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Abstract

Nowadays, there is an increased need for anywhere anytime connectivity, which
is expected to increase significantly during the next few years. In order to meet
the consequent high data traffic demands, dramatic expansion of network infras-
tructures as well as fast escalation of energy demands are expected. As a result,
it becomes urgent for mobile operators not only to maintain sustainable capacity
growth to meet these new demands, but also to limit their electric bill. In paral-
lel, the fact that the spectrum resources are limited has led to another important
problem, known as spectrum scarcity, which stresses the need for spectral efficient
solutions. The aforementioned goals can be summarized into the joint maximization
of energy and spectrum efficiency, which constitutes a fundamental design objective
for next generation networks.

To that end, exploiting cognition is expected to play a key role. In general,
a cognitive network is able to sense its environment and dynamically adapt to
it. In particular, cognitive networks, which could be alternatively characterized as
context-aware or self-organizing networks (SONs), have the ability to perceive cur-
rent network conditions, plan, decide, act based on those conditions, learn from
the consequences of their actions, all while following end-to-end goals. This loop,
the cognition loop, senses the environment, plans actions according to input from
sensors and network policies, decides which scenario fits best its end-to-end pur-
pose using a reasoning engine, and finally acts on the chosen scenario. The system
learns from the past (situations, plans, decisions, actions) and uses this knowledge
to improve the decisions in the future.

Thus, the main objective of this thesis is to propose and evaluate medium access
layer algorithms, that will exploit different types of cognition to provide energy and
spectrum efficiency enhancement. In particular, two main research directions are
followed: 1) the first focuses on spectrum-awareness in cognitive radio (CR) networks
inspired by the pioneering work conducted by Mitola in 1999, and ii) the second on
the context-aware self-adaptation of cellular heterogeneous networks (HetNets) (i.e.,
SONSs). In both contexts, the exploitation of the available information plays a key
role on providing sustainable wireless networks. However, given the different needs
and features that characterize each of these networks, they are studied separately.

Hence, the first part of this thesis focuses on the coexistence of secondary net-
works (SNs) that share the same primary user (PU) resources. A coexistence scheme
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is proposed as well as a novel energy-efficient contention-aware channel selection al-
gorithm, which: i) exploits cooperative spectrum sensing to detect the free from
PU activity licensed channels, ii) for each one of them, it estimates the probabil-
ity of collision, and iii) selects the less contended (i.e., with the lowest probability
of collision) to access first. An analytical model for the throughput and the en-
ergy efficiency of the SN under study is provided, which is validated by means of
simulation. The proposed channel selection algorithm is shown to outperform its
counterparts both in terms of throughput and energy efficiency. The proposed SN
coexistence scheme is also shown to achieve throughput and energy efficiency gains,
while maintaining fairness among the coexisting SNs.

The second part of the thesis focuses on cognitive HetNets with multi-hop small
cell (SC) backhaul (BH) links. The multi-hop BH is a promising solution since
i) not all SCs are expected to have a direct connection to the core network and
consequently they are likely to forward their traffic to the neighboring SCs to reach
it and ii) the expected short length of BH links enables the use of millimeter wave
(mmWave) frequencies to provide high capacity BH. In this context, this thesis
studies the role of BH aiming to answer to whether or not it could constitute an
energy bottleneck for the HetNet. In particular, the BH energy impact is compared
to the access network (AN), i.e., the links between the users and their serving cells,
under different traffic distribution scenarios and BH technologies.

Moreover, the user association problem is studied aiming at the joint maximiza-
tion of energy and spectrum efficiency of the network, without compromising the
user equipment (UE) quality of service (QoS) requirements. To that end, analytical
user association frameworks are provided, which can be used as benchmarks for
the performance evaluation of different user association solutions. Given the need
for low complexity solutions, we also propose efficient heuristic algorithms which
exploit context-aware information (i.e., UE measurements and requirements, the
HetNet architecture knowledge and the available spectrum resources of each base
station (BS)) to associate the UEs in an energy and spectrum efficient way, while
considering both the AN and BH energy consumption. The proposed algorithms as
well as the derived optimal solutions are compared with reference approaches for
different BH technologies and traffic distribution scenarios. Insights are gained into
the energy and spectrum efficiency trade-off. Furthermore, our results indicate that
i) mmWave BH is a promising solution to provide low consumption high capacity
BH, and ii) that the proposed algorithms can achieve notable performance gains
compared to the state-of-the-art, while achieving near-optimal performance.



Resumen

Actualmente, existe una creciente demanda de conectividad en cualquier momento
y en cualquier lugar (conocida como anywhere anytime connectivity) que a lo largo
de los proximos afios se prevé que experimente un significativo aumento. Con el
objetivo de hacer frente a la consiguiente alta demanda de trafico de datos, se an-
ticipa tanto una expansion drastica de la red como un crecimiento del consumo de
energia. Como consecuencia, para los operadores de telefonia mévil es urgente no
s6lo mantener un crecimiento sostenible de la capacidad, sino también limitar su
factura eléctrica. En paralelo, el hecho de que los recursos espectrales sean limita-
dos ha conllevado otro problema importante, conocido como escasez espectral, que
pone de relieve la necesidad de soluciones eficientes espectralmente. Los objetivos
anteriormente mencionados pueden ser resumidos como la necesidad de maximizar
conjuntamente la eficiencia espectral y energética, que constituye un objetivo de
disefio fundamental para las redes de nueva generacion.

Con ese fin, se prevé que la utilizacién del proceso cognitivo juegue un papel
clave. En general, una red cognitiva es capaz de percibir el entorno y adaptarse
dindmicamente a él. En concreto, las redes cognitivas, también conocidas como
context-aware networks o self-organizing networks (SONs), tienen la capacidad de
percibir las condiciones actuales de la red, planificar, decidir, actuar de acuerdo con
las condiciones, y aprender del resultado de las acciones, siempre para conseguir los
objetivos extremo a extremo. Este ciclo, el ciclo cognitivo, percibe el entorno, plan-
ifica las acciones de acuerdo con las senales recibidas de los sensores y las politicas
de red, decide qué escenario se adecua mejor a los objetivos extremo a extremo
mediante un motor de razonamiento, y finalmente actia. El sistema aprende del
pasado (situaciones, planes, decisiones, acciones) y utiliza este conocimiento para
mejorar las decisiones futuras.

Asi, el objetivo principal de esta tesis es proponer y evaluar algoritmos de la capa
de acceso al medio que exploten distintos tipos de cognicién para ofrecer mejoras
en la eficiencia espectral y eléctrica. En concreto, se han seguido dos direcciones de
investigacién principales: i) la primera se centra en redes de radio cognitiva (CR)
inspiradas en el trabajo pionero desarrollado por Mitola en 1999, y ii) la segunda
se dedica al estudio de la adaptacién dindmica de las redes celulares heterogéneas
en funcién del contexto (es decir, SONs). En ambos contextos, la utilizacién de la
informacién disponible juega un papel crucial en la provisién de redes inalambricas

iii
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sostenibles. A pesar de ello, debido a las diferentes necesidades y caracteristicas de
cada una de las redes, se estudian por separado.

La primera parte de la tesis se centra en la coexistencia de redes secundarias
(SNs) que comparten los recursos de los usuarios primarios (PUs). Se propone un
esquema que permite dicha coexistencia, asi como un nuevo algoritmo de seleccién de
canal energéticamente eficiente basado en la deteccién de congestién que: i) explota
el concepto de cooperative sensing para detectar los canales sin actividad de usuarios
primarios, ii) para cada uno de ellos, estima la probabilidad de colisién, y finalmente
iii) prioriza el acceso a aquellos canales que tiene menor contencién (es decir, que
tienen la menor probabilidad de colisién). Se desarrolla un modelo analitico tanto
para el throughput como para la eficiencia energética de la red secundaria, que
posteriormente se valida mediante simulaciones. El algoritmo de selecciéon de canal
propuesto mejora el comportamiento del estado del arte en términos de throughput
y de eficiencia energética. Asimismo, el esquema de coexistencia propuesto también
ofrece mejoras de throughput y de eficiencia energética y, a su vez, mantiene la
equidad entre las redes secundarias que coexisten.

La segunda parte de la tesis se centra en las redes heterogéneas cognitivas (cogni-
tive HetNets) con un backhaul (BH) formado por enlaces multi-hop entre small cells
(SC). El multi-hop BH es una solucién prometedora debido a que i) se prevé que no
todas las SCs tengan conexién directa con la core network y, por consiguiente, de-
berdn encaminar el tréfico a través de las SCs vecinas, y ii) la corta distancia de los
enlaces del BH permitirdn el uso de las bandas milimétricas (mmWave) para ofrecer
un BH de alta capacidad. En este contexto, la tesis tiene el objetivo de responder
si el BH puede suponer un cuello de botella para las HetNets. Concretamente, se
compara el impacto del BH respecto a la red de acceso (los enlaces entre los usuarios
y sus serving cells) en términos de energia para distintas distribuciones de usuarios
y tecnologias de BH.

Ademis, se estudia la user association como un problema de maximizacién con-
junta de la eficiencia espectral y energética de la red, siempre sin comprometer los
requisitos de calidad de servicio (QoS) de los usuarios. Con ese fin, se desarrolla
un marco analitico para el problema de user association, que supone un benchmark
para el andlisis del comportamiento de distintas soluciones. Debido a la necesidad
de soluciones de baja complejidad, la tesis también propone algoritmos heuristicos
eficientes que utilizan la informacién de contexto disponible (medidas y requerim-
ientos de los de los usuarios, el conocimiento sobre la arquitectura de la HetNet y la
disponibilidad de recursos espectrales de cada estacién base) para asociar los usuar-
ios de un modo eficiente espectral y energéticamente, siempre teniendo en cuenta el
consumo energético del BH y de la red de acceso (AN). Los algoritmos propuestos,
asi como las soluciones 6ptimas derivadas, son comparados para distintas distribu-
ciones de usuarios y tecnologias de BH. Ello permite comprender el compromiso
existente entre eficiencia espectral y eficiencia energética. Los resultados obtenidos
muestran que i) las ondas milimétricas son una solucién prometedora para conseguir
un BH de bajo consumo de energfa y alta capacidad, y ii) que los algoritmos prop-
uestos permiten obtener mejoras notables en comparacion con el estado del arte,
asi como conseguir soluciones cuasi-6ptimas.
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Chapter 1

Introduction

1.1 Motivation

During the last years, there is an ever-increasing need for anywhere anytime connec-
tivity, which accounts for the vast use of tablets, laptops with cellular connections,
and smart phones along with their data-hungry applications. As a result, the mobile
data traffic is growing exponentially. In particular, according to Cisco, the overall
mobile data traffic is expected to grow to 15.9 Exabytes per month by 2018, which
constitutes a 11-fold increase over 2013 [1]. Thus, network capacity enhancement
has become of utmost importance for next generation wireless networks (Fig. 1.1).

One possible way to achieve capacity growth is by assigning more spectrum
to the network. However, the spectrum resources are limited and in their majority
inefficiently used [2], which is also known as spectrum scarcity problem. Therefore, as
depicted in Fig. 1.1, an important goal for next generation networks that takes into
account both the spectrum scarcity problem and the need for capacity growth, is
to achieve high network spectrum efficiency. To that end, cognitive radio (CR) was
proposed, which enables the use of licensed bands by unlicensed users (also called
secondary users (SUs)) for as long as they remain unused [3-5], thereby achieving
high spectrum efficiency.

Nevertheless, the most important way historically to achieve capacity growth
is to add more base stations (BSs) to the network. When BSs are added, i) the
distance between users and BSs is reduced and thus the signal-to-interference-plus-
noise ratio (SINR) increases, while ii) higher frequency reuse can be employed,
which result in iii) the increase in the area spectrum efficiency (bps/Hz/m?) (i.e.,
for given bandwidth more users can be served in a specific area) and iv) the decrease
of the energy consumption in the radio access network (RAN). Therefore, adding
more BSs is believed to be the only scalable way to meet the current “capacity
crunch” [6]. Yet, in many important markets, adding further eNodeBs (eNBs) is
not viable due to cost and the lack of available sites and proper connections among
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Figure 1.1: Goals of future wireless networks.

them; for example many cities or neighborhood associations are simply not very
cooperative about opening up new tower locations. Consequently, future cellular
networks are expected to be increasingly organic deployments of BSs! (also called
small cells (SCs)) of widely varying transmit powers and hence coverage areas, car-
rier frequencies, backhaul connection types, and communication protocols. A typical
smart phone will be capable of communicating via multiple bands over various ra-
dio access technologies (RATSs), including GSM/EDGE, CDMA, LTE, Wi-Fi, and
perhaps others, and will make a network choice based on its needs (e.g., high speed
data or voice, or high mobility).

Last but not least, these high capacity future demands are directly connected
to increased energy consumption. Hence, it becomes urgent for mobile operators
to maintain sustainable capacity growth to meet these new demands and at the
same time, to limit the electric bill (i.e., energy consumption). This goal, as de-
picted in Fig. 1.1, can be summarized into the maximization of the network energy
efficiency [7]. Energy efficiency, which is mainly measured in bits/Joule, refers to
the total number of successfully transmitted bits divided by the total energy con-
sumption needed. To that end, Next Generation Mobile Networks (NGMN) vision
for 5G stresses the need for sustainable 5G services, with network energy efficiency

LFrom now on, in this thesis, the term BS will be used to refer to an eNB and/or a SC.
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being a key factor to minimize the total cost of ownership (TCO), as well as the en-
vironmental footprint of networks [8]. Specifically, NGMN outlines that 5G should
support a 1,000 times traffic increase in the next 10 years (or less) time-frame, with
half of the typical consumed energy, compared to today, over the whole network.

Hence, the aforementioned solutions for capacity and spectrum efficiency im-
provement should also involve low energy consumption. To this direction, cognition
is expected to play a key role. In general, a cognitive network is able to sense its en-
vironment and to plan, decide and act according to it. Cognitive networks could be
alternatively characterized as context-aware [9] or self-organizing networks (SONs).
In this thesis, these terms will be used interchangeably. Based on the type of ac-
quired information (i.e., context), these networks can be further characterized. For
instance, CR networks acquire “spectrum-awareness” through spectrum sensing.

To that end, this thesis provides a contribution to the field of MAC layer al-
gorithm design for wireless networks by proposing and evaluating cognitive mecha-
nisms that enhance both network energy efficiency and spectrum efficiency focusing
in two different types of networks, CR networks, and heterogeneous networks (Het-
Nets). The structure of the thesis and the main contributions of this work, which
has been conducted under the framework of the Marie Curie project GREENET
(PITN-GA-2010-264759), will be discussed in detail in the following section.

1.2 Structure of the Thesis and Contributions

As indicated by its title, this thesis aims to answer to the question: “how to exploit
cognition in order to provide energy and spectrum efficient wireless networks?” In
this context, two main research directions are followed: i) the first one focuses on
spectrum-awareness in CR networks inspired by the pioneering work conducted
by Mitola in 1999 [3], and ii) the second on the context-aware self-adaptation of
cellular HetNets (i.e., SONs). In both contexts, the exploitation of the available
information plays a key role on providing sustainable wireless networks. However,
given the different needs and features that characterize each of these networks, their
separate study is required. Therefore, as shown also in Fig. 1.2, this thesis is divided
into two main parts; the first focuses on CR networks, and the second on cognitive
HetNets.

In particular, the remaining part of the thesis consists of four chapters. Chapter 2
comprises two subsections that provide some necessary background information con-
cerning CR networks and cognitive HetNets, respectively (see Fig. 1.2). Specifically,
in the CR subsection, the main sensing techniques, the cooperative spectrum sens-
ing procedure as well as the most representative related works are discussed. The
CR state-of-the-art mainly includes energy-efficient cooperative spectrum sensing
approaches and literature works on secondary networks coexistence mechanisms. In
the second subsection, which deals with cognitive HetNets, the main user associ-
ation technical challenges are described and analyzed together with the expected
future HetNet architecture. Finally, being motivated by the new challenges im-
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posed by the backhaul (BH), the related works that have been proposed hitherto
on backhaul-aware user association are included.

The innovative contributions of the thesis are organized into two parts. The first
part is included in Chapter 3 and is dedicated to a novel energy-efficient contention-
aware channel selection algorithm for CR networks. The most important contribu-
tion of Chapter 3 is the derivation of a mathematical model for the throughput and
energy efficiency of a secondary network (SN), in a scenario where several SNs co-
exist and share the same primary user (PU) resources. This model is a solid tool for
the evaluation of the proposed energy-efficient contention-aware channel selection
algorithm. The second part of the thesis is formed by Chapter 4 and investigates the
user association problem in cognitive HetNets. The most important contribution of
Chapter 4 is the derivation of upper and lower bounds on the network performance,
which can be used as benchmarks for the performance evaluation of different user
association solutions. Finally, Chapter 5 discusses the conclusions of the presented
work and identifies potential lines for future investigation. In continuation, the main
contributions of the thesis will be outlined in more detail.
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1.3 Research Contributions

The novel proposals discussed in this thesis have been published in several research
contributions. The work presented in the first part of this thesis, concerning the
channel selection in cognitive radio networks, has been published in two book chap-
ters, one journal and three international conferences, cited next:

[BC1] A. Mesodiakaki, F. Adelantado, L. Alonso, and C. Verikoukis, “Chapter
3: Technical Approaches for Improved Spectrum Sharing, Section 3.2.1: A
Novel Energy-Efficient Contention-Aware Channel Selection Algorithm for CR
Network,” Cognitive Radio Policy and Regulation, Springer, pp. 124-127, ISBN
978-3-319-04022-6, 2014.

[BC2] A.Mesodiakaki, F. Adelantado, L. Alonso, and C. Verikoukis, “An Energy-
Efficient Contention-Aware Algorithm for Channel Selection in Cognitive Ra-
dio Networks,” Resource Management in Mobile Computing Environments,

Modeling and Optimization in Science and Technologies, Springer Interna-
tional Publishing, vol. 3, pp. 419-438, ISBN 978-3-319-06703-2, 2014.

[J1] A. Mesodiakaki, F. Adelantado, L. Alonso, and C. Verikoukis, “Perfor-
mance Analysis of a Cognitive Radio Contention-Aware Channel Selection
Algorithm,” IEEE Transactions on Vehicular Technology, vol. 64, no. 5, pp.
1958-1972, May 2015.

[C1] A. Mesodiakaki, F. Adelantado, A. Antonopoulos, L. Alonso, and C. Verik-
oukis, “Fairness Evaluation of a Secondary Network Coexistence Scheme,” in
Proc. of IEEE 18th International Workshop on Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD 2013), pp. 180-184,
Sep. 2013.

[C2] A. Mesodiakaki, F. Adelantado, L. Alonso, and C. Verikoukis, “Energy
Efficiency Analysis of Secondary Networks in Cognitive Radio Systems,” in
Proc. of IEEFE International Conference on Communications (ICC 2013), pp.
41154119, Jun. 2013.

[C3] A. Mesodiakaki, F. Adelantado, L. Alonso, and C. Verikoukis, “Energy-
Efficient Contention-Aware Channel Selection in Cognitive Radio Ad-Hoc
Networks,” in Proc. of IEEFE 17th International Workshop on Computer Aided
Modeling and Design of Communication Links and Networks (CAMAD 2012),
pp- 46-50, Sep. 2012.

The context-aware user association algorithms, discussed in the second part of
this thesis, have been presented in two journals and four international conferences:

[J2] A. Mesodiakaki, F. Adelantado, L. Alonso, M. D. Renzo, and C. Verikoukis,
“Joint Energy and Spectrum Efficient User Association in Millimeter Wave
Backhaul Small Cell Networks,” IEEE Transactions on Vehicular Technology,
Jun. 2015 (submitted).
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[J3] A. Mesodiakaki, F. Adelantado, L. Alonso, and C. Verikoukis, “Energy-

[C4]

[C5]

[Cé]

[C7]

efficient User Association in Cognitive Heterogeneous Networks,” IEEE Com-
mun. Mag., Energy-FEfficient Cognitive Radio Networks, vol. 52, no. 7, pp.
22-29, Jul. 2014.

A. Mesodiakaki, F. Adelantado, L. Alonso, and C. Verikoukis, “Energy and
Spectrum Efficient User Association in 5G Heterogeneous Networks,” IEFEE
International Conference on Communications (ICC 2016), Sep. 2015 (to be
submitted).

A. Mesodiakaki, F. Adelantado, A. Antonopoulos, E. Kartsakli, L. Alonso,
and C. Verikoukis, “Energy Impact of Outdoor Small Cell Backhaul in Green
Heterogeneous Networks,” in Proc. of IEEE 19th International Workshop on
Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD 2014), pp. 11-15, Dec. 2014.

A. Mesodiakaki, F. Adelantado, L. Alonso, and C. Verikoukis, “Joint Up-
link and Downlink Cell Selection in Cognitive Small Cell Heterogeneous Net-
works,” in Proc. IEEE Global Telecommunications Conference (GLOBECOM
2014), pp. 2643-2648, Dec. 2014.

A. Mesodiakaki, F. Adelantado, L. Alonso, and C. Verikoukis, “Energy-
efficient Context-aware User Association for Outdoor Small Cell Heteroge-
neous Networks,” in Proc. of IEEE International Conference on Communica-
tions (ICC 2014), pp. 1614-1619, Jun. 2014.

Apart from publications directly related to the thesis contributions, one more
research work has been carried out under the framework of Greenet during the
elaboration of this thesis. In particular, one conference paper has been produced:

[C8]

X. Pons, A. Mesodiakaki, C. Gruet, L. Navinerb, F. Adelantado, L. Alonso,
and C. Verikoukis, “An Energy Efficient Vertical Handover Decision Algo-
rithm,” in Proc. 2nd Workshop on Green Broadband Access, IEEE Global
Telecommunications Conference (GLOBECOM 2014), Dec. 2014.



Chapter 2

Background and
State-of-the-art

2.1 Introduction

As already stated in the previous section, the need for capacity growth has fostered
the technical approaches that aim at the joint spectrum efficiency and energy efli-
ciency improvement. To that end, during the last decade, the research works have
clearly shown the need to design efficient wireless networks able to adapt to the
environment. In this context, the cognition process, and the cognitive or context-
aware network behavior, has emerged as one of the cornerstones of future networks.
Thus, in this thesis, two of the main research directions to the aforementioned
problem are addressed: i) the spectrum-awareness of cognitive radio (CR) networks
inspired by Mitola in 1999 [3], and ii) the context-aware self-adaptation of cellular
heterogeneous networks (HetNets). Focusing on these two types of networks, the
main objective of this thesis is to propose and evaluate medium access layer cog-
nitive algorithms that will enhance both network energy efficiency and spectrum
efficiency.

To that end, this chapter begins with an overview of the CR concept and its
principles in Section 2.2. Then, in Section 2.2.1, the main sensing techniques are
described and analyzed, while in Section 2.2.2, the concept of cooperative spectrum
sensing (CSS) and its benefits are presented. In Sections 2.2.3 and 2.2.4, the most
representative related works on energy-efficient CSS and on secondary networks
(SNs) coexistence are discussed, respectively.

The second part of this chapter deals with cognitive HetNets. In particular, Sec-
tions 2.3.1 and 2.3.2, describe and analyze the expected future HetNet architecture
as well as the main user association technical challenges. Finally, being motivated
by the new challenges imposed by the backhaul (BH), in Section 2.3.3, the related
works that have been proposed hitherto on BH-aware user association are also in-

7
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cluded.

2.2 Cognitive Radio Networks

A CR, with its built-in intelligence and cognitive capabilities, can sense the radio
spectrum, locate spectrum holes (underutilized or unused portions in the licensed
spectrum) and opportunistically access them as long as the licensed users (also
called primary users, PUs) do not use the band [3-5].

Spectrum

Spectrum
Analysis

Radio Environment

Spectrum Decision

w Adaptation

Figure 2.1: Cognitive radio cycle.

A typical duty cycle of a CR, as illustrated in Fig. 2.1, includes detecting spec-
trum white spaces, selecting the best frequency bands, coordinating spectrum access
with other users and vacating the frequency when a PU appears. Through spectrum
sensing and analysis, a CR can detect the spectrum white spaces and opportunisti-
cally utilize them. When PUs start using the licensed spectrum again, the CRs can
detect their activity through sensing and vacate the channels/spectrum, so that no
harmful interference is generated due to secondary users’ (SUs’) transmission.

For the spectrum sensing accuracy, two metrics are traditionally employed, the
probability of mis-detection and the probability of false alarm. The first refers to
the case where an SU fails to correctly detect that the PU is active on the channel
and thus generates unintentional interference to it, whereas the latter to the case
where the SU erroneously declares that the spectrum is occupied by a PU, thus
decreasing the spectrum opportunities of the SU. Hence, accurate CR spectrum
sensing techniques are of high importance to guarantee both PU protection and
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high spectrum efficiency.

To that end, there are several spectrum sensing techniques available in the lit-
erature, among which the most important are energy detection and feature detec-
tion [10,11].

2.2.1 Spectrum Sensing Techniques
Energy Detection

Energy detection measures the energy received during a finite time interval and com-
pares it to a predetermined threshold [11]. Sensing energy higher than the threshold
signifies that a PU is present on the channel. Due to its low computational and im-
plementation complexity, energy detection is the most commonly used technique.

However, it is often accompanied by a number of disadvantages: i) the sensing
time taken to achieve a given probability of detection may be high; ii) the detection
performance is subject to the noise power uncertainty; iii) energy detection cannot
be used to distinguish primary signals from CR user signals. As a result, CR users
need to be tightly synchronized and refrained from transmissions during an interval
called quiet period; iv) energy detection cannot be used to detect spread spectrum
signals. Hence, although energy detection is the simplest spectrum sensing tech-
nique, its performance in terms of false alarm and mis-detection probabilities may
be low. Thus, in order to take advantage of its simplicity, without compromising the
accuracy, it has been usually used as the underlying sensing technique of CSS [12].
Thereby, the inaccuracy is overcome by taking advantage of the spatial diversity
introduced by the different locations of the SUs.

Feature Detection

On the other hand, feature detection enables the distinction between different types
of signals at the expense of higher complexity and longer sensing time. In particular,
cyclostationary feature detection (CFD) [11] determines the presence of PU signals
by extracting their specific features such as pilot signals, cyclic prefixes, symbol
rate, spreading codes or modulation types from its local observation. Therefore,
CFED requires prior information about the PU waveforms. However, notice that in
CR applications the cyclic frequencies of the PU signals (or at least some of them)
are typically known [13], since the waveforms are carefully specified in a standard.

2.2.2 Cooperative Spectrum Sensing (CSS)

In parallel, in order to improve the accuracy of the spectrum sensing technique that
is used, CSS is exploited. The CSS benefits from the spatial and multiuser diversity
and manages i) to guarantee PU protection by increasing the detection probability
(probability that a PU is busy and the channel is sensed as busy) and ii) to utilize the
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idle spectrum more efficiently by reducing the false alarm probability (probability
that a PU is idle but the channel is sensed as busy) [11, 12, 14]. CSS is usually
deployed in the following two successive phases: i) sensing and ii) reporting. In the
sensing phase, each CR performs spectrum sensing for a specific amount of time and
acquires a decision based on its own observation. In the reporting phase, all local
sensing decisions are transmitted to a fusion center (FC), and then, a final decision
will be made to indicate the absence (hypothesis HO) or presence (hypothesis H1)
of the primary user [15].

e Sensing phase: One of the key parameters that strongly affect the sensing per-
formance is the sensing time. A longer sensing time will improve the detection
performance. However, if the frame duration is fixed, a longer sensing time
will reduce the data transmission time of SUs in the CR network. In [16], the
sensing-throughput tradeoff problem has been formulated to find the optimal
sensing time that maximizes the SUs’ throughput while providing adequate
protection to the primary users. In [17], the authors propose a CR system that
overcomes the sensing-throughput tradeoff in opportunistic spectrum access
CR networks by performing spectrum sensing and data transmission at the
same time.

e Reporting phase: Typically, the reporting link for each CR uses a control
channel to report its sensing result to the FC [18]. As the control channel
bandwidth is limited, a summary of the node decisions is reported using one
or a few modulated bits [19,20]. This type of cooperative sensing scheme is
called decision fusion [21].

e Joint sensing and reporting phase optimization: Recognizing that both the
sensing time and cooperative fusion scheme affect the throughput of the SUs,
a joint optimization of the sensing time and cooperative fusion scheme has
recently been considered in [22]. In [22-24], the k-out-of-N fusion rule has
been examined, where all the CRs’ reporting links are considered error free.
However, in practice, reporting channels are neither ideal nor perfectly known
at the FC.

All the aforementioned approaches do not take into account the energy efficiency
of the CR network. However, as the CR nodes may be battery-powered wireless
devices; their energy-efficiency plays a key role.

2.2.3 Energy-efficient CSS

It is well known that the benefits of CSS come at the cost of control channel overhead
and more transmission data, requiring more power consumption and introducing
additional transmission delay. To that end, some studies have addressed the problem
of power consumption in CSS.

e Optimal sensing duration: In [25], the authors study how to choose an optimal
sensing duration to strike a balance between energy consumption and system
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throughput. They use a comprehensive utility function to formulate the trans-
mission cost in terms of the energy consumption of the sensing process and
the transmission process. The maximization of the utility function is obtained
with the constraint of providing sufficient protection to PUs.

e Querhead reduction: In [26], the authors propose the replacement of observa-
tion reports by hard decision reports to reduce the communication overhead.
In [27,28] the authors propose the use of a censorship strategy where only a
user that has reliable information can report the sensing result to FC. An-
other method of network overhead reduction for CSS is to reduce the number
of cooperative users, where the performance of sensing can be increased when
only a certain number of cognitive radios cooperate (those with the highest
signal-to-noise ratio, SNR) [26].

e Joint optimal sensing duration and overhead reduction: Accordingly, [29] aims
to maximize the energy efficiency of the CR network by optimizing the pa-
rameters that affect its average throughput and energy consumption, namely
by optimizing the fusion rule threshold, the detector’s thresholds at the SUs,
the length of the sensing time, and the number of cooperating SUs.

However, all the aforementioned works focus on scenarios where only a single
SN is considered. Nevertheless, the scarce transmission opportunities in densely
populated areas, in conjunction with the potential high number of SNs in these
scenarios, make the SNs’ coexistence an ever-hot issue. Hence, as stated in [30],
mechanisms for efficient coexistence of more than a single SN are indispensable.
The key point of such an efficient coexistence is that the contention of two or more
SNs over the same channel is allowed; however, it decisively impacts the achievable
throughput and energy efficiency. Therefore, a CR-based medium access control
(MAC) layer protocol should i) detect the licensed channels without PU activity
and ii) prioritize the access to the channels with low SU contention.

2.2.4 Secondary Networks Coexistence Mechanisms

Although efficient sensing techniques, security or suitable MAC protocols have been
extensively addressed by the research community [11], the initial CR technology
immaturity and the subsequent lack of real CR applications has hitherto resulted
in a slight interest in the coexistence among SNs.

In general, most approaches in the literature decouple the opportunistic spec-
trum sharing problem into two subproblems: the detection of PUs’ activity, and the
contention of the SNs. Both the PUs’ and the SNs’ activity detection can be relied
on information provided either by geographical databases or by local sensing pro-
cedures. With the use of local sensing for the joint detection of PU and SU activity,
however, the coexistence problem is tackled in an holistic manner [31-33].

In parallel, the study of a single licensed channel is not sufficient, especially
taking into account the nature of the CR concept. Hence, algorithms designed for
multichannel scenarios are needed [33-35].
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Nevertheless, the related works proposed hitherto in the literature, either con-
sider single channel models [31,32], or do not tackle the coexistence problem in a
holistic manner (by jointly designing the detection of PU activity and SNs coex-
istence) [33,34] or make constraining assumptions (i.e., dedicated common control
channel for control information exchange among the SUs, ideal estimation of spec-
trum availability probability) [33].

To that end, in the first research contribution part of this thesis, the following
contributions are provided:

e A novel contention-aware channel selection algorithm is proposed that: i) ex-
ploits cooperative spectrum sensing to detect the free from PU activity li-
censed channels, ii) for each one of them, it estimates the probability of col-
lision, and iii) selects the less contended (i.e., with the lowest probability of
collision) to access first.

e An analytical model for the throughput and the energy efficiency of the SN
under study is provided, which is validated by means of simulation. More-
over, the impact of the time between two consecutive sensing periods on the
aforementioned metrics is studied.

e Finally, the proposed channel selection algorithm is compared with three rel-
evant state-of-the-art algorithms. Simulation results show that the proposed
algorithm significantly outperforms its counterparts both in terms of through-
put and energy efficiency.

2.3 Cognitive Heterogeneous Networks (HetNets)

The need to exploit cognition in order to provide sustainable networks is not limited
to the search of unused spectrum opportunities in ad-hoc networks. It also applies
to more sophisticated networks, such as cellular networks. Future cellular networks
call for context-aware algorithms, which will exploit their cognition to boost the
network efficiency. Thus, the concept of cognitive HetNets is being introduced.

In general, HetNets comprise a conventional cellular network overlaid with a
diverse set of lower-power base stations (BSs) such as femtocells, picocells, metro-
cells and/or microcells, broadly known as small cells (SCs). A SC, according to the
Small Cell Forum [36], is a low-power wireless access point that operates in licensed
spectrum, is operator-managed and features edge-based intelligence.

SCs are expected to be a key feature of 5G cellular networks as they constitute
a viable solution to provide higher end user throughput, as well as expanded indoor
and cell edge coverage. Although originally they were envisioned as a means to
provide better voice coverage they are now primarily viewed as a cost-effective
means of offloading data traffic from the macrocell network. SCs, along with Wi-Fi
offloading, are expected to carry over 60% of all global data traffic by 2015 [37].
Moreover, ABI Research forecasts that the outdoor SC units will grow at 53.8%
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compound annual growth rate (CAGR) to reach 9.3 million units by 2017 and that
the fastest growing SC class is the outdoor femtocells, with output power less than
1 Watt, which will grow at 81.5% CAGR to reach 1.5 million units and $5.4 billion
by 2017 [38].

Driven by their attractive features and potential advantages, the development
and deployment of SCs have gained tremendous momentum in the wireless indus-
try and research communities in recent years. Small cells have also attracted the
attention of standardization bodies, e.g., the 3rd Generation Partnership Project
(3GPP), Long Term Evolution (LTE) and LTE-Advanced.

In general, the benefit of adding more BSs is twofold: i) the distance between
user equipments (UEs) and BSs is reduced and thus the signal-to-interference-plus-
noise ratio (SINR) increases and ii) each UE shares the BS’s bandwidth and BH
connection with a smaller number of UEs, thus gaining access to a larger portion
of resources, which results in extra capacity improvement. However, adding more
macrocell BSs (i.e., eNodeBs (eNBs) in the LTE terminology) to the network is
not viable in many important markets due to the cost and the lack of available
sites and proper connections among them. Consequently, future cellular networks
are expected to be dense deployments of BSs of widely varying transmit powers and
coverage areas (i.e., eNBs and/or SCs), carrier frequencies, BH connection types
and communication protocols. Besides their heterogeneous nature, they will be also
characterized by the implementation of cognitive capabilities in some of the involved
network entities. In particular, they will be able to perceive current network condi-
tions (i.e., context-awareness), plan, decide and act according to these conditions,
the so-called self-organized networks (SONs), learn from the consequences of their
actions, while aiming at achieving specific goals. Therefore, in the rest of the thesis,
we will refer to these networks as cognitive HetNets.

In cognitive HetNets, UEs will be capable of communicating via multiple bands
over various protocols, and thus the user association problem becomes challenging,
with future HetNet architecture playing an important role. Thus, in the rest of this
section, the future cognitive HetNet architecture will be presented and then the
main technical challenges in user association will be discussed and analyzed.

2.3.1 Cognitive HetNet Architecture

LTE-Advanced [39] recently proposed a new HetNet architecture, which is depicted
in Fig. 2.2. According to it, a SC can directly connect to core network or through a
Home eNodeB (HeNB) gateway (GW). Moreover, the last version of the 3GPP spec-
ification supports direct X2-connectivity between HeNBs, independent of whether
any of the involved HeNBs is connected to a HeNB GW (Fig. 2.2). Generally, the
HeNB GW appears to the mobility management entity (MME) as an eNB and to
the HeNB as an MME.

As depicted in Fig. 2.2, SCs will support 3GPP compliant interfaces like S1, X2,
Iub, Iuh, etc. However, according to the next generation mobile networks (NGMN)
Alliance [40] and Tellabs [41], an optional aggregation gateway can be introduced
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Figure 2.2: Overall E-UTRAN architecture with deployed HeNB GW [39].

to the architecture for better scalability (e.g. reducing the number of logical S1
interfaces to be supported by the evolved packet core, EPC). This optional aggre-
gation gateway can provide functionality on user, control and management plane
helping to reduce the signaling load on the core elements (e.g. EPC) as well as
to ease operation of SCs. It will be based on the gateway architecture defined by
3GPP for Home NodeB (HNB) and HeNB offering standard interfaces towards the
core elements (S1, Tu). Although the Home BS architecture was originally intended
to support consumer deployed Home BSs (also known as femtocells), its use is not
precluded for operator deployed SC networks.

Depending on the capacity of the aggregation gateway (number of supported
SCs) as well as the applied network topology it might be deployed within either the
access or aggregation domain. A collocation with a Macro BS (eNB) and supporting
from 4 to 12 SC BS (HeNB) might be a reasonable configuration [40].

To that end, assuming that the operator already has a radio network in place,
a straightforward option is to connect the SC BS (HeNB) directly to the macrocell
site (or any other site offering connectivity to the existing BH network). This option
is especially attractive in cases where there is fiber access to the macro site [41].
From topology perspective this would look like a traditional hub-and-spoke, with
SCs as spokes and the macro BS site as hub.

Alternatively, e.g. in case of a greenfield deployment or when other transport
services are more applicable from cost or availability perspective, the SC BSs can
be connected to any other transport network offering suitable BH services. The
connectivity can be established either directly or via an aggregation site.

Optionally the hub point offering the connectivity to the cell sites could also be
a dedicated aggregation site as shown in the lower half of Fig. 2.3. In this case the
node at the aggregation site has the connectivity to the existing BH network.
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The connectivity between the SCs and the hub point (being either macro cell
or aggregation site) could be based on point-to-point or point-to-multipoint topolo-
gies (independently whether wired or wireless connectivity is used). As a further
option, instead of connecting every single SC BS to the macro site, chain, tree or
mesh topologies can be used between the SC sites themselves for providing further
connectivity [41] (Fig. 2.4).

Demarcation point
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Figure 2.5: Small cell aggregation with demarcation at small cell site [41].

In such topologies (chain, ring and meshed), where one SC acts as an aggrega-
tion point for other SC sites, some additional packet aggregation capabilities are
required. The connectivity between the macro site and the SC site is no longer a
simple point-to-point connection, but requires transit through other SC site GWs
(Fig. 2.5).

A topology with alternative traffic paths and the need for some form of for-
warding intelligence increases the importance and value of a packet switch at the
SC sites. A SC site GW, which is purpose-built for SC sites, can be utilized to
provide both the packet aggregation and an extension of the demarcation point
(that is, the handover point between the radio and the BH domain, as close to the
cell site devices as possible [41]) down to the SC site. This approach also extends
all the management capabilities and visibility of the S1 interface down to the SC
site. An aggregation device must also address the physical design and cost struc-
ture requirements for SC site BH. The SC site GW must provide the same level of
functionality as the macrocell site GWs, i.e. quality of service (QoS), connectivity
and synchronization capabilities.
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The demarcation functionality becomes critical in leased line scenarios where
the connectivity between the SC site and the aggregation location is provided by
a separate service provider, for example a wholesale provider. The mobile network
operator must be able to control the traffic management and QoS functions, as well
as, monitor the network and traffic status in its own domain. Therefore, a cell site
GW device is required at the SC site. Additionally, connectivity over broadband
aggregation networks with varying quality may need to be monitored more closely
using a demarcation device at the SC site. A cost and size optimized, feature rich
SC site GW will be able to provide the required functionality while strengthening
the operator business case.

2.3.2 User Association Technical Challenges

The main objective of user association in future cognitive HetNets is to achieve
network capacity enhancement, while satisfying the UE QoS requirements. To that
end, three main challenges! can be identified: interference management, spectrum
efficiency maximization and energy efficiency maximization.

Interference Management

As future HetNets become denser and spectrum resources are limited, high spec-
trum reuse is necessary to achieve higher spectrum efficiency. Under spectrum reuse,
interference management becomes a major concern. User association in future Het-
Nets imposes additional challenges on the interference management, since a UE may
communicate with a different BS than the one from which it receives the strongest
signal. Thus, in this case, the UE experiences strong downlink interference, while
causing high uplink interference to UEs in its proximity. Furthermore, the com-
plex BH architecture should be taken into account to efficiently avoid/mitigate the
generated interference.

Several interference management techniques have been proposed so far. Al-
though fractional frequency reuse has been traditionally used, it presents low ef-
ficiency, while its complexity increases when applied in dense HetNets consisting of
many tiers. Thus, in releases 8/9 of LTE, inter-cell interference coordination (ICIC)
was introduced, where the inter-cell interference is controlled by radio resource man-
agement (RRM) methods based on the cell spectrum usage and traffic load [39]. In
the enhanced ICIC (eICIC), introduced in release 10 of LTE-A, the transmissions of
multiple cells are coordinated not only in the frequency domain but also in the time
domain using power control schemes. Furthermore, aiming at improving the inter-
ference management, eICIC introduced the almost blank subframes (ABS), during
which the eNB remains silent (i.e., only transmitting control information at very
low power), thus enabling the UE communication with their associated SCs without
interference caused by the eNB [39].

1Resource allocation fairness is another main HetNet challenge. Yet, it has not been included,
since it is a cross-cutting objective that encompasses the three main challenges discussed in this
section and all the radio resource management functions, particularly scheduling.



18 2.3. Cognitive Heterogeneous Networks

In general, in future cognitive HetNets the user association and the interfer-
ence management constitute two interdependent problems and therefore, should be
jointly studied and designed.

Spectrum Efficiency Maximization

Due to the previously explained spectrum scarcity problem, the spectrum efficiency
maximization (i.e., maximization of the achievable data for a given spectrum band)
is another challenge mobile operators have to meet. This metric is directly connected
to the achieved SINR. Specifically in LTE-A networks, the spectrum efficiency of a
UE is a scalar step function of its SINR, with each step corresponding to the use of
a specific MCS and thus to a specific achievable rate [42].

Network densification is expected to improve the overall spectrum efficiency,
since the distance between UEs and BSs decreases, and thus higher SINR is achieved.
In LTE, further spectrum efficiency enhancement is provided by Multiple-Input
Multiple Output (MIMO) technology and carrier aggregation. MIMO, which uses
multiple antennas at both the transmitter and receiver, offers significant increases
in data throughput and link range without additional bandwidth or increased trans-
mit power. On the other hand, through carrier aggregation higher data rates are
achieved, since the overall used bandwidth increases.

In future cognitive HetNets, a UE may not be always connected to the BS from
which it receives the highest SINR. Hence, spectrum efficiency becomes even more
challenging, stressing the need for spectrum-aware user association strategies.

Energy Efficiency Maximization

Maximizing the network energy efficiency may be defined as maximizing the suc-
cessfully sent data while minimizing the total energy consumption. In case of specific
UE requirements, this can be expressed as satisfying the UE traffic demands, while
minimizing the total energy consumption.

The total energy consumption is the sum of the energy consumed in the access
network, i.e., between the UE and the BS (Uu interface) and in the BH links i.e.,
between BSs and/or the core network. The BH energy consumption definitely im-
pacts the overall energy efficiency, especially when considering scenarios as the ones
previously described with BH links, and thus cannot be neglected.

Given the common assumption that the total transmit power of a BS is equally
distributed among its subcarriers [43], the energy consumed in the access network is
a function of the number of physical resource block (PRBs) pairs needed to serve the
UE traffic. The more the PRBs allocated to the UE, the higher the access network
energy consumption to serve the UE traffic. Also note that as eNBs have a much
higher total transmit power than SCs, the power allocated to an PRB, and thus
the access network energy consumption, is higher when a UE is associated with an
eNB than with a SC.
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Then, the BH link energy consumption is a scalar function of the aggregated
throughput that passes through the link (i.e., the sum of the total throughput
of all UEs associated with the SCs that backhaul their traffic through this link).
Specifically, given that adaptive MCS is used, the energy consumption in a BH
link can be expressed as a function of the aggregated throughput and thus of the
required SINR to achieve this throughput. This function depends on the employed
BH technology and the distance between the transmitter and the receiver of the
BH link. Depending on the UE association, the BH energy consumption may vary
significantly. The closer the serving BS to the core network (i.e., the less the number
of hops until the data packets reach the core network), the less the BH energy
consumption. In addition, further energy efficiency gains can be achieved when BH
load balancing is performed, since the energy consumption of a BH link does not
increase linearly with its traffic load [42].

Overall, the network energy efficiency is highly dependent on the UE association
decision, with BH energy consumption having a significant impact. As a result, user
association algorithms taking into account both the access network and BH energy
consumption should be designed.

2.3.3 Backhaul-aware User Association Algorithms

In topologies as the ones previously described, where one SC backhauls its traffic to
the neighboring SC that acts as an aggregation point, the extension and configura-
tion of the BH involves a multidimensional trade-off between the reduction of the
capital expenditure (CAPEX), the reduction of the energy consumption, with the
consequent reduction of operational expenditure (OPEX), and the maximization of
the access network capacity. It is precisely in this context that, for a BH configura-
tion, which is often determined by external constraints, the user association strategy
should exploit context-awareness to deal with the aforementioned complexity. Thus,
although backhauling has, thus far, been a largely overlooked issue, future archi-
tectures call for BH-aware user association strategies. At the same time, the need
to design a framework for the efficient performance evaluation of the existing user
associations solutions has ultimately become very important.

However, the related works proposed heitherto in the literature, either consider
only the AN [39,44-50], thus totally overlooking the BH capacity constraints and
energy impact, or/and do not take into account the energy consumption and hence,
their energy efficiency cannot be guaranteed [43,51-55].

Thus, the second research contribution part of this thesis focuses on next gen-
eration cognitive HetNets. In particular, the user association problem is studied
in scenarios where several SCs backhaul their traffic to the neighboring cells until
they reach the core network. Analytical frameworks for optimal user association are
derived that aim at the joint energy efficiency and spectral efficiency maximization,
without compromising the UE QoS. Using the derived frameworks as benchmarks,
the performance of existing user association algorithms is evaluated and the high
energy efficiency and spectral efficiency potential of a low-complexity heuristic al-
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gorithm is shown that exploits the available context-aware information to achieve
a good trade-off between energy efficiency and spectral efficiency.

2.4 Conclusions

This chapter has provided some background information that is relevant to the
contributions of this thesis, which will be thoroughly presented in the following
chapters. At the first part of the chapter, an overview of the CR concept and its
principle has been presented and the main sensing techniques have been described
and analyzed. The concept of cooperative spectrum sensing and its benefits have
been discussed next together with the most representative related works on energy-
efficient cooperative spectrum sensing and on SNs’ coexistence.

In the second part of this chapter, the expected future HetNet architecture
as well as the main user association technical challenges have been described and
analyzed. Finally, the related works that have been proposed hitherto on BH-aware
user association have been summarized.



Chapter 3

Energy-efficient
Contention-aware Channel
Selection in Cognitive Radio
Networks

3.1 Introduction

As already mentioned, cognitive radio (CR) has received much attention as a pos-
sible solution to the spectrum scarcity problem, since it enables the use of licensed
channels by unlicensed users (also called secondary users (SUs)) for as long as they
remain unused [3-5]. Although efficient sensing techniques, security or suitable MAC
protocols have been extensively addressed by the research community [11], the ini-
tial CR technology immaturity and the subsequent lack of real CR applications has
hitherto resulted in a slight interest in the coexistence among secondary networks
(SNs).

The opportunistic spectrum sharing, on which SNs’ operation is based, relies
upon two main premises: the protection of the primary users’ (PUS’) transmissions
and the maximization of the spectrum usage. The former is achieved by applying
effective sensing techniques (cooperative or not) [5,14,29]. Therefore, most proposals
on CR networks aim at exploring the radio environment and detect transmission
opportunities in licensed channels. The ability to identify such opportunities, and
the accuracy with which they are detected, are essential to efficiently exploit them.
In this context, proposals on suitable sensing and access mechanisms have been
stated [56-58].

The maximization of the spectrum usage, though, can only be met by imple-
menting efficient coexistence mechanisms among SNs, particularly in congested en-

21
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vironments. The new challenges posed by SNs’ coexistence are a consequence of
the scarce transmission opportunities in densely populated areas, in conjunction
with the potential high number of SNs in these scenarios. Hence, as stated in [30],
mechanisms for efficient coexistence of more than a single SN are indispensable.

The key point of such an efficient coexistence is that the contention of two
or more SNs over the same channel is allowed, but it impacts decisively on the
achievable throughput and energy efficiency. Therefore, a CR-based MAC protocol
should i) detect the licensed channels without PU activity, and ii) prioritize the
access to the channels with low SU contention.

To that end, in this chapter, which includes the first research contribution part
of this thesis, the following contributions are provided:

e A SN coexistence scheme is proposed as well as a novel contention-aware
channel selection algorithm that: i) exploits cooperative spectrum sensing to
detect the free from PU activity licensed channels, ii) for each one of them, it
estimates the probability of collision, and iii) selects the less contended (i.e.,
with the lowest probability of collision) to access first. It is worth noting that
this metric can be applied to various traffic patterns.

e An analytical model for the throughput and the energy efficiency of the SN
under study is provided, which is validated by means of simulation. Further-
more, the effect of the time between two consecutive sensing periods on the
aforementioned metrics is studied and analyzed.

e The proposed channel selection algorithm is compared with three relevant
state-of-the-art algorithms. Simulation results show that the proposed algo-
rithm significantly outperforms its counterparts both in terms of throughput
and energy efficiency.

e Finally, given the importance of a fair SN coexistence scheme, in the end of
this chapter, the proposed SN coexistence scheme is also compared with other
state-of-the-art approaches and it is shown that it can achieve throughput and
energy efficiency gains, while maintaining fairness among the coexisting SNs.

The rest of the chapter is organized as follows: In Sections 3.2, 3.3 and 3.4, the
related work, the system model and the proposed channel selection algorithm are
respectively described. In Sections 3.5 and 3.6, the throughput and energy efficiency
analysis are presented, respectively. Section 3.7 validates the model accuracy by
comparing it with the results obtained by means of simulation and evaluates i) the
performance of the proposed channel selection algorithm and ii) the performance
of the proposed SN coexistence scheme compared to other relevant state-of-the-art
algorithms. Finally, concluding remarks are given in Section 3.8.
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3.2 Related work

Most approaches in the literature decouple the opportunistic spectrum sharing prob-
lem into two subproblems: the detection of PUs’ activity, and the contention of the
SNs. Both the PUs’ and the SNs’ activity detection can be relied on information
provided either by geographical databases (DBs) or by local sensing (LS) proce-
dures.

The use of databases to detect the PU and SU activity presents less flexibility,
while it requires the deployment of SNs’ infrastructure and signaling between SNs
and geographical databases [59, 60].

On the other hand, by using local sensing for the joint detection of PU and SU
activity, the coexistence problem is tackled in an holistic manner [31-33]. In [31], a
set of known SNs accesses the channel in a TDMA fashion. However, the proposed
algorithm is designed for a single licensed channel, and the throughput analysis
exposes details on the channel access but it does not gain insight in the recovery
procedure when PUs resume their activity. Additionally, it requires synchronization
between the SNs. In [32], the authors address the coexistence problem between SNs,
although the proposal is not designed for a multichannel scenario. Furthermore, SUs
require two transceivers to operate (one devoted to data and another to sensing).

Being the closest to this work, [33-35] focus on multichannel scenarios. In [33],
the authors propose a MAC protocol for opportunistic spectrum access that uses two
channel selection methods, a uniform and a spectrum opportunity-based. According
to the first, each SU chooses a channel randomly, whereas the latter takes into
account the different spectrum availability probabilities in the channels. However,
the authors assume that each SU can correctly estimate the spectrum availability
probability (i.e., the number of active secondary flows). Moreover, they consider
a dedicated common control channel for control information exchange among the
SUs. In [34], the authors propose two algorithms to rank the channels according
to their interference severity in terms of strength and activity. Equivalently, in
[35], a new carrier sense multiple access (CSMA) protocol that uses a distributed
channel selection scheme is proposed, according to which, the transmitter selects an
appropriate channel for transmission based on its interference power measurements
in the channels. Nevertheless, unlike this work, [34,35] do not tackle the coexistence
problem in a holistic manner, by jointly designing the detection of PU activity and
SNs coexistence, since the original problem is decoupled into a multichannel access
problem without PUs. For the reader’s convenience, the aforementioned differences
between this work and the state-of-the-art are summarized in Table 3.1.

In this context, another fundamental objective is to guarantee fairness among
the coexisting SNs. In general, achieving fairness among the SUs that share the
same PU spectrum is a research topic that has received a lot of attention. In [61], a
fair opportunistic spectrum access scheme is proposed that, based on a fast catch up
strategy, manages to reduce the amount of time after which all SUs have equal access
rights to the available licensed channels. In [62], a Homo-Egualis based learning
model was proposed to achieve fairness among dissimilar SUs, while in [63] the
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Table 3.1: Energy-efficient Contention-aware Channel Selection in Cognitive Radio
Networks: Related Work Table

[59,60] | [31] | [32] | [33] | [34,35] | This work
PU activity detection DB LS LS LS X LS
SNs’ activity detection DB LS LS LS LS LS
High flexibility X v v v v v
Need for SNs infrastructure deployment v X X X X X
Need for SN-Database signaling v X X X X X
PU recovery procedure X X v v X v
Number of required transceivers 1 1 2 1 1 1
SNs synchronization need X v X X X X
Dedicated common control channel X X X v X X
Multi-channel design X X X v v v
Spectrum availability calculation X X X X v v

authors proposed heuristic channel allocation algorithms based on multi-channel
contention graphs and linear programming aiming at achieving a good trade-off
between throughput and fairness, while ensuring interference-free transmissions.
In [64], the authors derive the optimal access probabilities for two independent SUs
focusing on achieving a good trade-off between spectrum efficiency and fairness.
However, all these proposals assume that a licensed channel that is occupied by an
SU can not be accessed by another SU. In particular, the licensed channel appears
as being busy to the SU and thus it is avoided. Hence, most coexistence schemes
in the literature totally overlook the case where several SNs coexist and share the
same PU resources.

To overcome the aforementioned problem, in [32], the authors propose FMAC, a
MAC protocol, that utilizes a three-state sensing model. Specifically, FMAC uses a
spectrum sensing algorithm [65] to distinguish whether a busy channel is occupied
by a PU or by an SU and, in the latter case, gives the option to the SU to share the
channel with the SUs of other SNs that are currently using it. Nevertheless, in [32]
a simple system model consisting only of one licensed channel is considered, while
more importantly, the scheme employs a constant back-off window. As a result,
unlike the proposed coexistence scheme, it shows low adaptability to any changes
in the number of contending SUs in a licensed channel.

3.3 System Model

In the system model under study, M licensed channels are considered that are
allocated to PUs and can be opportunistically accessed by SUs, as long as they
remain unused. The PU activity is assumed to follow an exponential on-off traffic
model, with the mean durations of on and off periods denoted by T, and T,yy,
respectively. While being idle! the licensed channels are further characterized by

L Although an idle channel implies the absence of any type of activity, in this chapter, a channel
will be characterized as busy or idle only based on the PU activity. Thus, an idle channel may still
be occupied by SNs.
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their SU contention level, i.e., the probability of collision among the SUs that operate
on them. In particular, for the licensed channel k, the collision probability among
the SUs is denoted by pck.

A highly congested unlicensed channel (e.g., belonging to the industrial, scientific
and medical band) is also considered, which is operated by users with and without
cognitive capabilities?>. Among the users operating on the unlicensed channel, we
will focus on N users with cognitive capabilities that, due to the high contention
in the unlicensed channel and given that there is information to be transferred
among them, they set up an ad hoc SN to exploit the spectrum opportunities in
licensed channels. These users will be referred as SUs, whereas the number of users
that operate on the unlicensed channel but do not belong to the SN is denoted by
Nunlic~

The SN intends to exploit exclusively the idle licensed channels. However, there
are two situations where the operation on the unlicensed channel is inevitable: i)
during the initial set up of the SN, the exchange of control information is car-
ried out on the unlicensed channel, and ii) when all the available licensed channels
are/become busy. Although it will be detailed in Section 3.4, it is worth noting that
no dedicated common control channel is used, since the licensed channels are shared
for both control and data transmissions, and the unlicensed channel is only used as
a common control channel in the two situations stated above.

The SN under study consists of a cluster head® [5, 11,12, 14], whose role may
be assigned to the SUs in a round robin way. The sequential assignment of the
cluster head role among the SUs improves the algorithm performance in two ways:
i) it achieves energy consumption fairness among the SUs [66], and ii) it limits
the negative effect of a selfish cluster head, since this is restricted to the time
it takes up this role. Furthermore, the SUs of the SN under study are assumed
to be adequately close to each other to be exposed to the same channel activity.
However, note that their reported sensing results may differ due to false alarm and
mis-detection probability.

All SUs that are considered in this system model are equipped with a half duplex
transceiver. Thus, even if they are capable of operating over multiple channels,
including the licensed channels, they can either transmit or receive over a single
channel at any given time. Obviously, the use of a single transceiver is less energy-
consuming and costly compared with the use of multiple transceivers and is already
considered in some CR devices and prototypes [67].

The SUs’ transmissions both in the unlicensed channel and licensed channels use
the CSMA/CA access method [68]. To that end, a node wishing to transmit data
has to first listen to the channel for a predetermined amount of time (tprpg) to
determine whether or not another node is transmitting. If no other node transmits,

2The term cognitive capabilities is defined as the set of features that confer on users the ability
to tune and sense different channels, and transmit over them if they are detected idle.

31t is assumed that the clustering of the SUs is done beforehand. Nevertheless, it is worth
mentioning that this takes place in the unlicensed channel, where all users are able to communicate
with each other without the presence of PUs.
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the node is permitted to begin the transmission process. Otherwise, the node defers
its transmission for a random period of time (tgo, back-off time). It is worth noting,
however, that the PUs may use their own access method, when accessing the licensed
channels (e.g., SC-FDMA in the uplink and OFDMA in the downlink for LTE
access).

Although the set of licensed channels sensed by the users of the SN is higher
than one, all the users operate on the same single channel by employing CSMA /CA
(in fact, several channels are used, but in a sequential manner, since they have to
be vacated when they become busy). Thereby, two objectives are achieved: i) the
connectivity between all SUs of the SN is guaranteed, and ii) collisions are avoided
(or at least minimized) due to the use of CSMA/CA.

3.4 Secondary Network Coexistence Scheme and
Algorithm Description

The SN is assumed to be initially located in a highly congested unlicensed channel
(shared with other Ny,ji. users). There, the cluster head initiates a sensing pro-
cedure aiming at finding new spectrum opportunities in licensed channels for the
SN to exploit. Upon the sensing procedure completion, the sensing information is
exchanged over the unlicensed channel (Section 3.4.1), and a list containing the
licensed channels detected idle is constructed. Then, there are two possible cases:

i) All the licensed channels have been sensed busy: The list is empty; the SN stays
in the unlicensed channel and another sensing procedure is initiated.

il) There is at least one licensed channel sensed idle: The list is not empty; the SN
hops to the first channel of the list and operates there, as described in Section
3.4.2.

The protocol flowchart is depicted in Fig. 3.1 and it is elaborated in the following.

3.4.1 Operation on the unlicensed channel

The operation on the unlicensed channel includes only sensing-related control infor-
mation exchange. During this procedure the unlicensed channel is used as a common
control channel. A sensing procedure can be divided into three periods (¢tpp1, tpne,
tph3), as depicted in Fig. 3.2.

Time period t,4;

During this period, in order to limit the experienced delay, only the cluster head
contends with the other N, users to gain access to the unlicensed channel to
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Figure 3.2: Time periods of a sensing procedure.

carry out the whole process (i.e., the rest N — 1 users of the SN remain idle). Thus,
the cluster head first listens to the channel for a predetermined amount of time
(tprrs) to determine whether or not another node is transmitting. If no other node
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transmits, it broadcasts a request for sensing (RFS) packet. Otherwise, it defers
its transmission for a random period of time (i.e., back-off time (tpo)). The RFS
packet defines: i) which licensed channels will be sensed by each SU, ii) the order
in which the SUs will report their sensing results to the cluster head, and iii) how
often the sensing procedure will be triggered. To than end, the following must be
noted:

i) All SUs sense the same number of channels in each sensing period, thereby
guaranteeing energy consumption fairness. This number is decided during the
initial setup, whereas the particular sensing channel assignment is decided and
informed by the cluster head with every RFS packet. For this assignment, the
cluster head may use information collected in previous periods (while exploiting
learning and/or predictive mechanisms) or apply any of the sensing channel
assignment algorithms available in the literature [66,69, 70]. Notice that the
use of the round robin algorithm would correspond to the lower performance
bound, while any other algorithm, being based on additional information, could
improve the SN performance, since the number of channels correctly detected
idle would be higher.

ii) Each SU is assigned a network id in the setup process (0 to N-1). Consequently,
the cluster head does not need to include in the RFS packet the reporting
order of the SUs during t,,3 nor the identity of the next cluster head. In
particular, before the beginning of every sensing process, the next cluster head
id is computed as idpept=(idcurrent + 1)modN, whereas the reporting order
is (ideyrrent + 1)modN to (ideyrrent — 1)modN. For instance, if N = 4 and
the current cluster head has an id equal to 2, the next cluster head will have
id = 3, and the reporting order will be {3,0,1}. This strategy does not induce
any additional overhead.

iii) As the licensed channels state varies along time, the sensing procedure should
be repeated periodically to update the channel information. The parameter T
is defined as the time elapsed between the completion of a sensing procedure
and the triggering of the next (by broadcasting a new RFS packet). This value
is tightly coupled with the PU activity, namely for fast changing PU activity,
a low T should be chosen to keep the information for every channel updated.

To guarantee the successful transmission of RF'S, the algorithm in [71] is applied.
Accordingly, one node (i.e., the SU scheduled to send its sensing results first) acts
as a leader for the purpose of sending feedback to the cluster head. On erroneous
RFS reception, the leader does not send an ACK, prompting a retransmission. On
erroneous RFS reception at receivers other than the leader (i.e., at the rest N — 2
users of the SN), the protocol allows negative ACKs from them to collide with the
ACK from the leader, thus prompting the cluster head to retransmit the packet.
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Time period t,52

Upon the RFS successful reception, t,,2 begins, with each SU sensing the channels
that were assigned to it. In CR networks, as the channels are licensed, it is important
to sense a set of channels to have alternatives to hop to in case SUs have to vacate the
channel. It is also worth pointing out that when a licensed channel is sensed by more
than one SU, cooperative spectrum sensing is applied. In this work, the OR fusion
rule* is used, which presents low mis-detection and high false alarm probability. In
the OR rule, which is the most conservative fusion rule, when at least one of the
cooperating SUs senses the licensed channel as busy, the final decision declares a
PU is present. Although the application of other fusion rules could achieve better
trade-off between false alarm and mis-detection probabilities, the OR rule minimizes
the probability of interfering with the PUs, which is the reason why it is selected
in this approach.

During sensing (¢,42), cyclostationary feature detection is used [11], which en-
ables the SU that senses the licensed channel to distinguish between PUs’ and SUs’
signals, at the expense of higher complexity and longer sensing time. Since this
technique determines the presence of PU signals by extracting their specific fea-
tures (e.g., pilot signals, cyclic prefixes), it requires prior information about the PU
waveforms. However, notice that this is typically known for most standard technolo-
gies that operate on licensed channels [13]. Moreover, in coexisting scenarios its use
is fundamental, since a simpler technique, unable to distinguish between PUs’ and
SUSs’ signals (i.e., energy detection), would result in very low spectrum efficiency, as
all the idle channels being used by other SNs, would be considered busy and thus
would be avoided.

Time period t,,3

After the sensing has finished, all SUs of the SN hop back to the unlicensed channel
to report their sensing results. Given the importance of exchanging them as soon
as possible, the reservation of the unlicensed channel for the constant and known
period of t,p2+4t,h3 is considered, as long as its duration is lower than the maximum
tolerable delay®.

Hence, the cluster head broadcasts a beacon frame (of duration ¢5) asking for
the sensing results of the rest of the SUs, as depicted in Fig. 3.2. Subsequently,
each SU waits tsrrpg and sends its sensing results (tggr) to the cluster head in the
previously defined order. Thereafter, the cluster head constructs and broadcasts the
list (t1rs7) and the contention-free period ends.

4In cooperative spectrum sensing, the SUs report their sensing results to a central entity (to the
cluster head in this case), which process them and makes a final decision according to a predefined
rule, also called fusion rule.

5This channel reservation is compatible with existing standards, such as the transmission
opportunity (TXOP) in 802.11 [72].
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3.4.2 Operation on the licensed channels

When the SN under study hops to a licensed channel, operates there using CSMA /CA.
Thus, all SUs that have a packet to send (belonging to the SN under study or/and
to the other coexisting SNs) contend to gain access to the licensed channel. Hence,
the operation time of the SN under study on the licensed channel consists of suc-
cessful transmission, collision and idle slots®. This normal CSMA /CA operation on
the licensed channel is interrupted in the following cases:

i) The PU of the licensed channel remains idle and it is time to initiate the next
sensing procedure (i.e., Ts has elapsed). In this case, only the cluster head
contends with the other coexisting SNs to gain access to the licensed channel
and trigger a new sensing procedure (consisting again of tpn1, tpp2 and t,ps, as
described in the unlicensed channel operation).

ii) The PU becomes busy earlier than Ts. In this case, the SUs have to leave the
licensed channel immediately in order not to interfere with the PU. The time
that the SN requires to detect the PU activity and react accordingly by hopping
to the next licensed channel in the list is denoted by ¢,.. In case all the channels
of the list have been visited and have become busy before T, the SN hops to
the unlicensed channel to trigger a new sensing procedure.

3.4.3 Channel selection algorithm

As cyclostationary feature detection is able to discern between PU and SU activity,
after the sensing procedure completion, the cluster head constructs a list containing
the licensed channels where no PU activity has been detected (idle channels). These
channels may have other SNs operating on them and thus may be characterized by
the probability of collision among the SUs.

The main goal of the algorithm is to achieve throughput and energy efficiency
improvement by reducing the time spent in highly contended licensed channels.
Therefore, the channels in the list are sorted in ascending order by the estimation
of their probability of collision among the SUs, pc (i.e., the channel with the lowest
pc takes the first place and, thus, higher priority). Notice that as the licensed
channels are classified and accessed based on their activity, the SNs (and so the SUs
belonging to them) are distributed among the licensed channels, thereby achieving:
load balancing over the channels, connectivity for each particular SN, reduction of
the coordination signaling burden, and minimization of the need for a dedicated
common control channel.

A SU that senses a licensed channel can efficiently estimate pc by simply moni-
toring the channel activity. Specifically, it is able to understand the collisions and the

6Please note that although the term slot is used, the SUs’ access is not slotted since they use
CSMA/CA. Yet, we will refer to a slot, as defined in [68], to determine the duration of a successful
transmission (successful transmission slot), of a collision (collision slot) or of an idle period (empty
slot).
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successful transmissions of the other SNs by listening to their packet exchange [73].
Thus, pc can be measured by counting the number of slots that a successful trans-
mission oceurs (Cgyec), as well as the number of slots that a collision of the other
SNs occurs (Ceor), as in each of these slots a potential packet transmission of the
SN under study would have failed [74]. Thus, pc may be expressed as

Csucc C’co CZ e
po = Zouee £ Ccoll g ! (3.1)
B Csucc + C1coll + Cidle

where B is the total number of observed slots that also includes the number of idle
slots (Cidie)-

The estimation accuracy is highly dependent on the observation time (B) (e.g.,
for constant SU activity, the longer the observation time, the more accurate the
pc). Therefore, the algorithm should be robust enough to overcome situations of
overestimation and/or underestimation of pc. To that end, in [75] it is shown that
the correct construction of the list is slightly impacted by pc estimation inaccuracy,
since it depends more significantly on the comparison between the estimated values
and not on the estimated values themselves.

3.5 Throughput Analysis

The throughput of the SN under study may be expressed as

E[D]

S:Emﬂ+mn]

(3.2)

where E[D] is the expected number of useful bits (i.e., payload) sent by the SN in a
representative time period, T}, defined as the sum of the time spent in the unlicensed
(Ty) and licensed channels (77,), until the SN hops back to the unlicensed. Notice
that T}, is a random variable, since it depends on the contention in the unlicensed
channel and on the PU activity in the licensed channels (the SN hops back to the
unlicensed channel when all the licensed channels previously detected idle become
busy). In particular, Ty and 77, may be defined as

e Ty: Time spent by the SN in the unlicensed channel, until there is at least
one licensed channel sensed idle. Then, the SN hops to the first channel on
the list and 77, begins.

e T7: Time spent by the SN in licensed channels, until the moment that there
is no licensed channel available and the SN has to hop again to the unlicensed
channel for the recovery process. 15, may consist of a number of complete
periods (T¢p) and an incomplete period (T7yp). During a complete period
(Tcp), the SN operates on licensed channels for Ts and a sensing procedure
takes place, while in an incomplete period (T;y p), the SN operates on licensed
channels for less than T's and there is no other available licensed channel in the
list (i.e., all the licensed channels become busy before T). After an incomplete
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Figure 3.3: Example of the operation of the secondary network under study.

period, the SN hops back to the unlicensed channel, where it will remain for
Ty . Thus, the expected value of T}, can be expressed as the sum of the expected
values of Ty and Tp.

For a better understanding of 7}, and consequently of Ty and 77, an operation
example is given in Fig. 3.3. According to it, 1) the SN under study while operating
on the unlicensed channel (UC), it initiates a sensing procedure (consisting of ¢,p1,
tphe and tpp3) to find new spectrum opportunities in licensed channels 1, 2 and 3
(LC1, LC2 and LC3), while Ty begins. 2) In the end of the sensing procedure, a list
is constructed, which contains only the sensed as idle licensed channels categorized
by their probability of collision among SUs. In this example, LC3 was estimated
to be less contended than LC2, whereas LC1 was sensed as busy. Therefore, the
SN under study hops to LC3 (Ty ends and 77, begins) and starts operating there.
However, at a point, 3) the PU resumes its transmission and thus after ¢,., the SN
under study hops to the next channel in the list, i.e., LC2. There it keeps operating
until it is time for the next sensing procedure to take place. Thereafter, an updated
list is constructed which contains LC1 and LC2. Thereby, 4) a complete period
(Top) ends with the SN hopping to LC1, which was estimated to be less contended
than LC2. Subsequently, the SN operates on LC1 until it is time for the next sensing
procedure. Given that at this stage the list only contains LC1, 5) another complete
period ends (T¢p) and the SN keeps operating on the same channel (i.e., LC1).
At a point, 6) the PU resumes its transmission and thus, given that there is no
other channel in the list, the SN hops back to the unlicensed channel. This period
was an incomplete period (Trxp). In the unlicensed channel, 7) a new Ty period
begins with the SN initiating a new sensing procedure, and the process continues
in a similar way.

Calculation of E[D]

Prior to further calculations, two key points must be clearly stated. First, the
amount of data transmitted over the licensed channels is tightly coupled with the
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number of available channels and with the time that these channels remain idle. The
more the available channels, the more the transmission opportunities for the SN.
Second, the SN aims to operate exclusively on licensed channels (after the initial
setup on the unlicensed channel) or at least for as long as possible. This mainly
depends on T and the PUS’ (in)activity period. If T is longer compared to the in-
activity periods, the probability that all the available channels become busy between
two consecutive sensing procedures increases. On the contrary, if Ts is considerably
shorter, unnecessary sensing procedures are triggered, thereby reducing the SN’s
effective transmission opportunities.

In this context, the set of ordered channels detected idle after a cooperative sensing
procedure of the SN is denoted by B7. After the sensing procedure, all SUs operate
on the first channel in B for as long as it remains idle. Then, when the channel turns
into the busy state, all the users hop to the second channel in B. This operation is
repeated until there are no channels available.

Lemma 1. Given a set of channels in B with activity and inactivity periods inde-
pendently and exponentially distributed with Ty, and T,ry mean values respectively,
the time elapsed between the beginning and the end (due to PU activity resumption)
of the SN operation on the kth channel in B is denoted by 1i,. The probability density
function (pdf) of T, can be written as in (3.3), where O(t) € {idle,busy} is the
actual state of the kth channel at time t and Sk_1 denotes the total time spent in
the previous k — 1 licensed channels,

k—1
Se1=Y T+ (i—1)8 (3.4)
j=1

where § = t, + tg, s the time required to detect the change in licensed channel
activity (t.) and switch to the following channel (s, ).

Proof. See Appendix 3.1. O

As already mentioned, the SN exchanges data packets only in the licensed chan-
nels. Thus, given the set B of licensed channels the expected payload sent by the

"The set B contains all the licensed channels sensed with no PU activity, ordered by the other
SNs’ activity; the lower the other SNs’ activity in the channel, the lower the channel ordinal in B,
and the higher the probability of being visited by the SN.

(3.3)
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SN, E[D], equals to

E[D] = > E[Npack, JE[P] (3.5)
keB

where E[Npqck, ] denotes the expected number of successfully transmitted packets
(or equivalently of successful transmission slots, since a successful transmission slot
corresponds to the successful transmission of one packet) by the SN under study in
the kth licensed channel during T}, = Ty + T, and E[P] the average packet payload
size. Then, E[Npqcr, ] may be expressed as

E[T}]

ENac | = =
Npack] E[Tyo1,]

P, (3.6)

where E[T}] is the expected operation time (i.e., successful transmission, collision
and idle slots) on the kth channel, Py, ® the probability of having a successful trans-
mission by the SN in the kth channel and E[Ty;.¢, ] denotes the average slot duration
in the kth channel.

As previously expounded, a period can be defined as the time between the com-
pletion of two consecutive sensing procedures. Henceforth, the periods during which
at least one licensed channel remains idle are called complete periods, whereas the
periods during which all idle channels change their state are denoted as incomplete
periods.

Lemma 2. Given a set of channels B, ordered according to the sensed contention
level, the expected operation time on the kth channel (T ), is given by

o0

E[Ty] =Y P(X =2)((z - 1)E[Ti]cp + E[Tk]inp) (3.7)

=0

where X is the number of successive periods (i.e., X —1 complete and one incomplete
periods) operating exclusively on licensed channels, and E[Ty|cp and E[Ty]inp de-
note the expected operation time of the SN on the kth channel in a complete and an
incomplete period, respectively.

Proof. See Appendix 3.2. O

Regarding the average slot duration in the kth channel, E[Ty;, ], it can be easily
derived as

E[TSIUtk] = P 0+ (Ps, + Ps/k)Trs + (P, + Pc/k)Tc (3.8)

where P;, is the probability of having an idle slot in the kth channel, P, the one of
a collision slot of the SN under study, and P;, and P;,_the probability of a successful

8Please note that the proposed model can be applied to any traffic pattern of contending users
in the unlicensed channel and licensed channels. Closed form expressions for the traffic-dependent
parameters (e.g., probability of a successful transmission, collision and idle slot) can be found
in [68,76] for saturated and non-saturated conditions, respectively. For the reader’s convenience,
the ones for saturated conditions are derived in Appendix 3.3.
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P,o + PT,, + (P.+ PT.

E[TUun] = P < + Mus (tsr + tsw) + tsw + tRFS +
+ tsrrs(N+1)+tack + 2tprrs +tp +tsr(N — 1) +trrsr
(3.11)

transmission and collision slot, respectively, of the other SNs in the kth channel.
The parameter o denotes the empty slot duration, while T,.; and T, the durations
of a successful transmission and collision slot. Further details on the calculation of
these parameters are included in Appendix 3.3.

Calculation of E[Ty/]

The time spent in the unlicensed channels is devoted to sense the licensed chan-
nels and share the information on their availability. The SUs will not be able to
operate on licensed channels if no available channels have been detected. Hence, the
procedure consisting of gaining access to the unlicensed channel, sensing licensed
channels and exchanging the information, will be repeated until there is at least one
licensed channel detected as idle.

Lemma 3. The expected time spent in the unlicensed channel is given by

BTy = E[TUMM% ~ 1)+ BT (3.9)

where Py = 1—H24=1(1 — Py, ..., ) 15 the probability that there is at least one licensed
channel sensed as idle (M is the total number of licensed channels that are sensed,
with |B] < M), and Ty, and Ty, are the time spent when there is not any channel
sensed as idle and when there is at least one channel sensed as idle, respectively.
The expected value of Ty, is given by

ETy,] = ETy,,] + tsw (3.10)

un

Then, the expected value of Ty, is given by (3.11), where M, is the number of
licensed channels to be sensed by each SU; ts, the time to sense a licensed channel;
tsw the time required to switch between two channels; o, Ty, and T, the durations
of an idle, a successful transmission and a collision slot; trrs, tack, ts, tsg and
trrst time required to transmit an RFS, ACK, beacon, report, and list packet, re-
spectively; P; the probability of having an idle slot in the unlicensed channel; P, the
probability of a collision slot of the SN under study in the unlicensed channel; and
P! and P! are the probabilities of a successful transmission and collision slot of the

S C

other SNs in the unlicensed channel, respectively.

Proof. See Appendix 3.4. O
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NP;gie(Pio + P,Trs + P.T.) + Pe(taata(Pr, + (N — 1)Pr, ) + NP;gictprFs) n
PS
N(Muys(Psntsn + Pswtsw) + Pswtsw)(Pry + (N —1)Pr, )(trrs +te +trisT) +
(Pr, + Pry, + (N —2)Pigic)(tack + (N —1)tsr) + NPiqie (N + 1)tsirs + 2tprrs)
(3.15)

E[Ey,,]

Calculation of E[T7})]

The time spent in licensed channels can be divided into two parts: the effective
time devoted to data transmission, and the time devoted to sensing, to detect the
resumption of the PUs activity and to switch to an alternative channel. Therefore,

E[TL] = E[T,.n] + Y E[T}] (3.12)
keB

where E[T,s,] is the expected time spent in both the reaction periods and the
sensing procedures during T, and E[T}] is the operation time on the kth channel
calculated in (3.29). For the sake of clarity, the calculation of E[T,,] is detailed in
Appendix 3.5.

3.6 Energy Efficiency Analysis

The energy efficiency of the SN under study can be expressed as

___ED|
Q_E

[Ey] + E[EL] (3:13)

where E[D] has been derived in (3.5) and E[Ey] and E[E}] are the expected energy
consumptions in the unlicensed channel and licensed channels, respectively, during
Tp.

Lemma 4. The expected energy consumed in the unlicensed channel is given by

BIEy) = BiEy,, (5~ — 1)+ BiEy) (3.14)

s

where By, and Ey, are the energy consumptions when there is not any channel
sensed as idle and when there is at least one channel sensed as idle, respectively.
The expected value of Eys, is given by

E[Ey,| = E[Ey,,] + N Psyts (3.16)

whereas the one of Ey,, is given by (3.15), where Py, , Pr, and P;g. are the
transmission, reception and idle power, while P, and Ps,° denote the sensing

9The rest of the power consumptions (e.g., by the cluster head to construct the list) can be
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(a) (b)

Figure 3.4: Simulation scenarios: (a) Scenario 1, where the SUs of each licensed chan-
nel are uniformly distributed around the SN under study and (b) Scenario
2, where the more the SUs on a licensed channel, the further they are
located from the SN under study.

power and the power to switch to another channel, respectively.

Proof. See Appendix 3.6. O

Then, the expected energy consumed in the licensed channels can be expressed
as

E[EL] = E[Eren] + Y ElEeont,] (3.17)
keB

where E[E,,] is the expected energy consumed by the SN in both the reaction
periods and the sensing procedures during 7, and E[E,.,;,| during the contention
time in the kth channel. For the sake of clarity, the calculations of E[FE,,] and
E[Econt, ] are detailed in Appendix 3.7.

3.7 Analysis and Simulation Results

3.7.1 Simulation scenarios

In the extensive simulations executed in MATLAB™  a SN of N SUs and a set
of M= 6 licensed channels are considered, while Ny,;;c = 50. In order to focus

considered negligible.
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Table 3.2: Energy-efficient Contention-aware Channel Selection in Cognitive Radio
Networks: Simulation Values

] Parameter \ Value H Parameter \ Value ‘
Pta,; | Pmay; 0.01/01 | m/CWpin 6/ 16
Ton; Toff 1ls tr, tsn 1 ms
TXOP 6.016 ms tsw 9 ms
g 9 HUS tSIFS / tDIFS 10 / 28 HUS
PLCP & PHY header | 20 us MAC Header | 34 bytes
lack, B 14 bytes Payload 1000 bytes
lrFs 20 bytes lsr, lLisT 16 bytes
Control T,, Rate 6 Mbps Data T, Rate | 24 Mbps
Pr,, P, Ps, 1340 mW || Pr,, P, 1900 mW

on the performance assessment of the channel selection algorithms, ideal channel
conditions are assumed (i.e., no fading), while all users have the same probability
of false alarm and mis-detection for all channels equal to 0.01 and 0.1, respectively.
Without loss of generality, all users both in the unlicensed channel and licensed
channels are assumed to be in saturated conditions (i.e., always having a packet to
transmit). Hence, due to the same traffic conditions, only the number of SUs in each
licensed channel is sufficient to define its contention level. Thus, Ngy,,, is defined
as the maximum number of SUs of other SNs that operate on a licensed channel
(this also corresponds to the maximum probability of collision). The MAC layer
parameters (e.g., m, CWp,;n, Data T, Rate) have been selected according to IEEE
802.11g Standard [72], while all simulation parameters are summarized in Table 3.2.

Regarding the system topology, the SUs of the SN under study are assumed
to be located in the center of a 100m x 100m square region, while the following
scenarios are considered:

e Scenario 1: In this general scenario, the SUs of each licensed channel are
uniformly distributed around the SN. An example of four licensed channels is
given in Fig. 3.4(a).

e Scenario 2: In this scenario, the more the SUs on a licensed channel, the further
they are located from the SN under study (i.e., the SUs of high contended
channels are located further, while the SUs of low contended channels are
located closer to the SN under study). An example is depicted in Fig. 3.4(b),
where the SUs of licensed channel 1 (LC 1), which is the least contended,
are located the closest to the SN, while the users of L.C 4, which is the most
contended, are located the furthest compared to the SUs operating on LC
2 and LC 3. The purpose of this scenario is to show the dependency of the
applied channel selection algorithm on the SUs’ topology in each licensed
channel. Still, notice that such a scenario could correspond to a heterogeneous
network scenario with hotspot traffic at these locations (e.g., in shopping
malls).
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3.7.2 State-of-the-art Algorithms

Being the closest to this work, the following three channel selection algorithms,
previously discussed in Section 3.1, will be adapted to the considered scenario, to
fairly compare them with the proposed approach. To that end, in all cases, the same
SN coexistence scheme is applied, as described in Section 3.4, but with a different
channel selection algorithm each time.

Feature detection (FD) algorithm

This algorithm refers to the case where only cyclostationary feature detection is
used without any extra estimation technique for the number of contending SUs. In
this case, the algorithm is able of distinguishing between channels with PU activity
that are avoided and thus are not included in the list, channels with SU activity
and channels with no activity at all. For a fair comparison the channels with no
activity (neither PU nor SU) will be preferable and, thus, will take the first place
in the list. Then, the rest of the channels will be positioned in a random order as
in [33,35].

Interference-aware (IA) algorithm

This algorithm proposes the classification of the licensed channels according to their
interference level and the selection of the channel with the least interference [34,35].
In the considered simulations, the interference is measured by I = Ziv:’“l GsPyrsm +
0,3, where Ny is the number of SUs on the licensed channel k, 02 the variance of
the additive white Gaussian noise and G the channel gain between the SN under
study and the user s. Then, G5 = ﬁ, where [ is a random variable representing
the log-normal shadowing, ds is the distance between the SN under study and the
user s and n denotes the path loss exponent. In the considered simulations, /s has
mean 0 and variance 8 (dB), 02 =1 mW and n = 3.

Energy detection (ED) Algorithm

Although a comparison between feature detection and energy detection is out of the
scope of this chapter but can be found in [13,77], it could provide us with interesting
insights that justify the motivation of this work. As previously mentioned, ED,
unlike FD, is unable to distinguish if a licensed channel is occupied by a PU or by a
SN. For a realistic and fair comparison, in the executed simulations, the parameter
values of [13] will be used.



40 3.7. Analysis and Simulation Results

x 10

11

10 |
7 9r 1
Q.
2
3 s} ]
<
[=)
3
= ; s Analytical Model NSU‘: 16
= B 4 i -
S ~ %  Simulations Ng, =16
g / lic
> L / : - i = i
z 6 ) Analytical Model NSU\.C 40

/ : ; _
% Simulations N,, =40
/ SUhc
5r / 4
/
/ M=6, TS—O.ZS, Nunlic_so’ CWmin—lG
4 S | | 1 | | .
0 10 20 30 40 50 60

Number of SUs of the SN under study (N)

Figure 3.5: Throughput versus N for different maximum numbers of competing SUs
in any licensed channel, Ngy,,. .

3.7.3 Model validation

In Fig. 3.5 and 3.6, the throughput and the energy efficiency of the SN versus
its number of SUs (N) are depicted analytically and verified by simulations for
Nsy,,, = 16 and Ngy,,. = 40. As it can be noticed, as N increases, the throughput is
also increased until an upper bound is reached, due to the saturation of the licensed
channel (i.e., saturation throughput) and then it decreases. Notice that this decrease
is smooth, due to the trade-off between the detected transmission opportunities and
the collision probability. In particular, as N increases, the detection accuracy of the
idle channels increases, but so does the collision probability. On the other hand,
the energy efficiency of the SN is decreased with the increase of its SUs’ number,
as the energy consumption increases in a greater extent than the successful bits
transmitted by the SN. It is worth noting that, due to the high number of SUs
belonging to the SN under study, the energy consumption during sensing as well as
during the contention slots (idle, collision and successful slots) increases significantly.
Furthermore, the less the contention in the licensed channels (i.e., the lower the
Nsu,,.), the higher the throughput and the energy efficiency of the SN under study,
as it experiences less collisions.

In Fig. 3.7 and 3.8, the effect of the parameter T (i.e., time between two consec-
utive sensing periods) on the throughput and the energy efficiency of the SN under
study is studied for three different values of Ty, and T,¢s. The analytical results



Chapter 3. Energy-efficient Contention-aware Channel Selection in Cognitive

Radio Networks 41
x 10°
18
161 Analytical Model NSUM: 16 |
% Simulations Ng, = 16
14 ) lic _
T — — — Analytical Model Ng, =40
3 lic
8 12 X Simulations Ny, =40 e
j2} lic
5
> 100« |
[5) \
o \
% 8 \ : . |
i} A . M=6, T=0.2s, N . =50, CW . =16
@
0
41 |
2r |
0 1 1 1 1 1
0 10 20 30 40 50 60

Number of users of the SN under study (N)

Figure 3.6: Energy efficiency versus N for different maximum numbers of competing
SUs in any licensed channel, Ngy;,,..

x 10

10

9.8 B

9.6 B
é 94 -
5
£ o2t —
(=2
>
o
ﬁ 9 . R
g Analytical Model Tor Toi™ 38 ' ;F\ ’
[ L H i - N, -
z 8.8 x  Simulations Ton, Toﬁ— 3s S

— — — Analytical Model T_, T_= 1s *
8.6 on’ o N R |
¢ Simulations Tor Toi 18 <
gal — — Analytical Model T, T, .= 0.5s * < . i
: . . N=12, M=6, N.,, =16, N . =50, CW _. =16 '~
% Simulations T , T _=0.5s SV, unlic min ~.
on' off *~
8.2 T T T T T T L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time between two consecutive sensing periods, Tg (s)

Figure 3.7: Throughput versus time between two consecutive sensing periods, Ts.



42 3.7. Analysis and Simulation Results

Analytical Model T T .= 3s ‘ \*\
N
52H x Simulations Tor Tof 38 i~ R =

) _ *
— — — Analytical Model Ton Toi™ 1s ~L

Energy Efficiency (bits/Joule)

on’ “off

‘‘‘‘‘ Analytical Model T_, T _=0.5s _ — _ _ _
naie o "off N=12, M=6, Ny, = 16, Ny, =50, CW,;,=16
%  Simulations Ton ToiF 058
4.8 T T T | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time between two consecutive sensing periods, Ts (s)

¢ SimulationsT_, T .= 1s :k‘\

Figure 3.8: Energy efficiency versus time between two consecutive sensing periods, Ts.

are also presented both for throughput and energy efficiency and they are in a good
agreement with the simulations. As it can be noticed, there is a maximum through-
put and energy efficiency value achieved for each one of the curves. This maximum
corresponds to the optimal value of Tg. For lower values than the optimal, there
is a lot of time and energy spent in unnecessary frequent sensing procedures and,
thus, less time available for data transmission, whereas for higher ones the list is
not updated frequently and, thus, the SN has to switch licensed channels to avoid
interfering with the PU. Moreover, as it can be observed, this optimal value depends
on the PU activity pattern. Hence, for slowly-changing PU activity (i.e., high values
of Ton, Tosy), there is no need of frequent sensing procedures and, thus, the optimal
value of Ts increases, to appropriately adapt to the PU activity. In addition, notice
that for a fix value of Tg, slowly-changing PU activity (i.e., high values of T,,,
Tozf) results in higher throughput and energy efficiency, since the SN operates for
a longer amount of time on the channel without PU transmission resumption. On
the contrary, for quickly-changing PU activity, the SN has to switch among licensed
channels frequently in order not to interfere with the PU, resulting in less time
devoted to data transmission and more energy consumption.

3.7.4 Performance evaluation

In Fig. 3.9 and 3.10, the comparison of the proposed algorithm (PA) with the
aforementioned state-of-the-art algorithms is given. In particular, the throughput
and energy efficiency of the SN under study of all algorithms are respectively de-
picted with CW,,;,, = 16, versus the maximum number of SUs in a licensed channel
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Figure 3.11: Throughput versus maximum number of competing SUs in any licensed
channel, Ngy,,., with CWp,, = 32.

(Nsu,,.). Although it will be detailed later, notice that only the IA algorithm perfor-
mance was found to be dependent on the system topology, and therefore, is depicted
separately for Scenario 1 and 2, unlike the rest of the algorithms. In addition, it
can be observed that, as the parameter Ngy,,. increases, both the throughput and
energy efficiency of the SN decreases for all algorithms, by virtue of the fact that the
contention in the licensed channels increases and so does the energy consumption.

In comparison with FD, PA shows better performance in both throughput and
energy efficiency. This stems from the fact that in FD, the SN randomly chooses
an idle licensed channel for transmission, thus having higher probability to spend
more time in highly contended licensed channels compared to PA. Furthermore, as
the parameter Ngp,,. increases, the relative gain of PA in both throughput and
energy efficiency increases due to its contention-awareness and for Ngy,,, = 40 it
can present up to 58% improvement in throughput and 57% in energy efficiency.

As far as the TA algorithm is concerned, PA can present up to 178% improvement
in throughput and 175% in energy efficiency in cases such as the Scenario 2. In
that case, the channels are classified in the opposite order than in PA, namely the
channel with the highest contention will present the least interference and thus, it
will be the most preferable by the IA algorithm. Therefore, this scenario defines
the maximum gain that can be achieved compared to IA. However, even in cases
where the users are uniformly distributed (i.e., in Scenario 1), PA can still present
a 10% improvement, as its performance does not depend on the topology and thus,
it achieves higher accuracy in detecting the low contended channels.
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Finally, PA significantly outperforms the ED Algorithm, as the spectrum op-
portunities that are exploited by the ED algorithm are much less than those of PA.
This stems from the fact that, when ED is applied, the channels occupied by SNs
are sensed as busy and thus are avoided. The consequent considerably less spectrum
efficiency results in a significant degradation of throughput and energy efficiency, as
the SN mostly remains in the highly congested unlicensed channel. The gain under
high contention in the licensed channels can reach up to 192% in throughput and
188% in energy efficiency.

Further experiments were conducted with CW,,;,, = 32 aiming at studying the
impact of the minimum back-off window value on the algorithms’ performance, as
depicted in Fig. 3.11 and 3.12. To that end, it can be observed that a higher min-
imum back-off window value (i.e., with CW,,;,, = 32) results in higher throughput
and energy efficiency for all algorithms. This is due to the fact that in this case the
SUs have to defer their transmissions for a longer time, when another node transmits
and, thus, the collisions are avoided more efficiently. However, this highly depends
on the number of contending users; the more the users, the higher the probability
of collision and, thus, the higher the minimum back-off window value should be.
In addition, it can be noticed that PA significantly outperforms the reference algo-
rithms for both considered values of minimum back-off window, with the highest
performance gains being achieved for CW,,;, = 16. This stems from the fact that
the rest of the algorithms spend more time in highly contended channels, where a
very low back off window value has a severe impact on the network performance
due to the increased number of collisions among the SUs.
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3.7.5 Fairness evaluation of the coexistence scheme

Having shown the outperformance of the proposed channel selection algorithm
compared to the state-of-the-art and given that in such coexistence scenarios, it
is fundamental to guarantee fairness among the coexisting SNs, in this section,
we evaluate the performance of the proposed SN coexistence scheme, previously
described in Section 3.4, when the proposed channel selection algorithm of Section
4.20 is applied. In particular, the proposed SN coexistence scheme of Section 3.4
is compared with the reference approach (FMAC) [32] by means of simulations
and it is shown that it can achieve significant throughput and energy efficiency
gains, while maintaining or even achieving better fairness among the coexisting
SNs. Furthermore, the impact of different minimum back-off window values and
different PU activity patterns on the performance of both considered coexistence
schemes is studied.

In the considered results, the same simulation parameters of Section 3.7.4 are
employed, while the proposed SN coexistence scheme is denoted by SNCS, and
the reference scheme by FMAC [32]. In order to calculate the fairness among the
coexisting SUs that contend for the same PU resources, the well known Jain’s
fairness index is employed [78], that is given by

J(x1, 2a...y) = (i 20)° (3.18)

n Z:‘L:l z;?

where n is the number of contending SUs and x; denotes the number of transmission
opportunities of the SU i. An SU is considered to have a transmission opportunity
every time it transmits a packet on the channel independently of whether a success-
ful transmission or a collision occurs.

In Fig. 3.13 and 3.14, the average throughput and energy efficiency of the SN
under study are respectively depicted for both SNCS and FMAC versus the max-
imum number of SUs of other networks in a licensed channel, Ngy,, , for different
minimum back-off window values, CW,,;,. As it can be observed, the throughput
and the energy efficiency of the SN under study are decreased as the contention
in the licensed channels increases, due to the increased number of collisions among
the SUs. However, notice that the SNCS achieves better performance than FMAC
for all the considered values of CW,,;,. This is due to the fact that, in FMAC,
the SUs use a constant back-off window every time a collision takes place, while
the SNCS employs an exponential one and thus it manages the collisions more ef-
ficiently. Therefore, the maximum performance gain of SNCS is achieved for the
lowest minimum back-off window value (CW,,;,, = 16) and for high contention in
the licensed channels (Ngy,,, = 40).

Moreover, as far as the fairness of the considered approaches is concerned, the
average Jain’s index of all the SUs, that contend to gain access to a licensed channel,
is depicted for both approaches in Fig. 3.15, for different minimum back-off window
values, CWin. As we can notice, SNCS can achieve up to 256% better fairness than
FMAC (CWyin = 16) for high contention in the licensed channels (Ngy,,, = 40).
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Figure 3.13: Average throughput of the SN under study versus the maximum num-
ber of SUs of other networks in a licensed channel, Ngy,,,, for different
minimum back-off window values, CW,,;,, when the proposed channel
selection algorithm (PA) is applied.

This stems from the fact that for short contention periods, i.e., in the case that the
PU resumes its activity in the licensed channel shortly after the SN under study
has hopped to it, the SNCS achieves much better fairness among the SUs than in
FMAC, as an SU that is involved in a collision defers its transmission for a longer
time, and thus the transmissions opportunities are more equally distributed among
the contending SUs.

To that end, in Fig. 3.16, 3.17 and 3.18, the performance of the considered coexis-
tence schemes is studied for different PU activity patterns. Specifically, two different
values of T, and T, s are considered, that correspond to quickly (T,,=T,;=0.5s)
and slowly changing PU activity (T, =T, sy =2s), respectively. Moreover, notice that
the Ts value is adapted according to the considered PU pattern. In particular, for
quickly changing PU activity a low value of Ts is employed to repeat the sensing
procedure more frequently to keep the information for every licensed channel up-
dated, while for slowly changing PU activity, this value is chosen to be higher to let
more time available for data transmissions to the SUs.

As it can be observed in Fig. 3.16 and 3.17, for slowly changing PU activity, the
SN under study achieves higher throughput and energy efliciency, as there is more
time devoted to transmissions and less to frequent unnecessary sensing procedures.
In addition, the SNCS achieves better performance than FMAC for both the con-
sidered PU traffic patterns. Please note that CW,,;, = 64 has been selected for
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Figure 3.14: Average energy efficiency of the SN under study versus the maximum
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both approaches, to show the minimum gains that can be achieved in comparison
to FMAC.

The average Jain’s index is depicted in Fig. 3.18 for different PU activity pat-
terns. As we can notice, for slowly changing PU activity, both approaches achieve
slightly better fairness among the contending SUs than in the quickly changing PU
activity case, as there is more time devoted to transmissions. Moreover, for low
contention in the licensed channels, FMAC achieves better performance in terms of
fairness. However, according to the previously analyzed reasoning, for higher con-
tention there is a cross point where the SNCS starts achieving better fairness. The
SNCS maximum performance gain in this case is again achieved for high contention
in the licensed channels (Ngy,,, = 40).
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3.8 Conclusions

In this chapter, a SN coexistence scheme was proposed as well as a novel contention-
aware channel selection algorithm that aims at improving the throughput and en-
ergy efficiency of a SN, that coexists with other SNs that use the same PU resources.
Analytical expressions for the throughput and the energy efficiency of the SN under
study have been derived and verified through extensive simulations. Moreover, it
has been proved that there is an optimal value for maximum performance for the
time between two consecutive sensing periods, which is highly dependent on the
PU activity pattern. The proposed algorithm has been compared to three reference
algorithms and it has been shown that it significantly outperforms its counterparts
both in terms of throughput and energy efficiency.

Moreover, in the same scenario and given that the proposed channel selection al-
gorithm (PA) is employed, the performance of the proposed SN coexistence scheme
was evaluated in terms of throughput, energy efficiency and fairness, by comparing
it to a reference approach. By means of simulation, the effect of different minimum
back-off window values on the performance of the coexistence scheme was stud-
ied. Furthermore, the impact of different PU activity patterns on the considered
coexistence schemes was analyzed. It was shown that the considered coexistence
scheme can achieve throughput and energy efficiency gains, while maintaining fair-
ness among the coexisting SNs in comparison to the reference approach. In partic-
ular, the maximum gain is achieved for the lowest minimum back-off window value
(CWpnin = 16) and for high contention in the licensed channels (Ngy,,, = 40).

Appendix 3.1 Proof of Lemma 1

The (in)activity periods duration in licensed channels are modeled as exponential
independent and identically distributed (i.i.d.) random variables. Accordingly, the
pdf of the (in)activity period duration of the kth channel can be expressed as

fe.(te) = %6_%7 where A is equal to the mean value of the inactivity or activity
period duration, T, ;¢ and Ty, respectively. Hence, if we define O (t) € {idle, busy}
as the state of the kth channel at time ¢, the time during which the SN operates on
the kth channel (73) may be written as

- { 0,if Ok (Sk—1) = busy (3.19)

tr — Sk_1, otherwise

where Si_; is the total time spent in the previously visited channels as well as
the required time to detect the PUs’ activity resumption and the consequent chan-
nel switching time, as shown in (3.4), and ¢ is the idle state duration given that
Ok (Sk—1) = idle. By definition the pdf is equal to the derivative of the cumulative
distribution function, i.e., f,, (1) = £ F, (7). Taking into account that the channels
are divided into actual idle channels detected idle and busy channels erroneously
detected idle, the cumulative distribution function is depicted in (3.20). The first
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Fr(r) =P <7) =
= P(1 < 7|0k (0) = idle) P(O(0) = idle) + P(1r < 7|0k (0) = busy)P(Or(0) = busy) (3.20)

P(r, < 7|0k (0) = idle) =
= P(1, < 7|0k (0) = idle N Ok (Sk—1) = busy) P(Ok(Sk—1) = busy|Ok(0) = idle)+
-‘y—P(Tk < T‘Ok (0) =idleN Oy (Skfl) = idle)P(Ok (Skfl) = idl€|ok(0) = idle) (3.21)

P(r, < 7|0k(0) = busy) =
P(ri, < 7|0k (0) = busy N Ok (Sk—1) = busy) P(O (Sk—1) = busy|Ox(0) = busy)+
+P(1 < 7|(Ok(0) = busy N Ok (Sk—1) = idle) P(O(Sk—1) = idle|Ok(0) = busy) (3.22)

part of the equation models the actual idle channels, whereas the second part mod-
els the busy channels. In the case of an idle channel, it will be available for as
long as it remains in the idle state. Therefore, the first part can also be expressed
as in (3.21). With regard to the second part of (3.20), it models a busy channel
erroneously detected idle which can be expressed as in (3.22). In such a case, the
channel will only be available for the SN if the state changes before being visited
by the SN and for as long as it remains in the new state (i.e., idle state). In (3.20)
the probability that the kth visited licensed channel is idle at ¢ = 0 is calculated as

Pidle(1 - Pfak)

P(Ow(0) = idle) = Piate(1 — Ppa, ) + Pma, (1 — Piaie)

(3.23)

where P;g is the probability of a channel being idle, and Pyq, and Ppy, the
false alarm and mis-detection probability, respectively, resulted from the cooperative
sensing on the kth channel. Equivalently, P(O(0) = busy) = 1 — P(O(0) = idle).
After some algebra, the pdf of 7 is given by (3.3).

Appendix 3.2 Proof of Lemma 2

The parameter X is defined as the number of successive periods (i.e., X —1 complete
periods and one incomplete period) operating exclusively on licensed channels. Thus,
the probability of having x successive periods may be expressed as P(X = z) =
P(T =Tcp)* 'P(T < Top), where T is the time that the SN operates on licensed
channels, with a maximum duration of Top (0 < T < Tep) and P(T = Teop),
P(T < Tep) the probabilities of having a complete and an incomplete period,
respectively, with P(T =Tep) =1 — P(T < Tep) and P(T < Tep) is given by

P(T < Tep) = ZP P(T < Teop|n; =n) (3.24)
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where M denotes the total number of licensed channels that are sensed, and n;
only the number of channels detected idle (i.e., n;=|B]|). According to the algo-
rithm description, the random variable n; follows a Poisson binomial distribu-
tion and, thus, its probability mass function is given by (3.25), where Py, ., =
(1 = Pya, ) Pigte + Ppna, (1 — Pigie) is the probability that the kth licensed channel is
sensed idle, with P;q;. the probability of a licensed channel being idle, and P,,q,,
Py,, the total probabilities of mis-detection and false alarm of the kth channel,
respectively. When the OR fusion rule is used to combine the individual sensing re-
ports, Pyq, and Py,, are given by (3.26) and (3.27), respectively, where I}, denotes
the number of cooperating SUs that sense the kth channel, I; and l¢, are random
variables that represent the number of users (with a maximum of [;) that correctly
detect the PU activity in the kth channel or that cause a false alarm, respectively
and P4, ;, Pra,; denote the probability of mis-detection and false alarm of user
j in the kth channel [5]. Notice that all these parameters depend on the applied
sensing channel assignment algorithm, while similar to n;, l; and ¢, follow a Pois-
son binomial distribution. Even though a wide range of hard decision fusion rules
for cooperative sensing have been proposed in the literature, here the OR rule is
considered. As previously mentioned, the OR rule is the most conservative fusion
rule, and consequently its application diminishes the mis-detection probability while
increases the false alarm probability. Despite the fact that some other proposals in
the literature could achieve better trade-off between false alarm and mis-detection
probabilities, the OR rule minimizes the probability of interfering the incumbents
of the primary channel. This is the reason why this fusion rule has been chosen. Yet,
the analysis presented in this work holds regardless of the applied fusion rule. The
selection of an alternative fusion rule would solely result in different expressions in
(3.26) and (3.27).

Given that there are n licensed channels sensed as idle, an incomplete period
takes place when all the n channels become busy before Ts. In other words, when
the SN operates for less than T's — S,—1 on the nth licensed channel (i.e., the last
channel of the list), with S,,_; denoting the total time spent in the previous n — 1
channels. Thus, P(T < Tecp|n; = n) is given by (3.28), where f. is the pdf of 7,
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P(T < TCP"I% = n) = P(’Tn <Tg— Snfl) =

Ts Ts—Sn—2 Ts—Sn—1
forlr) - / Foo () / For (F)drndrny - dry (3.28)
0 0 0

E[rin; =n] =

TS TS—Skfz (e o]
f‘l‘1(7—1)"'/ ka—l(kal)/ (TS_Skfl)frk(Tk)didifl---dT1
0 0

Ts—Sk—1

+- 4+ IENGUEE / Tifr (Th—1) - - / frp (Tn)dTndry—1 - - - dTy
0

0 Ts—Sn—1
(3.31)

E[r.|n; = n] =

Ts Ts—Sk-1 Ts—Sn—-1
For(m) - / e fo(Th) - / Fon (7o) ATy -+~ d7y (3.32)
0 0 0

(i.e., operation time on the nth visited channel). The expected operation time on
the kth channel, when having x successive periods, equals

E[Tk] = iP(X = x)((z — I)E[Tk]cp + E[Tkth) (329)
x=0

Then, E[T;]cp can be expressed as

ETilcp = Y P =n)E[r|n; = n] (3.30)

n=1

where E[r|n; = n] is the expected operation time on the kth visited channel, when
having a complete period and there are n licensed channels sensed idle, which can be
expressed as in (3.31). The expression of E[T}];yp is analogous to (3.30). However,
as the distribution of 7, differs for incomplete periods, for E[Ty]inp, E[1k|n; = n)
should be replaced by E[r},|n; = n], which is given by (3.32).
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Appendix 3.3 Calculation of traffic-dependent pa-
rameters for saturated conditions

As proved in [68], the traffic-dependent parameters under saturated conditions are
given by P;, = Np(1 — )NVHV I and P, = Nip(1 — )Nk"'N L where N is the
number of users of the SN, N}, the average number of SUs that belong to other SNs
and operate on the kth channel and p the probability that an SU transmits in a
randomly chosen slot time. The probability of an idle slot is given by P;, = 1—F,,,,
where Py, = 1— (1 — p)Nk+N denotes the probability that there is at least one
transmission in the considered slot time. Then, the probabilities of collision are
calculated by subtracting from the total collision probability derived in [68], the
probability of a collision in which only the N SUs are involved for the calculation
of P, , and the probability of a collision in which only the N SUs are involved for
the calculation of P/, .

K . G
Pck = Pthot - (1 7p)N Z ( j >pj(1 7p)Nk / (333)
Jj=2

Note that all probabilities that concern the unlicensed channel operation are given
by the equivalent ones for the licensed channels by substituting Ny = Nynsic and
N = 1. Finally, Y} is 1 for centralized networks or different (e.g., equal to X}) for
ad hoc networks, while X, is given by (3.34).

Appendix 3.4 Proof of Lemma 3

As the process in the unlicensed channel will be repeated until at least one channel
is sensed idle, the expected time spent in the unlicensed channel can be expressed
as

BT, = 3 (1— Po.)Po GE[T, ] + ElTy.)
1=0
— Elfv,)(5- — 1) +Ellu)] (3.35)

s

where Py, = 1—H 1(1=P4,,,. ) is the probability that there is at least one licensed
channel sensed idle, and Tv,, , T, denote the time spent when there is no channel

sensed idle and when there is at least one channel sensed idle, respectively. Regarding
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E[Ty,, ], it may be claimed, by inspecting Fig. 3.2, that E[Ty,, ] = Eltpn1] + tphe +
tpns, where E[t,;1] is the expected duration of phl and ¢pn2, tpns the ph2, ph3
durations in the unlicensed channel. It is worth noting that, the difference between
E[Ty,,] and E[Ty,] lies in the fact that the latter includes the additional time to

switch to a licensed channel at the end of the process and thus E[Ty,] = E[Ty,, ] +

un ]

tsw-

The expected duration of ¢,,1 can be split up into the contention time to gain
access to the unlicensed channel, Ti,,:, and the constant time 73, that includes
the time required to transmit the RFS and ACK packets, and the DIFS and SIFS
waiting times. Therefore, E[tpn1] = E[T¢ont] + Tir,, where Ty, = trps + tsirs +
tack + tprrs. Then, the contention time can in turn be expressed as E[T,ont] =
E[Nunsuc)E[Tunsuc), where E[Ny,suc] denotes the expected number of unsuccessful
slots until the cluster head gains access to the unlicensed channel and E[T,;,5yc] the
expected duration of an unsuccessful slot. Thus, E[Nynsuc) is equal to

oo

i=0 s

where P; is the probability of having a successful transmission by the cluster head
in the unlicensed channel. Then, E[Tysuc] is given by

Pio+ PT.s+ (P.+ P)T.

s

where P; is the probability of having an idle slot in the unlicensed channel; P, the
probability of a collision slot of the SN under study in the unlicensed channel; P, and
P! the probabilities of a successful transmission and collision slot, respectively, of the
other SNs in the unlicensed channel; and o, T, and T, are the durations of an idle, a
successful transmission and a collision slot. Finally, tpne = Mystsn+(Mys+1)ts, and
tphg = tB+tSR(N*1)+tLIST+tSIFSN+tD1F5'7 where M, is the number of licensed
channels sensed by each SU, t, the time to sense a channel, and tg, tsg, trrsT the
time required for beacon, report and list packets transmission, respectively.

Appendix 3.5 Calculation of E[T},]

Similarly to the calculation of the time devoted to data transmissions, the time
devoted to detect the resumption of the PUs’ activity and switch to another channel
may be written as

E[T.sn] = Y P(X =2)((z — DE[Tran]op + E[Tren]inp) (3.38)

where E[T}s,]cp, E[Tysn] 1N p denote the expected time spent in the reaction periods
and the sensing procedures in a complete and an incomplete period, respectively.
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E[Eunsuc} -

NP;yc(Pio + PT,s + PT.) + P.(tqata(Pr, + (N —1)PR,) + NP;gctprrs)

1- P,
(3.42)
Then, E[T}s,]cp can be expressed as

E[Trsn]CP = Z PkE[Tsnk] + Z Pk(k - 1)6 + lsw (339)

keB keB

where Py is the probability of having a sensing period in the kth channel, namely
the probability of having a complete period in the kth channel, M is the number of
sensed channels, n; is the number of channels sensed idle, and E[T,, | the expected
duration of the sensing procedure in the kth licensed channel. Py is given by (3.40)
and E[Ty,,, | = E[tpn1, |+tpha+tpns, where Eft,,1, ] is calculated as E[t,1] but taking
into account the respective probabilities of the kth channel. Finally, E[T,s,]inp =
M
>0 P(n; = n)né.

n=1

Appendix 3.6 Proof of Lemma 4

Following the rationale of (3.35), E[Ey] can be expressed as

1
E[Fy] = Ey,, (

— 1 E 3.41
Dt E (3.41)

s

where Ey, = E[Epp] + Epha + Epnz + N Pgytsy, is the energy consumption in
the unlicensed channel when there is at least one licensed channel sensed idle and
Ey,, = E[Epni1] + Eppe + Epps otherwise. Py, is the power to switch channel
and E[E,p1], Epn2, Epns the expected energy consumed in tpp1, tpre and tpns,
respectively. Then, E[Epp1] = E[NunsucE[Eunsuc] + Eir,, where E[Ny,q,c] cal-
culated in (3.36) and E[E,nsuc] is the expected energy consumed in an unsuc-
cessful slot, while Fy,., the one during T},. E[Eunsuc] is given by (3.42), where
Pr_, Pr, and P4, are the transmission, reception and idle powers. Then, E},., =
trrs(Pr, +(N—1)Pg,)+tack (Pr,+Pr, +(N—2)Pige)+NPige(tprrs+tsirs)-
Finally, the energy consumptions during the time periods ¢,,2 and t,53 are equal to
Epho = N(MysPspten + (Mys + 1) Pgytsy), with Py, denoting the sensing power,
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and Eyps = (PTm + (N — I)PRT)(tB + tLIST) + tSR(N — 1)(PT$ + Pp, + (N —
2)Pigie) + NPigc(tprrs +tsirsN).

Appendix 3.7 Calculation of E[F,,,] and E[E,.,]

The expected energy consumption in the reaction periods and sensing procedures
equals to

E[E.] =Y P(X = 2)((z — VE[Eren]op + E[Eren]ivp) (3.43)

where E[E,s,|cp, E[E sn|1np are the expected energy consumptions both in the
reaction periods and the sensing procedures in a complete and an incomplete period,
respectively, and equal to

E[Esmlop = Y PiB[Em,]+ > Pu(k—1)Es + Eq (3.44)
keB keB
M
rsn Z nz =n nE(S (345)

where E5 = N(Pg,t, + Psytsw) and E[E,,,| = E[Epp1,] + Epha + Epps, are the
energy consumptions during § and the sensing procedures in the licensed chan-
nels, respectively. E[E,;1,] is calculated as E[E,,1] but taking into account the
respective probabilities of the kth channel. Then, E[E,:, ] may be expressed as
E[Econt,] = E[Es, | + E[E., ] + E[E;, ], where E[E;, | = 8F;, Es, E[E,, ] = BP., E.
and E[E;,] = BNPigy.(P; 0 + P, T.; + P, T.) are the expected energies con-
sumed in the successful transmlssmns colhslons or idle slots of the SN on the
kth channel, with S=E[T}]/E[Ts.] and E,, E. the energy consumed in a suc-
cessful transmission, collision slot of the SN, respectively, and are given by F, =
(tdata + tack)(Pr, + Pr, + (N — 2)Pjaic) + N Piaie(tprrs + tsirs) and B, =
tdata(XkPT1 +Yy,Pr, + (N — X — Yk)Pidle) + NP;qitprrs, where X , Yy are the
average numbers of SUs of the SN that are involved in a collision in transmission
and reception mode, respectively.



Chapter 4

Energy-efficient
Context-aware User
Association in Cognitive
Heterogeneous Networks

4.1 Introduction

This chapter includes the second research contribution part of this thesis which
focuses on the proposal of energy-efficient user association algorithms and analytical
frameworks for cognitive heterogeneous networks (HetNets).

As discussed in Chapter 2, the mobile data traffic is expected to grow signifi-
cantly during the next few years, which results in an urgent need for mobile oper-
ators to maintain capacity growth. Serving more traffic leads to increased energy
consumption, and therefore, how to minimize the energy consumption becomes also
important. In parallel, the spectrum scarcity problem stresses the need for spec-
tral efficient solutions. The aforementioned goals can be summarized into the joint
maximization of spectrum and energy efficiency, which constitutes a fundamental
design objective for next generation cellular networks.

To that end, the dense deployment of small cells (SCs), overlaying the existing
macrocell networks, is a promising solution. The deployment of SCs reduces the
distance between user equipments (UEs) and base stations (BSs)! and, consequently,
i) the area spectral efficiency (bps/Hz/m?) increases, and ii) the energy consumption
in the access network (AN), i.e., the links between the UEs and their serving BSs,
decreases. Hence, dense deployment of SCs is expected during the next years, with

n this thesis, we will use the term BS to refer to a macrocell BS and/or a SC BS (i.e., an
eNodeB (eNB) and/or a Home eNB in LTE-Advanced, respectively).
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SC radius being eventually of the order of 50 meters [36].

However, the dense deployment of SCs also poses new challenges. Due to the
high number of deployed SCs, the direct connection of all SCs to the core network
becomes complicated. Fiber connections, which have been traditionally considered
as the best backhaul (BH) solution, are prohibitive in this case due to their high
deployment cost [79]. A promising solution lies in exploiting the existing connection
between the macrocell site and the core network (most of the times it is a fiber
connection), and to provide core network connectivity to SCs through the macro-
cell site [40,41, 80]. Still, in order to connect the SCs to the macrocell site (thus
providing them core network connectivity), new cost-efficient wireless BH solutions
are required.

In addition, this wireless BH is expected to provide high-capacity services from
the SCs to the core network, in order to meet the expected traffic demands of
the order of Gbps [36]. Therefore, a promising solution that could provide wireless
BH connectivity between the SCs and the core network lies in using millimeter
wave (mmWave) frequencies, because of the large amount of available bandwidth
at these frequencies, which results in high capacity connections [79]. It has been
shown, however, that mmWave frequencies are capable of providing good coverage
performance only if the transmission distance is shorter than 200 meters [36,40,81].
Otherwise, links may not be established. Since the macrocell radius is even in dense
deployments of the order of 500 meters, this implies that a multi-hop architecture is
needed, in order to allow each of the SCs to reach the macrocell site (i.e., macrocell
aggregation gateway) [39-41].

In this context, user association becomes challenging due to the multi-hop BH
architecture [82] and therefore new optimal solutions need to be developed aiming
at the joint energy and spectrum efficiency maximization of the network. To that
end, in this chapter, the following contributions are provided:

e The role of BH in future outdoor HetNets is studied aiming to answer to
whether or not it could constitute an energy bottleneck for the HetNet. In
particular, the BH energy impact is compared to the access network (AN),
i.e., the links between the users and their serving cells, under different traffic
distribution scenarios and BH technologies.

e The user association problem is studied aiming at the joint maximization of
energy efficiency and spectral efficiency of the network, without compromis-
ing the user equipment (UE) quality of service (QoS) requirements. In this
framework, the following additional contributions are provided.

— A heuristic algorithm is proposed that exploits context-aware informa-
tion (i.e., UE measurements and requirements, the HetNet architecture
knowledge and the available spectrum resources of each base station
(BS)) to associate the UEs in an energy-efficient way, while consider-
ing both the AN and BH energy consumption. The performance of the
proposed algorithm is studied under two study-case scenarios and it is
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proved that it achieves significantly higher energy efficiency than the
reference algorithms, while maintaining high spectral efficiency.

— Moreover, the joint uplink (UL) and downlink (DL) user association
problem is studied. To that end, the previously proposed context-aware
algorithm is adapted accordingly to associate the UEs in an energy-
efficient way, while considering the energy consumption both in UL and
DL. The proposed joint UL-DL algorithm performance is evaluated and
it is shown to achieve significantly higher energy efficiency than the refer-
ence approaches, while maintaining high spectral efficiency and low UE
power consumption.

— The aforementioned problem is formulated as a generalized assignment
problem, which is shown to be NP-hard. Therefore, by relaxing the capac-
ity constraints, an upper bound on the network performance is derived
which can be used as a benchmark for the performance evaluation of
user association algorithms. An enhanced heuristic user association al-
gorithm is also proposed, which considers the total power consumption
(AN and BH) for the traffic of a UE to be served. Notice that this as-
sociation metric relaxes the assumption of homogeneous BH links made
in our previous proposal, by considering the actual power consumption
of each BH link and not just the number of hops. Finally, the derived
bound and the proposed enhanced algorithm are compared with existing
user association solutions in scenarios that employ mmWave BH links.
In the provided results, the proposed algorithm is shown to achieve no-
table performance gains compared to its counterparts, while achieving
near-optimal performance.

— Aiming at the analytical study of the trade-off between energy and
spectrum efficiency, the aforementioned problem is formulated as an e-
constraint problem. The optimal Pareto front solutions of the problem
are analytically derived for different BH technologies and insights are
gained into the energy and spectrum efficiency trade-off. The proposed
optimal solutions, despite their high complexity, can be also used as a
benchmark for the performance evaluation of practical user association
algorithms. Furthermore, an adaptive heuristic algorithm is proposed,
which is compared with reference solutions under different traffic sce-
narios and BH technologies. The provided results motivate the use of
mmWave BH, while the proposed algorithm is shown to achieve near-
optimal performance. In particular, the proposed algorithm was shown
to be able to select any point of the Pareto front, by accordingly tun-
ing one parameter, and thus, to achieve a good trade-off between the
aforementioned metrics.

The rest of the chapter is organized as follows: In Section 4.2, the system setup
is described and useful parameters are derived. Moreover, the user association al-
gorithms that will be used as reference approaches throughout this chapter are
presented and analyzed. In Section 4.3, the BH energy impact is studied in outdoor
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SC scenarios with multi-hop BH architecture. The AN and BH power consump-
tion are compared and light is shed to whether or not BH could become an energy
bottleneck for the network under different traffic distribution scenarios and BH
technologies. In Section 4.4, the UE association problem is studied and a cognitive
BH-aware heuristic algorithm is proposed that exploits the available context-aware
information to associate the UEs in an energy-efficient way. In the same setup, the
joint UL-DL user association problem is also studied with the proposed algorithm
being accordingly adapted to take both UL-DL network conditions into account.
In Section 4.5, analytical frameworks are proposed that can be used as benchmark
solutions for the performance evaluation of user association algorithms. In particu-
lar, Section 4.5.2 focuses on the generalized assignment problem formulation, which
aims at energy efficiency maximization given that the maximum spectral efficiency
is achieved. The trade-off between energy efficiency and spectrum efficiency is then
analytically studied in Section 4.5.3, where an e-constraint problem formulation is
followed. Finally, concluding remarks are given in Section 4.6.

4.2 System Setup

In this section, the system model that will be employed throughout this chapter is
presented. Without loss of generality and in accordance with the scenarios proposed
by 3GPP [84], an eNB sector is considered, which is overlaid with multiple SCs. In
particular, a set of BSs is considered, denoted by C, which includes one eNB (5=0)
and C'—1 SCs (j=1...C-1), with C representing the cardinality of the set C. The SCs
are divided in N clusters (k=1...N,;), as depicted in Fig. 4.1, with SC} denoting
the number of SCs in cluster & [84]. The downlink is studied, unless otherwise stated,
and the following assumptions are made:

e Each SC is connected to the core network through the eNB aggregation
gateway either directly or through one or more SC aggregation gateways
[39-41,80,82].

e There is a fiber link from the eNB site to the core network and a set of out-
of-band wireless BH links £={Ly, Ls,...L;,... Lc—1}. Each wireless BH link [
is represented by a set £; that includes all cells j that backhaul their traffic
through it (i.e., Vj € £)).

e The total transmission power of each BS is assumed to be equally distributed
among its spectrum resources, i.e., among its subcarriers in case of LTE [39)].
This constitutes a common literature assumption [43], which is also used in
practical LTE implementations [85].

e Slow fading channels are considered due to shadowing.

e Aset of N UEs (i=1,...,N) is considered with strict guaranteed bit rate (GBR)
QoS requirements, denoted as r;, based on their service/application [86].

e Each UE can be associated only with one BS at a time.
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Figure 4.1: System model.

e There is a maximum number of spectrum resource units available to each BS
j, i.e., physical resource blocks (PRBs)?, denoted by c;, ...

For reader’s convenience, in the following a table with the main notation used
throughout the chapter is included. Moreover, the most important parameters in-
volved in the total network energy efficiency calculation are derived. In particu-
lar, the signal-to-interference-plus-noise ratio (SINR) calculation is given in Sec-
tion 4.2.1, while the power consumption models for both the AN and the BH are
provided in Section 4.2.2.

4.2.1 SINR Calculation

The signal-to-noise ratio (SNR) received by UE ¢ from BS j is given by [87]
SNRij(dB) = ch(dBm) +Gr,, (dBi) Ley, (dB)

_Lpij (dB) — Lfij (dB) — Nth(dBm) - NF(dB) (41)

with Pj, = 10log10(P},,../(Nant;Cj,n..)) standing for the power allocated by BS j
to a PRB, where P; . is its maximum transmission power in mW, Ny, is the
number of antennas of BS j and ¢;,,,, is the maximum number of PRBs allocated
to it. The parameter G, ; represents the antenna gain of BS j and Ly, is the cable

2Please note that 1 PRB is equal to 12 subcarriers in the frequency domain and 0.5 ms in the
time domain [39].
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Table 4.1: Context-aware User Association in Cognitive HetNets: Notation Table

[ Parameter | Meaning
C set of BSs
N set of UEs
L set of BH links
L BH link [ / set of SCs whose BH traffic passes through BH link {
C total number of BSs
N total number of UEs
Ny number of clusters in the eNB sector area
SCy number of SCs in cluster k
j index used for BSs, with j = 0 for eNB and j # 0 for SCs
i index used for UEs
l index used for BH links
k index used for clusters
w index used to define the type of link, i.e., UL or DL
T throughput QoS requirement of UE ¢
fa frequency used by z
B, bandwidth allocated to x
Clmas maximum number of PRBs available at BS j
P .. maximum transmission power of BS j
P;, power allocated to a PRB by BS j
Ly, path loss between UE i and BS j
Lpﬁz path loss at distance dg,, equal to the length of the BH link £;
Ly, path loss at distance equal to 1 m
Loy, cable loss between RF connector and antenna of BS j
ha height of the antenna of x
Ch antenna height correction factor
NF noise figure
Nip thermal noise
GTI], Gr, Ez transmitter antenna gain of BS j, of the BH link £;
GRT], GH.TL, receiver antenna gain of BS j, of the BH link £,
Nant; number of antennas of BS j
R eNB radius
r hotspot radius
b bandwidth of a PRB
f(SINR;;) spectral efficiency, as a function f(-) of SINR;;
[] ceiling function operator
Pan,, power consumption of the AN link between UE ¢ and BS j
Py £ power consumption of the BH link £,
Pgp,,.. maximum transmit power of a BH link transmitter
I;; total interference experienced by UE i, when associated with SC j
Niotal total noise power
SINR! (minimum) target SINR needed for the aggregate traffic of BH link £; to
£u be successfully transmitted, assuming that link adaptation is employed
aij association vector, equal to 1 when the UE i is associated with BS j and 0 otherwise
o link budget parameter of the BH link £;, derived by subtracting from the
L total losses the transmitter and receiver antenna gains of the BH link £;
A operating wavelength of the signal
IL implementation loss
trrr transmission time interval, system observation time (i.e., one subframe time)
Nhops number of hops (i.e., number of BH links) until the traffic of the SC reaches the eNB site
Dij total profit when UE i is associated with BS j
on BH architecture parameter, equal to 1 if the traffic
oL of BS j passes through the BH link £; and 0 otherwise
081, B2, B3 normalized weighting coefficients
F Pareto front / set of Pareto front points
Candidates; candidate cells for a UE i , i.e., subset of cells selected for the association of UE ¢
Prot,, total power consumption required for the traffic of UE ¢

to be served, when the UE is associated with BS j
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loss between the radio frequency (RF) connector and the antenna. The path loss
between UE ¢ and BS j is denoted by L, while Ly, represents the losses due to
shadowing. Finally, Ny, stands for the thermal noise and NF is the noise figure.
Then, the SINR received by UE i from BS j is expressed as

Ii j(m
SINRij (5 = SNRij g — 10l0gyo 2" 41 (4.2)
Ntotal(mW)

where I;; is the total interference experienced by UE 7, when associated with BS j,
which strongly depends on the applied frequency allocation scheme. The proposed
works in this thesis take as an input the SINR of UEs, and thus, they can be applied
regardless of the employed channel allocation scheme. This is due to the fact that a
different channel allocation scheme would solely impact the generated interference
(I;;) and consequently the received SINR of UEs. Still, although it is out of the
scope of this thesis, the combination of the proposed works with a sophisticated
channel allocation solution could further improve the system performance. Finally,
the parameter Nypiq) = 10Wenasm)tNFar)/10 denotes the total noise power in mW
experienced by UE .

4.2.2 Power Consumption Models

The total power consumption of the network can be divided into the one consumed
in the AN links and the one consumed in the BH links. Since this chapter is focused
on user association, only the transmit power consumption of BSs and BH links is
taken into account, as the fixed power consumption part is independent of the user
association decision®. To that end, the employed power consumption models are
presented in the following.

Access link

The power consumption of the AN link between BS j and UE i is given by

PANU'(W) = ch(W)Cij (4.3)

_ P T
B Nantj Climan f(SINR”)

_ P T
~ \ Nant, ¢, ) | blogy (14 SINR;;)

where P;_ is the power allocated by BS j to a PRB and c;; represents the number

3Please note that the inclusion of the fixed power component (i.e., power supply and cooling,
baseband unit, etc. [88]) would impact all the algorithms equally by shifting all the curves in the
same way.
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of PRBs needed for the association of UE i with BS j. As already mentioned, Ny,
is the number of antennas of BS j, r; is for the throughput demand of UE 4, while
F(SINR;;) represents the spectral efficiency and [-] is the ceiling function operator.
In general, the spectral efficiency can be expressed as a function f(-) of the effective
SINR;; [89], which maps the SINR received by UE ¢ from BS j to a corresponding
rate in bps. Although in LTE, {(-) is a scalar function with each step corresponding
to a specific modulation and coding scheme (MCS) [42], for analytical reasons,
the function depicted in (4.3) is traditionally used, which is derived by Shannon’s
theorem [90] and represents the maximum rate that can be achieved with SINR;;
and bandwidth of a PRB equal to b.

Backhaul link

The power consumed in a wireless BH link £; can be given by [91]

o tr
PBHLl @Bm) = SINRLlSZdB) + ag, (44)

where STN R”’g corresponds to the (minimum) target SINR that is needed so that

the aggregate traﬁic of BH link £; is successfully transmitted, assuming that link
adaptation is employed [87]. STN RZ(’ may be given by [90]

YieN Xijer; "%y
t B
SINR;;‘(;B) = 1010g10 (2 £1 — 1) (45)

where B, denotes the bandwidth of the BH link £; and .\ Zje’,;l ria;; is the
aggregate traffic that passes through the BH link in bps, with a;; denoting the asso-
ciation vector (equal to 1 when the UE i is associated with BS j and 0 otherwise).

The parameter az, of (4.4) depends on the link budget equation of the BH link
L;. This parameter is derived by subtracting from the total losses (e.g., path loss)
the transmitter and receiver antenna gains of the BH link. For instance, in the case
of a mmWave BH link, the parameter a, can be given by [92]

£, = Lp,(qpy + 1L + 1Ly + Nin(anm)

Pey(aB)

—NF@4p) — Gr,

vt (4B6) (4.6)

GRM: (dBi)

where Ly, denotes the path loss at distance equal to 1 m and L, = 2010910(47rd%)
l

is the path loss at distance d, equal to the length of the link (i.e., distance between

transmitter and receiver). Finally, A is the operating wavelength of the signal (e.g.,

for frequency equal to 60 GHz, A = 0.005 m) and IL stands for the implementation
loss that may account for e.g., distortion, intermodulation and/or phase noise.
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Energy efficiency

The network energy efficiency can be expressed as the total number of success-
fully transmitted bits by all UEs divided by the total energy consumption (i.e.,
the sum of the energy consumed in the AN and BH links). Equivalently, it can be
expressed as the total throughput of all UEs in bps (3¢ 2_jec iaij), divided by
the total power consumption in Watts, i.e., the sum of the AN power consumption
(Xien 2_jec Pan,;aij) and the BH power consumption (3_, . Ppr,, ), and thus
can be formulated as

ZiGN ZjGC Tilij (bps)

ieN ZjGC PANU aij(w) + ZEIEL PBHLL (W)

EE(bits/Joule) = Z (47)

4.2.3 State-of-the-art User Association Algorithms

During the last few years, the UE association problem has received a lot of research
attention. To that end, the most important user association algorithms may be
summarized in the following ones:

Reference signal received power (RSRP)

In LTE-Advanced (LTE-A), the user association is based on the reference signal
received power (RSRP) and/or reference signal received quality (RSRQ). The first
measures the average received power over the resource elements that carry cell-
specific reference signals within certain frequency bandwidth, while the latter mea-
sures the portion of pure reference signal power over the total power received by the
UE [39]. Although these criteria maximize the SINR of UEs [44], simulations and
field trials have shown that they do not increase the overall throughput as much as
hoped, because many SCs typically have few active UEs [45]. This stems from the
fact that the maximum transmit power of a SC is much lower with respect to the
eNB, resulting to a smaller downlink SC coverage. However, this is not the case for
the uplink, where the UE transmission range is the same for all UEs. The algorithm
presents high downlink spectrum efficiency, as the UE gets associated with the BS
from which it receives the strongest signal. However, its energy efficiency cannot be
guaranteed, since it only considers the radio AN.

Range expansion (RE)

RSRP presents relatively poor overall throughput performance, since most UEs
get connected to the eNB, whereas many SCs have few active UEs [45]. To that
end, range expansion (RE) was proposed, which adds a bias (in dB) to the RSRP
in the case the signal comes from a SC, thus actively pushing UEs onto SCs
[43,45,83,93-99]. Despite a potentially significant SINR hit for that UE, this has
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the potential for a win-win situation, because the UE gains access to a much larger
portion of resources, while the eNB reclaims the ones that would have been allo-
cated to it. RE presents lower downlink spectrum efficiency than RSRP, especially
in cases an aggressive bias is used, as a UE is connected to a BS that does not
provide the highest SINR. However, at the same time, this also results in RE mit-
igating cross-tier interference in the uplink. For maximum downlink performance,
RE should be combined with sophisticated interference mitigation techniques. To
that end, enhanced inter-cell interference coordination (eICIC) in release 10 of LTE-
A introduced the almost blank subframes (ABS), during which the eNB remains
silent (i.e., only transmitting control information at very low power), thus enabling
full SC range expansion, since the UE communication with their associated SCs
does not experience interference caused by the eNB [39]. Finally, equivalently to
RSRP, the high energy efficiency of RE cannot be guaranteed.

Minimum path loss (MPL)

A UE is connected to the BS from which it has minimum path loss (MPL), in-
dependently of its received power [43]. In ideal environments with no fading, the
algorithm would connect the UE to its closest BS. In hotspot traffic distribution
scenarios, MPL achieves maximum traffic offloading to SCs, since most UEs will
be associated with SCs being in their proximity. Moreover, it achieves much lower
spectrum efficiency than the maximum, as SINR is not taken into account in the
user association decision. Although MPL minimizes the UE power consumption in
uplink, it fails to guarantee high network energy efficiency, due to high BH energy
consumption.

4.3 Energy Impact of Outdoor Small Cell Back-
haul in Green Heterogeneous Networks

4.3.1 Introduction and Related Work

In [100,101], Tombaz et al. stress the need for jointly considering the BH and AN
energy consumption when studying the energy efficiency of future HetNets. In [100],
the impact of indoor femtocell deployment on the energy efficiency of wireless net-
works is investigated, taking into account the BH power consumption. In [101], the
BH impact on the total network power consumption is studied under different BH
architectures and capacity requirements. It is shown that BH can potentially become
an issue in dense SC HetNets, since it can amount to up to 50% of the total net-
work power consumption. However, the BH architecture scenarios and technologies
of the aforementioned works concerned exclusively indoor scenarios. Nevertheless,
further study is needed for outdoor scenarios, since the outdoor environmental char-
acteristics impose new challenges (e.g., dependency on weather conditions, larger
distances, many interference sources), and thus different types of BH solutions may
be required (e.g., home digital subscriber (DSL) lines are not available).
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Thus, in this section, the BH energy impact is studied in outdoor scenarios
where several SCs backhaul their traffic to the neighboring SCs until they reach the
core network. The relation between AN and BH power consumption is investigated
and light is shed to whether or not BH could become an energy bottleneck for the
network. Finally, to gain valuable insights on the topic, extensive simulation results
under different traffic distribution scenarios and BH technologies are provided.

4.3.2 Wireless Backhaul Solutions

In this section, the different BH solutions that can be employed for backhauling
future outdoor HetNets are analyzed. This thesis is focused on wireless BH solutions,
since wired solutions are more difficult to implement under the considered scenarios
(e.g., although fiber can provide very high capacity, its deployment cost is high
and it can take many years to deploy). In particular, in accordance with Small
Cell Forum (see Fig. 5-2 in [36]), the following main BH solutions are considered:
mmWave, microwave, and sub-6GHz band.

Millimeter wave (mmWave)

The mmWave frequencies (60, 70-80 GHz, also known as the V- and E-band, respec-
tively) [92] is expected to be one of the main BH solutions especially for scenarios
as the ones previously described with multiple hops. Due to the high path loss at
these frequencies, high gain antennas with narrow beams are required. Therefore,
mmWave frequencies enable only short range point-to-point (PTP) line-of-sight
(LOS) radio links and the connection to the local aggregation gateway would most
probably require a number of hops. On the other hand, the high path loss and
narrow beams reduce the risk of interfering with other mmWave radio links.

At the same time, the huge amount of available bandwidth at high frequencies
can provide significant capacity enhancement. Lower frequency technologies rely on
complex RF techniques to deliver higher capacities, such as multi-path propagation
and channel aggregation below 6 GHz, or spatial multiplexing at higher frequencies
up to 42 GHz. In contrast, mmWave technologies rely on generous availability of
wideband RF-channels to deliver Gbps of throughput using simple single-channel
configurations, which gives mmWave a potential for cost-per-bit advantage for high
capacity BH [102].

Microwave

Microwave (6-60 GHz) is widely used, mostly because of its low deployment cost.
Microwave technologies support link throughputs of multiple Mbps. By exploiting
the Shannon capacity formula, the link capacity (C') of the microwave communica-
tion channel can be given by

Cimvps) = Ber(mmz) SE@ps/m2) (4.8)
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where Bppy stands for the channel bandwidth and SE for the spectral efficiency.
Microwave channel sizes are typically multiples of 7 MHz, while modern-day mi-
crowave equipment can transmit over multiple adjacent channels of up to 56 MHz.
With modern transmission methods, the capacity of a microwave radio link can be
boosted up to 1 Gbps [36]. Depending on the frequency and link budget, microwave
frequencies allow a coverage range from a few hundreds of meters to a few kilome-
ters. Similarly with mmWave frequencies, the microwave frequencies require narrow
beams to cope with the path loss. However, the beams are wider than mmWave
beams, requiring less accurate antenna alignment. While the mmWave frequencies
are suitable for densely placed BSs, microwave frequencies are more suitable for
long distance rooftop-to-rooftop connections due to less available spectrum and
lower path loss.

Sub-6GHz band

Sub-6GHz spectrum is able to operate in harsh mobile non-line-of-sight (NLOS)
propagation environments. Therefore, it is considered suitable as a BH solution for
small cells deployed in locations where high capacity NLOS connectivity is required.
The available spectrum at this band is generally ranging from 5 to 20 MHz, while
sub-6GHz frequencies can achieve NLOS coverage of some kilometers.

4.3.3 Simulation Results

In the extensive simulations in MATLAB® | the system setup, described in Section
4.2, was employed. Two clusters were considered (N, = 2), and 5 SCs in total (i.e.,
SC1 =3 and SCq = 2), as depicted in Fig 4.2. The employed BH technologies were:

i) LOS mmWave links (fgg1= 60 GHz band) of Bgy1= 100 MHz channel band-
width [92],

ii) LOS microwave links (fppo= 28 GHz) of Bpyo= 28 MHz [103],
111) sub-6GHz (fBHBZ 3 GHZ) of BBHBZ 10 MHz [104]

For a fair comparison, the path loss models of the provided references were used,
while the antenna gains were selected equal to 20, 15 and 10 dBi, respectively.

The proposed work, as already explained, is independent of the employed channel
allocation scheme. Therefore, for the sake of simplicity and without loss of generality,
inter-sector interference is assumed to be mitigated through some form of fractional
frequency reuse scheme or sophisticated frequency allocation [83]. Moreover, the
channels allocated to the eNB are assumed to be orthogonal to the channels allo-
cated to SCs, while SCs that are adequately far from each other may reuse the same
bands.

In each realization, N UEs of different GBR requirements were considered. In
particular, 60% of UEs demand 512 kbps, 30% 728 kbps and 10% 1024 kbps [86].
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Figure 4.2: Simulation scenario with BH architecture 1.

Moreover, in accordance with the previous sections, the following two UE traffic
distribution scenarios were employed: In each realization (1000 in total), N UEs
of different throughput requirements were considered. Specifically, 10% of UEs de-
mand 512 kbps, 10% 728 kbps and 80% 1024 kbps [86]. Moreover, two UE traffic
distribution scenarios were considered:

e Uniform: the UEs are uniformly distributed in the sector area of radius R.

e Hotspot: the UEs form hotspots. In particular, 2/3 of the total traffic is gener-
ated in a radius r= 70 m from SC j = 3 and SC j = 4 according to 3GPP [84]
and the rest is uniformly distributed in the sector area. Notice that this sce-
nario is more realistic, as in future HetNets, UEs are expected to be very close
to SCs and to generate bursty hotspot traffic [36].

All simulation parameters are summarized in Table 4.2, where fan denotes the
frequency used in the AN. Moreover, henyp and hgc denote the BS antenna height
of the eNB (j = 0) and the SCs (j # 0), respectively. Furthermore, h,,, denotes the
mobile antenna height, while Cy stands for the antenna height correction factor
and d for the distance between the BS and the UE. The slow fading is modeled by
a log-normal random variable with zero mean and deviation 8 or 10 dB in the case
the signal is transmitted by an eNB or a SC, respectively. Finally, in this section,
the RSRP user association criterion is applied for all BH technologies and UE traffic
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Table 4.2: BH Energy Impact: Simulation Values

‘ Parameter ‘ Value
fan 2.0 GHz
BQNB7 BSC 10 1\IHZ
CeNBonazs CSComas 50
PBNBmux 46 dBm
Psc,, .. 30 dBm
Pga,,.. 46 dBm
Ly ns 69.55+26.16 logfan-13.82 loghen -Cr+(44.9- 6.55 loghenp) logd, d in km
Lpse 69.554-26.16 log fan-13.82 loghsc+(44.9- 6.55 loghsc) logd, d in km
Ch 0.8+ (1.1 logfan- 0.7) Ay -1.56 logfan
chgNB 2 dB
m 1.5m
henB 25 m
hsc 2.5 m
Ly, 57.5 dB
NF 9 dB
Nip, -174 dBm/Hz
GT,..m 14 dBi
GT, 40 5 dBi
IL 9 dB
Neng, Nsc 2
R 450 m
r 70 m
6
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for hotspot traffic.

The range of the parameter N has been appropriately selected to avoid system
overloading, and thus all UE throughput demands are satisfied (i.e., the UE QoS is
guaranteed) in all experiments. Therefore, for a given number of UEs, the differences
among the total network energy efficiency of each BH technology only depend on
the BH energy consumption.

To that end, in Fig. 4.3 the average network energy efficiency is depicted for
different BH technologies under uniform traffic. As it can be observed, for low
number of UEs (i.e., low total traffic), the sub-6GHz BH solution presents the
highest energy efficiency. This stems from the fact that sub-6GHz experiences the
lowest path loss compared to the other technologies and thus for the same aggregate
traffic to be sent, it involves lower power consumption (see also Fig. 4.4, where the
BH power consumption compared to the AN is depicted for every BH technology
under uniform traffic). The connection between path loss and power consumption
is the following: for given aggregate rate demands, lower path loss leads to higher
SINR, which enables the use of a higher order MCS, thus resulting in higher spectral
efficiency (without any power consumption increase). On the contrary, higher path
loss, leads to lower SINR, and therefore an increase in the transmitted power is
necessary to increase the SINR at the receiver. Thereby, the spectral efficiency is
improved at the expense of higher power consumption.

In Fig. 4.3, as the number of UEs increases, the total traffic increases, given
that each UE has specific throughput demands. Consequently, the BH traffic also
increases and thus the available bandwidth of each BH technology becomes very
important. In particular, for given BH channel bandwidth and path loss, if the ag-
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gregate traffic is very high and the available bandwidth is not sufficient, an increase
in the transmitted power is necessary to increase the SINR at the receiver. Thereby,
the spectral efficiency is again improved at the expense of lower energy efficiency.
Hence, due to the high bandwidth availability of 60 GHz, mmWave shows the best
performance for very high traffic (i.e., 90 UEs), since it is able to send high amount
of data, for a given SINR and MCS, without increasing the transmitted power. On
the contrary, the available bandwidth of sub-6GHz is very limited. Therefore, for
high traffic (i.e., 90 UEs), a significant increase in the transmitted power of the BH
links is required (see crosspoint between sub-6GHz and mmWave at 90 UEs in Fig.
4.4), so that the SINR at the receiver increases. Thereby, higher order MCS can
be used, which results in higher spectral efficiency. However, as previously men-
tioned, due to the much higher transmit power consumption, this also results in
lower energy efficiency (see Fig. 4.3).

Furthermore, as it is shown in Fig. 4.4, the AN is much more significant than the
BH power consumption when the UEs are uniformly distributed in the sector area.
This is due to the fact that i) in the uniform scenario more UEs receive stronger
signal from the eNB and thus get connected to it and ii) the AN power consumption
in the case a UE is connected to the eNB is much higher than when connected to
a SC. Moreover, for uniform traffic the AN power consumption increases initially
at a high rate, as the number of UEs increases, since more UEs get connected to
the eNB. However, for very high traffic (more than 70 UEs) there are no available
resources left in the eNB and thus more UEs get connected to SCs, which results
in a smoother increase in the AN power consumption.

Equivalently, in Fig. 4.5, the average network energy efficiency is depicted for dif-
ferent BH technologies under hotspot traffic. In this case, notice that the crosspoint
where the performance of sub-6GHz gets worse than mmWave occurs earlier (i.e.,
at 40 UEs) than in the uniform scenario. This is due to the fact that, in the hotspot
scenario, most UEs get associated with SCs, and hence the BH traffic increases sig-
nificantly, thus making the available bandwidth of each technology very important
(even for low total traffic). Therefore (due to its very limited bandwidth), sub-6GHz
shows the worst performance for high hotspot traffic, i.e., worse than mmWave for
traffic higher than 40 UEs and worse than microwave for traffic higher than 60 UEs.

In order to gain further insights on whether or not BH could constitute an energy
bottleneck, in Fig. 4.6, the BH power consumption compared to the AN is depicted
for every BH technology under hotspot traffic. As it can be observed, in this case,
the BH power consumption becomes higher than the AN. This stems from the fact
that under hotspot traffic, more UEs receive higher SINR from SCs and thus get
associated with them, thus leading to higher BH power consumption and lower AN
power consumption (it is reminded that the AN power consumption in the case a
UE is connected to the eNB is much higher than when connected to a SC).

Focusing on high traffic scenarios (i.e., 110 UEs), Fig. 4.7 depicts the total power
consumption (the sum of AN and BH power consumption) for uniform and hotspot
traffic, when different BH technologies are employed. It can be seen that the BH
power consumption can reach up to 38%, 51% and 47% of the total power consump-
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Figure 4.7: AN and BH power consumption under different BH technologies for high
uniform and hotspot UE traffic (N=110).

tion for uniform traffic and 46%, 64% and 78% of the total power consumption for
hotspot traffic, when mmWave, microwave and sub-6GHz are employed, respec-
tively. In general, the following conclusions can be derived:

e The BH power consumption constitutes a significant part of the total power
consumption, which becomes more important as the number of UEs increases
and the traffic becomes hotspot.

= Given that future HetNets are expected to deal with very high and mainly
hotspot traffic [36], backhaul-aware algorithm design becomes essential for
next generation wireless networks.

¢ mmWave seems the best choice to avoid a potential energy bottleneck mainly
due to its very high bandwidth availability. However, given that it requires
LOS, a mixture of the studied BH technologies is anticipated to be used in
future HetNets.
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4.4 Energy-efficient Context-aware User Associa-
tion in Cognitive HetNets

4.4.1 Introduction and Related Work

All the user association approaches, previously described in Section 4.2.3, consider
only the AN, thus totally overlooking any BH issues. Still, the BH, as already dis-
cussed in Section 4.3, is about to become the most challenging part for future SC
networks, especially when considering scenarios as the ones previously described
with wireless BH links. In such cases, considering only the best-received signal
strength or/and the load of each cell when examining the user association prob-
lem is not sufficient. To that end, in [51], the authors model a backhaul-aware BS
assignment problem as an optimization problem using a utility-based framework,
imposing constraints on both radio and BH resources. The main idea behind their
algorithm is to distribute traffic among BSs according to a load balancing strategy,
considering both radio and BH load status. However, their algorithm, unlike the
work presented in this thesis, reduces the BH congestion at the expense of lower
spectral efficiency, since some UEs may be assigned to BSs not being their “best”
radio choice. Moreover, it considers a simple system model consisting only of eNBs,
whereas future cellular networks are about to be dense HetNet deployments of more
sophisticated architecture, as previously described, thus posing new challenges in
the user association problem. Finally, although the network energy efficiency is ex-
pected to play a key role, the algorithm ignores the energy consumption impact.

Thus, in this section, the UE association problem is studied in multi-hop BH
scenarios. To that end, the aforementioned problem is formulated as an optimization
problem, which is shown to be NP-hard. Therefore, a cognitive heuristic algorithm
is proposed that exploits the available context-aware information to associate the
UEs in an energy-efficient way. In particular, i) it maximizes the spectral efficiency
by considering only a subset of cells as candidates for the association of the UE,
i.e., the cells that satisfy the UE QoS requirements with the fewest PRBs needed,
and ii) it maximizes the network energy efficiency, while exploiting the HetNet
architecture cognition, by favoring the candidate cell with the fewest hops to reach
the core network, or in case there are more candidate cells with the same number
of hops, it favors the one with the least loaded BH route in order to achieve load
balancing.

4.4.2 Problem Formulation

As previously mentioned, the network energy efficiency is selected as the global
objective to be maximized, under the condition that the UE QoS requirements are
satisfied. As already described in (4.7), the energy efficiency can be expressed as the
total number of successfully transmitted bits by all UEs, ZZ N > jec ria;itrrr, di-
vided by the total energy consumption, (3 ; Zjec Pan,;aij +Z£l€£ Prn,, YerTr,
i.e., the sum of the energy consumed in the AN and in the BH links. Hence, the
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aforementioned problem can be formulated as

max DieN ZjEC Tty
@ij (Zie/\f Zjec PANz‘jaij + ZL,EE PBHE, )tTTI

s.t. a) aij € {0, 1}, Vi GN, Vjel

(4.9)
b) Zaij = 17VZ EN
jec
) D aijcij < ¢, Vi€C
1EN

where tpp; is the system observation time (i.e., one subframe time). Notice that the
energy efficiency is independent of the observation time for steady state behavior.
Then, the parameter a;; is the association vector that equals to 1 when user ¢ is
associated with BS j and 0 otherwise (4.9a). Each UE can be associated only with
one BS at a time (4.9b). Furthermore, the total number of PRBs used by BS j
cannot exceed the maximum number of the PRBs allocated to it (4.9¢).

As it can be easily understood, the aforementioned problem is a non-convex
problem that cannot be solved in polynomial time (i.e., it is NP-hard). Therefore,
in the next section we propose and analyze a novel context-aware heuristic algorithm
that associates the UEs aiming at maximizing the network energy efficiency, while
having low computational complexity.

4.4.3 Energy-efficient Context-aware Algorithm (EE)

All the aforementioned approaches consider only the AN, thus totally overlook-
ing any BH issues. Still, the BH is expected to play a key role in next generation
HetNets, especially when considering scenarios as the ones previously described
with wireless BH links [36]. In such scenarios, the BH energy consumption can be
responsible for a high percentage of the total energy consumption and consequently
cannot be ignored.

Thus, an energy-efficient context-aware algorithm (EE) is proposed, summa-
rized in Fig. 4.8, that takes as input the available context-aware information (i.e.,
the UEs’ measurements and requirements, the HetNet architecture knowledge and
the available spectrum resources of each BS) to associate the UEs aiming at maxi-
mizing the network energy efficiency. Note that this context-aware information can
be readily available to all nodes in a LTE-A network, while introducing low over-
head (e.g., by transmitting it during the almost blank subframes (ABS) or through
the X2 interface between BSs (eNBs and/or SCs) [39]).

At the same time, EE achieves high spectrum efficiency, since only the BSs that
require the minimum number of PRBs to satisfy the UE requirements (i.e., the BSs
with the best received SINR) are included in the UE candidate cell set. To ensure
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Figure 4.8: Energy-efficient context-aware algorithm (EE) flowchart.

that all the UEs will be associated, EE sorts the UEs by their number of candidates
and starts with the ones with the fewest candidates. Then, to maximize the network
energy efficiency, EE sorts the candidate cells by the number of hops until their
traffic reaches the core network and it associates the UE to the candidate with the
fewest hops, as long as it has sufficient PRBs to serve it. Otherwise, it moves to the
next candidate. Every time a UE is associated with a BS, the algorithm updates
the remaining PRBs of the BS, its cell throughput and the throughput that passes
through the BH links that are used until its traffic reaches the core network. In the
case there are more candidates with the same number of hops, EE associates the
UE to the one with the least loaded BH route, as long as it has sufficient PRBs, to
achieve load balancing at the BH links.

In terms of scalability, EE may be executed in each eNB sector at a specific time
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Algorithm 1 Energy-efficient context-aware user association algorithm

Input: N,C,SINR;;,ri,¢,... Li, L
1: Calculate ¢;; from (4.3)
Candidates; < j : min(c;;)
Sort all UEs i by Candidates; size in ascending order
Calculate Npops Vj € Candidates;
Sort Candidates; by Npops in ascending order
if 3 only one candidate having the least Njps then
Choose this one
else
Choose the one with the least loaded BH route
end if
. if the chosen BS has sufficient PRBs then
Associate the UE to it
Update remaining PRBs, cell throughput and the throughput that passes
through the link £; > j
14: else
15:  Move to the next candidate and repeat the process
16: end if

[ e
Wy R Q

interval based on the dynamics of the UE traffic distribution, so that the system
performance is optimized. For the new UEs that appear in the meantime, EE is
executed as before given the associations of the rest of the UEs. However, in that
case, the context-aware information includes the remaining PRBs and the through-
put of each BS/cell, and the throughput that passes through each BH link, given
the traffic of the already associated UEs. The proposed algorithm is summarized in
Algorithm 1.

Simulation Results

In the extensive simulations, executed in MATLAB® | the same simulation scenario
and parameters (unless otherwise stated), described in Section 4.3.3, were consid-
ered. However, in order to study the impact of the BH architecture on the algorithm
performance, apart from the BH architecture 1 scenario, which is depicted in Fig.
4.2, one more BH architecture (BH architecture 2) was considered, which is de-
picted in Fig. 4.9. Notice that although the same BS deployment is considered in
both scenarios, the BH architecture varies significantly (i.e., SCs j = 3 and j = 5 are
connected through SC j = 4 in the BH architecture 2 scenario). In general, this may
happen due to deployment impairments (e.g., buildings), that impose restrictions
on the actual BH link configurations.

The BH network consisted of line-of-sight (LOS) mmWave links (fgg= 60 GHz
band) of Bgpy= 50 MHz channel bandwidth [92]. Moreover, the noise figure, N F,
was equal to 6 dB and the mobile antenna height, h,,, was selected equal to 1.7 m.
The transmitter/receiver antenna gain of a BH link is equal to G, e =GR, =15
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Figure 4.9: Simulation scenario with BH architecture 2.

dBi, whereas IL =7 dB.

In each realization, N fixed UEs of different throughput requirements were
considered. Specifically, 80% of UEs demand 500 kbps, 10% 700 kbps and 10%
1 Mbps [86]. In accordance with section 4.3.3, two UE traffic distribution scenarios
were considered:

e Uniform: the UEs are uniformly distributed in the sector area of radius R.

e Hotspot: the UEs form hotspots. In particular, 40% of the UEs are considered
to be uniformly distributed in a radius r = 60 m from SC j = 3 and 40%
in a radius » = 60 m from SC j = 4 according to 3GPP [84] and the rest is
uniformly distributed in the sector area. It is reminded that this scenario is
more realistic, as in future HetNets, UEs are expected to be very close to SCs
and to generate bursty hotspot traffic [36].

The slow fading is modeled by a log-normal random variable with zero mean and
deviation 8 dB. Furthermore, the association of the received SNR to the achievable
spectral efficiency in bps/Hz is given by Table A.2 in [42], while the mmWave link
budget equation is given by (4.6).

The reference algorithms, described in section 4.2.3, are considered, which are
summarized in the following:

e RSRP, where a UE connects to the BS from which it receives the strongest
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RS [39, 44]
Jj* = argmaxjcc(RSRP;;) (4.10)

e Range expansion (RE), where a bias = 6 dB is added to the RSRP if the
signal comes from a SC [45,83,93-99]

Jj* = argmaxjcc(RSRP;; + bias;) (4.11)

e Minimum path loss (MPL), where a UE connects to the BS from which it has
the minimum path loss (Li; = Ly, + Ly,,) [43], independently of its received
power

Jj* = argmin;cc(Lij;) (4.12)

Maximizing the network energy efficiency becomes more challenging, as the number
of UEs increases due to the capacity constraints. Therefore, in our experiments, we
consider highly loaded scenarios consisting of more than 60 UEs.

In terms of throughput, all algorithms achieve the same performance in both
scenarios (e.g., for N=100 UEs, the total network throughput is 57 Mbps), as all
algorithms ensure that UEs’ demands are satisfied.

BH architecture 1

As far as the network energy efficiency of the uniform scenario is concerned,
EE achieves slightly better performance than RSRP for values higher than N=70
UEs, as depicted in Fig. 4.10(a). This is due to the fact that EE gives priority to the
candidate cell with the fewest hops and thus most UEs get connected to the eNB.
In this case, the additional energy consumption experienced by EE in the Uu inter-
face with respect to RSRP, is not compensated by the reduction of the BH energy
consumption. However, for higher values, there are no available PRBs in the eNB
at some point, and thus UEs are associated with the candidate SC with the fewest
hops, which results in lower BH energy consumption compared to RSRP. This can
be also noticed in Fig. 4.10(b), where the average traffic of each BH link of Fig.
4.2 is depicted, for N=100 UEs. According to it, EE achieves better load balancing
among the BH links that are the same number of hops away from the core network
(e.g., among BH links £4 and L5) than the other algorithms. Notice that BH load
balancing achieves better utilization of BH resources, decreases the possibility that
a BH link becomes the bottleneck and offers higher security in the case of a BH
link failure. Then, regarding RE, it achieves lower energy efficiency, since there are
more UEs associated with SCs, resulting in higher BH energy consumption. Finally,
MPL can be considered as an aggressive RE algorithm, where it is likely for the
UEs to be closer to a SC and thus to be associated to it. Although MPL achieves
maximum traffic offloading to SCs, it has very poor energy efficiency performance,
as the BH traffic (see Fig. 4.10(b)) and thus the BH energy consumption is much
higher than the other approaches.

In Fig. 4.11(a), the average network energy efficiency of all algorithms is de-
picted, when hotspot traffic is considered. In this case, EE achieves gains up to
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Figure 4.10: Performance evaluation results for the simulation scenario with BH archi-

tecture 1, depicted in Fig. 4.2, and uniform traffic.
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100%, since it manages the BH traffic so that lower energy consumption is gener-
ated. Specifically, in comparison to RSRP, EE achieves up to 40% energy efficiency
gain. This stems from the fact that the UEs located around SC j = 3 or j = 4, that
have as candidate cells the SCs j = 1 or j = 2, will be associated with SC j = 3 or
j = 4 when RSRP is applied, given that they receive higher SINR, whereas to SC
1 or 2 with EE, given that less hops are required to reach the core network. As a
result, EE generates globally less traffic for the BH links and thus the BH energy
consumption becomes much lower. This is better explained in Fig. 4.11(b), where
the average traffic of each BH link is depicted for scenario 2, when N=100 UEs.
As it is shown, EE achieves again much better BH load balancing (e.g., the UEs
around SC j = 4 that have as a candidate cell the SC j = 5, will be connected to
the SC that has the least loaded BH route). Then, as far as RE is concerned, it
has poor energy efficiency performance, since there are more UEs associated to SCs
than in RSRP. As a result, higher BH traffic is generated and consequently higher
BH energy consumption. Finally, MPL presents the lowest energy efficiency, since
most UEs are associated with the closest SCs, resulting in the most highly loaded
BH links (see Fig. 4.11(b)) and consequently in the highest BH energy consumption.

BH architecture 2

When the BH architecture scenario of Fig. 4.9 is applied, the total network energy
efficiency, under the same user distribution scenarios (Fig. 4.12(a) and 4.13(a)), is
lower than in the previous BH architecture scenario. This is due to the fact that the
number of hops has a strong impact on the BH energy consumption (the SC j =3
and SC j = 5 are now three hops away from the core network). Thus, apart from
the need for a careful design of the BH architecture, backhaul-aware user associa-
tion strategies should be developed, with the aim of achieving high network energy
efficiency.

In Fig. 4.12(b) and 4.13(b), the average traffic of each BH link for N=100 UEs for
the BH architecture of Fig. 4.9 is depicted, when uniform and hotspot are applied,
respectively. In comparison to Fig. 4.10(b) and 4.11(b), it can be observed that the
BH traffic distribution may differ significantly, when the BH architecture changes.
This fact justifies the need for backhaul-aware user association strategies, especially
in dense deployment scenarios. To that end, unlike the rest of the algorithms, EE
takes into account both the AN and BH information in a dynamic way to achieve
energy efficiency gains. For instance, notice that in the previous BH architecture,
load balancing was applied between BH links £1, L2 and L3, whereas in this archi-
tecture, between BH links £; and Ly, since they are the same number of hops away
from the core network. It is also worth noting that due to its backhaul-awareness,
EE could also deal with BH link failures.

In Fig. 4.14, the average network spectrum efficiency is depicted for all algo-
rithms. This metric was shown to be independent of the applied BH architecture
scenario. However, it highly depends on UEs’ SINR and consequently on UEs’ dis-
tribution. As it is shown in Fig. 4.14, EE achieves equally high spectrum efficiency
to RSRP and RE for both user distribution scenarios, since it achieves the same
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Figure 4.13: Performance evaluation results for the simulation scenario with BH archi-
tecture 2, depicted in Fig. 4.9, and hotspot traffic.



88 4.4. Energy-efficient Context-aware User Association

throughput with the same amount of total PRBs used. In particular, the high spec-
trum efficiency of EE, stems from basing the user association not only on the BH
configuration, but also on the link quality (i.e., EE considers as candidate cells
for a UE only the cells with the highest SINR, that satisfy the UE requirements).
MPL, unlike the rest of the algorithms, presents much lower spectrum efficiency, as
it associates the UEs independently of their SINR. Thus, a UE may be associated
with a SC, having the minimum path loss, although its received SINR is lower, and
therefore more PRBs will be needed to achieve the same throughput. Moreover,
notice that MPL achieves higher spectrum efficiency in the hotspot scenario. This
is due to the fact that UEs that form a hotspot around a SC will have both low
path loss and high SINR received from it, and thus will need a lower number of
PRBs to satisfy their requirements.
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Figure 4.14: Average network spectrum efficiency for both UE traffic distribution sce-
narios.

4.4.4 Joint Uplink and Downlink User Association in Cogni-
tive HetNets

Introduction and Related Work

In parallel, considering a user association criterion that takes into account only the
UL or downlink (DL) [39,43, 44,51, 83,96] is not sufficient. Although the channel
conditions may be similar for UL and DL (i.e., UL-DL duality), the traffic load
may vary significantly. This is mainly due to increase of asymmetric traffic appli-
cations that can be biased toward the DL (e.g., Internet access) or the UL (e.g.,
uploading a video) [105]. Furthermore, associating a UE with the BS that provides
the highest DL SINR, may require higher UE trasmission power in UL. Thus, next
generation user association algorithms should jointly optimize UL and DL. To that
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end, the authors of [106] propose an association algorithm that provides the best
service to UEs on UL and DL, while minimizing the interference. Specifically, the
UEs are associated with the BS with minimum path loss in UL and the strongest
received power in DL. Nevertheless, the association decision is based only on the
AN conditions and the algorithm performance in terms of energy consumption is
not studied.

Hence, in this section, the joint UL and DL user association problem is studied
aiming at maximizing the total network energy efficiency, without compromising the
UE QoS, in cognitive HetNets. The problem is formulated as an optimization prob-
lem, which is shown to be NP-hard. Therefore, the heuristic algorithm previously
proposed has been accordingly adapted to associate the UEs in an energy-efficient
way taking into account both UL and DL. The proposed algorithm first selects a
subset of cells as candidates separately for UL and DL based on the radio access con-
ditions and the UE requirements, and then selects the best one among them based
on the BH conditions and the available spectrum resources of each BS. In the case
the best cell for UL is different from DL, UL/DL split is applied [86] to maximize
the network performance. Finally, the performance of the proposed algorithm is
evaluated and it is shown that it significantly outperforms the reference algorithms,
while maintaining high spectral efficiency and low UE power consumption.

In this section, the system model described in Section 4.2 is applied, with the
following additional assumptions.

e In the UL, open loop power control is used [107].

e Each UE can be associated with at most two different BSs at a time, one for
UL and one for DL [86].

e There is a maximum number of physical resource blocks (PRBs) available to
each BS j in UL and DL, denoted by ¢~ and ¢P” | respectively.

JIma

For reader’s convenience, in the following the calculation of the UL power con-
sumption model for the AN is provided.

Given that open loop power control is used, the UE ¢ transmission power to BS j
is given by [108]

UL

AN (dBm) - mzn(PUE

Py +~Ly" + 10log,,B) (4.13)

max

where Py, . is the UE maximum transmission power in dBm, Fy is the target
received power in dBm, appropriately chosen so that the BS is able to demodulate
and decode the transmission information with a given reliability, LpﬁL is the DL
path-loss estimated by the UEs in dB, which is used to compensate the UL path-
loss. The parameter v is the compensation coefficient (0 < v < 1), while B indicates
the instantaneous bandwidth measured in number of PRBs.
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Algorithm 2 Find candidate cells
Input: N, C, Pug,.., ¥ Po, Lp"s By Pinres, SINRij, rP"

Pij >
Output: Candidates?L, CandidatesP*
1: for alli e N, j € C do
2:  Calculate PXI%M
3. CandidatesY* «+ j : Pj{ﬁijg(mm (PXJ%I,J_)—&-PMT@S)
prL_gr__r’"
4: Calculate C’L'j —[m]

5. CandidatesPl + j : min(ch)
6: end for

Problem Formulation

The problem under study aims at the maximization of the sum of UL and DL net-
work energy efficiency, while satisfying the UEs’ GBR, throughput demands (i.e.,
guaranteeing the UE QoS). The UL and DL network energy efficiency can be ex-
pressed as the total number of successfully transmitted bits by all UEs in both
UL and DL divided by the total energy consumption (i.e., the sum of the energy
consumed in the AN and in the BH links) in both UL and DL. Thus, the afore-
mentioned problem can be formulated as in (4.14), where the parameter a; equals

max Zw:UL,DL Zie/\f Zjec r}”a?}-
a;’; Zw:UL,DL (Zzej\f Zjec PXNUG'Z + ZE;EE PZ:UZ)

st.  a)aj; €{0,1}, Vie N, Vjel (4.14)
b) Y al=1VieN
jec

c) Za;‘}c?} <ci .,ViecC
i€EN

to 1 when the UE 7 is associated with BS j and 0 otherwise (4.14a). Each UE can
be associated only with one BS at a time in UL or DL (4.14b). However, as previ-
ously mentioned, the UL association may differ from the DL. Furthermore, the total
number of PRB pairs used by BS j, denoted by ¢}, cannot exceed the maximum
number that is allocated to it (4.14c).

The aforementioned problem is a non-convex problem that cannot be solved in
polynomial time (i.e., it is NP-hard). Therefore, in the next section a novel context-
aware heuristic algorithm is proposed that associates the UEs aiming at maximizing
jointly the UL and DL network energy efficiency, while inducing low computational
complexity.

Proposed Joint Energy-efficient Context-aware Algorithm (Joint EE)
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Algorithm 3 Joint UL-DL energy-efficient user association
Input: N, C, c¥, ¢¥ | L, L, Candidates?

177 max

1: Sort all UEsji b?y Candidates)’ size in ascending order
Calculate Npops V5 € Candidatesy’
Sort Candidates;’ by Nhops in ascending order
if 3 only one candidate having the fewest Np,ps then

Choose this one
else

Choose the one with the least loaded BH route
end if

if the chosen BS has sufficient PRBs then

10:  Associate the UE to it

11:  Update remaining PRBs, cell throughput and the throughput that passes
through the link £; 3 j

12: else

13:  Move to the next candidate and repeat the process

14: end if

The proposed joint UL-DL energy-efficient user association algorithm (Joint EE)
consists of two sequential stages. In the first stage, Algorithm 2 is applied, to define
the candidate cells (separately for UL and DL) based on the radio access conditions
(i.e., UE measurements) and the UE requirements. In the second stage, Algorithm
3 is used, that selects the best cell among the candidates (separately for UL and
DL) based on the BH conditions (i.e., BH network architecture, BH traffic) and the
available spectrum resources of each BS. It is reminded that all the aforementioned
context-aware information can be readily available to all nodes in a LTE-A network,
while introducing low overhead (e.g., by transmitting it during the ABS or through
the X2 interface between BSs (eNBs and/or SCs) [39]). In the case the best cell
is the same for UL and DL, the UE is associated with one BS. Otherwise, the UE
is associated with two BSs, one for UL and one for DL, using UL/DL split, as
previously mentioned.

According to Algorithm 2, Joint EE chooses as candidate cells: i) for the UL,
the cells that require lower UE power consumption than an upper threshold value
(i.e., min (PXJG“ )+ Pinres), to minimize the UE power consumption (line 3), and ii)
for the DL, the cells that satisfy the UE requirements with the minimum number

of finite PRBs pairs needed, to achieve high spectral efficiency (line 5).

After the selection of candidate cells in UL and DL, Algorithm 3 chooses the
best candidate cell to associate the UEs in UL and DL in an energy efficient way,
without compromising the UE QoS. To ensure that all UEs will be associated,
Joint EE sorts the UEs by their number of candidates and starts with the UEs
with the fewest candidates (line 3). A cell cannot be considered as candidate if the
received SINR by the UE is so low that the spectral efficiency equals to zero and
thus infinite PRBs are needed to meet the UE requirements. Then, to maximize
the network energy efficiency, Joint EE sorts the candidate cells by the number of
hops (i.e., number of BH links) until their traffic reaches the eNB site, denoted by
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Table 4.3: Joint UL-DL User Association: Additional Simulation Values

‘ Parameter ‘ Value ‘
Blyvg, BSo 10 MHz
N B e OB | O
PUE'nLa:p 23 dBm
NFyr 7 dB
GT,.v5 17 dBi
GTul , GRM, 15 dBi
IL 7 dB
Pihres 100 mW
SINRUE ., 7 dB
R 500 m

Nhops, (line 3) and it associates the UE to the candidate with the fewest hops?,
as long as it has sufficient PRBs to serve it (lines 5, 9). Otherwise, it moves to
the next candidate (line 13). Every time a UE is associated with a BS j in link
w = UL, DL, the algorithm updates the remaining PRBs of j, its cell throughput
and the throughput that passes through the BH link £; 5 j (line 11). In case there
are more candidates with the same number of hops, Joint EE associates the UE to
the one with the least loaded BH path, as long as it has sufficient PRBs, to achieve
BH load balancing (lines 7, 9). Load balancing achieves further energy efficiency
improvement, since the energy consumption of a BH link does not increase linearly
to its traffic load.

The scalability of Joint EE depends on the number N of UEs in the eNB sector,
the number C' of BSs involved and the time interval at which the algorithm is
executed. This time-interval should be based on the dynamics of the UE traffic
distribution, so that the system performance is optimized. For the new UEs that
appear in the meantime, Joint EE is executed as before given the associations of the
rest. However, in that case, the context-aware information includes the remaining
PRBs and the throughput of each BS/cell, and the throughput that passes through
each BH link, given the traffic of the already associated UEs.

Simulation Results

In the extensive simulations executed in MATLAB®, the same simulation setup
and parameters of section 4.3.3 were considered (unless else stated), with Ny = 2
clusters. Each cluster consists of 4 SCs (SC;=5C>=4) according to 3GPP specifi-
cations [84]. The BH links are LOS mmWave links (60 GHz band) with Bpg=50
MHz channel bandwidth [92].

However, unlike the static BH architecture scenarios considered up until now
(i.e., BH architecture 1 and 2), from this section on, a more general and dynamic BH
architecture will be adopted, which complies with Scenario 1 of 3GPP specifications
[84]. According to it, the SC clusters are uniformly distributed within the eNB
sector, and the SCs of each cluster are uniformly dropped within the cluster area.

4Due to the considered architecture, if the eNB is included in the candidate cells, it will be
preferred, since no hops are required to reach the eNB site.



Chapter 4. Energy-efficient Context-aware User Association in Cognitive
Heterogeneous Networks 93

eNB/SC

aggregation GW e

wireless BH link —— ——

100 I I I I I I I I J
0 50 100 150 200 250 300 350 400 450

(m)

Figure 4.15: Example of simulation scenario with general BH architecture [84], where
e.g., £7 = {172,3,4}, El = {4}, £2 = {2,4}, and £3 = {3}

The minimum distance between two SCs is 20 m and between the eNB and a SC
cluster center center is 105 m. Moreover, the minimum distance of a UE from the
eNB is 35 m and from a SC is 5 m. Furthermore, in each cluster, one SC (the
one being the closest to the eNB) is considered to be one hop away from the eNB
site and thus plays the role of the aggregator of the cluster traffic, two SCs (the
ones being the closest to the aggregator) are considered to be two hops away from
the eNB site and the last SC to be three hops away and connected to the closest
two-hop-away SC of the cluster. In order to ease understanding, an example of the
considered architecture is given in Fig. 4.15.

The proposed work, as already explained, is independent of the employed channel
allocation scheme. Therefore, for the sake of simplicity and without loss of generality,
inter-sector interference is assumed to be mitigated through some form of fractional
frequency reuse scheme or sophisticated frequency allocation [83]. Moreover, the
channels allocated to the eNB are assumed to be orthogonal to the channels allo-
cated to SCs. However, SCs belonging to different clusters reuse the same bands,
thus interfering to each other.

Moreover, in each realization, N UEs are considered with different GBR require-
ments in UL and DL. Specifically, 20% of UEs demand 1024 kbps in the DL and
256 kbps in the UL, 20% 728 kbps in the DL and 1024 kbps in the UL and 60%
have symmetric requirements for UL and DL equal to 512 kbps in each link [86]. In
the UL, we set v=1, thus considering full path-loss compensation for all algorithms.
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In accordance with Scenario 1 of [84], the following hotspot traffic distribution
scenario is considered:

e Hotspot: the UEs form hotspots. In particular, 2/3 of UEs are randomly and
uniformly dropped within the clusters (in a radius » = 70 m from cluster
center) and 1/3 UEs randomly and uniformly dropped throughout the eNB
sector area [84].

The additional (or modified compared to section 4.3.3) simulation parameters
are summarized in Table 4.3, where the subscript = {e N B, SC'} refers to the eNB
or to a SC, respectively and By’ is the bandwidth allocated to x in link w and ¢}’
is the maximum number of PRBs allocated to z in link w.

As reference algorithms we consider the following ones:

e RSRP, where UE i is associated for both UL and DL with BS j* from which
it receives the strongest RS [39,44]

J* = argmax; . RSRP;; (4.15)

e Range expansion (RE), where bias = 13 dB is added to the RSRP if the signal
comes from a SC [45,83,93-99]

J* = argmax;cc(RSRP;; + bias;) (4.16)

e Minimum path loss (MPL), where UE ¢ is associated for both UL and DL
DL

with BS j* from which it has the minimum estimated path loss, Lpij , inde-
pendently of its received power [43]
j* = argmin;ec Ly " (4.17)

e Joint UL-DL [106] (Joint), where UE 4 is associated with BS j* that provides
the minimum path loss in the UL and the strongest received power in the DL

UL:j* = argminjechZL (4.18)
DL :j* = argmax;cc RSRP;;

The number of UEs, N, has been appropriately selected to avoid system over-
loading. As a result, all algorithms satisfy the specific UE throughput demands (i.e.,
they guarantee the UE QoS), and therefore they achieve the same total through-
put. Consequently, the total network energy efficiency will depend only on the total
power consumption in UL and DL.

To that end, in Fig. 4.16, the total UL-DL network energy efficiency is depicted
for all algorithms. As it can be noticed, Joint EE significantly outperforms the rest
of the algorithms under low load conditions. In particular, it achieves up to 456%
higher total UL-DL energy efficiency than RSRP. This is due to the fact that Joint
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Figure 4.16: Average total UL-DL energy efficiency for different N values and hotspot
traffic.
5 Jontee 05— Joint EE ' ‘ '
—+— Joint —+— Joint
—6—RSRP 80| —o—RsrP
—— MPL 70 —O— MPL

[e2]
o

15

(o))
o

N
o

10

w
o

Average total DL BH power consumption (W)
N
o

Average total DL AN power consumption (W)

-
o

i i

40 60 80
Number of UEs

feal i i
1=

100 20 40 100

20 60 80

0
Number of UEs

Figure 4.17: Average DL AN and BH power consumption for different NV values and
hotspot traffic.

EE gives priority to the candidate cell with the fewest hops and thus, under the
considered architecture scenario, most UEs get connected to the eNB®. As a result,

5Tt is worth noting that in the considered architecture scenario, the UE connection with the
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Figure 4.18: Average UL AN and BH power consumption for different NV values and
hotspot traffic.

for low values of N, although there is higher DL energy consumption in the AN
compared to RSRP (the power per subcarrier is much higher for the eNB than
for a SC), the BH energy consumption is close to zero (see Fig. 4.17) and thus
the total DL power consumption is lower than RSRP. Notice that the BH energy
consumption strongly depends on the BH architecture (e.g., considering two SCs of
three hops in each cluster, would result in higher BH energy consumption, and thus
higher energy efficiency gains for our proposal).

In UL, due to the hotspot traffic distribution and the applied threshold in the
UE power consumption, the BH links cannot be switched off completely (see Fig.
4.18). Thus, as the number of UEs increases, the Joint EE gain compared to the
reference approaches decreases. However, it still remains positive, since, when there
are no available PRBs in the eNB, the UEs are associated with the candidate SC
being the fewest hops away from the eNB site, thus minimizing the BH energy
consumption. As a conclusion, Joint EE generates globally less traffic for the BH
links and thus the BH energy consumption becomes much lower.

Then, as for RE, it has poor total energy efficiency performance, as there are
more UEs associated to the SCs than in RSRP, thus presenting higher BH energy
consumption in both UL and DL (see Fig. 4.17, 4.18). Moreover, MPL achieves
the lowest total energy efficiency, since most UEs are associated with the closest
SCs, resulting in the most highly loaded BH links and therefore in the highest BH
energy consumption, as depicted in Fig. 4.17, 4.18. Finally, Joint [106] presents

eNB is likely to be preferred, since it involves no wireless BH power consumption. Still, given the
capacity constraints of the eNB as well as the very high amount of traffic that is expected to be
generated by next generation networks, SC offloading is also expected to play an important role.
Therefore, efficient context-aware algorithms that will associate UEs so that the overall network
performance is maximized are essential.
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Table 4.4: Joint UL-DL User Association: Average Total UL-DL Network Spectral Ef-
ficiency

] User association algorithm \ bps/Hz \

Joint EE 3.19
Joint 3.18
RSRP 3.02
RE 2.99
MPL 2.83

similar performance in UL with MPL and in DL with RSRP. However, note that
Joint [106] performs better than these algorithms as the traffic load increases, since
it exploits the possibility of connecting a UE to two different BSs in UL and DL,
thus maximizing the total UL-DL spectral efficiency.

In Table 4.6, the average total UL-DL spectral efficiency of the network is pre-
sented for all algorithms. As it is shown, the considered algorithms that jointly
study UL-DL (i.e., Joint EE, Joint [106]) achieve the highest spectral efficiency,
since the UEs are always connected to the BSs that require the fewest PRBs for
their requirements to be fulfilled for both UL and DL. On the contrary, RSRP and
RE achieve slightly lower spectral efficiency, as they associate the UEs only based
on the DL conditions, which, however, may differ significantly from the UL. MPL,
unlike the rest of the algorithms, presents much lower total spectral efficiency, since
it associates the UEs independently of their SINR. Hence, it is very likely that a UE
is associated to a BS with low received SINR, thus requiring more PRBs to achieve
the same throughput.

4.5 Optimal User Association Framework in Cog-
nitive HetNets

4.5.1 Introduction and Related Work

As already discussed, the user association problem has received a lot of research
attention, since it impacts both the network and UE performance. In this context,
apart from efficient and low complexity user association algorithms, special research
focus has been given to the design of analytical frameworks for optimal user associ-
ation, which could be used to evaluate the performance of existing user association
solutions.

To that end, in [50], an energy efficient user association problem is studied from
a population game perspective. The game payoff function considers both the energy
cost for using a BS and the user selfish performance objective. In [49], the authors
propose a low-complexity distributed algorithm that converges to a near-optimal
solution and they show that a per-tier biasing loses little, if the bias values are
chosen carefully. In [48], the joint user association and resource allocation problem
is studied. The authors aim to find the optimal association so that the total resources
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required to satisfy the given UE traffic demands are minimized. Focusing also on
the joint spectrum allocation and user association problem, in [47], a proportionally
fair utility function based on the coverage rate is defined. The authors associate
the UEs with BSs based on the biased downlink received power, while stochastic
geometry is used to model the placement of BSs. In [46], the authors formulate
two different user association problems. The first one is based on a sum utility of
long term rate maximization with rate quality of service (QoS) constraints, and the
second on minimizing a global outage probability with outage QoS constraints.

Taking into account the BH, in [55], a new theoretical framework is introduced
to model the downlink user association problem, while upper bounds are derived
for the achievable sum rate and minimum rate using convex optimization. In [51],
the authors model a BH-aware BS assignment problem as a multiple-choice multidi-
mensional Knapsack problem (MMKP). In the considered utility-based framework,
they impose constraints on both radio and BH resources. The main idea behind their
algorithm is to distribute traffic among BSs according to a load balancing strategy,
considering both AN and BH load status. Yet, the proposed algorithm, reduces the
BH congestion at the expense of lower spectral efficiency, since some UEs may be
assigned to non-optimal BSs in terms of RSRP. In [53], a load-balancing based mo-
bile association framework is proposed under both full frequency reuse and partial
frequency reuse, and pseudo-optimal solutions are derived using gradient descent
method. In [52], a new theoretical framework is introduced to model the downlink
user association problem, while upper bounds are derived for the achievable sum
rate and minimum rate using convex optimization. In [43], a joint user association
and resource allocation optimization problem is proposed, which is shown to be
NP-hard. Therefore, the authors developed techniques to obtain upper bounds on
the system performance. In [54], the joint problem of downlink user association
and wireless backhaul bandwidth allocation is studied in two-tier cellular HetNets.
According to the considered architecture, the SCs are connected through wireless
BH with the macro BS. The problem is formulated as a sum logarithmic user rate
maximization problem, and wireless BH constraints are also considered.

However, unlike the work presented in this thesis, the aforementioned approaches
either consider only the AN [39,44-50], thus totally overlooking the BH capacity
constraints and BH energy impact, or/and do not take into account the energy
consumption and hence, their energy efficiency cannot be guaranteed [43,51-55].

4.5.2 Energy and Spectrum Efficiency Maximization

In this section, the user association problem is formulated as a generalized assign-
ment problem (GAP) [109], which considers both the AN and BH energy consump-
tion. The objective of the GAP problem is the maximization of the energy and
spectrum efficiency of all UEs, without compromising their QoS (i.e., the specific
UE throughput demands are satisfied). Since the considered problem is NP-hard,
we relax the capacity constraints to derive an upper bound, which can be used as
a benchmark for the performance evaluation of user association algorithms. The
energy-efficient context-aware algorithm, proposed in Section 4.4.3, is enhanced to
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take into account the sum of the AN and BH power consumption for the traffic of a
UE to be served, thereby relaxing the assumption of homogeneous BH links of Sec-
tion 4.4.3. Finally, the considered bound and the proposed algorithm are compared
with existing user association solutions in scenarios with mmWave BH links. The
provided results show that there is still room for energy efficiency improvement for
the existing user association solutions, which justifies the motivation of this work.
On the other hand, the proposed algorithm is shown to significantly outperform its
counterparts, while achieving near-optimal performance.

Problem Formulation and Optimal association

As already mentioned, the problem under study aims at the joint maximization of
the energy and spectrum efficiency of all UEs, without compromising their QoS (i.e.,
the specific UE throughput demands are satisfied). The energy efficiency can be ex-
pressed as throughput divided by the total power consumption (i.e., both in the AN
and BH links). Maximizing the total network energy efficiency could imply favoring
some UEs at the expense of others. Therefore, in this section, the maximization of
the energy and spectrum efficiency of every UE is taken into account. This goal can
reflect an operator’s objective, i.e., to provide the same service (throughput) with
the minimum power consumption and PRBs, thereby achieving fairness among the
UEs. The aforementioned problem is a GAP [109], which can be formulated as in
(4.19). The problem refers to how to optimally assign each UE (it is reminded that

max > > aypy

Aij : X
ieEN jeC

where pij =Tr; — 6lcijpj6*

Ti ap, —30
Ba Z SL1j (2 Yo — 1) 10— — Bscij
LieL
(4.19)

s.t. a) aij € {07 1}7 Vi € N, Vjecl
b) Zaij = 1,VZ GN
jec
C) Z a;5Cij < Ciman? Vj eC
ieN
d) Sc,j € {0, 1}, VL € L, Vj e C

a;j is equal to 1 when the UE i is associated with BS j and 0 otherwise (4.19a)) to
exactly one BS (4.19b), so as to maximize the total profit, denoted by p;;, without
reserving from any BS more spectrum resources than its capacity, ¢;,,,. (4.19c).
The parameter sz, ; is 1 if the traffic of the BS j passes through the BH link £; and
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0 otherwise (4.19d).

In order to maximize the energy and spectral efficiency of all UEs, the profit
function, p;;, has been appropriately selected to consider the UE QoS demands, r;,
the AN and BH power consumption (both calculated in W) as well as the number
of PRBs needed so that the UE traffic is served by BS j. Notice that p;; is expressed
as the weighted sum of our objective functions. Thereby, the multi-objective opti-
mization problem can be cast as a single-objective one, with normalized weighting
coefficients 51, B2 and S, as defined in [110].

Since the considered problem is NP hard [109], we derive the Ross and Soland
upper bound [109], by relaxing the capacity constraints to
cijai; <c, VieN,VjeCl (4.20)

— Jmaz

The optimal solution & to the resulting problem is obtained by determining for each
i € N the BS j, that maximizes p;;, while having sufficient PRBs to serve the UE
traffic, i.e.,

j(i) = argmax{p;; : j €C,c;; <¢c, '} (4.21)

— Jmaz

Setting a;(;),,=1 and aj; = 0 for all j € C \ {j()}, the resulting upper bound equals

to
Up = ij(i),i (4.22)
1EN

This bound is not yet feasible, since the capacity constraints are not fulfilled. There-
fore, we define the following parameters

A/}Z{iENiflji=1},j€C (423)
dj = Z Cij — ijam,j € C (424)
iENj
C' = {j €eC:d; > 0}, N = Ujecl./\/} (425)

where N is the set of UEs associated with BS j, d; is the number of extra PRBs
needed for which the relaxed capacity constraint of BS j is violated, C’ is the set of
those cells whose relaxed constraint (4.19¢) is violated and A/ is their set of UEs.
Given a set S of numbers, we denote with mazsS the second maximum value in
S and with argmaxs S the corresponding index. Thus, (4.26) gives the minimum
penalty incurred if the UE 7, currently assigned to a BS in C’, is reassigned.

¢ = pj(i),i —maxe{pi; 1 j€Coeiy <¢c, }ieN (4.26)
Hence, for each 7 € C’, a lower bound on the loss of profit to be paid to satisfy
the constraint (4.19c¢) is given by the solution of the 0-1 single Knapsack problem,
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Algorithm 4 Proposed enhanced energy-efficient user association algorithm

Input: N,C,SINR;;,ri,b, ¢, ... Li, L
1. Calculate ¢;; as in (4.3)
Candidates; < j : min(c;;)
Sort all UEs i by Candidates; size in ascending order
Calculate Pan,, + Ppr,; as in Section 4.2.2 Vj € Candidates;
Sort Candidates; by Pan,; + Ppp,; in ascending order
Choose the candidate with the minimum Pay,; + Ppu,;
if the chosen BS has sufficient spectrum resources then
Associate the UE to it
Update remaining spectrum resources
10: else
11:  Move to the next candidate and repeat the process
12: end if

KP}(j € (), defined as

v;j = min Z 4iYij

€N
s.t. a) yi; € {0,1}, i € N (4.27)
b) Z YijCij > dj,
1EN;

where y;; = 1 if and only if UE i is removed from BS j. The resulting bound is then
equal to

U1 = UO — Z Uj (428)

Jjec’

Proposed Enhanced Energy-efficient Context-aware Algorithm (e-EE)

The proposed enhanced energy-efficient (e-EE) algorithm, summarized in Al-
gorithm 4, takes as input the available context-aware information, i.e., the UEs’
measurements (SINR) and QoS rate requirements (r;), the HetNet architecture
knowledge, i.e., the BH link path that follows the traffic of each SC (sz,;) and the
available spectrum resources of each BS (¢;,,,.), to associate the UEs in an energy
efficient way.

As already mentioned in previous sections, this context-aware information, which
can be divided into information being reported by the network and information be-
ing reported by the UEs, can be easily available to all nodes in a LTE-Advance
network (i.e., eNBs and/or SCs) [39,111]. In particular, the information being re-
ported by the network does not impose additional constraints, since the standard
defines the X2 logical interface to allow the exchange of information among BSs
(eNBs and/or SCs) [39]. Moreover, the information about the network architec-
ture (sgz,) requires very limited or nil update due to its static nature. Hence, the
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only additional information to be exchanged is the current traffic of each BH link.
Regarding the information being reported by the UEs, it is worth pointing out
that each UE is required to measure the SINR received from the neighboring BSs.
For such a purpose, Release 8 has already defined the radio resource management
(RRM) measurement set, i.e., the set of BSs from which a UE measures and reports
parameters, such as RSRP or reference signal received quality (RSRQ). Later on, in
order to support coordinated multi-point (CoMP), Release 10 defined a subset of the
RRM measurement, namely CoMP measurement set, to allow the UEs to measure
and report short-term channel state information [111]. Thereby, the aforementioned
mechanisms guarantee the availability of the required information.

As shown in Algorithm 4, e-EE considers as candidate cells for a UE the cells
that satisfy its requirements with the minimum needed spectrum resources (c;;)
(line 2), thus achieving high spectral efficiency. In addition, by considering only
a subset of cells, the computational burden induced in the system is reduced. To
ensure that all the UEs will be associated, e-EE first sorts the UEs by their number
of candidates and starts with the UEs with the fewest candidates (line 3). Note that
a cell j cannot be included in the candidates set of a UE 4 if SINR;; is too low
and, consequently, ¢;; > ¢;.. .

At a second step, in order to maximize the network energy efficiency, e-EE sorts
the candidate cells by the total power consumption, denoted by Pan,; + Ppu,;,
needed in each case for the traffic of the UE i to be served (line 5). Then, e-
EE associates the UE to the candidate cell which involves the minimum power
consumption, as long as it has sufficient spectrum resources to serve it (lines 7).
Otherwise, it moves to the next candidate (line 11). Every time a UE is associated
with a BS j, the algorithm updates the remaining spectrum resources of j.

The proposed algorithm (e-EE) may be executed in each eNB sector at a specific
time interval based on the dynamics of the UE traffic, so that the system perfor-
mance is optimized. For the new UEs that appear in the meantime, e-EE may
be executed as before given the associations of the rest, thereby, achieving high
scalability.

Simulation Results

For the extensive simulations executed in MATLAB®, the same simulation scenario
and parameters as in section 4.4.4 (unless otherwise stated), are considered. In each
realization, we also consider N UEs of different GBR requirements. Specifically,
60% of UEs demand 512 kbps, 20% 728 kbps and 20% 1024 kbps [86].

In accordance with section 4.4.4 and Scenario 1 of [84], hotspot user distribution
is assumed as described below:

e Hotspot: the UEs form hotspots. In particular, 2/3 of UEs are randomly and
uniformly dropped within the clusters (in a radius r = 70 m from cluster
center) and 1/3 UEs randomly and uniformly dropped throughout the eNB
sector area [84].
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Figure 4.19: Average total network energy efficiency for different IV values and hotspot
traffic.

For the performance evaluation of reference algorithms we consider the following
ones:

e GAP: the user association solution of the upper bound, that was derived in
Section 4.5.2.

e e-EE: the user association algorithm proposed in Section 4.5.2.
e EE: the user association algorithm proposed in Section 4.4.3.

e RSRP: a UE connects to the BS from which it receives the strongest signal
[39,44].

e Range expansion (RE): a bias = 6 dB is added to the RSRP if the signal
comes from a SC [45,83,93-99].

e Minimum path loss (MPL), where a UE connects to the BS from which it has
the minimum path loss [43], independently of its received power.

The range of the number of UEs, IV, has been appropriately selected to avoid
system overloading. As a result, all algorithms satisfy the specific UE throughput
demands (i.e., they guarantee the UE QoS), and therefore they achieve the same
total throughput. Consequently, the total network energy efficiency will depend only
on the total power consumption.
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Figure 4.20: Average total access network power consumption for different N and
hotspot traffic.

In Fig. 4.19, the average network energy efficiency is depicted for all algorithms
versus the number of UEs, N. As it can be observed, e-EE significantly outperforms
its counterparts, since it achieves near-optimal performance. Notice that EE achieves
worse performance, since it gives priority to the candidate cell with the fewest
hops and thus most of the UEs get connected to the eNB. As a result, for low
values of N, although the BH energy consumption is equal to zero, there is high
energy consumption in the AN (the power per subcarrier is much higher for the
eNB than for a SC). On the contrary, e-EE takes into account the possibility of
having heterogeneous BH links and adapts the user association decision accordingly.
Therefore, it presents less dependency on the employed scenario. Then, regarding
RE, it achieves lower energy efficiency, as there are more UEs associated with SCs,
resulting in higher BH energy consumption. Finally, MPL can be considered as an
aggressive RE, since UEs get associated to the closest BS, and so hotspot traffic is
mainly offloaded to SCs. Although MPL achieves the maximum offloading, it has
very low energy efficiency, as the BH traffic and thus the BH energy consumption is
much higher than the other approaches. To gain further insights, we depict in Fig.
4.20 and 4.21 the total AN and BH power consumption, versus the number of UEs,
N, respectively. As it can be noticed, the AN power consumption increases as N
increases for all algorithms. In particular for EE, this happens at a high rate, since
more UEs get connected to the eNB. However, for very high traffic there are no
resources left in the eNB and thus more UEs get connected to SCs, which results
in a smoother increase in the AN power consumption. As depicted in Fig. 4.21, the
BH energy consumption also increases as the number of UEs increases, since more
traffic is generated in the BH links and thus more energy consumption. It is also
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Figure 4.21: Average total backhaul power consumption for different N values and
hotspot traffic.

Table 4.5: GAP User Association: Average Network Spectral Efficiency

| User association algorithm | bps/Hz |

GAP, e-EE, EE 1.827
RSRP 1.824

RE 1.816

MPL 1.717

worth noting that the optimal association achieves a good balance between AN and
BH power consumption and so does the proposed algorithm.

In Table 4.5, the average network spectral efficiency is presented for all algo-
rithms. As it is shown, the considered algorithms that aim at the maximization
of the spectral efficiency (i.e., GAP, e-EE, EE) achieve the highest spectral effi-
ciency, since the UEs are connected to the BSs that require the minimum spectrum
resources for their requirements to be fulfilled. On the contrary, RSRP and RE
achieve slightly lower spectral efficiency, as the UEs, under high traffic load condi-
tions, may be connected to BSs that require more spectrum resources. MPL, unlike
the rest of the algorithms, presents much lower spectral efficiency, since it associates
the UEs independently of their SINR. Hence, it is very likely that a UE is associated
to a BS with low SINR, thus requiring more spectrum resources to achieve the same
throughput.
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4.5.3 Spectrum Efficiency and Energy Efficiency trade-off

In this section, an e-constraint problem formulation is proposed to study the trade-
off between energy and spectrum efficiency. By solving the e-constraint problem
for all different € values, the Pareto front solutions of the problem are analytically
derived. To that end, the previously proposed e-EE is modified accordingly so that a
good trade-off between energy and spectrum efficiency is achieved. In particular, this
novel adaptive algorithm, denoted as Ae-EE, aims at the maximization of the energy
efficiency given a specific spectral efficiency target. The performance of the proposed
Ae-EE algorithm is compared with existing user association solutions (e.g., RSRP,
RE, MPL) as well as with the derived optimal solutions under different spectral
efficiency targets, traffic distribution scenarios and BH technologies. The provided
results motivate the use of mmWave frequencies to provide high capacity BH, while
the proposed algorithm is shown to achieve notable performance gains.

Problem formulation

The problem under study aims at the joint maximization of the energy and spec-
trum efficiency of the network, without compromising the UE QoS (i.e., the specific
UE throughput demands). The energy efficiency is expressed as the total num-
ber of successfully transmitted bits divided by the total energy consumption or
equivalently as the total throughput of the network divided by the total power con-
sumption (i.e., the sum of the power consumed in the AN and in the BH links).
Under the condition that the specific UE throughput demands are satisfied, the net-
work energy efficiency maximization is equivalent to the minimization of the total
power consumption, while the spectral efficiency maximization is equivalent to the
minimization of the PRBs needed.

Ppu,
Pan ‘J(W) S l(:ﬂv/) -
 aiisp T -
orgmin. (o) = 3 S aea Py ¢ 30 (25T g™
@i i€EN jeC L1EL
s.t. a) a;; €{0,1}, Vie N, Vj €C
) Zaij =1,Vi eN
jec (4.29)
) > aijcij < ¢, Vi€C
iEN
d)Ppu., < PpH,... VL1 € L
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The aforementioned problem is therefore a multi-objective problem, which can
be formulated with the use of the e-constraint method [112]. According to it, one of
the objectives is included in the utility function to be optimized (i.e., minimization
of the total power consumption of the network), while the others (i.e., minimization
of the total number of required PRBs) are converted into constraints by setting an
upper bound to them. The problem formulation is depicted in (4.29), where the
first term of the objective function represents the total AN power consumption,
while the second the total BH power consumption. It is reminded that a;; denotes
the association vector that is equal to 1 when the UE i is associated with BS j
and 0 otherwise (4.29a). Each UE can be associated only with one BS at a time
(4.29b). Furthermore, the total number of resources used by BS j, denoted by ¢;;,
cannot exceed the maximum number of PRBs that is allocated to it (4.29¢c). The
power consumption of the BH link £; cannot exceed a maximum value, denoted by
PgH,,,, (4.29d). The parameter sz,; is 1 if the traffic of the BS j passes through
the BH link £; and 0 otherwise (4.29¢). Finally, constraint (4.29f) refers to the total
number of PRBs used and hence to the spectrum efficiency of the network.

Theorem 1. The solution of the e-constraint problem in (4.29) is weakly Pareto
optimal.

Proof. Let aj; be a solution of the e-constraint problem. Let us assume that aj; is
not weakly Pareto optimal. In this case there exists some other a,; such that fi(a;;)
< fr(aj;) for k=1,2. This means that f2(a;;) < fa(aj;) < €. Hence, a;; is feasible
with respect to the e-constraint problem. While in addition fi(a;;) < fi(aj;), we
have a contradiction to the assumption that aj; is a solution of the e-constraint
problem. Thus, az*j6 has to be weakly Pareto optimal. O

Although, according to Theorem 1, every solution of the e-constraint problem
is weakly Pareto optimal, there is no Pareto optimal solution, since there is no
solution that optimizes both objectives simultaneously. Therefore, it is reasonable
to search for a good trade-off between the two objectives instead. To that end, the
increase of ¢ leads to a relaxation of the spectral efficiency constraint (i.e., f3) and
consequently to a more energy efficient solution. On the contrary, the decrease of
¢ improves the spectral efficiency of the solution by degrading its energy efficiency.
The set of solutions for the subproblems resulting from the variation of ¢ define the
Pareto front, hereafter denoted by F.

In practice, because of the high number of subproblems and the difficulty to
establish an efficient variation scheme for the e-vector, this approach has mostly
been integrated within heuristic and interactive schemes. However, due to the nature
of the problem (4.29), it is possible to derive the exact Pareto front with the use
of an iterative algorithm [113]. The idea is to construct a sequence of e-constraint
problems based on a progressive reduction of €.

Let ¢ = (¢7, #1) be the ideal point, where ¢! = min(f;) and ¢f = min(f2)
stand for the minimum value of f; and fs, respectively. Equivalently, let ¢V =

6Please note that, in the rest of the section, a;; is omitted.
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Algorithm 5 Exact Pareto front calculation of problem (4.29)

Calcukate the ideal and nadir points, QEI and (5N .

Add f = (61,6)) to F.

Set m = 2.

Set ™ = ¢ — A, with A = 1.

while ™ > ¢f do
Solve problem (4.29) and add the optimal solution value f% = ((f5)1, (f5)2)
to F.

7. Set ™t = (f5)2 — A.

8 Setm=m+1.

9: end while

10: Remove dominated points if required.

(¢, #Y) be the nadir point, with ¢V and ¢ being the minimum values of f; and
fo, when fo = ¢f and fi; = @1, respectively, i.e., ¢ = min{fi:fo=¢L} and ¢ =
min{ fo: fi=¢}. Thus, (¢!, ¢Y) is the solution of the Pareto front that minimizes
the total power consumption (i.e., f1) without spectral efficiency constraints. On
the contrary, (¢F, ¢) is the Pareto front solution that minimizes the total number
of PRBs used (i.e., fa).

Lemma 5. Both (1, ¢ ) and (¢V, 1) belong to F, i.e., (1, %) € F and (Y,
¢}) € F.

Proof. Let us assume that (¢!, ¢Y) ¢ F. Then, 3 ]?:(fl, f2) € ©: (f1, fa) = (&1,
#5), where @ denotes the objective space and the expression f:(fl, fa) = (o1,
#Y) denotes that (f1, f2) dominates (¢f, ¢Y). In general, we say that f=(f1, f2)
dominates f'=(f], f4), with f, f' € @ if and only if (iff) f; < f] and f, < fj,
where at least one inequality is strict. Thus, f:( f1, f2) = (#1, YY) is true when
a) fi < ¢f and fo < @3 or b) fi < ¢f and fo = ¢3 orc) fi = ¢f and fo < ¢35
Since a) and b) contradict the definition of an ideal point and since c) contradicts
the definition of a nadir point, then (¢!, ¢2") € F. The proof of (¢, ¢1) € F is

analogous.
O

Lemma 6. For each (fi, fa) € @, if (f1, f2) € F, then ¢! < f1 < ¢V and ¢b <
f2 < 9%

Proof. As proved in Lemma 5, (¢!, ¢&') € F, and thus it is non-dominated. Since
1 =min(f1), fi > ¢1, ¥ (fi, f2) € F. Moreover, if fo > ¢3, (61, ¢3') = (f1,f2)
and (f1,f2) ¢ F. Hence, fi > ¢! and fo < ¢ V (f1, fo) € F. The proof for ¢ <

f2 < ¢¥ is analogous.
O

According to Lemma 5 and Lemma 6, Algorithm 5 generates the exact Pareto
front of the multi-objective optimization problem described in (4.29).

Theorem 2. Algorithm 5 generates one feasible solution for each point of the Pareto
front.
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Proof. Let us denote the sequence of solutions of Algorithm 5 by { ff ey f;"n ,
. fi}, where, eg., fro= ((fr)1,(f)2), with 1, 2 denoting the first and the
second objective respectively. We have to prove that if f e D\ { fi‘, ceey j:;*n,

..,fM} then f ¢ F. Let us assume that there is a solution f' = (f], f}) €
\ { fl,..., f;’;l, ...,fM} such that f' € F. By Lemma 6, for the first obJectlve
we have ¢f < f{ < ¢1V. Thus, either a) f{ = (f%), for a given m = 1...M or
b) (fm—1)y < fi < (f)y and (fr_1), < fo < (fi)y for a given m = 1... M.
In the first case (i.e., case a), f; must be lower than (f},), for f" to be efficient.
However, since A = 1 and the second objective is integer by definition, 3 e
that will eventually reach a value for which the optimum of the corresponding e-
constraint problem is f” for m +1 < m/ < M, that is f’ € {f;fwl, <.y fi}, which
contradicts the hypothesis. Regarding the second case (i.e., case b), f} must be such
that (fr_1)2 < f3 < ( f%)2, which is impossible since f* is the optimal value of
problem (4.29), with e™ = ™ 1 —A, A = 1, and the second objective is integer. [

It is worth noting that some dominated solutions may be generated by the se-
quence of subproblems that are derived according to Theorem 2. However, since all
dominated points can be identified, one can simply exclude the non-efficient solu-
tions to obtain the exact Pareto front. Furthermore, although Algorithm 5 limits the
number of subproblems, a subproblem may be very hard to solve. This stems from
the fact that an exhaustive search would require the examination of CV possible
solutions, which results in prohibitive complexity (O(n™)), as the number of BSs, C,
and the number of UEs; N, increase. Therefore, alternative algorithms, available in
the literature, should be used, able to come up with very close to the optimal solu-
tions with acceptable computational complexity [112]. In this work, a meta-heuristic
method [115] was applied, which has been shown to lead to high-quality solutions
(the average gap is less than 1% with respect to best-known solutions) in almost
real time. The applied method uses biased randomization together with an iter-
ated local search meta-heuristic algorithm. Although the meta-heuristic algorithm
involves lower complexity than O(n™)7, it still requires a high number of iterations
(50000 in our case). Therefore, there is need for low-complexity algorithms, able to
achieve solutions close to the Pareto front.

Proposed adaptive e-EE Algorithm (Ae-EE)

In accordance with the previously proposed algorithms, Ae-EE algorithm takes
into account the available context-aware information, i.e., the UEs’ measurements
(signal-to-interference-plus-noise ratio, SINR) and rate requirements (r;), the Het-
Net architecture knowledge (sz,;) and the available spectrum resources of each BS
(€jman) to efficiently associate the UEs. As already explained in Section 4.5.2, this
context-aware information can be readily available to all nodes in a LTE-A network
(i.e., eNBs and/or SCs).

"Meta-heuristics have no predefined end, and thus big O notation cannot be used to describe
their complexity. Yet, they can be compared empirically (through number of objective function
evaluations/iterations).
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Algorithm 6 Proposed adaptive energy-efficient user association algorithm

Input: N,C,SINR;j,r,b,¢j,...Li, L

1. Calculate ¢;; as in (4.3)
Candidates; < j @ cij <min(cyj .+ Cihress Cjnas)
Sort all UEs i by Candidates; size in ascending order
Calculate Piot,; = Pan,; + Ppr,; as in Section 4.2.2 Vj € Candidates;
Sort the UEs with the same Clandidates; size by the difference in Pyu,; between
the candidate cells in descending order
Sort Candidates; by Piot,; in ascending order
Choose the candidate with the minimum Py,
if the chosen BS has sufficient spectrum resources then

Associate the UE to it

10:  Update remaining spectrum resources
11: else
12:  Move to the next candidate and repeat the process
13: end if

The proposed algorithm, which is summarized in Algorithm 6, aims at the maxi-
mization of the energy efficiency given a specific spectral efficiency target. From this
point on, we will refer to this algorithm as adaptive e-EE (Ae-EE) user association
algorithm.

As shown in Algorithm 6, Ae-EE considers as candidate cells for a UE ¢ the
set of cells, denoted by Candidates;, that satisfy its rate demands, while requiring
less spectrum resources (c;;) than a target cipres = 0 Cijoin (line 2). In practice,
this threshold corresponds to a specific SINR threshold, which defines the subset of
cells that will be selected, i.e., the ones with SINR higher than the threshold. The
spectral efficiency target is defined by the tuning parameter § > 0, which controls
the deviation in the number of needed PRBs from the association that requires the
minimum number of PRBs. For instance, selecting 6 = 0, and thus, cipres = 0,
would result in the maximum spectral efficiency, while setting § > 0 would decrease
the spectral efficiency accordingly in favor of higher energy efficiency. By considering
only a subset of cells, the computational burden induced in the system is reduced.
It is also worth noting that a BS j cannot be included in the set of candidates of
a UE 4, if SINR;; is too low and, consequently, c¢;; > c;j,.... To ensure that all the
UEs will be associated, Ae-EE sorts the UEs by their number of candidates and
starts with the UEs with the fewest candidates (line 3).

In order to maximize the network energy efficiency, Ae-EE calculates for each UE
i and candidate cell j the total power consumption needed for the traffic of the UE i
to be served, denoted by Piot;; = Pan,; +PBH,;, (line 4). Ae-EE then sorts the UEs
with the same Candidates; size by the difference in P, between the candidate
cells in descending order, i.e., starting with the UE with the maximum difference
between the first and the second candidate (line 5). Thereafter, Ae-EE sorts the
candidate cells of each UE i by P;s,; in ascending order (line 6) and associates the
UE to the candidate cell, which involves the minimum power consumption, as long
as it has sufficient spectrum resources to serve it (lines 8). Otherwise, it moves to the
next candidate (line 12). Every time a UE is associated with a BS j, the algorithm
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updates the remaining spectrum resources of j. Contrary to the algorithm providing
the exact Pareto front solutions, previously presented, the proposed algorithm is
much less complex, i.e., O(nlogn) [114].

The proposed algorithm may be executed in each eNB sector at a specific time
interval based on the dynamics of the UE traffic, so that the system performance is
optimized. If a new UE becomes active in the meantime (i.e., after the last execution
of the algorithm and before the next one), its association can be decided by Ae-EE
given the associations of the rest of the UEs. In particular, Algorithm 6 is applied,
excluding lines 3 and 5. Thereby, the proposed algorithm can provide high network
scalability.

Results

Extensive simulations were executed in MATLAB®, under the same simulation sce-
nario and parameters with the ones described in Section 4.4.4 (unless else stated). In
this section, however, in order to gain further insights into the benefits of mmWave,
three different BH technologies were considered:

i) LOS mmWave links (fpg1= 60 GHz band) of Bgg1= 200 MHz channel band-
width [92],

ii) LOS microwave® links (fpm2= 28 GHz) of Bpya= 28 MHz [103],

111) sub-6GHz (fBHSZ 3 GHZ) of BBHBZ 10 MHz [104]

For a fair comparison, the path loss models of the provided references were used,
while the antenna gains were selected equal to 28, 15 and 10 dBi, respectively. In each
realization (1000 in total), N UEs of different GBR requirements were considered.
In particular, 60% of UEs demand 512 kbps, 30% 728 kbps and 10% 1024 kbps [86].
Moreover, in accordance with the previous sections, the following two UE traffic
distribution scenarios were employed:

e Uniform: the UEs are uniformly distributed in the sector area of radius R.

e Hotspot: the UEs form hotspots. In particular, 2/3 of UEs are randomly and
uniformly dropped within the clusters (in a radius 7 = 70 m from cluster
center) and 1/3 UEs randomly and uniformly dropped throughout the eNB
sector area [84].

As already justified in sections 4.3.3 and 4.4.4, for the sake of simplicity and with-
out loss of generality, inter-sector interference is assumed to be mitigated through
some form of fractional frequency reuse scheme or sophisticated frequency alloca-
tion [83]. Moreover, the channels allocated to the eNB are assumed to be orthogonal

81n [103], 28 GHz is considered as mmWave. Still, as already commented, in this thesis, we
adopt the SC Forum categorization (Fig. 5-2 in [36]).
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Figure 4.22: Snapshots of a) uniform and b) hotspot traffic distribution scenarios with
N=70 UEs.

to the channels allocated to SCs. However, SCs belonging to different clusters reuse
the same bands, thus interfering to each other. The slow fading is modeled by a
log-normal random variable with zero mean and deviation 8 dB for the eNB and 10
dB for the SC signal.
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Figure 4.23: Pareto front: number of PRBs vs. total power consumption for N=70
UEs with a) uniform and b) hotspot traffic for different BH technologies
with frequency equal to 3 GHz, 28 GHz and 60 GHz, respectively.

1) Pareto front solutions

Two different simulation scenarios are considered,
as depicted in Fig. 4.22 a) and b). In the first scenario, the UEs are uniformly
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distributed, while in the second they form hotspots. To that end, in Fig. 4.23 a) and
b) the exact Pareto front points of the e-constraint problem in (4.29) are depicted
for the considered BH technologies.

As already mentioned, the number of PRBs and the power consumption are
two metrics that can not be minimized at the same time, and thus a good trade-off
between them has to be found. Hence, each Pareto front point corresponds to a
dominant solution of the e-constraint problem for a different ¢ value, as described
in Theorem 2. In general, in multi-objective optimization, none of the Pareto front
solutions is better than the others. However, depending on the preference for each
of the conflicting objectives, a Pareto front solution may be more preferable than
another. For instance, in (4.29), the preference for one of the objectives (f; or
f2) may vary based on the network state. In particular, in scenarios where spectral
efficiency becomes important, e.g., under highly loaded scenarios, the operators may
select a point near the right extreme Pareto front to maximize the spectral efficiency
(fo = ¢1). On the other hand, when the spectrum resources do not limit the system
(except for (4.29¢)), the operators could select a point of operation near the left
Pareto front solution (f; = ¢!), thus minimizing the network energy consumption.

In the considered example, for all BH technologies when f; = ¢! (maximum
energy efficiency and satisfied rate QoS requirements), most UEs are associated to
SCs to minimize the AN power consumption (the AN power consumption is much
higher? when a UE is associated to the eNB than to a SC). Moreover, the UE
association with the SC that involves the minimum BH power consumption (e.g,
the one with the fewest hops or shortest BH links) is favored. Therefore, when
f1 = ¢! (maximum energy efficiency), the number of required PRBs is higher in the
uniform scenario (than in the hotspot), since the UEs are located further from the
SC cluster centers. On the contrary, when fo = ¢4 (maximum spectral efficiency
and satisfied rate QoS requirements), more UEs are associated to the eNB (in the
uniform scenario) to reduce the required PRBs at the expense of higher AN energy
consumption. Thus, the AN power consumption increase is higher in the uniform
scenario for all BH technologies, as more UEs are associated to the eNB.

Regarding the rest of the Pareto front points, we notice that in the uniform
scenario, for the same power consumption as in the hotspot, more PRBs are required
for all BH technologies. This stems from the fact that the UEs located in a hotspot
mostly get associated with SCs both to use fewer PRBs, and to have much less AN
power consumption. On the contrary, when the UEs are uniformly distributed, they
are located further from the SC cluster centers and thus to achieve network power
consumption decrease, a proportional increase in the required PRBs is needed. This
results in the Pareto front curve being steeper for the hotspot scenario, i.e., the
hotspot Pareto front points provide better trade-offs between the two objectives
than the uniform ones.

Among the different BH technologies, mmWave presents the best performance,

91t is reminded that the total transmit power of a BS is equally distributed among its PRBs [43].
Therefore, given that the maximum transmit power of an eNB is much higher than that of a SC,
the allocated power at a given bandwidth (e.g., at a PRB) is also much higher.
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since its Pareto front is shifted on the left. This implies that mmWave can provide
better trade-offs than the rest of the BH technologies. It is worth noting that al-
though mmWave experiences the highest path loss, it is able to send high amount
of data without increasing the transmitted power due to its high bandwidth avail-
ability'®. On the contrary, the available bandwidth of sub-6GHz is very limited.
Therefore, in hotspot scenarios where higher BH traffic is generated, a significant
increase in the transmitted power of the BH links is required, so that the SINR
at the receiver increases. Thereby, higher order MCS can be used, which result in
higher spectral efficiency. However, due to the much higher power consumption at
the transmitter, this also results in lower energy efficiency. Finally, 28 GHz presents
in both considered scenarios worse performance than 60 GHz, since it experiences
lower path loss, with, however, much less bandwidth available. Compared to 3 GHz,
28 GHz experiences higher path loss. Nevertheless, in the hotspot scenario, where
more BH traffic is generated, it achieves better performance due to higher band-
width availability.

2) Performance Evaluation In this section, the performance of the proposed
algorithm is evaluated and compared with both the state-of-the-art and the opti-
mal (yet complex) solutions described in Algorithm 5 for all BH technologies. In
particular, the algorithms that will be compared in this section are summarized in
the following.

e c-constraint: the two extreme Pareto front solutions of the e-constraint prob-
lem described in Section 4.5.2. In particular, we refer with e-constraint EE to
the extreme Pareto front solution that maximizes the energy efficiency and
with e-constraint SE to the Pareto front solution that maximizes the spectral
efficiency.

e Ae-EE: the proposed adaptive energy-efficient algorithm, described in Section
4.5.3, with ¢ipres=0, 1, 2.

e EE: the user association algorithm proposed in 4.4.3.

e RSRP: a UE connects to the BS from which it receives the strongest signal
[39,44].

e Range expansion (RE): a bias = 13 dB is added to the RSRP if the signal
comes from a SC [45,83,93-99].

e Minimum path loss (MPL), where a UE connects to the BS from which it has
the minimum path loss (L;; = Ly, + Ly,;) [43], independently of its received
power.

10As discussed in section 4.3.3, the path loss of the BH technology as well as its available
bandwidth play an important role in the power consumption of the BH link. For given aggregate
rate demands, the path loss of the technology impacts the SINR at the receiver. A higher SINR
enables the use of a higher order MCS, thus resulting in higher spectral efficiency. At the same
time, for higher available bandwidth, more bits can be sent with a given SINR and MCS. In the
case the bandwidth is not sufficient or the received SINR is very low, an increase in the transmitted
power is necessary to increase the SINR at the receiver. Thereby, the spectral efficiency is improved
at the expense of lower energy efficiency.
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The range of the number of UEs, N, has been appropriately selected to avoid
system overloading. As a result, all algorithms satisfy the specific UE throughput
demands (i.e., they guarantee the UE QoS), and therefore they achieve the same
total network throughput (e.g., for N = 90 UEs, the total throughput is 56.52 Mbps
for all algorithms). Consequently, the total network energy efficiency will depend
exclusively on the total power consumption.

Uniform traffic distribution

In Fig. 4.24, the average network energy efficiency is depicted for all algorithms
and BH technologies versus the number of UEs, N, with uniform traffic distribu-
tion. To gain further insights into the energy efficiency, in Fig. 4.25 and 4.26, the
total AN and BH power consumption are depicted, respectively, versus the number
of UEs, N, for all BH technologies. In general, it can be noticed that mmWave
achieves much higher energy efficiency than the rest of the BH technologies (i.e., 2
times more than 3 GHz and 3.5 times more than 28 GHz) for all algorithms and N
values. This is due to its high bandwidth availability which, as already explained,
results in much lower BH power consumption (of the order of mW, as depicted in
Fig. 4.26).

As far as the different user association algorithms are concerned, it is reminded
that e-constraint EE shows the maximum energy efficiency that can be achieved
independently of the spectral efficiency, while e-constraint SE corresponds to the
maximum energy efficiency given that the spectral efficiency is maximized. These
solutions achieve better performance than the other approaches (up to 13, 7.5, and
28 times higher energy efficiency for 3, 28 and 60 GHz, respectively). However, unlike
the rest of the algorithms, they present very high complexity, which increases with an
increasing number of UEs and BSs, as discussed earlier in the problem formulation
of this section.

In Fig. 4.24, it can be also noticed that for all BH technologies the proposed
Ae-EE algorithm significantly outperforms the state-of-the-art algorithms, while
achieving similar performance to the e-constraint solutions with, however, much
less complexity (i.e., O(nlogn) [114]). Nevertheless, the selection of the parameter
value ¢ipres 18 important. Ae-EE with ¢ = 0 achieves equal performance to the
e-constraint SE, while as cipres increases, the performance of the algorithm in terms
of energy efficiency is improved at the expense of lower spectral efficiency.

Regarding the rest of the algorithms, as depicted in Fig. 4.24, they achieve
much lower performance for all BH technologies. In particular, EE achieves low
performance, since it gives priority to the candidate cell with the fewest hops to
reach the core network and thus most of the UEs get connected to the eNB. As
a result, for low values of IV, although the BH energy consumption is equal to
zero, there is high energy consumption in the AN (we remind that the power per
subcarrier is much higher for the eNB than for a SC). On the contrary, Ae-EE
takes into account the possibility of having heterogeneous BH links and adapts
the user association decision accordingly. Therefore, it presents less dependency on
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the employed scenario. Then, regarding RE, it achieves lower energy efficiency, since
there are more UEs associated with SCs, resulting in higher BH energy consumption.
Finally, MPL can be considered as an aggressive RE, as UEs get associated to the
closest BS, and so traffic is mainly offloaded to SCs. Although MPL achieves the
maximum offloading, it has very low energy efficiency, since the BH traffic and thus
the BH energy consumption is much higher than the other approaches (see Fig.
4.26).

Moreover, as it can be observed in Fig. 4.25, the AN power consumption increases
as N increases for all algorithms (except for e-constraint EE) and BH technologies.
In particular, for EE, the AN power consumption increases initially at a high rate,
since more UEs get connected to the eNB. However, for very high traffic there are
no resources left in the eNB, and thus more UEs get associated with SCs, which
results in a smoother AN power consumption increase. As depicted in Fig. 4.26,
the BH energy consumption also increases for all algorithms, as the number of UEs
increases, since more traffic is generated in the BH links and thus more energy
consumption.

In general, e-constraint EE favors the combination of user associations that
minimizes the total power consumption at a specific instant, and thus, it presents
a different behavior than the rest of the algorithms. For instance, in the case of
28 GHz, the power consumption in BH is almost as high as in the AN. Hence,
for low traffic, e-constraint EE favors the association of most UEs with SCs and
especially with the SC cluster located closer to the core network to minimize both
the AN and BH power consumption. However, for higher traffic load (90 UEs), the
BH aggregated traffic increases a lot (it is reminded that the power consumption
of a BH link increases in an exponential way with the amount of traffic that passes
through the link) and therefore the association of UEs with the eNB is preferable
(both in terms of energy consumption and number of PRBs). This is also due to the
fact that the association with the eNB at this point gives the possibility of totally
switching off one or even both SC clusters, thus resulting in higher energy efficiency
gain. To that end, it is worth noting that the most energy-consuming links in the
considered model are the links that are one hop away from the core network, which
not only aggregate all the traffic of the cluster but also may be much longer than
the rest of the BH links. Therefore, the complete switch off of a cluster corresponds
to the highest energy efficiency gain. Nevertheless, for even higher traffic (110 UEs),
given the capacity constraints of the eNB, it is not possible to associate the majority
of UEs to the eNB and thus to switch off the SC clusters. Consequently, in order
to avoid having a significant BH power consumption increase, only the UEs with
very high QoS demands get associated to the eNB. As a result, the AN power
consumption decreases significantly, whereas the BH power consumption increases.
Finally, as depicted in Fig. 4.25 and 4.26, both e-constraint SE and the proposed
algorithm achieve a good balance between AN and BH power consumption for all
BH technologies.

Hotspot traffic distribution
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Figure 4.27: Average total network energy efficiency for different N values and BH
technologies with frequency equal to 3 GHz, 28 GHz and 60 GHz, respec-
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Table 4.6: c-constraint User Association: Average Network Spectral Efficiency

Uniform (bps/Hz) Hotspot (bps/Hz)
User association algorithm 3 GHz | 28 GHz | 60 GHz | 3 GHz | 28 GHz | 60 GHz

e-constraint SE, Ae-EE c¢ipres = 0, EE; RSRP 1.74 1.74 1.74 1.74 1.74 1.74
RE 1.73 1.73 1.73 1.74 1.74 1.74

MPL 1.49 1.49 1.49 1.65 1.65 1.65

AC-EE Cipres = 1 1.49 1.49 1.51 1.66 1.62 1.67

AEE Cipres = 2 1.39 1.30 141 1.61 153 1.62

e-constraint EE 1.22 0.95 1.27 1.53 1.18 1.56

Accordingly, in Fig. 4.27, the average network energy efficiency of all algorithms
is depicted in a hotspot scenario for all different BH technologies. In this case, the
proposed algorithm can achieve up to 14.5, 6, and 33 times higher energy efficiency
than the rest of the algorithms for 3, 28 and 60 GHz, respectively. To gain again
further insights, the AN and BH power consumption of the hotspot scenario are de-
picted in Fig. 4.28 and 4.29, respectively. Compared to the uniform traffic scenario,
it can be noticed that the BH power consumption increases for most algorithms,
since more UEs are closer to SCs and thus get associated with them. For the same
reason, the AN power consumption decreases for the majority of the algorithms, as
depicted in Fig. 4.28.

Moreover, we can notice that e-constraint EE has a different behavior than in
the uniform scenario. This stems from the fact that in the hotspot scenario more
BH traffic is in general generated and thus the BH energy consumption is higher.
Therefore, for a specific traffic, which differs for different technologies (N=90 UEs
for 3 GHz and N=50 UEs for 28 GHz), e-constraint EE favors the association of a
portion of UEs with the eNB in order to switch off completely one of the clusters.
Thereby, a significant increase in the BH power consumption is avoided.

Regarding the rest of the algorithms, it is shown that e-constraint SE achieves
again a good balance between AN and BH power consumption and so does the
proposed algorithm. The EE algorithm has still very high AN power consumption.
This stems from the fact that it generates globally less traffic for the BH links and
thus the BH energy consumption becomes much lower at the expense of higher AN
power consumption. Then, regarding RE, it has poor energy efficiency performance,
as there are more UEs associated to the SCs than in RSRP and thus it presents
higher BH energy consumption. Finally, MPL presents the lowest energy efficiency,
as most UEs are associated with the closest SCs, resulting in the most highly loaded
BH links (see Fig. 4.29) and thus in the highest BH energy consumption for all BH
technologies.

In Table 4.6, the average network spectral efficiency is presented for all algo-
rithms and BH technologies. As it can be observed, the considered algorithms that
aim at the maximization of the spectral efficiency (i.e., e-constraint SE, Ae-EE with
cthres = 0, EE, RSRP) achieve the highest spectral efficiency for all BH technolo-
gies, since the UEs are connected to the BSs that require the minimum spectrum
resources for their QoS requirements to be fulfilled. On the contrary, RE achieves
slightly lower spectral efficiency in the case of uniform traffic, as the UEs, due to bi-
asing, may not be connected to their best choice in terms of spectral efficiency. It is
also worth pointing out that the RE spectral efficiency is higher in the hotspot sce-
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nario, since, in that case, both biasing and maximum SINR favor the association of
UEs with SCs. MPL, unlike the rest of the algorithms, presents much lower spectral
efficiency, since it associates the UEs independently of their SINR. Hence, it is very
likely that a UE is associated to a BS with low SINR, thus requiring more spectrum
resources to achieve the same throughput. This holds also for Ae-EE ¢;ppes = 1,2
since energy efficiency is increased at the expense of lower spectral efficiency, which
becomes even lower in e-constraint EE, where energy efficiency is maximized. Fur-
thermore, it is worth noticing that the spectrum efficiency of RSRP, RE and MPL is
independent of the employed BH technology, since these user association algorithms
take into account only the AN conditions. However, for the proposed solutions, it
can be observed that 28 GHz results in lower spectral efficiency than the other BH
technologies, since it involves higher BH power consumption and thus less UEs get
connected to their closest SCs.

4.6 Conclusions

In the first part of this chapter, the BH energy impact in future green HetNets was
studied under different UE traffic scenarios and BH technologies. To that end, some
interesting conclusions were drawn and are summarized next:

e It was shown that the BH constitutes a significant part of the total power
consumption, which becomes more important as the number of UEs (i.e.,
total traffic) increases. The BH energy impact was also shown to be dependent
on the UE traffic distribution. Specifically, for hotspot traffic the BH energy
impact becomes more significant, since more UEs get connected to SCs (i.e.,
the BH traffic increases). At the same time, the fact that future HetNets are
expected to deal with very high amount of hotspot traffic, predicates the need
for backhaul-aware algorithm design.

e Finally, it was shown that mmWave, which is considered an appropriate BH
solution in terms of capacity due to its high bandwidth availability, is also
the best solution in terms of energy efficiency. However, given that it requires
LOS, a mixture of the studied BH technologies is anticipated for future SC
HetNets.

Moreover, the user association problem was studied aiming at the joint maximiza-
tion of energy efficiency and spectral efficiency of the network, without compromis-
ing the UE QoS requirements. In this context, from the results presented in this
chapter, the following conclusions can be derived.

e An energy-efficient user association algorithm was proposed, which exploits
the available context-aware information to assign the UEs to the candidate
cell with the least number of hops in order to minimize the BH energy con-
sumption or in case there are more candidate cells with the same number of
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hops, to the candidate with the least loaded BH route to achieve load bal-
ancing. The performance of the proposed algorithm was evaluated under two
simulation scenarios and it was shown that it can achieve up to two and a half
times more network energy efficiency than the reference algorithms, without
compromising the UE QoS requirements.

In the same setup, the joint UL-DL user association problem was studied,
aiming at the total UL-DL energy efficiency maximization, while maintain-
ing high spectral efficiency and low UE power consumption. Given that the
considered optimization problem was shown to be NP-hard, the previously
proposed energy-efficient context-aware algorithm was adapted accordingly
to minimize the BH energy consumption both in UL and DL. The algorithm
performance was evaluated by means of simulation and it was shown that it
can achieve up to 45% energy efficiency gain.

The DL user association problem was formulated as a generalized assignment
problem, which was shown to be NP-hard. Therefore, an upper bound on the
network performance was derived. Millimeter wave BH links were employed
and it was shown that there is still room for energy efficiency improvement,
which predicates the need for new energy-efficient BH-aware user association
solutions. To that end, the previously proposed energy-efficient context-aware
algorithm was enhanced to take into account the possibility of having het-
erogeneous BH links, by considering the actual power consumption of each
BH link and not just the number of hops. Thereby, the proposed algorithm
was shown to present less dependency on the employed scenario. In particu-
lar; in the simulation results, e-EE was shown to significantly outperform its
counterparts, while achieving near-optimal performance.

Another DL user association formulation was proposed (i.e., as an e-constraint
problem), aiming at the analytical study of the trade-off between energy ef-
ficiency and spectral efficiency, while the exact Pareto front points of the
problem were derived for different BH technologies. Thereby, a framework
was developed, which can be used as a benchmark for the performance evalu-
ation of user association algorithms. Moreover, the enhanced low-complexity
energy-efficient algorithm, which was previously proposed, was modified ac-
cordingly to be able to achieve performance between to the two extreme Pareto
front solutions. In particular, the proposed adaptive algorithm was shown to
be able to select any point of the Pareto front, by tuning the parameter cipres
accordingly, and thus, to achieve a good trade-off between the aforementioned
metrics. The proposed algorithm was also compared with existing user associa-
tion solutions under different BH technologies. The provided results indicated
that i) the proposed adaptive algorithm (Ae-EE) is able to achieve notable
energy and spectrum efficiency gains and that ii) mmWave is a promising
solution to provide high capacity and low energy consumption multi-hop BH.



Chapter 5

Conclusions and Future
Work

This chapter completes the dissertation by summarizing its main contributions,
while also providing some potential research lines for future investigation. In partic-
ular, Section 5.1 contains the most significant concluding remarks of each chapter,
while Section 5.2 outlines the open research issues related to our contributions.

5.1 Conclusions

In order to meet the ever-increasing high data traffic demands, dramatic expan-
sion of network infrastructures as well as fast escalation of energy demands are
expected. As a result, it becomes urgent for mobile operators not only to main-
tain sustainable capacity growth, but also to limit their electric bill. In parallel,
the spectrum scarcity problem stresses the need for spectral efficient solutions. The
aforementioned goals can be summarized into the joint maximization of energy and
spectrum efficiency. This joint goal constitutes a fundamental design objective for
next generation networks and therefore was the main goal of this thesis.

To that end, exploiting cognition was shown to play a key role. In particular,
this thesis proposed and evaluated medium access layer algorithms, that exploit
different types of cognition to provide energy and spectrum efficiency enhancement.
In particular, two main research directions were followed: i) the first has focused
on spectrum-awareness in cognitive radio (CR) networks, where the use of licensed
bands by unlicensed users (also called secondary users (SUs)) is enabled for as
long as they remain unused, thereby achieving high spectrum efficiency, and ii) the
second on the context-aware self-adaptation of cellular HetNets (i.e., SONs). In both
contexts, the exploitation of the available information was shown to play a key role
on providing sustainable wireless networks. However, given the different needs and
features that characterize each of these networks, they were studied separately.
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Regarding the first research direction, it was emphasized that the opportunistic
spectrum sharing, on which secondary networks’ (SNs)’ operation is based, relies
upon two main premises: the protection of the primary users’ (PUs’) transmissions
and the maximization of the spectrum usage. The former is achieved by applying
effective sensing techniques (cooperative or not). The maximization of the spectrum
usage, though, can only be met by implementing efficient coexistence mechanisms
among SNs, particularly in congested environments. Hence, mechanisms for efficient
coexistence of more than a single SN are indispensable. The key point of such
an efficient coexistence is that the contention of two or more SNs over the same
channel is allowed, but it impacts decisively on the achievable throughput and
energy efficiency.

Therefore, a CR-based MAC protocol should i) detect the licensed channels with-
out PU activity, and ii) prioritize the access to the channels with low SU contention.
To that end, in the first research contribution part of this thesis, the following con-
tributions were provided:

e A SN coexistence scheme was proposed as well as a novel contention-aware
channel selection algorithm, which: i) exploits cooperative spectrum sensing
to detect the free from PU activity licensed channels, ii) for each one of them,
it estimates the probability of collision, and iii) selects the less contended (i.e.,
with the lowest probability of collision) to access first.

e An analytical model for the throughput and the energy efficiency of the SN
under study has been provided, which has been validated by means of sim-
ulation. Furthermore, the effect of the time between two consecutive sensing
periods on the aforementioned metrics have been studied. It has been proved
that there is an optimal value for maximum performance for the time between
two consecutive sensing periods, which is highly dependent on the PU activity
pattern.

e The proposed channel selection algorithm has been compared with three rele-
vant state-of-the-art algorithms. Simulation results have shown that the pro-
posed algorithm significantly outperforms its counterparts both in terms of
throughput and energy efficiency.

e Finally, after having shown the notable gains of the proposed channel selection
algorithm compared to the state-of-the-art and given that in such coexistence
scenarios, it is fundamental to guarantee fairness among the coexisting SNs,
the proposed SN coexistence scheme was evaluated, when the proposed chan-
nel selection algorithm is applied. In particular, the proposed SN coexistence
scheme was compared with the reference approach (FMAC) by means of simu-
lations and it was shown that it can achieve throughput and energy efficiency
gains, while maintaining or even achieving better fairness among the coex-
isting SNs. Furthermore, the impact of different minimum back-off window
values and different PU activity patterns on the performance of both consid-
ered coexistence schemes was studied. The maximum gain is achieved for the
lowest minimum back-off window value and for high contention in the licensed
channels.
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The second research direction has focused on the proposal of energy-efficient
user association algorithms and analytical frameworks for cognitive heterogeneous
networks (HetNets). This is a timely topic since dense deployment of small cells
(SCs), overlaying the existing macrocell networks, is expected during the next few
years. This is due to the fact that the deployment of SCs reduces the distance
between user equipments (UEs) and base stations (BSs) and, consequently, i) the
area spectral efficiency (bps/Hz/m?) increases, and ii) the energy consumption in
the access network (AN), i.e., the links between the UEs and their serving BSs,
decreases.

However, the dense deployment of SCs also poses new challenges. Due to the
high number of deployed SCs, the direct connection of all SCs to the core network
becomes complicated. Fiber connections, which have been traditionally considered
as the best backhaul (BH) solution, are prohibitive in this case due to their high
deployment cost. A promising solution lies in exploiting the existing connection
between the macrocell site and the core network (most of the times it is a fiber
connection), and to provide core network connectivity to SCs through the macrocell
site. Still, in order to connect the SCs to the macrocell site (thus providing them
core network connectivity), new cheap wireless BH solutions are required.

In addition, this wireless BH is expected to provide high-capacity services from
the SCs to the core network, in order to meet the expected traffic demands of
the order of Gpbs. Therefore, a promising solution that could provide wireless BH
connectivity between the SCs and the core network lies in using millimeter wave
(mmWave) frequencies, because of the large amount of available bandwidth at these
frequencies, which results in high capacity connections. It has been shown, however,
that mmWave frequencies are capable of providing good coverage performance only
if the transmission distance is shorter than 200 meters. Otherwise, links may not be
established. Since the macro cell radius is even in dense deployments of the order of
500 meters, this implies that a multi-hop architecture is needed, in order to allow
each of the SCs to reach the macrocell site (i.e., macrocell aggregation gateway).

In this context, user association becomes challenging due to the multi-hop BH
architecture and therefore new optimal solutions need to be developed aiming at
the joint energy and spectrum efficiency maximization of the network. To that end,
in the second research part of this thesis, the following contributions were provided:

e The role of BH in future outdoor HetNets was studied aiming to answer to
whether or not it could constitute an energy bottleneck for the HetNet. In
particular, the BH energy impact was compared to the access network (AN),
i.e., the links between the users and their serving cells, under different traffic
distribution scenarios and BH technologies. It was shown that the BH consti-
tutes a significant part of the total power consumption, which becomes more
important as the number of UEs (i.e., total traffic) increases. The BH energy
impact was also shown to be dependent on the UE traffic distribution. Specifi-
cally, for hotspot traffic the BH energy impact becomes more significant, since
more UEs get connected to SCs (i.e., the BH traffic increases). At the same
time, the fact that future HetNets are expected to deal with very high amount
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of hotspot traffic, predicates the need for backhaul-aware algorithm design.
Finally, it was shown that mmWave, which is considered an appropriate BH
solution in terms of capacity due to its high bandwidth availability, is also
the best solution in terms of energy efficiency. However, given that it requires
LOS, a mixture of the studied BH technologies is anticipated for future SC
HetNets.

The user association problem is studied aiming at the joint maximization of
energy efficiency and spectral efficiency of the network, without compromis-
ing the user equipment (UE) quality of service (QoS) requirements. In this
framework, the following additional contributions were provided:

— An energy-efficient user association algorithm was proposed, which ex-
ploits the available context-aware information to assign the UEs to the
candidate cell with the least number of hops in order to minimize the BH
energy consumption or in case there are more candidate cells with the
same number of hops, to the candidate with the less loaded BH route to
achieve load balancing. The performance of the proposed algorithm was
evaluated under two simulation scenarios and it was shown that it can
achieve up to two and a half times more network energy efficiency than
the reference algorithms.

— In the same setup, the joint UL-DL user association problem was stud-
ied, aiming at the total UL-DL energy efficiency maximization, while
maintaining high spectral efficiency and low UE power consumption.
Given that the considered optimization problem was shown to be NP-
hard, the previously proposed energy-efficient context-aware algorithm
was adapted accordingly to minimize the BH energy consumption both
in UL and DL. The algorithm performance was evaluated by means of
simulation and it was shown that it can achieve up to 45% energy effi-
ciency gain.

— The DL user association problem was formulated as a generalized as-
signment problem, which was shown to be NP-hard. Therefore, an upper
bound on the network performance was derived. Millimeter wave BH
links were employed and it was shown that there is still room for en-
ergy efficiency improvement, which predicates the need for new energy-
efficient BH-aware user association solutions. To that end, the previously
proposed energy-efficient context-aware algorithm was enhanced to take
into account the possibility of having heterogeneous BH links. Thereby,
the proposed algorithm was shown to present less dependency on the em-
ployed scenario. In particular, in the simulation results, e-EE was shown
to significantly outperform its counterparts, while achieving near-optimal
performance.

— Another formulation was also proposed (i.e., as an e-constraint problem),
aiming at the analytical study of the trade-off between energy efficiency
and spectral efficiency, while the exact Pareto front points of the prob-
lem were derived for different BH technologies. Thereby, a framework
was developed, which can be used as a benchmark for the performance
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evaluation of user association algorithms. Moreover, the enhanced low-
complexity energy-efficient algorithm, which was previously proposed,
was modified accordingly to be able to achieve performance between to
the two extreme Pareto front solutions. In particular, the proposed adap-
tive algorithm was shown to be able to select any point of the Pareto
front, by tuning the parameter cy,.es accordingly, and thus, to achieve a
good trade-off between the aforementioned metrics. The proposed algo-
rithm was also compared with existing user association solutions under
different BH technologies. The provided results indicated that i) the pro-
posed adaptive algorithm (Ae-EE) is able to achieve notable energy and
spectrum efficiency gains and that i) mmWave is a promising solution
to provide high capacity and low energy consumption multi-hop BH.

5.2 Future Work

The research contributions presented in this work has opened several new lines for
future investigation. The main goals for future work with respect to the first part
of the thesis on SN coexistence schemes for CR networks can be summarized as
follows:

e So far, the performance of the contention-aware channel selection algorithm
has been evaluated through an analytical framework and with the help of
extensive simulations. An important step forward would be the hardware im-
plementation of the algorithm on a testbed. This would provide further insight
on the SNs’ operation, it would permit the practical selection and fine tuning
of several parameter values and would, without doubt, open the road to many
interesting experiments.

e As CR networks are wireless in nature, they face all common security threats
found in the traditional wireless networks. Nevertheless, they also face new
security threats and challenges (i.e., PU emulation attack (PUEA), spectrum
sensing data falsification (SSDF) attack, common control channel threats and
vulnerabilities) that have arisen due to their unique cognitive characteristics.
Therefore, another interesting line of investigation involves the enhancement
of the proposed channel selection algorithm in terms of security. In this con-
text, the joint study of security and energy efficiency needs to be considered,
since most of the times providing security to the network comes at the cost
of higher energy consumption (longer sensing time, additional overhead, pro-
cessing burden, etc.). It is worth noting that in scenarios where various SNs
coexist and share the same PU resources, guarantying network security be-
comes even more challenging as there is a need of more advanced sensing
techniques that require further sensing overhead and thus energy consump-
tion. Therefore, algorithms that will provide the CR network with the highest
achievable security at a plethora of attacking threats while aiming at maxi-
mizing its energy efficiency in scenarios where various SNs share the same PU
resources need still to be developed.
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e The presented results have shown that the proposed channel selection algo-
rithm can improve the total system throughput and energy efficiency but there
is still a margin for performance improvement. Future work can be focused
on the joint study of spectrum sensing and spectrum access. Although spec-
trum sensing optimization has already attracted a lot of research attention
(e.g., by improving the accuracy of the applied spectrum sensing technique,
and/or by applying/proposing more sophisticated fusion rules during cooper-
ative spectrum sensing), their joint optimization with the applied spectrum
access method could result in significant overall performance gains.

There are also several open issues regarding the second part of this thesis, focused
on energy-efficient context-aware user association in cognitive HetNets:

e It would be interesting to extend the work presented in this thesis by taking
also into account the fixed part of the power consumption of the BSs and BH
links. To that end, efficient switching off algorithms could be proposed that
would aim at the joint energy and spectrum efficiency maximization. In this
context, it would be interesting to consider the possibility of switching off BH
links and provide alternative BH traffic routes. These type of algorithms could
be used also for self-healing, i.e., in case a BH link fails.

e The joint analysis of user association with resource allocation is another in-
teresting field to be studied. By jointly optimizing the user association and
the frequency allocation scheme higher performance gains can be achieved.
As a result, different frameworks will be needed, which could exploit e-ICIC
to provide higher performance. In this context, different scheduling policies
(e.g., giving priority to UEs with delay sensitive type of traffic) could also be
employed for QoS provisioning and fairness among UEs.

e The analysis provided in this thesis has considered a multi-hop BH architec-
ture and GBR UE traffic demands. Nevertheless, in a realistic scenario, the
BH architecture and the UE traffic may differ in different locations or they
may change over time. In order to fully exploit the potential of the proposed
schemes, it would be interesting to evaluate their performance under different
BH architectures and UE traffic pattern models. To that end, it would be in-
teresting to use stochastic geometry tools to derive parameters of the network
such as coverage probability and throughput by modeling the location of the
UEs and BSs as Poisson point processes.

e The mmWave frequencies, as it was also shown in this thesis, are expected
to be a key technology for next generation networks. Although in this work
mmWave has been used as an out-of-band BH technology, it would be inter-
esting to study its performance when mmWave is employed also for the AN.
In this case, however, there are new challenges to be addressed, e.g., frequent
handovers, due to short link length that is required. To that end, new and
realistic channel models for mmWave propagation are still to be developed.

e Finally, similar to the contention-aware channel selection algorithm case, the
implementation of the proposed user association techniques in real hardware
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would overcome the inherent limitations of theoretical analysis and system-
level simulations. After detailed analytical and simulation studies, we are con-
vinced that the implementation of the algorithms in real testbeds would fur-
ther highlight the need for designing novel, adaptive context and BH-aware
user association algorithms for next generation networks that will aim at the
joint energy and spectrum efficiency maximization of the network.

Concluding, this thesis has advanced the state of the art first by presenting a
novel contention-aware channel selection algorithm for CR networks, and second, by
proposing efficient context-aware user association algorithms for cognitive HetNets.
The two parts of the thesis have provided valuable lessons on the MAC layer design.
Even though they have been treated independently throughout this dissertation, it
is possible to envision a system where both parts are combined. This joint scenario
could consist of a HetNet, where UEs or even SCs could use the licensed bands as
long as they are unused, thereby resulting in further spectral efficiency gains. The
road ahead lies open for further research following the new lines of investigation
that have been identified.
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