DIGGING INTO GOLD(I) CATALYSIS: SILVER AND COUNTERION EFFECTS AND TOTAL SYNTHESIS OF NARDOARISTOLONE B.

Anna Homs i Riba
Dipòsit Legal: T 1605-2015

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel-lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes.

Digging into Gold(I) Catalysis: Silver and Counterion Effects and Total Synthesis of Nardoaristolone B

DOCTORAL THESIS
Supervised by Prof. Antonio M. Echavarren
Institut Català d'Investigació Química (ICIQ)

UNIVERSITAT ROVIRA I VIRGILI

Institut Català d'Investigació Química

FAIG CONSTAR que aquest treball, titulat "Digging into Gold(I) Catalysis: Silver and Counterion Effects and Total Synthesis of Nardoaristolone B", que presenta Anna Homs i Riba per a l'obtenció del títol de Doctor, ha estat realitzat sota la meva direcció a l'Institut Català d'Investigació Química i que acompleix els requeriments per poder optar a Menció Internacional.

Tarragona, 26 de novembre de 2014

El director de la tesi doctoral

En solitud, però no solitaris, reconduüm la vida amb la certesa que cap esforç no cau en terra eixorca.

Dia vindrà que algú beurà a mans plenes l'aigua de llum que brolli de les pedres d'aquest temps nou que ara esculpim nosaltres.

Aquesta tesi doctoral s＇ha dut a terme a l＇Institut Català d＇Investigació Química i ha estat supervisada pel Prof．Antonio M．Echavarren，a qui agraeixo la confiança depositada en mi des del dia que vaig arribar．Així mateix，agraeixo totes les eines i idees que m＇ha proporcionat per no deixar d＇aprendre contínuament així com per haver－me concedit la beca predoctoral FPI（Formación de Profesorado Investigador，Ministerio de Economía y Competitividad）．Part d＇aquesta tesi ha estat finançada també per una beca predoctoral ICIQ．

During these four years I spend three－months in Prof．Jin－Quan Yu＇s lab at The Scripps Research Institute．Thanks for making me feel a member of the group since the day I arrived as well as all the trust in me．

Especial menció també a dos dels puntals del grup；Sònia Gavaldà i Imma Escofet．Sou l＇eficiència personificada facilitant totes aquelles tasques que sovint no són gens senzilles amb el valor afegit de fer－ho sempre amb un somriure a la cara．Gràcies de tot cor．Looots of thanks to all the friends I had the pleasure to share the lab with；Yahui Wang（chinese tree），Pilar Calleja（molts ànims a aquesta recta final），Ana Escribano（gracias！），Dr． Michael E．Muratore（for taking over the project，proofreading the manuscript and for your tremendous patince！），Dr．Beatrice Ranieri（you could have started your Post－Doc a bit earlier，though！）and Elena de Orbe．Un gràcies gegantí i molt especial a la Carla Obradors （ja doctora un cop aquesta tesi estigui a l＇impremta）i l＇Imma Escofet（una altra vegada） amb qui he anat forjant una vertadera amistat dia rere dia i ha estat un plaer compartir aquests 4 i 3 anys，respectivament．Thanks to all the labmates in labs 2．2， 2.3 and 2.10 from 2010 to 2014：Masha Kirillova，Bart Herlé，Núria Huguet，Dr．Paul McGonigal，Dr． David Leboeuf，Zhouting Rong，Araceli Fernández，Laura Amenós，Katya Smirnova， Anthony Pitaval，Dr．Francesco Camponovo，Dr．Óscar de Pablo，Xiang Yin，Dr．Tania Jiménez，Dr．Javier Carreras，Dr．Laura López，Dr．Lorena Riesgo，Dr．Riccarda Miller， Morgane Gaydou，Sofía Ferrer，Ruth Dorel，Madeleine Livendhal，Cristina García，Dr． José M．Muñoz，Ismael Arroyo，Rogelio Solorio，Nicolas Delpont and Lourdes Maestre．

Agrair també a la unitat tècnica de l’ICIQ；espectrometria de masses，ressonància magnètica nuclear，unitat de cromatografia，unitat de cinètica i difracció de Raigs X ． Gràcies també al David Pena per solucionar tots aquells problemes informàtics．

Very special thanks to（just Dr．）Asraa Ziadi，the best flatmate one can ever have．The only thing I regret is not moving together earlier（although we might not have slept that much then）．Gràcies al David Bastida，al Dr．Toni Moragas i al Dr．Josep Cornellà（merci per les idees i suggeriments durant la tesi）per amenitzar els divendres sovint difícils de passar i per les estones a l＇Azu（amb Barça o sense）．A la Berta Camafort，Toni Bautista，Xacobe C．Cambeiro，Míriam Sau i a una llista interminable de gent que ha passat per l＇ICIQ． Thanks to Dr．Xiaochen Wang（感谢校对），Dr．Navid Dastbaravardeh and Jian He from the Yu＇s lab for helping me at any time and discovering San Diego together．To Anish，Denis and the pack Ennio and Rita，my flatmates in the US．Lots of thanks to Dr．Christian Borch，who I hope to see very soon！

Gràcies als de la uni（grup＂Mikiliterari．．．＂），especialment a l＇Àlex Espel，l＇Eli Vilella i l＇Albert de Aróstegui；perquè amb els seus sopars，viatges o Aplecs，plens d＇ironia i sarcasme que tant m＇agrada，hagin fet aquests 4 anys més planers．Merci als d＇Igualada（o

Aranjuez) per no deixar de preguntar com em va tot. I a la Gemma Ferrer, a qui prometo trucar molt més sovint.

Agrair també al Toni Jorba i a la Glòria Marsal, qui m’ha alimentat durant més del 50\% del doctorat. Gràcies a tota la meva immensa (en sentit literal i figurat) família; a l'àvia Quini i als avis Homs, per les seves visites fugaç a Tarragona que sempre acabaven amb un bon arròs. Gràcies al recolzament incondicional dels meus germans, que ha estat clau: a la Maria (i al David), qui no deixo d'admirar profundament cada dia que passa i de qui he intentat imitar el camí, al Pep, qui m'ha encomanat la seva energia desbordant i a la Marta, per fer-me sentir imprescindible (especialment els diumenges al vespre). Al Pep i Quim Mestres els quals de manera sorprenent i amb la seva curta edat, m'han fet tocar de peus a terra més que ningú. Gràcies al pare i a la mare; pel seu continu recolzament en totes les decisions que he pres; per creure i confiar en mi cegament facilitat-me al màxim totes les situacions. Amb vosaltres he après que si treballes, pots anar on vulguis. I finalment, gràcies a l'Edu, qui hauria estat guardonat amb el Nobel de la Paciència i Comprensió durant 4 anys (o potser 7) consecutius. Infinites gràcies per tot.

At the moment of writing this thesis, the results presented herein have been published in:
On the Silver Effect and the Formation of Chloride-Bridged Digold Complexes
Anna Homs, Imma Escofet, Antonio M. Echavarren
Org. Lett. 2013, 15, 5782-5785.
Dissecting Anion Effects on Gold(I)-Catalyzed Intermolecular Cycloaddtions
Anna Homs, ${ }^{+}$Carla Obradors, ${ }^{+}$David Leboeuf, Antonio M. Echavarren
Adv. Synth. Catal. 2014, 356, 221-228.
${ }^{+}$These two authors contributed equally to the work.
Meeting the Challenge of Intermolecular Gold(I)-Catalyzed Cycloadditions of Alkynes and Allenes (review)
Michael E. Muratore, Anna Homs, Carla Obradors, Antonio M. Echavarren
Chem. Asian J. 2014, 9, 3066-3082.
Enantioselective Total Synthesis of (-)-Nardoaristolone B via a Gold(I)-Catalyzed Oxidative Cyclization
Anna Homs, ${ }^{+}$Michal E. Muratore, ${ }^{+}$Antonio M. Echavarren
Org. Lett. 2015, DOI: 10.1021/ol503531n.
${ }^{+}$These two authors contributed equally to the work.

Other publications not related to the topic covered in the manuscript are presented below:
Gold for the Generation and Control of Fluxional Barbaralyl Cations
Paul R. McGonigal, Claudia de León, Yahui Wang, Anna Homs, César R. SolorioAlvarado, Antonio M. Echavarren
Angew. Chem. Int. Ed. 2012, 51, 13093-13096.
Mechanistic Aspects of Metal-Catalyzed C,C- and C,X-Bond-Forming Reactions, Chapter 1 in: Metal-Catalyzed Cross-Coupling Reactions and More (DeMeijere; Braese; Oestreich, Eds.) (book chapter)
Antonio M. Echavarren, Anna Homs
Wiley-VCH. 2013, 1, 1-64.
Palladium-Catalyzed ortho-Selective C-H Deuteration of Arenes: Evidence for Superior Reactivity of Weakly Coordinated Palladacycles
Sandy Ma, Giorgio Villa, Peter S. Thuy-Boun, Anna Homs, Jin-Quan Yu
Angew. Chem. Int. Ed. 2014, 53, 734-737.
Ligand-Controlled C(sp $\left.{ }^{\mathbf{3}}\right)-\mathbf{H}$ Arylation and Olefination: Synthesis of Novel Chiral α Amino Acids
Jian He, Suhua Li, Youqian Deng, Haiyan Fu, Brian N. Laforteza, Jillian E. Spangler, Anna Homs, Jin-Quan Yu
Science 2014, 343, 1216-1220.

Table of Contents

Prologue 21
List of Abbreviations and Acronyms 23
General Introduction
Gold as Catalyst 27
Activation of Gold(I) Complexes to π-Bonds 28
Nucleophilic Attack 29
Cycloisomerization of 1,n-Enynes 30
Nature of Cycloproppyl Gold(I) Carbenes 32
Gold(I)-Catalyzed Oxidative Cyclizations 34

1. On the Silver Effect and the Formation of Chloride-Bridged Digold Complexes
Introduction 41
Synthesis of Gold(I) Complexes 41
Effect of Silver in Gold(I) Catalysis 44
"Genuine" Au Catalysis 45
$\mathrm{Au} / \mathrm{Ag}$ Bimetallic Catalysis 46
Ag-Assisted Au Catalysis 46
Objectives 48
Results and Discussion 49
JohnPhosAuCl and AgX in a Non-coordinating Solvents ($\mathrm{X}=\mathrm{OTf}$, $\mathrm{NTf}_{2}, \mathrm{BF}_{4}, \mathrm{SbF}_{6}$) 50
Relevance of Digoldhalide Cation 56
JohnPhosAuCl and AgX with Phenylacetylene 56
JohnPhosAuCl and AgX in the [2+2] Intermolecular Cycloaddition Reaction 59
JohnPhosAuCl and AgX in the [2+2] Intramolecular Cycloaddition Reaction 60
JohnPhosAuCl and AgX in the [4+2] Cycloaddition of Arylenyne 21 61
Outlook 64
Simultaneous Findings and Further Studies 65
Conclusions 67
Experimental Part 68
General Information 68
Synthesis of Mononuclear Gold(I) Complexes 68
Synthesis of Dinuclear Gold(I) Complexes 70
Synthesis of σ-Mononuclear Gold(I) Complex \mathbf{F} 74
Synthesis of $\sigma, \pi-$ Mononuclear Gold(I) Complex G 74
General procedures for Gold(I)-Catalyzed Reactions 76
[2+2] Intermolecular Cycloaddition of Phenylacetylene and α-Methylstyrene 76
[2+2] Intramolecular Cycloaddition of 1,6-Enyne 19 77
[4+2] Intramolecular Cycloaddition of 1,6-Enyne 21 78
X-Ray Tables 80
2. Anion Effects in Intermolecular Gold(I)-Catalyzed Reactions: Use of $\mathrm{BAr}_{4}{ }^{\mathrm{F}}$
Introduction 117
Gold(I)-Catalyzed Intermolecular Reactions with Alkynes 117
Anion Effects in Gold(I)-Catalyzed Reactions 121
Ion Pairing in Gold(I) Complexes 123
Objectives 124
Results and Discussion 125
Reactivity of Complex A2 in Intermolecular Gold(I)-Catalyzed Reactions 125
Monitoring the [2+2] Cycloadditon Reaction and DFT Modeling 130
Mechanistic Studies 132
Order of Reagents 133
Species Formed in the Reaction Mixture: Counterion Differences 135
Equilibrium Constants 138
Formation of σ, π-Digold(I) Complex 140
Conclusions 144
Experimental Part 145
General Information 145
Synthesis of Gold(I) Complexes 145
General Procedure for the Preparation of Cyclobutenes 148
General Procedure for the Preparation of [3.2.1]-Oxabicycles 151
General Procedure for the Preparation of Phenols 151
Monitoring the [2+2] Cycloaddition Reaction 151
Electrondensity Surfaces 152
Mechanistic Studies 152
Order of Reagents 152
Species Formed in the Reaction Mixture 154
Additional Experiments 155
Equilibrium Constants 158
3. Total Synthesis of Nardoaristolone B and an Approach to the Synthesis of (-)-Aristolone and Kanshone H
Introduction165
Nardoaristolone B 165
(-)-Aristolone 168
Gold(I) Catalysis in Total Synthesis 171
Gold(I)-Catalyzed Oxidative Cyclization of Enynes 173
Objectives 176
Results and Discussion 177
Synthesis of Trialkylated Ketone 42 178
One-step dialkylation reaction 178
Two or three-steps dialkylation reaction 182
Synthesis of 1,5-Enyne Towards Nardoaristolone B 186
Gold(I)-Catalyzed Cyclization to Access to Nardoaristolone B 187
Allylic Oxidation: Nardoaristolone B 189
Approach to the Synthesis of (-)-Aristolone and Kanshone H: Synthesis of 1,6-Enyne 190
Propargylation and Regioselective Elimination 190
Homologation 191
Horner-Wadsworth-Emmons Reaction 192
Vinyl Bromide Formation and Propargylation 193
Shapiro Reaction and Propargylation 194
Triflation and Cross Coupling 195
Gold(I)-Catalyzed Cyclization to Access to (-)-Aristolone and Kanshone H 201
Outlook 203
Use of Bicyclic Ketone 56 203
Use of 1,6-Enyne 43 203
Conclusions 205
Experimental Part 207
General Information 207
Synthesis of Substrates 207

Prologue

This thesis has been divided into four main parts: a general introduction in gold(I)-catalysis and three research chapters. Each chapter contains five sections including a brief and detailed introduction on the research topic, the objectives, the discussion of the results obtained followed by the conclusions and the experimental part.

The general introduction provides the basic principles of homogeneous gold(I) catalysis including the activation of alkynes as well as the basic principles of cyloisomerization of enynes and oxidative gold(I)-catalyzed cyclizations.

In the first research chapter, the so-called "silver effect" in gold(I)-catalyzed reactions has been studied. This work has been done in collaboration with Imma Escofet and thus, for coherency, some of her results have been included. This work was published in Org. Lett. 2013, 15, 5782-5785.

The second chapter includes the design of a new generation of gold(I)-complexes containing $\mathrm{BAr}_{4}^{\mathrm{F-}}$ as counterion, which show better efficiency in intermolecular gold(I)catalyzed reactions. An extensive mechanistic study on the [2+2] cycloaddition of alkynes and alkenes is exposed. This project was done in collaboration with Carla Obradors and Dr. David Leboeuf and some of their results are also included. The entirely of this work was published in Adv. Synth. Catal. 2014, 356, 221-228, and some of the most relevant results obtained were highlighted in Chem. Asian J. 2014, 9, 3066-3082.

The last chapter presents the total synthesis of nardoaristolone B and an approach towards the synthesis of $(-)$-aristolone and kanshone H , featuring an oxidative gold(I)-catalyzed cyclization as the key step. Dr. Michael Muratore joined me in the project optimizing different reaction conditions. The manuscript summarizing these results has been accepted in Org. Lett. 2015, DOI: 10.1021/ol503531n.

List of Abbreviations and Acronyms

In this manuscript, the abbreviations and acronyms most commonly used in organic and organometallic chemistry have been used following the recommendations of "Guidelines for authors" of Journal of Organic Chemistry.

Additional abbreviations and acronyms used in this manuscript are referenced in the list below:

app	Apparent
ATPH	Aluminium tris(2,6-diphenylphenoxide)
$\mathrm{BAr}_{4}{ }^{\text {F- }}$	Tetrakis [3,5-bis(trifluoromethyl)phenylborate]
DA	Diels-Alder
DAD	Diode array detector
dppe	1,2-Bis(diphenylphosphino)ethane
dppf	1,1'-Bis(diphenylphosphino)ferrocene
dppp	1,3-Bis(diphenylphosphino)propane
ESP	Electrostatic potential
GOESY	Gradient enhanced nuclear Overhauser effect spectroscopy
$\mathrm{Tf}_{3} \mathrm{H}$	Tris(trifluoromethyl)sulfonyl)methane
IBX	2-Iodoxybenzoic acid
IMes	1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene
IPr	1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene
IRMDS	Infrared multiphoton dissociation spectrospray
JohnPhos	(2-Biphenyl)di-tert-butylphosphine
$\mathrm{NTf}_{2}{ }^{-}$	Bis(trifluoromethyl)imidate
p-TsOH	para-Toluene sulfonic acid
SPhos	2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl
t-BuXPhos	2-(di-tert-Butylphosphino)-2',4', ${ }^{\prime}$ '-triisopropyl-1,1'-biphenyl
tht	Tetrahydrothiophene
tmbn	Trimethoxybenzonitrile
VWD	Variable wavelength detector

General Introduction

Gold As Catalyst

For centuries, gold was considered to be a catalytically inactive metal. Although some gold-catalyzed transformations were discovered around the 70 s and 80 s, ${ }^{1}$ it was not until 1998 that a groundbreaking report was disclosed by the group of Teles describing the first practical gold(I)-catalyzed addition of alcohols to alkynes under mild conditions to form acetals (Scheme 1). ${ }^{2}$

Scheme 1 First practical gold(I)-catalyzed transformation.
Ever since, the use of gold in metal catalysis has grown exponentially. This is mainly due to the high affinity of gold(I) towards π-bonds. This ability to coordinate to unsaturations is rationalized by the so-called relativistic effects. ${ }^{3}$ Relativistic effects correspond to the acceleration of the electrons as they orbit closer to a heavy nucleus. As a consequence, the mass of the electron increases whilst the s and p orbitals are contracted. Indirectly, this implies that the electrons occupying the d and f orbitals manifest a weaker nuclear attraction. This contraction/expansion phenomenon is significant for metals that have their $4 f$ and $5 d$ orbitals filled, such as Pt, Au and Hg . In particular, the relativistic effect is maximum for the gold nucleus and hence the contraction of the $6 s$ orbital reaches a maximum. Thus, this contraction for gold is significantly more important than for other transition metals. ${ }^{4}$ This leads to a substantial expansion of the $5 d$ orbitals, minimizing the electron-electron repulsion.

By extension, the $\mathrm{Au}-\mathrm{L}$ bond is contracted and therefore, the nature of the resulting complexes can be easily modulated by the electronic and steric properties of the ligand used. Gold(I) complexes containing phosphite ligands are much more electrophilic than those bonded to N -heterocyclic carbenes (Figure 1). When bearing phosphines, gold(I) complexes show intermediate electrophilicity. Recently, chiral ligands have been used to induce enantioselectivity in gold(I)-catalyzed reactions. ${ }^{5}$

[^0]

The small differences in energy gap between the s, p or d orbitals enhance the s / d or s / p hybridizations, which explain the tendency of gold(I) to form linear two-coordinated complexes. ${ }^{6}$ Gold(I) complexes are also reluctant to undergo spontaneous oxidative addition or β-hydride elimination. ${ }^{7}$

Gold(III) complexes (or simple gold(III) salts such as NaAuCl_{4} and AuCl_{3}) are also known to be catalytically active and present a square planar geometry. However, they can be easily reduced to $\mathrm{Au}(\mathrm{I})$ and $\mathrm{Au}(0)$ by oxidizable substrates.

Activation of $\boldsymbol{\pi}$-Bonds with Gold(I) Complexes

The activation of alkynes can be rationalized by the Dewar-Chatt-Duncanson model, which considers the bond as a donor-acceptor interaction between two closed-shell fragments. ${ }^{8}$ Thus, the metal-acetylene bonding is described as a combination of a σ-interaction (interaction of the π-bond of the alkyne with the empty orbital on the metal) and a backbonding π-interaction (donation of the metal to the π^{*} orbitals of the alkyne) (Figure 2).

Figure 2 Deward-Chatt Duncanson model.

[^1]To gain further insight, several groups have estimated the contributions of these interactions using computational methods. ${ }^{9}$ As a conclusion, alkynes are strong twoelectron σ-donors but rather weak π-acceptors towards gold(I), although some backbonding occurs.

Structurally, different η^{2}-alkyne $\mathrm{Au}(\mathrm{I})$ complexes have been characterized by NMR techniques and X-ray diffraction. ${ }^{9 \mathrm{c}, 10}$ The metal coordinates symmetrically (e. g. at equal distance of both alkyne carbons) even if the enyne used is not symmetrical ($\mathrm{Au}-\mathrm{C}$ distances 2.238 and 2.239). However, there is a deviation from linearity, and the $\equiv \mathrm{C}-t$ - Bu and $\equiv \mathrm{C}-\mathrm{Me}$ are bent away from the gold-phosphine fragment $\left(165.6^{\circ}\right.$ and 168.1° respectively) substituents (Figure 3).

Figure 3 Structure of ($\eta^{2}-4,4$-dimethylpent-2-yne)AuLX.

$$
\left[\mathrm{L}=\mathrm{P}(t-\mathrm{Bu})_{3} \text { and } \mathrm{X}=\mathrm{SbF}_{6}^{-}\right] .
$$

Gold also forms mononuclear two-coordinate π-complexes with alkenes, 1,3-dienes and allenes. ${ }^{11}$

Nucleophilic Attack

The aforementioned interactions result in a transfer of electron density of the unsaturation to the metal turning the resulting metal-alkyne complex into very electrophilic species. Thenceforth, the corresponding η^{2}-alkyne $\mathrm{Au}(\mathrm{I})$ complexes \mathbf{I} can be attacked in general in an anti fashion by a wide range of nucleophiles giving rise to trans-alkenyl species II (Scheme 2). The syn insertion of methyl propiolate into $\mathrm{Au}-\mathrm{Si}$ bonds has recently been disclosed. ${ }^{12}$

Scheme 2 Formation of trans-alkenyl gold(I) species II from η^{2}-alkyne $\mathrm{Au}(\mathrm{I})$ complexes I.
Different carbon and heteroatom-containing molecules (including arenes, ${ }^{13}$ heteroarenes, ${ }^{14}$ amines, ${ }^{15}$ imines, ${ }^{16}$ sulfoxides, ${ }^{17} \mathrm{~N}$-oxides ${ }^{18}$ and thiols ${ }^{19}$) have been used as nucleophilic

[^2]partners in either intra- or intermolecular gold(I) catalyzed reactions. In particular, our group has been mainly focused on the use of alkenes as nucleophiles either intra- or intermolecularly. ${ }^{20}$

Cycloisomerization of 1,n-Enynes

Gold(I) complexes do not coordinate selectively to alkynes over alkenes. ${ }^{21}$ However, the addition occurs exclusively to the η^{2}-alkyne $\mathrm{Au}(\mathrm{I})$ complexes since it presents a lower LUMO than its alkene analogue. Thus, after coordination of the metal to the alkyne, the reaction with the alkene takes place forming the proposed cyclopropyl gold(I) carbene-like intermediates IV and IX deriving from an anti-5-exo-dig cyclization or a 6-endo-dig cyclization (Scheme 3). The nature of these intermediates is determined by the substitution pattern of the alkyne or alkene moieties as well as the ligand used.

Cyclopropyl gold(I) carbene intermediates IV (exo) can further rearrange forming 1,3dienes VI through a process known as a single cleavage rearrangement in which the external carbon of the alkene moiety migrates to the terminal carbon of the alkyne. A double cleavage rearrangement can also take place, resulting in the formal insertion of the terminal alkene carbon into the alkyne (VII). A final α-proton elimination of the carbene formed VII gives rise to 1,3-enyne VIII. Bicyclo[4.1.0]hept-2-ene substrates \mathbf{X} can also be obtained by an α-proton elimination of the cyclopropyl gold(I) intermediate IX followed by protodeauration. ${ }^{22}$ However, IX can also rearrange to XI, which upon protodemetalation affords XII. Although these strained bicyclic structures have been isolated in few cases in the cycloisomerization of 1,6 -enynes, ${ }^{23}$ they are more common

[^3]products in the cyclization of higher $1, n$-enynes ($n \geq 7$). ${ }^{23 c, 23 \mathrm{~d}, 24}$ Interestingly, cyclobutenes are obtained in the intermolecular reaction between alkynes and alkenes. ${ }^{25}$ Isomerization and demetalation of XI gives rise to XIII. ${ }^{22 a}$ Interestingly, the product of a single cleavage rearrangement VI can also originate from the ring opening of XI. $1,5-{ }^{26}$ and 1,7enynes ${ }^{22 \mathrm{~d}, 27}$ follow a very similar reactivity trend as the one observed for 1,6-enynes.

Scheme 3 Gold(I)-catalyzed cyclosiomerization of 1,6-enynes.
These transformations have been widely explored because of the diversity of the products that are formed. ${ }^{20}$ Indeed, in the presence of other nucleophiles (e.g. alcohols or water) the resulting cyclopropyl gold(I) carbene can be further attacked giving products of alkoxy- or heterocyclization. ${ }^{22 b, 28}$ On the other hand, when the alkyne is substituted with an aryl ring, a formal [4+2] cycloaddition reaction takes place, giving rise to tricyclic products XVIII (Scheme 4). ${ }^{22 a}$ Once the cyclopropyl gold(I) carbene XV is formed, a Friedel-Crafts-type

[^4]reaction takes place giving XVI. Final aromatization and protodemetalation give access to tricyclic products XVIII.

Scheme 4 Proposed mechanism for the formal [4+2] cycloaddition reaction of 1,6-enynes bearing an arene at the alkyne moiety.

Nature of cyclopropyl gold(I) carbenes

The proposed cyclopropyl gold(I) carbene species are highly distorted structures and can also be represented as cyclopropyl gold-stabilized homoallylic carbocations (XIX). DFT calculations have proved that the more cationic or carbenic character depends on the substitution pattern of the enyne as well as the nature of the ligand. ${ }^{23 \mathrm{~d}, 29}$ Therefore, if $\mathrm{R}=\mathrm{H}$ or Me , the best representation of the intermediate is XIXc (longest bond is \mathbf{b}), whereas for $\mathrm{R}=$ cyclopropyl it is the carbocationic form XIXb (Table 1).

Table 1 Bond distances for cyclopropyl gold carbene determined by DFT.

An example of this dualism was observed in the single-cleavage rearrangement of enynes $\mathbf{1}$ and $\mathbf{2}$, which was found to be a non-stereospecific process (Scheme 5). Both E and Z isomers generated the same product. ${ }^{30}$

[^5]

Scheme 5 Cis-selective single-cleavage rearrangements of $\mathbf{1}$ and $\mathbf{2}$.
Another example that highlights how the carbenic or cationic character of the intermediate gold(I) species formed can be tuned is the addition of indoles onto 1,6-enynes, which gives products 5 and $\mathbf{6}$ in different ratios depending on the ligand (Scheme 6). ${ }^{31}$ The use of electron donating NHC ligands enhances the carbene-like nature of the intermediate XX. Thus, the nucleophilic attack takes place at the carbenic carbon giving $\mathbf{5}$ as the major product, which corresponds to the trapping of the gold(I) carbene-like intermediate with an indole. On the other hand, using [(JohnPhos)AuNCMe] SbF_{6} as catalyst favors the attack of the indole at the carbocation-like intermediate.

Scheme 6 Nucleophilic addition of indole to cyclopropylgold(I) carbene XX.
Although cyclopropyl gold(I) carbenes have never been characterized spectroscopically, their intermediacy has been confirmed in several other cases. Alkenes have also been reported to trap these species via intra- ${ }^{32}$ or intermolecular ${ }^{33}$ pathways giving rise to cyclopropane derivatives (Scheme 7).

[^6]

Scheme 7 Intra- and intermolecular cyclopropanation of 1,6-enynes, respectively.
Carbenes have also been trapped by oxidation to the corresponding aldehydes upon addition of $\mathrm{Ph}_{2} \mathrm{SO}$ (Scheme 8). ${ }^{34}$ 1,6-Enynes were rearranged under gold(I)-catalyzed conditions using stoichiometric amounts of $\mathrm{Ph}_{2} \mathrm{SO}$ to give bicyclic products $\mathbf{8}$ with a pendant aldehyde. This finding corresponds to the first gold(I)-catalyzed oxidative cyclization.

Scheme 8 First gold(I)-catalyzed oxidative rearrangement of 1,6-enynes.

Oxidative Gold(I)-Catalyzed Reactions

Interestingly, only two other examples of gold(I)-catalyzed cyclizations of enynes using an external oxidant have been reported. ${ }^{35}$ The lack of other reports is probably due to the inability of organic oxidants to produce oxidative cyclization products from most enynes. Thus, $1,5-{ }^{35 \mathrm{a}} 1,6-{ }^{35}$ and 1,7 -enynes ${ }^{35 \mathrm{~b}}$ could be cyclized and oxidized in a one-pot sequence using pyridine- N -oxides as additives giving rise to [n.1.0]bicyclic frameworks (Scheme 9).

[^7]

Scheme 9 Gold(I)-catalyzed intramolecular oxidation-cyclopropanation of 1,5-, 1,6- and 1,7-enynes.
However, the mechanism proposed in both reactions does not involve a cyclization followed by the trapping of the carbene with the oxidant (XXI) but the initial formation of an α-oxo gold(I) carbene intermediate (XXII) that undergoes intramolecular cyclopropanation to give the bicyclic product (Figure 3). ${ }^{36}$

XXI
vs

Figure 3 Possible intermediates in the gold(I)-catalyzed oxidative cyclization of 1,6- or 1,7-enynes.
Indeed, the use of oxidants in gold(I)-catalysis is a common procedure to access to α-oxo gold carbenes via gold-catalyzed alkyne oxidation (Scheme 10). ${ }^{37}$ Thus, alkynes can be surrogates for α-diazo carbonyl compounds.

Scheme 10 Gold(I)-catalyzed intermolecular oxidation of an alkyne.

[^8]An important number of publications have been reported on the intramolecular trapping of α-oxo gold carbenes by formal $\mathrm{O}-\mathrm{H},{ }^{38} \mathrm{~N}-\mathrm{H}^{39}$ and $\mathrm{C}-\mathrm{H}^{40}$ insertions or by addition of other nucleophilic partners. ${ }^{41}$

Nonetheless, the intermediacy of gold(I) α-oxo carbenes has been questioned in several intramolecular reactions. ${ }^{42}$ Indeed, a recent mechanistic study on the oxidation reactions of alkynes catalyzed by gold(I) complexes by exploring these reactions applying tandem mass spectrometry, infrared multiphoton dissociation spectrospray (IRMDS) and density functional theory (DFT) suggested that the formation of naked α-oxo carbenes as the key intermediates is rather unlikely. ${ }^{43}$

[^9]Chapter 1: On the Silver Effect and the Formation of Chloride-Bridged Digold Complexes

Introduction

Gold(I)-catalyzed reactions are initiated by the coordination of a bicoordinated gold(I) to an unsaturated substrate (mainly alkynes, allenes and alkenes). The substitution of one of the ligands on the metal by the substrate proceeds through associative processes. ${ }^{44}$ Recently, several studies have addressed the catalytically relevant ligand substitution of alkenes and alkynes with cationic gold(I) complexes. ${ }^{45}$

Synthesis of Gold(I) Complexes

In order to be catalytically active, gold(I) complexes should be coordinated with one weakly coordinating ligand, which is replaced by the substrate in an associative reaction. Complexes containing two neutral nitrogen donors that fulfill this characteristic are $\left[\mathrm{Au}(\mathrm{NCR})_{2}\right] \mathrm{X}\left(\mathrm{R}=\right.$ alkyl, aryl) ${ }^{46}$ and related complexes containing ammonia $\left[\mathrm{Au}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{X}$ (Figure 1). ${ }^{47}$ Nonetheless, these species themselves are not active. Other $\left[\mathrm{AuL}_{2}\right] \mathrm{X}$ species are known to be so unstable that they undergo disproportionation to form gold(III) complexes as well as metallic gold.

$$
\begin{array}{cc}
\mathrm{H}_{3} \mathrm{~N}-{\mathrm{Au}-\mathrm{NH}_{3} 7^{+}}^{X^{-}} \begin{array}{c}
\mathrm{RCN}-\mathrm{Au}-\mathrm{NCR} 7^{+} \\
\mathrm{R}=\text { alkyl, aryl }
\end{array} \quad \mathrm{X}^{-}
\end{array}
$$

Figure 1 Sources of gold(I) cation.
The aforementioned species have mainly been utilized as precatalysts in gold(I) chemistry that could play a role similar to that of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ in palladium chemistry. Whilst $\left[\mathrm{Au}(\mathrm{NCMe})_{2}\right] \mathrm{X}$ was not found to be attractive due to the harsh conditions or the special equipment required for its synthesis, ${ }^{48}$ the use of the benzonitrile or hexanenitrile analogues proved to be more successful. ${ }^{49}$ However, these complexes are unstable to air and moisture and decompose very easily. Thus, our group reported the synthesis of a more robust complex using 2,4,6-trimethoxybenzonitrile (tmbn) as ligand (Scheme 1). ${ }^{50}$

[^10]

Scheme 1 Preparation of $\left[\mathrm{Au}(\mathrm{tmbn})_{2}\right] \mathrm{SbF}_{6}$.
Any of these homoleptic complexes can be mixed with one equiv of a ligand with sufficient donor capacity and generate a heteroleptic $\mathrm{Au}(\mathrm{I})$ complex after ligand exchange (Scheme 2). The reactivity of the complexes newly formed can be modulated by changing the coordination sphere around gold. Thus, an increase in the electron density of the d^{10} metal center is observed by moving from electron-withdrawing (e. g. phosphites) to electron-donating ligands (e. g. NHC carbenes).

Scheme 2 Synthesis of cationic $[\mathrm{LAu}(\mathrm{tmbn})] \mathrm{SbF}_{6}$ starting from $\left[\mathrm{Au}(\mathrm{tmbn})_{2}\right] \mathrm{SbF}_{6}$.
The first practical gold(I)-catalyzed reaction reported by the group of Teles used $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuMe}\right]$ as the catalyst source. ${ }^{2}$ However, the complex itself was not active due to the strong donor capacity of both ligands. Therefore, in order to generate the active cationic species the addition of a Brønsted acid, namely, methanesulfonic acid $\left(\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}\right)$ was necessary. Other Brønsted acids such as fluoroboric acid $\left(\mathrm{HBF}_{4}\right)$, phosphotungstic acid trihydrate $\left(\mathrm{H}_{3} \mathrm{PW}_{12} \mathrm{O}_{40}\right)$ or trifluoroacetic acid (TFA) can also be used. ${ }^{22 b}$

The synthesis of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuMe}\right]$ relies on the addition of methyl magnesium iodide to (triphenylphosphine)gold(I) chloride (Scheme 3). ${ }^{51}$ The resulting complex could be isolated through a filtration process albeit in moderate yield. (Triphenylphosphine)gold(I) chloride -and any other LAuCl source- could be easily accessed by reacting PPh_{3} and (tht) AuCl , an air stable salt prepared by reduction of $\mathrm{HAuCl}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ with tetrahydrothiophene.

Scheme 3 Synthesis of methyl(triphenylphosphine)gold(I)

A useful alternative employs (triphenylphosphine)gold(I) chloride as the starting complex, and then the active $\mathrm{Au}(\mathrm{I})$ species in gold(I)-catalyzed transformations are generated in situ

[^11]by addition of silver salts to form insoluble $\mathrm{AgCl} .{ }^{52}$ Our group pioneered the preparation of well defined cationic gold(I) complexes by reacting different LAuCl with silver salts featuring non-coordinating anions in the presence of nitriles. ${ }^{53}$ Thus, a new protocol for the synthesis of air-stable cationic gold(I) complexes was disclosed (Scheme 4). Remarkably, their preparation, storage and handling did not require any special equipment and they could be directly used as catalysts. It is important to stress that cations [LAu] with only mono-coordinated gold atoms are not stable. ${ }^{54}$

Scheme 4 Procedure to synthetize cationic [(JohnPhos)AuNCMe]SbF 6 .
Independently, the group of Gagosz presented a new class of stable catalysts LAuNTf 2_{2} with the weakly coordinating bistriflimide (Scheme 5). ${ }^{55}$ The resulting structures were reminiscent of bis(trimethylsilyl)imide $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuN}\left(\mathrm{SiMe}_{3}\right)_{2}\right]$ reported in $1970 .{ }^{56}$ More recently, copper salts were used generate cationic gold(I). ${ }^{57}$

Scheme 5 Procedure to synthesize neutral $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuNTf}_{2}\right]$.
Despite all the advanced protocols to isolate active gold(I) species, the in situ generation of cationic species through the addition of a silver salt in gold(I)-catalyzed reaction is still the preferred option for most experimental chemists. Nonetheless, over the years, different papers have claimed the "non-innocent" role of these silver salts in gold(I)-catalyzed reactions. In addition, there is no single common procedure to set-up reactions catalyzed by $\mathrm{Au}(\mathrm{I})$: the order of addition of the different components of a reaction mixture (silver salt, gold precatalyst, substrate, additives...) varies from one report to another.

[^12]
Effect of Silver in Gold(I) Catalysis

In 2005 , our group observed that the outcome of a reaction changed depending on the mode of generation of the cationic $\mathrm{Au}(\mathrm{I})$ catalyst (addition of protic acid vs. silver salt). ${ }^{58}$ 2,3-Dimethoxyphenol propargyl ether (1) reacted with $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}\right]$ and HBF_{4} giving selectively 6,7 -dimethoxy- 2 H -chromene (2) in 70% yield (Table 1, entry 1). When the protic acid was replaced by AgSbF_{6}, dimer $\mathbf{3}$ was also isolated as a byproduct. Indeed, chromene $\mathbf{2}$ was shown to dimerize under $\mathrm{Ag}(\mathrm{I})$-catalyzed process (Table 1, entry 3).

Table $1 \mathrm{Au}(\mathrm{I})$-catalyzed reaction of 2,3-dimethoxyphenol propargyl ether.

Additive	Yield 2	Yield 3
$\mathrm{HBF}_{4}(6 \mathrm{~mol} \%)$	70%	-
$\mathrm{AgSbF}_{6}(3 \mathrm{~mol} \%)$	72%	18%
$\mathrm{AgSbF}_{6}(15 \mathrm{~mol} \%)^{[\mathrm{ab}]}$	-	40%

${ }^{[a]}\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}\right]$ not added; reaction heated at $40^{\circ} \mathrm{C}$.
Later, the group of Gagné reported a similar finding. ${ }^{59}$ They designed a new dinuclear $\mathrm{Au}(\mathrm{I})$-catalyst using (R)-3,5-xylyl-binap as ligand. Interestingly, the levels of enantioselectivity in the cycloisomerization of enallenes (e. g. 4) varied depending on the mode of activation of the catalyst (Scheme 6). If the reaction was initiated by $[(R)-3,5-$ xylyl-binap $\left.(\mathrm{AuOTf})_{2}\right]$ (isolated catalyst), the product was obtained slowly and with lower levels of ee than if the catalyst was generated in situ using [(R)-3,5-xylyl-binap $\left.(\mathrm{AuCl})_{2}\right]$ and AgOTf.

In situ, 16 h reaction, 72% ee Isolated; > 24 h reaction, 21% ee
Scheme 6 Cycloisomerization of enallene $\mathbf{4}$ catalyzed by $\mathrm{Au}(\mathrm{I})$ complexes.

$$
[\mathrm{L}=(R)-3,5 \text {-xylyl-binap }] .
$$

Another experiment performed by the same group showed that silver ions could have an influence on a gold(I)-catalyzed reaction by intercepting key organogold intermediates

[^13](Scheme 7). ${ }^{60}$ Dinuclear gold-silver species were isolated as the resting state of this gold(I)-catalyzed hydroarylation of allenes.

Scheme 7 Catalysts resting states in the hydroarylation of allene 6.
The group of Shi then examined the so-called "silver-effect" in gold(I) catalysis. ${ }^{61}$ Various reported gold(I)-catalyzed reactions were reexamined under three different conditions: "only gold" (silver free reaction)", "only silver" and "gold and silver". Mixing LAuCl with the silver salt and filtrating the resulting crude through Celite gave the "only gold conditions", ${ }^{62}$ whereas the "only silver conditions" included the addition of the silver salt as the only catalyst. The last conditions consisted in the typical reaction set-up with no prior filtration of the bimetallic mixture through Celite. The results led them to classify the reactions into three different types: a)"genuine" Au catalysis, b) Au/Ag bimetallic catalysis and c) Ag-assisted gold catalysis.

"Genuine" Au Catalysis

This group accounted for the type of reactions catalyzed by the "only gold" conditions. However only two examples were reported and in both, the silver salt with the more coordinating anion $\mathrm{NTf}_{2}{ }^{-}$was used (Table 2).

Table 2 Selected example of the "genuine Au catalysis" type.

	"only Au"	"only Ag"	Au $+\mathbf{A g}$
catalyst	$\left[\mathrm{XPhosAuCl}^{2} \mathrm{AgNTf}_{2}\right]+$	AgNTf_{2}	$\left[\mathrm{XPhosAuCl}+\mathrm{AgNTf}_{2}\right]$
yield	Celite filtration	0%	89%

[^14]
Au/Ag Bimetallic Catalysis

The transformations belonging to this group were only effective in the presence of both metals. Filtering the mixture $\mathrm{LAuCl}+\mathrm{AgX}$ through Celite resulted in no reactivity. However, with no filtration, the bimetallic mixture proved to be effective (Table 3).

Table 3 Selected example of the " $\mathrm{Au} / \mathrm{Ag}$ bimetallic catalysis" type.

10
11

	"only Au"	"only Ag"	Au $+\mathbf{A g}$
catalyst	$\left[\mathrm{Ph}_{3} \mathrm{PAuCl}+\mathrm{AgSbF}_{6}\right]+$	$\mathrm{AgSbF}_{6}{ }^{[a]}$	$\left[\mathrm{Ph}_{3} \mathrm{PAuCl}+\mathrm{AgSbF}_{6}\right]$
yield	Celite filtration	$24 \mathrm{~h}, 0 \%$	$24 \mathrm{~h}, 0 \%$

Ag-Assisted Au Catalysis

Reactions that could be promoted by both the "only gold" and "gold and silver" conditions belonged to that group. However, the yields obtained using the bimetallic mixture were significantly higher and the transformation required shorter reaction times. The substrates did not react using only silver as catalyst (Table 4).

Table 4 Selected example of the "Ag-assisted Au catalysis" type.

	"only Au"	"only Ag"	$\mathbf{A u}+\mathbf{A g}$
catalyst	$\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}+\mathrm{AgSbF}_{6}\right]+$	AgSbF_{6}	$\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}+\mathrm{AgSbF}_{6}\right]$
yield	Celite filtration	$24 \mathrm{~h}, 0 \%$	$6 \mathrm{~h}, 77 \%$

In addition, transformations that could be catalyzed by "only gold" or "only silver" were also included in this group (Table 5).

Table 5 Selected example of the "Ag-assisted Au catalysis" type.

	"only Au""	"only Ag"	Au + Ag
catalyst	$\left[\mathrm{IPrAuCl}+\mathrm{AgBF}_{4}\right]+$	AgBF_{4}	$\left[\mathrm{IPrAuCl}+\mathrm{AgBF}_{4}\right]$
yield	Celite filtration		$6 \mathrm{~h}, 83 \%$

Based on these surprising results, the group concluded that the so far assumed mechanisms in gold(I)-catalyzed reactions could be much more complex. They ruled out any reactivity from the formed AgCl .

Objectives

With the so-called "silver effect" previously described, we realized that there was not a universal procedure to perform gold(I) catalyzed reactions. Whilst in some cases the silver salt was the last reagent added in the reaction, in some others, the $\operatorname{Au}(\mathrm{I})$ and $\operatorname{Ag}(\mathrm{I})$ sources were mixed first and then added to the substrate, regardless of the coordinating abilities of the solvent or anion of the silver salt used.

Due to the absence of monocoordinated species reported in the literature, we were particularly interested in the real species formed when mixing LAuCl and AgX , especially when this was done in a non-coordinating solvent and/or when silver was ion-paired with a non-coordinating anion.

Scheme 9 Reaction between [LAuCl] and silver salts featuring non-coordinating anions in a non-coordinating solvent.

Therefore, we decided to study how the order of addition of the silver salts could influence the outcome of the gold(I)-catalyzed methodologies we previously reported.

Results and Discussion

The initial experiments were performed using $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}\right]$ and were monitored by ${ }^{31} \mathrm{P}$ NMR. The first silver salt used was AgOTf in order to assess the coordinating ability of the triflate anion. $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}\right]$ was mixed with 0.2 equiv of AgOTf and the ${ }^{31} \mathrm{P}$ NMR spectrum was acquired after 20 min stirring at $23{ }^{\circ} \mathrm{C}$. To the same reaction mixture, 0.2 more equiv of the silver salt were introduced and the resulting mixture was examined by ${ }^{31}$ P NMR (Figure 2). This process was repeated until 2 equiv of silver salt were added.

It is generally accepted that the more cationic character of the complexes generated, the more upfield the ${ }^{31} \mathrm{P}$ NMR signals. The broad signal observed upon addition of 0.2 equiv sharpened with the addition of AgOTf. The equilibrium was observed after 1.4 equiv of AgOTf were added. We could distinguish the species at 48 ppm as the bisphosphine complex $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Au}\right] \mathrm{OTf}$. The traces of excess PPh_{3} that the starting material contained, bind to the metal center much faster than the triflate anion itselfs. ${ }^{63}$ The sharp signal at 30.5 ppm was consistent with the formation of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuOTf}\right]$. We suspected that within the

[^15]range of 0.2 equiv to 1.4 equiv, this covalent complex was in equilibrium with other unknown species. Attempts to crystallize any of the new species formed proved unsuccessful. Schmibaur had observed that above $-20^{\circ} \mathrm{C},\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuOTf}\right]$ was not stable in the solid state, although they were able to crystallize its o-tolyl analogue. ${ }^{64}$ Nonetheless, the group of Yu has supported this hypothesis by showing that triphenylphosphine gold triflate was very prone to hydration when analytical grade $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used. ${ }^{65}$ Therefore, we decided to switch to the more stable JohnPhos (2-biphenyl- t - $\mathrm{Bu}_{2} \mathrm{P}$) ligand.

JohnPhosAuCl and AgX in a Non-coordinating Solvent (X = OTf, $\mathbf{N T f}_{2}, \mathbf{B F}_{4}, \mathbf{S b F}_{6}$)

A very similar trend was observed using this bulky phosphine. Mixing 1 equiv of [(JohnPhos)AuCl] (A) with 1 equiv of AgOTf a rather sharp signal was observed in the ${ }^{31} \mathrm{P}$ NMR spectrum. The crystallization of the crude mixture led to the isolation of the unexpected dinuclear chloride bridged $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}\right] \mathrm{OTf}(\mathbf{B 1)}$ (Scheme 9) that could be fully characterized by X-ray diffraction (Figure 3).

Scheme 9 Formation of [((JohnPhos)Au $\left.)_{2} \mathrm{Cl}\right] \mathrm{OTf}(\mathbf{B 1})$.

Figure 3 X-ray crystal structure of complex B1. ORTEP plots (50\% thermal ellipsoids). Hydrogen atoms and solvent molecules omitted for clarity.

We hypothesized that the equilibrium previously observed in the case of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}\right]$ also took place between [(JohnPhos)AuOTf] (C1), [((JohnPhos)Au) $\left.)_{2} \mathrm{Cl}\right] \mathrm{OTf}$ (B1) and

[^16][(JohnPhos)AuCl] (A). The sharp ${ }^{31} \mathrm{P}$ NMR signal observed after addition of 1.6 equiv of silver salt corresponded to the neutral complex [(JohnPhos)AuOTf]. [(JohnPhos)AuOTf] was cleanly formed upon the addition of 5 equiv of the silver salt (Scheme 10 and Figure 4).

Scheme 10 Formation of neutral complex [(JohnPhos)AuOTf] (C1).

Figure 4 X-ray crystal structure of complex C1. ORTEP plots (50% thermal ellipsoids). Hydrogen atoms and solvent molecules omitted for clarity.

The stronger coordinating character of the triflimide anion was evidenced when a $1: 1$ mixture of [(JohnPhos)AuCl] (A) and AgNTf_{2} gave a $1: 1$ mixture of the monocationic species $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}^{2} \mathrm{NTf}_{2}(\mathbf{B 2})\right.$ and the neutral complex [(JohnPhos)AuNTf ${ }_{2}$] (C2) (Scheme 11 and Figure 5). The formation of dinuclear complex B2 could be avoided by using either excess or slow addition of the silver salt.

Scheme 11 Formation of $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}^{2} \mathrm{NTf}_{2}(\mathbf{B 2})\right.$ and $\left[(\mathrm{JohnPhos}) \mathrm{AuNTf}_{2}\right]$ (C2).

Figure 5 X-ray crystal structure of complexes B2 and C2. ORTEP plots (50\% thermal ellipsoids).
Hydrogen atoms and solvent molecules omitted for clarity.
Finally, mixing [(JohnPhos)AuCl] (A) with the non-coordinating silver salts AgBF_{4} or AgSbF_{6} gave the dinuclear monocation complexes B3 and B4, respectively (Scheme 12 and Figure 6). Interestingly, addition of up to 10 equiv of either silver salts was not enough to break the resulting dinuclear complexes apart.

Scheme 12 Formation of $\left[((\text { JohnPhos }) \mathrm{Au})_{2} \mathrm{Cl}\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BF}_{4}{ }^{-}\right.$or $\left.\mathrm{SbF}_{6}{ }^{-}\right)$.

Figure 6 X-ray crystal structure of complexes B3 and B4. ORTEP plots (50\% thermal ellipsoids).

Hydrogen atoms and solvent molecules omitted for clarity.
All the crystalline dinuclear complexes $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}\right] \mathrm{X}(\mathbf{B})$ showed weak aurophilic interactions $\left(\mathrm{Au}-\mathrm{Au}\right.$ distances $=3.48-3.54 \AA, \mathrm{Au}-\mathrm{Cl}-\mathrm{Au}$ angles $\left.=94.7-97.5^{\circ}\right) .{ }^{66}$ Interestingly, Usón ${ }^{67}$ and Schmidbaur ${ }^{68}$ had already reported the synthesis of similar digoldhalide cations employing triphenyl- and triethylphosphine as ligands in a 1:2 ratio of silver:gold. Their reactivity was later tested in the first example of an intermolecular reaction of an alkyne and a furan. ${ }^{69}$

The bimetallic complexes \mathbf{B} were then synthesized quantitatively using 0.5 equiv of the silver salt in a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF (Scheme 13). Under these optimized conditions and using $\mathrm{SbF}_{6}{ }^{-}$as counterion and PPh_{3} as ligand, the group of Schmidbaur observed the formation of tetranuclear dications through a self-assembly of two dinuclear monocations. ${ }^{70}$ In our case, the steric bulk of the JohnPhos ligand did not allow this association process to take place. The formation of these dinuclear complexes was also

[^17]viable when treating [(JohnPhos)AuBr] and [(JohnPhos)AuI] with silver salts that have non-coordinating anions. ${ }^{71}$

Scheme 13 Optimized synthesis of [(JohnPhos) $\left.)_{2} \mathrm{AuCl}\right] \mathrm{X}\left(\mathrm{X}=\mathrm{NTf}_{2}^{-}, \mathrm{OTf}^{-}, \mathrm{BF}_{4}{ }^{-}\right.$or $\left.\mathrm{SbF}_{6}{ }^{-}\right)$.
To evaluate the stability of these monocationic species and study if the equilibrium between the monocoordinated Au complex ([(JohnPhos)Au] $]^{+}$) and $[(J o h n P h o s A u) C l]$ was possible, we examined their ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra while lowering the temperature. No equilibrium could be observed for the species featuring BF_{4}^{-}or SbF_{6}^{-}as counterions. Interestingly, the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of the above-mentioned crude mixtures (1:1 mixture of [(JohnPhosAu)Cl] and AgX) were studied before and after filtration through Celite in the range from $-80^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. Digoldchloride cations were the major species at $-80{ }^{\circ} \mathrm{C}$ in the case of AgSbF_{6} and AgBF_{4} (in agreement with the chemical shifts observed in the ${ }^{31} \mathrm{P}$ NMRs) (Figure 7). Filtration of the crude mixture involving the $\mathrm{BF}_{4}{ }^{-}$anion, gave 17% of hydrated dinuclear cation \mathbf{D} that could be fully characterized by X-ray diffraction (Figure 8). The group of Nolan also reported analogous gold species using carbenes as ligands. ${ }^{72}$

[^18]

Figure $7{ }^{31} \mathrm{P}$ NMR of $\left[((\text { JohnPhos }) \mathrm{Au})_{2} \mathrm{Cl}^{2}\right] \mathrm{BF}_{4}(\mathbf{B 3})$ or $[($ JohnPhos $) \mathrm{AuCl}](\mathbf{A})+\mathrm{AgBF}_{4}$.

Figure 8 X-ray crystal structure of complex D. ORTEP plots (50\% thermal ellipsoids). Hydrogen atoms and solvent molecules omitted for clarity.

The rather broad signal at 65.1 ppm , observed after filtering the crude mixture of [(JohnPhos)AuCl] (A) and AgOTf, further split into the corresponding $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}\right] \mathrm{OTf}(\mathbf{B 1})$ and [(JohnPhos)AuOTf] (C1). In contrast, without filtration, the dinuclear chloride species $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}\right] \mathrm{OTf}(\mathbf{B 1})$ was the only one observed. Interestingly, filtering through Celite the mixture of $\left[((J o h n P h o s) A u)_{2} \mathrm{Cl}^{2}\right] \mathrm{NTf}_{2}(\mathbf{B 2})$ and [(JohnPhos)AuNTf 2] (C2) obtained by reaction of [(JohnPhos)AuCl] (A) and AgNTf_{2} afforded only [(JohnPhos)AuNTf 2] (C2) (Figure 9).

Figure $9{ }^{31} \mathrm{P}$ NMR of $\left[((\text { JohnPhos }) \mathrm{Au})_{2} \mathrm{Cl}^{2} \mathrm{NTf}_{2}(\mathbf{B 2})\right.$ or $[($ JohnPhos $) \mathrm{AuCl}](\mathbf{A})+\mathrm{AgNTf}_{2}$.
Given the differences observed in the experimental procedures of different gold(I)catalyzed reactions regarding the order of addition of the reagents, we examined if these dinuclear complexes could be indeed generated when the $\operatorname{Au}(\mathrm{I})$ and $\operatorname{Ag}(\mathrm{I})$ sources were initially mixed in a non-coordinating solvent. Therefore, to determine the relevance of the formation of the bimetallic complexes, we performed the gold(I)-catalyzed reactions under three different conditions: a) in situ generation of the catalyst in the presence of the substrate(s), b) in situ generation of the catalyst followed by the addition of the substrate(s) and c) filtration through Celite after the in situ generation of the catalyst followed by the addition of the substrate(s). We performed this last experiment to remove the precipitate of AgCl , and see if there was any effect on the outcome of the reaction.

Relevance of Digoldhalide Cation

JohnPhosAuCl and $\mathbf{A g X}$ with Phenylacetylene

The mixture of phenylacetylene and [(t - BuXPhos$) \mathrm{AuNCMe}^{2} \mathrm{SbF}_{6}$ is known to produce digold complex $\mathbf{E} .{ }^{73}$ The π-coordination of the acetylene moiety to the metal increases the acidity of the terminal proton of the triple bond, generating σ-coordinated species \mathbf{F} with release of HSbF_{6}. Complex \mathbf{F}, in turn, coordinates to another molecule of the $\mathrm{Au}(\mathrm{I})$ source, giving rise to σ, π-digold complex \mathbf{E} (Scheme 14).

[^19]

Scheme 14 Formation of digold complex \mathbf{E}.
We first synthesized and fully characterized the σ, π-digold species \mathbf{G} (analogous to \mathbf{E} but bearing JohnPhos as ligand instead of t-BuXPhos) following a described procedure, ${ }^{73}$ to prove its formation under the conditions studied. Then, we carefully examined the species formed under the aforementioned conditions.
a) In situ generation of the catalyst in the presence of phenylacetylene

To perform this experiment, we used the usual ratio of catalyst/substrate for gold(I)catalyzed reactions. Thus, $3 \mathrm{~mol} \%$ of [(JohnPhos)AuCl] were added to a solution of phenylacetylene in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The subsequent addition of $3 \mathrm{~mol} \%$ of any of the silver salts gave exclusively the formation the digold complexes \mathbf{G} (Scheme 15).

Scheme 15 In situ generation of the catalyst from in the presence of phenylacetylene.
b) In situ generation of the catalyst followed by the addition of phenylacetylene The same species were observed when phenylacetylene was added to a 1:1 mixture of 3 $\mathrm{mol} \%$ of [(JohnPhos) AuCl$](\mathbf{A})$ and any of the silver salts. We postulated that after combining the two metal sources, digoldchloride species \mathbf{B}, AgX and AgCl (1:1:1 ratio) would be the predominant species in solution. Phenylacetylene could then coordinate to one of the gold centers of the chloride bridged species \mathbf{B} and through an associative mechanism, [(JohnPhos)AuCl] (A) would be eliminated. This neutral complex can further coordinate to phenylacetylene in the presence of the residual AgX (Scheme 16).

Scheme 16 In situ generation of the catalyst followed by the addition of phenylacetylene.

$$
\left(\mathrm{X}=\mathrm{NTf}_{2}^{-}, \mathrm{OTf}^{-}, \mathrm{BF}_{4}^{-}, \mathrm{SbF}_{6}^{-}\right) .
$$

c) Filtration through Celite after the in situ generation of the catalyst followed by the addition of the substrate(s)
In this case, the mixture containing digoldchloride species \mathbf{B}, AgX and AgCl (presumably in equimolar amount) was filtered through Celite. We proposed that insoluble AgCl and part of the AgX would remain on Celite. Addition of phenylacetylene led to the formation of digold species \mathbf{G} as well as neutral [(JohnPhos)AuCl] (A). Interestingly, the ratio of σ, π-digold complexes \mathbf{G} and $[(\mathrm{JohnPhos}) \mathrm{AuCl}](\mathbf{A})$ depended on the nature of the silver salt used. Thus, whereas AgNTf_{2} gave only traces of $\mathbf{A}, 14 \%$ of unreacted [(JohnPhos)AuCl] was observed when using AgOTf, and much higher quantities were observed for $\mathrm{AgBF}_{4}(61 \%)$ and AgSbF_{6} (30\%).

Examining the reaction between [(JohnPhos) $\left.)_{2} \mathrm{AuCl}\right] \mathrm{X}(\mathbf{B})$ and phenylacetylene at $-80{ }^{\circ} \mathrm{C}$, we could detect an equilibrium between $\mathbf{B}+$ phenylacetylene and $[(J o h n P h o s) \mathrm{AuCl}]+\sigma, \pi-$ digold complexes \mathbf{G} (Scheme 17).

With these results in hand, we sough to study the gold(I)-catalyzed $[2+2]$ inter- ${ }^{25}$ and intramolecular ${ }^{22 \mathrm{c}}$ cycloaddition reactions already reported in our group.

JohnPhosAuCl and AgX in the [2+2] Intermolecular Cycloaddition of Phenylacetylene and α-Methylstyrene

The intermolecular reaction between phenylacetylene and α-methylstyrene gives cyclobutene 18 in 60% yield in the presence of [JohnPhosAu(MeCN$)] \mathrm{SbF}_{6}$ as catalyst. ${ }^{25}$ We studied the reaction under the different conditions previously stated to determine the effect of the silver salts (Table 6).

Table 6 Formation of cyclobutene $\mathbf{1 8}$ by gold(I)-catalyzed [2+2] intermolecular cycloaddition.

$\left.\left.\begin{array}{ccc}\hline \text { Conditions } & \mathbf{X}=\mathbf{S b F}_{\mathbf{6}}{ }^{-} & \mathbf{X}=\mathbf{B F}_{4}{ }^{-} \\ \hline \begin{array}{c}\text { In situ } \text { generation of the catalyst in the } \\ \text { presence of the substrates }\end{array} & 0 \% & 31 \% \\ \begin{array}{c}\text { In situ } \text { generation of the catalyst and } \\ \text { addition of the substrates }\end{array} & 0 \% & 34 \% \\ \text { In situ generation of the catalyst, filtration } \\ \text { and addition of the substrates } \\ {\left[(\mathrm{JohnPhos})_{2} \mathrm{AuCl}\right] \mathrm{X}}\end{array}\right] 26 \%\right)$

Yields determined by ${ }^{1} \mathrm{H}$ NMR using diphenylmethane as internal standard.
When a solution of the alkyne, the alkene and [(JohnPhos)AuCl] was added to the silver salt, after stirring for 8 h , no traces of the expected cyclobutene were formed whilst decomposition was detected. Decomposition was also observed when a solution of α-methylstyrene and phenylacetylene was added to a solution of [(JohnPhos)AuCl] and the silver salt. However, filtration through Celite of the in situ formed complex, gave the cyclobutene in 26% yield. Finally, the reaction proceeded in 46% yield using $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}^{2} \mathrm{SbF}_{6}(\mathbf{B 4})\right.$. No cyclization took place after the addition of both starting materials to $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}^{2} \mathrm{SbF}_{6}\right.$ (B4) with $2.5 \mathrm{~mol} \%$ of silver salt. We then discovered that the alkene underwent oligomerization or polymerization in the presence of AgSbF_{6}. Thus, under all the conditions in which the alkene was in contact with the silver salt, only decomposition was observed. The fact that the filtration of the in situ generated complex through Celite gave less cyclobutene than using [((JohnPhos)Au) $)_{2} \mathrm{Cl}^{2} \mathrm{SbF}_{6}$ supported the assumption that not all the AgSbF_{6} was removed by filtration.

The results obtained with AgBF_{4} were different. In this case, the silver salt did not polymerize any of the substrates and did not catalyze the reaction either. The same amount of cyclobutene (around 31% yield) was formed when the addition of the substrate was done either prior or after the formation of the catalyst. Filtration of the in situ generated catalyst did not result in any drop in the yield, presumably because most of the silver salt went through the Celite. Only 11% of cyclobutene was formed when using
$\left[((\text { JohnPhos }) \mathrm{Au})_{2} \mathrm{Cl}^{2} \mathrm{BF}_{4}(\mathbf{B 3})\right.$ as catalyst, although the addition of $2.5 \mathrm{~mol} \%$ of the silver salt increased the yield to 34%.

Since phenylacetylene -as it was previously observed- was able to associate one of the gold centers of the digoldhalide cations species, in principle, the order of addition of the silver salts should not have had any effect on the outcome of the reaction. However, it proved to be significant for AgSbF_{6}, since decomposition of the starting materials was observed with this specific silver salt.

JohnPhosAuCl and $\mathbf{A g X}$ in the [2+2] Intramolecular Cycloaddition of Enyne 19

The intramolecular gold(I)-catalyzed [2+2] cycloaddition of 1,6-enyne 19 giving rise to bicyclo[3.2.0]hept-6-ene derivative was reported for the first time by our group. ${ }^{22}$ Similar cyclobutenes related to 20 had been generated by the group of Trost using palladacyclopentadienes as catalysts. ${ }^{74}$ Later, Fürstner also described its synthesis of this type of compounds through a Pt(II)-catalyzed transformation under CO atmosphere. ${ }^{75}$

Table 7 Formation of cyclobutene 20 by gold(I)-catalyzed [2+2] intramolecular cycloaddition.

Conditions	$\mathbf{X}=\mathbf{S b F}_{\mathbf{6}}{ }^{-}$	$\mathbf{X}=\mathbf{B F}_{4}{ }^{-}$
In situ generation of the catalyst in the presence of the substrates	77%	17%
In situ generation of the catalyst and addition of the substrates	12%	0%
In situ generation of the catalyst, filtration		
and addition of the substrates	0%	0%
$\left[(\mathrm{JohnPhos})_{2} \mathrm{AuCl}\right] \mathrm{X}$	0%	0%
$\left[(\mathrm{JohnPhos})_{2} \mathrm{AuCl}\right] \mathrm{X}+\mathrm{AgX}$	67%	26%
AgX	0%	0%

Yields determined by ${ }^{1} \mathrm{H}$ NMR using diphenylmethane as internal standard.
When the silver salt was added to a solution containing the enyne and [(JohnPhos)AuCl] (A), the bicyclic product $\mathbf{2 0}$ was formed in 77% yield after 2 h . However, only 12% of $\mathbf{2 0}$ was formed (along with unreacted starting material) with the in situ generation of the catalyst after this reaction time. No reaction took place filtering the in situ formed catalyst with Celite. The reaction also failed using [(JohnPhos) $)_{2} \mathrm{AuCl}^{2} \mathrm{SbF}_{6}(\mathbf{B 4})$ as catalyst. The

[^20]yield raised to 67% after the addition of 1 equiv of AgSbF_{6} to $\left[(\mathrm{JohnPhos})_{2} \mathrm{AuCl}^{2} \mathrm{SbF}_{6}(\mathbf{B 4})\right.$ and the substrate.

The reaction was found to be much less effective when using AgBF_{4}. Even increasing the amount of gold(I) complex to $5 \mathrm{~mol} \%$ and leaving the reaction for $18 \mathrm{~h}, \mathbf{2 0}$ was formed in only 17% yield. No reaction took place when the catalyst was generated in situ, neither did it occur using [(JohnPhos) $\left.)_{2} \mathrm{AuCl}\right] \mathrm{BF}_{4}$ (B3). However, the effectiveness of this last catalyst was recovered after adding AgBF_{4}.

Presumably, since the 1,6 -enyne is not able to associate to the cationic metal of the digoldchloride species, generated from reaction of LAuCl and AgX , under these conditions, the order of addition of the reagents had a tremendous impact on the outcome of the reaction. Therefore, the reaction proceeded more efficiently when the addition of the metal sources was last.

JohnPhosAuCl and AgX in the [4+2] Cycloaddition of Arylenyne 21

The intramolecular gold(I)-catalyzed [4+2] cycloaddition reaction of 1,6-enyne $\mathbf{2 1}$ forming the tricyclic derivative 22 was reported by our group (Scheme 18). ${ }^{22}$ The cycloisomerization proceeds stepwise by the initial formation of a cyclopropylgold(I)carbene that is further attacked by the aryl ring in a Friedel-Crafts type reaction.

Scheme 18 Gold(I)-catalyzed [4+2] cycloaddition of arylenyne 21.

The reaction of 21 was performed under different conditions, whilst formation of product 22 was monitored by ${ }^{1} \mathrm{H}$ NMR (Figure 10).

Figure 10 Cycloisomerization of 1,6-enyne 21 to form 22. Yields determined by ${ }^{1} \mathrm{H}$ NMR using diphenylmethane as internal standard. ${ }^{76}$

The reaction afforded the same amount of product after 2.5 h when treating the enyne either with [(JohnPhos)AuCl] and $\mathrm{AgSbF}_{6}\left({ }^{\bullet}\right)$ or [(JohnPhos)AuNCMe]SbF ${ }_{6}\left({ }^{\bullet}\right)$. However, it was slower in the presence of acetonitrile since replacement of the acetonitrile by the enyne is a slow process. Indeed, the ${ }^{31} \mathrm{P}$ NMR after 5 min reaction showed two signals corresponding to the coordination of the unsaturated moieties to the gold for the in situ generation procedure (${ }^{\bullet}$) (Figure 11). Contrarily, the only signal observed for conditions ${ }^{\bullet}$ was the corresponding to the complex [(JohnPhos)AuNCMe]SbF ${ }_{6}$.

Figure $11{ }^{31} \mathrm{P}$ NMRs of $\{\mathbf{A}+\mathbf{2 1}\}+\operatorname{AgSbF}_{6}\left({ }^{\bullet}\right)$ and
$\left\{[(\right.$ JohnPhos $)$ AuNCMe $\left.] \mathrm{SbF}_{6}+\mathbf{2 1}\right\}\left({ }^{\bullet}\right)$ taken after 5 min reaction.

As expected, no reaction took place with [(JohnPhos)AuCl] (-). Initial mixing of [(JohnPhos) AuCl$]$ and AgSbF_{6}, followed by the addition of the enyne, gave the tricyclic

[^21]product in 32% yield after $2.5 \mathrm{~h}(*)$. We were rather surprised of the fast formation of the product, which reached its maximum after 20 min reaction. The slope observed during this period was very similar to that of the reaction with $\{[(\mathrm{JohnPhos}) \mathrm{AuCl}]+\mathbf{2 1}\}+\mathrm{AgSbF}_{6}$. This would have suggested the non-influence of the order of addition of the silver salts if the efficiency of the reaction had not changed. This first trend in the graph can be explained if some of [(JohnPhos)AuCl] remain intact after the initial mixture of the two metal sources. Upon the addition of the enyne and in the presence of AgSbF_{6}, the formation of tricyclic product is fast. However, the major complex formed is $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}^{2} \mathrm{SbF}_{6}(\mathbf{B 4})\right.$, which is much less reactive as observed (see figure $10, \times$ and \times). Indeed, the enyne can coordinate to one of the metal centers of digoldchloride complex very slowly through an associative process. ${ }^{31} \mathrm{P}$ NMR measured after 5 min reaction between $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}^{2} \mathrm{BF}_{4} \quad(\mathrm{~B} 3)\right.$ and the enyne showed mainly digoldchloride species but also traces of enyne coordinated to one gold center (either through the alkene or the alkyne) (Figure 12).

Figure $12{ }^{31} \mathrm{P}$ NMRs of $\{\mathbf{A}+\mathbf{2 1}\}+\operatorname{AgSbF}_{6}\left({ }^{\bullet}\right)$ and
$\left\{[(\right.$ JohnPhos $)$ AuNCMe $\left.] \mathrm{SbF}_{6}+\mathbf{2 1}\right\}\left({ }^{\boldsymbol{\bullet}}\right)$ taken after 5 min reaction.
It is worth mentioning, that the tricyclic product was formed after 24 h reaction in 70%, 69% and 52% yield after mixing $\left\{[(J o h n P h o s) A u C l]+\mathrm{AgSbF}_{6}\right\}+$ enyne (${ }^{*}$), $\left\{\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}\right] \mathrm{SbF}_{6}+\right.$ enyne $\}(\times)$ and $\left\{\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}^{2}\right] \mathrm{SbF}_{6}(1.5 \mathrm{~mol} \%)+\right.$ enyne $\}(\times)$, respectively.

The reaction was found to be faster after the addition of AgSbF_{6} to a mixture of $\left[((\text { JohnPhos }) \mathrm{Au})_{2} \mathrm{Cl}^{2} \mathrm{SbF}_{6}(*)\right.$ and the enyne 21 but not as fast as the addition of the silver salt to [(JohnPhos)AuCl] and the enyne $\left({ }^{\bullet}\right)$. These results illustrate the high stability of the digoldchloride cations formed as well as the difficulties of the substrates to rapidly associate to one of the gold centers.

Outlook

We are rather reluctant to classify the reactions studied into the categories proposed by the group of Shi^{61} since in our experience, there are too many variables to consider in gold(I)catalyzed reactions. As it has been shown, the outcome of a particular reaction can dramatically change when different procedures were used to generate the active catalyst. The coordinating character of both the solvent and the counterion of the silver salt used as well as the order of addition of the reagents are parameters that can have detrimental effects.

Herein, we expose some guidelines to consider when performing a gold(I)-catalyzed reaction starting from a LAuCl precatalyst. First, a blank experiment using the silver salt as the sole catalyst should be performed. If the substrate(s) decompose(s) or polymerize(s) giving side products, the isolated cationic or neutral gold(I) complexes should be used as catalysts (see introduction part). ${ }^{53,55}$ However, if the substrate(s) remain(s) unchanged, the active species can be generated in situ in the reaction mixture and thus the order of addition of the metals has to be considered if the reaction is performed in a non-coordinating solvent.

To avoid the formation of the stable and less efficient digoldchloride cations when using silver salts with non-coordinating counterions, the silver salt should be added last. Although the results in terms of efficiency or yield would be the same if the substrate is highly coordinating to one of the gold centers, a dramatic effect can be seen if the process is slow or does not occur at all. When the silver salt has a coordinating counterion (e.g. triflimide), then the order of mixture of the two metal sources is inconsequential as the dinuclear gold complexes will not be formed. ${ }^{77}$

[^22]
Simultaneous Findings and Further Studies

While the manuscript of this project was in preparation, the group of Jones reported a new trinuclear complex incorporating silver and gold coordinated to a central chloride anion. ${ }^{78}$ Cooling the crude mother liquor (filtered through Celite) of 1 equiv of [(JohnPhos)AuCl] with 1 equiv of AgSbF_{6} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave crystals of \mathbf{H} (Figure 13).

Figure 13 Structure of $\mathrm{Au}-\mathrm{Ag}-\mathrm{Au}$ trinuclear complex \mathbf{H}.
We never observed the formation of this complex, neither by ${ }^{31} \mathrm{P}$ NMR, nor by X-ray analysis. However, the authors concluded that "in the presence of substrate, silver incorporation is likely minimal". They described the complex obtained as a snapshot of the chloride abstraction process. ${ }^{52}$

During the same period, the group of Albrecht observed a different outcome in the reaction when mixing [(NHC)AuCl] and silver salts in a non-coordinating environment. ${ }^{79}$ Under these conditions, homoleptic bis(carbene) gold(I) complexes were obtained from the corresponding carbene gold chloride analogues and AgBF_{4} (Scheme 19). Carbenes could be easily transferred by dissociation to another Au center. This process was accelerated in the presence of Ag^{+}cations.

Scheme 19 Formation of homoleptic Bis(IMes) gold complex via carbene transfer.
We hypothesized that the formation of such species is very specific of NHC ligands due to its facile transfer in the presence of silver(I) salts. ${ }^{79}$ However, this is not the case when using bulky phosphines as ligands.

[^23]With these results, chemists were prompted to investigate other ways to generate the cationic active species circumventing the use of silver salts. Thus, the group of Gandon reported the use of Lewis acids of the transition and main group $(\mathrm{Cu}(\mathrm{I}), \mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$, In(III), $\mathrm{Si}(\mathrm{IV}), \mathrm{Bi}(\mathrm{III})$) avoiding the use of silver salts. ${ }^{80}$ However, the limited set of goldcatalyzed reactions tested using this method as well as the lesser efficiency observed with respect to the conventional procedure, makes this protocol not particularly attractive.

Following a similar approach, the groups of Hammond and Bo offered another way to generate gold(I) active species by using Brønsted or Lewis acid assisted activation of imidogold precatalysts (L-Au-Phth, Phth $=$ phthalimide; $\mathrm{L}=\mathrm{PPh}_{3}$, JohnPhos, IPr). ${ }^{81}$ This system was applied to several described $\mathrm{Au}(\mathrm{I})$-catalyzed reactions and the most efficient additive to activate $\mathrm{L}-\mathrm{Au}-\mathrm{Phth}$ was found to be $\mathrm{Tf}_{3} \mathrm{CH}$, a very strong acid in aqueous solution and although its pK_{a} has not been determined, it is estimated to lie between concentrated HNO_{3} and $\mathrm{HOSO}_{2} \mathrm{~F} .{ }^{82}$

Very recently, the group of Michon has reported the crystal structure of a digold complex coordinated to tetrafluoroborate. ${ }^{83}$ This is the first time that this weakly coordinating anion binds to a gold center. Interestingly, crystals were grown in toluene and no η^{1} / η^{2} coordination of the arene solvent and the metal was observed, as was shown with JohnPhos ${ }^{53 \mathrm{a}}$ or NHC^{84} as ligands.

[^24]
Conclusions

We have shown that the formation of robust chloride-bridged dinuclear gold(I) complexes $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{Cl}\right] \mathrm{X}$ occurs readily when mixing [(JohnPhos)AuCl] precatalyst with silver salts with a non-coordinating anion in the absence of the substrate in noncoordinating solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 20).

Scheme 20 Formation of bridged dinuclear gold(I) complexes [((JohnPhos)Au) $\left.{ }_{2} \mathrm{Cl}\right] \mathrm{X}(\mathbf{B})$.
These dinuclear gold(I) complexes are significantly less active than cationic complexes [(JohnPhos)Au(NCMe)]X. The formation of these dinuclear gold(I) complexes can be avoided if the silver salt is the last reagent added into the reaction mixture. Based on these results, we have proposed some guidelines to follow when generating in situ the active gold species starting from $[\mathrm{LAuCl}]$ precatalysts.

Experimental Part

General Information

Unless otherwise stated, reactions were carried out under argon atmosphere in solvents dried by passing through an activated alumina column on a PureSolv ${ }^{\mathrm{TM}}$ solvent purification system (Innovative Technologies, Inc., MA). Analytical thin layer chromatography was carried out using TLC-aluminium sheets with 0.2 mm of silica gel (Merck GF_{234}) using UV light as the visualizing agent and an acidic solution of vanillin in ethanol as the developing agent. Chromatograpy purifications were carried out using flash grade silica gel (SDS Chromatogel 60 ACC, $40-60 \mathrm{~mm}$) or automated flash chromatographer CombiFlash Companion. Preparative TLC was performed on $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ silica gel plates (2.0 mm thick, catalogue number 02015 , Analtech). If indicated, preparative TLC was performed on $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ aluminium oxide plates (0.25 mm thick, 90066 , Fluka). Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. NMR spectra was recorded at 298 K on a Bruker Avance 400 Ultrashield and Bruker Avance 500 Ultrashield apparatus. Mass spectra were recorded on a Waters Micromass LCT Premier (ESI), Waters Micromass GCT (EI, CI) and Bruker Daltonics Autoflex (MALDI) spectrometers. Elemental analyses were performed on a LECO CHNS 932 micro-analyzer at the Universidad Complutense de Madrid. Melting points were determined using a Büchi melting point apparatus.

Crystal structure determinations were carried out using a Bruker-Nonius diffractomer equipped with an APPEX 24 K CCD area detector, a FR591 rotating anode with $\mathrm{MoK}_{\mathrm{a}}$ radiation, Montel mirrors as monochromator and a Kryoflex low temperature device ($\mathrm{T}=$ $173{ }^{\circ} \mathrm{C}$). Full-sphere data collection was used with w and j scans. Programs used: Data collection APEX-2, data reduction Bruker Saint V/.60A and absorption correction SADABS. Structure Solution and Refinement: Crystal structure solution was achieved using direct methods as implement in SHELXTL and visualized using the program XP. Missing atoms were subsequently located from difference Fourier synthesis and added to the atom list. Least-squares refinement on F2 using all measured intensities was carried out using the program SHELXTL. All non-hydrogen atoms were refined including anisotropic displacement parameters.

Synthesis of Mononuclear Gold(I) Complexes

Chloro[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) (A)
 To a solution of $\mathrm{NaAuCl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(398 \mathrm{mg}, 1 \mathrm{mmol})$ in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ in an ice bath, thiodiethanol ($312 \mu \mathrm{~L}, 3.01 \mathrm{mmol}$) was added. After stirring for 45 min , [(1,1' -biphenyl-2-yl)di-tert butylphosphine] ($299 \mathrm{mg}, 1$ mmol) in 10 mL EtOH were added to the mixture. After 4 h stirring, the white solid was filtered (with a porous filter), washed with MeOH and dried under vacuum.
$504 \mathrm{mg}(0.949 \mathrm{mmol})$ of [(JohnPhos)AuCl] (A) were isolated in 95% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.89(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.39$
$(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dt}, J=4.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J$
$=15.6 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 150.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=13.4 \mathrm{~Hz}\right), 142.1$
$\left(\mathrm{d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.7 \mathrm{~Hz}\right), 134.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.9 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.5 \mathrm{~Hz}\right)$, $130.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.9 \mathrm{~Hz}\right), 129.7,128.9,128.3,127.2,126.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=45.1 \mathrm{~Hz}\right)$, $38.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=25.6 \mathrm{~Hz}\right), 31.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.7 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(202 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}}$ 63.2.

Trifluoromethanesulfonate[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) (C1)
Silver trifluoromethanesulfonate ($121 \mathrm{mg}, 0.471 \mathrm{mmol}$) was added to a
 solution of chloro[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) $(50 \mathrm{mg}, 0.094 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring the reaction mixture for 2 h at $23^{\circ} \mathrm{C}$, the crude was filtered through a pad of Celite and cotton at the top of the pipette and Teflon filters $(2 \times 0.22 \mu \mathrm{~m})$. The resulting colorless solution was evaporated to dryness under vacuum to give the neutral complex as a white solid. White crystals were grown by crystallization with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane.
$47 \mathrm{mg}(0.073 \mathrm{mmol})$ of trifluoromethanesulfonate [(1,1'-biphenyl-2-yl)di-tertbutylphosphine]gold(I) (C1) were obtained in 77% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.89(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.38-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 150.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=11.7 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.2 \mathrm{~Hz}\right), 131.7(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.4 \mathrm{~Hz}\right), 129.9,129.2,128.9,127.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.8 \mathrm{~Hz}\right), 124.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=51.0 \mathrm{~Hz}\right), 121.9,119.4,38.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=28.0 \mathrm{~Hz}\right), 31.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.1 \mathrm{~Hz}\right)$. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}} 60.4 .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{F}}-77.7$. HRMS (ESI +) calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{AuP}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)$: 495.1511, found $m / z 495.1511$. Structure confirmed by X-ray diffraction.

Triflimide[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) (C2)

Silver bis(trifluoromethanesulfonyl)imide ($181 \mathrm{mg}, 0.471 \mathrm{mmol}$) was added to a solution of chloro[(1,1'-biphenyl-2-yl)di-tertbutylphosphine]gold(I) ($50 \mathrm{mg}, 0.094 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After stirring the reaction mixture for 2 h at $23^{\circ} \mathrm{C}$, the crude was filtered through a pad of Celite and cotton at the top of the pipette and Teflon filters ($2 \times 0.22 \mu \mathrm{~m}$). The resulting colorless solution was evaporated to dryness under vacuum to give the neutral complex as a white solid. Crystals were grown by crystallization with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane.
58.4 mg (0.075 mmol) of triflimide[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) (C2) were obtained (80% yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.94-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.26(\mathrm{~m}$, $1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}}$ $149.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=11.8 \mathrm{~Hz}\right), 141.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.2 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.5\right.$ $\mathrm{Hz}), 133.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.0 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.5 \mathrm{~Hz}\right), 129.2,129.0,128.2$, $127.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.6 \mathrm{~Hz}\right), 124.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=49.2 \mathrm{~Hz}\right), 38.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=26.2\right.$ $\mathrm{Hz}), 30.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.3 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}} 60.8 .{ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta_{\mathrm{F}}-74.4$. HRMS (ESI+) calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{AuP}^{+}\left(\mathrm{M}^{+}-\right.\right.$ $\mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}$): 495.1511, found $m / z 495.1512$. Structure confirmed by X-ray diffraction.

Bromo[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I)
 butylphosphine]gold(I) $(60 \mathrm{mg}, 0.113 \mathrm{mmol})$ in $1.4 \mathrm{~mL} \mathrm{CHCl}_{3}$, was added a 3.2 mL sat. solution of NaBr in a $1: 1$ mixture of $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ $(\mathrm{v} / \mathrm{v})$. The mixture was stirred for 2 h at $23^{\circ} \mathrm{C}$, after which organic solvents were removed under vacuum. The organic fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated.
$60 \mathrm{mg}(0.104 \mathrm{mmol})$ of bromo[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) were isolated in 92% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.87(\mathrm{td}, J=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=15.6 \mathrm{~Hz}$, $18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 150.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=14.1 \mathrm{~Hz}\right), 142.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=6.8 \mathrm{~Hz}\right), 134.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{21} \mathrm{P}\right)=2.4 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.3 \mathrm{~Hz}\right), 130.7(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.2 \mathrm{~Hz}\right), 129.3,128.9,128.4,126.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.6 \mathrm{~Hz}\right), 38.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)\right.$ $=24.6 \mathrm{~Hz}$), $31.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.9 \mathrm{~Hz}\right.$) (one ${ }^{13} \mathrm{C}$ is missing due to overlapping). ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{P} 64.9. HRMS (ES+) calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{AuPBr}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{H}\right)$: 597.0621, found $m / z 597.0626$.

Iodo[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I)

	.04 mmol) was suspended in a solution of
	biphenyl-2-yl)di-tert-butylphosphine]gold(I) ($60 \mathrm{mg}, 0.113 \mathrm{mmol}$) in 5
	mL THF After 48 h stirring at $23{ }^{\circ} \mathrm{C}$, solvent was removed under

$66 \mathrm{mg}(0.106 \mathrm{mmol})$ of iodo[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) were isolated in 94% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.90(\mathrm{td}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.37$ $(\mathrm{t}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 150.6,143.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.9 \mathrm{~Hz}\right), 134.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=\right.$ $2.0 \mathrm{~Hz}), 133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.3 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.3 \mathrm{~Hz}\right), 129.8,129.6$, 128.7, $127.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.4 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=41.7 \mathrm{~Hz}\right), 38.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)\right.$ $=22.9 \mathrm{~Hz}), 31.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.9 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}} 67.8$. HRMS (ES+) calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{AuPI}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{H}\right): 645.0483$, found $m / z 645.0483$.

Synthesis of Dinuclear Gold(I) Complexes

Although the initial isolation of the dinuclear gold(I) complexes was accomplished using 1:1 ratio of $\mathrm{Au}: \mathrm{Ag}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, its synthesis was proven to be more efficient following a modified procedure of Schmidbaur. ${ }^{70}$

Chloro bis $\{[(1,1$ '-biphenyl-2-yl)di-tert-butylphosphine]gold(I)\} trifluoromethane sulfonate (B1)

A solution of chloro[(1,1'-biphenyl-2-yl)di-tertbutylphosphine]gold(I) ($205 \mathrm{mg}, 0.389 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to a solution of silver trifluoromethanesulfonate ($50 \mathrm{mg}, 0.195 \mathrm{mmol}$) in 10 mL of dry THF at $23{ }^{\circ} \mathrm{C}$. After stirring the reaction mixture for 2 h at the same temperature, the
crude was filtered through a pad of Celite and cotton at the top of the pipette and the resulting colorless solution was evaporated to dryness under vacuum. White crystals were obtained after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane (1:1).
$206 \mathrm{mg}(0.175 \mathrm{mmol})$ of $\mathbf{B} 1$ were obtained in 90% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.92-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.50(\mathrm{~m}$, $2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $36 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz} \mathrm{CD} 2 \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 149.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=12.2 \mathrm{~Hz}\right), 143.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=6.9 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.9 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.0 \mathrm{~Hz}\right), 131.9(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}^{-31} \mathrm{P}\right)=2.6 \mathrm{~Hz}\right), 130.0,129.3,128.8,128.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.4 \mathrm{~Hz}\right), 124.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=49.0 \mathrm{~Hz}\right), 38.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=26.0 \mathrm{~Hz}\right), 31.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.4 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta_{\mathrm{P}} 64.6$; $\delta_{\mathrm{P}}(193 \mathrm{~K}) 63.1 .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{F}}-$ 78.7. HRMS (ESI +) calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{Au}_{2} \mathrm{ClP}_{2}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)$: 1025.2710 , found m / z 1025.2704. Structure confirmed by X-ray diffraction.

Chloro bis $\{[(1,1$ '-biphenyl-2-yl)di-tert-butylphosphine]gold(I) $\}$ triflimide (B2)

A solution of chloro[(1,1' -biphenyl-2-yl)di-tert butylphosphine]gold(I) ($205 \mathrm{mg}, 0.387 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ is added to a solution of silver bis(trifluoromethanesulfonyl)
imide ($75 \mathrm{mg}, 0.193 \mathrm{mmol}$) in 10 mL of dry THF at $23{ }^{\circ} \mathrm{C}$. After stirring the reaction mixture for 2 h at the same temperature, the crude was filtered through a pad of Celite and cotton at the top of the pipette and the resulting colorless solution was evaporated to dryness under vacuum. White crystals were obtained after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane (1:1).
$216.3 \mathrm{mg}(0.166 \mathrm{mmol})$ of $\mathbf{B 2}$ were obtained in 86% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.93-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz} \mathrm{CD} 2 \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 149.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=12.3 \mathrm{~Hz}\right), 143.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=6.8 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.2 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=3.3 \mathrm{~Hz}\right), 131.9(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.5 \mathrm{~Hz}\right), 130.0,129.3,128.8,128.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.4 \mathrm{~Hz}\right), 124.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=49.1 \mathrm{~Hz}\right), 38.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=26.2 \mathrm{~Hz}\right), 31.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.4 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (202 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}} 64.6 ; \delta_{\mathrm{P}}(193 \mathrm{~K}) 63.1 .{ }^{19} \mathbf{F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{F}}-$ 78.8. HRMS (ESI+) calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{Au}_{2} \mathrm{ClP}_{2}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}\right)$: 1025.2715 found m / z 1025.2744. Structure confirmed by X-ray diffraction.

Chloro bis $\{(1,1$ '-biphenyl-2-yl)di-tert-butylphosphine]gold(I)\} tetrafluoroborate (B3)

A solution of chloro[(1,1'-biphenyl-2-yl)di-tertbutylphosphine]gold(I) ($205 \mathrm{mg}, 0.380 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ is added to a solution of silver tetrafluoroborate ($37 \mathrm{mg}, 0.190 \mathrm{mmol}$) in 10 mL of THF at $23{ }^{\circ} \mathrm{C}$. After stirring the reaction mixture for 2 h at the same temperature, the crude was filtered through a pad of Celite and cotton at the top of the pipette and the resulting colorless solution was evaporated to dryness under vacuum. White crystals were obtained after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane (1:1).
$171 \mathrm{mg}(0.154 \mathrm{mmol})$ of $\mathbf{B} 3$ were obtained in 81% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.92-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.55-7.49(\mathrm{~m}$,
$2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 4 \mathrm{H}), 1.39(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz} \mathrm{CD} 2 \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 149.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=12.5 \mathrm{~Hz}\right), 142.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=6.9 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.7 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=3.6 \mathrm{~Hz}\right), 131.4(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.5 \mathrm{~Hz}\right), 129.5,128.7,128.2,127.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.6 \mathrm{~Hz}\right), 124.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=49.2 \mathrm{~Hz}\right), 38.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=26.2 \mathrm{~Hz}\right), 30.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.3 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (202 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}} 64.8 ; \delta_{\mathrm{P}}(193 \mathrm{~K}) 63.1 .{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{F}}-$ 153.6. HRMS (ESI+) calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{Au}_{2} \mathrm{ClP}_{2}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right): 1025.2715$ found m / z 1025.2747. Structure confirmed by X-ray diffraction.

Chloro bis $\{[(1,1$ '-biphenyl-2-yl)di-tert-butylphosphine]gold(I)\} hexafluoroantimonate (B4)

A solution of chloro[(1,1'-biphenyl-2-yl)di-tertbutylphosphine]gold(I) ($205 \mathrm{mg}, 0.378 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ is added to a solution of silver hexafluoroantimonate ($65 \mathrm{mg}, 0.189 \mathrm{mmol}$) in 10 mL of THF at $23{ }^{\circ} \mathrm{C}$. After stirring the reaction mixture for 2 h at the same temperature, the crude was filtered through a pad of Celite and cotton at the top of the pipette and the resulting colorless solution was evaporated to dryness under vacuum. White crystals were obtained after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane (1:1).
$210 \mathrm{mg}(0.166 \mathrm{mmol})$ of $\mathbf{B 4}$ were obtained in 88% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.96-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.59-7.52(\mathrm{~m}$, $2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 4 \mathrm{H}), 1.43(\mathrm{~d}, J=16.2 \mathrm{~Hz}$, $36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz} \mathrm{CD} 2 \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 149.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=12.2 \mathrm{~Hz}\right), 143.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=6.7 \mathrm{~Hz}\right), 133.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.9 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=3.7 \mathrm{~Hz}\right), 131.9(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.4 \mathrm{~Hz}\right), 130.0,129.3,128.8,128.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.4 \mathrm{~Hz}\right), 124.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=49.0 \mathrm{~Hz}\right), 38.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=26.0 \mathrm{~Hz}\right), 31.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.3 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta_{\mathrm{P}} 64.8 ; \delta_{\mathrm{P}}(193 \mathrm{~K})$ 63.1. HRMS (ESI+) calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{Au}_{2} \mathrm{ClP}_{2}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$: 1025.2715 , found m / z 1025.2719. Structure confirmed by Xray diffraction.

Hydroxy bis $\left\{\left[\left(1,1^{\prime}\right.\right.\right.$-biphenyl-2-yl)di-tert-butylphosphine]gold(I) \} tetrafluoroborate (D)

This complex was prepared according to the procedure used for the synthesis of $\left[\left(\mathrm{JohnPhosAu}_{2}(\mathrm{OH})\right] \mathrm{SbF}_{6}\right.$.
[(JohnPhos)AuNCMe]BF ${ }_{4}$ ($40 \mathrm{mg}, 0.065 \mathrm{mmol}$) was suspended in water $(1 \mathrm{~mL})$ and stirred at $60^{\circ} \mathrm{C}$ for 72 h under air. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was washed three times with a large excess of water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and solvent was removed under reduced pressure. White crystals were obtained after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane (1:1).
35 mg of $\mathbf{D}(0.032 \mathrm{mmol})$ were obtained in 98% yield.

[^25]${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.91-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.47(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 149.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=15.5 \mathrm{~Hz}\right), 144.32\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=8.1 \mathrm{~Hz}\right)$, $133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.9 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=9.9 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.3\right.$ $\mathrm{Hz}), 130.7,128.9,128.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=9.5 \mathrm{~Hz}\right), 127.7,125.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=61.7 \mathrm{~Hz}\right)$, $38.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=34.7 \mathrm{~Hz}\right), 31.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.7 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \quad \mathbf{N M R}(202 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{P}}$ 60.6. Structure confirmed by X-ray diffraction.

Bromo bis $\{[(1,1$ '-biphenyl-2-yl)di-tert-butylphosphine]gold(I) \} hexafluoroantimonate

 A solution of chloro[(1,1'-biphenyl-2-yl)di-tertbutylphosphine]gold(I) ($60 \mathrm{mg}, 0.105 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added to a solution of silver hexafluoroantimonate ($18 \mathrm{mg}, 0.052 \mathrm{mmol}$) in 3 mL of THF at $23{ }^{\circ} \mathrm{C}$. After stirring the reaction mixture for 2 h at the same temperature, the crude was filtered through a pad of Celite and cotton at the top of the pipette and the resulting colorless solution was evaporated to dryness under vacuum. White crystals were obtained after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pentane (1:1). 67 $\mathrm{mg}(0.051 \mathrm{mmol})$ of [((JohnPhos)Au) $)_{2} \mathrm{Br}^{2} \mathrm{SbF}_{6}$ were obtained in 98% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.90(\mathrm{ddd}, J=7.9,6.7,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 4 \mathrm{H})$, $7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{app} \mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.30(\mathrm{ddd}, J=6.5,4.5,2.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.13(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.40(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $\delta_{\mathrm{C}} 149.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=13.0 \mathrm{~Hz}\right), 143.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{-31} \mathrm{P}\right)=6.8 \mathrm{~Hz}\right), 134.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=\right.$ $3.3 \mathrm{~Hz}), 133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.5 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.5 \mathrm{~Hz}\right), 130.0$, 129.4, 128.7, $128.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.3 \mathrm{~Hz}\right), 125.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=47.2 \mathrm{~Hz}\right), 38.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)\right.$ $=25.0 \mathrm{~Hz}), 31.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.4 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}} 66.9$. HRMS (MALDI) calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{Au}_{2} \mathrm{BrP}_{2}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$: 1069.2210, found m / z 1069.2150. Structure confirmed by X-ray diffraction.

Iodo bis $\{[(1,1$ '-biphenyl-2-yl)di-tert-butylphosphine]gold(I) \} hexafluoroantimonate
A solution of chloro[(1,1'-biphenyl-2-yl)di-tert-
 butylphosphine]gold(I) ($58 \mathrm{mg}, 0.093 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ is added to a solution of silver hexafluoroantimonate ($16 \mathrm{mg}, 0.047 \mathrm{mmol}$) in 1 mL of THF at $23^{\circ} \mathrm{C}$. After stirring the reaction mixture for 2 h at the same temperature, the crude was filtered through a pad of Celite and cotton at the top of the pipette and the resulting colorless solution was evaporated to dryness under vacuum. White crystals were obtained after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pentane (1:1).
$60 \mathrm{mg}(0.044 \mathrm{mmol})$ of $\left[((\mathrm{JohnPhos}) \mathrm{Au})_{2} \mathrm{I}\right] \mathrm{SbF}_{6}$ were obtained in 95% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.90(\mathrm{td}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.52$ (tt, $J=7.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.37 (app t, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=$ $8.1,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.40(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 149.7(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=13.6 \mathrm{~Hz}\right), 143.49\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.9 \mathrm{~Hz}\right), 134.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.7 \mathrm{~Hz}\right), 133.9$ $\left(\mathrm{d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.5 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.4 \mathrm{~Hz}\right), 130.1,129.8,128.7,128.03(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.9 \mathrm{~Hz}\right), 125.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=45.0 \mathrm{~Hz}\right), 39.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=23.5 \mathrm{~Hz}\right), 31.3$ $\left(\mathrm{d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.7 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($202 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ_{P} 69.4. HRMS (MALDI)
calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{Au}_{2} \mathrm{IP}_{2}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$: 1117.2071, found m / z 1117.2055. Structure confirmed by X-ray diffraction.

Synthesis of σ-Mononuclear Gold(I) Complex F

[(1,1'-biphenyl-2-yl)di-tert-butylphosphine](2-phenylethynyl)gold(I)

Lithium bis(trimethylsilyl)amide ($165 \mathrm{mg}, 0.989 \mathrm{mmol}$) was dissolved in THF (10 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. Phenylacetylene ($109 \mu \mathrm{l}, 0.989 \mathrm{mmol}$) was added and the solution was stirred for 30 min . Afterwards, complex A ($500 \mathrm{mg}, 0.942 \mathrm{mmol}$) dissolved in THF (7.5 mL) was added and the solution was stirred overnight at $23{ }^{\circ} \mathrm{C}$. The crude was concentrated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through Teflon pad. Solvent was removed under reduced pressure and the σ-gold complex was used without further purification.
549 mg of $\mathbf{F}(0.920 \mathrm{mmol})$ were isolated in 98% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.90(\mathrm{dt}, J=6.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.37-$ $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.13(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 150.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=15.1 \mathrm{~Hz}\right), 143.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=5.9 \mathrm{~Hz}\right), 136.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=132.0 \mathrm{~Hz}\right), 135.2\left(\mathrm{~d},\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=1.0 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.4 \mathrm{~Hz}\right), 132.2$, $130.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.4 \mathrm{~Hz}\right), 129.8,129.4,128.5,128.4,127.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=39.8 \mathrm{~Hz}\right)$, $127.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=5.9 \mathrm{~Hz}\right), 127.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.8 \mathrm{~Hz}\right), 126.4,101.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)\right.$ $=23.6 \mathrm{~Hz}), 38.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=22.6 \mathrm{~Hz}\right), 31.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.0 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}}$ 67.5. HRMS (ESI +) calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{AuP}\right]^{+}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 597.1980 found $m / z 597.1982$.

Synthesis of σ, π-Dinuclear Gold(I) Complexes G

\{Phenylethynyl[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I)\}[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) trifluoromethane sulfonate (G1)

Chloro[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]

G1 gold(I) $(55 \mathrm{mg}, 0.104 \mathrm{mmol})$ and $[(1,1$ '-biphenyl-2-yl)di-tertbutylphosphine](2-phenylethynyl)gold(I) (62 mg, $0.104 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.4 \mathrm{~mL})$. Then, (((trifluoromethyl)sulfonyl)oxy)silver ($27 \mathrm{mg}, \quad 0.104$ $\mathrm{mmol})$ was added and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min . The crude was filtered through Celite and concentrated. Finally, it was filtered through Teflon and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to
afford a white powder.
129 mg of $\mathbf{G 1}(0.104 \mathrm{mmol})$ were isolated in 100% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.92-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.46(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 4 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.42(\mathrm{~d}$, $J=15.7 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 149.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=14.0 \mathrm{~Hz}\right)$, $143.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.0 \mathrm{~Hz}\right), 134.5,133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=8.0 \mathrm{~Hz}\right), 133.3,131.7,130.7$, 129.9, 129.6, 129.3, 128.6, $128.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.9 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=45.0 \mathrm{~Hz}\right)$, 121.5, $38.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=24.1 \mathrm{~Hz}\right), 31.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.0 \mathrm{~Hz}\right)$. Two signals missing due to overlapping. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ_{P} 65.8. ${ }^{19} \mathbf{F}$ NMR (376 MHz ,
$\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$-79.6. HRMS (ESI+) calculated for $\left[\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{Au}_{2} \mathrm{P}_{2}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)$: 1091.3481, found m / z 1091.3429.
\{Phenylethynyl[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) \}[(1,1'-
biphenyl-2-yl)di-tert-butylphosphine]gold(I) triflimide (G2) biphenyl-2-yl)di-tert-butylphosphine]gold(I) triflimide (G2)

Chloro[(1,1'-biphenyl-2-yl)di-tert-butylphosphine] gold(I) ($55 \mathrm{mg}, 0.104 \mathrm{mmol})$ and $[(1,1$ '-biphenyl-2-yl)di-tertbutylphosphine](2-phenylethynyl)gold(I) (62 mg, $0.104 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.4 \mathrm{~mL})$. Then, (1,1,1-trifluoro-N-((trifluoromethyl)sulfonyl)methyl sulfonamido) silver ($27 \mathrm{mg}, 0.104 \mathrm{mmol}$) was added and the reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min . The crude was filtered through Celite and concentrated. Finally, it was filtered through Teflon and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to afford a white powder.
129 mg of $\mathbf{G 2}$ (0.094 mmol) were isolated in 90% yield.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.94-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 5 \mathrm{H})$, $7.41-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 36 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 149.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=14.1 \mathrm{~Hz}\right), 143.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=\right.$ $6.6 \mathrm{~Hz}), 134.5,133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.8 \mathrm{~Hz}\right), 133.3,131.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=1.9 \mathrm{~Hz}\right)$, $130.7,129.9,129.6,129.2,128.6,128.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.8 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=\right.$ $45.0 \mathrm{~Hz}), 121.4,38.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=24.0 \mathrm{~Hz}\right), 31.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.1 \mathrm{~Hz}\right) .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta_{\mathrm{P}} 65.8 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta_{\mathrm{F}}-79.0$. HRMS (ESI+) calculated for $\left[\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{Au}_{2} \mathrm{P}_{2}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}\right)$: 1091.3481, found m / z 1091.3432.
\{Phenylethynyl[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I)\}[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) tetrafluoroborate (G3)

Chloro[(1,1'-biphenyl-2-yl)di-tert-butylphosphine] gold(I) $(55 \mathrm{mg}, 0.104 \mathrm{mmol})$ and $[(1,1$ '-biphenyl-2-yl)di-tertbutylphosphine](2-phenylethynyl)gold(I) (62 mg , 0.104 mmol) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.4 \mathrm{~mL})$. Then, silver tetrafluoroborate ($20 \mathrm{mg}, 0.104 \mathrm{mmol}$) was added and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min . The crude was filtered through Celite and concentrated. Finally, it was filtered through Teflon and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed to afford a white
powder.
120 mg of $\mathbf{G} \mathbf{3}(0.102 \mathrm{mmol})$ were isolated in 98% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.94-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.42(\mathrm{~m}$, $5 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 149.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=14.1 \mathrm{~Hz}\right), 143.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=6.9 \mathrm{~Hz}\right), 134.5,133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.6 \mathrm{~Hz}\right), 133.3,131.7,130.7,129.9,129.6$, 129.3, 128.6, $128.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}_{-}^{31} \mathrm{P}\right)=6.8 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=45.0 \mathrm{~Hz}\right), 121.5,38.5$ $\left(\mathrm{d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=23.9 \mathrm{~Hz}\right), 31.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.0 \mathrm{~Hz}\right)$. Two signals missing due to overlapping. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}} 65.8$. ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ_{F}-153.6. HRMS (ESI +) calculated for $\left[\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{Au}_{2} \mathrm{P}_{2}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$: 1091.3481, found m / z 1091.3384.
\{Phenylethynyl[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) \}[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) hexafluoroantimonate (G4)

a white powder.

132 mg of $\mathbf{G 4}(0.099 \mathrm{mmol})$ were isolated in 96% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.94-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.42(\mathrm{~m}$, $5 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 4 \mathrm{H}), 1.42(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 149.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}^{31} \mathrm{P}\right)=13.7 \mathrm{~Hz}\right), 143.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=6.6 \mathrm{~Hz}\right), 134.5,133.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.7 \mathrm{~Hz}\right), 133.3,131.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.2 \mathrm{~Hz}\right)$, 130.7, 129.9, 129.6, 129.2, 128.6, $128.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.2 \mathrm{~Hz}\right), 125.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{-31} \mathrm{P}\right)=\right.$ $45.0 \mathrm{~Hz}), 121.5,38.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=24.1 \mathrm{~Hz}\right), 31.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.0 \mathrm{~Hz}\right)$. Two signals missing due to overlapping. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 65.8$. HRMS (ESI+) calculated for $\left[\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{Au}_{2} \mathrm{P}_{2}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{SbF}_{6}\right)$: 1091.3481 , found $\mathrm{m} / \mathrm{z} 1091.3392$.

General Procedures for Gold(I)-Catalyzed Reactions

[2+2] Intermolecular Cycloaddition Reaction of Phenylacetylene and α-Methylsyrene

The cyclobutene was prepared according to the previous described procedure. ${ }^{25}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{dd}, J=13.7,7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.27-7.22$ $(\mathrm{m}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{q}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 147.8,143.9,134.8,133.9,128.4,128.2,127.9,126.0,125.8$, 124.7, 46.1, 44.4, 27.7.

In situ generation of the catalyst in the presence of the substrates
Phenylacetylene ($19 \mu \mathrm{~L}, 0.169 \mathrm{mmol}$), α-methylstyrene ($44 \mu \mathrm{~L}, 0.338 \mathrm{mmol}$) and diphenylmethane ($14 \mu \mathrm{~L}, 0.085 \mathrm{mmol}$) dissolved in 0.7 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were introduced in a NMR tube. JohnPhosAuCl $(4.5 \mathrm{mg}, 8.45 \mu \mathrm{~mol})$ and $\mathrm{AgX}(8.45 \mu \mathrm{~mol})$ were then added and the resulting mixture was stirred for 8 h at $23{ }^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR.

In situ generation of the catalyst and addition of the substrates
JohnPhosAuCl ($4.5 \mathrm{mg}, 8.45 \mu \mathrm{~mol}$) and $\mathrm{AgX}(8.45 \mu \mathrm{~mol})$ were dissolved in 0.7 mL
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and introduced in a NMR tube. After 10 min stirring, phenylacetylene ($19 \mu \mathrm{~L}$, $0.169 \mathrm{mmol}), \alpha$-methylstyrene ($44 \mu \mathrm{~L}, 0.338 \mathrm{mmol}$) and diphenylmethane ($14 \mu \mathrm{~L}, 0.085$ mmol) were added. The resulting mixture was stirred for 8 h at $23{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR.

In situ generation of the catalyst, filtration through Celite and addition of the substrates
In a vial, JohnPhosAuCl $(4.5 \mathrm{mg}, 8.45 \mu \mathrm{~mol})$ and $\mathrm{AgX}(8.45 \mu \mathrm{~mol})$ were dissolved in 0.7 $\mathrm{mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$. After 10 min stirring, the slurry mixture was filtered through a pipette containing Celite and cotton (top and bottom). The resulting solution was introduced in a NMR tube along with phenylacetylene ($19 \mu \mathrm{~L}, 0.169 \mathrm{mmol}$), α-methylstyrene ($44 \mu \mathrm{~L}$, $0.338 \mathrm{mmol})$ and diphenylmethane ($14 \mu \mathrm{~L}, 0.085 \mathrm{mmol}$). The resulting mixture was stirred for 8 h at $23{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR.

Reaction using [(JohnPhos) $\left.A u_{2} C l\right] X\left(X=S b F_{6}{ }^{-}, B F_{4}{ }^{-}\right)$
Phenylacetylene ($19 \mu \mathrm{~L}, 0.169 \mathrm{mmol}$), α-methylstyrene ($44 \mu \mathrm{~L}, 0.338 \mathrm{mmol}$) and diphenylmethane ($14 \mu \mathrm{~L}, 0.085 \mathrm{mmol}$) dissolved in 0.7 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were introduced in a NMR tube. Complex B3 or B4 ($4.23 \mu \mathrm{~mol}$) was then added and the resulting mixture was stirred for 8 h at $23{ }^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR.

Reaction using [(JohnPhos) $\mathrm{Au}_{2} \mathrm{Cl]X}$ and $\operatorname{AgX}\left(X=\mathrm{SbF}_{6}{ }^{-}, \mathrm{BF}_{4}{ }^{-}\right)$
Phenylacetylene ($19 \mu \mathrm{~L}, 0.169 \mathrm{mmol}$), α-methylstyrene ($44 \mu \mathrm{~L}, 0.338 \mathrm{mmol}$) and diphenylmethane ($14 \mu \mathrm{~L}, 0.085 \mathrm{mmol}$) dissolved in 0.7 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were introduced in a NMR tube. Complex B3 or B4 $(4.23 \mu \mathrm{~mol})$ and $\mathrm{AgX}(4.23 \mu \mathrm{~mol})$ were then added and the resulting mixture was stirred for 8 h at $23^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR.

[2+2] Intramolecular Cycloaddition of 1,6-Enyne 19

Cycloisomerized product 20 was prepared according to the previous described procedure. ${ }^{22 \mathrm{c}}{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.33-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 3.68$ $(\mathrm{s}, 3 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=28.8,13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.02(\mathrm{dd}, J=13.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dd}, J=2.8,1.4$ $\mathrm{Hz}, 3 \mathrm{H})$.

In situ generation of the catalyst in the presence of the substrate
Enyne 19 ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diphenylmethane ($8.3 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$) dissolved in 0.7 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were introduced in a NMR tube. JohnPhosAuCl ($\left.1.6 \mathrm{mg}, 3 \mu \mathrm{~mol}\right)$ and AgX ($3 \mu \mathrm{~mol}$) were then added and the resulting mixture was stirred for 2 h at $23{ }^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR.

In situ generation of the catalyst and addition of the substrate
JohnPhosAuCl ($1.6 \mathrm{mg}, 3 \mu \mathrm{~mol}$) and $\mathrm{AgX}(3 \mu \mathrm{~mol})$ were dissolved in $0.7 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and introduced in a NMR tube. After 10 min stirring, enyne $19(30 \mathrm{mg}, 0.1 \mathrm{mmol})$ and diphenylmethane $(8.3 \mu \mathrm{~L}, 0.05 \mathrm{mmol})$ were added. The resulting mixture was stirred for 2 h at $23{ }^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR.

In situ generation of the catalyst, filtration through Celite and addition of the substrates
In a vial, JohnPhosAuCl ($1.6 \mathrm{mg}, 3 \mu \mathrm{~mol}$) and $\mathrm{AgX}(3 \mu \mathrm{~mol})$ were dissolved in 0.7 mL $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. After 10 min stirring, the slurry mixture was filtered through a pipette containing Celite and cotton (top and bottom). The resulting solution was introduced in a NMR tube along with enyne $19(30 \mathrm{mg}, 0.1 \mathrm{mmol})$ and diphenylmethane ($8.3 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$). The resulting mixture was stirred for 2 h at $23^{\circ} \mathrm{C}$ and monitored by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR.

Reaction using [(JohnPhos) $\left.A u_{2} C l\right] X\left(X=S b F_{6}{ }^{-}, \mathrm{BF}_{4}{ }^{-}\right)$
Enyne 19 ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diphenylmethane ($8.3 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$) dissolved in 0.7 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were introduced in a NMR tube. Complex B3 or B4 $(4.23 \mu \mathrm{~mol})$ was then added and the resulting mixture was stirred for 8 h at $23^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR.

Reaction using [(JohnPhos) $\mathrm{Au}_{2} \mathrm{Cl]} X$ and $\mathrm{AgX}\left(X=\mathrm{SbF}_{6}{ }^{-}, \mathrm{BF}_{4}{ }^{-}\right)$
Enyne 19 ($30 \mathrm{mg}, 0.1 \mathrm{mmol}$) and diphenylmethane ($14 \mu \mathrm{~L}, 0.085 \mathrm{mmol}$) dissolved in 0.7 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were introduced in a NMR tube. Complex B3 or B4 $(4.23 \mu \mathrm{~mol})$ and AgX $(4.23 \mu \mathrm{~mol})$ were then added and the resulting mixture was stirred for 8 h at $23^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR.

[4+2] Intramolecular cycloaddition of 1,6-enyne 21

The tricyclic product 22 was prepared according to the previous described procedure. ${ }^{22 a}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.14(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{bs}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.03 (dt, $J=18.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{ddd}, J=12.6,7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.18(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H})$.

Enyne $21(40 \mathrm{mg}, 0.111 \mathrm{mmol})$ and diphenylmethane $(9.3 \mu \mathrm{~L}, 0.056 \mathrm{mmol})$ were dissolved in $0.7 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and introduced in a NMR tube. JohnPhosAuCl ($1.8 \mathrm{mg}, 3.34$ $\mu \mathrm{mol}$) was then added and the resulting mixture was monitored by ${ }^{1} \mathrm{H}$ NMR at $23{ }^{\circ} \mathrm{C}$ every 5 min during 2.5 h .

Enyne $21(40 \mathrm{mg}, 0.111 \mathrm{mmol})$ and diphenylmethane $(9.3 \mu \mathrm{~L}, 0.056 \mathrm{mmol})$ were dissolved in $0.7 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ in a vial. JohnPhosAuCl ($1.8 \mathrm{mg}, 3.34 \mu \mathrm{~mol}$) was then added and the mixture was introduced in a NMR tube. $\mathrm{AgSbF}_{6}(1.2 \mathrm{mg}, 3.34 \mu \mathrm{~mol})$ was then added and the resulting mixture was monitored by ${ }^{1} \mathrm{H}$ NMR at $23{ }^{\circ} \mathrm{C}$ every 5 min during
2.5 h . Then the sample was analyzed again after 6 h and 24 h .

JohnPhosAuCl ($1.8 \mathrm{mg}, 3.34 \mu \mathrm{~mol})$ was dissolved in $0.7 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ in a vial and added to $\mathrm{AgSbF}_{6}(1.2 \mathrm{mg}, 3.34 \mu \mathrm{~mol})$. The resulting mixture was shaken during 3 min and added to enyne $21(40 \mathrm{mg}, 0.111 \mathrm{mmol})$ and diphenylmethane ($9.3 \mu \mathrm{~L}, 0.056 \mathrm{mmol})$. The mixture resulting mixture was introduced in a NMR tube and monitored by ${ }^{1} \mathrm{H}$ NMR at 23 ${ }^{\circ} \mathrm{C}$ every 5 min during 2.5 h . The sample was analyzed again after 9 h and 24 h .

Enyne $21(40 \mathrm{mg}, 0.111 \mathrm{mmol})$ and diphenylmethane $(9.3 \mu \mathrm{~L}, 0.056 \mathrm{mmol})$ were dissolved in $0.7 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and introduced in a NMR tube. Complex B4 ($2.1 \mathrm{mg}, 1.67$ $\mu \mathrm{mol}$) was then added and the resulting mixture was monitored by ${ }^{1} \mathrm{H}$ NMR at $23{ }^{\circ} \mathrm{C}$ every 5 min during 2.5 h . Then the sample was analyzed again after 23 h .

Enyne $21(40 \mathrm{mg}, 0.111 \mathrm{mmol})$ and diphenylmethane $(9.3 \mu \mathrm{~L}, 0.056 \mathrm{mmol})$ were dissolved in $0.7 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and introduced in a NMR tube. Complex $\mathbf{B 3}(1.8 \mathrm{mg}, 1.67$ $\mu \mathrm{mol}$) was then added and the resulting mixture was monitored by ${ }^{1} \mathrm{H}$ NMR at $23^{\circ} \mathrm{C}$ every 5 min during 2.5 h . Then the sample was analyzed again after 9 h and 24 h .

Enyne 21 ($40 \mathrm{mg}, 0.111 \mathrm{mmol}$) and diphenylmethane ($9.3 \mu \mathrm{~L}, 0.056 \mathrm{mmol}$) were dissolved in $0.7 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and introduced in a NMR tube. Complex B4 $(4.2 \mathrm{mg}, 3.34$ $\mu \mathrm{mol}$) was then added and the resulting mixture was monitored by ${ }^{1} \mathrm{H}$ NMR at $23{ }^{\circ} \mathrm{C}$ every 5 min during 2.5 h . Then the sample was analyzed again after 9 h and 25 h .

Enyne 21 ($40 \mathrm{mg}, 0.111 \mathrm{mmol}$) and diphenylmethane ($9,31 \mu \mathrm{~L}, 0.056 \mathrm{mmol}$) were dissolved in $0.7 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and introduced in a NMR tube. Complex B4 (2.1 mg , $1.67 \mu \mathrm{~mol}$) was added and the resulting mixture was shaken for 3 min . Then, $\mathrm{AgSbF}_{6}(0.5$ $\mathrm{mg}, 1.67 \mu \mathrm{~mol}$) was added and the resulting mixture was monitored by ${ }^{1} \mathrm{H}$ NMR at $23{ }^{\circ} \mathrm{C}$ every 5 min during 2 h . Then the sample was analyzed again after 6 h and 21 h .

Enyne 21 ($40 \mathrm{mg}, 0.111 \mathrm{mmol}$) and diphenylmethane ($9.31 \mu \mathrm{~L}, 0.056 \mathrm{mmol}$) were dissolved in $0.7 \mathrm{~mL} \quad \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and introduced in a NMR tube. [(JohnPhos)AuNCMe] SbF_{6} cationic complex ($2.6 \mathrm{mg}, 3.34 \mathrm{mmol}$) was then added and the resulting mixture was monitored by ${ }^{1} \mathrm{H}$ NMR at $23{ }^{\circ} \mathrm{C}$ every 5 min during 2.5 h . The sample was analyzed again after 6 h and 24 h

Enyne 21 ($40 \mathrm{mg}, 0.111 \mathrm{mmol}$) and diphenylmethane ($9.31 \mu \mathrm{~L}, 0.056 \mathrm{mmol}$) were dissolved in $0.7 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$ and introduced in a NMR tube. [$(t-$ BuXPhos)AuNCMe]SbF ${ }_{6}$ complex ($3.0 \mathrm{mg}, 3.34 \mathrm{mmol}$) was then added and the resulting mixture was monitored by ${ }^{1} \mathrm{H}$ NMR at $23{ }^{\circ} \mathrm{C}$ every 5 min during 2.5 h . The sample was analyzed again after 4 h and 24 h .

X-Ray Tables

Trifluoromethanesulfonate[(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) (C1)

Table S1 Crystal data and structure refinement for $\mathbf{C} 1$.

Largest diff. peak and hole $\quad 2.667$ and -2.383 e. \AA^{-3}

Table S2 Bond lengths [\AA] and angles [${ }^{\circ}$] for $\mathbf{C 1}$.

Bond lengths			
Au1-O1	$2.1133(17)$	$\mathrm{C} 13-\mathrm{C} 16$	$1.531(3)$
Au1-P1	$2.2294(6)$	$\mathrm{C} 13-\mathrm{C} 15$	$1.530(3)$
C1-C2	$1.400(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.530(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.410(3)$	$\mathrm{C} 13-\mathrm{P} 1$	$1.876(2)$
C1-P1	$1.836(2)$	$\mathrm{C} 17-\mathrm{C} 19$	$1.536(3)$
C2-C3	$1.390(3)$	$\mathrm{C} 17-\mathrm{C} 20$	$1.534(3)$
C3-C4	$1.377(3)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.534(3)$
C4-C5	$1.383(3)$	$\mathrm{C} 17-\mathrm{P} 1$	$1.877(2)$
C5-C6	$1.403(3)$	$\mathrm{C} 22-\mathrm{F} 2$	$1.321(3)$
C6-C7	$1.491(3)$	$\mathrm{C} 22-\mathrm{F} 3$	$1.322(3)$
C7-C12	$1.391(3)$	$\mathrm{C} 22-\mathrm{F} 1$	$1.332(3)$
C7-C8	$1.398(3)$	$\mathrm{C} 22-\mathrm{S} 1$	$1.829(2)$
C8-C9	$1.390(4)$	$\mathrm{O} 1-\mathrm{S} 1$	$1.4791(17)$
C9-C10	$1.386(4)$	$\mathrm{O} 2-\mathrm{S} 1$	$1.423(2)$
C10-C11	$1.388(4)$	$\mathrm{O} 3-\mathrm{S} 1$	$1.429(2)$
C11-C12	$1.391(3)$		

Angles			
O1-Au1-P1	$174.20(5)$	C15-C13-P1	$109.39(17)$
C2-C1-C6	$118.27(18)$	C14-C13-P1	$107.29(16)$
C2-C1-P1	$118.70(16)$	C19-C17-C20	$109.01(19)$
C6-C1-P1	$123.03(16)$	C19-C17-C18	$108.45(19)$
C3-C2-C1	$122.0(2)$	C20-C17-C18	$108.99(19)$
C4-C3-C2	$119.3(2)$	C19-C17-P1	$116.32(16)$
C3-C4-C5	$120.1(2)$	C20-C17-P1	$108.39(15)$
C4-C5-C6	$121.5(2)$	C18-C17-P1	$105.47(16)$
C5-C6-C1	$118.8(2)$	F2-C22-F3	$108.4(2)$
C5-C6-C7	$115.71(19)$	F2-C22-F1	$108.1(2)$
C1-C6-C7	$125.45(19)$	F3-C22-F1	$108.6(2)$
C12-C7-C8	$119.4(2)$	F2-C22-S1	$111.17(17)$
C12-C7-C6	$121.1(2)$	F3-C22-S1	$111.12(18)$
C8-C7-C6	$119.4(2)$	F1-C22-S1	$109.29(16)$
C9-C8-C7	$120.3(2)$	S1-O1-Au1	$123.77(10)$
C8-C9-C10	$120.0(2)$	C1-P1-C17	$106.16(10)$
C9-C10-C11	$119.9(2)$	C1-P1-C13	$106.88(10)$
C10-C11-C12	$120.5(2)$	C17-P1-C13	$114.34(10)$
C7-C12-C11	$119.9(2)$	C1-P1-Au1	$114.53(7)$
C16-C13-C15	$108.0(2)$	C17-P1-Au1	$106.75(7)$
C16-C13-C14	$110.0(2)$	C13-P1-Au1	$108.38(7)$
C15-C13-C14	$107.3(2)$	O2-S1-O3	$118.03(13)$
C16-C13-P1	$114.70(16)$	O2-S1-O1	$112.78(11)$

O3-S1-O1	$114.18(12)$	O3-S1-C22	$104.42(12)$
O2-S1-C22	$103.76(12)$	O1-S1-C22	$101.06(10)$

Table S3 Torsion angles [${ }^{\circ}$] for $\mathbf{C 1}$.

Torsion angles			
C6-C1-C2-C3	$-1.7(3)$	C18-C17-P1-C1	$-69.30(17)$
P1-C1-C2-C3	$178.13(19)$	C19-C17-P1-C13	$-66.66(19)$
C1-C2-C3-C4	$1.0(4)$	C20-C17-P1-C13	$56.53(19)$
C2-C3-C4-C5	$0.1(4)$	C18-C17-P1-C13	$173.13(15)$
C3-C4-C5-C6	$-0.4(4)$	C19-C17-P1-Au1	$173.49(15)$
C4-C5-C6-C1	$-0.3(3)$	C20-C17-P1-Au1	$-63.31(17)$
C4-C5-C6-C7	$-179.5(2)$	C18-C17-P1-Au1	$53.28(15)$
C2-C1-C6-C5	$1.4(3)$	C16-C13-P1-C1	$-79.26(19)$
P1-C1-C6-C5	$-178.47(16)$	C15-C13-P1-C1	$159.26(18)$
C2-C1-C6-C7	$-179.5(2)$	C14-C13-P1-C1	$43.19(19)$
P1-C1-C6-C7	$0.6(3)$	C16-C13-P1-C17	$37.9(2)$
C5-C6-C7-C12	$-99.6(3)$	C15-C13-P1-C17	$-83.6(2)$
C1-C6-C7-C12	$81.3(3)$	C14-C13-P1-C17	$160.35(17)$
C5-C6-C7-C8	$75.7(3)$	C15-C13-P1-Au1	$156.83(16)$
C1-C6-C7-C8	$-103.4(3)$	C14-C13-P1-Au1	$35.34(19)$
C12-C7-C8-C9	$-0.4(4)$	O1-Au1-P1-C1	$-80.73(17)$
C6-C7-C8-C9	$-175.8(2)$	O1-Au1-P1-C17	$141.7(5)$
C7-C8-C9-C10	$-0.6(4)$	O1-Au1-P1-C13	$24.5(5)$
C8-C9-C10-C11	$1.3(4)$	Au1-O1-S1-O2	$-99.1(5)$
C9-C10-C11-C12	$-1.0(4)$	Au1-O1-S1-O3	$132.28(13)$
C8-C7-C12-C11	$0.7(4)$	$-6.07(18)$	
C6-C7-C12-C11	$176.0(2)$	Au1-O1-S1-C22	$-117.54(13)$
C10-C11-C12-C7	$0.0(4)$	F2-C22-S1-O2	$52.95(19)$
P1-Au1-O1-S1	$129.1(4)$	F3-C22-S1-O2	$173.80(17)$
C2-C1-P1-C17	$-62.2(2)$	F1-C22-S1-O2	$-66.3(2)$
C6-C1-P1-C17	$117.66(18)$	F2-C22-S1-O3	$177.18(18)$
C2-C1-P1-C13	$60.2(2)$	F3-C22-S1-O3	$-62.0(2)$
C6-C1-P1-C13	$-119.90(19)$	$57.9(2)$	
C2-C1-P1-Au1-O3	$-179.72(15)$	$-64.06(19)$	
C6-C1-P1-Au1	$0.1(2)$	$56.79(19)$	
C19-C17-P1-C1	$50.91(19)$	$176.68(18)$	
C20-C17-P1-C1			
		F32-S1-O1	

Triflimide [(1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) (C2)

Table S4 Crystal data and structure refinement for $\mathbf{C} 2$.

Identification code	mo_AI0035_0m
Empirical formula	C22 H27 Au F6 N O4 P S2
Formula weight	775.50
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P1
Unit cell dimensions	
$\mathrm{a}=9.5483(8) \AA$	$\alpha=98.149(4){ }^{\circ}$.
$\mathrm{b}=10.0082(12) \AA$	$\beta=96.743(3){ }^{\circ}$.
$\mathrm{c}=15.3039(14) \AA$	$\gamma=107.426(4){ }^{\circ}$.
Volume	1361.3(2) \AA^{3}
Z	2
Density (calculated)	$1.892 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$5.686 \mathrm{~mm}^{-1}$
F(000)	756
Crystal size	$0.30 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	1.36 to 30.29°.
Index ranges	$-13<=\mathrm{h}<=13,-13<=\mathrm{k}<=14,-21<=1<=20$
Reflections collected	16807
Independent reflections	7077 [R(int) $=0.0685$]
Completeness to theta $=30.29^{\circ}$	86.799995\%
Absorption correction	Empirical
Max. and min. transmission	0.6002 and 0.2803
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7077 / 0 / 340
Goodness-of-fit on F^{2}	1.078
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0319, \mathrm{wR} 2=0.0795$
R indices (all data)	$\mathrm{R} 1=0.0345$, wR2 $=0.0803$
Largest diff. peak and hole	2.945 and -4.094 e. \AA^{-3}

Table S5 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{C} 2$.

Bond lengths			
Au1-N1	$2.113(3)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9300
Au1-P1	$2.2445(9)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.388(6)$
S1-O1	$1.418(3)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9300
S1-O2	$1.419(3)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.384(7)$
S1-N1	$1.636(3)$	$\mathrm{C} 10-\mathrm{H} 10$	0.9300
S1-C21	$1.829(4)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.394(5)$
S2-O3	$1.424(3)$	$\mathrm{C} 11-\mathrm{H} 11$	0.9300
S2-O4	$1.428(3)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9300
S2-N1	$1.621(3)$	$\mathrm{C} 13-\mathrm{C} 16$	$1.520(6)$
S2-C22	$1.848(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.530(6)$
P1-C1	$1.825(4)$	$\mathrm{C} 13-\mathrm{C} 15$	$1.535(7)$
P1-C17	$1.874(4)$	$\mathrm{C} 14-\mathrm{H} 14$	0.9600
P1-C13	$1.885(4)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B}$	0.9600
F1-C21	$1.328(6)$	$\mathrm{C} 14-\mathrm{H} 14 \mathrm{C}$	0.9600
F2-C21	$1.325(5)$	$\mathrm{C} 15-\mathrm{H} 15$	0.9600
F3-C21	$1.327(6)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{~B}$	0.9600
F4-C22	$1.325(5)$	$\mathrm{C} 15-\mathrm{H} 15 \mathrm{C}$	0.9600
F5-C22	$1.327(5)$	$\mathrm{C} 16-\mathrm{H} 16$	0.9600
F6-C22	$1.321(5)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{~B}$	0.9600
C1-C2	$1.409(5)$	$\mathrm{C} 16-\mathrm{H} 16 \mathrm{C}$	0.9600
C1-C6	$1.418(5)$	$\mathrm{C} 17-\mathrm{C} 20$	$1.517(6)$
C2-C3	$1.384(5)$	$\mathrm{C} 17-\mathrm{C} 19$	$1.537(6)$
C2-H2A	0.9300	$\mathrm{C} 17-\mathrm{C} 18$	$1.538(6)$
C3-C4	$1.385(6)$	$\mathrm{C} 18-\mathrm{H} 18$	0.9600
C3-H3A	0.9300	$\mathrm{C} 18-\mathrm{H} 18 \mathrm{~B}$	0.9600
C4-C5	$1.382(5)$	$\mathrm{C} 18-\mathrm{H} 18 \mathrm{C}$	0.9600
C4-H4A	0.9300	$\mathrm{C} 19-\mathrm{H} 19$	0.9600
C5-C6	$1.395(5)$	$\mathrm{C} 19-\mathrm{H} 19 \mathrm{~B}$	0.9600
C5-H5	0.9300	$\mathrm{C} 19-\mathrm{H} 19 \mathrm{C}$	0.9600
C6-C7	$1.490(5)$	$\mathrm{C} 20-\mathrm{H} 20$	0.9600
C7-C8	$1.392(5)$	0.9600	
C7-C12	$1.394(5)$	0.9600	
C8-C9	$1.396(5)$	$\mathrm{C} 20-\mathrm{H} 200 \mathrm{C}$	

Angles			
N1-Au1-P1	$170.77(9)$	O4-S2-N1	$107.25(17)$
O1-S1-O2	$121.0(2)$	O3-S2-C22	$106.3(2)$
O1-S1-N1	$108.11(17)$	O4-S2-C22	$103.84(19)$
O2-S1-N1	$113.46(19)$	N1-S2-C22	$103.06(18)$
O1-S1-C21	$104.6(2)$	C1-P1-C17	$104.99(18)$
O2-S1-C21	$105.3(2)$	C1-P1-C13	$107.10(18)$
N1-S1-C21	$102.30(19)$	C17-P1-C13	$116.35(18)$
O3-S2-O4	$121.2(2)$	C1-P1-Au1	$117.01(12)$
O3-S2-N1	$113.22(19)$	C17-P1-Au1	$105.68(13)$

C13-P1-Au1	106.17(12)	C13-C14-H14C	109.5
S2-N1-S1	122.48(19)	H14-C14-H14C	109.5
S2-N1-Au1	118.77(18)	H14B-C14-H14C	109.5
S1-N1-Au1	118.16(17)	C13-C15-H15	109.5
C2-C1-C6	117.9(3)	C13-C15-H15B	109.5
C2-C1-P1	118.1(3)	H15-C15-H15B	109.5
C6-C1-P1	123.9(3)	C13-C15-H15C	109.5
C3-C2-C1	122.2(4)	H15-C15-H15C	109.5
C3-C2-H2A	118.9	H15B-C15-H15C	109.5
C1-C2-H2A	118.9	C13-C16-H16	109.5
C2-C3-C4	119.5(4)	C13-C16-H16B	109.5
C2-C3-H3A	120.3	H16-C16-H16B	109.5
C4-C3-H3A	120.3	C13-C16-H16C	109.5
C5-C4-C3	119.2(4)	H16-C16-H16C	109.5
C5-C4-H4A	120.4	H16B-C16-H16C	109.5
C3-C4-H4A	120.4	C20-C17-C19	109.6(4)
C4-C5-C6	122.7(4)	C20-C17-C18	107.7(5)
C4-C5-H5	118.6	C19-C17-C18	106.6(4)
C6-C5-H5	118.6	C20-C17-P1	117.3(3)
C5-C6-C1	118.4(3)	C19-C17-P1	109.9(3)
C5-C6-C7	115.4(3)	C18-C17-P1	105.2(3)
C1-C6-C7	126.2(3)	C17-C18-H18	109.5
C8-C7-C12	118.7(3)	C17-C18-H18B	109.5
C8-C7-C6	121.5(3)	H18-C18-H18B	109.5
C12-C7-C6	119.2(3)	C17-C18-H18C	109.5
C7-C8-C9	120.6(4)	H18-C18-H18C	109.5
C7-C8-H8	119.7	H18B-C18-H18C	109.5
C9-C8-H8	119.7	C17-C19-H19	109.5
C10-C9-C8	120.0(4)	C17-C19-H19B	109.5
C10-C9-H9	120.0	H19-C19-H19B	109.5
C8-C9-H9	120.0	C17-C19-H19C	109.5
C11-C10-C9	119.9(4)	H19-C19-H19C	109.5
C11-C10-H10	120.0	H19B-C19-H19C	109.5
C9-C10-H10	120.0	C17-C20-H20	109.5
C10-C11-C12	120.0(4)	C17-C20-H20B	109.5
C10-C11-H11	120.0	H20-C20-H20B	109.5
C12-C11-H11	120.0	C17-C20-H20C	109.5
C7-C12-C11	120.8(4)	H20-C20-H20C	109.5
C7-C12-H12	119.6	H20B-C20-H20C	109.5
C11-C12-H12	119.6	F2-C21-F3	108.4(4)
C16-C13-C14	109.8(4)	F2-C21-F1	108.8(4)
C16-C13-C15	108.0(4)	F3-C21-F1	108.1(4)
C14-C13-C15	108.0(5)	F2-C21-S1	109.4(3)
C16-C13-P1	109.4(3)	F3-C21-S1	110.9(3)
C14-C13-P1	116.3(3)	F1-C21-S1	111.2(3)
C15-C13-P1	104.8(3)	F6-C22-F4	109.6(4)
C13-C14-H14	109.5	F6-C22-F5	108.8(4)
C13-C14-H14B	109.5	F4-C22-F5	108.5(4)
H14-C14-H14B	109.5	F6-C22-S2	108.5(3)

Table S6 Torsion angles [${ }^{\circ}$] for C2.

Torsion angles			
N1-Au1-P1-C1	173.9(6)	C8-C9-C10-C11	0.2(7)
N1-Au1-P1-C17	57.5(6)	C9-C10-C11-C12	-0.7(7)
N1-Au1-P1-C13	-66.7(6)	C8-C7-C12-C11	0.3(6)
O3-S2-N1-S1	-30.1(3)	C6-C7-C12-C11	-171.7(4)
O4-S2-N1-S1	-166.5(2)	C10-C11-C12-C7	0.5(7)
C22-S2-N1-S1	84.3(2)	C1-P1-C13-C16	180.0(3)
O3-S2-N1-Au1	158.8(2)	C17-P1-C13-C16	-63.0(4)
O4-S2-N1-Au1	22.4(2)	Au1-P1-C13-C16	54.2(3)
C22-S2-N1-Au1	-86.8(2)	C1-P1-C13-C14	-54.9(5)
O1-S1-N1-S2	-151.0(2)	C17-P1-C13-C14	62.1(5)
O2-S1-N1-S2	-13.9(3)	Au1-P1-C13-C14	179.3(4)
C21-S1-N1-S2	98.9(3)	C1-P1-C13-C15	64.3(4)
O1-S1-N1-Au1	20.1(2)	C17-P1-C13-C15	-178.7(3)
O2-S1-N1-Au1	157.25(19)	Au1-P1-C13-C15	-61.5(3)
C21-S1-N1-Au1	-89.9(2)	C1-P1-C17-C20	57.0(4)
P1-Au1-N1-S2	105.7(6)	C13-P1-C17-C20	-61.2(5)
P1-Au1-N1-S1	-65.8(6)	Au1-P1-C17-C20	-178.7(4)
C17-P1-C1-C2	-63.7(4)	C1-P1-C17-C19	-177.0(3)
C13-P1-C1-C2	60.6(4)	C13-P1-C17-C19	64.8(3)
Au1-P1-C1-C2	179.5(3)	Au1-P1-C17-C19	-52.7(3)
C17-P1-C1-C6	112.1(4)	C1-P1-C17-C18	-62.6(3)
C13-P1-C1-C6	-123.6(3)	C13-P1-C17-C18	179.2(3)
Au1-P1-C1-C6	-4.6(4)	Au1-P1-C17-C18	61.7(3)
C6-C1-C2-C3	-1.1(7)	O1-S1-C21-F2	73.0(4)
P1-C1-C2-C3	175.0(4)	O2-S1-C21-F2	-55.5(4)
C1-C2-C3-C4	-0.7(7)	N1-S1-C21-F2	-174.3(4)
C2-C3-C4-C5	1.9(7)	O1-S1-C21-F3	-46.5(4)
C3-C4-C5-C6	-1.3(7)	O2-S1-C21-F3	-175.0(3)
C4-C5-C6-C1	-0.5(6)	N1-S1-C21-F3	66.1(4)
C4-C5-C6-C7	179.8(4)	O1-S1-C21-F1	-166.8(3)
C2-C1-C6-C5	1.7(6)	O2-S1-C21-F1	64.7(4)
P1-C1-C6-C5	-174.2(3)	N1-S1-C21-F1	-54.1(4)
C2-C1-C6-C7	-178.7(4)	O3-S2-C22-F6	-58.1(4)
P1-C1-C6-C7	5.5(6)	O4-S2-C22-F6	70.8(3)
C5-C6-C7-C8	-103.0(4)	N1-S2-C22-F6	-177.4(3)
C1-C6-C7-C8	77.3(5)	O3-S2-C22-F4	62.7(4)
C5-C6-C7-C12	68.8(5)	O4-S2-C22-F4	-168.4(3)
C1-C6-C7-C12	-110.9(5)	N1-S2-C22-F4	-56.6(3)
C12-C7-C8-C9	-0.8(6)	O3-S2-C22-F5	-177.0(3)
C6-C7-C8-C9	171.0(4)	O4-S2-C22-F5	-48.0(3)
C7-C8-C9-C10	0.5(6)	N1-S2-C22-F5	63.7(3)

Chloro bis $\left\{\left[\left(1,1^{\prime}\right.\right.\right.$-biphenyl-2-yl)di-tert-butylphosphine]gold(I) \} trifluoromethanesulfonate (B1)

Table S7 Crystal data and structure refinement for $\mathbf{B} 1$.

Table S8 Bond lengths $\left[\AA \AA\right.$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{B 1}$.

Bond lengths			
Au1-P1	2.2545(14)	C25-C26	1.395(8)
Au1-Cl1	$2.3623(14)$	C26-C27	1.513(8)
Au2-P2	2.2537(14)	C27-C32	1.386 (8)
Au2-Cl1	$2.3438(14)$	C27-C28	$1.398(8)$
C1-C6	1.400(8)	C28-C29	1.388(9)
C1-C2	$1.419(8)$	C29-C30	$1.392(9)$
C1-P1	$1.815(5)$	C30-C31	$1.388(9)$
C2-C3	1.379 (8)	C31-C32	1.390 (9)
C3-C4	$1.375(9)$	C33-C36	$1.532(9)$
C4-C5	$1.382(8)$	C33-C35	1.540(10)
C5-C6	$1.383(8)$	C33-C34	$1.548(9)$
C6-C7	$1.527(8)$	C33-P2	1.882(6)
C7-C12	$1.392(8)$	C37-C39	1.516(10)
C7-C8	$1.402(7)$	C37-C40	1.538(10)
C8-C9	1.381(8)	C37-C38	1.550 (9)
C9-C10	1.391(9)	C37-P2	1.891(6)
C10-C11	1.401(8)	C1B-F1B	1.324(9)
C11-C12	$1.374(8)$	C1B-F2B	1.342(9)
C13-C16	1.503(9)	C1B-F3B	1.363(10)
C13-C14	1.527(9)	C1B-S1B	1.797 (8)
C13-C15	1.540(9)	O1B-S1B	$1.432(5)$
C13-P1	$1.902(7)$	O2B-S1B	1.444 (5)
C17-C18	$1.535(8)$	O3B-S1B	$1.423(5)$
C17-C20	1.541(9)	C11S-C1S\#1	1.64(2)
C17-C19	$1.545(9)$	C12S-C1S\#1	1.94(2)
C17-P1	1.879(6)	C1S-Cl1S\#2	1.64(2)
C21-C26	1.387(8)	C1S-Cl2S\#2	1.94(2)
C21-C22	$1.405(8)$	C1R-C2R	1.511(10)
C21-P2	1.830(6)	C2R-C3R	$1.539(10)$
C22-C23	1.399 (8)	C3R-C4R	1.549(10)
C23-C24	1.378(8)	C4R-C5R	1.542(10)
C24-C25	$1.401(8)$		

Angles			
P1-Au1-Cl1	$178.01(5)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$123.2(5)$
P2-Au2-Cl1	$175.08(5)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8$	$119.3(5)$
C6-C1-C2	$116.7(5)$	$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 6$	$120.2(5)$
C6-C1-P1	$125.3(4)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$120.2(5)$
C2-C1-P1	$117.9(4)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$119.5(5)$
C3-C2-C1	$122.0(5)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$121.1(5)$
C4-C3-C2	$119.6(5)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$119.1(5)$
C3-C4-C5	$119.9(5)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$119.9(5)$
C4-C5-C6	$120.9(5)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 7$	$121.0(5)$
C5-C6-C1	$120.8(5)$	$\mathrm{C} 16-\mathrm{C} 13-\mathrm{C} 14$	$109.0(6)$
C5-C6-C7	$116.0(5)$	$\mathrm{C} 16-\mathrm{C} 13-\mathrm{C} 15$	$108.6(6)$

C14-C13-C15	109.5(5)	C39-C37-C38	107.5(5)
C16-C13-P1	108.5(4)	C40-C37-C38	106.9(6)
C14-C13-P1	115.7(5)	C39-C37-P2	116.9(5)
C15-C13-P1	105.3(5)	C40-C37-P2	106.9(4)
C18-C17-C20	108.4(5)	C38-C37-P2	107.5(4)
C18-C17-C19	109.1(5)	Au2-Cl1-Au1	96.76(5)
C20-C17-C19	109.7(5)	C1-P1-C17	105.8(3)
C18-C17-P1	115.7(4)	C1-P1-C13	106.5(3)
C20-C17-P1	105.8(4)	C17-P1-C13	115.0(3)
C19-C17-P1	108.0(4)	C1-P1-Au1	114.06(18)
C26-C21-C22	119.0(5)	C17-P1-Au1	107.78(19)
C26-C21-P2	123.3(4)	C13-P1-Au1	107.93(19)
C22-C21-P2	117.6(4)	C21-P2-C33	103.8(3)
C23-C22-C21	121.3(5)	C21-P2-C37	108.2(3)
C24-C23-C22	119.1(5)	C33-P2-C37	114.4(3)
C23-C24-C25	120.1(5)	C21-P2-Au2	115.97(18)
C26-C25-C24	120.7(5)	C33-P2-Au2	106.3(2)
C21-C26-C25	119.8(5)	C37-P2-Au2	108.4(2)
C21-C26-C27	125.2(5)	F1B-C1B-F2B	106.9(7)
C25-C26-C27	114.9(5)	F1B-C1B-F3B	107.0(7)
C32-C27-C28	119.0(5)	F2B-C1B-F3B	106.5(6)
C32-C27-C26	120.4(5)	F1B-C1B-S1B	113.7(5)
C28-C27-C26	120.5(5)	F2B-C1B-S1B	112.9(5)
C29-C28-C27	120.2(6)	F3B-C1B-S1B	109.4(6)
C28-C29-C30	120.4(6)	O3B-S1B-O1B	115.1(4)
C31-C30-C29	119.4(6)	O3B-S1B-O2B	115.1(3)
C30-C31-C32	120.2(6)	O1B-S1B-O2B	115.7(3)
C27-C32-C31	120.8(5)	O3B-S1B-C1B	102.7(4)
C36-C33-C35	108.8(6)	O1B-S1B-C1B	102.4(3)
C36-C33-C34	110.1(5)	O2B-S1B-C1B	103.1(4)
C35-C33-C34	109.0(6)	Cl1S\#2-C1S-Cl2S\#2	107.2(11)
C36-C33-P2	114.9(5)	C1R-C2R-C3R	112.8(13)
C35-C33-P2	105.9(4)	C2R-C3R-C4R	106.0(11)
C34-C33-P2	108.0(5)	C5R-C4R-C3R	110.2(11)
C39-C37-C40	110.8(6)		

Table S9 Torsion angles [${ }^{\circ}$] for $\mathbf{B 1}$.

Torsion angles			
C6-C1-C2-C3	$0.2(9)$	P1-C1-C6-C5	$174.4(4)$
P1-C1-C2-C3	$-176.2(5)$	C2-C1-C6-C7	$178.7(5)$
C1-C2-C3-C4	$1.2(9)$	P1-C1-C6-C7	$-5.2(8)$
C2-C3-C4-C5	$-1.0(9)$	C5-C6-C7-C12	$95.2(6)$
C3-C4-C5-C6	$-0.5(9)$	C1-C6-C7-C12	$-85.1(7)$
C4-C5-C6-C1	$1.8(9)$	C5-C6-C7-C8	$-78.0(7)$
C4-C5-C6-C7	$-178.5(5)$	C1-C6-C7-C8	$101.6(7)$
C2-C1-C6-C5	$-1.7(8)$	C12-C7-C8-C9	$0.4(8)$

C6-C7-C8-C9	173.7(5)
C7-C8-C9-C10	-0.4(9)
C8-C9-C10-C11	$0.6(10)$
C9-C10-C11-C12	-0.7(9)
C10-C11-C12-C7	0.7(9)
C8-C7-C12-C11	-0.5(8)
C6-C7-C12-C11	-173.8(5)
C26-C21-C22-C23	1.6 (8)
P2-C21-C22-C23	-175.2(4)
C21-C22-C23-C24	1.2(9)
C22-C23-C24-C25	-2.9(9)
C23-C24-C25-C26	1.7(9)
C22-C21-C26-C25	-2.8(8)
P2-C21-C26-C25	173.9(4)
C22-C21-C26-C27	172.8(5)
P2-C21-C26-C27	-10.5(8)
C24-C25-C26-C21	1.2(8)
C24-C25-C26-C27	-174.8(5)
C21-C26-C27-C32	-75.7(7)
C25-C26-C27-C32	100.0(6)
C21-C26-C27-C28	108.8(7)
C25-C26-C27-C28	-75.4(7)
C32-C27-C28-C29	1.6(9)
C26-C27-C28-C29	177.1(6)
C27-C28-C29-C30	-1.7(11)
C28-C29-C30-C31	1.6(11)
C29-C30-C31-C32	-1.4(10)
C28-C27-C32-C31	-1.5(9)
C26-C27-C32-C31	-177.0(5)
C30-C31-C32-C27	1.4(9)
P2-Au2-Cl1-Au1	-31.3(6)
P1-Au1-C11-Au2	-23.5(15)
C6-C1-P1-C17	-111.2(5)
C2-C1-P1-C17	64.9(5)
C6-C1-P1-C13	126.0(5)
C2-C1-P1-C13	-57.9(5)
C6-C1-P1-Au1	7.1(6)
C2-C1-P1-Au1	-176.9(4)
C18-C17-P1-C1	-51.1(5)
C20-C17-P1-C1	68.9(4)
C19-C17-P1-C1	-173.7(4)
C18-C17-P1-C13	66.1(5)
C20-C17-P1-C13	-173.8(4)
C19-C17-P1-C13	-56.5(5)
C18-C17-P1-Au1	-173.5(4)
C20-C17-P1-Au1	-53.4(4)
C19-C17-P1-Au1	63.9(5)
C16-C13-P1-C1	-162.5(4)
C14-C13-P1-C1	74.6(5)

C15-C13-P1-C1	$-46.4(5)$
C16-C13-P1-C17	$80.7(5)$
C14-C13-P1-C17	$-42.2(6)$
C15-C13-P1-C17	$-163.2(4)$
C16-C13-P1-Au1	$-39.6(5)$
C14-C13-P1-Au1	$-162.5(4)$
C15-C13-P1-Au1	$76.4(4)$
C11-Au1-P1-C1	$-166.5(14)$
C11-Au1-P1-C17	$-49.4(15)$
C11-Au1-P1-C13	$75.3(15)$
C26-C21-P2-C33	$-100.7(5)$
C22-C21-P2-C33	$76.0(5)$
C26-C21-P2-C37	$137.5(5)$
C22-C21-P2-C37	$-45.9(5)$
C26-C21-P2-Au2	$15.5(5)$
C22-C21-P2-Au2	$-167.8(4)$
C36-C33-P2-C21	$-55.4(6)$
C35-C33-P2-C21	$64.7(5)$
C34-C33-P2-C21	$-178.7(5)$
C36-C33-P2-C37	$62.2(6)$
C35-C33-P2-C37	$-177.7(4)$
C34-C33-P2-C37	$-61.1(5)$
C36-C33-P2-Au2	$-178.2(5)$
C35-C33-P2-Au2	$-58.1(4)$
C34-C33-P2-Au2	$58.5(5)$
C39-C37-P2-C21	$83.5(5)$
C40-C37-P2-C21	$-41.2(5)$
C38-C37-P2-C21	$-155.7(5)$
C39-C37-P2-C33	$-31.5(6)$
C40-C37-P2-C33	$-156.2(5)$
C38-C37-P2-C33	$89.3(5)$
C39-C37-P2-Au2	$-150.0(4)$
C40-C37-P2-Au2	$85.3(4)$
C38-C37-P2-Au2	$-29.2(5)$
C11-Au2-P2-C21	$-161.8(6)$
C11-Au2-P2-C33	$-47.1(7)$
C11-Au2-P2-C37	$76.4(6)$
F1B-C1B-S1B-O3B	$60.0(8)$
F2B-C1B-S1B-O3B	$-62.1(6)$
F3B-C1B-S1B-O3B	$179.5(5)$
F1B-C1B-S1B-O1B	$179.6(7)$
F2B-C1B-S1B-O1B	$57.6(7)$
F3B-C1B-S1B-O1B	$-60.8(6)$
F1B-C1B-S1B-O2B	$-59.9(8)$
F2B-C1B-S1B-O2B	$178.0(6)$
F3B-C1B-S1B-O2B	$59.6(6)$
C1R-C2R-C3R-C4R	$106(2)$
C2R-C3R-C4R-C5R	

Chloro bis $\left\{\left[\left(1,1^{\prime}\right.\right.\right.$-biphenyl-2-yl)di-tert-butylphosphine]gold(I) \} triflimide (B2)

Table S10 Crystal data and structure refinement for B2.

Table S11 Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for B2.

Bond lengths			
Au1-P2	$2.2542(16)$	C20-C21	$1.374(9)$
Au1-C11	$2.3524(14)$	C21-C22	$1.381(9)$
Au2-P1	$2.2616(15)$	C22-C23	$1.352(9)$
Au2-C11	$2.3548(14)$	C23-C24	$1.407(8)$
P1-C13	$1.830(6)$	C25-C38	$1.507(9)$
P1-C26	$1.880(7)$	C25-C40	$1.525(9)$
P1-C28	$1.884(6)$	C25-C39	$1.549(8)$
P2-C1	$1.807(6)$	C26-C30	$1.530(8)$
P2-C25	$1.882(6)$	C26-C31	$1.537(8)$
P2-C27	$1.889(6)$	C26-C29	$1.551(9)$
C1-C6	$1.417(8)$	C27-C35	$1.504(9)$
C1-C2	$1.425(8)$	C27-C36	$1.515(9)$
C2-C3	$1.382(8)$	C27-C37	$1.561(9)$
C2-C7	$1.508(8)$	C28-C32	$1.527(9)$
C3-C4	$1.380(9)$	C28-C33	$1.536(8)$
C4-C5	$1.365(9)$	C28-C34	$1.550(8)$
C5-C6	$1.404(9)$	F1A-C1A	$1.288(9)$
C7-C8	$1.400(8)$	F2A-C1A	$1.334(9)$
C7-C12	$1.405(9)$	F3A-C1A	$1.336(9)$
C8-C9	$1.395(9)$	F4A-C2A	$1.303(8)$
C9-C10	$1.393(9)$	F5A-C2A	$1.308(9)$
C10-C11	$1.388(9)$	F6A-C2A	$1.323(8)$
C11-C12	$1.392(8)$	S1A-O2A	$1.396(5)$
C13-C18	$1.413(9)$	S1A-O1A	$1.442(5)$
C13-C14	$1.419(8)$	S1A-N1A	$1.590(6)$
C14-C15	$1.387(9)$	S1A-C1A	$1.826(8)$
C15-C16	$1.396(9)$	S2A-O3A	$1.414(5)$
C16-C17	$1.410(9)$	S2A-O4A	$1.441(6)$
C17-C18	$1.393(8)$	S2A-N1A	$1.582(6)$
C18-C19	$1.481(8)$	$1.831(7)$	
C19-C24	$1.424(9)$	$1.746(7)$	
C19-C20		$1.738(8)$	
		C12S-C1S	

Angles			
P2-Au1-Cl1	$176.83(6)$	C25-P2-Au1	$107.01(19)$
P1-Au2-Cl1	$175.92(5)$	$\mathrm{C} 27-\mathrm{P} 2-\mathrm{Au} 1$	$108.3(2)$
Au1-Cl1-Au2	$97.49(5)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$116.9(6)$
C13-P1-C26	$109.1(3)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{P} 2$	$118.5(5)$
C13-P1-C28	$103.5(3)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{P} 2$	$124.6(5)$
C26-P1-C28	$115.0(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$120.1(6)$
C13-P1-Au2	$114.8(2)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$116.3(6)$
C26-P1-Au2	$107.8(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	$123.6(5)$
C28-P1-Au2	$106.7(2)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.1(6)$
C1-P2-C25	$105.1(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$121.1(6)$
C1-P2-C27	$106.2(3)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.0(6)$
C25-P2-C27	$115.7(3)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$121.7(6)$
C1-P2-Au1	$114.7(2)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12$	$119.7(6)$

C8-C7-C2	121.0(6)	C35-C27-C37	108.3(6)
C12-C7-C2	119.1(6)	C36-C27-C37	106.5(5)
C9-C8-C7	120.1(6)	C35-C27-P2	106.1(4)
C10-C9-C8	119.4(6)	C36-C27-P2	117.0(5)
C11-C10-C9	121.1(6)	C37-C27-P2	108.0(4)
C10-C11-C12	119.6(6)	C32-C28-C33	109.7(5)
C11-C12-C7	120.0(6)	C32-C28-C34	109.9(5)
C18-C13-C14	118.6(5)	C33-C28-C34	110.1(5)
C18-C13-P1	123.5(5)	C32-C28-P1	105.3(4)
C14-C13-P1	117.7(4)	C33-C28-P1	109.2(4)
C15-C14-C13	121.5(6)	C34-C28-P1	112.6(4)
C14-C15-C16	120.1(6)	O2A-S1A-O1A	120.0(4)
C15-C16-C17	118.5(6)	O2A-S1A-N1A	117.1(3)
C18-C17-C16	122.3(6)	O1A-S1A-N1A	107.8(3)
C17-C18-C13	118.7(6)	O2A-S1A-C1A	106.1(4)
C17-C18-C19	115.4(6)	O1A-S1A-C1A	101.7(4)
C13-C18-C19	125.8(5)	N1A-S1A-C1A	101.4(3)
C24-C19-C20	118.6(6)	O3A-S2A-O4A	119.1(4)
C24-C19-C18	120.0(6)	O3A-S2A-N1A	117.3(3)
C20-C19-C18	121.1(6)	O4A-S2A-N1A	106.5(3)
C21-C20-C19	119.5(6)	O3A-S2A-C2A	105.9(3)
C20-C21-C22	121.0(7)	O4A-S2A-C2A	103.4(3)
C23-C22-C21	120.5(6)	N1A-S2A-C2A	102.5(3)
C22-C23-C24	120.6(6)	S2A-N1A-S1A	123.8(4)
C19-C24-C23	119.6(6)	F1A-C1A-F2A	107.7(7)
C38-C25-C40	109.6(5)	F1A-C1A-F3A	110.0(7)
C38-C25-C39	109.3(5)	F2A-C1A-F3A	105.9(7)
C40-C25-C39	107.3(5)	F1A-C1A-S1A	112.4(6)
C38-C25-P2	108.7(5)	F2A-C1A-S1A	110.0(5)
C40-C25-P2	115.9(4)	F3A-C1A-S1A	110.5(6)
C39-C25-P2	105.8(4)	F4A-C2A-F5A	107.9(7)
C30-C26-C31	107.3(5)	F4A-C2A-F6A	107.5(6)
C30-C26-C29	108.2(5)	F5A-C2A-F6A	108.5(6)
C31-C26-C29	109.9(6)	F4A-C2A-S2A	112.5(5)
C30-C26-P1	108.1(4)	F5A-C2A-S2A	110.7(5)
C31-C26-P1	116.4(4)	F6A-C2A-S2A	109.5(5)
C29-C26-P1	106.7(4)	Cl2S-C1S-Cl1S	112.6(5)
C35-C27-C36	110.6(6)		

Table S12 Torsion angles [${ }^{\circ}$] for $\mathbf{B 2}$.

Torsion angles			
P2-Au1-Cl1-Au2	$-23.0(10)$	C11-Au1-P2-C1	$-167.3(10)$
P1-Au2-Cl1-Au1	$-23.7(8)$	C11-Au1-P2-C25	$-51.1(10)$
Cl1-Au2-P1-C13	$-171.1(8)$	C11-Au1-P2-C27	$74.3(10)$
C11-Au2-P1-C26	$67.1(9)$	C25-P2-C1-C6	$68.0(6)$
C11-Au2-P1-C28	$-57.0(9)$	C27-P2-C1-C6	$-55.1(6)$

Au1-P2-C1-C6	-174.7(4)	C18-C19-C20-C21	174.8(6)
C25-P2-C1-C2	-114.1(6)	C19-C20-C21-C22	-0.3(10)
C27-P2-C1-C2	122.8(6)	C20-C21-C22-C23	1.3(11)
Au1-P2-C1-C2	3.2(6)	C21-C22-C23-C24	-2.0(10)
C6-C1-C2-C3	-3.6(9)	C20-C19-C24-C23	-0.6(9)
P2-C1-C2-C3	178.5(5)	C18-C19-C24-C23	-175.5(5)
C6-C1-C2-C7	178.9(6)	C22-C23-C24-C19	1.7(9)
P2-C1-C2-C7	1.0(9)	C1-P2-C25-C38	-176.0(4)
C1-C2-C3-C4	2.6(10)	C27-P2-C25-C38	-59.2(5)
C7-C2-C3-C4	-179.7(6)	Au1-P2-C25-C38	61.6(4)
C2-C3-C4-C5	0.3(10)	C1-P2-C25-C40	-52.1(5)
C3-C4-C5-C6	-2.2(10)	C27-P2-C25-C40	64.7(5)
C4-C5-C6-C1	1.0 (10)	Au1-P2-C25-C40	-174.5(4)
C2-C1-C6-C5	1.8(10)	C1-P2-C25-C39	66.7(4)
P2-C1-C6-C5	179.8(5)	C27-P2-C25-C39	-176.5(4)
C3-C2-C7-C8	-82.9(8)	Au1-P2-C25-C39	-55.7(4)
C1-C2-C7-C8	94.7(8)	C13-P1-C26-C30	-160.8(4)
C3-C2-C7-C12	92.1(7)	C28-P1-C26-C30	83.4(5)
C1-C2-C7-C12	-90.3(8)	Au2-P1-C26-C30	-35.5(4)
C12-C7-C8-C9	-0.1(9)	C13-P1-C26-C31	78.3(5)
C2-C7-C8-C9	174.9(6)	C28-P1-C26-C31	-37.5(6)
C7-C8-C9-C10	-0.3(10)	Au2-P1-C26-C31	-156.4(4)
C8-C9-C10-C11	0.8(10)	C13-P1-C26-C29	-44.7(5)
C9-C10-C11-C12	-0.9(10)	C28-P1-C26-C29	-160.5(4)
C10-C11-C12-C7	0.6(9)	Au2-P1-C26-C29	80.6(4)
C8-C7-C12-C11	-0.1(9)	C1-P2-C27-C35	-46.5(5)
C2-C7-C12-C11	-175.2(6)	C25-P2-C27-C35	-162.7(4)
C26-P1-C13-C18	138.4(5)	Au1-P2-C27-C35	77.2(5)
C28-P1-C13-C18	-98.6(6)	C1-P2-C27-C36	77.4(6)
Au2-P1-C13-C18	17.3(6)	C25-P2-C27-C36	-38.8(6)
C26-P1-C13-C14	-47.1(6)	Au1-P2-C27-C36	-158.9(5)
C28-P1-C13-C14	75.9(5)	C1-P2-C27-C37	-162.5(5)
Au2-P1-C13-C14	-168.3(4)	C25-P2-C27-C37	81.3(5)
C18-C13-C14-C15	2.3(9)	Au1-P2-C27-C37	-38.8(5)
P1-C13-C14-C15	-172.4(5)	C13-P1-C28-C32	64.1(5)
C13-C14-C15-C16	1.9(10)	C26-P1-C28-C32	-176.9(4)
C14-C15-C16-C17	-2.0(10)	Au2-P1-C28-C32	-57.4(4)
C15-C16-C17-C18	-2.2(10)	C13-P1-C28-C33	-178.1(4)
C16-C17-C18-C13	6.4(9)	C26-P1-C28-C33	-59.2(5)
C16-C17-C18-C19	-171.9(6)	Au2-P1-C28-C33	60.3(5)
C14-C13-C18-C17	-6.3(9)	C13-P1-C28-C34	-55.6(5)
P1-C13-C18-C17	168.1(5)	C26-P1-C28-C34	63.4(5)
C14-C13-C18-C19	171.8(6)	Au2-P1-C28-C34	-177.1(4)
P1-C13-C18-C19	-13.9(9)	O3A-S2A-N1A-S1A	-23.4(6)
C17-C18-C19-C24	110.0(7)	O4A-S2A-N1A-S1A	-159.7(4)
C13-C18-C19-C24	-68.1(9)	C2A-S2A-N1A-S1A	92.1(5)
C17-C18-C19-C20	-64.7(8)	O2A-S1A-N1A-S2A	-17.4(6)
C13-C18-C19-C20	117.2(7)	O1A-S1A-N1A-S2A	-156.2(4)
C24-C19-C20-C21	0.0(9)	C1A-S1A-N1A-S2A	97.5(5)

O2A-S1A-C1A-F1A	$177.7(6)$	O3A-S2A-C2A-F4A	$178.2(5)$
O1A-S1A-C1A-F1A	$-56.1(7)$	O4A-S2A-C2A-F4A	$-55.9(6)$
N1A-S1A-C1A-F1A	$54.9(6)$	N1A-S2A-C2A-F4A	$54.8(6)$
O2A-S1A-C1A-F2A	$-62.3(7)$	O3A-S2A-C2A-F5A	$57.3(6)$
O1A-S1A-C1A-F2A	$63.9(7)$	O4A-S2A-C2A-F5A	$-176.7(5)$
N1A-S1A-C1A-F2A	$174.9(6)$	N1A-S2A-C2A-F5A	$-66.1(6)$
O2A-S1A-C1A-F3A	$54.3(7)$	O3A-S2A-C2A-F6A	$-62.3(6)$
O1A-S1A-C1A-F3A	$-179.5(6)$	O4A-S2A-C2A-F6A	$63.6(6)$
N1A-S1A-C1A-F3A	$-68.5(7)$	N1A-S2A-C2A-F6A	$174.3(5)$

Chloro bis $\left\{\left[\left(1,1^{\prime}\right.\right.\right.$-biphenyl-2-yl)di-tert-butylphosphine]gold(I)\} tetrafluoroborate (B3)

Table S13 Crystal data and structure refinement for B3.

Reflections collected	52894
Independent reflections	$23036[\mathrm{R}(\mathrm{int})=0.0201]$
Completeness to theta $=39.50^{\circ}$	77.5%
Absorption correction	Empirical
Max. and min. transmission	0.7834 and 0.3913
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$23036 / 122 / 571$
Goodness-of-fit on F^{2}	0.938
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0229, \mathrm{wR} 2=0.0576$
R indices (all data)	$\mathrm{R} 1=0.0306, \mathrm{wR} 2=0.0609$
Largest diff. peak and hole	2.659 and -1.124 e. \AA^{-3}

Table S14 Bond lengths [$\AA \AA$] and angles [${ }^{\circ}$] for $\mathbf{B 3}$.

Bond lengths			
Au1-P1	$2.2544(4)$	C9-C8	$1.394(3)$
Au1-C11	$2.3478(4)$	C11-C10	$1.396(3)$
Au2-P2	$2.2558(4)$	C21-C26	$1.405(2)$
Au2-C11	$2.3512(4)$	C21-C22	$1.417(2)$
P1-C1	$1.8355(16)$	C22-C23	$1.394(2)$
P1-C17	$1.873(2)$	C22-C27	$1.496(2)$
P1-C13	$1.8801(19)$	C23-C24	$1.391(3)$
P2-C21	$1.8327(16)$	C26-C25	$1.390(2)$
P2-C33	$1.876(2)$	C27-C32	$1.392(3)$
P2-C37	$1.890(2)$	C27-C28	$1.396(3)$
C1S-C13S	$1.745(2)$	C28-C29	$1.390(3)$
C1S-C11S	$1.755(2)$	C29-C30	$1.391(3)$
C1S-C12S	$1.756(2)$	C30-C31	$1.386(3)$
C12Y-C1Y	$1.763(2)$	C32-C31	$1.392(3)$
C13Y-C1Y	$1.766(2)$	C33-C36	$1.537(3)$
C11Y-C1Y	$1.766(2)$	C33-C35	$1.537(3)$
C13-C15	$1.527(3)$	C33-C34	$1.539(3)$
C13-C14	$1.535(3)$	C37-C39	$1.537(2)$
C13-C16	$1.545(3)$	C37-C38	$1.538(3)$
C17-C20	$1.530(3)$	C37-C40	$1.539(3)$
C17-C18	$1.531(3)$	C4-C5	$1.385(3)$
C17-C19	$1.532(3)$	C4-C3	$1.385(3)$
C1-C6	$1.404(2)$	C24-C25	$1.385(3)$
C1-C2	$1.410(2)$	B1-F1'	$1.343(7)$
C2-C3	$1.390(2)$	B1-F2'	$1.378(7)$
C6-C5	$1.405(2)$	B1-F3	$1.382(3)$
C6-C7	$1.494(2)$	B1-F4	$1.385(4)$
C7-C12	$1.393(3)$	B1-F1	$1.391(3)$
C7-C8	$1.396(3)$	B1-F4	$1.395(6)$
C12-C11	$1.393(3)$	B1-F2	$1.394(3)$
C9-C10	$1.386(3)$	$1.439(7)$	

Angles			
P1-Au1-Cl1	176.388(16)	C26-C21-C22	118.51(15)
P2-Au2-Cl1	177.015(14)	C26-C21-P2	117.75(13)
$\mathrm{Au} 1-\mathrm{Cl} 1-\mathrm{Au} 2$	97.015(15)	C22-C21-P2	123.53(12)
C1-P1-C17	106.12(9)	C23-C22-C21	118.93(16)
C1-P1-C13	106.38(8)	C23-C22-C27	115.77(16)
C17-P1-C13	116.16(9)	C21-C22-C27	125.27(15)
C1-P1-Au1	113.90(6)	C24-C23-C22	121.50(18)
C17-P1-Au1	108.61(6)	C25-C26-C21	121.63(17)
C13-P1-Au1	105.91(6)	C32-C27-C28	118.95(17)
C21-P2-C33	104.80(8)	C32-C27-C22	120.39(19)
C21-P2-C37	107.87(8)	C28-C27-C22	120.29(18)
C33-P2-C37	114.97(9)	C29-C28-C27	120.14(19)
C21-P2-Au2	114.35(6)	C28-C29-C30	120.5(2)
C33-P2-Au2	106.91(6)	C31-C30-C29	119.57(19)
C37-P2-Au2	108.13(6)	C31-C32-C27	120.8(2)
Cl3S-C1S-C11S	111.15(12)	C36-C33-C35	110.10(16)
Cl3S-C1S-C12S	110.55(13)	C36-C33-C34	108.99(16)
Cl1S-C1S-C12S	109.77(11)	C35-C33-C34	108.24(18)
Cl2Y-C1Y-Cl3Y	110.58(14)	C36-C33-P2	108.48(15)
Cl2Y-C1Y-Cl1Y	110.49(11)	C35-C33-P2	114.87(14)
Cl3Y-C1Y-Cl1Y	109.39(11)	C34-C33-P2	105.96(12)
C15-C13-C14	108.29(17)	C39-C37-C38	107.61(15)
C15-C13-C16	108.46(17)	C39-C37-C40	108.09(17)
C14-C13-C16	108.62(19)	C38-C37-C40	110.19(16)
C15-C13-P1	117.20(15)	C39-C37-P2	108.47(13)
C14-C13-P1	108.79(13)	C38-C37-P2	116.07(16)
C16-C13-P1	105.20(13)	C40-C37-P2	106.17(12)
C20-C17-C18	108.05(19)	C5-C4-C3	119.22(16)
C20-C17-C19	110.1(2)	C4-C5-C6	121.87(17)
C18-C17-C19	108.03(19)	C4-C3-C2	119.94(17)
C20-C17-P1	115.50(15)	C25-C24-C23	119.89(16)
C18-C17-P1	109.45(15)	C24-C25-C26	119.47(17)
C19-C17-P1	105.47(15)	C30-C31-C32	120.0(2)
C6-C1-C2	118.27(15)	F1'-B1-F2'	113.6(5)
C6-C1-P1	123.56(12)	F1'-B1-F3	152.5(4)
C2-C1-P1	118.16(13)	F2'-B1-F3	79.4(4)
C3-C2-C1	121.59(17)	F1'-B1-F4	70.5(4)
C1-C6-C5	119.09(16)	F2'-B1-F4	155.7(5)
C1-C6-C7	125.14(14)	F3-B1-F4	108.1(2)
C5-C6-C7	115.76(15)	F1'-B1-F1	50.6(4)
C12-C7-C8	$119.05(17)$	F2'-B1-F1	89.4(4)
C12-C7-C6	120.43(16)	F3-B1-F1	108.3(2)
C8-C7-C6	120.27(18)	F4-B1-F1	109.1(3)
C11-C12-C7	120.49(18)	F1'-B1-F4'	110.7(5)
C10-C9-C8	120.20(19)	F2'-B1-F4'	112.2(5)
C12-C11-C10	120.1(2)	F3-B1-F4'	83.9(4)
C9-C8-C7	120.5(2)	F4-B1-F4'	48.1(3)
C9-C10-C11	119.64(18)	F1-B1-F4'	157.1(4)

F1'-B1-F2	$94.6(4)$	F2'-B1-F3'	$109.3(5)$
F2'-B1-F2	$46.1(4)$	F3-B1-F3'	$44.6(4)$
F3-B1-F2	$110.7(3)$	F4-B1-F3'	$90.9(4)$
F4-B1-F2	$110.9(2)$	F1-B1-F3'	$76.2(4)$
F1-B1-F2	$109.7(2)$	F4'-B1-F3'	$102.1(5)$
F4'-B1-F2	$82.5(4)$	F2-B1-F3'	$152.9(5)$
F1'-B1-F3'	$108.2(5)$		

Table S15 Torsion angles [${ }^{\circ}$] for B3.

Torsion angles			
P1-Au1-Cl1-Au2	29.8(3)	C2-C1-C6-C7	179.46(19)
P2-Au2-C11-Au1	-45.0(4)	P1-C1-C6-C7	-1.5(3)
Cl1-Au1-P1-C1	138.4(3)	C1-C6-C7-C12	-90.7(2)
C11-Au1-P1-C17	-103.6(3)	C5-C6-C7-C12	88.7(2)
C11-Au1-P1-C13	21.8(3)	C1-C6-C7-C8	95.0(2)
C11-Au2-P2-C21	-151.1(3)	C5-C6-C7-C8	-85.5(2)
C11-Au2-P2-C33	-35.6(4)	C8-C7-C12-C11	-0.4(3)
C11-Au2-P2-C37	88.7(4)	C6-C7-C12-C11	-174.72(16)
C1-P1-C13-C15	62.04(18)	C7-C12-C11-C10	-0.2(3)
C17-P1-C13-C15	-55.78(17)	C10-C9-C8-C7	-0.8(3)
Au1-P1-C13-C15	-176.43(14)	C12-C7-C8-C9	0.9(3)
C1-P1-C13-C14	-174.76(16)	C6-C7-C8-C9	175.25(17)
C17-P1-C13-C14	67.42(18)	C8-C9-C10-C11	0.2(3)
Au1-P1-C13-C14	-53.23(17)	C12-C11-C10-C9	0.3(3)
C1-P1-C13-C16	-58.54(14)	C33-P2-C21-C26	70.78(18)
C17-P1-C13-C16	-176.36(12)	C37-P2-C21-C26	-52.17(19)
Au1-P1-C13-C16	62.99(13)	Au2-P2-C21-C26	-172.49(14)
C1-P1-C17-C20	-65.2(2)	C33-P2-C21-C22	-103.87(18)
C13-P1-C17-C20	52.7(2)	C37-P2-C21-C22	133.18(17)
Au1-P1-C17-C20	171.94(18)	Au2-P2-C21-C22	12.9(2)
C1-P1-C17-C18	172.61(14)	C26-C21-C22-C23	-2.5(3)
C13-P1-C17-C18	-69.43(16)	P2-C21-C22-C23	172.08(16)
Au1-P1-C17-C18	49.76(15)	C26-C21-C22-C27	175.5(2)
C1-P1-C17-C19	56.61(17)	P2-C21-C22-C27	-9.9(3)
C13-P1-C17-C19	174.58(15)	C21-C22-C23-C24	2.5(3)
Au1-P1-C17-C19	-66.23(16)	C27-C22-C23-C24	-175.7(2)
C17-P1-C1-C6	-114.01(18)	C22-C21-C26-C25	0.5(3)
C13-P1-C1-C6	121.71(18)	P2-C21-C26-C25	-174.38(17)
Au1-P1-C1-C6	5.4(2)	C23-C22-C27-C32	-69.4(2)
C17-P1-C1-C2	64.99(18)	C21-C22-C27-C32	112.5(2)
C13-P1-C1-C2	-59.29(19)	C23-C22-C27-C28	103.6(2)
Au1-P1-C1-C2	-175.57(14)	C21-C22-C27-C28	-74.5(2)
C6-C1-C2-C3	-0.8(3)	C32-C27-C28-C29	-1.8(3)
P1-C1-C2-C3	-179.86(18)	C22-C27-C28-C29	-174.91(16)
C2-C1-C6-C5	0.0(3)	C27-C28-C29-C30	-0.6(3)
P1-C1-C6-C5	179.00(16)	C28-C29-C30-C31	1.9(3)

C28-C27-C32-C31	$2.9(3)$	$\mathrm{C} 33-\mathrm{P} 2-\mathrm{C} 37-\mathrm{C} 38$	$-38.08(16)$
C22-C27-C32-C31	$176.02(18)$	$\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 37-\mathrm{C} 38$	$-157.42(12)$
C21-P2-C33-C36	$-175.99(14)$	$\mathrm{C} 21-\mathrm{P} 2-\mathrm{C} 37-\mathrm{C} 40$	$-44.40(14)$
C37-P2-C33-C36	$-57.75(15)$	$\mathrm{C} 33-\mathrm{P} 2-\mathrm{C} 37-\mathrm{C} 40$	$-160.90(12)$
Au2-P2-C33-C36	$62.27(14)$	$\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 37-\mathrm{C} 40$	$79.76(12)$
C21-P2-C33-C35	$-52.33(17)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.6(3)$
C37-P2-C33-C35	$65.91(17)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$0.7(3)$
Au2-P2-C33-C35	$-174.07(14)$	C7-C6-C5-C4	$-178.8(2)$
C21-P2-C33-C34	$67.11(13)$	C5-C4-C3-C2	$-0.2(3)$
C37-P2-C33-C34	$-174.65(11)$	C1-C2-C3-C4	$0.9(4)$
Au2-P2-C33-C34	$-54.64(12)$	C22-C23-C24-C25	$-0.4(3)$
C21-P2-C37-C39	$-160.35(13)$	C23-C24-C25-C26	$-1.7(3)$
C33-P2-C37-C39	$83.15(15)$	C21-C26-C25-C24	$1.6(3)$
Au2-P2-C37-C39	$-36.19(14)$	C29-C30-C31-C32	$-0.8(3)$
C21-P2-C37-C38	$78.42(15)$	C27-C32-C31-C30	$-1.6(3)$

Chloro bis $\{(1,1$ '-biphenyl-2-yl)di-tert-butylphosphinelgold(I) $\}$ hexafluoroantimonate (B4)

Table S16 Crystal data and structure refinement for B4.

Volume	$2415.63(15) \AA^{3}$
Z	2
Density (calculated)	$1.981 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$7.037 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	1382
Crystal size	$0.15 \mathrm{x} 0.05 \mathrm{x} 0.03 \mathrm{~mm}^{3}$
Theta range for data collection	1.52 to 29.96°.
Index ranges	$-16<=\mathrm{h}<=15,-20<=\mathrm{k}<=20,-22<=1<=22$
Reflections collected	89373
Independent reflections	$12847[\mathrm{R}(\mathrm{int})=0.0336]$
Completeness to theta $=29.96^{\circ}$	0.914%
Absorption correction	Empirical
Max. and min. transmission	0.8166 and 0.4183
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$12847 / 150 / 650$
Goodness-of-fit on F^{2}	1.166
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0305, \mathrm{wR} 2=0.0689$
R indices (all data)	$\mathrm{R} 1=0.0394, \mathrm{wR} 2=0.0723$
Largest diff. peak and hole	2.418 and $-1.354 \mathrm{e} . \AA^{-3}$

Table S17 Bond lengths [\AA] and angles [${ }^{\circ}$] for B4.

Bond lengths			
Au1-P1	$2.2519(11)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.380(7)$
Au1-Cl1	$2.3560(11)$	$\mathrm{C} 13-\mathrm{C} 15$	$1.529(6)$
Au2-P2	$2.2517(12)$	$\mathrm{C} 13-\mathrm{C} 16$	$1.534(6)$
Au2-Cl1	$2.3802(11)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.536(6)$
P1-C1	$1.825(4)$	$\mathrm{C} 17-\mathrm{C} 20$	$1.531(7)$
P1-C13	$1.875(4)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.538(6)$
P1-C17	$1.889(5)$	$\mathrm{C} 17-\mathrm{C} 19$	$1.541(6)$
P2-C37	$1.81(2)$	$\mathrm{C} 21-\mathrm{C} 26$	$1.398(7)$
P2-C21	$1.826(5)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.402(6)$
P2-C33'	$1.85(3)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.382(7)$
P2-C33	$1.892(10)$	$\mathrm{C} 23-\mathrm{C} 24$	$1.364(8)$
P2-C37'	$1.98(3)$	$\mathrm{C} 24-\mathrm{C} 25$	$1.386(7)$
C1-C2	$1.399(6)$	$\mathrm{C} 25-\mathrm{C} 26$	$1.398(6)$
C1-C6	$1.406(6)$	$\mathrm{C} 26-\mathrm{C} 27$	$1.509(6)$
C2-C3	$1.390(6)$	$\mathrm{C} 27-\mathrm{C} 32$	$1.396(6)$
C3-C4	$1.376(7)$	$\mathrm{C} 27-\mathrm{C} 28$	$1.399(6)$
C4-C5	$1.391(7)$	$\mathrm{C} 28-\mathrm{C} 29$	$1.384(6)$
C5-C6	$1.384(6)$	$\mathrm{C} 29-C 30$	$1.391(6)$
C6-C7	$1.520(6)$	$\mathrm{C} 30-\mathrm{C} 31$	$1.391(6)$
C7-C8	$1.386(6)$	$\mathrm{C} 31-\mathrm{C} 32$	$1.382(6)$
C7-C12	$1.401(6)$	C33-C34	$1.533(10)$
C8-C9	$1.388(7)$	C33-C36	$1.535(13)$
C9-C10	$1.383(7)$	C33-C35	$1.539(9)$
C10-C11	$1.387(7)$	C33'-C36	$1.530(8)$

C33'-C34'	1.537(8)	C1X-Cl2X	1.724(13)
C33'-C35'	1.541(8)	C1X-Cl1X	1.761(12)
C37-C38	1.527(17)	C1X-Cl3X	1.779(12)
C37-C40	1.542(16)	C1X-C11X\#1	2.195(15)
C37-C39	1.556(16)	C11X-Cl2X\#1	1.481(6)
C37'-C40'	1.530 (8)	C11X-C1X\#1	$2.195(15)$
C37'-C38'	1.537(8)	Cl1X-Cl1X\#1	2.288(10)
C37'-C39'	1.540 (8)	Cl2X-Cl1X\#1	1.481(6)
Sb1-F3	1.846(4)	Cl3X-C1S	1.829(18)
Sb1-F6	1.865(3)	C1S-Cl2S	1.71(2)
Sb1-F2	1.866(3)	C1S-Cl1S	1.730(14)
Sb1-F5	1.867(4)	C1V-Cl1V	1.739 (12)
Sb1-F1	1.868(3)	C1V-Cl2V	1.746 (10)
Sb1-F4	1.869(3)	C1V-Cl3V	1.786(10)

Angles			
P1-Au1-Cl1	176.92(4)	C5-C6-C7	115.9(4)
P2-Au2-Cl1	178.17(4)	C1-C6-C7	123.3(4)
Au1-Cl1-Au2	94.67(4)	C8-C7-C12	118.9(4)
C1-P1-C13	104.26(18)	C8-C7-C6	121.9(4)
C1-P1-C17	107.21(19)	C12-C7-C6	119.0(4)
C13-P1-C17	114.8(2)	C7-C8-C9	120.6(4)
C1-P1-Au1	116.30(15)	C10-C9-C8	120.3(4)
C13-P1-Au1	106.67(14)	C9-C10-C11	119.5(5)
C17-P1-Au1	107.84(14)	C12-C11-C10	120.5(4)
C37-P2-C21	104.3(7)	C11-C12-C7	120.2(4)
C37-P2-C33'	114.9(12)	C15-C13-C16	109.8(4)
C21-P2-C33'	106.0(10)	C15-C13-C14	108.3(4)
C37-P2-C33	119.5(7)	C16-C13-C14	108.8(4)
C21-P2-C33	105.0(3)	C15-C13-P1	115.0(3)
C33'-P2-C33	4.8(13)	C16-C13-P1	109.2(3)
C37-P2-C37'	6.7(12)	C14-C13-P1	105.5(3)
C21-P2-C37'	109.1(8)	C20-C17-C18	107.6(4)
C33'-P2-C37'	108.5(12)	C20-C17-C19	110.7(4)
C33-P2-C37'	113.1(8)	C18-C17-C19	107.8(4)
C37-P2-Au2	106.4(6)	C20-C17-P1	116.1(3)
C21-P2-Au2	114.76(17)	C18-C17-P1	107.5(3)
C33'-P2-Au2	110.5(10)	C19-C17-P1	106.9(3)
C33-P2-Au2	107.2(3)	C26-C21-C22	118.5(4)
C37'-P2-Au2	107.8(8)	C26-C21-P2	123.6(3)
C2-C1-C6	117.1(4)	C22-C21-P2	117.8(4)
C2-C1-P1	118.5(3)	C23-C22-C21	121.2(5)
C6-C1-P1	124.2(3)	C24-C23-C22	120.0(4)
C3-C2-C1	122.0(5)	C23-C24-C25	120.2(4)
C4-C3-C2	119.6(4)	C24-C25-C26	120.7(5)
C3-C4-C5	119.7(4)	C25-C26-C21	119.4(4)
C6-C5-C4	120.6(5)	C25-C26-C27	115.7(4)
C5-C6-C1	120.8(4)	C21-C26-C27	124.9(4)

C32-C27-C28	119.3(4)	F6-Sb1-F2	89.21(18)
C32-C27-C26	119.8(4)	F3-Sb1-F5	90.9(2)
C28-C27-C26	120.5(4)	F6-Sb1-F5	179.42(19)
C29-C28-C27	119.9(4)	F2-Sb1-F5	90.32(18)
C28-C29-C30	120.9(4)	F3-Sb1-F1	178.67(18)
C31-C30-C29	118.9(4)	F6-Sb1-F1	89.29(15)
C32-C31-C30	120.9(4)	F2-Sb1-F1	89.16(18)
C31-C32-C27	120.1(4)	F5-Sb1-F1	90.36(17)
C34-C33-C36	110.6(7)	F3-Sb1-F4	91.4(2)
C34-C33-C35	108.9(7)	F6-Sb1-F4	91.18(18)
C36-C33-C35	108.1(7)	F2-Sb1-F4	178.11(19)
C34-C33-P2	108.3(8)	F5-Sb1-F4	89.28(18)
C36-C33-P2	105.3(6)	F1-Sb1-F4	88.99(17)
C35-C33-P2	115.6(7)	Cl2X-C1X-C11X	112.0(8)
C36'-C33'-C34'	107.8(8)	C12X-C1X-Cl3X	111.7(6)
C36'-C33'-C35'	110.6(8)	Cl1X-C1X-Cl3X	109.0(6)
C34'-C33'-C35'	108.1(8)	C12X-C1X-C11X\#1	42.3(4)
C36'-C33'-P2	104(2)	C11X-C1X-Cl1X\#1	69.7(5)
C34'-C33'-P2	109(3)	Cl3X-C1X-C11X\#1	128.1(6)
C35'-C33'-P2	118(2)	C12X-Cl1X-C1X\#1	161.9(6)
C38-C37-C40	109.9(12)	Cl2X\#1-C11X-C1X\#1	51.6(3)
C38-C37-C39	108.0(10)	C1X-Cl1X-C1X\#1	110.3(5)
C40-C37-C39	106.3(12)	Cl2X\#1-Cl1X-Cl1 X \#1	97.8(3)
C38-C37-P2	107.4(13)	C1X-C11X-C11X\#1	64.1(5)
C40-C37-P2	114.1(15)	C1X\#1-Cl1X-Cl1X\#1	46.2(3)
C39-C37-P2	111.0(17)	C11X-Cl2X-C1X\#1	86.1(5)
C40'-C37'-C38'	108.0(8)	C1X-C13X-C1S	92.3(7)
C40'-C37'-C39'	110.6(8)	C12S-C1S-C11S	112.9(10)
C38'-C37'-C39'	108.0(8)	C12S-C1S-Cl3X	110.5(9)
C40'-C37'-P2	119.0(19)	Cl1S-C1S-Cl3X	107.3(9)
C38'-C37'-P2	105.2(17)	Cl1V-C1V-Cl2V	111.0(6)
C39'-C37'-P2	105(3)	Cl1V-C1V-Cl3V	110.1(6)
F3-Sb1-F6	89.43(19)	Cl2V-C1V-Cl3V	109.6(6)
F3-Sb1-F2	90.4(2)		

Hydroxy bis $\{[(1,1$ '-biphenyl-2-yl)di-tert-butylphosphine]gold(I) \} tetrafluoroborate (D)

Table S18 Crystal data and structure refinement for \mathbf{D}

Largest diff. peak and hole	3.106 and -2.321 e. \AA^{-3}

Table S19 Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for \mathbf{D}.

Bond lengths			
Au1-O1	2.049(10)	C24-C25	1.382(18)
Au1-P1	$2.235(3)$	C25-C26	1.378(18)
Au1-Au2	3.2781(7)	C26-C27	1.521(17)
Au2-O1	2.083(10)	C27-C28	1.366(18)
Au2-P2	2.234(3)	C27-C32	1.385(18)
P1-C1	1.850(13)	C28-C29	1.404(18)
P1-C13	1.877(13)	C29-C30	1.370 (19)
P1-C17	1.899(14)	C30-C31	1.41(2)
P2-C21	1.829(13)	C31-C32	1.424(18)
P2-C40	1.868(14)	C33-C40	$1.550(18)$
P2-C36	1.897(12)	C34-C40	1.552(19)
C1-C2	1.410(19)	C35-C40	1.540(19)
C1-C6	1.431(18)	C36-C39	1.513(18)
C2-C3	1.389(18)	C36-C37	1.545(18)
C3-C4	1.38(2)	C36-C38	1.564(17)
C4-C5	1.39(2)	C1T-Cl2T	1.78(3)
C5-C6	1.404(18)	C1T-Cl1T	1.78 (3)
C6-C7	$1.468(18)$	C1T-Cl3	1.78(3)
C7-C8	$1.385(18)$	Cl3T-Cl1U	1.980(10)
C7-C12	1.416 (18)	C1T'-Cl2'	1.73(4)
C8-C9	1.38(2)	C1T'-Cl3'	1.74(4)
C9-C10	1.381(19)	C1S-Cl3"	1.59(2)
C10-C11	1.387(19)	C1S-C11S	1.69(2)
C11-C12	1.387(19)	C1S-C12S	1.70 (2)
C13-C15	1.51(2)	C1S-Cl1"	1.76 (2)
C13-C14	1.546(17)	C1S-Cl2"	1.90(2)
C13-C16	1.552(18)	C1S-Cl3S	1.93(2)
C17-C19	1.48(2)	C1U-Cl2U	1.785(9)
C17-C18	1.52(2)	C1U-Cl1U	1.786(9)
C17-C20	1.539(19)	C1U-Cl3U	1.790(9)
C21-C22	1.406(18)	B1A-F2A	1.357(18)
C21-C26	1.427(18)	B1A-F3A	1.384(18)
C22-C23	1.386(18)	B1A-F1A	1.387(17)
C23-C24	$1.365(19)$	B1A-F4A	1.400 (17)

Angles			
O1-Au1-P1	$177.3(3)$	$\mathrm{Au} 1-\mathrm{O} 1-\mathrm{Au} 2$	$105.0(5)$
O1-Au1-Au2	$37.9(3)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 13$	$108.2(6)$
P1-Au1-Au2	$139.47(8)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 17$	$105.6(6)$
O1-Au2-P2	$175.7(3)$	$\mathrm{C} 13-\mathrm{P} 1-\mathrm{C} 17$	$114.2(6)$
O1-Au2-Au1	$37.1(3)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{Au} 1$	$112.8(4)$
P2-Au2-Au1	$139.37(9)$	C13-P1-Au1	$109.9(4)$

C17-P1-Au1	106.3(5)	C32-C27-C26	119.2(11)
C21-P2-C40	104.5(6)	C27-C28-C29	121.1(12)
C21-P2-C36	108.7(6)	C30-C29-C28	118.6(13)
C40-P2-C36	113.3(6)	C29-C30-C31	121.8(12)
C21-P2-Au2	113.3(4)	C30-C31-C32	118.1(13)
C40-P2-Au2	107.9(4)	C27-C32-C31	119.2(13)
C36-P2-Au2	109.2(4)	C39-C36-C37	109.6(11)
C2-C1-C6	119.4(11)	C39-C36-C38	110.4(10)
C2-C1-P1	117.7(10)	C37-C36-C38	107.2(11)
C6-C1-P1	122.9(9)	C39-C36-P2	115.7(9)
C3-C2-C1	120.3(13)	C37-C36-P2	107.8(8)
C4-C3-C2	121.2(13)	C38-C36-P2	105.8(9)
C3-C4-C5	119.0(12)	C35-C40-C33	111.3(12)
C4-C5-C6	122.8(13)	C35-C40-C34	108.5(11)
C5-C6-C1	117.3(12)	C33-C40-C34	108.0(11)
C5-C6-C7	117.0(12)	C35-C40-P2	108.0(9)
C1-C6-C7	125.7(11)	C33-C40-P2	115.0(9)
C8-C7-C12	117.9(12)	C34-C40-P2	105.7(10)
C8-C7-C6	123.4(11)	C12T-C1T-Cl1T	111.3(15)
C12-C7-C6	118.3(11)	C12T-C1T-Cl3T	109.2(14)
C9-C8-C7	121.8(13)	Cl1T-C1T-Cl3T	110.7(14)
C10-C9-C8	119.3(13)	C1T-C13T-Cl1U	171.2(10)
C9-C10-C11	120.8(13)	$\mathrm{Cl2}^{\prime}-\mathrm{ClT}^{\prime}-\mathrm{Cl} 3{ }^{\prime}$	112(3)
C12-C11-C10	119.5(12)	Cl3"-C1S-Cl1S	130.5(16)
C11-C12-C7	120.6(12)	Cl3"-C1S-Cl2S	98.4(11)
C15-C13-C14	110.0(11)	Cl1S-C1S-Cl2S	117.8(12)
C15-C13-C16	109.0(11)	C13"-C1S-Cl1"	126.0(15)
C14-C13-C16	106.0(11)	C11S-C1S-Cl1"	6.7(8)
C15-C13-P1	117.9(10)	C12S-C1S-Cl1"	116.6(12)
C14-C13-P1	105.2(8)	C13"-C1S-Cl2"	111.2(11)
C16-C13-P1	108.1(9)	C11S-C1S-Cl2"	104.1(11)
C19-C17-C18	107.7(13)	C12S-C1S-Cl2"	13.9(5)
C19-C17-C20	112.6(12)	C11"-C1S-Cl2"	103.4(10)
C18-C17-C20	108.4(13)	Cl3"-C1S-Cl3S	29.3(6)
C19-C17-P1	106.3(10)	C11S-C1S-Cl3S	103.9(13)
C18-C17-P1	114.8(10)	Cl2S-C1S-Cl3S	106.6(11)
C20-C17-P1	107.1(10)	Cl1"-C1S-Cl3S	98.4(12)
C22-C21-C26	117.2(12)	C12"-C1S-Cl3S	114.9(11)
C22-C21-P2	119.1(10)	Cl2U-C1U-Cl1U	104.5(6)
C26-C21-P2	123.6(9)	Cl2U-C1U-Cl3U	109.5(8)
C23-C22-C21	121.3(12)	Cl1U-C1U-Cl3U	102.6(6)
C24-C23-C22	121.1(11)	C1U-Cl1U-Cl3T	175.4(6)
C23-C24-C25	118.5(12)	F2A-B1A-F3A	111.6(11)
C26-C25-C24	122.8(13)	F2A-B1A-F1A	107.9(12)
C25-C26-C21	119.0(12)	F3A-B1A-F1A	109.9(12)
C25-C26-C27	115.7(11)	F2A-B1A-F4A	110.0(13)
C21-C26-C27	125.3(11)	F3A-B1A-F4A	109.2(12)
C28-C27-C32	121.1(11)	F1A-B1A-F4A	108.1(11)
C28-C27-C26	119.5(11)		

Bromo bis $\{[(1,1$ '-biphenyl-2-yl)di-tert-butylphosphine]gold(I)\} hexafluoroantimonate

Table S20 Crystal data and structure refinement for bromo bis $\{[(1,1$ '-biphenyl-2-yl)di-tertbutylphosphine]gold(I) \} hexafluoroantimonate.

Table S21 Bond lengths [\AA] and angles [${ }^{\circ}$] for bromo bis $\left\{\left[\left(1,1^{\prime}\right.\right.\right.$-biphenyl-2-yl)di-tert-butylphosphine]gold(I) $\}$ hexafluoroantimonate.

Bond lengths			
Au1-P1	$2.2648(8)$	C1-C6	$1.420(5)$
Au1-Br1	$2.4588(3)$	C1-P1	$1.817(3)$
Au2-P2	$2.2637(9)$	C2-C3	$1.378(4)$
Au2-Br1	$2.4605(3)$	C3-C4	$1.386(5)$
C1-C2	$1.394(4)$	C4-C5	$1.393(5)$

C5-C6	$1.383(4)$	C31-C32	$1.396(5)$
C6-C7	$1.516(4)$	C33-C35	$1.523(7)$
C7-C8	$1.379(5)$	C33-C36	$1.527(5)$
C7-C12	$1.401(5)$	C33-C34	$1.541(5)$
C8-C9	$1.377(5)$	C33-P2	$1.880(4)$
C9-C10	$1.391(6)$	C37-C39	$1.515(6)$
C10-C11	$1.386(5)$	C37-C38	$1.531(5)$
C11-C12	$1.378(5)$	C37-C40	$1.539(6)$
C13-C14	$1.526(6)$	C37-P2	$1.884(5)$
C13-C15	$1.537(4)$	Sb1-F6	$1.814(4)$
C13-C16	$1.544(6)$	Sb1-F3	$1.822(4)$
C13-P1	$1.878(3)$	Sb1-F4	$1.830(3)$
C17-C19	$1.527(5)$	Sb1-F1	$1.842(4)$
C17-C20	$1.533(5)$	Sb1-F5	$1.850(4)$
C17-C18	$1.538(5)$	Sb1-F2	$1.865(3)$
C17-P1	$1.868(4)$	C11S-C1S	$1.777(6)$
C21-C26	$1.398(5)$	C11S-C1S'	$1.783(8)$
C21-C22	$1.400(5)$	C1S-C1P	$1.611(8)$
C21-P2	$1.809(3)$	C1S-C12S	$1.757(5)$
C22-C23	$1.376(5)$	C12S-C1P	$1.856(8)$
C23-C24	$1.363(6)$	C1S'-C12'	$1.780(7)$
C24-C25	$1.384(5)$	C1T-C11T	$1.789(9)$
C25-C26	$1.395(4)$	C1T-C12T	$1.794(7)$
C26-C27	$1.511(5)$	C1D-C12D	$1.789(4)$
C27-C32	$1.391(5)$	C1D-C11D	$1.796(4)$
C27-C28	$1.402(4)$	C1P-C2P	$1.541(4)$
C28-C29	$1.386(5)$	C2P-C3P	$1.539(4)$
C29-C30	$1.389(6)$	C3P-C4P	$1.539(4)$
C30-C31	$1.390(5)$	C4P-C5P	$1.540(4)$

Angles			
P1-Au1-Br1	$174.83(2)$	C8-C9-C10	$120.9(4)$
P2-Au2-Br1	$176.00(2)$	C11-C10-C9	$118.8(3)$
Au1-Br1-Au2	$96.093(13)$	C12-C11-C10	$120.5(3)$
C2-C1-C6	$116.7(3)$	C11-C12-C7	$120.2(3)$
C2-C1-P1	$119.6(3)$	C14-C13-C15	$107.1(3)$
C6-C1-P1	$123.6(2)$	C14-C13-C16	$110.5(3)$
C3-C2-C1	$123.2(3)$	C15-C13-C16	$107.7(3)$
C2-C3-C4	$119.4(3)$	C14-C13-P1	$116.5(3)$
C3-C4-C5	$119.2(3)$	C15-C13-P1	$107.4(2)$
C6-C5-C4	$121.3(3)$	C16-C13-P1	$107.2(2)$
C5-C6-C1	$120.2(3)$	C19-C17-C20	$108.8(3)$
C5-C6-C7	$115.8(3)$	C19-C17-C18	$109.0(3)$
C1-C6-C7	$124.0(2)$	C20-C17-C18	$109.5(3)$
C8-C7-C12	$119.2(3)$	C19-C17-P1	$105.6(3)$
C8-C7-C6	$122.8(3)$	C20-C17-P1	$114.9(2)$
C12-C7-C6	$117.8(3)$	C18-C17-P1	$108.9(2)$
C9-C8-C7	$120.3(3)$	C26-C21-C22	$116.8(3)$

C26-C21-P2	124.2(3)	C21-P2-C33	104.24(15)
C22-C21-P2	118.9(3)	C21-P2-C37	107.28(18)
C23-C22-C21	122.3(4)	C33-P2-C37	115.91(19)
C24-C23-C22	120.0(4)	C21-P2-Au2	114.53(12)
C23-C24-C25	119.7(3)	C33-P2-Au2	107.93(13)
C24-C25-C26	120.5(4)	C37-P2-Au2	107.21(11)
C25-C26-C21	120.6(3)	F6-Sb1-F3	90.0(3)
C25-C26-C27	115.2(3)	F6-Sb1-F4	88.9(2)
C21-C26-C27	124.1(3)	F3-Sb1-F4	88.8(2)
C32-C27-C28	118.7(3)	F6-Sb1-F1	90.2(2)
C32-C27-C26	121.7(3)	F3-Sb1-F1	177.5(2)
C28-C27-C26	119.2(3)	F4-Sb1-F1	93.6(2)
C29-C28-C27	120.8(4)	F6-Sb1-F5	175.6(2)
C28-C29-C30	120.0(3)	F3-Sb1-F5	94.1(3)
C29-C30-C31	119.9(3)	F4-Sb1-F5	89.85(18)
C30-C31-C32	120.0(4)	F1-Sb1-F5	85.7(2)
C27-C32-C31	120.6(3)	F6-Sb1-F2	91.7(2)
C35-C33-C36	108.7(4)	F3-Sb1-F2	88.67(19)
C35-C33-C34	110.1(4)	F4-Sb1-F2	177.4(2)
C36-C33-C34	109.4(4)	F1-Sb1-F2	88.86(19)
C35-C33-P2	105.5(3)	F5-Sb1-F2	89.71(18)
C36-C33-P2	115.6(3)	C1S-Cl1S-C1S'	22.2(3)
C34-C33-P2	107.5(3)	C1P-C1S-Cl2S	66.7(4)
C39-C37-C38	108.3(3)	C1P-C1S-Cl1S	107.5(8)
C39-C37-C40	111.1(4)	Cl2S-C1S-C11S	109.5(3)
C38-C37-C40	107.2(3)	C1S-C12S-C1P	52.9(3)
C39-C37-P2	116.5(3)	Cl2'-C1S'-Cl1S	106.4(4)
C38-C37-P2	108.3(3)	Cl1T-C1T-Cl2T	110.0(6)
C40-C37-P2	105.0(3)	C12D-C1D-Cl1D	104.3(3)
C1-P1-C17	104.01(15)	C2P-C1P-C1S	145.3(8)
C1-P1-C13	107.65(15)	C2P-C1P-Cl2S	152.4(7)
C17-P1-C13	114.97(17)	C1S-C1P-Cl2S	60.4(3)
C1-P1-Au1	115.77(12)	C3P-C2P-C1P	111.6(5)
C17-P1-Au1	106.56(10)	C2P-C3P-C4P	111.7(4)
C13-P1-Au1	108.12(11)	C3P-C4P-C5P	111.3(5)

Table S22 Torsion angles [${ }^{\circ}$] for bromo bis $\left\{\left[\left(1,1^{\prime}\right.\right.\right.$-biphenyl-2-yl)di-tert-butylphosphine]gold(I) $\}$
hexafluoroantimonate.

Torsion angles			
P1-Au1-Br1-Au2	$-25.2(2)$	C4-C5-C6-C7	$-174.2(3)$
P2-Au2-Br1-Au1	$6.8(4)$	C2-C1-C6-C5	$-3.5(5)$
C6-C1-C2-C3	$1.6(5)$	P1-C1-C6-C5	$171.7(3)$
P1-C1-C2-C3	$-173.7(3)$	C2-C1-C6-C7	$173.0(3)$
C1-C2-C3-C4	$1.3(6)$	P1-C1-C6-C7	$-11.9(5)$
C2-C3-C4-C5	$-2.4(6)$	C5-C6-C7-C8	$-74.1(5)$
C3-C4-C5-C6	$0.5(6)$	C1-C6-C7-C8	$109.3(4)$
C4-C5-C6-C1	$2.5(5)$	C5-C6-C7-C12	$99.7(4)$

C1-C6-C7-C12	-76.9(5)
C12-C7-C8-C9	2.1(6)
C6-C7-C8-C9	175.9(3)
C7-C8-C9-C10	-1.3(6)
C8-C9-C10-C11	0.9(6)
C9-C10-C11-C12	-1.3(6)
C10-C11-C12-C7	2.2(5)
C8-C7-C12-C11	-2.6(5)
C6-C7-C12-C11	-176.6(3)
C26-C21-C22-C23	0.5(6)
P2-C21-C22-C23	-175.5(3)
C21-C22-C23-C24	1.4(7)
C22-C23-C24-C25	-2.4(6)
C23-C24-C25-C26	1.5(6)
C24-C25-C26-C21	0.4(6)
C24-C25-C26-C27	-177.2(3)
C22-C21-C26-C25	-1.4(5)
P2-C21-C26-C25	174.4(3)
C22-C21-C26-C27	176.0(3)
P2-C21-C26-C27	-8.2(5)
C25-C26-C27-C32	-79.5(4)
C21-C26-C27-C32	103.0(4)
C25-C26-C27-C28	93.4(4)
C21-C26-C27-C28	-84.1(4)
C32-C27-C28-C29	-0.4(5)
C26-C27-C28-C29	-173.6(3)
C27-C28-C29-C30	1.5(5)
C28-C29-C30-C31	-1.9(5)
C29-C30-C31-C32	1.2(5)
C28-C27-C32-C31	-0.3(4)
C26-C27-C32-C31	172.7(3)
C30-C31-C32-C27	-0.1(5)
C2-C1-P1-C17	74.5(3)
C6-C1-P1-C17	-100.5(3)
C2-C1-P1-C13	-47.9(3)
C6-C1-P1-C13	137.1(3)
C2-C1-P1-Au1	-168.9(2)
C6-C1-P1-Au1	16.1(3)
C19-C17-P1-C1	65.0(2)
C20-C17-P1-C1	-54.9(3)
C18-C17-P1-C1	-178.1(2)
C19-C17-P1-C13	-177.57(19)
C20-C17-P1-C13	62.6(3)
C18-C17-P1-C13	-60.7(3)
C19-C17-P1-Au1	-57.8(2)
C20-C17-P1-Au1	-177.7(2)
C18-C17-P1-Au1	59.1(3)
C14-C13-P1-C1	81.0(3)
C15-C13-P1-C1	-158.9(3)

C16-C13-P1-C1	-43.4(3)
C14-C13-P1-C17	-34.3(3)
C15-C13-P1-C17	85.8(3)
C16-C13-P1-C17	-158.7(2)
C14-C13-P1-Au1	-153.2(3)
C15-C13-P1-Au1	-33.1(3)
C16-C13-P1-Au1	82.4(2)
Br1-Au1-P1-C1	-165.0(2)
Br1-Au1-P1-C17	-49.9(3)
Br1-Au1-P1-C13	74.2(3)
C26-C21-P2-C33	-109.3(3)
C22-C21-P2-C33	66.4(4)
C26-C21-P2-C37	127.2(3)
C22-C21-P2-C37	-57.1(3)
C26-C21-P2-Au2	8.4(4)
C22-C21-P2-Au2	-175.9(3)
C35-C33-P2-C21	67.0(3)
C36-C33-P2-C21	-53.1(4)
C34-C33-P2-C21	-175.6(3)
C35-C33-P2-C37	-175.4(2)
C36-C33-P2-C37	64.6(4)
C34-C33-P2-C37	-57.9(4)
C35-C33-P2-Au2	-55.2(2)
C36-C33-P2-Au2	-175.2(3)
C34-C33-P2-Au2	62.3(4)
C39-C37-P2-C21	74.8(3)
C38-C37-P2-C21	-162.9(2)
C40-C37-P2-C21	-48.6(3)
C39-C37-P2-C33	-41.1(4)
C38-C37-P2-C33	81.2(3)
C40-C37-P2-C33	-164.5(2)
C39-C37-P2-Au2	-161.7(3)
C38-C37-P2-Au2	-39.4(3)
C40-C37-P2-Au2	74.9(2)
$\mathrm{Br} 1-\mathrm{Au} 2-\mathrm{P} 2-\mathrm{C} 21$	168.2(4)
Br1-Au2-P2-C33	-76.2(4)
Br1-Au2-P2-C37	49.3(4)
C1S'-C11S-C1S-C1P	67.4(8)
C1S'-C11S-C1S-Cl2S	-3.5(5)
Cl1S-C1S-Cl2S-C1P	101.2(9)
C1S-C11S-C1S'-Cl2'	81.7(7)
C12S-C1S-C1P-C2P	-166(3)
C11S-C1S-C1P-C2P	90(3)
C11S-C1S-C1P-Cl2S	-104.2(4)
C1S-C12S-C1P-C2P	163(3)
C1S-C1P-C2P-C3P	145(2)
C12S-C1P-C2P-C3P	-8(3)
C1P-C2P-C3P-C4P	94.1(9)
C2P-C3P-C4P-C5P	115.3(8)

Iodo bis $\{(1,1$ '-biphenyl-2-yl)di-tert-butylphosphinelgold(I) \} hexafluoroantimonate

Table S23 Crystal data and structure refinement for iodo bis $\left\{\left[\left(1,1^{\prime}\right.\right.\right.$-biphenyl-2-yl)di-tert-butylphosphine $\left.] g o l d(I)\right\}$ hexafluoroantimonate.

Identification code	mo_AHR3_0092R2_0m
Empirical formula	C41 H58 Au2 Cl2 F6 I O P2 Sb
Formula weight	1456.30
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	
$\mathrm{a}=11.7778(8) \AA$	$\alpha=68.501(4)^{\circ}$.
$\mathrm{b}=14.9330(12) \AA$	$\beta=76.809(4)^{\circ}$.
$\mathrm{c}=15.7163(12) \AA$	$\gamma=72.286(4)^{\circ}$.
Volume	2428.6(3) \AA^{3}
Z	2
Density (calculated)	$1.991 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$7.443 \mathrm{~mm}^{-1}$
F(000)	1384
Crystal size	$0.30 \times 0.20 \times 0.15 \mathrm{~mm}^{3}$
Theta range for data collection	1.83 to 37.35°.
Index ranges	$-20<=\mathrm{h}<=19,-20<=\mathrm{k}<=25,-26<=\mathrm{l}<=26$
Reflections collected	40115
Independent reflections	$21806[\mathrm{R}(\mathrm{int})=0.0597]$
Completeness to theta $=37.35^{\circ}$	0.861 \%
Absorption correction	Empirical
Max. and min. transmission	0.4015 and 0.2136
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	21806 / 23 / 550
Goodness-of-fit on F^{2}	0.996
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0581, \mathrm{wR} 2=0.1555$
R indices (all data)	$\mathrm{R} 1=0.0858, \mathrm{wR} 2=0.1801$
Largest diff. peak and hole	4.702 and -3.183 e. \AA^{-3}

Table S24 Torsion angles [${ }^{\circ}$] for iodo bis $\left\{\left[\left(1,1^{\prime}\right.\right.\right.$-biphenyl-2-yl)di-tert-butylphosphine]gold(I) $\}$
hexafluoroantimonate

Bond lengths			
Au1-P1	2.2804(13)	C21-C26	1.404(8)
Au1-I1	2.6016(4)	C22-C23	1.41(8)
Au2-P2	2.2701(14)	C23-C24	1.384(10)
Au2-I1	2.5894(4)	C24-C25	1.381(9)
P1-C1	1.823(5)	C25-C26	1.428(7)
P1-C13	1.87(6)	C26-C27	1.48(8)
P1-C17	$1.872(5)$	C27-C32	1.362(7)
P2-C21	$1.829(5)$	C27-C28	1.405(7)
P2-C33	$1.888(6)$	C28-C29	1.418(8)
P2-C37	1.889(6)	C29-C30	1.373(8)
C1-C2	1.407(7)	C30-C31	1.391(9)
C1-C6	1.42(7)	C31-C32	1.406(8)
C2-C3	$1.385(7)$	C33-C36	1.502(10)
C3-C4	$1.385(8)$	C33-C35	1.53(9)
C4-C5	1.392 (8)	C33-C34	1.534(11)
C5-C6	$1.385(7)$	C37-C38	1.447(10)
C6-C7	1.5(7)	C37-C39	1.535(8)
C7-C8	$1.382(8)$	C37-C40	1.587(9)
C7-C12	$1.413(8)$	Sb1-F2	1.849(5)
C8-C9	$1.396(8)$	Sb1-F5	1.849(5)
C9-C10	1.376 (9)	Sb1-F4	1.86(5)
C10-C11	1.413(10)	Sb1-F6	1.86(5)
C11-C12	$1.385(9)$	Sb1-F1	1.87(5)
C13-C14	$1.539(8)$	Sb1-F3	1.879(5)
C13-C15	1.544(7)	C1S-Cl1S	1.746 (8)
C13-C16	$1.562(8)$	C1S-Cl2	1.775(8)
C17-C18	$1.506(8)$	C1S-Cl2S	1.776(7)
C17-C19	$1.526(8)$	Cl2S-Cl2'	1.646(14)
C17-C20	1.54(8)	O1W"-O1W"\#1	1.38(3)
C21-C22	1.397 (8)		

Angles			
P1-Au1-I1	$174.09(3)$	C33-P2-Au2	$107.4(2)$
P2-Au2-I1	$173.83(4)$	C37-P2-Au2	$106.34(18)$
Au2-I1-Au1	$96.347(13)$	C2-C1-C6	$118.5(4)$
C1-P1-C13	$108.7(2)$	C2-C1-P1	$118.4(4)$
C1-P1-C17	$104.3(2)$	C6-C1-P1	$123.0(4)$
C13-P1-C17	$113.7(3)$	C3-C2-C1	$122.0(5)$
C1-P1-Au1	$115.28(17)$	C2-C3-C4	$119.4(5)$
C13-P1-Au1	$107.89(17)$	C3-C4-C5	$119.1(5)$
C17-P1-Au1	$107.13(17)$	C6-C5-C4	$122.9(5)$
C21-P2-C33	$104.7(3)$	C5-C6-C1	$118.1(5)$
C21-P2-C37	$107.9(3)$	C5-C6-C7	$116.9(5)$
C33-P2-C37	$115.6(3)$	C1-C6-C7	$124.7(4)$
C21-P2-Au2	$115.17(19)$	C8-C7-C12	$119.0(5)$

C8-C7-C6	119.3(4)	C30-C31-C32	119.3(5)
C12-C7-C6	121.4(5)	C27-C32-C31	121.1(5)
C7-C8-C9	121.5(5)	C36-C33-C35	109.1(6)
C10-C9-C8	118.9(5)	C36-C33-C34	110.2(6)
C9-C10-C11	121.3(6)	C35-C33-C34	108.1(6)
C12-C11-C10	118.9(6)	C36-C33-P2	115.5(5)
C11-C12-C7	120.4(6)	C35-C33-P2	108.3(5)
C14-C13-C15	107.7(4)	C34-C33-P2	105.4(4)
C14-C13-C16	108.3(5)	C38-C37-C39	111.1(6)
C15-C13-C16	107.6(5)	C38-C37-C40	110.9(7)
C14-C13-P1	117.5(4)	C39-C37-C40	105.4(5)
C15-C13-P1	107.6(4)	C38-C37-P2	106.5(5)
C16-C13-P1	107.7(4)	C39-C37-P2	108.8(4)
C18-C17-C19	110.0(5)	C40-C37-P2	114.1(5)
C18-C17-C20	109.2(5)	F2-Sb1-F5	89.8(3)
C19-C17-C20	108.2(5)	F2-Sb1-F4	179.1(3)
C18-C17-P1	109.5(4)	F5-Sb1-F4	91.0(3)
C19-C17-P1	114.7(4)	F2-Sb1-F6	89.5(3)
C20-C17-P1	105.0(4)	F5-Sb1-F6	178.7(3)
C22-C21-C26	120.6(5)	F4-Sb1-F6	89.7(3)
C22-C21-P2	117.8(4)	F2-Sb1-F1	90.0(2)
C26-C21-P2	121.6(4)	F5-Sb1-F1	89.3(3)
C21-C22-C23	120.2(6)	F4-Sb1-F1	90.5(2)
C24-C23-C22	119.9(6)	F6-Sb1-F1	89.7(3)
C25-C24-C23	120.0(5)	F2-Sb1-F3	89.9(2)
C24-C25-C26	121.5(6)	F5-Sb1-F3	92.0(3)
C21-C26-C25	117.7(5)	F4-Sb1-F3	89.6(2)
C21-C26-C27	127.8(4)	F6-Sb1-F3	89.0(3)
C25-C26-C27	114.5(5)	F1-Sb1-F3	178.7(3)
C32-C27-C28	120.5(5)	C11S-C1S-Cl2'	113.2(5)
C32-C27-C26	119.0(5)	Cl1S-C1S-C12S	107.9(4)
C28-C27-C26	120.4(5)	C12'-C1S-Cl2S	55.2(5)
C27-C28-C29	117.8(5)	C12'-Cl2S-C1S	62.3(4)
C30-C29-C28	121.4(5)	C12S-Cl2'-C1S	62.4(4)
C29-C30-C31	119.7(5)		

Chapter 2: Anion Effects in Intermolecular Gold(I)Catalyzed Reactions: Use of $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$

Introduction

As was emphasized in the general introduction section, the initial development of gold(I)catalyzed reactions mainly focused on intramolecular reactions of 1 ,n-enynes. ${ }^{20}$ Intermolecular reactions between alkynes and alkenes have been less studied because these processes pose additional challenges. On one hand, both substrates compete to bind to the metal making the nucleophilic attack less likely to happen. ${ }^{86}$ On the other hand, alkenes have been shown to polymerize by a cationic mechanism in the presence of inherently acidic gold complexes. ${ }^{87}$

Gold(I)-Catalyzed Intermolecular Reactions with Alkynes

The intermolecular cycloadditions reactions involving an alkyne as one of the partners are challenging processes. Our group described the first cycloaddition reaction between alkynes and alkenes giving rise to cyclobutenes in a regioselective way (Scheme 1). ${ }^{25}$ Aryl acetylenes and ethynylcyclopropane could cyclize with di- and trisubstituted alkenes in the presence of the bulky $\left[(t \mathrm{BuXPhos}) \mathrm{Au}\left(\mathrm{NCMe}^{2}\right)\right] \mathrm{SbF}_{6}(\mathbf{A 1})$ as catalyst. The reaction did not proceed when internal alkynes were used.

74%

74\%

46\%

53\%

Scheme 1 Gold(I)-catalyzed [2+2] cycloaddition of terminal alkynes (1) and alkenes (2).
The reaction was proposed to proceed by an initial activation of the alkyne by the gold(I) complex forming π-gold(I)-acetylene complexes I (Scheme 2). These electrophilic species react with the alkene generating cyclopropyl gold(I) carbenes II as intermediates, that undergo ring-expansion to form intermediates III. Final metal elimination gives access to cyclobutenes 3 .

[^26]

Scheme 2 Mechanistic proposal for the formation of cyclobutenes 3.

Later, other methodologies showed that the outcome of the reaction depended greatly on the substitution pattern of the alkyne moiety. When the terminal proton of the arylacetylene was replaced by an amine, [4+2] annulations were observed, whereas reacting terminal ynamides with enol ethers, intermolecular [2+2+2] cycloadditions with two molecules of alkene occurred. ${ }^{88}$ Additionally, if the phenyl group was replaced by a carboxylic acid or ester, α, β-unsaturated lactones or 1,3 -dienes resulting from a metathesis-type reaction were obtained. ${ }^{89}$

Our group further expanded the intermolecular reaction of arylacetylenes $\mathbf{1}$ with gold(I) using oxoalkenes and furans. Thus, when oxoalkenes 4 were used, [3.2.1]-oxabicycles 5 were readily obtained using conditions similar to the ones developed for the [2+2] cycloaddition reaction (Scheme 3). ${ }^{73}$ The reaction tolerated different substitutions at the aryl ring of the electrophile as well as hetero- and polyaromatic rings. The intramolecular version of this reaction had already been studied by our group. ${ }^{90}$ The formation of the two new $\mathrm{C}-\mathrm{C}$ bonds and one $\mathrm{C}-\mathrm{O}$ bond was proposed to proceed through a formal $[2+2+2]$ cycloaddition reaction. This methodology was later applied as a key step for the total synthesis of (+)-orientalol F^{91} and (-)-englerin A. ${ }^{92}$

Scheme 3 Gold(I)-catalyzed $[2+2+2]$ cycloaddition of terminal alkynes (1) and oxoalkenes (4).

[^27]The suggested mechanism commences as the one previously described. However, once cyclopropyl gold(I) carbene \mathbf{V} is formed, the regioselective nucleophilic attack of the ketone takes place instead of the ring-expansion. The resulting oxonium cation VI undergoes a Prins-type cyclization affording VII. Final demetalation gives rise to the oxabicyclic products 5 (Scheme 4).

Scheme 4 Mechanistic proposal for the formation of [3.2.1]-oxabicycles 5.
Although this proposal was supported by DFT calculations, the isolation of σ, π-digold(I) complexes from the crude mixture was an indication of a more complex mechanism (Scheme 5). Their formation originated from the deprotonation of the active π-gold(I)acetylene complex and they were found to be unreactive under the aforementioned reaction conditions. Other groups have recently reported the formation of similar digold(I) complexes and their influence on the reactivity in catalytic transformations. ${ }^{93}$

Scheme 5 Formation of σ, π-digold(I) complex from π-gold(I)-acetylene complex ($\mathrm{L}=t$-BuXPhos).

[^28]Trisubstituted phenols 7 could be readily accessed from the reaction of terminal alkynes $\mathbf{1}$ and furans 6 in the presence of $\left[(\operatorname{IPr}) \mathrm{Au}\left(\mathrm{NCPh}^{2}\right)\right] \mathrm{SbF}_{6}(\mathrm{~B} 1)($ Scheme 6$) .{ }^{69 \mathrm{c}}$ In this reaction, both alkyl and aryl acetylenes bearing different substituents could be used as reaction partners. The reaction proceeded satisfactorily for symmetric furans, although nonsymmetrical furans gave phenols with low to good regioselectivities. Interestingly, the use of the non-coordinating tetrakis[3,5-bis(trifluoromethyl)phenyl]borate $\left(\mathrm{BAr}_{4}{ }^{\mathrm{F}}\right.$)) counterion instead of SbF_{6}^{-}improved the yields of some substrates.

Scheme 6 Gold(I)-catalyzed cyclization of terminal alkynes (1) and furans (6).

After activation of the alkyne with the metal, nucleophilic attack of the furan takes place, generating cyclopropyl gold(I) carbene IX. Ring opening leads to a new gold(I) carbene \mathbf{X} that further cyclizes to generate oxonium cation XI. Final elimination of the gold complex gives rise to oxepin XII whose tautomeric form is arene oxide XIII. Phenols are finally obtained by opening of the epoxide XIII (Scheme 7). Again, σ, π-digold(I) species were observed in the reaction mixture.

Scheme 7 Mechanistic proposal for the formation of trisubstituted phenols 7.

Anion Effects in Gold(I)-Catalyzed Reactions

The effect of the counterion on the reaction pathway was discovered since the beginning of the gold(I) rush, affecting the reactivity, regioselectivity and stereoselectivity. ${ }^{94}$ In a seminal work from the group of Toste, a highly enantioselective gold(I)-catalyzed reaction was achieved by using a chiral counterion (Scheme 8). ${ }^{95}$

Scheme 8 Counterion-mediated enantioselective hydroalkoxylation of allene 8
The group of Davies demonstrated that the outcome of the reaction aryl substituted N-tosyl alkynyl aziridines $\mathbf{1 0}$ depended on the counterion used. ${ }^{96}$ Thus, substrates $\mathbf{1 0}$ underwent ring expansion to afford 2,4-disubstituted pyrrole products (11) using $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}+\right.$ $\mathrm{AgOTf}]$, whereas 2,5-disubstituted pyrroles (12) were obtained when AgOTs was used (Scheme 9).

12
Scheme 9 Gold(I)-catalyzed synthesis of 2,5- or 2,4-disubstituted pyrroles depending on the counterion used.
Although a deeper mechanistic understanding is lacking, the authors proposed that the results obtained could be correlated with the basicity of the counterion. Thus, if a sufficiently basic counterion was used (e.g. tosylate), proton elimination and atom transfer were proposed to occur. However, if the basicity of the counterion was too low, a 1,2-aryl shift took place.

[^29]Significant differences were also observed in the gold(I)-catalyzed tandem reaction of multifunctionalized cyclopentanes. The proposed mechanism involved a tandem regioselective 1,2-alkyl migration of the phenyl-substituted ketone, which depending on the silver salt used (AgOMs^{2} or AgPF_{6}), resulted in heterocyclization or oxygen-transfer (Scheme 10). ${ }^{97}$

Another important example is the cyclization of enyne-urea derivatives that underwent chemo- and regioselective 6 -endo-dig cyclization to afford either the O - or N - cyclized products depending on the silver salt used. ${ }^{98}$

More recently, the group of Hashmi has designed a new generation of σ, π-dinuclear gold propyne acetylide complexes that can serve as precatalysts in various gold(I)-catalyzed transformations. ${ }^{99}$ Again, the selectivity and the rate of the reaction depended on the counterion of the propyne catalyst. $\mathrm{PF}_{6}{ }^{-}$was found to be the most effective counterion followed by BF_{4}^{-}and NTf_{2}^{-}, among others, whereas $\mathrm{SbF}_{6}{ }^{-}$was the least efficient (Figure 1). No rationalization was provided for these results.

Figure 1 Yields of 17 depending on the counterion used in the σ, π-dinuclear gold propyne acetylide complex.

[^30]Although there is a lack of studies on the influence of the counterion on the reaction pathways in gold(I)-catalyzed reactions, ion pairing ${ }^{100}$ was recognized to be responsible for part of the counterion effects by DFT calculations ${ }^{101}$ and experiments (NMR and conductimetric techniques). ${ }^{102}$

Ion Pairing in Gold(I) Complexes

The group of Macchioni has been the main player on the study of ion pairing of gold(I) complexes. They determined the location of the counterion BF_{4}^{-}in two different systems $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(4-\mathrm{Me}\right.$-styrene $\left.)\right]$ and $[\mathrm{PrAu}(4-\mathrm{Me}$-styrene $)]$ by nOe $\left({ }^{19} \mathrm{~F}-{ }^{1} \mathrm{H}\right.$ HOESY) NMR measurements and theoretical modeling (Figure 2). The positive charge is redistributed on the ligand and the metal center whereas the preferential position of the anion is determined by the ancillary ligand. For the phosphine gold(I) complex, the anion appears to be close to the styrene whereas for NHC gold complex, it is located on the side of the carbene making the counterion effects less pronounced. A study on the effect of the carbene backbone on the ion pair structure has recently been disclosed. ${ }^{103}$

Figure 2 The most stable ion-pair configuration for $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(4-\mathrm{Me}\right.$-styrene $\left.)\right]$ and $[\operatorname{IPrAu}(4-\mathrm{Me}-$ styrene $)]$. For clarity, the positive charge has been drawn on the metal center although it is delocalized on the substrate as well.

The study was later extended to other phosphine and phosphite ligands with 3-hexyne. As previously stated, the exact position of the anion in solution can be modulated by the donor ability of the phosphorous donor. ${ }^{104}$

[^31]
Objectives

Considering the significant effect that the counterion can have on a reaction pathway, we decided to design a new generation of catalysts containing $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$ as counterion and explore their effectiveness in the gold(I)-catalyzed intermolecular reactions reported by our group (Figure 3). We envisioned that the use of this bulky, non-coordinating and less basic counterion would minimize the formation of σ, π-digold(I) complexes.

Figure 3 New generation of gold(I) complexes containing $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$ as counterion.

Mechanistic studies were performed to understand the influence of the counterion.

Results and Discussion

To check the effectiveness of the newly designed complexes in the reported gold(I)catalyzed intermolecular reactions and compare them with other cationic catalyst with different counterions, we first prepared [(t-BuXPhos)AuNCMe]BAr ${ }_{4}{ }^{\mathrm{F}}$ (A2). ${ }^{105}$ This complex was formed in quantitative yield following a procedure analogous to the synthesis of cationic gold(I) complexes (Scheme 11). ${ }^{22 d, 53}$

Scheme 11 Synthesis of complex [$(t$-BuXPhos $)$ AuNCMe $] \mathrm{BAr}_{4}{ }^{\mathrm{F}}$.

Reactivity of Complex A2 in Intermolecular Gold(I)-Catalyzed Reactions

We then sought to study the counterion effect in the [2+2] cycloaddition of phenylacetylene and α-methylstyrene, by varying the catalyst counterion. A remarkable improvement in the yield was observed by changing the optimized catalyst $[(t-$ BuXPhos)AuNCMe]SbF ${ }_{6}$ (A1) to the newly synthesized [(t-BuXPhos)AuNCMe] $\mathrm{BAr}_{4}{ }^{\mathrm{F}}$ (A2) (Table 1, entries 1 and 2). ${ }^{106}$ The Au catalyst containing $\mathrm{BF}_{4}{ }^{-}$was less efficient giving the cyclobutene $3 \mathbf{a}$ in 62% yield (Table 1, entry 3). Catalysts featuring $\mathrm{PF}_{6}{ }^{-}$and the coordinating $\mathrm{NTf}_{2}{ }^{-}$and OTf^{-}as counterions showed very poor reactivities (Table 1, entries 4, 5 and 6).

[^32]Table 1 Yield of cyclobutene 3a formed according to the counterion in [(t-BuXPhos)AuNCMe]X. ${ }^{[a]}$

Entry	\mathbf{X}^{-}	3a $(\text {Yield } \%)^{[\mathbf{b b]}}$
1	$\mathrm{SbF}_{6}{ }^{-}$	80
2	$\mathrm{BAr}_{4}^{\mathrm{F}-}$	95
3	BF_{4}^{-}	62
4	$\mathrm{PF}_{6}{ }^{-}$	19
$5^{[\mathrm{cc]}}$	NTf_{2}^{-}	26
$6^{[\mathrm{c}]}$	OTf^{-}	18

${ }^{[a]} \mathbf{1 a} / \mathbf{2 a}=2 / 1 .{ }^{[b]}{ }^{1} \mathrm{H}$ NMR yield determined using 1,4-diacetylbenzene as internal standard. ${ }^{[\mathrm{cc}]}$ Catalysts generated in situ with $[\mathrm{LAuCl}]$ and the corresponding silver salts.

To prove whether the efficiency of catalyst $\mathbf{A 2}$ could be extended to other substrates, we decided to screen different alkynes. The original methodology proceeded satisfactorily with terminal aryl alkynes containing substituents at the meta- and para- positions and with ethynylcyclopropane. ${ }^{25}$ By using the same starting materials, catalyst A2 proved to be more efficient improving the yields by 10 to 30% (Table 2). However, the yields were not significantly altered with the alkynes containing the electron-donating group OMe (1c, $\mathbf{1 g}$ and $\mathbf{1 1}$). Catalyst $\mathbf{A 2}$ proved to be less efficient for the formation of cyclobutene $\mathbf{3 n}$ from cyclopropylethylene. Interestingly, 3-ethynylthiophene (1m) was found to be a competent alkyne in this $[2+2]$ cycloaddition.

Table 2 Yield of cyclobutenes (3) formed according to the counterion in [(t-BuXPhos)AuNCMe]X. ${ }^{[a]}$

Entry	R	Catalyst	Product (Yield \%) ${ }^{[b]}$
1	Ph (1a)	A1	3a (80) ${ }^{[\mathrm{c}]}$
2		A2	3a (95)
3	p-Tol (1b)	A1	3b (74) ${ }^{[\mathrm{c}]}$
4		A2	3b (86)
5	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{1 c})$	A1	3c (68) ${ }^{[\mathrm{c}]}$
6		A2	3c (64)
7	$p-\mathrm{FC}_{6} \mathrm{H}_{4}(\mathbf{1 d})$	A1	3d (75) ${ }^{[\mathrm{c}]}$
8		A2	3d (84)
9	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{1} \mathbf{e})$	A1	$3 \mathrm{e}(61)^{[\mathrm{c}]}$
10		A2	3 e (91)
11	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}(\mathbf{1 f})$	A1	$\mathbf{3 f}$ (74) ${ }^{[\mathrm{cc]}}$
12		A2	3f (97)
13	$m-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{1 g})$	A1	3g (80)
14		A2	$\mathbf{3 g}$ (78)
15	$m-\mathrm{Tol}$ (1h)	A1	3h (78) ${ }^{[\mathrm{c}]}$
16		A2	3h (91)
17	$m-\mathrm{HOC}_{6} \mathrm{H}_{4}(\mathbf{1 i})$	A1	$3 i(74)^{[c]}$
18		A2	3 i (98)
19	$m-\mathrm{FC}_{6} \mathrm{H}_{4}(\mathbf{1} \mathbf{j})$	A1	3j (67)
20		A2	3j (77)
21	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{1 k})$	A1	3k (60)
22		A2	3k (83)
23	$o-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{1 1})$	A1	31 (30)
24		A2	31 (24)
25	3-Thienyl (1m)	A1	3m (84)
26		A2	3m (86)
27	Cyclopropyl (1n)	A1	3n (46) ${ }^{[\mathrm{c]}}$
28		A2	3n (35)

The reaction could not be extended to 2-ethynylpyridine. We hypothesize that the lone pair on the nitrogen coordinated too strongly to gold(I). Terminal alkyl alkynes could not be used as electrophilic counterparts. The reaction also failed with terminal alkynyl esters (which were expected to be attacked at the terminal position) (Figure 4).

Figure 4 Terminal alkynes that failed to react in the [2+2] cycloaddition reaction.

Internal alkynes were found to be poor reaction partners as well. Only traces of cyclobutene were generated using diphenylethyne (1t) ($<5 \%$) and acetylene dicarboxylate $\mathbf{1 u}$ was totally unreactive. The non-symmetrical 1-phenylpropyne (1v) did not react either (Figure 5).

1t
< 5% of cyclobutene)

1u

1v

Figure 5 Internal alkynes that failed to take part in the [2+2] cycloaddition reaction.
We next examined the scope of the alkene counterpart (Table 3). Again, catalyst A2 proved to be much more efficient. Interestingly, the reaction could be extended to allyl silane 2d, which gave the corresponding cyclobutene in good yield (Table 3, entries 5 and 6). Allyl ether 2e and allyl silyl ether $\mathbf{2 f}$ were less competent reaction partners due to their low nucleophilicity (Table 3, entries 7-10).

Table 3 Yield of cyclobutene $\mathbf{3}$ formed according to the counterion in [(t-BuXPhos)AuNCMe]X. ${ }^{[a]}$

		$\xrightarrow[\substack{\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C} \\ 4-48 \mathrm{C}}]{\substack{\text { Complex } \mathbf{A 1} \text { or } \mathbf{A 2} \\(3 \mathrm{oml}}}$	
Entry		Catalyst	Product (Yield \%)
1		A1	$\begin{gathered} \mathbf{3 0}(74,9: 1 \\ \text { regioisomers })^{[b, c, d]} \end{gathered}$
2		A2	30 (79) ${ }^{[b]}$
3		A1	3p (53) ${ }^{[\mathrm{b}, \mathrm{c}]}$
4		A2	3p (69) ${ }^{[\mathrm{b]}}$
5	$\sim \sim^{\text {Si }}(\text { i-Pr })_{3}(2 d)$	A1	$\mathbf{3 q}(48)^{[\mathrm{ec]}}$
6		A2	$\mathbf{3 q}(71)^{[\mathrm{e}]}$
7		A1	3 r (26) ${ }^{[\mathrm{e}]}$
8		A2	$3 \mathrm{r}(31)^{[\mathrm{e}]}$
9		A1	3s (21) ${ }^{[\mathrm{ec}]}$
10		A2	3s (31) ${ }^{[\mathrm{ec]}}$

Unfortunately, cis-diphenylethene ($\mathbf{2 g}$) and allyl methyl ether ($\mathbf{2 h}$) could not be used as nucleophilic counterparts. The strained molecules norbornene (2i) and pinene derivatives ($\mathbf{2} \mathbf{j}$ and $\mathbf{2 k}$) did not afford any cyclobutene either. Finally, the functionalized substrate geraniol (21) gave no reaction (Figure 6).

Figure 6 Alkenes that failed to partake in the [2+2] cycloaddition reaction.
We then explored if complex $\mathbf{A 2}$ was more efficient in the [2+2+2] cycloaddition reaction between alkynes (1) and oxoalkenes (4) giving 8-oxabicyclo[3.2.1]oct-3-enes 5. ${ }^{73} \mathrm{We}$ could indeed observe moderate improvement in this challenging cascade reaction (Table 4).

The use of $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$ as counterion was also generally beneficial in the synthesis of phenols. Yields were improved up to 31% reacting different alkynes with 2,5 -dimethylfuran in the presence of complex $[\operatorname{IPrAu}(\mathrm{NCPh})] \mathrm{BAr}_{4}{ }^{\mathrm{F}}(\mathbf{B 2})$ (Table 5).

[^33]Table 5 Yield of phenols 7 formed according to the counterion in [IPrAuNCPh]X. ${ }^{[a]}$

Interestingly, the use of $\mathrm{NaBAr}_{4}{ }^{\mathrm{F}}$ as a chloride abstracter for gold(I) complexes in different intramolecular reactions ${ }^{109}$ did not improve the yields. Therefore, we decided to study how this bulky counterion affected the intermolecular gold(I)-catalyzed reactions, specifically the $[2+2]$ cycloaddition.

Monitoring the [2+2] Cycloaddition Reaction and DFT Modeling

Monitoring this reaction by ${ }^{1} \mathrm{H}$ NMR using complexes containing $\mathrm{SbF}_{6}{ }^{-}, \mathrm{BAr}_{4}{ }^{\mathrm{F}-}$ and $\mathrm{BF}_{4}{ }^{-}$ showed that the counterion not only affected the final yield of the cyclobutene but also the reaction rate (Figure 7). Interestingly, the cycloadduct product was generated faster and in higher yield with bulkier and softer counterions. Thus, $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$ was the most efficient anion, followed by $\mathrm{SbF}_{6}{ }^{-}$and BF_{4}^{-}.

[^34]

Figure 7 Kinetics of the $[2+2]$ cycloaddition between phenylacetylene and α-methylstyrene with [$(t$-BuXPhos $) \mathrm{AuNCMe}] \mathrm{X}\left(\mathrm{X}=\mathrm{BAr}_{4}{ }^{\mathrm{F}}, \mathrm{SbF}_{6}^{-}, \mathrm{BF}_{4}^{-}\right)$.

To explain the results obtained we then examined if the formation of ion pairs was feasible. Thus, we studied the anion-cation interaction combining nOe NMR measurements and theoretical modeling following the methodology reported by the group of Macchioni. ${ }^{103,110}$ The ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F},{ }^{31} \mathrm{P}$ and HOESY NMRs at $23{ }^{\circ} \mathrm{C}$ and $-60{ }^{\circ} \mathrm{C}$ of complexes $\mathbf{A 1}$ or A2 alone and with phenylacetylene and α-methylstyrene were first examined. Despite our efforts, no correlation was observed between the fluorine atoms of the counterion and any of the substrates. Our efforts to calculate the radius of the ionic complexes using DOESY experiments were also unsuccesful. Then, we modeled the behavior of the complexes [$(t$-BuXPhos $) \mathrm{Au}\left(\eta^{2}\right.$-phenylacetylene $\left.)\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BF}_{4}^{-}, \mathrm{SbF}_{6}^{-}\right.$and $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$) in solution using DFT calculations [M06, 6-31G(d) (C, H, P, B, F) and SDD (Au, Sb), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$]. ${ }^{111}$

We analyzed the charge distribution by determining the electron density from total SCF density mapped with ESP $\left(\rho=0.03 \mathrm{e} / \AA^{3}\right)$ (Figure 8). Interestingly, the positive charge was significantly redistributed on the ligands and not concentrated only in the metal center. By determining the Mulliken atomic charges, we could observe that the acidity of terminal alkyne changed moderately with the bulkiness of the counterion. The electron density of the proton decreased with the anion size; 0.250 for $\mathrm{BF}_{4}^{-}, 0.243$ for $\mathrm{SbF}_{6}{ }^{-}$and 0.237 for $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$. Furthermore, there is a considerable steric congestion around the substrate with $\mathrm{BAr}_{4}^{\mathrm{F}-}$, which presumably hampers the deprotonation of the alkyne and therefore, the formation of σ, π-digold(I) alkyne.

[^35]

Figure 8 Views of the Coulomb potential of $\left[\left(\eta^{2}\right.\right.$-phenylacetylene $\left.) \mathrm{Au}(\mathrm{I})\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BF}_{4}{ }^{-}, \mathrm{SbF}_{6}{ }^{-}\right.$and $\left.\mathrm{BAr}_{4}{ }^{\mathrm{F}-}\right)$ mapped in an electronic isodensity surface $\rho=0.03 \mathrm{e} / \AA^{3}$.

Mechanistic Studies

The mechanism proposed for the gold(I)-catalyzed [2+2] cycloaddition reaction between alkynes and alkenes was based on previous theoretical work (Scheme 11). ${ }^{23 b, d, 73}$ Accordingly, it proceeded through an initial attack of the alkene onto $\left[\left(t-\mathrm{BuXPhosAu}\left(\eta^{2}-\right.\right.\right.$ phenylacetylene) $]^{+}$. This nucleophilic attack was proposed to be the rate-limiting step of the reaction. The cyclopropyl gold(I) carbene II generated subsequently underwent ring expansion, giving rise to the benzylic carbocation III that after demetalation, afforded cyclobutenes. The active species were regenerated after associative ligand exchange between $\left[\left(\eta^{2} \text {-cyclobutene }\right) \operatorname{gold}(\mathrm{I})\right]^{+}$species and phenylacetylene.

Scheme 11 Proposed mechanism for the [2+2] cycloaddition between alkynes and alkenes.

Order of Reagents

To study experimentally this reaction, we calculated the order of the reagents in the rate equation of the reaction by using the method of initial rates. The initial rate in a given reaction is the instantaneous rate determined right after the reaction begins, and before the initial concentration of reagents changes significantly. In a given reaction, the general rate equation is:

$$
\begin{gathered}
A+B \rightarrow C \\
\text { rate }=k \cdot[A]^{a} \cdot[B]^{b} \\
a \text { and } b \text { are the order of reagents }
\end{gathered}
$$

Equation 1.
The method of initial rates allows determining the orders of the reagents by running the reaction multiple times under certain conditions and measuring the initial rate of the reaction in each case. In each experiment, all the variables remain constant from one run to the next except for the concentration of one reactant. Thus, the order a reagent can be determined by comparing the reaction rates as the concentration of this particular reagent varies.

We screened different methods (IR, HPLC and GC-MS) to perform this kinetic study. However, since none of them proved to be reliable enough, we decided to study the reaction by ${ }^{1} \mathrm{H}$ NMR varying the quantities of phenylacetylene, α-methylstyrene and finally gold(I) complex A2 (Scheme 12). We considered that the concentration of reagents had not changed significantly until $10-15 \%$ of cyclobutene was formed.

Scheme 12 Intermolecular [2+2] cycloaddition reaction performed.

Thus, we performed the intermolecular gold(I)-catalyzed [2+2] cycloaddition reaction using 0.5 mmol of α-methylstyrene and $7.2 \mu \mathrm{~mol}$ of complex $\mathbf{A 2}$ and incrementing the amounts of phenylacetylene from 0.05 to 0.50 mmol . The amount of cyclobutene generated increased by increasing the amount of phenylacetylene (Figure 9).

Figure $9{ }^{1} \mathrm{H}$ NMR monitoring of the $[2+2]$ cycloaddition reaction changing the amounts of phenylacetylene (1a).
Monitoring of the reaction maintaining the amounts of phenylacetylene (0.25 mmol) and complex A2 $(7.2 \mu \mathrm{~mol})$ constant whilst varying the quantities of α-methylstyrene from 0.25 to 1.25 mmol gave a different behavior. The formation of cyclobutenes when vaying the amount of alkene utilized did not increase (Figure 10).

Figure $10{ }^{1} \mathrm{H}$ NMR monitoring of the [2+2] cycloaddition reaction varying the amounts of α-methylstyrene (2a).
The trend observed after monitoring the reaction when changing the amount of catalyst was analogous to the one depicted in Figure 9. The amount of cyclobutene generated was higher when $13 \mu \mathrm{~mol}$ of catalyst were used with 0.25 mmol of phenylacetylene and 0.50 mmol of α-methylstyrene. Using $2.5 \mu \mathrm{~mol}$ of complex under the same conditions afforded less product (Figure 11).

Figure $11{ }^{1} \mathrm{H}$ NMR monitoring of the $[2+2]$ cycloaddition reaction changing the amounts of catalyst $\mathbf{A 2}$.
Finally, the initial rates were plotted against the initial concentration on a logarithmic scale according to the method of initial rates (Figure 12). The positive slope for phenylacetylene (1a) and the catalyst $\mathbf{A 2}$ was an evidence of first order. Remarkably, the "horizontal" line (close to zero slope) observed for α-methylstyrene indicated 0 order for the alkene. Hence, the more reasonable rate determining step would be the generation of the active species $\left[\mathrm{LAu}\left(\eta^{2} \text {-phenylacetylene }\right)\right]^{+}(\mathbf{I})$.

Figure 12 Order of the reagents in the [2+2] cycloaddition between phenylacetylene (1a) and α-methylstyrene (2a) with complex $\mathbf{A 2}$.

We hypothesized that the orders of reagents do not change when other counterions are used in the reaction. Thus, to get further insight into the counterion effect, we decided to examine the species formed in the reaction mixture.

Species Formed in the Reaction Mixture: Counterion Differences

In the $[2+2+2]$ cycloaddition of alkynes with oxoalkenes ${ }^{73}$ we observed that the formation of $\left[\mathrm{LAu}\left(\eta^{2} \text {-phenylacetylene }\right)\right]^{+}$species was more complex than expected due to the competition with the formation of $\sigma, \pi-\operatorname{digold}(\mathrm{I})$ alkynes complexes. In this reaction, $\sigma, \pi-$
digold(I) alkyne species are known to be dead-ends of the catalytic cycle. In order to probe whether these species were also formed in the $[2+2]$ cycloaddition reaction, we carefully examined the ${ }^{31} \mathrm{P}$ NMR at the very beginning of the reaction using the three different catalysts $[\mathrm{LAu}(\mathrm{NCMe})] \mathrm{X}\left(\mathrm{X}=\mathrm{BAr}_{4}{ }^{\mathrm{F}-}, \mathrm{SbF}_{6}{ }^{-}, \mathrm{BF}_{4}{ }^{-}\right)$. Interestingly, two different species could be observed in all the spectra, which were later determined to be $\left[\mathrm{LAu}\left(\eta^{2}-\alpha-\right.\right.$ methylstyrene) $]^{+}(\mathbf{C})$ and $\sigma, \pi-d i g o l d(I)$ alkyne complex \mathbf{D} (Figure 13).

Figure 13 Initial ${ }^{31} \mathrm{P}$ NMR spectrum of the intermolecular gold(I)-catalyzed [2+2] cycloaddition of phenylacetylene and α-methylstyrene with complex $\mathbf{A 2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $23{ }^{\circ} \mathrm{C}(\mathrm{L}=t$-BuXPhos).

Remarkably, the ratio between these two species increased following the same trend observed for the effectiveness of the counterion: 115 for $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}, 30$ for $\mathrm{SbF}_{6}{ }^{-}$and 4 for BF_{4}^{-}. To assess the role of these species in the reaction medium, we decided to examine their reactivity in the $[2+2]$ cycloaddition reaction. Thus, following the reported procedures, we synthetized both complexes (containing $\mathrm{BAr}_{4}{ }^{\mathrm{F}}{ }^{\text {as }}$ as counterion). ${ }^{7,86}$ No reaction took place at all when stoichiometric amounts of \mathbf{D} and α-methylstyrene (2a) were used as starting materials with or without catalyst A2 (Scheme 13).

Scheme 13 Unreactivity of D2 as substrate in the [2+2] cycloaddition reaction ($\mathrm{L}=t$-BuXPhos).
The reaction proceeded very poorly using $1.5 \mathrm{~mol} \%$ of of digold complex D2, indicating again that these species are not catalytically active. The same result was obtained for complex D1 containing $\mathrm{SbF}_{6}{ }^{-}$as counterion (Scheme 14).

Scheme 14 [2+2] Cycloaddtion reaction between phenylacetylene (1a) and α-methylstyrene (2a) using \mathbf{D} as catalyst ($\mathrm{L}=t$-BuXPhos).

The reaction only was effective using $\left[\mathrm{LAu}\left(\eta^{2}-\alpha\right.\right.$-methylstyrene $\left.)\right] \mathrm{BAr}_{4}{ }^{\mathrm{F}}$ (C2) as the cycloaddition partner with phenylacetylene. In this case, cyclobutene 3a was isolated in 72% yield (Scheme 15). These results led us to consider whether these were the actual catalytically active species. Although it was less likely, the mechanism could start with the activation of α-methylstyrene with a cationic gold(I) complex (C), that could be attacked by phenylacetylene. To exclude this mechanism, we performed the gold(I)-catalyzed reaction of α-methylstyrene and different nucleophiles. No reaction took place using carbon nucleophiles, specifically allyltrimethylsilane, indole, 1,3,5-trimethoxybenzene or 1,3-diphenylpropane-1,3-dione that had been used as nucleophiles in reactions with 1,5- or 1,6 -enynes. ${ }^{53 b}$ Thus, we concluded that $\left[\mathrm{LAu}\left(\eta^{2}\right.\right.$ - α-methylstyrene $\left.)\right] \mathrm{BAr}_{4}{ }^{\mathrm{F}}(\mathbf{C 2})$ acts as a reservoir of cationic gold(I) species (resting state), whilst σ, π-digold(I) alkyne complex is a dead-end of the catalytic cycle.

Scheme 15 [2+2] Cycloaddition reaction between stoichiometric C2 and phenylacetylene and reaction between α-methylstyrene (2a) and different nucleophiles ($\mathrm{L}=t$-BuXPhos).

We postulated that the same outcome would have been observed using $\left[\mathrm{LAu}\left(\eta^{2}-\alpha-\right.\right.$ methylstyrene)]X (C) and σ, π-digold(I) alkyne complexes with $\mathrm{SbF}_{6}{ }^{-}$and BF_{4}^{-}as counterions. Thus, we could explain the efficiencies of the reaction with $[\mathrm{LAu}(\mathrm{NCMe})] \mathrm{X}$ featuring the different counterions. The ratio between reservoir species $\left[\mathrm{LAu}\left(\eta^{2}-\alpha-\right.\right.$ methylstyrene)]X (C) / σ, π-digold(I) alkyne (D) was considerably higher for $\mathrm{BAr}_{4}{ }^{\mathrm{F}}$ than for the less bulky SbF_{6}^{-}and $\mathrm{BF}_{4}{ }^{-}$.

To get further mechanistic insight, we then decided to calculate the equilibrium constants K_{eq} for the formation of $\left[\mathrm{LAu}\left(\eta^{2}\right.\right.$ - α-methylstyrene $\left.)\right]$ and σ, π-digold(I) alkyne containing $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$ and $\mathrm{SbF}_{6}{ }^{-}$.

Equilibrium Constants

The equilibrium constants between catalyst $\mathbf{A 1}$ and $\mathbf{A 2}$ and their related $L A u\left(\eta^{2}-\alpha-\right.$ methylstyrene)] (C1 and C2) and $\sigma, \pi-\operatorname{digold}(\mathrm{I})$ alkyne (D1 and D2) were determined using the van't Hoff equation (Equation 2).

$$
\ln \left(K_{e q}\right)=-\frac{\Delta H^{\ddagger}}{\mathrm{RT}}+\frac{\Delta S^{\ddagger}}{\mathrm{R}}
$$

Equation 2.

0.5 M solutions containing different ratios of $\mathbf{A}: \mathbf{2 a}(1: 2,1: 1,2: 1,3.5: 1$ and $5: 1)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ $(0.5 \mathrm{~mL})$ were analyzed immediately at temperatures ranging from $-10^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}\left(15^{\circ} \mathrm{C}\right.$ increments) by ${ }^{1} \mathrm{H}$ - and ${ }^{31} \mathrm{P}$ NMR.

$$
\begin{aligned}
& {[\mathrm{LAuNCMe}]^{+}+\prod_{2 \mathrm{a}}^{\mathrm{Ph}} \rightleftarrows \mathrm{LAu}^{+}-\mathrm{C}^{\mathrm{Ph}}+\mathrm{MeCN}} \\
& \text { A 2a C } \\
& K_{e q}=\frac{[\boldsymbol{C}] \cdot[\mathrm{MeCN}]}{[\boldsymbol{A}] \cdot[\mathbf{2 a}]}=\frac{[\boldsymbol{C}]^{2}}{\left([\boldsymbol{A}]_{O}-[\boldsymbol{C}]\right) \cdot\left([\mathbf{2 a}]_{O}-[\boldsymbol{C}]\right)} \\
& \text { Integrals ratio }=\frac{[\boldsymbol{C}]}{\left([\boldsymbol{A}]_{O}-[\boldsymbol{C}]\right)}
\end{aligned}
$$

Equation 3.
Plotting the acquired datapoints, we obtained the correlation between the equilibrium constant of complexes A1 or A2 and [LAu($\eta^{2}-\alpha$-methylstyrene)] (C) and the temperature (Figure 14 and Figure 15).

Figure 14 van't Hoff plot of A1 and C1 against temperature.

Figure 15 van't Hoff plot of $\mathbf{A 2}$ and $\mathbf{C 2}$ against the temperature.
In both cases, the equilibrium showed a positive slope, which corresponds to an exothermic process. An analogous experiment was performed to study the equilibrium between catalyst $\mathbf{A 2}$ and σ, π-digold(I) alkyne. In this case, the equilibrium proved more complicated since more species had to be considered. The study with catalyst A1 had already been performed for the $[2+2+2]$ cycloaddition reaction. ${ }^{73}$

$$
\begin{aligned}
& A \text { 1a I } \\
& K_{e q}=\frac{[\boldsymbol{D}] \cdot\left[H^{+}\right] \cdot[\mathrm{MeCN}]^{2}}{[\boldsymbol{A}]^{2} \cdot[\mathbf{1} \boldsymbol{a}]}=\frac{4 \cdot[\boldsymbol{D}]^{4}}{\left([\boldsymbol{A}]_{O}-2 \cdot[\boldsymbol{D}]\right)^{2} \cdot([\mathbf{1} \boldsymbol{a}]-[\boldsymbol{D}])} \\
& \text { Integrals ratio }=\frac{[\boldsymbol{D}]}{\left([\boldsymbol{A}]_{0}-2 \cdot[\boldsymbol{D}]\right)}
\end{aligned}
$$

Equation 4.

Figure 16 van't Hoff plot of $\mathbf{A} \mathbf{2}$ and the alkyne complex with the temperature.

In contrast with the previous equilibrium, the generation of σ, π-digold(I) complexes (D) was found to be an endothermic process (negative slope, Figure 16). Finally, we calculated the K_{eq} at $23{ }^{\circ} \mathrm{C}$, the temperature at which the reaction was performed. The equilibrium constants obtained were in accordance with the ratio of $\left[\mathrm{LAu}\left(\eta^{2}-\alpha\right.\right.$-methylstyrene $\left.)\right] \mathrm{X}(\mathbf{C})$ $/ \sigma, \pi-\operatorname{digold}(\mathrm{I})$ alkyne complex \mathbf{D} observed at the very beginning of the reaction. Thus, A2 binded more strongly to the alkene than A1, whereas the formation of $\sigma, \pi-\operatorname{digold}(\mathrm{I})$ alkyne complex was more favorable for A1 (Scheme 16). Based on these results, we postulated that the concentration of the catalytically active species for $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$ as counterion was higher than that for $\mathrm{SbF}_{6}{ }^{-}$.

We reasoned that the acid released in the case of the bulky anion $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$ was less stable than HSbF_{6} and therefore, the $\mathrm{K}_{\text {eq }}$ was smaller. In conclusion, we unambiguously proved the stability of the $\sigma, \pi-\operatorname{digold}(\mathrm{I})$ alkyne complex and its formation during the course of the reaction.

Formation of σ, π-Digold(I) Complex

To evaluate the formation of σ, π-digold(I) complexes, we studied the evolution of the ${ }^{31} \mathrm{P}$ NMR of the mixture of $\mathbf{A 1}$ or $\mathbf{A 2}$ with phenylacetylene (10:1 ratio respectively) from -60 ${ }^{\circ} \mathrm{C}$ to $20-25^{\circ} \mathrm{C}$. [$\mathrm{LAu}\left(\eta^{2}\right.$-phenylacetylene $\left.)\right] \mathrm{SbF}_{6}(\mathbf{I} 1)$ had previously been characterized at $-60{ }^{\circ} \mathrm{C}$ through the correlation observed in the ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMBC spectrum at $-60^{\circ} \mathrm{C}$ between the terminal proton of the phenylacetylene (doublet) and the phosphorous atom of the ligand. ${ }^{73}$

For A1, the monogold species I are clearly observed at $-60^{\circ} \mathrm{C}$ as well as σ, π-digold D1 and A1. However, only traces of the active species can be observed at temperatures higher than $-40^{\circ} \mathrm{C}$ (Figure 17). On the contrary, when $\mathbf{A} \mathbf{2}$ is utilized the only species observed at
$-60{ }^{\circ} \mathrm{C}$ are $\left[\mathrm{LAu}\left(\eta^{2}\right.\right.$-phenylacetylene $\left.)\right] \mathrm{BAr}_{4}{ }^{\mathrm{F}}(\mathbf{I 2})$ and $\mathbf{A 2}$. In this case, the monogold species $\mathbf{I 2}$ is present at higher temperatures, up to $0^{\circ} \mathrm{C}$, which is also the temperature at which σ, π-digold D2 is observed (see experimental section for further information) (Figure 18).

Figure $17{ }^{31} \mathrm{P}$ NMR spectrum of phenylacetylene and complex A1 from $-60^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.

Figure $18{ }^{31} \mathrm{P}$ NMR spectrum of phenylacetylene and complex $\mathbf{A 2}$ from $-60^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$.

These results proved again the difference of stability of the σ, π-digold complexes formed depending on the counterion utilized (Scheme 17). Therefore, in the case of $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$, the formation of the unreactive dinuclear species is less favored than for $\mathrm{SbF}_{6}{ }^{-}$, explaining the higher efficiency of complexes featuring this counterion in various transformations.

Scheme 17 Gold(I) species formed between phenylacetylene and $\mathbf{A 1}$ or $\mathbf{A 2}$ from $-60^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$.
Finally, in order to account for all the observations gathered in study, it was necessary to propose a more complex mechanistic picture than the one previously put forward (Scheme 18). We postulated an initial rate-determining step involving the formation of (η^{2} phenylacetylene)gold(I) complex I through the ligand exchange between complex \mathbf{C} and phenylacetylene (1a). These electrophilic species undergo nucleophilic attack by α methylstyrene (2a) generating cyclopropylgold(I) carbene II. Then, ring expansion occurs forming benzylic carbocation intermediate III, that upon demetalation gives $\left(\eta^{2}\right.$ cyclobutene)gold(I) complex IV. A final associative ligand exchange between IV and α methylstyrene (2a) closes the catalytic cycle. (η^{2}-Phenylacetylene)gold(I) complex (I) has been shown to be in equilibrium with unreactive σ, π-digold (I) alkyne complex \mathbf{D}, which is a dead-end outside the catalytic cycle. The generation of these species is more difficult when the complex initially used contains $\mathrm{BAr}_{4}^{\mathrm{F}}$ as counterion.

Scheme 18 Proposed revised mechanism for the [2+2] cycloaddition reaction between phenylacetylene and α-methylstyrene.

To exclude the occurrence of any other possible pathways, we performed several additional control experiments (Scheme 19). (σ-Phenylacetylene)gold(I) complex E proved to be an unreactive partner when it was treated with α-methylstyrene (2a). No traces of cyclobutene were observed either when $3 \mathrm{~mol} \%$ of $\mathbf{A 2}$ were added to the reaction
mixture. Another evidence for complex \mathbf{E} to be out of the catalytic cycle was its inability to mediate the reaction between phenylacetylene and α-methylstyrene.

Scheme 19 Unreactivity of \mathbf{E} as substrate or catalyst in the [2+2] cycloaddition.

Importantly, the lack of reactivity of both complexes (σ-phenylacetylene)gold(I) \mathbf{E} and (σ, π-phenylacetylene) gold(I) D could be restored upon addition of $\mathrm{HSbF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Scheme 20). The presence of the acid shifted the equilibrium of (σ, π-phenylacetylene) gold(I) D towards (π-phenylacetylene) gold(I) I, by cleaving the Au-C bond. Thus, cyclobutene 3a could be obtained in 75-79\% yield.

Scheme 20 Catalytically activity recovery from $\mathbf{D 1}$ and \mathbf{E} by addition of HSbF_{6}.

Conclusions

A new generation of catalysts containing $\mathrm{BAr}_{4}{ }^{\mathrm{F}-} \quad\left[\mathrm{BAr}_{4}{ }^{\mathrm{F}-}=\right.$ tetrakis $\quad[3,5-$ bis(trifluoromethyl) phenylborate] as counterion have been developed (Figure 19). These complexes have proven to be more efficient in several gold(I)-catalyzed transformations since yields are improved up to 30% in the reactions of alkynes and alkenes, oxoalkenes and furans.

Figure 19 Complex $[t$-BuXPhosAu(NCMe) $] \mathrm{BAr}_{4}{ }^{\mathrm{F}}$.
An extensive mechanistic study on the [2+2] cycloaddition reaction between phenylacetylene and α-methylstyrene has been performed. By calculating the orders of the reagents, we have been able to determine the rate-determining step of the reaction, which has been found to be ligand exchange between complex \mathbf{C} and phenylacetylene to form (η^{2}-phenylacetylene) gold(I) complex I. The mechanism has been revised and a clear and well-supported mechanistic picture has been proposed.
(η^{2}-Phenylacetylene) gold(I) species I are very unstable and are in equilibrium with the unreactive (σ, π-phenylacetylene)gold(I) complexes D. However, the formation of these species with the bulky counterion $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$ is less favored than with its analogue $\mathrm{SbF}_{6}{ }^{-}$as observed when calculating the $\mathrm{K}_{\text {eq }}$ constant between $[t-\mathrm{BuXPhosAu}(\mathrm{NCMe})] \mathrm{X}(\mathrm{X}=$ $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$ and SbF_{6}^{-}) and phenylacetylene These results have been supported by monitoring of the reaction of phenylacetylene and $[t-\mathrm{BuXPhosAu}(\mathrm{NCMe})] \mathrm{X}\left(\mathrm{X}=\mathrm{BAr}_{4}{ }^{\mathrm{F}-}\right.$ and $\left.\mathrm{SbF}_{6}{ }^{-}\right)$ by ${ }^{31} \mathrm{P}$ NMR at low temperature, and explain the higher efficiency of the catalysts featuring the bulky and less basic counterion $\mathrm{BAr}_{4}{ }^{\mathrm{F}-}$.

Experimental part

General Information

The general information is provided in the experimental part of the first chapter.

Synthesis of Gold(I) Complexes

(Acetonitrile)[(2',4', $\mathbf{6}^{\prime}$-triisopropyl-1, 1^{\prime}-biphenyl-2-yl)di-tert-butylphosphine]gold(I) tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (A2)

Chloro[(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tert${ }_{\left.t-\mathrm{Bu}-\mathrm{P} \cdot \mathrm{Au}-\mathrm{N} \equiv \mathrm{Me} 7^{t} \quad \mathrm{BAr}_{4} \mathrm{~F}^{-} \quad \text { butylphosphine }\right] \text { gold }(\mathrm{I})(100.0 \mathrm{mg}, 0.152 \mathrm{mmol}) \text { and } .}$ acetonitrile $(9.5 \mu \mathrm{~L}, 0.183 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(6.6 \mathrm{~mL})$. Then, sodium tetrakis[3,5bis(trifluoromethyl) phenyl] borate ($135.0 \mathrm{mg}, 0.152$ mmol) was added and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min . The crude was filtered through celite and concentrated. Finally, it was filtered through Teflon 0.22 , washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was removed to afford a white powder.
224 mg of $\mathbf{A 2}(0.147 \mathrm{mmol})$ were obtained in 97%.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.92-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.70(\mathrm{~m}, 8 \mathrm{H}), 7.66-7.58(\mathrm{~m}$, $2 \mathrm{H}), 7.56(\mathrm{~s}, 4 \mathrm{H}), 7.32(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dt}, J=13.4$, $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.25($ broad s, 3 H$), 1.41(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 18 \mathrm{H}), 1.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.25$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 162.3(\mathrm{q}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{11} \mathrm{~B}\right)=50.1 \mathrm{~Hz}\right), 150.4,148.0,147.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=12.8 \mathrm{~Hz}\right), 136.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=\right.$ $6.1 \mathrm{~Hz}), 135.5,135.4,134.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.6 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.6 \mathrm{~Hz}\right), 129.5$ $\left(\mathrm{q}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=28.6 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=8.1 \mathrm{~Hz}\right), 126.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=50.2 \mathrm{~Hz}\right)$, $125.2\left(\mathrm{q}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=272.3 \mathrm{~Hz}\right), 122.5,118.1\left(\mathrm{p}, J\left({ }^{13} \mathrm{C}{ }^{-19} \mathrm{~F}\right)=4.0 \mathrm{~Hz}\right), 39.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)\right.$ $=29.3 \mathrm{~Hz}), 34.6,31.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.3 \mathrm{~Hz}\right), 31.5,26.3,24.5,23.4,3.3$ and one carbon is missing probably because of overlapping. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}}$ 58.7. ${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{F}}-62.97 .{ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{B}}-$ 6.7. HRMS (MALDI) calculated for $\left[\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{AuNP}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right)$: 662.3184, found m / z 662.3175. Elemental Analysis calculated for $\mathrm{C}_{63} \mathrm{H}_{60} \mathrm{AuBF}_{24} \mathrm{NP}: \mathrm{C}, 49.59 ; \mathrm{H}, 3.97$; N, 0.92 ; found: C, 49.56 ; H, 3.94; N, 0.97 .

(Acetonitrile)[(2',4', $\mathbf{6}^{\prime}$-triisopropyl-1, $\mathbf{1}^{\prime}$-biphenyl-2-yl)di-tert-butylphosphine]gold(I)

 tetrafluoroborate

Chloro[(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tertbutylphosphine]gold(I) ($100.0 \mathrm{mg}, 0.152 \mathrm{mmol}$) and acetonitrile $(9.5 \mu \mathrm{~L}, 0.183 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.6 \mathrm{~mL})$. Then, silver tetrafluoroborate $(29.6 \mathrm{mg}$, 0.152 mmol) was added and the reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 20 min . The crude was filtered through celite and concentrated. Finally, it was filtered through Teflon 0.22 , washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was removed to afford a white powder.
114 mg of (acetonitrile)[(2', $4^{\prime}, 6^{\prime}$-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphos phine]gold(I) tetrafluoroborate (0.152 mmol) were isolated in 100%.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.90(\mathrm{td}, J=8.9,8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.32 (ddd, $J=6.9,4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (s, 2H), 2.97 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (s, 3H), 2.33 (hept, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.43 (d, $J=16.3 \mathrm{~Hz}, 18 \mathrm{H}$), 1.33 (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$), 1.27 (d, J $=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 150.5,147.8$, $147.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=12.7 \mathrm{~Hz}\right), 136.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.0 \mathrm{~Hz}\right), 135.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=8.1\right.$ $\mathrm{Hz}), 134.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}^{-31} \mathrm{P}\right)=4.3 \mathrm{~Hz}\right), 132.0,128.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.8 \mathrm{~Hz}\right), 126.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=47.8 \mathrm{~Hz}\right), 122.5,120.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.4 \mathrm{~Hz}\right), 39.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=28.2 \mathrm{~Hz}\right), 34.5$, $31.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=5.8 \mathrm{~Hz}\right), 31.5,26.4,24.5,23.4,3.3 .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $(162 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ_{P} 58.6. ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta_{\mathrm{F}}-153.1 .{ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (128 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{B}}-1.23$. HRMS (MALDI) calculated for $\left[\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{AuNP}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{BF}_{4}\right)$: 662.3184, found m / z 662.3180. Elemental Analysis calculated for $\mathrm{C}_{63} \mathrm{H}_{60} \mathrm{AuBF}_{24} \mathrm{NP}$: C, 49.68; H, 6.46 ; N, 1.87; found: C, 48.89; H, 6.20; N, 1.64 .

(Acetonitrile)[(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) hexafluorophosphate

t-Bu-

Chloro[(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tertbutylphosphine]gold(I) ($350.0 \mathrm{mg}, 0.533 \mathrm{mmol}$) and acetonitrile ($33.0 \mu \mathrm{~L}, 0.639 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$. Then, silver hexafluorophosphate (135.0 $\mathrm{mg}, 0.533 \mathrm{mmol}$) was added and the reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 20 min . The crude was filtered through celite and concentrated. Finally, it was filtered through Teflon 0.22 , washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was removed to afford a white powder.
221 mg of (acetonitrile)[(2', 4', 6^{\prime}-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine] gold(I) hexafluorophosphate $(0.152 \mathrm{mmol})$ were isolated in 51%.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}}(\mathrm{ppm}) 7.90(\mathrm{ddd}, J=9.0,7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{dq}, J=$ $7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.33 (td, $J=6.6,5.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (s, 2H), 2.95 (hept, $J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 18 \mathrm{H}), 1.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 149.9,147.8$, $136.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.1 \mathrm{~Hz}\right), 135.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=9.3 \mathrm{~Hz}\right), 134.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=4.2\right.$ $\mathrm{Hz}), 132.0,128.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.2 \mathrm{~Hz}\right), 122.4,117.9,39.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=29.2 \mathrm{~Hz}\right)$, $34.55,31.56(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 26.35,24.47,23.39,3.23$. Two signals are missing due to overlapping. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}} 58.53,-139.23$ (hept, $J\left({ }^{31} \mathrm{P}-{ }^{19} \mathrm{~F}\right)=$ $715.0 \mathrm{~Hz}) .{ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{F}}-73.46\left(\mathrm{~d}, J\left({ }^{19} \mathrm{~F}-{ }^{31} \mathrm{P}\right)=710.3 \mathrm{~Hz}\right)$. HRMS (MALDI) calculated for $\left[\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{AuNP}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{PF}_{6}\right)$: 662.3184, found $m / z 662.3182$.

[(2',4', $\mathbf{6}^{\prime}$-Triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine](2-phenylethynyl)

 gold(I) (E)

Lithium bis(trimethylsilyl)amide ($54 \mathrm{mg}, 0.320 \mathrm{mmol}$) was dissolved in THF (4.0 mL) and cooled to $0^{\circ} \mathrm{C}$. Phenylacetylene (35 $\mu \mathrm{L}, 0.320 \mathrm{mmol}$) was added and the solution was stirred for 30 min. Afterwards, chloro[(2', $4^{\prime}, 6^{\prime}$ 'triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) $(200 \mathrm{mg}, 0.304 \mathrm{mmol})$ dissolved in THF (3.0 mL) was added and the solution was stirred overnight at $23{ }^{\circ} \mathrm{C}$. The crude was concentrated, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Teflon 0.22 and the solvent was removed to afford a white powder.
219 mg of $\mathbf{E}(0.303 \mathrm{mmol})$ were obtained in 99% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.92(\mathrm{td}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.30-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{p}, J$ $=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 18 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $6 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 150.0,148.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}^{31}{ }^{31} \mathrm{P}\right)\right.$ $=15.6 \mathrm{~Hz}), 146.4,137.3\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=133.1 \mathrm{~Hz}\right), 136.6\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}^{-31} \mathrm{P}\right)=5.1 \mathrm{~Hz}\right), 136.1$ $\left(\mathrm{d}, J\left({ }^{13} \mathrm{C}^{-31} \mathrm{P}\right)=1.6 \mathrm{~Hz}\right), 135.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=7.9 \mathrm{~Hz}\right), 132.2,130.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.2\right.$ $\mathrm{Hz}), 129.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=37.0 \mathrm{~Hz}\right), 128.3,127.4\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=2.7 \mathrm{~Hz}\right), 126.9(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.0 \mathrm{~Hz}\right), 126.0,122.3,101.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=23.9 \mathrm{~Hz}\right), 38.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=\right.$ $23.2 \mathrm{~Hz}), 34.5,31.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.8 \mathrm{~Hz}\right), 31.4,26.5,24.4,23.2 .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $(202$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}}$ 66.9. HRMS (MALDI) calculated for $\left[\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{AuPNa}\right]^{+}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$: 745.3208 , found $m / z 745.3216$.

(α-Methylstyrene) $\left[\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.\right.$-triisopropyl-1, 1^{\prime}-biphenyl-2-yl)di-tert-butylphosphine] gold(I) tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (C)

Chloro[(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tertbutylphosphine]gold(I) $(100.0 \mathrm{mg}, 0.152 \mathrm{mmol})$ and α methylstyrene ($30 \mu \mathrm{~L}, 0.228 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad(10.0 \mathrm{~mL})$. Then, sodium tetrakis[3,5bis(trifluoromethyl)phenyl] borate $(135.0 \mathrm{mg}, \quad 0.152$ mmol) was added and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min . The crude was filtered through celite and concentrated. Finally, it was filtered through Teflon 0.22 , washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solvent was removed to afford a white powder.
210 mg of $\mathbf{C}(0.131 \mathrm{mmol})$ were obtained in 86% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.82(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.70(\mathrm{~m}, 8 \mathrm{H}), 7.63-$ $7.53(\mathrm{~m}, 6 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.29(\mathrm{~s}, 2 \mathrm{H}), 7.21$ (ddd, $J=7.3,3.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (dd, $J=4.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{p}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H})$, $2.42-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.39-1.03(\mathrm{~m}, 24 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 213 \mathrm{~K}\right)$: it was not possible to properly assign all the signals due to the broadening of some peaks because of the weak coordination of the metal to the alkene combined with the complexity of the heterocouplings with ${ }^{31} \mathrm{P},{ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$; $\delta_{\mathrm{C}} 162.95,162.55,162.16,161.76,155.99,151.76,149.09,147.08,146.97,135.95$, $135.75,135.47,135.32,135.04,133.40,132.93,132.61,132.26,130.29,129.79,129.61$, $129.36,129.07,128.44,127.14,126.67,126.27,124.11,123.63,123.12,121.94,118.55$, $118.21,117.88,117.55,89.01,88.68,38.61,38.41,34.76,31.64,31.42,31.11,26.27$, 26.04, 25.90, 25.02, 24.82, 24.64, 24.45, 23.82. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{P}}$ 69.3. ${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta_{\mathrm{F}}-62.8 .{ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $298 \mathrm{~K}) \delta_{\mathrm{B}}-6.7$. HRMS (ESI +) calculated for $\left[\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{AuP}\right]^{+}\left(\mathrm{M}^{+}-\mathrm{C}_{41} \mathrm{H}_{22} \mathrm{BF}_{24}\right)$: 621.2919, found $m / z 621.2916$.

\{Phenylethynyl[(2',4',6'-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine] gold(I) $)\left[\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.\right.$-triisopropyl-1, $\mathbf{1}^{\prime}$-biphenyl-2-yl)di-tert-butylphosphine $] g o l d(I)$ tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (D)

Chloro[($2^{\prime}, 4^{\prime}, 6^{\prime}$-triisopropyl-1,1'-biphenyl-2-yl)di-tert-butylphosphine]gold(I) $(68.2 \mathrm{mg}$, $0.104 \mathrm{mmol})$ and $\left[\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.\right.$-triisopropyl-1, 1^{\prime}-biphenyl-2-yl)di-tert-butylphosphine](2phenylethynyl) gold(I) ($75 \mathrm{mg}, 0.104 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.4 \mathrm{~mL})$. Then, sodium tetrakis[3,5-bis(trifluoromethyl)phenyl] borate ($92 \mathrm{mg}, 0.104 \mathrm{mmol}$)was added and

the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min . The crude was filtered through celite and concentrated. Finally, it was filtered through Teflon 0.22 , washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and solvent was removed to afford a white powder.
223 mg of $\mathbf{D}(0.101 \mathrm{mmol})$ were isolated in 97% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 7.95-7.87(\mathrm{~m}, 2 \mathrm{H})$, 7.73 (dd, $J=4.2,2.0 \mathrm{~Hz}, 8 \mathrm{H}$), 7.57 (broad s, 4H), 7.56 - 7.49 (m, 4H), $7.48-7.42$ (m, 1H), $7.42-7.37$ (m, 2H), $7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 4 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 36 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{C}} 162.3\left(\mathrm{q}, J\left({ }^{13} \mathrm{C}-{ }^{11} \mathrm{~B}\right)=50.0 \mathrm{~Hz}\right), 150.0,148.1(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=14.3 \mathrm{~Hz}\right), 147.1,136.2\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=5.6 \mathrm{~Hz}\right), 135.5,135.4,135.0\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-\right.\right.$ $\left.\left.{ }^{31} \mathrm{P}\right)=1.2 \mathrm{~Hz}\right), 133.1,131.4,130.6,130.0-129.0(\mathrm{~m}), 129.0,127.7\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=42.5\right.$ $\mathrm{Hz}), 127.6,127.5,125.2\left(\mathrm{q}, J\left({ }^{13} \mathrm{C}^{-19} \mathrm{~F}\right)=272.6 \mathrm{~Hz}\right), 122.2,121.3,118.2-118.0(\mathrm{~m}), 39.3$ $\left(\mathrm{d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=24.6 \mathrm{~Hz}\right), 34.0,31.9\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{31} \mathrm{P}\right)=6.8 \mathrm{~Hz}\right), 31.4,26.4,24.3,23.6$ and one carbon is missing probably because of overlapping. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (162 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ_{P} 65.1. ${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta_{\mathrm{F}}-62.9 .{ }^{11} \mathbf{B}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (128 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ_{B}-6.7. HRMS (MALDI) calculated for $\left[\mathrm{C}_{66} \mathrm{H}_{95} \mathrm{Au}_{2} \mathrm{P}_{2}\right]^{+}\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}$): 1343.6235 , found $m / z 1343.5751$.

General Procedure for the Preparation of Cyclobutenes

Alkyne (1 equiv.) and alkene (2 equiv.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.48 \mathrm{M})$ and the cationic gold (I) catalyst ($3 \mathrm{~mol} \%$) was added. The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ until no alkyne was observed by TLC. Then, it was quenched by adding a drop of a solution of $E t_{3} \mathrm{~N}$ in cyclohexane (1M) and the solvent was removed. Preparative TLC was used to purify the resulting cyclobutenes.

1-Methoxy-3-(3-methyl-3-phenylcyclobut-1-en-1-yl)benzene (3g)

Cyclobutene $\mathbf{3 g}$ was synthetized following the general procedure starting from 1-ethynyl-3-methoxybenzene ($\mathbf{1 g}$) ($21 \mu \mathrm{~L}, 0.169 \mathrm{mmol}$) and α-methylstyrene ($\mathbf{2 a}$) $(44 \mu \mathrm{~L}, 0.338 \mathrm{mmol})$ with catalyst $\mathbf{A 2}$ (7.7 $\mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 8 h and a mixture of pentane and diethyl ether (9:1) was used as eluent in the separation.
$33 \mathrm{mg}(0.132 \mathrm{mmol})$ of $\mathbf{3 g}$ were isolated as a colorless oil in 78% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.47-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}$, 2H), $7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ $-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=7.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{~d}, J=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 159.8$, 147.7, 143.9, 136.2, 134.3, 129.5, 128.3, 126.0, 125.8, 117.4, 113.8, 110.0, 55.4, 46.1, 44.5, 27.7. HRMS (APCI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\right]^{+}\left(\mathrm{M}^{+}+\mathrm{H}\right): 251.1430$, found m / z 251.1434 .

1-Fluoro-3-(3-methyl-3-phenylcyclobut-1-en-1-yl)benzene (3j)

Cyclobutene $\mathbf{3 j}$ was synthetized following the general procedure starting from 1-ethynyl-3-fluorobenzene ($\mathbf{1} \mathbf{j}$) $(21 \mu \mathrm{~L}, 0.169 \mathrm{mmol})$ and α-methylstyrene (2a) ($44 \mu \mathrm{~L}, 0.338 \mathrm{mmol}$) with catalyst $\mathbf{A 2}(7.7 \mathrm{mg}$, $0.05 \mathrm{mmol})$. The reaction time was 24 h and a mixture of pentane and diethyl ether $(90: 1)$ was used as eluent in the separation.
$31 \mathrm{mg}(0.130 \mathrm{mmol})$ of $\mathbf{3 j}$ were isolated as a yellowish oil in 77% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{ddd}, J=9.8,2.6,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{tdd}, J=8.3,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J$ $=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 163.2(\mathrm{~d}, J=245.8 \mathrm{~Hz})$, $147.5,143.0(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 137.1(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 135.4,130.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 128.3$, $126.0,125.9,120.5\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=2.8 \mathrm{~Hz}\right), 114.8\left(\mathrm{~d}, J\left({ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}\right)=21.4 \mathrm{~Hz}\right), 111.5(\mathrm{~d}, J$ $\left.\left({ }^{13} \mathrm{C}^{-19} \mathrm{~F}\right)=21.4 \mathrm{~Hz}\right), 46.29,44.34,27.68$. HRMS $($ APCI $)$ calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}\right]^{+}\left(\mathrm{M}^{+}+\right.$ H): 239.1234, found $m / z 239.1231$.

1-Chloro-3-(3-methyl-3-phenylcyclobut-1-en-1-yl)benzene (3k)

Cyclobutene $\mathbf{3 k}$ was synthetized following the general procedure
 starting from 1-ethynyl-3-chlorobenzene ($\mathbf{1 k}$) ($21 \mu \mathrm{~L}, 0.169 \mathrm{mmol}$) and α-methylstyrene (2a) ($44 \mu \mathrm{~L}, 0.338 \mathrm{mmol}$) with catalyst A2 $(7.7 \mathrm{mg}$, $0.05 \mathrm{mmol})$. The reaction time was 24 h and a mixture of pentane and diethyl ether ($90: 1$) was used as eluent in the separation.
$36 \mathrm{mg}(0.141 \mathrm{mmol})$ of $\mathbf{3 k}$ were isolated as a yellowish oil in 83% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.40-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.17(\mathrm{~m}$, $4 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 147.4,142.7,136.6,135.6,134.6,129.7,128.3,127.9,125.9$, 124.9, 122.9, 46.4, 44.3, 27.7. HRMS (APCI) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}\right]^{+}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: 255.0935 found $m / z 255.0935$.

1-Methoxy-3-(3-methyl-3-phenylcyclobut-1-en-1-yl)benzene (31)

Cyclobutene 31 was synthetized following the general procedure starting from 1-ethynyl-2-methoxybenzene (11) $(22 \mu \mathrm{~L}, 0.169 \mathrm{mmol})$ and α-methylstyrene (2a) ($44 \mu \mathrm{~L}, 0.338 \mathrm{mmol}$) with catalyst $\mathbf{A 2}$ (7.7 $\mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 48 h and a mixture of pentane and diethyl ether (9:1) was used as eluent in the separation.
$11 \mathrm{mg}(0.044 \mathrm{mmol})$ of $\mathbf{3 1}$ were isolated as a colorless oil in 24% yield.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.14(\mathrm{~m}$, $3 \mathrm{H}), 6.98-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 158.6,148.2,140.3$, 138.7, $128.9,128.2,127.2,126.0,125.6,123.6,120.3,110.5,55.3,46.9,45.4,27.9$. HRMS (APCI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\right]^{+}\left(\mathrm{M}^{+}+\mathrm{H}\right): 251.1430$, found $\mathrm{m} / \mathrm{z} 251.1433$.

3-(3-Methyl-3-phenylcyclobut-1-en-1-yl)thiophene (3m)

Cyclobutene $\mathbf{3 m}$ was synthetized following the general procedure starting from 3-ethynylthiophene ($\mathbf{1 m}$) ($17 \mu \mathrm{~L}, 0.169 \mathrm{mmol}$) and α methylstyrene (2a) ($44 \mu \mathrm{~L}, 0.338 \mathrm{mmol})$ with catalyst A2 $(7.7 \mathrm{mg}, 0.05$ mmol). The reaction time was 24 h and a mixture of pentane and diethyl ether $(90: 1)$ was used as eluent in the separation.
$33 \mathrm{mg}(0.146 \mathrm{mmol})$ of $\mathbf{3 m}$ were isolated as a brownish oil in 86% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=$ $5.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{dd}, J=3.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 2.97(\mathrm{~d}$, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}$ 147.8, 139.4, 137.9, 132.7, 128.2, 126.0, 125.9, 125.8, 125.1, 121.1, 47.2, 45.2, 27.7. HRMS (APCI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~S}\right]^{+}\left(\mathrm{M}^{+}+\mathrm{H}\right): 239.0889$, found $\mathrm{m} / \mathrm{z} 239.0896$.

Triisopropyl((1-methyl-3-phenylcyclobut-2-en-1-yl)methyl)silane (3q)

Cyclobutene $\mathbf{3 q}$ was synthetized following the general procedure starting from phenylacetylene (1a) (19 $\mu \mathrm{L}, 0.169 \mathrm{mmol})$ and allyltriisopropylsilane ($\mathbf{2 d}$) $(81 \mu \mathrm{~L}, 0.338 \mathrm{mmol})$ with catalyst $\mathbf{A 2}$ $(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 72 h and a mixture of pentane 100% was used as eluent in the separation. $\mathbf{3 q}$ was isolated as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.38-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.07-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dd}, J=12.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 23 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 143.8,135.2,133.8,128.4,127.5,124.5,38.6,35.5,19.0,15.3,11.4$. HRMS (APCI) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{Si}^{+}\left(\mathrm{M}^{+}+\mathrm{H}\right): 301.2346\right.$, found $\mathrm{m} / \mathrm{z} 301.2352$.

(3-Methyl-3-(phenoxymethyl)cyclobut-1-en-1-yl)benzene (3r)

Cyclobutene $3 \mathbf{r}$ was synthetized following the general procedure starting from phenylacetylene (1a) ($19 \mu \mathrm{~L}, 0.169 \mathrm{mmol}$) and ($(2-$ methylallyl)oxy)benzene (2e) ($52 \mu \mathrm{~L}, 0.338 \mathrm{mmol}$) with catalyst $\mathbf{A 2}(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 72 h and a mixture of pentane and diethyl ether (20:1) was used as eluent in the separation in a preparative TLC in Alumina oxide.
$3 \mathbf{r}$ was isolated as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}$, $3 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 159.6,144.3,134.8,133.0,129.5,128.5,128.0,124.7,120.7,114.8,75.5,42.9$, 38.9, 21.8. HRMS (APCI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}\right]^{+}\left(\mathrm{M}^{+}+\mathrm{H}\right): 251.1426$, found m / z 251.1430.

((1-methyl-3-phenylcyclobut-2-en-1-yl)methoxy)triphenylsilane (3s)

Cyclobutene 3s was synthetized following the general procedure starting from phenylacetylene (1a) ($19 \mu \mathrm{~L}, 0.169 \mathrm{mmol}$) and ((2-methylallyl)oxy)triphenylsilane (2f) $(112 \mathrm{mg}, 0.338 \mathrm{mmol})$ with catalyst $\mathbf{A 2}(7.7 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction time was 72 h
and a mixture of pentane and diethyl ether (20:1) was used as eluent in the separation in a preparative TLC in Alumina oxide. 3s was isolated as a colorless oil.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.68-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.46-7.28$
(m, 14H), $6.29(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40$
$(\mathrm{d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}$
$143.9,135.6,135.1,134.6,133.5,130.1,128.4,127.9,127.7,124.6,71.1,44.6,38.3,21.5$.
HRMS (APCI) calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{OSi}^{+}\left(\mathrm{M}^{+}+\mathrm{H}\right): 433.1982\right.$, found $\mathrm{m} / \mathrm{z} 433.1984$.

General Procedure for the Preparation of [3.2.1]-Oxabicycles

Alkyne (3.5 equiv.) and oxoalkene (1 equiv.) were dissolved in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(0.50 \mathrm{M})$ and the cationic gold (I) catalyst ($5 \mathrm{~mol} \%$) was added. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ untill no oxoalkene was observed by TLC. Then, it was quenched by adding a drop of of $\mathrm{Et}_{3} \mathrm{~N}$ and the solvent was removed. Preparative TLC was used to purify the [3.2.1]oxabicycle product.

General Procedure for the Preparation of Phenols

Alkyne (1 equiv.) and furan (2 equiv.) were dissolved in $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(0.50 \mathrm{M})$ and the cationic gold (I) catalyst ($3 \mathrm{~mol} \%$) was added. The reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ untill no alkyne was observed by TLC. Then, it was quenched by adding a drop of of $\mathrm{Et}_{3} \mathrm{~N}$ and the solvent was removed. Chromatography column with SiO_{2} was used to purify the phenols.

Monitoring the [2+2] Cycloaddition Reaction

${ }^{1} \mathrm{H}$ NMR monitoring of the intermolecular gold(I)-catalyzed [2+2] cycloaddition of phenylacetylene and α-methylstyrene with [LAuNCMe]X ($3 \mathrm{~mol} \%, \mathrm{~L}=t$-BuXPhos, $\mathrm{X}=$ $\left.\mathrm{BAr}_{4}{ }^{\mathrm{F}-}, \mathrm{SbF}_{6}^{-}, \mathrm{BF}_{4}^{-}\right)$in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $23{ }^{\circ} \mathrm{C}$ and using diphenylmethane as internal standard (Figure S1).

Figure S1 Monitoring the [2+2] cycloaddition reaction using [LAuNCMe]X
($\mathrm{L}=t$-BuXPhos, $\mathrm{X}=\mathrm{BAr}_{4}^{\mathrm{F}-}, \mathrm{SbF}_{6}^{-}, \mathrm{BF}_{4}^{-}$).

Electrondensity Surfaces

Total SCF density mapped with ESP $\left(\mathrm{r}=0.03 \mathrm{e} / \AA^{3}\right)$. Structures calculated with Gaussian 09 using M06 with $6-31 \mathrm{G}(\mathrm{d})(\mathrm{C}, \mathrm{H}, \mathrm{P}, \mathrm{B}, \mathrm{F})$ and $\mathrm{SDD}(\mathrm{Au}, \mathrm{Sb})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Figure S2).

Figure S2 Coloumb potential of $\left[\left(\eta^{2}\right.\right.$-phenylacetylene $\left.) \mathrm{Au}(\mathrm{I})\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BF}_{4}^{-}, \mathrm{SbF}_{6}^{-}\right.$and $\left.\mathrm{BAr}_{4}{ }^{\mathrm{F}-}\right)$ mapped in an electronic isodensity surface.

Mechanistic Studies

Order of Reagents

${ }^{1} \mathrm{H}$ NMR monitoring of the intermolecular gold(I)-catalyzed [2+2] cycloaddition of α methylstyrene $(0.50 \mathrm{mmol})$ and changing quantities of phenylacetylene with catalyst $\mathbf{A 2}$ ($7.2 \mu \mathrm{~mol}$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.56 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ and using diphenylmethane as internal standard (Figure S3).

Figure S3 Correlation between [cyclobutene] and time by changing the quantities of phenylacetylene.
${ }^{1} \mathrm{H}$ NMR monitoring of the intermolecular gold(I)-catalyzed [2+2] cycloaddition of phenylacetylene (0.25 mmol) and changing quantities of α-methylstyrene with catalyst $\mathbf{A 2}$ $(7.2 \mu \mathrm{~mol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.56 \mathrm{~mL})$ at $23^{\circ} \mathrm{C}$ and using diphenylmethane as internal standard (Figure S 4).

Figure S4 Correlation between [cyclobutene] and time by of changing the quantities of α-methylstyrene.
${ }^{1} \mathrm{H}$ NMR monitoring of the intermolecular gold(I)-catalyzed [2+2] cycloaddition of phenylacetylene $(0.25 \mathrm{mmol})$ and α-methylstyrene $(0.50 \mathrm{mmol})$ with changing quantities of catalyst $\mathbf{A 2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.56 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$ and using diphenylmethane as internal standard (Figure S5).

Figure S5 Correlation between [cyclobutene] and time by changing the quantities of A2.

According to the method of the initial rates, it is possible to determine the order of the reagents by the logarithmic graph of the initial formation of the product and the concentration of the varying reagent (Figure S6).

Figure S6 Correlation between \ln [initial rate] and \ln [product].

Species Formed in the Reaction Mixture

Initial ${ }^{31} \mathrm{P}$ NMR spectrum of the intermolecular gold(I)-catalyzed [2+2] cycloaddition of phenylacetylene and α-methylstyrene with $\mathbf{A 2}(3 \mathrm{~mol} \%)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $23{ }^{\circ} \mathrm{C}$ (Figure S 7).

Figure S7 Initial ${ }^{31} \mathrm{P}$ NMR of the $[2+2]$ cycloaddition reaction using A2.

Initial ${ }^{31} \mathrm{P}$ NMR spectrum of the intermolecular gold(I)-catalyzed [2+2] cycloaddition of phenylacetylene and α-methylstyrene with $\mathbf{A 1}(3 \mathrm{~mol} \%)$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $23^{\circ} \mathrm{C}$ (Figure S 8).

Figure S8 Initial ${ }^{31}$ P NMR of the [2+2] cycloaddition reaction using A1.

Initial ${ }^{31} \mathrm{P}$ NMR spectrum of the intermolecular gold(I)-catalyzed [2+2] cycloaddition of phenylacetylene and α-methylstyrene with (acetonitrile)[(2', $4^{\prime}, 6^{\prime}$-triisopropyl-1, 1^{\prime} -biphenyl-2-yl)di-tert-butylphosphine]gold(I) tetrafluoroborate ($3 \mathrm{~mol} \%$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 23 ${ }^{\circ} \mathrm{C}$ (Figure S9).

Figure S9 Initial ${ }^{31} \mathrm{P}$ NMR of the $[2+2]$ cycloaddition reaction using (acetonitrile) $\left[\left(2^{\prime}, 4^{\prime}, 6^{\prime}\right.\right.$-triisopropyl-1, 1^{\prime} -biphenyl-2-yl)di-tert-butylphosphine]gold(I) tetrafluoroborate.

Additional Experiments

D2 $(40 \mathrm{mg}, 0.018 \mathrm{mmol})$ and α-methylstyrene ($2.35 \mu \mathrm{~L}, 0.018 \mathrm{mmol}$) were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(40 \mu \mathrm{~L})$ and the mixture was stirred for 8 h at $23^{\circ} \mathrm{C}$. No reaction took place.

D2 $(40 \mathrm{mg}, 0.018 \mathrm{mmol})$, α-methylstyrene ($2.35 \mu \mathrm{~L}, 0.018 \mathrm{mmol}$), and $\mathbf{A 2}(0.8 \mathrm{mg}, 0.54$ $\mu \mathrm{mol})$ were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(40 \mu \mathrm{~L})$ and the mixture was stirred for 8 h at $23^{\circ} \mathrm{C}$. No reaction took place.

Phenylacetylene ($29 \mu \mathrm{~L}, 0.263 \mathrm{mmol}$), α-methylstyrene ($68 \mu \mathrm{~L}, 0.526 \mathrm{mmol}$) and $\mathbf{D} 2$ (8 $\mathrm{mg}, 3.9 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ and the mixture was stirred for 8 h at 23 ${ }^{\circ} \mathrm{C}$. Solvent was finally evaporated. 13% of cyclobutene 3a was observed by ${ }^{1} \mathrm{H}$ NMR using diphenymethane as internal standard.

Phenylacetylene ($29 \mu \mathrm{~L}, 0.263 \mathrm{mmol}$), α-methylstyrene ($68 \mu \mathrm{~L}, 0.526 \mathrm{mmol}$) and $\mathbf{D 1}$ (6 $\mathrm{mg}, 3.9 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$ and the mixture was stirred for 8 h at 23 ${ }^{\circ} \mathrm{C}$. Solvent was finally evaporated. 13% of cyclobutene 3a was observed by ${ }^{1} \mathrm{H}$ NMR using diphenylmethane as internal standard.

Phenylacetylene ($3.5 \mu \mathrm{~L}, 0.031 \mathrm{mmol}$) and $\mathbf{C} 2(50 \mathrm{mg}, 0.031 \mathrm{mmol})$ were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(69 \mu \mathrm{~L})$ and the mixture was stirred for 8 h at $23{ }^{\circ} \mathrm{C} .72 \%$ of cyclobutene 3a was observed by ${ }^{1} \mathrm{H}$ NMR using diphenylmethane as internal standard.

$\mathbf{E}(20 \mathrm{mg}, 0.028 \mathrm{mmol})$ and α-methylstyrene ($3.59 \mu \mathrm{~L}, 0.028 \mathrm{mmol}$) were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(62 \mu \mathrm{~L})$ and the mixture was stirred for 8 h at $23^{\circ} \mathrm{C}$. No reaction took place.

$\mathbf{E}(20 \mathrm{mg}, 0.028 \mathrm{mmol}), \alpha$-methylstyrene $(3.59 \mu \mathrm{~L}, 0.028 \mathrm{mmol})$ and $\mathbf{A 2}(1.3 \mathrm{mg}, 0.83$ $\mu \mathrm{mol})$ were dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(62 \mu \mathrm{~L})$ and the mixture was stirred for 8 h at $23{ }^{\circ} \mathrm{C}$. No reaction took place.

Phenylacetylene ($23 \mu \mathrm{~L}, 0.211 \mathrm{mmol}$), α-methylstyrene ($55 \mu \mathrm{~L}, 0.422 \mathrm{mmol}$) and \mathbf{E} (4.6 $\mathrm{mg}, 6.3 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and the mixture was stirred for 8 h at 23 ${ }^{\circ} \mathrm{C}$. Solvent was finally evaporated. No reaction took place.

Phenylacetylene ($23 \mu \mathrm{~L}, 0.211 \mathrm{mmol}$), α-methylstyrene ($55 \mu \mathrm{~L}, 0.422 \mathrm{mmol}$), E (4.6 mg , $6.3 \mu \mathrm{~mol})$ and $\mathrm{HSbF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}(2.1 \mathrm{mg}, 6.3 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and the mixture was stirred for 8 h at $23{ }^{\circ} \mathrm{C}$. Solvent was finally evaporated. 75% of cyclobutene 3a was observed by ${ }^{1} \mathrm{H}$ NMR using diphenylmethane as internal standard.

Phenylacetylene ($23 \mu \mathrm{~L}, 0.211 \mathrm{mmol}$), α-methylstyrene ($55 \mu \mathrm{~L}, 0.422 \mathrm{mmol}$), D2 $(5 \mathrm{mg}$, $3.2 \mu \mathrm{~mol})$ and $\mathrm{HSbF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{mg}, 3.2 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and the mixture was stirred for 8 h at $23{ }^{\circ} \mathrm{C}$. Solvent was finally evaporated. 79% of cyclobutene 3a was observed by ${ }^{1} \mathrm{H}$ NMR using diphenylmethane as internal standard.

Equilibrium Constants

The equilibrium constants between catalysts A1 and A2 and their related alkene (C) and digold (D) complexes were determined using the van't Hoff equation. Therefore, several samples (substrate:complex $=1: 2,1: 1,2: 1,3.5: 1$ and $5: 1$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were analyzed at 263, 278, 293 and 308 K by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR.

Substrate:sample	$\mathbf{2 6 3} \mathbf{K}$	$\mathbf{2 7 8} \mathbf{K}$	$\mathbf{2 9 3} \mathbf{K}$	$\mathbf{3 0 8} \mathbf{K}$
$1: 2$	4.84	4.90	4.97	5.05
$1: 1$	3.01	3.03	3.32	3.53
$2: 1$	1.85	1.98	2.04	2.19
$3.5: 1$	1.32	1.36	1.46	1.57
$5: 1$	0.98	1.06	1.12	1.32

Figure S10 Correlation between the equilibrium constant of A1 and $\mathbf{C 1}$ with the temperature.

Substrate:sample	$\mathbf{2 6 3} \mathbf{K}$	$\mathbf{2 7 8} \mathbf{K}$	$\mathbf{2 9 3} \mathbf{K}$	$\mathbf{3 0 8} \mathbf{K}$
$1: 2$	5.93	5.96	6.41	6.90
$1: 1$	4.01	-	4.77	5.91
$2: 1$	2.76	2.78	2.77	3.63
$3.5: 1$	1.78	1.96	2.00	1.97
$5: 1$	1.49	1.57	1.70	1.75

Figure S11 Correlation between the equilibrium constant of A2 and $\mathbf{C} 2$ with the temperature.

$$
\begin{aligned}
& {\left[\text { LAuNCMe] }{ }^{+} \equiv \mathrm{Ph} \rightleftarrows \stackrel{\mathrm{LAu}^{+}}{=} \stackrel{\mathrm{l}^{-}}{=} \mathrm{Ph}+\mathrm{MeCN}\right.} \\
& \text { A 1a } \\
& \text { I } \\
& K_{e q}=\frac{[\boldsymbol{D}] \cdot\left[H^{+}\right] \cdot[\mathrm{MeCN}]^{2}}{[\boldsymbol{A}]^{2} \cdot[\mathbf{1 a}]}=\frac{4 \cdot[\boldsymbol{D}]^{4}}{\left([\boldsymbol{A}]_{O}-2 \cdot[\boldsymbol{D}]\right)^{2} \cdot([\mathbf{1} \boldsymbol{a}]-[\boldsymbol{D}])} \\
& \text { Integrals ratio }=\frac{[\boldsymbol{D}]}{\left([\boldsymbol{A}]_{0}-2 \cdot[\boldsymbol{D}]\right)}
\end{aligned}
$$

Figure S12 Correlation between the equilibrium constant of A1 and D1 with the temperature (reported in [73]).

Substrate:sample	$\mathbf{2 6 3} \mathbf{K}$	$\mathbf{2 7 8} \mathbf{K}$	$\mathbf{2 9 3} \mathbf{K}$	$\mathbf{3 0 8} \mathbf{K}$
$1: 2$	160.29	103.04	86.90	56.60
$1: 1$	155.16	97.66	78.90	59.71
$2: 1$	113.30	79.36	49.29	46.04
$3.5: 1$	107.32	65.03	46.26	39.33
$5: 1$	82.45	52.90	42.26	35.38

Figure S13 Correlation between the equilibrium constant of A2 and D2 with the temperature.

Chapter 3: Total Synthesis of Nardoaristolone B and an Approach to the Synthesis of (-)-Aristolone and Kanshone \mathbf{H}

Introduction

Natural products, a group of organic compounds isolated from plants, microorganisms and marine creatures, possess chemical or biological activities that could potentially benefit the human life. It is not surprising that a large number of major drugs nowadays are natural products or their derivatives. Therefore, studies on the synthesis of natural products are an area of great importance. Not only does it allow the access to these biologically potent molecules but also opens new opportunities for the discovering of new transformations.

Nardoaristolone B

Nardoaristolone B is a novel terpenoid isolated in 2013 from the underground parts of Nardostachys chinensis Batal, ${ }^{112}$ a perennial herb that grows around the Himalayas mountain areas. ${ }^{13}$ While the plant has been used as a sedative and analgesic agent in traditional Chinese medicine for centuries, ${ }^{114}$ the isolated molecule presented protective effects on the injury of neonatal rat cardiomyocytes. This novel aristolane-type sesquiterpenoid possesses an unusual $6 / 5 / 3$ fused tricyclic skeleton. It was isolated from N. chinensis, first along with nardoaristolone A, and later with another seven new sesquiterpenes ${ }^{115}$ and two other already isolated ($(-)$-aristolone ${ }^{116}$ and kanshone F^{117}) (Figure 1).

[^36]
nardoaristolone B

nardoaristolone A

nardoeudesmol B

nardochinone A

nardoeudesmol C

nardochinone B

Figure 1 Structures of different sesquiterpenes isolated from Nardostachys chinesis.
Extraction of 5 kg of the air-dried medicinal plant Nardostachys chinesis at reflux in EtOH (x2) followed by several chromatography columns over macroporous resin HP-20 or silica gel let to the isolation of 89.2 mg of nardoaristolone B , which could be fully characterized and whose absolute configuration could be unambiguously established by X-ray diffraction (Figure 2).

Figure 2 X-ray crystal structure of nardoaristolone B.
The proposed biogenetic pathway proposed is showed in Scheme 1. Kanshone C was presumed to be the biosynthetic precursor that could evolve through an initial epoxide ring-opening reaction followed by a benzilic acid rearrangement giving access to the quadricycle intermediate 3. Subsequent decarboxylation, dehydration and oxidation would produce nardoaristolone B.

kanshone C

nardoaristolone B \longrightarrow

1

4

Scheme 1 Biogenetic pathway for nardoaristolone B.
The first total synthesis of (\pm)-nardoaristolone B was reported at the very end of July 2014. ${ }^{118}$ The racemic mixture of the natural product could be accessed after a cyclopropanation of bicylic intermediate 5 that could be synthesized from a double allylic oxidation of $\mathbf{6}$. The starting points of the synthesis were diene 7 and tiglic aldehyde (8) that were coupled following a three step-sequence of Nobel prize reactions; Diels-Alder (DA), Wittig olefination and ring-closing metathesis (RCM) (Scheme 2).

Scheme 2 Retrosynthetic analysis of (\pm)-nardoaristolone B.
Although the racemic natural product could be synthesized in 5 steps, the overall yield of the synthesis was very low (1.4\%). Nevertheless, adding two more steps to the synthesis the overall yield could be increased to 5.8%. Tiglic aldehyde (8) and diene 7 were exposed to a boron trifluoride-mediated Diels-Alder cycloaddition followed by a Wittig reaction. The resulting diene 6 could be isolated in $8-10 \%$ yield as a $9: 1$ mixture of diastereomers. Diene 6 could be obtained in higher yield (41%) and the same diastereoselectivity after being replaced by its more stable ester analogue 9 . Nevertheless, two more steps (DIBALH reduction and Wittig reaction) were required to reach the desired intermediate 10. Ringclosing metathesis using Grubbs-II catalyst, followed by a double allylic oxidation gave the doubly oxidized diene 5 in 44% yield over 2 steps. A final cyclopropanation using diphenylisopropyl sulfinium tetrafluoroborate under basic conditions ${ }^{119}$ gave the desired racemic natural product albeit in low yield (32\%) (Scheme 3).

[^37]

Scheme 3 Total synthesis of (\pm)-nardoaristolone B. ${ }^{118}$
The endo-stereochemistry of the last reaction was consistent with an approach of the sulfur ylide reagent from the opposite side of the methyl groups. Interestingly, the exocyclopropanation could be obtained using the same conditions as for nardoaristolone B after a reduction of the trisubstituted olefin of the dioxidized diene 5 followed by the selective protection of the cyclohexanone moiety as an acetal. The convex shape of the new bicyclic product formed (11), favored the attack of the ylide from the exo face (same side as the methyl groups) (Scheme 4).

Scheme 4 Synthesis of exo-cylopropanated (\pm)-nardoaristolone B analogue.

(-)-Aristolone

As it has already mentioned, (-)-aristolone was isolated from the roots of Nardostachys chinensis, ${ }^{112}$ the sesquiterpene was isolated for the first time from the roots and the fruits of Aristolochia debilis Sieb. et Zucc. in $1955 .{ }^{120}$ However, its structure was not determined until the early 60s, when the groups of Furukawa and Büchi could establish the absolute configuration of the natural product. ${ }^{121}$ Since then, three different total syntheses of (\pm) aristolone have been reported in the literature.

[^38]The Robinson annulation of methyl vinyl ketone with 2,3-dimethylcyclohexanone was the starting point of the first synthesis. ${ }^{122}$ Treatment of the conjugated bicyclic ketone 13, obtained as a 2:3 mixture of diastereomers (in disfavor of the desired one), with $\mathrm{Li}-\mathrm{NH}_{3}$ gave the trans-2-decalone that was brominated after the addition of AcOH and Br_{2}. Elimination of the halogen upon addition of HMPA (14) followed by the addition of 2diazopropane led to the formation of the pyrazoline ring of 15 by a 1,3-dipolar cycloaddition. Its photolysis gave the formation of (\pm)-trans-dihydroaristolone $\mathbf{1 6}$, which after a bromination / elimination sequence let to the isolation of (\pm)-aristolone for the first time (Scheme 5).

16
15
Scheme 5 First total synthesis of (\pm)-aristolone. ${ }^{123}$
The second synthesis relied on a copper-catalyzed cyclization of diazoketone 23 bearing a pendant olefin to construct the cyclopropyl ring as the key step (Scheme 6). ${ }^{124}$ The 6position of 2,3-dimethylcyclohexanone was blocked using ethyl formate and further converted to its $6-n$-butylthiomethylene derivative 17. Alkylation using methallyl chloride followed by the alkaline hydrolysis of the thiomethylene group gave the trialkylated ketone 18 as a 4:1 ratio of diastereomers. Isomerization of $\mathbf{1 8 a}$ using p-toluenesulfonic acid gave the internal olefin 19 along with hemiacetal 20 as a $1.2: 1$ mixture of products. The diazoketone-containing side chain was introduced using cyanomethylphosphonate giving a mixture of α, β - and β, γ-unsaturated nitriles 21 and 22 in a $2: 1$ ratio. Hydrolysis of both isomers gave the β, γ-unsaturated carboxylic acid as the sole product that was further converted into its acyl chloride analogue and finally to the corresponding diazoketone $\mathbf{2 3}$. Heating diazoketone 23 at reflux in the presence of CuSO_{4} gave 42% yield of (\pm)aristolone and 20% of (\pm)-6,7-epi-aristolone.

[^39]

Scheme 6 Second total synthesis of (\pm)-aristolone.
The last synthesis was reported by the group of Chan ${ }^{125}$ and was based on a methodology disclosed by the same group. ${ }^{126}$ 3-(Phenylthio)-1-(trimethylsiloxy)-1-methoxy-1,3butadienes (24) was found to participate in Michael additions with α, β-unsaturated ketones under Lewis acid conditions. Subsequently, a Claisen condensation took place. Interestingly, the annulation could be controlled to give the trans- or cis- fused compounds stereoselectively. This procedure gave access to the 9 -methyldecalin scaffold with a transjunction 25 that was used as the starting point. Treatment with methylmagnesium bromide gave a mixture of isomeric alcohols 26 that were dehydrated using $\mathrm{H}_{2} \mathrm{SO}_{4}$ yielding 27. Transformation of the thioether to the enolether followed by hydrogenation in the presence of $\mathrm{Pd} / \mathrm{CaCO}_{3}$ conditions delivered 28. Reduction of $\mathbf{2 8}$ using LiAlH_{4} gave intermediate 14, which was converted to the final product after following the same synthetic sequence used in the synthesis presented above (Scheme 7).

[^40]

Scheme 7 Third total synthesis of (\pm)-aristolone.

The synthesis of Kanshone H has never been accomplished.

Gold(I) Catalysis in Total Synthesis

As mentioned in the general introduction, the exceptional ability that gold(I) has to activate π-bonds creating complex ring systems has drawn significant attention towards its application in the synthesis of natural products. The high stability of gold catalysts to air and moisture as well as the mild conditions usually required, explain the increasing number of total syntheses involving a gold-catalyzed transformation. ${ }^{127}$

Our group has contributed to the field significantly, first by reporting the syntheses of pubinernoid B (originally proposed structure), orientalol F^{91} and englerins A and $\mathrm{B} .{ }^{92}$ These three molecules share an oxatricyclic skeleton that could originate from a gold(I)catalyzed $[2+2+2]$ cycloaddition reaction. The key step for the synthesis of $(+)$ schisanwilsonene A involved a tandem gold(I)-catalyzed cyclization of a 1,6-enyne followed by 1,5 -acyloxy migration with a final trapping of the resulting carbene by an intermolecular cyclopropanation. ${ }^{128}$ More recently, the synthesis of three aromadendranes $((-)$-epiglobulol, (-)-4 $\beta, 7 \alpha$-aromadendranediol, and $(-)-4 \alpha, 7 \alpha$-aromadendranediol) has been completed using a stereodivergent gold(I)-catalyzed cascade reaction (Scheme 8). ${ }^{129}$

[^41]
originally proposed structure for pubinernoid B

(+)-orientalol F

(-)-englerin A

(+)-schisanwilsonene A

(-)-epiglobulol

(-)-4, 7α-aromadendranediol

(-)-4 $3,7 \alpha$-aromadendranediol

Scheme 8 Total synthesis reported by our group using gold(I)-catalyzed cascade reactions.
However, the use of oxidative gold(I)-catalyzed transformations in total synthesis still remains an untapped opportunity to built-up complexity in a single step.

So far, (\pm)-cermizine C has been the only natural product synthesized using an intramolecular oxidative gold(I)-catalyzed cyclization (Scheme 9). ${ }^{130}$ Cis-2,4dimethylpiperidine (24), prepared from 4-methylpiperidine in five steps, was alkylated and converted into quinolizidinone 31 upon addition of m-CPBA and the $\mathrm{Au}(\mathrm{I})$ source. Final deoxygenation let to the isolation of the desired natural product.

Scheme 9 Total synthesis of (\pm)-cermizine C using an oxidative gold(I)-catalyzed cyclization.

The key step involved an initial formation of the tertiary aliphatic amine N-oxide that underwent gold-catalyzed intramolecular alkyne oxidation leading to α-oxo gold carbene \mathbf{I}. Migration of the amine α-hydrogen giving III followed by cylization provided the quinolizidinone 31 (Scheme 10).

[^42]

Scheme $10 \mathrm{Au}(\mathrm{I})$-catalyzed transformation in the synthesis of (\pm)-cermizine C .

Gold(I)-Catalyzed Oxidative Cyclization of Enynes

As described in the general introduction, in 2011, the group of Liu contributed with a new methodology involving a gold(I) mediated oxidative cycloisomerization of 1,5-enynes (Scheme 11). ${ }^{35 \mathrm{a}}$ The outcome of the reaction could be tuned by the use of terminal or nonterminal alkynes. Products of 5-exo-dig cyclization were obtained using 2aminoalkynylstyrenes analogues, whereas the corresponding 5-endo-dig derivatives were isolated with terminal alkynes. 8-Methylquinoline- N-oxide and $\operatorname{IPrAuNTf}_{2}$ were found to be the oxidant and gold source of choice, respectively.

Scheme 11 Oxidative cycloisomerization of 1,5-enynes.
One of the most relevant examples, due to its structural similarity with nardoaristolone B and (-)-aristolone, is the transformation of substrate 32 whose structure is not based on an arene and which gave the cyclopentanone derivative 33 in 78% yield (Scheme 12). Additionally, 1,6-enyne 34 could also be cyclized in 61% yield, although it required a longer reaction time.

Scheme 12 Selected examples of oxidative cyclization of 1,5- and 1,6-enynes.
The authors proposed two different pathways for the cylcloisomerization of terminal alkynes. After the activation of the alkyne by the metal, a 6-endo-dig cyclization can take place followed by the oxidation of the resulting carbene giving the tricyclic product VII. However, several control experiments supported an alternative mechanism involving the initial oxidation of IV giving the α-oxo gold carbene \mathbf{V} that could further be trapped with the alkene moiety (Scheme 13).

Scheme 13 Proposed mechanisms for the formation of tricyclic ketones VII.

Nonetheless, we suspect that the first mechanism proposed only applies to non- or monosubstituted alkenes. When the alkene bears two substituents, a 5 -exo-dig cyclization is favored, since the resulting tertiary carbocation VIb is presumably more stable than the benzylic one (VIa). In all cases, whether the transformation proceeds via one or the other pathway, ultimately, it leads to the formation of the same product VII.

The oxidation / cyclization sequence was the one favored by the authors since $\mathbf{3 6}$ was only cyclized under Au-catalyzed conditions when the oxidant was present in the reaction media. Furthermore, 38 was converted to $\mathbf{3 9}$ after a proposed α-oxo carbene formation followed by $\mathrm{C}-\mathrm{H}$ insertion (Scheme 14). Finally, the authors were expecting the
rearomatization of hypothetical benzyl cation VIa (starting from monosubstituted alkenes) to give naphthalenes VIII rather than the oxidized product (Scheme 13).

IPrAuCl/AgNTf ${ }_{2}$ (5 mol \%)

Scheme 14 Control experiments of the $\mathrm{Au}(\mathrm{I})$-catalyzed oxidative cyclization of $\mathbf{3 6}$ or $\mathbf{3 8}$.

Objectives

Inspired by the easy accessibility of $6 / 5 / 3$ tricyclic compounds through the gold(I)catalyzed oxidative cyclization of terminal 1,5 -enynes, ${ }^{35 \mathrm{a}}$ we decided to synthesize for the first time nardoaristolone B in an enantioenriched form (Figure 3).

Figure 3 Structure of nardoaristolone B.
Following a parallel approach, we decided to expand the cyclization to 1,6-enynes towards the first asymmetric synthesis of (-)-aristolone and kanshone H (Figure 4).

Figure 4 Structures of (-)-aristolone and kanshone H.

Results and Discussion

The retrosynthetic plan envisioned for the synthesis of all the natural products featured an oxidative gold(I)-catalyzed cyclization of a 1,5- or a 1,6-enyne as a key step, inspired by the methodology reported by Liu (Scheme 15). ${ }^{35 \mathrm{a}}$

Scheme 15 Convergent retrosynthetic analyses of nardoaristolone B, (-)-aristolone and kanshone H .
The three tricyclic natural products could be accessed from the above-mentioned cyclization of the corresponding $1,5-(40)$ or 1,6 -enynes (43). These enynes could arise from a common vinyl triflate intermediate 41, which could be used as the electrophilic coupling partner of a cross coupling reaction. Compound 41 would be formed from its ketone analogue $\mathbf{4 2}$ that could be obtained by double alkylation of 2-methylcyclohexenone. Although 2-methylcylohexenone is a commercially available starting material, the price of its precursor 2-methylcyclohexanone is much more attractive ($60 € / \mathrm{g}$ vs $0.8 € / \mathrm{g}$). ${ }^{131}$ Therefore, we prepared 2-methylcyclohexenone by bromination of 2-methylcyclohexanone followed by elimination of HBr under basic conditions (Scheme 16). Despite the high yields reported in the literature procedures, under the best conditions 2methylcylohexenone was obtained in 55%.

Scheme 16 Synthesis of 2-methylcyclohexenone.

[^43]
Synthesis of trialkylated ketone 42

In order to reach the trialkylated ketone 42, we studied in parallel two different approaches: a more challenging one pot procedure and the dialkylation through a two (or three)-step process. In both cases, the use of phosphoramidite was crucial to induce enantioselectivity at C-3. ${ }^{132}$

One-step dialkylation reaction

The dialkylation in one step encompassed a copper-catalyzed enantioselective Michael addition of 2-methylcyclohexenone followed by enolate trapping. ${ }^{133}$ This reaction had been studied by the group of Alexakis ${ }^{134}$ and, later, by the groups of Cramer ${ }^{135}$ and Maldonado ${ }^{136}$ (Scheme 17). The aluminium enolate could be formed in 90% ee after treating 2-methylcyclohexenone with a mixture of a copper source, Feringa's phoshoramidite ligand and AlMe_{3}. The resulting metal enolate could then be trapped with different benzyl and propargyl iodides, whereas the corresponding bromides were unreactive. ${ }^{135}$ The addition of MeLi was crucial for this alkylation to proceed, by enhancing the nucleophilic character of the ate-complex, ${ }^{137}$ while the use of HMPA as solvent was essential as well. The trapping of the metal-enolate could also be performed using 4-methyl-3-furaldehyde forming the corresponding aldol product. ${ }^{136}$ The similar procedure using Grignard reagents was also developed, forming the corresponding magnesium-enolate intermediates that could react with propargyl bromides, activated alkyl or allyl halides and benzyl bromides. ${ }^{134 \mathrm{~b}}$ However, in this latter case, Mauduit-type NHC ligand had to be employed since phosphoramidites did not induce enantioselectivity. ${ }^{138}$ Besides, addition of MeLi was not required to enhance the nucleophilic character of the enolate. In all the cases, the trisubstitued ketones were isolated as a mixture of diastereomers in favor to the depicted one. The electrophile always approaches from the least hindered face, which is the one opposite the substituent at C-3. ${ }^{139}$

[^44]

Scheme 17 Cu -catalyzed Michael addition followed by enolate trapping.
We started examining the reaction generating aluminium enolate complexes that were trapped with methallyl bromide. Very low yields were obtained in the firsts attempts recovering mainly the starting material even increasing the reaction times or raising the temperature (Table 1, entry 1). Encouragingly, full conversion was not achieved until we added the phosphoramidite ligand to the reaction mixture: such ligand acceleration has been previously demonstrated. ${ }^{140}$ Ketone $\mathbf{4 5}$ was always isolated as a byproduct (Table 1, entry 2). In order to have a more reactive electrophile, we decided to generate in situ methallyl iodide synthesized from its bromide analogue and NaI. Although only traces of trialkylated ketone 44 were isolated (Table 1, entry 3), the yield was substantially improved using the previously synthesized and isolated electrophile (Table 1, entry 4). Ketone 44 was isolated as a $3: 1$ mixture of separable diastereomers with a $91-92 \%$ ee. ${ }^{141}$ Other attempts to improve this yield were unsuccessful. Remarkably, when MeLi was not added, the desired product 44 was not formed, leading mainly to the isolation of ketone 45 (Table 1, entry 5). In order to improve the levels of $d r$, we tried to use methally triflate. However, its synthesis proved to be unsuccessful (the neat product decomposed spontaneously). Substituting AlMe_{3} to ZnMe_{2} did not give the Michael addition product, and only starting material was recovered.

Table 1 Optimization of the conditions for the $\mathrm{Cu}(\mathrm{I})$-catalyzed conjugate addition followed by Al-enolate trapping.

[^45]| Entry | Electrophile | Yield $\mathbf{4 4}$ and $\mathbf{4 5}$ | Change from standard
 conditions |
| :---: | :---: | :---: | :---: |
| 1 | $\mathrm{X}=\mathrm{Br}$ | $7^{[\mathrm{ax}]}$ | No ligand added |
| 2 | $\mathrm{X}=\mathrm{Br}$ | 18% and 24% | - |
| 3 | $\mathrm{X}=\mathrm{I}$ | 6% and 20% | Electrophile generated in situ
 from methallyl bromide and NaI
 $\mathbf{4}$ |
| $\mathbf{X}=\mathbf{I}$ | $\mathbf{4 5 \%}$ and $\mathbf{1 5 - 2 0 \%}$ | - | |
| 5 | $\mathrm{X}=\mathrm{I}$ | 9% and 62% | MeLi not added |
| 6 | $\mathrm{X}=\mathrm{I}$ | No reaction | ZnMe_{2} instead of $\mathrm{AlMe} \mathrm{Me}_{3}$ |
| | | | |

We then further optimized these reaction conditions decreasing the amount of electrophile used as well as solvent without any drop in the yield, $d r$ or $e e$ (Table 2). Although this transformation was performed with the utmost precautions, yields ranged from 45-52\% obtaining between $15-20 \%$ of $\mathbf{4 5}$ as byproduct. The yield of $\mathbf{4 4}$ could finally be improved up to 55% upon addition of THF as solvent in the second step whilst the amount of 45 was reduced.

Table 2 Optimization of the conditions for the $\mathrm{Cu}(\mathrm{I})$-catalyzed conjugate addition followed by Al-enolate trapping.

Entry	Change from standard conditions	Yield 44
1	1 mmol scale; $2 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and 2 mL HMPA 2 equiv electrophile	48\%
2	7 mmol scale; $3 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and 3 mL HMPA 2 equiv electrophile	52\%
3	9 mmol scale; $4 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ and 4 mL HMPA 1.3 equiv electrophile	45\%
4	18 mmol scale; $15 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$, 15 mL THF and 12 mL HMPA 1.7 equiv electrophile	55\%

Since this reaction was performed several times, the amount of byproduct 45 was significant. We then decided to convert it into the trialkylated ketone $\mathbf{4 4}$ by using a slightly modification of Piers' procedure. ${ }^{124,142}$ Reaction of 45 with ethyl formate blocked the position at C-6 forming hydroxymethylene ketone 46. Addition of n-butanethiol gave intermediate 47, which could easily be alkylated using methallyl bromide. Final hydrolysis of the protecting thiomethylene group led to the isolation of ketone 44 as a $4: 1$ mixture of diastereomers (Scheme 18).

[^46]

Scheme 18 Recycling hydrolyzed ketone 45 to trialkylated ketone 44.
When isobutyraldehyde was the electrophile, the resulting aldol product 49 could only be obtained in 6% yield. Trying to change the conditions by adding MeLi to the enolate or HMPA did not give any product (Scheme 19).

Scheme 19 Enantioselective $\mathrm{Cu}(\mathrm{I})$-catalyzed conjugate addition followed by Al-enolate trapping.
We then switched to the magnesium-enolate approach. Since the synthesis of the Mauduittype NHC ligand involves 5 steps, ${ }^{134 b}$ we initially screened the reaction conditions using a simpler and commercially available carbene. The improved yield observed with the trapping of methallyl bromide (compared to the one obtained from the aluminium-enolate trapping) was attributed to the higher nucleophilicity of the resulting metal-enolate. When methallyl iodide was utilized instead, the desired product 44 was obtained in 51% in a 3.6:1 mixture of diastereomers along with 20% of 2,3-dimethylcyclohexanone (45) (Table $3)$.

Table 3 Optimization of the conditions for the $\mathrm{Cu}(\mathrm{I})$-catalyzed conjugate addition followed by Mg-enolate trapping.

Entry	Electrophile	Yield $\mathbf{4 4}$ and $\mathbf{4 5}$
1	$\mathrm{X}=\mathrm{Br}$	30% and $5 \%{ }^{\left[{ }^{[a]}\right.}$
$\mathbf{2}$	$\mathbf{X}=\mathbf{I}$	$\mathbf{5 1 \%}$ and $\mathbf{2 0 \%}$

${ }^{[a]} 90 \%$ conversion.

The use of the NHC-Maudit carbene gave moderate levels of enantioselectivities in the described methodology (80% ee in all the examples) ${ }^{134 \mathrm{~b}}$ and its synthesis was complex. Therefore, we decided to use the aluminium-enolate procedure.

Two or three-steps dialkylation reaction

For this approach we sought to perform an enantioselective conjugate addition of the methyl group at C-3 following the procedure described by Alexakis. ${ }^{134 a}$ However, we decided to initially focus on the more difficult second alkylation. Early attempts to alkylate 2,3-dimethyl-1-trimethyloxycyclohexene gave a mixture of mono- and doubly alkylated products in very low yields although the base used was MeLi, which is known to favor the formation of thermodynamic enolates (Scheme 20). ${ }^{143}$

Scheme 20 Alkylation of 2,3-dimethyl-1-trimethyloxycyclohexene with MeLi.
To avoid the polyalkylation, we converted the thermodynamic controlled lithium-enolate to its manganese analogue. The resulting Mn-enolates had been found to give monoalkylated ketones regioselectively. ${ }^{144}$ Despite our efforts, only traces of the desired alkylated ketone were observed.

The group of Yamamoto designed a new protocol in which the enolate formed under kinetically controlled conditions was resulting in the alkylation at the more hindered α-position. ${ }^{145}$ The combination of the bulky aluminium tris(2,6-diphenylphenoxide) (ATPH) and LDA was essential to make the reaction proceed. This new procedure provides an entry for the highly selective alkylation at the more-substituted α-carbon of unsymmetrical ketones. However, this approach was not successful in our case, recovering most of the starting material (Scheme 21).

Scheme 21 Failure to alkylate 2-methylcyclohexanone with LDA and ATPH.
The low reactivity of the methallyl bromide used as electrophile made us turn our attention to another highly regioselective protocol. Different aldehydes could be added to the encumbered α-position of unsymmetrical ketones, including 2-methylcyclohexane, upon addition of catalytic quantities of $\mathrm{TiCl}_{4}{ }^{146}$ When we tried to reproduce the reaction between 2-methylcyclohexanone and isobutyraldehyde under the conditions reported, only decomposition of starting materials was observed (Scheme 22).

[^47]

Scheme 22 Failure to add isobutyraldehyde to 2-methylcyclohexanone in the presence of TiCl_{4}.
We finally tried the coupling of silyl enol ether $\mathbf{5 0}$ and dimethallyl carbonate $\mathbf{5 1}$ using a Pd-catalyzed decarboxylative alkylation reaction based on a reported methodology. ${ }^{147}$ The reaction was initiated by the presence of tetra- n-butylammonium difluorotriphenylsilicate (TBAT) generating the enolate that could be coupled to the $\left\{\mathrm{Pd}^{\mathrm{II}}(\right.$ allyl $\left.)\right\}$ species formed during the course of the reaction by decarboxylation of 51. Although the reaction proceeded very efficiently (79\% reported yield) using 2-methyl-1trimethyloxycyclohexene (50) and 51, the yield dropped to 10% using the same enol ether with a methyl group at C-3. Starting material was also recovered (Scheme 23). It is worth mentioning that none of the reported examples feature a tertiary or quaternary carbon at C 3.

Scheme 23 Pd-catalyzed decarboxylative alkylation of 2,3-dimethyl-1-trimethyloxycyclohexene.
Since none of the reactions among this two-step processes were effective, we focused on the straightforward one-pot procedure using AlMe_{3} and methallyl iodide.

We then focused our attention on the isomerization of the terminal double bond of 44 . The group of Piers had performed this transformation under acid-catalyzed conditions obtaining a mixture of isomerized trisubstituted ketone 19 and the hemiacetal 20 in 46% and 37% yield, respectively (Scheme 6). ${ }^{124}$ The byproduct could be avoided protecting the ketone as its ethylene acetal form (52). Despite the fact that the isomerization then proceeded quantitatively, the poor-yielding transacetalization was a major drawback (Scheme 24). ${ }^{142}$

Scheme 24 Transacetalization of trisubstituted ketone 18 followed by isomerization of the alkene.

[^48]$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ was also found to isomerize the terminal double bond after refluxing $\mathbf{1 8}$ in EtOH for $72 \mathrm{~h} .{ }^{142}$ Although the reported yield was 55%, when we tried to reproduce these conditions, the desired product was not formed (Table 4, entry 1). We then decided to screen different metal complexes and acids capable of isomerizing olefins. Whilst $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ gave only traces of product in our system (Table 4, entry 2), ${ }^{148} \mathrm{RhCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ showed greater efficiency (Table 4, entry 3). ${ }^{149}$ The use of Crabtree's iridium(I) catalyst had shown migration abilities under H_{2} pressure, ${ }^{150}$ although in our system, the method only afforded the reduction of the olefin (Table 4, entry 4). Trisubstituted ketone 44 decomposed upon addition of triflic acid (Table 4, entry 5). ${ }^{151}$

Table 4 Screening of conditions to isomerize the terminal olefin.

Entry	Metal or acid	Conditions	Outcome ${ }^{[\mathrm{al}]}$
1	${\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}}^{\text {EtOH, reflux, } 52 \mathrm{~h}}$	No reaction	
2	$\mathrm{PdCl}_{2}\left(\mathrm{PhCN}_{2}\right.$	$\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$, reflux, 20 h	Traces of $\mathbf{4 2}$
3	$\mathrm{RhCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}^{[\mathrm{bb}]}$	EtOH, sealed tube	42% of $\mathbf{4 2}+$
	Crabtree's Ir	$115^{\circ} \mathrm{C}, 1 \mathrm{~h}$	$10 \% \mathbf{4 4}$
4	catalyst	$\mathrm{H}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$,	Hydrogenated 42
5	$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$	dioxane, $93^{\circ} \mathrm{C}, 12 \mathrm{~h}, 30 \mathrm{~h}$	Decomposition

${ }^{[a]}$ All these reactions were performed using a 3:1 mixture of diastereomers. ${ }^{[b]}$ Rh source from Stream Chemicals.
The mechanism of migration varies according to the metal (or acid) and the conditions used. Our system could not tolerate acid-catalyzed conditions, and the formation of π-allyl complexes (formed using $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ that would evolve through 1,3-hydrogen migrations) was difficult. ${ }^{152}$ Thus, we decided to focus on the most promising result obtained when using RhCl_{3}.

Surprisingly, when we reproduced the migration using $\mathrm{RhCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ under the same isomerization conditions the reaction failed. Examining the experimental setup more closely, we discovered that the Rh source used was purchased from Sigma-Aldrich whereas in the first experiment it was supplied by Stream Chemicals. We then examined the optimal reaction conditions using a $3: 1$ mixture of diasteromers ($\mathbf{4 4}$ and $\mathbf{4 4}^{\prime}$). The conversion could be increased by reducing the temperature to $70^{\circ} \mathrm{C}$ (Table 5, entry 1) and increasing the reaction time (Table 5, entry 2). Surprisingly, the desired diasteromer was reacting preferentially. When the reaction was left for prolonged time, full conversion

[^49]could never be reached, while both, starting material and product were decomposed to some extend (Table 5, entry 3). Only traces of product were observed under refluxing conditions (Table 5, entry 4). The reaction could also be performed under MW irradiation reducing the reaction time (Table 5, entries 5, 6 and 7). The use of other solvents did not improve the reaction efficiency (Table 5, entries 8 and 9).

Table 5 Optimization of the conditions for the RhCl_{3}-catalyzed isomerization.

Entry	Time	Temp	Yield $(\mathbf{4 2}+\mathbf{4 4})^{[\mathbf{a}]}$	$\boldsymbol{d} \boldsymbol{r}$	Change from standard conditions
1	1 h	$70^{\circ} \mathrm{C}$	$51 \%+20 \%$	$12: 1$	-
$\mathbf{2}$	$\mathbf{4 ~ h}$	$\mathbf{7 0}^{\circ} \mathbf{C}$	$\mathbf{6 0 \%}+\mathbf{1 4 \%}$	$\mathbf{6 : 1}$	-
3	13 h	$70^{\circ} \mathrm{C}$	$40 \%+3 \%$	$3: 1$	-
4	4 h	$80^{\circ} \mathrm{C}$	$8 \%+70 \%$	-	Reflux
5	1.5 h	$70^{\circ} \mathrm{C}$	$60 \%+14 \%$	$7: 1$	MW irradiation
6	1.5 h	$80^{\circ} \mathrm{C}$	$45 \%+16 \%$	$6: 1$	MW irradiation
7	2 h	$60^{\circ} \mathrm{C}$	$25 \%+55 \%$	$13: 1$	MW irradiation
8	1.5 h	$70^{\circ} \mathrm{C}$	$0+55 \%$	-	MeOH as solvent
9	1.5 h	$70^{\circ} \mathrm{C}$	$46 \%+9 \%$	$4: 1$	MW irradiation
9 -PrOH as solvent					
MW irradiation					

${ }^{[a]}$ Yield determined by ${ }^{1} \mathrm{H}$ NMR using diphenylmethane as internal standard.
The proposed mechanism features an initial coordination of the metal to the olefin that undergoes hydride insertion through a hydride-transfer mechanism, where the hydride originates from the solvent. ${ }^{153} \mathrm{RhCl}_{3}$ is believed to undergo an initial reduction to $\mathrm{Rh}(\mathrm{I})$ under the isomerization conditions.

Considering the reaction as an equilibrium and therefore knowing that full conversion would not be attained, we set up the reaction using pure diastereomer 44 at $75^{\circ} \mathrm{C}$ for 4.5 h . We were then delighted to isolate $\mathbf{4 2}$ in 75% yield, containing traces of the unreacted ketone 44 . We could further optimize the reaction conditions by reducing the amount of catalyst to $5 \mathrm{~mol} \%$ and increasing the concentration to 0.078 M without a significant drop in yield (Scheme 25).

Scheme $25 \mathrm{RhCl}_{3}$-catalyzed isomerization of 44.

[^50]
Synthesis of 1,5-Enyne Towards Nardoaristolone B

For the synthesis of 1,5-enyne precursor, we envisioned two different strategies. The first one involved the formation of the enol triflate 41 from ketone 42 followed by a cross coupling reaction. In parallel, reacting 42 with ethynyl magnesium bromide followed by elimination of the hydroxyl group could also give access the desired enyne.

Ketone 42 could be converted into 41 using LDA and the triflating reagent $2-[N, N-$ bis(trifluoromethylsulfonyl)amino]pyridine in 82% yield (Scheme 26).

Scheme 26 Triflation of the isomerized ketone 42.

Enol triflate 41 could then be coupled to ethynyltrimethylsilane using standard Sonogashira cross coupling conditions. Upon methanolysis of the TMS group, 1,5-enyne 40 was isolated in 74% yield over two steps (Scheme 27). All the attempts to access to the 1,5 -enyne in one step from triflate $\mathbf{4 1}$ using a Kumada cross coupling were unsuccessful. Different Ni, Pd and Co^{154} catalysts were screened but $\mathbf{4 0}$ was not observed.

Scheme 27 Sonogashira cross coupling reaction followed by deprotection of TMS group.
Isomerized ketone $\mathbf{4 2}$ could be converted into its propargylated alcohol $\mathbf{5 4}$ upon addition of ethynyl magnesium bromide in 43% yield. Its dehydration under acidic conditions let to the undesired cyclic ether 55 (Scheme 28).

Scheme 28 Generation of propargyl alcohol $\mathbf{5 4}$ followed by formation of cyclic enol ether 55.

[^51]
Gold(I)-Catalyzed Cyclization to Access to Nardoaristolone B

The first trial for the gold(I)-catalyzed oxidative cyclization was done using the reported optimized conditions. ${ }^{35 \mathrm{a}}$ Full conversion was obtained after heating 40 with $\operatorname{IPrAuNTf}_{2}$ as catalyst and 8 -methylquinoline- N-oxide at $80^{\circ} \mathrm{C}$ for 4 h (Scheme 29). The tricyclic oxidized compound $\mathbf{5 6}$ could be isolated in 20% yield along with the cycloisomerized product 57 arising from the 5 -endo-dig cyclization.

Scheme 29 Oxidative $\mathrm{Au}(\mathrm{I})$-catalyzed cyclization of 1,5-enyne 40.
In order to increase the yield of the oxidized product, we decided to screen the most common oxidants used in this type of oxidative cyclizations (Table 6). ${ }^{155}$

Table 6 Screening of different oxidants in the $\mathrm{Au}(\mathrm{I})$-catalyzed reaction.
Entry

While the use of simple pyridine- N-oxide gave almost only the desired product albeit in low yield (Table 6, entry 2), 2,6-dimethylpyridine- N-oxide gave a $1: 2$ mixture of the oxidized and non-oxidized products (Table 6, entry 3), respectively. Interestingly, tricyclic

[^52]compound $\mathbf{5 7}$ was obtained exclusively using 2-tert-butyl- or 2,6-dichloropyridine- N -oxide (Table 6, entries 4 and 5). The optimal oxidant proved to be 3,5 -dichloropyridine- N-oxide, which gave 56 in 74% yield (Table 6, entry 6). The use of $5 \mathrm{~mol} \%$ of Au in this last case did not result in any drop in the yield. Remarkably, the 1,5-enyne was fully decomposed when no oxidant was added (Table 6 , entry 8).

To explain the generation of the cycloisomerized product 57, the initial formation of α-oxo gold carbene has to be ruled out. However, the use of the pyridine- N-oxide is required since the reaction does not take place in the absence of the additive. It is likely that a 5-endo-dig cyclization initially takes place to form IX, followed by a proton abstraction at the α-position of the unsaturated carbon to give XI. Oxidation of carbene IX would lead to X, which finally gives 56 (Scheme 30).

Scheme 30 Plausible mechanism for the gold(I)-catalyzed step.
The outcome of the reaction seems complex and no simple rationale can be proposed. No trend is observed between the ratio of cycloisomerized product 57 and the pK_{a} of the corresponding pyridine (Table 7). This supports that several factors such as the nucleophilicity of the N-oxide, basicity of the pyridine and/or pyridine N-oxide, nucleofugacity of the pyridine or/and steric hindrance of the pyridine- N-oxide might be at play.

Table $7 \mathrm{pK}_{\mathrm{a}}$ of the pyridine precursors of the additives used as oxidants.
Oxidant

A final screening of different ligands in the gold(I) catalyzed transformation was carried out (Table 8). Interestingly, the two Buchwald-type phosphines employed gave substantially different results despite their structural similarity (Table 8 , entries 1 and 2). The use of the two most electronically distinct gold complexes (phosphite and NHC carbenes) gave the same outcome (Table 8, entreies 3, 4 and 5). Finally, $\operatorname{IPrAuNTf}_{2}$ remained the most efficient catalyst. We could not observe any correlation between the electrophilicity of the ligand used and the preferent formation of the cycloisomerized product 57 or the oxidized tricycle 56.

Table 8 Screening of different $\mathrm{Au}(\mathrm{I})$ catalysts.

Allylic Oxidation: Nardoaristolone B

The end-game of the synthesis was accomplished by allylic oxidation of 56. The use of excess of CrO_{3} and 3,5-dimethylpyrazole gave only traces of product. ${ }^{156}$ We decided to switch to another methodology avoiding the use of Cr , by following the procedure described by Yu and Corey. ${ }^{157}$ Nardoaristolone B was obtained in 93\% yield treating 56 with $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ and t - BuOOH under basic conditions (Scheme 31).

Scheme 31 Allylic oxidation of $\mathbf{5 6}$ using Pearlmann's catalyst and t - BuOOH .

[^53]
Approach to the Synthesis of (-)-Aristolone and Kanshone H: Synthesis of 1,6-Enyne

For the synthesis of the 1,6 -enyne we considered six different approaches: propargylation and regioselective elimination, Horner-Emmons reaction and other classical transformations, vinyl bromide formation followed by alkylation, Shapiro reaction and propargylation, homologation reaction and finally, cross-coupling reaction (Scheme 32). Some of these reactions were first studied using methylcyclohexanone derivatives as model systems.

Scheme 32 Different approaches to access the 1,6-enyne 43.

Propargylation and Regioselective Elimination

2-Methylcyclohexanone could be easily propargylated using a Grignard reaction in 85% yield as a mixture of diastereomers. However, the elimination under dehydrating conditions gave rise to a mixture of different endo and exo isomers. ${ }^{158}$ The different components obtained could not be separated by chromatography due to their very similar polarities (Scheme 33).

Scheme 33 Propargylation of 2-methylcyclohexanone followed by dehydration.
Despite the difficulties to find the appropriate conditions to get a regioselective elimination of the hydroxyl moiety, we decided to propargylate the trialkylated ketone. The resulting tertiary alcohol was generated as a mixture of diastereomers that could be separated by chromatography. They were later subjected to oxidative gold(I)-catalyzed conditions

[^54](Scheme 34). No product was observed, although the starting materials were fully consumed.

Scheme 34 Propargylation of trialkylated ketone 42 followed by oxidative gold(I)-catalyzed reaction. ${ }^{159}$
We decided to protect the alcohol using a group that would not give migration during the cyclization product. ${ }^{160}$ Treatment of $\mathbf{5 7}$ with 2,6-dimethylpyridine and TMSOTf gave the corresponding protected tertiary alcohol (Scheme 35).

Scheme 35 Silylation of tertiary alcohol 57 with TMS group followed by oxidative gold(I)-catalyzed reaction. ${ }^{159}$
Again, oxidative gold(I)-catalyzed reaction did not prove to be successful. Starting material was still observed in the reaction mixture as well as a range of other different products. In some of them, the OTMS group was still present in the final compound whereas some other showed several olefinic protons. Unfortunately, we were not able to separate them by chromatography and to characterize them. However they presumably arise form the simple cycloisomerization of the starting enyne with or without elimination of the OTMS group.

Homologation

The first homologation process involved the anti-Markovnikov hydration of the 1,5-enyne previously synthesized. Several methods have been reported in the literature constituting a redox-neutral entry to aldehydes. Ruthenium had shown to be the most efficient catalyst to carry out this reaction. However, the reaction usually requires harsh conditions. ${ }^{161} \mathrm{We}$

[^55]initially tried the use of dppm as ligand at $120^{\circ} \mathrm{C}$, but decomposition of the 1,5 -enyne was observed (Scheme 36). Considering that the substrate contained both an alkyne and alkene moieties, it is likely that under Ru catalysis, cycloisomerization has taken place.

Scheme 36 Attempt of hydration of 1,5-enyne 40 in an anti-Markovnikov fashion.

Horner-Wadsworth-Emmons Reaction

All the attempts to perform a Horner-Wadsworth-Emmons reaction proved to be unsuccessful. Ketone 42 was reacted with phosphorous ylide 59 in the presence of NaH , but the desired product could not be observed even after heating the mixture for 20 h (Scheme 37).

Scheme 37 Failure of the Horner-Wadsworth-Emmons reaction to trialkylated ketone 42.
In order to verify if the ylide was indeed formed, we used cyclohexanone. Full conversion to the corresponding α, β-unsaturated ester was observed within 30 min (Scheme 38). We reasoned that the high steric hinderance around ketone $\mathbf{4 2}$ did not allow the reaction to take place.

Scheme 38 Horner-Wadsworth-Emmons reaction of cyclohexanone.
Our subsequent synthetic plan was an initial base-catalyzed deconjugation of the ester. ${ }^{162}$ Reduction to its alcohol and oxidation to the aldehyde using Swern conditions would have provided to the non-conjugated aldehyde that upon treatment with Bestmann-Ohira reagent would have afforded the desired enyne (Scheme 39).

[^56]

Scheme 39 Synthetic plan towards the 1,6-enyne.

Vinyl Bromide Formation and Propargylation

The direct formation of vinyl bromides from ketones is a known procedure. ${ }^{163}$ Enolizable ketones can be converted into their halogen analogues in good to excellent yields applying $(\mathrm{PhO})_{3} \mathrm{P}$-halogen based reagents. Under those conditions, we could convert 4 -tertbutylcyclohexanone into 1-bromocyclohexene in 85% yield (Scheme 40).

Scheme 40 Conversion of 4-tert-butylcyclohexanone into 1-bromocyclohexene.
Unfortunately, trying these conditions on our more substituted substrate $\mathbf{4 2}$ gave only traces of the desired compound (Scheme 41). We thought that the steric environment of our system was the cause of the lack of reactivity. Therefore, triphenylphosphite was replaced by the less bulky trimethylphosphite. However, in this case, no traces of product could be observed. To assess whether the problem was still the steric bulk of the substituted ketone, we performed the bromination of 4-tert-butylcyclohexanone with trimethylphosphite. No reaction took place. We reason that the brominating reagent $(\mathrm{MeO})_{3} \mathrm{P}^{+} \mathrm{Br} / \mathrm{Br}^{-}$was either not formed or it was not reactive enough. Changing the phosphite brominating reagent for 2,4,4,6-tetrabromo-2,5-cyclohexadienone in the presence of triphenylphosphine was also known to promote this transformation. ${ }^{164}$ However, no reaction was observed with cyclohexanone.

Scheme 41 Conversion of ketone 42 into its vinyl bromide analogue.

[^57]Enol triflates can also be converted into the corresponding vinyl bromide analogues under Ru catalysis and in the presence of lithium bromide. ${ }^{165}$ Although this route would feature an extra synthetic step (triflation, bromination and alkylation), we decided to assess its viability. The addition of Zn to the reaction mixture had been found to be crucial in order to reduce the metal to $\mathrm{Ru}(\mathrm{I})$, then allowing the catalytic cycle to start. All the attempts to brominate cyclohex-1-en-1-yl trifluoromethanesulfonate following this procedure failed (Scheme 42).

Scheme 42 Attempts to convert alkenyl triflate into alkenyl bromide.
Before optimizing the formation of vinyl bromide, we checked if the subsequent propargylation reaction would be viable. 1-Bromo-4-(tert-butyl)cyclohex-1-ene was treated with t-BuLi and 1-bromo-2-butyne was added as the model electrophile. However, no alkylation took place; the starting material was still observed in the crude NMR as well as a large amount of 4-(tert-butyl)cyclohex-1-ene (Scheme 43).

Scheme 43 Reactions that would have rendered the desired 1,6-enyne.
We also tried to convert the lithiated species to its copper counterpart and further react it with propargyl bromide but it also failed to provide the alkylated product. Starting material was partially consumed and the only product observed was the reduced starting material. ${ }^{166}$ However, giving that the formation of the vinyl bromide from substituted cyclohexanone 42 failed, we decided to focus on a more direct approach.

Shapiro Reaction and Propargylation

4-tert-Butylcyclohexanone was converted into its tosylhydrazone analogue after addition of p-toluenesulfonyl hydrazide in 81% yield. However, all the attempts to carry out the Shapiro reaction trapping the resulting vinyl lithium intermediate with 1-bromo-2-butyne were unsuccessful. ${ }^{167}$ As previously observed, attempts to transform the lithiated species to the organocuprate only furnished reduced product (Scheme 44).

[^58]

Scheme 44 Unsuccessful Shapiro reaction of 4-tert-butyltosylhydrazone.

Triflation and Cross Coupling

Cross coupling with allenylindium reagent
Interestingly, there is one single example in the literature that reports the cross coupling reaction between sp^{2} carbons and propargyl moieties as nucleophilic counterpart. ${ }^{168}$ Aryl or vinyl iodides and triflates could be coupled to allenylindium reagents (generated in situ from the reaction of In with propargyl bromide) using $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (Scheme 45).

Scheme 45 Cross coupling between aryl or vinyl iodides and triflates with allenylindium.
Since $A u(I)$ can also activate allenes towards the nucleophilic attack of alkynes, we decided to perform the reaction using enol triflate 41 as the electrophilic counterpart. Under the reaction conditions shown, full conversion of the starting material was observed towards a mixture of very apolar molecules with several olefinic protons. However, there were no evidences of the formation of the allene by GCMS analysis. Furthermore, the characteristic downfield signal of an allene in a ${ }^{13} \mathrm{C}$ NMR at around 210 ppm could not be observed (Scheme 46).

Scheme 46 Attempt of cross coupling of enol triflate 41 with allenylindium.
Suzuki cross coupling with propynyl boronic ester derivative
We then decided to try the coupling between the model cyclohexenyltriflate and a propynyl boronic ester derivative $\mathbf{6 0}$, which could be easily synthesized following a known procedure. ${ }^{169}$ A range of conditions was screened, as shown in Table 9.

[^59]Table 9 Conditions screened for the cross coupling between cyclohexenyltriflate and $\mathbf{6 0}$.

Entry	Conditions	Outcome
1	$5 \mathrm{~mol} \% \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 4$ equiv CsF THF, $65^{\circ} \mathrm{C}, 2 \mathrm{~h}$	Conversion to unknown products
2	$\begin{gathered} 5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 10 \mathrm{~mol} \% \mathrm{PPh}_{3}, \\ 3 \text { equiv } \mathrm{K}_{3} \mathrm{PO}_{4} \\ \mathrm{H}_{2} \mathrm{O} / \mathrm{DMF}, 55^{\circ} \mathrm{C}, 6 \mathrm{~h} \end{gathered}$	Some conversion to unknown products
3	$5 \mathrm{~mol} \% \mathrm{PdCl}_{2}$ (dppf), 3 equiv $\mathrm{K}_{3} \mathrm{PO}_{4}$ $\mathrm{H}_{2} \mathrm{O} / \mathrm{DMF}, 55^{\circ} \mathrm{C}, 6 \mathrm{~h}$	No reaction, starter recovered
4	$\begin{gathered} 5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 10 \mathrm{~mol} \% \text { SPhos, } \\ 3 \text { equiv } \mathrm{K}_{3} \mathrm{PO}_{4} \\ \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}, 55^{\circ} \mathrm{C}, 6 \mathrm{~h} \\ \hline \end{gathered}$	No reaction, starter recovered

Among the conditions screened, only the first two gave some conversion to unidentified products. Indeed, the boronic ester $\mathbf{6 0}$ had never been used in a cross coupling reaction. We hypothesized that the transmetalation step was not viable.

Stille Cross Coupling with Allenyltributyltin

We also tried the coupling between a model enol triflate and allenyltributyltin through a Stille coupling. Both the alkylated and allenylated products would have been suitable for a further $\mathrm{Au}(\mathrm{I})$-catalyzed reaction. 4-tert-Butylcyclohexene enol triflate reacted quantitatively with the stannane reagent under standard Stille conditions. ${ }^{170}$ However, analysis of the NMR spectroscopic data revealed that an undesired 1,3-enyne (internal alkyne) had been formed (Scheme 47).

Scheme 47 Coupling of 4-tert-butylcyclohexene enol triflate with allenyltributyltin.
We postulated that under the reaction conditions or after the coupling, allenylstannane was isomerized to 1-propynyltributyltin. Thus, we decided to change the strategy and try the same coupling using an enol stannane as one of the reagents.

[^60] Boronate
We decided to change the strategy and try the coupling using stannane $\mathbf{6 1}$ as the reagent. In this case, the reaction would produce an alkenyl enol ether that under acidic conditions, should be hydrolyzed to the corresponding aldehyde. A subsequent Seyferth-Gilbert homologation would afford the terminal alkyne giving rise to the desired 1,6-enyne. Under the conditions previously described followed by an acidic work-up, 4-tertbutylcyclohexenetriflate was converted into its α, β-unsaturated aldehyde analogue $\mathbf{6 2}$ in 68\% yield (Scheme 48).

Scheme 48 Stille cross coupling between 4-tert-butylcyclohexenetriflate and enol ether stannane $\mathbf{6 1}$.
When the same reaction was performed using the trialkylated enol triflate 41, the corresponding aldehyde $\mathbf{6 3}$ was isolated in 54% yield (Scheme 49).

Scheme 49 Stille cross coupling between enol triflate 41 and enol ether stannane $\mathbf{6 1}$.
Interestingly, the same reaction took place by the Suzuki cross coupling reaction using trans-enol ether boronate $\mathbf{6 4}$, which was synthesized by the hydroboration of ethoxyethyne catalyzed by a zirconium complex. ${ }^{171}$ Boronate $\mathbf{6 4}$ was coupled to enol triflate $\mathbf{4 1}$ using $\mathrm{Pd}_{2} \mathrm{dba}_{3} / \mathrm{PPh}_{3}$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ as base. The amount of the metal needed could be reduced to 2.5 $\mathrm{mol} \%$ and the yield was increased to 61% (Scheme 50). The E-configuration of 63 the α, β-unsaturated aldehyde was determined by nOe (Figure 5).

Scheme 50 Suzuki cross coupling between enol triflate 41 and enol ether boronate $\mathbf{6 4}$.

[^61]

Figure 5 NOESY of α, β-unsaturated aldehyde 63.
Reaction of α, β-unsaturated aldehyde $\mathbf{6 3}$ with the Bestmann-Ohira reagent in methanol led to enyne $\mathbf{6 5}$ in 70\% yield (Scheme 51). Unfortunately, this substrate featured the undesired E-configuration, which was confirmed by nOe (Figure 6).

Scheme 51 Seyferth-Gilbert homologation of α, β-unsaturated aldehyde 63 giving 1,6-enyne 65.

Figure 6 NOESY of 1,6-enyne 65.
Although substrate 65 had the wrong E-configuration, under oxidative gold(I)-catalyzed conditions, traces of cyclization product of was observed. Presumably, the gold(I) catalyst is able to partially isomerize $E-65$ to form a small amount of $Z-65$.

> Kumada Cross Coupling with Propargyl Magnesium Bromide Derivatives

The first Kumada cross coupling reactions that we attempted with commercial reagents failed. Interestingly, 50% of conversion was observed after 6 h when reacting freshly prepared (and titrated) propargyl magnesium bromide with the model enol triflate 4-tertbutylcyclohexenetriflate using $\mathrm{NiCl}_{2} \mathrm{dppp}$ as catalyst. However, the product that was isolated proved to be 4-tert-butyl-1-propynylcyclohexene, reminiscent of what was observed in the coupling with allenyltributyltin (Scheme 52).

Scheme 52 Kumada cross coupling between 4-tert-butylcyclohexenetriflate and propargyl magnesium bromide.
The reaction of propargyl bromide with activated magnesium tunings gives the corresponding allenylmagnesium bromide, which isomerizes to the more thermodynamically stable 1-propynylmagnesium bromide (Scheme 53). ${ }^{172}$

[^62]$$
\mathrm{Br}+\mathrm{Mg} \xrightarrow[\mathrm{Et}_{2} \mathrm{O}]{ } \mathrm{BrMg} \longrightarrow \mathrm{BrMg} \longrightarrow \mathrm{BrMg}=
$$

Scheme 53 Isomeriztion of propargyl magnesium bromide to 1-propynylmagnesium bromide.
Interestingly, the substituted enol triflate 41 gave no coupling under those conditions (Scheme 54).

Scheme 54 Failure of the Kumada cross coupling between enol triflate 41 and propargyl magnesium bromide.
In order to avoid the isomerization of the resulting nucleophile, we decided to use its analogue protected with a TMS group. Different Ni sources containing phosphines or carbenes ligands were screened (Table 10). After heating the reaction at $50{ }^{\circ} \mathrm{C}$ for more than 20 h , no desired coupling was observed, but only the formation of homocoupled Grignard reagent. Finally, swapping the metal to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ the resulting coupling product was generated. Remarkably, the corresponding allene was not formed.

Table 10 Screening of different conditions for the Kumada cross coupling.

Entry	Catalyst	Outcome
1	$\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	Homocoupling of nucleophile. Starter recovered
2	$\mathrm{NiCl}_{2}(\mathrm{dppp})$	Homocoupling of nucleophile. Starter recovered
3	$\mathrm{NiCl}_{2}(\mathrm{dppe})$	Homocoupling of nucleophile. Starter recovered
4	$\mathrm{NiCl}_{2}+$	Homocoupling of nucleophile. Starter recovered
5		Full conversion to the desired product. Homocoupling of nucleophile.

After optimizing the conditions for this reaction we obtained the coupled product in 63% yield using $2 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and 2.1 equiv of the Grignard reagent 66. However, subjecting our trialkylated enol triflate 41 under these conditions gave very poor conversion. The catalyst loading had to be increased to $20 \mathrm{~mol} \%$ and an excess of the

Gridnard reagent was used. Upon methanolysis, the silyl group was finally cleaved affording the desired 1,6-enyne 43 in 77\% yield (Scheme 55).

Scheme 55 Kumada cross coupling reaction between enol trilfate 41 and TMS-protected
propargyl magnesium bromide 66

Gold(I)-Catalyzed Cyclization to Access to (-)-Aristolone and Kanshone H

For the oxidative gold(I)-catalyzed cyclization, we initially screened the optimized conditions for the 1,5 -enyne cyclization reaction. Full conversion of the 1,6 -enyne 43 was observed when it was treated with 3,5 -dichloropyridine- N-oxide and $\operatorname{IPrAuNTf}_{2}$ in 1,2dichloroethane at $23^{\circ} \mathrm{C}$. The reaction was very clean although the tricyclic product formed was not the desired one. Cyclization took place in the undesired 5-exo-dig fashion (Scheme 56).

Scheme 56 Oxidative gold(I)-catalyzed cyclization of 1,6-enyne 43.

The formation of the exo-cyclized product was also favored when 8-methylquinoline- N oxide or 2-tert-butylpyridine- N-oxide were used. The final configuration of the molecule could not be confirmed by NOESY but by GOESY (Figure 7). Specifically irradiating the cyclopropyl proton, we could observe correlation with the three methyl groups pointing down as well as the correlation with the aldehydic proton.

Figure 7 GOESY of compound 67 irradiating the pending proton in the cyclopropyl ring.
Indeed, 1,6-enynes bearing disubstituted groups at the alkene moiety usually react by exo pathways. ${ }^{173}$ We also tried the gold(I)-catalyzed cyclization using the TMS protected enyne. However, the same 5 -exo-dig product 67 was obtained. Finally, decided to use platinum(II) complexes that could also activate π-bonds in a manner different from gold. ${ }^{174}$ However, subjecting 1,6 -enyne 43 to PtCl_{2} and 3,5 -dichloropyridine- N -oxide gave again tricyclic product 67 in 70% NMR yield as well as 20% of the cycloisomerized product. Remarkably, it is the first example of an oxidative Pt-catalyzed reaction.

[^63]
Outlook

To complete the synthesis of $(-)$-aristolone and kanshone H, other strategies could be envisioned, either using bicyclic ketone 56 or 1,6-enyne 43.

Use of Bicyclic Ketone 56

The most direct approach would involve the homologation of the precursor 56. A Tiffeneau-Demjanov reaction ${ }^{175}$ or a Lewis-acid promoted diazomethane addition ${ }^{176}$ to 56 could afford the desired $6 / 6 / 3$ framework (Scheme 57). We expect the 5 -membered ring to be expanded rather than the 6 , although the migratory preference of the methylene group is not very clear. A final isomerization of the olefin towards the conjugated α, β-unsaturated ketone would afford the natural product (-)-aristolone.

Scheme 57 First approach towards the synthesis of (-)-aristolone.

Use of 1,6-Enyne 43

The formation of the desired 6 -endo-dig cyclized product could be favored by using the 1,6-enyne with the terminal alkyne containing an electron-withdrawing functional group. We hypothesize that the formation of 6/6/3 desired framework would be favored since the gold carbene formed is more stable than its 5-exo-dig analogue. Enynes bearing esters in the terminal position have been shown to cyclize under gold(I) catalyzed oxidative conditions. ${ }^{177}$ The synthesis of the natural product could be accomplished after a decarboxylation and an isomerization of the olefin (Scheme 58).

[^64]

Scheme 58 Second approach towards the synthesis of $(-)$-aristolone.

Conclusions

The total synthesis of nardoaristolone B has been accomplished in 7 steps featuring a $\mathrm{Cu}-$ catalyzed conjugate addition/ α-alkylation tandem transformation and a gold(I)-catalyzed oxidative cyclization as key steps (Scheme 59). The 13% overall yield obtained and short synthetic sequence give access to a straightforward synthesis of a molecule that can be an important target due to its interesting biological activities. Furthermore, it is the first time that a gold(I)-catalyzed oxidative cyclization is used in the synthesis of a natural product.

Scheme 59 Total synthesis of nardoaristolone B.
Following an analogous strategy, a 1,6-enyne has been prepared through a challenging Kumada cross coupling with TMS-protected propargylmagnseium bromide. Interestingly, no traces of allene are generated during the course of the reaction. The oxidative gold(I)catalyzed reaction of the resulting enyne gives rise to a 5-exo-dig cyclization instead of the desired 6 -endo-dig (that would have afforded the core of $(-)$-aristolone and kanshone H). The $6 / 5 / 3$ framework of the new compound obtained corresponds to a nardoaristolone B derivative (Scheme 60).

Scheme 60 Approach towards the synthesis of (-)-aristolone and kanshone H from a $\mathrm{Au}(\mathrm{I})$-catalyzed cyclization of a 1,6-enyne

Experimental Part

General Information

The general information is provided in the experimental part of the first chapter. Regarding the HPLC analysis, it was carried out in an Agilent Tehenologies instrument HPLC 1100 series with VWD detector or HPLC 1200 series with DAD detector. The column used was a Chiralpack IC ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$) eluting with hexane:isopropanol (99:1), $0.85 \mathrm{~mL} / \mathrm{min}$ flux, 5 mL injection and $\lambda=210 \mathrm{~nm}$.

Synthesis of Substrates

2-Bromo-2-methylcyclohexanone

To a solution of N-bromosuccinimide ($5.34 \mathrm{~g}, 30 \mathrm{mmol}$) in $100 \mathrm{~mL} \mathrm{CCl}_{4}$ was dropwise added 2-methylcyclohexanone ($3.64 \mathrm{~mL}, 30 \mathrm{mmol}$). After stirring the mixture under reflux for 2.5 h , it was cooled down to $23{ }^{\circ} \mathrm{C}$ and concentrated providing a yellow solid. Pentane (25 mL) was added and the resulting solution was filtrated through Celite. Organic layers were concentrated again affording 2-bromo-2-methylcyclohexanone, which was used in the next step without purifying it.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.21(\mathrm{td}, J=15.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~m}$, $2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H})$.

2-Methylcyclohexenone

The crude 2-bromo-2-methylcyclohexanone was dissolved in 50 mL DMF and
 $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h and cooled to $23^{\circ} \mathrm{C}$ while stirring for 12 h . The reaction was hydrolyzed with water $(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were successively washed with aq. $\mathrm{HCl} 0.5 \mathrm{M}(30 \mathrm{~mL})$, water $(2 \times 50 \mathrm{~mL})$, sat. brine $(2 \times 50$ mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chromatography column was done eluting with a gradient of pentane/ $\mathrm{Et}_{2} \mathrm{O} 40: 1$ to $20: 1$.
$1.80 \mathrm{~g}(16.34 \mathrm{mmol})$ of 2-methylcyclohex-2-enone were isolated in 55% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.76-6.72(\mathrm{bs}, 1 \mathrm{H}), 2.44-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H})$, $2.03-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{q}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 200.2$, 145.7, 135.9, 38.5, 26.2, 23.4, 16.1.

(11bR)-4-Chlorodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine

(R)-BINOL ($10 \mathrm{~g}, 35 \mathrm{mmol}$) was introduced in a dry round bottom flask filled with Ar and $\mathrm{PCl}_{3}(27.4 \mathrm{~mL}, 314 \mathrm{mmol})$ were added. The mixture was placed in a pre-heaterd oil bath $\left(85^{\circ} \mathrm{C}\right)$ and refluxed for 16 h . After cooling to $23{ }^{\circ} \mathrm{C}$, the excess of PCl_{3} was removed under vacuum until the oil solidified. Anhydrous $\mathrm{Et}_{2} \mathrm{O}$ was used to wash the solid, and then it was removed under vacuum. This procedure was repeated twice. The resulting solid was placed immediately in the glovebox.
12 g of ($11 \mathrm{~b} R$)-4-chlorodinaphtho[2,1-d:1', $\left.2^{\prime}-f\right][1,3,2]$ dioxaphosphepine (34 mmol) were isolated in 98% yield (although not 100% pure).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54$ (dd, $J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{q}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{31} \mathbf{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{P}}$ 181.4.

(11bR)-N,N-Bis((S)-1-phenylethyl)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4amine

(-)-bis[(S)-phenylethyl]amine ($3.43 \mathrm{~mL}, 15 \mathrm{mmol}$) was dissolved in 150 mL anhydrous THF. The solution was cooled to $-78^{\circ} \mathrm{C}$ and n-BuLi (2.5 M in hexanes, $6 \mathrm{~mL}, 15 \mathrm{mmol}$) was added dropwise over 10 min (syringe pump). The mixture was left at this temperature for 1 h . A solution of chlorophosphite ($11 \mathrm{~b} R$)-4chlorodinaphtho $\left[2,1-d: 1^{\prime}, 2^{\prime}-f\right][1,3,2]$ dioxaphosphepine ($5.9 \mathrm{~g}, 16.8 \mathrm{mmol}$) in 75 mL anhydrous THF was added dropwise over 30 min at $-78^{\circ} \mathrm{C}$ and the resulting mixture stirred for additional 2 h in the cold bath. It was then allowed to warm to $23^{\circ} \mathrm{C}$ and stirring was continued for 1.5 h .
The solvent was removed in vacuum and the residue purified by column chromatography eluting with pentane/dichloromethane $4: 1$ to $1: 1$ to afford 5.5 g of $(11 \mathrm{~b} R)-N, N-\mathrm{bis}((S)-1-$ phenylethyl)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine (10.2 mmol) were isolated (68% over 2 steps).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{dd}, \mathrm{J}=7.8,4.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 10 \mathrm{H}), 4.49(\mathrm{~m}, 2 \mathrm{H}), 1.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 150.1,150.0,149.5,142.8,132.8,132.7,131.4,130.4,130.2$, $129.4,128.3,128.1,127.9,127.7,127.1,127.07,126.6,126.0,125.9,124.7,124.4,124.1$, $124.0,122.4,122.3,121.73,121.71,52.3,52.2,21.9 .{ }^{31} \mathbf{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{P} 145.6

Methallyl iodide

Metallyl chloride ($44.1 \mathrm{~mL}, 450 \mathrm{mmol}$) was dissolved in 150 mL acetone and a solution of $\mathrm{NaI}(88 \mathrm{~g}, 585 \mathrm{mmol})$ dissolved om 600 mL actone was added by portions. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 24 h with exclusion of light. The reaction was poured over water and extracted with pentane. The resulting organic layers were washed with $\mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{x} 2)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtrated. The product was isolated upon distillation ($90^{\circ} \mathrm{C}, 200 \mathrm{mbar}$).
55 g of metallyl iodide (0.302 mmol) were isolated in 67% yield.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.17(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.82(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~m}$, 3 H).

(2S,3R)-2,3-Dimethyl-2-(2-methylallyl)cyclohexan-1-one (44)

To a stirred suspension of copper(I)-thiophene-2-carboxylate ($69 \mathrm{mg}, 0.36$
 $\mathrm{mmol}, 0.02$ equiv) in 15 mL Et 2 O was added (R, S, S)-(+)-(3,5-dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']dinaphthalen-4-yl)bis(1-phenylethyl) amine ($392 \mathrm{mg}, 0.72 \mathrm{mmol}, 0.04$ equiv). After stirring for 15 min at $23^{\circ} \mathrm{C}$, the resulting suspension was cooled to $-35^{\circ} \mathrm{C}$ and 2-methylcyclohex-2-en-1-one (2.1 mL , $18.2 \mathrm{mmol}, 1$ equiv) was added. Subsequently, AlMe_{3} (2 M in heptane, $10.4 \mathrm{~mL}, 20.9$
mmol, 1.15 equiv) was added slowly over a period of 15 min and allowed to react for 4 h at $-35^{\circ} \mathrm{C}$ (the mixture turns milky bright yellow upon addition of AlMe_{3}).
After 4 h at $-35^{\circ} \mathrm{C}$, dry THF (15 mL) and HMPA (12 mL) were added and the mixture allowed to warm to $-5^{\circ} \mathrm{C}$. $\mathrm{MeLi}\left(1.6 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 12.7 \mathrm{~mL}, 20.3 \mathrm{mmol}, 1.07$ equiv) was added dropwise over 5 min from $-5^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ (the reaction turns greenish upon addition of $\mathrm{MeLi})$. After 20 min stirring, methallyl iodide (3.5 mL , $32.7 \mathrm{mmol}, 1.7$ equiv) was slowly added over 5 min . The reaction mixture was left at $0^{\circ} \mathrm{C}$ for 30 min and slowly warmed to $23^{\circ} \mathrm{C}$ and left stirring at this temperature for 16 h . The reaction was then quenched with a saturated aqueous solution of potassium sodium tartrate and extracted with dichloromethane $(5 \times 100 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{~mL})$ and brine $(200 \mathrm{~mL})$ and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under vacuum and the crude mixture was purified by column chromatography on silica gel eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 100:1 to $30: 1$ to afford a colorless liquid ($3: 1$ mixture of diastereomers 44 and $44, ~ 1.8 \mathrm{~g}, 10 \mathrm{mmol}, 55 \%$ yield, $91-92 \%$ ee). The desired diastereomer 44 could be separated after several chromatography columns eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O} 80: 1$ in essentially pure form ($>30: 1 d r$).
The $d r$ was determined by integrating the olefinic protons in the ${ }^{1} \mathrm{H}$ NMR of both diastereomers. The ee was determined by HPLC.
Major diastereomer: ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 4.81-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.67-4.63$ $(\mathrm{m}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dddd}, J=15.1,7.0,5.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.28$ $(\mathrm{m}, 2 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.45(\mathrm{~m}, 1 \mathrm{H}), 0.98$ (s, 3 H), $0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 215.7$, 142.9, 114.5, $52.0,44.3,38.4,38.3,28.8,24.2,23.5,19.7,15.8 .[\alpha]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 1.02,26^{\circ} \mathrm{C}\right)=-10.0^{\circ}$.
HPLC Chiralpack IC ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$); hexane:IPA 99:1; $0.85 \mathrm{~mL} / \mathrm{min} ; \lambda=210 \mathrm{~nm}, 5$ $\mu \mathrm{L}$ injection; t_{R} (major) $7.5-7.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $7.8-8.0 \mathrm{~min}, 91-92 \% \mathrm{ee}$.

Figure S1 Diastereomeric mixture of $\mathbf{4 4}+\mathbf{4 4}^{\prime}: c a .3: 1 d r$

Figure S2 HPLC chromatogram of racemic $44+44^{\prime}$

Figure S3 Enantioenriched mixture of $\mathbf{4 4}+\mathbf{4 4}$: $c a .92 \%$ ee

Figure S4 Enantioenriched pure 44: ca. 91% ee
(3R)-6-(Hydroxymethylene)-2,3-dimethylcyclohexan-1-one (46)

To a suspension of $\mathrm{NaOMe}(2.08 \mathrm{~g}, 38.63 \mathrm{mmol})$ in $30 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ under Ar at $0{ }^{\circ} \mathrm{C}$ was added 2,3-dimethylcyclohexanone 45 ($1.95 \mathrm{~g}, 15.45$ mmol) (as a $3: 1$ mixture of diastereomers) and the mixture was stirred for 10 min . Ethyl formate ($2.12 \mathrm{~mL}, 26.27 \mathrm{mmol}$) was added and the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ and stirred for 12 h . The reaction was diluted in water, and the ethereal layer was extracted with a solution of $\mathrm{NaOH}(10 \% \mathrm{aq})$. The aqueous layer and alkaline extract were cooled, acidified with a solution of HCl 6 M and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3). Combined org. layers were washed with sat. brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to reduced pressure. The crude ($3: 1$ mixture of diasteromers in favour to the depicted one) was used for the subsequent reaction without prior purification. Major diastereomer: ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 14.62(\mathrm{bs}, 1 \mathrm{H}), 8.65(\mathrm{bs}, 1 \mathrm{H}), 2.40$ $-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.28$ $(\mathrm{m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 187.8,187.7,108.0,43.3,35.2,29.9,22.4,20.3,15.9$.
(3R,E)-6-((Butylthio)methylene)-2,3-dimethylcyclohexan-1-one (47)

A solution of $46(2.40 \mathrm{~g}, 15.45 \mathrm{mmol})$ (as a $3: 1$ mixture of diastereomers), butanethiol ($2.16 \mathrm{~mL}, 20.09 \mathrm{mmol}$) and p toluenesulfonic acid ($10 \mathrm{mg}, 0.05 \mathrm{mmol}$) were dissolved in 32 mL dry benzene and heated to $85^{\circ} \mathrm{C}$ using a Dean-Stark separator. After 3 h , the solution was allowed to warm to $23{ }^{\circ} \mathrm{C}$, diluted in $\mathrm{Et}_{2} \mathrm{O}$, washed with sat. NaHCO_{3} and sat. brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. A final chromatography column of the residue on SiO_{2} eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O} 20: 1$ let to the isolation of 2.40 g of 47 ($3: 1$ mixture of diastereomers in favour to the depicted one) in 68\% yield.
Major diastereomer: ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.54-7.49(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.76-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 199.0,141.9,130.4,50.2,36.3,34.4,32.8,30.4,26.7,21.7,20.9,14.5,13.7$.

(2S,3R,E)-6-((butylthio)methylene)-2,3-dimethyl-2-(2-methylallyl)cyclohexan-1-one

 (48)

To a solution of $47(2.00 \mathrm{~g}, 8.83 \mathrm{mmol})$ in 13 mL dry THF at -78 ${ }^{\circ} \mathrm{C}$ was added a solution of potassium hexamethyldisilazide $(1.56 \mathrm{~g}$, $7.84 \mathrm{mmol})$ in 16 mL dry toluene and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The reddish solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and methallyl bromide ($1.65 \mathrm{~mL}, 16.40 \mathrm{mmol}$) was added. The mixture was allowed to slowly warm to $23{ }^{\circ} \mathrm{C}$, after which it was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography eluting with pentane/Et $2 \mathrm{O} 40: 1$.
1.60 g of $\mathbf{4 8}(5.71 \mathrm{mmol})$ were isolated in 65% yield as well as $405 \mathrm{mg}(1.44 \mathrm{mmol})$ of the undesired diastereomer (48') in 16% yield.
Major diastereomer: ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.57-7.55(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.72$ $(\mathrm{m}, 1 \mathrm{H}), 4.64(\mathrm{dq}, J=1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.81(\mathrm{~m}, 3 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.33-$ $2.23(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=13.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.51$
$(\mathrm{t}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.94-0.90(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 201.1,143.4,143.3,130.0,114.2,49.5,45.3,34.4,33.9,32.8,26.9,26.4$, 24.1, 21.8, 20.8, 16.2, 13.7.
(2R,3R)-2-((R)-1-Hydroxy-2-methylpropyl)-2,3-dimethylcyclohexan-1-one (49)
 Bis(((trifluoromethyl)sulfonyl)oxy)copper ($15 \mathrm{mg}, 0.040 \mathrm{mmol}$) and (R,S,S)-(+)-(3,5-Dioxa-4-phospha-cyclohepta[2,1-a;3,4-a']dinaphthalen-4-yl)bis(1-phenylethyl) amine ($43 \mathrm{mg}, 0.080 \mathrm{mmol}$) were charged in a Schlenk filled with Ar and dissolved in 10 mL anhydrous $\mathrm{Et}_{2} \mathrm{O}$. The suspension was stirred at $23^{\circ} \mathrm{C}$ for and cooled to $-30^{\circ} \mathrm{C} . \mathrm{AlMe}_{3}(2.9 \mathrm{~mL}, 6.4 \mathrm{mmol}, 2.2 \mathrm{M}$ in hexane) was then added and the mixture stirred at $-30^{\circ} \mathrm{C}$ for 15 min . A solution of 2methylcyclohexenone ($363 \mu \mathrm{~L}, 3.20 \mathrm{mmol}$) in $4 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added and the resulting mixture was stirred at $-30^{\circ} \mathrm{C}$ for 18 h . Freshly distilled isobutyraldehyde ($419 \mu \mathrm{~L}, 3.84$ mmol) were added and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 h and at $-5^{\circ} \mathrm{C}$ for 30 min . The green solution was poured into a sat. solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and stirred for 4 h at $23{ }^{\circ} \mathrm{C}$. Extractions with $\mathrm{Et}_{2} \mathrm{O}$ (x3) were done drying the combined organic layers over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporating the solvent, the crude was purified using chromatography column eluting with a gradient of pentane/ $\mathrm{Et}_{2} \mathrm{O} 20: 1$ to $5: 1$.
53 mg of $49(0.27 \mathrm{mmol})$ were isolated in 9% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 4.07(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=10.4,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.43-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.25$ (s, 3H), $1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 176.4,81.3,54.1,39.7,37.3,35.9,29.7,29.1,23.7,21.8$, 17.7, 15.1.

((5,6-Dimethylcyclohex-1-en-1-yl)oxy)trimethylsilane

A solution of $\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}(180 \mathrm{mg}, 0.88 \mathrm{mmol})$ dissolved in 3 mL anhydrous HMPA and 14 mL THF was cooled to $-40^{\circ} \mathrm{C}$ and dropwise added a solution of MeMgBr ($5.85 \mathrm{~mL}, 17.54 \mathrm{mmol}, 3 \mathrm{M}$ in diethyl ether). After 30 min stirring, 2-methylcyclohexenone ($966 \mathrm{mg}, 8.77 \mathrm{mmol}$) and chlorotrimethylsilane ($2.23 \mathrm{~mL}, 17.54 \mathrm{mmol}$) were added at $-40^{\circ} \mathrm{C}$ and stirred for 1 h . $\mathrm{Et}_{3} \mathrm{~N}(2.32 \mathrm{~mL}, 16.77 \mathrm{mmol})$ was finally added followed by water $(1.6 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3) and the combined organic layers were washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After solvent evaporation, the crude was purified by column chromatography eluting with pentane.
890 mg of ((5,6-dimethylcyclohex-1-en-1-yl)oxy)trimethylsilane (4.49 mmol) were isolated in 51% yield.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.11(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dp}, J=5.6,1.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.77-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 143.4,116.6,33.7,31.5,30.7,20.6,20.1,14.4,0.8$.
(2S,3R)-2-Isobutyl-2,3-dimethylcyclohexan-1-one
$44(100 \mathrm{mg}, 0.56 \mathrm{mmol})$ was introduced in a dried Schlenk and dissolved
 in 5.4 mL . The solution was then degassed and the flask was purged with H_{2} using a balloon and bubbled through the solution for 10 min . The Schlenk was cooled to $0{ }^{\circ} \mathrm{C}$ and Crabtree's catalyst ($4 \mathrm{mg}, 5.5 \mu \mathrm{~mol}$) was
added in one portion. The reaction was allowed to stir under H_{2} pressure at $23{ }^{\circ} \mathrm{C}$ for 12 h . Solvent was evaporated and the resulting solid was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through SiO_{2}. Column chromatography was done eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 40:1.
62 mg of $(2 S, 3 R)$-2-isobutyl-2,3-dimethylcyclohexan-1-one (0.34 mmol) were isolated in 61% yield.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.53-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.48(\mathrm{~m}$, $3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{dd}, \mathrm{J}=6.3,3.3$ $\mathrm{Hz}, 6 \mathrm{H}), 0.79(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 216.7,52.6,45.5,39.1$, 38.6, 28.8, 25.1, 24.8, 24.2, 23.8, 19.7, 16.0. HRMS (APCI+) calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}\right]^{+}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) \mathrm{m} / \mathrm{z}$ 183.1743, found m / z 183.1743.
(2R,3R)-2,3-Dimethyl-2-(2-methylprop-1-en-1-yl)cyclohexan-1-one (42)
 420 mg of $44(2.33 \mathrm{mmol})$ (placed in 6 different MW vials) were dissolved in 120 mL of $\mathrm{EtOH}\left(20 \mathrm{~mL}\right.$ each) and $384 \mathrm{mg} \mathrm{RhCl} 3 \cdot n \mathrm{H}_{2} \mathrm{O}(0.70 \mathrm{mmol}$, $38 \% \mathrm{Rh}$) (64 mg each) were added. The sealed vials were heated to $75^{\circ} \mathrm{C}$ for 4.5 h . After cooling to $23^{\circ} \mathrm{C}$, the reactions were filtered through Celite. 400 mL of sat. brine were then added and extractions with pentane (5 x 400 mL) were done. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent was evaporated and the crude was purified by column chromatography eluting with pentane/ $\mathrm{Et}_{2} \mathrm{O} 50: 1$.
314 mg of $\mathbf{4 2}(1.74 \mathrm{mmol})$ were isolated in 75% yield containing traces of unreacted starting material.

The reaction was also performed decreasing the amount of catalyst to $c a .5 \%$ and increasing the concentration. Thus, $44(58 \mathrm{mg}, 0.322 \mathrm{mmol}, 1$ equiv) was placed in a 5 mL microwave vial and dissolved in HPLC analytical grade $\mathrm{EtOH}(5 \mathrm{~mL})$ and $\mathrm{RhCl}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(10$ $\mathrm{mg}, 0.019 \mathrm{mmol}, 38 \% \mathrm{Rh}, 0.056$ equiv) was added. The vial was sealed and heated at 75 ${ }^{\circ} \mathrm{C}$ for 4.5 h . The work-up and purification were the same as previously stated.
43 mg of $\mathbf{4 2}$ were isolated as a colorless oil ($0.238 \mathrm{mmol}, 74 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.37(\mathrm{p}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.11$ $(\mathrm{m}, 2 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.38$ $(\mathrm{m}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 216.5,133.8,132.4,54.6,45.0,39.3,28.8,27.1,23.9,20.7,18.5,14.4$. $[\alpha]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.50,26^{\circ} \mathrm{C}\right)=60.5^{\circ}$.

(5R,6R)-5,6-Dimethyl-6-(2-methylprop-1-en-1-yl)cyclohex-1-en-1-yl trifluoromethane sulfonate (41)

A solution of distilled diisopropylamine $(0.35 \mathrm{~mL}, 2.50 \mathrm{mmol})$ in anhydrous THF (10 mL) was cooled to $0^{\circ} \mathrm{C}$ and $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $1.0 \mathrm{~mL}, 2.50 \mathrm{mmol}$) was added dropwise. After 10 min at $0^{\circ} \mathrm{C}$, the solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and $4(240 \mathrm{mg}, 1.33 \mathrm{mmol})$ was added as a solution in anhydrous THF (2 mL). After 1 h stirring at $-78{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{N}-(2-$ pyridyl)bis(trifluoromethanesulfonimide) ($800 \mathrm{mg}, 2.24 \mathrm{mmol}$) in anhydrous THF (1 mL) was added. The resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$ for 1 h and then stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h . It was then poured on brine $(100 \mathrm{~mL})$ and extracted with pentane $(5 \times 50$ $\mathrm{mL})$. The combined organic layers were washed with brine $(2 \times 50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed in vacuo. The crude mixture was purified by column chromatography on silica gel eluting with pentane.

340 mg of 41 were isolated as a colorless oil ($1.09 \mathrm{mmol}, 82 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.71(\mathrm{dd}, J=5.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (app. pent, $J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.05$ (app. dqd, $J=11.9,6.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.68(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 154.7,135.0,127.7,118.3\left(\mathrm{q}, J_{C-F} 319.2 \mathrm{~Hz}\right), 115.4,43.1$, 39.2, 27.4, 26.1, 23.8, 21.0, 18.4, 16.2. ${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{F}}-75.4$. HRMS (ESI +) calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SNa}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right) m / z$ 335.0899, found m / z 335.0899. $[\boldsymbol{\alpha}]_{\mathbf{D}}$ $\left(\mathrm{CHCl}_{3}, c 0.67,25^{\circ} \mathrm{C}\right)=-7.2^{\circ}$.

(((5R,6R)-5,6-Dimethyl-6-(2-methylprop-1-en-1-yl)cyclohex-1-en-1-yl)ethynyl) trimethylsilane

$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(9 \mathrm{mg}, 0.013 \mathrm{mmol}, 0.02$ equiv) and $\mathrm{CuI}(6 \mathrm{mg}, 0.032 \mathrm{mmol}$, 0.05 equiv) were suspended in degassed $\mathrm{Et}_{3} \mathrm{~N}(1.43 \mathrm{~mL}, 10.2 \mathrm{mmol}, 16$ equiv). To this suspension was added 41 ($200 \mathrm{mg}, 0.64 \mathrm{mmol}, 1$ equiv) dissolved in 1 mL of degassed DMF immediately followed by addition of TMS-acetylene ($0.11 \mathrm{~mL}, 0.77 \mathrm{mmol}, 1.2$ equiv). The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h , then poured on brine $(50 \mathrm{~mL})$ and extracted with pentane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (30 mL) and concentrated under reduced pressure. The crude material was used in the following reaction without further purification.
Note: alternatively this enyne can be purified by column chromatography on silica gel eluting with pentane to afford analytically pure material.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.11(\mathrm{dd}, J=4.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (app. pent, $J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 134.6,132.6,132.4,131.2,107.1,91.0,42.3,37.6,27.5,26.6$, 26.1, 22.9, 18.5, 17.2, 0.2. HRMS (APCI+) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{Si}^{+}\left(\mathrm{M}^{+} \mathrm{H}^{+}\right) \mathrm{m} / \mathrm{z}\right.$ 261.2033, found $m / z 261.2033$. $[\boldsymbol{\alpha}]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.75,25^{\circ} \mathrm{C}\right)=-17.5^{\circ}$.
(5R,6R)-1-Ethynyl-5,6-dimethyl-6-(2-methylprop-1-en-1-yl)cyclohex-1-ene (40)
The crude material obtained previously was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($177 \mathrm{mg}, 1.28 \mathrm{mmol}$, theor. 2 equiv) was added. The resulting suspension was stirred at $23^{\circ} \mathrm{C}$ for 5 h (monitored by GC-MS) and poured on half-saturated brine $(100 \mathrm{~mL})$ and extracted with pentane $(5 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was concentrated. Purification by column chromatography on silica gel eluting with pentane afforded 6 as a pale yellow oil ($90 \mathrm{mg}, 0.48 \mathrm{mmol}, 74 \%$ over 2 steps).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.17(\mathrm{dd}, J=4.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (app. pent, $J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.67$ (app. s, 1H), $2.17-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{dqd}, J=11.9,6.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J$ $1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J 1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H})$, $0.89(\mathrm{~d}, J 6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 135.5,133.0,132.0,130.0,84.9$, 74.2, 41.9, 37.5, 27.4, 26.5, 26.0, 22.8, 18.2, 17.0. HRMS (APCI+) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{21}\right]^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) m / z 189.1638$, found $m / z 189.1645 .[\alpha]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.60,26^{\circ} \mathrm{C}\right)=19.0^{\circ}$.
(2R,3R)-1-Ethynyl-2,3-dimethyl-2-(2-methylprop-1-en-1-yl)cyclohexan-1-ol (54)

A solution of $\mathbf{5 4}(59 \mathrm{mg}, 0.33 \mathrm{mmol})$ in 3 mL THF was cooled to $-78^{\circ} \mathrm{C}$ and ethynylmagnesium bromide ($1.6 \mathrm{~mL}, 1.64 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added over a period off 10 min . The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and stirred continued for 3 h at $-15^{\circ} \mathrm{C}$. The reaction was warmed to $23{ }^{\circ} \mathrm{C}$ for 16 h . Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to reduced pressure. The crude was purified it by column chromatography eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 50:1.
29 mg of $42(0.14 \mathrm{mmol})$ were isolated in 43% yield as a $4: 1$ mixture of diastereomers.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major diastereomer) $\delta_{\mathrm{H}} 5.34-5.21(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 1 \mathrm{H})$, $2.23(\mathrm{~s}, 1 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-$ $1.63(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 2 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , CDCl_{3}) (major diastereomer) $\delta_{\mathrm{C}} 147.9,131.9,77.4,75.9,74.0,48.4,39.5,33.1,29.4,28.3$, 22.7, 19.7, 17.0, 11.9.

(3aS,4R)-7a-Ethynyl-2,2,3a,4-tetramethyloctahydrobenzofuran (55)

To a solution of p-toluenesulfonic acid ($3.73 \mathrm{mg}, 0.020 \mathrm{mmol}$) in 5 mL
 benzene was added $54(27 \mathrm{mg}, 0,131 \mathrm{mmol})$ and the mixture was stirred for 16 h at $80^{\circ} \mathrm{C}$. Water was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3), washed with brine and drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Chromatography column was done eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O} 70: 1$.
21 mg of $55(0.102 \mathrm{mmol})$ were isolated in 78% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.56(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=11.7,6.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.03$ (dd, $J=11.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.64(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H})$, $1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta_{\mathrm{C}} 88.1,84.0,81.7,76.7,49.9,49.5,37.0,31.3,30.7,30.3,28.2$, 22.1, 17.2, 16.1. HRMS (APCI+) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}\right]^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) \mathrm{m} / \mathrm{z}$ 207.1743, found $m / z 207.1739$.
(1,3-Bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-imidazol-2-yl)((1,1,1-trifluoro- N ((trifluoromethyl)sulfonyl)methyl)sulfonamido)gold

To $\operatorname{IPrAuCl}(200 \mathrm{mg}, 0.32 \mathrm{mmol})$ dissolved in $1.6 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added a solution of $\mathrm{AgNTf}_{2}(125 \mathrm{mg}, 0.32 \mathrm{mmol})$ in 1.6 $\mathrm{mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$. After stirring for 1 h at $23{ }^{\circ} \mathrm{C}$, the mixture was filtrated through Celite and solvent was evaporated. The resulting solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Teflon filters and crystallized with pentane.
238 mg of $\operatorname{IPrAuNTf}_{2}(0.274 \mathrm{mmol})$ were isolated in 85% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}$, 2 H), 2.48 (sept, $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}), 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 168.3, 145.7, 135.8, 133.6, 124.4, 123.7, $118.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=320\right.$ Hz), 29.1, 14.4. 23.1. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-75.7$.

2-(tert-Butyl)pyridine

$\mathrm{CuCN}(1.44 \mathrm{~g}, 16.08 \mathrm{mmol})$ was dissolved in 250 mL THF and tertbutylmagnesium chloride ($37.8 \mathrm{~mL}, 64.3 \mathrm{mmol}$) was added. After stirring the mixture at $-78^{\circ} \mathrm{C}$ for 20 min , 2-bromopyridine ($0.77 \mathrm{~mL}, 8,04 \mathrm{mmol}$) was added and the mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$ and then at $23^{\circ} \mathrm{C}$ for 14 h . The reaction was quenched with a sat. solution of $\mathrm{NH}_{4} \mathrm{OH}$ and the pH was adjusted to 10 upon addition of sat. solution NaOH . Extractions with $\mathrm{Et}_{2} \mathrm{O}$ (x3) were done and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
204 mg of 2-(tert-butyl)pyridine (1.51 mmol) were isolated in 19% yield.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.55(\mathrm{dd}, J=4.0 \mathrm{f}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{td}, J=7.8,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (ddd, $J=7.5,5.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H})$.

2-(tert-Butyl)pyridine- N-oxide

3-chlorobenzoperoxoic acid ($296 \mathrm{mg}, 1.71 \mathrm{mmol}$) was added portionwise to a $0{ }^{\circ} \mathrm{C}$ solution of 2-(tert-butyl)pyridine ($193 \mathrm{mg}, 1.43 \mathrm{mmol}$) and 0.8 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ and stirred for 4 h . Sat. solution NaHCO_{3} was added to the reaction mixture and the organic layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude was used without purifying it after evaporation of the solvent.
201 mg of 2-(tert-butyl)pyridine- N -oxide (1.33 mmol) were isolated in 93% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.32(\mathrm{dd}, J=6.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{ddd}, J=7.5,6.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 158.3,141.9,126.8,123.9,123.7,36.5,27.1$.
($1 \mathrm{aS}, 1 \mathrm{~b} R, 2 R, 6 \mathrm{a} R$)-1,1,1b,2-Tetramethyl-1a,1b,2,3,4,6a-hexahydrocyclopropa $[a]$ inden-6(1H)-one (56)

- To a solution of $\mathbf{4 0}(65 \mathrm{mg}, 0.345 \mathrm{mmol})$ in $1.5 \mathrm{~mL}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ were added O $\mathrm{mg}, 0.017 \mathrm{mmol})$. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 4 h . After cooling to $23{ }^{\circ} \mathrm{C}$, the mixture was poured to a sat. sol. CuSO_{4} and the extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent was evaporated and the crude was purified eluting with pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1.
52 mg of $56(0.255 \mathrm{mmol})$ were isolated in 74% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.43(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.70$ $(\mathrm{m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=5.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.50$ $-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 202.2,146.8,131.6,42.4,42.2,39.2,33.5,30.2,28.9,26.5,25.9$, $22.5,16.9,16.1$. HRMS (APCI+) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}\right]^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) \mathrm{m} / \mathrm{z} 205.1587$, found $\mathrm{m} / \mathrm{z} 205.1590$. $[\boldsymbol{\alpha}]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.53,26^{\circ} \mathrm{C}\right)=-39.0^{\circ}$.

(1aS,1bR,2R,6aR)-1,1,1b,2-Tetramethyl-1,1a,1b,2,3,6a-hexahydrocyclopropa[a]indene

 (57)As side product, $9 \mathrm{mg}(0.048 \mathrm{mmol})$ of $\mathbf{5 7}$ were isolated in 15% yield containing around 10% of an unknown impurity.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.14(\mathrm{dd}, J=9.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{ddd}, J$
 $=9.7,5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.97$ $-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 147.5,128.7123 .4,121.8,49.0,37.1,34.9,33.0$, 32.8, 27.8, 24.7, 21.2, 17.1, 16.7. HRMS (EI+) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{20}{ }^{\circ}\right]^{+}\left(\mathrm{M}^{\circ+}\right) \mathrm{m} / \mathrm{z}$ 188.1565, found $m / z 188.1563$.

Nardoaristolone B, ((1aS,1bR,2R,6aR)-1,1,1b,2-Tetramethyl-1,1a,1b,2,3,6a-hexahydro cyclopropa $[a]$ indene-4,6-dione

To a suspension of $\mathbf{5 6}(15 \mathrm{mg}, 0.073 \mathrm{mmol})$ in $0.4 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{mg}, 0.022 \mathrm{mmol})$ was added $\mathrm{Pd}(\mathrm{OH})_{2}(5 \mathrm{mg}, 0.007 \mathrm{mmol})$ and finally $t-\mathrm{BuO}_{2} \mathrm{H}(6 \mu \mathrm{~L}, 0.037 \mathrm{mmol})$. The reaction was stirred for 5 h at $23^{\circ} \mathrm{C}$. The crude was filtrated though Celite and solvent was evaporated. Column chromatography was done eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O} 2: 1$. $15 \mathrm{mg}(0.069 \mathrm{mmol})$ of nardoaristolone \mathbf{B} were isolated in 93% yield.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.22(\mathrm{~s}, 1 \mathrm{H}), 2.50-7.37(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{dd}, J 18.0,13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.99(\mathrm{~d}, J 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}, J 5.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}$, $3 \mathrm{H}), 1.12(\mathrm{~d}, J 6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 201.3,199.7,164.9,123.3$, 44.1, 42.1, 42.0, 40.0, 35.3, 31.9, 28.6, 20.6, 17.6, 15.6. HRMS (ESI+) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}+\mathrm{H}^{+}\right) m / z$ 219.1380, found $m / z 219.1371 .[\alpha]_{\mathbf{D}}\left(\mathrm{MeOH}, c 0.5,26^{\circ} \mathrm{C}\right)=-7.4$ ${ }^{\circ} .{ }^{178}$ M.p. $96-97{ }^{\circ} \mathrm{C} .{ }^{179}$ Structure confirmed by X-ray.

2-Methyl-1-(prop-2-yn-1-yl)cyclohexan-1-ol

To a stirred suspension of Mg turnings ($894 \mathrm{mg}, 36.80 \mathrm{mmol}$), iodine (two crystals) and $\mathrm{HgCl}_{2}(18 \mathrm{mg}, 0.067 \mathrm{mmol})$ in 13.5 mL Et 2 O under Ar equipped with a condenser was added dropwise a solution of 3-bromoprop-1yne ($3.17 \mathrm{~mL}, 36.80 \mathrm{mmol}$) in $6.5 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The mixture was allowed to reflux for 30 min and then cooled down to $0^{\circ} \mathrm{C}$. 2-methylcyclohexanone $(1.62 \mathrm{~mL}, 13.37 \mathrm{mmol})$ was added and the reaction was stirred for 1 h 30 min at this temp. Sat. solution $\mathrm{HCl}(10 \%)$ were added to quench the reaction and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (x3). Org. layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated. Chromatography column was done eluting with pentane/ $\mathrm{Et}_{2} \mathrm{O} 30: 1$.
1.73 g of 2-methyl-1-(prop-2-yn-1-yl)cyclohexan-1-ol (11.40 mmol) were isolated in 85% yield as a 3.1:1 of diastereomers.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major diastereomer) $\delta_{\mathrm{H}} 2.46(\mathrm{dd}, J=16.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dd, $J=16.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.60(\mathrm{~m}$, $3 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3 H) (proton from the OH group missing). ${ }^{13} \mathbf{C} \mathbf{N M R}$ (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (major diastereomer) $\delta_{\mathrm{C}} 81.2,72.5,71.1,37.9,36.9,31.3,30.6,25.7,21.9,15.1$.

[^65]
1-Bromo-4-(tert-butyl)cyclohex-1-ene

Br Triphenylphosphite $(0.82 \mathrm{~mL}, 6.94 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$
and the solution cooled to $-60^{\circ} \mathrm{C}$. Bromine $(0.37 \mathrm{~mL}, 7.13 \mathrm{mmol})$ was added dropwise followed by addition of $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL}, 7.78 \mathrm{mmol})$ and 4 -(tertbutyl)cyclohexanone ($1 \mathrm{~g}, 6.48 \mathrm{mmol}$). The mixture was allowed to warm at 23 ${ }^{\circ} \mathrm{C}$ for 16 h and then heated at $40^{\circ} \mathrm{C}$ for 2 h . After cooling to $23^{\circ} \mathrm{C}$, water was added and extractions with pentane were done (x5). Organic layers were washed with sat. brine, dried over Na2SO4 and concentrated. The crude was purified by column chromatography on silica gel eluting with pentane.
1.2 g of 1-bromo-4-(tert-butyl)cyclohex-1-ene (5.52 mmol) were isolated in 85% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.03(\mathrm{ddd}, J=5.7,3.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.44(\mathrm{~m}, 2 \mathrm{H})$, $2.12-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 128.9,121.9,42.8,36.4,32.1,29.0,27.1,25.9$.

N^{\prime}-(4-(tert-Butyl)cyclohexylidene)-4-methylbenzenesulfonohydrazide

p-toluenesulfonyl hydrazide ($500 \mathrm{mg}, 3.24 \mathrm{mmol}$) was suspended in 1 mL EtOH and 4-tert-butylcyclohexanone was added. The mixture was heated at $85^{\circ} \mathrm{C}$ for 1 h . After cooling to $23^{\circ} \mathrm{C}$, the suspension formed was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, evaporated to dryness and the resulting white solid was washed with cold EtOH and $\mathrm{Et}_{2} \mathrm{O}$.
846 mg of N^{\prime}-(4-(tert-butyl)cyclohexylidene)-4-methylbenzenesulfono hydrazide (2.62 mmol) were isolated in 81% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{bs}, 1 \mathrm{H})$, $7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.12-$ $2.01(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.74(\mathrm{ddd}, J=14.5,13.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.25-1.01(\mathrm{~m}$, $3 \mathrm{H}), 0.86-0.79(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 163.3,144.0,135.6,129.6$, 128.2, 47.2, 35.1, 32.6, 27.6, 27.5, 26.9, 26.5, 21.7.

4-(tert-Butyl)cyclohex-1-en-1-yl trifluoromethanesulfonate

To a $0{ }^{\circ} \mathrm{C}$ cold solution of distilled diisopropylamine ($2.75 \mathrm{~mL}, 19.45 \mathrm{mmol}$) and 106 mL THF was dropwise added $n-\operatorname{BuLi}(2.5 \mathrm{M}$ in hexane, $7.8 \mathrm{~mL}, 19.45$ mmol). After 10 min , the solution was cooled to $-50{ }^{\circ} \mathrm{C}$ and 4 -(tertbutyl)cyclohexanone in 22 mL THF was added. After 1 h stirring, a solution of N-phenyl-bis(trifluoromethanesulfonimide) $(6.95 \mathrm{~g}, 19.45 \mathrm{mmol})$ in 3 mL THF were added. The resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$ for 1 h and quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layers were extracted with pentane (x3), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography eluting with pentane.
$2.01 \mathrm{~g}(7.02 \mathrm{mmol})$ of 4-(tert-butyl)cyclohex-1-en-1-yl trifluoromethanesulfonate were isolated in 54% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 5.74(\mathrm{dt}, J=6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.24-$ $2.16(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 149.4,118.7\left(\mathrm{q}, J_{C-F} 320.7 \mathrm{~Hz}\right), 118.6,43.1,32.2,28.7,27.4,25.5,24.2$.

4-(tert-Butyl)-1-(prop-1-yn-1-yl)cyclohex-1-ene

To a solution of 4-tert-butylcyclohexene enol triflate ($25 \mathrm{mg}, 0.087 \mathrm{mmol}$) in 1 mL DMF was added $\mathrm{LiCl}(11 \mathrm{mg}, 0.261 \mathrm{mmol})$ and N_{2} was bubbled through the mixture for 10 min
and bis(triphenylphosphine)palladium(II) dichloride ($6 \mathrm{mg}, 8.6 \mu \mathrm{~mol}$) added. The mixture was heated at $70{ }^{\circ} \mathrm{C}$ and allenyltributyltin ($31 \mu \mathrm{~L}, 0.096 \mathrm{mmol}$) was finally added. The reaction was stirred for 2 h at $70^{\circ} \mathrm{C}$, after which was allowed to cooled to $23^{\circ} \mathrm{C}$, filtered through Celite and added to sat. brine. The org. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3) and solvent was concentrated. The crude was dissolved again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with $\mathrm{HCl} 10 \%$ (x5). The aq. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x2), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent evaporated.
Column chromatography eluting with pentane gave 11 mg of 4-(tert-butyl)-1-(prop-1-yn1 -yl)cyclohex-1-ene (0.059 mmol) in 68% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 6.02-5.98(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H})$, $1.87-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}$ 133.6, 120.9, 83.1, 81.4, 43.4, 31.2, 27.4, 27.3, 27.3, 24.0, 4.3.

2-(4-(tert-Butyl)cyclohexylidene)acetaldehyde (62)

To a solution of 4-tert-butylcyclohexenetriflate ($100 \mathrm{mg}, 0.349 \mathrm{mmol}$) in 2
 mL DMF was added $\mathrm{LiCl}(44 \mathrm{mg}, 1.05 \mathrm{mmol})$ and N_{2} was bubbled through the mixture for 10 min and bis(triphenylphosphine)palladium(II) dichloride $(12 \mathrm{mg}, 17 \mu \mathrm{~mol})$ added. The mixture was heated at $70^{\circ} \mathrm{C}$ and cis-tributyl $(2-$ ethoxyethenyl)stannane ($128 \mu \mathrm{~L}, 0.384 \mathrm{mmol}$) dissolved in 2 mL DMF was finally added. The reaction was stirred for 6 h at $70^{\circ} \mathrm{C}$, after which was allowed to cooled to $23^{\circ} \mathrm{C}$, filtered through Celite and added to sat. brine. The org. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$ and solvent was concentrated. The crude was dissolved again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with $\mathrm{HCl} 10 \%$ (x5). The aq. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x2), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent evaporated. Column chromatography eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O} 25: 1$ gave 43 mg of isolated aldehyde 62 (0.239 mmol) in 68% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 9.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}$, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dt}, J=13.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.92(\mathrm{~m}$, 3H), $1.36-1.10(\mathrm{~m}, 3 \mathrm{H}), 0.83 .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 190.4,167.7,124.8,47.7$, 37.8, 32.4, 29.2, 29.0, 28.8, 27.4.
(E)-2-((2R,3R)-2,3-Dimethyl-2-(2-methylprop-1-en-1-yl)cyclohexylidene)acetaldehyde (63)
 Stille cross coupling
To a solution of $\mathbf{4 1}(54 \mathrm{mg}, 0.173 \mathrm{mmol})$ in 1 mL DMF was added LiCl ($22 \mathrm{mg}, 0.518 \mathrm{mmol}$) and N_{2} was bubbled through the mixture for 10 min and bis(triphenylphosphine)palladium(II) dichloride ($6 \mathrm{mg}, 8.6$ $\mu \mathrm{mol})$ added. The mixture was heated at $70{ }^{\circ} \mathrm{C}$ and cis-tributyl(2ethoxyethenyl)stannane ($64 \mu \mathrm{~L}, 0.190 \mathrm{mmol}$) dissolved in 1 mL DMF was finally added. The reaction was stirred for 6 h at $70{ }^{\circ} \mathrm{C}$, after which was allowed to cooled to $23{ }^{\circ} \mathrm{C}$, filtered through Celite and added to sat. brine. The org. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3) and solvent was concentrated. The crude was dissolved again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with $\mathrm{HCl} 10 \%$ (x5). The aq. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x2), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent evaporated. Column chromatography eluting with pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 25:1 gave 19 mg of isolated aldehyde $\mathbf{6 3}(0.092 \mathrm{mmol})$ in 54% yield.

Suzuki cross coupling

To a solution of $41(144 \mathrm{mg}, 0.461 \mathrm{mmol})$ and boronic ester $61(122 \mathrm{mg}, 0.616 \mathrm{mmol})$ in 0.75 mL degassed DMF was added a solution of tripotassium phosphate ($293 \mathrm{mg}, 1.383$ $\mathrm{mmol})$ in 0.75 mL degassed water. $\mathrm{Pd}_{2} \mathrm{dba}_{3}(10 \mathrm{mg}, 11.5 \mu \mathrm{~mol})$ and triphenylphosphine $(12 \mathrm{mg}, 46.1 \mu \mathrm{~mol})$ were finally added and the resulting mixture was stirred at $65^{\circ} \mathrm{C}$ for 2 h. After cooling to $23{ }^{\circ} \mathrm{C}$, the reaction was quenched with sat. brine and the org. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3) and concentrated in vacuum. The crude was dissolved again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and extracted with $\mathrm{HCl} 10 \%$ (x5). The aq. layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x2), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent evaporated. Column chromatography eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O} 25: 1$ gave 58 mg of isolated aldehyde $\mathbf{6 3}(0.281 \mathrm{mmol})$ in 61% yield
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (app. pent, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dt}, J=13.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.00-$ $1.83(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.14$ $(\mathrm{s}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 191.2, 173.1, 133.6, 133.1, 126.4, 47.9, 44.0, 29.5, 27.5, 26.7, 24.8, 22.6, 19.0, 14.9. HRMS (ESI+) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{ONa}\right]^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right) m / z$ 229.1563, found $m / z 229.1562$.

Trimethyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)prop-1-yn-1-yl)silane (60)
To a flame dried bottom flask was added 1-trimethylsilylpropyne $(1.65 \mathrm{~mL}, 14.85 \mathrm{mmol})$ in 10 mL and cooled to $-25^{\circ} \mathrm{C}$ under Ar. n-BuLi ($5.66 \mathrm{~mL}, 14.14 \mathrm{mmol}$) was slowly added and the resulting yellow solution was stirred for 1 h at $-25{ }^{\circ} \mathrm{C}$. Another flame-dried flask containing $\mathrm{MgCl}_{2}(1.31 \mathrm{~g}, 13.78 \mathrm{mmol})$ and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($2.81 \mathrm{~mL}, 13.78 \mathrm{mmol}$) was cooled to $-25^{\circ} \mathrm{C}$ after which it was charged with the solution containing the lithiopropyne. The resulting suspension was allowed to stir at $-20^{\circ} \mathrm{C}$ for 2 h and a solution of acetyl chloride ($1.08 \mathrm{~mL}, 15.15 \mathrm{mmol}$) in 0.8 mL MTBE was added. The mixture was stirred for 1 h at $-20^{\circ} \mathrm{C}$, then allowed to warm to $23^{\circ} \mathrm{C}$ over 1 h and concentrated in vacuum. The resulting yellow gummy solid residue was added 20 mL hexanes and the suspension was filtered. The resulting solid was washed further with hexanes $(2 \times 10 \mathrm{~mL})$ and the volatiles removed in vacuum.
1.80 g of $\mathbf{6 0}(7.56 \mathrm{mmol})$ were isolated in 51% yield.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.87(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 103.4,84.2,83.3,24.8$.

(E)-2-(2-Ethoxyvinyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (64)

In a dry Scklenk tube under Ar, ethoxyehyne ($4 \mathrm{~mL}, 16.76 \mathrm{mmol}$) and pinacolborane ($2.67 \mathrm{~mL}, 18.38 \mathrm{mmol}$) were introduced ad dissolved in $40 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. Bis(cyclopentadienyl)zirconium(IV) chloride hydride ($259 \mathrm{mg}, 1.00 \mathrm{mmol}$) was introduced while a gentle argon overpressure was applied. The tube was sealed and stirred under argon at $23^{\circ} \mathrm{C}$ for 16 h after which the crude was filtered through neutral alumina, washed with $\mathrm{Et}_{2} \mathrm{O}$ and the filtrated was collected in fractions. The fractions containing the product were combined and evaporated to give the desired boronate 64 in 94% yield ($3.1 \mathrm{~g}, 15.65 \mathrm{mmol}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.05(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H})$.

4-Methylbenzenesulfonyl azide

A solution of sodium azide ($312 \mathrm{mg}, 4.8 \mathrm{mmol}$) in water $(1.3 \mathrm{~mL})$ was quickly added to a suspension of 4-methylbenzenesulfonyl chloride (762 $\mathrm{mg}, 4.0 \mathrm{mmol})$ in $2.3 \mathrm{~mL} i-\mathrm{PrOH}$ and stirred for 1 h at $23^{\circ} \mathrm{C}$. Then, water $(25 \mathrm{~mL})$ was added and the mixture was stirred for another hour. Extractions were done with EtOAc (x3), the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated. The crude was used without any further purification in the next step.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.2,135.5,130.3,127.6,21.8$.

Bestmann-Ohira reagent (Dimethyl (1-diazo-2-oxopropyl)phosphonate)

A solution of dimethyl (2-oxopropyl)phosphonate ($631 \mathrm{mg}, 3.8 \mathrm{mmol}$) in benzene (3.7 mL) was slowly added to a suspension of $\mathrm{NaH}(160 \mathrm{mg}, 4$ $\mathrm{mmol}, 60 \%$ in oil) in THF (2.4 mL) and benzene (19 mL). The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h before the addition of 4-methylbenzene sulfonyl azide ($789 \mathrm{mg}, 4 \mathrm{mmol}$) in benzene (3.7 mL). The resulting solution was stirred for 2 h , filtered over Celite and the solvent was removed. Column chromatography in SiO 2 was done eluting with hexanes/ EtOAc 1:1.
300 mg of Bestmann-Ohira reagent (1.56 mmol) were isolated in 40% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 190.1,189.1,53.7(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 27.3$.

(1R,2R,E)-1,2-dimethyl-1-(2-methylprop-1-en-1-yl)-6-(prop-2-yn-1-ylidene)cyclo hexane (65)

To $\mathbf{6 3}(19 \mathrm{mg}, 0.092 \mathrm{mmol})$ dissolved in 0.3 mL THF, was added 0.3 mL MeOH followed by $\mathrm{K}_{2} \mathrm{CO}_{3}(23 \mathrm{mg}, 0.166 \mathrm{mmol})$ and BestmannOhira reagent ($19 \mathrm{mg}, 0.101 \mathrm{mmol}$). The reaction was stirred for 18 h at $23{ }^{\circ} \mathrm{C}$, after which sat. NaHCO_{3} was added and extractions with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3) were done. The org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent was concentrated and the crude was purified in a chromatography column eluting with pentane. 13 mg of $\mathbf{6 5}(0.064 \mathrm{mmol})$ were isolated in 70% yield.
${ }^{1}$ H NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.37(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14$ (app. pent, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.04(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,133.3,132.9,102.0,82.5,79.9,46.5,43.0,29.9,29.2$, 27.7, 24.1, 22.2, 18.9, 15.2. HRMS (EI+) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{22}{ }^{\bullet}\right]^{+}\left(\mathrm{M}^{\bullet+}\right) m / z$ 202.1722, found $m / z 202.1721$.

(3-((5R,6R)-5,6-Dimethyl-6-(2-methylprop-1-en-1-yl)cyclohex-1-en-1-yl)prop-1-yn-1yl)trimethylsilane

A dry 2-neck round-bottom flask equipped with a condenser, was charged with activated magnesium tunings ($315 \mathrm{mg}, 13.0 \mathrm{mmol}, 1.5$ equiv) that were covered with anhydrous diethyl ether (8 mL). Dibromoethane ($10 \mu \mathrm{~L}, 4.6 \mu \mathrm{~mol}$, catalytic) was added followed by trimethylsilylpropargyl bromide ($0.5 \mathrm{~mL}, 2.9 \mathrm{mmol}, 0.33$ equiv). The reaction was initiated
by warming to reflux. A gentle reflux was then maintained by slow addition of the remaining bromide ($1 \mathrm{~mL}, 5.8 \mathrm{mmol}, 0.66$ equiv). After addition the mixture was heated to reflux for 20 additional min. The Grignard reagent was titrated and used in the following reaction.
A dry Schlenk tube was charged with $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(148 \mathrm{mg}, 0.128 \mathrm{mmol}$, 0.2 equiv) which was suepended in anhydrous $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$. The suspension was stirred vigorously and $5(200 \mathrm{mg}, 0.64 \mathrm{mmol}, 1$ equiv) was added as a solution in anhydrous $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ immediately followed by addition of the solution of Grignard reagent freshly prepared ($0.37 \mathrm{M}, 6.9 \mathrm{~mL}, 2.56 \mathrm{mmol}, 4$ equiv) were added dropwise. The resulting reaction was stirred for 20 h at $23^{\circ} \mathrm{C}$ (monitored by GC-MS). The mixture was poured on brine (100 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent concentrated. The crude material was used in the next step without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.93-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.04$ (app. pent, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94 $(\mathrm{dq}, J=20.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dq}, J=20.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.83$ $(\mathrm{m}, 1 \mathrm{H}), 1.67(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{~s}$, $3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H})$.

(5R,6R)-5,6-Dimethyl-6-(2-methylprop-1-en-1-yl)-1-(prop-2-yn-1-yl)cyclohex-1-ene

 (43)The crude material from the reaction described above (theor. $0.64 \mathrm{mmol}, 1$
 equiv) was dissolved in $\mathrm{MeOH}(1.5 \mathrm{~mL})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(177 \mathrm{mg}, 1.28 \mathrm{mmol}$, 2 equiv) was added. The resulting suspension was stirred at $23{ }^{\circ} \mathrm{C}$ for 6 h (monitored by GC-MS) and then poured on brine (50 mL) and extracted with pentane $(5 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvent was concentrated. Purification by column chromatography on silica gel eluting with pentane.
100 mg of $\mathbf{8}(0.494 \mathrm{mmol})$ were isolated as a colourless oil in 77% yield over 2 steps.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta_{\mathrm{H}} 6.20-6.12(\mathrm{~m}, 1 \mathrm{H}), 5.57(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.10$ $(\mathrm{m}, 1 \mathrm{H}), 3.09-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.04(\mathrm{~m}$, $1 \mathrm{H}), 1.93$ (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.83$ (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$, $1.12(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta_{\mathrm{C}} 140.1,133.5,132.9$, 123.4, 83.8, 71.0, 43.0, 39.1, 27.5, 27.3, 26.2, 22.5, 22.4, 18.2, 17.4. HRMS (EI+) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{22}\right]^{+}\left(\mathrm{M}^{++}\right) m / z$ 202.1722, found m / z 202.1721. $[\boldsymbol{\alpha}]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.37,23{ }^{\circ} \mathrm{C}\right)=-2.3^{\circ}$.
(1aS,1bR,2R,6aS)-1,1,1b,2-Tetramethyl-1a,1b,2,3,4,6-hexahydrocyclopropa $[a]$ indene-6a(1H)-carbaldehyde (67)

To a solution of $43(10 \mathrm{mg}, 0.049 \mathrm{mmol})$ in $0.5 \mathrm{~mL}\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ was added 3,5 -dichloropyridine- N-oxide ($32 \mathrm{mg}, 0.198 \mathrm{mmol}$) and $\mathrm{IPrAuNTf}_{2}(4 \mathrm{mg}$, $4.9 \mu \mathrm{~mol})$. The resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was poured to a sat. sol. CuSO_{4} and the extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent was evaporated and the crude was purified eluting with pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 20:1.
7 mg of $67(0.032 \mathrm{mmol})$ were isolated in 65% yield.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 1 \mathrm{H})$, $2.28(\mathrm{dd}, J=16.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H})$, $1.58(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.52-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85$
$(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}) $\delta 202.3$, 146.4, 119.0, 51.4, 46.4, 45.6, 35.0, 34.7, 29.8, 26.9, 25.6, 24.8, 21.1, 17.3, 17.1. HRMS (ESI+) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}\right]^{+}$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right) \mathrm{m} / \mathrm{z} 241.1563$, found $m / z 241.1555$. $[\boldsymbol{\alpha}]_{\mathbf{D}}\left(\mathrm{CHCl}_{3}, c 0.57,26^{\circ} \mathrm{C}\right)=-73.9^{\circ}$.

[^0]: ${ }^{1}$ (a) Bond, G. C.; Sermon, P. A.; Webb, G.; Buchanan, D. A.; Wells, P. B. J. Chem. Soc., Chem. Commun. 1973, 444-445. (b) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 16, 405-408. (c) Hutchings, G. J. J. Catal. 1985, 96, 292-295. (d) Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6505-6406. (e) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729-3731.
 ${ }^{2}$ Teles, H.; Brode, S.; Chabanas, M. Angew. Chem. Int. Ed. 1998, 37, 1415-1418.
 ${ }^{3}$ (a) Pyykkö, P. Angew. Chem. Int. Ed. 2002, 41, 3573-3578. (b) Pyykkö, P. Angew. Chem. Int. Ed. 2004, 43, 4412-4456. (c) Schwarz, H. Angew. Chem. Int. Ed. 2003, 42, 4442-4445.
 ${ }^{4}$ Gorin, D.J.; Toste, F. D. Nature 2007, 446, 395-403.
 ${ }^{5}$ For selected reviews see: (a) Widenhoefer, R. A. Chem.-Eur. J. 2008, 14, 5382-5391. (b) Patil, T. Chem.-Asian J. 2012, 7, 2186-2194. (c) Wang, Y.-M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889-901 and references therein. (d) Huguet, N.; Echavarren, A. M. Asymmetric Synthesis II, Christman, M.; Bräse, S. Eds. Chapter 26, 2012, 135-152. Wiley-VCH Verlag GmbH \& Co. (e) De Mendoza, P.; Echavarren, A. M. Modern Gold Catalyzed Synthesis, Hashmi, A. S. K.; Toste, F. D. Eds. Chapter 5, 2012, 205-212. Wiley-VCH Verlag GmbH \& Co.

[^1]: ${ }^{6}$ Gimeno, M. C.; Laguna, A. Chem. Rev. 1997, 97, 511-522.
 ${ }^{7}$ (a) Lauterbach, T.; Livendahl, M.; Rosellón, A.; Espinet, P.; Echavarren, A. M. Org. Lett. 2010, 12, 3006-3009. (b) Livendahl, M.; Goehry, C.; Maseras, F.; Echavarren, A. M. Chem. Commun. 2014, 50, 1533-1536. For oxidative addition of $\mathrm{Au}(\mathrm{I})$ complexes, the use of an special system or ligand is required: (c) Guenther, J.; MalletLadeira, S.; Estevez, L.; Miqueu, K.; Amgoune, A.; Bourissou, D. J. Am. Chem. Soc. 2014, 136, 1778-1781. (d) Joost, M.; Zeineddine, A.; Estévez, L.; Mallet-Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. J. Am. Chem. Soc. 2014, 134, 14654-14657
 ${ }^{8}$ (a) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71-C79. (b) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939-2947.

[^2]: ${ }^{9}$ For selected examples see: (a) Hertwig, R. A.; Koch, W.; Schröder, D.; Schwarz, H.; Hrusak, J.; Schwerdtfeger, P. J. Phys. Chem. 1996, 100, 12253-12260. (b) Nechaev, M. S.; Rayón, V. M.; Frenking, G. J. Phys. Chem. A 2004, 108, 3134-3142. (c) Shapiro, N. D.; Toste, F. D. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 43569-13573.
 ${ }^{10}$ For selected examples see: (a) Flügge, S.; Anoop, A.; Goddard, R.; Thiel, W.; Fürstner, A. Chem.-Eur. J. 2009, 15, 8558-8565. (b) Hooper, N.; Green, M.; Russell, C. A. Chem. Commun. 2010, 46, 2313-2315. (c) Brown, T. J.; Widenhoefer, R. A. J. Organomet. Chem. 2011, 696, 1216-1220. (d) Brown, T. J.; Widenhoefer, R. A. Organometallics, 2011, 30, 6003-6009.
 ${ }^{11}$ Obradors, C.; Echavarren, A. M. Chem. Commun. 2010, 46, 2313-2315.
 ${ }^{12}$ Joost, M.; Gualco, P.; Mallet-Ladeira, S.; Amgoune, A.; Bourissou, D. Angew. Chem. Int. Ed. 2013, 52, 7160 7163
 ${ }^{13}$ (a) Hashmi, A. S. K; Haufe, P.; Schmid, C.; Rivas Nass, A.; Frey, W. Chem.-Eur. J. 2006, 12, 5376-5382. (b) Ferrer C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 1105-1109.

[^3]: ${ }^{14}$ (a) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. Int. Ed. 2002, 41, 4563-4565. (b) Krauter, C. M.; Hashmi A. S. K.; Pernpointner, M. ChemCatChem 2010, 2, 1226-1230.
 ${ }^{15}$ (a) Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 9, 3181-3184. (b) Qian, J.; Liu, Y.; Cui, J.; Xu, Z. J. Org. Chem. 2012, 77, 4484-4490.
 ${ }^{16}$ (a) Kusama, H.; Miyashita, Y.; Takay, J.; Iwasawa, N. Org. Lett. 2006, 8, 289-292. (b) Benedetti, E.; Lemière, G.; Chapellet, L. L.; Penoni, A.; Palmisano, G.; Malacria, M.; Goddard, J. P.; Fensterbank, L. Org. Lett. 2010, 12, 4396-4399.
 ${ }^{17}$ (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160-4161. (b) Davies, P. W.; Albrecht, S. J. C. Angew. Chem. Int. Ed. 2009, 48, 8372-8375. (c) Shi, S.; Wang, T.; Yang, W.; Rudolph, M.; Hashmi, A. S. K. Chem.-Eur. J. 2013, 19, 6576-6580.
 ${ }^{18}$ Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258-3259.
 ${ }^{19}$ (a) Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2006, 45, 4473-4475. (b) Nakamura, I.; Sato, T.; Terada, M.; Yamamoto, Y. Org. Lett. 2007, 9, 4081-4083.
 ${ }^{20}$ (a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326-3350. (b) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902-912.
 ${ }^{21}$ García-Mota, M.; Cabello, N.; Maseras, F.; Echavarren, A. M.; Pérez-Ramírez, J.; López, N. ChemPhysChem 2008, 9, 1624-1629.
 ${ }^{22}$ (a) Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178-6179. (b) NietoOberhuber, C.; Muñoz, M. P.; López, S.; Jiménez-Núñez, E.; Nevado, C.; Herrero-Gómez, E.; Raducan, M.; Echavarren, A. M. Chem.-Eur. J. 2006, 12, 1677-1693. (c) Nieto-Oberhuber, C.; Pérez-Galán, P.; HerreroGómez, E.; Lauterbach, T.; Rodríguez, C.; López, S.; Bour, C.; Rosellón, A.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2008, 130, 269-279. (d) Lee, Y. T.; Kang, Y. K.; Chung, Y. K. J. Org. Chem. 2009, 74, 79227934.
 ${ }^{23}$ (a) Lee, S. I.; Kim, S. M.; Choi, M. R.; Kim, S. Y.; Chung, Y. K. J. Org. Chem. 2006, 71, 9366-9372. (b) Escribano-Cuesta, A.; Pérez-Galán, P.; Herrero-Gómez, E.; Sekine, M.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. Org. Biomol. Chem. 2012, 10, 6105-6111. (c) Brooner, R. E. M.; Brown, T. J.; Widenhoefer, R. A. Angew. Chem. Int. Ed. 2013, 52, 6259-6261. For DFT calculations see: (d) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Cárdenas, D. J.; Buñuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2005, 44, 6146-6148.

[^4]: ${ }^{24}$ (a) Odabachian, Y.; Gagosz, F. Adv. Synth. Catal. 2009, 351, 379-386. (b) Obradors, C.; Leboeuf, D.; Aydin, J.; Echavarren, A. M. Org. Lett. 2013, 15, 1576-1579.
 ${ }^{25}$ López-Carrillo, V.; Echavarren, A. M. J. Am. Chem. Soc. 2010, 132, 9292-9294.
 ${ }^{26}$ (a) Zhang, L.; Kozmin, S. J. Am. Chem. Soc. 2004, 126, 11806-11807. (b) Sun, J.; Conley, M.; Zhang, L.; Kozmin, S. J. Am. Chem. Soc. 2006, 128, 9705-9710. (c) López-Carrillo, V.; Huguet, N.; Mosquera, Á.; Echavarren, A. M. Chem.-Eur. J. 2011, 17, 10972-10978.
 ${ }^{27}$ Cabello, N.; Rodríguez, C.; Echavarren, A. M. Synlett 2007, 1753-1758.
 ${ }^{28}$ For some examples in gold(I)-catalyzed intramolecular reactions: (a) Fürstner, A.; Morency, L. Angew. Chem. Int. Ed. 2008, 47, 5030-5033. (b) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962-6963. For some examples in gold(I)-catalyzed intermolecular reactions: (c) Chao, C.-M.; Toullec, P. Y.; Michelet, V. Tetrahedron Lett. 2009, 50, 3719-3722. (d) Buzas, A. K.; Istrate, F. M.; Gagosz, F. Angew. Chem. Int. Ed. 2007, 46, 11411144.

[^5]: ${ }^{29}$ (a) Cabello, N.; Jiménez-Núñez, E.; Buñuel, E.; Cárdenas, D. J.; Echavarren, A. M. Eur. J. Org. Chem. 2007, 4217-4223. (b) Seidel, G.; Mynott, R.; Fürstner, A. Angew. Chem. Int. Ed. 2009, 48, 2510-2513. (c) Pérez-Galán, P.; Martin, N. J. A.; Campaña, A. G.; Cárdenas, D. J.; Echavarren, A. M. Chem. Asian. J. 2011, 6, 482-486.
 ${ }^{30}$ Jiménez-Núñez, E.; Claverie, C. K.; Bour, C.; Cárdenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2008, 47, 7892-7895.

[^6]: ${ }^{31}$ Amijs, C. H. M.; Ferrer, C.; Echavarren, A. M. Chem. Commun. 2007, 698-700.
 ${ }^{32}$ (a) Nieto-Oberhuber, C.; Muñoz, M. P.; Buñuel, E.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402-2406. (b) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Jiménez-Núñez, E.; Buñuel, E.; Cárdenas, D. J.; Echavarren, A. M. Chem.-Eur. J. 2006, 12, 1694-1702. (c) Kim, S. M.; Park, J. H.; Choi, S. Y.; Chung, Y. K. Angew. Chem. Int. Ed. 2007, 46, 6172-6175.
 ${ }^{33}$ (a) López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029-6032. (b) Pérez-Galán, P.; Herrero-Gómez, E.; Hog, D. T.; Martin, N. J. A.; Maseras, F.; Echavarren, A. M. Chem. Sci. 2011, 2, 141-149.

[^7]: ${ }^{34}$ Witham, C. A.; Mauleón, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 58385839.
 ${ }^{35}$ (a) Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem. Int. Ed. 2011, 50, 6911-6914. (b) Qian, D.; Zhang, J. Chem. Commun. 2011, 47, 11152-11154.

[^8]: ${ }^{36}$ The enantioselective version of this reaction was reported while this manuscript was in preparation: Qian, D.; Hu, H.; Liu, F.; Tang, B.; Ye, W.; Wang, Y.; Zhang, J. Angew. Chem. Int. Ed. 2014, doi: 10.1002/anie. 201407717.
 ${ }^{37}$ (a) Zhang, L. Acc. Chem. Res. 2014, 47, 877-888. (b) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966977.

[^9]: ${ }^{38}$ (a) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258-3259. (b) Ye, L.; He, W.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 8550-8551.
 ${ }^{39}$ Ye, L.; He, W.; Zhang, L. Angew. Chem. Int. Ed. 2011, 50, 3236 -3239.
 ${ }^{40}$ (a) Henrion, G.; Chavas, T. E. J.; Le Goff, X.; Gagosz, F. Angew. Chem. Int. Ed. 2013, 52, 6277-6282. (b) Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070-14072. (c) Yang, L.-Q.; Wang, K.-B.; Li, C.-Y. Eur. J. Org. Chem. 2013, 2775-2779.
 ${ }^{41}$ (a) Davies, P. W.; Cremonesi, A.; Martin, N. Chem. Commun. 2011, 47, 379-381. (b) Xu, C.-F.; Xu, M.; Jia, Y.-X.; Li, C.-Y. Org. Lett. 2011, 13, 1556-1559. (c) He, W.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2011, 133, 8482-8485. (d) Luo, Y.; Ji, K.; Li, Y.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 17412-17415.
 ${ }^{42}$ (a) Noey, E. L.; Luo, Y.; Zhang, L.; Houk, K. N. J. Am. Chem. Soc. 2012, 134, 1078-1084. (b) Lu, B.; Li, Y.; Wang, Y.; Aue, D. H.; Luo, Y.; Zhang, L.; J. Am. Chem. Soc. 2013, 135, 8512-8524. (c) Henrion, G.; Chavas, T. E. J.; Le Goff, X.; Gagosz, F. Angew. Chem. Int. Ed. 2013, 52, 6277-6278.
 ${ }^{43}$ Schulz, J.; Jašíková, L.; Škríba, A.; Roithová, J. J. Am. Chem. Soc. 2014, 136, 11513-11523.

[^10]: ${ }^{44}$ (a) Pacheco, E. A.; Tiekink, E. R. T; Whitehouse, M. W. Gold Chemistry: Applications and Future Directions in the Life Sciences, Mohr, F. Ed. Chapter 6, 2009, 283-287. Willey-VCH Verlag, GmbH \& Co. (b) Schmidbaur, H.; Schier, A. Organometallics 2010, 29, 2-23. (c) Dickson, P. N.; Wehrli, A.; Geier, G. Inor. Chem. 1988, 27, 2921-2925.
 ${ }^{45}$ (a) Brown, T. J.; Dickens, M. G.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 6350-6351. (b) Hooper, T. N.; Green, M.; McGrady, J. E.; Patela, J. R.; Russell, C. A. Chem. Commun. 2009, 3877-3879. (c) Brooner, R. E. M.; Brown, T. J.; Widenhoefer, R. A. Chem.-Eur. J. 2013, 19, 8276-8284.
 ${ }_{46}^{46}$ (a) Bonati, F.; Minghetti, G. Gazz. Chim. Ital. 1973, 103, 373-386. (b) Mingos, D. M. P.; Yau, J. J. Organomet. Chem. 1994, 479, C16-C17.
 ${ }^{47}$ Mingos, D. M. P.; Yau, J.; Menzer, S.; Wiliams, D. J. J. Chem. Soc., Dalton Trans. 1995, 319-320.
 ${ }^{48}$ (a) Bergerhoff, G. Z. Anorg. Allg. Chem. 1964, 327, 139-142. (b) Kissner, R.; Latal, P.; Geier, G. J. Chem. Soc., Chem. Commun. 1993, 136-137.
 ${ }^{49}$ (a) Yau, J.; Mingos, D. M. P. J. Chem. Soc., Dalton Trans. 1997, 1103-1111. (b) Ito, Y.; Sawamura, M.; ${ }_{50}$ Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405-6406.
 ${ }^{50}$ Raducan, M.; Rodríguez-Escrich, C.; Cambeiro, X. C.; Escudero-Adán, E. C.; Pericàs, M. A.; Echavarren, A. M. Chem. Commun. 2011, 47, 4893-4895.

[^11]: ${ }^{51}$ Tamaki, A.; Kochi, J. K. J. Organomet. Chem. 1973, 61, 441-450.

[^12]: ${ }^{52}$ For the isolation of a silver intermediate in the activation of gold precatalyst, see: Weber, S. G.; Rominger, F.; Straub, B. F. Eur. J. Inorg. Chem. 2012, 2863-2867.
 ${ }^{53}$ (a) Herrero-Gómez, E.; Nieto-Oberhuber, C.; López, S.; Benet-Buchholz, J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 5455-5459. (b) Amijs, C. H. M.; López-Carrillo, V.; Raducan, M.; Pérez-Galán, P.; Ferrer, C.; Echavarren, A. M. J. Org. Chem. 2008, 73, 7721-7730.
 ${ }^{54} \mathrm{~A}$ report claimed the formation of $[(\mathrm{IPr}) \mathrm{Au}] \mathrm{BArF}_{24}$ with the bulky ligand $\operatorname{IPr}=1,3-\mathrm{bis}(2,4,6-$ trimethylphenyl)imidazol-2-ylidene, although no structural proof was provided: Weber, S. D.; Zahner, D.; Rominger, F.; Straub, B. F. Chem. Commun. 2012, 48, 11325-11327.
 ${ }_{55}^{55}$ (a) Mézailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133-4136. (b) Ricard, L.; Gagosz, F. Organometallics 2007, 26, 4704-4707.
 ${ }^{56}$ Shiotani, A.; Schmidbaur, H. J. Am. Chem. Soc. 1970, 92, 7003-7004.
 ${ }^{57}$ Guérinot, A.; Fang, W.; Sircoglou, M.; Bour, C.; Bezzenine-Lafollée, S.; Gandon, V. Angew. Chem. Int. Ed. 2013, 52, 5848-5852.

[^13]: ${ }^{58}$ Nevado, C.; Echavarren, A. M. Chem.-Eur. J. 2005, 11, 3155-3164.
 ${ }^{59}$ Tarselli, M. A.; Chianese, A. R.; Lee, S. J.; Gagné, M. R. Angew. Chem. Int. Ed. 2007, 46, 6670-6673.

[^14]: ${ }^{60}$ Weber, D.; Gagné, M. R. Org. Lett. 2009, 11, 4962-4965.
 ${ }^{61}$ Wang, D.; Cai, R.; Sharma, S.; Jirak, J.; Thummanapelli, S. K.; Akhmedov, N. G.; Zhang, H.; Liu, X.; Petersen, J. L.; Shi, X. J. Am. Chem. Soc. 2012, 134, 9012-9019.
 ${ }^{62}$ XPS analysis showed no traces of silver mixing $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}\right]$ and AgSbF_{6}.

[^15]: ${ }^{63}$ Although the signal corresponding to free PPh_{3} could not be observed by ${ }^{31} \mathrm{P}$ NMR of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}\right]$, elemental analysis indicated that a slight excess of PPh_{3} was present.

[^16]: ${ }^{64}$ Preisenberger, M.; Schier, A.; Schmidbaur, H. J. Chem. Soc., Dalton Trans. 1999, 1645-1650.
 ${ }^{65}$ Tang, Y.; Yu, B. RSC Adv. 2012, 2, 12686-12689.

[^17]: ${ }^{66}$ (a) Schmidbaur, H.; Schier, A. Chem. Soc. Rev. 2012, 41, 370-412. (b) Schmidbaur, H.; Schier, A. Chem. Soc. Rev. 2008, 37, 1931-1951.
 ${ }^{67}$ Usón, R.; Laguna, A.; Castrillo, M. B. Synth. React. Inorg-Met.-Org. Chem. 1979, 9, 317-324.
 ${ }^{68}$ Bayler, A.; Bauer, A.; Schmidbaur, H. Chem. Ber. 1997, 130, 115-118.
 ${ }^{69}$ (a) Hashmi, A. S. K.; Blanco, M. C.; Kurpejović, E.; Frey, W.; Bats, J. W. Adv. Synth. Catal. 2006, 348, 709713. (b) Hashmi, A. S. K.; Blanco, M. C. Eur. J. Org. Chem. 2006, 4340-4342. Our group reported later more efficient conditions for this reaction: (c) Huguet, N.; Leboeuf, D.; Echavarren, A. M. Chem.-Eur. J. 2013, 19, 6581-6585.
 ${ }^{70}$ Schmidbaur, H.; Hamel, A.; Mitzel, N. W.; Schier, A.; Nogai, S. Proc. Natl. Acad. Sci. USA 2002, 99, 49164921.

[^18]: ${ }_{72}^{71}$ For further information, see experimental part.
 ${ }^{72}$ Gaillard, S.; Bosson,J.; Ramón, R. S.; Nun, P.; Slawin, A. M. Z.; Nolan, S. P. Chem.-Eur. J. 2010, 16, 1372913740.

[^19]: ${ }^{73}$ Obradors, C.; Echavarren, A. M. Chem.-Eur. J. 2013, 29, 3547-3551.

[^20]: ${ }^{74}$ (a) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636-1638. (b) Trost, B. M.; Trost, M. K. Tetrahedron Lett. 1991, 32, 3647-3650.
 ${ }^{75}$ Fürstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244-8245.

[^21]: ${ }^{76}$ Kinetics performed by Imma Escofet.

[^22]: ${ }^{77}$ To obtain the covalent complex as the sole product, the silver salt has to be added slowly to the $\mathrm{L}-\mathrm{Au}-\mathrm{Cl}$.

[^23]: ${ }^{78}$ Zhu, Y.; Day, C. S.; Zhang, L.; Hauser, K. J.; Jones, A. C. Chem. Eur.-J. 2013, 19, 12264-12271.
 ${ }^{79}$ Canseco-Gonzalez, D.; Petronilho, A.; Mueller-Bunz, H.; Ohmatsu, K.; Ooi, T.; Albrecht, M. J. Am. Chem.
 Soc. 2013, 135, 13193-13203.

[^24]: ${ }^{80}$ Fang, W.; Presset, M.; Guérinot, A.; Bour, C.; Bezzenine-Lafollée, S.; Gandon, V. Chem.-Eur. J. 2014, 20, 5439-5446.
 ${ }^{81}$ Han, J.; Shimizu, N.; Lu, Z.; Amii, H.; Hammond, G. B.; Xu, B. Org. Lett. 2014, 16, 3500-3503.
 ${ }^{82}$ Turowsky, L.; Seppelt, K. Inorg. Chem. 1988, 27, 2135-2137.
 ${ }^{83}$ Abadie, M.-A.; Trivelli, X.; Medina, F.; Capet, F.; Roussel, P; Agbossou-Niedercorn, F.; Michon, C. Chem.Cat.Chem. 2014, 6, 2235-2239.
 ${ }^{84}$ Lavallo, V.; Frey, G. D.; Kousar, S.; Donnadieu, B.; Bertrand, G. Proc. Natl. Acad. Sci. USA 2007, 104, 13569-13573.

[^25]: ${ }^{85}$ Adriaenssens, L.; Escribano-Cuesta, A.; Homs, A.; Echavarren, A. M.; Ballester, P. Eur. J. Org. Chem. 2013, 1494-1500.

[^26]: ${ }^{86}$ (a) Brown, T. J.; Dickens, M. G.; Widenhoefer, R. A. J. Am. Chem. Soc. 2009, 131, 6350-6351. (b) Brown, T.
 J.; Dickens, M. G.; Widenhoefer, R. A. Chem. Commun. 2009, 6451-6453.
 ${ }^{87}$ Urbano, J.; Hormigo, A. J.; de Frémont, P.; Nolan, S. P; Díaz-Requejo, M. M.; Pérez, P. J. Chem. Commun. 2008, 759-761.

[^27]: ${ }^{88}$ Dateer, R. B.; Shaibu, B. S.; Liu, R.-S. Angew. Chem. Int. Ed. 2012, 51, 113-117.
 ${ }^{89}$ Yeom, H.-S.; Koo, J.; Park, H.-S.; Wang, Y.; Liang, Y.; Yu, Z.-X.; Shin, S. J. Am. Chem. Soc. 2012, 134, 208211.
 ${ }^{90}$ Jiménez-Núñez, E.; Claverie, C. K.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 5452-5455.
 ${ }_{91}$ Jiménez-Núñez, E.; Molawi, K.; Echavarren, A. M. Chem. Commun. 2009, 7327-7329.
 ${ }^{92}$ Molawi, K.; Delpont, N.; Echavarren, A. M. Angew. Chem. Int. Ed. 2010, 49, 3517-3519.

[^28]: ${ }^{93}$ (a) Wei, C.; Li, C. J. J. Am. Chem. Soc. 2003, 125, 9584-9585. (b) Cheong, P. H. Y.; Morganelli, P.; Luzung, M. R.; Houk, K. N.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 4517-4526. (c) Hooper, T. N.; Green, M.; Russell, C. A. Chem. Commun. 2010, 46, 2313-2315. (d) Simonneau, A.; Jaroschik, F.; Lesage, D.; Karanik, M.; Guillot, R.; Malacria, M.; Tabet, J.-C.; Goddard, J.-P.; Fensterbank, L.; Gandon, V.; Gimbert, Y. Chem. Sci. 2011, 2, 2417-2422. (e) Grirrane, A.; Garcia, H.; Corma, A.; Álvarez, E. ACS Catal. 2011, 1, 1647-1653. (f) Brown, T. J.; Widenhoefer, R. A. Organometallics 2011, 30, 6003-6009. (g) Raducan, M.; Moreno, M.; Bour, C.; Echavarren, A. M. Chem. Commun. 2012, 48, 52-54. (h) Hashmi, A. S. K.; Lauterbach, T.; Nçsel, P.; Vilhelmsen, M. H.; Rudolph, M.; Rominger, F. Chem.-Eur. J. 2013, 19, 1058-1065. (i) Gómez-Surez, A.; Dupuis, S.; Slawin, A. M. Z.; Nolan, S. P. Angew. Chem. Int. Ed. 2013, 52, 938-942. (j) Zhdanko, A.; Strçbele, M.; Maier, M. E. Chem.Eur. J. 2012, 18, 14732-14744. (k) Hashmi, A. S. K.; Braun, I.; Nçsel, P.; Schädlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem. Int. Ed. 2012, 51, 4456-4460. (1) Rubial, B.; Ballesteros, A.; González, J. M. Adv.Synth. Catal. 2013, 355, 3337-3343.

[^29]: ${ }^{94}$ For selected examples see: (a) Lemière, G.; Gandon, V.; Agenet, N.; Goddard, J.-P.; de Kozak, A.; Aubert, C.; Fensterbank, L; Malacria, M. Angew. Chem., Int. Ed. 2006, 45, 7596-7599. (b) Schelwies, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007, 46, 5598-5601. (c) Lin, G.-Y; Yang, C.-Y; Liu, R.-S. J. Org. Chem. 2007, 72, 6753-6757. (d) LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452-2453. (e) Zhang, Z.; Wiedenhofer, R. A. Org. Lett. 2008, 10, 2079-2081. (f) Xia, Y.; Dudnik, A. S.; Gevorgyan V.; Li, Y. J. Am. Chem. Soc. 2008, 130, 6940-6941. Some theoretical studies include (g) Bandini, M.; Bottoni, A.; Chiarucci, M.; Cera, G.; Miscione, G. P. J. Am. Chem. Soc. 2014, 134, $20690-$ 20700. (h) Zhou, T.; Xu, L.; Xia, Y. Org. Lett. 2013, 15, 6074-6077. (i) Zhou, T.; Xia, Y. Organometallics 2014, 33, 4230-4239.
 ${ }_{95}$ Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science, 2007, 317, 496-499.
 ${ }^{96}$ Davies, P. W.; Martin, N. Org. Lett. 2009, 11, 2293-2296.

[^30]: ${ }^{97}$ Li, W.; Li, Y.; Zhang, J. Chem.-Eur. J. 2010, 16, 6447-6450.
 ${ }_{98}^{98}$ Gupta, S.; Koley, D.; Ravikumar, K.; Kundu, B. J. Org. Chem. 2013, 78, 8624-8633.
 ${ }^{99}$ Hashmi, A. S. K.; Lauterbach, T.; Nösel, P.; Vilhelmsen, M. H.; Rudolph, M.; Rominger, F. Chem.-Eur. J. 2013, 19, 1058-1065.

[^31]: ${ }^{100}$ For a review on ion-pair concepts see: Macchioni, A. Chem. Rev. 2005, 105, 2039-2073.
 ${ }^{101}$ (a) Kovàcs, G.; Ujaque, G.; Lledàs, A. J. Am. Chem. Soc. 2008, 130, 853-864. (b) Gourlaouen, C.; Marion, N.; Nolan, S. P.; Maseras, F. Org. Lett. 2009, 11, 81-84.
 ${ }^{102}$ (a) Ciancaleoni, G.; Zuccaccia, C.; Zuccaccia, D.; Macchioni, A. Organometallics, 2007, 26, 3624-3626. (b) Zuccaccia, D.; Belpassi, L.; Tarantelli, F.; Macchioni, A. J. Am. Chem. Soc. 2009, 131, 3170-3171.
 ${ }^{103}$ Ciancaleoni, G.; Biasiolo, L.; Bistoni, G.; Macchioni, A.; Tarantelli, F.; Zuccaccia, D.; Belpassi, L. Organometallics 2013, 32, 4444-4447.
 ${ }^{104}$ Ciancaleoni, G.; Belpassi, L.; Tarantelli, F.; Zuccaccia, D.; Macchioni, A. Dalton Trans. 2013, 22, 4122-4131.

[^32]: ${ }^{105}$ Dr. David Leboeuf synthesized the analogue [(IPr)AuNCPh]BAr ${ }_{4}{ }^{\mathrm{F}}$.
 ${ }^{106}$ Generating in situ $\mathbf{A 2}$ by simple mixing [(t-BuXPhos)AuCl] and $\mathrm{NaBAr}_{4}{ }^{\mathrm{F}}$ in the reaction media was as efficient as using [(t-BuXPhos)AuNCMe]BAr ${ }_{4}{ }^{\mathrm{F}}$.

[^33]: ${ }^{107}$ Experiments performed by Carla Obradors.

[^34]: ${ }^{108}$ Experiments performed by Núria Huguet and Dr. David Leboeuf.
 ${ }^{109}$ In addition to intramolecular gold(I)-catalyzed cycloadditions, we also included different cycloisomerizations of 1,6-enynes.

[^35]: ${ }^{110}$ Macchioni, A. Eur. J. Inorg. Chem. 2003, 19, 195-205.
 ${ }^{111}$ DFT calculations performed by Carla Obradors.

[^36]: ${ }^{112}$ Liu, M.-L.; Duan, Y.-H.; Hou, Y.-L.; Li, C.; Gao, H.; Dai, Y.; Yao, X.-S. Org. Lett. 2013, 15, 1000-1003.
 ${ }^{113}$ Qiu, L. Q. Flora Reipublicae Popularis Sinicae (Zhongguo Zhiwu Zhi); Science Press: Beijing, China, 1986, 73, 224-225.
 ${ }^{114}$ Chinese Pharmacopoeia; State Pharmacopoeia Committee; China Medical Pharmaceutical Science and Technology Publishing House: Beijing, 2010, $1,79$.
 ${ }^{115}$ Liu, M.-L.; Duan, Y.-H.; Zhang, J.-B.; Yang, Y.; Dai, Y.; Yao, X.-S. Tetrahedron 2013, 69, 6574-6578.
 ${ }^{116}$ (a) Harrigan, G. G.; Ahmad, A.; Baj, N.; Glass, T. E.; Gunatilaka, A. A. L.; Kingston, D. G. I. J. Nat. Prod. 1993, 56, 921-925. (b) Buchi, G.; Greuter, F.; Tokoroyama, T. Tetrahedron Lett. 1962, 18, 827-833.
 ${ }^{117}$ Tanitsu, M. A.; Takaya, Y.; Akasaka, M.; Niwa, M.; Oshima, Y. Phytochemistry, 2002, 59, 845-849.

[^37]: ${ }^{118}$ Handore, K. L.; Reddy, D. S. Org. Lett. 2014, 16, 4252-4255.
 ${ }^{119}$ Zhang, R.; Mamai, A.; Madalengoitia, J. S. J. Org. Chem. 1999, 64, 547-555.

[^38]: ${ }^{120}$ Kariyone, T.; Naito, S. J. Pharm. Soc. Japan 1955, 75, 1511-1516.
 ${ }^{121}$ (a) Furukawa, S.; Oyamada, K.; Soma, N. J. Pharm. Soc. Japan 1961, 81, 565-570. (b) Büchi, G.; Greuter, F.;
 Tokoroyama, T. Tetrahedron Lett. 1962, 827-833.

[^39]: ${ }_{122}^{122}$ Berger, C.; Franck-Neumann, M.; Ourisson, G. Tetrahedron Lett. 1968, 3451-3452.
 ${ }^{123}$ Detailed conditions were missing in the original report.
 ${ }^{124}$ Piers, E.; Britton, R. W.; De Waal, W. Can. J. Chem. 1968, 47, 831-840.

[^40]: ${ }^{125}$ Prasad, C. V. C.; Chan, T. H. J. Org. Chem. 1987, 52, 120-124.
 ${ }^{126}$ Chan, T. H.; Prasad, C. V. C. J. Org. Chem. 1987, 52, 110-119.

[^41]: ${ }^{127}$ (a) Zhang, Y.; Luo, T.; Yang, Z. Nat. Prod. Rep. 2014, 31, 489-503. (b) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2008, 37, 1766-1775. (c) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 51, 2448-2462.
 ${ }^{128}$ Gaydou, M.; Miller, R. E.; Delpont, N.; Ceccon, J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2013, 52, 63966399.
 ${ }^{129}$ Carreras, J.; Livendah1, M.; McGonigal, P. R.; Echavarren, A. M. Angew. Chem. Int. Ed. 2014, 53, 4896-4899.

[^42]: ${ }^{130}$ Cui, L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394-8395.

[^43]: ${ }^{131}$ Prices checked in Sigma-Aldrich website on 04/11/2014.

[^44]: ${ }^{132}$ For selected reviews in asymmetric conjugate addtions see: (a) Alexakis, A.; Benhaim, C.; Eur. J. Org. Chem. 2002, 3221-3236. (b) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008, 108, 2796-2823. (c) Haerutyunyan, S. R.; (den) Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824-2852.
 ${ }^{133}$ For key pioneering studies on $\mathrm{Cu}(\mathrm{I})$-catalyzed enantioselective conjugate additions of various organometallic reagents see: (a) Alexakis, A.; Mutti, S.; Normant, J. F. J. Am. Chem. Soc. 1991, 113, 6332-6334. (b) Alexakis, A.; Frutos, J.; Mangeney, P. Tetrahedron: Asymmetry, 1993, 4, 2427-2430. (c) Feringa, B. L.; Badorrey, R.; Peña, D.; Harutyunyan, S. R.; Minnaard, A. J. Proc. Natl. Acad. Sci. 2004, 101, 5834-5838. (d) d’Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem. Int. Ed. 2005, 44, 1376-1378.
 ${ }^{134}$ (a) Vuagnoux-d'Augustin, M.; Alexakis, A. Chem.-Eur. J. 2007, 13, 9647-9662. (b) Germain, N.; Guénée, L.; Mauduit, M.; Alexakis, A. Org. Lett. 2014, 16, 118-121.
 ${ }_{135}^{135}$ Ngoc, D. T.; Albicker, M.; Schneider, L.; Cramer, N. Org. Biomol. Chem. 2010, 8, 1781-1784.
 ${ }^{136}$ (a) Guzmán, J. A.; García, E.; Mendoza, V.; De Jesús, D.; Maldonado, L. A. Rev. Soc. Quim. Mex. 2004, 48, 250-255. (b) Silva, A. L.; Toscano, R. A.; Maldonado, L. A. J. Org. Chem. 2013, 78, 5282-5292.
 ${ }_{137}$ Tsuda, T.; Satomi, H.; Hayashi, T.; Saegusa, T. J. Org. Chem. 1987, 52, 439-443.
 ${ }_{139}^{138}$ Magrez, M.; Le Guen, Y.; Baslé, O.; Crévisy, C.; Mauduit, M. Chem.-Eur. J. 2013, 19, 1199-1203.
 ${ }^{139}$ The ranges of diastereoselectivities depended on the methodology used and the bulkyness of the group introduced at C-3.

[^45]: ${ }^{140}$ Berrisford, D.; Bolm, C.; Sharpless, K. B. Angew. Chem. Int. Ed. 1994, 34, 1059-1070.
 ${ }^{141}$ 3:1 $d r$ determined by ${ }^{1}$ H NMR; 91-92\% ee (IC column, Hex:IPA $99: 1,0.85 \mathrm{~mL} / \mathrm{min}$, [sample] $=5 \mathrm{mg} / \mathrm{mL}, 5$ mL injection, 310 nm).

[^46]: ${ }^{142}$ Mace, L. H.; Shanmugham, M. S.; White, J. C.; Drew, M. G. B. Org. Biomol. Chem. 2006, 4, 1020-1031.

[^47]: ${ }^{143}$ Posner, G. H.; Sterling, J. J.; Whitten, C. E.; Lentz, C. M.; Brunelle, D. J. J. Am. Chem. Soc. 1975, 97, 107118.
 ${ }^{144}$ Cahiez, G.; Chau, K.; Cléry, P. Tetrahedron Lett. 1994, 35, 3069-3072.
 ${ }^{145}$ Saito, S.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1997, 119, 611-612.
 ${ }^{146}$ Mahrwals, R.; Gündogan, B. J. Am. Chem. Soc. 1998, 120, 413-414.

[^48]: ${ }^{147}$ Behenna, D. C.; Mohr, J. T.; Sherden, N. H.; Marinescu, S. C.; Harned, A. M.; Tani, K.; Seto, M.; Ma, S.; Novák, Z.; Krout, M. R.; McFadden, R. M.; Roizen, J. L.; Enquist, Jr., J. A.; White, D. E.; Levine, S. R.; Petrova, K. V.; Iwashita, A.; Virgil, S. C.; Stoltz, B. M. Chem-Eur. J. 2011, 17, 14199-14223.

[^49]: ${ }^{148}$ Hatanaka, N.; Ozaki, O.; Matsumoto, M. Tetrahedron Lett. 1986, 27, 3169-3172.
 ${ }^{149}$ Nickel, A.; Maruyama, T.; Tang, H.; Murphy, P. D.; Greene, B.; Yusuff, N.; Wood, J. L. J. Am. Chem. Soc. 2004, 126, 16300-16301.
 ${ }^{150}$ Krel, M. K.; Lallemand, J.-Y.; Guillou, C. Synlett 2005, 2043-4046.
 ${ }^{151}$ (a) Kozikowski, A. P.; Campiani, G.; Aagaard, P.; McKinney, M. J. Chem. Soc. Chem. Commun. 1993, 860862. (b) Campiani, G.; Sun, L.-Q., Kozikowski, A. P.; Aagaard, P.; Mckinney, M. J. Org. Chem. 1993, 58, 76607669.
 ${ }^{152}$ (a) Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1966, 88, 3491-3497. (b) Sen, A.; Lai, T.-W. Inorg. Chem. 1984, 23, 3257-3258.

[^50]: ${ }^{153}$ (a) Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1964, 86, 1776-1779. (b) Hubert, A. J.; Reimlinger, H. Synthesis 1969, 405-430.

[^51]: ${ }^{154}$ Shirakawa, E.; Sato, T.; Imazaki, Y.; Kimura, T.; Hayashi, T. Chem. Commun. 2007, 47, 4513-4515.

[^52]: ${ }^{155}$ (a) Kawade, R. K.; Liu, R.-S. Org. Lett. 2013, 15, 4094-4097. (b) Henrion, G.; Chavas, T. E. J.; Goff, X. L.; Gagosz, F. Angew. Chem. Int. Ed. 2013, 52, 6277-6282.

[^53]: ${ }^{156}$ Salmond, W. G.; Barta, M. A.; Havens, J. L. J. Org. Chem. 1978, 43, 2057-2059
 ${ }^{157}$ Yu, J.-Q.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 3232-3233.

[^54]: ${ }^{158}$ Mondon, A. Justus Liebigs Annalen der Chemie, 1952, 181-201.

[^55]: ${ }^{159}$ Experiments carried out by Dr. Michael Muratore.
 ${ }^{160}$ Jiménez-Núñez, E.; Raducan, M.; Lauterbach T.; Molawi, K.; Solorio, C. R.; Echavarren, A. M. Angew. Chem. Int. Ed. 2009, 33, 6152-6155.
 ${ }^{161}$ (a) Tokunaga, M.; Wakatsuki, Y. Angew. Chem. Int. Ed. 1998, 37, 2867-2869. (b) Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Org. Lett. 2001, 3, 735-737. (c) Grotjahn, D. B.; Incarvito, C. D; Rheingold, A. L. Angew. Chem.

[^56]: Int. Ed. 2001, 40, 3884-3887. (d) Grotjahn, D. B.; Lev, D. A. J. Am. Chem. Soc. 2004, 126, 12232-12233. (e) Labonne, A. L.; Kribber, T.; Hintermann, L. Org. Lett. 2006, 8, 5853-5856. (f) Hintermann, L.; Dang, T. T.; Labonne, A.; Kribber, T.; Xiao, L.; Naumov, P. Chem.-Eur. J. 2009, 15, 7167-7179. (g) Boeck, F.; Kribber, T.; Xiao, L.; Hintermann, L. J. Am. Chem. Soc. 2011, 133, 8138-8141. (h) Chevallier, F.; Breit, B. Angew. Chem. Int. Ed. 2006, 45, 1599-1602.
 ${ }^{162}$ Fehr, C.; Winter, B.; Mahpantay, I. Chem.-Eur. J. 2009, 15, 9773-9784.

[^57]: ${ }^{163}$ Spaggiari, A.; Vaccari, D.; Davoli, P.; Torre, G.; Prati, F. J. Org. Chem. 2007, 72, 2216-2219.
 ${ }^{164}$ (a) Matveeva, E. D.; Feshin, D. B.; Zefirov, N. S. Russ. J. Org. Chem. 2001, 37, 52-55. (b) De Simone, F.; Andrès, J.; Torosantucci, R.; Waser, J. Org. Lett. 2009, 11, 1023-1026.

[^58]: ${ }^{165}$ Shirakawa, E.; Imazaki, Y.; Hayashi, T. Chem. Commun. 2009, 5088-5090.
 ${ }^{166}$ Majetich, G.; Hull, K.; Casares, A. M.; Khetani, V. J. Org. Chem. 1991, 56, 3958-3973.
 ${ }^{167}$ Chamberlin, A. R.; Liotta, E. L.; Bond, F. T. Org. Synth. 1990, Coll. Vol. 7, 77-81.

[^59]: ${ }^{168}$ Lee, K.; Seomoon, D.; Lee, P. H. Angew. Chem. Int. Ed. 2002, 41, 3901-3903.
 ${ }^{169}$ Mszar, N. W.; Haeffner, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 3362-3365.

[^60]: ${ }^{170}$ Scott, W. J.; Stille, J. K. J. Am. Chem. Soc. 1986, 108, 3033-3040.

[^61]: ${ }^{171}$ Cresteya, F.; Hooyberghsa, G.; Kristensen, J. L. Tetrahedron 2012, 68, 1417-1421.

[^62]: ${ }^{172}$ Hopf, H.; Böhm, I.; Kleinschroth, J. Org. Synth.; Coll. Vol. 7, 1990, 485-490.

[^63]: ${ }^{173}$ (a) Nieto-Oberhuber, C.; Muñoz, M. P.; Buñuel, E.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402-2406. (b) Nieto-Oberhuber, C.; Muñoz, M. P.; López, S.; Jiménez-Núñez, E.; Nevado, C.; Herrero-Gómez, E.; Raducan, M.; Echavarren, A. M. Chem.-Eur. J. 2006, 12,1677-1693.
 ${ }^{174}$ (a) Fang, R.; Wei, X.; Yang, L. Org. Biomol. Chem. 2014, 12, 8433-8441. (b) Mokar, B. D.; Liu, R.-S. Chem. Commun. 2014, 50, 8966-8969.

[^64]: ${ }^{175}$ (a) Demjanov, N. J.; Luschnikov, M. J. Russ. Phys. Chem. Soc. 1901, 33, 279 -283. (b) Tiffeneau, M.; Tchoubar, B.; Compt. Rend. 1937, 205, 1411-1413. (c) Smith, P. A. S.; Baer, D. R. Org. React. 1960, 11, 157188. (d) Dave, V.; Stothers, J. B.; Warnhoff, E. W. Can. J. Chem. 1979, 57, 1557-1568. (e) Coveney, D. J. Comp. Org. Syn. 1991, 3, 781-782. (f) Fattori, D.; Henry, S.; Vogel, P. Tetrahedron 1993, 49, 1649-1664.
 ${ }^{176}$ (a) Krow, G. R. Tetrahedron 1987, 43, 3-38. (b) Dauben, H. J. Jr.; Ringold, H. J.; Wade, R. H.; Pearson, D. L.; Anderson, A. G. Jr. Org. Synth. Coll. 1963, 4, 221-227.
 ${ }^{177}$ Uetake, Y.; Niwa, T.; Nakada, M. Tetrahedron Lett. 2014, 55, 6847-6850.

[^65]: ${ }^{178}$ The reported α_{D} of the isolated natural product is the following: $[\alpha]_{\mathrm{D}}\left(\mathrm{MeOH}, c 0.5,26^{\circ} \mathrm{C}\right)=-19.60^{\circ}$. See ref. 112.
 ${ }^{179}$ Melting point of the racemate: $\left(60-62^{\circ} \mathrm{C}\right)$. See ref. 118 .

