** = V:*Wi (E„ + Ztñt\t-iZiy' (Yt - ZtXtit-i) , 

V:*-' = Wl (E„ + Ztüti t-iZ't) "'Wt + F (2.18) 

with F = A - i - A-^SN {S'J^A-^SNY'^ S'^A-K 

(iii) The posterior distribution of Xt is equal to the prior, i.e., 

7r2 (Xt\Yt,Xt)=p{Xt\Xt). 

(The proof of al l propositions is in the appendix). 

Notice that the diflFuse prior on a does not allow to update the prior information we have 

on At. In fact, in this case, the posterior distribution of 7t does not depend on the prior for At. 

To see this note that, with "Ü'^ = O, we have that Ht-iSN + fit| t - i ) S'j^ + A = F ' ^ and 

using the fact that H^J^jt-i = FSN {¡I + At_i) = O we have 7̂* = [F + WiT.-^Wt] (VF/S-^ 

and H ¡ = \ F + íF/E~^IVt]~^ where no prior information on Af is involved. 
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Case 2: IgnorEince about At 

There are two simple ways of attaching a diffuse prior to the time varying component of the 

coefficient vector. One possibility is to consider lack of Information at time zero (QQ ^ = 0). 

When the prior distribution for Ao is proportional to a constant, given the autoregressive 

structure for At, and provided p <l, the process tends to "forget" the initial condition. In 

other words, subsequent realízations of At make less and less uncertain our information on 

the time varying component of the coefficients so that fiñ^ = O does not imply f2^J_j = O 

at all points in time and, for large enough T, the posterior for a and At is the one presented 

in section 3. 

Another possibility is to set E j ^ = 0 . To implement this diffuse prior, we assume 

= 0. Notice that fit|t-i = BÚt^m-iB' + S^. Therefore if E j ^ = O, = 0. In 

this case it is possible to prove the foUowing result 

P r o p o s i t i o n 2.4.2 Given the prior (2.8), i / E j ^ = O, then 

(i) The posterior distribution of a is equal to the prior, i.e., 

Tra (a I y t ,X t ) = p (a | X t ) 

(ii) The posterior distribution 7ri(Q ] Yt, Ft) is normal wi th mean a** and variance V^* 

where 

= W;TWt + (57v*5ív + A ) ' ' 

and r = E - i - E - ^ Z t ( Z t ' E - i ^ t ) " ' Z[^z' 

(iii) The posterior distribution 7r2(At | Yt, Ft) is normal with mean Aj* and variance fií* 



where 

x¡* = nr {z't [SN^S'^ + A ) i v ; + Su] {Y t - Ztii)} 

The assumption E j ^ = O implies that íí¿jj_i = O, at all points in time. This implication 

is unreasonable or, at least, excessively myopic, because it prevents researchers to learn 

from past realizations of At and to be less uncertain on its mean as times goes by. The 

assiunption fí^J_i = O can be more realistic if we attach this infinite uncertainty to the 

coeíficients only at a particular point in time (let's say, t = to), perhaps to take care of a 

structural break, after which the process restarts and behaves as it did before the break. 

It is worth noting that in both cases 1 and 2, the posterior mean and variance for 7t are 

the same as those obtained when only prior information on a is used. This is not surprising 

if we write (2.8) as a three stage hierarchy 

Yt I Ft, 7 í - i V ( W t 7 ( , S „ ) 

7t I Ft, á, At - iV [EN (a + At), A] 

(á + Aí) I Ft, II, Xt\t-i^N[(^fi + Xt\t-i),^ + ^t\t-i • 

Assimiing = O or = O is equivalent to assume a diííuse prior on the third stage of 

the hierarchy. 

2.4.2 Litterman-type prior 

Next, we modify the so-caUed Minnesota prior to account for the presence of múltiple units 

in the V A R . The Minnesota prior, described in Litterman (1986), Doan, Litterman and Sims 

(1984), Ingram and Whiteman (1995), Ballabriga, et al. (1998) among others is a way to 

accoimt for the near non-stationarity of many macroeconomic time series and, at the same 
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time, to weakly reduce the dimensionality of a V A R model. Given that the intertemporal 

dependence of the variables is believed to be strong, the prior mean of the V A R coeíficients 

on the first own lag is set equal to one and the mean of remaining coeíficients is equal 

to zero. The covariance matrix of the coeíficients is diagonal (so we have prior — and 

posterior —independence between equations) and the elements are specified in a way that 

coeíficients of higher order lags are hkely to be cióse to zero (the prior variance decreases 

when the lag length increases). Moreover, since most of the variations in the V A R variables 

is accounted for by own lags, coeíficients of variables other than the dependent one are 

assigned a smaUer relative variance. The prior on the constant term, other deterministic 

and exogenous variables is diífuse. Finally, the variance-covariance matrix of the error term 

is assumed to be fixed and known. 

For a panel V A R setup we introduce the following modifications. The covariance-

matrices 0^,5», A , are assumed to have the same a-priori structure. Take, for example, 

A = diag ( A i , A „ ) , where Ai = V ® EÍÜIEÍ. 

The matrix Q i is assumed to be diagonal and its elements have the following structure: 

^9ds = g,j = l,...,G i,s = l,...,N l = l,...p 

where S (g¿, ja) = O if i = s and 1 otherwise and 

(^¡m = {diJAf m = l , . . . , g 

Here, QÍ represents equation g oí unit i, js the endogenous variable j of unit s, l the lag, m 

exogenous or deterministic variables. 

The hyperparameter 9ia controls the tightness of beliefs for the vector a; 62 the rate at 

which the prior variance decays with the lag; 63 the degree of uncertainty for the coeíficients 

of the variables of imit s in the equations of unit i; 64 the degree of uncertainty of the 



coefficients of the exogenous variables and aj, are the diagonal elements of the matrix Eu 

used as scale factors to account for differences in tinits of measurement. Also, assume 

that V — H (see equation (2.7)). Notice that we don't have prior independence between 

equations. Henee our prior information specifies that, for example, the coefficient on lag 

1 of the G N P equation for the US may have some relationship with the same coefficient 

in the P R I C E equation for US. Moreover, we have not specified a hyperparameter which 

Controls the overall tightness of befiefs because the randomness of the coefficients depends 

on Qj and A( and we parametrize the uncertainty in each of them separately. Finally, there 

is no distinction between own versus other countries variables. Because of this V and í l i 

are common to aU units and the prior has a symmetric structure (see Sims and Zha (1998)). 

The structures for ^ and fio are similar with 9\a being replaced by ^ la and O-^x, respec-

tively. 

To complete the specification we need to have a measure of the elements of the matrix 

H and of the cr's. Following Litterman, these parameters are estimated from the data to 

tune up the prior to the specific application. 

The prior time-varying features of the model are determined by specifying the matrices 

B, Se. We assume that B is diagonal and that each of the ¿ x diagonal blocks Bg satisfies: 

Bg = diag{6í,). Furthermore, we assume S^ = 9QQ,O. Here ^5 controls the evolution of the 

law of motion of At and 6Q the heteroscedasticity in the coefficients. Note that a t ime-

invariant model is obtained by setting ^5 = 1 and 6Q = 0. Homoscedastic time variations 

are obtained by setting 9Q = 0. 
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Finally, we assume that the fe x 1 vectors fXg and Xog have the foUowing structures: 

0 0 

Or 
) ^og — 

0 0 

0 0 

where fig and Áog are the ^th-elements of the mean vectors fj, and AQ and dj controls the 

prior mean on the first own lag coefficient of the dependent variable in equation g for unit 

i. 

Summing up, our prior information is a function of a 9-dimensional vector of hyperpara­

meters 0 = {Ola, Oi\, 1̂5) ̂ 2) 3̂,0A, Gbi 06,07). Estimates of © can be obtained by maximiz-

ing the predictive density of the model as in Doan, Litterman and Sims (1984). Posterior 

distributions for the parameters are then obtained by plugging-in the resulting estimates 

for fx, Ao,Oo, Su, Ee, B, A in the formulas we have derived in section 3 in an empirical 

Bayes fashion (see e.g. Berger (1985)). 

Compared with Ballabriga et al. (1998), who used a Minnesota prior on a panel V A R 

model for the Spanish, Germán and French economies, om- specification allows for unit 

specific time variations in the variance of the process [OQ 7̂  0); it separates the prior 

information for the time and the individual component (they have one parameter in place 

of 6ia,6ix,9ia) and introduces a fmrther level of uncertainty by specifying a prior for a . 

Furthermore, our prior specification is symmetric and it aUows for a-priori pooling of the 

information present in the cross sectional dimensión of the panel. Nene of these features is 

present in their specification. 
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2.4.3 Informative priors 

When the prior for the vector of parameters is informative, the posterior distribution for the 

parameter vector does not have an analytical closed form. Nevertheless, we can implement 

a hierarchical Bayes analysis using a sampling-based approach, such as the Gibbs sampler, 

(see e.g. Geman and Geman (1984), Gelfand and Smith (1990), Gelfand and al. (1990) 

among others). 

The basic idea of the approach is to construct a (computable) Markov chain on a 

general state space such that the limiting distribution of the chain is the joint posterior 

of interest. Suppose we have a parameter vector •& with k components (Í9I, Í92I ^ft) 

and that the posterior distributions -nidj | t?s, s ^ j) are available. Then the algorithm 

works as follows. We start from arbitrary valúes for Í?I°\Í?2°\ Setting ¿ = 1, we 

repeat the cycle. After iterating on this cycle, say, M times, the sample valué i?^^^ = 

can be regarded as a drawing from the true joint posterior density. 

Once this simulated sample has been obtained, any posterior moment of interest or any 

marginal density can be estimated, using the ergodic theorem. Convergence to the desired 

distribution can be checked as suggested in Gelfand and Smith (1990). 

In order to apply the Gibbs sampler to our panel V A R model we need to specify prior 

information so that the conditional posterior distribution for components of the parameter 

vector can be obtained ánalytically. Recall that our hierarchical model is given by: 

cycle through the conditional distributions sampling 'd\ from 

I i?i \ • Next, we set ¿ = 2 and 

Yt = Wta + ZtXt + ut 

= Sf^a -f €i 



27 

a = fi + v 

Xt = BXt-i + et 

where ut - iV (O, E ® H); EÍ - Ar(0, V (g) EÍQIEÍ); V ~ A^(0, 'í '); Ao - iV (O, V O O2) et ~ 

iV (O, y ® 77̂ 2) and rj is the tightness on time variation: if 77 = O and B = I then A is 

time invariant. We assume that the covariance matrices are independent, that V, r}, 

and fi are known and that S iW^ (CTO, MO), H ~ ÍWQ {K, PQ) , fií ~ iW^ (tüi, W i ) , and 

0,2 ~ ¿í^fc (w2, W2), where the notation ~ (t/, Z ) means that the symmetric positive 

definite matrix $ foUows a p-dimensional inverted Wishart distribution with v degrees of 

freedom and scale matrix Z. We also assume that for each of these distributions the degrees 

of freedom and the scale matrix are known. These assumptions are inconsequential and the 

analysis goes through, even when consistent estimates are substituted for the true ones. 

Given this prior information, the posterior density of the parameter vector = (o, E , i í , á, f i í , 

{^t}Lo)í^2) is given by 

-K {'d I YT, FT) OC / (Kr | ^T, FT) p {é ) FT) (2.19) 

where YT = {Yi,Yr) is the sample data and p(j9 | FT) is the prior information available 

at r . 

Given the difficulty to obtain marginal posteriors directly from the integration of (2.19), 

we itérate on the conditional distributions of the parameters, which can easily be obtained 

from the conditional posterior (2.19). To deal with the presence of time varying parameters 

we adapt the results of Cárter and Khon (1994) and Chib and Greenberg (1996). In fact, 

conditional on {Xt}J^Q, the distribution of the remaining parameters can be derived without 

difficulty. Let ip-x be the vector i9 containing all the parameters but x. Then the conditional 



distributions for parameters other than {A(} are: 

í í i I V-nj, YT, FT - iWk {lui + NG, W^^ 

ÍÍ2 I ^-n,, YT, FT - iW^ {w^ + TG, W^) 

S I ^--5:, >̂ r, ~ ¿W îv (ÍT» + GT, (2.20) 

/ í I YT, FT ~ ¿WG (/̂ O + NT, 

a I V - a , i^T, FT ~ iV ( á , Fa) 

á 1 I r , F T - i v ( a * , Í > * ) 

where the expressions for Wi, W2, Mo, Po, á. Va, ot*, V* are given in the appendix. 

Following Chib (1996) the parameter vector At can be included in the Gibbs sampler 

via the distribution TT (AQ, XT \ YT, F T , IPT) where ^pt = We can re-write such 

a distribution as 

7r(Ar I YT, FT,tpT) x 7r (Ar- i | YT, F r , V r - i , A r ) x ••• x 7r(Ao | Y r , FT,,ipo,Xi,...XT) 

(2.21) 

A draw from the joint distribution can be obtained by drawing XT from TT {XT \ YT, FT, IPT)', 

then AT-1 from TT (^XT-I \ YT, FT, ,IPT-I,XT^ and so on. Let A* = (AS,...,AT) and Y^ = 

(Ys,YT) for s<T. The density of the typical term in (2.21) is 

7 r (At |yT , Fr,^t,A*+^) 

ex 7r(At I Y', Ft,,i>t)^(h+i I Yt, F t , ^ t - i , A^)/(r*+^A*+^ | Yt, Ft, Xt, Xt+i) 

oc TT (At I Y\ Ft, Vt) TT (At+i I Ft,i>t-u At) (2.22) 

The last row foUows from the fact that, conditional on Af+i, the joint density of (y*+i, A*"""̂ ) 

is independent of Af and, conditional on Af, At+i is independent of Yt. 

The second density of (2.22) is Gaussian with moments pAt and E^. The first was derived 
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in section 3, and it is Gaussian with mean Xt\ t = At| t-i+^\ t-\Zt4'22 (^t"" •^«/̂  ~ t - i ) 

and variance = f Í t | t - i - f i í | t - i ^ í 0 M ^ A | t - i - Henee, TT (At | YT, Ft,ipt, A*+ )̂ N{Xt, Út) 

where At = At|t + P~^Mt (\t+i - pXt\t) ] ^t = ^t\t- MiÜt+iltMl and Mt = p^j^tl A " + i | f 

To be concrete the following algorithm can be used to sample {At}: first, starting from 

given initial conditions, we rim the Kaknan filter to recursively get At and Clf, then we simú­

late XT from a normal with mean Á^i T and variance ÚT\ T\ ^T- I from N {XT-U ^T- I ̂  > and 

so on imtil Ao is simulated from N (Xo, í2o^ where, for each í, At = At| t+P'^Mt ^At+i — pXt\ 

and Clt = ñt\t- MtClt+i\^tM't. 

One special case of the setup described in this subsection deserve some attention. Sup-

pose informative priors on aU the parameters except that on H, whose prior is now diffuse, 

so that the prior for Eu is diffuse as well. Then the setup resembles the Normal-Diífuse 

prior of Kadiyala and Karlsson (1997) and implies that posterior dependence among the 

coefficients of different equations obtains even when there is prior independence. Henee, 

the major difference of our prior with the specification used by these authors is that we use 

a three stage hierarchy, so that both the mean and the variance of 7f are random variables, 

while they take the mean and the variance of 7t to be fixed. Note also that our specification 

does not restrict E^ to be diagonal and therefore permits complicated interactions among 

variables within and across countries. 

FinaUy, it is worth mentioning that in all the setups we have considered in this section, 

our prior specification maintains a Kronecker structure for the statistical model. Such a 

specification is useful since, on one hand, it aUows to handle the computations for rela-

tively large systems in a simple fashion and, on the other, imposes symmetry restrictions 

which appear to be desirable in an unrestricted V A R system of the type examined here. 

Clearly these restrictions may be inappropriate for structural or restricted V A R systems 
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and altemative specifications, along the unes of Sims and Zha (1998), should be used. 

2.5 Forecasting 

Once posterior estimates are obtained, forecasts can be computed. In order to obtain 

multistep forecasting formulas for a panel V A R and to compute turning points probabilities, 

it is convenient to rewrite (2.1) in a companion V A R ( l ) form 

N 

yit = J2^ÍYjt-i+DuZt + Uit (2.23) 

where Yn and Un are Gp x 1 vectors, Bff is a Gp x Gp matrix and Da is a Gp x q matrix. 

Stacking for i, and repeatedly substituting we have 

Yt = 
h-l 

Lr=0 

h - l 

s=0 Lr=0 
Dt-sZt-s + 

s=0 Lr=0 

s-l 
Y{Bt-r (2.24) 

or 

yt = J 
h-l 

Lr=0 

k-1 h-l 

Yt-h + "Y^stDt-sZt-s + J^^st^'t-s (2.25) 
s=0 s=0 

where ^st = HrZo^t-r, and J = I^^ ® Ji, Ji = [IQ 0] and J is a selection matrix such 

that JYt = yt, JUt = ut and J'JUt = Ut. The expression in (2.25) can be used to compute 

the /i-steps ahead forecast of the iVG-dimensional vector Yt. 

First, we compute a "point" forecast for yt+h- The forecast function is given by 

Th-l 
yt (h) = J 

.r=0 

h-l 
Yt + y^^^st+hDt-^h-sZt+h-í (2.26) 

s=0 

or, recursively 

yt (h) = JBt+hYt {h-l) + Dt+hZt+h 

where Dt+h is the NG x q matrix [du d2t....dm\ and Bt+n = diag{Bit,B2t,...,Bnt) with 

Bit = {B¡t,Bft, ...,B¡^). One way to obtain a hstep ahead forecasts is to use the posterior 
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mean of Bt+h and Dt+h and the mean of the predictive density for zt+n, conditional on the 

information at time í. Estimates for the posterior mean of the coeíficients can be obtained 

from the recursive formulas for At (and, consequently, for 7t) using expressions üke (9) or 

by drawing from distributions like (20) and (21) in a recursive fashion. Cali this estimates 

Bt+h\t and Dt+h\t- The forecast error is yt+h - Vt {h) = Y^'^ZQ ̂ at+hUt+h-s + [Vt (h) - yt {h)]. 

To measvire the forecasting performance it is useful to compute the Mean Square Error 

(MSE) or the Mean Absolute Error ( M A D ) of the estimated forecast which are given by 

h-l 
MSE{yt{h)) = Y.^,t^f^^u^'st+h + MSE[yt{h)-yt{h) 

h-l 

MAD{yt{h)) = Y,\'^t+h-s\+MAD[yt{h)-yt{h)] 
s=0 

The first term on the RHS of each equation can be obtained using posterior mean estimates 

of BtJf-h-r and of Ut, conditional on the information at time t, while for the second term an 

approximation can be computed along the fines of Lütkepohl (1991, p.86-89). Clearly, if a 

researcher is interested in point forecasts using the average valué of the parameters, then 

the previous formulas apply using for Bt-^h\t and -Dt+ft|t the posteriors derived in section 

3.2. 

In many situations, it may be more appealing to compute "average" forecasts /i-step 

ahead using the predictive density / {Yt+n \ Ft) = ¡ f (It+h I Ft, ??) p (i9 | Ft) where / {Yt+n \ Ft, 

is the conditional density of the future observation vector given and p (t? ] Ft) is the 

posterior pdf of at time t. To compute forecasts for Yt^^ we can sample from the 

predictive density numericaUy. For each i = 1 , . . . , M we draw ijW from the posterior 

distribution and simúlate the vector Yj^f^ from the density / (Yt+h \ Ft,'d^'^^). 

constitutes a sample, from which we can compute the necessary moments. The valué of 

the forecast is then the ergodic average ít+h = SÍ^I ^t+h and its numerical vari-
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anee can be estimated using var (Yt+hj = Qo + YZ=i ( l - (Qo + Q's) ^here 

Note that since the computation of the impulse response fimction for orthogonalized 

shocks is a simple corollary of the calculation of forecasts, the approach we provide here to 

calcúlate point and average forecasts can also be used to compute impulse responses. In 

fact, given the information up to time í, computing impulse response at í + / i is eqmvalent to 

calculating the difFerence between the conditional forecasts at t + h, given that at Í +1 there 

has been a one unit impulse in one of the orthogonal shocks, and the unconditional forecast, 

i.e. with the valué of the vector that would have occurred without shocks (see Koop (1992) 

for an application to structmral V A R models). This idea is exploited in a recent paper by 

Waggoner and Zha (1998). The authors, using a versión of (2.25), develop two Bayesian 

methods for computing probability distributions of conditional forecasts. The last term in 

(2.25) represents the dynamic impact of structural shocks wliich affect future realizations of 

variables through the impulse response matrix í>st. Wi th conditions or constraints imposed 

on this last term we can produce what they cali conditional forecasts. 

In order to compute structiu'al impulse responses and their error bands we must work 

with a structural V A R , e.g. impose some restrictions on the contemporaneous coefficient 

matrix. A prior (flat or informative) can then be assigned to the non-zero elements of this 

matrix, as suggested by Sims and Zha (1998). The extensión of their approach to panel 

data is however not straightforward and we postpone this issue to future work. 

Turning point predictions can also be computed from the predictive density of future 

observations (see in Zelher, Hong and M i n (1991)). Let us define turning points as foUows: 

Definition 2.5.1 A downward tum for unit i at time t + h + l occurs if Sn^^ the growth 

rate ofthe reference variable (typically, GNP) satisfies for all h Su+h-i, Su+h-i < Su-^-h > 



33 

Sit+h+i. An upward turn for unit i at time t+h + 1 occurs if the growth rate of the reference 

variable satisfies Sit+h-2, Su+h-i > Sa+h < Su+h+i-

Similarly, we define a non-downward turn and a non-upward turn: 

Definition 2.5.2 A non-downward turn for unit i at time t + h + 1 occurs if Su+h satisfies 

for all h Sit+h-2, Su-t-h-i < Su+h < Su-i-h+i- A non-upward turn for unit i at time 

t + h+1 occurs if the growth rate of the reference variable satisfies Sit+h-2, Sit+n-i > 

Sit+h > Sit+h+i-

Although there are other definitions in the fiterature (see e.g. Lahiri and Moore (1991)) 

this is the most used one and it suífices for our pm:poses. Let f{Yi^t+h | Ft) = fy f{Yt+h | 

Ft)dYp^t+h be the marginal predictive density for the variables of imit i after integrating the 

remaining p variables and let }C{Sl^^ \Ft) = ¡...J f{Sl^f,...S^^^,^ \ Ft)dSl^^ ...dSg^^ 

be the marginal predictive density for the growth rate of the reference variable, which we 

order to be the first in the üst , in unit i. 

Take now the simplest case of / i = 0. To compute the probability of a turning point 

we have to calcúlate S}^j^-^. Given the marginal predictive density /C, the probability of a 

downtm-n in unit i is 

Pot = Pr{SÍ^i < Sl\SÍ_„ Si_, < Si Ft) = 

K, I 5 ^ 2 , 4 - 1 , 5 i Ft) dSl (2.27) 

and the probability of an upturn is 

Put = Pr{Sl,^i>Sl,\SÍ_^,Sl,_^>SlFt) = 

K (Si+i I 4-2, S L i , s i , Ft) dSl (2.28) r 
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Using a numerical sample from the predictive density satisfying S¡t_2, S¡i_i < S¡f, we 

can approximate these probabilities using the frequencies of realizations which are less then 

or greater then Su. W i t h a symmetric loss ftmction, minimization of the expected loss leads 

to predict the occurrence of turning point at í + 1 if Pot > 0.5 or Put > 0.5. 

For h^O the probability of a turning point can be computed using the joint predictive 

density for all future observations, i.e. in the case of a downturn, 

/

^it f°° f°° 
^ i^it+h+i < ^it+h > Sit+h-2^ ̂ it+h-1 I Ft) dSn_^hdS¡t+h-idSu+h-2 (2-29) 

Given the available panel data structure we may also be interested in computing the 

probability that a turning point occmrs jointly for m < N units of panel. For example, we 

would like to compute the probability that at í + 1 there will be a recession in European 

countries. Let K.{Sl_^f^ \ Ft) be the joint predictive density of the reference variable for the 

m units of interest. Then the probability of a downturn is: 

PSt = Pr{S¡t^i <S¡ti = l,...m\S¡t_„< S¡„Ft,) = 

. . . T"" iC {Si, I SU, Si, < S¡, Ft) dSlt... dSit (2.30) 
J-oo J-oo 

2.6 An application 

In this section we apply the methodology to the problem of forecasting growth rates and 

predicting tm-ning points in the G-7 countries. For each country we consider three national 

variables (GNP, real stock retm-ns and real money growth) and a world one (the median 

real stock return in O E C D countries) which is assiraied to be exogenous in each equation.-^ 

Henee there are 21 variables in the panel V A R . These variables are chosen after a rough 

1 See Figures 1-3 to have a rough idea about the characteristics of the data. 
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specification search over about 10 variables because they appear to have the highest in-

sample pairwise and múltiple correlation with output growth. Among the variables we 

tried are the nominal interest rate, the slope of the term structm-e and inflation. Data is 

sampled quarterly from 1973,1 to 1993,4 and taken from I M F statistics. Data from 1973,1 

to 1988,4 is used to estimate the parameters and data from 1989,1 to 1993,4 to evalúate the 

forecasting performance and to predict turning points. 

We compare the forecasting performance of om: panel V A R specifications with those 

obtained with other models suggested in the literature. As a benchmark we first run two 

versions of a tri-variable VAR(2) model for each country separately. The first one is an 

unrestricted (VAR) . The second a weakly restricted V A R (BVAR) where we use a standard 

Litterman-prior with a mean of one on the first lag, a general tightness of 0.15, no decay in 

the lags and a weight of 0.5 on the lags of other variables. Since these two models do not 

exploit cross sectional information ñor do they allow for time variation, they can be used 

as a benchmark to measure the improvements obtained by specifications which allow any 

of these two features in the model. 

Also for comparison, we r im a single equation AR(3) model for G N P growth for each 

single covmtry, augmented with two lags of real stock returns, 1 lag of real money balances 

and one lag of the median world real stock return. This is the specification used by García 

Ferrer et al. (1987), Zelhier and Hong (1989) and Zellner, Hong and M i n (1991) to forecast 

annual growth rates of output in 18 countries. W i t h the extended sample and the higher 

frequency of the data we have available, we confirm their results for all of the G-7 coun­

tries. This model represents a restricted versión of the previous unrestricted V A R where 

insignificant lags are piirged from the specification. The forecasting power of this model is 

measured when parameters are estimated with OLS (OLS) and with three shrinkage proce-
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dures: a ridge estimator (RIDGE), an estimator obtained assiuning an exchangeable prior 

on the coefficients (as in Garcia Ferrer et al. (1987)) ( E X C H A N G E A B L E ) and an estima­

tor obtained using a g-prior (as in Zellner and Hong (1989)) (G-PRIOR). The two latter 

estimators attempt to improve upon OLS by combining the information coming from each 

imit with the one from the pooled sample. They differ in the way they combine individual 

and pooled information. Notice that none of these estimators allows for time variations in 

the coefficients. 

Finally, as a term of comparison, we use a versión of the panel V A R specification sug-

gested by Ballabriga et al. (1998) ( P B V A R ) . This model specification does not use the 

information coming from the cross section - every variable is treated in the same way re-

gardless of the country where is from - but allows for time variations in the coefficients of 

the model. The model has the same structure as Doan, Litterman and Sims (1984) and 

assmnes that the coefficient vector Pt for the entire system has an AR(1) structure of the 

form Pt = M(3t-\ + where ut, conditional on the information available, is normal with 

mean zero and variance E„. The matrices /3o, M, and depend on 7 hyperparameters: 

five parameters controUing the structure of (a general tightness (0i), a tightness on 

variables of the same country (^3), a tightness on the variables of other coimtries (^4), a 

geometric lag decay with parameter (^2), and a tightness on world variables (^5)); a pa­

rameter describing the structure of M {OQ); and a parameter controlling the prior mean 

on the íirst lag of /?o (^7). Table 1 reports the optimal valúes selected by maximizing the 

in-sample predictive density of the model with a simplex algorithm. 

We produce forecasts from two versions of our panel V A R model: one with a modified 

Minnesota-prior ( P A N E L l ) , and one with a fully hierarchical specification (PANEL2) . In 

the former, the nine prior parameters are selected to maximize the predictive density using 
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a simplex method. Their optimal valúes are reported in table 2. For both P B V A R and 

P A N E L l forecasts are computed using the posterior mean of the coefficients, after we have 

plugged-in the estimates of the prior parameters in the formula. For P A N E L 2 posterior 

estimates of the coefficients are computed nimierically using M C M C methods and forecasts 

are directly obtained from these estimates. 

In setting up the panel V A R models we assimie that H =V, where V is known. For the 

P A N E L l specification we compute the scale factors V and the matrix as follows. We 

estímate a trivariate V A R for each country and take the average of the estimated variance-

covariance matrix of the residuals across coimtries as a measure of V. Furthermore, for each 

of the three variable we estímate a 7-variable V A R (the same variable across countries) and 

store the variance-covariance matrices of the residuals. A n estímate of Ey is obtained as: 

\ 

(Ti O 

O £72 

O O 

O 

o 

(77 

\ 

0 0 0 

o Vj O 

0 0 0 

where the first matrix contains on the diagonal the estimated standard deviations obtained 

by rvmning the three 7-variate VARs; while the second matrix contains just one element 

different from zero, the element, which is obtained from the diagonal of the matrix V. 

For the P A N E L 2 specification we need to choose the scale and the degrees of freedom in the 

various Wishart distribution. We still set i í = V with V estimated as before. FoUowing 

Kadiyala and Karlsson (1997) we set the degrees of freedom CTQ = N + 2 + (T — p) * G, 

üJi = k + 2 + N + g, uJ2 = k + 2 + {t~p)*G, while the scale matrices MQ, Wi and W2 are 

such that E„, A, have the same structure as in the P A N E L l specification. 

We compare the forecasting abUity of various models using both the Theil-U Statis-
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tics and the Mean Absolute Deviation (MAD) at 1 and 4 periods ahead. These statistics 

are reported in table 3. Note that the various specifications we use are in increasing or­

der of complexity and flexibility. Therefore, at each stage we can assess the forecasting 

improvements obtained adding one extra featmre to the model. 

To examine the performance of various models as business cycle indicators we compute 

turning points predictions one period ahead. Following Zellner et al. (1991), we compute 

the total mmiber of turning points, the number of downturns and non-downt\irns, and 

the nmnber of upturns and non-upturns in the sample (across aU countries) and for each 

procedure we report the number of correct cases in table 4. 

Finally, for each model, we compute the probability that there wil l be a downward turn 

in the growth rate of US output in 1989:1-1993:4, given the information available in 1988:4. 

According to the official N B E R classification the long expansión of the 1980's terminated in 

1990:3 and it was followed by a brief and shaUow recession. The probabilities for the nine 

models for each of the 16 periods we consider are presented in table 5. 

The forecasting performances of univariate OLS, ridge and exchangeable procedures are 

very similar. The minimmn and máximum valúes of the Theil-U across countries at one and 

four steps for the latter two are slightly smaller, but the mean and the median at both steps 

are practicaUy identical. O n the other hand, a imivariate model where the parameters are 

shrimk with a g-prior is somewhat better than OLS in all the dimensions: the máximum, 

the median, the mean and the mínimum valué across countries of the Theil-U at both steps 

are significantly lower than those obtained with OLS. 

Umestricted V A R models are not very successful in forecasting growth rates of output, 

given the large number of parameters to be estimated. This is noticeable in particular in the 

case of Japan, Germany and the U K where the Theil-U are significantly worse than those 
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obtained with univariate specifications at the one step horizon. However, unrestricted V A R 

models outperform all imivariate specifications at the four step horizon. Henee, the presence 

of interdependencies across víiriables helps in predicting the evolution of the growth rate 

of output in the médium ron. B V A R are significantly better than V A R and univariate 

approaches at the one step horizon. In terms of the median valué the gains are of the order 

of 5-6% over univariate specifications and of more than 10% over the vmrestricted V A R . 

However, the performance at the four step horizon turns out to be inferior to the one of 

unrestricted V A R , and comparable to the one of univariate shrinkage procedm:es. This is 

to be expected since to improve the performance at short horizons B V A R tend to reduce 

both the memory and the interdependencies of the system, which we have seen are useful 

exactly when medium-long n m forecasts have to be made. 

Adding time variation in the coefficients and interdependencies across countries sub­

stantially improves the forecasting performance both at short and at médium horizons. For 

example, the median Theil-U at one step goes from 0.85 with a simple B V A R to 0.82 with 

the panel versión of this model and for 5 countries the Theil-U is lower by as mueh as 10%. 

Similarly, the mean across coimtries drops by about 3% with the P B V A R specification. The 

improvement is noticeable also at longer horizons. The distribution of the Thei l-U across 

countries at the four step horizon is similar to the one obtained with a imrestricted V A R , 

which is the best among the benehmark models. 

Our refinement of the Litterman's prior, which allow for both cross sectional and time 

series a-priori restrictions, gives a performance which is essentially similar to the one of the 

P B V A R model both at the one and at the four step horizons. Few features of the optimally 

estimated parameters are worth discussing. First, while OQ, the time variation parameter in 

the variance of A is diíferent from zero, it does not appear to add mueh to the performance 
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of the model. Henee, at least with quarterly data, allowing for heteroscedasticity does 

not help in improving the quality of the forecasts. Second, while in the P B V A R , the 

coefEcient vector evolves with a persistence of 0.95 but with very small variance, in our 

P A N E L l specification the time varying component of the coeíficients is cióse to be a white 

noise. Note that this difference is inconsequential for forecasting and can be explained by 

examining the role of the parameters regulating the cross sectional prior (i.e. the tightness 

on Q and a). These parameters forcé a high degree of coherence across coimtries in the 

time invariant component and leave the time varying component to randomly evolve. In 

the P B V A R this distinction is not possible and to produce coeíficients which are almost 

constant over time it is necessary to have cióse to a random walk dynamics coupled with a 

small variance. Using equation (2.9), one can see in fact that coeíficients of the P A N E L l 

model are approximately constant over time and are tightly linked to each other because 

of the restrictions imposed on QÍ. The omission of the fixed eífect component, which is 

precisely what the P B V A R does, biases upward estimates of the persistence parameter and 

this may explain why the two estimated specifications are so diíferent. Third, the maximized 

valué of predictive density of the P A N E L l model is significantly higher then the one of the 

P B V A R model (-36.90 vs. -985.35) suggesting that om- specification fits the data for the 

in-sample period better. However, this superior in-sample fit appears to be imimportant 

for forecasting out-of-sample. That is, the (wrong) restrictions that the P B V A R imposes 

and which biases the persistence parameter of the time varying coeíficients do not t ransíate 

in poor forecasts at the horizons we consider. We conjectiure that this may have to do with 

the peculiarity of the forecasting sample more than with true similarities between the two 

specifications. 

The performance of the P A N E L 2 specification is also comparable to the one obtained 
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with P B V A R at the one step horizon. However, while the ranking of the Theil-U across 

countries in P B V A R and P A N E L l were identical, there is some reshuffling with the P A N E L 2 

specification. That is, the model is somewhat better for Japan and Prance and somewhat 

worse for the US and Italy. At the four step horizon the performance of the model is 

significantly worse than any other model. While we have not been able to find a reason 

for this result, we conjectm:e that this has to do with the fact that the presence of a large 

amount of randomness in the specification of the model compounds at long horizons and 

worsens significantly its performance. In fact, the difference between P A N E L l and P A N E L 2 

specifications, apart from problem bf precisión of estimates is only in the fact that there is 

an additional layer of uncertainty in the prior of the model. 

The relative performance of the various models with the M A D is somewhat similar to the 

one obtained with the Theil-U at both horizons. However, four features deserve a comment. 

First, all univariate shrinkage procedures appear to be better than OLS at the one step 

horizon. The same is true at four steps horizons except for the case of g-prior, which is now 

significantly worse. Second, unrestricted and simple B V A R display a somewhat mediocre 

performance both at one and four steps horizons. In general, the distribution of the M A D 

across countries is more concentrated but the mean and the median are above those obtained 

with univariate shrinkage approaches. Third, the improvements obtained with panel V A R 

approaches are significant and our reíinement of the Litterman's prior produces the best 

distribution of M A D at the one step horizon. The improvements are primarily concentrated 

for those countries which are in the central part of the distribution and this is reflected in 

the lower median valué we obtain. Fourth, the P A N E L 2 specification is better than any 

other when we use the mean M A D across country to measure the forecasting specifications 

at both horizons. That is, P A N E L 2 produces a distribution of M A D across countries which 
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is centered below the one obtained with other models and more concentrated. Notice also 

that the significant forecasting differences produced by P A N E L 2 for the Theil-U and the 

M A D at the four step horizon probably have to do with the different way the two criteria 

treat forecasting outUers. 

In sum, using interdependencies, adding time variation in the coeíficients and using cross 

sectional restrictions in the prior for the coeflScients helps in improving forecasts at short-

medium horizon. Nevertheless, it should be pointed out that the distribution of forecasting 

statistics across countries is very wide, for example, the M A D for Italy is 6 times the 

one of the US. This differences indícate that the process for the growth rate of G D P in 

some countries does not share much features with the growth rate of G D P of other G-7 

coimtries and that significant improvements on the results we present can be obtained by 

restricting attention to the subset of the countries which are more similar. Also notice 

that the forecasting performance for US and Ganada G D P growth is very similar across 

specifications and jointly improves with the complexity of the model, confirming that there 

are forecasting extemalities which can be obtained by cross-sectionaUy linking the natíonal 

models for the two coimtries. 

How good are various approaches in predicting turning points? Out of 96 total actual 

turning points in the sample, univariate approaches recognize between 72 and 75. Differ­

ences prímaríly emerge when we try to predict upturns and non-uptums and for this type of 

turning points, Zellner's-g approach is better than the others. Unrestricted V A R models are 

very poor in this dimensión and recognize about 10% less turning points than Zellner's-g 

approach. The performance of the B V A R model is comparable to the one of univariate 

Ridge and Exchangeable approaches but, contrary to them, it predicts upturns and non-

upturns better than downturns and non-downtums. The performance of the P B V A R model 
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is surprisingly poor: it is the second worst in recognizing the total number of turning points 

and is comparable to unrestricted VARs in predicting downtums and non-downturns. F i ­

nally, om two Panel approaches produce 73 and 74 turning point forecasts and recognize 

the same number of uptums and non-upturns. Comparatively speaking, they substantially 

improve over P B V A R and are competitive with the best approaches. 

Three further conclusions can be drawn from table 4. First, diíferent models are better in 

recognizing diíferent types of turning points. If predicting downturns (and non-downturns) 

is more important than predicting uptums (and non-upturns) otir results suggest that V A R , 

B V A R and P B V A R should not be used. Second, while in terms of linear forecasting statistics 

there was a clear ranking of procedures, with more complicated ones doing a better job, 

when we look at nonünear forecasting statistics, simple univariate approaches, and OLS in 

particular, are as good as other more refined approaches. Third, Panel V A R models of the 

type we have proposed do a better job than any other procedure when we jointly use linear 

and nonlinear statistics to measure forecasting performance. 

Given that our suggested specifications are good in forecasting on average, we would 

like to know if they are also good in predicting a specific episode of interest, i.e., the 

downward turn in real activity occurred in the US in 1990:3. This is interesting because 

altemative approaches, which were forecasting pretty well in the sample 1970-1980, failed 

to find any relevant signs in the data that would predict that a downturn and a short 

recession were forthcoming (see e.g. Stock and Watson (1993)). Interestingly enough, 

and contrary to most forecasting models, all procedures predict that there is a significant 

probability that a peak in economic activity wil l occur at 1990:3. Por univariate procedures 

this probability is mueh larger than the threshold of 0.5 which we use to consider the date 

of a downward tin-n. In fact all four imivariate approaches predict the existence of a peak 
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with probability above 0.64. Single country V A R , with and without a Bayesian prior are 

worse than univariate procedures (probability 0.32 and 0.36 respectively) but this may be 

due to the larger number of parameters to be estimated with the information available at 

1988:4. The P B V A R specification is overwhehningly predicting a downward turn in 1990:3 

(probability is 0.82) and does not produce any false alarm in the neighborhood of this date. 

The second Panel V A R approach improves over single coimtry V A R substantially and a 

produce probability of a downturn in 1990:3 which is comparable with those of rmivariate 

approaches. The performance of the first Panel approach is poor and fails to produce a 

probability in excess of 0.5 in 1990:3. Note also that while imivariate approaches have the 

tendency to produce a false alarm in 1989:4, probably due to the stock market crash of 

the fall of 1989, the probabilities produced by V A R and B V A R at dates other than 1990:3 

are small and never exceed 0.5. The P B V A R model, on the other hand, produces a high 

probabifity of a downtm-n in 1991:3, a date where a downturn materialized. The second 

panel specification also produces a high probability of a downward turn in 1991:3 while the 

probabilities at other dates are small. Finally notice that the peak in 1989:2 is missed by 

all approaches: the ones which give highest probability to this event are the P B V A R (0.42) 

and the first Panel V A R approach (0.41). 

In conclusión, our proposed Bayesian P A N E L V A R approach is at least as good as any 

other approach we have examined and in many cases improves the forecasting performance 

of existing specification. This is true when we compare procedures using Unear and non-

linear forecasting statistics and when we look at specific historical episodes. 
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2.7 Conclusions 

The task of this paper was to describe the issues of specification, estimation and forecasting 

in a macro-panel V A R model with interdependencies. The point of view used is Bayesian. 

Such an approach has been widely used in the V A R literature since the works of Doan, 

Litterman and Sims (1984), Litterman (1986), and Sims and Zha (1998) and provides a 

convenient framework where one can allow for both interdependencies and meaningful time 

variations in the coefficients. We decompose the parameter vector into two components, 

one which is unit specific and the other which is time specific. We specify a fiexible prior on 

these two components which parsimoniously takes into account possible interdependencies 

in the cross section and allows for time variations in the evolution of the parameters over 

time. The prior shares featmres with those of Lindley and Smith (1972), Doan, Litterman 

and Sims (1984) and Hsiao et al. (1998) and it is specified to have a hierarchical structure, 

which allows for various degrees of ignorance in the researcher's information about the 

parameters. 

Bayesian V A R s are known produce better forecasts than unrestricted V A R and, in many 

situations, A R I M A or structmral models (Canova (1995) for references). B y allowing inter­

dependencies and some degree of information pooling across imits in the model specification 

we introduce an additional level of flexibifity which may improve the forecasting abifity of 

these models. 

We analyze several special cases of our specification and compute Bayesian estimators 

for the mean parameter in the cross section and for the individual coefficients. In some cases 

analytical forminas for the posterior mean are available using standard formulas. Whenever 

the parameters of the prior are unknown, we employ the predictive density of the model 

to est ímate them and plug-in our estimates in the relevant formulas in an empirical Bayes 
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fashion. 

In the case of fully hierarchical priors, a Markov Chain Monte Cario method (the Gibbs 

sampler) is employed to calcúlate posterior distributions. Such an approach is particularly 

useful in our setup since it exploits the recursive features of the posterior distribution. Re­

cursive formulas for multistep, multiunit forecasts, consistent with the information available 

at each point in time, are provided using the posterior of the parameters or the predictive 

density of future observations. The predictive density of future observation is also used to 

compute turning point probabilities. 

To illustrate the performance of the proposed approach, we apply the methodology to 

the problem of predicting output growth, of forecasting turning points in output growth and 

computing the probabihty of a recession in the G-7 using a three variables (output growth, 

real stock returns and real money growth) for each country in the panel. To evalúate the 

model we also provide a forecasting comparison with other specifications suggested in the 

literature. We show that om- panel V A R approach improves over existing univariate and 

simple B V A R models when we measure the forecasting performance using the Thei l-U and 

the M A D criteria both at the one step and at the fom: steps horizons. The improvements 

are of the order of 5-10% with the Theil-U and about 2-4% with the M A D . The forecasting 

performance of our specification is also slightly better then the one of a B V A R model 

which mechanically extends the Litterman prior to the panel case. In terms of tm-ning 

point prediction, the two versions of o m panel approach are able to recognize about 80% 

of tm-ning points in the sample and they tm-n out to be the best for this task, along with 

Zellner's g-prior shrinkage approach. The simple extensión of the Litterman's prior to the 

panel case does poorly along this dimensión and, among all the procedures employed is the 

second worst. Finally, all the procedures produce a high probability of a downturn at 90:3, 
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the date selected by the N B E R committee to termínate the long expansión of the 80's. In 

this instance, our approach is competitive with the best and avoids the false alarms that 

other approaches produce at other dates. 

We consider the work presented in this paper as the first step in developing a coherent 

theory for Bayesian Panel V A R models which take into consideration the natiu-e of interde­

pendencies, the similarities in the statistical model across units and the existence of time 

variation in the coefficients. Extensions of the theory outlined here include the formulation 

of interesting hypothesis on the nature of the interdependencies, on the similarities across 

imits and on time variations and the development of tools to undertake structural Identifi­

cation in these models. The work of Sims and Zha (1998) is the starting point for extensions 

in this latter case. 

2.8 Appendix 

2.8.1 Proof of proposition 1 

(i) Notice that (2.14) and (2.15) can be written as 

á* = Z't (^A|t-iZ't + ^u + WtAWÍ^ (Yt - ZtXtit-i) + V 

^-'+Z't (Ztñti t-iZ't + S „ + WtAWí)Zt 

Setting í^- i = O, the result follows. 

(2.31) 

(2.32) 

(ii) The posterior distribution of a is normal with mean a* = S^fi + 012022^ [Vt — 

Ztilí + At|t-i)] and variance V ,̂* = - 0120^2^21 where 0 n = {Sj^^S'j^ -f A ) ; 0i2 = 

{SN^S'^ + A ) Wí; 021 = W^t0ii; 022 = Wt(¡)nWi + Z t í í t l t - i ^ t + In a more compact 

way V* can be written as 

-1 
Wí (E„ + Ztüt\t-iZ')~ Wt + [SN^S'J, + A) -1 -1 

(2.33) 
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Notice that ( 5 j v í ' 5 ^ + A ) " ^ = A " ^ - A-^S^ {S'^A'^SN + *-^) ^ S'j^A'^ Henee, for 

= O, this expression is equal to F. Moreover the posterior mean can be written as 

a* = Wí (EU + ZtÜt\ t-iZ'^ ' {Yt - Zt\\ t - i ) + [SU'^S'N + A ) ' SNÍI 

Using the previous result and the fact that FS^ = O, the result follows. 

(2.34) 

(iii) The posterior mean and variance of At can be written as 

At* = Qt* [Z't {SN^S'N + A ) W[ + S„] (Ft - Zt^) + ^'¡^'t-iH t-i} (2.35) 

Q;-'^ = z't [Wt {SN'^S'N + A ) w¡ + Eu] ' Zt + ñ;^l_, (2.36) 

The matrix Wt {SN'^S';^ + A ) + can be written as Z t ^ Z j + {WtAW¡ + E^) and its 

inverse is equal to M ' ^ - M ' ^ Z t {Z'tM-^Zt + ^-^)~^ Z^M''^ where M = {WtAW^ + S„ ) . 

Setting S'-^ = O, the last expression reduces to M " ^ I - Zt (Z^M'^Zt)'^ Z'tM''^ . Pre-

multiplying this matrix by Z[, we get a zero matrix. Henee, from (2.35) and (2.36) 

Í2f = t - i — Áí| (-1 and the posterior distribution for At is just equal to the prior. 

2.8.2 Proof of proposition 2 

Recall that E j ^ = O implies Cí~^\_, = 0. 

(i) Consider the posterior moments (2.31) and (2.32). [(WtAWt' + Eu)-f-ZtÓt| (_ iZ[ -1 _ 

- M-'^Zt{z'tM-'^Zt + Q,-^\_^ ^ Z'tM-'^ where M was previously defined. When 

%t-i = O' reduces to M''^ - M'^Zt (ZiM-^Zt)'^ Z^M''^ which gives a zero ma­

trix if premultiplied by Z'^ Consequently 3»* = * Q* = /z and the posterior distribution of 

Q is just equal to its prior. 
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(ii) Consider the posterior moments (2.33) and (2.34). Whenñj^J_j = O, + ZtCl^t-iZC) 

5 = E - i - E - ^ Z t {Z'tTl-^Zt)~^ Z'tE-^. Substituting into (2.33) and (2.34), gives the result. 

-1 

(iii) The proof of this statement comes straight from (2.35) and (2.36). 

2.8.3 Definition of the matrices for the Gibbs sampler 

W2 

Mo 

+ {AiEi - A)' {AiEi - Á) , 
i 

W2 + Y^ (At - Mt - i ) ' {At - M t - i ) 
t 

Mo + Yl ( Y t - B t W ; ) {Yt-BtWff 

Po = P<, + j ; ( Y t - B t W ; ) ' E - i ( Y t - B í W ; ) 

a = 

Va = 

a = 

V* = 

Va 

( 

Y, K ( S ® H)-^ {Yt - ZtXt) + A-^SNá 
V t J 

Y^Wl{E®H)-^Wt + A-'' 
\ t ) 

í 
(y®íli)-^5;^i2iai + ' í ' - V ) 

i / 
'iV(F®fíi)-^ + *- i ) "^ 

where Y t is iV x G , Bt is x Gk and W f = {IQ ® X ' ^ . Model (2.1) is just a raw vectoriza-

tion of Y ( = B t W Í + U t , where B t = \vecr {Bu),vecr {B^t)]' • Here vecr {) is the row 

vectorization of a matrix; Bit = Ai+ AtEi is a G x k matrix and the parameter vectors QJ 

and At in (2.4) and (2.6) are the row vectorizations of Ai and At respectively. 
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Tables 

Table 1: Estimated Hyperparameters: P B V A R 

General tightness {61) 0.01 

Lag decay (^2) 13.96 

Own comitry tightness (63) 3.5-e005 

Other countries tightness (^4) 7.3-e004 

World variable tightness (^5) 5.0^007 

A R coefficient (OQ) 0.95 

Prior mean on the first lag (^7) 0.11048 

Table 2: Estimated Hyperparameters: P A N E L l 

Tightness for a (Oía) 0.1207 

Tightness for A(6lu) 0.1300 

Tightness for á (Oa) 0.0004 

Lag decay (^2) 1.9156 

Tightness on other countries (^3) 0.0046 

Tightness on world variables (^4) 4.7804 

Law of motion of A (^5) 0.1211 

Time variation [Oe) 0.4295 

Prior mean on first lag (^7) 0.0754 
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Table 3 
Theil-U Statistics 

Method Step US Japan Germany UK Franca Italy Ganada Median Mean 
VAR 1 1.06 0.88 0.91 0.94 1.00 0.73 0.95 0.94 0.92 

4 0.73 0.95 0.56 0.81 1.32 0.96 0.72 0.81 0.86 
BVAR 1 0.83 0.89 0.69 0.91 0.90 0.80 0.85 0.85 0.84 

4 0.75 0.89 0.65 0.79 1.16 1.00 0.70 0.89 0.85 
OLS 1 1.21 0.86 0.88 0.86 0.90 0.79 0.91 0.88 0.90 

4 0.77 0.90 1.07 0.76 0.98 1.03 0.67 0.90 0.88 
Ridge 1 1.17 0.83 0.89 0.85 0.89 0.79 0.89 0.89 0.90 

4 0.76 0.88 1.06 0.75 0.99 1.01 0.68 0.88 0.87 
Exchangeable 1 1.18 0.84 0.90 0.85 0.89 0.78 0.89 0.89 0.90 

4 0.76 0.90 1.09 0.75 0.99 1.01 0.68 0.90 0.88 
g-prior 1 1.06 0.86 0.69 0.78 1.00 0.72 0.92 0.86 0.86 

4 0.83 1.07 0.77 0.75 1.12 1.02 0.70 0.83 0.89 
PBVAR 1 0.82 0.85 0.68 0.76 0.98 0.73 0.85 0.82 0.81 

4 0.86 0.91 0.77 0.75 1.08 1.03 0.66 0.86 0.87 
Panel 1 1 0.81 0.88 0.67 0.75 1.02 0.70 0.88 0.81 0.81 

4 0.86 0.90 0.76 0.74 1.07 1.03 0.66 0.86 0.86 
Panel 2 1 0.93 0.81 0.69 0.78 0.99 0.78 0.85 0.81 0.82 

4 0.83 1.59 1.62 1.55 1.47 1.93 0.90 1.55 1.41 
M A D Statistics 

VAR 1 0.46 1.71 1.74 1.35 1.26 2.91 0.65 1.35 1.44 
4 0.35 1.55 1.18 1.33 1.66 2.74 0.56 1.33 1.34 

BVAR 1 0.46 1.62 1.48 1.32 1.15 3.22 0.58 1.32 1.40 
4 0.40 1.39 1.25 1.28 1.42 2.98 0.51 1.28 1.40 

OLS 1 0.56 1.59 1.51 1.37 1.06 3.17 0.57 1.37 1.40 
4 0.34 1.54 1.58 1.28 1.14 3.19 0.54 1.28 1.37 

Ridge 1 0.54 1.50 1.68 1.31 1.07 3.14 0.56 1.31 1.40 
4 0.36 1.46 1.72 1.25 1.17 3.09 0.53 1.25 1.37 

Exchangeable 1 0.54 1.52 1.68 1.32 1.06 3.14 0.56 1.32 1.40 
4 0.35 1.48 1.73 1.26 1.17 3.09 0.53 1.26 1.37 

g-prior 1 0.53 1.63 1.33 1.18 1.26 2.89 0.54 1.26 1.34 
4 0.41 1.60 1.35 1.18 1.34 3.12 0.51 1.34 1.36 

PBVAR 1 0.46 1.47 1.29 1.17 1.27 2.85 0.53 1.27 1.29 
4 0.44 1.48 1.27 1.12 1.31 3.14 0.51 1.27 1.32 

Panel 1 1 0.46 1.53 1.24 1.08 1.37 2.82 0.54 1.24 1.29 
4 0.44 1.48 1.27 1.11 1.31 3.14 0.50 1.27 1.32 

Panel 2 1 0.49 1.45 1.27 1.18 1.32 3.09 0.60 1.27 1.34 
4 0.55 1.40 1.25 1.11 1.43 2.96 0.65 1.25 1.33 

Notes: VAR is a VAR(2) model for output growth, real stock returns and real money growth, 

BVAR is the same model with a Minnesota prior. OLS refer to a model where the parameters are 

estimated with OLS, Ridge to a Ridge correction, Exchangeable to a model with an excheangeable 

prior and g-prior to Zellner's g-prior specification. PBVAR is a 21 VAR model with a Minnesota prior 

and time variations, Panel 1 is a panel VAR model with all 7 countries with a modified Minnesota 

prior and Panel 2 is the same model with a hierarchical prior. 
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Table 4: Turning points forecasts 

Method Turning Points DT & NDT UT & NUT 
TRUE 96 47 49 
VAR 65 32 33 
BVAR 72 34 38 
OLS 74 37 37 
Ridge 72 37 35 
Exchangeable 72 37 35 
g-prior 75 37 38 
PBVAR 68 32 36 
Panel 1 73 36 37 
Panel 2 74 37 37 

Notes: VAR is a VAR(2) model for output growth, real stock returns and real money growth, 

BVAR is the same model with a Minnesota prior. OLS refer to a model where the parameters are 

estimated with OLS, Ridge to a Ridge correction, Exchangeable to a model with an excheangeable 

prior and g-prior to Zellner's g-prior specification. PBVAR is a 21 VAR model with a Minnesota prior 

and time variations Panel 1 is a panel VAR model with all 7 countries with a modified Minnesota 

prior and Panel 2 is the same model with a hierarchical prior. DT means downturn, NDT means 

non-downturn, UT means upturn and NUT means a non-upturn. 

Table 5: Probabilities of a downturn in US GDP growth 

quarter VAR BVAR OLS RIDGE EXCHANGEABLE g-PRIOR PBVAR PANELl PANEL2 
89:1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
89:2* 0.000 0.005 0.005 0.010 0.000 0.270 0.420 0.410 0.160 
89:3 0.020 0.010 0.005 0.010 0.200 0.250 0.010 0.250 0.230 
89:4 0.780 0.590 0.625 0.815 0.370 0.280 0.070 0.210 0.470 
90:1 0.200 0.375 0.365 0.160 0.070 0.050 0.070 0.230 0.040 
90:2 0.000 0.005 0.000 0.000 0.070 0.080 0.040 0.220 0.030 
90:3' 0.645 0.660 0.700 0.660 0.320 0.360 0.820 0.300 0.550 
90:4 0.005 0.010 0.030 0.015 0.280 0.380 0.040 0.250 0.210 
91:1 0.000 0.005 0.000 0.003 0.230 0.050 0.130 0.240 0.020 
91:2 0.000 0.000 0.000 0.000 0.170 0.060 0.000 0.250 0.000 
91:3* 0.005 0.015 0.000 0.000 0.180 0.490 0.790 0.230 0.630 
91:4 0.015 0.005 0.005 0.035 0.250 0.350 0.080 0.240 0.320 

Notes: A * indicates that a downturn occured in output growth at that date. 
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Figure 2: Real stock returns, quarterly data, 1973:I-1993:IV 
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Figure 3: Real money growth, quarterly data, 1973:I-1993:IV 
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Chapter 3 

Asymmetries in the Transmission 
Mechanism of European Monetary 
Policy 

Ésa es la mejor enseñanza de la presente historia: que no hay contradicción duradera porque 

el destino no es inteligente. Y que quien crea lo contrario sólo persevem en su debilidad. 

(Juan Benet, En la Penumbra) 

3.1 Introduction 

The European Central Bank (ECB) has already moved interest rates several times since it 

started to opérate in January 1999 and yet nobody knows what the magnitude and timing 

of its actions actually are. What are the effects on prices and output of a change in the 

common short-term interest rate? How long do these effects take to materiaUze? Are there 

differences in the impact across European coimtries and regions? Are these differences 

changing over time? Most of these questions have already been asked in the Uterature. 

However, the answers provided so far are not entirely satisfactory. 

Monticelli and Tristani (1999), for instance, suggest to start considering the European 

Monetary Union (EMÚ) as a composite economic system rather than a coUection of coun­

tries. They analyze the impact of monetary policy on what they cali the 'EMU-wide eco-
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nomic system' by estimating a Structural V A R (SVAR) with a GDP-based weighted average 

of individual time series of the member countries. If the transmission mechanism of mon­

etary policy is similar across European coimtries, this approach provides a measure of the 

European-wide effects of monetary policy which is as good as those obtained with alterna-

tive estimation methods. But if the transmission mechanism does differ across coimtries, 

i.e., if there are cross country differences in the effects of monetary policy, the 'composite' 

approach is not correct. In this case, as shown by Pesaran and Smith (1995) for standard 

dynamic panel data models and discussed in Rebucci (2000) for panel V A R specifications, 

aggregation of individual time series biases the estimates obtained, and the European-wide 

impact of monetary policy must be measured either by aggregating individual time series 

estimates or by aUowing for explicit variation in the parameters across countries. Before 

attempting to measure the system-wide effects of a 'synthetic' common monetary policy, 

therefore, one should try to establish whether or not there are differences across countries 

in the transmission mechanism of monetary poficy. The current consensus view is that, 

indeed, there are differences across European countries which are likely to decrease over 

time as real, and especially financial, convergence proceeds. 

The existence of some degree of heterogeneity in the transmission mechanism of Eu­

ropean monetary policy is supported by a large, albeit sometimes contradicting, body of 

empirical evidence (see Guiso et al, 2000, among others). Gerlach and Smets (1995), for 

example, find very different results depending on the type of experiment they run. In their 

study, the effects on G D P of a one period, one standard deviation shock to short-term 

interest rates are broadly similar across Germany, Prance, and Italy. However, when they 

simúlate a 100 basis points increase in interest rates sustained for two-years, they find that 

Germán G D P falls almost twice as much as that of Prance and Italy. On the other hand. 
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Ramaswamy and Sloek (1997) find that the effects on G D P of a one period, one standard 

deviation shock to short-term interest rates in Germany, the U . K . , Finland, the Nether-

lands, Austria, and Belgivrai take almost twice as long to occur, but are almost twice as 

deep as in Denmark, France, Italy, Portugal, Spain and Sweden. Purthermore, Dornbusch, 

et al. (1998) find evidence suggesting that the long-nm effects on output of the anticipated 

component of monetary policy in Germany, France, Italy, Spain, the U . K . , and Sweden 

are quantitatively sizable and heterogeneous, while the short n m effects are quantitatively 

smaller but relatively homogenous across these coimtries. Indeed, standard macroeconomic 

theory predicts that monetary poUcy is neutral in the long nm, and thus its effects should 

be rather homogenous across countries over this time horizon. As noted by Dornbusch et al. 

(1998), there is also a difference between the results based on large econometric models and 

those based on small econometric models, whereas smaU (VAR-type) econometric models do 

not seem to be able to detect statistically significant cross-country differences in the mone­

tary transmission mechanism, contrary to the evidence coming from large country-specific 

econometric models. 

There is also no clear evidence that these differences are decreasing over time. O n the 

contrary, recent work by Cecchetti (1999) shows that they might persist for a long time 

because they are due to differences in the financial structure, which in trun are rooted in 

the legal framework of individual countries. If these differences were to persist for sometime, 

the E C B ' s Ufe may become quite complicated as pointed out by Dornbusch et al . (1998) 

and explicitly modelled by Giovannetti and Marimon (1998). Giovannetti and Marimon 

(1998) develop a dynamic general equilibrium model where economics differ with respect to 

the relative efficiency of fuiancial intermediarles and show that, if these differences persist, 

conílicts of interests in pursuing a conmion monetary poUcy may indeed arise. Therefore, it 
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would be useful to have some idea not only on the magnitude of these differences but also 

on their degree of persistence over time. 

A l l this literature, in addition, may be subject to the Lucas' critique. 

We propose to overeóme some of these difficulties, by rephrasing the questions above 

in a dynamic heterogenous panel data model, recently proposed by Canova and Ciccarelli 

(2000). This is a flexible empirical framework where, in addition to interdependencies among 

individual vinits, the parameter of the transmission mechanism can be explieitly allowed to 

change both across times and individual imits. Obviously, such a framework cannot be 

estimated without introducing some kind of restriction, because of the very large niunber of 

parameters involved. Canova and Ciccarelli address this issue by taking a Bayesian approach 

to estimation and specifying the econometric model in terms of few hyperparameters. This 

framework allows for the máximum degree of heterogeneity, and thus sets the stage for 

testing altemative homogeneity assumptions, including parameters' stability over time and 

equality across individuáis. In addition, it allows to recover and measure European-wide 

behavioral relations regardless of the actual degree of heterogeneity present in the data, and 

is not subject to the Lucas' critique. 

In this versión of the paper, we consider a smaU group of core European countries, (Ger­

many, Italy, Prance, and Spain), using monthly data from 1985 to 1998. The econometric 

specification is the same for all coimtries considered. We measinre monetary policy by esti­

mating an empirical model of the behavior of these coimtries' central banks, and then assess 

the impact of monetary policy on economic activity by estimating a system of dynamic out­

put equations as done by Dornbusch et al . (1998) and Peersman and Smets (1998). We 

control for both intra-Europe exchange rate movements, and heterogeneity of central banks' 

preferences along the fine piirsued by Sala (2000) and Clements and Kontolemis (2001). 



63 

Consistently with the consensus view in the literature, we show that there are cross-

country differences in the transmission mechanism of European monetary policy, both with 

regarás to country specific and common monetary policy shocks. However, we show also that 

these are differences of timing rather than magnitude of the impact of monetary poficy; the 

cumulative eífect of both country specific and common shocks, in fact, are rather homoge-

nous, especially when parameters' variation across time periods is allowed for. Diíferently 

from the consensus view in the literatiure, and consistently with what suggested by Cec-

chetti (1999), we provide evidence showing that the transmission mechanism of monetary 

policy is changing over time in core European countries, but the degree of heterogeneity of 

the response of these economies to monetary shocks is not decreasing over time. We finally 

provide prefiminary evidence on the European-wide impact of monetary policy, showing 

that the effects of monetary poficy take about 6-7 months to appear, peak after 12 months, 

and varúsh within 24 months. 

The paper is organized as follows. In the next section we present and discuss the 

econometric framework used. In section 3 we present the empirical results. These include: 

key estimated parameters of the reaction functions; country specific and common monetary 

policy shocks obtained from the data; the evidence on their effects on economic activity 

and the degree of homogeneity across countries and stability over time of these eflects; 

and fmally, a first set of results on the European-wide impact of monetary policy. Section 

4 concludes, while details of the estimation techniques and the data used are given in 

appendix. 
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3.2 The econometrics 

Ideally, one would like to apply the empirical framework proposed by Canova and Ciccarelli 

(2000) to a small S V A R for output, inflation, interest rates, and the exchange rate. However, 

the identification of VARs estimated with panel data is a tricky business because of the re­

strictions on the variance-covariance matrix of the residuals, and is beyond the scope of this 

paper. Here, we take the two stage approach followed by Dombusch, Pavero, and Giavazzi 

(1998) (DPG henceforth) and do not model inflation and the exchange rate explicitly. In the 

first stage, a measure of monetary policy is extracted from the data by estimating a reaction 

function for each central bank, allowing for simultaneity and interdependence in short-term 

interest rates, and parameters' variation across countries and across time periods. In the 

second stage, the impact of monetary policy is analyzed by estimating a dynamic equation 

for a standard measure of real economic activity, allowing also for parameters' variation 

both across countries and time periods. In the following two sub sections, we present the 

econometric model of the reaction frmctions and output equations in turn. 

3.2.1 Measuring monetary policy 

Specification 

The behavior of the foxn: European central banks considered is modelled empirically by 

means of the following structural V A R (SVAR):^ 

At (L) Rt = Bt (L) Wt + Dt + Uf (3.1) 

where Rt = [''i.t,• • • i H * ] ' is a 4 x 1 vector of instruments of monetary poficy, Wt = 

[wi,t, • • •, W4,í]' is a 4 X 1 vector of final objectives of monetary policy, At (L) and Bt {L) 

are polynomial matrices in the lag operator L with lag length p, and Dt is a 4 x 1 vector 

1 As pointed out by DFG, this specification can be interpretad as the reduced form of a forward-looking 
structural model, or as a system of backward-looking reaction functions (see DFG, 1998, p.l6, footnote 12). 
See Clarida and Gali (1997) on the relative performance on these two alternative specifications. 
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of constants. Ut = [«i.t,• • • )^4,t]' is a vector of monetary policy shocks assumed to be 

Gaussian with 

E [UtUl I Zt-s, s > 0] = / , E[Ut\ Zt-s, 5 > 0] = O, for aU t, 

where Zt contains lagged Rt and contemporaneous and lagged Wt, with / denoting the 

identity matrix. As noted by Glarida et al. (1997), who estimated forward looking reactions 

fimctions for the US, Germany, and Japan, and a small group of Eiuropean central banks 

with post-1979 data, imder the assmnption that the central bank's supply of reserves is 

infinitely elastic and in the absence of exchange rate risk premia, Uj.t should be theoretically 

equivalent to monetary shocks obtained from standard S V A R models. Thus, under these 

assimaptions the estimated residual of equation (3.1), may be interpreted as the puré 

random, or imexpected, component of monetary poHcy. Shocks to money demand not fully 

accommodated by the central bank or exogenous shocks to the exchange rate premium, 

however, may invaUdate this interpretation. 

We use short term interest rates as monetary policy instrtmients. Each element of the 

vector of final objectives, wu = [(TTÍ^Í - T T * ) , {yi,t-y¡), {eu - e¡), cTi^t]', contains inflation (TT), 

output (y) and the nominal exchange rate (e) in percent deviation from trend (TT*, y*, e*, 

respectively), and a measure of the intra-month exchange rate volatihty (a) to control for 

shocks to exchange rate risk premia. The dimensión of Wt therefore is 16 x 1.̂  

This specification imposes very few a priori restrictions on the system of reaction fimc­

tions. First, the model allows for contemporaneous and lagged interdependence among 

short term interest rates of different countries. Second, given that the degree of each mem-

ber's commitment to E M S has varied over time, we do not impose that central banks target 

Germán variables as done by D G F , but rather leave Bt (L) unrestricted and let the data 

2 See the data appendix for more details on the data and the transformation used, including the definition 
of TT* , y*, and e*. 
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reveal which objective was actually pursued in a particular time period. Similarly, At {L^) 

is xmrestricted for p 0. Third, all parameters except those governing contemporaneous 

causation among short-term interest rates can vary over time, allowing for the possibility 

of change in the central banks' behavior over the sample period considered.^ However, 

we do impose an arbitrary lag length restriction assuming that p = 1; thus, that one lag is 

enough to obtain white noise residuals. 

Identification 

The model's Identification exploits the Bundesbank's leading role imder E M S and the fact 

that other Eiuropean coimtries considered have comparable size. Specifically, we place the 

Germán short term interest rate first in the vector Rt, assuming that it affects other Euro-

pean interest rates contemporaneously without being aífected by them, and then we assume 

that the impact of an increase in interest rates in country i on country j is the same as the 

impact of an increase in country j on country i. 

Formally, the leader-foUower behavior characterizing E M S is translated into the foUow­

ing block recmrsive structure for A (0), the coefficient matrix of L° in At {L): 

A(0) = 
^ i ( O ) O' 

^ l ( O ) A22(0) 
(3.2) 

where y i n (0) is 1 x 1, A21 (0) is 3 x l,and A22 (0) is 3 x 3. This gives us three restrictions. 

The remaining three restrictions needed are obtained imposing that A22 (0) is symmetric: 

these six restrictions identify the model exactly regardless of the order of the other interest 

rates in Rt.^ 

3 Assuming A{lP) to be constant over time renders the posterior distributions ánalytically tractable and is 
equivalent to assimie homoscedasticity of the structural residuals, given that the model is exactly identified. 
4 See Amisano and Giannini (1997, p. 166-67). 
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The S V A R model (3.1), therefore, can be rewritten as: 

1̂1 (0) O' 

A2l{0) A22(0) 
J \ 

An{L) A[2{L) 

A2i{L) A22ÍL) 

/ \ 
' Rit 

• t 
[ R2t 

/ 

Bn{L) Bi2{L)' 

B2i{L) B22{L) 

( \ / \ 
UM 

\ 

+ A + 

^ U2t / 

(3.3) 

where Ru, Wu, and U\t are the Germán monetary policy instriunent, objectives, and shock, 

respectively; while R2t, W2t, and U^t represent the vectors containing the same variables 

for other countries.^ 

Estimation 

Bayesian estimation of (3.3) exploits its block recursive structure. Following Zha (1999), let 

kj be the total ntunber of right-hand-side variables per equation in the j t h block, and Gj 

the number of equations (i.e., coimtries) in block j. If we normalize (3.3) pre-multiplying 

i t b y 

A-,^{Q) O' 

O A^¡ (0) 

and rearrange terms, the model can be divided into two blocks: 

Aa' (0) = 

Rjt = ZjtSjt + Vjt 3 = 1,2, for aU t (3.4) 

5 Note that premiiltiplying (3.3) by 

An'm O' 
O (0) 

and rearranging terms, a standard simultaneoiis equation model (SEM) is obtained with 

A(0) = 1 O' 

Q I Q-A2-2'(0)A2l(0) 

and 
var{vt) = Ev = CTl O 

O 1:22 

where Vt — A¿^ (0)Ut is the vector of normalized disturbances. This is equivalent to the identification used 
by DFG. 
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where Ru and R2t were defined above, Zjt = diag [Zji, Zj2,ZJGJ]—with Zjg (of dimen­

sión Tx kj) containing lagged endogenous variables, exogenous and deterministic variables 

of block j, and J?i (only in block j = 2)—Sjt = [6ji,Sj2,Sjc^]—with Sjg (of dimensión 

kj X 1) containing the model's parameters—and Vjt = Ajj^ (0) Ujt are normalized (block 

orthogonal) distm-bances with 

vjt - N (O, E,- ,) , S,-,- = A T / (0) A T / (0)'. 

Normalization is a device to split the model (3.1) in the two blocks of equations (3.4): the 

reaction function of the Bundesbank (j = 1), and the reaction functions of other European 

central banks {j = 2). Given that, in our case, Gi = 1, G2 = 3, p = l (the number of 

lags of the endogenous and exogenous variables), d—l (the constant), and the number of 

exogenous variables for each country of block is 4, we have a total of 

k2 = {Gi +G2) • p + (Gi -\-G2) • i - {p + i) + d+1 = 38 

and 

ki = {Gi+G2)-p + (Gi+G2)-4-(p + l) + d=37 

parameters for each equation of block j, whereas the larger number of parameters in the 

second block is due to the fact that the Germán rate enters contemporaneously in other 

equations. 

Bayesian estimation of (3.4) is then obtained by means of Kalman filtering and Gibbs 

sampling techniques, modified as suggested by Chib and Greenberg (1995) to take into 

accoimt the presence of time variation in the model's parameters: a joint prior on {Sjt, 

is combined with the likelihood of the data to recover the posterior distributions of interest. 

Given that the matrix ^4(0) is exactly identified, we can recover the posterior distribution of 

the structural parameters, and henee the posterior distribution of the structural residuals. 
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for each iteration of the Gibbs sampler. The mean of the empirical distribution of these 

residuals is then taken as our measure of monetary policy.^ 

The structiu-al residuals of (3.3) can be used to study and compare across coimtries 

the transmission mechanism of country specific monetary policies: policies which reflect, 

or are the result of, each coimtry's individual preferences over their set of possible final 

objectives. A key featvire of EMÚ, however, is that individual members' preferences and 

reaction functions have been substituted by, or aggregated into, those of the E C B and 

its policymaking bodies.''^ Therefore, in order to approximate as closely as possible the 

conditions prevaüing under EMÚ, one would also like to investígate the response of these 

economies to a common or coordinated monetary policy: a policy which reflects, or is the 

result of, the aggregation of countries' preferences over the possible objectives of monetary 

policy. In our econometric framework, a common monetary policy could be defined either 

by setting adequate identifying restrictions on the empirical model of central banks' reaction 

functions (3.3), or constraining the transmission mechaiñsm of coimtry specific monetary 

policies through restrictions on (3.8) as done by D F G , or by trying to extract common 

components (i.e., common monetary poficy shocks) directly from country specific measures 

of monetary policy as done by Sala (2000). 

Given the diíficulties of attempting to identify a common monetary policy in (3.3), and 

the computational costs of imposing restrictions on the transmission mechanism of country 

specific shocks in (3.8),^ we have foUowed a straightforward principal component analysis 

approach along the lines pursued by Sala (2000) and Clements and Knotolemis (2001). More 

specificaUy, as a measure of a common monetary policy shock, we take the first principal 

6 See appendix 3.5.1 for more details. 
^ See Clements and Knotolemis (2001) for a more rigorous analysis of this point. 
8 When the model (3.3) is overidentified a joint prior must be specified on {Sjt,Ajj (0)). The posterior 
distribution of Ajj (0) then becomes non-standard and can be obtained only with a second order Taylor 
expansión around the máximum of the LikeUhood, as explained in Zha (1999). 
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component of the reduced form residuals (i.e., non orthogonalized residuals) of (3.3).^ 

Even though this measure might be crude, it should provide at least a term of comparison 

for our analysis of the effects of country specific monetary policy shocks. 

3.2.2 The transmission mechanism of monetary policy 

Specification 

The impact of monetary policy on economic activity is modelled empirically through a 

system of output equations in which annual real output growth is regressed on our measure 

of monetary policy and a set of control variables. Specifically, for each country i, we specify 

the following equation: 

yit=X¡t^it + eit (3.5) 

where yu is the 12-month growth of industrial production of country i at time t, X¡f — 

[wj(_/.,2;ít]' is a 1 X vector of regressors with un^i^ denoting our measure of monetary 

policy and xn containing a set of control variables—lagged output growth of all cotmtries 

considered, the exchange rate of country i vis-a-vis the D M and the US doUar, and the 

inflation rate. In equation (3.5), — [i5¿f,/3f(]' is the A; x 1 parameters' vector with 

denoting the coefficients of JÍ,Í_/< and those of xa. The econometric specification is 

the same for all countries considered and includes a constant, one lag of the endogenous 

variable and the control variables, and 24 lags of the monetary policy variable for a total of 

31 regressors in each equation. 

The specification of the system of output equations (3.5) aUows the parameters' vector 

to vary across countries and time periods. This is achieved by assimiing that /?it is 

drawn from a conmion distribution across coimtries for each time í, but changing over time 

5 Principal component analysis is a standard econometric technique to extract common components from 
series of data. See Theil (1971), for a basic reference. Note that estimation of the reduced form of this model 
is identical to that of the structural form described in the text, except that it is not done by blocks. 
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according to a given law of motion. This assumption, which is referred to as 'exchange-

ability prior' in the Bayesian hterature, allows the parameters of interest to be diíferent 

across countries, though only as diíferent draws from the same distribution and is both 

mathematically tractable and economically plausible. 

FormaUy, for each country i and time í we assume that: 

Í3it = et + Cit <ü^N{0,bo) (3.6) 

0t = Ot-i + T]t í ? t - i V ( 0 , B i ) . (3.7) 

where bo and Bi denote the variance of the distribution of CÍÍ and rjt respectively, and 

they are the same for all individual rniits. Bi controls the systematic time variation of the 

parameters, whereas bo controls the cross sectional and the erratic time variation.^" If 

Bi = O, the parameters vary randomly across time and individual units and (3.6) becomes 

= ^ + Qf. V i . On the other hand, when bo = O, no cross sectional heterogeneity is present 

and the parameter vector Pu is pooled towards a common mean changing (systematically) 

over time. In this case, (3.6) becomes pu = 6t Vz. When both B\ and bi are zero, ¡Bu = O^fi 

and t. The prior variances of rjt and Qt, therefore, provide a means to measure the degree 

of uncertainty on the mean of the parameters of interest across coimtries and time periods 

introduced in the model.-^^ The assumptions in (3.6), however, are only priors which must 

lONote that this specification of the law of motion of 6t implies that the parameters have an unconditional 
mean equal to zero. An altemative assumption would be: 

et = pet-i + ii-p)e + r]t, 

where 6 is the long run mean of 6t. However, when we estimated the hyperjjarameter p by maximizing the 
sample likelihood of the model (3.8) for each coimtry i, we foimd that the lowest valué for p was 0.9985 (for 
Spain), while the highest was 1.0 (for Italy and Franca). Given this preliminary result, we decided to stick 
to the computationally simplier specification in (3.6). 
11 This specification is very similar to the one used by Canova and Ciccarelli (2000) who assume that = Qi+ 
Ae with ai = a + <j)i. Here, we do not identify Q¡ separately, but rather put it in the idiosyncratic component 
Ctt, allowing the common component Q to drift with time (Ot)' Given the assumption of independence 
between the common time varying component and the country speciñc eñect, the specification above would 
not allow to test for the persistence over time of any cross coimtry diñ'erence. In our specification, time 
variation in the coimtry specific effects allows the distribution of the parameters to change over time not 
only due to conunon shocks but also to idiosyncratic disturbances; as a result, the posterior distributions 
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be combined with the data to genérate posterior distributions of the parameters of interest; 

and the moments of the posterior distributions of these parameters do not need to be the 

same as those characterizing the priors, as indeed we shall see in our empirical results. 

E s t i m a t i o n 

B y stacking coimtries by row, we can write the set of output equations as a standard system 

of seemingly unrelated regressions (SUR)^^ 

yt = Xtf3t + et, et^Ng{0,Q). (3.8) 

In this equation, Xt = diag [X'-^, ...jX'g^] is of dimensión G x h , where h = G * k with 

G = 4 denoting the number of endogenous variables and k = 31 denoting the number of 

regressors in each equation, and /?t = [^it, ...,/?gt]' is of dimensión hx 1. The evolution of 

the parameters' vector across times is govemed by: 

= Mo9t + Ct, Ct - Nh (O, Bo) (3.9) 

0t = et-i + m, rjt - Nm (O, Bi) (3.10) 

where Mo is a coliman vector of G identity matrices of order k relating the regression vector 

l3t to the vector of common shift parameters 9t of dimensión h x 1, and Q, Bo, and Bi are 

unknown variance-covariance matrices of £t, Ct and T]t, respectively. The latter three random 

variables are assumed mutually independent, implying that yt is conditionally independent 

of ^í, Bo, a n d 5 i . i 3 

Bayesian estimation of the hierarchical model (3.8-3.10) is performed with a procedure 

similar to the one used by Chib and Greenberg (1995) or Canova and Ciccarelli (2000): 

of the parameters of each country may change over time also because of individual specific effects. This 
permits to check whether or not cross country differences in the transmission mechanism are changing over 
time. 
i2Note that for the application of the estimation results used, it is key to have no simultaneity in this system. 
î Although normal distributions have been chosen to model the data and the parameters, the framework 
presented is flexible enough to accomodate also other distributional forms. See Hsiao et al. (1998) on 
potential problems deriving from assuming normality. 
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prior assuinptions are set on the hyperparameters of the model (í), Bg, Bi) and then are 

combined with the information contained in the data (in the form of a likelihood function) 

to obtain posterior distributions. Given that analytical integration is not feasible, the 

Gibbs sampler is used to obtain nxunerically the posterior distributions of the parameters 

of interest. 

Testing 

Several hypotheses about parameters' homogeneity across countries and time periods can be 

performed on the posterior distributions of the parameters of interest. We are particularly 

interested in the overall degree of parameters' stability over time, in the presence of cross 

country differences in the transmission mechanism of monetary policy, and any tendency of 

these differences to change over time. More specifically, we want to test the nuil hypothesis 

that Bi = O, i.e., the absence of (systematic) time variation in the parameters, and that 

the diagonal elements of BQ are equal to zero, i.e., the nuil hypothesis that the variances 

across coimtries of the posterior distributions of the transmission mechanism's parameters 

are homogenous, either over the entire sample considered or in each yearly subperiod. 

The first hypothesis is tested as follows. B, depends on a single hyperparameter, (p. If 

the posterior distribution of 4> is concentrated around valúes closer to zero than its prior, 

then the evidence supporting a time varying specification would be weak. This is checked 

by foUowing Chib and Greenberg (1995) and calculating, for arbitrarily small valúes of ^, 

the ratio: 

. P r ( 0 < e | y ) P r ( ( / . > ^ | y ) 

P r ( 0 < O P r ( 0 > O ' ^ 

where P r ((/) < ^ | y) denotes the conditional pos íenor probability that 0 is less than ^, while 

Pr (<̂  < O denotes the corresponding prior probabUity. The numerator is computed from 

the relative frequencies generated by the Gibbs sampler, while the denominator from the 
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assumed prior distribution. 

The presence of differences across countries in the transmission mechanism of monetary 

policy is performed using a testing procedure proposed by Ciccarelli (2000), which is an 

empirical-Bayes analogous of the classical Wald-test. Let's write the nuil hypothesis of 

homogeneity of the parameters of interest as a set of linear restrictions on the parameter 

vector /3t:^^ 

Rpt = r, for each t. (3.12) 

Conditional on the other parameters of the model, and given the specification above, the 

posterior distribution of Pt is: 

Thus, the conditional posterior distribution of Rf3t is: 

The test is based on the comparison of the following two quadratic forms 

Qt = R [í3t -Pt)]'[RñtR'] ' [ R ( A - A ) (3.13) 

and 

qu = m-^y R ^ R ' ( R A - r ) . 
-1 (3.14) 

The former is (conditionally) distributed as a X((Í), with d degrees of freedom, while the 

latter is just (3.13) with the restrictions.-^^ Clearly, if the restrictions are true qu must 

have the same distribution as qt. 

1*111 our specific case, the restriction matrix R=[Rjj] has dimensions {g — 1) X Pm X gk, where g and k have 
been defined before and Pm is the number of monetary policy coefficients restricted to be the same across 
countries. In particular, the nuil hipothesis that all parameters of the transmission mechanisms are equal 
across countries means pm = 24. R will have 72 rows, whose valúes are 1 when i=j, —1 when j = i + k, and 
zero otherwise. The hypothesis that the impact of monetary policy at specific lags, or the cumulative eflect 
after one and two years, are equal across countries can also be easily accommodated designing R accordingly. 
i5Note that we are not testing exact restrictions in (3.12), but rather whether or not R/3t is distributed 
around r o posteriori. 
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Given (3.13), the conditional posterior probability of (R/3t = r) for each t is necessarily 

related to the probability that, at each iteration of the Gibbs sampler, a xfd) assumes the 

valué (3.14). Henee, the probability that a draw from a exceed the magnitude qi gives 

information on the probability that the random variable R/3t is as far from the posterior 

mean Rfft as represented by the point = r. In order to construct a rejection región, 

therefore, it is enough to compare these two distributions. The larger the distance between 

q and gi , the greater is the probabihty, a posteñoñ, of rejecting the null.^^ The greater is 

the distance between the two posterior distributions, the more likely the restriction imposed 

is converting the reference distribution in a non-central one, and the more likely the nuil 

is false. The distance between these distributions can then be quantified using a standard 

Kolmogorov-Smirnov statistics. 

The intuition is the same as in the classical Wald test, where one compares two distrib­

utions: one under the nuU, which is asymptotically x'^¿y and the other imder the alternative 

which is a non-central xf^¿y The greater is the numerical valué of the quadratic form in 

which the set of restrictions has been substituted, the more likely this valué belongs to 

the distribution vmder the alternative. The empirical posterior distributions oí q e q^ are 

easily obtained from the Gibbs sampler. The posterior distribution of q may be seen as a 

reference distribution by construction because, given the normality assumption, each draw 

of the Gibbs sampler is from an exact x^ay main difference with the Wald test is that 

here we know the exact distribution of q, which can be computed numerically and used to 

make probability assessments in a Bayesian fashion. In our case, the posterior distribution 

of (3.14) (and not just one valué, as in the classical analysis) can also be computed and 

î The procedure is explained in more detail and evaluated by means of Monte Cario simulation in Ciccarelli 
(2000). He shows that the procedure scores very well both in terms of power and size, generally doing as 
well as a standard posterior odds (PO) ratio approach, or even better in cases where the degree of coefficient 
heterogeneity is not high. In addition this approach is easier to implement and, unlike the PO ratio test, it 
can be computed also when some prior in the hierarchy is diffuse. 
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compared with (3.13). 

When the model is specified with time-varying parameters, we can easily compute em­

pirical distributions for q and qi for each yearly subperiod considered. Henee, at each time 

¿, we can test the nuil hypothesis of parameters' homogeneity across countries. If the pa­

rameters are changing over time, i.e., the posterior distribution of <j> is not concentrated 

around O, convergence would occur if q and qi get closer and closer as time goes by. 

3.3 Empirical results 

In this section we present estimation results relative to equation (3.3) and (3.8) respec­

tively. We present first the estimated parameters and the residuals-our measure of mone­

tary policy-of the reaction function of each central bank considered, and then parameter 

estimates and test statistics for the output equations-which capture the impact of monetary 

policy on economic activity. The estimation sample is 1985:01 through 1998:12. Kalman 

filter for the estimation of the reaction fimction is initialized from 1985:01 to 1990:12. Re-

ported estimates then run from 1991:01 for the parameters of the reaction functions and, 

given the 24 lags of monetary poUey shocks, from 1993:01 for output equation. 

3.3.1 Central banks' reaction functions and monetary policy shocks 

Figure 1 reports selected estimated parameters of the Bimdesbank's reaction function. The 

most striking feat\ire of these estimates is the apparent extent of parameters variation over 

time at the beginning of the sample period considered. Thus, suggesting that important 

behavioral changes were already taking place in the run up to EMÚ. The coefficient of the 

lagged endogenous variable (i.e., the coefficient of the Germán own lagged interest rate), 

for instance, seems to have increased by about 30 pereent at the beginning of the 1990s to 

stabilize aroimd 0.9 after 1992-implying a high persistence in short term interest rates after 
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1992-93. Other parameters of the Germán reaction fimction appear to foUow broadly a 

similar time pattern except for that of the volatility of the DM/doUar rate which stabilizes 

only in 1995-96. The coeíficients of the infiation, output, and nominal exchange rate gaps-

the assmned final objective of Germán monetary policy-have the right signs (i.e., positive 

those of the infiation and exchange rate gaps and zero that of output), but are quantitatively 

sfightly smaUer than what found in previous studies.-^^ Interestingly, the parameters of the 

volatility of the nominal exchange rate vis-arvis the US doUar and other European countries 

appear larger than those of the infiation, output, and exchange rate gaps, though a direct 

comparison cannot be done because of different units of measure. Moreover, their time 

profile suggests that the Bimdesbank's attention has shifted in the run up to EMÚ from the 

doUar valué of the D M to the external valué of the D M vis-a-vis other European currencies: 

Germán short-term interest rates start reacting negatively to the volatility of the Italian 

lira in 1991-92, and that of the French franc and the Spanish peseta thereafter, arguably in 

response to speculative persistent activity against these currencies. 

Selected estimated parameters for the reaction functions of Prance, Italy, and Spain are 

also reported in Figure 2, 3, and 4 respectively. Each Figure reports the parameters of the 

coimtry own monetary poficy objectives and the Germán ones in order to gauge the extent 

to which 'core' European countries were actually pursuing an independent monetary poficy 

notwithstanding the E M S constraint. For ease of exposition and comparison of the results 

across countries, the estimated coeíficients of exchange rate volatility are grouped together 

in Figure 5. Three key results emerge from these charts: first, the behavior of other 'core' 

European central banks became relatively stable later than that of the Bundesbank, judging 

î The implied weight attached to the infiation gap, a measure of the relative importance of this objective in 
the central bank's reaction fimction, is less than 0.5 throughout the period considered. This compares with 
a point estimate cióse to 1 found by DGF (see DGF, Table 5.4 and Appendix Al). We think that this could 
be due to the larger set of objectives allowed for by our econometric specification. 
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based on the time profile of most estimated parameters; second, there is no discernible 

common pattem of behavior among these comitries except for the fact that all are strongly 

affected by contemporaneous movements in Germán interest rates; and third, as in the case 

of Germany, exchange rate volatihty seems to have had a strong impact on the level of short 

term rates. 

The behavior of the central bank of France conforms weU to what one would expect 

imder E M S : in additions to Germán interest rates, deviations of the nominal exchange rate 

vis-a-vis the D M and deviations of domestic and Germán inflation from their targets affect 

domestic short-term interest rates, while domestic and Germán output gaps appear to have 

basically no lasting impact on interest rates. Again, exchange rate volatihty vis-a-vis the 

D M and the US doUar, as well as other 'core' Emopean countries, seems to have a strong 

impact on local monetary conditions. The behavior of the central bank of Italy is similar to 

that of the bank of France except for the smaller magnitude of the coefficient of the bilateral 

rate against the D M and the correspondingly higher valué of the coefficient attached to the 

Germán output gap. Note also the marked shift in the volatihty parameter of the D M / L t 

rate during the period in which the hra was floating after the 1992 crisis. The behavior of 

the central bank of Spain, instead, is quite peculiar: Spain appears to be the country least 

constrained by E M S , with its own output gap aífecting short term interest rates throughout 

the period considered; secondly, the exchange rate gap vis-a-vis the D M has a persistently 

negative sign, while the coefficient of the volatihty of the bilateral rate against the US dollar 

is positive throughout the estimation period, even though süghtly trending downward. 

In summary, this first set of empirical results strongly supports the cholee of the general, 

time-varying specification of the econometric model used to describe central banks' reactions 

î Spain's peculiar behavior is a feature our results shares with other studies of the transmission of real and 
monetary shocks in the Euro área, including for example Kim (1998), Ballabriga et al. (1999), and Ortega 
and Alberola (2000). 
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functions, and show clearly how difficult it would have been to choose a restricted and yet 

uniform econometric specification of the econometric model to describe different behaviors 

over a period of relatively fast structural change. 

The relative merit of the econometric approach followed may be appreciated also by 

looking at the residuals of the estimated reaction functions, which wiU be used in the rest 

of the paper as our measure of the unexpected component of country specific and common 

monetary policy. The estimated structm-al residuals of equation (3.3)—our measure of 

a local monetary poficy shock—and the íirst principal component of the reduced form 

residuals—our measure of a common monetary shock—are plotted in Figure 6 and they look 

remarkably well behaved: there are very few outliers (most notably a large one for France in 

Apr i l 1993) and there is little evidence of serial autocorrelation and/or heteroscedasticity.^^ 

Note also that when we estímate (3.3) without exchange rate volatility and restricting 

B(L) as done by D F G we find residuals very mueh like theirs with large outliers at the 

same dates (DFG, Figure 4), further suggesting that adding exchange rate volatility and 

letting B{L) imrestricted helps obtaining better residuals, and thereby a better measure of 

monetary policy shocks. 

3.3.2 T h e impact of monetary policy on economic activity 

Even though we have estimated all parameters of the system of output equations (3.8), 

here we present only the results for the subvector of monetary policy coeíficients /3¿ and 

their estimated average or common component 6t, which we interpret as the European-

wide impact of monetary policy. We present four set of estimation and testing results; 

î The normalized first principal component of the reduced form residuals explains about 50 pereent of their 
total variation, about 25 pereent of the residual of the Bundesbank's reaction function, about 10 pereent of 
the Bank of France's reaction function, and about 50 pereent of the residuals of the reaction functions of the 
Bank of Italy and the Bank of Spain. Its simple correlation with the residual of the Bundesbank's reaction 
function is 0.24. 
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two sets based on the estimation of (3.8) specified without parameters' time variation to 

compare these results to those previously found in the Uterature; and two set based on (3.8) 

estimated with time-varying parameters. Both the time-varying and the time-invariant 

specification of the system of output equations are estimated including only üa first (the 

vector of coimtry-specific stmctm-al residuals, which we interpret as a local monetary poficy 

shock) and then including only út (the principal component of the reduced form residuals, 

which we interpret as a common monetary policy shock). 

In order to save computing time and to facifitate the results' interpretation, the time-

varying specification actuaUy estimated aUows the parameter vector to change only yearly, 

while in fact we use monthly data (see Appendix). The type of behavioral change we are 

interested in —^presumably induced by anticipation of and preparation to EMÚ—is likely 

to have taken place over time rather slowly; in any case, we are not interested in isolating 

changes at monthly frequency. Henee, some time aggregation in estimating the parameters 

of the transmission mechanism of monetary policy might be desirable. In addition, when the 

model was estimated without imposing this restriction for Germany and Spain, we foimd 

very similar results, suggesting that the results presented below are robust to this feature 

of the specification actuaUy used. 

Are there diíFerences in the transmission mechanism of monetary policy? 

In order to compare our results with those in the Uterature, in this subsection, we report 

time-invariant estimates of the system of output equations and we test several homogeneity 

hypothesis on the transmission mechanism of country specific and common monetary poficy 

shocks. Table 2 reports the mean, the median, the first and the third quartile of the 

posterior distribution of the coefficients of ün. For all countries considered, the table reports 

the coefficients of selected lags and the cmnulative impact after one year and two years 
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respectively. 

F!rom Table 2, we can see that the eíTects of country specific (or local) monetary pohcy 

shocks become evident within 18-24 months in all coimtries considered, and that there are 

some cross coimtry differences in the impact at particular lags, but basically no quantita-

tive differences with respect to their cumulative impact— which is also a measure of their 

long-term effects on the level of economic activity—as far as Germany, France, and Italy 

are concerned. The effects of local monetary pohcy shocks on output growth in Spain, 

instead, seem to be different from those in other countries both in terms of their timing 

and cumulative impact, which is lower. These conclusions are borne out clearly by a formal 

testing of various homogeneity assumptions. 

Table 3 reports a set of Kolmogorov-Smimov statistics (henceforth, KS) for the distance 

between the posterior distribution of q and q\ rmder the corresponding nuil hypothesis.^" 

When we test the nuil of equality of all the parameters of the transmission mechanism 

of coimtry specific monetary shocks, either between all coimtries considered or through 

pair-wise comparisons (see the column of p-valúes under 'al l lags' in Table 3), we reject 

the nuU decisively. This points to the existence of statistically significant difference in the 

transmission mechanism of European monetary policy across countries. Ruiming the same 

test for each pair of countries considered on selected lags and the cumulative impacts of 

monetary policy after 12 and 24 months (see the corresponding columns of p-values in Table 

3), however, we find that the overall difference between these four countries is due mainly 

to Spain, and, perhaps, some other timing difference in the other three countries. Thus, 

suggesting that the transmission mechanism of country specific monetary shocks in core 

European countries was already homogenous on the onset of EMÚ, especially considering 

20As explained before, a posterior distribution of qi far apart from that of q can be interpreted as evidence 
against the nuil of equality of the relevant parameters of interest. 



82 

its long run impact. 

Turning to the analysis of the transmission mechanism of a common monetary policy 

shock, üt, we can see from Table 4 and 5 that the results are broadly similar to those obtained 

for country specific shocks. Somewhat surprisingly, however, the cimiulative impact after 

two years is now higher in Spain than in other countries. The bilateral differences between 

Germany, Prance and Italy look also sfightly higher—as measured by lower p-values in Table 

5.̂ ^ This latter result suggests that the differences in the transmission mechanism of 

monetary poficy remains significant even after controlfing, albeit roughly, for heterogeneity 

of national central banks' preferences. The fact that the magnitude of the cumulative impact 

of common monetary policy shocks is smafier than that of country specific shocks, instead, 

is more diíficult to explain, especially in light of its high correlation with Spanish interest 

rates. 

A direct comparison of our results with those obtained in other studies is diíficult be-

cause of the peculiarities of the empirical framework used in this paper. Nonetheless, Table 

6 and 7 attempt to do this, to the extent possible, contrasting our point estimates (i.e., the 

mean of the posterior distributions of the parameters of interest) with those surveyed by 

Gmso et al. (2000). On the one hand, none of our estimate appears far away from what 

previously reported in the fiterature, giving confidence that our results are not systemat-

icaUy biased by any featin-e of the empirical framework used. On the other hand, a few 

sharp diflferences stand out. First, comparing our results with those obtained with smaU 

scale S V A R models (Table 7)—^which are based on impulse response function analysis—^we 

can see that oiu: estimated short-term impact of monetary poficy is at the lower end of 

21 Ortega and Alberola (2000) find a similar result for Spain. They attribute the different response of Spain 
to a (temporaiy) common monetary policy shock to its larger sensitiveness to changes in competitiveness 
vis-a-vis its European partners. Other core European coimtries, instead, are found to be more sensitive to 
the wealth effects of interest rate changes. 
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those found in the literature. This is not surprising given that our specification includes 

lagged output growth of all countries considered, thereby providing a better description of 

the International transmission mechanism of monetary policy. Second, unlike DGF—^who 

analyze only the effects of anticipated changes in monetary policy—^we do find some ev­

idence of heterogeneity in the short term impact of monetary policy, but we do not find 

such evidence with regards to the ciunulative or long-term impact. Also, the estimated 

long-term impact of a common monetary policy shock is mueh smaller than theirs, possibly 

due, again, to the richer specification of our econometric model. Finally, our estimated peak 

effeet and the long nm impact are very cióse to those reported in the BIS study. 

In smimiary, and in part consistently with the consensus view in the literature, the 

evidence presented so far points to some degree of heterogeneity across countries in the 

transmission mechanism of monetary policy, and especially with regards to the timing of 

these effects rather than the magnitude of their eumulative impact. In fact, only Spain's 

response to both local and common monetary policy shocks appears significantly different 

from that of other core European countries. Differences in the timing of the effects of 

monetary policy in core Em-opean coimtries, however, are also important from both a 

methodological and a policy point of view as explained in the introduction. The question 

of whether or not the degree of heterogeneity of the transmission mechanism of monetary 

policy has changed over time—and, if this were the case, in which particular direction— 

remains therefore to be answered. 

Are these diíTerences changing over time? 

To answer this question, first we reestimate the system of output equations (3.8) allowing 

for parameter variation over time and test the nvúl hypothesis that the posterior variance of 

the third stage of the hierarchy (3.8-3.10) is zero, i.e., we test the hypothesis that 01 , the 
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hyperparameter tightening the time variation of the coefficients describing the transmission 

mechanism of monetary poficy, fij^, is zero. This is done using the test statistic (3.11) 

explained in section 2.2.3. As mentioned above, if the posterior distribution of 0 i is less 

concentrated on valúes cióse to zero than the prior distribution, then we can reject the nuU 

of overaU parameter stabifity over time; and thus reject a time-invariant specification of 

(3.8). In fact, the valué of z in (3.11), for ^ = 0.03, is 0.465 in the case of coimtry specific 

monetary shocks and 0.012 in the case of a common shock. For ^ = 0.05, z takes on a valué 

of 1.838 and 0.054, respectively.^^ Very small valúes of z for arbitrarily small valúes of 

^ imply that the posterior distribution of (pi is located more far away from zero than the 

prior distribution, providing strong evidence in favor of a time-varying specification, and 

suggesting that the transmission mechanism is indeed changing over time. This feature can 

also be appreciated from Figures 7-9, where the posterior distributions of some lags of the 

parameters of interest are plotted in the form of box-plot diagrams, by countries, i.e. pu, 

(Fig. 7-8), and common across countries, i.e. 6t, (Fig. 9), over the sample period.^^ 

Once estabfished that the transmission mechanism of monetary policy has changed over 

time, we check whether or not its degree of heterogeneity across cotmtries has also changed 

in the n m up to EMÚ. This is done by rimrúng a battery of K S statistics on the posterior 

distributions of q and qi, imder the relevant nuU hypothesis, as in Table 3 and 5, for 

each yearly subperiod considered. Table 8 reports the results for all countries considered 

from 1994 to 1998. As we can see from this table, there is some evidence, arguably weak, 

of decreasing distance between the benchmark distribution and the posterior ones. But 

22The valúes of ^ have been chosen arbitrarily small, as in Chib and Greenberg (1995). 
23A Box plot is a convenient graphical representation of the distribution of a variable which provides de-
scriptive and diagnostic information. The box contains the central 50 percent of the distribution. The line 
inside the box is the median, while the two top sides represent the first and the third quartile respectively. 
Consequently, the length of the box measures the dispersión of the distribution and the position of the line 
inside the box its degree of synmietry. Outliers, i.e., observations falling under the 1 percent tails of the 
distributions, have been dropped. 
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the overall picture is one of neither decreasing ñor increasing heterogeneity, rather simply 

persistence. Nonetheless, we now accept the nuil hypothesis of equality of the cumulative 

effects of monetary policy after 12 and 24 months between all countries considered, while 

this was rejected by the data when tested over the entire period 1991-1998 (see Table 3). 

It is possible, therefore, that some convergence might have taken place in the first half of 

the 1990S.24 

A n inspection of the posterior distributions of the parameters of interest coimtry-by-

coimtry (Table 9), confirms that the short-term effects of idiosyncratic monetary shocks 

are heterogenous, but their cumulative impact becomes quite similar across countries after 

about 12 months. Furthermore, the cumulative impact after 12 months is increasing over 

time in all countries considered, while the impact after two years is decreasing. This could 

imply that the length of the European-wide transmission mechanisms was becoming shorter 

in the second half of the 1990s, arguably, as a result of financial development and gradually 

increasing labor market flexibility at the regional level. 

In the case of common monetary poficy shocks (Table 10 and 11 and Figure 8) we obtain 

similar results: the overaU degree of heterogeneity of the transmission mechanism does not 

appear to decrease over time, but the cumulative impact of these shocks is already homo-

geneous after 12 months. Interestingly, the valué of the third quartile of the distribution 

of the cumulative impact of these shocks after 24 months is always positive, and sfightly 

decreasing over time. This suggests that the posterior distribution of these parameters was 

becoming progressively less concentrated on negative valúes, which in turn could be inter-

preted as evidence of increasing degree of monetary policy neutrality in the long run. A t 

the same time the 12-month impact of conomon shocks is increasing sfightly over time, as we 

24These tests can be run only starting in 1994 because of the observations missed to initilize the estimation. 
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found in the case of country specific shocks. Finally, the magnitude of effects of a conmion 

shock looks generally smaller than that of coimtry specific shock, as we found estimating 

the system of output equations without time variation. 

In summary, these results show that the hypothesis of overall parameter stability is 

rejected by the data: the transmission mechanism of European monetary pohcy seems to 

have changed in the second half of the 1990s—^possibly becoming shorter—but its degree 

of heterogeneity across countries has neither increased ñor decreased during this period. 

O n the other hand, the results presented suggest also that some convergence might have 

taken place in the first half of the 1990s given that the nuil hypothesis of equality of the 

cumulative effects of monetary policy between all countries considered cannot be rejected by 

the data when the econometric model is estimated allowing for parameters' variation over 

time. Consistently with these results, Spain's apparently pecuUar behavior, found analyzing 

the effects of idiosyncratic and common shocks over the period 1990-1998 without allowing 

for time variation, could be explained as a consequence of an econometric specification error. 

The European-wide impact of monetary policy 

The evidence presented so far supports the view that the effects of monetary policy in core 

European coimtries differ in terms of their timing, though not cumulatively. A study of the 

European-wide effects of monetary policy in the sense of Tristani and Monticelli (1999)—^i.e., 

the study of the effects of monetary pohcy in the Euro-area—based on averages of country 

specific time series, or on standard pooled estimators, therefore, may be biased, potentially. 

Moreover, we have seen that, in the specific case of Spain, a time invariant specification 

yields very different results from those obtained allowing for the parameters to vary over 

time. Wi th in the empirical framework used in this study, the European-wide effects of 

monetary policy are measured by the posterior distribution of dt, the cross sectional mean 
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of At-

Tables 12 and 13 report the mean, the median, the first and the third quartile of the 

posterior distribution of the elements of Ot corresponding to selected lags and the eumulative 

impact of country specific and common monetary policy shocks, respectively. The overall 

shape of the posterior distributions of the elements of 9t can be appreciated also from Figure 

9, which plots the box-plot diagram of these distributions for each yearly subperiod from 

1994 to 1998. Country specific monetary policy shocks appear to have had a system-wide, 

peak effeet between 12 and 18 months in the mid-1990s, while the peak effeet seems to occur 

earUer toward the end of the 1990s, between six and nine months. Similarly, the system-wide 

effects of common monetary policy shocks in 1997-98 seem to peak earlier than in 1994-95. 

This evidence is consistent with what shown above and confirms that the European-wide 

transmission mechanism of monetary pohey might have become shorter in the second part 

of the 1990s. Also, country specific shocks have a sizable negative cmnulative effeet, while 

common shocks have a generally smaller effeet, possibly not significantly diíferent from zero. 

Even though they are not directly comparable with those reported by Tristani e Mon-

ticeUi (1999, par. 6.3 e Figure 3), our results suggest that the Eiuopean-wide effects of 

monetary poficy may be less persistent than what suggested by their results. In their ex-

ercise, a temporary one standard deviation monetary policy shock becomes statistieaUy 

insigiüfieant only after 18-20 months, and its effects are quantitatively negfigible within 

two years. We observe a similar pattern when the model is estimated without time-varying 

coeíficients. But when the model is specified with time-varying coefficients this conclusión 

holds only for the beginning of the 1990s: in the second part of the 1990s, monetary policy 

seems to aífect economic activity sooner. 
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3.4 Conclusions 

In this paper we study empirically the transmission mechanism of monetary policy in four 

core European coimtries using dynamic heterogenous models estimated in a Bayesian fashion 

with pre-EMU data. 

Analyzing E M S data to understand what is happening under EMÚ has been done before, 

and wiU continué to be done for quite sometime. The econometric framework used in this 

paper shares several featmres with an 'ideal' one to n m such an experiment: (i) the model's 

specification is the same across coimtries; (ii) no strong a priori restriction is imposed on 

the behavior of the central banks studied, letting the data reveal which were the relevant 

objectives in different stages of the run up to EMÚ; (iii) intra-European exchange rate 

movements as weU as regional (real) interdependencies, through which monetary poficy 

worked in part under E M S , are controUed for in assessing the impact of monetary policy on 

economic activity; and (iv) the effects of both country specific and common monetary poficy 

shocks are analyzed, thereby controlUng for the heterogeneity of central banks' preferences 

under E M S . Most importantly, however, the parameters of the reaction functions and those 

describing the transmission mechanism of monetary policy are allowed to change both across 

countries and time periods in our empirical framework. Therefore, our empirical results 

should be robust to the Lucas' critique and help imderstanding how differences in the 

transmission mechanism of European monetary poficy evolved over time. As far as we 

know, this is the ñrst study of the European transmission mechanism of monetary poficy 

which aUows expUcitly for parameters' variation over time. 

The empirical results presented show that there are differences in the timing of the effects 

of monetary poficy across core European countries, and that the degree of heterogeneity 

of the transmission mechanism has not decreased over time during the second half of the 



89 

1990s, even though the parameters of the transmission mechanism do seem to have changed 

over time. We have shown also that the European-wide effects of monetary policy take 

6-7 months to appear, peak at 12-18, and disappear within 24 months. These results are 

consistent with what previously found in the literature in that they point to some degree of 

heterogeneity in the transmission mechanism of monetary policy. Unlike the results foimd 

in previous studies, however, they suggest that these cross-coimtry differences are mainly 

with regards to the short term impact of monetary policy. As standard monetary theory 

suggests, we have shown that monetary policy is becoming progressively more neutral in all 

countries considered in the long nm. 

This work could be extended in several directions. First, it would be desirable to extend 

the sample of countries analyzed to include all eleven members of EMÚ, and possibly also 

other European countries currently outside EMÚ. Second, it would be interesting to study 

the eífect of monetary policy at regional rather than national level and to compare European 

coimtries (and/or regions) with American States. Finally, it would be useful to improve 

upon our definition of a common monetary pohcy shock and to attempt at framing the 

questions asked in this paper in a fuU blown panel V A R empirical framework. 

3.5 Appendix 

3.5.1 Estimation 

h i this appendix we present details of the estimation procedures used in both stages of the 

empirical analysis. In both stages the estimation is Bayesian. Thus, given the specification 

of the systems of reaction functions and output equations discussed in the main text, prior 

distributions and irñtial conditions must be combined with the information contained i n the 

data in the form of hkehhood functions to produce posterior estimates of the parameters 

of interest. In both stages of the empirical analysis, it is impossible to obtain close-form 
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Solutions for the posterior distributions of interest, and henee we must rely on nmnerical 

integration. For the latter, we use the Gibbs sampling method. Previous econometric studies 

with model specifications very similar to the ones used here have shown that the Gibbs 

sampling approach produces reasonably good results, even in high-dimensional models.^^ 

Reaction functions 

The probabfiity density function (pdf) of the data for each block j oí (3.4), conditional on 

the exogenous variables in the model and on the initial observations on Rjt, is 

L(J,t ,Ej. ,)oc|2j,-r '^^'^ 'exp 

The prior assumptions on the model's parameters generalize those introduced by ZeU­

ner (1971) to take into account the presence of time-varying coeíficients: a time-varying, 

multivariate normal prior, i.e., a Minnesota-type of prior (Doan et al., 1984), for the regres­

sion parameters is combined with a difñise prior on the variance-covariance matrix of the 

residuals, Ejj. Thus, assmning prior independence: 

p(<5jt,Ejj) =p{Sjy)piEjj), 

with 

p{Ejj) oc |%r(^^+i) /2 (3.16) 

Sjt = PjSjt-i + {I-Pj)Sj+rjjt (3.17) 

T]jt - ÍV(0 ,$ , ) 

where Pj is a Gjkj x Gjkj matrix governing the law of motion of Sjt, S is the imconditional 

mean of 6jt, govems the time variation of Sjt, and T]jt is assumed to be independent from 

Vjt. The assmnption of prior independence is needed for analytical tractabiUty.^^ Note also 

25See, for instance, Chib and Greenberg (1995) and Canova and Ciccarelli (2000). 
26See Leamer (1978, p.80) for a better justification of prior independence and Kadiyala and Karlsson (1997) 
on the comparison of alternative prior assiraiptions in VAR models. 

E - ^^tSjt)' {Rjt - ZjtSjt) (3.15) 
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that giving a joint prior on {Sjt, Sj j) is equivalent to considering a prior on (Sjt, A (0)̂ -̂ ^ 

as proposed by Sims and Zha (1998) and Zha (1999) if the model is exactly identified, which 

is the case dealt with here. Therefore, A {0)jj is recovered from T,jj through the one-to-one 

mapping between these twó matrices. 

In order to n m the Gibbs sampler, the conditional posterior distributions of EJ^^ and 

6jt must be obtained. Combining the hkelihood (3.15) with (3.16), it is not difñcult to see 

that the conditional posterior distribution of S^-^ is a Wishart: 

S 7 / I {Sjt\,R^W{T, [{Rjt - ZjtSjt) {Rjt - Zjtójtyy') . (3.18) 

The (joint) conditional posterior distribution Sjo,Sji, —I^JT I ^ i j obtained in two steps 

as shown by Chib and Greenberg (1995). First, we initialize {djt}^ for each t by Kalman 

filter and save the output: 

(3.19) ^jt\t = 5jt\t-\ + %(|t-iZ'jtF (jijt - "ZjtSjtit 

% t | í - i - ^'íif--iZljtF'ZjtQ,jt\t-i 

F = (ZjtCijt\t~iZ'jt 

Mt = ^jt\t^Jt+l\t 

where 6jt\t-i = Pj^it-i\t-\ + {I - Pj) and % t | t - i = PAjt-i\t-iPj + ^j- Second, the joint 

conditional posterior distribution SJQ, Sji,Sjj- \ E j j is sampled in reverse time order from 

SjT ~ N (ójx\T, ^jT\TJ 

SjT-1 ~ N(6JT-IAT-I) (3.20) 

Sjo ~ N (Sjo,ñjoj 

where Sjt = ój^t + Mt (Sjt+i - Sjt^t), and Cljt = Üjt^t - MtCljt+iitMl. 
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To make the updating scheme described in (3.18)-(3.20) operational, initial valúes for Pj, 

Újo, and the vector SJQ, at time í = 1 (the first period of the sample), must be assigned. 

Following Litterman (1980, 1986), we define the matrices Pj, í>j, Cljo, 6jo in terms of a 

few hyperparameters. These hyperparameters are assimied known and are estimated before 

starting the Gibbs sampler. More specifically, each kj x 1 vector Sjg is assumed to depend 

only on one hyperparameter such that = ( O , 0 , 7 r i , < , , O, ...0)^., where 7ri,p represents the 

prior mean of the coefficient of the lagged dependent variable in equation g of block j. The 

individual components of 6jo are assumed to be mutually independent and independent from 

analogous components in other equations of the block j; thereby, rendering the covariance 

matrix ÚJQ diagonal. The diagonal elements of Qjo are then defined so that, for each block j, 

the relative tightness of the prior of the coefficient of the lagged dependent variable, of other 

lagged endogenous variables, and of deterministic and exogenous variables is controUed by 

"^2,9, 773,5) •^4,5) respectively. In practice, the prior variances of the parameters in equation 

g oí block j are specified as follows: 

for lagged dependent variables 

^"'^ i^g) ~ ' '^^'^¡^^'3 ^ for other lagged endogenous variables 

'^2,g (Tg for exogenous and deterministic variables 

where l denotes the lag length, and Ug is a scafing factor which takes into account the 

range of variation of different variables. Henee, the overall tightness in the system (the 

overall degree of xmcertainty with which prior information is introduced in the model's 

specification) is controUed by 7t2; and if TT2 goes to infinity, the prior becomes diffuse. The 

tightness of the coefficients of the lagged dependent variable relative to that of other lagged 

endogenous variables in the equation is controUed by TTS ; if TTS = O, the prior defines a set of 

imivariate autoregressive processes of order p. FinaUy, 7:4 controls the degree of xmcertainty 
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with respect to the coefficients of exogenous and deterministic variables. 

The time variation introduced in the model's parameters a priori is governed by the 

matrices Pj and These matrices are defined as: 

Pj = diag{Pjr,...PjG^) 

= diag ^jGj) ñjo 

where Pjg = diag (TT^^Q) are kj x kj matrices with Tr^^g controUing the coefficients of the law 

of motion of each Sjg, and $jg = diag{'Ke,g) are kj x kj matrices with TTe.p controlling the 

amount of time variation actually introduced in the model. Thus, a time-invariant model 

could be obtained by setting TTS = 1 and TTQ = 0. 

In sum, we have six hyperparameters for each equation of block j. The hyperparameters 

are estimated before running the Gibbs sampler by maximizing, equation-by-equation, the 

sample likelihood of the model written as a function of these hyperparameters themselves, 

while the model's parameters {6jt, T,jj) are initiahzed with a classical SUR estimate of 

the entire model.^'^ Then, the updating scheme (3.19) is run and the Gibbs sampler 

implemented, switching between (3.18) and (3.20) as if T T I , ...,7r6 were known. The Gibbs 

sampler rims 5000 times yielding 4000 draws from the posterior distributions after discarding 

the first 1000 draws. 

Output equations 

Time variation Let y?.,, denote annual output growth (hi ( l^^/y¿^_i) ) at the s-th month 

of the T - t h year for country i. For each coimtry i, yf.^ is modelled as follows: 

27Note that the first block of the model contains only one equation. In this case (3.18) becomes an inverted 
gamma and the equation's parameters can be initialized by OLS. All estimated hyperparameters are reported 
in Table 1. 
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i = 1,...,G; r = l , . . . , T i ; s = l,...,S. 

In our sample, the number of years (Ti) is 6, the number of countries or endogenous variables 

(G) is 4, the number of subperiods for each year (5) is 12, and henee the total munber of 

observations for each variable isT = Ti* S = 72. 

As noted in the main text, this system can be rewritten as: 

6r = Or-l+TJr, TJr ^ (O, Bi) . 

The likelihood of the data is: 

oc | f i r ^ / 2 exp I - i ^ (y? - X^Pr)' í í "^ (y? - X^^r)| • 

The priors are: 

Mo — eg®Ik, 

Bo = E-^r.W{ao,^o), 

Bi = diag {4>ilki, (i)ih-ki), 

where Cg is a vector of ones of dimensión gxl,W {uJo, ©) denotes a Wishart distribution with 

u)o degrees of freedom and scale matrix 0 , Ij denotes an identity matrix of dimensión j, and 

ki is the munber of monetary policy parameters. The time variation of the monetary policy 

parameters is controUed by 4>i, while 2̂ tightens the time variation of other parameters. 

We set a diffuse prior on 02 and we assmne that the prior distribution of 4>i is an inverted 

gamma, (pi ~ 7C? («0/2,^0/2). A l l hyperparameters of the system {ujo,@,ao,^o, 1^0,^0) are 

assumed known. 
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The posterior densities of the parameters of interest are obtained by combining the 

hkehhood of the data with the prior distributions above in the form of conditional pos­

terior distributions as before. Letting Yp = (í / i ,—,yr) denote the sample data and tp = 

({ySr}r jí^) {^T}T > ^1 4>i, <̂ 2) denote the parameters whose joint distribution needs to be 

found, we have: 

I YT, ^W{(7O + Tig, 1 'TI) ; 

4>I\YT,^-^,^IG 

V V 2 ' 2 ; 

cf>2\YT,Í^-4>,^IG 

\ 

where 

( 
B-^M,Qr + Yj^r^'^yr 

0 T = 
T-1 

-1 
^o'+EEi^ir-er){(3ir-9r)' 

with V'-7 denoting V without the parameter 7, and 6^ and denoting monetary pohcy 

parameters and other parameters, respectively. 

The posterior distribution of {0r}rLo! conditional on the other parameters, is obtained 

using an updating scheme as in (3.20) above. 
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As for the hyperparameters, we set Wo = 5+1 , CTQ = +1, and = diag (1.0), while 0 

is initialized with the variance-covariance matrix of a classical SUR estímate of (3.8). The 

parameters of the gamma distribution of </)i are «0 = 6 and = !> implying that the prior 

mean and the standard deviation of 01 are 0.25 and 0.25, respectively. To initialize the 

Gibbs sampler we set also (f)i = (p2 = 0.5, í í = Ig, and S = Ik, while all /Ĵ -'s are initialized 

with the posterior mean obtained estimating the model without time-variation. 

W i t h these starting valúes the Gibbs sampler begins generating {Orj^Lo ^^^^ 

the other parameters. The Gibbs sampler rvms 5000 times yielding 4000 draws from the 

posterior distribution after discarding the first 1000 draws as before. 

T i m e invar iant m o d e l The model is also estimated restricting the coefficients to be 

constant over time. In this case, we used the foUowing hierarchy 

yt = Xtp + £t, etr^Ng{0,Cl) 

6 = Mifi + r]t, T)r.NmiO,Bi) 

where now t = 1 , T . The likelihood now become: 

oc n \ e x p I - i (yt - Xtpy n-' {yt - XtP) | . 

A l l the hyperparameters, including / i and Bi, are assimied to be known as before. In 

particular, we set B^^ = O, i.e., the third stage of the hierarchy is degenerate. 

Using the same notation and priors as before, the conditional posterior distributions 

now are: 

l3\YT,rP-pr.N(^P,VT); 

Q-^\YT,iP-n^W{uo+T,RT); 
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e I r r , ~ N ( A l ( B f ^ M i / x + M X " ' / S ) , A i ) ; 

where 

\ t 

/ 

T 1 -1 
- X t / 3 ) ( y t - X t / 3 ) ' 

9 1 -1 

i=l 

Finally, the Gibbs sampler is initialized as done in the case of the time-varying model. 

3.5.2 Data 

A l l the data used are from the International Financial Statistics (IFS) datábase of the I M F , 

except daily exchange rates which were provided by Marcello Pericoh of the Bank of Italy. 

The basic dataset is composed of monthly observations from 1985:01 to 1998:12 for the 

following series: 

1. Consumer price index, IFS line 64 {CPI); 

2. Industrial production index, IFS line 66 {IP)\ 

3. Nominal exchange rate vis-a-vis the U.S. dollar (period average), IFS line rf {NER); 

4. Interest rates (Treasury B i l l rate), IFS line 60c {IR); 

5. Daily nominal exchange rate, Bank of Italy {DNER).^^ 

The following transformations of the basic data have been used: 

28A previous versión of the paper used the dataset of Dornbusch, Pavero, and Giavazzi (1998). 
29We use the bilateral rate vis-a-vis the DM for Prance, Italy, and Spain, and vis-a-vis the US dollar for 
Germany. Bilateral rates vis-a-vis the DM are obtained as cross rates vis-a-vis the U.S. dollar. 



6. 7ri,t = \og{CPIt/CPIt-i2); 

7. yi,t = log(/Pt); 

8. Ri,t = \og{l + JRt/m); 

9. yi,t = \og{IPt/IPt-i2y, 

10. (Ti,t = stdev{log{DNERi,s/DNER*), 

where stdev denotes the intra-month standard deviation and DNER* the H P trend 

obtained using a smoothing parameter equal to 130000. 

Infiation, output, and exchange rate gaps—denoted ( T T Í ^ Í — T T * ) , {yi,t—y¡), and {eu—e*), 

in the text—were computed as log(7ri,t/7r?), log(yt,i/y|), and log(et,i/e|), respectively, 

where T T Í , y*, and e* denote the determiiüstic components of a finear regression of TT^, 

yt, and et on a constant and a linear trend, a constant and a quadratic trend, and a 

simple constant, respectively. 
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Table 2. E s t i m a t e d impact o f id iosyncrat i c monetary 

po l i cy s h o c k s . Several lags . A l l countr i e s 

GER FRN ITL SPN 
lag 6 1st Qu. -0,1726 -0,0402 -0.0723 -0,0673 

Mean -0,0554 0,0638 0,0522 0,0391 
Median -0,0576 0,0623 0,0489 0,0314 
3rdQu. 0,0603 0,1644 0.1666 0,1448 

lag 12 1st Qu. 0,0627 -0,0427 0.1033 0,0868 
Mean 0,1659 0,0570 0,2162 0,1831 

Median 0,1656 0,0571 0,2160 0,1855 
3rd Qu. 0,2702 0,1592 0.3279 0,2807 

lag 14 1st Qu. -0,1770 -0,1048 -0.1519 -0,0453 
Mean -0,0699 -0,0084 -0,0405 0,0558 

Median -0,0687 -0,0045 -0,0360 0,0576 
3nJQu. 0,0406 0,0928 0,0741 0.1591 

lag 16 1st Qu. -0,2567 -0,1734 -0,2973 -0,2636 
Mean -0,1465 -0,0667 -0,1874 -0,1631 

Median -0,1476 -0,0705 -0,1848 -0,166& 
SrdQu. -0,0330 0,0386 -0.0776 -0,0628 

lag 18 1st Qu. -0.3311 -0,2140 -0,3798 -0,2961 
Mean -0,2203 -0,1156 -0,2639 -0,1963 

Median -0,2225 -0,1166 -0,2622 -0,1977 
3rdQu. -0.1106 -0,0189 -0.1431 -0,0998 

lag 24 1st Qu. -0,2455 -0,1391 -0,2892 -0,2235 
Mean -0,1391 -0,0451 -0,1738 -0,1269 

Median -0,1369 -0,0483 -0,1746 -0,1273 
3rdQu. -0.0336 0,0471 -0,0597 -0.0324 

cumul 12 1st Qu. -0,8818 -0,8361 -0,7235 -0.5365 
Mean -0,4093 -0,3678 -0,2561 -0,1521 

Median -0,4156 -0,3660 -0,2678 -0,1537 
3rd Qu. 0,0764 0,1075 0,2019 0,2450 

cumul 24 1st Qu. -2.1080 -2,0268 -2,1834 -1.3751 
Mean -1,4115 -1,3507 -1,5098 -0,8963 

Median -1,4005 -1.3469 -1,5030 -0,8947 
3ndQu. -0,7002 -0,6364 -0.8351 -0,3942 

Note: For each lag the first quartile, the mean, the median, and the third 
quartile are reported 
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Table 3. Testing the nuil: F(q) = F(q1). Idiosyncratic shocks 

all lags lag 12 lag 24 cumul 12 cumul 24 

joint 0.5020 
(0.0000) 

0.1843 
(0.0000) 

0.1385 
(0.0000) 

0.0788 
(0.0001) 

0.1530 
(0.0000) 

Ger vs Frn 0.3370 
(0.0000) 

0.1223 
(0.0000) 

0.1008 
(0.0000) 

0.0152 
(0.7280) 

0.0138 
(0.8327) 

Ger vs Itl 0.2528 
(0.0000) 

0.0342 
(0.0175) 

0.0285 
(0.0745) 

0.0370 
(0.0079) 

0.0172 
(0.5781) 

Ger vs Spn 0.3058 
(0.0000) 

0.0207 
(0.3452) 

0.0095 
(0.9920) 

0.0600 
(0.0000) 

0.1045 
(0.0000) 

Frn vs Itl 0.3223 
(0.0000) 

0.2068 
(0.0000) 

0.1658 
(0.0000) 

0.0192 
(0.4372) 

0.0198 
(0.4051) 

Frn vs Spn 0.3162 
(0.0000) 

0.1675 
(0.0000) 

0.0807 
(0.0000) 

0.0767 
(0.0000) 

0.1135 
(0.0000) 

Itl vs Spn 0.2388 
(0.0000) 

0.033 
(0.0245) 

0.0420 
(0.0016) 

0.0342 
(0.0175) 

0.1700 
(0.0000) 

Note: numbers represent the Kolmogorov-Smirnov statistics. 
P-vaiues in brackets. 



T a b l e 4. E s t i m a t e d i m p a c t of a c o m m o n m o n e t a r y 

P o l i c y s h o c k s . S e v e r a l lags . A l l c o u n t r i e s 

lag 6 

lag 12 

lag 14 

lag 16 

lag 18 

lag 24 

cumul 12 

cumul 24 

1st Qu. 
Mean 

Median 
3rdQu. 

1st Qu. 
Mean 

Median 
3rd Qu. 

1st Qu. 
Mean 

Median 
3rd Qu. 

1st Qu. 
Mean 

Median 
3rd Qu. 

1st Qu. 
Mean 

Median 
SrdQu. 

1st Qu. 
Mean 

Median 
3ndQu. 

1st Qu. 
Mean 

Median 
3rdQu. 

1st Qu. 
Mean 

Median 
3niQu. 

GER 
-0,1659 
-0,0352 
-0,0351 
0,1031 

-0,0948 
0,0240 
0,0279 
0,1442 

-0,1516 
-0,0234 
-0,0233 
0,1092 

-0,3754 
-0,2336 
-0,2328 
-0,0947 

-0,4266 
-0,3063 
-0,3040 
-0,1803 

0,0330 
0,1530 
0,1549 
0,2779 

-0,8175 
-0,4586 
-0,4445 
-0,0920 

-1,2557 
-0,6641 
-0,6495 
-0,0471 

FRN 
-0,2111 
-0,0876 
-0,0847 
0,0447 

-0,1071 
0,0022 
0,0027 
0,1105 

-0,1534 
-0,0369 
-0,0335 
0,0819 

-0,2446 
-0,1230 
-0,1263 
0,0007 

-0,3938 
-0,2864 
-0,2831 
-0,1739 

-0,0961 
0,0193 
0,0176 
0,1321 

-0,6696 
-0,3503 
-0,3420 
-0,0160 

-1,2482 
-0,6647 
-0,6682 
-0,0924 

ITL 
-0,2111 
-0,0627 
-0,0621 
0,0893 

-0,0110 
0,1196 
0,1226 
0,2484 

-0,1812 
-0,0401 
-0,0374 
0,1013 

-0,2689 
-0,1204 
-0,1190 
0,0259 

-0,5101 
-0,3803 
-0,3768 
-0,2481 

-0,1214 
0,0161 
0,0201 
0,1584 

-0,3923 
-0,0138 
-0,0148 
0,3149 

-1,1558 
-0,4765 
-0,4726 
0,1960 

SPN 
-0,2266 
-0,1004 
-0,0987 
0,0364 

-0,0309 
0,0879 
0,0917 
0,2017 

-0,0352 
0,0860 
0,0913 
0,2119 

-0,4232 
-0,2953 
-0,2941 
-0,1644 

-0,3967 
-0,2803 
-0,2742 
-0.1633 

-0,1179 
0,0011 
0,0027 
0,1187 

-0,8722 
-0,5151 
-0,5067 
-0,1464 

-1,8280 
-1,2416 
-1,2253 
-0,6380 

Note: For each lag the first quartile, the mean, the median, and the third 
quaríile are reported 
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Table 5. Testing the nuil: F(q) = F(q1). Common shock 

all lags lag 12 lag 24 cumul 12 cumul 24 

joint 0,5640 
(0.0000) 

0.1275 
(0.0000) 

0,1853 
(0.0000) 

0.1822 
(0.0000) 

0.1935 
(0.0000) 

Ger vs Frn 0,3615 
(0.0000) 

0,0222 
(0.2668) 

0,1795 
(0.0000) 

0.0268 
(0.1100) 

0.0268 
(0.1100) 

Ger vs itl 0,2965 
(0.0000) 

0,0833 
(0.0000) 

0.1648 
(0.0000) 

0,1728 
(0.0000) 

0.0370 
(0.0079) 

Ger vs Spn 0,3095 
(0.0000) 

0,0707 
(0.0005) 

0,2150 
(0.0000) 

0,0212 
(0.3175) 

0.1442 
(0.0000) 

Frn vs Itl 0,2658 
(0.0000) 

0,1430 
(0.0000) 

0.0148 
(0.7644) 

0,1328 
(0.0000) 

0.0308 
(0.0436) 

Frn vs Spn 0,4812 
(0.0000) 

0,1060 
(0.0000) 

0.0185 
(0.4881) 

0,0435 
(0.0010) 

0,1570 
(0.0000) 

Itl vs Spn 0,3405 
(0.0000) 

0,0305 
(0.0464) 

0.0197 
(0.4951) 

0,2290 
(0.0000) 

0.2188 
(0.0000) 

Note: numbers represent the Kolmogorov-Smirnov statistics. 
P-values in brackets. 



ü T - i n 

o ' o " 

O) T f 
c o C J 
o " 

I I 
o p 

(O 
o 
u. 
Q 

i? o c ? . 

o o 

co CD «J 
c c 

CD t o 
c c 

t n to 

CM O 
9 9" 

o 00 
T 9 

c o 00 CNJ c o 

o " o " 

CD 

t 
CO 

co 

O 

CO 

ffl 

o 
c o to 

00 CD T -

CO c o 

d " o " 

o 
o c s í 

d 

c o CD 
o " 

i f j 1 -

(0 5 

CM C» 
T - CM 
o " o " 

1 I 

c: 0 .«o c: 
CD 

1 
5 

O 
u. 
Q 

(O 

m 

00 
— C3 

2 
C O c o CD c o 

= 9 

00 CD CM 
o " o " 

CO CD CO 
•= d 

CD T- c o 
co_ 

CM CM CO 

Ul 
O 

S co 
o 

o T-" 
C O T j -
C M i n 

(O 

ffl 
(D T - t o c o 

= d 

(O c o 

n 
a> 
> . 

T3 C O u 
V 

(O 

u 

(O 

a. 



o 

(A 
U 
O 
w 
>» 
o 

o 
Q. 

<D 
C 
O 
E 

2 
o 

<0̂  
.<!> 
•6 

.2 § 
•o co 
i § 
« c 1= o 
nj (O O) "c: 
> » <B 

c S o p 4- o 

3 
O 

O 

LU 
• 

(O 

o 
tn c o a. 

O) 
c 

9" 
co 

co 

o 
V 
\/ 
V 

Q. RS 
a 
w 
E 
H 

cd cd cd cd cd 

c c c c c c 

o o o o o o >n m fN lo —1 —1 
o o o o 

l i l i 
o —' I I 

o o o o o o 
C M > 0 > 0 T j -

o o o o l i l i o —1 I I 

5 
o 
CD 

O 
CO 

O 
co 

o 
T— 

o 
(35 

O 
CN 

o" 
1 

cp* o" 
1 

o" 
1 

cp o" 
i 

CSÍ 

O O O T C3 O 
V V V U. V V 
TT U. "ii" V LL LL 

<o 
^ 5 E o> ,2 .2 

oo ^ 
S = o» o 

'o' 

o -o 

(0 
> 5 

co 
•D 

(O 

t f 
(O o 

> "O 

I O 

(0 o 
E fc 
ra re 
Oí m 

o> en 
0> O) 

42 42 
(D O) 
E E 
(O w 
•o -o c c 
re re 
j= x: ü o 
re JO 

o O 

o 

^ a 
oo Q. 
CJ> •-: 

i ! 
re JS 
i - T3 
x: o 
UJ Q 

o 
o 
o 

D 

O 
en 

I 
13 O 00 



106 

T a b l e 8. T e s t i n g the nui l : F(q) = F(q1). T i m e v a r y i n g 

m o d e l . Id iosyncra t i c s h o c k s 

all countries 

1994 1995 1996 1997 1998 

all lags 0.3615 
(0.0000) 

0.3195 
(0.0000) 

0.3117 
(0.0000) 

0.3027 
(0.0000) 

0.2533 
(0.0000) 

lag 12 0.0867 
(0.0012) 

0.0265 
(0.1161 ) 

0.0597 
(0.0000) 

0.0648 
(0.0000) 

0.039 
(0.0043) 

lag 24 0.0288 
(0.0704) 

0.107 
(0.0000) 

0.0495 
(0.0001) 

0.0445 
(0.0007) 

0.072 
(0.0000) 

cumul 12 0.0153 
(0.7280) 

0.019 
(0.4538) 

0.0158 
(0.6907) 

0.0543 
(0.0000) 

0.0215 
(0.3042) 

cumul 24 0.0158 
(0.6907) 

0.0155 
(0.7094) 

0.0183 
(0.5055) 

0.0268 0.0112 
(0.1100) (0.9565) 

Note: numbers represent the Kolmogorov-Smimov statistics. 
P-values in brackets. 



Table 9. Impact of idiosyncratic monetary policy shocks 
Several lags. All countries. All years 

lag 6 lag 12 

1994 1995 1996 1997 1998 1994 1995 1996 1997 1998 

GER 
-0,158 
-0,001 
0,157 

-0,170 
-0,015 
0,138 

-0,175 
-0,022 
0,131 

-0,392 
-0,221 
-0,048 

-0,222 
-0,030 
0,163 

-0,388 
-0,212 
-0,040 

-0,325 
-0,141 
0,019 

-0,347 
-0,179 
-0,026 

-0,189 
-0,009 
0,162 

-0,262 
•0,067 
0,124 

FRN 
-0,121 
0,043 
0,206 

-0,218 
-0,072 
0,073 

-0,123 
0,027 
0,169 

-0,396 
-0,229 
-0,061 

-0,196 
0,003 
0,203 

-0,454 
-0,286 
-0,128 

-0,309 
-0,135 
0,025 

-0,356 
-0,206 
-0,067 

-0,257 
-0,086 
0,084 

-0,237 
-0,046 
0,141 

ITL 
-0,122 
0,041 
0,198 

-0,204 
-0,050 
0,108 

-0,175 
-0,011 
0,146 

-0,357 
-0,180 
-0,003 

-0,203 
-0,005 
0,193 

-0,412 
-0,229 
-0,058 

-0,281 
-0,103 
0,063 

-0,303 
-0,134 
0,025 

-0,234 
-0,052 
0,122 

-0,203 
-0,002 
0,188 

SPN 
-0,088 
0,068 
0,224 

-0,181 
-0,036 
0,112 

-0,210 
-0,052 
0,092 

-0,375 
-0,202 
-0,029 

-0,196 
0,006 
0,204 

-0,425 
-0,246 
-0,074 

-0,295 
-0,113 
0,048 

-0,313 
-0,160 
-0,021 

-0,243 
-0,071 
0,095 

-0,223 
-0,028 
0,164 

lag 18 lag 24 

1994 1995 1996 1997 1998 1994 1995 1996 1997 1998 

GER 
-0,436 
-0,277 
-0,119 

-0,380 
-0,234 
-0,087 

-0,318 
-0,151 
0,013 

-0,226 
-0,049 
0,125 

-0,269 
-0,087 
0,095 

-0,326 
-0,160 
0,008 

-0,102 
0,047 
0,188 

-0,094 
0,063 
0,225 

-0,144 
0,012 
0,164 

-0,255 
-0,091 
0,082 

FRN 
-0,396 
-0,251 
-0,111 

-0,369 
-0,222 
-0,080 

-0,284 
-0,127 
0,030 

-0,122 
0,042 
0,205 

-0,248 
-0,065 
0,118 

-0,319 
-0,152 
0,020 

-0,041 
0,089 
0,216 

-0,077 
0,079 
0,242 

-0,167 
-0,031 
0,102 

-0,144 
0,015 
0,184 

ITL 
-0,470 
-0,316 
-0,167 

-0,359 
-0,196 
-0,046 

-0,284 
-0,121 
0,044 

-0,233 
-0,057 
0,120 

-0,286 
-0,090 
0,100 

-0,296 
-0,134 
0,034 

-0,120 
0,035 
0,184 

-0,150 
0,019 
0,186 

-0,183 
-0,029 
0,118 

-0,207 
-0,038 
0,135 

SPN 
-0,465 
-0,305 
-0,151 

-0,367 
-0,210 
-0,058 

-0,309 
-0,153 
0,001 

-0,181 
-0,011 
0,158 

-0,290 
-0,109 
0,076 

-0,306 
-0,143 
0,022 

-0,161 
-0,013 
0,132 

-0,080 
0,083 
0,248 

-0,143 
-0,004 
0,135 

-0,190 
-0,029 
0,136 

cumul 12 cumul 24 

1994 1995 1996 1997 1998 1994 1995 1996 1997 1998 

GER 
-2,141 
-1,142 
-0,283 

-2,361 
-1,459 
-0,608 

-2,302 
-1,316 
-0,536 

-2,461 
-1,518 
-0,712 

-2,002 
-0,958 
-0,024 

-4,681 
-2,930 
-1,492 

-4,738 
-2,965 
-1,570 

-4,304 
-2,586 
-1,330 

-3,880 
-1,983 
-0,636 

-2,911 
-0,966 
0,562 

FRN 
-2,154 
-1,161 
-0,283 

-2,453 
-1,558 
-0,727 

-2,358 
-1,372 
-0,577 

-2,649 
-1,716 
-0,915 

-1,964 
-0,975 
-0,069 

-4,832 
-3,048 
-1,617 

-4,806 
-3,023 
-1,718 

-4,347 
-2,606 
-1,380 

-4,021 
-2,119 
-0,739 

-2,850 
-0,976 
0,527 

ITL 
-2,160 
-1,165 
-0,302 

-2,416 
-1,490 
-0,646 

-2,312 
-1,324 
-0,555 

-2,414 
-1,485 
-0,706 

-1,944 
-0,886 
0,029 

-4,798 
-3,045 
-1,644 

-4,753 
-2,954 
-1,613 

-4,325 
-2,558 
-1,311 

-3,826 
-1,951 
-0,634 

-2,781 
-0,874 
0,664 

SPN 
-2,117 
-1,124 
-0,292 

-2,468 
-1,529 
-0,695 

-2,311 
-1,318 
-0,540 

-2,361 
-1,431 
-0,661 

-1,939 
-0,902 
0,014 

-4,729 
-2,983 
-1,630 

-4,834 
-3,058 
-1,691 

-4,298 
-2,578 
-1,347 

-3,719 
-1,790 
-0,442 

-2,760 
-0,825 
0,694 

Note: For each lag the first quartile, the mean, and the third quartile are reported 
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T a b l e 10. T e s t i n g the n u i l : F(q) = F(q1) . T i m e v a r y i n g 

m o d e l . C o m m o n s h o c k 

all countries 

1994 1995 1996 1997 1998 

all lags 

lag 12 

lag 24 

cumul 12 

cumul 24 

0.1515 
(0.0000) 

0.0115 
(0.9479) 

0.0165 
(0.6342) 

0.0175 
(0.5596) 

0.0062 
(1.0000) 

0.1535 
(0.0000) 

0.0118 
(0.9385) 

0.0245 
(0.1749) 

0.0172 
(0.5781) 

0.0152 
(0.7280) 

0.1318 
(0.0000) 

0.075 
(0.0000) 

0.0195 
(0.421) 

0.0822 
(0.0000) 

0.0183 
(0.5055) 

0.0433 
(0.0011) 

0.0702 
(0.0000) 

0.0158 
(0.6907) 

0.0227 
(0.2438) 

0.0088 
(0.9973) 

0.0068 0.0175 
(1.0000) (0.5596) 

0.0125 0.0063 0.01 
(0.9048) (1.0000) (0.9857) 

Note: numbers represent the Kolmogorov-Smirnov statistics. 
P-values in brackets. 



Table 11. Impact of a common monetary policy shock, 
Several lags. All countries. All years 

laq 6 laq 12 

1994 1995 1996 1997 1998 1994 1995 1996 1997 1998 

GER 
-0,422 
0,008 
0,431 

-0,352 
-0,022 
0,324 

-0,368 
-0,050 
0,283 

-0,506 
•0,240 
0,043 

-0,688 
-0,366 
0,019 

-0,221 
0,055 
0,328 

-0,346 
-0,073 
0,201 

-0,392 
-0,139 
0,128 

-0,308 
-0,031 
0,255 

-0,084 
0,212 
0,506 

FRN 
-0,423 
0,008 
0,433 

-0,335 
-0,020 
0,329 

-0,390 
-0,071 
0,252 

-0,546 
-0,271 
0,005 

-0,704 
-0,372 
0,020 

-0,196 
0,075 
0,349 

-0,318 
-0,065 
0,210 

-0,430 
-0,187 
0,067 

-0,327 
-0,056 
0,224 

-0,060 
0,232 
0,525 

ITL 
-0,427 
0,010 
0,438 

-0,377 
-0,041 
0,319 

-0,439 
-0,107 
0,236 

-0,518 
•0,251 
0,025 

-0,685 
•0,355 
0,028 

-0,225 
0,053 
0,324 

-0,330 
-0,068 
0,212 

-0,329 
-0,078 
0,176 

-0,317 
-0,035 
0,260 

-0,087 
0,213 
0,515 

SPN 
-0,428 
0,004 
0,415 

-0,407 
-0,076 
0,276 

-0,387 
-0,071 
0,260 

-0,525 
-0,255 
0,022 

-0,687 
-0,357 
0,029 

-0,220 
0,048 
0,316 

-0,350 
•0,085 
0,195 

-0,386 
-0,136 
0,119 

-0,292 
-0,013 
0,272 

-0,050 
0,240 
0,545 

lag 18 lag 24 

1994 1995 1996 1997 1998 1994 1995 1996 1997 1998 

GER 
-0,716 
-0,456 
-0,214 

-0,587 
-0,288 
-0,025 

-0,479 
-0,142 
0,154 

-0,627 
-0,277 
-0,046 

-0,583 
-0,201 
0,028 

-0,566 
-0,275 
-0,008 

-0,505 
-0,281 
-0,049 

-0,522 
-0,256 
0,001 

-0,532 
-0,255 
0,014 

-0,511 
-0,206 
0,100 

FRN 
-0,761 
-0,497 
-0,250 

-0,636 
-0,338 
-0,078 

-0,488 
-0,152 
0,150 

-0,565 
-0,212 
0,022 

-0,586 
-0,201 
0,034 

-0,556 
-0,274 
-0,005 

-0,527 
-0,311 
-0,083 

-0,576 
-0,299 
-0,041 

-0,622 
-0,341 
-0,075 

-0,550 
-0,246 
0,052 

ITL 
-0,775 
-0,504 
-0,250 

-0,593 
-0,297 
-0,028 

-0,482 
-0,149 
0,147 

-0,583 
-0,229 
0,012 

-0,581 
-0,202 
0,024 

-0,541 
-0,250 
0,024 

-0,494 
-0,279 
-0,046 

-0,547 
-0,274 
-0,017 

-0,587 
-0,311 
-0,043 

-0,550 
-0,234 
0,080 

SPN 
-0,698 
-0,434 
-0,185 

-0,583 
-0,282 
-0,015 

-0,470 
-0,138 
0,164 

-0,573 
-0,219 
0,021 

-0,554 
•0,173 
0,064 

-0,551 
-0,262 
0,009 

-0,543 
-0,315 
-0,082 

-0,527 
-0,258 
0,004 

-0,551 
-0,277 
-0,010 

-0,507 
-0,192 
0,110 

cumul 12 cumul 24 

1994 1995 1996 1997 1998 1994 1995 1996 1997 1998 

GER 
-0,805 
0,458 
1,664 

-0,842 
0,246 
1,353 

-1,332 
-0,153 
1,099 

-1,481 
-0,506 
0,491 

-1,725 
-0,458 
0,833 

-2,343 
-0,805 
0,743 

-2,456 
-1,151 
0,222 

-2,447 
-0,994 
0,551 

-2,244 
-0,827 
0,601 

-1,980 
-0,204 
1,507 

FRN 
-0,781 
0.439 
1,642 

-0,769 
0,300 
1,418 

-1,307 
-0.139 
1,122 

-1,560 
-0,615 
0,410 

-1,707 
-0.468 
0,794 

-2,330 
-0.790 
0,743 

-2,450 
-1,120 
0,270 

-2,406 
-0.971 
0,577 

-2,297 
-0,857 
0,617 

-2,000 
-0.188 
1,552 

ITL 
-0,731 
0,498 
1,715 

-0,905 
0,182 
1,302 

-1,402 
-0,203 
1,039 

-1,505 
-0,570 
0,431 

-1,668 
-0,454 
0,812 

-2,330 
-0,790 
0,743 

-2,450 
-1,120 
0,270 

-2,406 
-0,971 
0,577 

-2,297 
-0,857 
0,617 

-2,000 
-0,188 
1,552 

SPN 
-0,769 
0,454 
1,667 

-0,923 
0,187 
1,326 

-1,354 
-0,169 
1,075 

-1,454 
-0,491 
0,498 

-1,660 
-0,431 
0,843 

-2,342 
-0,814 
0,691 

-2,572 
-1,256 
0,151 

-2,468 
-1,004 
0,538 

-2,190 
-0,795 
0,682 

-2,039 
-0,209 
1,557 

Note: For each lag the first quartile, the mean, and the third quartile are reported 



Table 12. Mean estimated impact of idiosyncratic monetary 
policy shocks . Several lags. All years 

1994 1995 1996 1997 1998 

lagl 1st Qu. -0,226 -0.175 -0,080 -0,256 -0,510 
Mean •0,065 -0,044 0,078 •0,080 -0,324 

Median -0,069 -0,043 0,073 •0,091 -0,344 
3rd Qu. 0.096 0,088 0,228 0,086 -0,143 

lag 6 1st Qu. -0,114 -0,174 -0,162 -0,347 -0,199 
Mean 0.034 -0,040 -0.024 -0.189 -0,016 

Median 0.029 -0,036 -0,037 -0,196 •0.020 
3rd Qu. 0,175 0,089 0,104 -0,036 0,169 

lag 9 Ist Qu. -0,460 -0.553 -0,409 -0,615 -0,420 
Mean -0.295 -0,410 -0,251 -0.457 •0,236 

Median -0,306 -0,412 -0.252 -0,447 -0,232 
3rd Qu. -0.143 -0,264 -0.101 -0,296 -0,052 

lag 12 1st Qu. -0,401 -0,293 -0,302 -0,222 -0.210 
Mean -0,238 -0,131 -0,161 -0.058 -0.037 

Median -0.249 -0,139 -0.168 -0,067 -0,038 
3rd Qu. -0,086 0,009 -0,030 0,094 0,129 

lag 18 1st Qu. -0,423 -0,346 -0,278 -0,184 -0,249 
Mean -0.284 -0,215 -0,136 -0,026 •0,084 

Median -0,286 -0,222 -0,136 -0,029 -0,077 
3rd Qu. -0,151 -0.092 0,004 0,128 0,086 

lag 24 1st Qu. -0,279 -0,100 -0,084 -0,138 -0,179 
Mean -0,138 0,031 0.056 -0,012 -0,035 

Median -0.136 0,024 0,063 •0,019 -0,027 
3rd Qu. 0,011 0,152 0,201 0,110 0,120 

cumul 12 1st Qu. -2,158 -2,354 -2,278 -2,401 -1,952 
Mean -1,167 -1,485 -1,348 -1,499 -0,959 

Median -1,245 -1,637 -1,501 -1,574 -1,055 
3rd Qu. -0,357 -0,672 -0,614 -0,760 -0,094 

cumul 24 1st Qu. -3,862 -3,881 -3,588 -3,312 -2,562 
Mean -2.222 -2,231 -2,138 -1,700 -1,008 

Median -2,703 -2,695 -2,558 -1,995 -1,158 
3rd Qu. -1,209 -1,172 -1,180 -0,624 -0,324 

Note: For each lag the first quartile. the mean, the median, and the 
third quartile are reported 



Table 13. Mean estimated impact of a common monetary 
policy shock. Several lags. All years 

Iag1 

lag 6 

lag 9 

lag 12 

lag 18 

lag 24 

cumul 12 

cumul 24 

1994 1995 1996 1997 1998 

1st Qu. -0,363 -0,337 -0,250 -0,265 -0,270 
Mean •0,069 -0,058 0,028 0,047 0,072 

Median -0,058 •0,081 0,021 0,074 0,126 
3rd Qu. 0,217 0,205 0,274 0.375 0,467 

1st Qu. -0,427 -0,359 -0,391 -0,507 -0,673 
Mean 0,004 -0,038 -0,078 -0,252 -0,361 

Median 0,060 -0,047 -0,091 -0,257 -0,366 
3rd Qu. 0,420 0,312 0,241 0,017 0,022 

1st Qu. -0,690 -0.890 -0,982 -1.289 -1,395 
Mean -0,340 -0,559 •0,652 -0,959 -0,958 

Median -0,366 -0,599 -0,671 -0,922 -0,931 
3rd Qu. -0,032 -0,219 -0,332 -0,575 -0,550 

1st Qu. -0,207 -0,313 -0,372 -0,300 -0,071 
Mean 0,052 -0,070 -0,130 -0,030 0,216 

Median 0,059 -0,059 -0,134 -0,008 0,211 
3rd Qu. 0,312 0,188 0,119 0,247 0,511 

1st Qu. -0,718 -0,592 -0,481 -0,567 -0,561 
Mean -0,465 -0,300 -0,154 -0,229 -0,195 

Median -0,491 -0,345 -0,242 •0,309 -0,297 
3rd Qu. -0,237 -0,052 0,136 -0,003 0,024 

1st Qu. -0,545 -0,507 -0,523 -0,553 -0,517 
Mean -0,266 -0,294 -0,272 -0,293 -0,223 

Median -0,256 -0,286 -0,274 -0,296 -0,253 
3rd Qu. -0,014 -0,077 -0,030 -0,050 0,071 

1st Qu. -0,689 -0,781 -1.354 -1.631 -1,771 
Mean 0,475 0,205 -0,252 -0,640 •0,469 

Median 0,465 0,283 -0,199 -0,491 -0,412 
3rd Qu. 1,633 1,249 0.874 0,330 0.773 

1st Qu. -2,071 -2,148 -2,192 -1,878 -1.673 
Mean -0,625 -0,971 -0,900 -0,701 -0,011 

Median -0,528 -0,845 -0,817 -0,599 -0,121 
3rd Qu. 0,808 0,361 0,543 0,562 1,680 

Note: For each lag the first quartile, the mean, the median, and the 
third quartile are reported 
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Figure 1. G e r m á n parameters in own reaction function 
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Figure 2. F r e n c h parameters in own react ion funct ion 
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Figure 3. Italian parameters in own reaction function 
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Figure 4. S p a n i s h parameters In own react ion funct ion 
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Figure 5. Volatilities in non-German countries 
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F i g u r e 6. IVIonetary p o l i c y s l i o c k s 
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Figure 7. Impact of idiosyncratic shocks. Several lags. All countries. All years 
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Figure 8. impact of a common shocl<. Several lags. All countries. All years 
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Figure 9. Euro-wide impact of idiosyncratic and common shocits 
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Chapter 4 

Testing Restrictions in Normal 
Data Models Using Gibbs 
Sampling 

Lo más trágico no es ser mediocre pero inconsciente de esa mediocridad; lo más trágico es 

ser mediocre y saber que se es asi y no conformarse con ese destino que, por otra parte (éso 

es lo peor) es de estricta justicia. 

(Mario Benedetti, La Tregua) 

4.1 Introduction 

In these paper we consider the simple problem of testing the vector of restrictions R(0) = O, 

where ^ G 0 is the unknown parameter vector of a model for the data Y, defined by a 

normal pdf, (t)(Y \ 6). The aim is to form a posterior probability for the truth of the set 

of restrictions, conditional to the data. The paper can also be considered as a further 

iUustration of the versatility and ease of practical implementation of the Gibbs sampler, 

a sampling-based approach proposed by Geman and Geman (1984) and popularized by 

GeKand and Snoith (1990) to calcúlate marginal posterior densities in complex hierarchical 

models. The setting of the problem and its solution are purely Bayesian, but the results 

are easily comparable (at least in terms of interpretation) with the classical approach to 
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testing. 

Traditionally, the comparison of two or more parametric (not necessarily nested) models 

in the Bayesian framework is based on posterior model probabilities. In the simplest case 

in which we have two models or hypotheses, HQ, HI with prior probabilities p (HQ), p (Hi), 

the statistic that is most frequently employed to compare HQ and Hi is the posterior odds 

(PO) ratio 

p{Ho\y) ^PÍy\Ho)p{Ho) 
p{Hi\y) p{y\Hi)p{Hi) 

If the loss is one for choosing the incorrect model and zero for choosing the correct one, 

then we select model Ho if this ratio is greater than one.-̂  

This way of comparing and eventually choosing between two models is feasible when 

all priors involved are informative. In fact, the marginal likehhood m(y) = p{y\ Hk) is 

generally obtained computing the integral 

m (y) = J p{^k)p{y\A)dék (4.1) 

where Í?̂  denotes the vector of all the parameters of model k. In some very elementary 

cases this integral can be analytically tractable (Zellner, 1971, ch.lO). However, when the 

dimensión of the parameter vector increases, the integration can hardly be an easy task, and 

must be overeóme with a Monte Cario method. Chib (1995) developed an approach based 

on the simple fact that m {y), by virtue of being the normalizing constant of the posterior 

density, can be written as 

where the numerator is the product of the sampUng density and the prior, with all integrat-

ing constants included, and p (i9 | y) is the posterior density of For a given •d (the M L 

1 In fact the model with the highest posterior probability p [Hk | D) must be chosen (and this rule is optimal, 
in the sense described by Zellner, 1971, pp.294-297), provided we can define a symmetric loss structure. For 
discussion and applications of other loss functions, see Schorfheide (2000). 
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estimate, for instance), the latter quantity can be estimated with the Rao-Blackwellization 

technique suggested by Gelfand and Smith (1990), using the Gibbs output, while the nu-

merator is easily evaluated at the same chosen. In order to compute the marginal density 

m(y), it is important that all integrating constants of the full conditional distribution of 

the Gibbs sampler be known. 

Since non diffiíse prior information affects posterior odds in both small and large samples, 

a special care must be exercised in representing the prior information to be employed in 

the analysis. In many situations a vague or diffuse prior information needs to be employed. 

When the prior information on the parameters is vague or diffuse, the posterior odds ratio 

cannot be calculated. In this case Lindley (1965) suggested a procedure that, for many 

problems leads to tests which are computationally equivalent to sampling-theory tests. 

This procedure uses a Bayesian confidence región. If we have a joint hypothesis about two 

or more parameters, say 9, a Bayesian "highest posterior density" confidence región for 9 

is first obtained with a given probabihty content 1 — a. If om- hypothesis is for example 

9 = 9o, where 9o is a given vector, we accept if 9o is contained in the confidence región and 

reject otherwise at the a level of significance.^ 

This procedure is appropriate only when prior information is vague or diffuse, otherwise 

it is important to take into accoimt any prior knowledge. Consider a simple hypothesis 

9 = 9o, where 9o is a valué suggested by the theory. In this case, it is reasonable to beUeve 

that 9o is a more probable valué for 9 than any other. Thus, a testing procedure that aUows 

to incorpórate non diffuse prior information is needed, and the comparison of alternative 

hypotheses might be based on the posterior odds ratio. In fact, as shown in Zellner (1971, 

p. 304), as sample size increases a "sampling theory test of significance can give results 

2 See Zellner, 1971, p. 298-302, for details. Notice that in most problems the interval (región) is numer-
ically exactly the same as a sampling theory confidence interval (región) but is given an entirely different 
interpretation in the Bayesian approach. 
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difFering markedly from those obtained from a calculation of posterior probabilities which 

takes account of non-diíFuse prior and sample information". For large sample sizes, the 

paradox of obtaining a probability of ^ = cióse to one even in regions that would lead 

to rejection of the hypothesis 0 = 60 can arise (Lindley's paradox). 

The aim of this paper is to test the set of restrictions R{6) = O in a complex hierarchical 

model with a procedure that avoids the computational diíficulties of the P O ratio and could 

be used under diffuse and non diffuse prior information. The rationale of the approach is very 

simple, being based on the comparison between two distributions which are immediately 

obtained in the Gibbs sampler. One is the posterior distribution of O and the other is the 

posterior distribution of the parameter vector under the restriction. The degree of overlap 

of the two distributions provides a criterium to verify the restriction: the larger the distance 

between these two posterior distributions, the higher the (posterior) probability of rejecting 

the nuil. The idea is closer in spirit to Lindley's suggestion and can be considered as the 

Bayesian versión of the classical Wald type tests. This similarity and the fact that the 

properties of the approach we propose are analyzed to a large extent using the sampling 

properties of the estimators involved, should make the approach attractive also to classical 

sampling-theory econometricians. 

W i t h the help of several simulation experiments, we find that this empirical method has 

very good properties in terms of power and size of the test, imder different prior assumptions, 

and is competitive with the standard P O ratio both in smaD and in large samples. As the 

sample size increases, simulations do not seem to give rise to Lindley's paradox when prior 

information is vague or diffuse. 

The paper is organized as follows. Section 2 describes the empirical approach. Section 3 

discusses the design of the Monte Cario study. In section 4 we analyze the properties of the 
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test in terms of power and imbiasedness in several simulation experiments, under different 

asstmiptions on the prior information, and compare with PO ratio when informative priors 

are used. Section 5 concludes. 

4.2 An empirical approach 

In many circumstances it is reasonable to assume lineaxity. So, let the model be 

y = Xe + e (4.2) 

where y is a vector of dimensions n x l , X i s a n x f c matrix of explanatory variables and 

e is a vector of disturbances of dimensions n x 1. Notice that under the assumption of 

linearity, several possible specification can be adapted. As a matter of fact, Eq . (1) can 

refer to both univariate and multivariate models; matrix X can contain lagged endogenous 

and exogenous variables; data can proceed from cross section, time series or panel analysis, 

dimensions changing accordingly in the specification (4.2). 

Let U S assiune normaUty 

£ - i V ( 0 , S e ) , (4.3) 

where is the error term variance-covariance matrix of dimensions n x n, and model the 

population structiu-e as 

9r.N{Aoe,i:e) (4.4) 

where AQ is a known matrix of dimensions k x m, relating the regression vector 0 to a 

parameter vector 0 oí dimensions m x 1, possibly with m<k, and is the kxk variance-

covariance matrix of the random vector 9. 

Notice that this is a hierarchical model of the kind introduced by Lindley and Smith 
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(1972), whose applications abound in fields as different as educational testing (Rubin 1981), 

medicine (DuMouchel and Harris 1983), and economics (Hsiao et al., 1998). 

A full implementation of the Bayesian approach is easily achieved - at least for the 

normal Unear hierarchical model structure -using the Gibbs sampler. It reqviires the spec­

ification of a prior for Eg, O and Tig. Assuming independence, as it is customary, we may 

take the joint prior distribution 

p {6, E -1 ) = p ( ^ p (S,-i) p (E¿-i) 

to have, for example, a normal-Wishart-Wishart form: 

p (s , - i ) = i y [ ( t ó ) - \ o - e 

p{i:-^) = w\{aeSe)-\ae 

where A\ is a known matrix of dimensions m x p, relating the regression vector ^ to a 

parameter vector ¡i of dimensions p x 1, possibly with p < m, while the hyperparameters 

H, C, Ce, Se, erg, Sg are assiuned all known. The notation W [ ñ , w ] identifies a Wishart 

distribution with uj degrees of freedom and scale matrix f2. 

The imfeasible integrability of this model to get the posterior distributions of interest 

justifies the use of the Gibbs sampler. Typical inferences of interest in such studies include 

marginal posteriors for the population parameters 6 or 6. Our purpose is to show how these 

inferences can be achieved by using the Gibbs sampling output in a very natural way. 

In particular, let us concéntrate our attention on 6. It is easy to show that the posterior 

distribution of 0 conditional on E j ^ , S¿"^, ̂ , y, is of the form 

p(0\i:;\E^\0,y) = N{9*,V*) (4.5) 
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where 

V* = {C-' + A'oE^'Ao)-' 

Suppose now that we are interested in testing the set of linear restrictions 

R9 = r 

(4.6) 

(4.7) 

(4.8) 

where ñ is a known matrix of dimensions s x m, with s < m. FYom (4.5) we have the 

additional information that, conditional on E^, E.^ ^, O, y, the quadratic form 

q=[R{9-9*)]' [RV*R'] ^[R{9-9*) (4.9) 

is distributed as a x^^gy The marginal posterior distribution of this quantity can easily 

be obtained in the Gibbs sampling. It provides a rational for examining the posterior 

plausibility of the set of linear restrictions (4.8). As a matter of fact, according to (4.9), 

the probability that R9 would equal r is related to the probability that, at each iteration 

of the Monte Cario, a xfs) variable would assiune the valué 

qi = \R9 - r]' [RV*R'] ^ \R9 - r (4.10) 

Therefore, the probability that a xfs) variable could exceed this magnitude represents the 

probability that the random variable R9 might be as far from the posterior mean R9* as is 

represented by the point R9* = r. 

Provided we can obtain the empirical posterior distributions of g e gi , in order to 

construct a rejection región it is sufScient to compare these two distributions. The larger 

the distance between q and ^ i , the greater is the probability, a posteriori, of rejecting the 

nuil. 
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Notice that, based on the comparison between (4.9) and (4.10), we are not testing the 

exact restriction (4.8), but rather the fact that RJ9 is distributed a posteriori around r.^ 

It is immediate to see that the prior hyperparameters can be specified in such a way 

that they reflect vague initial information relative to that to be provided by the data. It is 

enough to assume, for example, an infinite tmcertainty on the second stage of the hierarchy, 

by taking = 0. Under this prior assumption, (4.6) and (4.7) change accordingly without 

modifying the characteristics of the testing discussed above. 

The idea behind the approach is basically the same as in the classical Wald test, where 

we compare two distributions: one under the nuil, which is asymptotically xf^sy and the 

other under the alternative. The greater is the nvunerical valué of the quadratic form 

where the set of restrictions has been substituted, the more likely this valué belongs to the 

distribution imder the alternative, which is a non-central Here (4.9) plays the role of 

the distribution under the nuil. The main dificrence is that this is an exact distribution 

whose posterior can be computed empirically and used to make probability assessments 

in a Bayesian fashion. On the other hand, the posterior distribution of (4.10) (and not 

just one valué, as in the classical analysis) can also be computed and compared with (4.9). 

The greater is the distance between the two posterior distributions, the more hkely the 

restriction we put is converting the reference distribution in a non-central one, and the 

more hkely we reject the nuil. 

There are several ways of measuring this distance, beside the graphical overlap. The 

3 The test of the exact restriction can be conducted instead by constructing the quadratic form 

92 = [r - üS']' [RV*IÍ] [r - BB'] . 

In a Bayesian set up hke the one described above, previous works (see Hsiao et al., 1998, for references) have 
shown that the estimates of the average coefficients (̂ *) have a very reduced bias, even in a dynamic panel 
data model. Therefore, it is very likely that, when the nuil is true, the distance [r — BB*} would be much 
lower than [i?̂  —r] in the same metric [RV'R!]~^, henee leading to a much lower nimiber of rejections, 
given the size of the test. Since several simulation experiments (not shown) confirmed this finding, we prefer 
to base our reasoning on the comparison between q and qi. 
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simplest one can be based on a test on the means of the distributions of q and q,. More 

sophisticated nonparametric methods can concern the comparison of the cumulative distri­

bution functions (cdf) of q and qi {Kolmogorov-Smimov Goodness-of-Fit test), as well as of 

the percentiles of the empirical posterior density functions of the two quantities {one-sample 

sign test). 

Notice that this framework can be adapted to non linear restrictions as well. Concretely, 

assume the foUowing nuU hypothesis 

where í> is a vector of non linear function of 9. The method can be accomplished by 

linearizing the function ^ {9), for example, around the conditional posterior mean of 9 with 

a Taylor expansión approximated at the first order 

í> ~ $ ( r ) -t- V $ [9*)' [9 - 9*) 

where V $ {9*) is the gradient of $ {9) computed at 9*. The quadratic forms (4.9) and 

(4.10) then becomes respectively 

g = [$ ( ^ - $ {9*)] (V3> {9*)'V*V^ {9*)Y^ (^ - $ {9*) 

q, ^ [$ [9) - r]' (9*)' V*V^ (^*))~^ [* -

and the reasoning follows as before. 

4.3 The Monte Cario Study 

In order to analyze the statistical properties of the testing procedm-e we take the foUowing 

data generating process for each observation 

ya = ai + piyu-i + en (4.11) 



134 

with i = 1 , A T and í = 1 , T . 

We assume that the distiurbances are generated from 

su - iV(0,<7?) (4.12) 

E{eitejs) = 0 , i^j,t^s 

and 

. ? ~ / o f | 4 ) (4.13) 

where IG ( | , | ) denotes an inverted gamma distribution with shape v and scale b. 

Random coeíficients are obtained from the joint distribution 

/ / \ 
a u \ 

\pi ) / 

(4.14) 

This set up (Eq. (4.11) through (4.14)) can easily be written in terms of (4.2)-(4.4). In 

particular 6 = {Oi,ON)', 6i = («i, pi)\ Ao = ( I 2 , I 2 ) ' , G = (a, p), X = diag {Xi..., XN), 

with Xi = {xii,XÍTY and the matrix = diag (CTJ,aj^). This means that in terms 

of model (4.2)-(4.4), we have: n = NT, k = 2N,m = 2. 

This model specification can be seen as a dynamic heterogeneous panel data model, 

where i denotes the cross sectional dimensión, whereas t is the time dimensión. In a re­

cent paper, Hsiao et al. (1998) show that a hierarchical Bayesian approach, Uke the one 

considered in the previous section, performs reasonably well in the estimation of dynamic 

panel data models relatively to other traditional methods, in the presence of coefficient het­

erogeneity across sectional imits, especially in small samples. Fixed effeet or instrimiental 

variable estimators, neglecting the coefficient heterogeneity, are biased and inconsistent, the 

degree of inconsistency being a fimction of the degree of coeíficient heterogeneity and the 

extent of serial correlation in the regressors. 
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These points motívate to some extent the choice of the data generating process in these 

notes. If we believe that data behave as (4.11) and perhaps we need to make inference on 

the mean of the coefficients, then we might need to estímate the model in a hierarchical 

Bayes fashion. 

In the benchmark simulations the hyperparameters v and 6 are set equal to 6 and 1, 

respectively, while p = 0.4, á = 0.6, cr^ = <T̂  = 0.025, and (Tpa = —0.00625. This choice 

imphes that data are generated form a stationary process {pi lies inside the unit interval) 

with low variabilíty (v = 6 and 8=1 implies that the mean and the standard deviation 

of af are both equal to 0.25) and with population parameters showíng low heterogeneity. 

Three departures from this benchmark situations are analyzed. First, because the degree 

of heterogeneity can be important in the estimation of this model, in most simulation 

experiments we also take Í T | = 0.25, (j^ = 0.05. Second, the case of near non-stationarity 

is also considered by setting a = 0.1 and p = 0.9. Though in principie there is no need to 

restrict data to be stationary, we have been more cautious both i n increasing the variance 

of pi and the true parameter p, because the y series become explosiva with simulated data 

when pi lies outside the imit interval, even with small T . So when it happens that pi lies 

outside the unit interval we genérate pi from a tnmcated normal distribution, by truncating 

the distribution to the unit interval. The problem is that when coefficients are generated 

with such a restriction, the prior distribution must be different and the derivation of the 

Bayes estimators should take this into accoimt. Given the relative complexity, we decided 

not to pursue this adjustment on the prior, because in any case it is interesting to see how 

the test performs without the adjustment. Finally, the case of higher variability of the y i 

series is considered by setting v = 4.2, and 6 = 2. This choice implies that the mean and 

the standard deviation of ÍT? are approximately equal to 1.0 and 3.0 respectively, valúes 



136 

much greater than the benchmark ones. 

The number of cross sectional units is N = 10,20 in aU simulations with T = 150, while 

the number of time data points is T = 10,20 in all simulations in which N = 50. The 

first combination may be typical in a "macro" data field, whereas the second combination 

is more typical in a "micro" panel data set. For each sectional miits T - f 50 data points 

are generated starting from yio r~j Uniform(—0.5,2.). The first 50 observations are then 

dropped in order to reduce the dependency on the initial conditions. 

The number of replications chosen for the Monte Cario is 100 in all cases, while the 

number of rephcations used for the Gibbs sampling is 2500, after discarding the first 500, 

when = 10, 20 with T = 150, and 1500, after discarding the first 500, when T = 10, 20 

in aU cases in which N = 50. Without loss of generality, the nuil hypothesis chosen is 

Ho : a + p = 1 when T = 150. In this case the restriction matrix is R = 1 1 , and 

7" = 1. When AT' = 50 and T is smaller the nuil hypothesis is simply Ho : a = 0.6 (or 

1 O , and r = 0.6 (or Ho : a = 0.1 when the true á is 0.1). Here triviaUy R = 

0.1). The reason for different restrictions according to the sample sizes is simple. When 

the dimensión of the time series is high, the mean coeíficients á and p are estimated with 

much greater precisión than in the case of smaU T. On the contrary, when the time series 

size of each cross section is smaU, relatively to N, the parameter p are usually estimated 

with a downward bias, whereas and as a consequence of this, the estimate of á is upward 

biased. This means that the sum á + p is stiU giving approximately 1, and, as a result, 

the properties of the testing approach woidd be indistinguishable from those in the case of 

T - 150 and N = 20. 

We also briefly comments on the properties of the approach in the case of non hnear 

restrictions. The nuil hypothesis here is Ho : áp = 0.24 (or Ho : áp = 0.09) in aU cases 
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analyzed. 

The procedure for the Monte Cario experiments includes the foUowing steps: (i) genérate 

the data according to Eq. (4.11)-(4.14) and the nimaerical valúes of the hyperparameters 

presented above; (ii) estimate initiaUy the model using the mean group estimator^ and 

subsequently use these estimation results to initialize the Gibbs sampling; (iii) run the Gibbs 

sampling to get the marginal posterior of interest, in particular the posterior distributions 

of 6, (jf, T.Q, q, and qi. Steps (i)-(iii) are then repeated 100 times. 

To analyze the properties of the testing procedure, we pay attention to several aspects. 

For each set of the Monte Cario simulation we consider 20 departures form the true pa­

rameters to be able to compute the power function and to test the distance between the 

posterior distributions of q and qi. Specifically, maintaining fixed the true valué of p (0.4, 

or 0.9), we consider 10 progressively different valúes of a above and below its valué (0.6, or 

0.1). Because the results are pretty much the same, we only show the 10 departures above 

a. Concretely the Monte Cario si performed assmning the true áj progressively equal to 

áj-i + 0.2, with j = 1,.., 11, and QQ = 0.6 or 0.1. FOT each case j, the estimated valúes 

of the parameters are averaged over 100 and so are the distributions of q and q,. In this 

way, for each j we are able to: (i) evalúate the performance of the hierarchical Bayes esti­

mation under different prior assumptions; (ii) compare the means of the distributions of q 

and gi ; (iii) compare the entire distributions of these quantities testing the nuUs of equal 

cdf and equal percentiles of the respective empirical density fvmctions; (iv) get a flavor on 

the size and the imbiasedness of the test; (v) compute the power fimction in a classical 

sampUng-theory fashion; (vi) compare this approach with the standard P O ratio, whenever 

4 For the definition and the properties of the mean group estimator see Pesaran and Smith, (1995). The 
authors show that in the context of dynamic heterogeneous panel data models, this is a consistent estimator. 
Hsiao et. al (1998) then prove the asymptotic equivalence between the fuU Bayesian and the mean group 
estimator. 
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possible. 

The experiment is performed by assimiing the following general prior information 

with 

p{e)=N{fi,c) 

v{(Tt)=IG 1^-,— 

pÍY.-^) = w[iagSer\<Tg 

The simulations explained above are then repeated for most cases under an informative and 

non informative prior on 6. Table 1 resumes the Monte Cario design and in Table 2 the 

valúes of the hyperparameters of the prior chosen in each subcase are reported. 

In the case of non-diffuse or informative prior two further subcases are analyzed, ac­

cording to the valúes given to the hyperparameter vector ¡i. Specifically, in one case we 

take, for each j > 1, ¡ J , = (0.6, 0.4)' (or fj, = (0.1, 0.9)'), while in the other the vector is the 

true one corresponding to j. We consider the former as a way of putting more weight on 

the nuil, and the latter as a way of assigning more weight to the alternative hypothesis. 

The comparison between our approach and the standard P O ratio is possible only when 

the prior is informative. In this case the P O ratio is computed using the technique suggested 

by Chib (1995), as surveyed in section 1. 

4.4 Results 

Tables 3-9 present the simulation results. The posterior estimates, a comparison of the 

distributions of q and gi and the comparison between this approach and the P O ratio are 

reported. 
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In table 3 we show the posterior mean estimates of the parameters of the model and 

of the quantities q and qi. The first colxmm refers to the corresponding column in table 1, 

while the second column gives the true a. Parameter á is estimated quite precisely when 

T = 150, with a bias that falls within the range of O to 40%, both in the informative and 

in the non informative case. The bias increases in small samples (T = 10, or T = 20) and 

in some cases (particularly when data show high variabiUty and the degree of coeíficient 

heterogeneity is high - cases 11, 12, 19) it exceeds 100%. As one would expect, the issue is 

more serious when the prior is diffuse (cases 12 and 19). The characteristics of the bias in 

the estimation of p are similar, though the bias seems to be more reduced with respect to 

the estimation of the constant, falling within the range of 2,5 to 50% in all cases analyzed. 

This performance of the Bayes estimator is not very surprising in view of the fact that all 

the estimation results are derived conditional on initial yio. Previous studies (e.g. BlundeU 

and Bond, 1996) have outfined that the bias due to ignoring initial observation may be 

quite significant in samphng approaches, when the time series dimensión is small. Roughly 

speaking, our results seem to repUcate the featiures obtained in Hsiao et al . (1998), though 

they are not directly comparable because of the diíferent specification of the data generating 

process.^ 

Another feature which confirms the íindings of previous studies is the upward bias in 

the estimation of the posterior elements of the matrix Sg. As discussed in Hsiao et al., these 

results may depend upon the choice of the scale matrix Se, as well as the actual degree of 

coefficient heterogeneity. Our choice of Se and CTQ has followed previous studies on typical 

examples of the Gibbs sampling applications (Gelfand et al., 1990, among others). To check 

the sensitivity of the results we have tried diíferent cholees, according to the sample size 

5 In Hsiao et al. data are generated from a model which does not include the constant term, while consider 
the presence of a stationary explicative variable. 
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and the degree of coefficient heterogeneity in the data generating process. In the cases of 

low heterogeneity and large samples, the Swamy (1971) estimate of seems to give better 

performances in terms of posterior estimates of the elements of this matrix. The estimation 

of Tig is given by 

where áf = e¿£i/ (T — k), and the hats " denote OLS estimation for each cross sectional 

units. 

On the contrary, when the degree of heterogeneity is high and the sample is smaU 

(especially in the time dimensión), the cholee described in table 2 performs better. In both 

cases, the cholee of the scale matrix seems to affect only the posterior estimates of the 

matrix and sometimes the posterior estimates of the other parameters, but not the resiilts 

on the properties of the testing procedure, which is our main concern. 

The last three columns of table 3 report the estimated average posterior mean of the 

variance of the error term, which does not show serious biases in all cases analyzed, and the 

estimated posterior means of the distributions of q and qi. In all cases imder discussion, 

except two concerning the nonlinear restriction (17 and 19), the mean of q is not statistically 

different from the mean of a chi-square with one degree of freedom (not shown). This result 

is more general and applies not only to the posterior mean of q but also to its entire empirical 

posterior distribution, whose draws in all cases analyzed (with the exception of case 17 and 

19) are statistically indistinguishable from those of a xfiy This is not surprising, provided 

the model specification is based on natural conjúgate priors. However, this finding is not 

strictly necessary for the assessment of the goodness of the testing procedure. As a matter 

of fact, the empirical posterior density of q is o m reference distribution, independently of 

its exact shape. In the non linear restriction, when data are generated from a close-to-non-
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stationary model with high variability (cases 17 and 19), approximating at the first order 

the Taylor expansión is probably not enough to get a posterior chi-square for q with the 

right degrees of íreedom. Notwithstanding the comparison between q and qi is still possible. 

As remarked above, this point represents the main difference with the classical hypotheses 

setting where the comparison must be conducted between a single valué of the distribution 

imder the restriction and a critical valué of a standard distribution to which the former 

shoiild asymptoticaUy converge under the nuil. 

Table 4 tests the equality of the posterior means of q and 91. The test is a two sample 

Wilcoxon test and the corresponding p-value is reported.^ For each case, the table presents 

only two of these probabilities. The first (case a) tests the equality when the nuil is true, 

whereas the second (case b) reports the p-value imder the first rejected nuil, when the nuil 

is false. The corresponding colmnn j gives the iteration number in the departures from 

the assumed true valué of á (see previous section). Henee the ideal situation in all cases 

would be to accept when the nuil is true and start rejecting for low valúes of j, i.e., small 

departures from the nuU. Clearly, the cases in which the test rejects the equality of q and 

gi when the nuil is true (j = 1) would reveal a bias in the testing procedure. The tables 

has two sides. The left-hand side refers to the estimation under a non-informative prior, 

while the right-hand side considers an informative prior. In the latter case, two subcases are 

analyzed: one in which more weight is given to the nuil and the other where more weight 

is given to the alternative, as explained i n the previous section. 

A rough look of the table reveáis that in most cases the distributions of q and qi seem 

to share the same locations when j = 1. The only exceptions concern the cases where the 

6 This is a non-parametric technique used to test whether two sets of observations come from the same 
distribution. The alternative hypothesis is that the observations come from distributions with identical shape 
but different locations. Although a standard two-sampled t-test produced the same results, we prefered not 
to use it because it assumes that the observations come from Gaussian distributions, which is not the case 
here. 
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degree of coeíEcient heterogeneity ¡s high or the sample size is small (case 2 and 16 in the 

non informative case, and case 4 in the informative one). The high heterogeneity seems 

to be crucial when the cross sectional dimensión is small relative to the time dimensión. 

This conclusión is easily achieved from the comparison of case 2 and case 6 in the non 

informative prior and from the comparison of cases 4 (non informative) and 8 (informative). 

When the prior is informative the high degree of coefficient heterogeneity does not seem 

important (case 2) imless data are generated from a close-to-non stationary process with a 

high variability (case 4). Finally, when the cross sectional dimensión increases (cases 9 to 

15), the high heterogeneity, non-stationarity and high variability do not aífect any longer 

the equality of the means of q and qi at j = 1, though in case of small time dimensión with 

high heterogeneity (case 10, informative) and in three out of the four non linear cases (16, 

17 and 19) the p-values would reveal a statistical difference at the 10% level of conñdence. 

The means of the two quantities start to be statistically different at most when j = 3 

in al l cases. As one wovild expect, this event is more frequent when the model is estimated 

under an informative prior when more weight is given to the nuU, especially when the degree 

of coefficient heterogeneity is low. 

In order to have a better idea about the posterior shape of the quantities q and qi, tables 

5 and 6 compare not only the posterior means but the entire distributions. Both tables are 

organized as table 4. Concretely, in table 5 we compare the posterior densities of q and qi 

testing the equality of the respective 5, 25, 75 and 95 percentiles. The reported p-value is 

the one calculated in the so called one-sample sign test and is based on an exact binomial 

distribution.'^ The nuil hypothesis is Ho : = ^, where is the p-th percentile of the 

posterior density of qi and ^ is the valué taken by the corresponding percentile of q. In table 

7 For a simple description, see for example Mood et al. (1974), p. 514, 515. 
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6 the equaUty of the cdf of the two quantities is examined by means of the Kolmogorov-

Smirnov goodness of fit test.^ The p-values can be considered as a measure of the distance 

between the two distributions. Again, as for table 4 the first p-values reported (case a) are 

computed imder the nuU, while the second ones (case b) represent the first rejection after 

departing from the nuil. The last colvmm of table 6 provides an idea about the power of the 

test. Concretely, if we cannot reject the equality imder the nuil, the distributions of q and 

qi overlap. In this case, using a classical terminology, we wovild say that the power coincides 

with the size. Prom the íirst rejection on, the power is greater than the size (ideally, it is 

equal to 1). The interpretation is the same as discussed above. The posterior distribution 

of g is a reference distribution, i.e., the one which in a classical analysis would be tabulated. 

The larger is the distance between q and qi, the higher the probability that the more likely 

valúes of qi faU in the tale of the less likely valúes of q, leading to a rejection. Both in table 

5 and in table 6 the p-values are compared with a significance level of 0.05. 

The valúes reported in these two tables tend to confirm what discussed above for table 

4. In particular, the only cases in which the test seems to be biased are those in which the 

degree of parameter heterogeneity is high (case 2, non informative and case 4 informative), 

or the cross sectional dimensión is small (case 10, informative). Under a non informative 

prior, when the cross sectional size increases, the bias disappears, even with a small time 

dimensión. In the non linear restriction case the test seems to show more serious problems, 

as the low p-values indícate (cases 16, 17, and 19). When the prior is informative the test 

is clearly biased when coeíficients are highly heterogeneous (case 10) and data show non 

stationarity and high variabiUty (case 4). In all other cases, the performance of the testing 

8 This statistic is used to test whether two sets of observations could reasonably have come from the same 
distribution. This test assumes that the samples are random samples, the two samples are mutually inde­
pendent, and the data are measured on at least an ordinal scale. In addition, the test gives exact results 
only if the underlying distributions are continuous. See Mood et al. (1974, p. 508-511) for more details. 



144 

procedure seems quite good and its power function si cióse to an ideal one, being equal to 

the size for those valúes of 9 corresponding to the nuil hypothesis and greater than the size 

(ideally equal to 1) for those 6 corresponding to the alternative.® As commented before 

for table 4, the restriction to be tested converts the distribution of qi in a non-central one 

with respect to the reference distribution q at most when j = 3. We interpret this finding 

as a strong signal that the testing approach shows a good power fimction. 

The performance of the test can be evaluated also on a samphng-theory base. Tables 7 

and 8, for example, report the size and the power function of the test as in a classical analysis. 

Concretely, we can compute the power function calculating, at each iteration of the Gibbs 

sampling, the Prob(xí ^ then coimting the number of times of this probability 

being less or equal to 0.05, the significance level chosen. After repeating the previous steps 

100 times, the power fimction can be taken as the average of these probabihties. The size of 

the test would just be the power function when the nuU is true. By using the 100 iteration 

of the Monte Cario, table 7 reports more precisely 4 percentiles of the "distribution" of 

the size over the draws. The two tables refer only to the non informative, low and high 

heterogeneity cases with N = 10, and N = 20, (cases 1,2, and 5,6). The results of the 

two tables confirms the findings discussed above with some caveats. In particular, the test 

seems unbiased, in the sense that, on average, the probability of rejecting the nuU is greater 

or equal than the size for all the valúes of a considered. Moreover, for N = 20, the power 

is almost one for relatively low valúes of j. If instead we use a more precise definition of 

unbiasedness such that, if TT{9) is our power function and the nuil Ho : 9 £ ©o is to be 

^ Here "size" means the significance level we should consider if we used the distribution of g as the reference 
distribution to which a given valué of qi (the mean or the median, for example) would be compared in a 
classical analysis. 
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tested against the alternative Hi :6 GQI, the test is imbiased if and only if 

SUp TT (9) < inf TT (9) 

then, it turns out that over the 100 iteration of the Monte Cario, the infeesi TT {9) start 

to be larger than the sup^g©^ 7r(^) only when j = 3. Notice also that when the degree of 

coefficient heterogeneity is high the percentage of rejections when the nuil is true is always 

greater than the level of significance chosen (0.05). In our opinión, these caveats simply 

suggest to be cautious in the use of a sampling-theory evaluation of the performance of a 

Bayesian approach. 

Finally, table 9 reports a comparison between the procedure proposed and the standard 

P.O. ratio test. The first fom: colmnns of the table are the same as in table 6 (informative). 

In the last two columns the percentage of negative valúes of the log{PO) over the Monte 

Cario simTilations is reported, together with the benchmark ( i = 1) and the first j in which 

the average posterior log(P(9) starts to be negative. 

A couple of comments are in order. First, when j = 1, the average P O ratio is greater 

than one in aU cases considered and henee it always selects the nuil hypothesis against the 

alternative, whereas the empirical procedure proposed here has some problem when the 

degree of heterogeneity is high or the data are non stationary (cases 4 and 10) as discussed 

above. Notwithstanding, when the time dimensión is small and the degree of heterogeneity 

is high or the data are generated from a cióse to non stationary process with high variabiüty, 

the percentage of negative log (PO) is qiiite high (cases 10, 11, 14 and 15). If we interpret 

this percentage as the equivalent of the significance level in a sampling-theory test, this 

result indicates that in these cases the P O ratio would produce too many rejections of the 

nuil when it is true and henee that it could be biased. On the contrary, in the same cases 

(especially 14 and 15) our procedure accepts without doubts the nuil when it is true as the 
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high p-values of the test F{q) = F (gi) reveal. 

The second important thing to notice is that the mínimum j at which the average 

log (PO) starts to be negative is 3, whereas the proposed procedure starts rejecting the nuil 

when it is false at most when j = 3. This means that in most situations considered our 

^test may be more powerful than the P O ratio, though one must be cautious with such a 

conclusión provided we are not siu-e about the comparison of the sizes of the two testing 

approaches. 

In summary, the few Monte Cario experiments tend to indícate that the procedure 

proposed in this paper seems to perform fairly well under different behaviors of the data 

and the vector of coefficients and different prior assumptions. As already remarked, this 

good performance is based on estimation results which have been obtained conditional on 

initial observations y¿o and, in some cases, generating the autoregressive coefficient from 

a truncated normal distribution without modifying its prior distribution. We believe that 

following the suggestions of Sims (1998) of using a proper likelihood fimction for {¡jio,yir) 

and modifying the prior assmnption without necessarily restricting the model only to the 

stationary case cannot worsen the findings obtained here. 

4.5 Conclusions 

In this paper we have discussed a simple way of verifying restrictions in complex hierarchical 

normal data models using the output of the Gibbs sampling in a natural way. The procedure 

has the advantage that can be used vmder informative and non informative priors on the 

parameters of interest and does not require the estimation of two models, one with and the 

other without the restriction to be tested. In a sense, we could say that this procedure stays 

to the P O ratio test as, in the classical analysis, the Wald test stays to the Likefihood ratio 
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test. This parallel and the similarity of interpretation should make the method appealing 

also to sampling theory econometricians. The limited Monte Cario experience seems to 

indícate that imder different behaviors of the data and diíferent prior assumptions, the 

procedmre has good properties and is competitive with the standard P O ratio approach, 

besides being computationally easier in the kind of models considered here and more useful 

when the prior is diífuse. 
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T a b l e 1. D e s i g n of the M o n t e C a r i o s t u d y 

T N a P a(a) o(p) V 5 prior nuil 

Linear . 
1 150 10 0.6 0.4 0,025 0,025 6,0 1.0 i/ni a + p = 1 
2 150 10 0.6 0.4 0,25 0,05 6,0 1.0 i/ni a + p = l 
3 150 10 0.1 0,9 0,025 0,025 4,2 2,0 ni a + p = 1 
4 150 10 0.1 0.9 0,25 0,05 4,2 2,0 i a + p = 1 
5 150 20 0.6 0.4 0,025 0,025 6,0 1,0 i/ni a + p = 1 
6 150 20 0,6 0,4 0,25 0,05 6,0 1,0 i/n¡ a + p = 1 
7 150 20 0.1 0.9 0,025 0,025 4,2 2,0 i a + p = 1 
8 150 20 0,1 0,9 0,25 0,05 4,2 2,0 ni a + p = l 
9 10 50 0,6 0.4 0.025 0.025 6,0 1,0 i/ni a = 0.6 
10 10 50 0.6 0,4 0,25 0,05 6,0 1.0 i/ni a = 0.6 
11 10 50 0,1 0,9 0.025 0,025 4,2 2,0 i a = 0.1 
12 10 50 0,1 0,9 0.25 0,05 4,2 2,0 ni a = 0.1 
13 20 50 0,6 0,4 0,025 0,025 6,0 1,0 i/ni a = 0.6 
14 20 50 0,6 0,4 0,25 0,05 6,0 1,0 i/ni a = 0.6 
15 20 50 0,1 0,9 0,25 0,05 4,2 2,0 i a = 0.1 

nonlinear 
16 150 20 0,6 0,4 0,025 0,025 6,0 1.0 ni ap = 0.24 
17 150 20 0.1 0,9 0,025 0,025 4,2 2,0 ni ap = 0.09 
18 10 20 0,6 0,4 0,025 0,025 6,0 1,0 ni ap = 0.24 
19 10 20 0.1 0,9 0,025 0,025 4,2 2,0 ni ap = 0.09 

Note: "i" = informative; "ni" = non-informative 
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Table 2. Prior hyperparameters in the Wlonte Cario 

informative non informative 

C = diag(4.0) C'̂ (-1) = 0 
S(e) = diag(3.0) 8(9) = diag(3.0) 

T = 150 a(e) = 4.0 a(9) = 2.0 
<!) = 0.3, 1 = 3.0 (t) = 0.0 

B 
C = diag(1.0) C'̂ (-1) = 0 

N = 50 8(9) = diag(10, 1.0) 8(0) = diag(10,1.0) 
a(0) = 10.0 a(9) = 2.0 

(í) = 0.3, t = 3.0 (j) = 0.0 

C = diag(4.0) C'̂ (-1) = 0 
8(9) = diag(5.0) 8(9) = diag(5.0) 

T = 150 o(9) = 4.0 o(9) = 2.0 
(1) = 0.3, t = 3.0 0 = 0.0 

DB 
C = diag(1.0) C'̂ (-1) = 0 

N = 50 8(9) = diag(20, 1.0) 8(0) = diag(20,1.0) 
o(9) = 10.0 a(9) = 2.0 

(í) = 0.3, 1 = 3.0 ^ = 0.0 

Note: B = Benehmark; DB = departures from B 



Table 3. Posterior estimates of the mean parameters 

Informative 

a o(a) a(p) o(a,p) o(e) q q1 

1 0.6 0,62 0,39 0,81 0,80 -0,0115 0,25 1,00 1,02 

2 0.6 0,61 0,39 0,99 0,80 -0,0150 0,25 1,00 1,08 

4 0.1 0.11 0.80 1,07 0,80 0,0007 0,97 1,00 1,20 

5 0.6 0,61 0,39 0,84 0,84 -0,0587 0,24 1,00 1,03 

6 0,6 0,62 0,39 0,85 0,84 -0,0052 0,26 1,00 1,05 

7 0.1 0,13 0,83 0,81 0,77 -0,0031 0,99 1,00 1,07 

9 0.6 0,75 0,23 0,87 0.72 -0,0646 0,31 1,00 1,12 

10 0.6 0.73 0,22 2,07 1,22 -0,0909 0,32 1,00 1,14 

11 0.1 0,21 0,54 1,08 0.98 -0,1129 1,06 1,00 1,03 

13 0.6 0,65 0.31 1,00 0,72 -0,0349 0,27 1,00 1,09 

14 0.6 0,70 0,31 0,88 0.85 -0,0182 0,27 1,00 1,00 

15 0,1 0,16 0.64 1,11 0,73 -0,0235 1,01 1,00 1,02 

Non informative 

a a(a) CT(P) CT(a,p) <T(e) q q1 
1 0,6 0,61 0,39 0,84 0,83 -0,0142 0,26 1,00 1,02 
2 0,6 0,61 0,38 1,00 0,80 -0,0108 0,25 1,01 1,18 

3 0,1 0,14 0,80 0,86 0,81 -0,0049 0,98 0,99 1,04 
5 0,6 0,62 0.38 0.81 0,81 -0,0004 0,26 1,00 1,04 
6 0.6 0.60 0,39 0,20 0,30 -0,0260 0,25 1,00 1,02 
8 0.1 0,12 0,75 1,24 0.50 0,0041 0,99 1,00 1,03 
9 0.6 0,81 0,21 2,89 0,80 -0,0688 0,32 1,00 1,07 
10 0.6 0,86 0,21 2,26 1,13 -0,1036 0,31 1,02 1,10 
12 0.1 0,37 0,49 1.14 2,82 -0,1011 1.12 1,00 1,07 
13 0.6 0,72 0,31 2,28 0,75 -0,0303 0,28 1,00 1,06 
14 0.6 0.74 0.30 2,46 1,07 -0,0395 0.28 1,00 1,03 
16 0.6 0,62 0,38 0,82 0,81 -0,0067 0,25 1,00 1,08 
17 0.1 0,15 0,80 1,69 0,75 -0.0040 0.96 1,13 1,15 
18 0.6 0,79 0.21 1,06 0.91 -0,0775 0,31 1,00 1.00 
19 0.1 0,41 0,54 1,42 0,92 -0,0444 1,00 1,29 1,54 
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Table 4. Testing equality of the posterior means of q and q1 

Non infonvative Informativa 

p-value j p-value (1) j p-value (2) j 
1 a 0,2372 1 a 0.9160 1 0,9160 1 

b 0,0000 2 b 0,0000 3 0,0006 2 
2 a 0.0143 1 2 a 0.2538 1 0,2538 1 

b 0,0000 2 b 0,0000 3 0,0000 2 
3 a 0.2597 1 4 a 0.0098 1 0.0098 1 

b O.0012 2 b 0,0000 2 0,0000 2 
5 a 0.9726 1 5 a 0.7760 1 0,7760 1 

b 0,0000 2 b 0,0000 2 0,0000 2 
6 a 0.6577 1 6 a 0.1515 1 0,1515 1 

b 0.0000 2 b 0,0000 2 0.0000 2 
8 a 0.1774 1 7 a 0,7864 1 

b 0.0000 3 b 0,0000 2 
9 a 0.1149 1 9 a 0,8843 1 

b 0,0000 2 b 0,0000 2 
10 a 0,1340 1 10 a 0,0764 1 0.0764 1 

b 0,0003 2 b 0,0000 2 0,0000 2 
12 a 0.1286 1 11 a 0,3834 1 

b 0.0000 2 b 0,0000 3 
13 a 0.2985 1 13 a 0,2774 1 0,2774 1 

b 0.0000 2 b 0,0000 3 0,0000 2 
14 a 0.2634 1 14 a 0,8564 1 

b 0.0428 2 b 0,0000 2 
16 a 0.0426 1 15 a 0,4034 1 

b 0.0000 2 b 0,0000 3 
17 a 

b 
0.0873 
0.0002 

1 
2 

18 a 
b 

0.7550 
0.0000 

1 
2 

19 a 
b 

0.0742 
0.0009 

1 
2 

Notes: 

1. The test used is a Wilcoxon Two-Sample t-Test 

2. In all cases except 17 and 19 we accept the nuil hypothesis that the mean of q is 
equal to the mean of a chi-square with 1 degree of freedom 

3. "a" is the case in whicha is the benchmark (see the corresponding j); "b" is the first departur 
from the benchmark where the means of q and q1 start to be significatively different 

4. "p-value(l)" is the p-value when more weight is given to the nuil 
"p-value(2)" is the p-value when more weight is given to the alternative 
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Table 6. Testing equality of the cdf of q and q1 

Non infonvative Informativo 

p-value J power 

1 a 0,5923 1 size 
b 0,0000 2 1 

2 a 0,0068 1 greater than size 
b 0,0000 2 1 

3 a 0,8189 1 size 
b 0,0000 3 1 

5 a 0,9117 1 size 
b 0,0000 2 1 

6 a 0,5474 1 size 
b 0,0000 2 1 

S a 0,2008 1 size 
b 0,0000 3 1 

9 a 0,5474 1 size 
b 0,0000 2 1 

10 a 0,1336 1 size 
b 0,0000 2 1 

12 a 0,3126 1 size 
b 0,0000 2 1 

13 a 0,8909 1 size 
b 0,0051 2 1 

14 a 0,9803 1 size 
b 0,0000 3 1 

16 a 0,0051 1 greater than size 
b 0,0000 2 1 

17 a 0,0998 1 size 
b 0,0065 2 1 

18 a 0,8590 1 size 
b 0,0000 2 1 

19 a 0,0941 1 size 
b 0,0023 2 1 

p-value J power p-value J power 

1 a 0,8600 1 size 0,8600 1 size 

b 0,0295 2 1 0,0000 3 1 

2 a 0.8826 1 size 0,8826 1 size 

b 0,0000 3 1 0,0000 2 1 

4 a 0,0000 1 greater than size 0,0000 1 greater than size 
b 0,0000 1 1 0,0000 1 1 

5 a 0,9601 1 size 0,9601 1 size 
b 0,0000 2 1 0,0000 2 1 

6 a 0,3349 1 size 0,3349 1 size 
b 0,0000 2 1 0,0000 2 1 

7 a 0,8909 1 size 
b 0,0000 2 1 

9 a 0,9713 1 size 
b 0,0000 2 1 

10 a 0,0289 1 greater than size 0,0289 1 greater than size 
b 0,0000 2 1 0,0000 2 1 

11 a 0,1579 1 size 
b 0,0002 3 1 

13 a 0,7601 1 size 0,7601 1 size 
b 0,0000 3 1 0,0013 2 1 

14 a 0,9713 1 size 
b 0,0002 2 1 

15 a 0,7001 1 size 
b 0,0000 3 1 

Notes: 

1. The test used is the Kolmogorov-Smirnov 

2. In all cases except 17 and 19 we accept the nuil hypothesis that the cdf of q is 

equal to the cdf of a chi-square with 1 degree of freedom 

3. "a" is the case in whicha is the benchmark (see the corresponding j) 
"b" is the first departure from the benchmark where the cdf of q and q1 start to be significatively different 
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Table 7. Classical size. Quantiies. Diffuse case 

5 25 75 95 
low 0,0448 0,0496 0,0556 0,0605 

n = 10 
high 0,0468 0,0539 0.08 0,1153 

low 0,042 0,0487 0,0587 0,0688 
n = 20 

high 0,046 0,0527 0,0837 0,1331 

Note: "low" = Low heterogeneity; "high" = high heterogeneity 

Table 8. Classical Power. Diffuse case 

n = 10 n = 20 

j a low high low high 
1 0,6 0,05 0,07 0,05 0,06 
2 0,8 0,08 0,09 0,16 0,17 
3 1 0,17 0,17 0,49 0,38 
4 1.2 0,31 0.29 0,78 0,69 
5 1,4 0,46 0,43 0,94 0,87 
6 1.6 0,63 0,56 0,99 0,97 
7 1.8 0,75 0.70 1,00 0,99 
8 2 0,85 0,79 1,00 1,00 
9 2,2 0,90 0,86 1,00 1,00 
10 2,4 0,94 0,91 1,00 1,00 
11 2,6 0,96 0.94 1,00 1,00 

Note: "low" = Low heterogeneity; "high" = high heterogeneity 



Table 9. Comparison with the P.O. Ratio 

B E 
F(q) = F(q1) j % log(PO)<0.0 j 

1 a 0.860 1 4,8 1 
b 0,030 2 52,2 4 

2 a 0.883 1 5.9 1 
b 0,000 3 51,9 4 

4 a 0,000 1 4,6 1 
b 0,000 1 55,4 7 

5 a 0,960 1 2,6 1 
b 0,000 2 50,4 4 

6 a 0,335 1 3,5 1 
b 0,000 2 59,4 4 

7 a 0,891 1 3,4 1 
b 0,000 2 54,1 5 

10 a 0,029 1 15,3 1 
b 0,000 2 53,6 4 

11 a 0,158 1 23,1 1 
b 0,000 3 50,1 4 

13 a 0,760 1 2.4 1 
b 0,000 2 59,9 5 

14 a 0,971 1 11,6 1 
b 0,000 2 55,2 5 

15 a 0,700 1 20,9 1 
b 0,000 3 52,4 3 

Notes: 

1. "a" is the case in whicha is the benchmark (see the corresponding j 
"b" is the first departure from the benchmark where 
the cdf of q and q1 start to be different (column B) 
and where the log(PO) averaged over the MC draws starts to be negative (column E) 
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