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Chapter 4

Robust constrained RHPC using
min-max optimisation

4.1 Introduction

As deeply analysed in the previous chapter, the first few robustness in the MPC frame-
work results were obtained for unconstrained, linear predictive controllers in the SISO
case. In that situation, an LTI form of these controllers exists, what makes it possible
to apply classical robustness analysis and design tools, such as the small gain theorem.
However, these early results have serious limitations. To begin with, the assumption
that the true plant is an LTI system does not allow non-linear and/or time-varying
uncertainty. Hence the results presented above are valid only if non-linearities are mild
and time variations are “slow” compared to the true system dynamics. In addition, as
highlighted above, one of the most celebrated properties of MPC is cohs’craint handling,
and thus it is required that the robustness results be extended to the constrained case.
The main aim of this chapter is to develop RHPC controllers to handle these two very

significant problems.

To cope with non-linearities and/or time variability, stabilising approaches have

been obtained in the non-linear MPC family (Mayne and Michalska, 1990; Michal-
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132 Robust constrained RHPC using min-max optimisation

ska and Mayne, 1993; Chen and Allgéwer, 1998b), and an extensive review of these
methods can be found in (Chen and Allgéwer, 1998a). However, non-linear model pre-
dictive schemes involve an enormous computational burden to compute a single control ‘
move. This makes them impractical in many real control situations, especially if fast
dynamics occur. As technology provides faster and faster computers, non-linear MPC
applications will become more common, and it is likely that they completely replace
linear model-based schemes wherever non-linearities cannot be neglected. However,
the current technology and numerical algorithms do not allow for a widespread use
of these new methods yet, and linear MPC are still the most suitable tool to handle
many typical situations. In short, although very detailed non-linear models of the sys-
tem are often available, it is usually required to resort to linear MPC controllers for
computational reasons. This alternative requires the incorporation of some uncertainty

description within the system model to be used by the control system.

In addition, it is worth pointing out that the RS conditions established in the
previous chapter are restricted to the unconstrained case. This is indeed a serious
limitation since, as already remarked, constraint handling is one of the most appealing
properties of pre&i{:i:ive. controllers. Newer results are available taking into account the
problem of robustness in the constrained case and a few relevant ones are highlighted

below.

In {Allwright and Papavasiliou, 1991; ?apavasiﬁ%m and Allwright, 1991; Allwright
and Papavasilion, 1992; Allwright, 1994) robust min-max methods based on Finite
Impulse Response (FIR) models are presented. Such a min-max problem consists of
obtaining the control schedule which minimises the maximum of a cost function as the
impulse response of the system ranges over a polytope of possible impulse responses.
A very efficient solution to this problem based on linear programming is provided
in (Allwright, 1994). This solution can handle both time invariant and time varying

uncertainty, and guarantees the accomplishment of constraints as far as the true impulse
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response coefficients occur within the polytope. This method, though computationally
efficient, have some inconveniences, the most relevant of which is that FIR models
can only be used to represent {approximately) stable plants, a limitation which also
affects the DMC controller of Cutler and Ramaker (1980). In addition, many impulse
response coefficients (30-50 or even more) are often required to describe the dynamics
of stable plants. The alternative min-max MPC solutions introduced below overcome

this limitation.

Polytopic linear model descriptions of plant uncertainty, combined with Linear
Matriz Inequalities (LMI) eptimisatisn,k are used in (Kothare et al., 1996) to design
robust min-max controllers which satisfy input, output and state constraint specifica-
tions. This control scheme computes each control move minimising the worst case cost
function over the convex hull of a polytope of linear models, G = Co {G1,Gs,..., G},
subject to a set constraints. The true (unknown) model is assumed to be a linear

combination of the polytope vertices:

L
Go=> MG
fz]
. L B
where \; > O for1 <i< L and EAi = 1. Henceforth, this solution is referred to
i=0
as the multi-model approach. If the G; are taken to be linear state-space models, and
if Gy (possibly time-varying) is assumed to lie in G, this approach can even handle
(possibly in an overly conservative way) non-linear systems for which the Jacobian is

known to lie in the polytope. The control optimisation problem can be formulated as
opt - 4
AuP(t) = arg min max J(t),

where Au is a vector of control moves' and J(t) is the cost (or objective) function. To
account for non-linearities and/or time variability, the worst case must be evaluated

letting the plant vary within the polytope at each sampling instant in the future.

n the formulation of {Kothare et al., 1996), the control actions (u) replace the control moves
(Au), but the formulae involved are similar.
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Addressed in that fashion, the min-max problem usually becomes intractable, but an
efficient upper bound solution for state-space models using LMI optimisation is depicted

in (Kothare et -al., 1996).

The methods of Kothare et al. (1996) have a few limitations. To begin with, if a con-
stant setpoint tracking problem is considered, the results apply only to uncertain linear
time-invariant systems (and thus are not valid for non-linear systems). In addition, this
methods are formulated for state-space descriptions of the model and state feedback.
It is a difficult task to apply this approach in controllers which use input/output mod-
els, since “pole” uncertainty cannot be expressed. On the other hand, “delay”, “gain”
and "zero” uncertainties can be handled without much difficulty. When the (integer)
dead-time can vary, it is enough to include all the possible delay values in the models
(vertices) of the polytope. In Section A.3 of Appendix A the use of this representation
when gain and zero uncertainties occur is presented. In addition, as shown in Section
A.3, the plant family must often be extended to allow this description, leading to overly
conservative results since systems which are not included in the initial delay/gain/zero
uncertainty specifications must be taken into account. Moreover, this parametrisation
cannot be used when uncertainty affects the system’s poles, which are, indeed, the
most significant parameters of transfer function models as the open-loop dynamics are

concerned.

Furthermore, several kinds of strong non-linearities, such as saturation, hysteresis,
relay or dead-zone, can occur in a plant. In such a case, a polytope of linear mod-
els, as the ones used in (Kothare et al., 1996), does not provide with an appropriate
description, because a linearisation can be hard (or impossible) to obtain since the non-
linear functions involved in the “true” system equations are not differentiable. Another
remarkable issue is the influence of disturbances. Unmeasurable perturbations often
occur in such a way that they are not included within the polytopic description, lead-

ing to inaccurate predictions and, possibly, to constraint violations. Obviously, this
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potential hazard must be handled somehow. As a solution, constraints which are more
stringent than necessary might be used, but this possibility can give rise to negative
economical implications since the optimal operating point is nearly always close to (or
on) the constraint boundary. For example, a chemical may need be produced with
at least a 97% purity. Then, from an economical point of view, the most convenient
setpoint would be to produce exactly at 97% purity. However, if the actual purity

achieved by the process is of (say) only 96.5%, the chemical may have to be rejected,

with the subsequent serious economical loss.

A global uncertainty description can be the solution of many practical control prob-
lems. Min-mﬂx algorithms, either for state-space (Scokaert and Mayne, 1998) or trans-
fer function (Camacho and Bordéns, 1995) models, can be developed using this for-
‘mulation, and it is even possible to write them as an efficiently solvable LP problem
(Camacho and Bordéns, 1995) if 1-norm cost functions are used. A global uncertainty -
is an unknown (bounded) signal #(t) which, added to the model, produces the true
plant. This very simple concept is general enough to range over linear and non-linear,
time varying and time invariant, stable and unstable uncertainty, which can affect the
poles, the zeroes, the gain, the delay, or whatever parameter of the model. In addition,
it perfectly describes (unmeasurable) disturbances. However, a global uncertainty pa-
rameter can involve some degree of conservativeness, since situations which are worse
than those described by the specifications are often taken into account. A band up-
dating procedure is presented in this chapter to “adapt” the min-max algorithm to
the current uncertainty values. This procedure is intended to reduce this cautious-
ness, since the initial conservative settings of the uncertainty bands can be replaced,

according to the uncertainty measurements, by tighter values.

The scope of this chapter is to formulate and test predictive control schemes based
on a global uncertainty description, and to compare them to other robustness enhanc-

ing tools. The methods introduced below are requested to provide nominal stability,
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and thus the basis of the controllers developed below are the controllers presented
in Chapter 2 which guarantee the stability of the nominal closed-loop system, or are
“very unlikely” to provide an unstable closed-loop system, such as the QGPC{°. An-
other requirement is to preserve stability in the presence of global uncertainty (as
far as the uncertainty signal does not becomes unbounded). Last, but not least, the
min-max controllers formulated below are requested to satisfy the constraints in spite
of uncertainty. In the forthcoming sections, unless otherwise explicitly specified, the
“min-max” prefix is used for methods based on the global uncertainty approach and

not on the polytopic multi-model linear plant description.

This chapter is organised as follows. In Section 4.2, the global uncertainty descrip-
tion is introduced, and input/output models which incorporate this kind of uncertainty
are provided. The solution of the min-max optimisation problem is tackled from both
analytical and numerical points of view. In Section 4.3, the QGPCS{° presented in
Chapter 2 is converted to a min-max formulation. This min-max controller can be im-
plemented as a LP problem with ezactly the same number of constraints as its precursor
(QGPCY°), despite the min-max formulation. Section 4.4 presents a set of simulation
results performed on linear and non-linear plants, and compares the effectiveness and
efficiency of the newly formulated min-max controllers against various control strate-
gies. Section 4.5 provides an analysis of the robustness of min-max MPC and the
classical T-based controllers based on the statistical learning theory and Monte Carlo
simulation. Finally, Section 4.6 finishes the chapter summarising the most significant

concluding remarks.

The formulae prdvided in the sequel are written for the SISO case only for sim-
plicity of notation, but all of them can be readily extended to the MIMO case in a

straightforward manner.
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4.2 Global uncertainty and min-max optimisation

As defined in (Camacho and Bordéns, 1995), a global uncertainty is an unknown (but
bounded) signal 6(¢) which adds up to the model output to produce the true system
output. Thus, all sources of uncertainty are collected into the single parameter 6(t).
‘In this very simple fashion, all kinds of uncertainties, namely linear or non-linear, time
invariant or time varying, modelling errors and non-measurable disturbances, can be

represented.

In the input/output domain, the global uncertainty #(¢) can be incorporated into

a Controlled Auto-Regressive Moving Average (CARMA) model as follows:
A(g™y(®) = B(a™Hult — 1) +0(2), (4.1)

where A and B are known polynomials in the backward shift operator (defined in
eqn.2.2) and 6(¢) is the global uncertainty signal, which is assumed to be bounded by

6~ and 6: 6~ < 6(t) < 8%, henceforth referred to uncertainty bounds/bands/limits.

The description of eqn.4.1 can be used if (bounded) step-like disturbances affect
the output, but the occasional drift produced by disturbances cannot be handled by
this formulation. To account for drift disturbances, the global uncertainty signal can

be integrated, resulting in the CARIMA model

Al = Bl (e - 1)+ 2. (42)

In the sequel the CARMA model of eqn.4.1 is used, since the methods to be introduced
consider (asymptotically) constant disturbances. Similar algorithms can be easily de-

veloped for drift disturbances using the model provided in eqn.4.2.

Unfortunately, the polynomial T, which can be used to improve the tune the cau-
tiousness/performance trade-off of GPC-like predictive controllers, as shown in Chapter

3, is dropped in this formulation. The robustness features of min-max controllers must
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then rely on the optimisation procedure, which should provide with some tuning knobs

to recover some of the degrees of freedom which are associated to T'.

4.2.1 Output predictions

For the system of eqn.4.1, output predictions y(¢ + j|t) can be computed as

y(t +j,t) = al@(t +7 - 1tt) T (Emﬁ(t*}'j - na!t)
+byu{t+ 5 — 1) + -+ by, u(t + 7 — nelt) (4.3)

O+ 1) + O+ 5 — 1[8) + -+ + hya8(E + 1[8),

where §(t + j|t) are predictions performed taking all the future global uncertainties to
be zero, i.e. (t+j|t) = 0 for all j > 0, and h; denotes the j* coefficient of the impulse
response of the system 1/A. Note that, with these deﬁhitisns, Gt + k|t) = y(t + k|t)
for all £ < 0, since these are past output values which are not affected by the future

uncertainties.

Now, the output predictions can be written as

Yyt +jlt) = FE+51t) + grAult + 7 — 1]) + g2Ault + j — 2|t) + g;Au(t|t)

+ 00t + jlt) + Ot + 5 = t) + -+ by 0(t + 1]8), (4.4)

where f(t-+7|t) are free response predictions which are computed taking both the future
control moves and the future global uncertainty predictions to be zero, i.e. Au(t+klt) =
0 and 6(t + k|t) = 0 for all £ > 0. Since the output predictions are an affine function
of the global uncertainty values, the extreme (maximum and minimum) predictions of
y(t + j|t) occur for extreme values of 8(t + k|t), i.e. O(t + k|t) = 6+ or (¢ + kjt) =6~

foralll <k <j.
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© 4.2.1.1 Output predictions for GPC* and QGPCY{

The definitions given in Section 2.2.2 for the vectors Au(t), y(t) and f(t) and the

dynamic matrix & are assumed to hold in this section. Now, the predicted unceriainiy

vector is defined as

oV (t) = [ B(t+1lt) O(t+20t) ... B(t+Nolt) ]", (4.5)

where Ny is the uncertainty prediction horizon.

The prediction equation {eqn.4.3) allows to arrange the vector of predictions y(t)

y=Ff+GAu+ H,0", (4.6)

where the dynamic matrix Hyp is given by
Ty 1 ... 0
Hy = : PR
hyo1 hAnez ... 1
such that h; is the j*® coefficient of the impulse response of the system 1/A. Notice

that the output predictions are affine in both Au and 67,

It is also possible to define predictions on the unstable part of the output. Let A
and A be, respectively, the strictly stable and the unstable monic factors of A. The

unstable part of the output of eqn.4.1 can be obtained as

B 1
g(t) = g{gml)u(t 1) + =) o(t) (4.7)
= Ay(t)

Now, if the definitions introduced in Section 2.2.2 for the vectors y(t) and w(t) and

the dynamic matrix G are used, the predictions 3 can be arranged as

i

¥ =F +GAu+ Ho0" s, (4.8)
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for the dynamic matrix H is defined as

hnei hwea ..o 0

—_— h hy— ... 0
Hf) - .N N ! . . )

ANing—1 Rning—2 --- 1

where hy, is the k™ impulse response coefficient of the system 1/A(g™1), and the free
response predictions on of the unstable part of the output f (t + jlt) are computed
taking both the future control moves and the future global uncertainties to be zero.

Notice that the predictions ¥ are affine in Au and ¥+,

4.2.1.2 Owutput predictions for finite horizon controllers

The definitions for the vectors Awu(t), y,(t), y,(t), wi(t), we(t) and the dynamic
matrices G; and G5 introduced in Section 2.2.1 are used here. Now let the future
predicted uncertainty vectors @;(¢) and 8,(t) be specified as

6:(t) = 0™ (1),

02(t) = 0 (t),
where 8"v~(¢) and 8™2(t) can be obtained using eqn.4.5 with Ny = N,—1 and Ny = N,
respectively. This notation allows to arrange the output prediction vectors y, (t) and

Yo(t) as

Y1 = 1+ Gi1Au + Hy 0,
(4.9)
Yy = fo + GoAu + Hy,0,,

where the dynamic matrices Hg, and Hg, are given by

[ hyy-1 hny—2 ... O
Hyr = h{vl hN:l_l 0 |
| hny-2 hygor - 1
[ hny-1 kw2 ... O]
H,y = h{% th,_l 9 |
| hwnper hwgr .. 1)
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such that h; is the 7*® coefficient of the impulse response of the system 1/4, and hg = 1

since A is assumed monic (ag = 1).

4.2.2 Min-max optimisation

An optimal control move vector can be obtained by solving the problem

AP — :
Au arg min GNI;HE%NB J{t), (4.10)

subject to the equality/inequality constraints associated to the controller. J{t) is the
cost function and ©™ is the convex hull of an uncertainty polytope, formed by 2Vé
vertices for all possible combinations of extreme values of 8™ (¢) along the horizon Np,
i.e.

o = Co{6l",6",..., 6%, }

2Ne

such that each component of 95‘% is either 8% or §~ and {9;-% # 9?‘" if ¢ % j. Notice
that there are exactly 2/¥¢ vertices 95{3. All possible global uncertainty predictions are

a linear combination of the polytope vertices:

2Ng .
o™ =Y " r67%, (4.11)
e |
2Ny
where A\; > 0 for 1 < i < 2% and z,\i = 1. The convex hull ®™ is formed by
i=1

infinitely many vectors 8™° satisfying this definition, or

2ig 2Ng
OM = g% = "X0/":)>0for1<i< 2%y " Ni=1
=1 =1

As an example, a three-dimensional polytope is shown in Fig.4.1. In such a case
the polytope vertices form a cube, and any point within the cube or on its surface is a

potential future uncertainty vector.
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Figure 4.1: Uncertainty polytope for Ny = 3

Any cost function can be used for J(¢) in this min-max formulation. The cost
functions defined in Chapter 2 lead to the min-max GPC for J,(t) defined in eqn.2.4,
the min-max CRHPC for J>(¢) defined in eqn.2.5, the min-max GPC® for J(t) defined
in eqn.2.6, the min-max 1-norm controllers for Ji(t) as defined in eqn.2.34, and the
min-max QGPC{® for J;(t) as defined in eqn.2.48. The formulae associated to the min-
max (finite horizon) GPC and the GPC; can be found in (Camacho and Bordéns, 1995)

and are omitted in the sequel.

In general, equality and inequality constraints must be taken into account in the
min-max problem posed above. As discussed in Chapter 2, the former are required
by methods with stability guarantees (e.g. the CRHPC and the GPC®) and must by
handled by min-max controllers, whereas‘ the latter are designed by the user to define
closed-loop specifications or performance. The following section tackles the problem of

constraint incorporation into the min-max optimisation framework.
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4.2.2.1 Inequality constraints

As remarked in Chapter 2, the general inequality constraints can be written as
PAu<r,

for some matrix P and vector r. This set of constraints can be divided into two

separate parts:
P,Au < 1y,

which are independent of uncertainty (constraints on the control signal, control rate or

control acceleration) and
P QA’LL < rp,

which depend on the global uncertainty predictions (constraints on the output signal,
output rate, output acceleration or internal states). As illustrated below, the matrix
Py is independent of the global uncertainty predictions 0" and the vectors 7y are
affine functions in @M. Hence the extreme (most restrictive) constraints occur at the
vertices of the polytope ©®™. Therefore these constraints need only be considered at

the polytope vertices:
PoAu <7, VO € @, (4.12)
For instance, consider the GPC*® with the output constraints y(t + j|¢t) < y* for

1 < j < N. Using the prediction equations obtained above, these constraints can be

arranged in vector form as
f+GAu+HOY <y*1,veY € OV,

where 1 denotes the ones vector of appropriate dimension. Notice that the uncertainty

prediction vectors 0" are N-dimensional, and thus the polytope ®" consists of 2V
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vertices. Now, the inequality provided above can be written as
GAu <y*l—f - Hy0", vol c @V, ‘ (4.13)

which specify N2V constraints (rows) to be included in the min-max optimisation
problem, since the polytope ®" consists of 2V vertices va . However, note that all these
constraints differ only in the term H 99§V , hence it is possible to examine these vectors
component by component and pick up the value which produces the more restrictive
constraint. All the other constraints can be discarded since they are redundant. As an
example, the set of constraints |

z <243,

r<z-17,

z<z+1,

z<z-3,
can be reduced simply to z < z — 7, and the rest are redundant. If this procedure is
applied to all the rows of eqn.4.13, then it is possible to reduce the N2V constraints of

to just IV:
~N
GAu<y'l-f-80,

where 8 is formed taking the smallest components of the vectors H Y. Notice that
the right-hand side of the finally chosen N constraints include elements associated to

different vertices.

In general, the dim(r;)2" constraints of eqn.4.12 can be reduced to just dim(r;)
using this procedure, where dim(v) denotes the dimension (or size) of the vector v.

Finally, these constraints can be written in the (standard) form
P gAu S ‘7:9,

with Pp= G and 7g =y*1— f -9,
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Remark 4.1 It is worth pointing out that the constraint reduction procedure is a Non-
deterministic Polynomial (NP) problem, since 2V vectors H,0)° must be examined

50 as to choose the most restrictive constraints. Q4

4.2.2.2 Equality constraints

End-point equality constraints are common to the stabilising MPC controllers deseribed
in Chapter 2. In fact, these constraints are essential for the nominal stability proofs,
and must be considered by the min-max controllers to preserve stability at least in the

undisturbed case.

Prior to undertake the incorporation of these constraints into the min-max optimisa-
tion framework, the uncertainty prediction horizon Ny must be defined as Ny = N +m
in the CRHPC and by N + ng in the GPC®™. These definitions of Np include the ‘

predictions in the constraint window as well as the costing horizon.

For the GPC*® {GPC{® and QGPCS{®) the equality constraints are as defined in
eqn.2.20:

y(t) = w(t),
which, using the predictions in eqn.4.8, become
éﬁ‘t& = — 35 - §§3N+ng«

For the CRHPC (CRHPC;) the equality constraints must be enforced on the whole
model output (not only the unstable part), as described in Section 2.2, and are provided

by

y2(t) = w2(t):
which can be rearranged, using eqn.4.9, as

GaAu = wy — Fo — Hgy 0™,
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Be that as it may, the end-point equality constraints should, in principle, be consid-
ered for all the infinitely many possible global uncertainties 8¢ € @"e (not only the
vertices va ?), i.e., all the possible global uncertainty values described in eqn.4.11. With
only a finite number (NNV,) of decision variables, it is obviously impossible to enforce
infinitely many equality constraints. To overcome this diﬁiculty,’ here it is suggested to
impose the equality constraints assuming that all the future global uncertainties occur
at the middle point value, i.e.

- + 6t
2 ]

Ot +jlt) =0 =

. _ . . —N,
which can be thought of as a sort of minimum variance estimate. Then, the vector 8 °

is defined as
g =[7 m 3],

the geometrical interpretation of which is nothing but the centre of the uncertainty
polytope. Enforced for this so-called “average” vector, the end-point equality con-

straints become

= —~ ~ T =N4n;
GA‘lL“—"LU*‘"f—Hg v a,

for the GPC* and
—N>
GQA'U, = Wy — f2 - nge ’
~ for the CRHPC.

Notice that if * = 6~ = 6 = 0 (undisturbed case) the constraints defined above
are exactly those which ensure (nominal) stability. In fact, if the global uncertainty
settles down to some steady-state value §* (as usually occurs for step-like disturbances)
and the upper and lower bounds 6~ and 6% are both updated to equal 8%, then § = 6*
and the predictions become exact. In such a case, these end-point equality constraints

provide both stability and offset-free setpoint tracking (Scokaert, 1997).
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4.2.2.3 2-norm cost functions

This section uses the GPC™ formulation provided in Chapter 2. Analogous results
would be obtained for the CRHPC (or the more general formulation given in eqn.2.3),

which are omitted here for brevity.

If the 2-norm is used, the GPC™ cost function to be optimised can be written in

the form:
D) = (w — f — GAu— Ho0") A (w - f — GAu— H6™) + AuTRAu,

subject to equality (¥ = w) and possibly to inequality constraints, with the weighting

matrices A and R defined in Chapter 2.

Remark 4.2 The prediction horizon for the global uncertainty can be reduced to
Ny = N, since the values beyond this point do not affect the predictions y(¢ + j|t) for
1 € j < N. Longer uncertainty horizons can be considered for the equality (Ny =
N + ng) or the inequality constraints (if these are enforced beyond N), but the shape
of the cost function is only affected by (¢ + j|t) for 1 < j < N, and thus Ny = N is

assumed in the rest of this section. Qaka

This cost function is quadratic in Awu, and can be posed in the standard form:
Jo(t) = AuT Ap,Au + ba At +cay,

for
Apy =GFAG+R,
bh, =2(w — f — H;8")TAG,
cau = (W — f — He@V)TA(w — £ — H0™),

but it is also quadratic in 8°°:

Jo(t) = 0™ T 450" + bTON - co,
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for
Ag = HJAH,,
by = 2(w — f — GAu)TAH,,
co = (w— f — GAu)TA(w — f — GAu) + AuTRAw.

Hence, due to the convexity of Jy(t), the maximum of Jo(t) as 8¢ ranges over the
polytope ©M necessdrz’ly occurs at one of the vertices .of ©™ (Bazaraa and Shetty,
1979; Camacho and Bordéns, 1995). Then the optimisation problem reduces to consider
2Ne quadratic cost functions, one for each vertex HQ-N". This is true for any conver cost

function (e.g. a l1-norm cost function).

L 4
A 4

Case (a)

-Figure 4.2: Min-max solution for a pair of quadratic functions

An analytical solution of the min-max problem for quadratic cost functions is de-
scribed next. Let Ji(t) denote the quadratic cost function obtained for the polytope
vertex BN € ©®™ . Now consider a pair of cost functions Ji(t) or Ji(t) (for N, = 1) as
shown in Fig.4.2, obtained at the vertices 6,;\’9 and Bj-v‘* respectively . The solution of

the subproblem

Au*(t) = argmin max Jo(t)
(t) = argmir oM0e{6M 070}

lies either on the intersection of the cost functions (a) or on one of the minima of

Ji(t) and Ji(t) (b). Since the matrix A, is independent of 8™, the intersection
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problem can be solved as the minimisation of either Ji(t) or Ji(t) subject to the

equality constraint Ji(t) = Ji(t), which can be written as

bau(07")Au + cau(8]7) = ba,(0°) Au + cau(8]?)
or

[au(07) = bau(61)] Au = cau(®]") - can(6}®), (4.14)
apart from the (equality and inequaﬁty) constraints associated to the controller.

In the general case of dimension N, > 1, the global solution lies either on any of

the minima, of Ji(¢) or in the intersection of up to N, + 1 cost functions Ji(¢).

Remark 4.3 Each intersection defines an equality constraint in the minimisation, and
each equality constraint reduces in one the degrees of freedom available for optimisation
i.e. the dimension of the decision variables space. In other words, 2 cost functions can
intersect producing a (N, — 1)-dimensional decision space, and N, + 1 cost functions
can intersect on a single point (0-dimensional space), but N, + 2 cost functions do not

(in general) intersect on a N,-dimensional space. aaq

Remark 4.4 Actually, the equality constraints associated to the controller must be
taken into account, since they reduce the dimension of the decision variables space.
Thus, if the controller involves ¢ equality constraints, the number of cost functions

which intersect reduces to N, — ¢+ 1. aaa

A set of subproblems can be obtained forming all the combinations of up to N,—c+1
cost functions, and each of these can be solved by means of a QP problem subject to
up to N, — c+ 1 equality constraints of the form of eqn.4.14 plus ! equality constraints

associated to the controller. Note that there are exactly

2Ne 2N 2Ne
() () lZenn)
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subproblems. Let (J, Au*) denote the solution of one of these subproblems. If
(J5,Au*) is such that any cost function value J¥(Au’*) is lower than or equal to
Ji for all 1 < k < NN, then Awu® turns out to be a candidate global Salutien of the
min-max problem. The global optimum is finally found as the one which provides the
minimal J3 over all the candidate solutions. The following algorithm implements this

analytical min-max optimisation method:

1. for all 1 < i < 2Me do

(a) Form all the combinations {Ji‘, . Jf:”} with up to Ny, —¢ '{g? <N, —¢)
cost functions, including the empty one (p = 0), and with jp > 7 for all
1<k<p

(b} for all such combinations {sg’*, ey Jép} do
G) (Au*, J3) = (arg min Jé(t),x“git{l Jé(t)) subject to Ji(t) = Ji*(t) for all

1 € k < p, and subject to the controller equality/inequality constraints
(i) if & > J¥Au") forall 1 < k < 2% then add (Au*,J}) to the

candidate list

endfor
endfor
2. Pick up the minimum from the candidate list:
(W, 725‘3?) = ndxén {{(Av*, 1)}

return

Obviously this algorithm is NP (the number of iterations depends on 2¥%), and hence
should only be used for small Ny. In addition, it must be taken into account that this
method is to be applied on-line at each sampling instant and thus the computational

burden must be small to allow for the obtention of the optimal control move vector
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within a sampling period. As an alternative, a numerical solution can be used to reduce

the computational requirements. An equivalent formulation of eqn.4.10 is given by the

non-linear programming problem:
v, Au’™ = arg min v subject to v > Ji(t) for 1 <7 < 2N,
v,au

and subject to the equality/inequality constraints associated to the controller. This
problem can be solved using Sequential Quadratic Programming (SQP) methods, as

described in (Schittowski, 1985; The Mathworks, 1997).

To compare the analytical and the numerical solutions in terms of computational
burden, the algorithm described above and the non-linear programming solution have
been tested. A 5-dimensional search space (N, = 5) has been considered. For this
experiment, the matrix Aa,, (definite-positive), the vectors ba, and the scalars ca,
have been randomly generated. In addition no constraints (either equality or inequal-

ity) have been taken into account.

Solution H Ratio
Analytical (¢4) | Numerical (ty) u (ta/tn)
2! 1.0 4.0 0.25
Polytope | » 3.0 6.8 0.44
vertices
2Ny | 23 37.8 6.8 5.60
24 2903.2 8.3 350.84

Table 4.1: Normalised CPU time

The computational burden, measured in normalised CPU time (see Section 2.4.3),
is shown in Table 4.1. The outcome of this experiment evidences that an analytical
solution is only advisable for Ny < 3, since the CPU time it requires increases dramati-
cally with Np. In many practical situations, the SQP solution should thus be preferred.
Notice that the rate of increase of the computational burden with Ny associated to the

numerical solution is much lower than the result obtained with the analytical method.
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However, it is worth pointing out that the example presented above is quite an
ideal case, since no constraints have been taken into account. For the stabilising RHPC
methods introduced in Section 2.2, at least the end-point equality e{}ﬁstraiats on the
. output or on the unstable part of the output, depending on weather CRHPC or GPC*®
are used; should be included. In fact, these constraints (equality and inequality) must
be incorporated into the sequential QP problems which are solved in the SQP formula-
tion, what involves an increase in the computational burden. Thus, even the numerical

solution can become unpractical for relatively fast systems.

More efficient min-max controllers can be obtained if 1-norm cost functions are
uséd. An example of such a formulation is provided in (Camacho and Bordéns, 1995),
where the min-max l-norm finite horizon GPC is presented. In the next section, the
I-norm quasi-infinite horizon controller defined in Section 2.3.3 is formulated in the

min-max framework.

4.3 Min-max QGPC?

Several examples are provided in the literature to show that 1-norm formulations
of min-max MPC lead to methods which involve a very low computational burden
(Allwright, 1994; Camacho and Bordéns, 1995). The objective of this section is to
formulate a min-max controller which can be implemented as a single LP problem, for

which very efficient standard solutions are available.

As shown in Sectésg 2.5, the QGPC® converges to the GPCS® when the control
horizon is increased, and hence is “very likely” to provide with nominal stability, at
least for large enough N,. The GPCY itself does not appear to be a convenient
choice to obtain a min-max controller because of the requirement that the iterative
algorithm presented in Section 2.3.2 is applied at each sampling instant. In the min-max

framework, this iterative procedure involves the solution of several min-max problems
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{twice the number of iterations needed for convergence) at each sampling instant, what
would involve an excessively large computational burden. On the other hand, if the
QGPCY° is used, just a single min-max problem needs be solved at each sampling
instant. In addition, the QGPCY° leads to an appropriate nominal behaviour for the

vast majority of systems, as discussed in Chapter 2.

Furthermore, in min-max controllers, it is of particular relevance to keep the pre-
diction horizon short since the number of polytope vertices increases exponentially
with the prediction (or uncertainty) horizon. As remarked in Chapter 2, the CRHPC;
with short control/prediction horizons often leads to deadbeat-like behaviour, and thus
does not appear to be a suitable candidate to yield a robust min-max controller. The

" (quasi) infinite horizon approach to stability is preferred to the solution provided by the

CRHPC;, since deadbeat-like behaviour is unlikely with the GPC{® and the QGPC{.

Taking into account all these considerations, the QGPCS° seems a suitable candidate
to provide with an effective solution of most control problems of uncertain systems
within the global uncertainty approach. Whenever the QGPC{® does not provide a
convenient nominal closed-loop behaviour (instability or deadbeat-like responses), two

possibilities are suggested:

1. Increase the control horizon N, until the QGPCY® converges to the GPC™ (see
Section 2.5). If the control horizon required for convergence is “not too long”

then the min-max QGPC{° solves the optimisation problem in very short time.

2. Implement the min-max 2-norm GPC™ using a numerical solution to reduce the

computational burden.
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4.3.1 Solving the min-max problem

The QGPCS® cost function is given by eqn.2.48:

N-1 N Na
A =) let+it)+a D lelt+i)+ D o) |Ault+5 -1},
g=1 j=N-na+1 j=1

which, as discussed in Chapter 2, provides an upper bound of the infinite horizon cost

function if the system-dependent weighting « is chosen as suggested in eqn.2.38.

Now the min-max QGPCI° is defined as the solution to the optimisation problem:

P Au £ 1y,
Au(t) = argmin max J(t) subject to { PpAu<ry, . (4.15)
uOHEG)ﬂ GAu:ﬁ*f“Hg‘é” +n5‘

As discussed in Section 4.2.2.2, the uncertainty horizon Ny must extend to N + nz for

the equality constraints.

As the predictions are affine functions of 8¢, the cost function and the inequality
constraints PyAu < 7y need only be evaluated at the polytope vertices 8;?‘{3 e 0N,
Thus there are 20 sets of constraints of this form, one set for each vertex. The
constraint reduction procedure depicted in Section 4.2.2.1 can be used to cut down the

number of constraints.

Remark 4.5 Henceforth, it is assumed, unless otherwise explicitly specified, that the
constraints P,Au < r, and PgAu < rp are énforced in the prediction horizon ¢-+1, 1+
2,...,t+N (not t+N+ngz). Hence the dimension of the uncertainty vectors @ relevant
to these constraints is N and not N + nz. Uncertainty vectors of dimension N + ng
are used only for the equality constraints. Notice that the constraint horizon might
need to be increased even beyond N + nz to obtain infinite horizon-like constraints,
which are needed to preserve the nominal stability property, as remarked in (Rawlings
and Muske, 1993). However, a constraint horizon of N is enough for the vast majority

of systems and, without loss of generality, is used hereafter. If the upper constraint
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horizon is greater than NN, the formulae provided below can be used introducing slight

straightforward modifications. QA

This optimisation problem can be solved, using LP tools, similarly as done in Section
2.3.3 for the T-based QGPC{°. However, the LP problem must consider the maximum,
among all the polytope vertices, of the cost function J;(¢). Let the variables o(j) > 0

and $(j) > 0 be defined as in Section 2.3.3, then the problem of minimising ¥ subject

to:
~o(j) < e(t + jlt) < o(j), 1<j< N, VoY c @
“":6(.7) < N Au(t + 7 "A’;ullt) < ﬁ(])r 1<5< Nu, (4.16)
0 < D ulel)+) r(BU) < T,
j=1 =1

with the weighting sequence p(j) defined in Section 2.3.3, and subject to the equal-
ity/iﬁequa,lity constraints associated to the controller, can be thought of as a LP ver-
sion of the problem described in eqn.4.15. Notice that the variables o(j) stand for the
maximum predicted tracking errors for all the possible uncertainty vectors within the
polytope ®~. Now, since the cost function is (strictly) convex, this problem must be
considered only at the vertices, and the constraints associated with the variables o(j)

can be replaced by
—o(j) < e(t+4lt) <o(f), L<F< N, VO e OV,

Remark 4.6 This LP problem is, however, more conservative than the formulation of
eqn.4.15, since the variables o(j) collect the worst case prediction errors for different
vertices @Y. Thus o(j;) can occur for the vertex 8, whereas o(j,) occurs at a different
vertex 0 (with i1 # 42). In fact, due to the convexity of Ji(t), the maximum of
eqn.4.15 is to be found at a single vertex, and not at a combination of different vertices.

To solve ezactly the min-max problem of eqn.4.15, different sets of variables o;(5) should
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be used for different vertices, i.e.

—oi(j) < e(t +jlt) < oi(f), 1<i< N, veY eV
N Ny
0 < > u(@e()+D_p1)BG) < ¥, V¥ cOV.
J=1 i=1

'This modification yields an exact solution to the min-max problem, but the compu-
tational price is enormous, since the number cf variables o; (and i;he associated con-
straints) is multiplied by 2V. For computational reasons, it is thus advisable to solve
the problem as formulated in eqn.4.15, although an unnecessarily conservative solution

might be attained. ada

The problem of minimising ¥ (eqn.4.16) can be posed as the linear programming

problem:

[ o> G.&u+3g8§\?+‘f~ww,4

o> -GAu— H0Y - f+w, yVO) c0V
PyAu < 1y,

& B8 = Au,
. ﬁﬁ}é ¥, subject to { B> —Au,
o.0,A0 \I, 2 ;&Ta+pT6’

P, Au < ry,
~ % eNdng
GAu=1w— f~ Hyb .

. 020,82>20,¥2>0,

where the coefficients u(7) are defined in Section 2.3.3 and the vectors u, o, p and
3 are defined in eqn.2.35. Notice that only the equality constraints on the unstable
part of the output and the first few inequality constraints are uncertainty-dependent,

whereas the rest of them are independent from the global uncertainty signal.

As usual, this problem can be written in the standard form as

min cTx subject to Az < b, ¢>0,8>0, ¥ >0,

with
Au 0
g=|-2| c=|2
- ﬁ ) - 0 H



Sec. 4.3. Min-max QGPC{

157

and

A=[AT .. AL aT]%,
b=[bf ...bL bT],

where the block matrices A; and vectors b; are defined as

@ |-1]o]o [ _H,0Y - f+w
Ai=| -G|-I|0{0 |, bi=| HON +f-w |,
Pg 0 010 r;
[ 1o |-1]|0] [ ]
~1lo|-1]o0
0 T pT| -1 0
Auz K P y bum
P,]0}0]0 ry
Glojo|o “HO T _F @
| -Glo|o |0 | H® T+ F-w

Now, since there are exactly 2V pairs (A4;, b;), the total number of constraints can
be obtained as [2N + dim(r1)]2Y + 2N, + 1 + dim(r,) +2(ng + 1) + N + N, + 1 (the
last three terms come from the constraints o > 0, 8 > 0, and ¥ > 0). Notice that the
block matrices A; are identical, and thus the constraint reduction procedure depicted
in Section 4.2.2.1 can be used, as discussed in (Camacho and Bordéns, 1995). If the

~th

7™ row of the constraint blocks A;x < b; is considered, the only constraint which

determines the feasible region is the one for which the j** element of the vector b;
is the lowest, and the other 2V — 1 constraints are redundant and can be discarded.
Hence, this LP problem can be implemented reducing the number of constraints to
just 2N +dim(ry) + 2N, + 1+ dim(r,) +2(nz + 1)+ N + N, +1, i.e. ezactly the same
number as for the T-based QGPCY® of Section 2.3.3.

It is worth pointing out that the constraint reduction is an NP problem, as already
remarked in Section 4.2.2.1. If the uncertainty bounds 6~ and 6% are taken to be

time invariant, this fact is not relevant since the constraint reduction procedure can
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be performed off-line obtaining the vectors H 8 for all the polytope vertices 8 ¢
©V. This is the case of the controllers introduced in (Camacho and Bordéns, 1995).
However, the closed-loop dynamics of the uncertainty signal 6{¢) can be used to update
the uncertainty bounds, as shown in the following section. If the uncertainty bands
are modified on-line, the constraint reduction procedure must be carried out on-line,
and thus this NP problem should be solved at each sampling instant. In that case, it
is advisable to keep N (or Np), and consequently N, small for computational reasons.
This implies a trade-off choice of IV, since nominal stability With the QGPCY° reduires
a “large enough but relatively small” N,, whereas computational issues suggest to

choose a short control horizon.

4.3.2 A band updating algorithm

In this section a band updating algorithm to modify the lower and upper global un-
certainty bounds, 6~ and 6%, on-line is suggested. To develop this algorithm the

closed-loop uncertainty dynamics need be investigated.

To begin with, notice that the global uncertainty signal (¢), as defined in eqn.4.1,

can be measured on-line as the residue from the true to the predicted output, i.e.

o(t) = y(t) — 9(tlt - 1),
where §(t|t — 1) is the output prediction at time ¢ using information available at time

t — 1, performed assuming that the future global uncertainty is zero. At time t, this

one-step-ahead prediction can be obtained as

G+ 1]t) = f(t + 1[) + grAu(t]t).

The following experiment has been carried out to illustrate the typical closed-loop

behaviour of the residues 8(t). The lightly damped second-order system of eqn.A.10:

“1B 0.2358¢7! + 0.2319¢2

-1y __ 4 —
Gla™) = A 1—1.4835¢~1 4 0.9512¢2
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has been chosen as the nominal model. The poles of this system are located at 0.7418+
0.6333) and the zero at —0.9832. On the other hand, the true plant has been defined
as

“1B, _ 0.1091¢~! 4+ 0.0751¢2

-1 mq =
Gold™) = "= = T Ta8357-T 7 0.74674=="

i.e. the true zero (—0.6882) and steady-state gain (0.7) are 0.7 times the nominal ones,
and the true poles {0.7418 3-0.4433y) lead to a much more damped open-loop response

compared to the nominal plant. The true output has been computed as

Ao(g™)y(t) = Bolg™Hult — 1) +2(2), (4.17)

where the (unmeasurable) additive disturbance z(t) is 0 for ¢ < 51 and 0.05 for ¢ > 51.
- Notice that such a disturbance affects the internal states and not only the output of

the system.

To obtain the closed-loop uncertainty signal, the QGPC}° has been chosen with the
tuning knobs N,, = 5 and p = 1. The model of eqn.4.1 has been used for the prediction
for the nominal plant introduced above and with the assumption 6~ = 8% = 0 for all ¢.
In the nominal case and for these tuning parameters, the QGPCS® is indistinguishable
from the truly infinite horizon GPCS® (see Section 2.4.3). Notice that the min-max
optimisation procedure can be avoided since all the assumed polytope vertices reduce
to a single point, i.e. © = 0. With these settings, a step setpoint change of unit

amplitude has been simulated at the fifth sample.

Fig.4.3 displays the closed-loop behaviour of the global uncertainty 8(t). This result
provides with an example of the typical uncertainty dynamics, and the following overall

features can be observed:

1. After the setpoint change (f = 5), the controller operation leads to relatively
large control moves and, consequently, to a sharp change in the global uncertainty

signal 6(t) due to the modelling errors.
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Global uncertainty measuratments
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Figure 4.3: Global uncertainty signal

2. The global uncertainty signal oscillates for several samples and, after a while,

settles down to some steady-state value.

3. When the disturbance enters the system (¢ = 51), the situation is similar to a set-
point change, since the control activity introduced to compensate the disturbance

implies an increase and some oscillation in the global uncertainty signal.

4. The disturbance leads to oscillations of the global uncertainty signal for a few

samples, and finally the 6(t) settles down to a different steady-state value.

The lower and upper uncertainty bounds should be modified according to this
closed-loop behaviour. However, it must be taken into account that whenever a band
is violated by the true uncertainty signa;l, constraint violation or even instability may
occur,' since ﬁhe true uncertainty can be worse than that assumed by the min-max
method. Thus, any band updating algorithm should guarantee that the uncertainty
bands are respected as much as possible. The following set of rules is intended to

provide with an appropriate method to update the uncertainty bounds on-line:
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1. Every time a setpoint change is introduced, the uncertainty bands must be
widened to prevent that the uncertainty oscillations surpass the limits. This

can be done by assigning a large, possibly very conservative, value to §~ and 6+.

2. The bands must decrease and converge to the uncertainty values. When the
global uncertainty is at steady-state, it is advisable that the lower and the upper
bounds converge to the steady-state value, because exact predictions would be

available, leading to offset-free setpoint tracking.

3. Unmeasurable disturbances are, by nature, unpredictable and they can lead to
band (and possibly constraint) violations, which could even result in instability.
Any time a band violation occurs, the lower and upper bounds must be modified

(increased) accordingly so as to avoid future violations.

Remark 4.7 If the uncertainty limits are not respected by the global uncertainty sig-
nal, only the constraints which depend on 6(t), basically output and state constraints,
can be affected (violated), whereas the input-like (input amplitude, input rate, input
acceleration and so on) constraints are not to be influenced by these potential uncer-
tainty band violations. This latter kind of constraints is totally independent of the

uncertainty. adf

The heuristic rules suggested above are illustrated in Fig.4.4. Notice that the upper
uncertainty bound is violated when the disturbance enters the system, and thus the
uncertainty bands are widened in order to cope with the future uncertainty. The band
updating procedure suggested here modifies both the upper and the lower bounds
whenever a band violation occurs. In the figure, the disturbance leads to an upper
band violation and, when this situation is detected, the lower bound is also modified.
The aim of this solution is twofold. To begin with, a perturbation usually leads to
high-frequency uncertainty oscillations of large amplitude which can be enclosed by the

updated uncertainty bounds if both limits are modified. On the other hand, the equality
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Figure 4.4: Band updating procedure: global uncertainty #(t) (solid) and uncertainty
bounds {dotted)

constraints on the unstable part of the output are enforced for constant uncertainty at
the average of the lower and upper bounds. Thus, if both 8~ and 8% are widened, a
sudden change in the average § and, consequently, in the end-point equality constrains,

is prevented.

Remark 4.8 When a disturbance involves uncertainty band violation, the constraints
specified by the designer might be temporarily violated. If the band updating proce-
dure manages to enclose the uncertainty signal, this possibility vanishes in the future.
Disturbances may even lead to i{lfeasibiiity problems, which can be handled using the
methods described in (Scokaert, 1994; Alvarez and de Prada, 1997). Notice, however, |
that eeéstraiﬁt violation and infeasibility situations cannot be avoided when unmea-
sured disturbances enter the system, since these are only detected by the feedback loop

when the output is already disturbed. This drawback is common to all the constrained
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MPC schemes. aadl

Finally, the suggested band updating algorithm (to be executed at each sampling

instant t) can be implemented as:

1. I(t) == min{6(¢),0(t — 1),...,0(t — My + 1)};
h(t) :==max{0(t),0(t — 1),...,0(t — My + 1)};
inc(t) :==max{0,0(¢) — 0(¢),0(t) — 67 (¢)};

2. if 67(¢) < 0(t) then
6= (t) :=(1 — p)l(t) + ub=(t — 1) — inc(t)
else
6=(t) :==0"(t) — 2inc(t)
endif
if 8%(¢) > 0(t) then
6% () :=(1 — ph(t) + po*(t — 1) + inc(t)
else
61 (t) := 0% (t) + 2inc(t)
endif

where Mp > 1 is the number of (past) uncertainty samples which are “remembered”
by the updating algorithm, and 0 < g < 1 is the pole of a first order filter with unit
steady-state gain:

ﬁ:. (4.18)
According to the first step of the algorithm, [(t) and h(t) are assigned, respectively, the
lowest and the highest last M, values of (t), and inc(t) is the current amount of band
violation (0 if the bands are respected). The procedure works as follows, if both bands

are respected (inc = 0), they are updated in order to approach the extreme (maximum
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and minimum) last My values of 8(t) following a first order trajectory the dynamics of

which depend on p (g~ 1 for slow rate and p =~ 0 for fast rate):

00 = Tl 6°0) = Togh(D)

Apparently, higher-order filters might be used in this procedure, in a way that would
recover some of the polynomial T filtering properties. However, a careful analysis of
the effect of the filter of eqn.4.18 in the uncertainty bands dynamics discourages this
possibility. To begin with, the filter of eqn.4.18 is not applied to the uncertainty signal
itself, but the highest (h) and lowest ({) last My values of §(t). Hence the suggested band
updating algorithm does not filter the modelling errors directly, and eqn.4.18 cannot be
thought of as the counterpart of? S, /T (Yoon and Clarke, 1995a; Megias, 1996; Megias |
et al., 1997) in the T-based unconstrained MPC case analysed in Chapter 3. On the
other hand, note that the variable inc is an input signal to the uncertainty bands (see
the second step of the algorithm). Whenever inc(t) changes from 0 to some other
~ value, this can be viewed as an impulse input to the uncertainty bands. It must be
pointed out that the impulse response of (stable) first order filters is monotonically
decreasing, but this is not true for greater order filters. The monotonicity of the
impulse response coefficients of the filter which deﬁermines the band dynamics is quite
a valuable property, since it speeds up the band convergence from the current values
0~ (t) and 67 (2) to the (extreme) measurements [(t) and h(t), what avoids unnecessarily
large band values for a few samples after a modification. As a consequence of these
observations, only first order filters are used for the uncertainty band dynamics in this

thesis.

Aside 4.1 Compare the impulse response of the filters

U
1-09¢1  (1-09¢1)2

|End of Aside]
*For stable systems, the choice T' = A(1 — ug™*) leads to S,/T = (1 — p)/(1 - pg~1).
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If one of the two bands is violated at current time ¢ (inc > 0), it is automatically
updated by adding (or subtracting) twice the amount (2inc) it has been violated. In

such a case, the other band is also added (or subtracted) the quantity inc.

Remark 4.9 In case of persistent (low-amplitude) noise, as always occurs in practical
applications, a looseness factor can be introduced to keep the upper and lower bounds
separated some distance at steady-state. The steady-state lower to upper bound offset
should be greater than or equal to the maximum noise amplitude, what would guarantee
constraint satisfaction. If the looseness factor is tuned to bound the noise amplitude
tightly, then the setpoint can be brought closer to the constraint boundary, which
usually determines the optimal operating condition, at least from an economical point

of view. , aag
4.3.3 Tuning guidelines

The band updating procedure outlined above uses a few tuning knobs. The aim of thege
paramefers is to adjust the robustness/performance trade-off. The two main tuning
knobs to be chosen are the “past” uncertainty horizon My and the band dynamics
bparameter 4. In addition, there are two secondary parameters to be set, namely,
the band enlargement due to a setpoint change (band initialisation), and the number
of samples the bands are “frozen” whenever a setpoint change occurs (band freezing),
which are illustrated in Fig.4.4. As the band initialisation is concerned, some knowledge
about the increase of the residues from the true output to the model predictions when a
setpoint change occurs is needed to adjust this parameter. The most obvious possibility
is to widen the uncertainty bounds a given percentage of the setpoint change. This
alternative might be too simplistic for some non-linear systems, since the uncertainty
behaviour often varies at different operating points, and consequently different setpoint
changes can produce different uncertainty behaviour. If little knowledge about the

residues is available, it is advisable to assign conservative (large) bound values which
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keep the input activity low for a few samples. The number of samples the initial
band values are frozen after a setpoint change is useful to allow the band updating
algorithm to collect enough data to include, at least, a maximum and a minimum of
the global uncertainty signal. The longer this period is, the more conservative the
controller becomes. If a slow p is chosen, this parameter does not need to be as
large as the peak distance (p in Fig.4.4), since the initial values of #~ and 6% are
slowly modified (decreased), and the maximum and minimum of 6(t) are very likely
to occur within the bands. In addition, note that the band updating procedure self-
adjust the uncertainty bounds whenever a band violation occurs. Hence, these two
parameters (band initialisation and band freezing) are not critical, but they help to
avoid uncertainty band surpassing and, consequently, the constraint violations which

could result as a consequence.

Now, tuning guidelines for the two main parameters, My and p, are proposed. In
order to enclose the uncertainty oscillations, the past uncertainty horizon parameter
should be chosen so as to “remember” at least a local maximum and a local minimum
of the uncertainty signal. Thus M, is suggested to be greater than or equal to the
peak to peak distance p (see Fig.4.4), i.e. My > p. As p is concerned, this parameter
determines the dynamics of the lower and upper uncertainty bounds. As a rule of
thumb, it is advised that pu is chosen according to the decreasing rate of the enveloping
curve which encloses the uncertainty signal. Hence u should be tuned such that the
uncertainty bounds dynamics are similar (or slower) than those of the uncertainty

envelope.

Notice that the tuning guidelines for My and pu, though intuitive, are somewhat
difficult to apply since they require some a priori knowledge about the behaviour of

the residues. Thus, the following issue must be tackled:

How can My and p be chosen for the first time when no knowledge about
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0(t) is available?

The most obvious way to overcome this difficulty is to perform a few experiments in
order to obtain uncertainty data which can be used to tune both My and . If a detailed
(possibly non-linear) model of the true system is available, then the experiments can
be simulated, and then these tuning parameters can be chosen as suggested in the
guidelines reported above. If it is not possible to perform simulated experiments,
large conservative values for My and p should be chosen at the beginning., These

can be replaced by tighter (less conservative) choices in later adjustments to improve

performance.

The closer the uncertainty bounds are to the envelope of 6(¢), the less conservative
the controller becomes. A convenient choice of My and g can help to improve perfor-

mance, making it possible to operate in the proximity of the constraint boundary.

4.3.3.1 A self-tuning procedure

The tuning guidelines for My and p reported above can be implemented within the con-
troller to provide with a self-tuning band updating algorithm. Using the past values of
A(t) it is quite an easy task to locate the last two local maxima and the last two local
minima by examining at which samples the derivative (the difference) of 6(t), namely
Ad(t), changes from positive to negative (maximum) or from negative to positive (min-
imum). The distance (in samples) from maximum to maximum and from minimum to

minimum can then be readily evaluated, and this information used to update Mj.

As shown in Fig.4.5, let M; and M, denote, respectively, the last two local maxima
occurring at the time samples ¢57; and tp0. Analogously, let m; and my denote, respec-

tively, the last two local minima and ¢,,; and ¢, their occurrence times. According to
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Y
-~

Figure 4.5: Local minima and maxima for the self-tuning procedure

these definitions, My can be chosen as
Mp = max {Mé}nin:pﬁf;pﬂ%} ’

where MJ" is a minimum value used for safety (e.g. 10 samples), par = tary = tpo + 1
is the peak distaﬁce between the last two maxima, and p,, = g — Ime + 1 is the
peak distance between the last two minima. If the modelling errors are LTI, then p,,
and py, must be identical (differing at most by 1 or 2), but in the more general case
of non-linear and/or time-varying uncertainty distances p,, and pps might be quite

different.

The same information can be used to update the first order pole p by measuring
the damping factor v of the uncertainty curve. Once the peak distance p has been
evaluated (as the maximum of pys and py,), ¢ can be obtained from the last two pairs

of local minima and maxima, since the following relation should (approximately) hold:

(M1 - m1) = lbp(M2 - mz),
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and ¢ can be estimated as
L
w o~ (%ﬂ) i ,
2 — M2
Finally, the pole of the first order filter can be set as
p = min {max {g™", ¢}, p">*},
where the limits z™® and p™ are introduced for safety, to avoid too fast or too slow

dynamics.

Remark 4,10 The true situation is not usually as well-behaved as that shown in
Fig.4.5. The contribution of noise and of secondary high-frequency oscillations often
require some filtering or signal processing on 8(t) prior to proceed with the computation
of My and p. This difficulty can become so severe in practice that the use of this
self-~tuning method would sometimes be discouraged unless signal processing tools are

applied to filter out the rippling of 8(¢). aaa

Note that it is always possible to adjust this self-tuning procedure so that the adap-
tive band updating method is at least as conservative as some given fixed setting. For
instance, if [Mp,¢] = [10,0.8] have been found to be mainly correct but some band
violations occur, the self-tuning method can be used with MJ¥® = 10, ™= = 0.8 and
(e.g.) p™* = 0.95 to obtain a behaviour which would certainly be at least as conserva-
tive as thé fixed design [Mpy, p] = [10,0.8]. The self-tuning method is expected to head

Mp and p in the appropriate direction, leading to a finer band updating algorithm and

an improved performance.

4.4 Simulation results and comparative analyses

This section is devoted to perform simulated experiments with the min-max controllers
formulated in this chapter in order to test this approach against other control strategies.

In the sequel, simulations for both linear and non-linear systems are provided.
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4.4.1 Comparative study of 1-norm and 2-norm min-max con-
trollers

This section compares the performance and computational burden of two min-max
controllers based on the global uncertainty approach, namely, the min-max 2-norm
GPC* and the min-max (1-norm) QGPC{°. The band updating procedure and the
constraint reduction method reported in the last few sections have been used for both
controllers. For the min-max GPC® a numerical algorithm based on SQP methods has
been used for solving the optimisation problem, since this approach does not involve
the enormous computational burden associated to the analytical solution suggested in

Section 4.2.2.3.

Let the true and nominal systems be those used in Section 3.4.3, i.e.

B 0.2358¢" +0.2319¢7

-1 w*’? -
Gle™) =" 1~ 1.4835¢-1 + 0.9512¢~2’

and

“!By _ 0.2973¢7! +0.2923¢72

T —
Golg™) = Ap  1-1.7802¢71 + 1.3698¢~%

Notice that the true system has two unstable poles, whereas the nominal plant is stable
{though very lightly damped). Hence this is quite a challenging experiment, since the
true and the nominal dynamics are quite different. Apart from these modelling errors,
a disturbance z(¢) of magnitude 0.05 has been added the true system at time ¢ = 51

samples, i.e. the true output is simulated as

Ao(g™"y(t) = Bolg ™ ult — 1) + z(t),
with -
n_J O if t < 51,
2(t) = { 0.05 ift> 5l
As already shown in Section 2.5, the QGPCY® is stable for all N, for this nominal

system, and cannot be distinguished from the truly infinite horizon GPC® for N, > 2.
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Hence, if the tuning settings are chosen as N, = § and p = 1, the QGPCS® provides
nominal stability and becomes, de facto, identical to the GPC{°. The same tuning

knobs [N, p] = [5, 1] have been used for the 2-norm GPC®.

] infinite horizon GPC: Setpointand Quiput signals
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Figure 4.6: Nominal input/output responses for the GPC™ and the QGPCS®: [Ny, p] =
[5,1]

Fig.4.6, which is the same as Fig.3.12(a) of Chapter 3, compares the nominal closed-
loop responses obtained with the 1-norm QGPC{® and the 2-norm GPC®™ for these
tuning settings. It can be observed that the nominal closed-loop behaviour obtained

with both controllers is almost identical.

For the first few experiments, a setpoint change from 0 to 1 at time ¢ = 5 samples
is introduced. The initial uncertainty bound values are chosen as 6~(5) = —0.2 and
6t(5) = 0.2, i.e. a 20% of the setpoint change. In addition, these initial values are
frozen for 4 samples after the setpoint change. Finally, the tuning knobs for the band

updating procedure are set to My = 10 and p = 0.9.

The results obtained with the min-max GPC® and the min-max QGPC{ are shown

in Fig.4.7 and 4.8 respectively. It is quite remarkable that the closed-loop behaviour is,
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Figure 4.7: Closed-loop behaviour of the min-max (2-norm) GPC®

very approximately, the same for both controllers, and the following ﬁomméﬁts apply
to both cases. First of all, notice that the global uncertainty increase associated to
the setpoint change is always kept between the upper and the lower bounds (until
the ‘disturbance time ¢t = 51). A few samples after the setpoint change, the band
updating procedure modifies the assumed uncertainty limits, which converge to the
true uncertainty values. The dynamics which shape this convergence are determined
by the tuning parameters My and u. When the disturbance enters the system, there is
a temporary (one-sample) band violation, which could result on constraint fulfilment
problems in case that user-designed constraints had been used. Once the uncertainty
values due to the disturbance are available (t = 51), the band updating procedure
determines that the upper band has been violated and modifies the lower and upper
bounds in order to keep §{¢) within the uncertainty bounds. No other violations occur
afterwards. Finally, the uncertainty bounds converge to the steady-state value of 8(¢),

and a stable closed-loop system with offset-free setpoint tracking is achieved.

The convergence rate of the uncertainty bands dynamics is determined mainly by

u, and thus this parameter fixes the disturbance rejection properties of the controller.
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Figure 4.8: Closed-loop behaviour of the min-max QGPC{°

Only when the lower and upper bounds converge to the steady-state uncertainty value
is the disturbance completely rejected. Therefore, as disturbanceA rejection is concerned,
the role of p is similar to that of the slowest root of the T polynomial (see Chapter 3).
Finally, the peak distance of the signal 8(t) can be easily computed from the simulated
experiments, and it has been found that p equals 8 or 9 samples. This justifies the

choice My = 10 > p, which is consistent with the tuning guidelines suggested above.

Although the results are nearly the same with both controliers, the 2-norm min-
max GPC® has taken more than twice (about 2.2) the computation time of the 1-norm
counterpart for this experiment. This difference becomes more serious for longer control
horizons N, (and thus longer prediction horizons N). Table 4.2 shows the normalised
CPU times required by the 1-norm and 2-norm min-max controllers as a function of
N, (or N) for a simulation time of 50 samples. The computation times of Table 4.2 are
normalised dividing by the CPU time required by the fastest experiment (the min-max

QGPCS® with N, = 1) so as to make the results as computer-independent as possible.

Remark 4.11 In these experiments, the optimisation routines used for the min-max

controllers are the LP (function “1p”) and the SQP (function “constr”) algorithms
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H, N, 11121314} 5 116 1| 71 8 | 9
orizon N 2 1 314516 | 7] 8 9 10

Normalised| I-norm (¢;) | 1.0 1.6 | 2.513.9| 8.011.3]20.8| 225 38.6
CPU time | 2-norm (¢,) || 1.4 |24 | 4.6 1 59| 14.0]33.7 | 843 }162.2 | 715.7

|  Ratio | &/t [14]15]18]15] 1.7] 3.0 40] 72] 19.0

Table 4.2: Normalised CPU time as a function of N, (or N)

provided by the MATLAB Optimisation Toolbor. Both methods are interpreted and
not compiled, and thus these data can be considered “fair”. In addition, in the SQP
problem associated to the min-max GPC®, the gradients of the cost function and the
4constraints have been used, making the SQP solution much faster and more reliable. If
a compiled LP method is used for the min-max QGPCS{°, e.g. the function “e04mbf”
as implemented in the NAG Foundation Toolboz, the min-max QGPC{ becomes up to

15 {or more) times faster. » | ooo

Table 4.2 makes it clear that the 2-norm algorithm takes more computation time
than the 1-norm controller always, from 1.4 up to about 20 times®. In addition this dif-
ference increases (dramatically) with the control horizon, and thus the 1-norm solution
becomes a more convenient choice in most cases, since it allows more degrees of free-
dom for tuning the controller (N, can be chosen greater preserving low computational

-burden).

Apart from computation time, there‘ is another great advantage related to I-norm
min-max formulations, namely the use of LP tools instead of non-linear programming
tools. The former can be exactly solved with a finite number of iterations which
are known, a priori, from the number of design variables (N, control moves plus the
additional variables o, 8, and ¥) and the number of constraints. Whenever the LP
problem is feasible, the LP tools find a solution in very short time. On the other hand,

there is no information about the number of iterations the SQP methods need to find

3The solution using compiled methods is several times faster than #; provided in the table.
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a solution to the optimisation problem. It is even possible that SQP does not converge
after a full sampling time, which is the all the time available for computing the next
control move. Thus, as reliability is concerned, the on-line implementation of the LP

solution is to be preferred to the SQP counterpart.
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Figure 4.9: Closed-loop behaviour of the min-max (2-norm) GPC*® (constrained case)

In short, LP methods are faster and more reliable than the 2-norm min-max con-
trollers. This is so clear an advantage that, for real applications, the nominal stability
guarantees (the nominal QGPCS° is not always stabilising as remarked in Chapter 2)
can often be overlooked. Moreover, as discussed above, the likelihood of nominal in-
stability with the QGPC{° is remarkably small, at least for a wide class of systems.
Nominal stability with the QGPC{° can be easily determined in simulation and thus,
in the quite unlikely cases for which an unstable closed-loop systems arises, the control
horizon can be increased until a stability is achieved (assuming that the convergence
conjecture presented in Section 2.5 is true). Only when the control horizon required
for stability is too large (e.g. N, > 12) does the min-max two norm GPC™ appears as
a better alternative, as far as it provides convenient performance with shorter control

horizons.
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Now the same experiments have been performed constraining the output such that
y(t) < 1.2 for all t. The tuning settings used for these constrained examples are the
same as the ones chosen for the unconstrained case. Fig.4.9 shows the closed-loop
behaviour obtained with the min-max GPC®. Despite the modelling errors and the
disturbance, the output never violates the constraint. When the disturbance enters the
system, the uncertainty bands are widened according to the band updating algorithm
described above and the controller manages to satisfy the output constraint. Notice
that the initial band values are too wide, since the uncertainty signal is quite far from
the assumed bounds, especially as compared with the unconstrained case (Fig.4.7).
This is a consequence of the output constraint, which results in lower control moves
with respect to the unconstrained case dnd, consequently, to lower global uncertainty.
If the initial band values were lower, better performance (less cautious control) would

have arisen.

Minwnax Tussi-inSnits hodzon GPC: Satpoint and Quipat signals
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(a) Input/output responses for the min- (b) Global uncertainty (solid) and uncer-
max QGPC{® (solid) and output con- tainty bounds (dotted)

straint (dotted)
Figure 4.10: Closed-loop behaviour of the min-max QGPC{® (constrained case)
'Fig.4.10 shows the closed-loop behaviour provided by the min-max QGPC®, which

is somewhat more cautious than that obtained with the 2-norm counterpart. A five-

sample delay, which is not observed in the unconstrained case (Fig.4.8), shows up at
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the output. This dead-time is due to the combination of the control move penalty
(p = 1), which leads to tiny control moves, and the output constraint, which is quite
close to the setpoint. Such a behaviour can be avoided by choosing a lower control

move weight (e.g. p = 0.1) and/or narrower initial uncertainty bands (e.g. 6~ = —0.15

and 6+ = 0.15).
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Figure 4.11: Closed-loop behaviour of the min-max QGPC{° (constrained case)

The closed-loop behaviour obtained with the min-max QGPC{° using the tuning
knobs 6~ (5) = —0.15, #+(5) = 0.15 and p = 0.1, shown in Fig.4.11, evidences that
the five-sample delay of Fig.4.10 is a consequence of the tuning settings. The narrower
uncertainty bands and the lower penalty in the control moves results in an improved
performance (less cautions control) compared to the previous result. As usual, a trade-

off between robustness (cautiousness) and performance must be achieved.

4.4.2 The influence of the tuning parameters u and M)

In this section the effect of the tuning parameters yu and M, is analysed. Although

tuning guidelines are suggested above, there are some degrees of freedom to chose these
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parameters which allow to adjust the balance between robustness and performance.
The objective of this section is to show how these parameters affect the closed-loop

behaviour.

The true and nominal systems presented in the previous section have been used
for the experiments reported below. Since 1-norm and 2-norm controllers behave in a
similar way as far as the tuning settings u and My are concerned, only the min-max

QGPCS® is analysed here, but the results extend to the min-max GPC™ too.

i 2 i % i " 3. 5 x i i 5 %
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(a) Input/output responses for the min- (b) Global uncertainty (solid) and uncer-

max QGPC{® (solid) and output con- tainty bounds (dotted)
straint {dotted)

Figure 4.12: Closed-loop behaviour of the min-max QGPC{® (unconstrained case)

First of all, the influence of x4 is analysed. The experiment presented in Fig.4.8
is repeated but the first order trajectory determined by eqn.4.18 is generated with
i = 0.7 instead of p = 0.9. The result, shown in Fig.4.12, is that the amplitude of
the oscillations of the input/output responses and the uncertainty signal 6(t) is greater
than those of Fig.4.8. Notice, also, that the uncertainty bands 6~ and 6+ converge
to the measurements of 6(t) quite faster than for the example presented in Section
4.4.1. The band dynamics are so fast that there is a lower band violation at the first

few samples, but that situation is readily compensated by means of the band updating
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procedure. Although a large difference is not evidenced, it is worth pointing out that
the disturbance rejection dynamics are also faster with x4 = 0.7, since the lower and
upper uncertainty bounds convergence rate is increased with respect to 2 = 0.9. In
short, the closer the root p is to the origin, the less conservative the control strategy
becomes. This can even give rise to some uncertainty band violations, as occurs with
this example, and caution should be taken to avoid such possibility, especially in the

constrained case.
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Figure 4.13: Closed-loop behaviour of the min-max QGPCS® (unconstrained case)

Now, the effect of the tuning parameter My is analysed. The same experiment has
been carried out using z = 0.7 (as in Fig.4.12) and My = 20, i.e. 20 past values
(instead of 10) of the uncertainty signal #(t) are examined at each sampling instant.
The outcome of this experiment is shown in Fig.4.13, where it can be observed that the
uncertainty bounds are farther from the uncertainty signal compared to Fig.4.12(b).
The reason for such a behaviour is that this choice of My implies that two maxima
and two minima of #(f) are “remembered” by the band updating algorithm. This
is unnecessarily conservative and produces poorer performance compared to the case

M, = 10, shown in Fig.4.12(a), since wider oscillations and more sluggish input/output
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responses result.

In short, this section shows that a convenient choice of u and My can help to adjust
the compromise between cautiousness and performance. The closer the uncertainty
bounds are to the uncertainty measurements, the less conservative the controller be-

comes, making it possible to obtain an improved performance.

4.4.3 Min-max controllers versus the classical T approach

This section is focused on showing that the robustness-enhancing methods described for
unconstrained MPC schemes in Chapter 3 fail to accomplish the expected closed-loop

behaviour when hard (output) constraints are introduced.

4.4.3.1 Linear plant

In this section, the experiments have been performed using the same true and nominal
systems as in Section 4.4.1, and the output constraint y(t) < 1.1, quite near the
setpoint (1), has been enforced. The true steady-state gain has been increased a 50%,
i.e. Gy = 1.5Gy in order to make it even more difficult to meet the constraint. The

results obtained for both 1-norm and 2-norm algorithms are presented below.

The 2-norm T-based GPC® and min-max GPC™ have been tuned with NV, = 5 and
p = 1, whereas the 1-norm QGPC{° and min-max QGPC{° have been used with N, = 5
and p = 5 to provide similar performance compared to the 2-norm case, especially
as rise time is taken into account. For the min-max controllers, the band updating
procedure has been implemented with - (5) = —0.2, ¥(5) = 0.2, My = 10and u = 0.9.
On the other hand,the polynoinial T =1 - 0.9¢7! has been chosen for the standard
(I'-based) GPC* and QGPCS{°. With the methods depicted in Chapter 3, this choice

of T' can be shown to provide robust stability in the unconstrained case for the 2-norm
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controller, as far as the inverse multiplicative uncertainty description is applied. Finally,
it is worth pointing out that the (nominal) QGPC{° is indistinguishable from the GPC{°
with these tuning settings, and hence the (min-max) QGPC{° can be considered as an

efficient implementation of the (min-max) GPC{° and, of course, nominal stability is

easily achieved.
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Figure 4.14: Closed-loop behaviour of the T-based GPC* and QGPC{°

Fig.4.14(a) shows that the closed-loop with the 2-norm T-based controller is on
the verge of instability (if not unstable). In addition the output constraint is violated
systematically by the maximum output peaks. On the other hand, the behaviour with
the T-based QGPC{°, displayed in Fig.4.14(b), is a bit better as stability is concerned,
but fails to satisfy the output constraint, which is violated several times after the
setpoint change (¢t = 5) and the disturbance time (¢t = 51). Although the predictions
made by both controllers are such that the output constraint is always respected, i.e.
the predicted output is always lower than 1.1, the maximum peak reaches 1.2150 for

the 2-norm controller and 1.1813 for the QGPCY°.

This experiment illustrates, indeed, the typical situation of the process industry.

The system is expected to work near the constraint boundary (the setpoint is 1 and



182 Robust constrained RHPC using min-max optimisation

the constraint is 1.1) for economical reasons, but modelling errors and/or disturbances
can push the system beyond the scheduled limits. Hence, according to the results
presented in Fig.4.14, the setpoint would have to be changed to say 0.9, farther from
the constraint boundary to satisfy the limits. This problem can become even more
serious if the constraints specify physical or security limits which must by no means
be surpassed. In such a case, a severe malfunctioning or physical éaﬁger might be

associated to constraint violations.
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Figure 4.15: Closed-loop behaviour of the min-max GPC*®

Fig.4.15 shows the closed-loop behaviour obtained with a min-max 2-norm GPC®™.
Notice that the output is always lower than the upper limit, in fact the maximum
peak occurs at 1.0963 < 1.1. Even when the additive disturbance enters the system,
the output is readily compensated to avoid a constraint violation. Notice, also, that a
constraint vioiatién might only have occurred at time ¢ = 51, the only instant at which
the uncertainty bounds are not respected. However, the band updating algorithm
redresses that situation, and the controller leads the output to a “safer” value for a few

samples, to avoid constraint violation.

Finally, Fig.4.16 shows that the min-max QGPC{® performs as effectively as the
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Figure 4.16: Closed-loop behaviour of the min-max QGPC{°

2-norm counterpart (but with a lower computational burden as illustrated in Section’
4.4.1), keeping the output below the upper constraint. In fact the maximum peak
has been found at 1.0999, i.e. almost on the constraint boundary. Again, the output |
satisfies the constraint in spite of the additive disturbance and, of course, the modelling

errors.

The examples reported in this section show the limitations of the classical robustness-
enhancing tools of MPC when constraints are enforced. The results, shown for the
T~ba§ed methods, extend to the (-parametrisation and the T-optimisation schemes.
In addition, it must be taken into account that the robust stability guarantees in the
presence of input/output/state constraints are no longer valid, since the controller be-
comes non-linear (QP or LP must be used), and the robustness analysis performed
through Chapter 3 relies on a linearity assumption. In fact, these simulation experi-
ments show that the GPC™ does not manage to stabilise the true system, even though
“the RS conditions are satisfied. In short, the robustness methods for unconstrained

MPC evidence two major flaws if they are applied in the constrained framework:
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1. Firstly, although the internal predictions satisfy the constraints, these are often

violated by the true output, and

2. secondly, the RS conditions and robustness analysis tools used in Chapter 3

cannot be applied.

On the other hand, the min-max methods based on a global uncertainty formula-
tion, together with the band updating procedure suggested in Section 4.3.2, have proved
successful in the few cases presented throughout this section, not only as stability is
concerned, but especially as constraint satisfaction is taken into account. The band
updating procedure is shown to drive the initial conservatism (band distance) closer
to the actual measurements carried out on-line, what makes it possible to improve the
performance and reach the setpoint with offset-free setpoint tracking. Moreover, the
tuning guidelines given in Section 4.3.3, which are used in these first few examples, ac-
complish the expectations making the tuning task easier. However, these few examples
may be biased and a deeper analysis is needed. The newly developed methods are dif-
ficult to analyse with the classical approach, as done for the unconstrained controllers
in Chapter 3, since the min-max optimisation performed on-line is, intrinsically, a non-
linear process. Obviously there is no closed-form solution for these controllers and the
robustness analysis must be tackled from quite a different point of view. Section 4.5 is
devoted to analyse the robustness of these min-max methods, whereas a few significant
simulated experiments are provided in the sequel to contrast these min-max éontrollers

with other control schemes suggested in the literature.

In the sequel, for computational reasons, 1-norm min-max controllers are preferred.
As already shown in the examples so far described, the closed-loop behaviour of 1-
norm and 2-norm min-max controllers is almost identical if appropriate tuning knobs

are chosen, and thus the results provided below directly extend to the min-max GPC®.
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4.4.3.2 Non-linear plant with a saturation
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Figure 4.17: Non-linear benchmark plant

The experiments presented in this section have been performed on the non-linear
system described in Section A.5 of Appendix A, which is shown in Fig.4.17 (Fig.A.5).
The nominal model, obtained ignoring the saturation and using a sampling time of

| Ty = 0.05 s with a ZOH on the input, is given by (eqn.A.10):

1B 0.2358¢~! +0.2319¢77
A 1-~1.4835¢~1 4 0.9512¢~2’

Glg) =1

i.e. exactly the same nominal system as for the experiments presented in the previous
few sections. As remarked in Appendix A, the main difficulty to control this system is
the saturation embedded within an inner feedback loop. This kind of non-linearity is
quite difficult to handle with linear control approaches (including linear MPC). Even
the quite sophisticated methods described in (Kothare et al., 1996) seem difficult to
apply to this system, since this non-linearity cannot be overcome by obtaining a set of
locally linearised models about different operating points. Such a drawback is common

to all the strong non-linearities for which the associated functions are non-differentiable.

The most obvious way to surmount this difficulty is the use of anti-windup solutions,
or to incorporate the constraint associated to the saturating amplifier (-2 < 2 < 2)
explicitly into the control design problem. However, it is quite reasonable {o assume
that many of the very detailed models which are usually obtained as a prior step to
(iésigﬁ a control system are based on simplified physical laws. Thus, several strong
non-linearities are often overlooked at the control design stage. These non-linearities

are thus neglected in the model, and must be incorporated as “system uncertainty”
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and handled with robustness tools. The saturation block embedded in the system of

Fiig.4.17 can be viewed as an illustrative example of this typical situation.

The next few experiments compare the behaviour obtained with the min-max
QGPC{® and the T-based QGPC{°. For both controllers, the tuning parameters have
been chosen as N, = 5 and p = 5, which provide a smooth first-order nominal response.
In addition, the polynomial 7'= 1 — 0.9¢™! has been used for the latter. The setpoint
changes from 0 to 55 at time ¢ = 5 samples, and a constant additive disturbance of
amplitude 3 affects the output for ¢ > 51. The setpoint has been chosen such that
the saturation is outside the linear region for quite long, leading to non-zero global
uncertainty. Notice that when the input z to the saturating block is between —2 and

2 the modelling errors reduce to 0.

To complete the experiment setup, the band updating procedure of the min-max
controller has been tuned using p = 0.9, My = 10 and initial band values §~(5) = —15
and 6+(5) = 15, i.e. the amplitude of the uncertainty signal is expected to be less than

a 30% of the setpoint change during the first few samples.
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r T T g ™ ¥ -+ Y 4 2 T T 3 4 T Y Y
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(a) Input/output responses for the (b) Global uncertainty (solid) and uncer-
min-max QGPC{® (solid) and T-based tainty bounds {dotted)

QGPC® (dashed)

Figure 4.18: Closed-loop behaviour of the min-max QGPC and the T-based QGPCY°
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Fig.4.18 shows the closed-loop behaviour obtained with both controllers. Notice,
in Fig.4.18(b), that, apart from the disturbance time, the uncertainty signal is always
within the lower and upper bounds, which finally converge to some steady-state value.
The peak to peak distance of 8(¢) cannot be observed in this experiment, since the
controller leads the plant to the linear region (in which the global uncertainty equals
0) before a second maximum or minimum of 6(t) occurs. Fig.4.18(a) shows that the
input/output responses obtained with the min-max method are smoother, less oscil-
latory, compared to the “classical” T~design. It may be argued that another choice
of T such as T = A(1 — 0.9¢™!) (as suggested in Chapter 3) may lead to better re-
sults but, as a consequence of the proximity of the nominal system’s poles to the unit

&{cir‘cle, such a choice produces an unstable élosed-loop system the responses of which
are not shown here for brevity. The disturbance rejection characteristics are similar
for both the T-based and the min-max controllers, since the root of T and the pa-
rameter p = 0.9, which determines how fast the uncertainty bands converge to the
last My extreme uncertainty values, are identical. Needless to say, the results differ
using other observer polynomials, and better closed-loop behaviour arises by using e.g.
T = (1 —0.9¢7)% However, this latter choice of T' produces a more sluggish response,
and the disturbance rejeciien response is slower compared to the min-max controller.

Therefore the comparison provided in Fig.4.18 can be regarded as “fair”.

For the next example, the conditions of the last experiment (controllers, tuning
settings, setpoint change, disturbances and so on} are re-created, but an output con-
straint y(¢) < 68 for all ¢ has been enforced. Fig.4.19(a) shows that the min-max
controller produces a smooth response which never surpasses the constraint, whereas
the T-based QGPCY fails not only to satisfy the constraint, but even to provide with
a stable closed-loop system. On the other hand, the choice T = (1 — 0.9¢!)? stabilises

the system, but fails to satisfy the output constraint specification.

In Fig.4.19(b) it can be observed that, as a consequence of the output constraint,
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Figure 4.19: Closed-loop behaviour of the min-max QGPCY® and the T-based QGPCY

the min-max controller is quite cautious and the small control efforts revert on very low
values of the global uncertainty signal, which are quite far from the initially assumed
bounds [~15,15]. Hence the performance can be improved (a faster response can be
obtained) if the initial band distance is narrowed. However, a conservative tuning can
be justified in practical applications, especially for the first few s;s:g}eriments as little
data about #(¢) are available. This experiment provides with a (simplified) instance of

a real case, in which conservativeness leads to very cautious responses.

In order to show the effect of using lower initial uncertainty bands, the simulation
results obtained with 6(5) = ~10 and 6%(5) = 10 are displayed in Fig.4.20. Notice
that the input /output responses are faster, and the output reaches the setpoint in less
than 15 samples (0.75 secénés}. Once again, the output constraint is always respected.
In addition, with these initial settings, the controller is less cautious compafed to the
previous experiment and, as a consequence of this, the amplitude of the uncertainty
signal is greater, especially for the first few samples. The minimum of f(t) occurs at

—7.6213, quite close to the initial lower bound (~10). As usual, a trade-off between
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Figure 4.20: Closed-loop behaviour of the min-max QGPC{®

robustness (cautiousness) and performance must be reached. In fact, if lower initial
bands are chosen, e.g. #~ = —8 and ' = & the bounds are violated shortly after the

setpoint change, but the band updating procedure responds by widening the bands

and avoiding future violations.

The next experiment has been carried out to show that the advantages of the min-
max approach do not limit to the constrained case. The setpoint has been set to w(t) =
100 for £ > 5, and no output constraints have been scheduled. The same controllers
have been tested, setting the initial band values as §(5) = —30 and 6+(5) = 30 (2 30%
of the setpoint change). The results are shown in Fig.4.21, where it can be observed
that the closed-loop system with the T-based controller is unstable, whereas the min-
max QGPCY leads to a stable closed-loop system. Note that the min-max controller
is not properly tuned, since the peak distance in 6(¢) is greater than My = 10. In
this example, this sefting of Mp does not, cause major problems because no output
constraints have been enforced, and the band updating algorithm manages to enclose

the uncertainty signal despite the violations. Better results would arise with both the
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Figure 4.21: Closed-loop behaviour of the min-max QGPCS{® and the T-based QGPCS{°

T-based schemes and the min-max methods if the tuning settings were chosen in a

- more conservative way, e.g. T = (1 — 0.9¢™1)? and M, = 20.

The experiments provided through this section illustrate that the tuning guidelines
reported in Section 4.3.3 have proved useful and meaningful. The newly developed
min-max controllers are shown to be a powerful control strategy not only for uncertain
LTI systems, but also when the uncertainty comes from (difficult) non-linearities. In |
addition, this technique is able to meet the user designed constraints if the band updat-
ing procedure is well-tuned, even when disturbances and serious modelling errors occur.
Notice that this feature is not possessed by the classical T-based controllers, which often
involve constraint violations when system uncertainty takes place. When the control
aim is to stabilise an uncertain system, examples can be provided for which the classical
robust control synthesis methods (including the T-based MPC) overcome the min-max
MPC based on the global uncertainty approach. However, when state/output con-
straint handling is a priority and uncertainty cannot be neglected, the min-max MPC

strategy stands out as a more convenient choice since the classical MPC methods often
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fail to accomplish the constraints. Therefore, the min-max methods depicted in this
chapter yield a systematic methodology to synthesise robust MPC controllers when

constraint handling is an essential control requirement.

4.4.4 Limitations of min-max MPC

This section presents a few examples for which the behaviour obtained with min-
max controllers shows some unexpected characteristics. For example, as illustrated
in Fig.4.10, the input/output responses obtained with min-max MPC controllers in
the constrained case can exhibit large dead-times in some situations. These delays
appear as a consequence of the tuning settings, and can be suppressed by choosing
more appropriate tuning knobs. However, tuning settings which provide very similar
nominal responses with the QGPCS° can lead to quite a different behaviour when the

controller is implemented within the min-max framework.

As an example, consider the non-linear plant introduced in the previous section.
Now the experiment which provides the outcome of Fig.4.19 is repeated changing just
a single tuning knob: the control effort weighting p is reduced from 5 to 1. The rest
of the tuning parameters remain unchanged, i.e. N, =5, 6~(5) = —15, 87(5) = 15,
Mg = 10 and p = 0.9. The setpoint changes from 0 to 55 at time ¢ = 5 samples, and
the output constraint y(t) < 68 is enforced. With these setup, it is expected that the
lower penalty in the co;ltrol moves leads to greater control moves and, consequently,
the output response is expected to reach the setpoint faster than for the example shown

in Fig.4.19.

The outcome of this experiment is shown in Fig.4.22. Surprisingly enough, the
output exhibits an inverse response for the first few samples, what is absolutely unex-
pected since the nominal system is minimum-phase. This example is analogous to that

shown in Fig.4.10, in which the dead-time is caused by the min-max controller and not
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Figure 4.22: Closed-loop behaviour of the min-max QGPC{®

by the system. Now, why a lower control move penalty produces an inverse response?
The reason for such a behaviour is the fact that, at each sampling instant, a control
move vector of dimension N, is computed, and thus all the elements of Aw (not only
the first one) contribute to the minimisation of the cost function. In this example the
greater control activity allowed by p = 1 extends to all five (IV, = 5) elements of the
control move vector and not only to the first one. At time ¢ = 5, the predicted errors
from ¢t + 1 to t -+ N are, in general, lower for p = 1 as expected, but the 1-step-ahead
predicted tracking error (¢ + 1) is lower for p = 5. The inverse response is caused by
the controller to be able to meet the output constraint, since the greater control moves
produced by p = 1 lead the output predictions closer to the setpoint, and thus closer to
the constraint. These considerations explain the apparent contradiction between the
results shown in Fig.4.20 (p = 5) and 4.22 (p = 1). This behaviour is by no means
specific to 1-norm formulations, but general to min-max MPC methods based on the
global uncertainty approach. An almost identical result (inverse response) arises with
the min-max 2-norm GPC® if the tuning knob p = 0.1 is chosen whereas the other

settings are identical to those used for the min-max QGPC{®. This behaviour might
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be redressed by re-tuning the controller with a time varying weighting sequence p(j)
to pose a greater penalty on further control moves, which preserves nominal stability
as remarked e.g. in Theorem 2.6. An alternative is the use of a time varying tracking
error weighting u(j) to pose a greater penalty on the first few predicted errors, but
this choice affects the stability proof for the nominal case and, in addition, u(j) are

not used in (quasi) infinite horizon formulations (see Chapter 2).

This example, together with that shown in Fig.4.10, points out some drawbacks
of the min-max methods described in this chapter. Unexpected closed-loop behaviour
such as dead-times or inverse responses may appear with min-max controllers when
(output) constraints are considered. As discussed in (Scokaert and Mayne, 1998),
these peculiarities might be caused by the difficulty to handle an uncertainty polytope
of 2™ vertices with a single control move sequence Au. For the example provided
in this section, a 5-dimensional control move vector is expected to cope with 26 = 64
different polytope vertices, what can be quite a challenging task for the controller. The
next chapter exploits the feedback formulations of min-max controllers (Scokaert and
Mayne, 1998) to keep the ratio between the degrees of freedom (control moves) and

the polytope dimension 2™ closer to unity. This alternative helps to avoid such an

undesirable behaviour.

4.4.5 Self-tuning min-max QGPC{

In this section the self-tuning algorithm suggested in Section 4.3.3.1 is tested against
the non-linear benchmark system used in the previous few examples. The adaptive

scheme is compared to a fixed design of the parameters My and pu.

For this experiment the setpoint changes from 0 to 120 (which implies that the
input to the linear block is saturated for quite long) at time ¢t = 5 samples, and no

constrains have been taken into account. The fixed min-max QGPCS{° has been tuned
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Figure 4.23: Closed-loop behaviour of the min-max QGPC{°

~using [N, p] = [5,1], 87(5) = —30, 6%(5) = 30, My = 10 and p = 0.9. With these
settings the closed-loop behaviour is as shown in Fig.4.23, where it can be observed that
the input/output responses are quite oscillatory, and the uncertainty signal surpasses
the lower and upper bounds several times. The reason for such a behaviour is that the
peak distance in the uncertainty signal is greater than M, = 10, and the pole u = 0.9

of the first-order filter is not “slow enough” to avoid uncertainty band violations.

The self-tuning min-max QGPCS® has been designed using M™® = 10, p™® = 0.7
and p™** = 0.975. With these settings the past uncertainty horizon is always greater
than or equal to 10, i.e. in the worst case it would be at least as large as the fixed
design presented above. On the other hand, the pole of the first-order filter (eqn.4.18)
is constrained to be between 0.7 and 0.975. Notice that the fixed design p = 0.9 is
included within this interval. Initially (at time ¢ = 5 samples), M, and u are chosen

identical to the fixed design considered above, namely Mp = 10 and p = 0.9.

The result of this experiment is shown in Fig.4.24. The self-tuning algorithm adapts

the values of 2 and M, in such a way that the bands are violated fewer times compared
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Figure 4.24: Closed-loop behaviour of the self-tuning min-max QGPC{°

to the fixed design. As a consequence of the use of the self-tuning method, M} is mod-
ified on-line and the controller is more cautious. Therefore the input/output responses
are much softer, with fewer oscillations, and the output settles down earlier than for the
fixed design. However, as discussed in Section 4,3,3.1; the application of this method
in practical control problems would require a pre-processing of the uncertainty signal
(t) in order to get rid of noise and high-frequency oscillations. These two phenomena

have been neglected in the example provided in this section.

4.4.6 The min-max approach versus non-linear MPC

In this section, an example is provided to show that the min-max linear MPC solution
involves much less computational burden than non-linear MPC controllers. The CPU
time of the latter methods can be several orders of magnitude larger than that of the
min-max approach. Needless to say, non-linear MPC usually leads to better perfor-
mance (if the nominal and true systems are identical), but the difference in CPU time
is so large that the application of non-linear model-based techniques is often confined

to very slow processes.



196 Robust constrained RHPC using min-max optimisation

The experiments presented below have been performed using the non-linear bench-
mark system of Fig.4.17. This system can be described using the equations:
z = min {max {-2,u — y}, 2},
(4.19)
¥+ 9 = 200z.
Now, assume that this model and the true system to be controlled are exactly the
same. Throughout this section no disturbances of any kind are considered. A non-

linear (2-norm) finite horizon predictive controller (NLPC) can be formulated as the

minimisation of the cost function

Tot) = 3 ) bt +410) = u(t + 510F + 3 pG) 0206+ 5 ~ 119,

where the predictions y(t + j|t) are computed, at each sampling instant, integrating
the non-linear Ordinary Differential Equations (ODE) system provided by eqn.4.19.
A Runge-Kutta 4-5 formulation (the Dormand-Price method) (The Mathworks, 1998)
has been used to compute the output predictions. A finite prediction horizon (N, < co)
has been considered in this section. This choice does not guarantee stability, but the
non-linear system can be easily stabilised with the NLPC since exact predictions are

available, and thus no complications arise with the finite horizon strategy.

An SQP method has been used to minimise the cost function. Notice that, in this
case, a single cost function evaluation is very time-consuming, since the differential
equations need be integrated to obtain the output predictions. In addition, the gradient
of Jo(t) with respect to the control move vector Au(t) cannot be obtained analytically,

and thus the SQP method cannot be speeded up using (exact) gradient data.

The results obtained with both the NLPC and the QGPC{°® are provided below.
The min-max controller uses the internal model of eqn.A.10, which has beeﬁ obtained
neg}eéting the saturation. The tuning settings [Ny, p| = [5, 5] and a sampling time of
Ts = 0.05 seconds (the saine used in the previous sections) have been chosen for both

controllers. In addition, the NLPC has been tuned with Ny =15 and p = 1, whereas
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the min-max QGPC{° uses My = 10, p = 0.9, §=(5) = —15 and 6% (5) = 15. For this

experiment, the setpoint changes fro 0 to 55 at time ¢ = 5 samples.

With these conditions, a 100-sample simulation takes 2.0361 hours for the NLPC
in a 400 MHz computer, whereas the min-max QGPC{° takes 23.6640 seconds using
an interpreted LP algorithm, and 4.2760 seconds with a compiled routine. Thus the
simulation with the non-linear MPC scheme takes more than 300 (1700 if a compiled
LP routine is used) times the CPU time required by the min-max linear model ap-
proach. Notice, also, that this non-linear system is quite simple: a second-order ODE.
Therefore, the computational burden would become enormous for a real MIMO pro-

cess described by tens or hundreds of differential equations which must be integrated

on-line.
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Figure 4.25: Closed-loop behaviour of the min-max QGPC{° and the NLPC

Fig.4.25 compares the closed-loop behaviour obtained with the NLPC and the
QGPCY. It is worth pointing out that, although the performance obtained with NLPC
is somewhat finer than the one provided by the min-max controller (the overshoot is

lower and the settling time is shorter), the closed-loop behaviour accomplished with
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the min-max QGPC3° is quite acceptable, especially taking into account that this so-
lution involves a much lower computational burden. In addition, it must be taken into
account that the overshoot can be reduced by enforcing an output constraint with no

(or negligible) increase in the CPU time.

This example highlights that the performance obtained with the min-max apprdach
can be comparable to that provided by a non-linear MPC controller although the for-
mer requires much less computations. Thus the min-max controllers presented in this
PhD thesis appear as a convenient candidate to handle non-linearities if fast dynamics
are involved. In such a case, the non-linear MPC cannot be considered as a suitable al-
 ternative because of the enormous computational load. Obviously, if the non-linearities
are of such a kind that they cannot be “represented” as a linear model plus some un-
certainty, min-max MPC would not provide with an appropriate solution, and thus

non-linear MPC or any other technique (e.g. feedback linearisation) should be used.

4.4.7 Global uncertainty versus multi-model descriptions

In this section the global uncertainty approach is contrasted with the polytopic multi-
model linear plant description suggested in (Kothare et al., 1996). The multi-model
approach describes the plant family as the convex hull of several linear models G =
Co{G1,G2,..., G}, and the true (unknown) system is assumed to be a linear combi-
nation of the polytope vertices:
L
Go=)_ MG,
g=1
L
where \; > O for 1 <i< L and Z A; = 1. As already remarked in Section 4.1, in the
i=0
input/output model framework, this kind of description can be used when uncertainty

affects the numerator only, since pole uncertainty cannot be represented using this

formulation. The optimal control move vector is obtained as the solution to the min-
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max problem
opt s i
Au() = argrinrmee S )

where J{(t) is the cost function. As discussed in (Kothare et al., 1996), it is enough to

consider the worst case only at the polytope vertices &; € G.

For GPC-like controllers based on input/output models, each vertex G; is a discrete-

time transfer function:

1 (-1
g 'Bi(g™1)

G =T 5l)
Ai{g™h)

In this section, the finite horizon (2-norm) GPC cost function (eqn.2.4):

Na Ny
Tot) = 3 ul) [wlt +318) =yt +5100F + 3 pU) AW (E +5 = 1}1).

is considered. Note that an infinite horizon approach (N = co) is difficult in this case,
since the equality constraints ou the unstable part of the output cannot be enforced
for all the vertices of G with a single control move vector. This could be a serious
inconvenient, because nominal stability for finite horizon controllers is not guaranteed
(see Chapter 2). The state-space methods depicted in (Kothare et al., 1996) solve this
difficulty and provide with an upper-bound solution of the infinite horizon problem

with stability guarantees.

Now, for each vertex G, the cost function J3(£) can be written in the standard

form:
Ji(t) = AuT A;Au + b Au + ¢,
with
A;=G"M'G" +R,
b;I’ — 2(,&?* _ j?*}TM*G*}
¢ = (w* - f*)TM*(,w* — f*),
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where the dynamic matrix G*, the free response vector f*, the setpoint vector w* and
the weighting matrix M* are defined as

¢=[6f 611",

r=0f a7,

w=[wl wf],

M = diag [u(M), p(Ny + 1), ..., p{NVa)],
to match the formulation of (Clarke et al., 1987), and where G4, Gy, fy, fa, Wi, ws
and R are defined in Section 2.2.1 (Chapter 2). Finally, notice that the matrix G* and
the vector f* depend on the vertex ;. For each polytope vertex, the step response
must be computed to obtain G”, and free response predictions must be performed

on-line to form the vector f*. In order to obtain these free response predictions, the

model
Aa ) = Bl ult ~ 1) + 500,

is used, where £(2) is a zero-mean stochastic noise. This CARIMA model is identical
to that used by the controllers presented in Chapter 2 if T = 1 is chosen, and the
noise term models random step-like disturbances. This kind of model provides with

offset-free setpoint tracking for (asymptotically) constant disturbances.

The min-max optimisation problem can now be solved using the non-linear pro-

gramming formulation:
v°Pt, Au®Pt = arg min v subject to v > Ji(t) for 1 < j < L,
[N AN

and subject to the constraints associated to the controller. Again, the solution can be
found by means of convex optimisation tools, such as SQP (see Section 4.2.2.3). The

resulting controller is a min-max multi-model GPC, referred to as MGPC hereafter.

Remark 4.12 Using this solution, it is assumed that the system is time invariant

within the coincidence horizon ¢ + Ny,...,t + Ny, In other words, this non-linear
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programming problem finds the min-max solution for any true plant within G as far as
it does not vary within the prediction horizon. To account for non-linearities and/or
time variability, the worst case should be evaluated letting the plant vary among all the
polytope vertices at each sampling instant in the future. Addressed in that fashion, the
min-max problem usually becomes intractable, since the number of cases to take into
account grows exponentially with the prediction horizon, opening up as an L-ary tree,
where L is the number of polytope vertices (see above). An upper bound solution for
state-space models using LMI optimisation is presented in (Kothare et al., 1996), but
those results are difficult to extend to transfer function formulations. The examples
provided below, consider only uncertain time-invariant systems, and thus the SQP

solution to the min-max optimisation problem formulated above suffices. |1

The min-max QGPC3® and the MGPC have been tested on the uncertain system

provided in Section A.3:

_ 025 ¢ '(1—¢gY)
1y
Go(g™) = K(l —¢)1—1.4¢"1 + 0.65¢2’

where the gain 0.5 < K < 1.5 and the zero 0.4 < ¢ < 0.6 are uncertain parameters.
As discussed in Appendix A, a family G which includes all the plants which satisfy

this definition (and a few more) can be described by the convex hull of a four-vertex

polytope:
-1 -1 -1 -1
g1 -0.4q7Y) g~'(1—-0.6¢71)
-0 , Gy =0.2083
G1 = 02083 7= =75 6547 2 1—1.4¢71 +0.65¢~2’
-1 -1 -1 -1
g (1 —-04q7") g '(1-0.6¢71)
_o ,  G4=09375
G =09 Ty romer = T4g 7 +0.65¢ "

The “nominal” system has been chosen as the one obtained with K =1 and ¢ = 0.5
(eqn.A.6), i.e.

_0.5000g~" — 0.2500¢™2

-1
Gm(a™) 1—14g-1+065¢2

First of all, the nominal QGPC}° and finite horizon GPC and have been tuned

to provide “similar” closed-loop behaviour. The tuning knobs [Ny, N, Ny, u, p] =
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Figure 4.26: Nominal input/output responses for the GPC (dashed) and the QGPCY
{solid)

[1,40,3,1,1] have been chosen for the GPC, whereas [Ny, p] = [3,1] have been used
for the QGPC{°. With the tuning setting N, = 40, the 2-norm controller is (almost)
indistinguishable from a truly infinite horizon GPC. As shown in Fig.4.26, the response
obtained with the GPC is somewhat faster than the one provided by the 1-norm con-

troller, and presents a low overshoot.

Now the min-max QGPC}® and the MGPC have been tested for a set of plants
chosen among the family G described in Section A.3. In these experiments, the set-
point changes from 0 to 1 at time ¢ = 5 samples, and an additive disturbance z(t)
of magnitude 0.05 adds up to the system for ¢ > 51, as described in eqn.4.17. The
min-max QGPC{® has been tuned with 3*{5} = —0,3, 6+(5) = 0.3, M; = 10 and
g = 0.9. Fig.4.27 shows the closed-loop input/output responses obtained with both
controllers. It is remarkable that the ones provided by the multi-model approach are
quite similar for all the plants, whereas the dispersion of the responses obtained with
tﬁé min-max QGPCY° is much larger. This feature is also observed in the experiments

presented in (Camacho and Bordéns, 1995), where the advantages of using parametric
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Figure 4.27: Closed-loop behaviour of the min-max QGPC}{® and the min-max multi-
model GPC

uncertainty are highlighted. In fact, it is not surprising that the the multi-model ap-
proach overcome the global uncertainty formualtion in this case, since the multi-model
description is much closer to the type of uncertainty presented in this example, whereas
the global uncertainty description is much more general (e.g. it covers non-linearities).
In addition, the MGPC is provided with a priori information about uncertainty at the
design stage, whereas the min-max QGPCS° obtains on-line the uncertainty signal 6(t)
and then responds according to the measurements. On the other hand, as computa-
tion time is concerned, the min-max QGPCY® takes, in average, 3.2379 seconds for a
100-sample simulation in a 400 MHz computer, compared to the 11.3800 seconds of the
MGPC. That is, the latter involves 3.5 times the CPU-time required by the former.

Furthermore, it must be taken into account, that this example is quite favourable
to the multi-model approach, since there are only four vertices, and the uncertainty
affects the system’s numerator only. In more typical situations, there could be (many)
more than these four vertices, and thus the MGPC solution might become intractable,

since the computation time would increase to a great extent. In addition, if uncertainty
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affects the poles of the system, the MGPC solution is not possible, since a convex hull
of linear plants never provides poles which are not present in the vertices. Moreover, if
uncertainty is due to non-linearities and/or time variability, the MGPC solution cannot
be implemented simply as the non-lincar programming problem used here, since the
predictions must be performed letting the plant vary among all the polytope vertices
in the future. Besides, equality constraints (either on the unstable part or the whole
output) are difficult to handle within the multi-model approach, and thus the way
the stabilising CRHPC or GPC® can be implemented in the multi-model context is
an open question. Last, but not least, the MGPC solution is based on non-linear

programming, compared to the simple LP approach of the min-max QGPC{.

The solution presented in (Kothare et al, 1996) solves some of these problems
by obtaining an upper-bound solution based on LMI optimisation. However, those
methods are based on state-space models and solve the regulation problem of driving
the state to zero. If the more common setpoint tracking objective is pursued the

methods described by Kothare et al. (1996) are restricted to LTT uncertainty.

In conclusion, the global uncertainty approach remains as the most appealing alter-
native to handle all kinds of uncertain systems within the GPC-like family. However,
whenever a multi-model approach is possible (LTI uncertainty which affects the numer-
ator only) with not too many vertices, the MGPC can become a convenient solution
since it would lead, in general, to improved performance compared to the min-max

global uncertainty methods.

4.4.8 Comparative study of H, and min-max MPC

In this section, the min-max predictive controllers described throughout this chapter
are tested against a classical robust control design, namely an Hoo controller. The

benchmark system chosen for this comparative analysis is the linear plant with gain,
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zero and pole uncertainty provided in eqn.A.7 of Section A.4:

T € [ S S (B )
Golg™") =K (1-¢) @ -ng Y1 -7g-1y

where the steady-state gain K lies in an interval centred at the nominal value K, =1

with a radius of a 20% (0.2), the zero ¢ is located in an interval centred at the nominal
value ¢, = 0.6 with a radius of a 10% (0.06), and the complex-conjugate poles occur
within the circles centred at the nominal value 7, = 0.6261 4 0.31307 with a radius of

a 10% (0.1|9,,| = 0.1-0.7 = 0.07). i.e.the plant family is defined as
g = {GO K= (1 +AK)Km’¢ = (1 + A¢)¢m’n = (1 +A7})Tfma}:

with |Ax| < 0.2 ,]A4] € 0.1, and |A,] < 0.1. The nominal system is then obtained for
Ak = Ay = A, = 0 leading to (eqn.A.8):

Glg) = ¢ 'B(g™) _ 0.5944¢™! — 0.3567¢~2 .
Alg™1) 1 —1.2522¢-1 + 0.4900¢~2

Multiplicative uncertainty and complementary sensitivity weighting
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Figure 4.28: Multiplicative uncertainty bound (dashed) and complementary sensitivity
weighting Wy, (solid)

The maximum magnitude of multiplicative uncertainty (see Chapter 3) for this

nominal system and the true plant family described above is shown in Fig.4.28 (dashed
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line). A simple first order upper bound, displayed with a solid line, is provided by the
transfer function

0.9692 — 0.8769¢ 1
1-0.5385¢-1 ’

Wi, (q_l) =

which is used for the H, design as the complementary sensitivity weighting. Note, in
Fig.4.28, that this choice of the Weighting W,y is very close to the maximum magnitude

of uncertainty. This is intended to avoid an excessively conservative design.

Now the robust stability condition for multiplicative uncertainty can be applied to
design a controller which robustly stabilises the plant family described above. This con-
dition, provided in Table 3.3, can be written in terms of the complementary senSitivity

function:
1TuWnll < 1, Yw, € [0, 7).

In the SISO case, the complementary sensitivity at the output 7}, can be used instead
of Ty, since both are identical. The transfer function 7, = GK(1+GK)™! can now be
factorised as T, = GQr for Qr = K(1 + GK)™!, and thus the RS condition becomes

_1
W

for all 0 < w, < 7. Now, the filter Q@ can be designed to satisfy this inequality, since

1GQrWrlle, <1 & [1Qrll, < (4.20)

¥
o0

both G and Wy, are known. Notice that Q7 is a factor of T}, and thus the zeros and the
poles of Q7 are viewed in the nominal closed-loop transfer function from the setpoint
to the output (7, = GQr) and in the nominal closed-loop transfer function from the
setpoint to the input (U, = Q7). Therefore, slow (and of course unstable) poles and
unstable zeroes must be avoidéd in Qr. In addition, @7 can be designed in order to

cancel out the undesired open-loop dynamics of the nominal plant.
Once the transfer function Qr is chosen, the controller K is found by solving the
equation Qr = K (I + GK)Yor K, which yields

. K:_&_'
1-QrG
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In order to achieve offset-free setpoint tracking for constant setpoints w(t), the transfer
function T,, must be 1 at low frequencies (condition @) or, equivalently, the controller

K must have a pole at 1 (condition ®@). Needless to say, both conditions lead to the

same result:

® T,(1) = 1 & G)Qr(1) = 1 & Qr(1) = 5%13- or
® 1-QrG(1) =0 & Qr(1) = 5755

Thus, the offset-free setpoint tracking requirement becomes a condition on the steady-

state gain of Qr. With all these guidelines, the filter Q7 can be chosen, on a pole-

assignment basis, as

Oniaty < BT _ 1 B A By(e)
MV T A ) T G AWM By B g ) Aple)

subject to eqn.4.20, and where B*(g1)/A*(g™?) is a factor of G(g™') which consists of

(4.21)

the dynamics (poles and zeroes) to be cancelled in the closed-loop transfer function, and
B'(q7Y)/A'(q™") are designed closed-loop.dynamics. For open-loop unstable systems,
this procedure cannot be directly applied since it is not possible to cancel out unstable

poles using this approach.

The tuning settings for the min-max QGPC{® and the M. controller have been
chosen as follows. To begin with, the m’in-max QGPCY° has been tuned using [N, p] =
[5,1], 8-(5) = —0.2, *(5) = 0.2, p = 0.7 and My = 10. The setpoint changes from
0 to 1 at time £ = 5 samples, and no disturbances have been taken into account
(the comparison is made in terms of setpoint response only). The min-max QGPC{
provides the nominal closed-loop input/output responses displayed in Fig.4.29(a). On
the other hand, Qr has been chosen as per eqn.4.21 with A*=A,B*=1,B;=1
and Ap = 1 - 1.1500¢~! + 0.3931¢2. Thus the open-loop poles are cancelled out
and the cloSed~loop poles have been fixed at 0.5750 & 0.25007 in order to provide a
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Figure 4.29: Nominal closed-loop behaviour of the min-max QGPCS® and the H
controller

nominal closed-loop response which is similar to the min-max QGPC{°, as displayed

. in Fig.4.29(b). Finally, the transfer function Qr becomes

v 1.0225 — 1.2804¢71 + 0.5010¢72
QT(Q } = —1 3
1— 1.1500¢-1 + 0.3931¢

which yields the controller

1.0225 — 1.2804¢7! + 0.5010¢™2

-} —
Klg™)=—— 1.7578¢~1 + 0.7578¢"

As shown in Fig.4.30(a), this choice of Qr satisfies the condition of eqn.4.20, and
thus the resulting controller robustly stabilises the whole plant family G. Notice that
Qr is quite close to the robustness bound, hence it is quite difficult to improve (nom-
inal) performancey preserving robust stability. The sensitivity S, and complementary
sensitivity 7, f;mctiens are shoivn in Fig.4.30(b). It is worth pointing out that S, is
slightly above the 0 dB line at high frequencies, producing an amplifying effect at that
range. This could be inconvenient in case of high-frequency output disturbances d,(¢),.
since i;hbese would be amplified at the output y(t). However, since this example consid-
ers only the setpoint reSpdnses, this issue can be overlooked, though it could become

relevant in real applications.
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Figure 4.30: Robustness analysis of the H, controller

Now, the true input/output responses obtained with the min-max QGPC{® and
the H o, controller are compared in Fig.4.31. 250 true plants G; € G have been cho-
sen, within the family described above, in such a way that the extreme cases (lowest
and highest value of each parameter) are included in this experiment. Note that the
envelope of the output responses is greater with the min-max QGPC?° than with the
Hoo controller. This may lead to think that the average performance provided by the
min-max controller is lower than that obtained with the Ho for this particular ex-
ample. However, this is not the case. To show that the average performance is very
approximately the same for both approaches, the following average performance index

is defined:

Np my

Tyt = ;\,1-— SO fwlt) - w®F,

=1 i=1

where N, (250 in the example) is the number of true plants chosen within the family
G, n; (50 in the example) is the simulation time, and y;(t) is the output response
obtained with the plant G;. This index takes into account the tracking errors only,

but the control efforts might have been included as well. In this experiment, the
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Figure 4.31: True closed-loop behaviour of the min-max QGPCS°® and the H, controller

performance index yields 1.2517 for the min-max QGPC, and 1.2459 for the Heo
controller. Thus, the average performance is almost identical for both approaches.
This is quite a remarkable result, since it must be taken info account that the H

controller is tightly tuned since:

1. The complementary sensitivity weighting W,, is very close to the upper bound

of multiplicative uncertainty,

2. the transfer function Qr has been designed such that it is quite close to the

robustness bound 1/(W,,G) (see Fig.4.30), and

3. the Heo controller has been chosen to provide nearly the same nominal in--

put/output responses as the min-max QGPC{.

This implies that any attempt of improving robust performance with the H,, controller
can easily involve the violation of the robustness bound, and thus RS would no longer
be guaranteed. In addition, if a better #,, design were found, the min-max QGPCY

could be re-tuned to achieve similar (or better) performance.
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In short, for this particular example, the min-max predictive controller does not
only provide robust stability but, as performance is concerned, it closely parallels the
results obtained with a tightly tuned #,, controller. Taking into account that the
key property of min-max MPC is constraint-handling, the result of the experiment
presented in this section is aimed to illustrate that the behaviour of min-max MPC
can be comparable to a classical robust control design, although min-max controllers
are not explicitly designed to provide robust stability or robust performance in the

classical sense (see Chapter 3).

4.5 Robustness analysis: the randomised approach

As pointed out above, no closed form exists for the min-max controllers introduced in
this chapter, and thus it is quite a difficult issue to apply classical robustness anal-
ysis methods. In addition, the results obtained in Chapter 3 cannot be extended to
the constrained case, since no LTI form of constrained MPC controllers exists, even
though they are not implemented in the min-max framework. This section tackles the
robustness analysis problem from the point of view of the statistical learning theory

(Vidyasagar, 1997; Vidyasagar, 1998).

4.5.1 Fundamentals of the statistical learning theory

As discussed in (Vidyasagar, 1997; Vidyasagar, 1998), the statistical learning theory
can be used to tackle the robust control analysis and design problems. The robustness
analysis problem in the framework of the statistical learning theory can be formulated

as follows:

Given a family of plants G = G(z) (parametrised in z) and a controller K,

compute the probability p that the closed-loop behaviour is not “convenient”
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where “convenient” can mean “stable” or can include other specifications, such as
constraint satisfaction. Then K is considered more robust than K if the probability

of inconvenient closed-loop behaviour for K is lower than the one for K.

It can become quite a difficult task to compute such a probability analytically for
the whole plant family G(z). An alternative is to estimate p using randomised methods.
Consider a Bernoulli process, Z.e. an experiment with two possible outcomes, namely
“success” and “failure”. A coin-tossing is an appropriate example of such a process, for
which “head” and “tail” can be taken as success and failure respectively (or conversely).
It is widely known that the true probability of success in such a proééss is p = 0.5,
If the coin-tossing experimexit is repeated m times, the empirical pmbability D CAN0
be computed as the ratio of the number of “heads” ! among the m experiments. The
greater m is chosen, the more probable is that p = p,,, what can be loosely formulated
as

lim g, =p.
2T S o]

This approach is known as Monte Carlo simulation.
The result “inconvenient closed-loop behaviour” can be thought of as the out-

come of a Bernoulli process, and thus the following randomised procedure, detailed in

(Vidyasagar, 1998), can be used to obtain an estimate Py, of p:

1. Choose m plants G(z;) within the family G(z), randomly generated according

to some probability measure Pg.

2. Simulate the closed-loop system obtained with K and G(z;). If inconvenient

closed-loop behaviour arises increase [.

3. Let the estimate or empirical probability p,, be the fraction of plants among m

which produce an inconvenient closed-loop behaviour, i.e. py, = I/m.
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Now, given m, it is convenient to know how accurate is $,, an estimate of p. In
other words: what is the probability that |5, — p| < €? The best answer currently

available for this question is the Chernoff bound (Chernoff, 1952; Vidyasagar, 1998)

according to which:

- - 2
m = Z + m ? .
prob (|pm —p| < &) > 1 — 2™ (4.22)

where prob(z) stands for the probability of the event 2. Now, if one wishes to measure p
with an accuracy ¢ and a confidence of 1—§, how many experiments need be performed?

This is solved by using eqn.4.22:

or

m> é—i—Q log (g) : (4.23)
If m is chosen using this formula, it is possible to assert with confidence 1 — § that
|pm — p| < €. As an example (Vidyasagar, 1998), in order to be 99% (6 = 0.01) sure
that the empirical probability is within 0.05 (¢ = 0.05) of the true value, it is enough
to generate 1060 plants.

Notice that the bound provided in eqn.4.22 is only a sufficient condition, meaning
that it may be possible to assert |, — p| < € with probability higher than 1 — 2e~2m¢*,
or, in other words, than some m lower than the one provided in eqn.4.23 is usually
enough. This can be easily checked with a coin-tossing process. After 1060 experiments
the empirical probability of “head” has been found to be 0.4962, and the difference with
the true probability is 3.7736-1073, quite lower than the 0.05 accuracy guaranteed with
a 99% probability. This points out that the Chernoff bound can be quite a conservative
approximation, but this is the tightest result currently available. In fact, the greater

m becomes, the more conservative Chernoff bound seems to be.

As a matter of fact, the same theory can be used to show the conservativeness of

the Chernoff bound. Consider the experiment: “compute the empirical probability p,,
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for the coin-tossing problem with m; = 1060”. Now if |pmm, — p| > 0.05 call the result
“success” and otherwise count it as “failure”. Thus a new Bernoulli process has been
defined, and let g be the probability of success for this new process. The Chernoff
bound ensures that ¢ < 0.01, and an estimate §p,, can be computed. If £ = 0.005 and
a confidence level of 99% are chosen, the Chernoff bound yields my; = 105967. With
these settings, the estimate g, = 1.1985 - 1073 has been obtained. This seems to
point out that the Chernoff bound is an order of magnitude (10~2 versus 10~3) overly
conservative for this particular example. Note that this result is only approximate to

0.005 of the true value (with a 99% confidence).

4.5.2 Robustness assessment using Monte Carlo simulation

The aim of this section is to how robust the min-max QGPC]® controller is compared
to the T-based schemes through a set of randomised tests. This analysis has been
performed only for predictive controllers because constraint satisfaction is one of the
requirements. The unconstrained simulations are provided for completeness only. The
parameters used to analyse the robustness of these controllers are, on the one hand,
the empirical probability of obtaining an unstable closed-loop system, denoted as pY,
and, on the other hand, the empirical probability of obtaining stable closed responses
which satisfy the user-designed constraints, referred to as p,. It is worth pointing
out that a set of tuning knobs which provided robust stability for the whole plant
family would thus be senseless for this comparison, since the empirical probability of
instability would be 0 in either case. Hence the experiments have been carried out in
such a way that the closed-loop performance obtained with the T-based and min-max

controllers is similar.

The nominal model chosen in Section 4.4.1 is used here, and a 30% variation margin
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Figure 4.32: True and nominal pole-zero locations

has been considered to generate the true parameters. That is, given

ay_ A= m=1) ¢ -dg7)
Go(g7) =K 1-¢) (@—-ngH)(1-7g 1)

the true steady-state gain K is assumed to vary in the interval [0.7,1.3] (the nom-

inal steady-state gain is 1), the poles n and # are within a circle of radius 0.3 -
|0.7418 £ 0.6333] centred at 0.7418 + 0.63337 (the nominal poles), and the true zero
lies in the interval [—1.3 - 0.9832, —0.7 - 0.9832] (where —0.9832 is the nominal zero).
In other words, K = (1 + Akx)Kn with [Ak| < 0.3, 7 = (1 + Ap)nm with |A,] < 0.3,
and ¢ = (1+ A,)¢m with |Ay| < 0.3, where the nominal values are given by K, = 1,
T = 0.7418 + 0.63337 and ¢, = —0.9832:

¢g'B _ 0.2358¢7! +0.2319¢72
A 1-1.4835¢71 +0.9512¢~2"

Glg™h) =

The pole-zero loci of the nominal and true systems are shown in Fig.4.32, where “x” is
used for the nominal poles, “o” is used for the nominal zero, the circles represent the
true poles loci and the true zero lies between the “>” and “<” signs. Notice that the
true plant family includes minimum phase, non-minimum phase, stable and unstable

systems, and thus this example can be considered as quite a challenging benchmark
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to measure the robustness of the min-max controllers introduced in this chapter. In
addition, a disturbance of magnitude 0.05 has been added to the true system for ¢ > 51
samples, 7.e. the true output has been gezzei'ated using eqn.4.17 with z(¢} = 0.05 for

> 51

It is worth pointing out that the robustness analysis methods depicted in Chapter
3 cannot be applied directly to this example, since no stable uncertainty description
can be found to represent the whole plant family. More sophisticated techniques, such
as the coprime factorisation, could be used (Skogestad and Postlethwaite, 1996) but

they would only apply to the unconstrained case.

For this comparison, the tuning knobs Ty = 1 — 0.9¢7* and z# = 0.9 have been
chosen since they lead to similar responses, as disturbance rejection is concerned, for
the T-based and the min-max controllers respectively (see above). In addition, the
polynomial T3 = (1 — 0.9¢7')? has been used to show that increasing the low-pass
behaviour of the filter 1/T is not always convenient. In this case, including 4 as a
factér of T leads to low robustness margins because the roots of A are very near the
unit circle. For instance, the results obtained with T' = A(1 — 0.9¢™") are much poorer

than the ones provided below.

Five predictive controllers (the GPC""; the QGPO‘;"’, each with T} and T3, and the
min-max QGPCY{°), using the same nominal system, have been tested on 1060 plants
randomly generated on the family described above. Hence the empirical probabilities
computed are within 0.05 of the true value with a confidence of 99%. The true plants
have been chosen within the iéﬁerva%s of a 30% parameter variation {poles, zero and
gain, delay excluded), with uniform distribution. The tuning knobs of the controllers
are N, = 5, p =1 and, for the min-max controller, §~(5) = ~0.2, *(5) = 0.2 (the

setpoint change occurs at ¢ = 5 samples} and M, = 10.

The first experiment has been performed to assess the probability of obtaining an
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Figure 4.33: Plants leading to an unstable closed-loop system

that the true poles are almost on the boundary of the circle used to generate the true
" plant and that all these plants are open-loop unstable (whereas the nominal system
is not). It is also remarkable that the true steady-state gain is always lower than the
nominal value, which produces control moves which are lower than those required to
stabilise the system. In addition, it is worth pointing out that if the nominal gain is

closer to the true value the closed-loop systems turn to be stable with these plants too.

GPC*® QGPCY’ min-max
T | & | T | D QGPCY
* 73 20 28 21 45
pr = 1*/m | 0.0689 | 0.0189 || 0.0264 | 0.0198 0.0425
g 565 233 522 229 1007
p5, = 1¢/m | 0.5330 | 0.2189 || 0.4925 | 0.2160 0.9500

Table 4.4: Randomised tests results (ii)

The randomised tests have been repeated enforcing an output constraint y(t) < 1.2
for all ¢. Table 4.4 shows the results of the experiments, where ¢ is the number of
stable closed-loop system for which the output constraint is respected, and p¢, is the
empirical probability of stability and constraint satisfaction. It must be noticed that

the incorporation of the constraint leads to a greater instability probability in the min-
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GPC™ QGPCY® min-max
i | T i | D QGPC?
A 36 170 33 171 18
pe = {*/m || 0.0340 | 0.1604 | 0.0311 | 0.1613 0.0170

Table 4.3: Randomised tests results (i)

{(which is identical to the GPC{® in the nominal case with these tuning settings) and
the 2-norm GPC™ behave quite similarly. The QGPC{° seems to be a bit more roEust
than the 2-norm GPC®™ with T' = T; (other results of this experiment also point out
that situation), but with 7' = T3 the results are almost indistinguishable. This slight
difference can be caused by the tuning knobs (N, and p), since no indication exists to
think that 1-norm controllers are intrinsically more robust than 2-norm counterparts.
Needless to say, T3 is a much suitable a choice than 75 in this example, since it leads
to much fewer unstable cases. Finally, it is worth point out that whenever a given
true plant produces an unstable closed-loop system with the min-max controller, the
closed-loop systems obtained with the T-based controllers are also unstable, i.e. the
unstable cases obtained with the min-max QGPC{° are a subset of those of the T-based

counterparts.

As an example, the min-max QGPC{® is unstable for the plant:

0.1177¢7* + 0.1440¢2

Golg™) =
o(g™) 1—1.9733¢~1 + 1.3054¢~2’

the poles of which are located a€ 0.9867 + 0.57617 (magnitude 1.1426), the zero at
—1.2236, and steady-state gain is 0.7881, i.e. the true system is unstable, non-minimum
phase and the irue steady-state gain is greater than the nominal value (1). In other
words, this particular true plant provides an open-loop behaviour which is quite differ-

ent from the nominal system.

Fig.4.33 shows the pole-zero and gain distributions for the 18 plants which lead to

an unstable closed-loop system with all the controllers used in this experiment. Notice
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unstable closed-loop system in the unconstrained case. Let p* denote the probability of
instability, [* the number of unstable cases and p¥ the empirical probability computed
as the ratio of unstable cases among the m experiments. Now a definition of “unstable
closed-loop system” is needed. Here, a system is said to be stable in the Bounded-
Input/Bounded-Output (BIBO) sense, i.e. if the system response to a bounded input
(setpoint) is a bounded output. However, in simulation, the output of a system is
always “bounded” in some sense (since no computer can handle infinitely large num-
bers). Here, the closed-loop system has been considered unstable if the maximum or
minimum output values exceed some limits during the simulation time. Now, as the
setpoint changes from 0 to 1, the system is taken to be stable if the output is bounded
between —0.75 and 2.5. Perhaps some stable closed-loop systems are counted as un-
stable with this approach, but performance would be so poor if these limits were not

satisfied that they can be thought of as unstable anyway.

The results are shown in Table 4.3. Notice that most of the empirical probabilities
are, in fact, lower than the accuracy parameter (¢ = 0.05). If accuracy were increased
up to (say) 0.005, m = 105967 plants would be required, and performing that many
simulations would take a few days with current computing capabilities. It is thus
assumed that the values of Table 4.3 are, indeed, quite accurate, z.e. that the error
between the true probabilities and the empirical ones is much lower € = 0.05 (as occurs
in the coin-tossing example presented above). In addition, there is no reason to think
that the empirical probabilities computed are more “exact” for one controller than for
another. Other simulations performed in the same conditions provide quite similar

results.

The outcome of this experiment evidences that the min-max controller is, at least,
as robust as the more robust T-based controller which has been found. In fact, if
the results of Table 4.3 were exact, the min-max QGPCY° is about twice as robust as

the T-based QGPCY® with T' = Ty. It is also remarkable that the 1-norm QGPC{
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max controller compared to the result of the unconstrained experiment (Table 4.3).
The reason for such a behaviour is that, in order to satisfy the constraint for wide 6~
and 0%, the controller mﬁst lead the output to negative values, this makes 6§~ and 6+
increase and, thus, the output must be pushed even farther from the constraint. This
process ends up causing instability. In fact, the probability of an unstable closed-loop

system is higher than that obtained with most of the T-based approaches.

Min—-max Quasi-infinite horizon GPC: Setpoint and Output signals
Y g T r Y

2 T - - T
0.

Global uncertainty and uncertainty bounds
u T T T T

Control signal

. " . ) ) " s L ) L " s ' L ) .
JO 10 20 30 40 50 70 80 0 100 oo 10 20 30 40 50 60 70 80 80 100
Time (samples) Time {samples)

(a) Input/output responses for the min- (b) Global uncertainty (solid) and uncer-

max QGPC{° (solid) and output con- tainty bounds (dotted)
straint (dotted) ‘

Figure 4.34: Closed-loop behaviour of the min-max QGPC{®

As an example of this peculiarity, the closed-loop behaviour of the min-max QGPC{°

is shown in Fig.4.34 for the true plant

0.1352¢! + 0.1461¢72
—1.9734¢7 + 1.2657¢—2’

Golg™') = 7

the poles of which are located at 0.9867 + 0.54057 (magnitude 1.1251), the zero at
—1.0805, and the steady-state gain is 0.9624. Apart from the initial delay which is due
to the tuning settings, the closed-loop system is stable until the disturbance enters the
system (t = 51), but the combination of the perturbation, the band updating algorithm,
the output constraint, and the open-loop instability of the true plant, produces closed-

loop instability. Notice that the oscillations of the global uncertainty signal increase
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when the disturbance enters the system. Then the bands are widened and the output
must be led further from the constraint. As a consequence, the uncertainty grows even
more, the bands need be widened again, and so on. This situation might have been
avoided with a more conservative band updating procedure. However, the sources of
uncertainty are so extreme in this example (unstable, non-minimum phase plant versus
stable minimum-phase nominal system) that such a behaviour is not expected in real

control problems.

Now, as constraint satisfaction is considered, the 95% of the plants tested with the
min-max controller have produced a stable closed-loop system for which the constraint
is always respected, compared to the just a bit more than a 53% attained with the best
T-based controller. The polynomial T, appears as quite an unsuitable choice in this
- respect, since the output breaks the constraint systematically whenever it is used. In
addition, the maximum value of the output reached after the 1060 tests (taking into
account the stable cases only) with the min-max controller is 1.2367 (quite close to the
constraint) whereas with the 7-based scheme the maximum value of the output has-
been found at 1.8731 and 2.3623 for the QGPCS® with T) and T5 respectively, and at
1.9085 and 2.3268 for the (2-norm) GPC*™ with T} and T respectively. Notice that all
of these values are unacceptably large, since the constraint specification is y{t) < 1.2 for
all £. The T-based controllers can behave even worse. For instance, if the magnitude of
the disturbance is 0.1 instead of 0.05, pg, is still about 90% for the min-max QGPCS,
but it falls down to less than 5% (1) for the T—baseii schemes,

Moreover, the number .af constraint violations has never exceeded 2 samples (out of
100} with the min-max scheme, whereas with the T-based controller there have been up
to 31 constraint violations for a single experiment. The large probability of constraint
satisfaction provided by the min-max QGPCS® has been obtained at the price of a
slightly lower stability resuits, since the T-based controllers are stable for a few more

plants than the min-max scheme.
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This situation might be improved by using feedback formulations of the min-max
controllers (Scokaert and Mayne, 1998), as additional degrees of freedom are introduced
to cope with different uncertainty sequences. This is particularly important when
constraints are enforced. However, this solution does not lead to such a simple LP

problem, as discussed in Chapter 5.

Finally, the outcome of these randomised experiments leads to the conclusion that
the min-max QGPC{° suggested in this chapter, tested in quite a difficult environment,
provides with a convenient solution in both the constrained and the unconstrained
cases. The min-max approach overcomes the classical (well-tuned) T-based controllers,
especially as constraint satisfaction, one of the most important issues ih predictive

control, is concerned.

4.6 Concluding remarks

In this chapter, MPC controllers based on min-max optimisation and a global uncer-
tainty description are formulated and tested. To begin with, a CARMA model for-
mulated in terms of a global uncertainty parameter (or signal) is provided in eqn.4.1,
and the subsequent output predictions are derived using such a model. The min-max
optimisation problem is undertaken for both 2-norm and 1-norm formulations. Taking
into account the results of the robustness analysis for the unconstrained case provided
in Chapter 3, this chapter is focused on infinite (or quasi-infinite) horizon controllers,
since they provide nominal stability guarantees and their intrinsic robustness features

are superior to other approaches such as the CRHPC.

The min-max optimisation problem for 2-norm controllers can be solved using ei-
ther analytical or numerical methods, but the former tend to be untractable for usual
settings (N, = 3 or larger), and thus the latter is regarded as a more convenient alter-

native for practical applications. However, the numerical solution relies on non-linear
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programming (SQP is used in this PhD thesis), and there are no a priori bounds of
computation time. On the other hand, 1-norm min-max controllers are shown to lead
to a simple LP solution which can be solved very efficiently with current optimisation
tools. What is more, the CPU time required for a LP problem solution can be predicted
(or bounded) pridr to solving the problem. A comparative analysis of the computa-
tional burden has been performed, and the results show that the 1-norm approach is

always more efficient.

The min-max optimisation using global uncertainties is solved assuming lower and
upper bounds on the uncertainty signal, and the cost function is then minimised for
worst case prediction. Since convex cost functions are used and the uncertainty regions
(polytopes) are always convex, the maximum lies on a vertex of the polytope, and this
property makes it much simpler the solution of the problem. In the existing methods
which take this approach (Camacho and Bordéns, 1995; Scokaert and Mayne, 1998), it
is assumed that the lower and upper uncertainty bounds are constant. In this thesis, the
closed-loop behaviour of the uncertainty signal when modelling errors and/or distur-
bances occur is investigated. It is shown that the uncertainty signal oscillates whenever
the setpoint changes or a disturbance enters the system and, later on, it settles down
to some steady-state value. This property has been used to suggest a band updat-
ing algorithm which allows for the uncertainty bands to approach the measurements.
Thus, the control algorithm is driven from cautious initial settings to more stringent |
counterparts. In addition, this approach guarantees that the (uncertainty-dependent)

constraints are respected as far as the uncertainty bounds are not violated.

The novel methods, especially the min-max GPC™ and the min-max QGPCY,
have been extensively tested in quite tough situations, showing that they overcome the
polynomial T' approach when constraints are enforced. The classical T settings often
fail not only to satisfy constraints, but even to provide a stable closed-loop system. In

the unconstrained case, the min-max approach produces results which are comparable
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(sometimes better) to the T-based controllers.

The min-max controllers are also tested on a strongly non-linear system. This
approach provides with a remarkable trade-off between performance and computational
burden, and again overcomes the solution obtained with the T-based controllers. As
shown by means of an example, the min-max QGPC{® is several orders of magnitude

faster than a non-linear MPC method, at the price of a lower performance.

The min-max methods have also been tested against robust multi-model controllers,
such as those suggested by (Kothare et al., 1996). It must be noticed that in transfer
function formulations the min-max multi-model approach is difficult to apply, since
pole-uncertainty cannot be easily handled. Nevertheless, a comparison with the global
uncertainty approach is provided in this chapter, and it is shown that the multi-model
methods yieid better performance for a larger computational burden. However, the
application of min-max multi-model methods for transfer function formulations is quite
limited since uncertainty comes from many sources ‘(Strong non-linearities, changing

poles) which cannot be handled by this approach.

A comparative analysis of the min-max predictive controllers formulated in this
chapter with an H, controller is also provided. Although the min-max QGPC{® dcés
not guarantee robust stability, it is shown to provide with almost identical results to
those obtained with a tightly tuned H,, controller. A performance index shows that
both solutions are almost indistinguishable, which is quite a noteworthy achievement
since the main feature of min-max methods is the ability to handle output and state
constraints in spite of uncertainﬁy and not to provide robust stability or performance

‘in the classical sense.

A robustness analysis of the newly proposed controllers based on the statistical
learning theory shows that these methods perform quite well on the most difficult

situations, and appear as the most convenient choice when constraint handling in spite
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of uncertainty is an indispensable control requirement. Again, the min-max controllers

are shown to be at least as robust as the classical T-based formulations even when

constraints are not enforced.

Finally, a few limitations of min-max MPC using global uncertainties are pointed
out in this chapter. Some simulated experiments reveal that unexpected dead-times
or inverse responses can occur. Although such a behaviour can be often redressed by
re-tuning the controller, the reason for such a behaviour may stem from the differ-
ence between the degrees of freedom of the controllers and the amount of polytope
vertices. This difference increases exponentially with the uncertainty horizon Ny what
makes it difficult to handle all the possible situations with a single control move vec-
tor. Among other considerations, the next chapter suggests some min-max controllers

which overcome this difficulty.
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Chapter 5

Trends and prospects of min-max
RHPC

5.1 Introduction

As discussed in Chapter 4 (Section 4.4.4), there are some limitations or unexpected
closed-loop characteristics related to the classical min-max MPC controllers based on
the global uncertainty description. Scokaert and Mayne (1998) pointed out that some
of the drawbacks related to min-max controllers are often associated to the use of a

single control profile to handle all the possible disturbance (uncertainty) sequences.

As remarked in Scokaert and Mayne (1998), the standard min-max approach does
not include the notion that feedback is present in the receding horizon implementation
of the controller. It is also noted that the undesired closed-loop characteristics of
the standard min-max MPC can be worse than the behaviour shown in Section 4.4.4,
since infeasibility or even instability can occur due to the inability of the controller to
handle, with a single control profile, all the potential uncertainty realisations. These
considerations led to the formulation of a feedback min-maz state-space MPC law
which, for a simple first-order system subject to unmea,surablé bounded disturbances,

is shown to succeed where the classical min-max approach fails.

227
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Consider, for example, the min-max QGPC{° as defined in the previous chapter. If

N, =4 and N = b, the single control move sequence
Au(t) = [ Au(tlt) Au(t+1j) Au(t+2]t) Au(t+3Jt) ],
is expected to cope with 2° = 32 different uncertainty vertices (realisations):
0= [0t +1l) 6(t-+2l) 0(t+3)t) O(t+4lt) 0¢+5]t) ] ,

with 6(t + k|t) = 6~ or 6(t + k|t) = 0%, and 6] # 65 if i # j for all 1 < 4,5 < 32. In
addition, it must be taken into account that some of the degrees of free{.iom available
in the control move vector Au(t) are used to enforce the equality constraints on the
unstable part of the output (see Chapter 4). In this example, if the nominal model
is open-loop stable, a single equality constraint (nz + 1 = 1) must be enforced, and a
component of Au(t) is used to satisfy such an end-point constraint. In short, there are
only three (four decision variables minus one equality constraint) available degrees of

freedom in Au(t), namely Au(t|t), Au(t+ 1}t) and Au(t+2]t), to cope with thirty-two
different uncertainty realisations. Note that the classical min-max approach does not
exploit the fact that new measurements of §(¢) will be available at time ¢t +1, ¢ +2 and
so on. There is no real need of handling so many different possibilities with a single

control profile.

In (Scokaert and Mayne, 1998) it is remarked that, apart from using different control
profiles for different uncertainty realisations, a so-called “causality constraint” must
be incorporated. ‘Consider again the example provided above. The ideal approach
would be to define 32 different hypothesised control move sequences, say Awu;(t) with
1 < ¢ < 32, to cope with the 32 different uncertainty realisations. This would give
32 x 5 = 160 minus 32 (used to enforce the end-point equality constraints) degrees of
freedom for optimisation, possibly much more than required. Now, if the problem were
solved that way, there Wo{xidfbe 32 different candidate first control moves to update

the control signal. With no knowledge about the future uncertainty va,liles, it would
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be impossible to decide among that many candidates. The causality constraint is thus
introduced to allow for just a single “next control move” for each possible internal
process state, which depends on past input/output (or state) data only. In particular,
this constraint ensures that all the hypothesised control move sequences start with the
same first' control move, since the current internal process state is obviously the same
for all the different future uncertainty realisations. Needless, the feedback min-max
approach involves a larger computational burden compared to the standard min-max
methods, but the benefits as performance is concerned might justify the use of the

feedback formulation.

In this chapter, the notion of feedback min-max MPC is exploited, and a feedback
min-max (2-norm) GPC* control law is suggested and tested. A feedback min-max
(1-norm) QGPCY using LP is also outlined. As shown below, if the 2-norm is used, the
feedback min-max problem can be solved using non-linear programming tools, such as
the SQP method. 2-norm cost functions are differentiable, and thus gradients (of both
the cost function and the constraints) can be obtained. The use of gradients speeds
up the convergence to the optimal point and provides the non-linear programming
problem with better numerical properties. These gradients cannot be computed for
1-norm cost functions since these are not differentiable, and thus the SQP solution for

the 1-norm case is not encouraged.

If a l-norm cost function is used, such as that of the QGPCS® (eqn.2.48), it is
possible to solve the optimisation problem by means of LP methods. However, in
the feedback implementation of such a min-max controller, the number of variables
and constraints would increase exponentially with the uncertainty horizon. A simpler
solution, outlined in Remark 5.2, can be used to reduce the number of variables, but
the number of constraints still depends on Ny exponentially. The advantages and
drawbacks of 1-norm implementations are similar to those of the standard min-max

algorithms. That is, the CPU time can be known (or bounded) a priori, since LP tools
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are applied, but the QGPCS°® does not guarantee the stability of the nominal closed-
loop system, though it is very unlikely that nominal stability problems occur. However,
due to the number of constraints required by the LP problem, the computational
advantages of feedback 1-norm implementations compared to 2-norm counterparts are

not as significant as for the standard min-max approach.

Taking into account all these considerations, the next sections are focused on feed-
back min-max 2-norm implementations. The 1-norm case, which would lead to similar

results, is not deeply analysed.

5.2 Feedback min-max GPC*®

In this section the min-max GPC®™ depicted in Chapter 4 is reformulated so as to apply
different control profiles for different uncertainty realisations, subject to the causality

constraint defined in Section 5.1.

As discussed above, if the settings N, = 4 and N = 5 are assumed and the nominal
model is open-loop stable, there are only three degrees of freedom in Awu(t) available
to minimise the cost function, whereas the last control move, Au(t + 3|t) is needed
to satisfy the end-point constraint. In such a case (Scokaert and Mayne, 1998), four
different control move sequences, defined in terms of eleven decision variables, can be

specified to face eight different potential future uncertainty realisations:

—Ta a- a-1T) -
® zz; % z- §- §+ %T } <= Awuy(t), with

Auy(t) = [ Aui(tlt) Au(t+1jt) Aug(t+21t) | Aug(t+ 3jt) ]'r,
5 O1=[0 0" o]

<> Auy(t), with
0:=1[06- ot 9+]T} ua(t), wi

Aus(t) = [ Auy(t]t) Aws(t+1]t) Aug(t+2l) | Aup(t+3Jt) |7,
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3 - - 1T
o gzle v ol b au
Aug(t) = [ Awm(tlt) Duplt+11) Auglt+20t) | Aus(t+3Jt) |7,
e Gi=[0% 07 0]

03#[9+ ot 9+]T}<==:>Au4(t),with

Aug(t) = [ Auw(tt) Aup(t+1Jt) Aug(t+2[t) | Aug(t+3[t) 7.

Note that these four control profiles start with the same first control move Awu, (t|t).
This is a consequence of the causality constraint, since the past input/output data are
obviously the same at this stage. However, at time t-1, 8(t + 1|t) can be either (closer
to) 6~ or (closer to) 8%, thus two possible control moves are considered at time ¢ + 1,
either Auy (¢+1|t) for 8(t+1]t) =6, or Aug(;t+1lt) for 8(t+1|t) = 6*. This procedure

is then repeated for the sampling instant ¢ + 2.

Now these four different hypothesised control move sequences, Awu;(t), Ausy(t),

Awugy(t) and Auy(t), can be defined in terms of an eztended control move vector:

AU = [ Aua(tlt) | Aw(t+1]t) Aug(t+1Jt) |
Aug(t+2]t) Aus(t+2[t) Aus(t+2|t) Aug(t+2[t) |

Auy(t+3[t) Aug(t+3lt) Aus(t+3[t) Aug(t+3[t) ]7.

Notice that the last four elements of the vector AU (t) are used to enforce the equality
constraint, and thus these do not contribute with additional degrees of freedom to han-
dle different uncertainty realisations. Because of this, uncertainty vertices 9? consisting
of three elements instead of four are considered above. Hence, if the last four decision
variables are not taken into account (since these are needed to ensure the equality
constraints), there is almost a one-to-one correspondence between the uncertainty re-
alisations (8) and the degrees of freedom available for the controller (7). In general,

there are 2" uncertainty vertices and 2" — 1 control moves available for optimisation.
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Therefore the ratio between different uncertainty realisations and degrees of freedom
is always close to unity. This is a clear advantage compared to the classical min-max
approach, for which there are N,, —nz — 1 degrees of freedom (control moves minus end-
point constraints) to handle 2% uncertainty realisations, where Ny > N > N, +np—1
(see Chapter 2, eqn.2.14). That is, for standard min-max controllers the degrees of
freedom increase linearly with N,, whereas the polytope vertices increase exponen-
tially with N,. Hence, for standard min-max MPC methods, the greater the control

horizon is chosen, the more difficult the optimisation task becomes.

Each different control profile can be selected from AU (t) by using a convenient
selection matriz formed by zeroes and ones. For example, for Au, () and AU(t) as

defined above, it holds that

1/0 00 0 0 0(0 O O O
0|1 0,0 0 0 0{0 0 O O
Awi)=1 010 0|1 0 0 0|0 0 0 o |AU®
0{0 0/0 0 0 0Cj1 0 OO
In general, the control profile Awu;(t) can be obtained by means of a selection matrix

S; as Au;(t) = S;AU(2).

For the general case, given Ny, nz+1 (the number of erx&péint equality constraiﬁﬁs}
and N, the uncertainty horizoh is defined as Ny = N, — ng — 1, and the extended
control move vector is formed by 2™¥¢ — 1 control moves available for optimisation plus

- 28¢-1 control moves required to enforce the end-point equality constraints. Then 2Ve—1
different hypothesised control move sequences are defined in terms of the extended
control move vector. For the example introduced above, Ny = 3, nz +1 = 1 and
N =5, there are 2% 1=7 control moves available for optimisation, whereas 23! = 4

| control moves are used to enforce the end-point constraints, and thus the extended

control move vector is formed by 7 + 4 = 11 decision variables.

Note that, with this definition of Ny, the uncertainty horizon is shorter than the

prediction horizon N, and thus some hypothesis must be made about the future un-
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certainty signal for ¢ + Ny + 1,t + Ny +2,...,t + N. In the example, since (output)
predictions are performed up to ¢+ 5 and these depend on the uncertainty signal from
t—%—»l to t + 5, uncertainty predictions for ¢ + 4 and ¢ + 5 are required, but the uncer-
tainty vertices defined above consider only up to 3-step-ahead predictions. Here, it is
suggested ‘that the future global uncertainties from ¢ + Ny + 1 to ¢ + N be assumed
equal to the average of the lower and the upper uncertainty bounds, i.e.

0~ + 6%

Ot +jlt)=0= 5

) N9 +1< .7 < N )
which can be thought of as the “expected uncertainty value”.

Now the min-max GPC® introduced in Section 4.2.2.3 can be reformulated so as
to use different control sequences for different uncertamty realisations. As discussed in

Chapter 4, the standard min-max GPC"" can be posed as

Au® = arg min max J(t),
w 9 eegﬂg

where Jy(t) is the quadratic cost function:
N, T N, T
Rt) = (w~ f - GAu=—Ho0[*) A (w- f - GAu— H8[*) + AuTRAw,

subject to equality (¥ = w) and possibly to inequality constraints, with the weighting
matrices A and R defined in Chapter 2. Since the worst case occurs at a polytope
vertex (see Chapter 4), the cost function J5(t) is evaluated only at the polytope vertices

8 c ",

This min-max problem can be rewritten in order to incorporate different control

profiles and the causality constraint, leading to the problem

AU = argmin max Ji(t),
AU gloceNe

subject to

T
Ji) = (w — f - GAu; — Hb!*) A (w— f - GAu; — H0l) + AuTRAw,
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with Aﬁj = S_«;AU and

=T e

where [z] denotes the lowest integer which is greater than or equal to 2, subject to the

equality constraints
GAu=iw—f—H@ ™,
possibly subject to the general inequality constraints
PAu; <7, 9”"6{334; };
and subject to the uncertainty constraints
O(t+7lt) =8, 5 > N,. (5.2)

- Remark 5.1 As discussed in Chapter 4, it is not possible to enforce the end-point '
equality constraints for infinitely many polytope vertices. Therefore, the vector gt

if formed with all the components equal to the band average 8. Qaa

Taking into account the “uncertainty constraints” of eqn.5.2, the polytope vertices

are formed as
oY = [ +1[t) ... 6(¢t+NoJt) 6 ... 8],

where the elements §(t + j|t) equal = or 8+ for 1 < j < Ny = N, — nz — 1. The last
few components of Bf"’, for t + Ny + 1 through ¢ + N (or further if required by the
constraints), are assumed identical to the average 0 of the lower and upper uncertainty

bounds, Of course, Qf‘{é # 8;?" if 4 # 7, what yields exactly 2™ different vertices.

Although the notation is admittedly cumbersome, the interpretation of the formulae
provided above is rather intuitive. Each control move profile Awu;(t) is required to

handle two uncertainty vertices, namely 921 , and Oévj". For the example presented
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above, Aw;(t) handles 83 and 83. Conversely, the vertex 0,¢ is handled by the control
move sequence Aups), what clarifies the meaning of eqn.5.1. In addition, the end-
point equality constraints must be satisfied with all the control sequences Awu; for
1 < j < 2%-1 The inequality constraints are defined such that each control profile
copes with the associated uncertainty realisations. Finally, an equality constraint on the
uncertainty beyond Ny, as discussed above, is assumed. Note that this latter constraint
may need to be enforced even further from ¢+ N in case that, for infinite horizon-like

constraints, the constraint horizon need be placed beyond the upper prediction horizon

(N).

It is worth pointing out that the causality constraint is implicit in the above for-
mulation. The way the control sequences Awu;(t) are selected from AU(t) by means

of the matrices S; enforces the causality constraint.

Now, although an analytical solution of this problem, analogous to that described
for the standard min-max GPC® in Section 4.2.2.3, is not hard to obtain, such an
alternative would be excessively CPU intensive. Fortunately, a numerical solution
based on non-linear programming (e.g. SQP) can be used to find the optimal extended

control move vector as
VP AU = arg min v subject to v > Ji(t) for 1 < i < 2N,
Uy

where Ji(t) is the cost function associated to the uncertainty vertex @7°, subject to
all the equality /inequality constraints reported above. The cost functions Ji(t) specify
the (non-linear) constraints v > Ji(t). These cost functions (or constraints) can be
easily rearranged to be defined in terms of AU (t) rather than Aw;(t) by making use
of the relation Au;(t) = S;AU(t), which yields

Ji(t) = (w — - GS;AU ~ Hg@fg)TA (w - f~GS;AU - Heg?’e)

+AUTSTRS;AU.



236 - Trends and prospects of min-max RHPC

Note that all the constraints and the optimisation criterion (v) are differentiable
with respect to the decision variables AU(t) and the additional degree of freedom
v, a property which would not be satisfied if 1-norm cost functions (see Chapter 2)
were used. The solution to this optimisation problem with non-linear programming
methods, such as SQP, is straightforward. As already remarked, the use of gradient
data is beneficial since, firstly, it speeds up the convergence of the optimisation methods
and, secondly, the numerical properties of non-linear programming (such as SQP) is

improved if the gradients are incorporated.

Remark 5.2 If 5 1-norm cost function is used, similarly as done for the standard
QGPC{ in Section 4.3, an LP solution to the optimisation problem can be found.
In principle, for each pair of dncerta.inty vertices 82;?»1 and 83;"; different o variables
should be defined. Hence the number of ¢ variables would be N2Ve i.e. the number

- of variables and constraints would increase exponentially with Np:
—0; < GAu;+HbV + f—w<a;, 07 ¢ {eﬁ;ﬂ“l,eg&},

for j = 1,2,...,2N~1 A simpler (more conservative) solution could be obtained by
using the same variables o; for all the control profiles Au;. Then, if the relation

Au; = §;AU is introduced, these constraints can be specified as
—o < GS;AU +H0¥ + f —w< o, 87 ¢ {eg;{},eg’f},

for j = 1,2,...,2%~1, Each of these constraints might be examined row by row so
. as to apply the constraint reduction procedure depicted in Section 4.2.2.1, leading to
the incorporation of 2N - 2Y6~! linear constraints to the LP problem. Such a solution
might be less computationally intensive than the 2-norm counterpart based on SQP
presented in. this section, at least for a relatively small N, but it is noted that the

number of constraints would still increase exponentially with Nj. Qaa
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5.3 Simulation results

In this section simulation results for linear and non-linear systems are presented to
show how the feedback min-max implementation can overcome some of the drawbacks

of the standard min-max MPC approach.

5.3.1 Linear example

First of all, the standard and feedback implementations of the min-max GPC™ are

compared for a linear plant. This example is analogous to that presented in Fig.4.10

of Section 4.4.1.

Let the true and nominal systems be those used in Section 4.4.1, i.e.

g !B _ 0.2358¢7!+0.2319¢72
A T 1-1.4835¢7! +0.9512¢~2’

G(g") =

and

g 'By _ 0.2973¢"!+0.2923¢72
Ay  1-1.7802¢"! + 1.3698¢~2"

Golg™) =

Thus the true system has two unstable poles, whereas the nominal pia;nﬁ is an open-
loop stable lightly damped system. In addition, an additive disturbance of magnitude
0.05 (eqn.4.17) is assumed to enter the system at time ¢ > 51.

In Fig.4.10 it is observed that a dead-time appears when the min-max (I1-norm)
QGPC? is used with a particular choice of the tuning knobs. This undesirable be-
haviour can also occur with the min-max 2-norm. In the following experiment, a
setpoint change from 0 to 1 at time £ = 5 samples has been performed. The constraint
y(t) < 1.2 for all ¢ has been enforced, and the tuning knobs of the standard min-max
GPC™ have been chosen as [Ny, p] = [5,0.1], 8-(5) = —0.2, 6¥(5) = 0.2, M, = 10,
p = 0.9. Finally, the uncertainty bands are frozen for four samples after the setpoint

change.
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Figure 5.1: Closed-loop behaviour of the standard min-max GPC*®

The outcome of this experiment is shown in Fig.5.1. It is noted that a dead-
time appears in the output, similarly as occurs with the min-max QGPCY° in Fig.4.10.
Although the output in the first few samples is slightly greater than zero, it remains far
from the setpoint and only when the uncertainty bands are updated is the output taken
closer to the setpoint. This example illustrates that this kind of dead-time responses
are not a peculiarity of 1-norm formulations, but general to the standard min-max

MPC approach irrespective of which norm is used in the cost function definition.

The same experiment, performed for the feedback implementation of the min-max
GPC®™, yields the input/output responses displayed in Fig.5.2(a}, and the uncertainty
signal of Fig.5.2(b). Note that the improvement, as performance is concerned, is dra-
matic. The additional degrees of freedom available to handle different uncertainty
- realisations are exploited and the five-sample dead-time in the output response of the
standard min-max MPC method is no longer found. These supplementary degrees of
freedom revert on quite greater control efforts compared to the standard min-max case.

The controller does not need to be excessively cautious and the output approaches the

setpoint much faster than in Fig.5.1(b), with no risk as constraint handling is concerned,
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Figure 5.2: Closed-loop behaviour of the feedback min-max GPC®

since the uncertainty bands are always respected. In addition, it is worth pointing out
that the uncertainty signal, as a consequence of the greater control efforts, is larger
for the feedback implementation, but it is always kept within the assumed lower and

upper bounds.

As the computational burden is concerned, the whole 100-sample simulation per-
formed with the standard min-max GPC® takes 58.5150 seconds on a 400 MHz com-
puter, whereas the feedback min-max GPC* takes 204.9150 seconds. Roughly speak-
ing, the latter implementation involves four times the computational burden of the
former. Of course, the same interpreted SQP algorithm has been used for both con-
trollers. Note that the benefits as performance is regarded are quite appreciable, but

the increase in CPU time is not too large.

5.3.2 Non-linear plant with a saturation

The next few experiments have been carried out for the non-linear system described

in Section A.5 of Appendix A. These experiments are closely related to the results
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presented in Section 4.4.4.

The nominal model has been chosen, neglecting the saturating amplifier, assuming

a ZOH on the input, and using a sampling time of 0.05 seconds, as {eqn.A.10}

1B 0.2358¢7! +0.2319¢2
A 1-—1.4835¢"1+0.9512¢2"

Gg) =12

In addition, a constant disturbance of magnitude 3 is added to the true output for

t > 51 samples.

As shown in Fig.4.22, the min-max QGPC}® can lead to an inverse response for a
particular choice of the tuning settings. This drawback is analogous to the dead-time
response obtained in the linear case shown in Fig.4.10. Again, as illustrated below,

this peculiarity is not confined to 1-norm controllers.

In the next experiment, performed with the standard min-max GPC®, a setpoint
change from 0 to 55 is scheduled at time ¢ = 5 samples, and the {mtggi constraint
y(t) < 68 for all ¢ is enforced. The tuning knobs are chosen as [Ny, p] = [5,0.1],
8- (5) = —15, 8*(5) = 15, My = 10, 4 = 0.9, and the bands are frozen for four samples
after the setpoint change. ‘

The outcome of this experiment is displayed in Fig.5.3, where an inverse response,
similar to that shown in the experiment of Fig.4.22, can be observed. Once again, it
is remarked that such an undesirable closed-loop behaviour is not linked specifically
to the 1-norm cost function definition. This kind of problems are common to all the

standard min-max implementations.

Now the experiment is performed again with identical settings for the feedback
implementation of the min-max coniroller. The results, shown in Fig.5.4, evidence
that the feedback implementation overcomes the standard approach since the inverse

response behaviour is completelyv suppressed.
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Figure 5.3: Closed-loop behaviour of the standard min-max GPC®

Similarly as for the linear example presented in the previous section, the additional
degrees of freedom bestowed to the controller allow for greater control efforts and the
output is led to the setpoint much faster than for the standard approach. Note, also,
that the larger control moves also involve a larger uncertainty signal, which breaks
the lower uncertainty bound shortly after the setpoint change. However, since the
output is still far from the setpoint (and the constraint), this violation, which reverts
on the enlargement of the uncertainty bands, does not involve any difficulty with the

accomplishment of the output constraint.

The CPU time required by the 100-sample simulation for the feedback version of
the min-max GPC™ is 388.8890 seconds on a 400 MHz computer, compared to the
173.8700 seconds required by the standard implementation. Surprisingly enough, the
feedback implementation involves less than 2.25 times the computational burden of
the classical min-max MPC controller. In such a case, ihe feedback min-max controller
could be taken as a convenient alternative since the relatively small difference as CPU

time is regatded leads to quite an improved performance.
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Figure 5.4: Closed-loop behaviour of the feedback min-max GPC*®

The advantages of the feedback implementation of min-max MPC are clearly high-

lighted with both the linear and the non-linear examples.

5.4 Conclusions

In this chapter, one of the most recent developments related to min-max MPC, namely
the inclusion of the notion that feedback is present in the receding-horizon implemen-
tation of the controller, is presented. The results of Scokaert and Mayne (1998) have
been extended to the min-max (2-norm) controllers presented in Chapter 4 in order to

lessen some of the drawbacks related to the standard min-max implementations.

The feedback min-max controllers are formulated in such a way that different control
profiles are considered for different uncertainty realisations (vertices). Noting that,
in the future sampling instants, new measurements of the uncertainty signal will be
available, it is not necessary to handle all the possibilities with a single hypothesised

control move vector. This idea is combined with a causality constraint to ensure that
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the next control move used to update the control signal is completely determined by
the current internal process state, and thus does not depend on future (unavailable)
data. Making use of these two concepts, it is possible to establish a near one-to-
one correspondence between the degrees of freedom available for optimisation and the
number of uncertainty realisations, a property which is not shared by the standard
min-max approach, for which the difference between the degrees of freedom of the
controller and the uncertainty realisations increases dramatically with the control and

prediction horizons.

The optimisation problem can be solved using standard non-linear programming
tools, such as SQP. It is also highlighted that an LP solution for the analogous 1-
norm problem is possible, but the number of constraints depends on 2, and thus
the computational advantages of the feedback implementation are not as remarkable
as for the standard min-max QGPC{°. In addition, the 2-norm GPC*® guarantees the
stability of the nominal closed-loop system, and hence the feedback min-max GPC*®

seems favoured with respect to the QGPCS° counterpart.

Simulation results are presented for both linear and non-linear systems, and it
is shown that the feedback implementation overcomes the standard counterpart as
performance is concerned. The additional degrees of freedom are used by the feedback
min-max methods to avoid some of the problems related to the standard min-max
controllers, such as unexpected inverse responses or dead-times which can occur in the

constrained case.
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Chapter 6

Conclusions and future research

6.1 | Conclusions

MPC has become a mature control strategy from both the industrial and the academical
points of view. The simplicity of the ideas behind MPC, together with the ability of
these methods to tackle difficult control problems, such as complex dynamics, MIMO
systems, constrained systems, etc., are the two main reasons for such a remarkable

Success.

Since the first few predictive controllers were suggested in the late 1970’s, a great
deal of different MPC control laws have emerged. Among these, the GPC controller
of (Clarke et al., 1987) gained the early recognition of the scientific and the industrial
communities. Promptly after the suggestion of the GPC, the problems of stability and

robustness were addressed.

Throughout this PhD research, the problems of stability, robustness and constraint

handling for GPC-like controllers have been investigated in a combined manner.

In this thesis, the main stability results for MPC coﬁtrollers based on input/output
models are reviewed. Stability proofs for both the CRHPC and the infinite horizon

GPC (GPC®) are given. These results, based on the monotonicity of the optimal

245
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cost function sequence, provide with an intuitive insight to the stability issue. Other
stabilising approaches, such as the SGPC or the SIORHC, are not explicitly reviewed
since these are proved to be theoretically equivalent to the CRHPC (under ideal con-
ditions), although the SGPC enjoys better numerical properties. In addition, 1-norm
counterparts of the classical 2-norm formulations have been obtained. Therefore, the
I-norm GPC (GPC,), 1-norm CRHPC (CRHPC,) and 1-norm GPC*® (GPC{°) are
formulated. These 1-norm MPC schemes can be implemented using very efficient stan-
dard LP routines. The stability proofs provided for the 2-norm case are extended for
the 1-norm counterparts using the same monotonicity argument. Simulation results
are provided to illustrate that stability is achieved and that a non-increasing sequence

of optimal cost function values results.

Moreover, it is noted that the GPC{® control law requires the implementation of
an iterative procedure until some convergence condition is satisfied. This iterative al-
gorithm involves the solution of two LP problems at each iteration, and the associated
computational burden can become excessively large. A less computationally intensive
controller, the Quasi-infinite horizon 1-norm GPC (QGPC{°), is thus suggested. This
method, which minimises an upper bound of the truly infinite horizon costing prob-
lem, can be implemented using a single LP problem, and thus the iterative algorithm
required by the GPC?® can be avoided. In addition, a convergence property from the

QGPC{ to the GPC{° is conjectured and illustrated by means of examples.

The usefulness of 1-norm GPC-like controllers is the formulation of efficient robust
constrained MPC methods based on min-max optimisation. Prior to undertake such
a task, a robustness analysis of unconstrained GPC-like controllers is provided. This
analysis is based on the LTI formulation of unconstrained 2-norm methods, which
can be obtained following the procedure presented in (Bitmead et al., 1990). These
formulae make it possible to apply classical robust control results, such as the small gain

theorem, which yields stability conditions for different uncertainty representations. In
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this PhD thesis, the extension of this approach to the infinite horizon case is provided.

Several stabilising approaches, namely the CRHPC, the GPC®™ and a softened ver-
sion of the CRHPC, are compared in terms of nominal performance and robustness. It is
noted that the infinite horizon approach provides with smooth input/output responses
and convenient robustness margins for typical choices of the tuning knobs, wherecas
the CRHPC often leads to deadbeat-like closed-loop behaviour with poor robustness
bounds. The classical approach to enhance robustness, via the heuristic T-design and
the systematic @)-parametrisation methods, for LTI uncertainty are reviewed. In addi-
tion, a new robustness-enhancing method based on choosing the observer polynomial T’
by means of optimisation instead of heuristic rules, termed T-optimisation, is suggested.
This new method is shown to overcome the classical T-design and @Q-parametrisation

approaches for a particular example.

The robustness of constrained MPC control laws is then addressed. The global
uncertainty approach has been taken, since this kind of description can be used to de-
scribe all kinds of uncertainties, namely linear, non-linear, time invariant, time varying,
stable, unstable, parametric, non-parametric, modelling errors, disturbances and so on.
A global uncertainty is an unknown bounded signal which, added to the model output,
yields the true system output. The min-max optimisation problem is defined as the
computation of the control profile which minimises the maximum of a cost function
as the future uncertainty ranges within the assumed lower and upper bounds in the
future. Solutions for both the I-norm and the 2-norm cases are provided. According
to the results of the robustness analysis in the unconstrained case, the (quasi) infinite
horizon approach is preferred, and thus the min-max (2-norm) GPC* and the min-
max min-max (I-norm) QGPC{® are formulated. The computational advantages of
the latter with respect to the former, since the optimisation problem can be efficiently

solved with LP tools in the 1-norm case, are remarked.
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An algorithm to update the uncertainty bands on-line is suggested. This procedure
starts with conservative settings of the lower and upper bounds, but these are replaced
by more appropriate values when new uncertainty measurements become available.
This band updating algorithm can be adjusted using a few parameters for which tuning
guidelines are provided and tested. Simulation results, obtained with these controllers
for different sources of uncertainty (linear, non-linear, time invariant, disturbances,
etc.), illustrate the behaviour of these new methods which often overcome the classical
MPC controllers, especially in the constrained case. A robustness analysis performed
using Monte Carlo simulation is provided, and it is shown that the min-max QGPC{®
successfully handles quite difficult control problems. The min-max approach manages

to satisfy constraint specifications where the classical T-based methods fail.

Nevertheless, a few limitations of the standard min-max controllers are illustrated:
unexpected dead-times or inverse responses can occur in the constrained case. The
problems with the standard min-max approach can even include instability and in-
feasibility. Some of these drawbacks stem from the use of a single control profile to
handle a large number of uncertainty sequences (or polytope vertices). The notion that
feedback is present in the receding-horizon implementation of the controller can be ex-
ploited to allow for different control profiles to handle different uncertainty sequences.
This idea, combined with a so-called “causality constraint” to avoid a multiplicity
of choices for the next control move, gives rise to feedback implementations of the
min-max controllers. Examples of the feedback min-max GPC* are provided to show
that this approach overcomes some of the drawbacks of the standard min-max MPC

controllers at the price of a somewhat larger computational burden.
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6.2 Possible directions for future research

The results obtained throughout this PhD research provide with some tools to tackle
control problems of constrained uncertain systems. It has been shown that min-max
MPC methods based on the global uncertainty approach can successfully handle diffi-
cult control problems and satisfy constraints in the presence of uncertainty with very

low computational requirements. There are, however, several directions to further this

research:

1. To begin with, robust stability conditions for the min-max controllers formulated
in this thesis might be investigated. Although no stability problems should be
expected whenever the uncertainty signal is kept within the assumed lower and
upper bounds, such a signal might become unbounded and thus lead to instability

despite the use of the band updating algorithm.

2. The band updating algorithm can be further refined, and more sophisticate self-

tuning methods might be obtained.

3. In addition, the possibility of combining the global uncertainty approach with
other descriptions, such as multi-model formulations, can provide with a method-
ology to tackle a difficult control problem using a two-step design: firstly a set of
locally linearised models can be obtain at different operating points and, secondly,
the global uncertainty approach could be applied about each of those models to
allow for some (small) discrepancies. The combined advantages of these two de-
scriptidns might provide with an improved robust performance, and no difficulty

should arise to satisfy constraint specifications.

4. New optimisation techniques might also be used to cut down the number of

computations, especially for the min-max 2-norm controllers.
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5. The MIMO formulation of the min-max methods depicted throughout this thesis

requires some small adjustments, which can be easily addressed.

6. Finally, industrial trials performed with the suggested min-max methods can be
carried out to assess the benefits of these controllers and to focus on practical

implementation issues.

These are only a handful of the ideas to further this research but, undoubtedly,
many other features concerning the robustness of constrained MPC will capture the

attention of the control community in a near future.



Appendix A

Benchmark systems

A.1 Linear unstable nearly undetectable plant

One of the benchmark models used to analyse the properties of different controllers
is the “Unstable GPC Example” provided by Bitmead et al. (1990). The system is

described by the transfer function

Gy = LB - 1.999¢~2
A(g™1) 1—4¢~' +4¢7%

(A.1)

which is an non-minimum phase open-loop unstable system with both poles at 2. In
addition, there is a near pole-zero cancellation, wﬁat implies that the system is almost,
undetectable. This benchmark system has been shown to raise objection to the classical
GPC, since it is quite difficult to tune the GPC in order to obtain closed-loop stability

for this process.

A.2 Linear stable plant with gain uncertainty

Some of the experiments which are carried out in this thesis consider a benchmark
model consisting of a transfer function with the following structure:

Gols) = gg; — K(1+Ag)

wiw (¢ — s)(s + ws)
dwz (82 + 2Cwes + wd)(s +wy)’
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Where Ak € [-0.5,0.5] is a multiplicative uncertainty in the gain which may vary due
to disturbances, changes in the process, etc. In the undisturbed case Ax = 0. The

other parameters are given in Table A.1.

LK Jw|(Ju]d]ws]
[-0.5]10]03] 5 [5]20]

Table A.1: Parameters of the linear benchmark model of equ.A.2

With the parameters of Table A.1, Gy(s) becomes

No(s) 2.5s% + 37.5s — 250

Go(s) = Do(s) = (1+A«) 83 + 1152 + 130s + 500°

(A2)

which is a non-minimum phase, open-loop stable underdamped system with (negative)
gain —0.5 (1 + Ag), three poles and two zeroes. The poles are located at —3 £ 9.53947

and -5, and the zeroes at —20 and 5.
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(a) Model of eqn.A.3 {b) Model of eqn.A.4

Figure A.1: Pole-zero location of the discrete benchmark system and the identified.
model

A sampling time of T; = 0.025 s (in such a way that the Nyquist frequency is
greater than 100 rad/s) and a Zero-Order Hold (ZOH) on the input have been chosen
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to obtain the discrete-time model

-1 -1
GO(qnl) = d Aﬁoq(-f]l) )

The pole and zero locations of this discrete-time system are shown in Fig.A.1(a). A

g~1(0.0639 — 0.1110¢™" + 0.0437¢~2)
— 2.6855¢~1 + 2.4518¢~2 — 0.7596¢-3

= (1+4K) 7 (A.3)

cross is used for the poles, at 0.901540.2192 and 0.6028, whereas the zeroes, at 0.8825
and 1.1336, are displayed with circle. Needless to say, the gain is the same as for the

continuous system, namely —0.5 (1 + Ak).
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(a) Step responses of the true system (b) Frequency responses of the true sys-
(solid) and the identified model (dashed) tem (solid) and the identified model

(dashed)

Figure A.2: Comparison of the true system and model responses

In order to introduce modelling errors in the experiments, a second-order model
has been identified for the system of eqn.A.2 with Ay = 0. This model has been found
using the system identification procedure described by Whitfield (1986), which works
with data taken from the frequency domain, that is, the true frequency response is
measured at several points and then curve-fit optimisation is made using these data.
For this example, ten frequencies have been chosen within the interval [1,100] rad/s,
which roughly includes one decade before and one decade after the system’s bandwidth

frequency, which is at about 15 rad/s. The transfer function attained in this fashion is

N(s) _ 5.0182s — 23.4458

Gls) = D(s) % +6.81985 + 58.4235"
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with a zero at 4.5899, two poles at —3.409946.84087 and a steady-state gain of —0.4013.
With a sampling time of T; = 0.025 s and a ZOH on the input, a discrete model can

be obtained as

g'B(g™)) _ ¢ *(0.1098 — 0.1232¢™?)
A(g™Y)  1-1.8098¢~1 + 0.8432¢~2’

G(g™) = (A-4)

the poles of which are located at 0.9049 =+ 0.15637 and the zero at 1.1223, as shown in
Fig.A.1(b). As analysed in (Megias, 1996) this is, among the models obtained trying
several time and frequency domain identification methods, the best second-order model

of the “true” system of eqn.A.3 in terms of frequency response fit.

#agnitude of the mudeliing wrrors Magritude of the mpdeling srrors
g g y T
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10 107
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(a) Magnitude of the modelling errors for (b) Magnitude of the modelling errors for
Ak € [-0.5,0.5] (solid), and upper bound Ak = 0 (solid), Ak = —0.5 {dashed) and
(“*) Ak = 0.5 (dotted)

Figure A.3: Additive system uncertainty

Fig.A.2 compares the step (a) and frequency (b) responses of the true system
(eqn.A.3 with Ak = 0) and the identified model (eqn.A.4). It is observed that there is
a small error in the gain, and that the magnitude of the frequency responses diverge
at high frequencies. It must be taken into account that the frequency responses aré
influenced by the ZOH which is assumed in the inputs. In addition, notice that the
frequency response for both gain and phase are plotted against normalised and not

true frequencies. The normalised frequency w, is defined as w, = Tyw, where w is the
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true frequency and T is the sampling time. Hence, the normalised Nyquist frequency

is always = rad/s.

Finally, Fig.A.3 displays the magnitude of the modelling errors (additive system
uncertainty) from Gy(g~?) to G(g™!):

6o(4™) = O™, = [RERGEAIIE -

In Fig.A.3(a) the modelling errors are shown for several values of Ak € [0.5,0.5],
and the maximum (upper bound) is emphasised by means of “*” signs. In Fig.A.3(b)
the modelling errors are shown for Ax = 0, which is the best case of system uncertainty,
for Ax = 0.5, which is the worst case at low frequencies and shows the highest peak,
and for Ay = —0.5, which is the worst case at high frequencies. The modelling errors
for Ag = 0 (used to identify the model) are remarkably small, since the magnitude
curve is always below the —10 dB line. It is worth pointing out that, in any case, the
modelling errors are maximal near the resonance frequency (about 2 - 10~! rad/s of

normalised frequency) of the true and identified systems.

A.3 Gain and zero uncertainty

In this section, a second order system with gain and zero uncertainty is presented. Let

the true plant be described as the second-order system

)

-1y _
Go(g™) = K(1 — @)1 —1.4q! + 0.65¢~2’

(A.5)

where the gain 0.5 < K < 1.5 and the zero 0.4 < ¢ < 0.6 are uncertain pa-
rameters. The plant family which results of this definition is thus given by G =

{Go: K €[0.5,1.5], 6 € [0.4,0.6]}.

Some robust MPC formulations require that uncertainty is described as a polytope

of linear plants such that any possible true plant can be expressed as a linear com-
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bination of the polytope vertices. In the transfer function context, this is possible if
all the uncertain parameters affect the numerator only. Notice that the plant defini-
tion provided above does not satisfy this condition, since the denominator possesses
the uncertain factor (1 — ¢). This difficulty can be overcome by using the following
alternative plant definition:

¢ H1-¢g7")
—~1.4¢71 + 0.65¢™2’

Golg™) =K T

where K and ¢ are uncertain parameters. The relation between the steady-state gain
K and the parameter Kis provided by

-~ K
K =025—.

Now the ranges 0.5 < K < 1.5 and 0.4 < ¢ < 0.6 can be used to determine a range for
K. The minimum value of K occurs for K = 0.25 - 0.5/(1 — 0.4) = 0.2083 whereas the
maximum is found at K = 0.25 . 1.5/(1 - 0.6) = 0.9375. Now an extended plant family
G can be defined as § = {ég : R €[0.2083,0.9375), 6 € [0.4, G.ﬁ}}. Note that § C G,

1. €. § includes some some plants which are not in G, but all the plants in G are also in

o,

G.

Any true plant Gy € G , and thus any true plant Go € G C G, can be obtained as a

linear combination of the following four systems (vertices):

-l ~1 -1 -1

G}_ = 6.2{}83} - 1,4{2’“1 T (}ﬁ&}"‘g} G? - {};2{}83} _- i,{i{f“l + 3.65}{}“23
~1f1 -1 -1 - -1

Gy = 0.9375— L1 =040 Lo

_ q
G = 0.93757= 1.4¢~1 + 0.65¢—2’

1—1.4¢1 +0.65¢-2’

i.e. given G, € G then
Gy = MGy + MGy + A3G3 + MGy,

with A\ + Ao+ A3+ A = 1and A; > 0 for : = 1,2,3,4. It can be noted that the
steady-state gain of G; and G are 0.3333 and 2.25 respectively, both of them outside
the interval [0.5,1.5] defined for K.
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Now the coefficients A; can be easily obtained from K and ¢ as

A = (1.2857 — 1.3714K)(3 = 5¢), g = (1.2857 — 1.3714K) (-2 + 5¢),

As = (—0.2857 + 1.3714K)(3 — 5¢), Ay = (—0.2857 + 1.3714K)(~2 + 5¢),

and it can be checked that A\;+Xa+As+A¢ =1 and ); > 0 for K € [0.2083,0.9375] and
¢ € [0.4,0.6]. The plant family G can be described as the convex hull of the systems
G1, Go, G5 and Gy, denoted by G = Co {G1, Ga, G3, G4}

As an example, the system

_0.5000g~! — 0.25009~2

Gnlg™) =
m(g™) 1—-1.4q71 +0.65¢72"°

(A.6)

obtained for K =1 and ¢ = 0.5, can be written as

g (1 - 0.5000¢™1)
1~ 1.4q7! 4 0.65¢~2’

Gm(gul) =0.5

.~

i.e. K = 0.5 and ¢ = 0.5, which yields the coefficients A; = 0.3, _)\2 = 0.3, \3 = 0.2,
Ay = 0.2

A.4 Gain, zero and pole uncertainty

Similarly as done in the previous section, let a true plant be described as the second-

order system

oy A== g1 —gg)
Go(g) =K (1-¢) @A-ngY)1-7¢1)

where the gain K = (1+Ak) K, the zero ¢ = (1+A4)d, and the pole = (1+ A0

(A7)

are uncertain parameters such that K, = 1, ¢, = 0.6, 0, = 0.6261 4 0.31307 and

IAK{ <02,
|Ayl <0.1,

|A,] 0.1,
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i.e. there is a 20% maximum variation of the steady-state gain with respect to the
central value (K, = 1), and a 10% variation of the pole and the zero with respect to

m = 0.6261 4 0.31307 and ¢,,, = 0.6 respectively.

Now the nominal system can be defined as the one for which each parameter (gain,

zero and pole) occurs at the central value, i.e.

0.5944q~ — 0.3567¢~2
1— 1.2522¢~ ! + 0.4900q~2

Gg™") = (A-8)

Muttiplicative uncertainty

AL
10° 10
Normalised Frequency {rad/sec)

Figure A.4: Multiplicative uncertainty (solid) and upper uncertainty bound (“*’)

Fig.A.4 displays the magnitude of the modelling errors (multiplicative system un-

certainty) from Go(g™?) to G(g™?):

Golg™) = Glg™)
G(g™)

By(g7)A(g™Y) — Blg~HAo(g™)
Aﬁ(qal}B (qﬁi) g=eivn ’

——

g=etn

and the maximum (upper bound) is highlighted using “*” signs.



Sec. A.5. Non-linear system with a saturation 259

u 2 ZM— x>_ 200 ,V_;
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Saturating aroplifier Linear block

Figure A.5: Non-linear benchmark plant

A.5 Non-linear system with a saturation

Some of the control algorithms depicted in this thesis have been tested on the non-linear
system of Fig.A.5 (Naslin, 1962; Thaler and Pastel, 1962), which can be described by
the equations: '
z = min {max {—2,u — y},2},
¥+ 9 = 200z.

The difficulty to control this system is caused by the saturating amplifier which appears
inside the inner feedback loop. Saturators are a kind of hard non-linearity which
commonly appear in real systems. A linear model of the system can be obtained,
neglecting the saturation, as

200

Gls) = s 1200’

(A.9)

with poles at —0.5314.13337 and unit steady-state gain. As a consequence of the pole

location, the open-loop response of this linear system is very lightly damped.

The different behaviour patterns provided by the true system of Fig.A.5 and the
linear model o% eqn.A.9 depend on the amplitude of the input signal. In Fig.A.6 the
step responses of the non-linear system of Fig.A.5 and the linear model of eqn.A.9 for
steps of amplitude 5 (a) and 15 (b) on the input are compared. The step change in the
input occurs at ¢ = 0.1 5. It can be observed that the higher the input amplitude is, the
more different the step responses are. In fact, for input amplitudes lower than 3, the
step responses are almost identical. Of course, this is due to the saturating amplifier,

which is the only difference between the linear ant the non-linear models.
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X
o8 ) 1.2
Time {smconds}

(a) Step responses of the non-linear (b) Step responses of the non-linear
system (solid) and the linear model system (solid) and the linear model
{dashed). Amplitude of the input signal (dashed). Amplitude of the input signal
= b ‘ =15

Figure A.6: Step responses of the non-linear system and the linear model for different
input amplitudes

In Fig.A.T the frequency responses of the non-linear and the linear systems are
compared. The frequency response in the non-linear case has been measured using
the algorithm described by Wellstead and Zarrop (1991), feeding the system with sine
waves of different amplitudes at the input. Of course, the frequency response of the
linear system is independent of the input amplitude, but the behaviour of the non-linear
system is quite different in this aspect. Similarly as happens with the step responses,
the higher the input amplitude is, the more distant the frequency responses become.
In fact, for low amplitudes (0.25 or less) the frequency responses of both systems are
identical, since the saturation has no effect in that case. It is worth remarking that
the resonance frequency of the non-linear system decreases as the input amplitude

increases, what can be easily observed by comparing Fig.A.7(a) and (b).

With a ZOH on the input and a sampling time of T; = 0.05 s, which has been chosen

such that each period of the open-loop step response is sampled about 20 times, the
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(a) Frequency responses of the non- (b) Frequency responses of the non-
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Figure A.7: Frequency responses of the non-linear system and the linear model for
different input amplitudes

linear model of eqn.A.9 turns out to be the discrete-time transfer function

g'B(g™!) _ 0.2358¢"! +0.2319¢~2
Alg™Y) ~ 1-1.4835¢"1 +0.9512¢"%’

G = (A.10)

the poles of which are located at 0.7418::0.63337 and the zero at —0.9832. The modulus

of the poles is 0.9753, very near the unit circle.
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