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Abstract 

Model, Model-based or Recedíng-horizon Predictive Control (MPC or RHPC) is a suc­
cessful and mature control strategy which has gained the widespread acceptance of 
both academia and industry. The basis of these control Iaws, which have been re­
ported to handle quite complex dynamics, is to perform predictions of the system to 
be controlled by means of a model. A control profile is then computed to minimise 
sorne cost function defined in terms the predictions and the hypothesised controIs. 

It was soon realised that the first few predictive controllers failed to fulfil essential 
properties, such as the stability of the nominal dosed-Ioop system. In addition, it was 
noticed that the discrepancies between the model and the true process, referred to 
as system uncertainty, can seriously affect the achieved performance. The robustness 
problem should, thus, be addressed. In this thesis, the problems of nominal stability 
and robustness are reviewed and investigated. In particular, the accomplishment of 
constraint specifications in the presence of various sources of uncertainty is a major 
objective of the methods developed throughout this PhD research. 

First of all, controllers which guarantee nominal stability, such as the CRHPC and 
the GPCoo

, are highlighted and formulated, and l-norm counterparts are obtained. 
The robustness of these strategies in ~he unconstrained case has been analysed, and it 
has been concluded that the infinite horizon approach often leads to more convenient 
performance and robustness results for typical choices of the tuning knobs. Then the 
constrained case has been undertaken, and min-max controllers based on the global 
uncertainty approach have been formulated for both l-norm and 2-norm formulations. 
For these methods, a band updating algorithm has been suggested to modify the as­
sumed uncertainty bounds on-line. Although both formulations provide similar results, 
which overcome the classical approach to robustness when constraints are specífied, the 
l-norm controllers are computationally more efficient, since the optimal control move 
sequence can be computed with a standard LP problem. 

Finally, a refinement of the min-max approach which includes the notion that feed­
backis present in the receding-horizon implementation of predictive controllers, termed 
as feedback min-max MPC, is shown to overcome sorne of the drawbacks of the standard 
min-max approach. 
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Chapter 1 

Introduction 

1.1 Introduction to Model Predictive Control 

Mode~ Model-based or Receding-horizon Predictive Control (MPe or RRPe) is a suc­

cessful control strategy which emerged in the late 1970's to face some industrial control 

problems. The basis of these methods is to make use of an explicit model of the system 

to be controlled in order to perform output andj or state predictions. An optímal con­

trol profile is computed to minimise a cost or objective function defined in terms of the 

predicted outputs (or states) and the control moves (or signals) over a given prediction 

or coincidence horizon or window. 

In the last two decades, a large variety of methods have been developed within 

the MPC family and countless successful industrial applications have been reported, 

some of which can be found in (Qin and Badgwell, 1996). But the success of MPe is 

by no means confined to the industrial domain. Innumerable scientific publications, 

some of which are referenced hereafter, evidence the interest of academia in this control 

strategy. Some reasons to justify the attention paid to these methods from both the 

academical and the industrials worlds are given below: 

1. MPe controllers have been developed either for linear or non-linear models. 

1 



2 Introduction 

2. There are no conceptual differences between Single-InputjSingle-Output (SISO) 

and Multiple-lnputjMultipl~-Output (MIMO) íormulations.ln the latter case, 

the interaction between variables is compensated. 

3. Difficult dynamics such as dead-times, unstable or non-minimum phase systems 

can be easily handled. 

4. Feedforward compensation oí measurable disturbances can be introduced in a nat­

ural way exploiting the model-based and predictive features oí the MPC method­

ology by using disturbance models. 

5. The incorporation oí constraints in the manipulated and controlled variables 

andj or states is a simple task. Constraints can be considered at the controller 

design stage and the resulting optimisation problem can oíten be solved using 

standard Linear Programming (LP) or Quadratic Programming (QP) tools. 

6. Preprogrammed setpoints, typical in robotics or batch processes, can be intro­

duced. 

7. Methods which guarantee the stability of the closed-loop system are available. 

8. Robustness features can be enhanced through tuning parameters or optimisation 

methods. 

Constraint handling is, indeed, one of the most appealing properties oí MPC, sínce 

limits of several kinds always occur in practice. Constraints can be used to describe 

security limits (the pressure within a chemical reactor must be below some critical 

value), physical restrictions (a valve cannot be opened beyond a 100%), technological 

requirements (the temperature of a given process must be kept between sorne bounds), 

product quality specifications (maximum impurity allowed), and so on. These require­

ments must be handled at the controller design stage to avoid undesirable performance. 
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The objective of constraints is twofold. On the one hand, they can be used to 

increase the accuracy of the model, since actuator and plant limits can be incorporated 

into the model. On the other hand, constraints can be used as tuning knobs to describe 

control requirements or specifications~ UsuaIly, the optimal operating point lies dose 

to (or on) one or several limits and therefore, from an economical point of view, it is 

advisable to operate as dose to the constraint boundary as possible. If constraints are 

incorporated at the controller design stage, the operating point can often be specified 

much closer to the optimallocation. 

Constraints can be dassified according to different criteria. The following clas­

sification of constraints, according to practical considerations, is due to Álvarez and 

de Prada (1997): 

1. Physical constraints. These' limits, which must never be surpassed, are deter­

mined by the physical limitations of the system. 

2. Operating constraints. These bounds are fixed by the plant operators to specify 

the optimal operating region. The operation constraints are more restrictive than 

the physicallimits. 

3. Optimisation or setpoint conditioning constraints. These limits, more restric­

Uve than the operating constraints, are used only if the setpoint conditioning 

technique is applied .. 

4. Working constraints. These are the actual constraints considered by the con­

troller to determine the feasible region. The working constraints are obtained by 

choosing the most restrictive among the physical, the operating and the optimi­

sation limits. 

Apart from constraint handling, the relevant issues of stability and robustness have 

been successfully tackled in the last decade. The first few controllers in the MPC 
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famiIy did not guarantee the stability of the closed-loop system even when the true 

process and the assumed model were identical. This flaw was promptly overcome and 

several stabilising controllers have furnished the MPC class. At the same time, the 

robustness issue has been undertaken from several points of view. The process model 

is a key parameter of predictive controllers, and thus it must be analysed how the 

modelling errors and disturbances (system uncertainty) affect the closed-loop system. 

It would be hazardous to apply the controller directIy to the true system if the sources 

of uncertainty are not carefully examined and quantified. Uncertainty might not only 

spoil performance and lead to constraint violations, but even instability could arise. 

1.2 Historical overview of MPC 

Sorne of the ideas which originate the first few predictive controllers were adopted 

from optima! control methodologies, such as the Linear Quadratic (LQ) or the Linear 

Quadratic Gaussian (LQG) controllers (Anderson and Moore, 1971; Kwakernnak and 

Sivan, 1972), but it was not until the late 1970's that the first two purely MPC control 

laws emerged. The Identijication-Command (IDCOM) and the Dynamic Matrix Con­

trol (DMC), detailed in (Richalet et al., 1978) and (CutIer and Ramaker, 1980) respec­

tively, are acknowledged as the roots of MPC. These two methods share sorne common 

features which established the basis of MPC. To begin with, a dynamical model (the 

impulse response in the former and the step response in the latter) is explicitly used 

to assess the effect of the hypothesised future control actions. A control pro file is thus 

computed to minimise a cost function which in eludes the setpoint tracking error be­

sides the control effort, subject to operating constraints. The basis of MPC can be 

summarised in the following four points (Scokaert, 1994¡ Serrano, 1994; Cristea, 1998): 

1. A process model is used to predict the future behaviour of the system over a 

coincidence or costing horizon or window using past inputjoutput data and a 
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hypothesised sequence of future controIs. 

2. An objective or cost function based on sorne performance criterion is minimised 

over the coincidence horizon. The cost function is usually defined as a combina­

tion of sorne norm of the tracking errors and the control effort. 

3. The optimisation problem yields an "open-loop optimal" control move sequence. 

4. Only the first component of this sequence is implemented and the loop is closed 

by repeating this procedure at each sampling instant updating the past data with 

system's measurements. This is the usual receding-horizon strategy common to 

most MPC laws. 

Different choices or alternatives can be given for the steps 1 through 4, and thus a 

great deal of degrees of freedom are available to design a MPC control strategy. Each 

possible choice results on a different MPC controller. This multiplicity of possibilities 

has given rise to a plethora ofMPC controllers, sorne of which are surveyed below. 

Apart from the relation to the LQ and LQG controllers, sorne of the ideas behind 

MPC are reported in several other approaches. Zadeh and Whalen (1962) related 

the optimal control problem with LP methods. Propoi (1963) suggested the receding­

horizon strategy and Chang and Seborg (1983) highlighted the link between the meth-

. ods of Propoi and MPC. Other approaches such as the Smith predictor, feedforward 

control or the Internal Model Control (IMC), surveyed in (Garcia and Morari, 1982), 

establish a relation between signal-based control such as Proporlional plus Integral plus 

Derivative (PID) with the strategies which use an explicit model on-Hne, e.g. MPC. 

Since the early results of MPC in the late 1970's, the acceptance of these methodolo­

gies in the process industry has grown unceasingly. As an example, several applications 

were reported in the 1980's (Mehra et al., 1982; Garcia and Morshedi, 1984; Matsko, 

1985; Martin et al., 1986; CutIer and Hawkins, 1987), and sorne predictive control 
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packages were launched in that decade. In parallel to the developments in industry, 

various academical groups across Europe focused on MPC and the first few results were 

soon available. The "academical" algorithms were developed for SISO systems and not 

much attention was paid to the constraint issue, but the reformulation of these meth­

ods to han dIe MIMO systems and to incorporate constraints is often straightforward. 

Among these controllers are the Model Algorithmic Control (MAC) of Rouhani and 

Mehra (1982), the Predictor-based Self-Thning Control of Peterka (1984), the Adap­

tive Predictive Control Systems (APCS) of Martín Sánchez and Rodellar (1996) the 

Extended HONzon Adaptive Control (EHAC) of Ydstie (1984), the Multi-Step Multi­

variable Adaptive Regulator (MUSMAR) of Mosca et al. (1984) and the Extended Pre­

diction Self-Adaptive Control (EPSAC) of De Keyser and Cauwenberghe (1985). 

In the late 1980's, the widely known Generalised Predictive Control (GPC) was 

suggested by Clarke et al. (1987). This method gained the early recognition of academia 

and several research groups focused on the GPC law. One of the key points to justify 

the successful irruption of this control scheme is the inclusion of sorne previous MPC 

strategies (e.g. the DMC) as particular cases of the GPC. The precursora of the GPC 

controller are the mínimum variance controller described by Ástrom (1970) and the 

self-tuning regulator of Ástrom and Wittenmark (1973). Given a linear model, the 

minimum variance controller is obtained to minimise the output variance criterion: 

J(t) = E ([y(t + 1) - w(t + 1)J2} , 

where E{-} denotes the expected value, y(t) stands for the system output and w(t) is 

the setpoint (or reference) signa!. Hence, u(t) is computed as the value which provides 

the minimum of J(t), and the same problem is solved at time t+ 1 to compute u(t+ 1). 

For delays d greater than 1, t + d replaces t + 1 is used in the definition of J(t). 

It is widely known that this kind of strategy is only possible for mínimum phase 

systems, since the mínimum variance law cancels out the zeroes of the plant and, 
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obviously, unstable zeroes cannot be directly cancelled preserving the interna! stability 

of the feedback system. If a weighting factor is introduced in the control signal, this 

technique can be applied to non-mínimum phase systems, leading to the criterion: 

J(t) = E ([y(t + d) - w(t + d)]2 + ¡.¿u2(t)} , 

referred to as Generalised Minimum Variance (GMV) controller. A usual rnodification 

to the GMV law is to consider the control move Llu(t) instead of the control signal, 

í.e. 

J(t) = E ([y(t + d) - w(t + d)]2 + p,Au2 (t)} . 

This approach yields offset-free setpoint tracking for constant setpoints even when 

the plant does not inelude an integrator. On the other hand, in the standard GMV 

definition, a non-zero control signa1 is penalised always, even when the setpoint is 

different from zero. 

The GPC can be viewed as an extension of the GMV law conceived to overcorne 

the stability problems of the latter. The GMV fails to stabilise some unstable or 

non-mínimum phase systems, especially if the delay is an uncertain (or time varying) 

parameter. The GPC €xtends the cost function further in the future, using the the 

prediction or coinciden ce horizon concept likewise the DMC. The rnost celebrated fea­

ture of GPC is the ability of producing a convenient closed-loop behaviour for a wide 

class of typical systems with not too rnany tuning knobs. This property favoured the 

application of GPC in industrial control problems, and other MPC controllers followed 

the GPC's journey from academia to industry. A few examples of successful applica­

tions of "academical" MPC controllers are reported in (Richalet, 1993a; Carnacho and 

Berenguel, 1994). 

However, a deep analysis of the GPC law carried out by Bitrnead et al. (1990) 

revealed a major drawback: the stability of the elosed-loop system could not be guar­

anteed. This difficulty was joined by the open question of the influence of system 
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uncertainty in the closed-Ioop behaviour. Undoubtedly, stability and robustness be­

came the preferred fields of research within the MPC framework in the 1990's. The 

historical revision about these two issues is suspended here. This task is resumed in 

the introductory sections of Chapters 2, 3, 4, and 5, where the state of the art of the 

stability and robustness problems is reviewed. 

Along with the results of stability and robustness, the use of MPC for non-linear 

systems captured the attention of academia. Non-linear systems can often be con­

trolled with linear MPC, as shown for example in (Megías, 1994; Serrano et al., 1994), 

but some non-linearities are too difficult to be handled with these controllers. In the 

1990's the use of non-linear models to develop MPC laws was investigated. The results 

of Mayne and Michalska (1990), Michalska and Mayne (1993) and Chen and Allgower 

(1998b) contributed to this new area of MPC, and provide with methods which guar­

antee nominal stability. An exhaustive survey of non-linear MPC algorithms with 

stability guarantees is given in (Chen and Allgower, 1998a). The development of non­

linear MPC is, however, quite different from the linear case. Whereas the first few 

linear predictive controllers were conceived in the industrial environment and then at­

tracted the attention of academia, non-linear MPC is almost confined to the academical 

community and the application field is still unexplored. The main difficulty to use the 

non-linear MPC approach in practical control problems is the enormous computational 

burden it requires. This drawback limits the application domain of these new methods 

to very slow processes. In addition, some issues require further research, such as the 

robustness features of non-linear MPC achemes. 

With the current technology, the application of non-linear MPC seems too ambi­

tious. To overcome this difficulty, some methods have been suggested halfway from 

non-linear and linear MPC. These controllers make use of a non-línear process model 

to make predictions, but the model is linearised on-line at each sampling instant to cut 

down the computations. For example, the solutions suggested by Oliveira et al. (1995), 
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El Ghoumari (1998), Oliveira and Morari (1998) and Megías et al. (1999b) have proved 

successful as the computational burden is concerned. Nevertheless, purely linear MPC 

is still dominant in the application area. 

1.3 Objectives and structure of the thesis 

The main aím of this thesis is to research the combined problem of constmint handling, 

stability, and robustness. That is, starting from methods which guarantee closed-Ioop 

stability when the model and the true process coincide, endow these MPC controllers 

with a "robustness layer" to allow for some degree of uncertainty. The robustness 

requirement is specified as follows: 

, 

1. Stability and constraint accomplishment must be preserved in spite of uncer-

tainty. 

2. AH types of uncertainty (linear, non-linear, time invariant, time varying, stable; 

unstable, parametric, non-parametric, etc.) must be considered. 

In addition, the methods presented below were requested to be computationalIy efficient 

so that they could be applied even when fast dynamícs occur. Finally, the newly 

developed controllers must be contrasted with the exísting solutions provided in the 

literature to evaluate the quality of the results. 

The methods developed here are based on the GPC or in further evolutions of this 

predictive controller which guarantee stability. There are several reasons for such a 

choice. To begin with, many applications of the GPC have been reported, and it is 

thus convenient to undertake the stability and robustness problems associated to this 

controller in order to assess the limits of the GPC law and to suggest possible ím­

provements. In addition, the GPC performance index takes into account the setpoint 



10 Introduction 

tracking problem, which is a natural approach to many industrial applications. State­

space model formulations, such as those of (Rawlings and Muske, 1993; Scokaert and 

Mayne, 1998), usual1y tackle the problem of driving the state to the origin or "reg­

ulation problem", in which state feedback and thus state measurements or observers 

are required. This can become a relevant inconvenience, since usually only output 

measurements are available. Moreover, these methods require sorne manipulations to 

solve the setpoint tracking1 problem. FinaUy, transfer function formulation are óften 

preferred by the industrial community since most of the available system identification 

packages provide with transfer function models. 

However, the choice between state~space or transfer function formulations is a mat~ 

ter of taste rather than reason. For instance, state-space descriptions are usual1y pre­

ferred for modelling MIMO systems, but transfer function MPC formulations can be 

used in the mult,i~variable case with no difficulty. It is worth pointing out that most of 

the results presented below can be extended to state-space MPC in a straightforward 

form, and thus the question of which representation should be used is not that relevant. 

The discussion Chapters 2 through 5 include a survey of the state of the art of 

different MPC topies, from the basic formulations and definitions to robustness and 

stability issues, and then the contributions of this PhD research are reported and 

compared with the methodologies suggested in the literature. 

The outUne of this thesis is as follows: 

Chapter 2 is devoted to the formulation of severaI "GPO-like" predictive controllers. 

Apart from the classical GPO of (Clarke et al., 1987), the stabilising Constrained 

Receding-Horizon Predictive Control (ORHPC) and Infinite horizon GPC 

(GPOCO
) are reviewed. 00. the other hand, 1-norm cost functions are also taken 

lThe Predictive Functional Control (PFC) of Richalet (1993b) is a notable exception to this rule, 
since it sol ves the setpoint tracking problem using state-space models. 
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into account, leading to 1-norm counterparts of the standard 2-norm con­

trollers. The l-norm GPC (GPC¡), l-norm CRHPC (CRHPC¡) and l-norm 

GPCoo (GPCr') are thus formulated. However, it is noted that the GPCf solu­

tion requires an iterative algorithm, which can sometimes involve a large compu­

tational burden. To overcome this difficulty, an upper bound of the GPCi 

cost function is obtained, leading to the Quasi-Infinite horizon l-norm GPC 

(QGPCr'). Although this controller does not preserve the stability guarantees, 

it provides with a computationally efficient solution which leads to appropriate 

performance for the vast majority of systems. The usefulness of 1-norm con­

trollers is clarified in Chapter 4. The issue of stability when the true system to 

be controlled and the assumed model coincide is undertaken. The most relevant 

available stability results are presented, and stability theorems for 1-norm 

controllers are also obtained. The stability proofs, based on the monotonÍC­

ity of the optimal cost function sequence, provide with an intuitive insight to the 

stability topic. The stabilising controllers are tested on several benchmark sys­

tems to show that the stability problems of the classical finite horizon GPC are 

overcome, and the computational simplicity of QGPCr' compared to the GPCf 

is remarked. Finally, a convergence property from the QGPCr' to the GPCf 

is conjectured. 

Chapter 3 presents the classical approach to robustness for unconstrained 2-norm 

GPC-like controllers. This analysis is based on the equivalent Linear Time In­

variant (LTI) formulation of GPC due to (Bitmead et al., 1990). A novel fea­

ture introduced in this chapter is the extension of this kind of analysis 

to the unconstrained infinite horizon GPC, which is also formulated as an 

LTI controller. Robust stability conditions are provided for different uncertainty 

descriptions, e.g. additive and inverse multiplicative. Some of these descriptions 

make it possible the robustness analysis even when there is a changing number of 
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unstable poles between the model and the true process. The aim of this chapter 

is twofold. On the one hand, the performance and robustness proper­

ties of different stabilising controIlers are analysed and compared. Thia 

comparative study leads to the conclusion that the infinite horizon approach over­

comes the equality constrained ORHPO as robustness is concerned, especially for 

typical choices of the tuning knobs. On the other hand, two classical methods 

to enhance the robustness of predictive controlIers are reviewed, namely the T ~ 

design and the Q-parametrisation methods. The former is based on tuning the 

noise polynomial of the system model using heuristic rules, whereas the latter 

relies on parametrising vía a rational functíon Q, all the controIlers which lead 

to the same nominal transfer function, and then Q is chosen to maximise a ro­

bustness criterion. Throughout this analysis, it is observed that the effect of 

the polynomial T is similar for l-norm and 2-norm controllers. Finally, a new 

procedure to enhance the robustness of unconstrained GPC-like con .. 

trollers, based on obtaining the polynomial T by means of optimising 

a robustness criterion instead of heuristic rules, is developed and com­

pared to the existing approaches. This procerlure, termed as T~optimisation, 

is shown to overcome the heuristic T-design and the Q-parametrisation methods 

for a particular example. 

Chapter 4 faces the robustness problem of constrained systems using MPC con­

trollers. To begin with, different approaches to obtain robust constrained MPC, 

such as the methods of (Allwright, 1994; Oarnacho and Bordóns, 1995; Kothare 

et al., 1996) are revÍewed. The basis of all these control schemes is to com­

pute the hypothesised control sequence to achieve the minimum of the maximum 

of a given cost function as the uncertainty ranges within sorne specified limits. 

This worst case approach is known as min·max MPC. These methods, however, 

use different types of models for the process and the uncertainty. The global 
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uncertainty description introduced in (Camacho and Bordóns, 1995) is ex­

ploited in this chapter. This formulation is applied to the stabilising 

controllers described in Chapter 2, especially to (quasi) infinite hori­

zon controllers since these enjoy better robustness properties compared to the 

CRRPC. The global uncertainty is an unknown bounded signal which, added 

to the model output, produces the measured (or true) output. The min-max 

problem has been solved for both 2-norm and 1-norm controllers. In the former 

case, an analytical solution is shown to be untractable, and thus a numerical 

alternative based on non-linear programming is presented. On the other hand, 

the 1-norm case is solved as a simple LP problem. As efficiency is concerned, the 

1-norm formulation is superior to the 2-norm counterpart, especially for certain 

tuning settings. In addition, the closed-Ioop behaviour of the uncertainty signal 

is investigated and a band updating algorithm is suggested to modify 

on-line the assumed limits of the global uncertainty parameter. This 

procedure, based on a few tuning knobs, is shown to provide with a convenient 

description of the uncertainty dynamics what makes it possible to replace the 

initial settings by less conservative counterparts. Tuning guidelines for the band 

updating strategy are also suggested. Several simulated examples are provided 

to illustrate the performance of these min-max controllers in front of modelling 

errors and disturban ces. As illustrated with a few examples, the min-max MPC 

methods described in this chapter overcome the classical approach to robustness 

when constraints are considered. In addition, the min-max approach is tested 

on a strongly non-linear system, and it is observed that sorne difficult non­

linearities can be handled. Various comparative studies of min-max MPC 

versus other control strategies are also provided. Finally, a robustness analysis 

based on the statisticallearning theory (Vidyasagar, 1997) is performed 

to show that the min-max approach can often overcome the classical T-design 

method, especially as constraint handling is concerned. 
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Chapter 5 introduces sorne refinements of the min-max method based on the global 

uncertainty approach. This chapter is mainly focused on the feedback formulation 

of min-max MPC described by Scokaert and Mayne (1998). The key idea is to 

consider different control profiles for different uncertainty realisations 

together with an additional "causality constraint". This approach is intended to 

solve sorne of the problems related to the c1assical min-max controllers which are 

pointed out in Chapter 4. As discussed in (Scokaert and Mayne, 1998), a few of 

these difficulties stem from the use of a single control move profile to handle all 

the possible uncertainty realisations, ignoring the fact that feedback is present in 

the receding-horizon implementation of the controller. The min-max GPCoo is 

then adapted to exploit this possibility, and some simulated examples 

are provided to show that so me of the drawbacks of the classical min­

max methods can be avoided. However, it is worth pointing out that the 

feedback min-max methods involve a larger computational burden compared to 

the classical min-max MPC. Finally a few directions to further the developments 

of min-max MPC are outlined. 

Chapter 6 draws the conc1usions from the results obtained throughout this PhD re­

search and suggests possible directions for future research. 

Appendix A describes sorne of the benchmark systems used throughout this thesis 

to test different control schemes. 



Chapter 2 

Formulation of Receding-Horizon 
Predictive Controllers 

2.1 Introduction 

The first few controllers in the MPC family, such as IDCOM, DMC and GPC, some-

times referred to as "first generation" MPC, use a finite prediction horizon, which is, 

at the same time, the reason for their early success and the cause for the criticism 

which arose latero This feature made it possible to incorporate constraints in a natural 

manner within the control strategy, a capability which is not supported by (infinite 

horizon) LQ control and, undoubtedly, constraint handling is one of the most appeal­

ing issues of MPC. However, there is also a major drawback common to all these early 

methods, sínce it is now widely accepted that no successful stability results exíst for 

finite horizon formulations, as pointed out in (Bitmead et al., 1990). 

The stability fiaws of the first generation MPC were overcome by a "second gener­

ation" of predictive controllers, which can be divided into two categories. The first one 

consists of methods such as the CRHPC (Clarke and Scattolini, 1991), the Stabilís­

ing Input/Output Receding-Horizon Control (SIORHC) (Mosca and Zhang, 1992), and 

the Stable Generalised Predictive Control (SGPC) (Kouvarítakis et al., 1992), which 

15 
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enforce end-point equality constraints on the predicted outputs. These constraints 

are explicit in the CRHPC and the SIORHC, but implicit in the SGPC formulation. 

Although these three controllers have been proved to be theoretically equivalent, the 

latter enjoys better numerical properties, as remarked by Rossiter and Kouvaritakis 

(1994). Due to this equivalence, the term CRHPC is used hereaíter to refer to either 

of these three approaches. 

The second category is íormed by algorithms which use an infinite prediction hori­

zon, such as the state-space controller oí (Rawlings and Muske, 1993), the infinite 

horizon GPC of (Scokaert, 1994; Scokaert, 1997), or the Infinite Horizon Stable Predic­

tive Control (IHSPC) of (Rossiter et al., 1996). These controllers can be exactly solved 

since they can be converted, after sorne manipulations, to an equivalent finite horizon 

problem with system dependent weighting matrices. Although infinite horizon predic­

tive controllers might look like a re-discovery oí LQ control, it must be remarked that 

they solve the difficulty of handling constraints within an infinite prediction horizon 

framework, using, for example, the methods described in (Rawlings and Muske, 1993). 

In (Scokaert, 1994) a distinction ís made between "second generation" and "third 

generation" MPC methods, to refer to the infinite horizon controllers and to the 

CRHPC "family" respectively. There are historical reasons for such a classification, 

since the first few implementations of infinite horizon controllers were only approxi­

mate, whereas the CRHPC can be exactly solved. However, newer developments have 

yielded an exact solution for infinite horizon predictive controllers, and thus such a 

distinction is not considered throughout this thesis. 

The stabilising properties of the CRHPC family were early proved by showing the 

equivalence ofthese controllers with those proposed by Kleinman (1974) and Kwon and 

Pearson (1978). In other words, the first few proofs (Clarke and Scattolini, 1991; Mosca 

and Zhang, 1992) are based on the monotonicity of the co-variance matrix of the 
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associated Riccati equations. More recent results (Kouvaritakis et al., 1992; Scokaert, 

1994) establish stability through the monotonicity of the optimal cost function values 

sequence, as previously done in (Mayne and Michalska, 1990) for continuous time 

receding-horizon control. The latter proofs are available for both the CRHPC and the 

infinitehorizon MPC, and have contributed with an intuitive inputjoutput domain 

approach to the issue of stability (Scokaert, 1994). 

This chapter is concerned with the formulation of predictive controllers with in­

putjoutput models, termed as GPC-like controllers bencefortb. Both 2-norm and 1-

norm formulations are presented, and stabilising methods are highlighted. The formu­

lations are provided for the SISO case only for simplicity of notation, and extend to 

the MIMO framework in a straigbtforward manner. In addition, robustness features 

are not in the scope of tbis cbapter, hence the nominal case (no modelling errors) is 

considered in the next sections. The minimisatioIl of 1-norm cost functions tackled in 

this chapter is a necessary step towards the development of robust MPC controllers 

based on min-max optimisation which, as c1arified in Chapter 4, can be solved much 

more efficiently if 1-norm cost functions are used instead of 2-norm counterparts. The 

l-norm formulations introduced below are intended to provide controllers which satisfy 

at least nominal stability such that they need not be tuned to obtain stability. These 

nominally stabilising controllers are used as the basis of min-max robust controllers, 

as discussed in Chapter 4. 

If 1-norm cost functions are used, the minimisation problem with an infinite pre­

diction horizoIl requires the implementation of an iterative algoritbm which solves two 

LP problems at each iteration. This solution can give rise to an enormous compu­

tational hurden, since the number of iterations cannot be established a priori. This 

drawback can make this method impractical for real applications and discourages the 

application of the min-max approach with this infinite horizon controller. As an al­

ternative, a very efficient upper bound solution of the infinite horizon problem can 
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be computed with a single LP problem. This kind of solution is very convenient for 

min-max formulations, as shown in Chapter 4, but the nominal stability guarantees 

are not preserved. However, it is shown that nominal stability with this controller is 

easily obtained, as the upper bound and the true infinite horizon solutions seem to 

converge as the control horizon increases. Hence this l-norm controller provides with a 

reasonable trade-off between nominal stability and computational requirements what 

makes it a likely candidate to develop an efficient min-max robust MPC method. 

The outline of this chapter is as follows. Firstly, Section 2.2 summarises the contri­

butions of several authors, providing an overview of existing controllers with 2-norm 

cost functions, and attention is driven to nominal stability issues. After that, Sections 

2.3 through 2.6 are devoted to methods developed during this PhD research. To begin 

with, stabilising l-norm controllers are formulated in Section 2.3, where stability the­

orems are proved for these new control schemes. In Section 2.4, the newly proposed 

l-norm methods are compared to the existing 2-norm ones by means of simulated 

experiments. In Section 2.5, a quasi-infinite horizon 1-norm predictive controller is 

shown to converge to a true infinite horizon counterpart, making it possible to reduce 

the computational burden. Finally, concluding remarks are presented in Section 2.6. 

2.2 2-norm cost functions 

This section presents a reformulation of RHPC provided in (Yoon and Clarke, 1995b). 

This algorithm uses a Gontrolled Auto-Regressive Integrated Moving Average 

(CARIMA) model of the system to be controlled: 

T( -1) 
A(q-1)y(t) = B(q-1)U(t - 1) + ~ ';(t), (2.1) 
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where u(t) is the input signal, y(t) is the output signal, A, B and Tare known poly­

nomials in the delay operator q-l: 

q-l B(q-l) = b1q-l + b2q-2 + ... + bnbq-n¡" 

A(q-l) = 1 + alq-l + ... + ano.q-no., (2.2) 

T(q-l) = ta + tlq-l + ... + tntq-nt , 

and ~(t) is a zero-mean, stochastic disturbance signal. Notice that B(q-l) defined 

above is a polynomial of order nb -1, and hence the system is supposed to have nb -1 

zeroes and na poles. In addition, the polynomials A(q-l) and B(q-l) are assumed to 

share no common unstable root, í.e. the system of eqn.2.1 is stabilísable and detectable. 

Remark 2.1 Although the system of eqn.2.2 is a unit delayed plant, no difficulty 

arises in considering greater delays d > 1. Slight straightforward modifications are 

required in the sequel in that case but, in order to avoid a cumbersome notation, the 

unit delayed case is used throughout this thesis. 000 

An optimal control move ~u(t) = ~u(tlt) is computed by minimising the cost 

function 

Ny-l 

J2(t) = L.: f-L(j) [w(t + jlt) - y(t + jlt)]2 

+ t f-L(Ny) [w(t + Nylt) - y(t + jlt)]2 
j=Ny I 
Nu 

+ L.: p(j)~U2(t + j - lit), 
j=l 

(2.3) 

with respect to ~u(t + jlt), j = O, ... , Nv. - 1, and subject to ~u(t + jlt) = O for 

j ;:::: NU1 where Nv. is called the control horizon. In addition, y(t + jlt) are predictions 

of the output performed at time t, w(t + jlt) are future values of the setpoint, which 

are known at time t or assumed to be equal to the current value w(tlt), NI and N2 

are the lower and upper costing (or prediction) horizons, p.(j) and p(j) are positive 

weighting sequences, and O ~ I ~ 1 is used to impose a heavier weighting on the 
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predicted tracking errors from Ny to N2. Moreover, w(t + jlt) and ¡.t(j) are assumed 

to be equal to w(t + Nylt) and ¡.t(Ny}, respectively, for j > Ny, because it can provide 

better c1osed-Ioop behaviour (Yoon and Clarke, 1995b). 

Remark 2.2 It is worth pointing out that, throughout this thesis, all the experiments 

have been made as if no future information about the setpoint was available, or 

w(t + jlt) = w(tlt), 

for all j > o. 000 

As pointed out in (Yoon and Clarke, 1995b), by introducing a few manipulations 

in the computation of the minimum of eqn.2.3, it becomes possible to choose I = 0, 

which forces y(t + jlt) = w(t + Nylt), for j = Ny,' .. , N2. These are end-point equality 

constraints1 on the internal model output. 

The cost function of eqn.2.3 can lead to several c1assical control1ers such as the 

GPC (Clarke et al., 1987), the CRRPC (Clarke and Scattolini, 1991) or the infinite 

horizon GPC or GPCoo (Scokaert, 1997). To obtain these controllers, the tuning knobs 

must be chosen as follows: 

1. For the GPC: I == 1. The second and the third terms in the cost function 

J2(t) in eqn.2.3 can be rearranged as one summation to provide the classical cost 

definition of (Clarke et al., 1987): 

N2 Nu 

J2(t) = L ¡.t(j) [w(t + jlt) - y(t + jlt)]2 + ¿ p(j)L1u2(t + j - lit). (2.4) 
j=l 

Remark 2.3 Strictly speaking, the equivalence with eqn.2.3 holds only if JL(j) = 

¡.t(Ny) and w(t + jlt) = w(t + Nylt) for aH j > Ny. However, this situation is 

quite common since constant setpoints (no preprogrammed inputs) and constant 

weighting are the typical case. 000 

1 Equality constrained schemes are referred to as "unconstrained" hereafter. The term "con­
strained" is only used for controUers which use hard inequality input, output or state constraints. 
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2. For the CRHPC: Nl = 1, N = Nu - 1, Ny = N + 1, N2 = N + m and "Y = o: 
N N+l 

J2(t) = Lp(j) [w(t + ilt) - y(t + ilt)]2 + ¿ p(j)t1u2(t + j - lit), (2.5) 
;=1 j=l 

subject to y(t + N + jlt) = w(t + N + jlt) for i = 1,2, ... , m. This controller 

enforces m equality constraints on the predicted outputs b = O), and the pararn­

eter N defines both the control and the prediction horizons. These definitions 

must satisfy that Nu = N + 1 ~. m in order that there are at least enough degrees 

of freedom to satisfy the m end-point equality constraints. If a delay d > 1 is 

present, the definitíon N = Nu - 2 d must be used instead of N = Nu - 1 to 

ensure c1osed-Ioop stability (Scokaert, 1994). 

3. For the GPCoo
: N y = 00 and p(j) = 1 Vj: 

00 N", 

J 2(t) = 2: [w(t + jlt)'- y(t + jlt)]2 + ¿ p(j)~U2(t + j -lit). (2.6) 
j=Nl ;=1 

In this case the optimisation is performed over an infinite horizon and the second 

term of J2 (t) in eqn.2,3 is not involved. Nl = 1 is used in (Scokaert, 1997), but 

this parameter does not affect the stabilising properties of the GPCoo (Scokaert, 

1994), which are preserved with any choice of the lower costing horizon. 

The stabilising properties of the GPC are deeply analysed in (Bitmead et al., 1990), 

where sorne examples are provided in which the stability of sorne plants is difficult to 

obtain by tuning the GPc. It is well known that the (finite-horizon) GPC do es not 

guarantee the stability of the nominal dosed-Ioop system. In order to obtain nominal 

stability, the GPC rnust be tuned ad-hoc and, in sorne cases, it can become quite a 

tough issue to find the appropriate values of the tuning knobs. 

The first approach to overcorne this problem was the CRHPC. In (Clarke and 

Scattolini, 1991) several choices of N and m which guarantee nominal stability for any 

given system are provided. Nevertheless, there are still a few difficulties related to the 



22 Formulation of Receding-Horizon Predictive Controllers 

CRHPC. To begin with, if short (prediction and control) horizons are used it tends 

to producing a suboptimal deadbeat-like behaviour of the dosed-Ioop system leading 

to low robustness margins (Megías et al., 1999a). This situation can be overcome by 

choosing longer horizons, but then numerical stability problems can arise as pointed 

out in (Rossiter and Kouvaritakis, 1994). 

The SGPC of (Kouvaritakis et al., 1992) is theoretically equivalent to the CRHPC, 

but it is numerically more robusto The approach taken in the SGPO is the use of the 

Youla-Kucera parametrisation to obtain a stable dosed-Ioop system, and then apply 

the GPC law to the resulting stable system. As remarked in (Rossiter et al., 1998), 

the use of an internal stabilising loop provides several numerical advantages. However, 

it is worth pointing out that the equality constraints are still implicitly present in 

the SGPO formulation. These constraints are somewhat artificial since they are not 

really satisfied due to the receding-horizon implementation of the controller. Hence a 

suboptimal solution is obtained, as the dimension of the decision space is reduced by 

the number of equality constraints. Moreover, to avoid the deadbeat-like behaviour, 

long horizons must be chosen and this can cause problems if hard constraints are also 

involved since, firstly, the dimension of the optimisation problem to be solved can 

become very large and, secondly, infeasibility can arise. 

A newer family of nominal stabilising predictive controllers were developed by using 

an infinite prediction horizon, firstIy for state-space models (Rawlings and Muske, 

1993) and later for input/output model (transfer function) formulations (Scokaert, 

1997). The GPCoo overcomes the drawbacks of the CRHPO/SGPC, avoiding both 

the numerical difficulties and the deadbeat-like behaviour with small (prediction and 

control) horizons, and provides with better robustness properties as shown in (Megías 

et al., 1999a). However, as the decision variables in the GPCoo optimisation are future 

values of the control moves, there is still a minor disadvantage in these schemes, namely 

that the control horizon Nu must be finite. 
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The IHSPC of Rossiter et al. (1996) provides with an alternative irnplementation 

which allows the input trajectories to be infinite sequen ces. On the other hand, sorne 

more recent approaches rnake use of the Youla-Kucera parametrisation and the optimi­

satíon is performed not on closed-loop signals but on the elernents of a state feedback 

vector (Fikar and Engell, 1997; Fikar et al.) 1999). These controllers, referred to as 

Youla-Kucera Predictive Control (YKPC) make it possible to optimise over infinite 

control and prediction horizoÍls with finitely many unknowns. Nevertheless, this ap­

proach is difficult to use with the global uncertainty description which is introduced in 

the subsequent chapters and has not been analysed throughout this research. 

The optimisation problern is slightly different for the finite (Yoon and Clarke, 1995b) 

and the infinite (Scokaert, 1997) horizon approaches, and the required formulae for 

these two situations are provided in the next two sections. In the sequel, the notations 

used by different authors are respected as rnuch as possible, but it rnust be taken into 

account that sorne definitions vary between the finite and the infinite horizon cases. 

2.2.1 The finite horizon case 

This section surnmarises the standard procedure to compute an optirnal control move 

vector for finite horizon 2-norrn cost functions. The reforrnulation of receding-horizon 

predictive control provided by Yoon and Clarke (l995b) is used here. 

To begin with, a few useful definitions are introduced. Let the control rnove vector 

Áu(t) be 

Áu(t) = [~u{tlt) ~u(t + lIt) ... ~u(t + Nu -lit) ]T, (2.7) 

the setpoint vectors Wl(t) and W2(t) be 

Wl(t)== [w(t+N¡jt) w(t+N1 +llt) ... w(t+Ny-Ilt) ]T, 

W2(t) == [ w(t + Nylt) w(t + Nylt) ... w(t + Nylt) ]T, 
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the output prediction vectors Y1 (t) and Y2(t) be 

Yl (t) = [ y(t + NIlt) y(t + NI + lit) 
yz{t) = ( y(t + Nyjt) y(t + NlI + lIt) 

and the free response vectors !1(t) and '2(t) be 

y(t + NlI - lIt) ]T, 
y(t + N21t) ]T , 

JI (t) = [ j(t + N1lt) j(t + NI + lit) 
J2(t) = (j(t+Nylt) j{t+Ny+1It) 

j(t+Ny - 1It ) ]T, 
j(t + Nzlt) ]T, 

where j{t+ ilt) are predictions of the output performed at time t taking all the future 

control moves to be zero. With these vector definitions, the output prediction vectors 

can be written as2 

Yl = 11 + G1AU, 

Ya = f 2 + GzAu, 

where G 1Au and Gz,du are vectors formed by the so-called the jorcea response, the 

dynamic matrices G 1 and Gz are given by 

UNt 9Nl-l O 
UNl+1 UNl O 

G 1 = 
UNy-l gNy-Z UNy-Nu 

UNy gNy-l O 
UNy+! gNy O 

G2 = 

UN2 gN2-1 UN2-Nu-l 

and 9/: are coefficients of the step response of q-I BJA with 9k = O for all k < O. 

Furthermore, if tIle matrices M and R are defined as 

M = diag [p,(N1), p,(N1 + 1), ... , p,(Ny - 1)1, 

R = diag [p(1), p(2), ... 1 p(Nu )] , 

the cost function J2(t) can be arranged in vector notation to yield 

J2(t) = [W1 - JI - G1Au]T M [Wl - 11 - G1,du] 

+ p(Ny
) [W2 -/2 - G2Auf[W2 -/2 - G2AuJ + AuTRA.u. (2.8) 

"1 

simplify the notation, the time variable t is dropped wherever it is possible. 
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In the unconstrained case, a global minimiser of J2(t) ls found deriving eqn.2.8 with 

respect to Au and equating to zero, to obtain 

llo.u"'" = [GIMGl + I'(~.) Gro, + Rr 
[GIM(Wl - 11) + fL(~y) GI(W2 - f2)]' (2.9) 

Obviously, the solution provided in eqn.2.9 cannot be used when 'Y = O. However, thls 

amall difficulty can be overcome by rearranging eqn.2.9 as 

where the vector p is defined such that 

popt = JL(Ny
) (G2Auopt - (W2 - f2)]' 

'Y 

(2.10) 

(2.11) 

Finally, the linear equation system provided by eqn.2.10 and 2.11 can be expressed as 

[ 
GIMGl + R GJ ] [ Au ]OPt = [ GI~(~l - fl) ], (2.12) 

G 2 p(N
y

) 1 P 2 f2 

where 1 is the identity matrix of conformal dimensiono The optimal control move 

vector Auopt can be obtained directIy from eqn.2.12, or using the block matrix 1n­

version lemma (Yoon and Clarke, 1995b), but tlÍe latter possibility lS not advisable 

for implementation because of numerical considerations. When 'Y = O, the vector 

popt turns out to be the Lagrangian multipliers associated to the equality constraints 

G2Au = W2 - 12' 

On the other hand, a constrained mínimum of J2(t) can be also obtained using 

standard QP methods. In that case, the minimisation lS performed taking into account 

a set of general constraints of the form 

PAu::; r, (2.13) 

which can be used, as shown by Kuznetsov and Clarke (1996), to bound the input, 

the output, the input or output rates or accelerations, the internal states, etc. In 
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general, it is possible to place constraints on any variable which can be written as a 

linear combination of the control moves and the free response. Finally, the constrained 

mínimum is found as 

L~:U.°pt :::: arg~~J2(t) subject to PÁu:5 r. 

Remark 2.4 When 'Y :::: O (if there are end-point equality constraints) the second 

term in the cost functíon J2 oí eqn.2.3 must be added to the QP problem as additional 

000 

2.2.2 The infinite horizon case 

This section provides a summary of the formulae proposed in (Scokaert, 1997) for the 

GPCco
, The future setpoints are assumed to be equal to the current vaIue: w(t+jlt) = 

w(tlt) for all j ~ O, and, without 10ss of generality, the lower costing horizon Nl is taken 

to be 1. 

. As done for the finite horizon case, a few definitions are íntroduced prior to under­

take the minimisation of J2(t) (eqn.2.6). Let the prediction horizon3 N be 

(2.14) 

where na is the degree of the stable factor of A (see below). In addition, let Au(t) be 

defined as in eqn.2.7, and w(t), y(t) and f(t) be 

w(t) = [ w(t + lIt) w(t + 21t) ... 

y(t) = [ y(t + lit) y(t + 21t) 

f(t) = [ f(t + lIt) f(t + 21t) 

w(t + Nlt) ]T, 

y(t + Nlt) ]T, 

f(t + Nlt) ]T. 

(2.15) 

The vector y(t) of output predictions can be written as the sum of the free and 

forced responses: 

y(t) :::: f(t) + GAu(t), 

3The infinite horizon problem can be converted into a finita horizon one, as shown below. 



Seco 2.2. 2-norm cost functions 

where the dynamic matrix G is given by 

G= 

91 
92 

o 
91 

9N 9N-l 

o 
O 

9N-Nu +1 

At this point, the predicted tracking error at time t + j is defined as 

e(t + jlt) = w(t + jlt) - y(t + jlt), 

and a vector e(t) can be built as 

e(t) = [ e(t + lit) e(t + 21t) ... e(t + Nlt) ]T. 

From the aboye definitions, it follows that 

e(t) = w(t) - y(t) 

= w(t) - f(t) - GAu(t). 

27 

(2.16) 

(2.17) 

To proceed with the optimisation, it is convenient to split the system into its stable 

and unstable parts. The model denominator can be factorised as 

where A(q-l) is a polynomial of strictly stable roots and A(q-l) is a polynomial of 

unstable roots. Furthermore, let the coefficients of these two polynomials be 

A(q-l) = 1 + alq-l + ... + anaq-na, 

A-( -1) 1 + - -1 - -n-q = a1q +"'+an¡;q a. 

Hence, the unstable part of the output can be defined as 

y(t) = B{q-l) u(t _ 1) + !(q-l) e(t) 
A(q-l) A(q-l)~ (2.18) 

= A(q-l)y(t). 

Now, ir the dynamic matrix G is provided by 

9N 9N-l 9N-Nu+l 
~ 9N+l 9N 9N-N,á2 
G= 

9N+n¡; 9N+n¡;-1 9N+n¡;-Nu +l 
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where 9k is the kth step response coefficient of q-lB(q-l)/A(q-l), then it is possible to 

define vectors of predictions for the unstable part of output: 

jet) =: [ j(t + Nlt) j(t + N + lIt) 

y(t) = [ fi(t + Nlt) y(t + N + lIt) 

j(t + N + nalt) ] ~ , 

y(t + N + nalt) ]T, 
(2.19) 

where j(t+ jlt) denotes the free response of the system of eqn.2.18. Finally, the vector 

of future predictions can be computed as 

y(t) = J(t) + GAu(t). 

In order to write the cost function in a form which makes the optimisation task 

easier, a set of end-point equality constraints on the unstable part of the output are 

taken into account: 

g(t + N + j) := A(l)w(t + N + jlt), Vj =: 0,1, ... , na! (2.20) 

or, in vector form, 

y(t) =: w(t), 

with 

w(t) = .4(1) [ w(t + Nlt) w(t + N + lit) ... w(t + N + nalt) JT. (2.21) 

As highlighted in (Scokaert, 1997), these constraints are redundant and do not 

modify the GPeco control law for Nu > na (which is required for stability), since 

violation eqn.2.20 would result in an unbounded (and thus not minimal) costo However, 

the end-point constraints make it much simpler to proceed with the minimisation. 

Remark 2.5 The end-point constraints of eqn.2.20 hold not only for j =: O, 1, ... , na, 

but'for all j ~ O, due to the definition of N. Therefore, aH the unstable modes of the 

system are zeroed by time t + N + na- 000 
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Now, eqn.2.20 can be rearranged as 

A(q-l)y(t + N + jlt) = A(l)w(t + N + jlt), Vj ~ 0, 

and, if A(q-l)W(t + N + jlt) is subtracted from both sides, it folIows that 

A(q-l)e(t + N + jlt) = A(l)w(t + N + jlt) - A(q-I)W(t + N + jlt). (2.22) 

Thus, since N ~ na and w(t + N + jlt) = w(tlt) for all N + j > 0, eqn.2.22 becomes 

A(q-l)e(t + N + jlt) = O. (2.23) 

Therefore, the predicted tracking errors decay exponentially to zero after time t + N 

according to the dynamics of the stable modes of the system, the series converges, and 

thus it is possible to compute the infinite sumo Notice also that the control law is 

identical for all NI > N, since the predicted tracking errors from t + N on evolve as 

per eqn.2.23 whatever value NI takes. 

First of aH, let the cost function be rewritten in a more convenient form: 

N-I 00 Nu 

J2(t) = ¿ e(t + jlt)2 + ¿ e(t + N + jlt)2 + L p(j)D.u(t + j -1It)2. 
j=l j=O j=l 

The second term of this express ion can be exactly computed taking into account the 

comments reported aboye. Now, let the matrices R and Q be defined as 

R = diag [p(l), p(2), ... ,p(Nu )] , 

Q = [ I~-l~ 1 ' 
where 1 k is the identity matrix of dimension k and O is the zero matrix of appropriate 

dimensiono Notice that for Nl > 1 the first NI diagonal coefficients of I N - 1 in Q 

should be replaced by O. In addition, Q is O for N¡ ~ N. 

Using these definitions, the cost function becomes 

00 

J2(t) = e(t)TQe(t) + Au(t)T RAu(t) + L e(t + N + jlt)2, (2.24) 
j=O 



30 Formulation of Receding-Horizon Predictive Controllers 

where only the last term needs further manipulations. A state-space realisation of the 

stable part of the model is used to solve the series. To begin with, the vector 

z(t) = [ e(t + N - na + lit) e(t + N - na + 21t) ... e(t + Nlt) ]T (2.25) 

and the matrix 

Ina- l -] 
... -al 

(2.26) 

are introduced, and Ok,l denotes the zero matrix of dimension k x l. The equality 

constraints of eqn.2.23 imply that 

z(t + j) = epz(t + j - 1), 

or 

z(t + j) = epj z(t). (2.27) 

Now let e be the row vector 

(2.28) 

hence 

e(t + N + jlt) = Cz(t + j) = Cepj z(t), 

which leads to 
00 00 

¿e(t + N + jlt)2 = ¿Z(t)TepjTCTCepjZ(t) 
j=O j=O 

00 

= z(t)T ¿ (epjTCTCepj) z(t). 
j=O 

N ow, if Q is defined as 
00 

Q = L epjTCTCepj, 
j=O 

it follows that Q satisfies the matrix Lyapunov equation (Scokaert, 1997) 

which can be soIved using existing standard tools. 
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Remark 2.6 Sorne forrnulations of infinite horizon predictive controllers have been 

proposed in such a way that the need for solving the Lyapunov equation is avoided 

(Rossiter et al., 1996). 000 

Once Q is available, it is possible to write 

00 

I: e{t + N + ilt)2 = Z(t)TQZ(t) 
j=O 

= e(t)TQ'e(t), 

for 

And finally, ir A is defined as 

A=Q+Q', 

it follows from eqn.2.24 that 

which is a finite dimensional quadratic cost function. Surprisingly enough, the infi­

nite horizon problem turns out to be equivalent to a finite dimensional one if system 

dependent weighting (Q) is used and the end-point constraints of eqn.2.20 are enforced. 

In the unconstrained case, the optirnal control rnove vector is found at 

Auopt = argrninJ2(t) subject to tí = iD, 
Au 

where the equality constraints on the unstable part of the output can be loosely con­

sidered as an infinity weighted term in the cost function: 

J2(t) = [w - f - GAu]T A(w - f - GAu] 

+ 00 [iD - f - GAu]T [iD - f - GAu] + AuTRAu, 
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which is completely analogous to eqn.2.8 when 'Y = O. Thus, the optimal control move 

vector and the Lagrangian multipliers can be obtained from 

In the constrained case, general constraints in the form of eqn.2.13 are taken into 

account, and the optimisation problem can be posed as 

Auopt = argminJ2(t) subject to { pGAAU <- w - f, 
au. u_r. 

2.2.3 Relevant stability theorems 

Stability theorems for the CRHPC and GPCCO are proved in (Clarke and Scattolini, 

1991; Scokaert, 1994; Yoon, 1994; Scokaert, 1997). This section includes two of them 

for the sake of completeness. 

Theorem 2.1 (Scokaert, 1994; Chischi and Mosca, 1994) For any stabilisable and 

detectable system, the CRHPC leads to a stable closed-loop system if 

(i) p,(N) ~ p,(N - 1) ~ ... ~ p,(1), 

(ii) p(Nu ) > p(Nu - 1) > ... > p(l) ~ O, and 

(iii) m = max{na, nb -1} + 1. 

Remark 2.7 Nu = N + 1 must be chosen to be greater than or equal to m (the number 

of equality constraints). 000 

Remark 2.8 As the number of end-point equality constraints (m) is greater than the 

system orders, these constraints are satisfied not only for t + N + 1, t + N + 2, ... ,t + 
N + m, but for all t + N + j with j > O. 000 
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Remark 2.9 A weaker statement is proved in (Clarke and Scattolini, 1991) by showing 

the equivalen ce between the CRRPC and the controller defined by K won and Pearson 

(1978). 000 

Remark 2.10 The proof given below was provided by Scokaert (1994), and is based 

on the monotonicity of the cost function (Lyapunov theory). 000 

Proof: Without 10ss of generality it can be assumed, for the sake of simplicity, that 

f1.(j) = jl for all 1 ~ i ~ N and p(j) = ji for aH 1 ~ j ~ Na. As a consequence oí 

Remark 2.8 the control move vector 

Au*(t + 1) = [ .6.uopt (t + lit) ... .6.uopt (t + Nu - lit) O]T, (2.30) 

is feasible at time t + 1. Let ~Pt(t) be the optimal cost at time t and J;(t + 1) be the 

cost at time t + 1 if the control move vector Au*(t + 1) were implemented. From the 

cost functíon definition of the CRRPC (eqn.2.5) it follows that 

N Nu 

~Pt(t) = jl I: e2(t + ilt) + PI: .6.u2(t + i - lit), 
j=l j=l 
N+l N,,+l 

J;(t + 1) = jl I: e2(i + ilt ) + P I: .6.u2(t + i -lit), 
j=2 j=2 

for Nu = N + 1, but 6.u(t + Nult) = O and e(t + N + lit) = O (Remark 2.8), thus 

N N" 

J;(t + 1) = jl I: e2(t + ilt) + ji I: .6.u2(t + i - lit), 
j=2 j=2 

hence 

Therefore J;(t + 1) ::::; J~Pt(t). In addition, J;(t + 1) is only suboptimal at time t + 1, 

and thus the optimal value of the cost function attained with Auopt(t+ 1) must satisfy 

J~Pt(t + 1) ~ Ji(t + 1). Now, combining these two inequalities: 

(2.32) 
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that is, the sequen ce of optimal cost function values is non-increasing, and it is bounded 

below by zero, then it converges to sorne limit, say l. Making use of of eqn.2.31 and 

2.32, it is possible to write 

J~Pt(t + 1) - J~Pt(t) < J;(t + 1) - ~Pt(t) 

= -jle2(t + lit) - p.6.u2(tlt), 

thus 

(2.33) 

Now, as {J~Pt(t)} converges to t, the right-hand side of eqn.2.33 decays to zero, and 

thus 

{ 

lim jle(t + 1) = lim jle(t + lit) = O, 
t-too t-too 

lim p.6.u(t) = lim ji.6.u(tlt) = O, 
t-too t-too 

which implies stability for jl =1= O and ji =1= O. vvv 

Remark 2.11 This proof establishes that J~Pt(t) is a Lyapunov (non-increasing and 

bounded below by zero) function of the dosed-Ioop system. 000 

Remark 2.12 The proof easily extends to the case of non-constant weighting, as 

shown in (Scokaert, 1994). 000 

Remark 2.13 Stability for jl = O and p = O is proved in (Scokaert, 1994) using an 

optimality argumento However, notice that it is not possible to choose both p and f.L to 

be zero at the same time. 000 

Remark 2.14 The proof extends to the constrained case only if the constraint hori-

zon is infinity. However, there are sorne cases for which the stability guarantees are 

preserved with a finite constraint horizon. See (Scokaert, 1994) for details. 000 

Tl,leorem 2.2 (Scokaert, 1994; Scokaert, 1997) For any stabilisable and detectable sys­

tem, the GPCoo is stabilising if 
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(i) p(Nu ) > p(Nu - 1) ;:: ... ;:: p(l) ;:: 0, and 

(ii) Nu > na;. 

Remark 2.15 The second condition is necessary to allow the required degrees of free­

dom to enforce the end-point equality constraints on the unstable part of the mode!. 

000 

Remark 2.16 The proofprovided below closely parallels that ofTheorem 2.1 and was 

given by Scokaert (1994). 000 

Proof: Again, it can be assumed, without 10ss of generality, that the weighting 

sequence p(j) = ji is constant, and let Au*(t + 1) be defined as in eqn.2.30. Following 

an argument completely analogous to that of Remark 2.8, Au*(t + 1) is feasible at 

time t + 1, and then 

00 Nu 

J~Pt(t) = L e2(t + jjt) + ji L tlu2(t + j - lit), 
j=Nl j==l 

00 Nu+l 

J;(t + 1) = L e2(t + jlt) + ji L tlu2(t + j - lit), 
j=2 

now, going through the same steps as in the proof of Theorem 2.1, it follows that 

{ 

lim e(t + N1lt) = 0, 
t-+oo 

lim jitlu(t) = lim jitlu(tlt) = 0, 
t-+oo t-+oo 

which implies stability for ji =1- o. vvv 

Remark 2.17 The proof easUy extends to the case of a non-constant weighting in p(j) 

(Scokaert, 1994). 000 

Remark 2.18 Stability for ji = ° is proved in (Scokaert, 1994) using an optimality 

argumento 000 

Remark 2.19 The proof extends to the constrained case only if the constraint horizon 

is infinity. Without this condition the control profile postulated at time t does not have 
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to be feasible at time t+ 1, and the monotonicity of the cost function cannot be ensured. 

Infinite horizon constraints can be implemented as described by Rawlings and Muske 

(1993). 000 

2.3 l-norm cost functions 

As remarked in Section 2.1, in order to develop efficient robust predictive controllers 

with a global uncertainty approach it is convenient to use a 1-norm cost function instead 

as a 2-norm counterpart (Camacho and Bordóns, 1995), that is, to replace the "square" 

by the "absolute value" in the cost functión definition: 

Ny-l 

J1(t) = I: ¡.t(j) Iw(t + jlt) - y(t + jlt)1 

N2 (N, ) 
+ I: ~ Iw(t + Nylt) - y(t + jlt)1 

j=Ny 'Y 
(2.34) 

N" 

+ I:p(j) IÓu(t + j -llt)l· 
j=l 

It is possible to define counterparts of the 2-norm GPC, CRHPC and GPCoo, re­

ferred to as GPCt, CRRPCl and GPCf respectively hereafter, using the same tuning 

knobs as described in: Section 2.2. l-norm controllers can be implemented by solving 

simple LP problems (Camacho and Bordóns, 1995), for which very efficient standard 

solutions existo Rowever, in the 1-norm case, it is not as easy to manage the case 

'Y -7 O (or 'Y = O) as done for the 2-norm cost functions, even in the absence of general 

inequality constraints PAu :s; r. 

For 'Y =f=. O, the resulting controller is just a GPC1 with a j-dependent weighting 

in the tracking errors. The formulae of the (finite horizon) GPC1 are exhaustively 

documented in (Carnacho and Bordóns, 1995), and thus are not repeated here for 

brevity. On the other hand, the rest of this section is devoted to the implementation 
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aspects of the 1-norm version of the stabilising CRHPC and GPCco . These require a 

few careful considerations, related to the end-point equality constraints and the infinite 

horizon, in the posing of the associated LP problems. 

2.3.1 1-norm CRHPC 

First of aH, let the different symbols be defined as in Section 2.2.1, with NI = 1, 

N = Nu - 1, Ny = N + 1, N2 = N + m and 'Y = O. The (constrained) CRHPC1 is 

implemented on-line as the solution of 

t ( ) "{ G 2au = W2 - 12' Auop (t) = argminJ1 tsubject to 
A.u P au :::; r, 

with 
N Nv. 

J1(t) = LJL(j) le(t + jlt)1 + Lp(j) Ib.u(t + j -llt)l· 
j=l j=l 

Now define additional variables a-(j) ~ O and f3(j) 2': O such that 

-a-(j) < e(t + jlt) < a-(j) , 1 < j :::; N, 

-f3(j) < L.1u(t + j - lit) < f3(j), 1 <j:::; Nu , 

N Nu 

O < L ¡L(j)a-(j) + L p(j)f3(j) < \lI, 
j=l j=l 

and the problem of minimising JI is equivalent to that of minimising the upper bound4 

\lI. 

Hence the optimisation can be performed as the LP problem5 

u > G1Au + 11 - W¡, 

U ~ -G1au - 11 + W¡, 

(3 ~ au, 
min \lI subject to 

'P,u,{J,A.u 

{3 > -au, 
\lI > JLTu + pT(3, 
pau :::; r, 
G 2au = W2 - 12' 
U ~ 0, (3 ~ 0, \lt ~ O, 

4 As ¡..t(j) and p(j) are non-negative for all i, the mínimum Wopt is obtained for (jopt(j) = le(t + ilt)l, 
f3opt(j) = I~u(t + ilt)l, and wopt = Jfpt(t). 

5The vector inequalities of the form u ::; v denote the componentwise inequalities Uj ::; Vj for all 
j. 
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with 

JL = [ J-t(1) J-t(2) J-t(N) ]T, 

U = [ a(l) a-(2) a-(N) ]T, 

p = [p(l) p(2) p(N,J ]T, 

f3 = [{3(1) {3(2) {3(Nu ) ]T. 

Finally, this LP problern can be written in the standard form 

min cT x subject to Ax :S b, u 2:: O, (3 2:: O, W 2:: O, 
:c 

with 

and 

G 1 -1 O O 
-GI -1 O O 

1 O -1 O 

A= 
-1 O -1 O 
OT JLT pT -1 

P O O O 
G 2 O O O 
-G2 O O O -

2.3.2 l-norm GPCoo 

Now an infinite horizon cost function of the form 

00 Nu 

b= 

-JI + Wl 

JI - Wl 

O 

O 

O 
r 

JI (t) = L le(t + jlt)1 + L p(j) ILlu(t + j - 11t)1 , 
j=I j=I 

(2.35) 

(2.36) 

is taken into account6
. Although NI has been assumed to be 1, any other value might be 

specified with minor modifications. The optirnisation of this cost function would be, in 

6Throughout this section the definitions of Section 2.2.2 are supposed to hold unless explicitly 
otherwise specified. 
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principIe, solvable as an infinite-dimensional LP problem, that is to say, the formulation 

of Section 2.3.1 could be used taking the vector O' to be infinite-dimensional, taking 

JL to be an infinite~dimensional ones vector, and removing the equality constraints 

G 2A:u = W2 - f2' However, it is not possible to solve such a problem exactly, since 

infinite..:dimensional vectors cannot be handled by numerical algorithms. A possible 

approach is to look íor approximate suboptimal solutions which converge to the optimal 

one. From an infinite-dimensional LP problem, it is possible to obtain upper bound 

and lower bound solutions using the Finitely Many Variables (FMV) and the Finitely 

Many Equations (FME) methods respectively (Staffans, 1993; Dahleh and Díaz-Bovillo, 

1995). These converge to the solution oí the truly infinite-dimensional problem, and 

thus provide with a way to get as close to the optimum as wished. It is only necessary 

to reduce the difference between the upper and the lower bounds as required. 

Although the FMV and the FMV methods could be easily applied to the problem 

oí minimising eqn.2.36, there are simpler ways oí obtaining lower and upper bounds to 

JI (t) in this case. First of aH, let the cost function be written as a thre~term sum: 

N-l 00 N" 

J1(t) = ¿ le(t + ilt)1 + ¿ le(t + N + ilt)l + LP(j) ILlu(t + j -llt)l, (2.37) 
;=1 j=O j=l 

with the prediction horizon N as defined in eqn.2.14. The end-point equality constraints 

of eqn.2.22 are considered in the minimisation of the cost function for computation 

purposes, since any solution to the infinite horizon problem must necessarily satisfy 

them, as remarked in (Scokaert, 1997). To simplify the notation below, let Sf be 

defined as 

S; = ¡ t le(t+ N + jlt)l, ir k ::: i, 

0, otherwise, 

i. e., S; the sum of the absolute value of the errors from t + N + i to t + N + k as 

predicted from iníormation available at time t. Notice that the second term of eqn.2.37 
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can be denoted as Sgo. Now, the series Sgo can then be split as 

sr: = S(;-l + S:, 'rIn 2:: O. 

An upper bound can be computed for the term S~ taking into account the defini­

tions of Section 2.2.2 for z(t), ,p and e (eqn.2.25, 2.26 and 2.28): 

now a can be defined as 

j=n 
00 

= ¿ IIO,pi z(t)1I1 
j=n 
00 

= ¿ lIo,pi-n,pnz(t) 111 
j=n 
00 

= ¿ 1I0q>i Z(t + n)lIl 
i=O 

~ (t.IICiJ>;1I1) IIz(t + n)lI, , 

a = ¡ t. IICiJ>i1l1, if n. > O, 

O, lr na - O, 

(2.38) 

which can be computed with any accuracy since ,pi decays exponentially to zero. This 

definition can be used to write 

s: ~ a Ilz(t + n)lIl . 

Furthermore, as a consequence of the definition of z(t) in eqn.2.25, 

n 

IIz(t + n)1I1 = ¿ le(t + N + jlt)l, 
i=n-ni.i+1 

which leads to 

00 n-l n 

L le(t + N + jlt)! ~ ¿ le(t + N + jlt)1 + a L le(t + N + jlt)l, (2.39) 
i=O j=O j=n-ni.i+1 
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for all n > O, as far as the constraints tí = w (eqn.2.22) are taken into account. Now 

let J1(t) and Jt(t) be defined as 

N-l .-1 ~ 

J1 (t) = L le(t + ilt)1 + L le(t + N + ilt)1 + Lp(j) ILlu(t + i -llt)l, 
}=1 }==o }==1 

N-l .-1 n 

Jt(t) = L le(t + ilt)1 + L le(t + N + ilt)1 + a L le(t + N + ilt)1 (2.40) 
j=l j=O j==n-n¡¡+1 

Nu 

+ L p(j) ILlu(t + i - llt)l, 
j=l 

for aH n O. These definitions make it possible to state three different optimisation 

problems 

® Lower bound problem: 

Au-oPt = arg~~Jl(t) subject to {PAU:5 r,GAu = w - 1}. 

@ Infinite horizon problem: 

@ Upper bound problem: 

Au+
opt = arg~~Jt(t) subject to {PAu :5 r, GAu = w - 1}. 

Remark 2.20 Analogous unconstrained problems can be posed removing the general 

inequality constraints P A u :5 r. 000 

Remark 2.21 As already remarked, the equality constraints GAu = w - 1 are 

redundant in Problem @. 000 

Remark 2.22 Since these three problems take into account the same constraints, a 

given point A u in the decision variables space is either feasible or infeasible for all of 

them. Hence the value of these cost functions can be compared for any Au. 000 
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Remark 2.23 Problems <D and @ consider finite-horizon cost functions, whereas in 

Problem @ an infinite horizon one is to be minimised. Thus, Problems <D and @ can be 

exactly solved for every n, since they can be written as finite-dimensional LP problems. 

Remark 2.24 Notice that J1(t) and Ji(t) converge to J1(t) as n -7 00: 

lim J1(t) = JI (t), 
n-too 

lim Ji(t) = J1(t), 
n-too 

and obviously, as a consequence of this, 

lim .du_OP\t) = Lluopt(t), 
n-too 

lim J_opt(t) = JoPt(t), 
n-too 

lim .du+oPt(t) = Lluopt(t), 
n-too 

lim J+opt(t) = Jopt(t). 
n-too 

000 

000 

It is found convenient here to introduce here an alternative notation for the cost 

function evaluation: 

J (Llu) = J(t)lau(t)=au. 

. Remark 2.25 For a feasible Llu (Remark 2.22) it follows that 

JI (Llu) ::; J¡(Llu) ::; Ji (Llu) , (2.41) 

that is, J1 (t) and Ji(t) are, respectively, upper and lower bounds of JI (t). The leftmost 

inequality is straightforward, since any finite horizon cost function value must be lower 

than or equal to any infinite horizon one, as far as the weighting sequences are the 

same. In other words, there are infinitely many more non-negative terms in J1(t) than 

in J1(t). The rightmost inequality follows directly from eqn.2.39. 000 

Taking into account these remarks, it is now possible to formulate and prove sorne 

theorems which are useful to find an implementable solution of the a priori infinite 

dimensional LP problem related to the infinite prediction horizon used in Problem @. 
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Theorem 2.3 The optimal values of the cost functions JI(t), Jl(t) and Ji(t) satisfy 

the following inequalities: 

(2.42) 

Remark 2.26 Notice that as n -+ 00 the leftmost and the rightmost values of eqn.2.42 

converge to Jl (auopt), as stated in Remark 2.24. 000 

Proof: In the light of eqn.2.41 it comes out that 

(1) (2). (3) (4) 

JI (au-oPt) < JI (auopt) :::; JI (auopt) :::; JI (au+
opt

) :::; Ji (au+oPt), (2.43) 

where (2) and (4) follow from eqn.2.41 and the (1) and (3) are a consequence of the 

optimality principIe according to which the optimal value is always lower than or equal 

to any other feasible value. vvv 

(The absolute value signs can be dropped). 

Proof: The proof is straightforward from eqn.2.43. vvv 

Theorem 2.4 For all e > O (arbitrarily small) there exists an integer no > O such 

that IJioPt(t) - JIopt(t)! < e, for n ?: no, or 

't/e > O, 3no ?: O: ¡Ji (.ó.u+oPt) - JI (.ó.u_oPt) 1< e, 't/n?: no. (2.44) 

Proof: As a consequence of Remark 2.24: 

't/el > O, 3nI ~ O: ¡JI (.ó.u+
oPt

) - JI (auopt) 1 < el, 't/n > nI, 

't/E:2 > O, 3n2?: O: ¡Ji (.ó.u+
opt

) - JI (auopt)j < E:2, 't/n?: n2, 
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now consíder el = e/2, e2 = e/2 and no = max { nt, n2} thus, for all n ~ no: 

\JioPt 
- J1oPt ¡ = ¡Ji (.~u+oPt) - JI (AuoPt) + JI (AuoPt ) - JI (Au-oPt) I 

< IJi (Au+o
Pt

) - JI (AuoPt) 1+ IJ1 (Au-o
Pt

) - JI (AuoPt) 1 

=e, 

what completes the proof. vvv 

Corollary 2.2 In the unconstmined case, for all e > O there exists an integer no > O 

such that /JioPt(t) - J1opt(t)/ < e, far n > no, or 

Ve> O, 3no ~ O: IJi (Au+oPt) - JI (Au-oPt) 1< e, Vn > no. 

Proof: This corollary directly folIows from Theorem 2.4, sínce the unconstrained op­

timisation problems are a particular case of the constrained optimisation counterparts, 

in which the inequality constraints P A u < r are empty. vvv 

Remark 2.27 For "small enough" e: Ji (Au+oPt) :::::: JI (Au-oPt), then (Corollary 

2.1) JI (Au+oPt) :::::: JI (Auopt
), and final1y Auopt

:::::: Au+oPt due to the convexity of 

J¡(t). 000 

The last remark can be used to derive an algorithm to find A uopt to any given accuracy. 

The algorithm can be set up as follows: 

1. Choose a small relative error er 

2. Choose7 [n + 1] 

3. Salve the optimisation Problems (j) and ® to obtain J10
P

\ Au-OP
\ Jiopt and 

Au+opt 

7The reason for working with [n + 1] rather than n is clarified in Section 2.3.2.1. 
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4. 'f J+opt J_opt < J_opt 
1 1 - 1 Cr' 1 

then 

Jopt ._ J+opt • 
1 .- 1 , 

.6..uopt := .6..u+
oPt

j 

return 

else 

Increase [n + 1J; 

gota 3; 

endif 

It is worth pointing out a few comments about the algorithm depicted aboye: 

• The stopping criterion used in step 4 can be modified so as to consider the 

absolute error on the solution: 

J
+opt _ J_opt < 
1 1 Ca 

for a given Ca > O, or the absolute error on the first postulated control move: 

for a given CAu > O) since only the first computed control move is used in the 

receding-horizon strategy. These two considerations can be very useful to reduce 

the number of iterations. However, it must remarked that these two conditions, 

especially the latter, do not guarantee that J:{oPt(t) ~ J1
opt(t)) and hence the op­

timal cost functíon sequence might not satisfy the monotonicity property, which 

is essential for the stability proof . 

• Theorem 2.4 does not provide any bound or estimate on how big no can become. 

An exponential update [n + l]:=2[n + 1] is advised to decrease the number of 

iterations. However, notice that the number of variables and constraints in the 

LP problems to be sol ved depends on n. 
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• At each iteration two (finite-dimensional) LP problems must be solved hence, if 

many iterations are needed, the computation time of a single control move can 

be too high for practical implementation, especiaUy if a very large n is required 

for convergence. 

• It must be taken into account that the optimisation is to be performed on line 

for a number samples, and the information about what [n + 11 has been required 

for convergence at the previous sample is available. At the sample i + 1, [n + 1] 

can be initialised as hall the value required for convergence at the previous one 

i (with a minimum, for example 10): 

. {[n+1](i)} [n + l]{t+l) := max 2,10. (2.45) 

In this fashion, it is possible to reduce the number of iterations at each sample, 

since unnecessarily small values of n are not used after the first one. Moreover, 

the dimension of the LP problems can decrease from sample to sample. This pro­

cedure can significantly reduce the computation time required by the controller. 

The following section is con cerned with the solution of Problems (D and @ using LP 

tools. 

2.3.2.1 Solution of the upper bound and the lower bound problems 

Both the lower bound and upper bound problems can be solved using standard LP 

methods, quite similarIy as done for the case of CRHPC1 in Section 2.3.1. The objective 

here is to find the mínima of J1(t) and Jt(t) as defined in eqn.2.40 subject to the 

constraints reported in the definition of Problems (D and ®. In order to solve these 
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problems, a(j) > O, tp(j) ?:: O and {3(j) ?:: O are defined such that 

-a(j) < e(t + jlt) < a(j), 1 ~j < N, 

-tp{j) < e(t+N+jlt) < tp(j) , O ~ j < n, 

-{3(j) < ~u(t + j - lit) < f3(j), 1 ~ j < NUl 

N n N,. 

O < L J1(j)a(j) + L K.(j)tp(j) + L p(j){3(j) < W, 
j=l j=O j=l 

where8 

( ") = {1 if O < j < N, 
P J O ir j = N, 

and K.(j) takes different values for the lower bound and the upper bound problems (<D 

and @ respectively): 

<D K.( ") = {1 ~f ~ ~ j < n, 
J O Ir J = n, 

{ 

1 if O 5: j ~ n-na, 
® K.(j) = 1 + ex ~f ':' - na < j n - 1, 

ex lf J = n, 

with ex as defined in eqn.2.38. In the upper bound problem, if na = O (antistable 

system), it makes no difference to define K.(n) as ex (which is zero in such a case) or 

1, since the predicted error e(t + N + nlt) must be zero due to the end-point equality 

constraints. 

Remark 2.28 In the upper bound problem, if n < na, the coefficients K.(j) and J1(j) 

overlap, and a few small modifications 'are required (see the QGPCr formulation in 

Section 2.3.3 for an example ofthis). Hence, it is assumed that n?:: na unless otherwise 

explicitly specified. ODD 

The minimisation of JI and Jt is equivalent to that of \[1 taking the appropriate 

value of fb(j) in each case. 

8Notice that the first term of JI and Ji sums the absolute value of the errors up to N - 1 and 
not N, henee p,(N) = O. The definition p,(N) = O guarantees that le(t + Nlt)l is eounted only once in 
the eost funetion. 
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In order to write the LP problems in a more convenient form, let en be defined as 

en(t) := [ e(t + Nlt) e(t + N + lIt) ... e(t + N + nlt) ]T, 

that is, en(t) is the vector of predicted errors e(t+ N + j!t) for j = O, 1, ... ,n. Problems 

<D and @ can now be written as 

min W subject to 
iI!,U,ip,¡3,Au 

where 

(J' 2:: GAu + f - w, 
(J' 2:: -GAu - f + w, 
cp 2:: -en, 
cp 2:: en, 
{32:: Au, 
{3 2:: -Au, 
w 2:: p.T (J' + I".T cp + p T {3, 
PAu~r, 

GAu:=w-f, 
(J' 2:: 0, cp 2:: O, {3 2:: O, W > O, 

and ¡.t, (J', p and {3 are defined in eqn.2.35. The iterative algorithm presented above 

works wÍth [n+ 1J instead of n because the dimension of cp is (n+ 1) x 1 and not n xL 

Finally, 1\, is a weighting vector which takes two different values for Problems <D and 

@: 

<D 1\, = [1 S'!~ 1 O] T , 

@ 1\, := [1 S"!~ 1 O] T + [O (n-:~a.+l) O a (n,a) a] T . 

Taking into account that the end-point constraints y = w implyeqn.2.27, it is 

possible to write the vector en(t) in terms of z(t): 

with 

Cz(t) 
C4-z(t) 

e 
C<2 

= rz(t), 
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where z(t), <.P and e are defined in eqn.2.25, 2.28 and 2.26 respectively. In addition, 

according to the definition oí e(t) in eqn.2.17, z(t) = H e(t) for 

H = [ON,N-na 1na ]. 

Hence, the constraints cP 2 -en and cP 2 en can be written in a more suitable form, 

since 

thus 

en = rz = r H e = r H (w - f - Gdu) , 

cP 2 -en =} cP 2 -rH (w - f) + rHGdu, 

cP 2 en =} cP 2 rH(w - f) - rHGAu. 

Final1y, these LP problems are converted to the standard form 

min cT x subject to Ax S b, (J' > O, c.p 2 o, {3 2 O, q¡ 2 o, 
:c 

with 

Au O 
(J' O 

x= c.p c= O 
(3 O 
-r 

and 

G -1 O O O -f+w 
-G -1 O O O f-w 

rHG O -1 O O rH{-f+w) 
-rHG O -1 O O rH(f -w) 

A= 
1 O O -1 O 

b= 
O 

-1 O O -1 O O 
OT J-LT ,.,T pT -1 O 

P O O O O r 

G O O O O -f+iD 
-G O O O O f-iD 

-

. 
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2.3.3 Quasi-infinite horizon l-norm GPC 

As remarked aboye, the implementation of the GPCr' can involve a high computational 

burden due to the necessity of solving two LP problems at each iteration, and there 

is no estímate on how many iterations will be needed. In addition, the dimension oí 

these problems increases with n. The Quasi·lnfinite Horizon l-norm GPC (QGPCr') 

presented in this section is based on minimising an upper bound of the GPCr' cost 

function, obtained froID eqn.2.39 with n = O: 

00 N 

L le(t + N + jlt)1 < a L le(t + jlt)1, (2.46) 
j=O j=N-ná+l 

where a is defined in eqn.2.38. Thus, this is the simplest possible upper bound of the 

infinite horizon cost function regarding the dimension oí the LP problem to be sol ved. 

The main point on this approach is the fact that only one LP problem must be 

solved, and hence. the iterative procedure depicted aboye can be avoided. However, 

as shown in the sequel, this method does not guarantee the stability of the nominal 

closed-Ioop system, though it is "very unlikely" that instability results. 

The motivation for using an upper bound of the infinite horizon problem comes 

from the intuitive idea that the stability problems of the GPC are somehow related 

to the use of a finite prediction horizon. In fact, any finite horizon cost function is a 

lower bound of the infinite horizon one (unless particular system-dependent weighting 

sequences are chosen), and that can be one of the reasons for the poor GPC stabilising 

properties. A better behaviour might arise by using a cost function which bounds the 

infinite horizon problem from aboye. Intuitively, if an upper bound is minimised, the 

true infinite horizon cost function would be below the upper bound optimal value and, 

thus, the infinite horizon cost íunction is, ir not minimised, at least bounded from 

aboye at its optimal point. 

Taking into account all these considerations, the QGPCr' proposed here computes 
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the optimal control move vector as the solution of the optimisation problem 

Auopt = arg~~Jl(t) subject to {PAU ~ r,GAu =: w - f}, (2.47) 

with 

~1 N ~ 

JI (t) =: E le(t + jlt)1 + a E le(t + ilt)1 + E p(j) I~u(t + i - llt)1 , (2.48) 
j=1 j=N-n¡¡+l ;=1 

which is the same as Jt(t) of eqn.2,40 with n =: O. 

The LP formulation used in Section 2.3.2.1 to minimise Jt(t) must be modified in 

order to solve the QGPCf problem,since the vectors JL and '" overlap in the latter 

case. If the variables a(j) O and ¡3(j) ;?: O are introduced, the problem of minimising 

W subject to: 

-a(j) < e(t + jlt) < a(j), 1 <j ~ N, 

-¡3(j) < ~u(t + j - lit) ~ ¡3(j) , 1 '5. j ~ NU1 

N Nu 

O < Ep(j)a(j) + E p(j){J(j) < W, 
j=1 j==l 

with 

p(jl = { 
1 if O ~ j < N - na, 

1+0: if N - n- < j < N - 1 a _ , 

a if j = N, 

is equivalent to the problem of eqn.2,47. If na == O (antistable system) p(N) can 

be defined to be either a (which is zero in that case) or 1, since the predicted error 

e(t + Nlt) is zero due to the end-point equality constraints. 

As done in Section 2.3.2.1, this problem can be converted to the standard form as 

min cT x subject to Ax ~ b, u > O, f3 ;?: 0, W ;?: O, 
a: 

with 
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and 

G -1 O O 

-G -1 O O 

1 O -1 O 

A= 
-1 O -1 O 
OT {tT pT -1 

P O O O 

G O O O 

-G O O O 

where {t, 0', f3 and pare defined in eqn.2.35. 

2.3.4 l-norm stability theorems 

b= 

-f+w 
f-w 

O 

O 

o 
r 

-f+w 
f w 

In this section stability theorerns for the CRHPC¡, the GPCr' and the QGPCr' are 

provided. Sorne of thern are 1-norrn versions of those of Section 2.2.3. 

Theorem 2.5 For any stabilisable and detectable system, the CRHPC1 leads to a sta­

ble closed-loop system if 

(i) p(N) > p(N - 1) ~ ... ~ p(1), 

(ii) p(Nu ) ~ p(Nu - 1) ~ ... ~ p(l) ~ O, and 

(iii) m = rnax{na,nb -1} + 1. 

Proof: The proof is cornpletely analogous to that of Theorern 2.1, replacing the 

"squares" by absolute value signs. vvv 

AH the rernarks rnade about the CRHPC are valid for the 1-norrn counterpart. 

Theorem 2.6 For any stabilisable and detectable system, the GPer' is stabilising if 

(i) p(Nu ) ~ p(Nu - 1) ~ ... ~ p(1) > O, and 
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Proof: The proof provided for Theorem 2.2 can be written replacing the "squares" 

by absolute value signa. vvv 

Again, aH the remarks made about the GPCco are valid for the l-norm counterpart. 

Theorem 2.7 For any stabilisable and detectable system, the QGPCr is stabilising if 

(i) p(Nu ) > p(Nv. - 1) •.. ~ p(l) ~ O, and 

(n) Nu = na; + 1. 

Proof: In that case, the QGPCr 18 equivalent to both the GPCco and the GPCr 

since, in these three controllers, for Nu = na + 1, all the available degrees of freedom 

are used to enforce the na + 1 end-point equality constraints y = w. Hence the vectors 

AuoPt(t) computed by these controllers are the same and stability is guaranteed by 

Theorems 2.2 and 2.6. VVV 

Theorem 2.8 For any stabilisable and detectable antistable9 system, the QGPCr is 

stabilising if 

(i) p(Nu ) p(Nu -1) > ... > p(l) ~ O, and 

Proof: For antistable systems ~4(q-l) = 1, Y :::::: y and w = w and then the na + 1 

end-point equality constraints on the unstable part of the output are, in fact, na + 1 

equality constraints on the whole output. Due to these end-point constraints, the 

predicted errora e(t + N + j!t) are zero fbr a11 j ~ O, what makes the cost functions 

of the GPCr (eqn.2.36) and the QGPCr (eqn.2.48) identical. Hence the QGPCr 

system is said to be antistable if all of its poles are unstable, or na = O, na = na;. 
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is equivalent to the GPCf and stability of the c1osed-Ioop system is guaranteed by 

Theorem 2.6. VVV 

Remark 2.29 In addition, in this situation, the QGPCf and the GPCf c10sely re­

semble the CRHPC¡, because the end-point constraints on the unstable part of the 

output turn out to be equality constraints on the whole output. Notice, however, that 

the CRHPC1 may need more constraints than the GPCf /QGPCf, since m (Theorem 

2.5) must be greater than the numerator order: m = max {na, nb - 1} + 1. This condi­

tion is not necessary in the GPCoo /QGPCf formulations, since the prediction horizon 

N is defined in eqn.2.14 such that the dynamics caused by the numerator reach the 

steady state by time t + N. 000 

2.4 Illustrative examples 

In this section the properties of the stabilising controllers CMPC, CRHPC1, GPCoo
, 

GPCf and QGPCf are analysed by means of simulation using the benchmark systems 

introduced in Appendix A. The lower costing horizons for the GPCoo
, the GPCf and 

the QGPCf have been chosen as NI = 1, since this tuning knob does not affect the 

stability properties of these controllers. In addition, it is worth pointing out that this 

chapter is only concerned with the nominal properties. Thus the true system and 

the internal mode! for predictions are identical for all the experiments of this section. 

Hence, as the polynomial T does not affect the results (see Chapter 3), T(q-l) = 1 is 

assumed. 

In the implementation of the GPCf used throughout this section, the iterative 

algorithm presented in Section 2.3.2 has been used with a relative error Cr = 10-2 , 

i. e. the difference between the lower and the upper bounds of the infinite horizon 

cost function must be less than the 1% of the lower bound optimum value. The n 

parameter has been initialised to [n + 1] := 10 (at the first sample), whereas the 
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sentence of eqn.2.45 has been used from the second sampling instant on. 

as 
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55 

Figure 2.1: Closed-loop behaviour oí the (2-norm) CRHPC: [N, m, p, p] = [4,3,1, 1} 
al1d GPCoo

: [~H p] = [5,1} 

2.4.1 An unstable GPC example 

First of aH, the controllers have been tested on the system of eqn.A.l (Section A.l) 

which is reported in (Bitmead et al., 1990) to cause stability problema with the standard 

finite horizon GPe: 

The CRHPC and CRHPC1 have been tried using the tuning parameters N = 4, 

m = 3, p(j) = 1, for aU j and p(j) = 1 for all j. \'V1th such a choice, m, p,(j) and 

p(j) satisfy the conditions of Theorems 2.1 and 2.5 .. Thus, both controllers should 

provide with a atable closed-loop system. Notice that Nu = N + 1 = 5 is greater than 

the number of equality constraints (m = 3), which 18 a necessary condition fol' the 

solvability oí the optimisation problem. 
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Figure 2.2: Closed-Ioop behaviour of the CRHPC1: [N, m, j.t, p] = [4,3,1,1] and 
GPCr' jQGPCr': [Nu , pJ = [5, 1} 

Fig.2.1 and 2.2 show the dosed-Ioop behaviour obtained with the 2-norm and the 

1-norm controllers. In the figures, a dotted Hne is used for the setpoint, which changes 

from O to 1 at the fifth sample. It is noticed that both controllers lead to a stable 

dosed-Ioop system with monotonically non-increasing optimal cost function values. 

Only when the setpoint change occurs (at the fifth sample) does the cost function raise, 

otherwise it decreases and settles down to zero. Notice also that the difference between 

the 2-norm and the 1-norm versions is remarkably small, either as the inputjoutput 

responses or the cost functions are concerned. It must be pointed out, however, that 

the comparíson between the closed-Ioop behaviour provided by the 1-norm and 2-norm 

implementations ís not strictly appropriate, sínce the weíghts j.t and p apply to absolute 

values in the former, but to squares in the latter. 

The GPCco and the GPe~ have been tested on this system using the tuning pa­

rameters Nu = 5 and p(j) = 1 for all j. Hence, the degrees of freedom of these 

controllers are the same as for the CRHPC and the CRHPC1 used aboye. In this case, 

the GPeco turns out to be identical to the CRHPC, and the same goes to GPCr' 
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and the CRHPC1. This fact is not surprising, as the system used for the exper­

iments is antistable and thus, the equality constraints on the unstable part of the 

output become, for both the GPCoo and the GPCr', equality constraints on the whole 

output. However, the fact that both controllers (the CRHPC and the GPCOO
) are 

identical in this case is not straightforward. On the one hand, with the tuning knobs 

[N, m, {t(j), p(j)] = [4,3,1,1] the CRHPC (CRHPC l ) is equivalent to the problem 

of minimising eqn.2.3 (eqn.2.34) with [Nll Ny , N2 , Nu , {t(j), p(j), 'Y] = [1,5,7,5,1,1, O]. 

On the other hand, the GPCoo (GPC~), taking into account that the end-point con­

straints affect the whole output of the model, can be posed as the minimisation of 

eqn.2.3 (eqn.2.34) with [NI, N y , N2 ! Nu , {t(j) , p(j), 'Y] = [1,6,8,5,1,1, O]. Hence the 

constraint and upper costing horizons Ny and N2 are not the same for the CRRPC 

and the GPCoo . Despite that, it can be easily shown that, for this particular case, the 

equality constraints enforced by the CRHPC and the GPC lead to y(t + jlt) = w(tjt) 

for all j > 4, which is reason why these two controllers become identical. 

Remark 2.30 One might be tempted to think that the CRRPC (CRRPC¡) and the 

GPCoo (GPC~) are equivalent for all antistable systems when the degrees of freedom 

(Nu ) of these controllers are the same. This is only true when the number of open-loop 

zeros is lower than or equal to the number of open-loop poles, or nb - 1 ::; na, since, in 

that case, both the CRHPC and the GPCoo use the same number of end-point equality 

constraints: m = max{ na, nb - 1} + 1 = na + 1 for the CRHPC and na; + 1 = na + 1 

for the GPCoo • 000 

Finally, as a consequence of Theorem 2.8, the QGPCr' with the tuning knobs 

[Nu, p(j)] = [5,1] is equivalent to the GPCr and, consequently, to the CRHPC1. 

Hence the dosed-Ioop behaviour for the QGPCr is as shown in Fig.2.2. 

The system used in this section can be regarded as quite a pathological case, since 

all its roots (poles and zeroes) are unstable and, moreover, it possesses a near pole-zero 
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Figure 2.3: Closed-loop behaviour of the (2-norm) CRHPC: [N, m, fJ" p] = [4,3,1,1] 

cancellation which results on the system being almost undetectable. The stabilising 

approaches have been proved successful even in such a situation. In fact, antistable 

systems are the only ones for which the QGPC~ is proved to be stabilising for all 

possible values of the control horizon Nu > na. The next few sections are devoted to 

illustrate the behaviour of these controllers in front of more typical situations. 

2.4.2 Non-minimum phase stable system 

Here, the controllers are tested on the system provided in eqn.AA of Section A.2: 

G -1 _ q-1 B(q-1) _ q-1(O.1098 - O.1232q-1) 
(q ) - A(q-1) - 1-1.8098q-1 + O.8432q-2· 

First of all, the CRHPC and CRHPC1 have been tried using the same set of tuning 

parameters as the previous section, namely [N, m, fJ,(j), p(j)] = [4,3,1,1], which satisfy 

the conditions ofTheorems 2.1 and 2.5. The results are shown in Fig.2.3 for the 2-norm 

controller and in Fig.2.4 for the 1-norm counterpart. As expected, both of them are 

stable and the optimal cost function values are non-increasing. The difference between 

the cost function values of the 2-norm and the 1-norm cases is a consequence of the use 
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of the square in the latter. The input/output dosed-Ioop responses, which are quite 

similar for both controllers, exhibit a deadbeat-like behaviour with a considerable initial 

inverse response. 

For this example, the CRHPC and the GPCco are not equivalent, since the system is 

not open-Ioop antístable. The GPGXl and the GPCf ha ve been tried with [N"" p(j)] = 

[3,lJ. With these settings, the GPCco (for either norm) uses just one end-point equality 

constraint, as the open-Ioop system is stable (na+1 = 1). Hence, two degrees offreedom 

are used to attain the minimisation of the cost function, and the other one is needed to 

enforce the equality constraint. Notice that, in the already presented CRHPC, m = 3 

and Nu = 5, thus the degrees of freedom available for minimisation in those controllers 

are also N", -m = 2. The GPCr' iterative algorithm provided in Section 2.3.2 converges 

for [n + 1] = 80 or [n + 1] = 160 in this example, depending on the sample. 

Fig.2.5 shows the dosed-Ioop behaviour of the GPCco and Fig.2.6 that of the GPCr'. 

A simulation time of 80 samples (50 more than for the CRHPC examples) have been 

chosen taking into account the closed-loop dynamics. It is worth pointing out that the 
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Figure 2.5: Closed-Ioop behaviour of the (2-norm) GPCCO
: [Nu , p] = [3,1] 

1-norm and 2-norm responses are quite similar. The output response obtained with 

the OPCr is a bit faster, and the cost function settles down to zero a few samples 

before than the 2-norm counterpart. In addition, notice that the output shape is softer 

and the control efforts are lower compared to the CRHPC. As shown in the following 

chapter, the smoother behaviour of the OPCco relative to the CRHPC leads to better 

robustness properties. 

Finally the QOPCr has been tried with the same tuning knobs, i.e. [Nu , p(j)] = 

[3,1]. As shown in Fig.2.7, the use of the QOPCr tuned in this fashion results in an 

unstable closed-Ioop system. Such a behaviour is a consequence of the properties of 

the open-Ioop system. The non-minimum phase characteristic combined with a short 

sampling time leads to an open-Ioop inverse response which takes 10 samples, as shown 

in Fig.A.2. Notice that, with these tuning knobs, the prediction horizon (eqn.2.14 is 

N = max{Nu + nb 1, na} = max{4,2} = 4, which means that all the predictions 

are made within the inverse response regíon. This is not relevant with the "exact" 

GPCr implementation of Section 2.3.2, but the upper-bound solution provided by the 

QOPCr does not suffice to stabilise the system. Instability wíth the QOPCr does 
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Figure 2.6: Closed-loop behaviour of the GPC~: [Nu , p] = [3,lJ 

not occur when the system's zero is moved inside the unit circle or when the sampling 

time is increased in such a way that the initial inverse response takes fewer samples. 

The same experiment has been repeated with greater values of the control horizon, 

and it has been found that the closed-Ioop system is stable for all Nu > 4. It is worth 

pointing out that N increases with the control horizon as apparent in eqn.2.14, and 

thus a greater Nu entails a greater N. Fig.2.8 shows the closed-loop behaviour for 

[Nu , p(j)J = [5,1] attained with the GPCf and the QGPCf. Although the behaviour 

obtained with the latter is deadbeat-like, the closed-loop system is stable and the cost 

function is non-increasing. On the other hand, the GPC~ provides with a smoother 

response and a less active input signal. 

Remark 2.31 Notice that the optimal values of the cost QGPCf cost function are 

lower than those of the GPC~ for several samples. This is by no rneans a contradiction 

of Theorem 2.3, since the internal closed-Ioop states are different for both controllers af­

ter the setpoint change, as the computed control sequen ces are not the same. Theorem 

2.3 applies when the infinite horizon, the lower bound and the upper bound problems 
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Figure 2.7: Closed-Ioop behaviour of the QGPCi: [Nu , p] = [3,1] 

are solved using the same data, i.e., with the same internal states. 000 

Remark 2.32 Not surprisingly, the deadbeat-like behaviour obtained with the GPCi 

cIosely resembles that obtained with the CRHPC1 (Fig.2.4). The reason for such a 

situation can be found by comparing the QGPCi and the CHRPC¡ problems. In 

the cost function of eqn.2.48 the weight Q: turns out to be 84.2724 for this particular 

case. Hence a is about two orders of magnítude greater than the weight on the errors 

e(t + jlt) for j = 1,2, ... , N - na, which is just 1. This means that the term 

N 

a: L le(t+jlt)1 
j=N-n¡¡+l 

can be thought of as na softened constraints le(t + jlt)1 ~ 1, for j = 1,2, ... , N - na. 

These, combíned with the na-+ 1 equality constraints on the unstable part of the output, 

sum up na + na + 1 = na + 1 end-point equality constraints, just the same as for the 

CRHPC¡. Hence, for this particular example, the QGPCi is doser to the CRHPC¡ 

than to the GPCf. 

This situation is caused by the proximity of the open-Ioop poles to the unit circle, 
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Figure 2.8: Closed-loop behaviour of the QGPCf and the GPCoo
: [NU1 pJ = [5,1] 

which makes the powers q,j decay to zero very slowly, and thus the upper bound 

00 N 

Lle(t+N+jlt)l~a L le(t+jlt)1, 
j=O j=N-na+1 

is far from being an equality. In the typical case, for c1assical choices of the sampling 

time, the maximum absolute value of the open-loop poles is near 0.7, and then the 

powers q,j decay to zero faster, and the bound provided in the aboye equation is much 

closer to the equality. As a consequence of this, the QGPCf would be closer to the 

GPCf and no deadbeat-like close-Ioop behaviour is expected. DDD 

Section 2.5 shows that the difference between the QGPCf and the GPCf, for this 

particular example, decreases if greater values of the control horizon are chosen. 

2.4.3 A comparative study of GPCf and QGPCf 

This section illustrates> that the stability problems of the QGPCf discussed in the last 

section are unusual, and compares the closed-Ioop behaviour obtained with the GPCf 

and the QGPCf for different choices of the control horizon. 
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Both controllers have been tested against the lightly damped second-order system 

of eqn.A.10 (Section A.5): 

G( -1) = q-1 B(q-1) = O.2358q-1 + O.2319q-2 
q A(q-1) 1 - 1.4835q-1 + O.9512q-2· 

Notice that stability with the QGPCr' is only guaranteed for Nu = na: + 1 = 1, since 

Theorem 2.7 applies in that case, however. For Nu > 1 the stability of the QGPCr' 

must be checked by simulation. 
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Figure 2.9: Closed-Ioop behaviour of the QGPCr' and the GPCOO
: [Nu , p] = [1,1] 

With the choice [Nu , p(j)] = [1,1], the QGPCr' and the GPCr' are identical, as 

proved in Theorem 2.7 and shown in Fig.2.9. This choice of Nu leads to mean-Ievel 

control on the stable part of the process, i. e., the whole process in this case, as discussed 

in (Scokaert, 1997). Although the inputjoutput responses are the same due to the fact 

that the only degree of freedom of the controller is used to enforce the end-point 

equality constraint, the optimal cost function values, plotted in Fig.2.9(b), are not the 

same. The cost function values of the GPCr' are a non-increasing sequence, as proved 

in Theorem 2.6, but the upper bound cost function used in the QGPCr' does not 

guarantee that property, as evident in the figure. 
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Remark 2.33 The condition that the optimal cost sequence is monotonically non­

increasing is sufficient but not necessary for stability. The closed-loop system can be 

stable even though this condition is not satisfied, as occurs for this example. 000 

In addition, notice that a comparison between the sequences of optimal cost function 

values make sense for all samples in this case, since the control efforts computed by 

both algorithms are the same, and hence the cost function minimised by the QGPC~ is 

an upper bound of that of the GPCr' at all samples. The fact the optimal cost function 

value computed withthe QGPC~ is always greater than or equal to that ofthe GPCoo 

is a consequence of Theorem 2.3. This situation is general when Nu = na; + 1. 
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Figure 2.10: Closed-loop behaviour of the QGPCr' and the GPCoo
: [Nu , p] = [2,1] 

The behaviour obtained with the QGPC~ and the GPC~ when the tuning knobs 

are chosen as [Nu , p(j)] = [2,1] is shown in Fig.2.1O. The results do not differ too 

much, but the response is somewhat faster in the case of the GPCr'. On the other 

hand, the optimal values of the QGPC~ cost function are about twice larger than those 

of the GPCoo for the first few samples. Although both closed-loop systems have turned 

out to be similar, it must be taken into account that the GPCr' algorithms involves 
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an enormous computational burden, since the convergence condition is achieved for 

[n + 1] = 360 at most samples. On the other hand, the QGPCr' solution is several 

orders of magnitude faster. 

Apart from the graphical comparison provided aboye, the closed-Ioop behaviour 

obtained with both controllers can be compared numerically. Let UOO(t) and yOO(t) 

denote the input/output responses obtained with the GPCr', and uQOO(t) and yQOO(t) 

those obtained with the QGPCr'. The "distance" between both solutions can be 

computed using the criterio n 

J
dif 

= { t. [yOO (t) - yQOO( t)]' + q, [uoo (t) - uQOO ( t)]2, 

00, 

stable QGPCr', 
(2.49) 

otherwise, 

where nt is the number of samples of the experiment and 1J stands for sorne non­

negative scalar. In the last experiment the value obtained for Jdif is 1.6926, for 1J = 1 

and nt = 80. If the experiment is repeated for Nu > 2, the difference between the 

GPCco and the QGPCr' vanishes, i.e. Jdif = O (actually Jdif < 10-27 ~ O), with the 

same choices for 1J and nt. Hence, the QGPCr' and the GPCr' seem to converge for 

large enough Nu . The following section is focused on providing a formal framework to 

justify this hypothesis. 

~======~~~~~====~lr __ ~_c_o~n_t_r~o_l_h,orri,zo~n-r(N~u)-.~~I 
Ir . 1 1 2 1 3 1 4 1 5 . 

QGPC~ (tQGPCoo ) 1.00 1.15 1.07 1.12 1.20 
Controller GPC~ (tGPCoo) 13342.42 2489.23 3.08 3.00 3.37 

I Ratio (tGPc)" /tQGPc)") 1113342.42 1 2160.26 1 2.89 1 2.64 1 2.80 1 

Table 2.1: Normalised CPU time 

Apart from stability and performance, the GPCr' and the QGPCr' can be com­

pared in terms of computation requirements. Table 2.1 shows the Central Processing 

Unit (CPU) time10 required by the 80-sample simulations performed with both con-

10 Floating point operations (fiops) are not always counted in Matlab, and hence CPU time has been 
preferred as a measurement. 
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trollers. Of course, CPU time varies between different machines, and thus the results 

are displayed normalised, dividing by the lowest value, in such a way that they provide 

machine-independent information. There may still be small variations from one ma­

chine to other. The results show that the GPC'f may need much more computational 

effort than the QGPC'f, even more than 13000 times (l) the CPU time required by 

the latter (for Nu = 1), and always more than twice. For Nu = 1 the whole simulation 

takes less than a second with the QGPC'f, whereas the GPC'f takes more than two 

hours (l). This result is quite consistent since, in the best case, the GPCf solves two 

LP problems to compute a single control move (if only one iteration is required for 

convergence), whereas the QGPCf solves just one. Notice, in addition, that although 

the QGPC'f and the GPCf are identical for Nu > 2 (for these particular conditions), 

the former involves less than half the computational burden of the latter. This is of 

particular relevance if min-max methods are to be used to robustify these controllers 

(see Chapter 4). 

2.5 From quasi-infinite to infinite horizons 

The experiment of Section 2.4.3 for Nu > 2 reveals that the QGPC'f converges to the 

GPCoo to sorne extent. The scope of this section is to justify that convergence and to 

show how it can be exploited. 

The convergence of the QGPC'f and the GPC'f for large enough Nu is due to the 

combination of two different facts. Firstly, it must be noticed that Nu -t 00 =} N -t 00, 

and hence the cost function of the QGPC'f (eqn.2.48) converges to that of the GPC'f 

(eqn.2.36). However, this would only explain the convergence for very large Nu , and 

Nu = 3 in Section 2.4.3 does not appear to be large enough, especially as the results 

obtained using the GPC'f and the QGPC'f are not as close for Nu = 2. 

A second reason why a large Nu brings the QGPC'f closer to the GPCoo comes 
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out by paying attention to the upper bound which is used in the cost function of the 

QGPCf (eqn.2.46): 

00 N 

E le(t + N + ilt)1 :s; a IIz(t) 111 = a L le(t + ilt)l· 
j=O j=N-na+l 

If the controllers are provided with enough degrees of freedom for the minimisation of 

the cost function, then the predicted errors will tend to zero: le(t + ilt)1 <t:: 1 for large 

enough i. Thus, if the condition 

le(t + ilt)1 ~ O, i = N - na + 1, N - na + 2, ... , N, (2.50) 

holds for sorne Nu , it then follows that 

00 N 

O:S; L le(t + N + ilt)l < a L le(t + ilt)1 ~ O. 
j=O j=N-n¡¡+l 

Therefore the upper bound (QGPCf) and the GPCf cost functions become almost 

identicaL The larger Nu is, the more likely the condition of eqn.2.50 is to hold since, 

as more degrees of freedom are available, the controller can lead the output to the 

setpoint faster. In addition, this condition can be satisfied even for relatively small Nu , 

what explains why the GPCf and the QGPC~ are identical for Nu > 2 in the example 

mentioned aboye. Finally, notice that, in such a situation the QGPCf /GPCf would 

also be quite close to the CRHPC¡, for the reasons pointed out in Remal'k 2.32. 

The following conjecture stems from these observations: 

Conjecture 2.1 For any stabilisable and detectable system, there exists a relatively 

small integer N u > na such that the QGPCf is stabilising if 

(i) p(Nu ) ~ p(Nu - 1) ~ ... > p(l) ~ O, and 

Remark 2.34 As discussed aboye, the increase of Nu can result on the satisfaction 

of eqn.2.50, and therefore the distance between the GPC~ and the QGPCf vanishes, 
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leading to stability. However, there is no estimation about how large N u is required 

for each system. Sometimes the closed-loop system with the QGPC~ is stable for all 

Nu > n{i + 2 (the first case which does not satisfy the conditions of Theorem 2.7), as 

happens in the example shown in Section 2.4.3, whereas sorne other times larger values 

may be needed, as shown in the example provided in Section 2.4.2. 000 

~ 2,3,4 5 6 7 8 9 10 11 >11 
Jdif 00 572.4 216.0 150.0 89.6 61.7 27.7 19.5 O 

Table 2.2: Jdif as a íunction oí Nu 

The following example is intended to illustrate the convergence property oí Conjec­

ture 2.1. A few experimenta have been carried with the non-mínimum phase system 

of Section 2.4.2 (eqn.A.4), with p(j) = 1 for all j and different values of Nu . The dis­

tance from the GPCf to the QGPCf solutions has been computed using the criterion 

defined in eqn.2.49 with 1> = 1 and nt = 80, and the results are displayed in Table 2.2. 

Nu = 1 has not been included in this comparison since Theorem 2.7 appUes in that 

case, leading to Jdif = O. The results show that the QGPC~ gives rise to an unstable 

closed-Ioop system for 1 < Nu < 5, and the difference between the QGPC~ and the 

GPC~ monotonically decreases from Nu = 5 to Nu = 12. For Nu > 11 the responses 

obtained with the GPC~ and the QGPCf are identical, since Jdif = O. For this ex­

ample N u = 5, but the QGPC~ does not provide the same closed-loop behaviour as 

the GPCr until Nu = 12. 

This example points out that, although the QGPC~ does not provide with stability 

guarantees (apart from the cases coIlected in Theorems 2.8 and 2.7) it is not difficult to 

tune this controller for stability by increasing the control horizon. This property can 

be useful when the GPC~ is to be applied to control a real process, as a great deal of 

computations can be avoided by usÍng the QGPCr formulation instead of the iterative 

algorithm of Section 2.3.2. Of course, this possibility can be considered only if Nu 
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is large enough such that the QGPC~ is stabilising (assuming that Conjecture 2.1 is 

true). In addition, it is worth taking into account that the performance attained with 

the GPC~ and the QGPC~ can be quite different for small Nv" as shown in Section 

2.4.2 for Nu = 5. 

2.6 Concluding remarks 

In this chapter several receding-horizon predictive controllers have been formulated. 

The controllers introduced in Section 2.2, aboye all the CRRPC and the GPCco , were 

proposed to overcome the stability problems of the classical GPC, which were pointed 

out by Bitmead et al. (1990). Both the CRRPC and the GPGXl are modifications 

of the GPC control law which enjoy the property that the sequence of optimal cost 

function values is monotonically non-increasing, which implies closed-Ioop stability as 

shown by the theorems of Section 2.2.3. 

The novel aspects introduced in this chapter are the 1-norm versions of those stabil­

ising approaches, namely the CRRPCl and the GPC~. The aim of these formulations is 

to develop efficient robust predictive controllers based on min-maxoptimisation, which 

can be solved with standard LP tools if 1-norm cost functions are used, as shown in 

(Camacho and Bordóns, 1995). The CRHPC l does not introduce any difficulty, and 

can be easily solved as a LP problem. On the other hand, the GPC~ requires the 

use of an iterative algorithrn until the difference between a lower bound and an upper 

bound solutions is small enough. Finally, a simple upper bound problem of the GPC~, 

referred to as QGPC~, is defined in Section 2.3.3. The QGPC~ avoids the cornputa­

tional burden involved by the GPCr', since the iterative algorithrn depicted in Section 

2.3.2 is not used. Rowever, the stability guarantees with the QGPC~ reduce to a few 

special cases. Several theorems proving the stability of these 1-norm controllers under 

sorne conditions are provided in Section 2.3.4. 
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In the simulation examples of Section 2.4, it can be observed that both the CRHPC 

and the GPOco
, either in the 2-norm or the l-norm formulations, lead to a stable dosed­

loop system. Apart from stability, the GPCco seeros a better choice as performance is 

considered, since the CRHPC often produces a deadbeat-like behaviour (especially ir 

a short prediction horizon ia chosen, as shown in the forthcoming chapters). 

Finally, the convergence of QGPCf and GPCf is analysed in Sectíon 2.5, where 

the fact that, for a large enough (but relatively small) control horizon, the closed­

loop behaviour provided by these two controllers is indistinguishable is illustrated by 

means of an example. Rence, although the QGPCf itself is not always stabi1ising, 

it is conjectured that with a large enough Nu it turna to be a stabilising controller 

since ít converges to the GPCf. This property is remarkably useful because it allows 

to implement the GPCf as the QGPCf for sufficiently large Ntu avoiding the high 

computational requirements of the iterative algorithm depicted in Section 2.3.2. 
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Chapter 3 

Robust analysis and design of 
unconstrained stabilising RHPC 

3.1 Introduction 

In Chapter 2 sorne predictive eontrollers which guarantee the stability .of the nominal 

c1osed-loop system are presented. These eontrollers ensure elosed-loop stability as 

far as the system to which they are applied, referred to as true system/process/plant 

hereafter, is identical to the internal model used for predictions, referred to as nominal 

model/system/process/plant throughout this thesis. However, in real applications, the 

true system and the nominal model always differ, since models, and especially linear 

representations, are merely an approximation to reality. The sourees of uncertainty in 

the plant model are numerous and the list given below (Skogestad and Postlethwaite, 

1996) points out sorne relevant ones: 

1. There are always parameters in the model which are only known approximately 

or are simply in error. 

2. The parameters in the linear model may vary due to non-linearities or changes 

in the operating conditions. 

3. Measurement devices have imperfections. This may even give rise to uneertainty 

73 
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in the manipulated input, since the actual input is often adjusted in a cascade 

manner. 

4. At high frequencies even the structure and the model order is unknown. 

5. Even when a very detailed model is available, a simpler lower order nominal 

model can be used and the neglected dynamics are represented as uncertainty. 

6. The controller implemented may differ from the one obtained by solving the 

synthesis problem. In this case one may inelude uncertainty to allow for controllel' 

order reduction and irnplementation inaccuracies. 

It is not in the scope of this thesis to provide a full review of the uncertainty sources, 

but to suggest methods to incorporate sorne knowledge of uncertainty into the control 

designo If systern uncertainty is overlooked when the control algorithms introduced 

aboye are to be used in real applications, the eonsequences can be dramatic, including 

instability, constraint violations and poor performance. It rnust be noted that it would 

be a worthless and senseless effort to design a controller accol'ding to sorne optimality 

criterion, such as the minimisation of a cost function, if, after aH, the elosed-Ioop 

behaviour is spoiled by modelling errors and disturbances. 

If predictive controllers are used as a way of obtainíng an optimal inputjoutput 

behaviour and constl'aints are not an important issue, a classical approach to robustness 

becomes possible. The scope of this chapter is to undertake the robustness analysis and 

design making use ofwell-known classical tools, such as the small gain theorem (Morari 

and Zafiriou, 1989; Skogestad and Postlethwaite, 1996). First of aH, a few prelirninary 

results are presented to show that 2-norm predictive controllers can be posed in the 

classical two-degrees-of-freedom (2-DOF) LTI configuration. The robustness properties 

can then be analysed using standard techniques. 

In this chapter, the stabilising controllers introduced in Chapter 2 are analysed in 

terms of robustness. The target of this survey is to find out the inherent robustness 
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properties of difJerent stabilising strategies. This analysis should provide with sorne 

insight on how uncertainty can be handled by predictive controllers. In addition, this 

inquiry and can be useful to point out candidates for robust constrained predictive 

controllers, an issue which is undertaken in the following chapters. 

The synthesis of robust unconstrained MPC has been addressed from severa! points 

of view. Among these, the two most commonly found approaches which use in­

put/output formulations (GPC-like controllers) are the well-known T-design and Q­

parametrisation (or Q-design). The former is based on tuning the polynomial T of 

the nominal model (Clarke and Mohtadi, 1989; Robinson and Clarke, 1991; Soeter­

boek, 1992; de Prada et al., 1994; Yoon and Clarke, 1995a; Megías, 1996; Megías et 

al., 1996; Megías et al., 1997), and the latter relies on parametrising, vía a ratio­

nal functíon Q,an the controllers which lead to the same nominal transfer funcHon 

(Kouvaritakis et al., 1992; Yoon and Clarke, 1995aj Hrissagis et al., 1996; De Nicolao 

et al., 1996; Ansay and Wertz, 1997). The so-called observer polynomial T has been 

shown to be a valuable tool to enhance robustness since this tuning knob does not 

affect the nominal dosed-Ioop behaviour. However, the T-design methods are based 

on heuristic rules, whereas Q is chosen to optimise sorne robustness criterion. Thus the 

Q-design methods are systernatic, a reason for which these are often preferred. Despite 

that, the T-design tends to providing greater robustness rnargins as remarked in (Yoon 

aud Clarke, 1995a; Ansay and Wertz, 1997; Megías et al., 1999a). 

In thís chapter, a systematic procedure to design T-T-optimisation- which is not 

heuristic but based on optimising a robustness criterion is presented. The aim of this 

methodology is to combine the advantages of the heuristic T -design and the systematic 

Q-pararnetrisation rnethods and, at the same time, to overcome their drawbacks. The 

idea of choosing T by means of optirnisation was firstly outlined in (Megías, 1996; 

Megías et al., 1997) and finally exploited in (Megías et al., 1999a). 
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This chapter is structured in seven sections. In Section 3.2 LTI forms for uncon­

strained 2-norm RHPC controllers are derived. These allow a classical approach to 

analyse robustness. The robust design of unconstrained GPC-like controllers through 

the polynomial T is presented in Section 3.3. Section 3.4 compares the robustness of 

CRHPC, GPCco , and a "softened" CRHPC. As the true plant is never available for si m­

ulation, the only criteria used to analyse different controllers are nominal performance 

and robust stability, although simulations with a true plant are provided. Section 3.5 

presents the Q-parametrisation method and analyses several choices of the parameter Q 

suggested in the literature. In Section 3.6, the T-optimisation procedure is defined and 

compared with other approaches, showing that it can provide with greater robustness 

bounds. Finally, Section 3.7 draws the most relevant conclusions of this chapter. 

3.2 The classicaI approach to robustness 

The c1assical robustness analysis (and design) of unconstrained RHPC is possihle due 

to the LTI form of these controllers which was proposed in (Bitmead et al., 1990) for 

the GPC and, later, extended to the CRHPC (Scokaert, 1994; Yoon, 1994; Yoon and 

Clarke, 1995a). Here, these formulae are also obtained for the infinite horizon GPG:xl 

of (Scokaert, 1994; Scokaert, 1997). 

This approach assumes that both the true and the nominal systems are linear and 

time invariant. The nominal system is given by the CARIMA model of eqn.2.1 in 

Chapter 2: 

whereas the true process is described by a different input/output mode1: 

where Ao and Eo are unknown polynomials on the hackward shift operator and x(t) is 
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an additive disturhance at time t. Notice that x(t) affects the internal states, and not 

only the output y(t). The perturhation x(t) can he written as an additive disturhance 

at the output dy(t) (Fig.3.1) since the equivalence 

clearly holds. 

3.2.1 Closed-loop formulae of unconstrained RHPC 

This section provides with an equivalent 2~DOF LTI form of unconstrained RHPC. 

The dosed-Ioop formulae presented here are valid only for quadratic cost functions, 

that is, those which fit the definition of eqn.2.3. 

Remark 3.1 Throughout this chapte.r it is assumed that no future setpoints are avail­

ahle, i.e. w(t + jlt) = w(tlt) for all j ~ o. 000 

Prior to obtaining the LTI form of RHPC, the polynomials Ej(q-l), Fj(q-l), 

Gj(q-l) and Hj(q-l) are defined to satisfy the system of Diophantine equations: 

T(q-l) = A(q-l)~Ej(q-l) + q-j Fj(q-l), 

Ej(q-l)B(q-l) = Gj(q-l)T(q-l) + q-j Hj(q-l). 
(3.1) 

The details ahout these polynomials are extensively documented in the literature 

(Clarke et al., 1987; CIarke and Mohtadi, 1989; Bitmead et al., 1990; Soeterhoek, 1992; 

Megías, 1996) and hence are omitted here for hrevity. 

Given the definition of Auopt(t) provided in eqn.2.12 for the finite horizon case, 

the first postulated control move can be written as 

N2 

~uoPt(tlt) = L.: kj[w(t + jlt) - J(t + jlt)], (3.2) 
j=Nl 
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where the coefficients kj can be computed from 

[kNl '" kN2 ] = 

[ 
GTMG1 + R Gr ] -1 [G™ O] 

[1 O ... O] __ 1 ~ 1 . . (3.3) 
G2 p,(N

y
) 1 

The form of eqn.3.2 is essential for the obtention of an equivalent LTI form of RHPC 

controlIers. 

A few manipulations are required to obtain analogous coefficients kj for the GPCoo
• 

The expression provided in eqn.2.29 must be rewritten in such a way that the free 

response and the setpoint values associated to the unstable part of the model, i(t +' 

N + jlt) and w(t + N + jlt) respectively, are given in terms of ¡(t + jlt) and w(t + jlt). 

First of aH, notice that eqn.2.18 implies that 

i(t + jlt) = ¡(t + jlt) + li¡f(t + j - lit) + .. -+ linrJ(t + j - nalt), 

hence 

j(t + Nlt) 
j(t + N + lit) 

i(t + N + nalt) 

where1 f(tlt) = y(t) by definition and 

HA -

(N-na) 

O O 
O O 

O 
O 

=HA 

Then, if the vector l' (t) is defined as 

f(tlt) 
¡(t + lit) 

f(t + N + n¡¡lt) 

(na) 

O O 
1 O 

O lina al 
O O ana 

O 
o 

1 O 
al 1 

I'(t) = [¡(tlt) J(t + lit) ... f(t + N + nalt) ]T, 
1 f(tlt) may be necessary in case that N = na-

(3.4) 
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it is possible to rewrite eqn.3.4 in the forro 

f(t) :::: H}.f'(t), 

where f(t) is defined in eqn.2.19. In addition, note that if w(t + jlt) :::: w(tlt) for aH 

j ~ O, it follows from eqn.2.21 that 

or 

with 

w(t + Nlt) 
w(t+N+llt) 

w(t + N + nalt) 

w(tlt) 
w(t + lIt) 

w(t + N + na:lt) 

w(t) :::: H}.w'(t) 

w'(t) :::: [w(tlt) to(t + lit) ... w(t + N + nalt) ]T, 

Thus the tracking errors on the unstable part of the output can be obtained as 

w(t) - y(t) = HA [w1(t) - t(t)]. 

Furthermore, the setpoint and free-response vectors w(t) and f(t), as defined in 

eqn.2.15, can also be obtained from w'(t) and f'(t): 

w(t) :::: [ON,l IN ON,n¡¡;] w'(t), 

f(t) = [ON,l IN ON,na ] f'(t), 

which allows to arrange eqn.2.29 as 

[ ~u r = [ (ff Ag +R ~T r [ON .. l C;;~ ON.,n, ] (w' -1'), 

Finally, for the infinite IlorÍzon case, tIle first control move can be written as done 

in eqn.3.2 for the finite horizon case: 

N+n(¡ 
AuoPt(tlt):::: :L: ki[W(t + jlt) - f(t + lit)], (3.5) 

j=O 
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wherethe coefficients kj are computed as 

[ko '" kN +n;;,] = 

[1 O .,. 01 [ GTAg +R ~T r [ON." C;;~ ON .. "" ]. (3.6) 

Now, from eqn.3.2 or 3.5, and going through the steps detailed in (Bitmead et 

al., 1990) for the GPC, the 2-norm (finite horizon) RHPC and the GPG'C\ introduced 

in Section 2.2, can be written as the standard polynomial expression 

for which a block diagram ia displayed in Fig.3.1. This acheme represents a c1assical 

2-DOF LTI controller. 

Figure 3.1: 2-DOF structure of RHPC 

For the finite horizon'case, Rp, Sp and Tp, referred to as 2-DOF polynomials here­

after, can be obtained from the coefficients kj provided in eqn.3.3 and the polynomials 

Hj and Fj obtaíned from the solution of the Diophantine equations of eqn.3.1: 

Na 

Rp =T+q-l L kjHj , 

Na 

Tp = TTi = TL kjqj. 
f=Nl 

(3.7) 
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Notice that if no knowledge about future setpoints is available (as assumed here, in 

Remark 3.1), the factor T1 of the polynomial Tp beeomes a se atar ks which multiplies 

T: 

The infinite horizon case is completely analogous to the finíte horizon counterpart, 

and the 2-DOF polynomials can be easily computed from 

N+níi. 

Rp=T+q-l L kjHj, 
j=O 

N+:no; 

8p = L kjFj , 

j=O 
N+no; 

Tp = TT1 =T L kjqÍ," 
j=O 

(3.8) 

with kj as defined in eqn.3.6. Again, if no preprogrammed setpoints are considered, Tp 

becomes 

where T l = ks is scalar. 

Inthe 2-DOF LTI block diagram provided in Fig.3.1, the nominal c1osed-loop char­

acteristic polynomial can be obtained taken the true and the nominal systems to be 

identical or 

Bo=B, 

Ao=A, 

T 
x(t) = ~e(t). 

(3.9) 

Notice that the second and the third equations imply that the nominal output distur-

bance dy takes the form 

T 
dy(t) == A~ e(t). (3.10) 
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Now, eqn.3.9 leads to the nominal characteristic polynomial 

where the so-called observer polynomial T is a factor what is explicitly written in TPc' 

This fact is widely documented in the literature, e.g. (Yoon and Clarke, 1995a; MegÍas, 

1996), but it must be noticed that T is not seen in the nominal closed-loop transfer 

functions, since the nominal inputjoutput responses can be obtained as 

and 

For the setpoint tracking problem, only the terms oí u(t) and y(t) which involve 

w(t) are relevant, and the inputjoutput responses come out to be independent of the 

polynomial T. On the other hand, dy does not usually fit into eqn.3.1O, and hence T 

determines the speed of disturban ce rejection. Thus "slow" dynamics in T should be 

avoided. 

For the many reasons mentioned in Section 3.1, the true and the nominal systems 

always differ or, in other words, the conditions of eqn.3.9 never hold. Hence, the true 

characteristic equation can be obtained as 

where T is no longer a factor. The true inputjouput closed-Ioop equations are then 

provided by 

u(t) ::::: ApoTp w(t) _ ApoSp dy(t) ::::: A;Tp w(t) - pSp x(t), 
cO co cO cO 

and 
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3.2.2 Uncertainty descriptions 

A nominal design is performed using a nominal model G which is assumed to provide 

with a convenient representation oí tha true plant Go. However, tile true process 

cannot be considered as a fixed LTI system due to the reasons pointed out in Section 

3,1. Instead oí that, Go is assumed to tie somewhere within a íamily :F of LTI plants 

which is denned in terms oí G. The formulations provided in this section are focused 

on SISO systems, but thare are analogous results for the MIMO case. 

The usual way to specify :F is a frequency domain description which pro vides with 

ranges for the true system frequency response, i. e. tha magnitude and phase for all 

relevant frequencies. The "true" frequency response is then denned to He in a regíon 

about the nominal frequency response points. In order to reduce .the complexity, the 

uncertainty regions are simplined as a series of discs centred at the nominal points. 

In discrete-time formulations, the frequency response oí rationru functions in q-l 

is completely determined by the valuas in the range O < W < 1r fTs , where Ts is the 

sampling time and 7r jTs is referred to as the Nyquist frequency. Hance, it is quite usual 

to refer to the normalised frequenC'JI Wn , denned as 

and then the range O :5 Wn 1r covers all the frequency spectrum. 

The family :F oí true systems may be described as 

or 

with 
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~a (e3Wn
) is referred to as additive unceriainty, since it disturbs the nominal model 

additively and Wa(wn) stands for the radius of the uncertainty discs. 

1 t is also possíble to describe the fmnHy :F as 

:F= {G (e'1Wn ): IGo(e1wn)-G(e3wn)1 <w, (W)} 
o G(eJWn ) - m n , 

or 

with 

By obvious reasona, Llm(e3Wn ) is referred to as multiplicative uncertainty. There ex­

ists a simple relationship between additive and multiplicative uncertainties since, by 

comparing the family and the uncertainty definitions, it followa that 

1I U ncertainty description Notation Definition 

Additive 8 a GO=G+Áa 

Multiplicative ~m Go = G(l + Llm ) 

Inverse additive ~ia Go = (1 - G8ia)-1 G 

Inverse multiplicative 8im Go = (1 - ~im)-l G 

Table 3.1: System uncertainty representations 

Apart from these two types of uncertainty, Table 3.1 coUects the associated inverse 

additive and inverse multiplicative uncertainties. The minus signs in the inverse for­

mulations are not relevant, since uncertainties (additive or multiplicative) are assumed 

to be bounded in modulus. The definitions of the inverse uncertainties are clarified in 

Fig.3.2, which provides the block diagram for these four types. 
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,-------------------1 r-------------------, 
I I 
I I 
I I 
I 

I + L ___________________ J 
L ___________________ J 

(a) Additive uncertainty (b) Multiplicative uncertainty 

r~------------------l r-------------------. 

1+ I I L ___________________ J 
L ___________________ J 

( c) Inverse additive uncertainty (d) Inverse multiplicative uncertainty 

Figure 3.2: Uncertainty descriptions 

It is worth pointing out that, for MIMO systems, input and output versions of 

multiplicative uncertainties can be defined. In Fig.3.2 the block diagrama (b) and (d) 

represent multiplicative input uncertainty and inverse multiplicative output uncertainty 

reapectively. These are simply referred to as multiplicative and inverse multiplicative 

in Table 3.1, since such a distinction does not apply in the SISO case. 

3.2.3 Nominal and robust objectives 

When a control system is designed, it is expected that the c1osed~loop requirements 

are satisfied for all the possible true plants in the famBy:F. This complex problem is 

often tackled as two separated tasks: 

(1) a nominal design is performed taking into account the nominal model G, and 

(2) sorne uncertainty description is used in order to incorporate the information about 
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the different dynamics the controller is aímed to manage. 

Thus, the control objectives are divided into two different categories: 

Nominal objectives: the dosed-Ioop characteristics are considered only with respect 

to the nominal model G. 

Robust objectives: the dosed-Ioop characteristics are considered with respect to the 

whole family :F, which is described in terms of sorne uncertainty description about 

the nominal model. 

One of the main objectives of most control systems is dosed-Ioop stability. Two 

different stability problems may be addressed, referred to as Nominal Stability (NS) 

and Robust Stability (RS). The former requires that the dosed-Ioop system with the 

nominal model G is stable, whereas in the latter stability is required for all the plants 

within the family:F. At this point it is worth pointing out that stability is not always a 

dosed-Ioop requirement. Sorne systems are expected to work only for a very short time, 

and then steady-state conditions are not relevant. This happens, for example, in missile 

control problems. However, in the process industry, stability is a main requirement and 

must be preserved. 

Apart from stability, the control objective is to keep the output y(t) as close as 

possible to the setpoint w(t) despite inputjoutput disturbances, denoted by du(t) and 

dy(t) respectively, and measurement noise n(t). This problem is referred to as Nom­

inal Performance (NP) when the nominal plant G is taken into account, or Robust 

Performance (RP) when the whole plant family :.F is considered. 

Disturbance and noise rejection, together with setpoint tracking, is a classical def­

¡nítion of "performance". However, the term "performance", as widely used, often 

includes a great deal of closed-Ioop characteristics such as rise time, overshoot, under-
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shoot, input/output variances, control efforts, steady-state errors and so on. A given 

controller is said to perform "well" or "bad" according to whether these attributes fit 

the control requirements or noto Nevertheless, the c1assical disturbance/noise rejection 

problems must also be taken into account when carrying on with performance mea­

surements. Notice that, in this wider sense, the predictive controllers introduced in 

Chapter 2 provide with sorne kind of "optimal performance", since they minimise a 

multi-objective cost function which involves the tracking errors as well as the control 

efforts. In addition, the noise model is introduced in eqn.2.1 in such a way that step-like 

output disturban ces are rejected. It is worth pointing out, though, that the end-point 

equality constraints in the CRHPC (for either norm) introduce sorne suboptimality in 

the solution, which can give rise, for instance, to deadbeat-like behaviour, as happens 

in Section 2.4.2. This kind of poor nominal performance does not usually occur with 

infinite horizon controllers. Hence, the stabilising controllers of Chapter 2 provide with 

NS and sorne degree of NP (especially the infinite horizon approach), but the problem 

of robustness must be addressed. 

In addition, one of the key factors to assess the performance of predictive controllers 

should be constraint satisfaction since, as mentioned aboye, constraint handling stands 

out among the advantages of MPC. This issue is not involved in the unconstrained 

case analysed here, but should not be overlooked and is taken into consideration in the 

forthcoming chapters. 

Figure 3.3: RHPC structure with unit feedback 

As shown in (Serrano, 1994), the NS, NP, RS and RP problems for unconstrained 

predictive controllers can be undertaken using standard robust control tools. First of 
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all, it is convenient to rearrange the block diagram of Fig.3.1 to use unit feedback. 

The result is displayed in Fig.3.3 for the nominal plant G(q-l) =: q-1B/A, where the 

prefilter P(q-l) and the controller K(q-l) transfer functions can be obtained as 

(3.11) 

and it is assurned that the prefilter P(q-l) is stable, i.e. Sp has no roots outside 

the unit circle. This assurnption does not limit the results presented hereafter, since 

there is no real necessity of rearranging the block diagram fo! unit feedback. The 

analysis presented below can be directly perforrned on the scherne of Fig.3.1, leading 

to identical conclusions. However, the unit feedback scheme is often preferred in robust 

control literature, and hence is used here too. 

The steady-state gain of P(q-l) is always 1, since Tp(l) :;::: Sp{l) :;::: k"T(l) as shown, 

for e.,"'{ample, in (Megias, 1996). The error signal e(t) is denned as the difference froID 

the prefiltered setpoint w'(t) to the output y(t) in this case. As w'(t) asymptoticaUy 

converges to w{t), the output i8 expected to follow the reference, at least for constant 

setpoints. 

A Zero~Order Hold (ZOH), which is not explicitly included in Fig.3.3, is assumed 

in the plant input. In addition, in real applications, an anti-aliasing fiIter must be used 

in the feedback path tu get rid of any high-írequency component in disturbances Of 

measurement noise, since these cannot be distinguished from low frequency equivalents 

after sampling. When the output of the plant is onIy observed after the anti-a!iasing 

filter, and the output vaInes are onIy considered at the sampling instants, Fig.3.3 pro­

vides a sirnplified digital control structure. It is worth pointing out that, by using 

discrete--time transfer functions, the plant behaviour between sampling instants lS ig­

nored. This can lead to severa! problems such as the intersampling rippling, which can 

become very seriolls. 
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Sensitivity Sy::::;: (1 + GK)-l 
Sensitivity 

Complementary sensitivity Ty ::::;: GK(I + GK)-l at the output 
Control sensitivity Uy ::::;: K(I + GKt1 

Sensitivity at the input Su::::;: (1 + KG)-l 
Sensitivity 

Complementary sensitivity at the input Tu = KG(I + KG)-l at the input 
Control sensitivity at the input Un = G(I + KGt1 

Table 3.2: Sensitivity transfer functions 

Now the robust control theory can be applied making use of the classical sensitivity 

transfer function definitions: 

for the signals shown in Fig.3.3. These c1osed-Ioop transfer functions can be obtained 

as shown in Table 3.2, where G stands for the nominal planto These definitions hold fo! 

MIMO systems, and hence 1 denotes the identity matrix of conformal dimensions. In 

the SISO case, the identity matrix 1 can be replaced by 1, and the identities Su ::::;: 8y ) 

Tu == Ty and KUu ::::;: GUy are satisfied. 

Remark 3.2 The subindexes [']y and Hu are introduced for notational clarity, espe­

cially for distinction with respect to the noise polynomial T. In robust control litera­

ture, the sensitivity functions at the output are often referred to as simply S, T and 

U, instead of Sy) Ty and Uy, as denoted here. 

In the light of Table 3.2, the following binding relatíonships hold: 

GUy::::;:Ty, 

KUu == Tu· 

000 
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Thus these sensitivity transfer functions are closely related, what reduces the degrees 

of freedom available for designo 

Now the output y(t) can be expressed in terms ofthese sensitivity transfer functions 

and the input signals as 

The NS requirement can be formulated as a classical condition of stability theory. 

For discrete-time input/output models in the backward shift operator, this means that 

the roots of closed-loop characteristic polynomial must lie strictly within the unit circle. 

In unconstrained RHPC, this implies that all the roots of T Pe must be, in modulus, 

lower than 1. 

On the other hand, the NP requirements can be summarised as the condition that 

the output follows the reference in spite of the disturbances dy(t) and du(t), and the 

measurement noise n(t), i.e.: 

Ty(q-l) ::::::: 1: to follow the reference w'(t), 

Uu(q-l) ::::::: O: to filter out the input disturbances du(t), 

Sy(q-l) ::::::: O: to filter out the output disturbances dy(t), and 

Ty(q-l) ::::::: o: to filter out the measurement noise n(t). 

There seems to be contradiction between the first and fourth objectives Ty(q-l) ::::::: 1 

and Ty(q-l) ::::::: o. In addition, in the SISO case, the second objective implies that 

K-1Ty(q-l) ::::::: O, which might cause a contradiction with Ty(q-l) ::::::: 1 too. However, 

these requirements can be enforced at díjJerent frequency ranges with no incompatibil­

ity. It is expected that the signals w'(t), du(t), dy(t) and n(t) have different frequency 

contents, the knowledge of which can be used to design the sensitivity functions at 

different frequencies. 
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Notice also that the first and the third requirements are equivalent, since Sy+Ty = J. 

This means that output dísturbances with frequency contents in the same range as the 

prefiltered setpoints are rejected. On the other hand, there is a limitation on the kind 

of output disturbances and measurernent noise which can be filtered out, since it is not 

possible to enforce 8y(e.1Wn ) ~ O and Ty(e.1Wn ) ~ O at the same frequency Wn • 

The usual procedure for NP design is to use weighting transfer functions Ws and 

WT to specify the desired behaviour of Ty and 8y at different frequencies: 

SyWS ~ O, 

TyWT~O, 

where Ws and WT emphasise the appropriate frequency ranges. Hence the NP objec-

tives can be expressed as 

¡8y(eJWn)Ws(eJWn)1 < 1, 

ITy( eJWn )WT(eJWn
) I < 1, 

for all O < Wn < 1f, which become conditions on the noo norm of the weighted sensitivíty 

functions: 

This method can be directly extended to other sensitivity functions, such as Uu if input 

disturbances are not negligible. 

In (Serrano, 1994, chapter 5), the characteristics of the sensitivity functions 8y and 

Ty for the GPe are deeply analysed, and the effect ofthe different tuning knobs on these 

functions is investigated. This analysis can be readiIy extended for the unconstrained 

GPGXl and the CRRPC, and analogous conclusions arise. Hence those results about NP 

are not repeated here. On the other hand, the RS problem is carefully examined in the 

following section. Final1y, the RP objective can be also expressed as conditions on the 

1íoo norm of uncertainty and the sensitivity functions, as discussed in (Serrano, 1994). 
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In robust control design, it is usually enough to guarantee nominal performance 

and robust stability, whereas it is accepted that performance is damaged when the 

true plant is far from the nominal system. Hence, the sequel is mainly concerned 

with robust stability conditions for unconstrained RHPe, and the robust performance 

problem is not tackled here. 

3.2.4 Robust stability: the small gain theorem 

The approach taken to ensure RS is to find a condition such that, provided that the 

nominal closed-Ioop system is stable (NS), stability is preserved for the whole plant 

family:F. The most useful tool to solve this problem is the small gain theorem. 

This theorem, as discussed in (Morari and Zafiriou, 1989; Skogestad and Postleth­

waite, 1996), can be viewed as an application of the Nyquist stability criterion. Assume 

that the closed-loop system is stable for the nominal plant G (NS), and that G and 

Gn have the same number of unstable poles for the whole family F. Then the true 

closed-Ioop system remains stable as far as the Nyquist band of K(q-l)Gn(q-l) does 

not include the critical point -1 + OJo In that case NS implies RS since the number of 

encirclements to the critical point is the same for the nominal plant G and for all the 

plants in :F. This condition can be formulated as 

(3.12) 

A general MIMO formulation of the small gain theorem is given by below. 

Theorem 3.1 (Morari and Zafiríou, 1989; Skogestad and Postlethwaite, 1996) As­

sume that M is stable. Then the closed-loop system in Fíg.3.4 is stable for all stable 

perturbations 1IL1l1oo 1 if and only if lIMILXl < 1. 

Remark 3.3 Alternatively, the stability requirement on L1 may be replaced by the 

assumption that the number of unstable poles in G and Go remains unchanged. 000 
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~ 

, M 
Figure 3.4: General M - tl structure for robustness analysis 

Proof: See (Morari and Zafiriou, 1989; Skogestad and Postlethwaite, 1996) for a 

detailed proof of this theorem. V'V'V' 

Remark 3.4 The small gain theorem, as formulated aboye, requires that the uncer­

tainty .6. is normalised, i.e. IItlll oo ~ 1. This requirement can be easily obtained for 

any bounded perturbation. Consider, for example, a bounded additive uncertainty 

Rence, .6.a can be replaced by the series ~aWa, where ~a = tlaW a-
1 is a normalised 

additive uncertainty and Wa is referred to as the uncertainty weight. Obviously, the 

normalised uncertainty ~a satisfies lI~alloo ~ 1. 000 

Remark 3.5 In the MIMO case, either a couple of input and output weighting ma-

trices 

or a scalar weight 

can be used to achieve the normalisation, as remarked in (Skogestad and Postlethwaite, 

1996). 000 

An equivalent formulation of this theorem is the requirement that the closed-Ioop 

transfer function from the output a(t) to the input f3(t) of the (not normalised) uncer­

tainty block times the uncertainty weight is lower than 1 for all frequencies O < Wn < 7r. 
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In other words, Iet j3(t) and a(t) be, respectively, the input and output sígnals at the 

uncertainty block 6., and let V be the closed-Ioop transfer functíon from a(t) to j3(t). 

Then M, as defined in Theorem 3.1, can be computed as V times the uncertainty 

weight (W), and the RS requirement is that IIVWlloo < 1. 

----------------
I 

1 
Iy 

I 
M I 1- _____________________________ _ 

Figure 3.5: Block diagram for additive uncertainty 

As an example, the small gain theorem is applied to the additively disturbed case 

shown in Fig.3.5. V, the transfer functíon from a(t) to j3(t), can be obtained as 

V = -K(l + GKt1 = -Uy , 

and hence, M = VWa leads to the RS condition 

or 

(3.13) 

forall O -;::; W n -;::; '!r. 

If the small gain theorem is applied to the dífferent uncertainty descriptions of Table 

3.1, the results can be written as conditions on the ?-loo norm of weighted sensitivity 

functions. These different RS conditions are collected in Table 3.3. 
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! Description :J Condition ! 
Additive Go == G+~a IlUyWalloo < 1 

M ultiplicative Go == G(l +~m) IlTuWmlloo < 1 

Inverse additive Go = (1 - G~iarl G IIUuWialloo < 1 

Inverse multiplicative Go = (1 - ~imrl G IISyWimll oo < 1 

Table 3.3: Robust stability conditions 

3.2.4.1 The small gain tbeorem for additive uncertainty 

Taking ¡nto account the definition of K in eqn.3.11 for RHPC controllers, the sensitivity 

function Uy (Table 3.2) can be computed as 

Now} the sman gain condition of eqn.3.13 can be formulated as done in (Yoon and 

Clarke, 1995a): 

Provided that Pe (the nominal characteristic polynomial) is stable, then 

the real characteristic equation remains stable if A and Ao have the same 

number of unstable roots, and if 

Iq::o -q71 < I~II~I, (3.14) 

for aU O S Wn S 11". 

The left-hand side of eqn.3.l4 fits the definition of additive uncertainty ~a, which 
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can be easily obtained as 

,ó,a = Go - G 
q-lBo q-lB 

---
Ao A 

q-lBoA - q-1BAo 

AoA 

The condition of eqn.3.14 is identical to eqn.3.13 sínce it can be written as 

!,ó,a! < I ~J ' 
and I,ó,a! can be replaced by its upper bound IWal. 

The right-hand side of eqn.3.14 can be used to compare the robustness of different 

controIlers. It is easíly observed that the polynomial T, which, as already remarked, 

does not affect the nominal closed-Ioop transfer functions, can be used to push the 

robustness bound far from the modelling errors. 

3.2.4.2 The small gain theorem for inverse multiplicative uncertainty 

The small gain theorem applied for additive uncertainty requires, as a major assump­

tion, that the nominal model and the true system have the same number of unstable 

poles. This may be a limitation when one or more true poles may cross the unit 

circle, as sometimes occurs. In such a situation, an inverse uncertainty formulation, 

e.g. inverse multiplicative, can be helpful since a stable uncertainty can be found even 

when the number of unstable poles varies (Maciejowski, 1989; Skogestad and Postleth­

waite, 1996). If a stable uncertainty is available, the small gain theorem (Theorem 3.1) 

can be applied although G and Go do not have the same number of unstable poles. 

For GPC-like methods, the small gain theorem for inverse multiplicative uncertainty 

can be formulated as 

Provided that Pe (the nominal characteristic polynomial) is stable, then the 
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real characterisiic equation remains siable if there are no unceriain unsiable 

zeroes and if 

(3.15) 

for all O S Wn S 1f. 

97 

The dependence of this robustness bound with the observer polynomial T is obvious, 

similarlyas happens for an additive uncertainty in eqn.3.14. 

The left-hand side of eqn.3.15 is the definition oí inverse multíplicative uncertainty 

Llim, which can be computed as 

Go-G 
Llim =: --­Go 

q-lBojAo - q-lBjA 
-

q-1BO/Ao 
_ (q-1BoA - q-l BAo) jAoA 
- q-1BojAo 

BoA-BAo 
- . BoA 

The right-hand side of eqn.3.15, which provides the "robustness margin, is the inverse 

of Sy (see Table 3.3) as defined in Thble 3.2: 

Notice that the small gain theorem for inverse multiplicative uncertainty can be 

applied as far as uncertainty does not affect unstable zeros. However, in the most 

general case, uncertainty may alter unstable poles and unstable zeroes. Such a situ­

ation can be treated using coprime plant factorisations, as shown in (Skogestad and 
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Postlethwaite, 1996). This possibility has not been analysed in this thesis for two main 

reasons: 

L The main aim of this research is to achieve robust constrained predictive con­

trollers. The unconstrained case is used only as a first step to deepen the insight 

of the problem. 

2. If uncertainty is such that it is not possible to be confident, at least, about the 

number of unstable poles or the number of unstable zeroes of the plant, then 

MPC may not be a convenient choice, since the interna! fiodel is a key factor for 

the controller behaviour. 

3.3 T-design - A heuristic approach 

The use of the so-called noise or observer polynomial T as a robustness-enhancing tool 

is widely documented in the literature (Robinson and Clarke f 1991; Soeterboek, 1992; 

Yoon and Clarke, 1995aj de Prada et al., 1994; Serrano, 1994; Megías, 1996; Megías et 

al., 1996; Megías et al., 1997). 

In this approach, an additíve uncertainty representation is often used and then the 

robustness bound provided in eqn.3.14 applies. Since A and Pe are independent of T, 

the main aim of this method is to shape the filter SpjT, which directIy appears in the 

robustness margino Notice that Sp is a T-dependent polynomial, since it is computed 

as per eqn.3.7 for the CRHPC and the GPC or eqn.3.8 for the GPCco
, and hence it 

depends on the solution of the Diophantine equations (eqn.3.1) which involve T. It 

can be easily shown that the steady-state gain of this filter is: 

Sp(l) '" 
T(1) = ~kj, 

J 

with NI < j < Nz for the GPC and the CRHPC, and with O ::; j ::; N + na for the 

GPCco• This is true regardless the choice of T. Thus the robustness bound at low 
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frequencies cannot be rnodified. However, the poIynornial T can be used to design 

Sp/T in order to obtain convenient robustness margins at the frequencies for which the 

rnodelling errors are greater. 

The usual way to choose T is to include the stable part of the model denominator 

a..q a factor, or 

(3.16) 

For stable systems (A = A) the factor T* is often chosen as 

for sorne O < v < 1 and nt* ~ N1• This choice is known to provide with a simple form 

to the fiIter 8p /T. 

For stable systems~ the easiest possible choice of T in the form of eqn.3.16 is T = 
A(l - vq-l), which is a classical tuning rule suggested, for example, in (Robinson and 

Clarke, 1991; Soeterboek, 1992; Yoon and Clarke, 1995a; Megías, 1996). With this 

selection, Sp/T becornes a simple low~pass first order filter, as discussed in (Megías, 

1996; Megías et al., 1996; Megías et al., 1997). The pole v can then be used to place the 

- 20 dB per decade slope in the rnagnitude oí Sp/T at lower frequencies. The closer v 

is to 1, the lower the bandwidth of Sp/T becomes, what helps to adjust the robustness 

bound as wished. It is even possible to achieve an innnite robustness bound fol' stable 

systems, by choosing T = ALl. However such a choice is not appropriate since it cancels 

out integral action, as remarked in (Megías, 1996). In fact, any root which is too close 

to 1 can cause sluggish disturbance rejection (Robinson and Clarke, 1991) and should 

be avoided. 

This tuning rule is referred te as "heuristic" sin ce, although it was suggestecl arter 

careful attention on the properties of the fiIter Sp/T, the reasoning behind thís choice is 

basically qualitative and the results depend on the problem. In addition, the weighting 
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effect of Pe and A on the robustness bound of eqn.3.14 is not taken into account. On the 

other hand, the Q-parametrisation method used in (Kouvaritakis et al., 1992; Rrissagis 

et al., 1996; Ansay and Wertz, 1997) is systematic but, as analysed in Section 3.5, does 

not guarantee better results compared to the T-based schemes. Actually, tlíe robustness 

bound achieved by using the T-based methods are often greater than those obtained 

with the Q-design counterparts. 

Notice, in addition, that different rules might arise if a different uncertainty rep­

resentation (e.g. inverse multiplicative) were chosen, since the sensitivity function 

involved in the expression of the robustness bound would differ, as shown in Table 3.3. 

For inverse multiplicative uncertainty, the relevant filter would be RpA/T instead of 

In this thesis, the robustness bounds provided by eqn.3.14 and 3.15 are exploited 

to develop a systematic method (Section 3.6), based on optimisation, to in crease ro­

bustness as much as possible. 

3.4 Robust' analysis of stabilising RHPC methods . 

In Chapter 2, sorne predictive controllers which guarantee NS are provided. The aim of 

this section to investígate, among those control laws, which should be preferred when 

uncertainty cannot be overlooked. A heuristic analysis of the robustness features of 

the CRRPC, the GPCCO and a softened version of CRRPC is thus provided. 

The uncertain system of Section A,2 has been chosen to proceed with this analysis. 

A different example which includes a changing number of unstable poles is provided in 

Section 3.4.3. The real plant is the uncertain third order system defined in eqn.A.3: 
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whereas the nominal model is the second order system given by eqn.A.4: 

G( -1) :::.: q-lB(q-l) = q-l(0.1098 - 0.1232q-l) 
q A(q-l) 1- 1.8098q-l + 0.8432q-2' 

Notice that the true steady-state gain2 is an uncertain parameter: Ko:::.: K (1 + AK), 

where K = -0.5 is the undisturbed true gain and D.K is a bounded multiplicative gain 

uncertainty: AK E [-0.5,0.5]. 

3.4.1 Nominal design 

In this section, the nominal dosed-Ioop behaviour is taken into consideration. Since 

the polynomial T cancels out in the nominal dosed-Ioop transfer functions from the 

setpoint w'(t) to the input u(t) and output y(t) (provided that T is stable), T = 1 

has been used through Sections 3.4.1.1 to 3.4.1.4. This choice reduces the dosed-Ioop 

characteristic polynomial T Pe simply to Pe' 

3.4.1.1 CRHPC with short predictionjcontrol horizons 

According to Theorem 2.1, a stable nominal dosed-Ioop system can be obtained with 

the CRHPC as defined in Section 2.2. For the nominal system of eqn.A.4, the tuning 

knobs can be taken as [N ~ 4, m = 3, p > O]. If the shortest possible prediction horizon 

N :::.: 4 and a constant p(j) = 10-2 are chosen, this is equivalent to the minimisation 

of eqn.2.3 with [NI, NYl N2l NUl ¡.t, p,,] :::.: (1, 5, 7, 5, 1, 10-2, O]. For these tuning knobs, 

the 2-DOF polynomials computed as per eqn.3.7 become 

Rp(q-l) = 1 + 60.5868q-t, 

Sp(q-l) = -536.1273 + 928.9166q-l - 414.6132q-2 

= -536.1273 [1 - (0.8663 ± 0.1511J)q-l] , 
(3.17) 

2The notation K has been chosen for the steady-state gain for distinction with the controller 
transfer function K. 
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The closed-Ioop poles, i.e. the roots ofthe characteristic polynomial Pe, are located 

at 0.5129 and 0.2860 ± 0.3033), quite inside the unit circle. Hence the resulting closed­

loop behaviour is remarkably deadbeat-like, as shown in Fig.3.6. 
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Figure 3.6: Nominal input/output responses for the CRHPC: [N, m, p] = [4,3,10-2
] 

The reason for this suboptimal deadheat-like hehaviour is a comhination of the 

end-point equality constraints and the use of short prediction and control horizons. As 

a consequence of this hehaviour, very low robustness margins are attained, as shown 

in Fig.3.9. Two possibilities are analysed in the following two sections so as to reduce 

this deadheat-like characteristic. 

3.4.1.2 CRHPC with long predictionjcontrol horizons 

In this section, the prediction and control horizons are increased. If N :::: 25 is chosen, 

this results in the tuning knobs [NI! NY1 N21 Nu , J.,L, p, ')'] = [1,26,28,26,1,10-2, O] in the 



Seco 3.4. Robust analysis of stabilising RHPC methods 

formulation of eqn.2.3, and the 2-DOF polynomials become 

Rp(q-l) = 1 + 20.8163q-\ 

Sp(q-l) = -177.9097 + 315.8051q-l - 142,4521q-2 

= -177.9097 [1- (0.8875± 0.1139)q-l], 

Tp(q-l) =: -4.5566, 

103 

(3.18) 

for which the roots of Pe are 0.8899 and 0.3182 ± 0.3020). The real root is much nearer 

the unit cirele compared to the previous choice of tuning knobs, leading to a much 

more sluggish output response together with less input activity, as shown in Fig.3.7. 
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Figure 3.7: Nominal inputjoutput responses for the CRHPC: [N,m,p] =: [25,3,10-21 

This result provides with a higher robustness bound with respect to the short 

horizon choice, as shown in Section 3.4.2. However, this selection of tuning knobs 

increases the dimension of the problem which is to be solved at each sampling time 

(Nv, =: 26), what might be relevant if inequality constraints were used, since the QP 

problem to be solved at each sampling would involve a greater computational burden. 

In addition, as Ny also increases, numerical instability may arise with the CRHPC, as 

remarked in (Rossiter and Kouvaritakis, 1994). In such a case, the SGPC would be a 

more convenient implementation. 
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3.4.1.3 CRHPC with softened equality constraints 

The tuning knob "1 in the RRPC formulation of eqn.2.3 can be used to soften the 

equality constraints giving rise to a less deadbeat-like behaviour. The following ex­

periment has been carried out using the same controljcostingjconstraint horizons 

and weights ¡t and p as chosen for the deadbeat-like CRRPC of Section 3.4.1.1, i.e. 

[NI, Ny , N2 , NU1 ¡t, p] = [1,26,28,26,1,10-2], whereas the parameter "f varies in the in­

terval [0,1]. In other words, the controller is gradually changed from CRRPC b = O) 

to GPC b = 1). Fig.3.8 displays the characteristic roots loei obtained with these set­

tings, and it can be observed that whereas the complex roots are almost fixed at their 

position, the real pole moves to the right and crosses the unit eircle. The critical value 

"Ilim for which the nominal closed-Ioop system becomes unstable (i.e. the closed-loop 

system is stable for all O ::; "f < "Ilim, and unstable for all "1 > "Ilim), has been found 

at "Ilim = 2.2266 . 10-4. This analysis, based on the closed-Ioop pole locations, can be 

used to choose an suitable value of"f ("f-design). 
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Figure 3.8: Nominal closed-loop poles for the softened CRRPe: [N, m, p] = [4,3, 10-2] 

and "1 E [0,1] 
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If f = 10-4 is chosen, the 2-DOF polynomials for the "softened" CRHPC equal 

Rp(q-l) = 1 + 19. 7053q-l, 

Sp(q-l) = -167.8412 + 298.6711q-l - 134.8491q-2 

= -167.8412 [1 - (0.8897 ± 0.1086J)q-I] , 

Tp(q-l) = -4.01921 

(3.19) 

for which the roots of Pe are 0.9042 and O.3139±0.3043.1! very approximately the same 

as the ones obtained with the CRHPC presented in the previous section. The 2-DOF 

polj'11omials (as the roots are concerned) are quite the same as those of eqn.3J8 es­

pecially as compared with those of the deadbeat-like CRHPC in eqn.3.17. Actually, 

the inputjoutput responses in these two cases are so dose that they can be consid­

ered indistinguishable, and both controllers can be regarded as roughly the same (not 

equivalent, though). 

3.4.1.4 GPCoo design 

Auother way oí obtaining a nominally stahilising controller lS the GPCoo as described 

in Seetion 2.2. Since NI does not affect stability, NI = 1 has been taken in this section. 

The tuning knohs for the GPeco have been ehosen as [NU1 p] == [3,10-2]. This 

choice if consistent with the CRHPC presented in Section 3.4.1.1 Írom an operational 

point of view, sinee both controlIers leave two degrees of freedom (control moves) to 

attain the minimisation of the cost function, and the rest are used to enforce the 

equality constraints3 • Although the CRHPC of Section 3.4.1.1 penalises two more 

control moves (in eqn.2.5) than the GPCoo (in eqn.2.6) fol' these tuning knoh choices, 

the value oí p lS small enough not to take this as a remarkable difference. 

3It must be pointed out that the GPG'o would become a deadbeat law if Nu, =: 1 were chosen, 
however this is not convenient either for performance or robustness. 
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The 2-DOF polynomials with this GPCO(\ computed by means of eqn.3.8, are 

Rp(q-l) = 1 + 20.8695q-1, 

Sp(q-l) = -177.8418 + 316.3853q-l -142.8158q-2 

= -177.8418 [1- (0.8895 ± 0.1087))q-l] , 

Tp(q-l) = -4.2723, 

(3.20) 

and the roots of the characteristic polynomial Pe are located at 0.9035 and 0.2811 ± 

0.2790), almost identical to those obtained with the "softened" CRHPC of Section 

3.4.1.3 and the CRHPC of Section 3.4.1.2. The 2-DOF polynomials are also very ap­

proximately the same as those ·of eqn.3.18 and 3.19. Hence the inputjoutput responses 

for this controller are almost superposable to those shown in Fig.3.7. 

Surprisingly enough, the softened version of the CRHPC and the GPCoo become 

almost identical for a given value of "(, 10-4 in this case. This should not be taken 

as a sign of controller equivalence, since Chapter 2 clarifies that there are substantial 

implementation differences between finite and infinite horizon predictive controllers. 

Only in a few special cases do the CRHPC and the GPCoo become identical (see 

Theorem 2.8). 

3.4.1.5 Nominal design - A comparative study 

NS guarantees SmoothjDeadbeat Numerical properties 

CRHPC (short N) ti' X ti' 

CRHPC (long N) ti' ti' X 

"Softened" CRHPC X ti' ti' 

GPCoo ti' ti' ti' 

Table 3.4: Nominal characteristics of stabilising RHPC 

Although the GPCoo
, the "softened" CRHPC and the CRHPC with long horizons 

have been shown to provide with similar solutions in terms of the 2-DOF polynomials 
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through Sections 3.4.1.2 to 3.4.1.4} tnere are relevant differences as implementation 

and tne internal properties of tnese controlIers are concerned. These are summarised 

in Table 3.4. 

Tne use of CRHPC with short prediction/control norizons (such as N = 4 in the 

example), although it guarantees NS, often leads to a suboptimal deadbeat-like closed­

loop behaviour. Tnis probk;m can be overcome in two different ways. On tne one 

hand, the prediction horizon can be increased (N = 25 in the example), but this pos­

sibility may lead to numerical problems (Rossiter and Kouvaritakis, 1994). In such 

a case, the theoretical1yequivalent SOPC (Kouvaritakis et al., 1992) might be used, 

sínce it provides with better numerical properties. However, the SGPC solution when 

constraints are considered is a bit involved, though it is claimed in (Rossiter and Kou­

varitakis) 1993) that the constrained SGPC requires much less computational burden 

compared to the QP techniques used in OPC-like controllers. On the other hand, the 

equality constraints in the CRHPC can be softened (¡ = 10-4 in the example), pro­

viding with a smooth closed-loop behaviour. With Buch a choice, NS is not guaranteed 

and must be checked, for example, using a pole-Iocation approach and a suitable value 

of ¡ must be found:¡-design. 

FinalIy, among the tested controllers, the GPCoo appears to be best choice, sÍnce 

it guarantees the stability 01' the nominal closed-loop system, it provides smooth be­

haviour even for short Nu (as far as Nu is eh osen greater than the mínimal vaIua 

suggested in Theorem 2.2) and no numerical drawbacks are expected. 

3.4.2 Robustness analysis 

In this section the robustness 01' the deadbeat-like CRHPC presentad in Section 3.4.1.1 

is compared to that provided by the OPCoo as tuned in Section 3.4.1.4. The robustness 

properties of the latter apply also to the CRHPC with long predictionjcontrol hori-
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'lons of S('el ion :1. -1.1.1 and the soft('lwd eH 11 pe of St'ct ion :1. ·1.1.1, si !lee t lu'SC t Ilfl'C 

contrulll'rs ¡UI' alJllost id .. ntieal. 

lu ordpr tu cOJllpaw tlw robllsln('S.'1 of difft,rt'nt controll('rs, lllt! salllt' T-dl'sign ha.s 

bf'f'n Ilsf'd. Tlw comparati\'l' analysis ("ollld ha\"(' bt't'u mad .. IIsiug tht' Q-paramt'trisation 

sdlf'llW introducl'd in S .. dion :i_5 or jllst a nominal df'Sign (T = 1 witholll the Q pa-

rallwt..r). \Vltat is rt'!t'vant in lhis sf,rtion art' th!' difff'rt'nt rohllstnt'ss hOllnds pwvidt'd 

by tlw dilft,rt'nl nllltrolll'rs, wlll'rt'as tllf' disCll~'1ion on wlticlt is tlt .. Illosl ron\'t'nient 

robllstl\f'SS .. nhancing tool is I .. ft to lit .. nf'xl ft~W st,(·tions. 

o 

_ .. ol------L-----~-----'":-----1 
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Figure 3.!): Rohustnt'ss houuds for CHIlPe (da."IH'd line) ílnd GPC:-C (salid line), upper 
hOllud of íldditi\'t' system llucertílinty for ~K E [-0.5,O.5J (' .... ) mHI íldditivc systcm 
llucl'rtainty for Ó,K = O (dott('d line) 

:\ c1assicíll choice of T is gi\'t'n hy rqn.3.16. whirh is known to providc with largc 

rohllstnrss bounds for a wide cia."" of syst(,llls (Rohinson aud Clnrkc. 1991; Soctcrbock, 

19!)2; YOOIl and Clarkr, 1995a; Mrgia.", 1!)!J6; ~Irgias el al., 199;). Sincc A is stablc, 

it is inclttdcd as a factor in T, élnd the first ordrr polynomial T- = (1 - O.8q-l) (or 
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ti ::::: U.o) ha .... 1>('\,11 takt'lI, h'atliu¡!, tu 

(:1.21 ) 

Tite factor ..t COllt rihuh's lo T wil h tlw roots of O.90·m ± O,15H3J. tllt~ mmlulus of t ht'!'>(~ 

whkh is n.9103, not too lH'ar tlit' unit rirdt', Tltis shnuld pru\'itl<' whh n rdllth'dy fast 

disturbanct' (Uf modt'lliug t'rror) f{'jt>ctiutL 

'1'1)(' rohllstm'R'" hOlluds fm tllt' GPC'" ami tJI(' CHIlPe (with N :::: -1) are' silowlI 

in Fig.:t9. In HU' hest {~a$t\ ~K =: () (ur Ko =: -O}»). tlH' huuuds pm"illt'd hy hoth 

stalM. as displaYt'd in Fig.:Un. Note· that tll(' inpllt/olltpllt n·SIHlII!'i¡'.'i ohtailll'd with 

the GPCx are soft/'r, and tlu! input ;}cti\'ity is mudl 100\'('r mm pared to lhe CHHPG. 

(a) Input/output re5pons('!5 ror thc 
CRHPC (N = -1) with ~I( = O 

(h) Input/output If',-;pOnscs ror th!! 
GPC'Xl wíth Al( := O 

Figure 3.10: Trne doscd.}oop hehaviour for fi K = O 

Howevcr, the rohustncss bmmd ¡mwided by the CRHPC is violalcd by tile npper 

hmmd of additi\'c systcm uncertainty. For cxampJc, it is \'iolated for fi K = 0.5 (or 

Ko = -0.75). Thc conscqucnce oC this is shown in Fig.3.1l, th(! r('$ponscs obtaincd 

with the CRHPC are unstablc, whcreas tl105e providcd by tiJe GPCoo are stable (and 

quite smooth). 
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Figure 3.11: True dosed-Ioop behaviour for ÁK = 0.5 

This examp]e illustrates that if system uncertainty is overlooked at the design stage 

instability may arise. Hence, sorne (nominal) stabilising laws are preferable to others 

as they provide smoother nominal (and true) responses and greater robustness bounds. 

Therefore, the GPCoo (the CRHPC with long predictíon/control horizons or the soft­

ened CRHPC) appears as a better alternative compared to the CRHPC with short 

prediction/control horizons as robustness is concerned. 

3.4.3 The robustness of l-norm RHPC formulations 

The robustness analysis performed in the previous section is valid only for uncon­

strained 2-norm RHPC methods, which can be converted into a dassical LTI form as 

shown in Section 3.2.1. However, this is not possible for l-norm controlIers, which are 

always non-linear. This section illustrates that the robustness-enhancing properties of 

the polynomiaI T apply to the l-norm case too. 

Consider the system used in Section 2.4.3 (provided by eqn.A.I0) as the nominal 
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plant 

G( -1) = q-1B = 0.2358q-l + O.2319q-2 
q A 1 - 1.4835q-l + O.9512q-2 

Now let the true plant be the unstable system which arises from multiplying the mag­

nitude of the poles of A by 1.2, and letting the steady-state gain (1) and the zero 

(-0.9832) be identical to those of G: 

G ( -1) _ q-l Bo __ 0.2973q-1 + 0.2923q-2 
o q - Ao -- 1 - 1.7802q-l + 1. 3698q-2 , 

........... -.. , , , , , , , , 
2. 
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(a) Nominal inputjoutput responses for 
the 2-norm GPCoo (salid) and the GPCr' 
(dashed): [Nu,p) = [5,1] 

-...t_{lO<>'aI 

(b) Robustness bounds for T1 (dashed) 
and T2 (salid) and inverse multiplicative 
uncertainty (dotted) 

Figure 3.12: Nominal responses and robustness analysis 

1.' 

The GPCoo can be designed using the tuning knobs [Nu,p] = [5, 1J, which provide 

the nominal inputjoutput responses displayed in Fig.3.12(a) for both l-norm (which 

can be implemented simply as the QGPC~ as discussed in Section 2.4.3) and 2-norm 

formulations. The nominal dosed-Ioop behaviour is almost indistinguishable for both 

controllers. 

To apply the small gain theorem, it must be taken into account that there is a 

changing number of unstable poles from G (none) to Go (two). Hence, an inverse 

multiplicative uncertainty (which is stable in this case) has been chosen. Two different 
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dassical choices have been tried for the observer polynomial: T = TI = A(l - 0.9q-I) 

and T = T2 = (1 - 0.9q-I). In this case the roots of A are 0.7418 ± 0.6333) with 

modulus 0.9753, i. e. very close to the unit circle. Thus, the factor A should be avoided 

since it is certain to lead to sluggish disturbance rejection. 

Fig.3.12(b) shows that the robustness bound obtained with the TI (dashed) is vi­

olated, whereas that provided by the T2 (solid) is respected. This example illustrates 

that inc1uding A (when it is stable) as a factor of T is not always beneficial, not only 

as disturbance rejection is concerned, but also as the robustness bound is taken into 

account. 
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Figure 3.13: True dosed-Ioop behaviour for the 2-norm GPCoo and the GPCr 

The result shown in Fig.3.12(b) guarantees that the 2-norm controller is stable for 

the true plant when T = T2• However, as shown in Fig.3.13(a), stability is not achieved 

with T = TI' 

For the l-norm controller, the robustness bounds cannot be obtained in this way, 

since it cannot be posed in the LTI formo But, as the nominal closed-Ioop behaviour of 

the GPCr is almost indistinguishable from the (2-norm) GPCoo
, it is expected that T 
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contributes in an analogous way to robustness for both controllers. This conjecture is 

confirmed by the results displayed in Fig.3.13, where it is shown that the true responses 

are very similar for the 1-norm and the 2-norm formulations. Hence, the true c1osed­

loop systems for both the GPCr and the (2-norm) GPCoo are stable with T = T2 and 

unstable with T = TI. 

3.5 The Q-parametrisation method 

Section 3.3 describes a method to increase the robustness bound based on a heuristic 

choice of the polynomial T, and Section 3.4.2 uses those tuning rules to achieve large 

robustness margins. However, the heuristic T-design methods are not systematic and 

do not provide a priori guarantees that the assoCÍated robustness margin is large 

enough for a given uncertainty bound, as remarked in (Ansay and Wertz, 1997). As 

an alternative to this procedure, the Q-parametrisation scheme (often referred to as 

Youla-Kucera parametrisation also) is introduced in this section. 

y 

Figure 3.14: Block diagram for the Q-parametrisation scheme 

The Q-design methodology, described e.g. in (Kouvaritakis et al., 1992; Yoon and 

Clarke, 1995aj Hrissagis et al., 1996; Ansay and Wertz, 1997), is based on the internal 

model control (IMC) scheme of Fig.3.14, where the 2-DOF polynomials R~, S~ and T; 
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are computed taking T to be 1. This choice does not affect the nominal closed-Ioop 

transfer functions, since the factor T cancels out in the nominal case, as remarked in 

Section 3.2.1. The characteristic polynomial TPe simply reduces to Pe in this case, and 

can be obtained as 

The block diagram of Fig.3.14 parametrises all the controIlers which lead to the 

same nominal c1osed-Ioop transfer functions, leaving Q as a free parameter which may 

be used to enhance robustness. Q Ís often referred to as the Youla-Kucera parameter. 

To ensure integral action a factor ~ is explicitly included in Q, which is also bound to 

be stable. 

Remark 3.6 ActualIy, as discussed in (Yoon and Clarke, 1995a), the robustness en­

hancing method via the polynomial T is nothing but a particular case of this Q-based 

structure, if Q takes the form 

Q( -l)~ = MT{q-l)~ 
q T(q-l) , 

and MT(q-l) is a T-dependent polynomial. 000 

As remarked in (Kouvaritakis et al., 1992; Yoon and Clarke, 1995a; Hrissagis et 

al., 1996), Q can be set, according to the smaU gain theorem, by minimising the Uoo 

norm of the weighted mixed sensitivity function: 

where T1'a is a weighting transfer function which bounds additive uncertainty and de­

scribes the frequency ranges for which the unmodelled dynamics are dominant, and Uy 

is the control sensitivity at the output, i.e. the transfer function between the output 

disturbance and the control input. For the scheme in Fig.3.14, Uy can be obtained as 

U ( -1) =::: A(q-l) [S;(q-l) + A(q-l)Q(q-l)~] 
y q Pe(q-l) 
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And the robustness bound is then provided by 11/Ull l, as shown in Section 3.2.4.1: 

(3.22) 

If q-l B / A is stable and has no poles on the unit cirde, there exists a dosed-form 

analytical solution for the 1íoo optimisation problem described aboye, and the optimal 

Q (Yoon and Clarke, 1995a).can be computed accQrding to the next theorem. 

Theorem 3.2 (Yoon and Clarke, 1995a) Suppose that the polynomial A(q-l) is stable, 

i.e. A(q-l) # O Jor jqj ;::: 1. Then a transJer function Qopt described by 

- W. AS' + W .. (l)A(l)Sp{l) P. 
QoPt~ == a 11 P.,(l) e 

WaA2 
(3.23) 

Proof: See (Francis, 1987; Yoon and Clarke, 1995a) for a proof of this theorem. VVV 

For Q == Qopt the RS condition for additive uncertainty can be written as 

I Pc(l) I 
I~a¡ < IWal Wa(1)A(l)S~(l) ,Vwn E [0,11"1, (3.24) 

that is, the robustness bound follows the shape of Wa shifted by a constant which 

completely determines the RS margin at low frequencies. 

On the other hand, if the nominal system is unstable, any of the procedures de­

scribed in (Kouvaritakis et al., 1992) or in (Hrissagis et al., 1996) can be applied to 

compute the optimal Qopt. 

A different set of guidelines for tuning the parameter Q can be found in (Ansay 

and Wertz, 1997), where the choice 

Q*~= S;M*~ 
A C* ' 

(3.25) 

is suggested for stable nominal systems. C* stands for any stable (Hurwitz) polynomial 

and M* can be freely chosen. If A is unstable a different choice of Q* is suggested in 
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(Ansay and Wertz, 1997), which is not included here for brevity. The formula for Q* of 

eqn.3.25 combined with the robustness bound given in eqn.3.22 leads to the following 

RS condition for additive uncertainty: 

16..1< A(S~:~Q'6.) - A(S~+~*~) =lj~I1+~' (3.26) 

for all O ::; Wn :::; 1r. Now, the filter 

1 
(3.27) 

1+ 

is totally independent of the term Pe/(AS;) and can be designed, separately, at a 

second step. This is a clear advantage with respect to the heuristic T-based methods, 

since the robustness bound for the T -based methods, provided by 

do es not satísfy this property. The first and the second terms cannot be designed 

individually, since Sp depends on the polynomial T. 

In (Ansay and Wertz, 1997), the simplest possible high-pass filter with unit steady­

state gain is suggested for the second term of eqn.3.26, i.e. 

1 _ 1- vq-l 

1 + M"A - 1- v ' 
~ 

for O:::; v < 1, which leads to the choice 

M* Ll. -vLl. 
---c¡;- - 1 - vq-l 1 

and eqn.3.26 becomes the condition 

1 

Pe 11 1 - vq-ll /Ll.al < AS~ 1 _ vI, VWn E [0,1r]. 

(3.28) 

As remarked in (Ansay and Wertz, 1997), a higher order filter can be chosen for 

eqn.3.27. This possibility is exploited here and in (Megías et al., 1999a) in order to 
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provide with a consistent comparison with the T-design method presented in Section 

3.3. Th~ filter of eqn.3.27 can be designed such that a polynomial T appears in the 

numerator of the robustness bound of eqn.3.26 in an analogous way as occurs in eqn.3.14 

for the T-design method. This can be achieved by choosing C* = T and enforcing a 

unit steady-state gain in eqn.3.27, i. e. 

1 T 
1 + M;.A = T(l)' 

or 

M*~ T(l) -T 
--c;- = T (3.29) 

For this choice, the RS of eqn.3.26 can be written as 

I~al < I":;~ IIT~l) 1, VWn E [O, "J, 

the second term of which can be designed independently from the first one. 

3.5.1 Robust design of GPCoo through the parameter Q 

In this section the Q-parametrisation is used to enhance the robustness of the nominal 

GPCoo presented in Section 3.4.1.4. The results are compared with the heuristic T­

design method used in Section 3.4.2 (with the choice of T specified in eqn.3.21). 

For the example introduced in Section 3.4.2, the weighting Wa can be chosen as 

w: ( -1) = 1 - 0.8q-l 
a q 0.2' (3.30) 

sínce: 

1. This selection of Wa provides with an upper bound of additive system uncertainty, 

and the magnitude of this weighting transfer function increases at the frequencies 

at which uncertainty is greater, as shown in Fig.3.15. 
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Figure 3.15: Upper bound of additive uncertainty ("*") and uncertainty weighting Wa 
(solid) 

2. This choice of Wa contributes with a factor (1 - 0.8q-l) in the numerator of 

the robustness bound of eqn.3.24. Hence a "faír" comparison with the T-design 

used in eqn.3.21 is possible, as (1 - 0.8q-l) is a factor of T which appears in the 

numerator of the robustness bound of eqn.3.14. In addition, A cancels out in the 

right-hand side of both eqn.3.14 wit T = A(1 - 0.8q-l) and 3.22 with QoPt as 

obtained below. 

The Qopt computed as per eqn.3.23 for Wa as eh osen in eqn.3.30 is given by 

QoPt _ 103 (0.1773 - 0.7798q-l + 1.3756q-2 - 1.2175q-3 + 0.5406q-4 - 0.0963q-S) 
- 1 - 4.4196q-l + 7.8574q-2 - 7.0216q-3 + 3.1528q-4 - O.5689q-S . 

Fig.3.16(a) compares the robustness bound provided by the Q-parametrisation with 

Qopt to the heuristic T -design procedure. It is worth pointing out that the former is 

not only lower than latter within the worst-case uncertainty frequency range, but also 

violated by the modelling errors. The consequence of this, shown in Fig.3.16{b), is that 
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(a) Robustness bounds for the­
Q-parametrisation with Qopt (solid), for 
the T-design (dotted) and upper bound 
of additive uncertainty ("*") 

(b) True input/output responses for the 
Q-parametrisation with QoPt and llK :::: 
0.5 

Figure 3.16: Robustness bound and dosed-Ioop behaviour for the Q-parametrisation 
w~th Qopt 

the true inputjoutput responses permanently oscillate for I1K = 0.5 in the system of 

Fig.3.14 with Q = Qopt. 

Two alternative choices of Q, suggested by eqn.3.25, have been analysed too. 

Firstly, Qi has been chosen according to eqn.3.28 with v = 0.8, in such a way that a 

fador (l - 0.8q-l) appears in the numerator of the robustness bound: 

Q* A __ S~ -vil 
1 -- A l-vq-l 

142.2735 - 395.3817q-l + 367.3608q-2 -1l4.2526q-S 
--

1 -- 2.6098q-l + 2.2911q-2 - O.6746q-S 

and secondly, Q~ has been set using eqn.3.29 (with the vaIue of T specified in eqn.3.21): 

Q* Á = S~ T(!) -- T 
2 A T 

103 (0.1767 - 0.7784q-l + 1.3750q-2 -- 1.2176q-3 + O.5406q-4 - O.0963q-S) 
-- 1 - 4.4196q-l + 7.8574q-2 - 7.0216q-S + 3.1528q-4 - O.5689q-S 

Notice that the denorninator oí Qi coincides exactly with that oí QoPt. On the other 

hand, the difference between the nurnerators of Q2 and QoPt might seem tiny as the 
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coefficients are cOllsidered, but it is not that smalI when the roots are taken into 

account. 

'0 

~~-'----~~~----~~~----'~~----~W ~~------~~~------~~=-------~~ Nornl"_F"",__ llmo_.; 

(a) Robustness bounds for the 
Q-parametrisation with Q1 (dashed), 
with Q; (solid), for the T-design (dotted) 
and upper bound of additive uncertainty 
("*") 

(b) True input/output responses for the 
Q·parametrisation with Q; and AK == 0.5 

Figure 3.17: Robustness bound and c1osed-loop behaviour for the Q-parametrisation 
with Q* 

Fig.3.17(a) compares the robustness bounds provided by these two choices of Q'" 

with the T-design of Section 3.4.2. It is quite remarkable that the robustness bound for 

Ql is far from required, whereas the one achieved with Q; is always Iower than the one 

provided by the T-design method, and violated by the modelling errors. Fig.3.17(b) 

shows the worst-case (Ó.K = 0.5) inputjoutput responses attained with4 Q21 which 

presents a permanent oscillation similarly as happens for QoPt in Fig.3.16. 

This example, which represents the most usual situation as confirmed by the con .. 

dusions of (Yoon, 1994; Yoon and Clarke, 1995aj Ansay and \iVertz, 1997), illustrates 

that the heuristic T -design method can often provide with better robustness mar~ 

gins compared to the systematic Q-design. Fig.3.18 compares the robustness bounds 

achieved 'with T (eqn.3.21), with QOP\ and with Q2< The only one that satisfies the 

4The dosed-Ioop system for Qí is unstable and ita behaviour is not shown in the figure. 
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Figure 3.18: Robustness bounds for the Q-parametrisation with Qopt (solid), with Q; 
(dashed), and for the heuristic T-design (dotted), and upper bound of additive system 
uncertainty ("*"). 

small gaín theorem condition, and in the end, the only one which provides with a stable , 

closed-loop system for aH the plant family, is the heuristic T-design scheme. 

However, the T-design is still supported by heuristic rules, which is the main reason 

for the criticism associated to this procedure. The next section is focused on providing 

with a systematic framework to obtain a noise polynomial. This procedure is intended 

to overcome the drawbacks (lack of systematisation) of the T -based schemes, preserving 

all the advantages (greater robustness margins) pointed out throughout this section. 

3.6 The T-optimisation method 

The idea introduced in this section is to choose T not heuristically, but by means of 

an optimisation criterion. Two different criteria are suggested depending on which 

uncertainty description, additive or inverse multiplicative, is chosen. 
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If an additive uneertainty is used, the robustness bound provided by the small gain 

theorem is given byeqn.3.14: 

Thus, the following problem provides a eonvenient optimisation criterion to increase 

the robustness bound: 

with 

Topt = arg min KRobust subject to max Iroots(T)I ~ r, 
roots(T) 

l
AS 12 

KRobust = ~ Pe ;'Wa , 

(3.31) 

(3.32) 

where roots(T) denotes the set ofroots ofT, Wk is a chosen set ofnormalised frequencies 

in [O,1f), Wa is a weighting in the frequency domain which bounds additive uneertainty, 

and O < r < 1 is the maximum allowed modulus for the roots of T. The solution to 

this problem maximises the right-hand side of eqn.3.14, and henee a greater robustness 

bound is expected. 

Notice that this method is independent from the fact that A is stable or not, whieh 

is a c1ear advantage eompared to the heuristic design and to the Q-parametrisation. In 

addition, the solution depends on three parameters seleeted by the designer, namely 

the degree of T, the maximum root radius r and the frequency weight Wa• 

For inverse multiplicative uneertainty, the small gain theorem condition is written 

in eqn.3.15: 

and thus, the optimisation criterion for T can be posed as eqn.3.31 if KRobust takes the 

form 

1 

A Rp~ 1
2 

KRobust = ~ Pe T Wim , (3.33) 
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where Wim is a weighting in the frequency domain which bounds inverse multiplicative 

uncertainty. 

The choice of the frequency weighting, Wa for additive uncertainty and TiVim for 

inverse multiplicative uncertainty, should emphasise the frequencies at which the mod­

elling errors are greater. A bound of uncertainty, analogous to that used in the Q­

parametrisation of Section 3.5 is suggested. In fact, the closer the bound is to the 

maximum modelling errors, the better results arise, since the magnitude of the robust­

ness bound would be increased exactly at the required frequencies. 

The objective of the constraint max Iroots(T) I ::; r enforced in the problem of 

eqn.3.31 is twofold. Firstly, it ensures that a stable T is obtained. Secondly, it can 

be used to get rid of possible "slow" roots in T, which can decrease the apeed of 

disturbance rejection, as remarked in Section 3.2.1 and (Robinson and Clarke, 1991). 

Moreover, as discussed in Section 3.3 and in (Megías, 1996; Megías et al., 1996; Megías 

et al., 1997), the choice T = ALl for stable A leads to ISpjTI = O, and hence to 

KRobust = O (in eqn.3.32) together with an infinite robustness bound. This possibility 

is not convenient because the noise model in eqn.2.1 would be cancelled, resulting in 

an open loop (Sp = O in the feedback path of Fig.3.1). The constraint in the problem 

of eqn.3.31 also avoids such a situation. 

The sum in eqn.3.32 or eqn.3.33 can be thought of as an approximate integral 

criterion. In (Megías, 1996; Megías et al., 1997) some criteria which resemble KRobust 

were presented, e.g. the optimisation of ¡SpITl, IASpjTI or ¡W ASpjTI. Although 

the ideas outlined there come from a different approach, the results are similar to the 

ones presented here. However, those criteria do not indude the nominal characteristic 

polynomial Pe in the optimisation, and thus, are biased and suboptilllal. 
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3.6.1 Robust design of GPCoo using the T-optimisation 

In this section the optimisation method described above is used to enhance the ro­

bustness for the GPCoo used in the example provided in Sections 3.4.2 and 3.5.1, and 

the results are compared with both the heuristic T-design and the Q-parametrisation 

methods. 

The criterion for additive uncertainty of eqn.3.32 has been optimised using the 

following options: 

1. r = 1 - 10-4 • 

2. As an additional constraint, one of the roots of T has been fixed to 0.8, i. e. 

0.8 E roots(T) or 

to provide a consistent comparison with the T-design in Section 3.4.2 and the Q 

parameters of Section 3.5.1. 

3. Fifty (normalised) frequencies Wk have been chosen in the range [10-2,7r] rad/s. 

4. The same frequency weighting Wa used for the Q- parametrisation method, i. e. 

w __ 1-0.8q-l 
a -- 0.2 ' 

use has been taken. 

5. The simplex search optimisation algorithm introduced by Nelder and Mead (1965) 

has been used for finding the optimal value. 

In addition, three different possibilities have been analysed for the factor T': 

• T~Pt: deg(T'} = 2 with complex-conjugate roots. 
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• T;Pt: deg(T') = 2 with real roots . 

• T~Pt: deg(T') = 4 with two pairs of complex-conjugate roots. 

For the first two choices, deg(ToPt) = 3, the same as the heuristical1y tuned T 

of eqn.3.21. On the other hand, the latter choice is suggested from the relationship 

between the polynomial T and theparameter Q, provided in Remark 3.6. If Q is 

chosen as Qopt or Q; in Section 3.5.1, then the denominator of Q is of the fifth order. 

This seems to point out to a polynomial T of the fifth degree. However, the robustness 

bound of eqn.3.22 is such the factor A2 of the Q denominator (for q>pt and Qi) cancela 

out. This cancelation takes place in eqn.3.14 when T has A, instead of A2 , as a factor. 

Despite that, for the sake of completeness, a fourth order polynomial has been tested 

for T', 

The optimisation performed as described aboye yields the following polynomials: 

T~Pt = (1- O.8q-l)(1 - O.8803q-l?, 

T;pt = (1- O.8q-l)(1- O.6815q-l)(1- O.9553q-l), 

T~Pt = (1- O.8q-l)(1- O.8756q-l)2 (1 - [-0.0205 ± 0.1161J]q-l). 

Notice that the complex-conjugate roots of T~Pt turn out to be a double real root 

after the optimisation. The value of KRobust obtained with T~Pt is a 7% lower than the 

one provided by T~Pt, however 1 one of the roots of T~Pt is located very near the unit 

cirele, which is negative for the apeed of disturbance rejection (Clarke and Mohtadi, 

1989; Robinson and Clarke, 1991). To prevent such kind of problems, the optimisation 

could be constrained to roota inside a cirele of a given radius, e.g. choosing r = 0.8. 

Finally, it is observed that the modulus of the (second) pair of complex-conjugate 

roots of T~Pt is tiny compared to the resto Hence, they contribute with very fast 

dynamics which can be neglected. The three remaíning roots are very approximately 

the same as those of T~P\ thus it can be conc1uded that T~Pt :::::: T~Pt. Needless to say, 



126 Robust analysis and design oC unconstrained stabilising RHPC 

the values of KRobust are almost identical for T~Pt and T¡Pt. This example illustrates 

that the optimisation procedure leads to equivalent solutions regardless the degree 

of T, which is a very important property of this method, as the result is not to be 

affected by the over-parametrisation of T. The unnecessary degrees of freedom given 

to Tare zeroed by the process of optimisation. In addition, this result points out that 

deg(T) = deg(A) + 1 seems to be a convenient choice, at least for stable systems when 

NI = 1, which is consistent with the results presented in (Soeterboek, 1992; Yoon and 

Clarke, 1995a; Megías et al., 1997). 

Robustness analysis; robustness bounds vs adáftlve uncertainty 
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Figure 3.19: Robustness bounds for the T-optimisation (solid lines), T-design (dotted 
Hne), Q-parametrisation (dashed lines), and system uncertainty for t::,.K = 0.5 (dash­
dotted Hne). 

The robustness bounds obtained with the heuristic T-design of Section 3.4.2, the 

Q-design presented in Section 3.5.1 for Qopt (labelled "opt") and Q2 (labelled "star"), 

and the T-optimisation method, labelled "1" and "2" for T~Pt and T~Pt respectively, are 

compared in Fig.3.19. T~Pt is, as already remarked, similar to T~Pt, and thus provides 

with analogous results which are not shown in Fig.3.19 for clarity. The polynomials T~Pt 

and T~Pt provide with large robustness bounds, larger than those accomplished with 



Seco 3.6. The T-optimisation method 127 

the other methods, ensuring robust stability for the whole family of true systems. The 

T~optimisation has then been shown to provide with a systematic method to overcome 

the robustness margins obtained with the heuristic T-design and the (systematic) Q­

parametrisation methods. 
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Figure 3.20: True closed-loop behaviour for the GPCco with T = A(l -- 0.8q-l), T:pt 
and T,0pt 

2 

Fig.3.20 compares the true closed~loop responses obtained with T:Pt, T~Pt and the 

heuristically tuned T = A(1-0.8q-l). The larger robustness bounds obtained with the 

optimalobserver polynomials (Fig.3.19) result in more sluggish responses compared to 

the heuristic design, as it was expected. What is more, it can be observed that the 

closed-loop behaviour obtained with T~Pt is even more sluggish than the one provided 

by T:Pt. The reason for this is that one of the roots of T~Pt (0.9553) is located quite 

cIose to the unit circle. 
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3.7 Concluding remarks 

In this chapter the robustness of unconstrained stabilising RHPC methodsis analysed. 

If no inequality constraints are imposed, a classical approach to robustness is possible, 

sin ce these controllers can be converted into an equivalent 2-DOF LTI formo The 

classical robust control theory can then be applied, and the small gain theorem is used 

to derive robust stability conditions in Section 3.2.4 for the most usual uncertainty 

representations. 

The robustness of CRHPC, GPCco and a "softened" CRHPC (a scheme with soft 

equality constraints) are compared through several experiments in Section 3.4.2. Al­

though these three controllers can produce similar results for particular choices of the 

tuning knobs, perhaps the GPCco stands out as the best alternative, since it provides 

with smooth responses and large robustness bounds for small values of Nu , avoiding 

the numerical problems associated with the CRHPC (Rossiter and Kouvaritakis, 1994). 

Although the "softened" CRHPC can provide with a similar behaviour, a previous 

analysis on nominal stability <'r-design) must be carried out. 

Additive uncertainty is the most frequentIy used representation in robust predictive 

control developments (Robinson and Clarke, 1991; Yoon and Clarke, 1995a; Ansay and 

Wertz, 1997; Megías et al., 1999a). However, this description can only be used when 

the number of unstable poles for all the plant family does not change. This limitation 

can be overcome using an inverse multiplicative uncertainty, as shown in Section 3.4.3. 

It is also evidenced that the robustness-enhancing properties of the polynomial T 

extend to the 1-norm case. Although the small gain theorem cannot be applied for 

1-norm formulations since an equivalent LTI structure of these controllers cannot be 

found, it has been shown, by means of an example, that the robustness-enhancing 

properties are identical for 1-norm and 2-norm controllers. 
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The problern oí increasing the bound oí the srnaIl gain theorern condition when 

robustness is the priority has been addressed. A new scherne, T~optirnisation, has 

been íorrnulated and compared with two existing methods to enhance robustness, the 

heuristic T-design and the Q-parametrisation. The T-optimisation is based on the 

polynomial T but, unlike the T-design, is not supported by heuristics but on optirnising 

a quadratic criterion on robustness, thus it is systematic. The optimisation criterion 

is not the 1loo norm oí a sensitivity functíon, but a quadratic index on the magnitude 

of a filter. The T-optirnisation overcornes the robustness bounds provided by the 

other procedures even when they optimise a robustness criterion, making it possible to 

stabilise a wider fami1y of true systems. Thus, this technique can be taken into account 

when robustness is the priority . 

. The MIMO case is not considered throughout this chapter because the main aim 

oí this thesis is to achieve robust constrained predictive controllers, since constraints 

are one of the most celebrated advantages of MPC. The unconstrained case presented 

is this chapter is aimed 

1. to show that predictive controllers are quite robust (in a classical sense) although 

the plant model is a key parameter of these methods, and 

2. to point out that sorne nominally stabilising rnethods (GPCOO
) are preferable 

to other (CRHPC) as robustness margins and nominal performance (and also 

numerical properties) are concerned. 
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