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Chapter 4 

Robust constrained RHPC using 
min-max optimisation 

4.1 Introduction 

As deeply analysed in the previous chapter, the first few robustness in the MPC frame­

work results were obtained for unconstrained, linear predictive controllers in the SISO 

case. In that situation, an LTI form of these controllers exists, what makes it possible 

to apply classical robustness analysis and design tools, such as the small gain theorem. 

However, these early results have serious limitations. To begin with, the assumption 

that the true plant is an LTI system does not allow non-linear and/or time-varying 

uncertainty. Hence the results presented aboye are valid only if non-linearities are mild 

and time variations are "slow" compared to the true system dynamics. In addition, as 

highlighted aboye, one of the most celebrated properties of MPC is constraint handling, 

and thus it is required that the robustness results be extended to the constrained case. 

The main aim of this chapter is to develop RHPC controllers to handle these two very 

significant problems. 

To cope with non-linearities and/or time variability, stabilising approaches have 

been obtained in the non-linear MPC family (Mayne and Michalska, 1990; Michal-
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132 Robust constrained RHPC using min-max optimisation 

ska and Mayne, 1993; Chen and Allgower, 1998b), and an extensive review of these 

methods can be found in (Chen and Allgower, 1998a). However, non-linear model pre­

díctive schemes involvean enormoua computational bnrden to compute a single control 

move. This makes them impractical in many real control sitnations, especialIy if fast 

dynamics occnr. As technology provides faster and faster compnters, non-linear MPC 

applications will become more common, and it is likely that they completely replaee 

linear model-based schemes wherever non-linearities cannot be neglected. However, 

the current technology and numerical algorithms do not allow for a widespread use 

of these new methods yet, and linear MPC are still the most snitable tool to handle 

many typical situations. In short, although very detaiIed non-linear models of the sys­

tem are often available, it ia usually required to resort to linear MPC controllers for 

computational reasons. This alternative requires the incorporation oÍ some uncertainty 

description within the system model to be used by the control system. 

In addition, it i8 worth pointing out that the RS conditions established in the 

previous chapter are restricted to the unconstrained case. This is indeed a senous 

limitation since, as already remarked, constraint handling is one of the most appealing 

properties oI predictive controllers. Newer results are available taking into account the 

problem oI robustness in the constrained case and a few relevant ones are highlighted 

below. 

In (Allwright and Papavaslliou, 1991; Papavasiliou and AlIwright, 1991; AUwright 

and Papavasiliou, 1992; Allwright, 1994) robust min-max methods based on Finite 

Impulse Response (FIR) modela are presented. Such a min-max problem consists of 

obtaining the control schedule which minimises the maximum of a cost fnnction as the 

impulse response of the system ranges over a polyiope of possible impulse responses. 

A very efficient soIution to this problem based on linear programming is provided 

in (Allwnght, 1994). This solution can han dIe both time invariant and time varying 

uncertainty, and guarantees the accomplishment of constraints as far as the true impulse 
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response coefficients oceur within the polytope. This method, though computationally 

efficient, have sorne inconveniences, the most relevant of which is that FIR models 

can only be used to represent (approximately) stable plants, a limitation which also 

affects the DMC controUer of CutIer and Ramaker (1980). In addition, many impulse 

response coefficients (30-50 or even more) are often required to describe the dynamics 

of stable plants. The alternative min-max MPC solutions introduced below overcome 

this limitation. 

Polytopic linear model descriptions of plant uncertainty, combined with Linear 

Matrix Inequalities (LMI) optimisation, are used in (Kothare et al., 1996) to design 

robust min-max controllers which satisfy input, output and state constraint specifica­

tions. This control scheme computes each control move minimising the worst case cost 

fun~tion over the convex hull of a polytope of linear models) 9 = Co {Gl, G2 , ••• , GL }, 

subject to a set constraints. The true (unknown) model is assumed to be a linear 

combination of the polytope vertices: 

L 

Go = '2: AiGil 

i=l 

L 

where Ai ~ O for 1 '$; i '$; L and '2: Ai = 1. Hcnceforth, this solution is refened to 
i=O 

as the multi-model approach. If the Gi are taken to be linear state-space models, and 

if Go (possibly time-varying) is assumed to He in Q, this approach can even handle 

(possibly in an overly conservative way) non-linear systems for which the Jacobian is 

\ known to líe in the polytope. The control optimisation problem can be formulated as 

Auopt(t) = argminmaxJ(t), 
Av, GEg 

where Au is a vector of control movesl and J(t) is the cost (or objective) funcHon. To 

account for non-linearities and/or time variability, the worst case must be evaluated 

letting the plant vary within the polytope at each sampling instant in the future. 

1 In the formulation of (Kothare et al., 1996), the control actions (u) replace the control moves 
(~u), hut the formulae involved are similar. 
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Addressed in that fashion, the min-max problem usually becomes intractable, but an 

efficient upper bound solution for state-space models using LMI optimisation is depieted 

in (Kothare ·etal., 1996). 

The methods of Kothare et al. (1996) have a few limitations. To begin with, if a eon­

stant setpoint tracking problem is considered, the results apply only to uneertain linear 

time-invariant systems (and thus are not valid for non-linear systems). In addition, this 

methods are formulated for state-space deseriptions of the model and state feedback. 

It is a diffieult task to apply this approach in controllers which use input/output mod­

els, since "pole" uncertainty cannot be expressed. On the other hand, "del ay" , "gain" 

and "zero" uncertainties can be handled without much difficulty. When the (integer) 

dead-time can vary, it is enough to include all the possible del ay values in the models 

(vertices) of the polytope. In Section A.3 of Appendix A the use of this representation 

when gain and zero uncertainties occur is presented. In addition, as shown in Section 

A.3, the plant family must often be extended to allow this description, leading to overly 

conservative results since systems which are not inc1uded in the initial delay /gain/zero 

uneertainty specifications must be taken into account. Moreover, this parametrisation 

cannot be used when uncertainty affects the system's poles, which are, indeed, the 

most significant parameters of transfer function models as the open-loop dynamics are 

concerned. 

Furthermore, severa! kinds of strong non-linearities, such as saturation, hysteresis, 

relay or dead-zone, can occur in a planto In such a case, a polytope of linear mod­

els, as the ones used in (Kothare et al., 1996), does not provide with an appropriate 

description, because a linearisation can be hard (or impossible) to obtain sínce the non­

linear functions involved in the "true" system equations are not differentiable. Another 

remarkable issue is the infiuence of disturbances. Unmeasurable perturbations often 

oceur in such a way that they are not included within the polytopic description, lead­

ing to inaccurate predictions and, possibly, to constraint violations. Obviously, this 
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potential hazard must be handled somehow. As a solution, constraints which are more 

stringent than necessary might be used, but this possibility can give rise to negative 

economical implications since the optimal operating point is nearly always close to (or 

on) the constraint boundary. For example, a chemical may need be produced with 

at least a 97% purity. Then, from an economical point of view, the most convenient 

setpoint would be to produce exactly at 97% purity. However, if the actual purity 

achieved by the process is of (s ay) only 96.5%, the chemical may have to be rejected, 

with the subsequent serious economical loss. 

A global uncertainty description can be the soIution of many practical control prob­

lems. Min-max algorithms, either for state-space (Scokaert and Mayne, 1998) or trans­

fer function (Camacho and Bordóns, 1995) models, can be developed using this for­

mulation, and it is even possible to write them as an efficiently solvable LP problem 

(Camacho and Bordóns, 1995) if l-norm cost functions are used. A global uncertainty . 

is an unknown (bounded) signal B(t) which, added to the model, produces the true 

planto This very simple concept is general enough to range over linear and non-linear, 

time varying and time invariant, stable and unstable uncertainty, which can affect the 

poles, the zeroes, the gain, the delay, or whatever parameter of the model. In addition, 

it perfectly describes (unmeasurable) disturbances. However, a global uncertainty pa­

rameter can involve some degree of conservativeness, since situations which are worse 

than those described by the specifications are often taken into account. A band up­

dating procedure is presented in this chapter to "adapt" the min-max algorithm to 

the current uncertainty values. This procedure is intended to reduce this cautious­

ness, since the initial conservative settings of the uncertainty bands can be replaced, 

according to the uncertainty measurements, by tighter values. 

The scope of this chapter is to formulate and test predictive control schemes based 

on a global uncertainty description, and to compare them to other robustness enhanc­

ing tools. The methods introduced below are requested to provide nominal stability, 
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and thus the basis of the controllers developed below are the controllers presented 

in Chapter 2 which guarantee the stability of the nominal closed-Ioop system, or are 

. "very unlikely" to provide an unstable closed-Ioop system, such as the QGPC~. An­

other requirement is to preserve stability in the presence of global uncertainty (as 

far as the uncertainty signal does not becomes unbounded). Last, but not least, the 

min-max controIlers formulated below are requested to ~atisfy the constraints in spite 

of uncertainty. In the forthcoming sections, unless otherwise explicitly specified, the 

"min-max" prefix is used for methods based on the global uncertainty approach and 

not on the polytopic multi-modellinear plant description. 

This chapter is organised as follows. In Section 4.2, the global uncertainty descrip­

tion is introduced, and input/output models which incorporate this kind ofuncertainty 

are provided. The solution of the min-max optimisation problem is tackled from both 

analytical and numerical points of view. In Section 4.3, the QGPC~ presented in 

Chapter 2 is converted to a min-max formulation. This min-max controller can be im­

plemented as a LP problem with exactly the same number of constraints as its precursor 

(QGPC~), despite the min-max formulation. Section 4.4 presents a set of simulation 

results performed on linear and non-linear plants, and compares the effectiveness and 

efficiency of the newly formulated min-max controllers against various control strate­

gies. Section 4.5 provides an analysis of the robustness of min-max MPC and the 

classical T-based controllers based on the statisticallearning theory and Monte Carlo 

simulation. Finally, Section 4.6 finishes the chapter summarising the most significant 

concluding remarks. 

The formulae provided in the séquel are written for the SISO case only for sim­

plicity of notation, but all of them can be readily extended to the MIMO case in a 

straightforward manner. 
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4.2 Global uncertainty and min-max optimisation 

As defined in (Camacho and Bordóns, 1995), a global uncertainty is an unknown (but 

bounded) signal O(t) which adds up to the model output to produce the true system 

output. Thus, aH sources of uncertainty are collected into the single parameter O(t). 

In this very simple fashion, aH kinds of uncertainties, namely linear or non-linear, time 

invariant or time varying, modelling errors and non-measurable disturbances, can be 

represented. 

In the input/output domain, the global uncertainty O(t) can be incorporated into 

a Controlled Auto-Regressive Moving Average (CARMA) model as follows: 

A(q-l)y(t) = B(q-l)u(t - 1) + O(t), (4.1) 

where A and B are known polynomials in the backward shift operator (defined in 

eqn.2.2) and O(t) is the global uncertainty signal, which is assumed to be bounded by 

0- and 0+: 0- ::s; O(t) ::s; 0+, henceforth referred to uncertainty bounds/bands/limits. 

The description of eqn.4.1 can be used if (bounded) step-like disturbances affect 

the output, but the occasional drift produced by disturban ces cannot be handled by 

this formulation. To account for drift disturbances, the global uncertainty signal can 

be integrated, resulting in the CARIMA model 

(4.2) 

In the sequel the CARMA model of eqn.4.1 is used, since the methods to be introduced 

consider (asymptotically) constant disturbances. Similar algorithms can be easily de­

veloped for drift disturbances using the model provided in eqn.4.2. 

Unfortunately, the polynomial T, which can be used to improve the tune the cau­

tiousnessjperformance trade-off of GPC-like predictive controllers, as shown in Chapter 

3, is dropped in this formulation. The robustness features of min-max controllers must 
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then rely on the optimisation procedure, which should provide with sorne tuning knobs 

to recover sorne of the degrees of freedom which are associated to T. 

4.2.1 Output predictions 

For the system of eqn.4.l, output predictions y(t + jlt) can be computed as 

y(t + jlt) = - al'f)(t + j - lit) - ... - an,.f¡(t + j - nalt) 

+ b1u(t + j - lit) + ... + bnbu(t + j - nblt) (4.3) 

+ O(t + jlt) + h10(t + j - lit) + ... + hj_10(t + lit), 

where f¡(t + jlt) are predictions performed taking all the future global uncertaínties to 

be zero, i.e. O(t+ jlt) = O for all j > O, and hj denotes the ph coefficient of the impulse 

response of the system l/A. Note that, with these definitions, y(t + kit) = y(t + kit) 

for all k < O, since these are past output values which are not affected by the future 

uncertainties. 

Now, the output predictions can be written as 

y(t + jlt) = f(t + jlt) + gll:lU(t + j - lit) + g2l:lU(t + j - 21t) + gjl:lu(tlt) 

+ O(t + jlt) + h10(t + j - lit) + ... + hj_10(t + lIt), (4.4) 

where f(t+jlt) are free response predictions which are computed taking both the future 

control moves and thefuture global uncerlainty predictions to be zero, i.e. I:lu(t+klt) = 

O and O(t + kit) = O for all k 2:: O. Since the output predictions are an affine function 

of the global uncertainty values, the extreme (maximum and mínimum) predíctions of 

y(t + jlt) occur for extreme values of O(t + kit), i.e. O(t + kit) = 0+ or O(t + kit) = 0-

for all 1 :s; k < j. 
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4.2.1.1 Output predictions for GPCro and QGPC~ 

The definitions given in Section 2.2.2 for the vectors Au(t), y(t) and f(t) and the 

dynamic matrix G are assumed to hold in this section. Now, the predicted unceriainty 

vector is defined as 

(4.5) 

where Nf) is the unceriainty prediclion horizon. 

The prediction equation (eqnA.3) allows to arrange the vector oí predictions y(t) 

as 

y = f +GAu + Ho(}N, 

where the dynamic matrix H () 18 given by 

1 

Ho= 
h1 

hN- 1 

O 
1 

hN-2 

O 
O 

1 

(4.6) 

such that hj is the ph coefficient of the impulse response of the system l/A. Notice 

that the output predictions are affine in both Au and ON. 

It is a180 possible to define predictions on the unstable part of the output. Let A 

and A be, respectively, the strictly stable and the unstable monic factors of A. The 

unstable part óf the output of eqnA.l can be obtained as 

B( -1) 1 
f)(t) == ~ q u(t - 1) + "" O(t) 

A(q-l) A(q-l) (4.7) 
= Ay(t). 

Now, ifthe definitions introduced in Section 2.2.2 for the vectora y(t) and w(t) and 

the dynamic matrix G are used, the predictions tí can be arranged as 

(4.8) 
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-for the dynamic matrix H o is defined as 

hN - 1 

H o = 
hN 

o 
O 

where hk is the kth impulse response coefficient of the system 1/ A(q-l), and the free 

response predictions on of the unstable part of the output f(t + jlt) are computed 

taking both the future control moves and the future global uncertainties to be zero. 

Notice that the predictions y are affine in Au and 8N +na • 

4.2.1.2 Output predictions for finite horizon controllers 

The definitions for the vectors Au(t), y¡(t), Y2(t), Wl(t), W2(t) and the dynamic 

matrices G l and G 2 introduced in Section 2.2.1 are used here. Now let the future 

predicted uncertainty vectors 8¡(t) and 82 (t) be specified as 

81(t) = 8Ny -
1(t), 

82(t) = 8N2 (t), 

where 8Ny
-

1(t) and 8N2 (t) can beobtained usingeqnA.5 with No = N y-1 and No = N2 

respectively. This notation allows to arrange the output prediction vectors Y1 (t) and 

Y2(t) as 

Y2 = 12 + G 2Au + H0282, 

where the dynamic matrices H 01 and H 02 are given by 

hNl-l hNl - 2 O 

hNl h N1 - 1 O 
H 01 = 

hNy-2 hNy-1 1 

hNy-l hNy-2 O 
hNy hNy-l O 

H 02 = 

h N2 - 1 h N2 - 2 1 

(4.9) 
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such that hj is the lh coefficient of the impulse response of the system l/A, and ho = 1 

since A is assumed monic (ao = 1). 

4.2.2 Min-max optimisatioI1 

An optimal control move vector can be obtained by solving the problem 

Auopt.= argmin max J(t), 
Au (JN8Ee N8 

(4.10) 

subject to the equality /inequality constraints associated to the controIler. J(t) is the 

cost function and eNe is the convex hull of an unce'l'tainty polytope, formed by 2Ne 

vertices for all possible combinations of extreme values oí eNe (t) along the horizon No, 

i.e. 

such that each component of ofe is either 0+ or 0- and efe -¡ oye ir i -¡ j. Notice 

that there are exaetly 2Ne vertices efe. AH possible global uneertainty predictions are 

a linear combination o( the polytope vertices: 

2Ne 
eNe = ¿ )..iofa, (4.11) 

i=l 

2Ne 

where )..i 2 O for 1 :S i < 2Ne and L)..i = L The convex hnll eNe is formed by 
i=l 

infinitely many vectors eNe satisfying this definition, or 

As an example, a three~dimensional polytope is shown in FigA.1. In such a ease 

the polytope vertiees form a eube, and any point within the eube or on its surface is a 

potential ruture uncertainty vector. 
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Figure 4.1: Uncertainty polytope for No = 3 

Any cost function can be used for J(t) in this min-max formulation. The cost 

functions defined in Chapter 2 lead to the min-max GPC for J2(t) defined in eqn.2.4, 

the min-max CRHPC for J2(t) defined in eqn.2.5, the min-max GPCoo for J2(t) defined 

in eqn.2.6, the min-max l-norm controllers for J1(t) as defined in eqn.2.34, and the 

min-max QGPCr' for JI (t) as defined in eqn.2.48. The formulae associated to the min­

max (finite horizon) GPC and the GPC l can be found in (Camacho and Bordóns, 1995) 

and are omitted in the seque!. 

In general, equality and inequality constraints must be taken into account in the 

min-max problem posed aboye. As díscussed in Chapter 2, the former are required 

by methods with stability guarantees (e.g. the CRHPC and the GPCDO
) and must by 

handled by min-max controllers, whereas the latter are designed by the user to define 

closed-Ioop specifications or performance. The following section tackles the problem of 

constraint incorporation into the min-max optimisation framework. 
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4.2.2.1 Inequality constraints 

As remarked in Chapter 2, the general inequality constraints can be written as 

PAu ~ r) 

for some matrix P and vector r. This set of constraints can be divided into two 

separate parts: 

which are independent ofuncertainty (constraints on the control signaI, control rate or 

control acceleration) and 

which depend on the global uncertainty predictions (constraints on the output signal, 

output rate, output acceleration or internal states). As illustrated below, the matrix 

Po is independent of the global uncertainty predictions eNe, and the vectors ro are 

affine functions in eNo • Hence the extreme (most restrictive) constraints occur at the 

vertices of the polytope eNe. Therefore these constraints need only be considered at 

the polytope vertices: 

(4.12) 

For instance, consider the GPCoo with the output constraints y(t + jlt) ~ y+ for 

1 < j ~ N. Using the prediction equations obtained above, these constraints can be 

arranged in vector form as 

where 1 denotes the ones vector of appropriate dimensiono Notice that the uncertainty 

prediction vectors eN are N-dimensional, and thus the polytope eN consists of 2N 
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vertices. Now, the inequality provided aboye can be written as 

GD..u < y+1 - f - H OIY VOIY E eN - o t' t , (4.13) 

which specify N2 N constraínts (rows) to be included in the min-max optimisation 

problem, 'since the polytope eN consists of 2N vertices of. However, note that all these 

constraints differ only in the term H oOf, hence it is possible to examine these vectors 

component by component and pick up the value which produces the more restrictive 

constraint. AH the other constraints can be discarded sin ce they are redundant. As an 

example, the set of constraints 

x :5 z + 3, 

x :5 z - 7, 

x :5 z + 1, 

x :5 z - 3, 

can be reduced simply to x < z - 7, and the rest are redundant. If this procedure is 

applied to all the rows of eqn.4.13, then it is possible to reduce the N2 N constraints of 

to just N: 

~N N 
where O is formed taking the smallest components of the vectors H OOi . Notice that 

the right-hand si de of the finally chosen N constraints include elements associated to 

different vertices. 

In general, the dim(ri)2N constraints of eqn.4.12 can be reduced to just dim(ri) 

using this procedure, where dim(v) denotes the dimension (or size) of the vector v. 

Finally, these constraints can be written in the (standard) form 

with Po = G and ro = y+l- f _ON, 



Seco 4.2. Global uncertainty and min-max optimisation 145 

Remark 4.1 It is worth pointingout that the constraint reduction procedure is a Non­

deterministic Polynomial (NP) probIem, since 2N9 vectors H eOf9 must be examined 

so as to choose the most restrictive constraints. QQQ 

4.2.2.2 Equality constraints 

End-point equality constraints are common to the stabilising MPC controllers described 

in Chapter 2. In fact, these constraínts are essential for the nominal stability proofs, 

and must be considered by the min-max controllers to preserve stability at least in the 

undisturbed case. 

Prior to undertake the incorporation of these constraints into the min~max optimisa­

tion framework, the uncertainty prediction horizon No must be defined as N2 = N + m 

in the CRHPC and by N + na in the GPCco
, These definitions of No include the 

predictions in the constraint window as well as the costing horizon. 

For the GPCco (GPCf' and QGPCi) the equality constraints are as defined in 

eqn,2.20: 

y(t) = w(t), 

which, using the predictions in eqnA.8, become 

For the CRHPO (CRHPC1) the equality constraints must be enforced on the whole 

modeloutput (not only the unstable part), as described in Section 2.2, and are provided 

by 

which can be rearranged, using eqnA.9, as 
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Be that as it may, the end-point equality constraints should, in principIe, be consid­

ered for all the infiniteIy many possible global uncertainties oNe E eNo (not only the 

vertices 0["0), i.e., aH the possible global uncertainty values described in eqnA.ll. With 

only a finite number (Nu ) of decision variables, it is obviously impossible to enforce 

infiniteIy many equality constraints. To overcome this difficulty, here it is suggested to 

impose the equality constraints assuming that all the future global uncertainties occur 

at the middle point value, i. e. 

. - ()- + ()+ 
()(t+ Jlt) = () = 2 ' 

which can be thought of as a sort of mínimum variance estímate. Then, the vector liNo 

ís defined as 

the geometrical interpretation of which is nothing but the centre of the uncertainty 

polytope. Enforced for this so-called "average" vector, the end-point equality con­

straints become 

G-A - ¡- H -ON+na u=w- - 9 , 

for the GPCoo and 

for the CRHPC. 

Notice that if ()+ = ()- = () = O (undisturbed case) the constraints defined aboye 

are exactly those which ensure (nominal) stability. In fact, if the global uncertainty 

settles down to sorne steady-state value ()* (as usuaHy occurs for step-like disturbances) 

and the upper and lower bounds ()- and ()+ are both updated to equal ()*, then iJ = ()* 

and the predictions become exacto In such a case, these end-point equality constraints 

provide both stabilíty and offset-free setpoint tracking (Scokaert, 1997). 
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4.2.2.3 2-norm cost functions 

This section uses the GPCoo formulation provided in Chapter 2. Analogous results 

would be obtained for the CRHPC (or the more general formulation given in eqn.2.3), 

which are omitted here for brevity. 

If the 2-norm is used, the GPCoo cost function to be optimised can be written in 

the form: 

subject to equality (y = w) and possibly to inequality constraints, with the weighting 

matrices A and R defined in Chapter 2. 

Remark 4.2 The prediction horizon for the global uncertainty can be reduced to 

No = N, since the values beyond this point do not affect the predictions y(t + jlt) for 

1 < j :::; N. Longer uncertainty horizons can be considered for the equality (No = 

N + na) or the inequality constraints (if these are enforced beyond N), but the shape 

of the cost function is only affected by B(t + jlt) for 1 :::; j :::; N, and thus No = N is 

assumed in the rest of this section. 000 

This cost function is quadratic in .6.u, and can be posed in the standard form: 

for 

Aau = GT AG + R, 

bXu = 2(w - f - Ho(JNe)T AG, 

Cau = (w - f - Ho(JNe)T A(w - f - HO(JN(J), 

but it is also quadratic in (JN(J: 
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for 

Ae = HJAHo, 

b¡ = 2(w - f - Gdu)TAHo, 

Ce = (w - f - Gdu)T A(w - f - GdU) + duTRdu. 

Hence, due to the convexity of J2(t), the maximum of J2(t) as eNe ranges over the 

polytope eNe necessarily occurs at one of the vertices of e No (Bazaraa and Shetty, 

1979; Camacho and Bordóns, 1995). Then the optimisation problem reduces to consider 

2Ne quadratic cost functions, one for each vertex ef'o. This is true for any convex cost 

function (e.g. a 1-norm cost function). 

llu* 
Case (a) 

llu* 
Case(b) 

. Figure 4.2: Min-max solution for a pair of quadratic functions 

An analytical solution of the min-max problem for quadratic cost functions is de­

scribed next. Let J~(t) denote the quadratic cost function obtained for the polytope 

vertex ef'e E e No . Now consider a pair of cost functions J~(t) or J4 (t) (for Nu = 1) as 

shown in FigA.2, obtained at the vertices 8f'° and efo respectively . The solution of 

the subproblem 

líes either on the intersection of the cost functions (a) or on one of the mínima of 

J~(t) and J4 (t) (b). Since the matrix AAu is independent of eN(J, the intersection 
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probIem can be solved as the minimisation of either J~(t) or J4(t) subject to the 

equality constraint JHt) = J4 (t), which can be written as 

or 

(4.14) 

apart from the (equality and inequality) constraints associated to the controller. 

In the general case of dímension Nu > 1, the global solution líes eíther on any of 

the mínima of JHt) or in the intersection of up to Nu + 1 cost functions J~(t). 

Remark 4.3 Each intersection defines an equality eonstraint in the minimisation, and 

each equality constraint reduces in one the degrees of freedom available for optimisation 

i. e. the dimension of the decision variables space. In other words, 2 cost functions can 

intersect producing a (Nu - l)-dimensional decision space, and Nu + 1 cost functions 

can intersect on a single point (O-dimensional space), but Nu + 2 cost funetions do not 

(in general) intersect on a Nu-dimensional space. 000 

Remark 4.4 Actually, the equality constraints assoeiated to the controller must be 

taken into account, since they reduce the dimension of the decision variables space. 

Thus, if the controller involves e equality constraints, the number of cost functions 

which intersect reduces to Nu - e + 1. 000 

A set of subproblems can be obtained forming all the combinations of up to Nu -c+ 1 

cost funetions, and each of these can be solved by means of a QP probIem subjeet to 

up to Nu - e + 1 equality constraints of the form of eqnA.14plus l equality constraints 

associated to the controller. Note that there are exactly 

(2Ne) (2Ne) ... ( 2Ne ) 
O + 1 + + Nu - e + 1 ' 
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subproblems. Let (Ji} AU*) denote the solution of one oí these subproblems. Ir 

(J2'! Au*) is such that any cost function vaIue J~(AU*) is lower than or equal to 

J2' for a11 1 :5 k < Na, then Au* turna out to be a candidate global sollltion oí the 

min-max probIem. The global optimum is finally found as the one which provides the 

minimal Ji over a11 the candidate solutions. The following algorithm implements this 

analytical min-max optimisation method: 

1. for all 1 :5 i :5 2Ns do 

(a) Form all the combinations { Jí1 
, ••• ,J411

} with up to Nu - e (p < Nu - e) 

cost functions, including the empty one (p = O), and with jic > i for aH 

l:5k<p 

(b) for all such combinations { J41 
, ••• ') J4p 

} do 

(i) (AU*, J;):= (argminJJ(t»)minJ~(t») subject to ~(t) = J'k(t) for a11 
au au 

1 k < p, and subject to the controBer equality/inequality constraints 

(H) if Ji > J~(AU*) fo! all 1 :5 le < 2Nq then add (A u*, Ji) to the 

candidate list 

endfor 

endfor 

2. Pick up the mínimum from the candidate list: 

(AUoPt , J~Pt) :=~!n {(Au*, J;)}; 
2 

return 

Obviously this algorithm is NP (the nllmber of iterations depends on 2NIJ ), and hence 

ShOllld only be used for small Ne. In addition, it mllst be taken ¡nto account that this 

method is to be applied on-Une at each sampling instant and thus the computational 

burden must be small to allow for the obtention of the optimal control move vector 
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within a sampling periodo As an alternative, a numerical solution can be used to reduce 

the computational requirements. An equivalent formulation of eqn.4.10 is given by the 

non-linear programming problem: 

vopt .6.uopt = arg min v subJ'ect to v > Ji(t) for 1 < i < 2Ne 
, A -2 --, 

V, U 

and subject to the equality /inequality constraints associated to the controller. This 

problem can be solved using Sequential Quadratic Programming (SQP) methods, as 

described in (Schittowski, 1985; The Mathworks, 1997), 

To compare the anaIytical and the numerical solutions in terms of computational 

burden, the algorithm described above and the non-linear programming solution have 

been tested. A 5~dimensional search space (Nu = 5) has been considered. For this 

experiment, the matrix AAu (definite-positive), the vectors bAu and the scalars CAu 

have been randomly generated. In addition no constraints (either equality or inequal­

ity) have been taken into account. 

Solution Ratio 

Analytical (tA) Numerical (tN) (tA/tN) 

21 1.0 4.0 0.25 
Polytope 
vertices 

22 3.0 6.8 0.44 

(2ND ) 23 37.8 6.8 5.60 

24 2903.2 8.3 350.84 

Table 4.1: Normalised CPU time 

The computational burden, measured in normalised CPU time (see Section 2.4.3), 

is shown in Table 4.1. The outcome of thís experiment evidences that an analytical 

solution is only advisable for Ne < 3, since the CPU time ít requires in creases dramati­

cally with Ne. In many practical situations, the SQP solution should thus be preferred. 

Notice that the rate of increase of the computational burden with Ne associated to the 

numerical solution is much lower than the result obtained with the analytical method. 
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However, it is worth pointing out that the example presented above is quite an 

ideal case, since no constraints have been taken into account. For the stabilising RHPC 

methods introduced in Section 2.2, atléast the end-point equality constraints on the 

. output or on the unstable part of the output, depending on weather CRHPC or GPCoo 

are used; should be included. In fact, these constraints (equality and inequality) rnust 

be incorporated into the sequential QP problems which are sol ved in the SQP formula­

tion, what involves an increase in the computational burden. Thus, even the numerical 

solution can become unpractical for relatively fast systems. 

More efficient min-max controllers can be obtained if 1-norm cost functions are 

used. An example of such a formulation is provided in (Camacho and Bordóns, 1995), 

where the min-max 1-norm finite horizon GPC is presented. In the next section, the 

l-norm quasi-infinite holizon controUer defined in Section 2.3.3 is formulated in thé 

min-max framework. 

4.3 Min-max QGPCf 

Severa! examples are provided in the literature to show that l-norm formulations 

of min-max MPC lead to methods which involve a very low computational burden 

(Allwright, 1994; Carnacho and Bordóns, 1995). The objective of this section is to 

formulate a min-max controUer which can be implemented as a single LP problem, for 

which very efficient standard solutions are available. 

As shown in Section 2.5, the QGPCf converges to the GPCf when the control 

horizon is íncreased, and hence is "very likely" to provide with nominal stability, at 

least for large enough Nu • The GPCf' itself does not appear to be a convenient 

choice to obtain a min-max controller because oí the requirement that the iterative 

algorithm presented in Section 2.3.2 is applied at each sampling Ínstant. In the mÍn-max 

framework, this iterative procedure involves the solutionof several min-max problems 
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(twice the number of iterations needed for convergence) at each sampling instant, what 

would involve an excessively large computational burden. On the other hand, if the 

QGPCr is used, just a single min-max problem needs be solved at each sampling 

instant. In addítion, the QGPCr leads to an appropriate nominal behaviour for the 

vast majority of systems, as discussed in Chapter 2. 

Furthermore, in min-max controllers, it is of particular relevance to keep the pre­

diction horizon short sínce the number of polytope vertices increases exponentially 

with the prediction (or uncertainty) horizon. As remarked in Chapter 2, the CRHPC¡ 

with short control/prediction horizons often leads to deadbeat-like behaviour, and thus 

does not appear to be a suitable candidate to yield a robust min-max controller. The 

. (quasi) infinite horizon approach to stability is preferred to the solution provided by the 

CRHPCh sínce deadbeat-like behaviour is unlikely with the GPCr and the QGPCf. 

Taking into account all these considerations, the QGPCr seems a suitable candidate 

to provide with an effective soIution oí most control problems of uncertain systems 

within the global uncertainty approach. Whenever the QGPCf does not provide a 

convenient nominal closed-Ioop behaviour (instability or deadbeat-like responses), two 

possibilities are suggested: 

1. Inerease the control horizon Nu until the QGPCr converges to the GPCco (see 

Section 2.5). If the control horizon required for convergence is "not too long" 

then the min-max QGPCr solves the optimisation problem in very short time. 

2. Implement the min-max 2-norm GPCco using a numerical solution to reduce the 

computational burdell. 



154 Robust constrained RHPC using min-max optimisation 

4.3.1 Solving the min-max problem 

The QGPCr cost fundion is given by eqn.2:48: 

N-l N Nu 

J1(t) = I: le(t + jlt)j + a I: le(t + j!t)! + I: p(j) I~u(t + j -llt)l, 
j=l j=N-n¡¡+l j:::;l 

which, as discussed in Chapter 2, provides an upper bound of the infinite horizon cost 

function if the system-dependent weighting a is chosen as suggested in eqn.2.38. 

Now the min-max QGPCr is defined as the solution to the optimisation problem: 

(4.15) 

As discussed in Section 4.2.2.2, the uncertainty horizon No must extend to N + na: for 

the equality constraints. 

As the predictions are affine functions of eNe, the cost functíon and the inequality 

constraints PeA u :::; TO need only be evaluated at the polytope vertices efe E eNe. 

Thus there are 2NIJ sets of constraints of this form, one set for each vertex. The 
, 

constraint reduction procedure depicted in Section 4.2.2.1 can be used to cut down the 

number of constraints. 

Remark 4.5 Henceforth, it is assumed, unless otherwise explicitly specified, that the 

constraints P uA u < Tu and PeA u :::; Te are enforced in the prediction horizon t+ l, t+ 

2, ... , t+N (not t+N +na:). Rence the dimension ofthe uncertainty vectors eN relevant 

to these constraints is N and not N + na:. Uncertainty vectors oí dimension N + na 

are used only for the equality constraints. Notice that the constraint horizon might 

need to be increased even beyond N + na: to obtain infinite horizon-like constraints, 

which are needed to preserve the nominal stability property, as remarked in (Rawlings 

and Muske, 1993). However, a constraint horizon of N is enough for the vast majority 

of systems and, without 10ss of generality, is used hereafter. If the upper constraint 
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horizon is greater than N, the formulae provided below can be used introducing slight 

straightforward modifications. 000 

This optimisation problem can be solved, using LP tools, similarlyas done in Section 

2.3.3 for the T-based QGPCf. However, the LP problem must consider the maximum, 

among all the polytope vertices, of the cost function JI (t). Let the variables a{j) > O 

and f3(j) 2: O be defined as in Section 2.3.3, then the problem of minimising W subject 

to: 

-a{j) < e(t + jlt) < a{j), 1 S j S N, VON E eN 

-f3(j) < ó.u(t + j -lit) < f3(j) , 1 S j S Nu , (4.16) N N" 
O < ¿p(j)a(j) LP(j)f3(j) < W, 

j=1 j=l 

with the weighting sequence pU) defined in Section 2.3.3, and subject to the equal­

ityjinequality constraints associated to the controller, can be thought of as a LP ver­

sion of the problem described in eqn.4.15. Notice that the variables a(j) stand for the 

maximum predicted tracking errors for all the possible uncertainty vectors within the 

polytope eN. Now, since the cost function is (strictly) convex, this problem must be 

considered only at the vertices, and the constraints associated with the variables a(j) 

can be replaced by 

-a(j) < e(t + jlt) S a(j), 1 S j S N, vol( E eN, 

Remark 4.6 This LP problem is, however, more conservative than the formulation of 

eqn.4.15, since the variables O"(j) collect the worst case prediction errors for different 

vertices of!. Thus a(j¡) can occur for the vertex O~, whereas a(j2) occurs at a different 

vertex 8~ (with il =1 i2). In fact, due to the convexity of J1(t), the maximum of 

eqn.4.15 is to be found at a single vertex, and not at a combination of different vertices. 

To solve exactly the min-max problem of eqn.4.15, different sets of variables ai (j) should 
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be used for different vertices) i. e. 

e(t + jlt) 
N Ntt 

O < I:,u(j)Ui(j) + 2.:p(j)¡3(j) < W, 
j=l j=l 

This modification yields an exact solution to the min~max problem, but the compu~ 

tational price is enormous, since the number of variables Ui (and the associated con­

straínts) is multipIied by 2N • For computational reasons, it is thus advisable to solve 

the problem as formulated in eqn.4.15, although an unnecessarily conservative solution 

might be attained. 000 

The problem of minimising W (eqn.4.16) can be posed as the linear programming 

problem: 

min W, subject to 
'ifi',O'",¡3,Au 

u> GAu+Heof +f-w; } 
u 2:: -GAu - Hoof - f + w, V8r E eN 
PoAu ~ rth 
{3 > Au, 
{3 > -Au, 
W > p7u + pT{3, 
PuAu :5 Tu, 
- -- -N+n-GAu=w-f-Ho8 a, 
U > 0, (3 > 0, W > O, 

where the coefficients ,u(j) are defined in Section 2.3.3 and the vectors p, Cf} P and 

{3 are defined in eqn.2.35. Notice that only the equality constraints on the unstable 

part of the output and the first few inequality constraints are uncertainty~dependent, 

whereas the rest of them are independent from the global úncertainty signa!. 

As usual, this probIem can be written in the standard form as 

min cT x subject to Ax b, u 2:: 0, {3 0, W ~ 0, 
ro 

with 
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and 

A = [Ay ... AiN A~] T , 

b = [by ... biN b~] T , 

where the block matrices Ai and vectors bi are defined as 

G -1 O O 

Aí = -G -1 O O 

-Hoof -f+w 

Hoof +J-w 
Po O O O 

1 O -1 

-1 O -1 

O ¡.LT pT 

Pu O O 

G O O 

-G O O 

O 

O 

-1 

O 

O 

O 

O 

O 

O 
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. 

Now, since there are exactly 2N pairs (Ai ) bi ), the total number of constraints can 

be obtained as [2N + dim(rl)J2N + 2Nu + 1 dim(ru ) + 2(n¡¡ + 1) + N + Nu + 1 (the 

last three terms come from the constraints (j 2:: O, (3 2:: O, and \]f 2:: O). Notice that the 

block matrices Aí are identical, and thus the constraint reduction procedure depicted 

in Section 4.2.2.1 can be used, as discussed in (Camacho and Bordóns, 1995). If the 

ph row of the constraint blocks Aix ::; bi is considered, the only constraint which 

determines the feasíble region is the one for which the jth element of the vector bi 

is the lowest, and the other 2N - 1 constraints are redundant and can be discarded. 

Hence, this LP problem can be implemented reducing the number of constraints to 

just 2N + dim(rl) + 2Nu + 1 + dim(ru) + 2 (na + 1) + N + Nu + 1, i.e. exactly the same 

number as for the T:based QGPCf of Section 2.3.3. 

It is worth pointing out that the constraint reduction is an NP problem, as already 

remarked in Section 4.2.2.1. If the uncertainty hounds ()- and (}+ are taken to be 

time invariant, this fact is not relevant since the constraint reduction procedure can 
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be performed off-line obtaining the vectors H o{}f' for all the polytope vertices {}f E 

eN, This is the case of the controllers introduced in (Camacho and Bordóns, 1995). 

However, the closed-Ioop dynamics ofthe uncertainty signal O(t) can be used to update 

the uncertainty bounds, as shown in the following section. If the uncertainty bands 

are modified on-line, the constraint reduction procedure must be carried out on-line, 

and thus this NP problem should be sol ved at each sampling instant. In that case, it 

is advisable to keep N (or No), and consequently NUl small for computational reasons. 

This implies a trade-off choice of NU1 since nominal stability with the QGPCf requires 

a "large enough but relatively small" NU1 whereas computational issues suggest to 

choose a short control horizon. 

4.3.2 A band updating algorithm 

In this section a band updating algorithm to modify the lower and upper global un­

certainty bounds, 0- and (J+, on-line is suggested. To develop this algorithm the 

closed-Ioop uncertainty dynamics need be investigated. 

To begin with, notice that the global uncertainty signal O(t), as defined in eqn.4.1, 

can be measured on-Une as the residue from the true to the predicted output, i.e. 

B(t) = y(t) - y(tlt - 1), 

where y( tlt - 1) is the output prediction at time t using information available at time 

t - 1, performed assuming that the future global uncertainty is zero. At time t, this 

one-step-ahead prediction can be obtained as 

" 

y(t + lIt) = f(t + lit) + gl~u(tlt). 

The following experiment has been carried out to illustrate the typical closed-loop 

behaviour of the residues B(t). The lightly damped second-order system of eqn.A.I0: 

G(q-l) = q-1B = O.2358q-l + O.2319q-2 
A 1 - 1.4835q-l + O.9512q-2 
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has been chosen as the nominal model. The poles ofthis system are located at 0.7418± 

0.6333J and the zero at -0.9832. On the other hand, the true plant has been defined 

as 

G ( -1) = q-l Bo = 0.1091q-l + 0.0751q-2 
o q Ao l-I.4835q-l + 0.7467q-2' 

i. e. the true zero (-0.6882) and steady-state gain (0.7) are 0.7 times the nominal ones, 

and the true poles (0.7418 ±0,4433J) lead to a much more damped open-Ioop response 

compared to the nominal planto The true output has been computed as 

(4.17) 

where the (unmeasurable) additive disturbance x(t) is O for t < 51 and 0.05 for t ;?: 5I. 

Notice that such a disturbance affects the internal states and not only the output of 

the system. 

To obtain the closed-Ioop uncertainty signal, the QGPCr has been chosen with the 

tuning knobs Nu = 5 and p = 1. The model of eqn.4.1 has been used for the prediction 

for the nominal plant introduced aboye and with the assumption 0- = 0+ = O for all t. 

In the nominal case and for these tuning parameters, the QGPCr is indistinguishable 

from the truly infinite horizon GPCr (see Section 2,4.3). Notice that the min-max 

optimisation procedure can be avoided since all the assumed polytope vertices reduce 

to a single point, i.e. e = O. With these settings, a step setpoint change of unit 

amplitude has been simulated at the fifth sample. 

Fig.4.3 displays the closed-Ioop behaviour ofthe global uncertainty O(t). This result 

provides with an example of the typical uncertainty dynamics, and the following oyeran 

features can be observed: 

1. After the setpoint change (t = 5), the controner operation leads to relatively 

large control moves and, consequently, to a sharp change in the global uncertainty 

signal O(t) due to the modelling errors. 
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Global uncertainty measurements 
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Figure 4.3: Global uncertainty signal 

2. The global uncertainty signal oscillates for several samples and, after a while, 

settles down to sorne steady-state value. 

3. When the disturbance enters the system (t = 51), the situation is similar to a set­

point change, since the control activity introduced to compensate the disturbance 

implies an increase and sorne oscillation in the global uncertainty signal. 

4. The disturbance leads to oscillations of the global uncertainty signal for a few 

samples, and finally the fJ( t) settles down to a different steady-state value. 

The lower and upper uncertainty bounds should be modified according to this 

dosed-Ioop behaviour. However, it must be taken into account that whenever a band 

is violated by the true uncertainty signal, constraint violation or even instability may 

occur, since the true uncertainty can be worse than that assumed by the min-max 

method. Thus, any band updating algorithm should guarantee that the uncertainty 

bands are respected as much as possible. The following set of rules is intended to 

provide with an appropriate method to update the uncertainty bounds on-line: 
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1. Every time a setpoint change is introduced, the uncertainty bands must be 

widened to prevent that the uncertainty oscillations surpass the limits. This 

can be done by assigning a large, possibly very conservative, value to 0- and 0+. 

2. The bands must decrease and converge to the uncertainty values. When the 

global uncertainty is at steady-state, it is advisable that the lower and the upper 

bounds converge to the steady-state value, because exact predictions would be 

available, leading to offset-free setpoint tracking. 

3. Unmeasurable disturbances are, by nature, unpredictable and they can lead to 

band (and possibly constraint) violations, which could even result in instability. 

Any time a band violation occurs, the lower and upper bounds must be modified 

(increased) accordingly so as to avoid future violations. 

Remark 4.7 If the uncertainty limits are not respected by the global uncertainty sig­

nal, only the constraints which depend on O(t), basically output and state constraints, 

can be affected (violated), whereas the input-like (input amplitude, input rate, input 

acceleration and so on) constraints are not to be influenced by these potential uncer­

tainty band violations. This latter kind of constraints is totally independent of the 

uncertainty. 000 

The heuristic rules suggested aboye are illustrated in Fig.4.4. Notice that the upper 

uncertainty bound is violated when the disturbance enters the system, and thus the 

uncertainty bands are widened in order to cope with the future uncertainty. The band 

updating procedure suggested here modifies both the upper and the lower bounds 

whenever a band violation occurs. In the figure, the disturbance leads to an upper 

band violation and, when this situation is detected, the lower bound is also modified. 

The aim of this solution is twofold. To begin with, a perturbation usually leads to 

high-frequency uncertainty oscillations of large amplitud e whích can be enclosed by the 

updated uncertainty bounds ifboth limíts are modified. On the other hand, the equality 
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Figure 4.4: Band updating procedure: global uncertainty (J(t) (solid) and uncertainty 
bounds (dotted) 

constraints on the unstable part of the output are enforced for constant uncertainty at 

the average of the Iower and UPPer bounds. Thus, if both (J- and (J+ are widened, a 

sudden change inthe average U and, consequently, in the end-point equality constrains, 

is prevented. 

Remark 4.8 When a disturbance ínvolves uncertainty band violation, the constraints 

specified by the designer might be temporarily violated. If the band updating pro ce­

dure manages to endose the uncertainty signal, this possibility vanishes in the future. 

Disturbances may even lead to infeasibility problems, which can be handled using the 

methods described in (Scokaert, 1994; Álvarez and de Prada, 1997). Notice, however, 

that constraint violation and infeasibility situations cannot be avoided when unmea­

sured disturbances enter the system, sínce these are only detected by the feedback loop 

when the output is already disturbed. This drawback is common to a11 the constrained 
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MPC schemes. 000 

Finally, the suggested band updating algorithm (to be executed at each sampling 

instant t) can be implemented as: 

1. l(t) :=min{O(t),O(t -1), ... ,O(t - Me + 1)}; 

h(t) := max{ O(t), O(t - 1), ... , O(t - Mo + 1)}; 

inc(t) := max{O, O-(t) - O(t), f)(t) - f)+(t)}; 

2. if O-(t) < O(t) then 

O-(t) :=(1- p,)l(t) + p,f)-(t - 1) - inc(t) 

else 

O-(t) := O-(t) - 2inc(t) 

endif 

if O+(t) ;:::: O(t) then 

O+(t) :=(1 - JL)h(t) + p,f)+(t - 1) + inc(t) 

else 

O+(t) := O+(t) + 2inc(t) 

endif 

where Mo > 1 is the number of (past) uncertainty samples which are "remembered" 

by the updating algorithm, and O :$ JL ::; 1 is the pole of a first order filter with unit 

steady-state gain: 

l-JL 
1 - p,q-l' 

(4.18) 

According to the first step of the algorithm, l (t) and h( t) are assigned, respectively, the 

lowest and the highest last Mo values of O(t), and inc(t) is the current amount of band 

violation (O ifthe bands are respected). The procedure works as follows, ifboth bands 

are respected (inc = O), they are updated in order to approach the extreme (maximum 
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and mínimum) last Me values of 8(t) following a first order trajectory the dynamics of 

which· depend on J.L (¡..t:::::: 1 for slow rate and ¡..t :::::: O for fast rate): 

8-(t) = 1 ~ ~:_ll(t), 8+(t) = 1 - ¡..t h(t). 
1- ¡..tq-l 

Apparently, higher-order filters míght be used in this procedure, in a way that would 

recover sorne of the polynomial T filtering properties. However, a careful analysis of 

the effect of the frIter of eqnA.18 in the uncertainty bands dynamics discourages this 

possibility. To begin with, the filter of eqnA.18 is not applied to the uncertainty signal 

itself, but the highest (h) and lowest (l) last Me values of 8(t). Hence the suggested band 

updating algorithm does not filter the modelling errors directly, and eqnA.18 cannot be 

thought of as the counterpart 0(2 Sp/T (Yoon and Clarke, 1995a; Megías, 1996; Megías 

et al., 1997) in the T-based unconstrained MPC case analysed. in Chapter 3. On the 

other hand, note that the variable inc is an input signal to the uncertainty bands (see 

the second step of the algorithm). Whenever inc(t) changes from O to sonie other 

value, this can be viewed as an impulse input to the uncertainty bands. It must be 

pointed out that the impulse response of (stable) first order filters is monotonically 

decreasing, but this is not true for greater order frlters. The monotonicity of the 

impulse response coefficients of the frIter which determines the band dynamics is quite 

a valuable property, since it speeds up the band convergen ce from the current values 

8-(t) and 8+(t) to the (extreme) measurements l(t) and h{t), what avoids unnecessari1y 

large band values for a few samples after a modification. As a consequence of these 

observations, only first order frlters are used for the uncertainty band dynamics in this 

thesis. 

Aside 4.1 Compare the impulse response oi the filters 

0.1 d 0.01 
1- 0.9q-l an (1 - 0.9q-l)2 

I End of Aside I 
stable systems, the choice T = A(l - pq-l) leads to SplT = (1 - p)!(l _ pq-l). 
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Ir one of the two banda is violated at current time t (inc > O), it is automatically 

updated by adding (or subtracting) twice the amount (2inc) it has been violated. In 

such a case, the other band is also added (or subtracted) the quantity inc. 

Remark 4.9 In case of persistent (low-amplitude) noise, as always occurs in practical 

applications, a looseness factor can be introduced to keep the upper and lower bounds 

separated sorne distance at steady-state. The steady-state lower to upper bound offset 

should be greater than or equal to the maximum noise amplitude, what would guarantee 

constraint satisfaction. If the looseness factor is tuned to bound the noise amplitude 

tightlYl then the setpoint can be brought closer to the constraint boundary, which 

usually determines the optimal operating condition, at least from an economical point 

ofview. 000 

4.3.3 Tuning guidelines 

The band updating procedure outlined aboye uses a few tuning knobs. The aim of these 

parameters is to adjust the robustnessjperformance trade-off. The two main tuning 

knobs to be chosen are .the "past" uncertainty horizon Me and the band dynamics 

parameter p. In addition, there are two secondary parameters to be set, namely, 

the band enlargement due to a setpoint change (band initialisation), and the number 

of samples the bands are "frozen" whenever a setpoint change occurs (band freezing), 

which are illustrated in FigAA. As the band initialisation is concerned, some knowledge 

about the increase of the residues from the true output to the mode! predictions when a 

setpoínt change occurs is needed to adjust this parameter. The most obvious possibility 

is . to widen the uncertainty bounds a given percentage of the setpoint change. This 

alternative ffiight be too simplistic for some non-linear systems, sínce the uncertainty 

behaviour often vanes at different operating points) and consequently different setpoint 

changes can produce different uncertainty behaviour. If little knowledge about the 

residues is available, it is advisable to assign conservative (large) bound values which 
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keep the input activity low for a few samples. The number of samples the initial 

band values are frozen after a setpoint change is useful to allow the band updating 

algorithm to collect enough data to indude, at least, a maximum and a minimum of 

the global uncertainty signa!. The longer this period is, the more conservative the 

controller becomes. If a slow /1 is chosen, this parameter does not need to be as 

large as the peak distance (p in Fig.4.4), since the initial values of (}- ánd (}+ are 

slowly modified (decreased), andthe maximum and minimum of (}(t) are very likely 

to occur within the bands. In addition, note that the band updating procedure self­

adjust the uncertainty bounds whenever a band violation occurs. Hence, these two 

parameters (band initialisation and band freezing) are not critical, but they help to 

avoid uncertainty band surpassing and, consequently, the constraint violations which 

could result as a consequence. 

Now, tuning guidelines for the two main parameters, Me and /1, are proposed. In 

order to endose the uncertainty oscillations, the past uncertainty horizon parameter 

should be chosen so as to "remember" at least a local maximum and a local minimum 

of the uncertainty signal. Thus Me is suggested to be greater than or equal to the 

peak to peak distance p (see Fig.4.4), i.e. Me 2:: p. As /1 is concerned, this parameter 

determines the dynamics of the lower and upper uncertainty bounds. As a rule of 

thumb, it is advised that /1 is chosen according to the decreasing rate of the enveloping 

curve which endoses the uncertainty signal. Hence /1 should be tuned such that the 

uncertainty bounds dynamics are similar (or slower) than those of the uncertainty 

envelope. 

Notice that the tuning guidelines for Me and /1, though intuitive, are somewhat 

difficult to apply since they require sorne a priori knowledge about the behaviour of 

the residues. Thus, the following issue must be tackled: 

How can Me and /1 be chosen for the first time when no knowledge about 
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B(t) is available'l 

The most obvious way to overcome this difficulty is to perform a few experiments in 

order to obtain uncertainty data which can be used to tune both Mo and JJ. If a detailed 

(possibly non-linear) model of the true system is available, then the experiments can 

be simulated, and then these tuning parameters can be chosen as suggested in the 

guidelines reported aboye. Ifit is not possible to perform simulated experiments, 

large conservative values for Mo and JJ should be chosen at the beginning. These 

can be replaced by tighter (less conservative) choices in Iater adjustments to improve 

performance. 

The closer the uncertainty bounds are to the envelope of fJ(t), the less conservative 

the controller becomes. A convenient choice of Mo and JJ can help to improve perfor­

mance, making it possible to operate in the proximity of the constraint boundary. 

4.3.3.1 A self-tuning procedure 

The tuning guidelines for Mo and JJ reported aboye can be implemented within the con­

troller to provide with a self-tuning band updating algorithm. Using the past values of 

B(t) it is quite an easy task to locate the last two local maxima and the last two local 

mínima by examiníng at whích samples the derivative (the difference) of B(t), namely 

,6.fJ(t), changes from positive to negatíve (maxímum) or from negative to posítíve (min­

imum). The distance (in samples) from maximum to maximum and from mínimum to 

mínimum can then be readily evaluated, and this information used to update Mo. 

As shown in FigA.5, let M¡ and M2 denote, respectively, the last two local maxima 

occurring at the time samples tMl and tM2' Analogously, let mI and m2 denote, respec­

tively, the last two local minima and tml and tm2 their occurrence times. According to 
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Figure 4.5: Local minima and maxima for the self-tuning procedure 

these definitions, Mo can be chosen as 

where M-:in is a minimum value used for safety (e.g. 10 samples), PM = tMI ~ tM2 + 1 
'. 

is the peak distance between the last two maxima, and Pm = tml - tm2 + 1 is the 

peak distance between the last two minima. If the modelling errors are LTI, then Pm 

and PM must be identical (differing at most by 1 or 2), but in the more general case 

of non-linear andj or time-varying uncertainty distances Pm and PM might be quite 

different. 

The sarne information can be used to update the first order pole p, by measuring 

the damping factor 'ljJ of the uncertainty curve. Once the peak distance P has been 

evaluated (as the maximum of PM and Pm), 'ljJ can be obtained from the last two pairs 

of local minima and maxima, since the following relation shonld (approximately) hold: 
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and tP can be estimated as 
1 "..., (MI -ml)p 'I/J", . 

M2 - m 2 

Final1y, the pole of the first order filter can be set as 

169 

where the limits p,min and p,max are introduced for safety, to avoid too fast or too slow 

dynamics. 

Remark 4.10 The true situation is not usualIy as well-behaved as that shown in 

FigA.5. The contribution of noi8e and of secondary high-frequency oscillations often 

require some filtering or signal processing on B( t) prior to proceed with the computation 

of Me and ¡..t. This difficulty can become so severe in practice that the use of this 

self-tuníng method would sometimes be discouraged unless signa! processing tools are 

applied to filter out the rippling of B(t). 000 

Note that it is a!ways possible to adjust this self-tuning procedure so that the adap­

tive band updating method i8 at least as conservative as some given fixed setting. For 

instance, if [Mo) ¡..t] = [10,0.8] have been found to be mainly correct but sorne band 

violations oceur, the self-tuning method ean be used with MItin = 10, ¡..tmin = 0.8 and 

(e.g.) p,max = 0.95 to obtain a behaviour which would certainly be at least as conserva­

tive as the fixed design [Mo, ¡..t] = [10,0.8]. The self-tuning method i8 expected to head 

lI/e and p, in the appropriate direction, leading to a finer band updating algorithm and 

an improved performance. 

4.4 Simulation results and comparative analyses 

This section is devoted to perform simulated experiments with the min-max cont~ollers 

formulated in this ehapter in order to test this approach against other control strategies. 

In the sequel, simulations for both linear and non-linear systems are provided. 
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4.4.1 Comparative study of1-norm and 2-norm min-max con­
trollers 

This section compares the performance and computational burden of two min·max 

controllers based on the global uncertainty approach, namely, the min-max 2-norm 

GPeoo and the min-max (l-norm) QGPCf. The band updating procedure and the 

constraint reduction method reported in the Iast few sections have been used fol' both 

controIlers. For the min-max GPG:lO a numeneal algorithm based on SQP methods has 

been used for solving the optimisation problem, since this approach does not involve 

tIle enormous computational burden associated to the anaIytical solution suggested in 

Section 4.2.2.3. 

Let the true and nominal systems be those used in Section 3.4.3, i.e. 

G( -1) ::::: q-lB::::: O.2358q-l + O.2319q-2 
q A 1 - 1.4835q-l + 0.9512q-2) 

and 

G ( -1) ::::: q-l Bo::::: 0.2973q-l + O.2923q-2 • 
o q Ao 1 - 1. 7802q-l + 1.3698q-2 

Notice that the true system has two unstable poles, whereas the nominal plant la stable 

(though very lightly damped). Hence this ls quite a challenging experiment, since the 

true and the nominal dynamies are quite different. Apart from these modelling errors, 

a disturbance x(t) of magnitude 0.05 has been added the true system at time t :::::: 51 

samples, i.e. the true output ls simulated as 

with ' 

{
O ift < 51, 

x(t) :::::: 0.05 if t > 51. 

As already ahown in Section 2.5, the QGPCr' ia stable fol' a11 Nu for this nominal 

system, and cannot be distinguished from the truly infinite horizon GPOl for Nu > 2. 
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Hence, if the tuning settings are chosen as Nu = 5 and p = 1, the QGPCf provides 

nominal stability and becomes, de facto, identical to the GPCr. The same tuning 

knobs [NuJ p] = [5, 1} have been used for the 2-norm GPC"'\ 

Infinito l1Orizon GPC: S9Ipoint and OuIput signals 
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Figure 4.6: Nominal inputjoutput responses for the GPGXl and the QGPC~: [NU1 p] = 
[5,1] 

Fig.4.6, which is the same as Fig.3.12(a) oí Chapter 3, compares the nominal closed­

loop responses obtainoo with the l-norm QGPCr and the 2-norm GPCco for these 

tuning settings. It can be observed that the nominal closed-Ioop behaviour obtained 

with both controllers is almost identical. 

For the first few experiments, a setpoint change from O to 1 at time t = 5 samples 

is introduced. The initial uncertainty bound vaIues are chosen as 0-(5) = -0.2 and 

(}+(5) = 0.2, i.e. a 20% of the setpoint change. In addítion, these initial vaIues are 

frozen for 4 samples after the setpoint change. Finally, the tuning knobs for the band 

updating procedure are set to Mo = 10 and {L = 0.9. 

The results obtained with the min-max GPCco and the min-max QGPCf are shown 

in Fig.4.7 and 4.8 respectively. It is quite remarkable that the closed-Ioop behaviour is, 
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(a) Input/output responses for the min­
max GPeo<> 

(b) Global uncertainty (solid) and uncer­
tainty bounds (dotted) 

Figure 4.7: Closed-loop behaviour of the min-max (2-norm) GPCoo 

very approximately, the same for both controllers, and the folIowing comments apply 

to both cases. First of a11, notice that the global uncertainty increase associated to 

the setpoint change is always kept between the upper and the lower bounds (until 

the disturbance time t = 51). A few samples after the setpoint change, the band 

updating procedure modifies the assumed uncertainty limits, which converge to the 

true tlncertainty values. The dynamics which shape this convergence are determined 

by the tuning parameters Mo and fl. When the disturbance enters the system, there is 

a temporary (one-sample) band violation, which could result on constraint fulfilment 

problems in case that user-designed constraints had been used. Once the uncertainty 

values due to the disturbance are available (t = 51), the band updating procedure 

determines that the upper band has been violated and modifies the lower and upper 

bounds in order to keep (J(t) within the uncertainty bounds. No other violations occur 

afterwards. Finally, the uncertainty bounds converge to the steady-state value of (J(t) , 

and a stable closed-loop system with offset-free setpoint tracking is achieved. 

The convergen ce rate of the uncertainty bands dynamics is determined mainly by 

fl, and thus this parameter fixes the disturbance rejection properties of the controller. 
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(b) Global uncertainty (salid) and uncer­
tainty bounds (dotted) 

Figure 4.8: Closed-loop behaviour of the min-max QGPCr' 

Only when the lower and upper bounds converge to the steady-state uncertainty value 

is the disturbance completely rejected. Therefore, as disturban ce rejection is concerned, 

the role of fL is similar to that of the slowest root of the T polynomial (se e Chapter 3). 

Finally, the peak distance of the signal O(t) can be easily computed from the simulated 

experiments, and it has been found that p equals 8 or 9 samples. This justifies the 

choice Me = 10 ~ p, which is consistent with the tuning guidelines suggested aboye. 

Although the results are nearly the same with both controllers, the 2-norm min­

max GPeoo has taken more than twice (about 2.2) the computation time of the 1-norm 

counterpart for this experimento This difference becomes more serious for longer control 

horizons Nu (and thus longer prediction horizons N). Table 4.2 shows the normalised 

CPU times required by the 1-norm and 2-norm min-max controllers as a function of 

Nu (or N) for a simulation time of 50 samples. The computation times of Table 4.2 are 

normalised dividing by the CPU time required by the fastest experiment (the min-max 

QGPCr' with Nu = 1) so as to make the results as computer-independent as possible. 

Remark 4.11 In these experiments, the optimisatíon routines used for the min-max 

controllers are the LP (function "lp") and the SQP (function "constr") algorithms 
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Normalised l~norm (tl) 1.0 1.6 2.5 3.9 8.0 11.3 20.8· 22.5 38.6 
CPU time 2-norm (t2) 1.4 2.4 4.6 5.9 14.0 33.7 84.3 162.2 715.7 

I Ratio I t2/t l 111.4 11.5 11.8 11.5 I 1.7 1 3.0 I 4.0 I 7.2 I 19.0 , 

Table 4.2: Normalised CPU time as a function of Nu (or N) 

provided by the :NIATLAB Optimisation Toolbox. Both methods are interpreted and 

not compiled, and thus these data can be considered "fair". In addition, in the SQP 

problem associated to the min-max GPCro , the gradients of the cost functíon and the 

constraints have been used, making the SQP solution much faster and more reliable. If 

a compiled LP method is used for the min-max QGPCf) e.g. the function "e04mbf" 

as implemented in the NAG Foundation Toolbox, the min-max QGPCf becomes up to 

15 (or more) times faster. 000 

Table 4.2 makes it cIear that the 2-norm algorithm takes more computation time 

than the l-norm controller always, from 1.4 up to about 20 times3• In addition this dif­

ference increases (dramatical1y) with the control horizon, and thus the l-norm solution 

becomes a more convenient choice in most cases, since it allows more degrees of free: 

dom for tuning the controller (Nu can be chosen greater preserving low computational 

·burden). 

Apart from computation time, there is another great advantage related to 1-norm 

min-max formulations, namely the use of LP tools instead of non-linear programming 

tools. The former can be exactly solved with a finite number of iterations which 

are known, a priori, from the number of design variables (Nu control moves plus the 

additional variables 0', (3, and w) and the number of constraints. Whenever the LP 

problem is feasible, the LP tools find a solution in very short time. On the other hand, 

there is no informatíon about the number of iterations the SQP methods need to find 

3The solution using compiled methods is several times faster than tI provided in the tableo 



Seco 4.4. Simulation results and comparative analyses 175 

a solution to the optimisation problem. It is even possible that SQP does not converge 

after a full sampling time, which is the all the time available for computing the next 

control move. Thus, as reliability is concerned, the on-line implementation of the LP 

solution is to be preferred to the SQP counterpart. 
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Figure 4.9: Closed-Ioop behaviour of the min-max (2-norm) GPCoo (constrained case) 

In short, LP methods are faster and more reliable than the 2-norm min-max con­

trollers. This is so clear an advantage that, for real applications, the nominal stability 

guarantees (the nominal QGPC~ is not always stabilising as remarked in Chapter 2) 

can often be overlooked. Moreover, as discussed aboye, the likelihood of nominal in-

stability with the QGPC~ is remarkably small, at least for a wide class of systems. 

Nominal stability with the QGPC~ can be easily determined in simulation and thus, 

in the quite unlikely cases for which an unstable closed-Ioop systems arises, the control 

horizon can be increased until a stability is achieved (assuming that the convergence 

conjecture presented in Section 2.5 is true). Only when the control horizon required 

for stability is too large (e.g. Nu > 12) does the min-max two norm GPCoo appears as 

a better alternative, as far as it provides convenient performance with shorter control 

horizons. 
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Now the same experiments have been performed constraining the output such that 

y(t) :::; 1.2 for all t. The tuning settings used for these constrained examples are the 

same as the ones chosen for the unconstrained case. FigA.9 shows the dosed-Ioop 

behaviour obtained with the mÍn-ma."'C GPOco
• Despite the modelling errors and the 

disturbance, the output never violates the constraint. When the disturbance enters the 

system, the uncertainty bands are widened according to the band updating algorithm 

described aboye and the controller manages to satisfy the output constraint. Notice 

that the initial band values are too wide, since the uncertainty signa! is quite far from 

the assumed bounds, especiallyas compared with the unconstrained case (FigA.7). 

This is a consequence of the output constraint, which results in lower control moves 

with respect to the unconstrained case and, consequently, to lower global uncertainty. 

If the initial band values were lower, better performance (less cautious control) would 

have arisen. 

0,5 

(a) Input/output responses for the min~ 
max QGPCi (solid) and output con­
straint (dotted) 

~~~~ .. ~~~~~~~~~~~~m~~m~~~--w~~_ 

...... -
(b) Global uncertainty (salid) and uncer­
tainty bounds (dotted) 

Figure 4.10: Closed-Ioop behaviour ofthe min-max QGPOf (constraíned case) 

FigA.I0 shows the closed-Ioop behaviour provided by the min-max QGPCf, which 

is somewhat more cautious than that obtained with the 2-norm counterpart. A five­

sample delay, which is not observed in the unconstrained case (Fig.4.8), shows up at 
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the output. This dead-time is due to the combination of the control move penalty 

(p = 1), which leads to tiny control rnoves, and the output constraint, which is quite 

close to the setpoint. Such a behaviour can be avoided by choosing a lower control 

move weight (e.g. p = 0.1) andjor narrower initial uncertainty bands (e.g. 0- = -0.15 

and ()+ = 0.15). 

(a) Inputjoutput responses for the min­
max QGPCi (solid) and output con­
straint (dotted) 

0.2 

0.15 

0.1 

(b) Global uncertainty (solid) and uncer­
tainty bounds (dotted) 

Figure 4.11: Closed-Ioop behaviour of the min-rnax QGPCr (constrained case) 

The closed-loop behaviour obtained with the min-max QGPCr using the tuning 

knobs 0-(5) = -0.15, (}+(5) = 0.15 and p = 0.1, shown in FigA.ll, evidences that 

the five-sample delay of FigA.lO is a consequence of the tuning settings. The narrower 

uncertainty bands and the lower penalty in the control moves results in an improved 

performance (less cautions control) compared to the previous resulto As usual, a trade­

off between robustness (cautiousness) and performance must be achieved. 

4.4.2 The influence of the tuning parameters /-l and M(J 

In this section the effect of the tuning parameters f.L and Mo is analysed. Although 

tuning guidelines are suggested aboye, there are sorne degrees of freedom to chose these 
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parameters which allow to adjust the balance between robustness and performance. 

The objective of this section is to show how these parameters affect the closed-Ioop 

behaviour. 

The true and nominal systems presented in the previous section have been used 

for the experiments reported below. Since 1-norm and 2-norm controllers behave in a 

similar way as far as the tuning settings It and Me are concerned, only the min-max 

QGPCr' is anaIysed here, but the results extend to the min-max GPCco too. 
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Figure 4.12: Closed-Ioop behaviour oí the min-max QGPCr' (unconstrained case) 

First of aH, the influence of It is analysed. The experiment presented in FigA.8 

is repeated but the first order trajectory determined by eqnA.18 is generated with 

It.= 0.7 instead of It = 0.9. The result, shown in Fig.4.12, is that the amplitude of 

the oscillations of the input/output responses and the uncertainty signal (J(t) is greater 

than those of Fig.4.8. Notice, also, that the uncertainty bands (J- and (J+ converge 

to the measurements of O(t) quite faster than for the example presented in Section 

4.4,1. The band dynamics are so fast that there is a lower band violation at the first 

few samples, but that situation is readily compensated by means of the band updating 
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procedure. Although a large difference is not evidenced, it is worth pointing out that 

the disturbance rejection dynarnics are also faster with ¡;, = 0.7, sínce the lower and 

upper uncertainty bounds convergence rate is increased with respect to ¡;, = 0.9. In 

short, the closer the root ¡;, is to the origin, the less conservative the control strategy 

becornes. This can even give rise to sorne uncertainty band violations, as occurs with 

this example, and caution should be taken to avoid such possibility, especially in the 

constrained case. 
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Figure 4.13: Closed-Ioop behaviour of the rnin-rnax QGPCr (unconstrained case) 

Now, the effect of the tuning pararneter Me is analysed. The same experiment has 

been carried out using p, = 0.7 (as in Fig.4.12) and Me = 20, i.e. 20 past values 

(instead of 10) of the llncertainty signal fJ(t) are examined at each sarnpling instant. 

The Olltcome of this experiment is shown in Fig.4.13, where it can be observed that the 

uncertainty bounds are farther from the uncertainty signal cornpared to Fig.4.l2(b). 

The reason for such a behaviour is that this choice of Mo irnplies that two rnaxima 

and two mínima of fJ( t) are "remembered" by the band updating algorithm. This 

is unnecessarily conservative and produces poorer performance compared to the case 

Mo = 10, shown in Fig.4.12(a), since wider oscillations and more sluggish inputjoutput 
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responses resulto 

In short, this section shows that a convenient choice of J.L and Me can help to adjust 

the compromise between cautiousness and performance. The closer the uncertainty 

bounds are to the uncertainty measurements, the less conservative the controller be­

comes, making it possible to obtain an improved performance. 

4.4.3 Min-max controIlers versus the classical T approach 

This sectíon is focused on showing that the robustness-enhancing methods described for 

unconstrained MPC schemes in Chapter 3 faíl to accomplish theexpected closed-Ioop 

behaviour when hard (output) constraints are introduced. 

4.4.3.1 Linear plant 

In this section, the experiments have been performed using the same true and nominal 

systems as in Section 4.4.1, and the output constraint y(t) < 1.1, quite near the 

setpoint (1), has been enforced. The true steady-state gain has been increased a 50%, 

i. e. Go = 1.5Go in order to make it even more difficult to meet the constraint. The 

results obtained for both 1-norm and 2-norm algorithms are presented below. 

The 2-norm T-based GPCco and min-max GPCco have been tuned with Nu = 5 and 

p = 1, whereas the 1-norm QGPCf and min-max QGPCr' have been used with Nu = 5 

and p = 5 to provide similar performance compared to the 2-norm case, especially 

as rise time is taken into account. For the min-max controlIers, the band updating 

procedure has been implemented with 0-(5) = -0.2,0+(5) = 0.2, M(J = 10 and J.L = 0.9. 

On the other hand,the polynomial T = 1 - 0.9q-l has been chosen for the standard 

(T-based) GPeco and QGPCr'. With the methods depicted in Chapter 3, this choice 

of T can be shown to provide robust stability in the unconstrained case for the 2-norm 
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controller, as far as the inverse multiplicative uncertainty description is applied. Finally, 

it is worth pointing out that the (nominal) QGPCr' is indistinguishable from the GPC~ 

with these tuning settings, and hence the (min-max) QGPC~ can be considered as an 

efficient implementation of the (min-max) GPCr' and, of course, nominal stability is 

easily achieved. 
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(a) Inputjoutput responses for the (2-
norm) GPCoo (solid) and output con­
straint (dotted) 

(b) Inputjoutput responses for the 
QGPCf (solid) and output constraint 
(dotted) 

Figure 4.14: Closed-Ioop behaviour of the T-based GPCoo and QGPCf 

Fig.4.14(a) shows that the c1osed-loop with the 2-norm T-based controller is on 

the verge of instability (if not unstable). In addition the output constraint is violated 

systematicalIy by the maximum output peaks. On the other hand, the behaviour with 

the T-based QGPCr', displayed in Fig.4.14(b), is a bit better as stability is concerned, 

but fails to satisfy the output constraint, which is violated several times after the 

setpoint change (t = 5) and the disturbance time (t = 51). Although the predictions 

made by both controllers are such that the output constraint is always respected, i. e. 

the predicted output is always lower than 1.1, the maximum peak reaches 1.2150 for 

the 2-norm controller and 1.1813 for the QGPC~. 

This experiment illustrates, indeed, the typical sítuation of the process industry. 

The system is expected to work near the constraint boundary (the setpoint is 1 and 
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the constraint is 1.1) for economical reasons, but modeIling errors and/or disturbancea 

can puah the aystem beyond the acheduled limita. Hence, according to the resulta 

presented in Fig.4.14, the setpoint would have to be changed to say 0.9, farther from 

the constraint boundary to satisfy the limits. This problem can become even more 

serious if. the constraints specify physical or seeurity limits which must by no means 

be surpassed. In such a case, asevere malfunctioning or physical danger might be 

associated to constraint violations. 
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(a) Inputjoutput responses for the mín­
max (2-norm) GPCOO (solid) aud output 
constraint (dotted) 

(b) Global uncertainty (solid) and uncer­
tainty bounds (dotted) 

Figure 4.15: Closed-Ioop behaviour of the min-max GPCoo 

Fig.4.15 shows the dosed-Ioop behaviour obtained with a min-max 2-norm GPCoo • 

Notice that the output is always lower than the upper limit, in fact the maximum 

peak oeeura at 1.0963 < 1.1. Even when the additive disturbance enters the system, 

the output is readUy eompensated to avoid a constraint violation. Notice, also, that a 

constraint violation might only have occurred at time t = 51, the only instant at which 

the uncertainty bounds are not respected. However, the band updating algorithm 

redresses that situation, and the controner leads the output to a "safer" value for a few 

samples, to avoid constraint violation. 

Finally, Fig.4.16 showa that the min-max QGPCr' performs as effectively as the 
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(a) Inputjoutput responses for the (1-
norm) min-max QGPCr (solid) and out­
put constraint (dotted) 

(b) Global uncertainty (solid) and uncer­
tainty bounds (dotted) 

Figure 4.16: Closed-loop behaviour of the min-max QGPCf 

2~norm counterpart (but with a lower computational burden as illustrated in Section' 

4.4.1), keeping the output below the upper constraint. In fact the maximum peak 

has been found at 1.0999, i.e. almost on the constraint boundary. Again, the output 

satisfies the constraint in spite of the additive disturban ce and, of course, the modelling 

errors. 

The examples reported in this section show the limitations of the classical robustness­

enhancing tools of MPC when constraints are enforced. The results, shown for the 

T-based methods, extend to the Q-parametrisation and the T-optimisation schemes. 

In addition, it must be taken into account that the robust stability guarantees in the 

presence of inputjoutputjstate constraints are no longer valid, since the controller be­

comes non-linear (QP or LP must be used), and the robustness analysis performed 

through Chapter 3 relies on a linearity assumption. In fact, these simulation experi­

ments show that the GPCoo do es not manage to stabilise the true system, even though 

the RS conditions are satisfied. In short, the robustness methods for unconstrained 

MPC evidence two major flaws if they are applied in the constrained framework: 
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1. Firstly, although the internal predictions satisfy the constraints, these are often 

violated by the true output, and 

2. secondly, the RS conditions and robustness analysis tools used in Chapter 3 

cannot be applied. 

On the other hand, the min-max methods based on a global uncertainty formula­

tion, together with the band updating procedure suggested in Section 4.3.2, have proved 

successful in the few cases presented throughout this section, not only as stability is 

concerned, but especially as constraint satisfaction is taken into account. The band 

updating procedure is shown to drive the initial conservatism (band distance) closer 

to the actual measurements carried out on-Hne, what makes it possible to improve the 

performance and reach the setpoint with offset-free setpoint tracking. Moreover, the 

tuning guidelines given in Section 4.3.3, which are used in these first few examples, ac­

complish the expectations making the tuning task easier. However, these few examples 

may be biased and a deeper analysis is needed. The newly developed methods are dif­

ficult to analyse with the classical approach, as done for the unconstrained controllers 

in Chapter 3, since the min-max optimisation performed on-line is, intrinsically, a non­

linear process. Obviously there is no closed-form solution for these controllers and the 

robustness analysis must be tackled fram quite a different point of view. Section 4.5 is 

devoted to analyse the robustness of these min-max methods, whereas a few significant 

simulated experiments are provided in the sequel to contrast these min-max controllers 

with other control schemes suggested in the literature. 

In the sequel, for computational reasons, l-norm min-max controllers are preferred. 

As already shown in the examples so far described, the closed-Ioop behaviour of 1-

norm and 2-norm min-max controllers is almost identical if appropriate tuning knobs 

are chosen, and thus the results provided below directly extend to the min-max GPCoo • 
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4.4.3.2 Non-linear plant with a saturation 

Saturatíng amplifier 

200 
i+s 

Linear block 

y 

Figure 4.17: Non-linear benchmark plant 
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The experiments presented in this section have been performed on the non-linear 

system described in Section A.S of Appendix A~ which is shown in FigA.17 (Fig.A.5). 

The nominal model, obtained ignoring the saturation and using a sampling time of 

Ts ,= 0.05 s with aZOR on the input, is given by (eqn.A.lO): 

G -1 _ q-l B _ O.2358q-l + O.2319q-2 
(q ) - A - 1 - 1.4835q-l + 0.9512q-2' 

i. e. exactly the same nominal system as for the experiments presented in the previous 

few sections. As remarked in Appendix A, the main difficulty to control this system i8 

the saturation embedded within an inner feedback loop. This kind of non-linearity is 

quite difficult to handle with linear control approaches (including linear MPC). Even 

the quite sophisticated methods described in (Kothare et al., 1996) 8eem difficult to 

apply to thia system, sÍnce this non-linearity cannot be overcome by obtaining a set of 

locally linearised models about different operating points. Such a drawback i8 common 

to al1 the strong non-linearities for which the associated functions are non-differentiable. 

The most obvious way to surmount this difficulty is the use of anti-windup solutions, 

or to incorporate the constraint associated to the saturating amplifier (-2 < x 2) 

explicítly into the control design problem. However, it is quite reasonable to assume 

that many of the very detailed models which are usually obtained as a prior step to 

design a control system are based on' simplified physical laws. Thus, several strong 

non-linearities are often overlooked at the control design stage. These non-linearities 

are thus neglected in the model, and must be incorporated as "system uncertainty" 
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and handled with robustness tools. The saturation block embedded in the system of 

Fig.4.l7 can be viewed as an illustrative example of this typical situation. 

The next few experiments compare the behaviour obtained with the min-max 

QGPCr and the T-based QGPCr. For both controllers, the tuning parameters have 

been chosen as Nu = 5 and p = 5, which provide a smooth first-order nominal response. 

In addition, the polynomial T = 1 - O.9q-l has been used for the latter. The setpoint 

changes from O to 55 at time t = 5 samples, and a constant additive disturbance of 

amplitude 3 affects the output for t ~ 51. The setpoint has been chosen such that 

the saturation is outside the linear region for quite long, leading to non-zero global 

uncertainty. Notice that when the input x to the saturating block is between-2 and 

2 the modelling errors reduce to O. 

To complete the experiment setup, the band updating procedure of the min-max 

controller has been tuned using ¡.t = 0.9, Me == 10 and initial band values 0-(5) = -15 

and 0+(5) = 15, i.e. the amplitud e ofthe uncertainty signal is expected to be less than 

a 30% of the setpoint change during the first few samples. 
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(a) Inputjoutput responses for the 
min-max QGPCi (solid) and T-based 
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(b) Global uncertainty (solid) and uncer­
tainty bounds (dotted) 

Figure 4.18: Closed-Ioop behaviour of the min-max QGPCr and the T-based QGPCr 
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Fig.4.18 shows the closed-loop behaviour obtained with both controllers. Notice, 

in Fig.4.18(b), that, apart from the disturbance time, the uncertainty signal is always 

within the lmver and upper bounds, which finally converge to sorne steady-state value. 

The peak to peak distance of (J(t) cannot be observed in this experiment, since the 

controller leads the plant to the linear region (in which the global uncertainty equals 

O) before a second maximum or mínimum of (J(t) occurs. Fig.4.18(a) shows that the 

input/output responses obtained with the min-max method are smoother, less oscil­

latory, compared to the "classical" T-design. It may be argued that another choice 

of T such as T = A(l - 0.9q-l) (as suggested in Chapter 3) may lead to better re­

sults but, as a consequence oí the proximity of thenominal system's poles to the unit 

circle, such a choice produces an unstable closed-loop system the responses of which 

are not shown here for brevity. The disturbance rejection characteristics are similar 

for both the T -based and the min-maxcontrollers, since the root oí T and the pa­

rameter J.1, == 0.9, which determines how fast the uncertainty bands converge to the 

last Mo extreme uncertainty values, are identicaL Needless to say, the results differ 

using other observer polynomials, and better c1osed-loop behaviour arises by using e.y. 

T == (1 - O.9q-l)2. However, this latter choice of T produces a more sluggish response, 

and the disturbance rejection response is slower compared to the min-max controller. 

Therefore the comparison provided in FigA.18 can be regarded as "fair". 

For the next example, the conditions oí the last experiment (controllers, tuning 

settings, setpoint change, disturbances and so on) are re-created, but an output con­

straint 'y(t) < 68 for all t has been enforced. FigA.19(a) shows that the min-max 

controller produces a smooth response which never surpasses the constraint, whereas 

the T-based QGPCf fails not only to satisfy the constraint, but even to provide with 

a stable closed~loop system. Gn the other hand, the choice T == (1 - O.9q-l)2 stabilises 

the system, but fails to satisfy the output constraint specification. 

In FigA.19(b) it can be observed that, as a consequence oí the output constraint, 
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Figure 4.19: Closed-Ioop behaviour of the min-max QGPCr' and the T-based QGPCr 

the min-max controller is quite cautious and the small control efforts revert on very low 

vaIues of the global uncertainty signal, which are quite far from the initially assumed 

bounds [-15, 15J. Hence the performance can be improved (a faster response can be 

obtained) if the initial band distance is narrowed. However, a conservative tuning can 

be justified in practica! applications, especially for the first few expenments as little 

data about U(t) are available. This experiment provides with a (simplified) instance of 

a real case, in which conservativeness leads to very cautious responses. 

In order to show the effect of using lower initial uncertainty bands, the simulation 

results obtained with U-(5) ::::: -10 and 0+(5) = 10 are displayed in Fig.4.20: Notice 

that the input/output responses are faster, and the output reaches the setpoint in less 

than 15 samples (0.75 seconds). Once again, ihe output constraint is always respected. 

In addition, with these initial settings, the controller is less cautious compared to the 

previous experiment and, as a consequence of this, the amplitude of the uncertainty 

signal is greater, especiaIIy for the first few samples. The minimum oí 8(t) occurs at 

-7.6213, quite close to the initiallower bound (-10). As usual, a trade~off between 
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Figure 4.20: Closed-Ioop behaviour oí the min-max QGPCi 
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robustness (cautiousness) and performance must be reached. In fact, if lower initial 

bands are choseo, e.g. 0- = -8 and 0+ = 8 the bounds are violated shortly after the 

setpoint change, but the band updatmg procedure responda by widening the bands 

and avoiding future violations. 

rhe next experiment has been carried out to shmv that the advantages oC the min­

max approach do not limit to the constrained case. The setpoint has be en set to w(t) = 
100 for t > 5, and no output constraints have been scheduled. The same controllers 

have been testad, setting the initial bandvalues as 0-(5) = -30 and 0+(5) = 30 (a 30% 

of the setpoint change). The results are shown in Fig.4.21, where it can be observed 

that the c1osed-loop system with the T-based controller is unstable, whereas themin­

max QGPCr leads to a stable c1osed-loop system. Note that the min-max contl'oller 

is not properly tuned, since the peak distance in 8(t) is greater than Mo ::::: 10. In 

thia e..x:ample, this setting of }vIo doe~ not cause major problems because no output 

constrainis have been enforced, and the band llpdating algorithm manages to endose 

the uncertainty signal despite the violations. Better results would arise with both the 
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Figure 4.21: Closed-Ioop behaviour of the min-max QGPCr and the T-based QGPCr 

T-based schemes and the min-max methods if the tuning settings were chosen in a 

more conservative way, e.g. T = (1 - O.9q-l? and Me = 20. 

The experiments provided through this section illustrate that the tuning guidelines 

reported in Section 4.3.3 have proved useful and meaningful. The newly developed 

mÍn-max controHers are shown to be a powerful control strategy not only for uncertain 

LTI systems, but also when the uncertainty comes from (difficult) non-linearities. In 

addition, this technique is able to meet the user designed constraints if the band updat­

ing procedure is well-tuned, even when disturbances and serious modelling errors occur. 

Notice that this feature is not possessed by the c1assical T-based controllers, which often 

involve constraint violations when system uncertainty takes place. When the control 

aim is to stabilise an uncertain system, examples can be provided for which the classical 

robust control synthesis meth~ds (including the T-based MPC) overcome the min-max 

MPC based on the global uncertainty approach. However, when state/output con­

straint handling is a priority and uncertainty cannot be neglected, the min-max MPC 

strategy stands out as a more convenient choice since the c1assical MPC methods often 
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faíl to accomplish the constraints. Therefore, the min-max methods depicted in this 

chapter yield a systematic methodology to synthesise robust MPC controllers when 

constraint handling is an essential control requirement. 

4.4.4 Limitations of min-max MPC 

This section presents a few examples for which the behaviour obtained with min­

max controllers shows sorne unexpected characteristics. For example, as illustrated 

in Fig.4.10, the inputjoutput responses obtained with min-max MPC controllers in 

the constrained case can exhibit large dead-times in sorne situations. These delays 

appear as a consequence of the tuning settings, and can be suppressed by choosing 

more appropriate tuning knobs. However, tuning settings which provide very similar 

nominal responses with the QGPCr' can lead to quite a different behaviour when the 

controller is implemented within the min-max framework. 

As an example, consider the non-linear plant introduced in the previous section. 

Now the experiment which provides the outcome of Fig.4.19 is repeated changing just 

a single tuning knob: the control effort weighting p is reduced from 5 to 1. The rest 

of the tuning parameters remain unchanged, i.e. Nu = 5, 0-(5) = -15, 0+(5) = 15, 

Me = 10 and J-l = 0.9. The setpoint changes from O to 55 at time t = 5 samples, and 

the output constraint y(t) < 68 is enforced. With these setup, it is expected that the 

lower penalty in the control moves leads to greater control moves and, consequently, 

the output response is expected to reach the setpoint faster than for the example shown 

in Fig.4.19. 

The outcome of this experiment is shown in FigA.22. Surprisingly enough, the 

output exhibits an inverse response for the first few samples, what is absolutely unex­

pected sínce the nominal system is minimum-phase. This example is analogous to that 

shown in Fig.4.10, in which the dead-time is caused by the min-max controller and not 
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(b) Global uncertainty (salid) and uncer­
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Figure 4.22: Closed-Ioop behaviour of the min-max QGPC~ 

by the system. Now, why a lower control move penalty produces an inverse response? 

The reason for such a behaviour is the fact that, at each sampling instant, a control 

move vector of dimension Nv. is computed, and thus all the elements of Au (not only 

the first one) contribute to the minimisation of the cost function. In this example the 

greater control activity allowed by p = 1 extends to all five (N1J, = 5) elements of the 

control move vector and not only to the first one. At time t = 5, the predicted errors 

from t + 1 to t + N are, in general, lower for p = 1 as expected, but the l-step-ahead 

predicted tracking error (t 1) is lower for p = 5. The inverse response is caused by 

the controller to be able to meet the output constraint, since the greater control moves 

produced by p == l1ead the output predictions closer to the setpoint, and thus closer to 

the constraint. These considerations explain the apparent contradiction between the 

results shown in FigA.20 (p = 5) and 4.22 (p == 1). This behaviour is by no means 

specific to l-norm formulations, but general to min-max MPC methods based on the 

global uncertainty approach. An almost identical result (inverse response) arises with 

the níin-max 2-norm GPCCO ir the tuning knob p = 0.1 is chosen whereas the other 

settings are identical to those used for the min-max QGPC~. This hehaviour might 
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be redressed by re-tuning the controller with a time varying weighting sequence p(j) 

to pose a greater penalty on further control moves, which preserves nominal stability 

as remarked e.y. in Theorem 2.6. An alternative is the use of a time varying tracking 

error weighting ¡..t(j) to pose a greater penalty on the first few predicted errors, but 

this choice affects the stability proof for the nominal case and, in addition, ¡..t(j) are 

not used in (quasi) infinite horizon formulations (see Chapter 2). 

This example, together with that shown in Fig.4.lO, points out sorne drawbacks 

of the min-max methods described in this chapter. Unexpected dosed-Ioop behaviour 

such as dead-times or inverse responses may appear with min-max controllers when 

(output) constraints are considered. As discussed in (Scokaert and Mayne, 1998), 

these peculiarities might be caused by the difficulty to handle an uncertainty polytope 

of 2Ne vertices with a single control move sequence ilu. For the example provided 

in this section, a 5-dimensional control move vector is expected to cope with 26 = 64 

different polytope vertices, what can be quite a challenging task for the controller. The 

next chapter exploits the feedback formulations of min-max controllers (Scokaert and 

Mayne, 1998) to keep the ratio between the degrees of freedom (control moves) and 

the polytope dimension 2Ne doser to unity. This alternative helps to avoid such an 

undesirable behaviour. 

4.4.5 Self-tuning min-max QGPC1 

In this section the self-tuning algorithm suggested in Section 4.3.3.1 is tested against 

the non-linear benchmark system used in the previous few examples. The adaptive 

scheme is compared to a fixed design of the parameters M() and ¡.L. 

For this experiment the setpoint changes from O to 120 (which implies that the 

input to the linear block is saturated for quite long) at time t = 5 samples; and no 

constrains have been taken into account. The fixed min-max QGPCr has been tuned 
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Figure 4.23: Closed-Ioop behaviour of the min-max QGPCf 
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using [Nu , p] = [5,1], 0-(5) = -30, 0+(5) = 30, Me = 10 and p, = 0.9. With these 

settings the closed-Ioop behaviour is as shown in FigA.23, where it can be observed that 

the inputjoutput responses are quite oscillatory, and the uncertainty signal surpasses 

the lower and upper bounds several times. The reason for such a behaviour is that the 

peak distance in the uncertainty signal is greater than Me = ID, and the pole p, = 0.9 

of the first-order filter is not "slow enough" to avoid uncertainty band violations. 

The self-tuning min-max QGPCf has been designed using Mffin = 10, p,min = 0.7 

and p,max = 0.975. With these settings the past uncertainty horizon is always greater 

than or equal to 10, i.e. in the worst case it would be at least as large as the fixed 

design presented above. On the other hand, the pole of the first-order filter (eqnA.18) 

is constrained to be between 0.7 and 0.975. Notice that the fixed design p, = 0.9 is 

included within this interval. Initially (at time t = 5 samples), Me and p, are chosen 

identical to the fixed design considered above, namely Me = 10 and p, = 0.9. 

The result of this experiment is shown in FigA.24. The self-tuning algorithm adapts 

the values of p, and Me in such a way that the bands are violated fewer times compared 
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Figure 4.24: Closed-Ioop behaviour of the self-tuning min-max QGPCr 
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to the n.xed designo As a consequence of the use of the self-tuning method, Mo is mod­

ified on-line and the controller is more cautious. Therefore the inputjoutput responses 

are much softer, with fewer oscillations, and the output settles down earlier than for the 

n.xed designo However, as discussed in Section 4.3.3.1, the application of this method 

in practical control problems would require a pre-processing of the uncertainty signal 

B(t) in order to get ridof noise and high-frequency oscillations. These two phenomena 

have been neglected in the example provided in this section. 

4.4.6 The min-max approach versus non-linear MPC 

In this section, an example is provided to show that the min-max linear MPC solution 

involves much less computational burden than non-linear MPC controllers. The CPU 

time of the latter methods can be several orders of magnitude larger than that of the 

min-max approach. Needless to say, non-linear MPC usually leads to better perfor­

mance (if the nominal and true systems areidentical), but the difference in CPU time 

is so large that the applícation of non-linear model-based techniques is often confined 

to very slow processes. 
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The experiments presented below have been performed using the non-linear bench­

mark system of Fig.4.17. This system can be described using the equations: 

x = min{max{ -2, u - y},2} , 

fj + iJ = 200x. 
(4.19) 

Now, assume that this model and the true system to be controlled are exactly the 

same. Throughout this section no disturbances oí any kind are considered. A non­

linear (2-norm) finite horizon predictive controller (NLPC) can be formulated as the 

minimisation of the cost function 

N y N,. 

J2 (t) = ¿JLU) [w(t + ilt) - y(t + ijt)]2 + ¿ p(j).6.u2(t + j -lit), 
j=l j=l 

where the predictions y(t + jlt) are computed, at each sampling instant, integrating 

the non-linear Ordinary DiJJerential Equations (ODE) system provided by eqnA.19. 

A Runge-Kutta 4-5 formulation (the Dormand-Price method) (The Mathworks, 1998) 

has been used to compute the output predictions. A finite prediction horizon (Ny < (0) 

has been considered in this section. This choice does not guarantee stability, but the 

non-linear system can be easily stabilised with the NLPC since exact predictions are 

available, and thus no complications arise with the finite horizon strategy. 

An SQP method has been used to minimise the cost function. Notice that, in this 

case, a single cost function evaluation is very time-consuming, since the differential 

equations need be integrated to obtain the output predictions. In addition, the gradient 

of J2(t) with respect to the control move vector A.u(t) cannot be obtained analytically, 

and thus the SQP method cannot be speeded up using (exact) gradient data. 

The results obtained with both the NLPC and the QGPCf are provided be16w. 

The min-max controller uses the internal model of eqn.A.10, which has been obtained 

neglecting the saturation. The tuning settings [NU1 p] = [5,5] and a sampling time of 

Ts = 0.05 seconds (the same used in the previous sections) have been chosen for both 

controllers. In addition, the NLPC has been tuned with Ny == 15 and JL == 1, whereas 
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the min-max QGPC'f uses Mo = 10, JL = 0.9, 0-(5) = -15 and 0+(5) = 15. For this 

experiment, the setpoint changes fro O to 55 at time t = 5 samples. 

With these conditions, a 100-sample simulation takes 2.0361 hours for the NLPC 

in a 400 MHz computer, whereas the min-max QGPC'f takes 23.6640 seconds using 

an interpreted LP algorithm, and 4.2760 seconds with a compiled routine. Thus the 

simulation with the non-linear MPC scheme takes more than 300 (1700 if a compiled 

LP routine is used) times the CPU time required by the min-max linear model ap­

proach. Notice, also, that this non-linear system is quite simple: a second-order ODE. 

Therefore, the computational burden would become enormous for a real MIMO pro­

cess described by tens or hundreds of differential equations which must be integrated 

on-line. 
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Figure 4.25: Closed-Ioop behaviour of the min-max QGPC'f and the NLPC 

GIl 

Fig.4.25 compares the closed-Ioop behaviour obtained with the NLPC and the 

QGPCf. It is worth pointing out that, although the performance obtained with NLPC 

is somewhat finer than the one provided by the min-max controller (the overshoot is 

lower and the settling time is shorter), the c1osed-loop behaviour accomplished with 
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the min-max QGPCf is quite aeceptable, especial1y taking ¡nto account that this so­

lution involves a much lower eomputational burden. In addition, it must be taken into 

account that the overshoot can be redueed by enforcing an output constraint with no 

(or negligible) increase in the CPU time. 

This example highlights that the performance obtained with the min-max approach 

can be comparable to that provided by a non-linear MPC controller although the for­

mer requires much less computations. Thus the min-max controllers presented in this 

PhD thesis appear as a convenient candidate to handle non-linearities if fast dynamics 

are involved. In such a case, the non-linear MPC cannot be considered as a suitable al­

ternative because of the enormous computationalload. Obviously, if the non-linearities 

are of such a kind that they cannot be "represented" as a linear model plus sorne un­

certainty, min-max MPC would not provide with an appropriate solution, and thus 

non-linear MPC or any other technique (e.g. feedback linearisation) should be used. 

4.4.7 Global uncertainty versus multi-model descriptions 

In this section the global uncertainty approach is contrasted with the polytopic multi­

modellinear plant description suggested in (Kothare et al., 1996). The multi-model 

approach describes the plant family as the convex hull of several linear models 9 :::::: 

Co {Gh G2, •. . l GL }, and the true (unknown) system is assumed to be a linear combi­

nation of the polytope vertices: 

L 

L 

Go :::::: ¿AiGi, 
i=l 

where Ai ~ O for 1 ::; i < L and ¿ Ai = 1. As already remarked in Section 4.1, in the 
i=O 

input/output model framework, this kínd of description can be used when uncertainty 

affects the numerator only, since pole uncertainty cannot be represented using this 

formulation. The optimal control move vector is obtained as the solution to the min-
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max problem 

AuoPt(t) = argminmax J(t), 
Au GEQ 

199 

where J(t) is the cost function. As discussed in (Kothare et al., 1996), it is enough to 

consider the worst case only at the polytope vertices Gi E Q. 

For GPC-like controHers basad on inputjoutput models, each vertex Gi is a discrete­

time transfer function: 

In this section, the finite horizon (2-norm) GPC cost function (eqn.2.4): 

Na N", 

Jz(t) = L p(j) [w(t + jlt) - y(t+jjt)]2 + LP(j)~U2(t + j -lit). 
j=Nl j=l 

is considered. Note that an infinite horizon approach (Nz ::::; (0) is difficult in this case, 

since the equality constraints on the unstable part of the output cannot be enforced 

far all the vertices of 9 with a single control move vector. This could be a serious 

inconvenient, because nominal stability for finite horizon controllers is not guaranteed 

(see Chapter 2). The state-space methods depicted in (Kothare et al., 1996) solve this 

difficulty and provide with an upper-bound solution of the infinite horizon problem 

with stability guarantees. 

Now, for each vertex Gi , the cost function J2(t) can be written in the standard 

form: 

with 

Ai = G*T M*G* + R, 

bT = 2(w* - f*)T M*G*, 

Ci = (w* - f*)TM*(w* - !*), 
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where the dynamic matrix G*, the free response vector 1*, the setpoint vector w* and 

the weighting matrix M* are defined as 

G* = [GI GI]T ~ 

1* = [/I 1; J T , 

'1' w* = [wI wI] ) 

to match the formulation oí (Clarke et al., 1987), and whereGh G2, 11, 12, Wl, W2 

and R are defined in Section 2.2.1 (Chapter 2). Finally) notice that the matrix G* and 

the vector 1* depend on the vertex Gr,. For each polytope vertex, the step response 

must be computed to obtain G*, and free response predictions must be performed 

on~line to form the vector J*. In order to obtain these free response predictions, the 

model 

lS used, where ';(t) 18 a zer~mean stochastic nolse. This CARIMA model is identical 

to that used by the controllers presented in Chapter 2 if T = 1 ls chosen, and the 

nOlse term modela random ste~like disturbances. This kind of model provides with 

offset-free setpoint tracking fOI (asymptotically) constant disturbances. 

The min-max optimisation problem can now be solved using the non-linear pr~ 

gramming formulation: 

voPt , Auopt == argmAin v subject to v > J~(t) for 1 < j D, 
'V, U 

and subject to the constraints associated to the controller. Again, the solution can he 

found by means oí convex optimisation tools, such as SQP (see Section 4.2.2.3). The 

resulting controUer is a min-max multi-model GPC, referred to as MGPC hereafter. 

Remark 4.12 Using this solution, it is assumed that the system is time invariant 

within the coincidence horizon t + Nh • •• , t + N2 . In other words, this non-linear 
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programming problem finds the min-max solution for any true plant within g as far as 

it does not vary within the prediction horizon. To account for non-linearities and/or 

time variability, the worst case should be evaluated letting the plant vary among aH the 

polytope vertices at each sampling instant in the future. Addressed in that fashion, the 

min-max problem usuaHy becomes intractable, since the number of cases to take into 

account grows exponentially with the prediction horizon, opening up as an L-ary tree, 

where Lis the number of polytope vertices (see aboye). An upper bound solution for 

state-space models using LMI optimisation is presented in (Kothare et al., 1996), but 

those results are difficult to extend to transfer function formulations. The examples 

provided below, consider only uncertain time-invariant systems, and thus the SQP 

soIution to the min-max optimisation problem formulated aboye suffices. 000 

The min-max QGPC~ and the MGPC have been tested on the uncertain system 

provided in Section A.3: 

( 
-1) _ K 0.25 q-l(1- 4>q-l) 

Go q - (1 - 4» 1 - 1.4q-l + 0.65q-2' 

where the gain 0.5 ~ K ::; 1.5 and the zero 0.4 ~ 4> ::; 0.6 are uncertain parameters . 
• 

As discussed in Appendix A, a family 9 which includes all the plants which satisfy 

this definition (and a few more) can be described by the convex hull of a four-vertex 

polytope: 

The "nominal" system has been chosen as the one obtained with K = 1 and 4> = 0.5 

(eqn.A.6), i.e. 

G ( -1) = 0.5000q-l - O.2500q-2 . 
m q 1 - 1.4q-l + 0.65q-2 

First of aH, the nominal QGPC~ and finite horizon GPC and have been tuned 

to provide "similar" closed-loop behaviour. The tuning knobs [NI, N2 , Nu,J.L, p] = 
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Figure 4.26: Nominal input/outpnt responses for the GPC (dashed) and the QGPCr 
(solid) 

[1,40,3,1, 1 J have been chosen for the GPO, whereas [Ntu p} = [3,1] have been usad 

for tIle QGPCf. With the tuning setting N2 = 40, the 2-norm controUer is (almost) 

indistinguishable from a truly infinite horizon GPC. As shown in FigA.26, the response 

obtained with the GPC is somewhat fas ter than the one provided by the l~norm con· 

, troller, and prescnts a low oversnoot. 

Now the min~max QGPCr and the MGPC have been tested for a set of planta 

chosen among tlle family g described in Section A.3. In these experiments, the set­

point changes from O to 1 at time t = 5 samples, and an additive disturbance x(t) 

of magnitude 0,05 adds up to the system for t 2: 51, as described in eqnA.17. The 

min-max QGPCr has been tuned with 0-(5) = -0.3, O+(5) = 0.3, Me = 10 and 

te = 0.9. FigA.27 shows the closed-Ioop input/output responses obtained with both 

controllers. It is remarkable that the ones provided by the multí-model approach are 

quite similar for aU the plants, whereas the dispersion of the responses obtained with 

the min-max QGPCf lS much larger. This feature is also observed in the experjment..~ 

presented in (Carnacho and Bordóns, 1995), where the advantages of using parametric 
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Figure 4.27: Closed-loop behaviour of the min-max QGPC~ and the min-max multi­
model GPC 

uncertainty are highlighted. In fact, it is not surprising that thc the multi-model ap­

proach overcome the global uncertainty formualtion in this case, since the multi-model 

description is much closer to the type of uncertainty prcsentcd in this example, whereas 

the global uncertainty description is much more general (e.g. it covers non-linearities). 

In addition, the MGPC is provided with a priori information about uncertainty at the 

design stage, whereas the min-max QGPCf obtains on-line the uncertainty signal fJ(t) 

and then responds according to the measurcments. On the other hand, as computa­

tion time is concerned, the min-max QGPC~ takes, in average, 3.2379 seconds for a 

100-sample simulation in a 400 MHz computer, compared to the 11.3800 seconds of the 

MGPC. That is, the latter involves 3.5 times the CPU-time required by the former. 

Furthermore, it must be taken into account, that this example is quite favourable 

to the multi-model approach, since there are only four vertices, and the uncertainty 

affects the system's numerator only. In more typical situations, there could be (many) 

more than these four vertices, and thus the MGPC solution might become intractable, 

since the computation time would increase to a great extent. In addition, ir uncertainty 
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affects the poles of the system, the MGPC solution is not possible, since a convex hull 

of linear plauts never provides poles which are not present in the vertices. Moreover, if 

unccrtainty is dne to Ilon-linearities and/or time variabilíty, the MGPC solution cannot 

be irnplemented simply as the non-linear programming problem used here, since the 

predictions must be performed letting the plant vary among all the polytope vertices 

in the future. Besides, equality constraints (either on the unstable part or the whole 

output) are difficult to handle within the multi-model approach, and thus the way 

the stabilising CRHPC or GPC"o can be implemented in the mnlti-model context is 

an open question. Last, but not least, the MGPC solution is based on non-linear 

programming, compared to the simple LP approach of the min-max QGPCf. 

The solution presented in (Kothare et al., 1996) solves sorne of these problems 

by obtaining an upper-bound solution based on LM! optimisation. However, those 

methods are based on state-space models and sol ve the regulation problem of driving 

the state to zero. If the more common setpoint tracking objective is pursued the 

methods described by Kothare et al. (1996) are restricted to LTI nncertainty. 

In conclusion, the global uncertainty approach remains as the most appealing alter­

nativo to handle an kinds of uncertain systems within the GPC-like family. However, 

whenever a multí-model approach is possible (LTI uncertainty which affects the numer­

ator only) with not too many vertices, the MGPC can become a convenient solution 

since it would lead, in general, to improved performance compared to the min-max 

global uncertainty methods. 

4.4.8 Comparative study of 1íoo and min-max MPC 

In this section, the min-max predictive controllers described throughout this chapter 

are tested against a classical robust control design, namely an 1100 controller. The 

benchmark system chosen for this comparative analysis is the linear plant with gain, 
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zero and pole uncertainty provided in cqn.A.7 of Section AA: 

where the steady-state gain K líes in an interval centred at the nominal value Km = 1 

with a radius of a 20% (0.2), the zero 1J is located in an interval centred at thc nominal 

value 1Jm = 0.6 with a radius of a 10% (0.06), and the complcx-conjugate poles occur 

within the circles centred at the nominal valuc 11m = 0.6261 + 0.3130J with a radius of 

a 10% (0.1 111m 1 = 0.1 ·0.7 = 0.07). i.e.thc plant family is dcfincd as 

with I.6. K I ~ 0.2 ,j6rpl ~ 0.1, and 167]1 :5 0.1. The nominal system is then obtaincd for 

6 K = 6rp = 67] = O leading to (eqn.A.8): 

-1 q-l B(q-l) 0.5944q-l - 0.3567q-2 
G(q ) = A(q-l) = 1-1.2522q-l + OA900q-2' 
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Figure 4.28: Multiplicative uncertainty bound (dashed) and complementary sensitivity 
weighting Wm (solid) 

The maximum magnitude of multiplicative uncertainty (see Chapter 3) for this 

nominal system and the true plant family described aboye is shown in FigA.28 (dashed 
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Hne). A simple first order upper bound, displayed with a solid line, is provided by the 

transfer function 

w: ( -1) = 0.9692 - 0.8769q-l 
m q 1 - 0.5385q-1 ' 

which is used for the 1leo design as the complementary sensitivity weighting. Note, in 

Fig.4.28, that this choice of the weighting W m is very close to the maximum magnitude 

of uncertainty. This is intended to avoid an excessively conservative designo 

Now the robust stability condition for multiplicative uncertainty can be applied to 

design a controller which robustly stabilises the plant family described aboye. This con­

dition, provided in Table 3.3, can be written in terms of the complementary sensitivity 

function: 

In the SISO case, the complementary sensitivity at the output Ty can be used instead 

of Tu, since both are identical. The transfer functíon Ty = GK(l + GK)-l can now be 

factorised as Ty = GQT for QT = K(l + GK)-l, and thus the RS condition becomes 

IIGQTWmll eo < 1 ~ IIQTlloo < 11 G~m 1100 ' (4.20) 

for all O < Wn :::; 7r. Now, the filter QT can be designed to satisfy this inequality, since 

both G and Wm are known. Notice that QT is a factor ofTy, and thus the zeros and the 

poles of QT are viewed in the nominal dosed-Ioop transfer function from the setpoint 

to the output (Ty = GQT) and in the nominal dosed-Ioop transfer function from the 

setpoint to the input (Uy = QT). Therefore, slow (and of course unstable) poles and 

unstable zeroes must be avoided in QT. In addition, QT can be designed in order to 

cancel out the undesired open-loop dynamics of the nominal planto 

Once the transfer function QT is chosen, the controller K is found by solving the 

equation QT = K(I + GK)-lfor K, which yields 

K= QT 
1- QTG' 
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In order to achieve offset-free setpoint tracking for constant setpoints w(t), the transfer 

function Ty must be 1 at low frequencies (condition (O) or, equivalently, the controller 

K must have a pole at 1 (condition @). Needless to say, both conditions lead to the 

same result: 

1 
ID Ty(l) = 1 {:} G(l)QT(l) = 1 {:} QT(l) = G(l)' or 

. 1 
@ 1 - QT(l)G(l) = O#> QT(l) = G(l)' 

Thus, the offset-free setpoint tracking requirement becomes a condition on the steady­

state gain of QT. With all these guidelines, the filter QT can be chosen, on a pole-

assignment basis, as 

_ B (q-l) 1 B*(l)A' (1) A*(q-1)B' (q-1) 
Q (q 1) - Q - Q Q (4 21) 

T - AQ(q-l) - G(l) A*(l)BQ(l) B*(q-l)AQ(q-l) ' . 

subject to eqnA.20, and where B*(q-l)jA*(q-l) is a factor of G(q-l) which consists of 

the dynamics (poles and zeroes) to be cancelled in the closed-Ioop transfer function, and 

B'(q-l )jA'(q-l) are designed closed-Ioop. dynamics. For open-Ioop unstable systems, 

this procedure cannot be· directly applied since it is not possible to cancel out unstable 

poles using this approach. 

The tuning settings for the min-max QGPCf and the ?-loo controller have been 

chosen as follows. To begin with, the min-max QGPCf has been tuned using [Nu , p] = 
[5,1], 0-(5) = -0.2, 0+(5) = 0.2, Jl. = 0.7 and Mo = 10. The setpoint changes from 

O to 1 at time t = 5 samples, and no disturbances have been taken into account 

(the comparison is made in terms of setpoint response only). The min-max QGPCf 

provides the nominal closed-Ioop inputjoutput responses displayed in FigA.29(a). On 

the other hand, QT has been chosen as per eqnA.21 with A* = A, B* = 1, Bh = 1 

and AQ = 1 - 1.1500q-l + 0.3931q-2. Thus the open-Ioop poles are cancelled out 

and the closed-Ioop poles have been fixed at 0.5750 0.2500J in order to provide a 
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Figure 4.29: Nominal c1osed-loop behaviour of the min-max QGPCf and the 1ieo 
controller 

nominal cIosed-loop response which is similar to the min-max QGPCf, as displayed 

in FigA.29(b). Finally, the transfer function QT becomes 

Q ( 
-1) = 1.0225 - 1.2804q-1 + 0.5010q-2 

T q 1 - 1.1500q-l + 0.3931q-2 

which yields the controller 

K( -1) = 1.0225 - 1.2804q-l + 0.5010q-2 . 
q 1 - 1.7578q-l + O.7578q-l 

As shown in FigA.30(a), this choice of QT satisfies the condition of eqnA.20, and 

thus the resulting controller robustly stabilises the whole plant family g. Notice that 

QT is quite close to the robustness bound, hence it ís quite difficult to improve (nom­

inal) performance preserving robust stability. The sensitivity Sy and complementary 

sensitivity Ty functions are shown in FigA.30(b). It is worth pointing out that Sy is 

slightly aboye the O dB line at high frequencies, producing an amplifying effect at that 

range. This could be inconvenient in case of high-frequency output disturbances dy(t),. 

since these would be amplified at the output y(t). However, since this example consid­

ers only the setpoint responses, this issue can be overlooked, though it could become 

relevant in real applications. 
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Figure 4.30: Robustness analysis of the 11,00 controller 

Now, the true inputjoutput responses obtained with the min-max QGPCr' and 

the 1-loo controller are compared in Fig.4.31. 250 true plants Gj E Id have been cho­

sen, within the family described aboye, in such a way that the extreme cases (lowest 

and highest value of each parameter) are included in this experimento Note that the 

envelope of the output responses is greater with the min-max QGPCr' than with the 

11,00 controller. This may lead to think that the average performance provided by the 

min-max controller is lower than that obtained with the 11,00 for this particular ex­

ample. However, this is not the case. To show that the average performance is very 

approximately the same for both approaches, the following average performance index 

is defined: 

where Np (250 in the example) is the number of true plants chosen within the family 

Id, nt (50 in the example) is the simulation time, and Yj(t) is the output response 

obtained with the plant Gj • This index takes into account the tracking errors only, 

but the control efforts might have been inc1uded as well. In this experiment, the 
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Figure 4.31: True closedMloop behaviour ofthe min-max QGPCr and the 1loo controller 

performance index yields 1.2517 for the min-max QGPCf, and 1.2459 for the 1íoo 

controller. Thus, the average performance is almost identical for both approaches. 

This is quite a remarkable result, since it must be taken into account that the 1íoo 

controller is tíghtly tuned since: 

1. The complementary sensitivity weighting f,V m is very close to the upper bound 

of multiplicative uncertainty, 

2. the transfer function QT has been designed such that it is quite close to the 

robustness bound l/(WmG} (see Fig.4.30), and 

3. the 1íoo controller has been chosen to provide nearIy the same nominal in~c 

put/output responses as the min-ma.."'\. QGPCf. 

This implies that any attempt of improving robust performance with the tloo controller 

can easily involve the violation of the robustness bound, and thus RS would no longer 

be guaranteed. In addition, if a better 1loo design were found, the min-max QGPCf 

could be re-tuned to achieve similar (or better) performance. 
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In short, for this particular example, the min-max predictive controller does not 

only provide robust stability but, as performance is concerned, it closely parallels the 

results obtained with a tightly tuned 1-loo controller. Taking into account that the 

key property of min-max MPC is constraint-handling, the result of the experiment 

presented in this section is aimed to illustrate that the behaviour of min-max MPC 

can be comparable to a classical robust control design, although min-max controllers 

are not explicitly designed to provide robust stability or robust performance in the 

classical sense (see Chapter 3). 

4.5 Robustness analysis: the randomised approach 

As pointed out aboye, no closed form exists for the min-max controllers introduced in 

this chapter, and thus it is quite a difficult issue to apply classical robustness anal­

ysis methods. In addition, the results obtained in Chapter 3 cannot be extended to 

the constrained case, sin ce no LTI form of constrained MPC controllers exists, even 

though they are not implemented in the min-max framework. This section tackles the 

robustness analysis problem from the point of view of the statistical learning theory 

(Vidyasagar, 1997; Vidyasagar, 1998). 

4.5.1 Fundamentals of the statistical learning theory 

As discussed in (Vidyasagar, 1997; Vidyasagar, 1998), the statisticallearning theory 

can' be used to tackle the robust control analysis and design problems. The robustness 

analysis problem in the framework of the statisticallearning theory can be formulated 

as follows: 

Given a family of plants 9 = G(x) (parametrised in x) and a controller K, 

compute the probability p that the closed-loop behaviour is not "convenient" 
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where "convenient" can mean "stable" or can include other specifications, such as 

constraint satisfaction. Then Kl is considered more robust than Ka ir the probability 

of inconvenient dosed-loop behaviour for K1 is lower than the one for K2• 

It can become quite a difficult task to compute such a probability analytícally for 

the whole plant family G (x). An alternative is to estimate p using randomi~ed methods. 

Consider a Bernoulli process, i. e. an experiment with two possible outcomes, namely 

"success" and "failure". A coin-tossing is an appropriate example of such a process, for 

which "head" and "tail" can be taken as success and failure respectively (or conversely). 

It is widely known that the true probability of success in such a process is p = 0.5. 

If the coin-tossing experiment is repeated m times, the empirical probability Pm can 

be computed as the ratio of the number of "heads" 1 among the m experiments. The 

greater m is chosen, the more probable is that p ~ Pm, what can be loosely formulated 

as 

Um Pm =p. 
m-+oo 

This approach is known as Monte Carlo simulation. 

The result "inconvenient closed-Ioop behaviour" can be thought oí as the out­

come of a Bernoulli process~ and thus the following randomised procedure, detailed in 

(Vidyasagar, 1998), can be used to obtain an estimate Pm of p: 

1. Choose m plants G(Xj) within the family G(x), randomly generated according 

to some probability measúre PG• 

2. Simulate the dosed-Ioop system obtained with K aud G(Xj)' Ir inconvenient 

closed-loop behaviour arises increase l, 

3. Let the estimate or empírical probability Pm be the fraction oí plants among m 

which produce an inconvenient closed~loop behaviour, i.e. Pm :::::::: l/m. 
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Now, given m, it is convenient to know how accurate is Pm an estímate of p. In 

other words: what is the probability that IPm - pi =5 é? The best answer currently 

available for this question is the Chernoff bound (Chernoff, 1952; Vidyasagar, 1998) 

according to which: 

(4.22) 

where prob(z) stands for the probability ofthe event z. Now, if one wishes to measure p 

with an accuracy é and a confideÍlce of 1-8, how many experiments need be performed? 

This is solved by using eqn.4.22: 

or 

m> ~lOg(~). - 2é2 8 
(4.23) 

If m is chosen using this formula, it is possible to assert with confidence 1 - 8 that 

!Pm - pi =5 e. As an example (Vidyasagar, 1998), in order to be 99% (8 = 0.01) sure 

that the empírical probability is within 0.05 (€ = 0.05) of the true value, it is enough 

to generate 1060 plants. 

Notice that the bound provided in eqn.4.22 is only a sufficient condition, meaning 

that it may be possible to assert IPm - pi =5 e with probability higher than 1- 2e-2mé
!, 

or, in other words, than sorne m lower than the one provided in eqn.4.23 is usually 

enough. This can be easily checked with a coin-tossing process. After 1060 experiments 

the empírical probability of "head" has been found to be 0.4962, and the difference with 

the true probability is 3.7736.10-3 , quite lower than the 0.05 accuracy guaranteed with 

a 99% probabílity. This points out that the Chernoff bound can be quite a conservative 

approximation, but this is the tightest result currently available. In fact, the greater 

m becomes, the more conservative Chernoff bound seems to be. 

As a matter of fact, the same theory can· be used to show the conservativeness of 

the Chernoff bound. Consider the experiment: "compute the empirical probability Pml 
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for the coin-tossing problem with mI = 1060". Now if IPm1 - pi > 0.05 call the result 

"success" and otherwise count it as "failure". Thus a new Bernoulli process has been 

defined, and let q be the probability of success for this new process. The Chernoff 

bound ensures that q < 0.01, and an estimate qm2 can be computed. If é = 0.005 and 

a confidence level of 99% are chosen, the Chernoff bound yields m2 = 105967. With 

these settings, the estímate qm2 = 1.1985 . 10-3 has been obtained. This seems to 

point out that the Chernoff bound is an order of magnitude (10-2 versus 10-3) overly 

conservative for this particular example. Note that this result is only approximate to 

0.005 of the true value (with a 99% confidence). 

4.5.2 Robustness assessment using Monte CarIo simuIation 

The aim of this section is to how robust the min-max QGPC~ controller is compared 

to the T-based schemes through a set of randomised tests. This analysis has been 

performed only for predictive controllers because constraint satisfaction is one of the 

requirements. The unconstrained simulations are provided for completeness only. The 

parameters used to analyse the robustness of these controllers are, on the one hand, 

the empirical probability of obtaining an unstable closed-loop system, denoted as p~ 

and, on the other hand, the empirical probability of obtaining stable closed responses 

which satisfy the user-designed constraints, referred to as Pc:n. It is worth pointing 

out that a set of tuning knobs which provided robust stability for the whole plant 

family would thus be senseless for this comparison, since the empírical probability of 

instability would be O in either case. Hence the experiments have been carried out in 

such a way that the closed-Ioop performance obtained with the T-based and min-max 

controllers is similar. 

The nominal model chosen in Section 4.4.1 is used here, and a 30% variation margin 
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has been eonsidered to generate the true parameters. That is, given 

215 

the true steady-state gain K is assumed to vary in the interval [0.7,1.3] (the nom­

inal steady-state gain is 1), the poles 'f/ and fj are within a eirc1e of radius 0.3 . 

10.7418 ± 0.6333)1 eentred at 0.7418 ± 0.6333) (the nominal poles), and the true zero 

lies in the interval [-1.3·0.9832, -0.7·0.9832] (where -0.9832 is the nominal zero). 

In other words, K = (1 + ~K)Km with I~KI ::; 0.3, 'f/ = (1 + ~1J)'f/m with 1~111 ::; 0.3, 

and <P = (1 + ~r¡)<Pm with 1~<p1 ::; 0.3, where the nominal values are given by Km = 1, 

'f/m = 0.7418 + 0.6333) and <Pm = -0.9832: 

G( -1) = q-l B = 0.2358q-l + 0.2319q-2 
q A 1 - 1.4835q-l + 0.9512q-2· 

The pole-zero loei of the nominal and true systems are shown in Fig.4.32, where "x" is 

used for the nominal poles, "o" is used for the nominal zero, the circ1es represent the 

true poles loei and the true zero lies between the "r>" and "<3" signs. Notiee that the 

true plant family inc1udes minimum phase, non-minimum phase, stable and unstable 

systems, and thus this example can be eonsidered as quite a ehallenging benehmark 
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to measure the robustness oí the min-max controllers introduced in this chapter. In 

addition, a disturbance oí magnitude 0.05 has been added to the true system for t ;::: 51 

samples, i.e. the true output has been generated using eqn.4.17 with x(t) = 0.05 for 

t ;?: 51. 

It is worth pointing out that the robustness anaIysis methods depicted in Chapter 

3 cannot be applied directly ta thia example, sínce no stable uncertainty description 

cari be found to represent the whole plant family. More sophisticated techniques, such 

as the coprime factorisation, could be used (Skogestad and Postlethwaite, 1996) but 

they would only apply to the unconstrained case. 

For this comparison, the tuning knobs TI = 1 - 0.9q-l and fJ, = 0.9 have been 

chosen sínce they lead to similar responses, as disturhance rejection is concemed, for 

the T-hased and tho mÍn-max controllers respectively (see aboye). In addition, the 

polynomial T2 = (1 - 0.9q-l)2 has been used to show that increasing the low-pass 

behaviour oí the filter lIT is not always convenient. In this case, including A as a 

factor of T leads to low robustness margins because the roots of A are very near the 

unit circle. For instance, the results obtained with T = A(l - 0.9q-l) are much poorer 

than the anes provided below. 

Five predictive controllers (the GPCo<\ the QGPCr) each with TI and T2 , and the 

min-ma.x QGPCf), using the same nominal system, have been tested on 1060 planta 

randomly generated on the famiIy described aboye. Hence the empirical probabilities 

computed are within 0.05 of the true value with a confidence of 99%. The true plants 

haya been mosen within the intervals of a 30% parameter variation (poles, zeto and 

gain, delay exc1uded), with uniform distribution. The tuning knobs of the controlIers 

are Nu = 5, p = 1 and, for the min-max controller, (J-(5) = -0.2, (J+(5) = 0.2 (the 

setpoint change occurs at t = 5 samples) and M(J = 10. 

The first experiment has heen performed to assess the probability of obtaining an 



Seco 4.5. Robustness analysis: the randomised approach 

I 

¡,/ --i---O 
I \ 

0.5 

! D -'-'-'---<D~e~._._._._.-L._._._._._._._~,_._._,_._,_. 
! i : j 

-0.5 '. 
'. 

-, 
'. '. 

i I 

. ~0 
.....- -!- -,' 

I 

i 
i 

-l.SL--:'_1.S::----_7", --::-0.5:---7-0 ---:-'0 .• :---7--7-.: ... ---' 
Realalril 

(a) True pole-zero location (b) True steady-state gain distribution 
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.3 

that the true poles are almost on the boundary of the circle used to generate the true 

plant and that all these plants are open-Ioop unstable (whereas the nominal system 

is not). It is also remarkable that the true steady-state gain is always lower than the 

nominal value, which produces control moves which are lower than those required to 

stabilise the system. In addition, it is worth pointing out that if the nominal gain is 

closer to the true value the closed-Ioop systems turn to be stable with these plants too. 

1 

GPCoo 

11 

QGPCf 

11 

min-max 

1 
TI I T2 TI I T2 QGPCi 

lU 73 20 28 21 

1 

45 

1 
p~=lu/m 0.0689 0.0189 0.0264 0.0198 0.0425 

le 565 233 522 229 

1 

1007 

1 
p~ = le/m 0.5330 0.2189 0.4925 0.2160 0.9500 

Table 4.4: Randomised tests results (ii) 

The randomised tests have been repeated enforcing an output constraint y(t) < 1.2 

for all t. Table 4.4 shows the results of the experiments, where le is the number of 

stable closed-Ioop system for which the output constraint is respected, and p~ is the 

empírical probability of stability and constraint satisfaction. It must be noticed that 

the incorporation of the constraint leads to a greater instability probability in the min-
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1 

GPCoo 

1I 

QGPCf' 
:11 

min-max 

1 TI I T2 TI I T2 QGPCr 

r' 36 170 33 171 

1 

18 

1 p~ = ¿u/m 0.0340 0.1604 0.0311 0.1613 0.0170 

Table 4.3: Randomised tests results (i) 

(which is identical to the GPe1 in the nominal case with these tuning settings) and 

tlle 2-norm GPGXl behave quite similar1y. The QGPC1 seems to be a bit more robust 

than the 2-norm GPCoo with T = TI (other results of this experiment also point out 

that situation), but with T = T2 the results are almost indistinguishable. This slight 

difference can be caused by the tuning knobs (Nu and p), since no indication exists to 

think that l-norm controllers are intrinsically more robust than 2-norm counterparts. 

Needless to say, TI is a much suitable a choice than T2 in thisexample, since it leads 

to much fewer unstable cases. Finally, it is worth point out that whenever a given 

true plant produces an unstable closed-loop system with the min-max controller, the 

closed-Ioop systems obtained with the T-based controllers are also unstable, i.e. tha 

unstable cases obtained with the min-max QGPC1 are a subset of those oí the T-based 

counterparts. 

As an example, the mÍn-max QGPC1 is unstable for the plant: 

G ( -1) _ 0.1177q-l + 0.1440q-2 
o q - 1-1.9733q-l + 1.3054q-2' 

tha poles oí which are located at 0.9867 ± 0.5761} (magnitude 1.1426), the zero at 

-1.2236, and steady-state gain is 0.7881, i. e. the true system is unstable, non-minimum 

phase and the true steady-state gain is greater than the nominal vaIue (1). In other 

words, this particular true plant provides an open-Ioop behaviour which is quite differ~ 

ent from the nominal system. 

FigA.33 shows the pole-zero and gain distributions for the 18 plants which lead to 

an unstable closed-loop system with all the controllers used in this experimento Notice 
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unstable closed-Ioop system in the unconstraíned case. Let pU denote the probability of 

instability, [U the number of unstable cases and fi":n the empírical probability computed 

as the ratio of unstable cases among the m experiments. Now a definition of "unstable 

elosed-Ioop system" is needed. Here, a system is said to be stable in the Bounded­

InputjBounded-Output (BIBO) sense, i.e. if the system response to a bounded input 

(setpoint) is a bounded output. However, in simulation, the output of a system is 

always "bounded" in sorne sense (since no computer can handle infinitely large num­

bers). Here, the closed-Ioop system has been considered unstable if the maximum or 

mínimum output values exceed sorne limits during the simulation time. Now, as the 

setpoint changes from O to 1, the system is taken to be stable if the output is bounded 

between -0.75 and 2.5. Perhaps some stable closed-Ioop systems are counted as un­

stable with this approach, but performance would be so poor if these limits were not 

satisfied that they can be thought of as unstable anyway. 

The results are shown in Table 4.3. Notice that most of the empírical probabilities 

are, in fact, lower than the accuracy parameter (e = 0.05). If accuracy were increased 

up to (say) 0.005, m = 105967 plants would be required, and performing that many 

simulations would take a few days with current computing capabilities. It is thus 

assumed that the values of Table 4.3 are, indeed, quite accurate, i. e. that the error 

between the true probabilities and the empirical ones is much lower e = 0.05 (as occurs 

in the coin-tossing example presented aboye). In addition, there is no reason to think 

that the empírical probabilities computed are more "exact" for one controller than for 

another. Other simulations performed in the same conditions provide quite similar 

results. 

The outcome of this experiment evidences that the min-max controller is, at least, 

as robust as the more robust T-based controller which has been found. In fact, if 

the results of Table 4.3 were exact, the min-max QGPCr' is about twice as robust as 

the T-based QGPCr' with T = TI. It is also remarkable that the 1-norm QGPCr' 
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max controller compared to the result of the unconstrained experiment (Table 4.3). 

The reason for such a behaviour is that, in order to satisfy the constraint for wide ()­

and ()+, the controller must lead the output to negative values, this makes ()- and ()+ 

increase and, thus, the output must be pushed even farther from the constraint. This 

process ends up causing instability. In fact, the probability of an unstable closed-Ioop 

system is higher than that obtained with most of the T-based approaches. 
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Figure 4.34: Closed-Ioop behaviour of the min-max QGPC~ 

As an example ofthis peculiarity, the closed-Ioop behaviour ofthe min-max QGPC~ 

is shown in FigA.34 for the true plant 

G ( -1) = 0.1352q-1 + 0.1461q-2 
o q 1 - 1.9734q-1 + 1.2657q-2' 

the poles of which are located at 0.9867 ± 0.5405J (magnitude 1.1251), the zero at 

-1.0805, and the steady-state gain is 0.9624. Apart from the initial delay which is due 

to the tuning settings, the closed-loop system is stable until the disturbance enters the 

system (t = 51), but the combination ofthe perturbation, the band updating algorithm, 

the output constraint, and the open-Ioop instability of the true plant, produces closed­

loop instability. Notice that the oscillations of the global uncertainty signal increase 
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when the disturbance enters the system. Then the bands are widened and the output 

must be led further from the constraint. As a consequence, the uncertainty grows even 

more, the bands need be widened again, and so on. This situation might have been 

avoided with a more conservative band updating procedure. However, the sourees of 

uncertainty are so extreme in this example (unstable, non-minimum phase plant versus 

stable minimum-phase nominal system) that such a behaviour lS not expected in real 

control problems. 

Now, as constraint satisfaction is considered, the 95% of the plants tested with the 

min-max controller haye produced a stable dosed-Ioop system for which the constraint 

is always respected, compared to the just a bit more than a 53% attained with the best 

T-based controller. The polynomíal Ta appears as quite an unsuitable choice in this 

raspect, since the output breaks the constraint systematically whenever it 18 used. In 

addition, the maximum vaIue of the output reached after the 1060 tests (taking into 

account the stable cases only) with the min-max controller lS 1.2367 (quite dose to the 

eonstraint) whereas with the T -based se heme the maximum vaIue of the output has 

been found at 1.8731 and 2.3623 for the QGPCr with T1 and T2 respectively, and at 

1.9085 and 2.3268 for the (2-norm) GPex;¡ with T1 and T2 respectively. Notice that aU 

ofthese vaIues are unacceptably large, since the constraint specification is y(t) < 1.2 fo! 

all t. The T-based controllers can behave even worse. For instance, if the magnitude of 

the disturbance i8 0.1 instead of 0.05, p~ is still about 90% for the min-max QGPCf} 

but it fans down to less than 5% (!) for the T-based schemes. 

Moreover, the number of constraint violations has never exceeded 2 samples (out oí 

100) with the min-max scheme, whereas with the T-based controller there have been up 

to 31 constraint violations for a single experimento TIla large probability oí constraint 

satisfaction provided by the min-max QGPCr has been obtained at the price of a 

slightly lower stability results) since the T-based controllers are stable for a few more 

plants than the min-max scheme. 
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This situation might be improved by using feedback formulations of the min-max 

controllers (Scokaert and Mayne, 1998), as additional degrees offreedom are introduced 

to cope with different uncertainty sequences. This is particularly important when 

constraints are enforced. However, this solution does not lead to such a simple LP 

problem, as discussed in Chapter 5. 

FinalIy, the out come of these randomised experiments leads to the conclusion that 

the min-max QGPCr suggested in this chapter, tested in quite a difficult environment, 

provides with a convenient soIution in both the constrained and the unconstrained 

cases. The min-max approach overcomes the classical (well-tuned) T-based controllers, 

especially as constraint satisfaction, one of the most important issues in predictive 

control, is concerned. 

4.6 Concluding remarks 

In this chapter, MPC controllers based on min-max optimisation and a global uncer­

tainty description are formulated and tested. To begin with, a CARMA model for­

mulated in terms of a global uncertainty parameter (or signal) is provided in eqn.4.1, 

and the subsequent output predictions are derived using such a model. The min-max 

optimisation problem is undertaken for both 2-norm and l-norm formulations. Taking 

into account the results of the robustness analysis for the unconstrained case provided 

in Chapter 3, this chapter is focused on infinite (or quasi-infinite) horizon controllers, 

since they provide nominal stability guarantees and their intrinsic robustness features 

are superior to other approaches such as the CRHPC. 

The min-max optimisation problem for 2-norm controllers can be solved using ei­

ther analytical or numerical methods, but the former tend to be untractable for usual 

settings (Nu = 3 or larger), and thus the latter is regarded as a more convenient alter­

native for practical applications. However, the numerical solution relies on non-linear 
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programming (SQP is used in this PhD thesis), and there are no a priori bounds of 

computation time. On the other hand, l-norm min-max controllers are shown to Iead 

to a simple LP solution which can be solved very efficientIy with current optimisation 

tooIs. What is more, the CPU time required for a LP problem solution can be predicted 

(or bounded) prior to soIving the problem. A comparative analysis of the computa­

tional burden has been performed, and the results show that the l-norm approach is 

always more efficient. 

The mÍn-max optimisation using global uncertainties is solved assuming lower and 

upper bounds on the uncertainty signal, and the cost functíon is then minimised for 

worst case prediction. Since convex cost functions are used and the uncertainty regions 

(polytopes) are always convex, the maximum líes on a vertex of the polytope, and this 

property makes it much simpler the solution of the problem. In the existing methods 

which take this approach (Oamacho and Bordóns, 1995; Scokaert and Mayne, 1998), it 

is assumed that the lower and upper uncertainty bounds are constant. In this thesis, the 

closed-Ioop behaviour of the uncertainty signal when modelling errors and/or distur­

bances occur is investigated. It is shown that the uncertainty signal oscillates whenever 

the setpoint changes or a disturbance enters the system and, later on, it settles down 

to some steady-state value. This property has been used to suggest a band updat­

ing algorithm Which allows for the uncertainty bands to approach the measurements. 

Thus, the control algorithm is driven from cautious initial settings to more stringent 

counterparts. In addition, this approach guarantees that the (uncertainty-dependent) 

constraints are respected as far as the uncertainty bounds are not violated. 

The novel methods, especially the min-max GPOco and the min-max QGPCr', 

have been extensively tested in quite toUgh situations, showing that they overcome the 

polynomial T approach when constraints are enforced. The classical T settings often 

faH not only to satisfy constraints, but even to provide a stable closed-loop system. In 

the unconstrained case, the min-max approach produces results which are comparable 
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(sometimes better) to the T-based controllers. 

The min-max controllers are also tested on a strongly non-linear system. This 

approach provides with a remarkable trade-off between performance and computational 

burden, and again overcomes the solution obtained with the T-based controllers. As 

shown by means of an example, the min-max QGPCr' is several orders of magnitude 

faster than a non-linear MPC method, at the price of a Iower performance. 

The min-max methods have also been tested against robust multi-model controllers, 

such as those suggested by (Kothare et al., 1996). It must be noticed that in transfer 

function formulations the min-max multi-model approach is difficult to apply, since 

pole-uncertainty cannot be easily handled. Nevertheless, a comparison with the global 

uncertainty approach is provided in this chapter, and it is shown that the multi-model 

methods yield better performance for a larger computational burden. However, the 

application of min-max multi-model methods for transfer function formulations is quite 

limited since uncertainty comes from many sources (strong non-linearities, changing 

poles) which cannot be handled by this approach. 

A comparative analysis of the min-max predictive controllers formulated in this 

chapter with an 110c¡ controller is also provided. Although the min-max QGPCr' does 

not guarantee robust stability, it is shown to provide with almost identical results to 

those obtained with a tightly tuned 1100 controller. A performance index shows that 

both solutions are almost indistinguishable, which is quite a noteworthy achievement 

sínce the main feature of mÍn-max methods is the ability to handle output and state 

constraints in spite of uncertainty and not to provide robust stability or performance 

in the classical sense. 

A robustness analysis of the newly proposed controllers based on the statistical 

learning theory shows that these methods perform quite well on the most difficult 

situations, and appear as the most convenient choice when constraint handling in spite 
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of uncertainty is an indispensable control requirement. Again, the min-max controllers 

are shown to be at least as robust as the classical T~based formulations even when 

constraints are not enforced. 

FinalIy, a few limitations of min-max MPC using global uncertainties are pointed 

out in this chapter. Sorne simulated experiments reveal that unexpected dead-times 

or inverse responses can occur. Although such a behaviour can be often redressed by 

re-tuning the controller, the reason for such a behaviour may stem from the differ­

ence between the degrees of freedom of the controllers and the amount of polytope 

vertices. This difference increases exponential1y with the uncertainty horizon No what 

makes it difficult to handle all the possible situations with a single control move vec­

tor. Among other considerations, the next chapter suggests sorne min-max controllers 

which overcome this difficulty. 
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Chapter 5 

Trends and prospects of min-max 
RHPC 

5.1 Introduction 

As discussed in Chapter 4 (Section 4.4.4), there are sorne lirnitations or unexpected 

closed-loop characteristics related to the classical rnin-rnax MPC controllers based on 

the global uncertainty description. Scokaert and Mayne (1998) pointed out that sorne 

of the drawbacks related to rnin-rnax controllers are often associated to the use of a 

single control profile to handle all the possible disturbance (uncertainty) sequences. 

As remarked in Scokaert and Mayne (1998), the standard rnin-rnax approach does 

not include the notion that feedback is present in the receding horizon implementation 

of the controller. It is also noted that the undesired closed-Ioop characteristics of 

the standard min-rnax MPC can be worse than the behaviour shown in Section 4.4.4, 

since infeasibility or even instability can occur due to the inability of the controller to 

handle, with a single control profile, all the potential uncertainty realisations. These 

considerations led to the formulation of a feedback min-max state-space MPC law 

which, for a simple first-order system subject to unrneasurable bounded disturbances, 

is shown to succeed where the classical min-max approach fails. 

227 
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Consider, for example, the min-max QGPC'f as defined in the previous chapter. If 

Nu = 4 and N = 5, the single control move sequence 

~u{t) = [Llu(tlt) LlU(t + lit) LlU(t + 21t) LlU{t + 31t) ]T, 

is expected to cope with 25 = 32 different uncertainty vertices (realisations): 

9~ = [ (J{t + lit) (J(t + 21t) B(t + 3!t) B(t + 41t) (J(t + 51t) ]T, 

with (J(t + kit) = (J- or (J(t + kit) = ()+, and O~ i= OJ if i i= j for all 1 :$ i,j :$ 32. In 

addition, it must be taken into account that sorne of the degrees of freedom available 

in the control move vector ~u(t) are used to enforce the equality constraints on the 

unstable part of the output (see Chapter 4). In this example, if the nominal model 

is open-loop stable, a single equality constraint (n¡¡ + 1 = 1) must be enforced, and a 

component of ~u(t) is used to satisfy such an end-point constraint. In short, there are 

only three (four decision variables minus one equality constraint) available degrees of 

freedom in ~u(t), namely Llu(tlt), LlU(t+ lit) and Llu(t+2jt), to cope with thirty-two 

different uncertainty realisations. Note that the c1assical min-max approach does not 

exploit the fact that new measurements of (J(t) will be available at time t + 1, t + 2 and 

so on. There is no real need of handling so many different possibilities with a single 

control profile. 

In (Scokaert and Mayne, 1998) it is remarked that, apart from using different control 

profiles for different uncertainty realisations, a so-cal1ed "causality constraint" must 

be incorporated. Consider again the example provided aboye. The ideal approach 

would be to define 32 different hypothesised control move sequences, say ~Ui(t) with 

1 < i ~ 32, to cope with the 32 different uncertainty realisations. This would give 

32 x 5 = 160 minus 32 (used to enforce the end-point equality constraints) degrees of 

freedom for optimisation, possibly much more than required. Now, ifthe problem were 

solved that way, there would be 32 different candidate first control moves to update 

the control signal. With no knowledge about the future uncertainty values, it would 
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be impossible to decide among that many candidates. The causality constraint is thus 

introduced to allow for just a single "next control move" for each possible internal 

process state, which depends on past inputjoutput (or state) data onIy. In particular, 

this constraint ensures that all the hypothesised control move sequences start with the 

same first control m ove , since the current internal process state is obviously the same 

for all the different future uncertainty realisations. Needless, the feedback min-max 

approach involves a larger computational burden compared to the standard min-max 

methods, but the benefits as performance is concerned might justify the use of the 

feedback formulation. 

In this chapter, the notion of feedback min-max MPC is exploited, and a feedback 

min-max (2-norm) GPGX> controllaw is suggested and tested. A feedback min-max 

(l-norm) QGPC~ using LP is also outlined. As shown below, if the 2-norm is used, the 

feedback min-max problem can be solved using non-linear programming tools, such as 

the SQP method. 2-norm cost functions are differentiable, and thus gradients (of both 

the cost function and the constraints) can be obtained. The use of gradients speeds 

up the convergence to the optimal point and provides the non-linear programming 

problem with better numerical properties. These gradients cannot be computed for 

l-norm cost functions since these are not differentiable, and thus the SQP solution for 

the l-norm case is not encouraged. 

If a l-norm cost function is used, such as that of the QGPC~ (eqn.2.48), it is 

possible to solve the optimisation problem by means of LP methods. However, in 

the feedback implementation of such a min-max controller, the number of variables 

and constraints would increase exponentially with the uncertainty horizon. A simpler 

solution, outlined in Remark 5.2, can be used to reduce the number of variables, but 

the number of constraints still depends on No exponentially. The advantages and 

drawbacks of l-norm implementations are similar to those of the standard min-max 

algorithms. That is, the CPU time can be known (or bounded) a priori, since LP tools 
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are applied, but the QGP0r' does not guarantee the stability of the nominal closed­

loop system, though it is very unlikely that nominal stability problems occur. However, 

due to the number of constraints required by the LP problem, the computational 

advantages of feedback l-norm implementations compared to 2-norm counterparts are 

not as significant as for the standard min-max approach. 

Taking into account all these considerations, the next sections are focused on feed­

back min-max 2-norm implementations. The l-norm case, which would lead to similar 

results, is not deeply analysed. 

5.2 Feedback min-max GPCoo 

In this section the min-max GPOco depicted in Ohapter 4 is reformulated so as to apply 

different control profiles for different uncertainty realisations, subject to the causality 

constraint defined in Section 5.1. 

As discussed above, if the settings Nu = 4 and N = 5 are assumed and the nominal 

model is open-Ioop stable, there are only three degrees of freedom in Au(t) available 

to minimise the cost function, whereas the last control move, .ó.u(t + 31t) is needed 

to satisfy the end-point constraint. In such a case (Scokaert and Mayne, 1998), four 

different control move sequences, defined in terms oí eleven decision variables, can be 

specified to face eight different potential future uncertainty realisations: 

O~ = [()- ()- ()-] T }-' . 
Q) O~ = [()- ()- (}+]T ~ AUl(t), wlth 

AUl(t) = [.ó.ul(tlt) .ó.Ul(t + lit) .ó.Ul(t + 21t) I .ó.Ul(t + 31t) ]T, 

O; = [()- ()+ ()-] T } • 
@ 3 _ [ _ + +] T ~ A U2 (t), wlth 04 - () () () 

AU2(t) = [.ó.ul(tlt) .ó.Ul(t + lit) .ó.U2(t + 21t) I .ó.U2(t + 31t) ]T, 
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o: = [e+ e- e-] T } 
@ O~ = [e+ e- e+]T {::::=} AU3(t), with 

AU3(t) = [~ul(tlt) ~U2(t + lit) ~U3(t + 21t) I ~U3(t + 31t) ]T , 

O~ = [e+ e+ e-] T } 
@ O~ = [e+ e+ e+]T {::::=} AU4(t), with 

AU4(t) = [ ~Ul (tlt) ~U2(t + lit) ~U4(t + 21t) I ~U4(t + 31t) ]T. 
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Note that these four control profiles start with the same first control move ~ul(tlt). 

This is a consequence of the causality constraint, since the past input/output data are 

qbviously the same at this stage. However, at time t+ 1, 8(t+ lit) can be either (closer 

to) e- or (closer to) (J+, thus two possible control moves are considered at time t + 1, 

either ~ul(t+1It) for (J(t+1It) = (J-, or ~u2(t+1It) for (J(t+llt) = (J+. This procedure 

is then repeated for the sampling instant t + 2. 

Now these four different hypothesised control move sequences, AUl(t), AU2(t), 

AU3(t) and AU4(t), can be defined in terms of an extended control move vector: 

AU(t) = [~ul(tlt) I ~Ul(t + lit) ~U2(t + lit) I 

~Ul(t + 21t) ~U2(t + 21t) ~U3(t + 21t) ~U4(t + 21t) 

~Ul(t + 31t) ~U2(t + 31t) ~U3(t + 31t) ~U4(t + 31t) ]T. 

Notice that the last four elements of the vector AU(t) are used to enforce the equality 

constraint, and thus these do not contribute with additional degrees of freedom to han­

dIe different uncertainty realisations. Because of this, uncertainty vertices 9I consisting 

of three elements instead of four are considered above. Hence, if the last four decision 

variables are not taken into account (since these are needed to ensure the equality 

constraints), there is almost a one-to-one correspondence between the uncertainty re­

alisations (8) and the degrees of freedom available for the controller (7). In general, 

there are 2n uncertainty vertiees and 2n - 1 control moves available for optimisation. 
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Therefore the ratio between different uncertainty realisations and degrees of freedom 

is always close to unity. This is a c1ear advantage compared to thec1assical min-max 

approach, for which there are Nu - na: -1 degrees of freedom (control moves minus end­

point constraints) to handle 2Ne uncertainty realisations, where No ;:: N > Nu + nb - 1 

(see Chapter 2, eqn.2.14). That is, for standard min-max controllers the degrees of 

freedom increase linearly with NU1 whereas the polytope vertices increase exponen­

tially with Nu • Hence, for standard min-max MPC methods, the greater the control 

horizon is chosen, the more difficult the optimisation task becomes. 

Each different control profile can be selected from AU(t) by using a convenient 

selection matrix formed by zeroes and ones. For example, for AUl (t) and AU(t) as' 

defined aboye, it holds that 

~Ul(t) = [~ o O O O O O O O O O] 
1 O O O O O O O O O 
O O 1 O O O O O O O AU(t). 

O O O O O O 1 O O O 

In general, the control profile AUi(t) can be obtained by means of a selection matrix 

For the general case, given NU1 na+ 1 (the number of end-point equality constraints) 

and N, the uncertainty horizon is defined as No = Nu - na - 1, and the extended 

control move vector is formed by 2Ne - 1 control moves available for optimisation plus 

2Ne - 1 control moves required to enforce the end-point equality constraints. Then 2Ne - 1 

different hypothesised control move sequences are defined in terms of the extended 

control move vector. For the example introduced ab ove , No = 3, na + 1 = 1 and 

N = 5, there are 23 -1 = 7 control moves available for optimisation, whereas 23- 1 = 4 

control moves are used to enforce the end-point constraints, and thus the extended 

control move vector is formed by 7 + 4 = 11 decision variables. 

Note that, with this definition of No, the uncertainty horizon is shorter than the 

prediction horizon N, and thus some hypothesis must be made about the future un-
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certainty signa! for t + No + 1, t + No + 2, ... , t + N. In the example, since (output) 

predictions are performed up to t + 5 and these depend on the uncertainty signal from 

t + 1 to t + 5, uncertainty predictions for t + 4 and t + 5 are required, but the uncer­

tainty vertices defined above consider only up to 3-step-ahead predictions. Here, it is 

suggested that the future global uncertainties from t + No + 1 to t + N be assumed 

equal to the average of the lower and the upper uncertainty bounds, i. e. 

- f)- + f)+ 
f)(t + ilt) = f) = 2 ,No + 1 < j ::; N, 

which can be thought of as the "expected uncertainty value" . 

Now the min-max GPCoo introduced in Section 4.2.2.3 can be reformulated so as 

to use different control sequences for different uncertainty realisations. As discussed in 

Chapter 4, the standard min-max GPCoo can be posed as 

where J2(t) is the quadratic cost function: 

subject to equality (y = iD) and possibly to inequality constraints, with the weighting 

matrices A and R defined in Chapter 2. Sínce the worst case occurs at a polytope 

vertex (see Chapter 4), the cost function J2(t) is evaluated only at the polytope vertices 

8~e E eNe. 
t 

This min-max problem can be rewritten in order to incorporate different control 

profiles and the causality constraint, leading to the problem 

subject to 

Auopt = argmin max J~(t), 
AU (J:'e EeNe , 
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with AUj = 8 j AU and 

(5.1) 

where r z 1 denotes the lowest integer which is greater than or equal to z, subject to the 

equality constraints 

G~A - ¡- -H ON+n¡¡: u=w- - (} , 

possibly subject to the general inequality constraints 

and subject to the uncertainty constraints 

O(t + jlt) = O, j > No. (5.2) 

Remark 5.1 As discussed in Chapter 4, it is not possible to enforce the end-point 

equality constraints for infinitely many polytope vertices. Therefore, the vector (jN+n¡¡: 

if formed with all the components equal to the band average O. aaa 

Taking ¡nto account the "uncertainty constraints" of eqn.5.2, the polytope vertices 

are formed as 

N [ - - ]T 0/1 == 8(t + ljt) ... O(t + Nolt) O ... O , 

where the elements O(t + jlt) equalO- or 0+ for 1 < j ::; No = Nu - na -1. The last 

few components of ofo, for t + No +' 1 through t + N (or further if required by the 

constraints), are assumed identicaI to the average jj of the lower and upper uncertainty 

bounds. Of course, ofo i= efe if i t= j, what yields exactly 2No different vertices. 

Although the notation is admittedly cumbersome, the interpretation of the formulae 

provided above is rather intuitiva. Each control move profile Auj{t) is required to 

handle two uncertainty vertices, namely 0~6_1 and 0~9. For the example presented 
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aboye, AUl(t) handles oi and o~. Conversely, the vertex ofe is handled by the control 

move sequence Auri/21' what clarifies the meaning of eqn.5.1. In addition, the end­

point equality constraints must be satisfied with all the control sequences AUj for 

1 < j ::; 2Ne - 1• The inequality constraints are defined such that each control profile 

copes with the associated uncertainty realisations. Finally, an equality constraint on the 

uncertainty beyond No, as discussed aboye, is assumed. Note that this latter constraint 

may need to be enforced even further from t + N in case that, for infinite horizon-like 

constraints, the constraint horizon need be placed beyond the upper prediction horizon 

(N). 

It is worth pointing out that the causality constraint is implicit in the aboye for­

mulation. The way the control sequences AUj(t) are selected from AU(t) by means 

of the matrices Sj enforces the causality constraint. 

Now, although an analytical solution of this problem, analogous to that described 

for the standard min-max GPCco in Section 4.2.2.3, is not hard to obtain, such an 

alternative would be excessively CPU intensive. Fortunately, a numerical solution 

based on non-linear programming (e.g. SQP) can be used to find the optimal extended 

control move vector as 

vopt Auopt ::::: arg min v subJ'ect to v > Ji(t) for 1 < i 
, . V,~U - 2 --

where J~(t) is the cost function associated to the uncertainty vertex efe, subject to 

aH the equalityjinequality constraints reported aboye. The cost functions J~(t) specify 

the (non-linear) constraints v > JJ(t). These cost functions (or constraints) can be 

easily rearranged to be defined in terms oí AU(t) rather than AUj(t) by making use 

of the relation AUj(t) ::::: SjAU(t), which yields 

J~(t) ::::: ('IV - f - GSjAU - Heofe) T A ('IV - f - GSjAU -- He efe ). 

+ AUTS; RSjAU. 



236 Trends and prospects oí min-max RHPC 

Note that aIl the constraints and the optimisation criterion (v) are differentiable 

with respect to the decision variables aU(t) and the additional degree of freedom 

v, a property which would not be satisfied if l-norm cost functions (see Chapter 2) 

were used. The solution to this optimisation problem with non-linear programming 

methods, such as SQP, is straightforward. As already remarked, the use of gradient 

data is beneficial since, firstly, it speeds up the convergence of the optimisation methods 

and, secondly, the numerical properties of non-linear programming (such as SQP) is 

improved if the gradients are incorporated. 

Remark 5.2 If a l-norm cost function is used, similarly as done for the standard 

QGPCf' in Section 4.3, an LP solution to the optimisation problem can be found. 

In principIe, for each pair of uncertainty vertices O'iJ-l and O'iJ, different cr variables 

should be defined. Hence the number of cr variables would be N2Ne ) i. e. the number 

of variables and constraints would increase exponentially with Ne: 

for j = 1,2, ... , 2Nu - 1• A simpler (more conservative) solution could be obtained by 

using the same variables (Tj for aH the control profiles aUj. Then, if the relation 

AUj = SjAU is introduced, these constraints can be specified as 

for j = 1,2, ... , 2Ne-1, Each ~f these constraints might be examined row by row so 

as to apply the constraint reduction procedure depicted in Section 4.2.2.1, leading to 

the incorporation of 2N . 2Nu-1 linear constraints to the LP problem. Such a solution 

might be less computationally intensive than the 2-norm counterpart based on SQP 

presented in this section, at least for a relatively small No, but it is noted that the 

number of constraints would still increase exponentially with Ne. 000 
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5.3 Simulation results 

In this sectíon simulation results for linear and non-linear systems are presented to 

show how the feedback min~max implementation can overcome some of the drawbacks 

of the standard min-max MPC approach. 

5.3.1 Linear example 

First of aH, the standard and feedback implementations of the min-max GPCco are 

comparedfor a linear planto This example lS analogous to that presented in FigA.lO 

of Section 4.4.1. 

Let the true and nominal systems be those used in Section 4.4.1, i.e. 

-1 q-l B O,2358q-l + O,2319q-2 
G(q ):::;;:: --¡r- = 1- 1.4835q-l + 0.9512q-2' 

and 

-1 q-l Bu 0.2973q-l + O.2923q-2 
Go(q ):::: Ao :::: í - 1.7802q-l + 1.3698q-2' 

Thus the true system has two unstable poles, whereas the nominal plant i8 an open­

loop stable lightly damped system. In addition, an additive disturbance of magnitude 

0.05 (eqn.4J 7) is assumed to enter the system at time t ;::: 51. 

In FigA.I0 it is observad that a dead-time appears when the min-max (l-norm) 

QGPCr is used with a particular choice of the tuning knobs. This undesirable be­

haviour can also occur with the min-max 2-norm. In the following experiment, a 

setpoint change from O to 1 at time t :::: 5 samples has been performed. The constraint 

y(t) ~ 1.2 for all t has been enforced, and the tuning knobs of the standard min-max 

GPCco have been chosen as [NUl p] = [5,0.l}, 8-(5) :::: -0.2, 8+(51 = 0.2, .Me :::: 10, 

JL = 0.9. Finally, the uncertainty banda are frozen for four samples after the setpoint 

change. 
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Figure 5.1: Closed-Ioop behaviour of the standard min-max GPUX> 

The outcome of this experiment is shown in Fig.5.1. It is noted that a dead· 

time appears in the output, similarly as occurs with the min-max QGPCf in Fig.4.lO. 

Although the output in the first few samples is slightly greater than zero, it remains far 

from the setpoint and only when the uncertainty bands are updated is the output taken 

closer to the setpoint. This example illustrates that this kind of dead-time responses 

are not a peculiarity of l-norm formulations, but general to the standard min-max 

MPC approach irrespective of which norm is used in the cost function definition. 

The same experiment, performed for the feedback implementation of the min-max 

GPCDO
, yields the inputjoutput responses displayed in Fig.5.2(a), and the uncertainty 

signal of Fig.5.2(b). Note that the improvement, as performance is con cerned , is dra­

matico The additional degrees of freedom available to handle different uncertainty 

realisations are exploited and the five-sample dead-time in the output response of the 

standard min-max MPC method is no longer found. These supplementary degrees of 

freedom revert on quite greater control efforts compared to the standard min-max case. 

The controller does not need to be excessively cautious and the output approaches the 

setpoint much faster than in Fig.5.1 (b), with no risk as constraint handling is concerned, 



Seco 5.3. Simulation results 239 

• i~~"~·--~~--~ 
•. 2 

0.15 

M :, 
o .• 

• I .... 

u 

40 50 60 70 80 90 100 -0.250 10 20 30 40 50 60 70 80 90 100 
Timo (wnples) 11m. (umples) 
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Figure 5.2: Closed-Ioop behaviour of the feedback min-max GPCoo 

since the uncertainty bands are always respected. In addition, it is worth pointing out 

that the uncertainty signal, as a consequence of the greater control efforts, is larger 

for the feedback implementation, but it is always kept within the assumed lower and 

upper bounds. 

As the computational burden is concerned, the whole 100-sample simulation per­

formed with the standard min-max GPCoo takes 58.5150 seconds on a 400 MHz com­

puter, whereas the feedback min-max GPCoo takes 204.9150 seconds. Roughly speak­

ing, the latter implementation involves four times the computational burden of the 

former. Of course, the same interpreted SQP algorithm has been used for both con­

trollers. Note that the benefits as performance is regarded are quite appreciable, but 

the increase in CPU time is not too large. 

5.3.2 Non-linear plant with a saturation 

The next few experiments have been carried out for the non-linear system described 

in Section A.5 of Appendix A. These experiments are closely related to the results 
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presented in Section 4.4.4. 

The nominal model has been chosen, neglecting the saturating amplifier, assuming 

a ZOH on the input, and using a sa.Tflpling time of 0.05 seconds, as (eqn.A.IO) 

G( -1) :=: q-l B = O.2358q-l + 0.2319q-2 . 
q A 1 - lA835q-l + O.9512q-2 

In addition, a constant disturbance of magnitude 3 is added to the true output for 

t 2:: 51 samples. 

As shown in FigA.22, the min-max QGPC~ can lead to an inverse response fo! a 

particular choice oí the tuning settings. This drawback is analogous to the dead-time 

response ohtained in the linear case shown in FigA.10. Again, as illustrated helow, 

this peculiarity is not confined to 1-norm controllers. 

In the next experiment, performed with the standard min-max GPG:>O, a setpoint 

change from O to 55 is scheduled at time t = 5 samples, and the output constraint 

y(t) :5 68 for a11 t is enforced. The tuning knobs are chosen as [NU1 p] = [5,0.1}, 

0- (5) = -15, 0+(5) = 15, Me = 10, p, = 0.9, and the bands are frozen for four samples 

after the setpoint change. 

The outcome of this experiment is displayed in Fig.5.3, where an inverse response, 

similar to that shown in the experiment oí FigA.22, can be observed. Once again, it 

is remarked that~ such an undesirable closed-loop behaviour is not Unked specifically 

to the l-norm cost function definition. This kind of problems are comm011 to a11 the 

standard min-ma.,"{ implementations. 

Now the experiment is performed again with identical settings for the feedback 

implementation of the min-max: controller. The results, shown in F"ig.5.4, evideuce 

thatthe feedback implementation overcomes the standard approach sínce the inverse 

response behaviour is completely suppressed. 



Seco 5.3. Simulation results 

.zo 
-40 • lO 2G 3. .. 50 !lO ro •• .. 

Control$lgnel 

•• 
!lO 

'lO 

•• 
..... 
.... • l' •• 3D •• 5. !lO 1 • 8. • • Time (&amplea) 

(a) Inputjoutput responses for the stan­
dard min-max GPCoo (solid) and output 
constraint (dotted) 

••• 

100 

•• 

..... 

.... • ,. 'O 30 '0 .. $O 10 8. •• 'Tlmlll(tample,' 

(b) Global uncertainty (solid) and uncer~ 
tainty bounds (dotted) 

Figure 5.3: Closed-Ioop behaviour of the standard min-max GPG:lO 
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Similarly as for the linear example presented in the previous section, the additional 

degrees of freedom bestowed to the controner allow for greater control efforts and the 

output is led to the setpoint much faster than for the standard approach. Note, also, 

that the larger control moves also involve a larger uncertainty signal, which breaks 

the lower uncertainty bound shortly after the setpoint change. However, since the 

output is still far from the setpoint (and the constraint), thís violation, which reverts 

on the enlargement of the uncertainty bands, do es not involve any difliculty with the 

accomplishment of the output constraint. 

The CPU time required by the 100-sample simulation for the feedback version of 

the min-max GPCoo is 388.8890 seconds on a 400 MHz computer, compared to the 

173.8700 seconds required by the standard implementation. Surprisingly enough, the 

feedback implementation involves less than 2.25 times the computational burden of 

the classical min-max MPC controller. In such a case, the feedback min-max controller 

could be taken as a convenient alternative sínce the relatively small difference as CPU 

time is regarded leads to quite an improved performance. 
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Figure 5.4: Closed-Ioop behaviour of the feedback min-max GPCoo 

Tlle advantages of the feedback implementation of min-max MPC are clearly high­

lightcd with both tho linear and the non-linear examples. 

5.4 Conclusions 

In this chapter, one of the most recent deveIopments related to min-max MPC, namely 

the inc1usion of the notion that feedback is present in the receding-horizon implemen­

tation of the controUer, is presented. The results of Scokaert and Mayne (1998) have 

been extended to tlle min-max (2-norm) controlIers presented in Chapter 4 in order to 

lessen some of the drawbacks related to the standard min-max implementations. 

The feedback min-max controIlers are formulated in such a way that different control 

profiles are considered for different uncertainty realisations (vertices). Noting that, 

in the future sampling instants, new measurements of the uncertainty signa} will be 

available, it is not necessary to handIe all the possibilities with a single hypothesised 

control move vector. This idea is combined with a causality constraint to ensure that 
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the next control move used to update the control signal is completely determined by 

the current internal process state, and thus does not depend on future (unavailable) 

data. Making use of these two concepts, it is possible to establish a near one-to­

one correspondence between the degrees of freedom available for optimisation and the 

number of uncertainty realisations, a property which is not shared by the standard 

min-max approach, for which the difference between the degrees of freedom of the 

controller and the uncertainty realisations increases dramaticaIly with the control and 

prediction horizons. 

The optimisation problem can be solved using standard non-linear programming 

tooIs, such as SQP. It is also highlighted that an LP solution for the analogous 1-

norm problem is possible, but the number of constraints depends on 2No 1 and thus 

the computational advantages of the feedback implementation are not as remarkable 

as for the standard min-max QGPCi. In addition, the 2-norm GPGX> guarantees the 

stability of the nominal c1osed-Ioop system, and hence the feedback min-max GPCoo 

seems favoured with respect to the QGPCi counterpart. 

Simulation results are presented for both linear and non-linear systems, and it 

is shown that the feedback implementation overcomes the standard counterpart as 

performance is concerned. The additional degrees of freedom are used by the feedback 

min-max methods to avoid some of the problems related to the standard min-max 

controllers, such as unexpected inverse responses or dead-times which can occur in the 

constrained case. 
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Chapter 6 

Conclusions and future research 

6.1 Conclusions 

MPC has become a mature control strategy from both the industrial and the academical 

points of view. The simplicity of the ideas behind MPC, together with the ability of 

these methods to tackle difficult control problems, such as complex dynamics, MIMO 

systems, constrained systems, etc., are the two main reasons for such a remarkable 

success. 

Since the first few predictive controllers were suggested in the late 1970's, a great 

deal of different MPC controllaws have emerged. Among these, the GPC controller 

of (Clarke et al., 1987) gained the early recognition of the scientific and the industrial 

communities. Promptly after the suggestion of the GPC, the problems of stability and 

robustness were addressed. 

Throughout this PhD research, the problems of stability, robustness and constraint 

handling for GPC-like controllers have been investigated in a combined manner. 

In this thesis, the main stability results for MPC controllers based on inputjoutput 

models are reviewed. Stability proofs for both the CRHPC and the infinite horizon 

GPC (GPCCO
) are given. These results, based on the monotonicity of the optimal 

245 
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cost functíon scqucncc, provide with an intuitive insight to the stability issue. Other 

stabilising approaches, such as thc SGPC or the SIORHC, are not explicitly reviewed 

since these are proved to be theoreticalIy equivalent to the CRHPC (under ideal con­

ditions), although the SGPC enjoys better numerical properties. In addition, 1-norm 

counterparts of the classical 2-norm formulations have been obtained. Therefore, the 

1-norm GPC (GPCd, l-norm CRHPC (CRHPCd and 1-norm GPGX> (GPCr') are 

formulated. These l-norm MPC schemes can be implemented using very efficient stan­

dard LP routines. The stability proofs provided for the 2-norm case are extended for 

the 1-norrn counterparts using the same monotonicity argumento Simulation results 

are provided to illustrate that stability is achieved and that a non-increasing sequence 

of optirnal cost function values results. 

Moreover, it is noted that the GPCr' controllaw requires the implementation of 

an iterative procedure until sorne convergence condition is satisfied. This iterative al­

gorithm involves the solution of two LP problems at each iteration, and the associated 

computational burden can become excessively large. A less computationally intensive 

controller, the Quasi-infinite horizon l-norm GPC (QGPCr'), is thus suggested. This 

method, which minimises an upper bound of the truly infinite horizon costing prob­

lem, can be implemented using a single LP problem, and thus the iterative algorithm 

required by the GPCr' can be avoided. In addition, a convergence property from the 

QGPCr' to the GPCr' is conjectured and illustrated by means of examples. 

The usefulness of l-norm GPC-like controllers is the formulation of efficient robust 

constrained MPC methods based on min-max optimisation. Prior to undertake such 

a task, a robustness analysis of unconstrained GPC-like controllers is provided. This 

analysis is based on the LTI formulation of unconstrained 2-norm methods, which 

can be obtained following the procedure presented in (Bitmead et al., 1990). These 

formulae make it possible to apply classical robust control results, such as the small gain 

theorem, which yields stability conditions for different uncertainty representations. In 
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this PhD thesis, the extension of this approach to the infinite horizon case is provided. 

Several stabilising approaches, namely the CRHPC, the GPCoo and a softened ver­

sion of the CRHPC, are compared in terms of nominal performance and robustness. It is 

noted that the infinite horizon approach provides with smooth input/output responses 

and convenient robustness margins for typical choices of the tuning knobs, whereas 

the CRHPC often leads to deadbeat-Iike dosed-Ioop behaviour with poor robustness 

bounds. The dassical approach to enhance robustness, via the heuristic T-design and 

the systematic Q-parametrisation methods, for LTI uncertainty are reviewed. In addi­

tion, a new robustness-enhancing method based on choosing the observer polynomial T 

by means of optimisation instead ofheuristic rules, termed T-optimisation, is suggested. 

This new method is shown to overcome the classical T-design and Q-parametrisation 

approaches for a particular example. 

The robustness of constrained MPC control laws is then addressed. The global 

uncertainty approach has been taken, since this kind of description can be used to de­

scribe all kinds of uncertainties, namely linear, non-linear, time invariant, time varying, 

stable, unstable, parametric, non-parametric, modelling errors, disturbances and so on. 

A global uncertainty is an unknown bounded signal which, added to the model output, 

yields the true system output. The min-max optimisation problem is defined as the 

computation of the control profile which mini mises the maximum of a cost functíon 

as the future uncertainty ranges within the assumed lower and upper bounds in the 

future. Solutions for both the l-norm and the 2-norm cases are provided. Accordíng 

to the results of the robustness analysis in the unconstrained case, the (quasi) infinite 

horizon approach is preferred, and thus the min-max (2-norm) GPCoo and the min­

max min-max (l-norm) QGPCr' are formulated. The computational advantages of 

the latter with respect to the former, since the optimisation problem can be efficiently 

solved wíth LP tools in the l-norm case, are remarked. 
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An algorithm to update the uncertainty bands on-Hne is suggested. This procedure 

starts with conservative settings of the lower and upper bounds, but these are replaced 

by more appropriate values when new uneertainty measurements become available. 

This band updating algorithm can be adjusted using a few parameters for which tuning 

guidelines are provided and tested. Simulation results, obtained with these controllers 

for different sourees of uncertainty (linear, non-linear, time invariant, disturbanees, 

etc.), illustrate the behaviour of these new methods whieh often overeome the elassieal 

MPC eontrollers, especially in the constrained case. A robustness analysis performed 

using Monte Carlo simulation is provided, and it is shown that the min-max: QGPCr 

suceessfully handles quite diffieult control problems. The min-max: approach manages 

to satisfy constraint specifications where the classical T-based methods fail. 

Nevertheless, a few limitations of the standard min-max eontrollers are illustrated: 

unexpeeted dead-times or inverse responses can occur in the eonstrained case. The 

problems with the standard min-max: approach can even inelude instability and in­

feasibility. Sorne of these drawbacks stem from the use of a single control profile to 

handle a large number of uneertainty sequences (or polytope vertices). The notion that 

feedback is present in the receding-horizon implementation of the eontroller can be ex­

ploited to allow for different control profiles to handle different uncertainty sequences. 

This idea, combined with a so-ealled "causality eonstraint" to avoid a multiplicity 

of choices for the next control move, gives rise to feedback implementations of the 

min-max: controllers. Examples of the feedback min-max: GPG'" are provided to show 

that this approaeh overcomes sorne of the drawbacks of the standard min-max MPC 

controllers at the price of a somewhat larger computational burden. 
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6.2 Possible directions for future research 

The results obtained throughout this PhD research provide with some tools to tackle 

control problems of constrained uncertain systems. It has been shown that min-max 

MPC methods based on the global uncertainty approach can successfully handle diffi­

cult control problems and satisfy constraints in the presence of uncertainty with very 

low computational requirements. There are, however, severa! directions to further this 

research: 

1. To begin with, robust stability conditions for the min-max controllers formulated 

in this thesis might be investigated. Although no stability problems should be 

expected whenever the uncertainty signal is kept within the assumed lower and 

upper bounds, such a signal might become unbounded and thus lead to instability 

despite the use of the band updating algorithm. 

2. The band updating algorithm can be further refined, and more sophisticate self­

tuning methods might be obtained. 

3. In addition, the possibility of combining the global uncertainty approach with 

other descriptions, such as multi-model formulations, can provide with a method­

ology to tackle a difficult control problem using a two-step design: firstly a set of 

locally linearised models can be obtain at different operating points and, secondly, 

the global uncertainty approach could be applied about each of those models to 

allow for some (small) discrepancies. The combined advantages of these two de­

scriptions might provide with an improved robust performance, and no difficulty 

should arise to satisfy constraint specifications. 

4. New optimisation techniques might also be used to cut down the number of 

computations, especially for the min-max 2-norm controllers. 
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5. The MIMO formulation of the min-max methods depicted throughout this thesis 

requires sorne small adjustments, which can be easny addressed. 

6. Finally, industrial trials performed with the suggested min-max methods can be 

earried out to assess the benefits of these controllers and to foeus on practical 

implementation issues. 

These are only a handful of the ideas to further this research but, undoubtedly, 

many other features concerning the robustness of constrained MPC will capture the 

attention of the control community in a near future. 



Appendix A 

Benchmark systems 

A.l Linear unstable nearly undetectable plant 

One of the benchmark models used to analyse the properties of different controllers 

is the "Unstable GPO Example" provided by Bitrnead et al. (1990). The system is 

described by the transfer function 

(A.1) 

which is an non-minimum phase open-loop unstable systern with both poles at 2. In 

addition, there is a near pole-zero cancellation, what implies that the systern is alrnost 

undetectable. This benchrnark systern has been shown to raise objection to the classical 

GPO, since it is quite difficult to tune the GPO in order to obtain closed-loop stability 

for this process. 

A.2 Linear stable plant with gain uncertainty 

Sorne of the experirnents which are carried out in this thesis consider a benchrnark 

rnodel consisting of a transfer function with the following structure: 

Go(s) = No(s) = K (1 + tl
K

) W5Wl (cjJ - s)(s + W2) . 
Do(s) cjJW2 (S2 + 2(wos + w5)(s + Wl) 

251 
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Where L::.K E [-0.5,0.5} is a multiplicative uncertainty in the gain which may vary due 

to disturbances, changes in the process, etc. In the undisturbed case L::.K = O. The 

other parameters are given in Table A.lo 

I K I Wo I ( I Wl 1 4> I W2 I 

I -0.5 110 I 0.3 I 5 I 5 I 20 I 

Table A.1: Parameters of the linear benchmark model of eqn.A.2 

With the parameters of Table A.1, Go(s) becomes 

G ( ) 
- No(s) _ (1 A) 2.5s2 + 37.5s - 250 

o s - -- - +UK , 
Do (s) S3 + 1182 + 130s + 500 

(A.2) 

which is a non-minimum phase, open-Ioop stable underdamped system with (negative) 

gain -0.5 (1 + L::.K), three poles and two zeroes. The poles are located at -3 ± 9.5394) 

and -5, and the zeroes at -20 and 5. 
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Figure A.l: Pole-zero location of the discrete benchmark system and the identified 
model 

A sampling time of Te = 0.025 S (in such a way that the Nyquist frequency is 

greater than 100 radjs) and a Zero-Order Hold (ZOH) on the input have been chosen 
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to obtain the discrete-time model 

G ( -1) ::::: q-l BO(q-l) ::::: (1 ~) q-l(0.0639 - O.l1lOq-l + 0.0437q-2) 
o q AO(q-l) + K 1- 2.6855q-l + 2.4518q-2 - 0.7596q-3· 

(A.3) 

The pole and zero locations of this discrete-time system are shown in Fig.A.1(a). A 

cross is used for the poles, at 0.9015 0.2192) and 0.6028, whereas the zeroes, at 0.8825 

and 1.1336, are displayed with circle. Needless to say, the gain is the same as for the 

continuous system, namely -0.5 (1 + ~K). 
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Figure A.2: Comparison of the true system and model responses 

In order to introduce modelling errors in the experiments, a second-order model 

has been identified for the system of eqn.A.2 with ~K ::::: O. This model has been found 

using the system identification procedure described by Whitfield (1986), which works 

with data taken from the frequency domain, that is, the true frequency response is 

measured at several points and then curve-fit optimisation is made using these data. 

For this example, ten frequencies have been chosen within the interval [1, 100] radjs, 

which roughly includes one decade before and one decade after the system's bandwidth 

frequency, which is at about 15 radjs. The transfer function attained in this fashion is 

N(s) 5.0182s - 23.4458 
G(s) = D(s) = 82 + 6.81988 + 58.4235' 
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with a zero at 4.5899, two poles at -3.4099±6.8408) and a steady-state gain of -0.4013. 

With a sampling time of Ts = 0.025 s and aZOR on the input, a discrete model can 

be obtained as 

(A.4) 

the poles of which are located at 0.9049 ± 0.1563) and the zero at 1.1223, as shown in 

Fig.A.1(b). As analysed in (Megías, 1996) this is, among the models obtained trying 

several time and frequency domain identification methods, the best second-order model 

of the "true" system of eqn.A.3 in terms of frequency response fit. 

(a) Magnitude ofthe modelling errors for 
.D.K E [-0.5,0.5] (solid), and upper bound 
("*") 

lO' 

Magnlluda 01 themndelllng erronI 

~o ---~------------
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4'O'-::-4--~,O";--~~'O":;--' ---.....'0·;----"0' 
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(b) Magnitude of the modelling errors for 
.D.K == O (solid), .D.K == -0.5 (dashed) and 
.D.K == 0.5 (dotted) 

Figure A.3: Additive system uncertainty 

Fig.A.2 compares the step (a) and frequency (b) responses of the true system 

(eqn.A.3 with D..K = O) and the identified model (eqn.A.4). It is observed that there is 

a sman error in the gain, and that the magnitude of the frequency responses diverge 

at high frequencies. It must be taken into account that the frequency responses are 

influenced by the ZOR which is assumed in the inputs. In addition, notice that the 

frequency response for both gain and phase are plotted against normalised and not 

true frequencies. The normalised frequency Wn is defined as Wn = Tsw, where w is the 
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true frequency and Ts is the sampling time. Hence, the normalised Nyquist frequency 

is always 'Tí rad/s. 

Finally, Fig.A.3 displays the magnitude of the modelling errors (additive system 

uncertainty) from Go ( q-l) to G (q-l ): 

IG ( -1) _ G( -1)1 = I Bo(q-1)A(q-1) - B(q-l)Ao(q-l) I 
o q q q=eJwn AO(q-l)A(q-l) q==eJwn 

In Fig.A.3(a) the modelling errors are shown for several values of D..K E [-0.5,0.5], 

and the maximum (upper bound) is emphasised by means of "*,, signs. In Fig.A.3(b) 

the modelling errors are shown for D..K = O, which is the best case of system uncertainty, 

for D..K = 0.5, which is the worst case at low frequencies and shows the highest peak, 

and for D..K = -0.5, which is the worst case at high frequencies. The modelling errors 

for D..K = O (used to identify the model) are remarkably small, since the magnitude 

curve is always below the -10 dB lineo It is worth pointing out that, in any case, the 

modelling errors are maximal near the resonance frequency (about 2 . 10-1 rad/s of 

normalised frequency) of the true and identified systems. 

A.3 Gain and zero uncertainty 

In this section, a second order system with gain and zero uncertainty is presented. Let 

the true plant be described as the second-order system 

-1 0.25 q-1(1_ </Jq-1) 
Go(q ) = K (1 _ </J) 1 - 1.4q-l + 0.65q-2' (A.5) 

where the gain 0.5 ~ K ~ 1.5 and the zero 004 < <P ~ 0.6 are uncertain pa­

rameters. The plant family which results of this definition is thus given by 9 -

{Go : K E [0.5,1.5), </J E [OA,0.6)}. 

Some robust MPC formulations require that uncertainty is described as a polytope 

of linear plants such that any possible true plant can be expressed as a linear com-
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bination of the polytope vertices. In the transfer function context, this is possible if 

all the uncertain parameters affect the numerator onIy. Notice that theplant defini~ 

tion provided above does not satisfy this condition, since the denominator possesses 

the uncertain factor (1 -1». This difficulty can be overcome by using the following 

alternative plant definition: 

....., -1 _ -. q-l(l - <jJq-l) 
Go(q ) - K 1- 1.4q-l + 0.65q-2' 

where R and 1> are uncertain parameters. The relation between the steady-state gain 

"" K and the parameter K 18 provided by 

-. K 
K = 0.25--",. 

. 1-'f' 

Now the ranges 0.5 < K < 1.5 and 0.4 < <jJ < 0.6 can be used to determine a range for 
'" ........... 
K. The mínimum vaIue of K occurs for K = 0.25·0.5/(1- DA) = 0.2083 whereas the 

maximum lS fOllnd at R = 0.25·1.5/(1- 0.6) = 0.9375. Now an extended plant family 

9 can be defined as 9 = {Oo : R E [0.2083,0.9375], <jJ E [OA,0.6]}. Note that 9 e g, 
i. e. 9 ineludes some sorne plants which are not in g, but aH the plants in 9 are a180 in 

g. 
..... -.. 

Any true plant Go E 9, and thus any true plant Go E g e 9, can be obtained as a 

linear combination of the following four systems (vertices): 

i. e. given G;x E 9 then 

with Al + A2 + As A4 = 1 and Aí > O for i = 1,2,3,4. It can be noted that the 

steady-state gain of G2 and Gs are 0.3333 and 2.25 respectively, both of them outside 

the interval [0.5, 1.5J defined for K. 
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Now the coefficients ,,\ can be easily obtained from K and </; as 

Al = (1.2857 - 1.3714K)(3 - 51», 

A3 = (-0.2857 + 1.3714K)(3 - 51», 

A2 = (1.2857 -1.3714K)(-2 + 51», 

A4 = (-0.2857 + 1.3714K)( -2 + 5</;), 
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and it can be checked that Al + A2 + A3 + A4 == 1 and Ai O for K E [0.2083,0.9375] and 

</; E [OA, 0.6]. The plant famny 9 can be described as the convex hull of the systems 

01, O2 , 0 3 and 0 4, denoted by 9 = CO{0¡,02,03,04}. 

As an example, the system 

o ( -1) = 0.5000q-l - 0.2500q-2 
m q 1 - l.4q-l + 0.65q-2 ' (A.6) 

obtained for K = 1 and 1> = 0.5, can be written as 

o ( -1) = 0.5 q-l(l- 0.5000q-l) 
m q 1 - 1.4q-l + 0.65q-2' 

i.e. K = 0.5 and 1> = 0.5, which yields the coefficients Al = 0.3, A2 = 0.3, A3 = 0.2, 

A.4 Gain, zero and pole uncertainty 

Similarly as done in the previous section; let a true plant be described as the second­

order system 

(A.7) 

where the gain K = (l+AK)Kml the zero 1> = (l+A4>}</;m and the pole TJ = (l+A1/)TJm 

are uncertain parameters such that Km = 1, 1>m = 0.6, TJm = 0.6261 + 0.3130) and 

IAKI 0.2, 

IA¡p1 :::; 0.1, 

IAr¡1 :::; 0.1, 
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i. e. there is a 20% maximum variation of the steady-state gain with respect to the 

central value (Km = 1), and a 10% variation of the pole and the zero with resped to 

r¡m = 0.6261 + 0.3130) and <Pm = 0.6 respectively. 

Now the nominal system can be defined as the one for which each parameter (gain, 

zero and pole) occurs at the central vaIue, i. e. 

-1 0.5944q-l - 0.3567q-2 
G(q ) = 1 _ 1.2522q-l + OA900q-2' (A.S) 

Multiplicative uncertalnty 

Figure AA: Multiplicative uncertainty (solid) and upper uncertainty bound ("*") 

Fig.AA displays the magnitude of the modelling errors (multiplicative system un­

certainty) from GO(q-l) to G(q-l): 

I 
GO(q-l) - G(q-l) I = I BO(q-l)A(q-l) - B(q-l)Ao(q-l) I 

G(q-l) q=eJ"''' AO(q-l)B(q-l) q=eJW" ' 

and the maximum (upper bound) is highlighted using "*,, signs. 
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Figure A.5: Non-linear benchrnark plant 

Non-linear system with a saturation 
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Sorne of the control algorithms depicted in this thesis have been tested on the non-linear 

system of Fig.A.5 (Naslin, 1962; Thaler and Pastel, 1962), which can be described by 

the equations: 

x = min {max { - 2, u - y} , 2} , 

ii+1i = 200x. 

The difficulty to control this systern is caused by the saturating amplifier which appears 

inside the inner feedback loop. Saturators are a kind of hard non-linearity which 

commonly appear in real systems. A linear model of the system can be obtained, 

neglecting the saturation, as 

G(8) _ 200 
- 8 + 82 + 200' 

(A.9) 

with poles at -0.5 ± 14.1333) and unit steady-state gain. As a consequence of the pole 

location, the open-Ioop response of this linear systern is very lightly damped. 

The different behaviour patterns provided by the true system of Fig.A.5 and the 

linear model of eqn.A.9 depend on the amplitud e of the input signal. In Fig.A.6 the 

step responses of the non-linear system of Fig.A.5 and the linear model of eqn.A.9 for 

steps of amplitude 5 (a) and 15 (b) on the input are compared. The step change in the 

input occurs at t = 0.1 s. It can be observed that the higher the input amplitude is, the 

more different the step responses are. In fact, for input amplitudes lower than 3, the 

step responses are almost identical. Of course, this is due to the saturating amplifier, 

which is the only difference between the linear ant the non-linear models. 
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Figure A.6: Step responses of the non-linear system and the linear model for different 
input amplitudes 

In Fig.A.7 the frequency responses of the non-linear and the linear systems are 

compared. The frequency response in the non-linear case has been measured using 

the algorithm described by Wellstead and Zarrop (1991), feeding the system with sine 

waves of different amplitudes at the input. Of course, the frequency response of the 

linear system is independent of the input amplitude, but the behaviour of the non-linear 

system is quite different in this aspecto Similarly as happens with the step responses, 

the higher the input amplitude is, the more distant the frequency responses become. 

In fact, for low amplitudes (0.25 or less) the frequency responses of both systems are 

identical, since the saturation has no effect in that case. It is worth remarking that 

the resonance frequency of the non-linear system decreases as the input amplitude 

increases, what can be easily observed by comparing Fig.A.7(a) and (b). 

With a ZOH on the input and a sampling time ofTa = 0.05 s, which has been chosen 

such that each period of the open-Ioop step response is sampled about 20 times, the 
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(a) Frequency responses of the non­
linear system (solid) and the linear model 
(dashed). Amplitude of the input signal 
=1 

(h) Frequency responses of the non­
linear system (solid) and the linear model 
(dashed). Amplitude of the input signal 
= 10 
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Figure A.7: Frequency responses of the non-linear system and the linear model for 
different input amplitudes 

linear model of eqn.A.9 turns out to be the discrete-time transfer function 

-1 q-lB(q-l) 0.2358q-l + 0.23l9q-2 
G(q ) = A(q-l) = l-1.4835q-l + 0.95l2q-2' (A. lO) 

the poles of which are located at 0.7 4l8±0.6333] and the zero at -0.9832. The modulus 

of the poles is 0.9753, very near the unit circle. 
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