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Abstract

Model, Model-based or Receding-horizon Predictive Control (MPC or RHPC) is a suc-
cessful and mature control strategy which has gained the widespread acceptance of
both academia and industry. The basis of these control laws, which have been re-
ported to handle quite complex dynamics, is to perform predictions of the system to
be controlled by means of a model. A control profile is then computed to minimise
some cost function defined in terms the predictions and the hypothesised controls.

It was soon realised that the first few predictive controllers failed to fulfil essential
properties, such as the stability of the nominal closed-loop system. In addition, it was
noticed that the discrepancies between the model and the true process, referred to
as system uncertainty, can seriously affect the achieved performance. The robustness
problem should, thus, be addressed. In this thesis, the problems of nominal stability
and robustness are reviewed and investigated. In particular, the accomplishment of
constraint specifications in the presence of various sources of uncertainty is a major
objective of the methods developed throughout this PhD research.

First of all, controllers which guarantee nominal stability, such as the CRHPC and
the GPC™, are highlighted and formulated, and l-norm counterparts are obtained.
The robustness of these strategies in the unconstrained case has been analysed, and it
has been concluded that the infinite horizon approach often leads to more convenient
performance and robustness results for typical choices of the tuning knobs. Then the
constrained case has been undertaken, and min-maz controllers based on the global
uncertainty approach have been formulated for both 1-norm and 2-norm formulations.
For these methods, a band updating algorithm has been suggested to modify the as-
sumed uncertainty bounds on-line. Although both formulations provide similar results,
which overcome the classical approach to robustness when constraints are specified, the
1-norm controllers are computationally more efficient, since the optimal control move
sequence can be computed with a standard LP problem.

Finally, a refinement of the min-max approach which includes the notion that feed-
back is present in the receding-horizon implementation of predictive controllers, termed

as feedback min-maz MPC, is shown to overcome some of the drawbacks of the standard
min-max approach.
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Chapter 1

Introduction

1.1 Introduction to Model Predictive Control

 Model, Modei;based or Receding-horizon Predictive Control (MPC or RHPC) is a suc-
cessful control strategy which emeéged in the late 1970’s to face some industrial control
problems. The basis of these methods is to make use of an explicit model of the system
to be controlled in order to perform output and/or state predictions. An optimal con-
trol profile is computed to minimise a cost or objective function defined in terms of the
predicted outputs (or states) and the control moves (or signals) over a given prediction

or coincidence horizon or window.

In the last two decades, a large variety of methods have been developed within
the MPC family and countless successful industrial applications have been reported,
some of which can be found in (Qin and Badgwell, 1996). But the success of MPC is
by no means confined to the industrial domain. Innumerable scientific publications,
some of which are referenced hereafter, evidence the interest of academia in this control
strategy. Some reasons to justify the attention paid to these methods from both the

academical and the industrials worlds are given below:

1. MPC controllers have been developed either for linear or non-linear models.

1



2 Introduction

2. There are no conceptual differences between Single-Input/Single-Output (SISO)
and Multiple-Input/Multiple-Output (MIMO) formulations. In the latter case,

the interaction between variables is compensated.

3. Difficult dynamics such as dead-times, unstable or non-minimum phase systems

can be easily handled.

4, Feedforward compensation of measurable disturbances can be introduced in a nat-
ural way exploiting the model-based and predictive features of the MPC method-

ology by using disturbance models.

5. The incorporation of constraints in the manipulated and controlled variables
and/or states is a simple task. Constraints can be considered at the controller
design stage and the resulting optimisation problem can often be solved using

standard Linear Programming (LP) or Quadratic Programming (QP) tools.

6. Preprogrammed setpoints, typical in robotics or batch processes, can be intro-

duced.
7. Methods which guarantee the stability of the closed-loop system are available.

8. Robustness features can be enhanced through tuning parameters or optimisation

methods.

Constraint handling is, indeed, one of the most appealing properties of MPC, since
limits of several kinds always occur in practice. Constrainis can be used to describe
security limits (the pressure within a chemical reactor must be below some critical
value), physical restrictions (a valve cannot be opened beyond a 100%), technological
requirements (the temperature of a given process must be kept between some bounds),
product quality specifications (maximum impurity allowed), and so on. These require-

ments must be handled at the controller design stage to avoid undesirable performance.
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The objective of constraints is twofold. On the one hand, they can be used to
increase the accuracy of the model, since actuator and plant limits can be incorporated
into the model. On the other hand, constraints can be used as tuning knobs to describe
control requirements or specifications: Usually, the optimal operating point lies close
to (or on) one or several limits and therefore, from an economical point of view, it is
advisable to operate as close to the constraint boundary as possible. If constraints are
incorporated at the controller design stage, the operating point can often be specified

much closer to the optimal location.

Constraints can be classified according to different criteria. The following clas-
sification of constraints, according to practical considerations, is due to Alvarez and

de Prada (1997):

1. Physical constraints. These limits, which must never be surpassed, are deter-

mined by the physical limitations of the system.

2. Operating constraints. These bounds are fixed by the plant operators to specify
the optimal operating region. The operation constraints are more restrictive than

the physical limits.

3. Optimisation or setpoint conditioning constraints. These limits, more restric-
tive than the operating constraints, are used only if the setpoint conditioning

technique is applied.

4. Working constraints. These are the actual constraints considered by the con-
troller to determine the feasible region. The working constraints are obtained by
choosing the most restrictive among the physical, the operating and the optimi-

sation limits.

Apart from constraint handling, the relevant issues of stability and robustness have

been successfully tackled in the last decade. The first few controllers in the MPC
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family did not guarantee the stability of the closed-loop system even when the true
process and the assumed model were identical. This flaw was promptly overcome and
several stabilising controllers have furnished the MPC class. At the same time, the
robustness issue has been undertaken from several points of view. The process model
is a key parameter of predictive controllers, and thus it must be analysed how the
modelling errors and disturbances (system uncertainty) affect the closed-loop system.
It would be hazardous to apply the controller directly to the true system if the sources
of uncertainty are not carefully examined and quantified. Uncerta,inf;y might not only

spoil performance and lead to constraint violations, but even instability could arise.

1.2 Historical overview of MPC

Some of the ideas which originate the first few predictive controllers were adopted
from optimal control methodologies, such as the Linear Quadratic (LQ) or the Linear
Quadratic Gaussian (LQG) controllers (Anderson and Moore, 1971; Kwakernnak and
Sivan, 1972), but it was not until the late 1970’s that the first two purely MPC control
laws emerged. The Identification-Command (IDCOM) and the Dynamic Matriz Con-
trol (DMCQ), detailed in (Richalet et al., 1978) and (Cutler and Ramaker, 1980) respec-
tively, are acknowledged as the roots of MPC. These twb methods share some common
features which established the basis of MPC. To begin with, a dynamical model (the
impulse response in the former and the step response in the latter) is explicitly used
to assess the effect of the hypothesised future control actions. A control profile is thus
computed to minimise a cost function which includes the setpoint tracking error be-
sides the control effort, subject to operating constraints. The basis of MPC can be

summarised in the following four points (Scokaert, 1994; Serrano, 1994; Cristea, 1998):

1. A process model is used to predict the future behaviour of the system over a

coincidence or costing horizon or window using past input/output data and a
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hypothesised sequence of future controls.

2. An objective or cost function based on some performance criterion is minimised
over the coincidence horizon. The cost function is usually defined as a combina-

tion of some norm of the tracking errors and the control effort.
3. The optimisation problem yields an “open-loop optimal” control move sequence.

4. Only the first component of this sequence is implemented and the loop is closed
by repeating this procedure at each sampling instant updating the past data with
system’s measurements. This is the usual receding-horizon strategy common to

most MPC laws.

Different choices or alternatives can be given for the steps 1 through 4, and thus a
great deal of degrees of freedom are available to design a MPC control strategy. Each
possible choice results on a different MPC controller. This multiplicity of possibilities

has given rise to a plethora of MPC controllers, some of which are surveyed below.

Apart fr;m the relation to the LQ and LQG controllers, some of the ideas behind
MPC are reported in several other approaches. Zadeh and Whalen (1962) related
the optimal control problem with LP methods. Propoi (1963) suggested the receding-
horizon strategy and Chang and Seborg (1983) highlighted the link between the meth-
~ods of Propoi and MPC. Other approaches such as the Smith predictor, feedforward
control or the Internal Model Control (IMC), surveyed in (Garcia and Morari, 1982),
establish a relation between signal-based control such as Proportional plus Integral plus

Derivative (PID) with the strategies which use an explicit model on-line, e.g. MPC.

Since the early results of MPC in the late 1970’s, the acceptance of these methodolo-
gies in the process industry has grown unceasingly. As an example, several applications
were reported in the 1980’s (Mehra et al., 1982; Garcia and Morshedi, 1984; Matsko,
198‘5; Martin et al., 1986; Cutler and Hawkins, 1987), and some predictive control
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packages were launched in that decade. In parallel to the developments in industry,
various academical groups across Europe focused on MPC and the first few results were
soon available. The “academical” algorithms were developed for SISO systems and not
much attention was paid to the constraint issue, but the reformulation of these meth-
ods to handle MIMO systems and to incorporate constraints is often straightforward.
Among these controllers are the Model Algorithmic Control (MAC) of Rouhani and
Mehra (1982), the Predictor-based Self-Tuning Control of Peterka (1984), the Adap-
tive Predictive Control Systems (APCS) of Martin Sé,nchéz and Rodellar (1996) the
Extended Horizon Adaptive Control (EHAC) of Ydstie (1984), the Multi-Step Multi-
variable Adaptive Regulator (MUSMAR) of Mosca et al. (1984) and the Extended Pre-
diction Self-Adaptive Control (EPSAC) of De Keyser and Cauwenberghe (1985).

In the late 1980’s, the widely known Generalised Predictive Control (GPC) was
suggested by Clarke et al. (1987). This method gained the early recognition of academia
and several research groups focused on the GPC law. One of the key points to justify
the successful irruption of this control scheme is the inclusion of some previous MPC-
strategies (e.g. the DMC) as particular cases of the GPC. The precursors of the GPC
controller are the minimum variance controller described by Astrom (1970) and the
self-tuning regulator of Astrém and Wittenmark (1973). Given a linear model, the

minimum variance controller is obtained to minimise the output variance criterion:
J(t) = E{[y(t+1) — w(t+ 1)*},

where E{-} denotes the expected value, y(t) stands for the system output and w(t) is
the setpoint (or reference) signal. Hence, u(t) is computed as the value which provides
the minimum of J(¢), and the same problem is solved at time ¢+ 1 to compute u(t +1)

For delays d greater than 1, ¢ 4 d replaces £ + 1 is used in the definition of .J (t).

It is Widely known that this kind of strategy is only possible for minimum phase

systems, since the minimum variance law cancels out the zeroes of the plant and,
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obviously, unstable zeroes cannot be directly cancelled preserving the internal stability
of the feedback system. If a weighting factor is introduced in the control signal, this

technique can be applied to non-minimum phase systems, leading to the criterion:
J(t) = B {ly(t +d) — w(t +d)* + pu ()},

referred to as Generalised Minimum Variance (GMV) controller. A usual modification
to the GMV law is to consider the control move Au(t) instead of the control signal,

i.e.
J@&) =E{ly(t+d) —wit+ P + pAd’(t)}.

This approach yields offset-free setpoint tracking for constant setpoints even when
the plant does not include an integrator. On the other hand, in the standard GMV
definition, a non-zero control signal is penalised always, even when the setpoint is

different from zero.

The GPC can be viewed as an extension of the GMV law conceived to overcome
the stability problems of the latter. The GMYV fails to stabilise some unstable or
non-minimum phase systems, especially if the delay is an uncertain (or time varying)
parameter. The GPC extends the cost function further in the future, using the the
prediction or coincidence horizon concept likewise the DMC. The most celebrated fea-
ture of GPC is the ability of producing a convenient closed-loop behaviour for a wide
class of typical systems with not too many tuning knobs. This property favoured the
application of GPC in industrial control problems, and other MPC controllers followed
the GPC’s journey from academia to industry. A few examples of successful applica-
tions of “academical” MPC controllers are reported in {Richalet, 1993¢; Camacho and

Berenguel, 1994).

However, a deep analysis of the GPC law carried out by Bitmead et al. (1990)
revealed a major drawback: the stability of the closed-loop system could not be guar-

anteed. This difficulty was joined by the open question of the influence of system
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uncertainty in the closed-loop behaviour. Undoubtedly, stability and robustness be-
came the preferred fields of research within the MPC framework in the 1990’s. The
historical revision about these two issues is suspended here. This task is resumed in
the introductory sections of Chapters 2, 3, 4, and 5, where the state of the art of the

stability and robustness problems is reviewed.

Along with the results of stability and robustness, the use of MPC for non-linear
systems captured the attention of academia. Non-linear systems can often be con-
trolled with linear MPC, as shown for example in (Megias, 1994; Serrano et al., 1994),
but some non-linearities are too difficult to be handled with these controllers. In the
1990’s the use of non-linear models to develop MPC laws was investigated. The results
of Mayne and Michalska (1990), Michalska and Mayne (1993) and Chen and Allgéwer
(1998b) contributed to this new area of MPC, and provide with methods which guar-
antee nominal stability. An exhaustive survey of non-linear MPC algorithms with
stability guarantees is given in (Chen and Allgéwer, 1998a). The development of non-
linear MPC is, however, quite different from the linear case. Whereas the first few
linear predictive controllers were conceived in the industrial environment and then at-
tracted the attention of academia, non-linear MPC is almost confined to the academical
community and the application field is still unexplored. The main difficulty to use the
non-linear MPC approach in practical control problems is the enormous computational
burden it requires. This drawback limits the application domain of these new methods
to very slow processes. In addition, some issﬁes require further research, such as the

robustness features of non-linear MPC schemes.

With the current technology, ihe application of non-linear MPC seems too ambi-
tious. To overcome this difficulty, some methods have been suggested halfway fxiom
non-linear and linear MPC. These controllers make use of a non-linear process model
to make predictions, but the model is linearised on-line at each sampling instant to cut

down the computations. For example, the solutions suggested by Oliveira et al. (1995),
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El Ghoumari {1998), Oliveira and Morari (1998) and Megias et al. (19994) have proved

successful as the computational burden is concerned. Nevertheless, purely linear MPC

is still dominant in the application area.

1.3 Objectives and structure of the thesis

The main aim of this thesis is to reséarch the combined problem of constraint handling,
stability, and robusiness. That is, starting from methods which guarantee closed-loop
stability when the model and the true process coincide, endow these MPC controllers
with a “robustness layer” to allow for some degree of uncertainty. The robustness

requirement is specified as follows:

1. Stability and constraint acéomplishment must be preserved in spite of uncer-

tainty.

2. All types of uncertainty (linear, non-linear, time invariant, time varying, stable,:

unstable, parametric, non-parametric, etc.) must be considered.

In addition, the methods presented below were requested to be computationally efficient
so that they could be applied even when fast dynamics occur. Finally, the newly
_ developed controllers must be contrasted with the existing solutions provided in the

literature to evaluate the quality of the results.

The methods developed here are based on the GPC or in further evolutions of this
predictive controller which guarantee stability. There are several reasons for such a
choice. To begin with, many applications of the GPC have been reported, and it is
thus convenient to undertake the stability and robustness problems associated to this
controller in order to assess the limits of the GPC law and to suggest possible im-

provements. In addition, the GPC performance index takes into account the setpoint
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tracking problem, which is a natural approach to many industrial applications. State-
space model formulations, such as those of (Rawlings and Muske, 1993; Sbokaert and
Mayne, 1998), usually tackle the problem of driving the state to the origin or “reg-
ulation problem”, in which state feedback and thus state measurements or observers
are required. This can become a relevant inconvenience, since usually only output
measurements are available. Moreover, these methods require some manipulations to
solve the setpoint tracking® problem. Finally, transfer function formulation are often
preferred by the industrial community since most of the available syétem identification

packages provide with transfer function models.

However, the choice between state-space or transfer function formulations is a mat-
ter of taste rather than reason. For instance, state-space descriptions are usually pre-
ferred for modelling MIMO systems, but transfer function MPC formulations can be
used in the multi-variable case with no difficulty. It is worth pointing out that most of
the results presented below can be extended to state-space MPC in a straightforward

form, and thus the question of which representation should be used is not that relevant.

The discussion Chapters 2 through 5 include a survey of the state of the art of
different MPC topics, from the basic formulations and definitions to robustness and
stability issues, and then the contributions of this PhD research are reported and

compared with the methodologies suggested in the literature.

The outline of this thesis is as follows:

Chapter 2 is devoted to the formulation of several “GPC-like” predictive controllers.
Apart from the classical GPC of (Clarke et al., 1987), the stabilising Constrained
Receding-Horizon Predictive Control (CRHPC) and Infinite horizon GPC

(GPC™) are reviewed. On the other hand, 1-norm cost functions are also taken

YThe Predictive Functional Control (PFC) of Richalet (1993b) is a notable exception to this rule,
since it solves the setpoint tracking problem using state-space models.
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into account, leading to 1-norm counterparts of the standard 2-norm con-
trollers. The 1-norm GPC (GPC,), 1-norm CRHPC (CRHPC;) and l-norm
GPC™ (GPCY®) are thus formulated. However, it is noted that the GPC$® solu-
tion requires an iterative algorithm, which can sometimes involve a large compu-
tational burden. To overcome this difficulty, an upper bound of the GPC{
cost function is obtained, leading to the Quasi-Infinite horizon 1-norm GPC
(QGPC{®). Although this controller does not preserve the stability guarantees,
it provides with a computationally efficient solution which leads to appropriate
performance for the vast majority of systems. The usefulness of 1-norm con-
trollers is clarified in Chapter 4. The issue of stability when the true system to
be controlled and the assumed model coincide is undertaken. The most relevant
availabie’stability results are presented, and stability theorems for 1-norm
controllers are also obtained. The stability proofs, based on the monotonic-
ity of the optimal cost function sequence, provide with an intuitive insight to the
stability topic. The stabilising controllers are tested on several benchmark sys-
tems to show that the stability problems of the classical finite horizon GPC are
overcome, and the computational simplicity of QGPC{® compared to the GPC{®
is remarked. Finaﬂy, a convergence property from the QGPC{° to the GPC{°

is conjectured.

Chapter 3 presents the classical approach to robustness for unconstrained 2-norm
GPC-like controllers. This analysis is based on the equivalent Linear Time In-
variant (LTI) formulation of GPC due to (Bitmead et al., 1990). A novel fea-
ture introduced in this chapter is the extension of this kind of analysis
to the unconstrained infinite horizon GPC, which is also formulated as an
LTI controller. Robust stability conditions are provided for different uncertainty
descriptions, e.g. additive and inverse multiplicative. Some of these descriptions

make it possible the robustness analysis even when there is a changing number of
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unstable poles between the model and the true process. The aim of this chapter
is twofold. On the one hand, the performance and robustness proper-
ties of different stabilising controllers are analysed and compared. This
comparative study leads to the conclusion that the infinite horizon approach over-
comes the equality constrained CRHPC as robustness is concerned, especially for
typical choices of the tuning knobs. On the other hand, two classical methods
to enhance the robustness of predictive controllers are reviewed, namely the T-
design and the Q-parametrisation methods. The former is based on tuning the
noise polynomial of the system model using heuristic rules, whereas the latter
relies on parametrising via a rational function (), all the controllers which lead
to the same nominal transfer function, and then @ is chosen to maximise a ro-
bustness criterion. Throughout this analysis, it is observed that the effect of
the polynomial T is similar for 1-norm and 2-norm controllers. Finally, a new
procedure to enhance the robustness of unconstrained GPC-like con-
trcliers, based on obtaining the polynomial T by means of optimising
a rabust‘ness criterion instead of heuristic rules, is developed and com-
pared to the existing approaches. This procedure, termed as T-optimisation,
is shown to overcome the heuristic T-design and the Q-parametrisation methods

for a particular example.

Chapter 4 faces the robustness problem of constrained systems using MPC con-
trollers. To begin with, different approaches to obtain robust constrained MPC,
such as the methods of (Allwright, 1994; Camacho and Bordéns, 1995; Kothare
et al., 1996) are reviewed. The basis of all these control schemes is to com-
pute the hypothesised control sequence to achieve the minimum of the mazimum
of a given cost function as the uncertainty ranges within some specified limits.
This worst case approach is known as min-maz MPC. These methods, however,

use different types of models for the process and the uncertainty. The global
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uncertainty description introduced in (Camacho and Bordéns, 1995) is ex-
ploited in this chapter. This formulation is applied to the stabilising
controllers described in Chapter 2, especially to (quasi) infinite hori-
zon controllers since these enjoy better robustness properties compared to the
CRHPC. The global uncertainty is an unknown bounded signal which, added
to the model output, produces the measured (or true) output. The min-max
problem has been solved for both 2-norm and 1-norm controllers. In the former
case, an analytical solution is shown to be untractable, and thus a numerical
alternative based on non-linear programming is presented. On the other hand,
the 1-norm case is solved as a simple LP problem. As efficiency is concerned, the
1-norm formulation is superior to the 2-norm counterpart, especially ‘for certain
tuning settings. In addition, the closed-loop behaviour of the uncertainty signal
is investigated and a band updating algorithm is suggested to modify
on-line the assumed limits of the global uncertainty parameter. This
procedure, based on a few tuning knobs, is shown to provide with a convenient
description of the uncertainty dynamics what makes it possible to replace the
initial settings by less conservative counterparts. Tuning guidelines for the band
updating strategy are also suggested. Several simulated examples are provided
to illustrate the performance of these min-max controllers in front of modelling
errors and disturbances. As illustrated with a few examples, the min-max MPC
methods described in this chapter overcome the classical approach to robustness
when constraints are considered. In addition, the min-max approach is tested
on a strongly non-linear system, and it is observed that some difficult non-
linearities can be handled. Various comparative studies of min-max MPC
versus other control strategies are also provided. Finally, a robustness analysis
based on the statistical learning theory (Vidyasagar, 1997) is performed
to show that the min-max approach can often overcome the classical T-design

method, especially as constraint handling is concerned.
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Chapter 5 introduces some refinements of the min-max method based on the global
uncertainty approach. This chapter is mainly focused on the feedback formulation
of min-max MPC described by Scokaert and Mayne (1998). The key idea is to
consider different control profiles for different uncertainty realisations
together with an additional “causality constraint”. This approach is intended to
solve some of the problems related to the classical min-max controllers which are
pointed out in Chapter 4. As discussed in (Scokaert and Mayne, 1998), a few of
these difficulties stem from the use of a single control move profile to handle all
the possible uncertainty realisations, ignoring the fact that feedback is present in
the receding-horizon implementation of the controller. The min-max GPC® is
then adapted to exploit this possibility, and some simulated examples
are provided to show that some of the drawbacks of the classical min-
max methods can be avoided. However, it is worth pointing out that the
feedback min-max methods involve a larger computational burden compared to
the classical min-max MPC. Finally a few directions to further the developments

of min-max MPC are outlined.

Chapter 6 draws the conclusions from the results obtained throughout this PhD re-

search and suggests possible directions for future research.

Appendix A describes some of the benchmark systems used throughout this thesis

to test different control schemes.



Chapter 2

Formulation of Receding-Horizon
Predictive Controllers

2.1 Introduction

The first few controllers in the MPC family, such as IDCOM, DMC and GPC, some-
times referred to as “first generation” MPC, use a finite prediction horizon, which is,
at the same time, the reason for their early success and the cause for the criticism
which arose later. This feature made it possible to incorporate constraints in a natural
manner within the control strategy, a capability which is not supported by (infinite
horizon) LQ control and, undoubtedly, constraint handling is one of the most appeal-
ing issues of MPC. However, there is also a major drawback common to all these early
methods, since it is now widely accepted that no successful stability results exist for

finite horizon formulations, as pointed out in (Bitmead et al., 1990).

The stability flaws of the first generation MPC were overcome by a “second gener-
ation” of predictive controllers, which can be divided into two categories. The first one
consists of methods such as the CRHPC (Clarke and Scattolini, 1991), the Stabilis-
ing Input/Output Receding-Horizon Control (SIORHC) (Mosca and Zhang, 1992), and
the Stable Generalised Predictive Control (SGPC) (Kouvaritakis et al., 1992), which

15
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enforce end-point equality constraints on the predicted outputs. These constraints
are explicit in the CRHPC and the SIORHC, but implicit in the SGPC formulation.
Although these three controllers have been proved to be theoretically equivalent, the
latter enjoys better numerical properties, as remarked by Rossiter and Kouvaritakis
(1994). Due to this equivalence, the term CRHPC is used hereafter to refer to either

of these three approaches.

The second category is formed by algorithms which use an infinite prediction hori-
zon, such as the state-space controller of (Rawlings and Muske, 1993), the infinite
horizon GPC of (Scokaert, 1994; Scokaert, 1997), or the Infinite Horizon Stable Predic-
tive Control (IHSPC) of (Rossiter et al., 1996). These controllers can be exactly solved
since they can be converted, after some manipulations, to an equivalent finite horizon
problem with system dependent weighting irnatrices. Although infinite horizon predic-
tive controllers might look like a re-discovery of LQ control, it must be remarked that
they solve the difficulty of handling constraints within an infinite prediction horizon

framework, using, for example, the methods described in (Rawlings and Muské, 1993).

In (Scokaert, 1994) a distinction is made between “second generation” and “third
generation” MPC methods, to refer to the infinite horizon controllers and to the
CRHPC “family” respectively. There are historical reasons for such a classification,
since the first few implementations of infinite horizon controllers were only approxi-
mate, whereas the CRHPC can be exactly solved. However, newer developments have
yielded an exact solution for infinite horizon predictive controllers, and thus such a

distinction is not considered throughout this thesis.

The stabilising properties of the CRHPC family were early proved by showing the
equivalence of these controllers with those proposed by Kleinman (1974) and Kwon and
Pearson (1978). In other words, the first few proofs (Clarke and Scattolini, 1991; Mosca

and Zhang, 1992) are based on the monotonicity of the co-variance matrix of the
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associated Riccati equations. More recent results (Kouvaritakis et al., 1992; Scokaert,
1994) establish stability through the monotonicity of the optimal cost function values
sequence, as previously done in {(Mayne and Michalska, 1990} for continuocus time
receding-horizon control. The latter proofs are available for both the CRHPC and the
infinite horizon MPC, and have contributed with an intuitive input/output domain

a;jpreach to the issue of stability (Scokaert, 1994).

This chapter is concerned with the formulation of predictive controllers with in-
put/output models, termed as GPC-like controllers henceforth. Both 2-norm and 1-
norm formulations are presented, and stabilising methods are highlighted. The formu-
lations are provided for the SISO case only for simplicity of notation, and extend to
the MIMO framework in a straightforward manner. In addition, robustness features
are not in the scope of this chapter, hence the nominal case (no modelling errors) is
considered in the next sections. The minimisation of 1-norm cost functions tackled in
this chapter is a necessary step towards the development of robust MPC controllers
based on min-max optimisation which, as clarified in Chapter 4, can be solved much
ndore efficiently if 1-norm cost functions are used instead of 2-norm counterparts. The
1-norm formulations introduced below are intended to provide controllers which satisfy
at least nominal stability such that they need not be tuned to obtain stability. These
nominally stabilising controllers are used as the basis of min-max robust controllers,

as discussed in Chapter 4.

If 1-norm cost functions are used, the minimisation problem with an infinite pre-
diction horizon requires the implementation of an iterative algorithm which solves two
LP problems at each iteration. This solution can give rise to an enormous compu-
tational burden, since the number of iterations cannot be established a priori. This
drawback can make this method impractical for real applications and discourages the
application of the min-max approach with this infinite horizon controller. As an al-

ternative, a very efficient upper bound solution of the infinite horizon problem can
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be computed with a single LP problem. This kind of solution is very convenient for
min-max formulations, as shown in Chapter 4, but the nominal stability guarantees
are not preserved. However, it is shown that nominal stability with this controller is
éasily obtained, as the upper bound and the true infinite horizon solutions seem to
converge as the control horizon increases. Hence this 1-norm controller provides with a
reasonable trade-off between nominal stability and computational requirements what

makes it a likely candidate to develop an efficient min-max robust MPC method.

The outline of this chapter is as follows. Firstly, Section 2.2 summarises the contri-
butions of several authors, providing an overview of existing controllers with 2-norm
cost functions, and attention is driven to nominal stability issues. After that, Sections
2.3 through 2.6 are devoted to methods developed during this PhD research. To begin
with, stabilising 1-norm controllers are formulated in Section 2.3, where stability the-
orems are proved for these new control schemes. In Section 2.4, the newly proposed
1-norm methods are compared to the existing 2-norm ones by means of simulated
experiments. In Section 2.5, a quasi-infinite horizon 1-norm predictive controller is
shown to converge to a true infinite horizon counterpart, making it possible to reduce

the computational burden. Finally, concluding remarks are presented in Section 2.6.

2.2 2-norm cost functions

This section presents a reformulation of RHPC provided in (Yoon and Clarke, 19955).
This algorithm uses a Controlled Auto-Regressive Integrated Moving Average

(CARIMA) model of the system to be controlled:

AlgYle) = B - 1) + T e, 1)
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where u(t) is the input signal, y(¢) is the output signal, A, B and T are known poly-
nomials in the delay operator g1
¢ 'B(g ) =big Fbag - b

Al =14ag + -+ anq ™, (2.2)

T(q") =to+tig™ + - +tn, g™
and £(t) is a zero-mean, stochastic disturbance signal. Notice that B(g™') defined
above is a polynomial of order ny — 1; and hence the system is supposed to have n, — 1
zeroes and n, poles. In addition, the polynomials A(g™') and B(g™!) are assumed to

share no common unstable root, i.e. the system of eqn.2.1 is stabilisable and detectable.

Remark 2.1 Although the system of eqn.2.2 is a unit delayed plant, no difficulty
arises in considering greater delays d > 1. Slight straightforward modifications are
required in the sequel in that case but, in order to avoid a cumbersome notation, the

unit delayed case is used throughout this thesis. aaa

An optimal control move Au(t) = Au(t|t) is computed by minimising the cost

function
Jz(tj = Iilu(j) [w(t + j|t) — (¢ + j|t))*
- zﬁ; B¢+ N, Je) - ol + 5P (23)
+ ;pumzﬁ(t +3 - 118),

with respect to Au(t + j|t), 7 = 0,..., N, — 1, and subject to Au(t -+ j|t) = 0 for
j > N,, where N, is called the control horizon. In addition, y(t -+ j|t) are predictions
of the output performed at time ¢, w(t + j|t) are future values of the setpoint, which
are known at time ¢ or assumed to be equal to the current value w(t|t), N; and N,
are the lower and upper costing (or prediction) horizons, u(j) and p(j) are positive

weighting sequences, and 0 < v < 1 is used to impose a heavier weighting on the
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predicted tracking errors from N, to N,. Moreover, w(t + j|t) and p(j) are assumed
to be equal to w(t + N,|t) and pu(N,), respectively, for j > Ny, because it can provide
better closed-loop behaviour (Yoon and Clarke, 19955).

Remark 2.2 It is worth pointing out that, throughout this thesis, all the experiments

have been made as if no future information about the setpoint was available, or
w(t+ jlt) = w(tf),

for all § > 0. - Qaa

As pointed out in (Yoon and Clarke, 1995b), by introducing a few manipulations
in the computation of the minimum of eqn.2.3, it becomes possible to choose v = 0,
which forces y(t + j|t) = w(t + Nylt), for j = N, ..., No. These are end-point equality

constraints! on the internal model output.

The cost function of eqn.2.3 can lead to several classical controllers such as the
GPC (Clarke et al., 1987), the CRHPC (Clarke and Scattolini, 1991) or the infinite
horizon GPC or GPC® (Scokaert, 1997). To obtain these controllers, the tuning knobs

must be chosen as follows:

1. For the GPC: 4 = 1. The second and the third terms in the cost function
Jo(t) in eqn.2.3 can be rearranged as one summation to provide the classical cost

definition of (Clarke et al., 1987):

Ny Ny
Bt =3 w0 i+ i)~ ule+ 507 + 3 pAR(E+5 - 110, (24)

Remark 2.3 Strictly speaking, the equivalence with eqn.2.3 holds only if u(j) =
(V) and w(t + jJt) = w(t + Nyft) for all j > N,. However, this situation is
quite common since constant setpoints (no preprogrammed inputs) and constant

weighting are the typical case. S aaq

1Equality constrained schemes are referred to as “unconstrained” hereafter. The term “con-
strained” is only used for controllers which use hard inequality input, output or state constraints.
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2. For the CRHPC: Ny =1, N=N, -1, Ny=N+1, Ny =N+mand y=0:

N N+-1
Ja(t) = Z,u(j) [w(t + jlt) — y(t + 51} + Z pAV(E+ 5~ 1]t),  (2.5)

subject to y(t + N -+ jlt) = w(t + N + j|t) for j = 1,2,...,m. This controller
enforces m equality constraints on the predicted outputs (y = 0), and the param-
eter N defines both the control and the prediction horizons. These definitions
must satisfy that N, = N+1 > m in order that there are at least enough degrees |
of freedom to satisfy the m end-point equality constraints. If a delay d > 1 is
present, the definition N = N, — 2 + d must be used instead of N = N, — 1 to
ensure closed-loop stability (Scokaert, 1994).

3. For the GPC®: N, = oo and u(j) = 1Vj:

o0 N,

() =Y [wt+i1t) =yt -+ + D p(NAv(E+5—~1[t).  (26)

J=N =1
In this case the optimisation is performed over an infinite horizon and the second
term of J,(t) in eqn.2.3 is not involved. N; =1 is used in (Scokaert, 1997), but
this parameter does not affect the stabilising properties of the GPC™ (Scokaert,

1994), which are preserved with any choice of the lower costing horizon.

The stabilising properties of the GPC are deeply analysed in (Bitmead et al., 1990),
Whefe some examples are provided in which the stability of some plants is difficult to
obtain by tuning the GPC. It is well known that the (finite-horizon) GPC does not
guarantee the stability of the nominal closed-loop system. In order to obtain nominal
stability, the GPC must be tuned ad-hoc and, in some cases, it can become quite a

tough issue to find the appropriate values of the tuning knobs.

The first approach to overcome this problem was the CRHPC. In (Clarke and
Scattolini, 1991) several choices of N and m which guarantee nominal stability for any

given system are provided. Nevertheless, there are still a few difficulties related to the



22 Formulation of Receding-Horizon Predictive Controllers

CRHPC. To begin with, if short (prediction and control) horizons are used it tends
to producing a suboptimal deadbeat-like behaviour of the closed-loop systeﬁx leading
to low robustness margins (Megias et al., 1999a). This situation can be overcome by
choosing longer horizons, but then numerical stability problems can arise as pointed

out in (Rossiter and Kouvaritakis, 1994).

The SGPC of (Kouvaritakis et al., 1992) is theoretically equivalent to the CRHPC,
but it is numerically more robust. The approach taken in the SGPC is the use of the
Youla-Kucera parametrisation to obtain a stable closed-loop system, and then apply
the GPC law to the resulting stable system. As remarked in (Rossiter et al., 1998),
the use of an internal stabilising loop provides several numerical advantages. However,
it is worth pointing out that the equality constraints are still implicitly present in
the SGPC formulation. These constraints are somewhat artificial since they are not
really satisfied due to the receding-horizon implementation of the controller. Hence a
suboptimal solution is obtained, as the dimension of the decision space is reduced by
the number of equality constraints. Moreover, to avoid the deadbeat-like behaviour,
long horizons must be chosen and this can cause problems if hard constraints are also
involved since, firstly, the dimension of the optimisation problem to be solved can

become very large and, secondly, infeasibility can arise.

A newer family of nominal stabilising predictive controllers were developed by using
an infinite prediction horizon, firstly for state-space models (Rawlings and Muske,
1993) and later for input/output model (transfer function) formulations (Scokaert,
1997). The GPC®™ overcomes the drawbacks of the CRHPC/SGPC, avoiding both
the numerical difficulties and the deadbeat-like behaviour with small (prediction and
control) horizons, and provides with better robustness properties as shown in (Megfas
et al., 1999a). However, as the decision variables in the GPC® optimisation are future
values of the control moves, there is still a minor disadvantage in these schemes, namely

that the control horizon N, must be finite.
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The THSPC of Rossiter et al. (1996) provides with an alternative implementation
which allows the input trajectories to be infinite sequences. On the other hand, some
more recent approaches make use of the Youla-Kuéera parametrisation and the optimi-
sation is performed not on closed-loop signals but on the elements of a state feedback
vector (Fikar and Engell, 1997; Fikar et al., 1999). These controllers, referred to as
Youla-Kucera Predictive Control (YKPC) make it possible to optimise over infinite
control and prediction horizons with ﬁnitely many unknowns. Nevertheless, this ap-
proach is difficult to use with the global uncertainty description which is introduced in

the subsequent chapters and has not been analysed throughout this research.

The optimisation problem is slightly different for the finite (Yoon and Clarke, 19955)
and the infinite (Scokaert, 1997) horizon approaches, and the required formulae for
these two situations are provided in the next two sections. In the sequel, the notations
used by different authors are respected as much as possible, but it must be taken into

account that some definitions vary between the finite and the infinite horizon cases.

2.2.1 The finite harizon case

This section summarises the standard procedure to compute an optimal control move
vector for finite horizon 2-norm cost functions. The reformulation of receding-horizon

predictive control provided by Yoon and Clarke (19955) is used here.

To begin with, a few useful definitions are introduced. Let the control move vector

Au(t) be

Au(t) = [ Au(tlt) Au(t+1]t) ... Aut+N,—1)) ], (2.7)
the setpoint vectors w(t) and ws(2) be

wi(t) = [wE+ M) wi+N+1t) ... wi+N, -1 ],
wy(t) = [wlt+ Nylt) wlt+Nylt) ... wlt+N,Jt) 17,
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the output prediction vectors y,(t) and y,(¢) be

yi(t) = [ y(t+ Nil) y(t+ N +1]t)

Yo(t) = [ v+ NJt) y(E+ N, +1J8) ...

and the free response vectors f,(t) and f,(¢) be
[ =] FE+ N FE+N+1)t)
Fot) = [ fE+ Nlt) [+ Ny +1]t)

y(t + N‘y - llt) ]Ta
y(t+ Nolt) 7,

fie+ Ny -11) 17,
f(i'%’ ﬁ%f’é} }Ts

where f(t+ j|t) are predictions of the output performed at time ¢ taking all the future
control moves to be zero. With these vector definitions, the output prediction vectors

can be written as®

v, = 1+ GiAv,
Yy = f 9+ GQA‘E,
where GhAu and G2Au are vectors formed by the so-called the forced response, the

dynamic matrices 1 and G, are given by

por

Ny -1 0
a1 W 0
GE = . . . 3
| INy=1 GNy-2 v+ GNy—N,
§Ny f}}\?ywl »aw 0
N+l gNy - 0
GZ = . . . H
s an, Ny -1 GNz~Ny~1

and g, are coefficients of the step response of ¢"1B/A with g = 0 for all £ < Q.
Furthermore, if the matrices M and R are defined as ‘
M = diag [u(Ny), p(Ny +1),..., p(Ny = 1)],
R = diag[p(1), p(2), - - -, p(Nu)],

the cost function Ja(t) can be arranged in vector notation to yield
o(t) = [wy — f; = G1Au]" M [w; ~ f, ~ G1Ay]
N, ‘ ) .
+ i‘iffi w2~ f — GaAul" [y — f5 — GoAu] + AuTRAw. (2.8)

2To simplify the notation, the time variable ¢ is dropped wherever it is possible.
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In the unconstrained case, a global minimiser of Jy(t) is found deriving eqn.2.8 with

respect to Au and equating to zero, to obtain
‘ N, -
Ayt = {G’fMG; + i‘%ﬁ}-a’ggz + R}

[G’%‘M(m - )+ 16w, - fz)], . @9)

Obviously, the solution provided in eqn.2.9 cannot be used when «y == 0. However, this

small difficulty can be overcome by rearranging eqn.2.9 as
(GTMG, + R) Au™ + Gy p*™* = GT M (w; ~ f,), (2.10)
where the vector p is defined such thaii: |
o7 = [Gaau - 0, - 1)), (2.11)
Fina%iy; the linear equation system provided by eqn.2.10 and 2.11 caﬁ be expressed as

T o
GiMG,+R | G {Au}ptz[G'{M(wlmf:\)L

¥ (2.12}
G e | by
2 ﬁ(k’y}

wz“fz

where I is the identity matrix of conformal dimension. The optimal control move

vector Au°"* can be obtained directly from eqn.2.12, or using the block matrix in-
version lemma {Yoon and {}}axkeE 19955), but the latter possibility is not advisable
for implementation because of numerical considerations. When v = 0, the vector

p°®* turns out to be the Lagrangian multipliers associated to the equality constraints

G;}é% = Wy -~ fgf

On the other hand, a constrained minimum of Jy(t) can be also obtained using
standard QP methods. In that case, the minimisation is performed taking into account

a set of general constraints of the form
PAu<r, , (2.13)

which can be used, as shown by Kuznetsov and Clarke (1996}, to bound the input,

the output, the input or output rates or accelerations, the internal states, etc. In
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gerneral, it is possible to place constraints on any variable which can be written as a
linear combination of the control moves and the free response. Finally, the constrained

minimum is found as
AuPt = argxgin Ja(t) subject to PAu < r.
! u

Remark 2.4 When v = 0 (if there are end-point equality constraints) the second
term in the cost function J; of eqn.2.3 must be added to the QP problem as additional
constraints: GhAu = wy — f. QA

2.2.2 The infinite horizon case

This section provides a summary of the formulae proposed in (Scokaert, 1997) for the
GPC®™. The future setpoints are assumed to be equal to the current value: w(t+jjt) =
w(tjt) for all 7 > 0, and, without loss of generality, the lower costing horizon N; is taken

to be 1.

. As done for the finite horizon case, a few definitions are introduced prior to under-

take the minimisation of J;(t) (eqn.2.6). Let the prediction horizon® N be
N =max {N, +ny — 1,05, %}, (2.14)

where n; is the degree of the stable factor of A (see below). In addition, let Au(t) be
defined as in eqn.2.7, and w(t), y{t) and f(¢) be
w(t) = [wit+1l) wE+2) ... wiE+Npy],
y(t) = [yt +1t) yiE+20) ... yE+Np]T, (2.15)
FO = [ 1@+18) fe+2l) ... J¢+ NI |

The vector y(t) of output predictions can be written as the sum of the free and

forced responses:

y(t) = £() + GAu(t),

3The infinite horizon problem can be converted into a finite horizon one, as shown below.
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where the dynamic matrix G is given by

(4] 0 0
0
e=|% o 0| (216)
gN gN-1 -+ GN-Nut1

Ati this point, the predicted tracking erfor at tiine t+jis deﬁn_ed as
e(t+jlt) = wlt + jjt) — y(t + jlt),
\and a vector e(t) can be built as
e(t)=[e(t+1Jt) et+2t) ... e(t+NJe)] . (2.17)

From the above definitions, it follows that
e(t) = w(t) — y(t)
-=w(t) — f(t) - GAu(?).

To proceed with the optimisation, it is convenient to split the system into its stable

and unstable parts. The model denominator can be factorised as
Alg™) = A(gHA(g™),

where A(g~!) is a polynomial of strictly stable roots and E(q“‘l) is a polynomial of
unstable roots. Furthermore, let the coefficients of these two polynomials be

A =1+a@mg "+ 4B g™,

AlgY) =14aq" 4 +n,g "
Hence, the unstable part of the output can be defined as

. B{q™! T(g!
3(0) = 29 )y -1y ¢ 20D ¢
Alg™) AlgHA (2.18)
= A(g™"y(1).
Now, if the dynamic matrix Gis provided by
gN dn-1 v GN-Nu11

o
I

IN+1 gn cer GN—Nut2

IN+nz GN+ng—1 -+ GN+ng—Nu+1
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where gy is the k™ step response coefficient of ¢~ B(g~1)/A(q™?), then it is possible to

define vectors of predictions for the unstable part of output:

FO=[Ft+Nt) Fe+N+1t) ... Ft+N+ngt)]",

(2.19)
G) =[G+ Nt §ie+N+1t) ... §it+N+nglt) |7,

where f(t+ j]t) denotes the free response of the system of eqn.2.18. Finally, the vector

of future predictions can be computed as

(1) = F(t) + GAu(t).

In order to write the cost function in a form which makes the optimisation task
easier, a set of end-point equality constraints on the unstable part of the output are

taken into account:
§(t+ N +37) = A(D)w(t + N + j|t), Vj = 0,1,...,nz, (2.20)
or, in vector form,
y(t) = w(t),
~with
W(t) = A1) [ wt+ Nlt) wE+N+1ft) ... wlt+N+nslt) ]T. (2.21)
As highlighted in (Scokaert, 1997), these constraints are redundant and do not
modify the GPC® control law for N, > ng (which is required for stability), since

violation eqn.2.20 would result in an unbounded (and thus not minimal) cost. However,

the end-point constraints make it much simpler to proceed with the minimisation.

Remark 2.5 The end-point constraints of eqn.2.20 hold not only for  =0,1,...,nz,
but for all 7 > 0, due to the definition of N. Therefore, all the unstable modes of the

system are zeroed by time ¢ + N -+ ng. Qaa
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Now, eqn.2.20 can be rearranged as
Ayl + N +jlt) = ALyw(t + N + jlt), V5 2 0,
and, if A(g™)w(t + N + j|t) is subtracted from both sides, it follows that
A(g Vet + N +jlt) = AQ)w(t + N + j|t) — A(q—l)w(£ + N +jlt). (2.22)
Thus, since N > nz and w(t + N + jlt) = w(t|t) for all N+ j > 0, eqn.2.22 becomes
A(g Ve(t + N + jjt) = 0. (2.23)

Therefore, the predicted tracking errois decay exponentially to zero after time t + N
according to the dynamics of the stable modes of the system, the series converges, and
thus it is possible to compute the infinite sum. Notice also that the control law is
identical for all N; > N, since the predicted tracking errors from £ + N on evolve as

per eqn.2.23 whatever value IV takes.

First of all, let the cost function be rewritten in a more convenient form:

N~—-1 00 Ny
Ja(t) = Z e(t+jlt)% + Ze(t + N +j)t)? + Z p(7)Au(t + § — 1]8)2.

The second term of this expression can be exactljr computed taking into account the

comments reported above. Now, let the matrices R and @ be defined as

R = diag[p(1), p(2), . - ., p(Nu)],
Iy, O
Q:{ 0 0]’

where I} is the identity matrix of dimension k£ and 0 is the zero matrix of appropriate
dimension. Notice that for Ny > 1 the first /V; diagonal coefficients of Iy_; in Q
should be replaced by 0. In addition, @ is 0 for Ny > N.

Using these definitions, the cost function becomes

o0

Jo(t) = e(t)TQe(t) + Au(t)T RAu(t) + Z e(t + N + j|t)?, (2.24)

=0
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where only the last term needs further manipulations. A state-space realisation of the

stable part of the model is used to solve the series. To begin with, the vector
Z(t)=[et+N—ng+1Jt) e(t+N—ng+2]t) ... e(t+NJt)]" (225
and the matrix

& = | Ona-11 Tnz—1 (2.26)

—dna _anﬁ—l ce —ai
are introduced, and Ok; denotes the zero matrix of dimension £ X . The equality

constraints of eqn.2.23 imply that

z(t+j)=®z(t+j—1),
or

z(t +3) = ®72(t). (2.27)

Now let C be the row vector

c=[o0 =0 0 1], (2.28)
hence

e(t+ N+ j|t) = Cz(t + j) = C®z(¢),

which leads to

Y e(t+ N+l =Y 2(H)T@ CTC2(t)
3=0 j=0

= 2()7 i (@jTCTC@j) 2(1).

j=
Now, if @ is defined as
Q=) & CcTc¥,
=0

it follows that @Q satisfies the matrix Lyapunov equation (Scokaert, 1997)
Q=C"C+3TQ%,

which can be solved using existing standard tools.
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Remark 2.6 Some formulations of infinite horizon predictive controllers have been
proposed in such a way that the need for solving the Lyapunov equation is avoided

(Rossiter et al., 1996). ata

Once Q is available, it is possible to write

o0

> _elt+N +jlt) = 2(t)7Qz(1)
~ = e(t)"Qe(t),

for

1 ONn, O
Q:[NO *Q‘}

And finally, if A is defined as
A=Q+Q
it follows from eqn.2f24 that
Jo(t) = e(t)TAe(t) + Au(t)TRAu(t).

which is a finite dimensional quadratic cost function. Surprisingly enough, the infi-
nite horizon problem turns out to be equivalent to a finite dimensional one if system

dependent weighting (Q) is used and the end-point constraints of eqn.2.20 are enforced.
In the unconstrained case, the optimal control move vector is found at
Au? = arg min J, (t) subject to ¥ = w,
yid

where the equality constraints on the unstable part of the output can be loosely con-

sidered as an infinity weighted term in the cost function:

L) =[w—f - GAu]"Alw - § - GAy]

+ 00 [i‘é ~F- GAu]T [ﬁ} - ”f“ - Z’;Au] + AuTRAw,
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which is completely analogous to eqn.2.8 when v = 0. Thus, the optimal control move

vector and the Lagrangian multipliers can be obtained from

GTAG+R G {Aarp‘;_[d"f‘(w:ﬁ}
[egen & [4]" <[4 0] o

In the constrained case, general constraints in the form of eqn.2.13 are taken into

account, and the optimisation problem can be posed as

éAu:ﬁm},

N ot ) :
Au arg min J2(t) su?gect to { PAu<rT

2.2.3 Relevant stability theorems

Stability theorems for the CRHPC and GPC™ are proved in (Clarke and Scattolini,
1991; Scokaert, 1994; Yoon, 1994; Scokaert, 1997). This section includes two of them

for the sake of completeness.

Theorem 2.1 (Scokaert, 1994; Chischi and Mosca, 1994) For any stabilisable and
detectable system, the CRHPC leads to a stable closed-loop system if

(i) p(N) 2 p(N=1) 2 --- 2 p(l),
(i) p(Nu) = p(Ny —1) > -+ > p(1) > 0, and
(iii) m = max{ng, ny — 1} + 1.

Remark 2.7 N, = N+1 must be chosen to be greater than or equal to m (the number

of equality constraints). aaa

Remark 2.8 As the number of end-point equality constraints (m) is greater than the
system orders, these constraints are satisfied not only for t + N+ 1,t + N +2,...,t+
N +m, but for all £ + N + j with 7 > 0. Qda
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Remark 2.9 A weaker statement is proved in (Clarke and Scattolini, 1991) by showing
the equivalence between the CRHPC and the controller defined by Kwon and Pearson
(1978). Qoo

Remark 2.10 The proof given below was provided by Scokaert (1994), and is based
on the ménotonicity of the cost function (Lyapunov theory). aaa

Proof: Without loss of generality it can be assumed, for the sake of simplicity, that

p()=pforalll <j< Nandp(j) =pforalll <j < N, Asa consequence of

Remark 2.8 the control move vector
Aur(t+1)=[ AuP(t+1]t) ... AuPt+N,—1]t) 0], (2.30)

is feasible at time t + 1. Let J;P*(t) be the optimal cost at time ¢ and J(t + 1) be the
cost at time ¢ + 1 if the control move vector Au*(¢ + 1) were implemented. From the

cost function definition of the CRHPC (eqn.2.5) it follows that

N Ny
TP =pY e+l +5)  AvP(t+ 5 — 1),

j=1 j==1

IJV+1 ?Vwﬂ
Bt+1)=a) EE+it)+p Y A(t+7—1Jt),

i=2 J=2

for N, = N + 1, but Au(t + N,|t) =0 and e(t + N + 1|t) = 0 (Remark 2.8), thus

It+1) = ﬁZe2(t +jt) + p‘im?(t + 7 —1J8),

j=2 j=2

hence
Ji(t+1) — JPHE) = —ped(t + 1[t) — pAUE(t]E) < 0. (2.31)

Therefore J (¢ + 1) < J**(t). In addition, J}(t 4 1) is only suboptimal at time t + 1,
and thus the optimal value of the cost function attained with Au°?*(t+1) must satisfy

JoP*(t + 1) < J#(t + 1). Now, combining these two inequalities:

0< HB(E+1) < St +1) < LX), (2.32)
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that is, the sequence of optimal cost function values is non-increasing, and it is bounded
below by zero, then it converges to some limit, say I. Making use of of eqn.2.31 and
2.32, it is possible to write
TP+ 1) = J3P(E) < T3 (t+1) — J5P()
= —e*(t -+ 1]t) — pAu’(tlt),

thus
ae(t + 1|t) + pAud(tft) < JoPH(t) — J3PH(t + 1), (2.33)

Now, as {JJP*(t)} converges to I, the right-hand side of eqn.2.33 decays to zero, and

thus
§§§c pe(t+1) = lim ge(t + 1]t) =0,
Jim pAu(t) = Jim pAu(tl) =0,
which implies stability for & # 0 and p # 0. \AA%

Remark 2.11 This proof establishes that J5P'(t) is a Lyapunov (non-increasing and

bounded below by zero) function of the closed-loop system. aaa

Remark 2.12 The proof easily extends to the case of non-constant weighting, as

. shown in (Scokaert, 1994). | aad

Remark 2.13 Stability for i = 0 and j = 0 is proved in (Scokaert, 1994) using an
optimality argument. However, notice that it is not possible to choose both p and u to

be zero at the same time. Qad

Remark 2.14 The proof extends to the constrained case only if the constraint hori-
zon is infinity. However, there are some cases for which the stability guarantees are

preserved with a finite constraint horizon. See (Scokaert, 1994) for details. aaa

Theorem 2.2 (Scokaert, 1994; Scokaert, 1997) For any stabilisable and detectable sys-
tem, the GPC™ is stabilising if
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(i) p(Nu) = p(Ny—1) 2 -+ 2 p(1) 20, and

(ii) N, > nz.

Remark 2.15 The second condition is necessary to allow the required degrees of free-
dom to enforce the end-point equality constraints on the unstable part of the model.

Qua

Remark 2.16 The proof prov;ided below closely parallels that of Theorem 2.1 and was
given by Scokaert (1994). QQa

Proof: Again, it can be assumed, without loss of generality, that the weighting
sequence p(j) = p is constant, and let Au*(t + 1) be defined as in eqn.2.30. Following
an argument completely analogous to that of Remark 2.8, Au*(¢t + 1) is feasible at

time £ 4+ 1, and then

(e 9] Nu
TPty =Yt +ilt)+p Y AvP(t+5 - 1]t),
j=Ny =1
oo Nu+1
Bt+1)= Y EE+ilt)+5 ), Add(t+]—1}t),
j=N1+l 7=2

now, going through the same steps as in the proof of Theorem 2.1, it follows that
tl-gi e(t + Nijt) = 0,
t{irglo pAu(t) = tlgg) pAu(t|t) =0,

which implies stability for g # 0. vvv

Remark 2.17 The proof easily extends to the case of a non-constant weighting in p(3)

(Scokaert, 1994). aoa

Remark 2.18 Stability for p = 0 is proved in (Scokaert, 1994) using an optimality
argument. QA

Remark 2.19 The proof extends to the constrained case only if the constraint horizon

is infinity. Without this condition the control profile postulated at time ¢ does not have
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to be feasible at time ¢-+1, and the monotonicity of the cost function cannot be ensured.

Infinite horizon constraints can be implemented as described by Rawlings and Muske

(1993). 0oa

2.3 1-norm cost functions

As remarked in Section 2.1, in order to develop efficient robust predictive controllers
with a global uncertainty approach it is convenient to use a 1-norm cost function instead
as a 2-norm counterpart (Camacho and Bordéns, 1995), that is, to replace the “square”

by the “absolute value” in the cost function definition:

C Ny-1
@) =Y p() lwlt + 3l) — y(t + j1b)]
J=Ny
+ i H'%@l w(t + Nylt) - y(t + jlt)] (2.34)

+ 3 p00) IAu(e +5 - 119

It is possible to define counterparts of the 2-norm GPC, CRHPC and GPC®, re-
ferred to as GPC;, CRHPC, and GPC{® respectively hereafter, using the same tuning
knobs as described in Section 2.2. 1-norm controllers can be implemented by solving
simple LP problems (Camacho and Bordéns, 1995), for which very efficient standard
solutions exist. However, in the I-norm case, it is not as easy to manage the case
v =+ 0 (or v = 0) as done for the 2-norm cost functions, even in the absence of general

inequality constraints PAu < r.

Fof v # 0, the resulting controller is just a GPC; with a j-dependent weighting
in the tracking errors. The formulae of the (finite horizon) GPC; are exhaustively
documented in (Camacho and Bordéns, 1995), and thus are not repeated here for

brevity. On the other hand, the rest of this section is devoted to the implementation
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aspects of the 1-norm version of the stabilising CRHPC and GPC®. These require a
few careful considerations, related to the end-point equality constraints and the infinite

horizon, in the posing of the associated LP problems.

2.3.1 1-norm CRHPC

First of all, let the different symbols be defined as in Section 2.2.1, with N; = 1,
N=N,—-1, Ny=N+1, N, = N+ m and v = 0. The (constrained) CRHPC, is
implemented on-line as the solution of

G:Au =w; ~ f,,

—-—-—-—-G—pt - « - 3 |
Au®(t) = argmin Ji (£) subject to { PAu<r,

with
N - Ny
Tu(t) =D (i) le(t + 3101+ D_ (i) 1Au(t +j ~ 11)].

=1
Now define additional variables o(j) > 0 and 3(j) > 0 such that

—o(j) < e(t + jIt) < o(j), 1<j<N,
-BG) < Au(t +5 - 1]t) < BG), 1<G< N,
N Ny,
0 < D p(Ge()+_p(BG) < Y,
j=1 j=1

and the problem of minimising J; is equivalent to that of minimising the upper bound*

.

Hence the optimisation can be performed as the LP problem®

(o> G1Au+ f; —wy,
o> -GiAu - f +w;,

Bz Au,
. . B> —Au,
\Pglérzu‘lf subject to < ¥ > uTo + pTB,
PAu<r,

GgA'U,='U)2"‘f2,
c>0,6>0,¥ >0,

\

4 As p(j) and p(j) are non-negative for all j, the minimum ¥°P* is obtained for o°Pt(5) = |e(t + j|t)|,
BoP(5) = |Ault + j|t)], and TPt = JPPH(2).
5The vector inequalities of the form u < v denote the componentwise inequalities u; < v; for all
J ‘
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with
T
p=[pl) p2 ... (NI,
T
= 0( U(N) )
[ ]T (2.35)
=[p(1) p(2) ... p(N.) ],
T
=[8(1) BR) ... B(N)]
Finally, this LP problem can be written in the standard form
min ¢’z subject to Az < b, 0 >0, 8>0, ¥ >0,
with
Au 0
_|_ @ _ |0
R -2 R N
v 1
and
[ G] -I{ 0 0 | _fl + wy |
'—Gl -I| 0 0 fl — wn
I 0 |—-I| 0 0
I |0 |-I|O0 0
A= of [ puT|pT|—-1|’ b= 0
P 0 0 0 r
G, | 0] 0] O —fo +ws
_—Gz 010 0_ _fz-—wz_
2.3.2 1l-norm GPC®
Now an infinite horizon cost function of the form
o0 Nu
= le(t+ 5l + D p(G) [Aut+ 5 — 1]8)], (2.36)
Jj=1 7=1

is taken into accountS. Although N; has been assumed to be 1, any other value might be

specified with minor modifications. The optimisation of this cost function would be, in

8Throughout this section the definitions of Section 2.2.2 are supposed to hold unless explicitly
otherwise specified.
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principle, solvable as an infinite-dimensional LP problem, that is to say, the formulation
of Section 2.3.1 could be used taking the vector o to be infinite-dimensional, taking
4t to be an infinite-dimensional ones vector, and removing the equality constraints
G;Au = we — f,. However, it is not possible to solve such a problem exactly, since
infinite-dimensional vectors cannot be handled by numerical algorithms. A possible
approach is to look for approximate suboptimal solutions which converge to the optimal
one. From an infinite-dimensional LP problem, it is possible to obtain upper bound
and lower bound solutions using the Finitely Many Variables (FMV) and the Finitely
Many Equations (FME) methods respectively (Staffans, 1993; Dahleh and Diaz-Bovillo,
1995). These converge to the solutioﬁ of the truly infinite-dimensional problem, and
thus provide with a way to get as close to the optimum as wished. It is only necessary

to reduce the difference between the upper and the lower bounds as required.

Although the FMV and the FMV methods could be easily applied to the problem
of minimising eqn.2.36, there are simpler ways of obtaining lower and upper bounds to

Ji(t) in this case. First of all, let the cost function be written as a three-term sum:

N1 ) Ny
Ji(t) =) le(t + )| + Z le(t+ N +jlt)] + Y o p()|Aut+i - 1j)],  (237)

F=1 =1

with the prediction horizon N as defined in eqn.2.14. The end-point equality constraints
of eqn.2.22 are considered in the minimisation of the cost function for computation
purposes, since any solution to the infinite horizon problem must necessarily satisfy

them, as remarked in (Scokaert, 1997). To simplify the notation below, let S¥ be
defined as

2
o e+ N+l ik,
0, otherwise,

i.e., S¥ the sum of the absolute value of the errors from ¢ + N +i to £ + N + k as

predicted from information available at time ¢. Notice that the second term of eqn.2.37
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can be denoted as S§°. Now, the series S§° can then be split as

S = i1 4 S, ¥n > 0.

An upper bound can be computed for the term S taking into account the defini-

tions of Section 2.2.2 for 2(t), ® and C (eqn.2.25, 2.26 and 2.28):
m .
Se =Y |Cc®=z(1)]
j=n

-3 flowi= ],

j=n

= Z [Cc®I"em2 ()]

=S C® (i +m),

4=0

< (ff uc«w‘ul) =+l

j=0
now « can be defined as
o
dollc®|,, ifna>0,

0, if Ng = 0,

which can be computed with any accuracy since ®’ decays exponentially to zero. This

definition can be used to write
S < allz(t+n), -

Furthermore, as a consequence of the definition of z(¢) in eqn.2.25,

n

lzt+n)lly = D le(t+N+jt),

J=n-nz+1

which leads to

o0 n—1 n

Dlet+ N+ <D let+ N+ +a > let+N+4lHl,  (2.39)

4=0 j=0 J=n—nz+1
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- for all n > 0, as far as the constraints ¥ = @ (eqn.2.22) are taken into account. Now

let J; (¢) and J;F(t) be defined as

N1 ) n—-1 Ny
@)= let+ilOl+ Y lelt+ N + i)+ Y p(3) |Au(t + 5 - 1),
J==1 j=0 i=1
N1 n—1 ‘ n
JH@E) = Z le(t + jlt)] + Z le(t+ N + )| + | > let+N+4l5) (240)
N, :
+ > p(3) |Au(t + 5 = 118,
j=1

for all n > 0. These definitions make it possible to state three different optimisation

problems

® Lower bound problem:
Au=" = argngiéi Ji(t) subjecﬁ to {PAu <r,GAu = — ?} .
@ Infinite horizon problem:
Au = argxgi;x J1(t) subject to {PAu <r GAu =i ~ }'} .
® Upper bound problem:
Aut? = argn&i%{lJf“(t) subject to {PAu <r,GAu = — ?} .

Remark 2.20 Analogous unconstrained problems can be posed removing the general

inequality constraints PAu < 7. Qg

Remark 2.21 As already remarked, the equality constraints GAu = b — }; are

redundant in Problem @. _ Qaa

Remark 2.22 Since these three problems take into account the same constraints, a
given point Aw in the decision variables space is either feasible or infeasible for all of

them. Hence the value of these cost functions can be compared for any A«. Q0
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Remark 2.23 Problems @ and @ consider finite-horizon cost functions, whereas in
Problem ® an infinite horizon one is to be minimised. Thus, Problems @ and ® can be

exactly solved for every n, since they can be written as finite-dimensional LP problems.

([
Remark 2.24 Notice that J; () and J; () converge to J;(t) as n — co:
lim J7 () = (@)
and obviously, as a consequence of this,
lim Au~(t) = Au®(t),  lim J-°P(t) = Jop(¢),
n—o0 n—ro0
lim Aut(t) = Au’ (1),  lim JTOPH(t) = Jopt(z).
n—o00 n—00
QdQ

It is found convenient here to introduce here an alternative notation for the cost

function evaluation:

J(Au) = J(t)| au(y=aru -
Remark 2.25 For a feasible Au (Remark 2.22) it follows that
Ji (Au) < J1(Au) < Jf (Au), (2.41)

that is, J; (t) and J; (t) are, respectively, upper and lower bounds of J; (t). The leftmost
inequality is straightforward, since any finite horizon cost function value must be lower
than or equal to any infinite horizon one, as far as the weighting sequences are the
same. In other words, there are infinitely many more non-negati\}e terms in J(¢) than

in J; (t). The rightmost inequality follows directly from eqn.2.39. Qaa

Taking into account these remarks, it is now possible to formulate and prove some
theorems which are useful to find an implementable solution of the a priori infinite

dimensional LP problem related to the infinite prediction horizon used in Problem @.
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Theorem 2.3 The optimal values of the cost functions Ji (t), J1(t) and J; (t) satisfy

the following inequalities:

I (aw™) < (Eﬁ) < JF (Au“mpt) . (2.42)

Remark 2.26 Notice that asn — oo the leftmost and the rightmost values of eqn.2.42
converge to Jj (Au"p‘) , as stated in Remark 2.24. Qad

Proof: In the light of eqn.2.41 it comes out that

m ® @ (@ 9y
Jr (Au”""") <Jr (Au""‘) <J (Au"m) <J (Au“’"‘) < J¥ Au+°"“) (2.43)

where (2) and (4) follow from eqn.2.41 and the (1) and (3) are a consequence of the
optimality principle according to which the optimal value is always lower than or equal

to any other feasible value. \AAY
Corollary 2.1 If !J;f (Aut™) —J; (Au—""‘)} <e, then

|7 (Aet™) - gy (Au™)| <.

(The absolute value signs can be dropped).

Proof: The proof is straightforward from eqn.2.43. - VVV

Theorem 2.4 For all € > 0 (arbitrarily small) there ezists an integer ng > 0 such

that |J;F°P*(t) — J;""‘(t)] <e, forn > ng, or

Ve >0, 3ng > 0: iJ;L (au*™) - ;- (Au*"p”)l <&, Vn > ng. (2.44)

Proof: As a consequence of Remark 2.24:

Ver >0, 3n >0 lJ; (au*™) -, (Au‘m)} < &1, Vn > m,
Vey >0, Iny >0 lJ1+ (Au+°pt) — (Au""")l < €9, VN > no,
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now consider €; = /2, €2 = £/2 and ng = max {n;, ny} thus, for all n > ny:

+opt —opt
J 1 1

= |7t (Aw™™) = 1 (Bu™) + 1, (Bu™) - ;- (2u)

< (7)< (55 o (57 - 1 (57

<€y &p

£ &
____+__‘

2 2
=g,

what completes the proof. vVvv

Corollary 2.2 In the unconstrained case, for all € > 0 there exists an integer ng > 0

such that |JFP(t) — JT O?t(t)i <€, forn > ny, or

Ve >0, 3ng>0: tJf (Au"’opt) - J7 (Au'(’pt)! < g, ¥n > ng.

Proof: This corollary directly follows from Theorem 2.4, since the unconstrained op-
timisation problems are a particular case of the constrained optimisation counterparts,

in which the inequality constraints PAwu < r are empty. \A"AY

Remark 2.27 For “small enough” &: J;f (Au+°pt) ~ JT (Au‘om), then (Corollary
2.1) J; (Au*’w RS (Au""ﬁ) , and finally Au®® ~ Aut’® due to the convexity of
Ti(0). ooo

The last remark can be used to derive an algorithm to find Au®® to any given accuracy.

The algorithm can be set up as follows:

1. Choose a small relative error &,

2. Choose’ [n + 1]

3. Solve the optimisation Problems @ and @ to obtain J; ™, Au~"" J+° and

Aut®

"The reason for working with [n + 1] rather than n is clarified in Section 2.3.2.1.
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» opt —opt —opt
4.lf:}£§.p"“'1p<r‘u’1p

then

opt .__ r+OPt,
Jl Yl )

AP = Au,
return

else
Increase [n + 1};
goto 3;

endif

It is worth pointing out a few comments about the algorithm depicted above:

e The stopping criterion used in step 4 can be modified so as to consider the

absolute error on the solution:

T e,
for a given g, > 0, or the absolute error on the first postulated control move:
AutoP(t|t) — Au=P(t[t)| < eau

for a given ea, > 0, since only the first computed control move is used in the
receding-horizon strategy. These two considerations can be very useful to reduce

the number of iterations. However, it must remarked that these two conditions,

especially the latter, do not guarantee that J; " () ~ J;°™(t), and hence the op-
timal cost function sequence might not satisfy the monotonicity property, which

is essential for the stability proof.

e Theorem 2.4 does not provide any bound or estimate on how big ny can become.
An exponential update [n + 1]:=2[n + 1] is advised to decrease the number of
iterations. However, notice that the number of variables and constraints in the

LP problems to be solved depends on n.
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o At each iteration two (finite-dimensional) LP problems must be solved hence, if
many iterations are needed, the computation time of a single control move can
be too high for practical implementation, especially if a very large n is required

for convergence.

e It must be taken into account that the optimisation is to be performed on line
for a number samples, and the information about what [ + 1] has been required
for convergence at the previous sample is available. At the sample i + 1, [n + 1]
can be initialised as half the value required for convergence at the previous one

¢ (with a minimum, for example 10):

) @)
[n+ 1)+ := max {[_nié_l_}_m’ 10} . (2.45)

In this fashion, it is possible to reduce the number of iterations at each sample,
since unnecessarily small values of n are not used after the first one. Moreover,
the dimension of the LP problems can decrease from sémple to sample. This pro-

cedure can significantly reduce the computation time required by the controller.

The following section is concerned with the solution of Problems ©® and @ using LP

tools.

2.3.2.1 Solution of the upper bound and the lower bound problems

Both the lower bound and upper bound problems can be solved using standard LP
methods, quite similarly as done for the case of CRHPC; in Section 2.3.1. The objective
here is to find the minima of J; (t) and J;'() as defined in eqn.2.40 subject to the

constraints reported in the definition of Problems @ and ®. In order to solve these
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problems, o(7) > 0, ©(j) > 0 and S(j) > 0 are defined such that

-o(j) < e(t + jlt) < o), 1<i<N,
—p(j) < e(t+ N+ j|t) < e(j), 0<ji<n,
-BF) < Au(t*‘j“l‘t} < B(), 157 < Ny,
: N
0 < > n()o(i +Z (e () +Zp(9)ﬂ(3 < v,
‘where?

~_ )1 if0 < j <N,
/L(.?)"{O if j = N,

and x(j) takes different values for the lower bound and the upper bound problems (@
and @ respectively):

L1 i#0<j<n,
®n(y)={0 ifj;fz

1 if0<j<n—ng
®k(j) = l+a ifn—na<j<n-1,
a ifj=mn,

with o as defined in eqn.2.38. In the upper bound problem, if n; = 0 (antistable
system), it makes no difference to define x(n) as a (which is zero in such a case) or

1, since the predicted error e(t + N + nlt) must be zero due to the end-point equality

constraints.

Remark 2.28 In the upper bound problem, if n < ng, the coefficients x(5) and u(j)
overlap, and a few small modifications are required (see the QGPC{® formulation in
Section 2.3.3 for an example of this). Hence, it is assumed that n > n; unless otherwise

explicitly specified. aaa

The minimisation of J;” and J;" is equivalent to that of ¥ taking the appropriate

value of k(j) in each case.

8Notice that the first term of J; and J;" sums the absolute value of the errors up to N ~ 1 and

not N, hence u(N) = 0. The definition u(N) = 0 guarantees that |e(t + N|t)| is counted only once in
the cost function.
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In order to write the LP problems in a more convenient form, let e, be defined as
en(t) = [ e(t+NJt) e(t+N+1[t) ... e(t+N+nft)]",

that is, e, (t) is the vector of predicted errors e(t+ N+ jt) for j = 0,1,...,n. Problems

® and @ can now be written as
(o> GAu+ f—w,
o> -GAu—- f+w,
(192 —€n,
992 en;

: : B 2 Au,
m,afg,%l,z.xuw subject to < 8> —Au,
> pTo+xTo+pB,
PAu<r,
E}'Au:ﬁ)w?,
\ UEO}QDZ())ﬂZO?\I’ZO:

where -

T
p=[00) o) ... o],
and u, o, p and @ are defined in eqn.2.35. The iterative algorithm presented above
works with [n-+1] instead of n because the dimension of ¢ is (n+1) x 1 and not n x 1.
Finally, & is a weighting vector which takes two different values for Problems @ and
®:
T
or=[1® 10],

@nm[l m 1 0}T+[0 (r-mat) § o () a]T

Taking into account that the end-point constraints ¥ = w imply eqn.2.27, it is

possible to write the vector e,(t) in terms of z(t):

Cz(t)

en(t) = C@zz(i) = Tz(1),
C3"2(t)

with
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where z(t), ® and C are defined in eqn.2.25, 2.28 and 2.26 respectively. In addition,
according to the definition of e(t) in eqn.2.17, z(t) = He(t) for

H=[Oxyone In].

Hence, the constraints ¢ > —e, and ¢ > e, can be written in a more suitable form,

since
en=Tz=THe=TH (w~ f - GAu),
thus

p2—e=>p2>-TH(w- f)+THGAu,

p>e, =p>T'H(w-f)-THGAu.
Finally, these LP problems are converted to the standard form

minc’x subject to Ax < b, 0 >0, 0>0,8>0,¥ >0,
r

with
S 0]
g 0
z=| ¢ , c¢c=|0},
B 0
A | 1]
and
[ ¢ |-1{0o}|o0 0] [ —f+w ]
-G |-I| 0010 —-w
THG |0 |-I{o0 |0 TH (- f +w)
-THG| 0 |-I|0 |0 TH (f - w)
I olo0|-Ilo
A: s b: 0
-I oo |-I|0O 0
o7 pT 6T | pT | -1 0
P ojo|o]|oO r
G olololo ~f+
| -G |ojo0|o0]o0 | . F-w
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2.3.3 Quasi-infinite horizon 1-norm GPC

As remarked above, i:he implementation of the GPCS® can involve a high computational
burden due to the necessity of solving two LP problems at each iteration, and there
is no estimate on how many iterations will be needed. In addition, the dimension of
these problems increases with n. The Quasi-Infinite Horizon 1-norm GPC (QGPCS®)
presented in this section is based on minimising an upper bound of the GPC{® cost

function, obtained from eqn.2.39 with n = 0:

Dl +N+jl)<e Y let+il)l, (2.46)
7=0 j=N-nz+1

where « is defined in eqn.2.38. Thus, this is the simplest possible upper bound of the

infinite horizon cost function regarding the dimension of the LP problem to be solved.

The main point on this approach is the fact that only one LP problem must be
solved, and hence the iterative procedure depicted above can be avoided. However,
as shown in the sequel, this method does not guarantee the stability of the nominal

closed-loop system, though it is “very unlikely” that instability results.

The motivation for using an upper bound of the infinite horizon problem comes
from the intuitive idea that the stability problems of the GPC are somehow related
to the use of a finite prediction horizon. In fact, any finite horizon cost function is a
lower bound of the infinite horizon one (unless particular system-dependent weighting
sequences are chosen), and that can be one of the reasons for the poor GPC stabilising
properties. A better behaviour might arise by using a cost function which bounds the
infinite horizon problem from above. Intuitively, if an upper bound is minimised, the
true infinite horizon cost function would be below the upper bound optimal value and,
thus, the infinite horizon cost function is, if not minimised, at leasf. bounded from

above at its optimal point.

Taking into account all these considerations, the QGPCS° proposed here computes
g



Sec. 2.3. 1-norm cost functions 51

the optimal control move vector as the solution of the optimisation problem

AuPt = argxgin Ji(t) subject to {PAu <r GAu=1 - }} , (2.47)
with
N1 N Ny
()= let+ilt)l+a D let+iH)]+ D p() |dult+5~1[)], (248)
i=1 © j=N-ngt+l j=1

which is the same as J; (t) of eqn.2.40 with n = 0.

The LP formulation used in Section 2.3.2.1 to minimise J; (¢} must be modified in
order to solve the QGPC{° problem, since the vectors ¢ and k overlap in the latter
case. If the variables o(j) > 0 and §(j) > 0 are introduced, the problem of minimising

¥ subject to:

~a(j) < e(t+jlt) < o(f), 1<j<N,
~835) < Auft +§ - 1[t) < B(), 1<ji< N,
N Ny
0 < Y pu@elG)+ Y, p6)BG) £ Y,
i=1 j=1

with

| 1 i0<j<N—mng

py=< 1+a fN-nz<j<N-1,
a ifj=N,

is equivalent to the problem of eqn.2.47. If n; = 0 (antistable system) u(N) can

be defined to be either « (which is zero in that case) or 1, since the predicted error

e(t + Nt} is zero due to the end-point equality constraints.

As done in Section 2.3.2.1, this problem can be converted to the standard form as

minclz subject to Az < b, >0, 8>0, ¥ >0,
T

with
Au 0
| _|
- ﬁ 3 hand 0 3
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and
[ G |-I|0|0] [ —f+w ]
-G|-I{01}0 - w
I |0o|-I|oO 0
-I|0 |-I|0 0
A= , b= ,
0T | uT | pT | -1 0
P 0|00 T
Glo|lolo ~f+
| -G|o |00 | | F-w

where pu, o, 3 and p are defined in eqn.2.35.

2.3.4 1-norm stability theorems

In this section stability theorems for the CRHPC,, the GPC{°® and the QGPCY® are

provided. Some of them are 1-norm versions of those of Section 2.2.3.
Theorem 2.5 For any stabilisable and detectable system, the CRHPC; leads to a sta-

ble closed-loop system if

(1) N) 2 p(N —1) 2 --- 2 p(l),
(i) p(Ny) > p(Ny —1) > --- > p(1) > 0, and

(iii) m = max{ng,ny — 1} + 1.

Proof: The proof is completely analogous to that of Theorem 2.1, replacing the
“squares” by absolute value signs. \AAY

All the remarks made about the CRHPC are valid for the 1-norm counterpart.

Theorem 2.6 For any stabilisable and detectable system, the GPC® is stabilising if

(i) p(Ny) > p(Ny —1) 2 --- 2 p(1) > 0, and
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(ii}) N, > ng.

Proof: The proof provided for Theorem 2.2 can be written replacing the “squares”

by absolute value signs. vvv
Again, all the remarks made about the GPC®™ are valid for the 1-norm counterpart.

Theorem 2.7 For any stabilisable and detectable system, the QGPCY is stabilising if

(@) p(Nu) 2 p(Ny=1) 2 -+ 2 p(1) 2 0, and

(i) N, =nz+ 1.

Proof: In that case, the QGPCY is equivalent to both the GPC™ and the GPCY°
since, in these three controllers, for N, = nz + 1, all the available degrees of freedom
are used to enforce the nz + 1 end-point equality constraints ¥ = w. Hence the vectors
m(i} computed by th&sg controllers are the same and stability is guaranteed by

Theorems 2.2 and 2.6. \A"A%

Theoreni 2.8 For any stabiliseble and detectable antistable® system, the QGPCS® is
stabilising if

(i) Q(Nn) > p(Nﬁ - 1) ez p(l) >0, and

Proof: For antistable systems A(¢™!) = 1, ¥ = y and % = w and then the nz + 1
end-point equality constraints on tﬁe unstable part of the output are, in fact, n, + 1
equality constraints on the whole output. Due to these end-point constraints, the
predicted errors e(t + N + j|t) are zero for all § > 0, what makes the cost functions
of the GPC{® (eqn.2.36) and the QGPC{® (eqn.2.48) identical. Hence the QGPC{

9A system is said to be antistable if all of its poles are unstable, or nz = 0, n, = ng.
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is equivalent to the GPC}° and stability of the closed-loop system is guaranteed by
Theorem 2.6. vvv

Remark 2.29 In addition, in this situation, the QGPC{® and the GPC{° closely re-
semble the CRHPC;, because the end-point constraints on the unstable ‘part of the
output turn out to be equality constraints on the whole output. Notice, however, that
the CRHPC; may need more constraints than the GPC® /QGPCS, since m (Theorem
2.5) must be greater than the numerator order: m = max {n,,ny — 1} + 1. This condi-
tion is not necessary in the GPC®/QGPC{® formulations, since the prediction horizon
N is defined in eqn.2.14 such that the dynamics caused by the numerator reach the

steady state by time t + N. Qaa

2.4 TIllustrative examples

In this section the properties of the stabilising controllers CRHPC, CRHPC;, GPC“?,
GPCY{° and QGPCS° are analysed by means of simulation using the benchmark systems
introduced in Appendix A. The lower costing horizons for the GPC*, the GPC{® and
the QGPCS® have been chosen as Ny = 1, since this tuning knob does not affect the
stability properties of these controllers. In addition, it is worth pointing out that this
chapter is only concerned with the nominal properties. Thus the true system and
the internal model for predictions are identical for all the experiments of this section.
Hence, as the polynomial T does not affect the results (see Chapter 3), T'(¢g™!) =1 is

assumed.

In the implementation of the GPC}° used throughout this section, the iterative
algorithm presented in Section 2.3.2 has been used with a relative error &, = 1072,
i.e. the difference between the lower and the upper bounds of the infinite horizon
| cost function must be less than the 1% of the lower bound optimum value. The n

parameter has been initialised to [n + 1] := 10 (at the first sample), whereas the
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sentence of eqn.2.45 has been used from the second sampling instant on.

CRHPC: Oplivsal vont Tunclion values

oy 3 ) 15 2 - I ) 5 W 3 20 ) 3
T {samplen) Thseow {samplon)
(a) Input/Ouput responses for the (b) Optimal cost function values for the
(2-norm) CRHPC and GPC*® (2-norm) CRHPC and GPC*®

Figure 2.1: Closed-loop behaviour of the (2-norm) CRHPC: [N,m, p,p] = [4,3,1,1]
and GPC*: [N, p] = [5,1]

2.4.1 An unstable GPC example

First of all, the controllers have been tested on the system of eqn.A.1 (Section A.1)

which is reported in (Bitmead et al., 1990) to cause stability problems with the standard
finite horizon GPC:

1,1 -1 -2
0 'B{g7') ¢! —1.999¢
Gla™) = Alg™t) T 1—4g71+4q2

The CRHPC and CRHPC; have been tried using the tuning parameters N = 4,
m = 3, u(j) = 1, for all j and p(j) = 1 for all . With such a choice, m, u(j) and
p(j) satisfy the conditions of Theorems 2.1 and 2.5. Thus, both controllers should
provide with a stable closed-loop system. Notice that NV, = N 41 = 5 is greater than
the number of equality constraints (m = 3), which is a necessary condition for the

solvability of the optimisation problem.
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CRHPC: OpBmal cost function values

CRHPC: Setpoint and Output signals 6
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(a) Input/Ouput responses for the (b) Optimal cost function values for the
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Figure 2.2: Closed-loop behaviour of the CRHPC,: [N,m,u,p] = [4,3,1,1] and
GPC{°/QGPC: [Ny, p] = [5,1]

Fig.2.1 and 2.2 show the closed-loop behaviour obtained with the 2-norm and the
1-norm controllers. In the figures, a dotted line is used for the setpoint, which changes
from 0 to 1 at the fifth sample. It is noticed that both controllers lead to a stable
closed-loop system with monotonically non-increasing optimal cost function values.
Only when the setpoint change occurs (at the fifth sample) does the cost function raise,
otherwise it decreases and settles down to zero. Notice also that the difference between
the 2-norm and the 1-norm versions is remarkably small, either as the input/output
responses or the cost functions are concerned. It must be pointed out, however, that
the comparison between the closed-loop behaviour provided by the 1-norm and 2-norm
implementations is not strictly appropriate, since the weights x and p apply to absolute

values in the former, but to squares in the latter.

The GPC™ and the GPCS{° have been tested on this system using the tuning pa-
rameters N, = 5 and p(j) = 1 for all j. Hence, the degrees of freedom of these
controllers are the same as for the CRHPC and the CRHPC; used above. In this case,
the GPC™ turns out to be identical to the CRHPC, and the same goes to GPC{°
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and the CRHPC;. This fact is not surprising, as the system used for the exper-
iments is antistable and thus, the equality constraints on the unstable part of the
output become, for both the GPC* and the GPCY{°, equality constraints on the whole
output. However, the fact that both controllers (the CRHPC and the GPC®) are
identical in this case is not straightforward. On the one hand, with the tuning knobs
[N, m, u(5), p(5)] = [4,3,1,1] the CRHPC (CRHPC;) is equivalent to the problem
of minimising eqn.2.3 (eqn.2.34) with [Ny, Ny, Na, Ny, u(5), p(4),7] = [1,5,7,5,1,1,0].
On the other hand, the GPC*® (GPC{°), taking into account that the end-point con-
Straints affect the whole output of the model, can be posed as the minimisation of
eqn.2.3 (eqn.2.34) with [Ny, Ny, N2, Ny, u(4), p(5),7] = [1,6,8,5,1,1,0]. Hence the
constraint and upper costing horizons N, and N, are not the same for the CRHPC
and the GPC™. Despite that, it can be easily shown that, for this particular case, the
equality constraints enforced by the CRHPC and the GPC lead tb y(t + jlt) = w(t|t)

for all j > 4, which is reason why these two controllers become identical.

Remark 2.30 One might be tempted to think that the CRHPC (CRHPC,;) and the
GPC*® (GPCY) are equivalent for all antistable systems when the degrees of freedom
(N,) of these controllers are the same. This is only true when the number of open-loop
zeros is lower than or equal to the number of open-loop poles, or ny — 1 < ng, since, in
that case, both the CRHPC and the GPC™ use the same number of end-point equality
constraints: m = max{ng,n, — 1} + 1 = n, + 1 for the CRHPC and nzg +1 =n, +1
for the GPC™. aag

Finally, as a consequence of Theorem 2.8, the QGPC{® with the tuning knobs
[Nu, p(5)] = [5,1] is equivalent to the GPC{® and, consequently, to the CRHPC;.
Hence the closed-loop behaviour for the QGPC{° is as shown in Fig.2.2.

The system used in this section can be regarded as quite a pathological case, since

all its roots (poles and zeroes) are unstable and, moreover, it possesses a near pole-zero
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CRHPC: Setpoint and Oulput signals CRHPC: Optimal cost function values
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Figure 2.3: Closed-loop behaviour of the (2-norm) CRHPC: [N, m, u, p] = [4,3,1,1]

cancellation which results on the system being almost undetectable. The stabilising
approaches have been proved successful even in such a situation. In fact, antistable
systems are the only ones for which the QGPC}® is proved to be stabilising for all
possible values of the control horizon N, > nz. The next few sections are devoted to

illustrate the behaviour of these controllers in front of more typical situations.

2.4.2 Non-minimum phase stable system

Here, the controllers are tested on the system provided in eqn.A.4 of Section A.2:

¢ 'B(g!) _ ¢7%(0.1098 — 0.1232¢™")
A(g™!) ~ 1-1.8098¢"! +0.8432¢~2

G =

First of all, the CRHPC and CRHPC, have been tried using the same set of tuning
parameters as the previous section, namely [N, m, u(5), p(5)] = [4, 3, 1, 1], which satisfy
the conditions of Theorems 2.1 and 2.5. The results are shown in Fig.2.3 for the 2-norm
controller and in Fig.2.4 for the 1-norm counterpart. As expected, both of them are
stable and the optimal cost function values are non-increasing. The difference between

the cost function values of the 2-norm and the 1-norm cases is a consequence of the use
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Figure 2.4: Closed-loop behaviour of the CRHPC;y: [N, m, i, p] = [4,3,1,1]

of the square in the latter. The input/output closed-loop responses, which are quite
similar for both controllers, exhibit a deadbeat-like behaviour with a considerable initial

inverse response.

For this example, the CRHPC and the GPC® are not equivalent, since the system is
not open-loop antistable. The GPC*® and the GPCZ have been tried with [Nu, 0(5)] =
[3, 1]. With these settings, the GPC™ (for either norm) uses just one end-point equality
constraint, as the open-loop system is stable (nz+1 = 1). Hence, two degrees of freedom
are used to attain the minimisation of the cost function, and the other one is needed to
enforce the equality constraint. Notice that, in the already presented CRHPC, m = 3
and N, = 5, thus the degrees of freedom available for minimisation in those controllers
are also N,—m = 2. The GPC{° iterative algorithm provided in Section 2.3.2 converges

for [n + 1] = 80 or [n + 1] = 160 in this example, depending on the sample.

Fig.2.5 shows the closed-loop behaviour of the GPC™ and Fig.2.6 that of the GPC{°.
A simulation time of 80 samples (50 more than for the CRHPC examples) have been

chosen taking into account the closed-loop dynamics. It is worth pointing out that the
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(a) Input/Ouput responses for the (b) Optimal cost function values for the
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Figure 2.5: Closed-loop behaviour of the (2-norm) GPC™: [N, p] = [3, 1]

I-norm and 2-norm responses are quite similar. The output responsé obtained with
the GPCS{° is a bit faster, and the cost function settles down to zero a few samples
before than the 2-norm counterpart. In addition, notice that the output shape is softer
and the control efforts are lower compared to the CRHPC. As shown in the following
chapter, the smoother behaviour of the GPC® relative to the CRHPC leads to better

robustness properties.

Finally the QGPCS® has been tried with the same tuning knobs, i.e. [Ny, p(j)] =
[3,1]. As shown in Fig.2.7, the use of the QGPCS® tuned in this fashion results in an
unstable closed-loop system. Such a behaviour is a consequence of the properties of
the open-loop system. The non-minimum phase characteristic combined with a short
sampling time leads to an open-loop inverse response which takes 10 samples, as shown
in Fig.A.2. Notice that, with these tuning knobs, the prediction horizon (eqn.2.14 is
N = max{N, + n, — 1,13} = max{4,2} = 4, which means that all the predictions
are made within the inverse response region. This is not relevant with the “exact”
GPC{° implementation of Section 2.3.2, but the upper-bound solution provided by the
QGPC{ does not suffice to stabilise the system. Instability with the QGPC{°® does
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Figure 2.6: Closed-loop behaviour of the GPC{®: [Ny, p] = [3,1]

not occur when the system’s zero is moved inside the unit circle or when the sampling

time is increased in such a way that the initial inverse response takes fewer samples.

The same experiment has been repeated with greater values of the control horizon,
and it has been found that the closed-loop system is stable for all N, > 4. It is worth
pointing out that N increases with the control horizon as apparent in eqn.2.14, and
thus a greater N, entails a greater N. Fig.2.8 shows the closed-loop behaviour for
[Ny, p(7)] = [5,1] attained with the GPCS® and the QGPCS°. Although the behaviour
obtained with the latter is deadbeat-like, the closed-loop system is stable and the cost
function is non-increasing. On the other hand, the GPC{° provides with a smoother

response and a less active input signal.

Remark 2.31 Notice that the optimal values of the cost QGPCS® cost function are
lower than those of the GPCS® for several samples. This is by no means a contradiction
of Theorem 2.3, since the internal closed-loop states are different for both controllers af-
ter the setpoint change, as the computed control sequences are not the same. Theorem

2.3 applies when the infinite horizon, the lower bound and the upper bound problems
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Figure 2.7: Closed-loop behaviour of the QGPCT®: [Ny, p] = (3, 1]

are solved using the same data, i.e., with the same internal states. ‘ aaa

Remark 2.32 Not surprisingly, the deadbeat-like behaviour obtained with the GPC{°
closely resembles that obtained with the CRHPC, (Fig.2.4). The reason for such a
situation can be found by comparing the QGPC® and the CHRPC; problems. In
the cost function of eqn.2.48 the weight o turns out to be 84.2724 f(}; this particular
case. Hehce a is about two orders of magnitude greater than the weight on the errors

e(t + jit) for j = 1,2,..., N — ng, which is just 1. This means that the term

N
a > le(t+il)

j=N—na+1

can be thought of as n; softened constraints le(t + jlt)| < 1,for j =1,2,..., N — n;.
These, combined with the nz-+1 equality constraints on the unstable part of the output,
sum up ng + ng + 1 = n, + 1 end-point equality constraints, just the same as for the
CRHPC,. Hence, for this particular example, the QGPC3° is closer to the CRHPC,
than to the GPC.

This situation is caused by the proximity of the open-loop poles to the unit circle,
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Figure 2.8: Closed-loop behaviour of the QGPC{® and the GPC™: [N, p] = [5,1]

which makes the powers &’ decay to zero very slowly, and thus the upper bound

o N
Slet+ N+t <a > let+ilt),
j=0 j=N-nz+1

is far from being an equality. In the typical case, for classical choices of the sampling
time, the maximum absolute value of the open-loop poles is near 0.7, and then the
powers ®7 decay to zero faster, and the bound provided in the above equation is much
closer to the equality. As a consequence of this, the QGPC{® would be closer to the

GPC{° and no deadbeat-like close-loop behaviour is expected. aan

Section 2.5 shows that the difference between the QGPCY® and the GPC®, for this

particular example, decreases if greater values of the control horizon are chosen.

2.4.3 A comparative study of GPC{ and QGPC{

This section illustrates that the stability problems of the QGPC{® discussed in the last
section are unusual, and compares the closed-loop behaviour obtained with the GPC{®

and the QGPC{° for different choices of the control horizon.
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Both controllers have been tested against the lightly damped second-order system

of eqn.A.10 (Section A.5):

g 'B(g™!) _ 0.2358¢7! +0.2319¢72
A(g™!)  1-—1.4835¢! +0.9512¢—2"

G(g) =

Notice that stability with the QGPCI° is only guaranteed for N, = nz+1 = 1, since
Theorem 2.7 applies in that case, however. For N, > 1 the stability of the QGPC{°

must be checked by simulation.

Quasi-inlinite/Infinite horizon GPC: Setpoint and Output signals
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Figure 2.9: Closed-loop behaviour of the QGPC{® and the GPC™: [N,, p] = [1,1]

With the choice [Ny, p(5)] = [1,1], the QGPC{° and the GPCY® are identical, as
proved in Theorem 2.7 and shown in Fig.2.9. This choice of IV, leads to mean-level
control on the stable part of the process, i.e., the whole process in this case, as discussed
in (Scokaert, 1997). Although the input/output responses are the same due to the fact
that the only degree of freedom of the controller is used to enforce the end-point
equality constraint, the optimal cost function values, plotted in Fig.2.9(b), are not the
same. The cost function values of the GPCS° are a non-increasing sequence, as proved
in Theorem 2.6, but the upper bound cost function used in the QGPC{® does not

guarantee that property, as evident in the figure.
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Remark 2.33 The condition that the optimal cost sequence is monotonically non-
increasing is sufficient but not necessary for stability. The closed-loop system can be

stable even though this condition is not satisfied, as occurs for this-example.  0QQ

In addition, notice that a comparison between the sequences of optimal cost function
values make sense for all samples in this case, since the control efforts computed by
both algorithms are the same, and hence the cost function minimised by the QGPC{° is
an upper bound of that of the GPCS° at all samples. The fact the optimal cost function
value computed with the QGPC{° is always greater than or equal to that of the GPC®

is a consequence of Theorem 2.3. This situation is general when N, = nz + 1.
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Figure 2.10: Closed-loop behaviour of the QGPC{® and the GPC*™: [N,, p] = [2,1]

The behaviour obtained with the QGPCS® and the GPC{® when the tuning knobs
are chosen as [Ny, p(j)] = [2,1] is shown in Fig.2.10. The results do not differ too
much, but the response is somewhat faster in the case of the GPC{°. On the other
hand, the optimal values of the QGPC{° cost function are about twice larger than those
of tﬁe GPC®™ for the first few samples. Although both closed-loop systems have turned

out to be similar, it must be taken into account that the GPC{® algorithms involves
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an enormous computational burden, since the convergence condition is achieved for
[n + 1] = 360 at most samples. On the other hand, the QGPC® solution is several

orders of magnitude faster.

Apart from the graphical comparison provided above, the closed-loop behaviour
obtained with both controllers can be compared numerically. Let u*(t) and y*(¢)
denote the input/output responses obtained with the GPCS°, and u9*°(t) and y9>(t)
those obtained with the QGPCI°. The “distance” between both solutions can be

computed using the criterion

ne

] _ ,,Q00 2 u® _quo 2 sta oo
T ;[y ) —y%°M)]" + ¢ [u™(?) (t)]°, stable QGPC, (2.48)

00, otherwise,
where n; is the number of samples of the experiment and ¢ stands for some non-
negative scalar. In the last experiment the value obtained for Jy is 1.6926, for ¢ = 1
and n; = 80. If the experiment is repeated for N, > 2, the difference between the
GPC®™ and the QGPCY{® vanishes, i.e. Jgir = 0 (actually Jgr < 10727 = 0), with the
same choices for ¢ and n;. Hence, the QGPC{° and the GPC{° seem to converge for
large enough N,. The following section is focused on providing a formal framework to

justify this hypothesis.

Control horizon (V,)
1 | 2 [ 3] 475
Controller-2CECT (fagrar) 1.00 1.15 | 1.07 [ 1.12 [ 1.20
GPCP (topoe) || 13342.42 | 2489.23 [ 3.08 | 3.00 | 3.37
| Ratio (fgpce/tooror) || 13342.42 [ 2160.26 | 2.89 | 2.64 [ 2.80 |

Table 2.1: Normalised CPU time

Apart from stability and performance, the GPCJ° and the QGPC}° can be com-
pared in terms of computation requirements. Table 2.1 shows the Central Processing

Unit (CPU) time!? required by the 80-sample simulations performed with both con-

10 Floating point operations (flops) are not always counted in Matlab, and hence CPU time has been
preferred as a measurement.
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trollers. Of course, CPU time varies between different machines, and thus the results
are displayed normalised, dividing by the lowest value, in such a way that they provide
machine-independent information. There may still be small variations from one ma-
chine to other. The results show that the GPC]° may need much more computational
effort than the QGPCS°, even more than 13000 times (!) the CPU time required by
the latter (for N, = 1), and always more than twice. For N, = 1 the whole simulation
takes less than a second with the QGPC{°, whereas the GPC{° takes more than two
hours (!). This result is quite consistent since, in the best case, the GPC{° solves two
LP problems to compute a single control move (if only one iteration is required for
convergence), whereas the QGPCJ® solves just one. Notice, in addition, that although
the QGPCS® and the GPCY° are identical for N, > 2 (for these particular conditions),
the former involves less than half the computational burden of the latter. This is of
particular relevance if min-max methods are to be used to robusfify these controllers

(see Chapter 4).

2.5 From quasi-infinite to infinite horizons

The experiment of Section 2.4.3 for N, > 2 reveals that the QGPCS® converges to the
GPC™ to some extent. The scope of this section is to justify that convergence and to

show how it can be exploited.

The convergence of the QGPC{° and the GPC{® for large enough N, is due to the
combination of two different facts. Firstly, it must be noticed that N, = oo = N — oo,
and hence the cost function of the QGPCS® (eqn.2.48) converges to that of the GPC{®
(eqn.2.36). However, this would only explain the convergence for very large N,, and
N, = 3 in Section 2.4.3 does not appear to be large enough, especially as the results

obtained using the GPC{® and the QGPCY® are not as close for N, = 2.

A second reason why a large N, brings the QGPC{° closer to the GPC™ comes
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out by paying attention to the upper bound which is used in the cost function of the

QGPC{® (eqn.2.46):

oo N
dolet+ N+t <ellz®ll,=a Y. |+l
J=0 Jj=N-nzg+1

If the controllers are provided with enough degrees of freedom for the minimisation of
the cost function, then the predicted errors will tend to zero: |e(t + j]t)] < 1 for large

enough j. Thus, if the condition
let+7)|=0,j=N—-nz+1,N—nz+2,...,N, (2.50)

holds for some NV, it then follows that

) N
0< D le(t+N+jlt) <a D let+ilt)~0.
j=0 J=N-ng+l1

Therefore the upper bound (QGPC{®) and the GPC® cost functions become almost
identical. The larger N, is, the more likely the condition of eqn.2.50 is to hold since,
as more degrees of freedom are available, the controller can lead the output to the
setpoint faster. In addition, this condition can be satisfied even for relatively small N,
what explains why the GPC{® and the QGPC{° are identical for N,, > 2 in the example
mentioned above. Finally, notice that, in such a situation the QGPC®/GPC{® would

also be quite close to the CRHPC;, for the reasons pointed out in Remark 2.32.
The following conjecture stems from these observations:
Conjecture 2.1 For any stabilisable and detectable system, there exists a relatively
small integer N, > ng such that the QGPC{° is stabilising if
(i) p(Nu) 2 p(Nu —1) 2 -+ 2 p(1) 20, and
(ii) N, > N,.

Remark 2.34 As discussed above, the increase of N, can result on the satisfaction

of eqn.2.50, and therefore the distance between the GPC{® and the QGPC{° vanishes,
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leading to stability. However, there is no estimation about how large N, is required
for each system. Sometimes the closed-loop system with the QGPCY° is stable for all
Ny, > ngz + 2 (the first case which does not satisfy the conditions of Theorem 2.7), as
happens in the example shown in Section 2.4.3, whereas some other times larger values

may be needed, as shown in the example provided in Section 2.4.2. Qad

N, 12,3,4] 5 6 7 8 9 10 | 11 | > 11
Jaig | oo |572.4]216.0 | 150.0 | 89.6 | 61.7 | 27.7 | 195 | O

Table 2.2: Jgir as a function of N,

The following example is intended to illustrate the convergence property of Conjec-
ture 2.1. A few experiments have been carried with the non-minimum phase system
of Section 2.4.2 (eqn.A.4), with p(j) =1 for all j and different values of N,. The dis-
tance from the GPCJ° to the QGPC{° solutions has been computed using the criterion
defined in eqn.2.49 with ¢ = 1 and n; = 80, and the results are displayed in Table 2.2.
Ny = 1 has not been included in this comparison since Theorem 2.7 applies in that
case, leading to Jgir = 0. The results show that the QGPC{® gives rise to an unstable
closed-loop system for 1 < N, < 5, and the difference between the QGPCS® and the
GPC$® monotonically decreases from N, = 5 to N, = 12. For N, > 11 the responses
obtained with the GPC{® and the QGPCY{°® are identical, since Jg¢ = 0. For this ex-
ample N, = 5, but the QGPC° does not provide the same closed-loop behaviour as

the GPC{® until N, = 12.

This example points out that, although the QGPCS® does not provide with stability
guarantees (apart from the cases collected in Theorems 2.8 and 2.7) it is not difficult to
tune this controller for stability by increasing the control horizon. This property can
be useful when the GPC‘;" is to be applied to control a real process, as a great deal of
computations can be avoided by using the QGPCY° formulation instead of the iterative

algorithm of Section 2.3.2. Of course, this possibility can be considered only if NV,
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is large enough such that the QGPCY° is stabilising (assuming that Conjecture 2.1 is
true). In addition, it is worth taking into account that the performance attained with
the GPC{° and the QGPC{° can be quite different for small N,, as shown in Section
2.4.2 for N, = 5.

2.6 Concluding remarks

In this chapter several receding-horizon predictive controllers have been formulated.
The controllers introduced in Section 2.2, above all the CRHPC and the GPC*®, were
proposed to overcome the stability probléms of the classical GPC, which were pointed
out by Bitmead ef al. (1990). Both the CRHPC and the GPC® are modifications
of the GPC control law which enjoy the property that the sequencé of optimal cost
function values is monotonically non-increasing, which implies closed-loop stability as

shown by the theorems of Section 2.2.3.

The novel aspects introduced in this chapter are the 1-norm versions of those stabil-
ising approaches, namely the CRHPC, and the GPC7°. The aim of these formulations is
to develép efficient robust predictive controllers based on min-max optimisation, which
can be solved with standard LP tools if 1-norm cost functions are used, as shown in
(Camacho and Bordéns, 1995). The CRHPC; does not introduce any difficulty, and
can be easily solved as a LP problem. On the other hand, the GPC{® requires the
use of an iterative algorithm until the difference between a lower bound and an upper
bound solutions is small enough. Finally, a simple upper bound problem of the GPC{,
referred to as QGPCY°, is defined in Section 2.3.3. The QGPC{® avoids the computa-
tional burden involved by the GPC{°, since the iterative algorithm depicted in Section
2.3.2 is not used. However, the stability guarantees with the QGPC3° reduce to a few
special cases. Several theorems proving the stability of these 1-norm controllers under

some conditions are provided in Section 2.3.4.
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In the simulation examples of Section 2.4, it can be observed that both the CRHPC
and the GPC®, either in the 2-norm or the 1-norm formulations, lead to a stable closed-
loop system. Apart from stability, the GPC™ seems a better choice as performance is
considered, since the CRHPC often produces a deadbeat-like behaviour {(especially if

a short prediction horizon is chosen, as shown in the forthcoming chapters).

Finally, the convergence of QGPCY® and GPC{° is analysed in Section 2.5, where
the fact that, for a large enough (but relatively small) control horizon, the closed-
loop behaviour provided by these two controllers is indistinguishable is illustrated by
means of an example. Hence, although the QGPCY® itself is not always stabilising,
it is conjectured that with a large enough N, it turns to be a stabilising controller
since it converges to the GPC{°. This property is remarkably useful because it allows
to implement the GPC{® as the QGPC{® for sufficiently large N,,, avoiding the high

computational requirements of the iterative algorithm depicted in Section 2.3.2.
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Chapter 3

Robust analysis and design of
unconstrained stabilising RHPC

3.1 Introduction

In Chapter 2 some predictive controllers which guarantee the stability of the nominal
closed-loop system are presented. These controllers ensure closed-loop stability as
far as the system to which they are applied, referred to as true system/process/plant
hereafter, is identical to the internal model used for predictions, referred to as nominal
modei/sysiem/process/piaﬁi throughout this thesis. However, in real applications, the
true system and the nominal model always differ, since models, and especially linear
representations, are merely an approximation to reality. The sources of uncertainty in
the plant model are numerous and the list given below (Skogestad and Postlethwaite,

1996) points out some relevant ones:

1. There are always parameters in the model which are only known approximately

or are simply in error.

2. The parameters in the linear model may vary due to non-linearities or changes

in the operating conditions.
3. Measurement devices have imperfections. This may even give rise to uncertainty

73
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“in the manipulated input, since the actual input is often adjusted in a cascade

manner.
4. At high frequencies even the structure and the model order is unknown.

5. Even when a very detailed model is available, a simpler lower order nominal

model can be used and the neglected dynamics are represented as uncertainty.

6. The controller implemented may differ from the one obtained by solving the
synthesis problem. In this case one may include uncertainty to allow for controller

order reduction and implementation inaccuracies.

It is not in the scope of this thesis to provide a full review of the uncertainty sources,
but to suggest methods to incorporate some knowledge of uncertainty into the control
design. If system uncertainty is overlooked when the controi'aigorithms introduced
above are to be used in real applications, the consequences can be dramatic, including
instability, constraint violations and poor performance. It must be noted that it would
be a worthless and senseless effort to design a controller according to some optimality
criterion, such as the minimisation of a cost function, if, after all, the closed-loop

behaviour is spoiled by modelling errors and disturbances.

If predictive controllers are used as a way of obtaining an optimal input/output
behaviour and constraints are not an important issue, a classical approach to robustness
becomes possible. The scope of this chapter is to undertake the robustness analysis and
design making use of well-known classical tools, such as the small gain theorem (Morari
and Zafiriou, 1989; Skogestad and Postlethwaite, 1996). First of all, a few preliminary
results are presented to show that 2-norm predictive controllers can be posed in the
classical two-degrees-of-freedom (2-DOF) LTI configuration. The robustness properties

can then be analysed using standard techniques.

In this chapter, the stabilising controllers introduced in Chapter 2 are analysed in

terms of robustness. The target of this survey is to find out the inherent robustness
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properties of different stabilising strategies. This analysis should provide with some
insight on how uncertainty can be handled by predictive controllers. In addition, this
inquiry and can be useful to point out candidates for robust constrained predictive

controllers, an issue which is undertaken in the following chapters.

The synthesis of robust unconstrained MPC has been addressed from several points
of view. Among these, the two most commonly found approaches which use in-
put/output formulations (GPC-like controllers) are the well-known T'-design and Q-
parametrisation (or @-design). The former is based on tuning the polynomial T' of
the nominal model (Clarke and Mohtadi, 1989; Robinson and Clarke, lggi; Soeter-
boek, 1992; de Prada et al., 1994; Yoon and Clarke, 1995a; Megias, 1996; Megias et
al., 1996; Megias et al., 1997), and the latter relies on parametrising, via a ratio-
nal function @, all the controllers which lead to the same nominal transfer function
(Kouvaritakis et al., 1992; Yoon and Clarke, 1995a; Hrissagis et al., 1996; De Nicolao
et al., 1996; Ansay and Wertz, 1997). The so-called observer polynomial 7" has been
shown to bé a valuable tool to enhance robustness since this tuning knob does not
affect the nominal closed-loop behaviour. Héwever, the T-design methods are based
on heuristic rules, whereas ) is chosen to optimise some robustness criterion. Thus the
(Q-design methods are systematic, a reason for which these are often preferred. Despite
that, the T-design tends to providing greater robustness margins as remarked in (Yoon

and Clarke, 1995a; Ansay and Wertz, 1997; Megias et al., 1999a).

In this chapter, a systematic procedure to design T —T -optimisation— which is not
heuristic but based on optimising a robustness criterion is presented. The aim of this
methodology is to combine the advantages of the heuristic T-design and the systematic
(Q-parametrisation methods and, at the same time, to overcome their drawbacks. The
idea of choosing T' by means of optimisation was firstly outlined in (Megias, 1996;

Megias et al., 1997) and finally exploited in (Megfas et al., 1999q).
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This chapter is structured in seven sections. In Section 3.2 LTI forms for uncon-
strained 2-norm RHPC controllers are derived. These allow a classical approach to
analyse robustness. The robust design of unconstrained GPC-like controllers through
the polynomial T is presented in Section 3.3. Section 3.4 compares the robustness of
CRHPC, GPC™, and a “softened” CRHPC. As the true plant is never available for sim-
ulation, the only criteria used to analyse different controllers are nominal pérfermance
and robust Vstability, although simulations with a true plant are provided. Section 3.5
presents the Q-parametrisation method and analyses several choices of the parameter Q
suggested in the literature. In Section 3.6, the T-optimisation procedure is defined and
compared with other approaches, showing that it can provide with greater robustness

bounds. Finally, Section 3.7 draws the most relevant conclusions of this chapter.

3.2 The classical approach to robustness

The classical robustness analysis (and design) of unconstrained RHPC is possible due
to the LTI form of these controllers which was proposed in (Bitmead et al., 1990) for
the GPC and, later, extended to the CRHPC (Scokaert, 1994; Yoon, 1994; Yoon and
Clarke, ‘ig%a), Here, these formulae are also obtained for the inﬁnité horizon GPC™

of (Scokaert, 1994; Scokaert, 1997).

This approach assumes that both the true and the nominal systems are linear and
time invariant. The nominal system is given by the CARIMA model of eqn.2.1 in

Chapter 2:

A ye) = Bt 1)+ T e,

whereas the true process is described by a different input/output model:
Ao(g™)y(t) = Bolg™Vult — 1) +=(2),

where Ag and By are unknown polynomials on the backward shift operator and z(t) is
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an additive disturbance at time ¢. Notice that z(t) affects the internal states, and not
only the output y(t). The perturbation z(t) can be written as an additive disturbance

at the output d,(t) (Fig.3.1) since the equivalence

dy(t) = ’A“;‘(}(‘]':“{‘)“m(t)

clearly holds.

3.2.1 Closed—lpop formulae of unconstrained RHPC

This section provides with an equivalent 2-DOF LTI form of unconstrained RHPC.
The closed-loop formulae presented here are valid only for quadratic cost functions,

that is, those which fit the definition of eqn.2.3.

Remark 3.1 Throughout this chapter it is assumed that no future setpoints are avail-

able, i.e. w(t + j|t) = w(tft) for all j > 0. Qoa

Prior to obtaining the LTI form of RHPC, the polynomials F;(¢g~!), Fj(¢~1),

G;(g7") and H;(g™!) are defined to satisfy the system of Diophantine equations:
T(¢™") = Ae")AE;(¢™") + ¢ Fi(a™), 6
Bi(g)B(¢™") = Gi(¢™T(a™") + ¢ H;(g ™).

The details about these polynomials are extensively documented in the literature
(Clarke et al., 1987; Clarke and Mohtadi, 1989; Bitmead et al., 1990; Soeterboek, 1992;
Megias, 1996) and hence are omitted here for brevity.

Given the definition of Au®*(t) provided in eqn.2.12 for the finite horizon case,
the first postulated control move can be written as

N2 )
AP (tle) = Y Kiw(t + i) — f(2+ 510, (3.2)

i=N
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where the coefficients k; can be computed from

[kN; kN2}=
-1
GTMG,+R G} GTM o
[10 .. 0] . 1 { ! I}. (3.3)
ﬂ(Ny)

The form of eqn.3.2 is essential for the obtention of an equivalent LTI form of RHPC

controllers.

A few manipulations are required to obtain analogous coefficients &; for the GPC*™.
The expression provided in eqn.2.29 must be rewritten in such a way that the free
response and the setpoint values associated to the unstable part of the model, f(t +

N +jt) and @(¢ + N + j|t) respectively, are given in terms of f(¢+ j|t) and w(t + j|t).
First of all, notice that eqn.2.18 implies that

Flt+3518) = FE+510) +@fE+5— 1)+ +Bug f(E+ 5 — nalt),

hence
_fe+Np) f(2lt)
FE+N+1Jt) fE+1))
( : =Hj ; y (3.4)
ft + N +nzlt) F(t+ N+ nzlt)
where! f(t|t) = y(t) by definition and
(N-na) {n3)
[0 . 0 Gy ... @ 1[0 _0 ... 0]
0 .. 0 0 Gy ... & 1 0 ... 0
H‘A_ o - » * - -, - » . . o.‘ Y -
0 0 @, G 1 0
0 0 0 @ ... & 1

Then, if the vector f'(t) is defined as

F)=[ £l Fe+1t) ... FiE+N+ngt) |,

1£(t|t) may be necessary in case that N = ng.
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it is possible to rewrite eqn.3.4 in the form

F(t) = Hf'(2),

where f(t) is defined in eqn.2.19. In addition, note that if w(t + |t} = w(t}t) for all
j > 0, it follows from eqn.2.21 that

Bt + NIt) w(t}?)
AN+ || w1
: A : ’
Bt + N +nalt) w(t + N +nalt)
or
B(t) = H ' (8)
with

w'(t) = [ wt]t) wt+1t) ... wi+N+ngt) ]
Thus the tracking errors on the unstable part of the output can be obtained as

W(t) - y(t) = Hz[w'(t) - F()].

Furthermore, the setpoint and free-response vectors w(t) and f(t), as defined in
eqn.2.15, can also be obtained from w'(t) and f'(¢):
| wt)={0n1 In Onm |W'(2),
F@ =[0n1 In Ong | F(2),

which allows to arrange eqn.2.29 as

opt T ~ T -1 T
{Au] _| G"AG+R G {nm,x GTA ONu,na}(w;uf,)
A G 0 Hj ’

Finally, for the infinite horizon case, the first control move can be written as done

in eqn.3.2 for the finite horizon case:

Ntny

AuP () = > kfw(t + jlt) — F{E+ D)), (3.5)

§=0
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where the coefficients k; are computed as

{k{) PPN kN.{,n&,}:—'

—~ ~1
[10 ... 0] G'AG+R G {GNM GTA 0N,z } (3.6)
G ) Hj

Now, from eqn.3.2 or 3.5, and going through the steps detailed in (Bitmead et
al., 1990) for the GPC, the 2-norm (finite horizon) RHPC and the GPC®, introduced

in Section 2.2, can be written as the standard polynomial expression
Ry(g™)Au(t) = Ty(g " )w(t) — Sp(a™ )y (t),

for which a block diagram is displayed in Fig.3.1. This scheme represents a classical

2-DOF LTI controller.

+
w J_1 | #1498 ,é) y
=1 L 2O ra " ¥ e

Figure 3.1: 2-DOF structure of RHPC

For the finite horizon case, R,, S, and T}, referred to as 2-DOF polynomials here-
after, can be obtained from the coefficients k; provided in eqn.3.3 and the polynomials

H; and F; obtained from the solution of the Diophantine equations of eqn.3.1:

Ny
R,=T+q" Z kiH;,

j=Ny

Ny
Sp =Y k;Fj, (3.7)

j=Ny

Ny
T,=TT =T k.
J=Nj
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Notice that if no knowledge about future setpoints is available (as assumed here, in

Remark 3.1), the factor T} of the polynomial T, becomes a scalar k; which multiplies
T:

T, = kT = Zk)

=N

The infinite horizon case is completely analogous to the finite horizon counterpart,

and the 2-DOF polynomials can be easily computed from

N-+ng
Ry=T+ g~ Z k;Hj,
=0
Ntng
Sp= Y kFy, (3.8)
J=0
Ning )
T,=TT: =T k',
F=0

with k; as defined in eqn.3.6. Again, if no preprogrammed setpoints are considered, T,

Ty= kT = (zk)

becomes

where T = k, is scalar.

In the 2-DOF LTI block diagram provided in Fig.3.1, the nominal closed-loop char-
acteristic polynomial can be obtained taken the true and the nominal systems to be

identical or
B(} = B, ‘

Ag = A, (3.9)
T .
a(t) = €0
Notice that the second and the third equations imply that the nominal output distur-
bance dy, takes the form

dy(t) = %E(t) ’ (3.10)
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Now, eqn.3.9 leads to the nominal characteristic polynomial
TP, = AR,A + ¢"'BS,),

where the so-called observer polynomial T is a factor what is explicitly written in TF..
This fact is widely documented in the literature, e.g. (Yoon and Clarke, 1995a; Megias,
1996), but it must be noticed that T is not seen in the nominal closed-loop transfer

functions, since the nominal input/output responses can be obtained as

AT, AS, AT S
u(t) = F2) - 7240 = ) - Fe0,

and

~1BT, AR, A ¢~ BT
(1) = g Puld) + pdy(t) = T w

w(t) + R%(t)

For the setpoint tracking problem, only the terms of u(t) and y(t) which involve
w(t) are relevant, and the input/output responses come out to be independent of the
polynomial T. On the other hand, d, does not usually fit into eqn.3.10, and hence T

determines the speed of disturbance rejection. Thus “slow” dynamics in 7" should be

avoided.

For the many reasons mentioned in Section 3.1, the true and the nominal systems
always differ or, in other words, the conditions of eqn.3.9 never hold. Hence, the true

characteristic equation can be obtained as
Py = AgRpyA + ¢ 1By,

where T is no longer a factor. The true input/ouput closed-loop equations are then

provided by

u(t) = S 2u() - ey J(6) = Z52w(t) - (1)
and
- »1
y(t):gu;mfs?ﬁw(t)+‘4f?&d(t)m Ly (t)-+-R1‘;‘OA (0.
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3.2.2 Uncertainty descriptions

A nominal design is performed using a nominal model G which is assumed to provide
with a convenient representation of the true plant Gy. However, the true process
cannot be considered as a fixed LTI system due to the reasons pointed out in Section
3.1. Instead of that, Gy is assumed to lie somewhere within a family F of LTI plants
which is defined in terms of G. The formulations provided in this section are focused

on SISO systems, but there are analogous results for the MIMO case.

The usual way to specify F is a frequency domain description which provides with
ranges for the true system frequency response, i.e. the magnitude and phase for all
relevant frequencies. The “true” frequency response is then defined to lie in a region
about the nominal frequency response points. In order to reduce the complexity, the

uncertainty regions are simplified as a series of discs centred at the nominal points.

In discrete-time formulations, the frequency response of rational functions in ¢~}
is completely determined by the values in the range 0 < w < /T, where T is the
sampling time and 7 /T is referred to as the Nyquist frequency. Hence, it is quite usual

to refer to the normalised frequency w,, defined as
wy, = Tyw,
and then the range 0 < w,, < « covers all the frequency spectrum.
The family F of true systems may be described as
F = {Go(e) : [Go(e) ~ Ge)] < Walwn)},
or
Go(e"") = G(e™") + Ao ("),
with

|Au(e™™)| < Wa(wn).
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Ag{e*n) is referred to as additive uncerfainty, since it disturbs the nominal model

additively and W,(w,) stands for the radius of the uncertainty discs.

It is also possible to describe the family F as

F= {Go(ef“’") = G““Zie;;f;"e’”"’ < Wm(wn)},
or
Go(e"") = [L+ Am(e™")] G(e™"),
with

[Am ()] < Win(wn).

By obvious reasons, A (e™") is referred to as multiplicative uncertainty. There ex-
ists a simple relationship between additive and multiplicative uncertainties since, by

comparing the family and the uncertainty definitions, it follows that

W) = iy O™ = Gy
Uncertainty description | Notation Definition
Additive N Go=G+h, |
Multiplicative A Go=G(1+ An)
Inverse additive A Go=(1-GAu)'G |
Inverse multiplicative Aim Go={1-0im) ' G H

Table 3.1: System uncertainty representations

Apart from these two types of uncertainty, Table 3.1 collects the associated inverse
additive and inverse multiplicative uncertainties. The minus signs in the inverse for-
mulations are not relevant, since uncertainties {additive or multiplicative) are assumed
to be bounded in modulus. The definitions of the inverse uncertainties are clarified in

Fig.3.2, which provides the block diagram for these four types.



Sec. 3.2. The classical approach to robustness 85

e wa R e N M e MoK W G W W RRE e T G e e e

o e e

- G W G e G e e e R W R WG TN e e

P R

{c) Inverse additive uncertainty (d) Inverse multiplicative uncertainty

Figure 3.2: Uncertainty descriptions

It is worth pointing out that, for MIMO systems, input and output versions of
multiplicative uncertainties can be defined. In Fig.3.2 the block diagrams (b) and (d)
represent multiplicative input uncertainty and inverse multiplicative output uncertainty
respectively. These are simply referred to as multiplicative and inverse multiplicative

in Table 3.1, since such a distinction does not apply in the SISO case.

3.2.3 Nominal and robust objectives

When a control system is designed, it is expected that the closed-loop requirements
are satisfied for all the possible true plants in the family F. This complex problem is

often tackled as two separated tasks:

(1) a nominal design is performed taking into account the nominal model G, and

(2) some uncertainty description is used in order to incorporate the information about
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the different dynamics the controller is aimed to manage.
Thus, the control objectives are divided into two different categories:

Nominal objectives: the closed-loop characteristics are considered only with respect

to the nominal model G.

Robust objectives: the closed-loop characteristics are considered with respect to the
whole family F, which is described in terms of some uncertainty description about

the nominal model.

One of the main objectives of most control systems is closed-loop stability. Two
different stability problems may be addressed, referred to as Nominal Stability (NS)
and Robust Stability (RS). The former requires that the closed-loop system with the
nominal model ( is stable, whereas in the latter stability is required for all the plants
within the family F. At this point it is worth pointing out that stability is not always a
closed-loop requirement. Some systems are expected to work only for a very short time,
and then steady-state conditions are not relevant. This happens, for example, in missile
control problems. However, in the process industry, stability is a main requirement and

must be preserved.

Apart from stability, the control objective is to keep the output y(t) as close as
possible to the setpoint w(t) despite input/output disturbances, denoted by d,(t) and
dy(t) respectively, and measurement noise n(t). This problem is referred to as Nom-
inal Performance (NP) when the nominal plant G is taken into account, or Robust

Performance (RP) when the whole plant family F is considered.

Disturbance and noise rejection, together with setpoint tracking, is a classical def-
inition of “performance”. However, the term “performance”, as widely used, often

includes a great deal of closed-loop characteristics such as rise time, overshoot, under-
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shoot, input/output varianées, control efforts, steady-state errors and so on. A given
controller is said to perform “well” or “bad” according to whether these attributes fit
the control requirements or not. Nevertheless, the classical disturbance/noise rejection
problems must also be taken into account when carrying on with performance mea-
surements. Notice that, in this wider sense, the predictive controllers introduced in
Chapter 2 provide with some kind of “optimal performance”, since they minimise a
multi-objective cost function which involves the tracking errors as well as the control
efforts. In addition, the noise model is introduced in eqn.2.1 in such a way that step-like
output disturbances are rejected. It is worth pointing out, though, that the end-point
eqﬁaﬁty constraints in the CRHPC (for either norm) introduce some suboptimality in
the solution, which can give rise, for instance, to deadbeat-like behaviour, as happens
in Section 2.4.2. This kind of poor nominal performance does not usually occur with
infinite horizon controllers. Hence, the stabilising controllers of Chapter 2 provide with
NS and some degree of NP (especially the infinite horizon approach), but the problem

of robustness must be addressed.

In addition, one of the key factors to assess the performance of predictive controllers
should be constraint satisfaction since, as mentioned above, constraint handling stands
out among the advantages of MPC. This issue is not involved in the unconstrained
case analysed here, but should not be overlooked and is taken into consideration in the

forthcoming chapters.

4,
o

. U "B Yy
K(g") a2z

~ +
+ B

—P(q")

Figure 3.3: RHPC structure with unit feedback

As shown in (Serrano, 1994), the NS, NP, RS and RP problems for unconstrained

predictive controllers can be undertaken using standard robust control tools. First of
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all, it is convenient to rearrange the block diagram of Fig.3.1 to use unit feedback.
The result is displayed in Fig.3.3 for the nominal plant G(¢~!) = ¢~*B/A, where the
prefilter P{g™!) and the coniroller K(g~') transfer functions can be obtained as

P(qwl) . Tp(qul) K(qul) - SP(QMI) (3"11)

Spla?)’ Ry(g~1)A’
and it is assumed that the prefilter P(q™?) is stable, i.e. S, has no roots outside
the unit circle. This assumption does not limit the results presented hereafter, since
there is no real necessity of rearranging the block diagram for unit feedback. The
analysis presented below can be directly performed on the scheme 'of Fig.3.1, leading
to identical conclusions. However, the unit feedback scheme is often preferred in robust

control literature, and hence is used here too.

The steady-state gain of P(g™') is always 1, since Tp(1) = S,(1) = lc;T(l) as shown,
for example, in {(Megfas, 1996). The error signal ¢(2) is defined as the difference from
the prefiltered setpoint w'(t) to the output y(¢) in this case. As w'(t) asymptotically
converges to w(t), the output is expected to follow the reference, at least for constant

setpoints.

A Zero-Order Hold (ZOH), which is not explicitly included in Fig.3.3, is assumed
in the plant input. In addition, in real applications, an anti-aliasing filter must be used
in the feedback path to get rid of any high-frequency component in disturbances or
meagurement noise, since these cannot be distinguished from low frequency equivalents
after sampling. When the output of the plant is only observed after the anti-aliasing
filter, and the output values are only considered at the sampling instants, Fig.3.3 pro-
vides a simplified digital control structure. It is worth pointing out that, by using
discrete-time trémfer functions, the plant behaviour between sampling instants is ig-
nored. This can lead to several problems such as the intersampling rippling, which can

become very serious.
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Sensitivity Sy={I+GK)™!
Sensitivity e )
at the output Complementary sensitivity T,=GK( +GK)
Control sensitivity U, =K({I+GK)!
Sensitivity at the input Sy={I+KG™
Sensitivit
at the inpi’t Complementary sensitivity at the input | T, = KG(I + KG)™}
Control sensitivity af the input U, =G+ KG)™!

Table 3.2: Sensitivity transfer functions

Now the robust control thesry can be applied making use of the classical sensitivity

transfer function definitions:

H

Y , U, S5 - :gl)
U = Uy Sﬁ “”'Uy —"Ug d‘a ¥ :

for the signals shown in Fig.3.3. These closed-loop transfer functions can be obtained
as shown in Table 3.2, where G stands for the nominal plant. These definitions hold for
MIMO systems, and hence I denotes the identity matrix of conformal dimensions. In
the SISO case, the identity matrix I can be replaced by 1, and the identities S, = Sy,
T, =T, and KU, = GU, are satisfied.

Remark 3.2 The subindexes [], and [}, are introduced for notational clarity, espe-
cially for distinction with respect to the noise polynomial T'. In robust control litera-
ture, the sensitivity functions at the output are often referred to as simply S, T and

U, instead of Sy, T, and Uy, as denoted here. aaa

In the light of Table 3.2, the following binding relationships hold:

S,+T, =1, GU,=T,

Su+Tu:‘:Ia KUuﬁTu'
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Thus these sensitivity transfer functions are closely related, what reduces the degrees

of freedom available for design.

Now the output y(t) can be expressed in terms of these sensitivity transfer functions

and the input signals as

y(t) = Tyw'(t) + Updy (t) + Sydy (£) — Tyn(2).

The NS requirement can be formulated as a classical condition of stability theory.
For discrete-time input/output models in the backward shift operator, this means that
the roots of closed-loop characteristic polynomial must lie strictly within the unit circle.
In unconstrained RHPC, this implies that all the roots of T'F, must be, in modulus,

lower than 1.

On the other hand, the NP requirements can be summarised as the condition that
the output follows the reference in spite of the disturbances dy(t) and d,(t), and the

measurement noise n(t), i.e.:

Ty(g™') = I: to follow the reference w'(t),
U,(q7!) = 0: to filter out the input disturbances dy(t),
Sy(g7t) = 0: to filter out the output disturbances dy(t), and

T,(g7') = 0: to filter out the measurement noise n(t).

There seems to be contradiction between the first and fourth objectives T,(¢™!) =~ I
and T, (¢7!) =~ 0. In addition, in the SISO case, the second objective implies that
K~T,(¢g7') ~ 0, which might cause a contradiction with T;(¢™") ~ I too. However,
these requirements can be enforced at different frequency ranges with no incompatibil-
ity. It is expected that the signals w'(t), du(t), dy(t) and n(t) have different frequency
contents, the knowledge of which can be used to design the sensitivity functions at

different frequencies.
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Notice also that the first and the third requirements are equivalent, since Sy+T;, = I.
This means that output disturbances with frequency contents in the same range as the
prefiltered setpoints are rejected. On the other hand, there is a limitation on the kind
of output disturbances and measurement noise which can be filtered out, since it is not

possible to enforce Sy(e’r) = 0 and T, (e’*) =~ 0 at the same frequency wy.

The usual procedure for NP design is to use weighting transfer functions Wy and
W to specify the desired behaviour of T}, and S, at different frequencies:
S,Ws =0,
T,Wr =0,
where Wy and W emphasise the appropriate frequency ranges. Hence the NP objec~
tives can be expressed as
1S, () Ws(e™)| < 1,
[Ty(e™™)Wr(e™)| <1,
for all0 S wy, <, which become conditions on the H,, norm of the weighted sensitivity

functions:

ISy ) Ws(e")ll, = max |S,(e)Ws(e™)] < 1,

T, (&) W (e, IT, () W) < 1.

= maX
OSwnsm

This method can be directly extended to other sensitivity functions, such as U, if input

disturbances are not negligible.

In (Serrano, 1994, chapter 5), the characteristics of the sensitivity functions S, and
T, for the GPC are deeply analysed, and the effect of the different tuning knobs on these
functions is investigated. This analysis can be readily extended for the unconstrained
GPC® and the CRHPC, and analogous conclusions arise. Hence those results about NP
are not repeated here. On the other hand, the RS problem is carefully examined in the
following section. Finally, the RP objective can be also expressed as conditions on the

Hoo norm of uncertainty and the sensitivity functions, as discussed in (Serrano, 1994).
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In robust control design, it is usually enough to guarantee nominal performance
and robust stability, whereas it is accepted that performance is damaged when the
true plant is far from the nominal system. Hence, the sequel is mainly concerned
with robust stability conditions for unconstrained RHPC, and the robust performance

problem is not tackled here.

3.2.4 Robust stability: the small gain theorem

The approach taken to ensure RS is to find a condition such that, provided that the
nominal closed-loop system is stable (NS), stability is preserved for the whole plant

family F. The most useful tool to solve this problem is the small gain theorem.

This theorem, as discussed in (Morari and Zafiriou, 1989; Skogestad and Postleth-
waite, 1996), can be viewed as an application of the Nyquist stability criterion. Assume
that the closed-loop system is stable for the nominal plant G (NS), and that G and
(s have the same number of unstable poles for the whole family F. Then the true
closed-loop system remains stable as far as the Nyquist band of K (¢7*)Go(g™?) does
not inqlude the critical point —1 + 07. In that case NS implies RS since the number of
encirclements to the critical point is the same for the nominal plant G and for all the

plants in F. This condition can be formulated as

[K(e7°)Go(e™") — K(e™")G(e™)] < |1+ G(e) K(e"7)]. (3.12)

A general MIMO formulation of the small gain theorem is given by below.

Theorem 3.1 (Morari and Zafiriou, 1989; Skogestad and Postlethwaite, 1996) As-
sume that M is stable. Then the closed-loop system in Fig.8. is stable for all stable

perturbations ||Afl, < 1 if and only if ||M||, < 1.

Remark 3.3 Alternatively, the stability requirement on A may be replaced by the

assumption that the number of unstable poles in G and Gy remains unchanged. QQQ
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A

A

4

M

Figure 3.4: General M — A structure for robustness analysis

Proof: See (Morari and Zafiriou, 1989; Skogestad and Postlethwaite, 1996) for a
detailed proof of this theorem. vvv

Remark 3.4 The small gain theorem, as formulated above, requires that the uncer-
tainty A is normalised, i.e. ||A|l, < 1. This requirement can be easily obtained for

any bounded perturbation. Consider, for example, a bounded additive uncertainty
Aol S Wo = |AWH < 1

Hence, A, can be replaced by the series A,W,, where A, = AW is a normalised
additive uncertainty and W, is referred to as the uncertainty weight. Obviously, the

normalised uncertainty A, satisfies ||Aglloo < 1. Qoa

Remark 3.5 In the MIMO case, either a couple of input and output weighting ma-

trices
or a scalar weight

can be used to achieve the normalisation, as remarked in (Skogestad and Postlethwaite,

© 1996). 0o

An equivalent formulation of this theorem is the requirement that the closed-loop
transfer function from the output «(t) to the input 5(t) of the (not normalised) uncer-

tainty block times the uncertainty weight is lower than 1 for all frequencies 0 < wy, < 7.
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In other words, let 8(t) and a(t) be, respectively, the input and output signals at the
uncertainty block A, and let V' be the closed-loop transfer function from a(t) to (2).
Then M, as defined in Theorem 3.1, can be computed as V' times the uncertainty

weight (W), and the RS requirement is that ||[VW]|_ < 1.

i
e A,
+» A, '
I 1
kit I
i i !
i 1 W, I :
i sl TTa
— — | alt”
w N4 e ] u ] 1y
—P@)> (O K@) »6(g) O+
A

Figure 3.5: Block diagram for additive uncertainty

As an example, the small gain theorem is applied to the additively disturbed case

shown in Fig.3.5. V, the transfer function from a(t) to 8(¢), can be obtained as
V=-K(1+GK)™'=-U,
and hence, M = VW, leads to the RS condition
Ml = IVWallo = -UyWall,, = IUWallo, < 1,
or

Uy (") Wa(e™)| < 1 & [Wa(e™)] < : (3.13)

1
Uy(e*n)
forall 0 < w, <.

If the small gain theorem is applied to the different uncertainty descriptions of Table

3.1, the results can be written as conditions on the H,, norm of weighted sensitivity

functions. Tilese different RS conditions are collected in Table 3.3.
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Description Condition
Additive Go=G+ A, WUyWoll,, <1
Multiplicative Go=G(1+An) 1TuWhle <1

Inverse additive | Go = (1 — GAw) " G || [UuWiallo, < 1
Inverse multiplicative | Go = (1 — Qi) ™" G || [|SyWimllo, < 1

Table 3.3: Robust stability conditions

3.2.4.1 The small gain theorem for additive uncertainty

Taking into account the definition of X in eqn.3.11 for RHPC controllers, the sensitivity
function U, (Table 3.2) can be computed as

U,=K(1+GK)™!

Sp (1u+~q-1B Sp )ml

" R,A A RA
— ASF
 AR,A+q¢71BS,

— ASP

T TP,

Now, the small gain condition of eqn.3.13 can be formulated as done in (Yoon and

Clarke, 1995a):

Provided that P, (the nominal characteristic polynomial) is stable, then
the real characteristic equation remains stable if A and Ay have the same
number of unstable roots, and if

g By ¢ 'B
Ay A

) (3.14)

for all0 < wp < 7.

The left-hand side of eqn.3.14 fits the definition of additive uncertainty A,, which
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can be easily obtained as

Ay, =Gp—G
_ ¢'By ¢7'B
Ap A
_ q~lBgA - q—lBAo
B ApA '
The condition of eqn.3.14 is identical to eqn.3.13 since it can be written as
1
Aql < | =1,
I al Uy

and |A,| can be replaced by its upper bound |W,].

The right-hand side of eqn.3.14 can be used to compare the robustness of different
controllers. It is easily observed that the polynomial T', which, as already remarked,
does not affect the nominal closed-loop transfer functions, can be used to push the

robustness bound far from the modelling errors.
3.2.4.2 The small gain theorem for inverse multiplicative uncertainty

The small gain theorem applied for additive uncertainty requires, as a major assump-
tion, that the nominal model and the true system have the same number of unstabié
poles. This may be a limitation when one or more true poles may cross the unit
circle, as sometimes occurs. In such a situation, an inverse uncertainty formulation,
e.g. inverse multiplicative, can be helpful since a stable uncertainty can be found even
when the number of unstable poles varies (Maciejowski, 1989; Skogestad and Postleth-
waite, 1996). If a stable uncertainty is available, the small gain theorem (Theorem 3.1)

can be applied although G and Gy do not have the same number of unstable poles.

For GPC-like methods, the small gain theorem for inverse multiplicative uncertainty

can be formulated as

Provided that P, (the nominal characteristic polynomial) is stable, then the
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real characteristic equation remains stable if there are no uncertain unstable

zeroes and if

P

A

g 'By/Aq ~ Q”IB/AI
g 1Bg/Ag

«é%[ , (3.15)

forall0 € w, < 7.

The dependence of this robustness bound with the observer polynomial T is obvious,

similarly as happens for an additive uncertainty in eqn.3.14.

~ The left-hand side of eqn.3.15 is the definition of inverse multiplicative uncertainty

A;m, which can be computed as

Gy —G
Dim = Go
_ ¢ 'Bo/As— g 'B/A
B q'By/ Ao
_ (Q“lBoA - q_lBAg) /A()A
B g By/As
_ ByA - B4,
T B4

The right-hand side of eqn.3.15, which provides the robustness margin, is the inverse

of S, (see Table 3.3) as defined in Table 3.2:

Sy = (1+GK)™!
qg'B S, -
= (1+ “‘A"“é;?&)
AR
~ AR,A +¢71BS,
AR A
TP,

-

Notice that the small gain theorem for inverse multiplicative uncertainty can be
applied as far as anéertaiﬂty does not affect unstable zeros. However, in the most
general case, uncertainty may alter unstable poles and unstable zeroes. Such a situ-

ation can be treated using coprime plant factorisations, as shown in (Skogestad and
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Pﬂsﬁlethwaite, 1996). This possibility has not been analysed in this thesis for two main

reasons:

1. The main aim of this research is to achieve robust constrained predictive con-
trollers. The unconstrained case is used only as a first step to deepen the insight

of the problem.

2. If uncertainty is such that it is not possible to be confident, at least, about the
number of unstable poles or the number of unstable zeroes of the plant, then
MPC may not be a convenient choice, since the internal model is a key factor for

the controller behaviour.

3.3 T-design — A heuristic approach

The use of the so-called noise or observer polynomial T' as a robustness-enhancing tool
is widely documented in the literature (Robinson and Clarke, 1991; Soeterboek, 1992;
Yoon and Clarke, 1995q; de Prada et al., 1994; Serrano, 1994; Megias, 1996; Megias et
al., 1996; Megias et al., 1997).

In this approach, an additive uncertainty representation is often used and then the
robustness bound provided in eqn.3.14 applies. Since A and F, are independent of T,
the main aim of this method is to shape the filter S,/T, which directly appears in the
robustness margin. Notice that S, is a T-dependent polynomial, since it is computed
as per eqn.3.7 for the CRHPC and the GPC or eqn.3.8 for the GPC™, and hence it
depends on the solution of the Diophantine equations {eqn.3.1) which involve T'. It

can be easily shown that the steady-state gain of this filter is:

Sp(1)
(W) ~ 2t

with N; < j < N, for the GPC and the CRHPC, and with 0 < j < N + ng for the
GPC®™. This is true regardless the choice of 7. Thus the robustness bound at low



Sec. 3.3. T-design — A heuristic approach 99

frequencies cannot be modified. However, the polynomial T can be used to design

S,/T in order to obtain convenient robustness margins at the frequencies for which the

. modelling errors are greater.

The usual way to choose T is to include the stable part of the model denominator

as a factor, or
(™) = AT (™) (3.16)
For stable systems (4 = A) the factor T* is often chosen as
T = (1-vg )",

for some 0 € v < 1 and ng < Nj. This choice is known to provide with a simple form

to the filter S, /T

For stable systems, the easiest possible choice of T' in the form of eqn.3.16 is T =
A{1 — vg™1), which is a classical tuning rule suggested, for example, in (Robinson and
Clarke, 1991; Soeterboek, 1992; Yoon and Clarke, 19954; Megias, 1996). With this
selection, S,/T" becomes a simple low-pass first order filter, as discussed in (Megias,
1996; Megias et al., 1996; Megias et al., 1997). The pole v can then be used to place the
~20 dB per decade slope in the magnitude of S,/T at lower frequencies. The closer v
is to 1, the lower the bandwidth of S,/T becomes, what helps to adjust the robustness
bound as wished. It is even possible to achieve an infinite robustness bound for stable
systems, by choosing T = AA. However such a choice is not appropriate since it cancels
out integral action, as remarked in (Megias, 1996). In fact, any root which is too close

to 1 can cause sluggish disturbance rejection (Robinson and Clarke, 1991) and should

" be avoided.

This tuning rule is referred to as “heuristic” since, although it was suggested after
careful attention on the properties of the filter 5,/T', the reasoning behind this choice is

basically qualitative and the results depend on the problem. In addition, the weighting
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effect of P, and A on the robustness bound of eqn.3.14 is not taken into account. On the
other hand, the @-parametrisation method used in (Kouvaritakis et al., 1992; Hrissagis
et al., 1996; Ansay and Wertz, 1997) is systematic but, as analysed in Section 3.5, does
not guarantee better results compared to the T-based schemes. Actually, the robustness
bound achieved by using the T-based methods are often greater than those obtained

with the ¢)-design counterparts.

Notice, in addition, that different rules might arise if a different uncertainty rep-
resentation (e.g. inverse multiplicative) were chosen, since the sensitivity function
involved in the expression of the robustness bound would differ, as shown in Table 3.3.
For inverse multiplicative uncertainty, the relevant filter would be R,A/T instead of

S,/T.

In this thesis, the robustness bounds provided by eqn.3.14 and 3.15 are exploited
to develop a systematic method (Section 3.6), based on optimisation, to increase ro-

bustness as much as possible.

3.4 Robust analysis of stabilising RHPC methods

In Chapter 2, some predictive controllers which guarantee NS are provided. The aim of
this section to investigate, among those control laws, which should be preferred when
uncertainty cannot be overlooked. A heuristic analysis of the robustness features of

the CRHPC, the GPC® and a softened version of CRHPC is thus provided.

The uncertain system of Section A.2 has been chosen to proceed with this analysis.
A different example which includes a changing number of unstable poles is provided in

Section 3.4.3. The real plant is the uncertain third order system defined in eqn.A.3:

¢~%(0.0639 — 0.1110g~* + 0.0437¢~2)
1~ 2.6855¢71 +2.4518¢~2 — 0.7596¢—3’

~1By(¢7?)

Gola™) = 255 = (1+8)
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whereas the nominal model is the second order system given by eqn.A.4:

Glg™) = g'B(g~') _ ¢7'(0.1098 — 0.1232¢™)
A{g™Y) 1-1.8098g~! + 0.8432¢~2°

Notice that the true steady-state gain® is an uncertain parameter: Ky = K (1 + Ak),

where K = —0.5 is the undisturbed true gain and Ak is a bounded multiplicative gain

uncertainty: Ag € [-0.5,0.5].
3.4.1 Nominal design

In this section, the nominal closed-loop behaviour is taken into consideration. Since
the polynomial T cancels out in the nominal closed-loop transfer functions from the
setpoint w'(t) to the input u(¢) and output y(z) (provided that T is stable), T = 1
has been used through Sections 3.4.1.1 to 3.4.1.4. This choice reduces the closed-loop

characteristic polynomial T'F, simply to F.
3.4.1.1 CRHPC with short prediction/control horizons

According to Theorem 2.1, a stable nominal closed-loop system can be obtained with
the CRHPC as defined in Section 2.2. For the nominal system of eqn.A.4, the tuning
knobs can be taken as [N > 4,m = 3, p > 0]. If the shortest possible prediction horizon
N = 4 and a constant p(j) = 10™2 are chosen, this is equivalent to thé minimisation
of eqn.2.3 with [Ny, Ny, Na, Ny, &4, 0,7] = [1,5,7,5,1,1072,0]. For these tuning knobs,
the 2-DOF polynomials computed as per eqn.3.7 become

Ry(g™!) = 1+60.5868¢7",

S,(g7") = ~536.1273 -+ 928.9166¢ " — 414.6132¢~2

, (3.17)
= —536.1273 [1 — (0.8663 + 0.15115)¢™]

Ty(q™!) = ~21.8239.

2The notation K has been chosen for the steady-state gain for distinction with the controller
transfer function K.
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The closed-loop poles, i.e. the roots of the characteristic polynomial F, are located
~at 0.5129 and 0.2860 £ 0.3033y, quite inside the unit circle. Hence the resulting closed-

loop behaviour is remarkably deadbeat-like, as shown in lFig.?).G.

CRHPC: Satpoint and Output sighals
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Figure 3.6: Nominal input/output responses for the CRHPC: [N, m, p] = [4, 3,107?]

The reason for this suboptimal deadbeat-like behaviour is a combination of the
end-point equality constraints and the use of short prediction and control horizons. As
a consequence of this behaviour, very low robustness margins are attained, as shown
in Fig.3.9. Two possibilities are analysed in tﬁe following two sections so as to reduce

this deadbeat-like characteristic.

3.4.1.2 CRHPC with long prediction/control horizons

In this section, the prediction and control horizons are increased. If N = 25 is chosen,

this results in the tuning knobs [Ny, Ny, N, Ny, &, p,7v] = [1, 26,28,26,1,1072, 0] in the
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* formulation of eqn.2.3, and the 2-DOF polynomials become
Ry(g™') =1+ 20.8163¢7,

Sp(g™!) = —177.9097 + 315.8051¢" — 142.4521¢™2

(3.18)
= —177.9097 [1 - (0.8875 = 0.1139))¢™ '],

Tp(g™t) = —4.5566,
for which the roots of P, are 0.8899 and 0.318240.30207. The real root is much nearer
the unit circle compared to the previous choice of tuning knobs, leading to a much

more sluggish output response together with less input activity, as shown in Fig.3.7.

: CRHPC: Ssipolnt and Output signals
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Figure 3.7: Nominal input/output responses for the CRHPC: [N, m, p| = [25, 3,1072]

This result provides with a higher robustness bound with respect to the short
horizon choice, as shown in Section 3.4.2. However, this selection of tuning knobs
increases the dimension of the problem which is to be solved at each sampling time
(N, = 26), what might be relevant if inequality constraints were used, since the QP
- problem to be solved at each sampling would involve a greater computational burden.
In addition, as N, also increases, numerical instability may arise with the CRHPC, as
remarked in (Rossiter and Kouvaritakis, 1994). In such a case, the SGPC would be a

more convenient implementation.
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3.4.1.3 CRHPC with softened equality constraints

The tuning knob 7y in the RHPC formulation of eqn.2.3 can be used to soften the
equality constraints giving rise to a less deadbeat-like behaviour. The following ex-
periment has been carried out using the same control/costing/constraint horizons
and weights ¢ and p as chosen for the deadbeat-like CRHPC of Section 3.4.1.1, i.e.
[N1, Ny, N, Ny, g1, p] = [1,26,28,26,1,107?], whereas the parameter -y varies in the in-
terval [0,1]. In other words, the controller is gradually changed from CRHPC (v = 0)
to GPC (y = 1). Fig.3.8 displays the characteristic roots loci obtained with these set-
tings, and it can be observed that whereas the complex roots are almost fixed at their
position, the real pole moves to the right and crosses the unit circle. The critical value
Ytim fdr which the nominal closed-loop system becomes unstable (i.e. the closed-loop
system is stable for all 0 < v < 9y, and unstable for all v > ~y,), has been found
at Yim = 2.2266 - 1074, This analysis, based on the closed-loop pole locations, can be

used to choose an suitable value of vy (y-design).
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Figure 3.8: Nominal closed-loop poles for the softened CRHPC: [N, m, p] = [4, 3, 1072
and v € [0,1]
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If v = 10~* is chosen, the 2-DOF polynomials for the “softened” CRHPC equal

Ry(g7!) = 1+ 19.7053¢"",

Sp{g™") = —167.8412 + 208.6711¢™" — 134.8491¢™2

(3.19)
= ~167.8412 [1 — (0.8897 = 0.10867)¢~"]

T,(g"!) = —4.0192,

for which the roots of P, are 0.9042 and 0.3139 4:0.3043y, very approximately the same
as the ones obtained with the CRHPC presented in the previous section. The 2-DOF
pgiymmia&s {as the roots are concerned) are quite the same as those of eqn.3.18 es-
pecially as compared with those of the deadbeat-like CRHPC in eqn.3.17. Actually,
the input/output responses in these two cases are so close that they can be consid-
ered indistinguishable, and both controllers can be regarded as roughly the same (not

equivalent, though).

3.4.1.4 GPC™ design

Another way of obtaining a nominally stabilising controller is the GPC™ as described

in Section 2.2. Since N, does not affect stability, N; = 1 has been taken in this section.

The tuning knobs for the GPC™ have been chosen as [N, p] = [3,10~?]. This
choice if consistent with the CRHPC presented in Section 3.4.1.1 from an operational
point of view, since both controllers leave two degrees of freedom (control moves) to
attain the minimisation of the cost function, and the rest are used to enforce the
equality constraints®. Although the CRHPC of Section 3.4.1.1 penalises two more
* control moves (in eqn.2.5) than the GPC™ (in eqn.2.6) for these tuning knob choices,

the value of p is small enough not to take this as a remarkable difference.

31t must be pointed out that the GPC™ would become a deadbeat law if Ny, = 1 were chosen,
however this is not convenient either for performance or robustness.
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The 2-DOF polynomials with this GPC®, computed by means of eqn.3.8, are
R,(g7") = 1+20.8695¢7",

Sp(q™") = —177.8418 + 316.3853¢ ™" — 142.8158¢~°
(3.20)
= —177.8418 [1 — (0.8895 - 0.10877)¢" "],

To(g™) = —4.2723,
and the roots of the characteristic polynomial P, are located at 0.9035 aﬁd 0.2811 +
0.2790y, almost identical to those obtained with the “softened” CRHPC of Section
3.4.1.3 and the CRHPC of Section 3.4.1.2. The 2-DOF polynomials are also very ap-
proximately the same as those of eqn.3.18 and 3.19. Hence the input/output responses

for this controller are almost superposable to those shown in Fig.3.7.

Surprisingly enough, the softened version of the CRHPC and the GPC® become
almost identical for a given value of v, 10~% in this case. This should not be taken
as a sign of controller equivalence, since Chapter 2 clarifies that there are substantial
implementation differences between finite and infinite horizon predictive controllers.
Only in a few special cases do the CRHPC and the GPC™ become identical (see
Theorem 2.8).

3.4.1.5 Nominal design — A comparative study

NS guarantees | Smooth/Deadbeat | Numerical properties
CRHPC (short N) v X v
CRHPC (long N) v v X
“Softened” CRHPC X v v
GPC*™ v v v

Table 3.4: Nominal characteristics of stabilising RHPC

Although the GPC®, the “softened” CRHPC and the CRHPC with long horizons

have been shown to provide with similar solutions in terms of the 2-DOF polynomials
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* through Sections 3.4.1.2 to 3.4.1.4, there are relevant differences as implementation

and the internal properties of these controllers are concerned. These are summarised

in Table 3.4.

The use of CRHPC with short prediction/control horizons (such as N = 4 in the
example), although it guarantees NS, often leads to a suboptimal deadbeat-like closed-
loop behaviour. This problem can be overcome in two different ways. On the one
hand, the prediction horizon can be increased (IV = 25 in the example), but this pos-
sibility may lead to numerical problems (Rossiter and Kouvaritakis, 1994). In such
a case, the theoretically equivalent SGPC (Kouvaritakis et al., 1992) might be used,
since it provides with better numerical properties. However, the SGPC solution when
constraints are considered is a bit involved, though it is claimed in (Rossiter and Kou-
varitakis, 1993) that the constrained SGPC requires much less computational burden
compared to the QP techniques used in GPC-like controllers. On the other hand, the
equality constraints in the CRHPC can be softened (y = 10™* in the example), pro-
viding with a smooth closed-loop behaviour. With such a choice, NS is not guaranteed
and must be checked, for example, using a pole-location approach and a suitable value

of v must be found:y-design.

Finally, among the tested controllers, the GPC™ appears to be best choice, since
it guarantees the stability of the nominal closed-loop system, it provides smooth be-
haviour even for short N, (as far as N, is chosen greater than the minimal value

suggested in Theorem 2.2) and no numerical drawbacks are expected.

3.4.2 Robustness analysis

Tn this section the robustness of the deadbeat-like CRHPC presented in Section 3.4.1.1
is compared to that provided by the GPC™ as tuned in Section 3.4.1.4. The robustness

properties of the latter apply also to the CRHPC with long prediction/control hori-
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zons of Section 3.4.1.1 and the softened CRHPC of Section 3.4.1.1, since these three

controllers are almost identical.

In order to compare the robustness of different controllers, the same T-design has
been used. The comparative analysis conld have been made using the Q-parametrisation
scheme introduced in Section 3.5 or just a nominal design (T = 1 without the Q pa-
rameter). What is relevant in this section are the different robustness bounds provided
by the different controllers, whereas the discussion on which is the most convenient

robustness enhancing tool is left to the next few sections.
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Figure 3.9: Robustness bounds for CRHPC (dashed line) and GPC™ (solid line), upper
bound of additive system uncertainty for Ax € [-0.5,0.5] (**") and additive system
uncertainty for Ax = 0 (dotted line)

A classical choice of T is given by eqn.3.16, which is known to provide with large
robustness bounds for a wide class of systems (Robinson and Clarke, 1991; Soeterboek,
1992; Yoon and Clarke, 1995a; Megias, 1996; Megias et al., 1997). Since A is stable,

it is included as a factor in T, and the first order polynomial T* = (1 - 0.8¢71) (or



Sec. 3.4, Robust analysis of stabilising RHPC methods 109

1 = 0.8} has been taken, leading to
T ") = Alg™ {1 = 0.8¢71) = 1 = 26098¢ 71 + 22911977 — 0.6T46¢™%.  (3.21)

The factor A contributes to T with the roots of 0.9049 & 0.1563;, the modulus of these
which is 0.9183, not too near the unit circle. This should provide with a relatively fast

disturbance (or maodelling error) rejection.

The robustness bounds for the GPC™ and the CRHPC (with N = 1) are shown
in Fig.3.9. In the best case, Ax = 0 (or Kg = —0.5), the bounds provided by both
controllers are respected by the modelling errors, and thus the true responses are
stable, as displayed in Fig.3.10. Note that the input/output responses obtained with

the GPC™ are softer, and the input activity is much lower compared to the CRHPC.
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{a) Inputfoutput responses for the {h) Inputfoutput responses for the
CRHPC (N =4) with &g = 0 GPC™ with Ax =0

Figure 3.10: True closed-loop behaviour for Agx = 0

However, the robustness bound provided by the CRHPC is violated by the upper
bound of additive system uncertainty. For example, it is violated for Ag = 0.5 {or
Ky = —0.75). The consequence of this is shown in Fig.3.11, the responses obtained
with the CRHPC are unstable, whereas those provided by the GPC™ are stable (and

quite smooth).
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{a) Input/output responses for the (b} Input/output responses for the
CRHPC (N = 4) with Ak =05 GPC™ with Ag = 0.5

Figure 3.11: True closed-loop behaviour for Ax = 0.5

This example illustrates that if system uncertainty is overlooked at the design stage
instability may arise. Hence, some (nominal) stabilising laws are preferable to others
as they provide smoother nominal (and true) responses and greater robustness bounds.
Therefore, the GPC*® (the CRHPC with long prediction/control horizons or the soft-
ened CRHPC) appears as a better alternative compared to the CRHPC with short

prediction/control horizons as robustness is concerned.

3.4.3 The robustness of 1-norm RHPC formulations

The robustness analysis performed in the previous section is valid only for uncon-
strained 2-norm RHPC methods, which can be converted into a classical LTT form as
shown in Section 3.2.1. However, this is not possible for 1-norm controllers, which are
always non-linear. This section illustrates that the robustness-enhancing properties of

the polynomial T apply to the 1-norm case too.

Consider the system used in Section 2.4.3 (provided by eqn.A.10) as the nominal
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plant

¢'B _ 0.2358¢™! +0.23197~2

-1y _
Gl) =7 T 1-1.4835¢1 + 0.9512¢~2"

Now let the {rue plant be the unstable system which arises from multiplying the mag-
nitude of the poles of A by 1.2, and letting the steady-state gain (1) and the zero
(—0.9832) be identical to those of G:

Gola™) _¢'By _ _0.2973¢"" +0.2923¢"
Ay 1-1.7802¢~ !+ 1.3698¢~2’

s - ¥ - v + Robustrass ansfyele
. ' ¥ *
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(a) Nominal input/output responses for (b) Robustness bounds for Ty (dashed)
the 2-norm GPC™ (solid) and the GPC{® and T {solid) and inverse multiplicative
(dashed): [Ny, pl = [5,1] uncertainty (dotted)

Figure 3.12: Nominal responses and robustness analysis

The GPC® can be designed using the tuning knobs [Ny, p] = [5, 1], which provide
the nominal input/output responses displayed in Fig.3.12(a) for both 1-norm (which
can be implemented simply as the QGPCS® as discussed in Section 2.4.3) and 2-norm
formulations. The nominal closed-loop behaviour is almost indistinguishable for both

controllers.

To apply the small gain theorem, it must be taken into account that there is a
changing number of unstable poles from G (none) to Gy (two). Hence, an inverse

multiplicative uncertainty (which is stable in this case) has been chosen. Two different
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classical choices have been tried for the observer polynomial: T = T} = A(1 — 0.9¢71)
and T = T, = (1 — 0.9¢71). In this case the roots of A are 0.7418 + 0.6333; with
modulus 0.9753, i.e. very close to the unit circle. Thus, the factor A should be avoided

since it is certain to lead to sluggish disturbance rejection.

Fig.3.12(b) shows that the robustness bound obtained with the T (dashed) is vi-
olated, whereas that provided by the T, (solid) is respected. This example illustrates
that including A (when it is stable) as a factor of T is not always beneficial, not only
as disturbance rejection is concerned, but also as the robustness bound is taken into

account.

infinite horizon GPC: Satpoint and Output signals Infinite horizon GFC: Satpoint and Quiput signals
Y u T r T T

2 3. 5 N "
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° i
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(a) True input/output responses for the (b) True input/output responses for the
2-norm GPC™ (solid) and the GPC{° 2-norm GPC™ (solid) and the GPC{°
(dashed) with T' =T} (dashed) with T = T3

Figure 3.13: True closed-loop behaviour for the 2-norm GPC™ and the GPC{®

The result shown in Fig.3.12(b) guarantees that the 2-norm controller is stable for
the true plant when T' = T,. However, as shown in Fig.3.13(a), stability is not achieved

with T' = T1.

For the 1-norm controller, the robustness bounds cannot be obtained in this way,
since it cannot be posed in the LTI form. But, as the nominal closed-loop behaviour of

the GPC{° is almost indistinguishable from the (2-norm) GPC®, it is expected that T
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contributes in an analogous way to robustness for both controllers. This conjecture is
confirmed by the results displayed in Fig.3.13, where it is shown that the true responses
are very similar for the 1-norm and the 2-norm formulations. Hence, the true closed-
loop systems for both the GPC{® and the (2-norm) GPC® are stable with T = T3 and
unstable with T = T3.

3.5 The Qéparametrisation method

Section 3.3 describes a method to increase the robustness bound based on a heuristic
choice of the polynomial 7', and Section 3.4.2 uses those tuning rules to achieve large
robustness margins. However, the heuristic 7-design methods are not systematic and
do not provide o priori guarantees that the associated robustness margin is large
eﬁough for a given uncertainty bound, as remarked in (Ansay and Wertz, 1997). As
an alternative to this procedure, the Q-parametrisation scheme (often referred to as

Youla-Kucera parametrisation also) is introduced in this section.

d,
.18 +
w 1 u q b, y
——ypt T » » - »
4 R'A 4, T+ S
7B le
+
A |«
S le

Figure 3.14: Block diagram for the Q-parametrisation scheme

The Q-design methodology, described e.g. in (Kouvaritakis et al., 1992; Yoon and
Clarke, 1995a; Hrissagis et al., 1996; Ansay and Wertz, 1997), is based on the internal
model control (IMC) scheme of Fig.3.14, where the 2-DOF polynomials R;,, S;, and T,;
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are computed taking T to be 1. This choice does not affect the nominal closed-loop
transfer functions, since the factor T' cancels out in the nominal case, as remarked in
Section 3.2.1. The characteristic polynomial TP, simply reduces to P, in this case, and

can be obtained as

P, = AR;,A “+ q"lBS;.

The block diagram of Fig.3.14 parametrises all the controllers which lead to the
same nominal closed-loop transfer functions, leaving @ as a free parameter which may
be used to enhance robustness. @) is often referred to as the Youla-Kucera parameter.
To ensure integral action a factor A is explicitly included in @, which is also bound to

be stable.

Remark 3.6 Actually, as discussed in (Yoon and Clarke, 1995a), the robustness en-
hancing method via the polynomial T is nothing but a particular case of this Q-based

structure, if @ takes the form

Mr{g"1)A
T(g) ’
and Mr(g~') is a T-dependent polynomial. QaaQ

Qg HA =

As remarked in (Kouvaritakis et al.,, 1992; Yoon and Clarke, 19954; Hrissagis et
al., 1996), Q can be set, according to the small gain theorem, by minimising the Heo

norm of the weighted mixed sensitivity function:

”Uy(qul)Wa(‘fl)“m )

where W, is a weighting transfer function which bounds additive uncertainty and de-
scribes the frequency ranges for which the unmodelled dynamics are dominant, and U,
is the control sensitivity at the output, i.e. the transfer function between the output

disturbance and the control input. For the scheme in Fig.3.14, U, can be obtained as

(@) [Sp(a™") + AlgH)R(a™)A]
P(g™1) .

Uy(g) = 2
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And the robustness bound is then provided by |1/U,|, as shown in Section 3.2.4.1:

P, 1

Ao < |l o=
Al|ST+4QA

‘ , Yw, € [0,7]. (3.22)

If g1 B/A is stable and has no poles on the unit circle, there exists a closed-form
analytical solution for the H,, optimisation problem described above, and the optimal

@ (Yoon and Clarke, 19954).can be computed according to the next theorem.

Theorem 3.2 (Yoon and Clarke, 1995a) Suppose that the polynomial A(q™!) is stable,
i.e. A(g)#0 forlgl>1. Thena transfer function Q°P* described by

~Wods, + ZOAR0 P,

W,A? ’

QA = (3.23)

minimises ||Uy(q™" ) Wa (g™l -

Proof: See (Francis, 1987; Yoon and Clarke, 1995a) for a proof of this theorem. VVV

For (J = Q°* the RS condition for additive uncertainty can be written as

Pe(1)
Wa(DAD)S (D)

.that is, the robustness bound follows the shape of W, shifted by a constant which

iAa} < iWai , Vwp € {Ga 7"}5 (3'24)

completely determines the RS margin at low frequencies.

On the other hand, if the nominal system is unstable, any of the procedures de-
scribed in (Kouvaritakis et al., 1992) or in (Hrissagis et al., 1996) can be applied to

compute the optimal @°F*.

A different set of guidelines for tuning the parameter @ can be found in (Ansay
and Wertz, 1997), where the choice

SLM*A

QA= (3.25)

is suggested for stable nominal systems. C* stands for any stable (Hurwitz) polynomial

and M* can be freely chosen. If A is unstable a different choice of @* is suggested in
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(Ansay and Wertz, 1997), which is not included here for brevity. The formula for @* of
eqn.3.25 combined with the robustness bound given in eqn.3.22 leads to the following

RS condition for additive uncertainty:

P P P 1]
|Aql < t = c_ =|== —|,  (3.26)
A(S,+A4QA)| |4 (s +a%me)| [AS]]1+5G
for all 0 < w, < 7. Now, the filter
1
Y (3.27)

is totally independent of the term F./(AS}) and can be designed, separately, at a
second step. This is a clear advantage with respect to the heuristic T-based methods,

since the robustness bound for the T-based methods, provided by

F,

|8l < A5,

IT|, Ywy, € [0, 7],

does not satisfy this property. The first and the second terms cannot be designed

individually, since S, depends on the polynomial 7.

In (Ansay and Wertz, 1997), the simplest possible high-pass filter with unit steady-

state gain is suggested for the second term of eqn.3.26, i.e.

1 1-wg!
MA T
1+—a—;‘ 1-v

b)

for 0 < v < 1, which leads to the choice

MA  -VvA
Cc*  1-—vugV’

(3.28)

and eqn.3.26 becomes the condition

1 - -1

Fe m‘i ' , Yw, € [0, 7].

A4S,

|Ag| < =

As remarked in (Ansay and Wertz, 1997), a higher order filter can be chosen for
eqn.3.27. This possibility is exploited here and in (Megias et al., 1999a) in order to
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provide with a consistent comparison with the T-design method presented in Section
3.3. The filter of eqn.3.27 can be designed such that a polynomial T appears in the
numerator of the robustness bound of eqn.3.26 in an analogous way as occurs in eqn.3.14
for the T-design method. This can be achieved by choosing C* = T and enforcing a

unit steady-state gain in eqn.3.27, i.e.

1 T
1+42  7(1)

or

MA T1)-T
cx T

(3.29)

For this choice, the RS of eqn.3.26 can be written as

P, T ~
Z‘“’S‘,’; ml . an & [O,W],

1A,] < ()

the second term of which can be designed independently from the first one.

3.5.1 Robust design of GPC® through the parameter @

In this section the Q-pérametrisation is used to enhance the robustness of the nominal
GPC®™ presented in Section 3.4.1.4. The results are compared with the heuristic T-
design method used in Section 3.4.2 (with the choice of T" specified in eqn.3.21).

For the example introduced in Section 3.4.2, the weighting W, can be chosen as

1—-0.8q7!

Wa(qu) = 02 3

(3.30)
since:
1. This selection of W, provides with an upper bound of additive system uncertainty,

and the magnitude of this weighting transfer function increases at the frequencies

at which uncertainty is greater, as shown in Fig.3.15.
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Figure 3.15: Upper bound of additive uncertainty (“*”) and uncertainty weighting W,
(solid)

2. This choice of W, contributes with a factor (1 — 0.8¢™!) in the numerator of
the robustness bound of eqn.3.24. Hence a “fair” comparison with the T-design
used in eqn.3.21 is possible, as (1 — 0.8¢™1) is a factor of T" which appears in the
numerator of the robustness bound of eqn.3.14. In addition, A cancels out in the
right-hand side of both eqn.3.14 wit T = A(1 — 0.8¢!) and 3.22 with Q°"* as

obtained below.

The Q°* computed as per eqn.3.23 for W, as chosen in eqn.3.30 is given by

Q= 10%(0.1773 — 0.7798¢~! + 1.3756¢~% — 1.2175¢7% + 0.5406¢™* — 0.0963¢~%)
1—4.4196¢9~1 + 7.8574¢g~2 — 7.0216¢~3 + 3.1528¢* — 0.5689¢ 5

Fig.3.16(a) compares the robustness bound provided by the Q)-parametrisation with
@°P* to the heuristic T-design procedure. It is worth pointing out that the former is
not only lower than latter within the worst-case uncertainty frequency range, but also

violated by the modelling errors. The consequence of this, shown in Fig.3.16(b), is that
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Figure 3.16: Robustness bound and ciosed&m}p behaviour for the Q-parametrisation
with Q°P* ‘
the true input/output responses permanently oscillate for Ak = 0.5 in the system of

Fig.3.14 with Q = Q°*,

Two alternative choices of @), suggested by eqn.3.25, have been analysed too.
Firstly, @} has been chosen according to eqn.3.28 with v = 0.8, in such a way that a

factor (1 — 0.8¢™") appears in the numerator of the robustness bound:

. Sy —vA
QA=Y

_ 142.2735 — 395.3817¢ ™" + 367.3608¢ % — 114.2526¢°
N 1 — 2.6098¢~1 + 2.2911¢~2 — 0.6746¢~3

and secondly, @% has been set using eqn.3.29 (with the value of T specified in eqn.3.21):

% S;; T(}‘} =T
GA=g

108 (0.1767 — 0.7784g~" + 1.3750¢2 — 1.2176¢% + 0.5406¢™* — 0.0963¢ ")
= 1~ 4.4196¢-1 + 7.8574¢~2 — 7.0216¢~ + 3.1528¢—% — 0.5689¢~°

Notice that the denominator of @} coincides exactly with that of Q°"*. On the other

hand, the difference between the numerators of @3 and Q" might seem tiny as the
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coefficients are considered, but it is not that small when the roofs are taken into

account.

TPeits Iorizen BIT W e Satpein
v

Controf siprt

w0 o w 3* 1’

&
Nonmaltzad Fraquancy fclsscy Time teamplest
(a) Robustness bounds for the (b) True input/output responses for the
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Figure 3.17: Robustness bound and closed-loop behaviour for the Q-parametrisation
with Q*

Fig.3.17(a) compares the robustness bounds provided by these two choices of Q*
with the T-design of Section 3.4.2. It is quite remarkable that the robustness bound for
@1 is far from required, whereas the one achieved with @3 is always lower than the one
provided by the T'-design method, and violated by the modelling errors. Fig.3.17(b)
shows the worst-case (Ak = 0.5) input/output responses attained with* @3, which

presents a permanent oscillation similarly as happens for @°"* in Fig.3.186.

This example, which represents the most usual situation as confirmed by the con-
clusions of ‘{Yssn, 1994; Yoon and Clarke, 1995a; Ansay and Wertz, 1997), illustrates
that the heuristic T-design method can dften provide with better robustness mar-
gins compared to the systematic Q-design. Fig.3.18 compares the robustness bounds

achieved with T' (eqn.3.21), with Q°*, and with Q5. The only one that satisfies the

“The closed-loop system for Qf is unstable and its behaviour is not shown in the figure.
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Figure 3.18: Robustness bounds for the Q-parametrisation with Q°* (solid), with Q%
(dashed), and for the heuristic T-design (dotted), and upper bound of additive system
uncertainty (“*”). "

small gain theorem condition, and in the end, the only one which provides with a stable

closed-loop system for all the plant family, is the heuristic T-design scheme.

However, the T-design is still supported by heuristic rules, which is the main reason
for the criticism associated to this procedure. The next section is focused on providing
with a systematic framework to obtain a noise polynomial. This procedure is intended
to overcome the drawbacks (lack of systematisation) of the T-based schemes, preserving

all the advantages (greater robustness margins) pointed out throughout this section.

3.6 The T-optimisation method

The idea introduced in this section is to choose T' not heuristically, but by means of
an optimisation criterion. Two different criteria are suggested depending on which

uncertainty description, additive or inverse multiplicative, is chosen.
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If an additive uncertainty is used, the robustness bound provided by the small gain
theorem is given by eqn.3.14:
P,

A

T

1A,] < 3

, Yw, € [0,7].

Thus, the following problem provides a convenient optimisation criterion to increase

the robustness bound:

TP = arg n}I(IflP ) KRrobust subject to max [roots(T)| < r, (3.31)
roots
with
AS, |7
KRrobust = Z E“%Wa 3 (3-32)

Wk
where roots(T") denotes the set of roots of T', wy, is a chosen set of normalised frequencies
in [0, 7], W, is a weighting in the frequency domain which bounds additive uncertainty,
and 0 < r < 1 is the maximum allowed modulus for the roots of 7. The solution to
this problem maximises the right-hand side of eqn.3.14, and hence a greater robustness

bound is expected.

Notice that this method is independent from the fact that A is stable or not, which
is a clear advantage compared to the heuristic design and to the J-parametrisation. In
addition, the solution depends on three parameters selected by the designer, namely

the degree of T, the maximum root radius r and the frequency weight W,.

For inverse multiplicative uncertainty, the small gain theorem condition is written
in eqn.3.15:
T

R,A

P,

|Aim| < "

, Yw, € [0,7].

and thus, the optimisation criterion for 7' can be posed as eqn.3.31 if Kgopus takes the

form

2

A |
%——W}m : (3.33)

KRobust = E

Wi

4
2
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where Wi, is a weighting in the frequency domain which bounds inverse multiplicative

uncertainty.

The choice of the frequency weighting, W, for additive uncertainty and W, for
inverse multiplicative uncertainty, should emphasise the frequencies at which the mod-
elling errors are greater. A bound of uncertainty, analogous to that used in the Q-
parametrisation of Section 3.5 is suggested. In fact, the closer the bound is to the
maximum modelling errors, the better results arise, since the magnitude of the robust-

ness bound would be increased exactly at the required frequencies.

The objective of the constraint max |roots(T")] < r enforced in the problem of
eqn.3.31 is twofold. Firstly, it ensures that a stable T is obtained. Secondly, it can
be used to get rid of possible “slow” roots in T', which can decrease the speed of
disturbance rejection, as remarked in Section 3.2.1 and (Robinson and Clarke, 1991).
Moreover, as discussed in Section 3.3 and in (Megias, 1996; Megias et al., 1996; Megias
et al., 1997), the choice T = AA for stable A leads to |S,/T| = 0, and hence to .
Krobust = 0 (in eqn.3.32) together with an infinite robustness bound. This possibility
is not convenient because the noise model in eqn.2.1 would be cancelled, resulting in
an open loop (S, = 0 in the feedback path of Fig.s?;,})‘ The constraint in the problem

of eqn.3.31 also avoids such a situation.

The sum in eqn.3.32 or eqn.3.33 can be thought of as an approximate integral
criterion. In (Megias, 1996; Megias et al., 1997) some criteria which resemble Kgopust
were presented, e.g. the optimisation of |S,/T|, |AS,/T| or |WAS,/T|. Although
the ideas outlined there come from a different approach, the results are similar to the
ones presented here. However, those criteria do not include the nominal characteristic

polynomial P, in the optimisation, and thus, are biased and suboptimal.
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3.6.1 Robust design of GPC® using the T-optimisation

In this section the optimisation method described above is used to enhance the ro-
bustness for the GPC® used in the example provided in Sections 3.4.2 and 3.5.1, and
the results are compared with both the heuristic T-design and the @-parametrisation

methods.

The criterion for additive uncertainty of eqn.3.32 has been optimised using the

following options:

1. r=1-10"%

2. As an additional constraint, one of the roots of 7 has been fixed to 0.8, i.e.

0.8 € roots(T') or
TPt = T'(1 — 0.8¢7Y),

to provide a consistent comparison with the T-design in Section 3.4.2 and the Q

parameters of Section 3.5.1.
3. Fifty (normalised) frequencies wy, have been chosen in the range [10~2, 7] rad/s.

4. The same frequency weighting W, used for the Q- parametrisation method, i.e.

1—0.8¢7"

Wo=—5

use has been taken.

5. The simplex search optimisation algorithm introduced by Nelder and Mead (1965)

has been used for finding the optimal value.
In addition, three different possibilities have been analysed for the factor T":

o T{P': deg(T") = 2 with complex-conjugate roots.
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o T3P deg(T") = 2 with real roots.

o T3P deg(T") = 4 with two pairs of complex-conjugate roots.

For the first two choices, deg(T°P*) = 3, the same as the heuristically tuned T
of eqn.3.21. On the other hand, the latter choice is suggested from the relationship
between the polynomial T and the parameter @, provided in Remark 3.6. If Q is
chosen as Q°P or Q3% in Section 3.5.1, then the denominator of @ is of the fifth order.
This seems to point out to a polynomial T of the fifth degree. However, the robustness
bound of eqn.3.22 is such the factor A2 of the @ denominator (for Q°* and Q3%) cancels
out. This cancelation takes place in eqn.3.14 when T has A, instead of A%, as a factor.

Despite that, for the sake of completeness, a fourth order polynomial has been tested

for T.

The optimisation performed as described above yields the following polynomials:
TOP = (1 — 0.8¢71)(1 — 0.8803¢~1)?,
TP = (1 — 0.8¢71)(1 — 0.6815¢71)(1 — 0.9553¢™1),
TSP = (1 - 0.8¢7*)(1 — 0.8756¢7")% (1 ~ [~0.0205 = 0.11617)¢™") .

Notice that the complex-conjugate roots of Ty turn out to be a double real root
after the optimisation. The value of Kpopust Obtained with T9* is a 7% lower than the
one provided by T, however, one of the roots of T5* is located very near the unit
circle, which is negative for the speed of disturbance rejection (Clarke and Mohtadi,
1989; Robinson and Clarke, 1991). To prevent such kind of problems, the optimisation

could be constrained to roots inside a circle of a given radius, e.g. choosing r = 0.8.

Finally, it is observed that the modulus of the (second) pair of complex-conjugate
roots of T5®" is tiny compared to the rest. Hence, they contribute with very fast
dynamics which can be neglected. The three remaining roots are very approximately

the same as those of T, thus it can be concluded that T5™ ~ T7™. Needless to say,
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the values of Krobust are almost identical for 73®* and TP*. This example illustrates
that the optimisation procedure leads to equivalent solutions regardless the degree
of T, which is a very important property of this method, as the result is not to be
affected by the over-parametrisation of . The unnecessary degrees of freedom given
to T are zeroed by the process of optimisation. In addition, this result points out that
deg(T') = deg(A) + 1 seems to be a convenient choice, at least for stable systems when
Ny = 1, which is consistent with the results presented in (Soeterboek, 1992; Yodn and

Clarke, 1995a; Megias et al., 1997).

Robust ysis: rob bounds vs additive uncertainty
50 L ¥ T

~40 . .
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Figure 3.19: Robustness bounds for the T-optimisation (solid lines), T-design (dotted
line), Q-parametrisation (dashed lines), and system uncertainty for Ax = 0.5 (dash-
dotted line). :

The robustness bounds obtained with the heuristic T-design of Section 3.4.2, the
Q-design presented in Section 3.5.1 for Q°* (labelled “opt”) and @} (labelled “star”),
and the T-optimisation method, labelled “‘1” and “2” for Ty and T5®* respectively, are
compared in Fig.3.19. T;™ is, as already remarked, similar to 77™, and thus provides
with analogous results which are not shown in Fig.3.19 for clarity. The polynomials 7™

and Tg’pt provide with large robustness bounds, larger than those accomplished with
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the other methods, ensuring robust stability for the whole family of true systems. The
T-optimisation has then been shown to provide with a systematic method to overcome

the robustness margins obtained with the heuristic T-design and the (systematic) Q-

parametrisation methods.

Tnfintfe horizen GPS: Selpoint and Output signals trifidte : Satpolnt and Otiput sligr
¥ ¥ ¥
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Control signed

% = n;o 150 () = pres 15
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(a) ’.{&ue‘ input/output responses with (b) True input/output responses with

TP (solid) and T = A(l - 0.8¢71) 5P (solid) and T = A(l — 0.8¢7Y)

(dashed) for Ak =0.5 (dashed) for Ag = 0.5

Figure 3.20: True closed-loop behaviour for the GPC® with T' = A(1 — 0.8¢™1), T
and T3>

Fig.3.20 compares the true closed-loop responses obtained with 777", T5** and the
heuristically tuned 7' = A(1—0.8¢™!). The larger robustness bounds obtained with the
optimal observer polynomials (Fig.3.19) result in more sluggish responses compared to
the heuristic design, as it was expected. What is more, it can be observed that the
closed-loop behaviour obtained with T3 is even more sluggish than the one provided
by TPP*. The reason for this is that one of the roots of T3 (0.9553) is located quite

close to the unit circle.
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3.7 Concluding remarks

In this chapter the robustness of unconstrained stabilising RHPC methods-is analysed.
If no inequality constraints are imposed, a classical approach to robustness is possible,
since these controllers can be converted into an equivglent 2-DOF LTI form. The
classical robust control theory cén then be applied, and the small gain theorem is used
to derive robust stability conditions in Section 3.2.4 for the most usual uncertainty

representations.

The robustness of CRHPC, GPC® and a “softened” CRHPC (a scheme with soft
equality constraints) are compared through several experiments in Section 3.4.2. Al-
though these three controllers can produce similar results for particular choices of the
tuning knobs, perhaps the GPC®™ stands out as the best alternative, since it provides
with smooth responses and large robustness bounds for small values of N,, avoiding
the numerical problems associated with the CRHPC (Rossiter and Kouvaritakis, 1994).
Although the “softened” CRHPC can provide with a similar behaviour, a previous

analysis on nominal stability (y-design) must be carried out.

Additive uncertainty is the most frequently used representation in robust predictive
control developments (Robinson and Clarke, 1991; Yoon and Clarke, 1995a; Ansay and
Wertz, 1997; Megias et al., 1999a). However, this description can only be used when
the number of unstable poles for all the plant family does not change. This limitation

can be overcome using an inverse multiplicative uncertainty, as shown in Section 3.4.3.

It is also evidenced that the robustness-enhancing properties of the polynomial T
extend to the 1-norm case. Although the small gain theorem cannot be applied for
1-norm formulations since an equivalent LTI structure of these controllers cannot be
found, it has been shown, by means of an example, that the robustness-enhancing

properties are identical for 1-norm and 2-norm controllers.
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The problem of increasing the bound ef the small gain theorem condition when
robustness is the priority has been addressed. A new scheme, T-optimisation, has
been formulated and compared with two existing methods to enhance robustness, the
heuristic T-design and the Q-parametrisation. The T-optimisation is based on the
polynomial 7" but, unlike the T-design, is not supported by heuristics but on optimising
a quadratic criterion on robustness, thus it is systematic. The optimisation criterion
is not the Heo nomi of a sensitivity function, but a quadratic index on the magnitude
of a filter. The T-optimisation overcomes the robustness bounds provided by the
other procedures even when they optimise a robustness criterion, making it possible to
stabilise a wider family of true systems. Thus, this technique can be taken into account

when robustness is the priority.

‘The MIMO case is not considered throughout this chapter because the main aim
of this thesis is to achieve robust consirained predictive controllers, since constraints
are one of the most celebrated advantages of MPC. The unconstrained case presented

is this chapter is aimed

1. to show that predictive controllers are quite robust (in a classical sense) although

the plant model is a key parameter of these methods, and

2. to point out that some nominally stabilising methods (GPC™) are preferable
to other (CRHPC) as robustness margins and nominal performance (and also

numerical properties) are concerned.
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