
Hardware Thread
Scheduling Algorithms for

Single-ISA Asymmetric CMPs

Nikola Markovic

Department of Computer Architecture

Universitat Politècnica de Catalunya

A dissertation submitted in fulfillment of
the requirements for the degree of

Doctor of Philosophy / Doctor per la UPC

November 2015

Advisor: Adrian Cristal
Coadvisors: Mateo Valero, Osman Unsal

mailto:nikola.markovic@bsc.es
http://docencia.ac.upc.edu/
http://www.upc.edu

i

Abstract

Through the past several decades, based on the Moore´s law, the semicon-
ductor industry was doubling the number of transistors on the single chip
roughly every eighteen months. For a long time this continuous increase
in transistor budget drove the increase in performance as the processors
continued to exploit the instruction level parallelism (ILP) of the sequen-
tial programs. This pattern hit the wall in the early years of the twentieth
century when designing larger and more complex cores became difficult
because of the power and complexity reasons. Computer architects re-
sponded by integrating many cores on the same die thereby creating Chip
Multicore Processors (CMP). In the last decade, the computing technol-
ogy experienced tremendous developments, Chip Multiprocessors (CMP)
expanded from the symmetric and homogeneous to the asymmetric or het-
erogeneous Multiprocessors. Having cores of different types in a single
processor enables optimizing performance, power and energy efficiency
for a wider range of workloads. It enables chip designers to employ spe-
cialization (that is, we can use each type of core for the type of computa-
tion where it delivers the best performance/energy trade-off). The benefits
of Asymmetric Chip Multiprocessors (ACMP) are intuitive as it is well
known that different workloads have different resource requirements.

The CMPs improve the performance of applications by exploiting the
Thread Level Parallelism (TLP). Parallel applications relying on multi-
ple threads must be efficiently managed and dispatched for execution if
the parallelism is to be properly exploited. Since more and more ap-
plications become multi-threaded we expect to find a growing number
of threads executing on a machine. Consequently, the operating system
will require increasingly larger amounts of CPU time to schedule these
threads efficiently. Thus, dynamic thread scheduling techniques are of
paramount importance in ACMP designs since they can make or break
performance benefits derived from the asymmetric hardware or parallel
software. Several thread scheduling methods have been proposed and ap-
plied to ACMPs.

In this thesis, we first study the state of the art thread scheduling tech-
niques and identify the main reasons limiting the thread level parallelism

in an ACMP systems. We propose three novel approaches to schedule
and manage threads and exploit thread level parallelism implemented in
hardware, instead of perpetuating the trend of performing more complex
thread scheduling in the operating system. Our first goal is to improve
the performance of an ACMP systems by improving thread scheduling at
the hardware level. We also show that the hardware thread scheduling
reduces the energy consumption of an ACMP systems by allowing better
utilization of the underlying hardware.

Acknowledgement

This is to express my gratitude to the Universitat Politecnica de Catalunya (UPC)
committee and the Barcelona Supercomputing Center (BSC) for providing me with
the necessary resources that allowed me to perform my PhD studies in a highly com-
petitive, but at the same time friendly international atmosphere. A special thank goes
to Prof. Mateo Valero and Computer Science - Computer Architecture for Parallel
Paradigms research group for giving me an opportunity to work in the challenging
field of Hardware Thread Scheduling. I would further like to thank my advisors Adrian
Cristal and Osman Unsal. I really appreciate their valuable guidance, constructive crit-
icism and the time and concentration they spent reading all the versions of this thesis.
Many thanks go to all my current and past colleagues, with whom I spent last seven
years (Srdjan, Vladimir, Gokcen, Nehir, Vesna, Milovan, Adria, Oriol, Gulay, Ferad,
Oscar, Tim, Xavier, Gina, Sasa, Mario, Damian, Azam, and Santosh). Maybe the
best achievement in Barcelona is getting to know them. Furthermore a special thank
goes to my friends (Aleksandar, Darko, Milan, Daniel, Jelena and Nikola) and my
girlfriend (Marica) for encouraging me during my PhD time. I wish to sincerely thank
my family (my mother Olga, my father Radovan and my brothers Nenad and Novak)
for supporting me, morally above all, but also financially, and sharing all the useful
life experience.

Nikola Markovic

vii

Contents

Contents ix

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Motivation and Scope of the Thesis . 2

1.1.1 Importance of Scheduling . 3

1.2 Key Challenges . 5

1.3 Contributions of Thesis . 8

1.3.1 Hardware Round-Robin Scheduling Algorithm 8

1.3.2 Kernel to User mode Transition aware Hardware Scheduling
Algorithm . 9

1.3.3 Trait-aware Criticality Scheduling Algorithm 10

1.4 Thesis Organization . 11

2 State-of-the-Art and Background in
Scheduling Policies on an ACMP 13
2.1 Context Switching . 13

2.1.1 Performance Impact of Context Switching 14

2.1.2 Analytical Models for characterizing Context Switches 14

2.1.3 Managing Cache Misses caused by Context Switches 15

2.2 Scheduling Policies . 16

ix

CONTENTS

2.2.1 First Studies on Scheduling Policies on an ACMP 16

2.2.2 Scheduling based on Profiling and Sampling 17

2.2.3 Scheduling focused on Power and Energy 18

2.2.4 Scheduling based on Workload Characteristics 19

2.2.5 Fairness-aware Scheduling . 20

2.2.6 Scheduling targeting Bottlenecks in Parallel Applications . . . 22

3 Methodology 25
3.1 Benchmark Suites . 25

3.1.1 SPEC Benchmark Suites . 26

3.1.2 SPLASH2 Benchmark Suites . 29

3.2 Sniper Infrastructure . 32

3.2.1 Sniper Extensions . 34

3.2.2 Simulated Architecture - Sniper configuration 35

4 Context Switch on the CMP 37
4.1 Managing the Context Switches . 37

4.2 Context Switch Cost . 39

5 HRRS: Hardware Round-Robin Scheduler for Hardware Threads 43
5.1 HRRS Algorithm . 44

5.1.1 Hardware Implementation . 46

5.2 Evaluation . 48

5.2.1 Simulated Architecture and Workloads 49

5.2.2 Ideal Performance gains and Scalability 50

5.2.3 Performance Evaluation . 52

5.2.4 Energy Efficiency Analysis . 56

5.3 Summary . 57

6 KUTHS: Kernel to User mode Transition aware Scheduler for Hardware
Threads 61
6.1 KUTHS Algorithm . 62

6.1.1 Hardware Implementation . 64

6.2 KUTHS Algorithm extension for Many-Core Systems 65

x

CONTENTS

6.3 Evaluation . 66
6.3.1 Simulated Architecture and Workloads 66
6.3.2 Performance and Energy Efficiency evaluation on a Shared

LLC System . 68
6.3.3 Hardware vs Software Implementation 70
6.3.4 Performance Evaluation on Private LLC System 72

6.4 Summary . 73

7 TCS: Trait-aware Criticality Scheduler for Hardware-Threads 75
7.1 TCS Algorithm Basis . 76

7.1.1 Differences to the HRRS Algorithm 76
7.2 TCS approach of determining Critical Threads 78

7.2.1 Differences to the other Criticality Schedulers 80
7.3 Hardware Implementation . 81

7.3.1 Identification of the Running Threads 81
7.3.2 Hardware Component Description 82
7.3.3 Managing the Context Switches 83

7.4 Evaluation . 83
7.4.1 Simulated Architecture and Workloads 84
7.4.2 Comparison to the Scheduling for Fairness 85
7.4.3 Comparison to the Scheduling for Workload Characteristics . 86
7.4.4 Comparison to the Scheduling for Criticality 87

7.5 Summary . 89

8 Conclusion and Future Work 91
8.1 Future Work . 93

9 Publication List 95

Bibliography 97

xi

List of Figures

1.1 Large core speedup compared to the small cores when running the
SPEC2006 benchmark. 6

1.2 Normalized cycle per instruction stack breakdown for the large core
and for the small cores when running the SPEC2006 benchmark. . . . 7

3.1 Breakdown of the execution time for the problem sizes in Table 3.3
on a four processor machine. The execution time is broken down into
total time application spends in computation (core-base), in branches
(branch), in memory accesses (mem) and in synchronization (sync).
The synchronization represents the time spent in the barriers, locks
and pauses (flag-based synchronizations) encountered across all pro-
cessors. 31

3.2 Sniper interval simulation model . 33

3.3 Simulated Architecture . 35

4.1 Context switch cost including flushing cores pipeline and register file
as well as working set transfer (warming of the cache hierarchy) be-
tween two out-of-order cores on the CMP with the shared and private
last level cache for the SPEC2006 benchmark 39

4.2 Context switch cost including flushing cores pipeline and register file
as well as working set transfer (warming of the cache hierarchy) be-
tween cores on Intel(R) Core(TM) i7-4600U CMP[1] 40

xiii

LIST OF FIGURES

5.1 HRRS scheduling - All logical cores (which correlate to hardware
threads) are the same while the large physical core is represented by
Core 0 and the small physical cores are shown as Cores 1,2 and 3 . . . 45

5.2 An example of the HRRS scheduling logical cores on actual physical
cores at every hardware-scheduling quantum. At the beginning logical
core 0 is running on the large physical core while logical cores 2,
3 and 4 are running on small physical cores. After a first hardware
scheduling quantum, Logical core 1 will be moved to large physical
core and logical core 0 will be moved to a small physical core. 47

5.3 Hardware implementation layout example for HRRS scheduling pol-
icy on the four core ACMP consisting of one large and three small
cores (1 OoO + 3 InO), where ’A’ is the active bit per hardware thread. 48

5.4 Small core slowdown (expressed as IPC small / IPC large) compared
to the large cores when running SPEC2006 benchmark 50

5.5 Ideal Speedup comparison of the HRRS over Fairness scheduler on an
ACMP systems consisted of 2 (1 OoO + 1 InO), 4 (1 OoO + 3 InO), 8
(1 OoO + 7 InO) and 16 (1 OoO + 15 InO) cores respectively. 52

5.6 Speedup comparison of the HRRS and Fairness scheduler normalized
to Linux OS scheduler for the SPEC2006 benchmark suite running
multiple instances of traces collected from different phases of an ap-
plication on four cores ACMP (1 OoO + 3 InO) 53

5.7 Speedup comparison of the ideal and simulation results of the HRRS
over Fairness scheduler for the SPEC2006 benchmark suite running
four instances of traces collected from different phases of an applica-
tion on four cores ACMP (1 OoO + 3 InO) 54

5.8 Speedup comparison of the HRRS and Fairness scheduler normalized
to Linux OS scheduler for the SPLASH-2 benchmark suite running on
four cores (1 OoO + 3 InO) . 55

5.9 The LLC cache accesses breakdown for the large and small cores
of the Linux OS, Fairness and HRRS scheduler for the SPLASH-2
benchmark running on four cores ACMP (1 OoO + 3 InO) 55

xiv

LIST OF FIGURES

5.10 Speedup of the hardware over the software implementation (baseline)
for the HRRS scheduler, where scheduling quanta are 1ms and 4ms
for hardware and software implementations respectively 57

5.11 Energy efficiency comparison of the HRRS and Fairness scheduler
normalized to Linux OS scheduler for the SPEC2006 benchmark suite
running four instances of an application on four cores ACMP (1 OoO
+ 3 InO) . 58

5.12 Energy efficiency comparison of the HRRS and Fairness scheduler
normalized to Linux OS scheduler for the SPLASH-2 benchmark suite
running on four cores ACMP (1 OoO + 3 InO) 58

6.1 Speedup and Energy efficiency comparison of the KUTHS and the
Fair scheduler for the SPLASH-2 benchmark suite in a shared LLC
four core system (1 large + 3 small) . 67

6.2 Distribution of the total execution time of the SPLASH-2 benchmark
applications . 68

6.3 Percentage of threads that continue execution on the large or small
core after synchronization based system calls in the parallel section
of the application for the Fairness-aware and the KUTHS scheduler
respectively . 69

6.4 Speedup comparison of the KUTHS and the HRRS scheduler for the
SPLASH-2 benchmark suite in a shared LLC four core system (1 large
+ 3 small) . 70

6.5 Speedup and Energy efficiency comparison of the KUTHS and the
Fair scheduler running two applications from the SPLASH-2 bench-
mark suite in a shared LLC four core system (1 large + 3 small) 71

6.6 Speedup of the hardware over the software implementation (baseline)
for the Fairness-aware and the KUTHS scheduler, where scheduling
quanta are 1ms and 4ms for hardware and software implementations
respectively . 72

xv

LIST OF FIGURES

6.7 Speedup comparison of the KUTHS and the Linux OS (ACMP) Sched-
uler for the SPLASH-2 benchmark suite in the private last-level L3
cache 8/16/32 cores system configurations where each group of one
large and three small share a 4MB L3 cache 73

7.1 TCS scheduling - All logical cores (which correlate to hardware threads)
are the same while the large physical core is represented by Core 0 and
the small physical cores are shown as Cores 1,2 and 3 77

7.2 An example of the TCS scheduling threads on physical cores during
every hardware-scheduling quantum. At the beginning, thread 0 is
running on the large physical core while threads 2, 3 and 4 are run-
ning on the small physical cores. After every hardware scheduling
quantum, threads will be rescheduled based on their short-term char-
acteristics. Whenever a thread stalls or continues, rescheduling is per-
formed based on the long-term thread characteristics. 79

7.3 Hardware implementation layout example for TCS scheduling policy
on the four core ACMP consisting of one large and three small cores
(1 OoO + 3 InO), where “A” is the active bit per hardware thread
and “CmInst” is the number of committed instructions in given time
quantum per hardware thread. 84

7.4 Weighed speedup (system throughput) comparison of the TCS and
HRRS scheduler normalized to the pinned scheduler on an ACMP
consisting of four cores (1 OoO + 3 InO) for the SPEC2006 benchmark. 86

7.5 Weighed Speedup (system throughput) comparison of the TCS over
the pinned scheduler on an ACMP consisting of two cores (1 OoO +
1 InO) for the SPEC2006 benchmark. 87

7.6 Comparing absolute average weighed speedup (system throughput)
of the different scheduling policies over the pinned scheduler on an
ACMP consisting of two cores (1 OoO + 1 InO) 88

7.7 Weighed Speedup (system throughput) comparison of the KUTHS,
criticality and TCS schedulers normalized to the pinned scheduler on
an ACMP consisting of four cores (1 OoO + 3 InO) for the SPLASH2
benchmark. 89

xvi

List of Tables

3.1 A list of the SPEC Benchmarks used in simulations, along with the
most relevant execution command-line arguments. 27

3.2 Dynamic Instruction Count and Instruction Mix of SPEC CPU2006
Integer and Floating-Point Benchmarks. 28

3.3 SPLASH2 Benchmarks used in simulations, along with the problem
sizes. 30

3.4 Asymmetric Chip Mmultprocessor System configurations for Sniper
simulator used in experiments . 36

6.1 Cost of workload migration (in cycles) during context switch for work-
loads ranging from a few kilobytes to a few thousand kilobytes 66

xvii

1
Introduction

The relentless push in technology scaling driven by Moore’s law has resulted in more
transistors packed into a very small area. Overtime, computer architects responded
by integrating many cores on the same die. Chip multiprocessors, or CMPs for short,
are now the most common way to build high-performance microprocessors, for a va-
riety of reasons. First of al, large uniprocessors are no longer scaling in performance,
because it is only possible to extract a limited amount of parallelism from a typical
instruction stream using conventional superscalar instruction issue techniques. In ad-
dition, one cannot simply ratchet up the clock speed on today’s processors, or the
power budget would become prohibitive. Compounding these problems is the simple
fact that with the immense numbers of transistors available on today’s microprocessor
chips, it is too costly to design and debug ever-larger single-core processors every year
or two.

CMPs avoid these problems by filling up a processor die with multiple, relatively
simpler processor cores instead of one huge core. The complexity of a CMP’s cores
can vary from very simple pipelines to moderately complex superscalar processors,

1

Chapter 1. Introduction

but once a core has been selected the CMP’s performance can easily scale across
silicon process generations simply by stamping down more copies of the hard-to-
design, high-speed processor core in each successive chip generation.

In addition, parallel code execution, obtained by spreading multiple threads of
execution across the various cores, can achieve significantly higher performance than
would be possible using only a single core with comparable amount of resources.
Though, this is truth, it is not that simple to utilize the parallelism bearing in mind
the interconnection networks, the cache coherency, cache/memiry bandwidth etc. of
the CMP. While parallel threads are already common in many useful workloads, there
are important workloads that are hard to divide into parallel threads. Nevertheless, the
low inter-processor communication latency between the cores in a CMP helps make
a much wider range of applications viable candidates for parallel execution than was
possible with traditional, multi-chip multiprocessors.

1.1 Motivation and Scope of the Thesis

Nowadays, chip multiprocessors (CMPs) may be symmetric (SCMP), consisting of
many cores of the same type, or asymmetric (ACMP), where cores may differ from
one another with respect to their functionality and/or performance [2], [3]. As is
shown by a number of recent studies ACMPs are likely to outperform SCMPs for a
fixed budget (area or power or both) [4], [5]. Since it is well known that different
workloads have different resource requirements, the benefits of ACMPs are intuitive.

The exciting rise of asymmetric multi core processors (ACMPs) has fostered a
critical reevaluation of the traditional scheduling mechanisms in order to take full ad-
vantage of the new hardware resources in relation to the increasingly common thread
level parallelism as well as in meeting certain system performance and power req-
uisites. The operating system scheduler module orchestrates critical execution time
junctures, selecting which jobs to be admitted next into the system and the next pro-
cess to run. A technique known as fair-share scheduling is used by computer operat-
ing systems where CPU usage is equitably divided between system users or groups, in
contrast to equal distribution among processes. The Linux OS scheduler, based on a
fair-share scheduler strategy, is a process scheduler which was merged into the 2.6.23
release of the Linux kernel as its default scheduler [6]. It handles CPU resource allo-

2

Chapter 1. Introduction

cation for executing processes aimed at maximizing overall CPU utilization as well as
interactive performance. Operating systems may feature up to three distinct types of
schedulers, a long-term scheduler (also known as an admission scheduler or high-level
scheduler), a mid-term or medium-term scheduler and a short-term or CPU scheduler.
The names suggest the relative frequency with which these functions are performed.

The third type of scheduler, the short-term scheduler, commonly referred to as the
CPU scheduler is the primary focus of this work. It is responsible for determining
which of the ready processes (loaded into the memory by the other schedulers) should
be sent for execution and on which computational core. This decision takes place pe-
riodically at interrupt points caused principally by the clock, I/O events, or OS system
level calls. In relation to the long and short-term schedulers, the short-term scheduler
must make scheduling decisions much more frequently. Furthermore, the short-term
scheduler can be preemptive or non-preemptive based on its ability to force processes
off the CPU. The preemptive method depends on a programmable interval timer that
invokes a kernel level interrupt handler which implements the scheduling algorithm.
A key function involved in the CPU-scheduling decision is the dispatcher which gives
control of the CPU to the process selected. This function involves the context switch-
ing, changing to user mode, and jumping to the proper location of a program once
it is restarted. The actual time it takes for the dispatcher to perform its job stopping
one process and starting another is known as the dispatch latency typically requiring
several thousands of cycles [7]. Since the dispatcher needs to analyze the program
counter values, fetch instructions, and load data into the registers of the CPU every
time a process switch occurs, minimizing the dispatcher latency should be a primary
objective. Moreover, it is also important to avoid unnecessary context switches due to
the fact that the processor remains idle for a period of time during context switches.

1.1.1 Importance of Scheduling

The need for a scheduling algorithm arises from the requirement for CMP and ACMP
systems to perform multitasking (executing more than one process or thread at a time).
Scheduling is the method by which threads, processes or data flows are given access
per core to system resources (e.g. processor time). This is usually done to load balance
and share system resources effectively or to achieve a target quality of service. Parallel

3

Chapter 1. Introduction

applications relying on multiple threads must be efficiently managed and dispatched
for execution if the parallelism is to be properly exploited.

Multi-cores usually operate under the shared memory model, allowing parallel
tasks of an application to cooperate by concurrently accessing shared resources using
a common address space. Each task can be seen as a sequential thread of execution
that performes useful computation. Thus, a parallel programming model has to create
and manage several tasks that need to synchronize and communicate to each other.
However, having concurrent parallel tasks may introduce several new classes of po-
tential problems, of which data races (e.g., data dependencies) are the most common
[8]. Today’s programming models commonly target this problem via lock-based ap-
proaches.

Unfortunately, when using locks, programmers must pick between two undesir-
able choices. Use coarse-grain locks, where large regions of code are included as
critical regions. This makes the task of adding coarse-grain locks to a program quite
straightforward, but introduces unnecessary serialization that degrades system perfor-
mance. On the other side, fine-grain locking aims at critical sections of minimum
size. Smaller critical sections permit greater concurrency, and thus scalability. How-
ever, this scheme leads to higher complexity, and it is usually difficult to prove the
correctness of the resulting algorithm.

These two choices establish a programming effort versus performance trade-off.
The complexity associated with fine-grain locking can lead to incorrect synchroniza-
tion, e.g., data races, which could manifest in the form of non-deterministic execution,
producing incorrect results for certain executions of an application. This fact makes
lock based programs difficult to debug, because bugs are hard to reproduce. Syn-
chronization errors may also result in deadlock or livelock conditions. Using multiple
locks requires strict programmer discipline to avoid cyclic dependencies where two
or more threads create circular requests to acquire locks, leading to a deadlock sce-
nario where threads are blocked and no forward progress is made. On the other hand,
livelocks occur when two or more threads cease to make forward progress while per-
forming the same piece of work repeatedly.

Nevertheless, even correctly parallelised applications may behave poorly due to
coherence or unnecessary contention in critical sections caused by inappropriate thread
scheduling on the CMP. Parallel applications have to modify a certain amount of

4

Chapter 1. Introduction

shared data. Modifying the same data in different cores causes cache-lines to move
between private caches, penalizing system throughput and overall application per-
formance. Correct mapping of parallel threads to the underlying cores is of utmost
importance for further development of the chip multiprocessors as well as parallel
applications.

Goal of the Thesis

Parallel applications relying on multiple threads must be efficiently managed and dis-
patched for execution if the parallelism is to be properly exploited. Thus, dynamic
thread scheduling techniques are of paramount importance in ACMP designs since
they can make or break performance benefits derived from the asymmetric hardware or
parallel software. Several thread scheduling methods have been proposed and applied
to ACMPs. Most of these make use of online or offline profiling as well as sampling
or estimation techniques to determine the optimum thread to core mapping (in rela-
tion to performance and/or power) whenever a specific event is detected or scheduling
time quantum is completed [9], [10], [11] among others. Though these scheduling
techniques include certain performance or energy efficiency gains, their broad appli-
cation remains stifled due to scalability limitations, runtime overheads, and additional
hardware requirements and complexities. Our goal is to develop a scheduling policy
that can be used as a foundation upon which to build practical and scalable hardware
scheduling designs in order to increase the performance capabilities of ACMPs.

1.2 Key Challenges

Although parallel applications and multiapplication workloads provide opportunities
for greater performance and efficiency gains, thanks in part to the amount of hardware
resources or cores that can be activated to execute the different parallel portions of the
workload. In order to take full advantage of these parallelism opportunities, several
key concerns must be tackled, namely application bottlenecks, runtime imbalances of
multithreaded programs, workload characteristics, and implementation complexity of
the scheduling policy.

Firstly, to tackle the runtime imbalances, we can consider and implement different

5

Chapter 1. Introduction

Figure 1.1: Large core speedup compared to the small cores when running the
SPEC2006 benchmark.

thread scheduling techniques to achieve as much fairness as possible. For example,
Van Craeynest et al. showed that in a asymmetric multicore system, a round-robin
scheduler using threads pinned to cores produces no speedup compared to a lighter
symmetric multicore system for most multithreaded benchmarks [12]. This behavior
is caused by barrier-synchronized multithreaded workloads, because the execution
progress is limited by the slowest thread. This has little meaning in a symmetric
system but is significant for asymmetric systems, because the thread pinned to the
simplest core will be the weakest link that all other threads will have to wait for at
every barrier.

Work-stealing workloads, in contrast, allow idle large cores to steal work that nor-
mally would be run on the small cores, so that the execution time isn’t as constrained.
Therefore, in asymmetric multicore systems, guaranteeing fairness is fundamental for
improving performance for barrier-synchronized multithreaded workloads. Fairness,
defined as giving each thread equal execution time on each core or allowing each
thread to make equal progress, enables all threads to reach the barriers simultaneously,
and has been shown to provide average performance improvements of 14 percent (and
up to 25 percent) compared with a pinned scheduler [12] for the system configuration
we are using.

6

Chapter 1. Introduction

Figure 1.2: Normalized cycle per instruction stack breakdown for the large core and
for the small cores when running the SPEC2006 benchmark.

Secondly, bottlenecks arising from distinct thread and memory management and
sharing approaches have significant effects on performance and system usage effi-
ciency. Moreover, code segments that produce long waits for threads tend to reduce
the total amount of thread-level parallelism and can even negate the potential speedup
gained by parallelization of an application. In particular, inter-thread synchronization
bottlenecks (such as contended critical sections), as well as different memory struc-
tures and behaviors, can cause thread imbalances at runtime, leading to adverse per-
formance effects. The state of the art in bottleneck acceleration on an ACMP is bottle-
neck identification and scheduling (BIS) [13], which outperforms the best mechanisms
by 15 percent for single-application workloads. Utility-based acceleration (UBA) of
multithreaded applications on ACMPs provides about 8.2 percent of additional per-
formance improvement over BIS for an ACMP with one large core in the system [14].

Thirdly, the performance behavior of workloads on small and large cores (Fig.
1.1) can be explained by the design characteristics of each core. Fig. 1.1 compares
the slowdown for SPEC CPU2006 workloads on a small core relative to a large core.
A particular workload can be characterized as either compute-intensive or memory-
intensive based upon the normalized CPI stack as given in Fig. 1.2. For example, milc
has a memory dominant CPI stack making it memory intensive whilst the reverse is

7

Chapter 1. Introduction

true for tonto. These distinctions are relevant to asymmetric systems because work-
loads will perform differently on different cores based on their characteristics. For
instance, workloads that contain large amounts of memory level parallelism (MLP) or
instruction level parallelism (ILP) would be more suited to run on large cores capa-
ble of out of order execution. Conversely, workloads consisting of high amounts of
thread level parallelism (TLP) and explicit ILP (i.e. parallelism that does not require
dynamic extraction) are good candidates for execution on smaller cores. For exam-
ple, a compute-intensive workload consisting of significant ILP may achieve adequate
performance on a small core and leave the large core vacant for memory-intensive
workloads which would suffer from substantial performance degradation if run on
a small core. Therefore, in an asymmetric system, it may be useful to correlate a
workload’s execution performance with a particular core type in order to dynamically
ascertain the workload’s characteristics and improve the scheduler strategy.

Finally, scheduling policy applicability is directly affected by the complexity of
its implementation. Most of scheduling methods proposed and applied to SCMPs as
well as to ACMPs rely on the sampling or other estimation techniques, together with
online or offline profiling of the performance and/or power to decide up on the most
favorable thread to core mapping, when a particular event is detected or scheduling
time quantum is completed, [4], [11], [15] among others. They usually require ISA
extensions or changes to be made in OS or user application code along with several
tables and necessary logic, implemented in hardware, to keep and manage information
about threads.

1.3 Contributions of Thesis

We present the contributions of this thesis that address the previously mentioned chal-
lenges that thread scheduling faces on an ACMP in the Section 1.2.

1.3.1 Hardware Round-Robin Scheduling Algorithm

To tackle the problem of runtime imbalances during execution of multiple threads,
we propose the Hardware Round-Robin Scheduling (HRRS) policy. This technique
is influenced by Fairness Scheduling techniques thereby reducing thread serialization

8

Chapter 1. Introduction

and improving parallel thread performance.

The HRRS technique remaps hardware threads on the actual physical cores of
the system at every hardware scheduling quantum, while Operating System maps and
reschedules software threads on those hardware threads. The scheduler remaps hard-
ware threads between different core types (such as large - Out-of-Order and small -
In-Order) in a round-robin fashion after every time quantum expires. In this way, the
HRRS approach fairly balances the workload among different cores in as ACMP sys-
tem. In contrast, the Fairness Scheduler technique [12] has special hardware structure
that keeps track of all software threads while mapping and rescheduling them on actual
physical cores. This is explained in more detail in the section 2.2.5. Since schedul-
ing policy applicability is directly affected by the complexity of its implementation, a
possible hardware implementation of the Hardware Round-Robin Scheduling policy
is also given and discussed.

We analyze the performance and energy efficiency of the HRRS policy on an
ACMP and compare it to the Fairness Scheduler when running multi-threaded ap-
plication workloads and when running multiple instances of the single-threaded ap-
plication workloads respectively. We show that it lowers total execution time by 17.2
percent and 11.71 percent on average, while being on average 7.57 percent and 6.56
percent more energy efficient respectively.

1.3.2 Kernel to User mode Transition aware Hardware Schedul-
ing Algorithm

The bottlenecks arising from a particular thread and memory management and shar-
ing approaches may have significant effects on performance of the multithreaded ap-
plications. To tackle this issue, we propose a Kernel to User Mode Transition aware
Hardware Scheduling Algorithm (KUTHS), which is influenced by the scheduling for
fairness as well as the bottleneck identification techniques thereby reducing thread
serialization and improving parallel thread performance.

The KUTHS technique builds upon the previously proposed HRRS technique. The
KUTHS scheduler utilizes the kernel to user code execution transitions on cores to
identify bottlenecks in multithreaded applications and make the rescheduling deci-
sion. These transitions occur when Operating System makes execution switches on

9

Chapter 1. Introduction

the hardware threads from executing kernel to user code and vice versa. The KUTHS
remaps hardware threads after every time quantum expires. Presuming an ACMP sys-
tem composed of an Out-of-Order and an In-Order core, if the “transition” does not
occur on any of the cores the KUTHS remaps hardware threads between different core
types in the round-robin, like the HRRS scheduler. On the other hand, if the “transi-
tion” occurs on one of the cores, the KUTHS will promote hardware thread from that
core to run on an Out-of-Order core.

We analyze and evaluate the performance of the KUTHS policy on an ACMP and
show that it lowers total execution time of the application by 11.5 percent (geometric
mean) compared to a Fairness-aware Scheduler. It lowers total execution time of the
single application and the mix of two applications by 11.1 and 8.7 percent respectively
(geometric mean) compared to a Fairness-aware Scheduler on shared LLC configura-
tion. Besides evaluating performance, we also analyze the energy efficiency of the
KUTHS scheduler on an ACMP with a shared LLC and show that it is on average 9.4
percent more energy efficient than the Fairness Scheduler.

Application of KUTHS on Manycore processors

We propose the extension of the KUTHS policy to be applicable to larger many-core
systems and systems where the last-level caches are private to the group of cores. It is
influenced by the Fairness-aware Scheduling and bottleneck identification techniques
and thereby aims at reducing thread serialization and improving parallel thread perfor-
mance.An analysis and evaluation is given for the performance of the KUTHS policy
on a private LLC ACMP and show that it lowers total execution time of the application
by 30 percent (geometric mean) compared to Linux OS Scheduler (ACMP Scheduler).

1.3.3 Trait-aware Criticality Scheduling Algorithm

When scheduling a workload on an ACMP the performance will be affected by the
fairness of scheduling, schedulers ability to identify application bottlenecks and to
make the scheduling decisions based on the workload’s characteristics. In order to
tackle all three important issues that scheduling of different types of workloads may
encounter on an AMCP, we propose a Trait-aware Criticality Scheduling (TCS) pol-
icy which is influenced by scheduling fairness, criticality, and a workload’s charac-

10

Chapter 1. Introduction

teristics, thereby reducing thread serialization and improving performance of multi-
threaded applications and multiprocess workloads on single-ISA asymmetric multi-
cores.

The TCS method develops upon the earlier introduced HRRS method. The under-
lying technique of the TCS scheduling already tackles the problem of fairness, since
the HRRS remaps hardware threads in round-robin way over different core types in
an ACMP system after every time quantum expires. Besides, the TCS scheduling em-
ploys the short-term traits of workloads executing on hardware threads to improve the
decision-making method during scheduling in a way that is more accustom with dis-
tinct characteristics of particular workloads. The TCS scheduler additionally uses the
long-term traits of the software threads during the decision-making process to tackle
the software thread criticality. A possible hardware implementation of the Trait-aware
Criticality Scheduling policy is elaborated on since it is crucial for the applicability of
the technique.

An analysis of the performance of the TCS policy on an ACMP is also given and is
compared to the state-of-the-art schedulers in scheduling for fairness, criticality, and
a workload’s characteristics. It achieves an average speed up of 11 percent and 24.4
percent over the state-of-the-art mechanisms for scheduling for fairness and schedul-
ing for criticality respectively. While being by only 2.6 percent slower compared to
the state-of-the-art mechanisms on scheduling for workload characteristics.

1.4 Thesis Organization

Chapter 2 presents the scheduling in a computer system and the state-of-the art for
thread scheduling schemes.
Chapter 3 describes benchmark suites and the simulator used for the experimental
setup in this thesis.
Chapter 4 presents the cost that context switch of threads on the cores may have on
the total execution time of the application running on the Chip Multiprocessor.
Chapter 5 introduces Hardware Round-Robin Scheduling Algorithm (HRRS) for Hard-
ware Threads on the single-ISA asymmetric CMPs, a scheduler based on fairness
scheduling techniques.
Chapter 6 presents Kernel to User mode Transition aware Hardware Scheduling Algo-

11

Chapter 1. Introduction

rithm (KUTHS), a scheduler based on scheduling for fairness amended by bottleneck
identification for the single-ISA asymmetric CMPs.
Chapter 7 explains Trait-aware Criticality Scheduling Algorithm for Hardware Threads
on the single-ISA asymmetric CMPs, a scheduler seeking the aggregation of the
scheduling for fairness, scheduling for bottleneck identification and scheduling work-
load characteristics techniques.
Chapter 8 concludes this dissertation.

12

2
State-of-the-Art and Background in

Scheduling Policies on an ACMP

This chapter presents the background that is relevant to the thesis. The first section
explains more broadly the concept of context switch in the chip multiprocessors and
the implications it has on the scheduling policies. The chapter continues with the
survey of the current state-of-the-art scheduling techniques used in multiprocessor
computer architecture.

2.1 Context Switching

Over the past few decades since the first CMPs emerged in 90’s, both of the industry’s
and academia’s attention have been keenly focused on conducting studies related to
the practice and cost of context switching when moving thread from one core to the
other. In the following sections we summarize and compare and contrast the most
prominent studies which fall under three distinct categories.

13

Chapter 2. Background in Scheduling policies on an ACMP

2.1.1 Performance Impact of Context Switching

Several context switching studies aimed at understanding the performance impact of
context switching events. For instance, Agarwal et al. [16] demonstrated that mul-
tiprogramming execution substantially degrades cache performance and increases in
impact as the cache size grows. Mogul et al. [17] conducted a performance reduction
estimation based on the cost of context switching and found it to be on the order of
tens to hundreds of microseconds, depending on the specific cache parameters. Suh
et al. [18] measured the impact of context switching on page faults and performance
and endorsed a speculative prefetching scheme to mitigate the performance penal-
ties. A novel approach is proposed by Chiou et al. [19] who suggest that contrary to
conventional CPU scheduling practices, it should be the memory scheduling method,
potentially at all levels of the memory hierarchy, that should drive CPU scheduling
and not the other way around.

Koka et al. [20] characterized context switch misses by quantifying their effects
when running transactional workloads. They evaluated the possibility of intelligent
process scheduling that would minimize cache misses across context switch bound-
aries. In other work, Li et al. [7] concluded that overheads due to burdensome cache
activity from indirect context switches is more significant than the direct overhead,
where direct context switches are those that occure when rescheduling threads on the
same core while indirect are those that happend when moving thread from one to the
other core. Similarly, Tsafrir [21] and David et al. [22] measured the separate indirect
overheads caused by context switch events for the Intel and ARM platforms. In sum,
nearly all of the relevant studies found that indirect overheads caused by cache activ-
ities associated with context switch events are significant. As a result, we have kept
context switch overheads as a key factor to minimize in our work.

2.1.2 Analytical Models for characterizing Context Switches

Various analytical models have been proposed which seek to justify the relationship
between an application’s temporal execution characteristics and its behavioral vulner-
ability to context switch misses. Such models require an ample scope of essential
variables critical to the hardware, memory, and application workload and behavior in
order to achieve an adequate conclusion detailing causality. An example of such work

14

Chapter 2. Background in Scheduling policies on an ACMP

is the analytical model proposed by Agarwal et al. [16] and Suh et al. [23], [24] which
estimate overall cache miss rates taking into regard context switch misses. In order to
obtain a continuous cache miss rate curve, Suh et al. relied on a model based upon
a small fully associative cache. However, applying a fully associative cache structure
to the LLC would be unrealistic and would lead to inaccurate results. The model pro-
posed by Hwu et al. [25] focused on predicting the quantity of context switch misses
for the worst case scenario. Liu et al. [26] grouped context switch misses into two
classes, namely replaced misses and reordered misses. In addition, their work elabo-
rated on an analytical model that reveals the causal correlation between cache design
parameters, an application’s temporal execution pattern, and the amount of context
switch misses which appear during the execution of the application. This model was
utilized to study the effect which prefetching and cache size can have on the amount
of context switch misses.

Certain assumptions must necessarily be made when developing analytical mod-
els. For example, the model designed by Liu et al. [26] is built with the assumption
of an LRU replacement policy implementation even though alternative replacement
algorithms have been advanced which perform better. Another characteristic partic-
ular to analytical models to consider is that though they may be suitable for offline
analysis, they often lack implementation feasibility in hardware regarding incurring a
low area overhead.

2.1.3 Managing Cache Misses caused by Context Switches

Performance degradation penalties due to context switch misses may be addressed
via two channels, namely either increasing the scheduling time slice or prefetching
the cache state right before the new scheduling mapping is initiated. Increasing time
slice is a preventive measure while cache state prefetching is more of a remedy. The
general idea behind prefetching is to measure and save an application’s locality at
the moment when it gets swapped out due to a context switch. The locality is restored
through prefetching the next time the application gets CPU time thereby mitigating the
cost of additional cache misses incurred due to the context switch event. Previously
advanced solutions that make use of prefetching differ in how the locality is stored
and restored. An example is the work done by Cui et al. [27] who apply a Global-

15

Chapter 2. Background in Scheduling policies on an ACMP

history-list (GHL) in their method of prefetching. The GHL technique maintains a
complete list of cache lines ordered by temporal of usage behavior. Another case is
that of Daly et al. [28] who evaluated the impact of context switch miss events in
highly partitioned virtualized systems. They proposed to warm the cache state by
prefetching the application’s working set and restoring the cache lines. The GHL
and cache restoration methods differ in implementation specifics to some extent but
perform relatively on par with one another although GHL performs slightly better at
the cost of additional hardware overhead and complexity. In some of the most recent
related work [29], the authors describe methods that mitigate the bandwidth overhead
of these other prefetchers.

Brown et al. [30] proposed accelerating thread performance after a context switch
event by predicting and prefetching the working set of the application. In their pro-
posal, the access behavior of a thread is measured and saved in a compact form during
pre-migration. This saved behavior is used to prefetch appropriate data to create a
warm state on the core which the thread has been migrated to. Prefetching the data
after a context switch event can help to solve or alleviate the problem of cold starts.
However, this approach works to minimize the number of cold starts for those appli-
cations for which it matters. Zebchuk et al. [29] help to demonstrate the inability
of all cache restoration prefetching techniques to dynamically adapt to the workload
behavior as their main limitation.

2.2 Scheduling Policies

Due to possible performance and efficiency gains, there has been increasing interest
in heterogeneous multicore architectures, and various scheduling proposals have been
presented throughout the past two decades. In this section, we present the state-of-the
art of the scheduling schemes on the Chip multiprocessors. We summarize, compare,
and contrast the works under five different categories.

2.2.1 First Studies on Scheduling Policies on an ACMP

Since the early nineties and the introduction of the idea of the chip multiprocessor,
research community have recognized the impact of scheduling. Miller [31] presented

16

Chapter 2. Background in Scheduling policies on an ACMP

a scheduling algorithm for an asymmetric system called Single Architecture Hetero-
geneous Multiprocessor or SAHM, which did not support multi-programming. Gro-
chowski et al. [32] studied the usefulness of such cores for saving energy and improv-
ing throughput. Moncrieff et al. [33] and Menasce et al. [34] analytically studied
tradeoffs of fast and slow processors in heterogeneous systems. They observe that a
system with many slow and few fast processors are cost and performance effective.

An ACMP which consists of multiple cores of the same ISA but of different sizes
was proposed by Kumar et al. in [35]. Their process consists of sampling for and
choosing the core that will execute in the most power efficient manner each time a new
phase or program is detected. This work was later expanded to include performance
maximization of multithreaded applications [4].

2.2.2 Scheduling based on Profiling and Sampling

Work by Becchi [9] consists of an ACMP that includes two distinct core sizes where
thread to core assignment is managed by initiating a mandatory swap of threads be-
tween two different sized cores in order to measure the corresponding performance ra-
tio. Based on this ratio, the threads are then scheduled to their core that will maximize
the system performance. This work has given insight into ratio based ACMP schedul-
ing techniques but is limited as the number of distinct core types used increases. Other
work in this area has been done by Saez et al. [36] who use a utility factor, defined as
the ratio of L1 miss latency compared to a baseline ACMP configuration (only small
cores), with the aim of optimizing the performance of both single and multithreaded
workloads. Likewise, Koufaty et al. [10] determine optimal thread to ACMP core
mapping using a biasing method estimated by the quantity of external memory stalls
and internal pipeline stalls. Another approach is detailed in the work by Srinivasan et
al. [15] who propose a formula based ACMP thread to core scheduling method which
is used to estimate and compare thread performance on individual cores.

A main concern of sampling approaches towards thread scheduling is the run-
time overhead produced when running multithreaded applications. In their work, [37]
Shelepov et al. use an architectural signature based on the cache misses for different
thread to core mappings collected during offline profiling in order to appropriately
schedule threads and a reduce runtime overhead. However, since the signatures are

17

Chapter 2. Background in Scheduling policies on an ACMP

fixed and used for the duration of a program, the approach fails to take into regard
the phases of the programs. On the other hand, phase classification and regression
analysis is used by Khan et al. in their work [38] to optimize thread to core mapping
in an ACMP.

2.2.3 Scheduling focused on Power and Energy

The first works that address the energy issue in shared-memory multiprocessors look
at energy savings in cache coherence management [39], [40]. Motivated by the per-
ception that a large part of snoops do not locate copies of data in multiple of the other
caches in a snooping bus-based SMP, Moshovos, et al [39] propose Jetty to reduce the
energy consumed by snoop requests. Saldanha and Lipasti [40] study the impacts of
decreasing speculation in a scalable snoop-based scheme, and note significant poten-
tial of energy conservation by utilizing serial snooping for load misses.

Instead, the thrifty barrier [41] works on the CPU energy savings potential stem-
ming from barrier imbalance in parallel applications. These techniques are not exclu-
sive of each other and could be combined for improved overall results. With respect
to microarchitectural differences, Chen et al. [42] chose to implement their ACMP
with cores consisting of separate branch predictor, issue width, and L1 cache sizes
that together with their scheduling method, achieve throughput and energy efficiency
improvements. In a separate scheduling approach, Annavaram et al. [43] focus on
staying withing a power budget by measuring the Energy per Instruction of an ACMP
running multithreaded applications and using the small cores to run the parallel sec-
tions of code and then migrating to execute on the larger cores for the sequential sec-
tions. Scheduling based power management techniques have also been studied in the
work by Winter et al. [44] which used several sampling based algorithms to analyze
the optimal thread to core mapping.

Liu et al. [26] studied optimal scheduling of independent programs on a preemp-
tive heterogeneous multiprocessor system. They use past non-critical thread barrier
stall times to predict future thread criticality and DVFS accordingly. In contrast to
this history-based approach, thread criticality predictor [45] predicts thread criticality
based on current behavior, regardless of barriers. They also use the predictor to im-
prove threading building blocks task stealing, building from the occupancy-based ap-

18

Chapter 2. Background in Scheduling policies on an ACMP

proach of Contreras and Martonosi [46]. But the work by Bhattacharjee and Martonosi
[45] is distincts, in that they use criticality to guide task stealing for performance gains
with little hardware overhead.

2.2.4 Scheduling based on Workload Characteristics

Exploiting counters for the improvement of hardware-aware scheduling policies has
been elaborated on in related research work [47]. For instance, hardware performance
counters are utilized to coordinate the scheduling of various independent threads which
do not belong to the same application in order to reduce power consumption on CMPs.
Along with similar approaches [48], [49], [50], these works demonstrate how low-
level counter measurements can potentially greatly benefit the optimization of perfor-
mance. The authors of [51] make use of cache-related performance measurements
in order to enforce threads sharing a common data structure to also share a common
last-level cache.

In a similar work, [52] the researchers demonstrate a NUMA-aware scheduler
based on performance counters. Their scheduler observes memory related coun-
ters and calculates which corresponding threads are sharing data on a common Non-
Uniform Memory Access (NUMA) node. The scheduler, therefore, can manage thread
mapping tasks easier by placing them based on the same resource they are sharing
common to the most efficient NUMA node. While approach is particular to OpenMP
type of parallel applications, a more generic approach is presented in [53]where a
NUMA-aware scheduler has also been introduced. The authors demonstrate that
schedulers which are not necessarily aware of the hardware architecture could very
well have a negative impact upon performance. Another non-NUMA approach has
also been presented in [54]. The whole of these approaches best illustrate how de-
tailed and precise scheduling policies improve performance when there is contention
of hardware resources. Lastly, the works [55] and [56] provide an extra discussion
of the accuracy and the benefits of different counters measurement libraries and ap-
proaches.

19

Chapter 2. Background in Scheduling policies on an ACMP

2.2.5 Fairness-aware Scheduling

For heterogeneous CMPs based on a single-ISA, optimizing scheduling based on a
fairness criteria is of key significance. There are several fairness scheduling schemes
available but an excellent example of achieving equal time and progress balancing is
presented by Van Craeynest et. al. [12] detailed below.

Equal-time Scheduling

In order to properly balance the threads on different core types, the equal-time schedul-
ing method assigns threads to cores in such a manner that all threads get equal amount
of execution time on each different core type. This is achieved by observing the
amount of time (in terms of scheduling quanta or time slices) each thread has been
running on the distinct types of cores. If there are imbalances between threads and
the amount of time each has had on a core type, then the scheduler will subsequently
remap the threads at the next scheduling quantum to ameliorate the imbalance.

A straightforward implementation of a equal time scheduling scheme is a round-
robin or random thread to core mapping. These methods generally ensure that all
threads will spend equal time running on all core types dependent upon the duration of
the scheduling quantum and the total execution time of the application. These schemes
may be modified to consider preserving data locality by not migrating threads among
identical cores (i.e. cores of the same type).

A drawback with equal time approaches, however, is that fairness in a broader
sense is not necessarily guaranteed. For instance, while all threads may receive equal
time on all core types, not all threads may be making equal progress due to slowdown
from different workload characteristics and memory requisites. Therefore, unfairness
may still be present in an equal time scheme due to some threads making proportion-
ally less progress than others. Conversely, if the threads are mainly homogeneous,
namely exhibiting close to identical behavior, this imbalance ceases to exist and equal
time scheduling will have the same effect as equal progress scheduling. Heteroge-
neous workloads, on the other hand, do not experience an identical one to one rela-
tionship of time running and progress made between different threads and hence must
be managed more carefully than an equal time scheme to ensure fairness. Some homo-
geneous workloads may actually also end up exhibiting these same characteristics as

20

Chapter 2. Background in Scheduling policies on an ACMP

heterogeneous workloads especially if the different threads end up processing separate
sections of an application’s input data.

Van Craeynest et. al. take this possible imbalance into regard in their solution
by proposing a scheduling scheme that uses equal progress in order to more closely
achieve fairness.

Equal-progress Scheduling

To achieve fairness for all threads, equal progress scheduling’s main focus is on en-
abling all threads to make equal progress or at least experience equal slowdown. This
scheme hence involves observing the slowdown of each thread and producing a thread
to core mapping such that the slowest threads are accelerated by scheduling them to
execute on the fastest cores. As the thread experiencing the most slowdown (com-
pared to the other threads) is accelerated, the other threads will end up running on the
smaller and slower cores. Fairness is consequentially achieved as the slowdown of all
threads converge.

Correctly calculating a thread’s slowdown is a critical feature in the equal progress
approach and is computed by comparing the total execution time of the thread on the
heterogeneous CMP with the total execution time when running the thread only on
a large core. The execution time of the thread on the heterogeneous CMP can be
observed by accumulating the number of scheduling quanta or time slices TSi the
thread has been executing thus far on all core types. The total execution time of the
thread on the single large core, however, is non-trivial to know in real time and must be
estimated dynamically. For instance, Van Craeynest et. al. estimate the execution time
of a thread running solely on the large core by firstly observing the number of quanta
the thread was run on the large core compared with the smaller cores. Then, they
rescale the time a thread has spent running on the small cores using an approximate
scaling factor R of the large versus small cores, see Equation (2.1).

Si =
Thet,i

Tbig,i
=

TSbig,i + TSsmall,i

TSbig,i + TSsmall,i/Ri
(2.1)

This scaling factor is estimated using a model-based scheduling technique which
constantly monitors the CPI on both core types. This information is fed into an ana-

21

Chapter 2. Background in Scheduling policies on an ACMP

lytical model which produces the corresponding large versus small core scaling factor.
An advantage of using this technique is that the scaling factor is continuously updated
as the monitored CPI values change on the different core types. In contrast to other
static methods of gathering CPI values such as history-based or sampling scheduling
techniques, Van Craeynest et. al. use what they term the PIE model [11] to estimate
the large versus small core scaling factor.

It is important to note that model-based approaches, such as PIE, require substan-
tial hardware support for constant CPI monitoring and analysis. The effectiveness of
PIE relies on the accuracy in monitoring and the analytical model.

2.2.6 Scheduling targeting Bottlenecks in Parallel Applications

Different mechanisms have been recently proposed which seek to overlap the execu-
tion of bottlenecks as long as they do not modify shared or synchronized data. One of
these such approaches which targets critical sections is known as Transactional Mem-
ory (TM) [57]. The TM approach is dependent upon the lack of data conflicts between
threads and bottlenecks. That is to say, that TM can only execute two transaction in-
stances in parallel if they do not share data conflicts. One of the disadvantages of TM
is the need for programmers to write code using transactions, but other proposals such
as Speculative Lock Elision [58], Transactional Lock Removal [59], and Speculative
Synchronization (SS) [60] can overlap the execution of non-conflicting instances of
the same critical section without this implicit programming requirement. In fact, as
long as no data conflicts exist between instances, SS can also reduce the overhead of
barriers by speculatively allowing threads to execute past them.

Other research proposals focus on accelerating Amdahl’s serial bottleneck. For
instance, while Annavaram et al. [61] use frequency throttling to achieve benefits,
Morad et al. utilize the large core of an ACMP for a single application [62] and for
multiple applications [63]. Conversely, Suleman et al. [64] seek to accelerate accel-
erate critical sections on a large core of an ACMP. In their other work, Suleman et al.
[65] allocate cores to stages in order to reduce stage imbalance on pipeline-parallel
programs. Joao et al. [13] speedup multiple types of bottlenecks on large cores of
an ACMP, using a criticality metric which depends upon the amount of thread wait-
ing each bottleneck causes. These proposals accelerate only specific bottlenecks and

22

Chapter 2. Background in Scheduling policies on an ACMP

though they improve the performance of applications that are limited by those bot-
tlenecks they do not take advantage of the large cores of an ACMP for applications
which they do not identify a particular bottleneck. In addition, neither of these pro-
posals are designed to accelerate bottlenecks from multiple applications, except for
[63], which is also limited to just serial bottlenecks. In their work, Joao et al. [14]
seek to solve this specificity concern by suggesting that it is more optimal focus on
accelerating code segments which may be either bottlenecks or lagging threads. They
do so by fully utilizing any number of large cores in order to improve performance of
both single and multiple applications.

Alternative approaches including Meeting Points [66], Thread Criticality Predic-
tors (TCP) [45] and Age-Based Scheduling [67] intend to reduce overheads caused
by barriers via detecting and accelerating threads which last end up at the barrier.
Age-Based Scheduling, on the other hand, makes use of the history from the previ-
ous instance of the loop in order to determine the optimal candidates for acceleration.
Their scheme, however, is limited to iterative kernels showing similar behavioral char-
acteristics across multiple executions. TCP uses a prediction approach by counting a
combination of L1 and L2 cache misses in order to guess which threads are the most
probable to arrive early at each barrier and then slows their execution in order to save
power, though it may also be used to manage the acceleration of the lagging thread.
Lastly, Meeting Points uses software hints to measure and identify lagging threads
which are most likely to be bottlenecks.

23

3
Methodology

This chapter gives an overview of the benchmarks and the simulator we have used
for our experiments. First, we describe SPEC CPU2006 and SPLASH2 benchmark
suites and the instruction stream characteristics particular to them. For conducting our
experiments we have made use of the Sniper simulator.

3.1 Benchmark Suites

In this thesis we use two comprehensive benchmark suites in order to evaluate our
proposed simulation techniques: SPEC2006INT, SPEC2006FP and SPLASH2. These
suites allow a broader scope of experiments since SPEC2006 is more intensive both
in terms of computation and memory footprint, or workload size, and SPLASH2 al-
lows for multi-threaded application simulations. SPEC benchmarks utilized in this
thesis are single-threaded applications and therefore to run on a CMP system we run
several application instances concurrently. Conversely, the SPLASH2 benchmarks
utilized in this thesis are generally run as one instance of an application with various

25

Chapter 3. Methodology

threads executing concurrently on the cores of the system. This allows us to make
use of parallelism both from the application level and the individual thread level in
order to maximize system resource utilization on many core architectures. Both of
the benchmarks are compiled with gcc 4.8 using -O3 optimization level and executed
on top of an unmodified Ubuntu 14.04.3 LTS (GNU/Linux 3.13.0-61-generic x86_64)
operating system.

3.1.1 SPEC Benchmark Suites

The SPEC [68] benchmark suite is popularly used within the research community
in order to evaluate the performance and energy traits of various computer systems
and techniques. The SPEC CPU2006 suite, in a manner similar to its former pre-
decessors is divided into two parts, the integer component (CINT2006 benchmarks)
and the floating point component (CFP2006 benchmarks). This classification divide
in essence considers the number of floating points instructions that appear in a par-
ticular application’s instruction stream. For instance, if a higher quantity than thirty
percent of all dynamically executed instructions are classified as floating point opera-
tions, then the application is defined as floating point program and placed within the
floating point benchmark (FP), otherwise it is classified under the integer benchmark
(INT) suite. In terms of the SPEC2006INT integer group, the suite consists of twelve
separate programs written in C as well as C++ while the floating point group, on
the other hand, includes seventeen individual programs written in C, C++, and FOR-
TRAN languages. For the experiments we have conducted and present in this thesis,
we simulated twenty six applications from the SPEC benchmark suite. The individual
applications and their specific input parameters are summarized in Table 3.1.

In this section we present an overview of the particular runtime characteristics
of SPEC CPU2006 integer and floating point benchmarks in terms of their machine
level instruction mix. We have obtained the runtime characteristics by measuring their
performance on an Intel(R) Core(TM) i7-4600U CMP processor [1] system whilst
running Ubuntu 14.04.3 LTS (GNU/Linux 3.13.0-61-generic x86_64). It is important
to recollect that the benchmarks were compiled using the gcc/g++ and FORTRAN
compiler V9.1. To account for the performance counter measurements, we have made
habitual use of the dynamic instrumentation tool Pin[69].

26

Chapter 3. Methodology

Table 3.1: A list of the SPEC Benchmarks used in simulations, along with the most
relevant execution command-line arguments.

Benchmarks Input parameters

400.perlbench -I. -I./lib checkspam.pl 2500 5 25 11 150 1 1 1 1

401.bzip2 chicken.jpg 30

403.gcc 166.i -o 166.s

410.bwaves

416.gamess < cytosine.2.config

429.mcf inp.in

433.milc < su3imp.in

434.zeusmp

435.gromacs -silent -deffnm gromacs -nice 0

436.cactusADM benchADM.par

437.leslie3d < leslie3d.in

444.namd –input namd.input –iterations 38 –output namd.out

445.gobmk –quiet –mode gtp 13x13.tst

450.soplex -m3500 ref.mps

453.povray SPEC-benchmark-ref.ini

454.calculix -i hyperviscoplastic

456.hmmer –fixed 0 –mean 500 –num 500000 –sd 350 –seed 0 retro.hmm

458.sjeng ref.txt

459.GemsFDTD

462.libquantum

464.h264ref -d foreman ref encoder main.cfg

465.tonto

470.lbm 3000 reference.dat 0 0 100 100 130 ldc.of

471.omnetpp omnetpp.ini

473.astar rivers.cfg

483.xalancbmk -v t5.xml xalanc.xsl

27

Chapter 3. Methodology

Table 3.2: Dynamic Instruction Count and Instruction Mix of SPEC CPU2006 Integer
and Floating-Point Benchmarks.

Benchmarks Inst. Count
(Billion)

Branches
(Percent)

Loads
(Percent)

Stores
(Percent)

400.perlbench 2,378 20.96 27.99 16.45

401.bzip2 2,472 15.97 36.93 12.98

403.gcc 1,064 21.96 26.52 16

410.bwaves 1,178 0.68 56.14 8.08

416.gamess 5,189 7.45 45.87 12.98

429.mcf 327 21.17 37.99 10.55

433.milc 937 1.51 40.15 11.79

434.zeusmp 1,566 4.05 36.22 11.98

435.gromacs 1,958 3.14 37.35 17.31

436.cactusADM 1,376 0.22 52.62 13.49

437.leslie3d 1,213 3.06 52.3 9.83

444.namd 2,483 4.28 35.43 8.83

445.gobmk 1,603 19.51 29.72 15.25

450.soplex 703 16.07 39 7.75

453.povray 1,220 13.23 35.4 16.1

454.calculix 3,041 4.2 40 10

456.hmmer 1,589 7.1 47.5 17.8

458.sjeng 2,400 21.5 27.4 14.65

459.GemsFDTD 1,450 2.5 54.15 9.7

462.libquantum 3,950 15 34.6 10.8

464.h264ref 4,230 7.5 41.63 13.14

465.tonto 3,024 5.05 45 12.8

470.lbm 1,800 0.87 38.3 11.8

471.omnetpp 782 21 35.1 20.19

473.astar 1,153 16 41.12 13.9

483.xalancbmk 1,247 25.9 34.1 10.19

28

Chapter 3. Methodology

Table 3.2 illustrates in detail the dynamic instruction count and instruction mix
for the programs of the benchmarks. 24 out of the 29 benchmarks have a dynamic
instruction count in the order of a few trillion instructions. Comparing this total count
with the CPU2000 benchmark suite which had a maximum of few hundred billion
instructions per program, we can clearly understand the exacerbating effect which
more contemporary applications have on execution time and speedup in general. On
the other hand, a greater total amount of instructions can provide extra opportunities
for extracting instruction level parallelism, offloading program kernels using multi-
threading, and making use of other parallelization techniques. In addition, there are
several interesting observations from the instruction mix of the programs. For ex-
ample, the percentage of branches in the dynamic instruction stream of the programs
classified as falling within the integer suite is close to the typical 20 percent. However,
it is crucial to note that the percentage of branches within dynamic instruction streams
of two programs, 456.hmmer and 464.h264ref consist of only 7 percent. Conversely,
the 483.xalancbmk program which is one of the three applications written in C++
within the integer suite contains 25 percent branches within the instruction stream. In
comparison, the two other C++ programs, 471.omnetapp and 473.astar, follow more
typical patterns by having around 20 percent and 15 percent branch instructions per
instruction stream respectively. Among the instruction streams of the floating-point
programs, only 450.soplex and 453.povray show a high branch discrepancy by having
approximately 15 percent branches whereas most of the other floating-point programs
have less than 5 percent branch instructions. On the other side, the floating-point
programs, 410.bwaves, 470.lbm, 436.cactusADM, each show less than 1 percent of
branches in their corresponding instruction stream. These program show a large aver-
age dynamic basic block size suggesting a considerable amount of parallelism may be
exploited by utilizing out-of-order and multi core architectures.

3.1.2 SPLASH2 Benchmark Suites

Compared to the SPEC2006 benchmark suite, the SPLASH-2 suite is relatively older
being from 1995 and consists of a mixture of full applications as well as computational
kernels. It features eight complete applications and four kernels, which showcase a va-
riety of computational tasks based on the fields of scientific, engineering, and graphics

29

Chapter 3. Methodology

Table 3.3: SPLASH2 Benchmarks used in simulations, along with the problem sizes.

Benchmarks Input problem size

barnes 65,536 particles

choleskey tk29.O

fft 4,194,304 data points

fmm 65,536 particles

lu.count 1024 x 1024 matrix, 64 x 64 blocks

lu.ncout 1024 x 1024 matrix, 64 x 64 blocks

ocean.count 514 x 514 grid

ocean.ncount 514 x 514 grid

radiosity large room

radix 8,388,608 integers

raytrace car

water.nsq 4096 molecules

water.sp 4096 molecules

computing. Some of the original programs of the SPLASH suite have been improved
and others have been removed due to either poor composition for evaluating medium-
to-large scale parallel machines, or because they are not practically maintainable. The
SPLASH benchmark applications and their input parameters are summarized in Table
3.3. Below we briefly describe the applications and kernels.

The Barnes application reproduces the fundamental interaction of a system of bod-
ies akin to galaxies or particles in a three dimensional space over a number of time-
steps, using the Barnes-Hut hierarchical N-body method. Cholesky is a blocked sparse
factorization kernel which factors a sparse matrix to become the product of a lower
triangular matrix and its transpose. The complex FFT program is a one-dimensional
variant of the typical “Six-Step” FFT which is described in [70]. The FMM appli-
cation also simulates a system of bodies for a given number of timesteps in a similar
manner as Barnes. However, it simulates interactions in two dimensions using a differ-
ent hierarchical N-body method called the adaptive Fast Multipole Method [71]. The

30

Chapter 3. Methodology

Figure 3.1: Breakdown of the execution time for the problem sizes in Table 3.3 on
a four processor machine. The execution time is broken down into total time appli-
cation spends in computation (core-base), in branches (branch), in memory accesses
(mem) and in synchronization (sync). The synchronization represents the time spent
in the barriers, locks and pauses (flag-based synchronizations) encountered across all
processors.

LU kernel factors a dense matrix into the product of a lower triangular and an upper
triangular matrix. The Ocean application studies large-scale ocean movements based
on eddy and boundary currents. The Radiosity application computes the equilibrium
distribution of light in a scene using the iterative hierarchical diffuse radiosity method
[72]. The integer radix sort kernel is based on the method described in [73]. The
Raytrace application renders a three-dimensional scene using ray tracing [74]. The
Water-Nsquared application evaluates forces and potentials that occur over time in a
system of water molecules. The Water-Spatial application solves the same problem as
Water-Nsquared, but uses a more efficient algorithm.

Fig. 3.1 shows the execution time of the SPLASH2 benchmarks broken down into
four parts, on computation, branch, memory access and synchronization, marked as
“core-base”, “branch”, “memory” and “sync” respectively. The synchronization bot-
tleneck is a byproduct of imbalances between the thread lock sections or barriers that
incur sizable waiting latencies before being able to acquire a desired lock. The large
average portions of execution time spent on synchronization as well as memory ac-

31

Chapter 3. Methodology

cesses in these programs. Also, the low percentage of branches in applications like
cholesky, fft and ocean suggests relatively large average dynamic basic block sizes
and high ILP. This high degree of the parallelism (ILP) may be much better exploited
by out-of-order microarchitectures. These two factors suggest a high degree of paral-
lelism that can be exploited by better scheduling on an asymmetric single-ISA Chip
Multicore Processors consisting of out-of-order and in-order cores.

3.2 Sniper Infrastructure

Sniper is a high-speed, parallel and hardware validated x86 architectural simulator
[75]. It is a versatile multi-core simulator based on the interval core model and also
includes the Graphite simulation infrastructure, providing quick and accurate simula-
tion. The simulator also allows for tradeoffs of simulation speed for accuracy in order
to provide a greater width of simulation options for evaluating different homogeneous
and heterogeneous many core systems.

Sniper is capable of performing timing simulations for both multi-programmed
workloads as well as multi-threaded, shared-memory applications executing on many
cores. The simulation itself occurs at relatively high speeds as compared with other
existing simulators. One of the key features distinguishing the Sniper simulator is its
use of interval simulation and mechanistic core models. By ’jumping’ between miss
events, called intervals, interval simulation raises the architectural simulation’s level
of abstraction which in turn provides for faster simulator development and evaluation
times. Sniper provides performance prediction errors within 25 percent on average
at a simulation speed of several MIPS and has furthermore been validated against
multi-socket Intel Core2 and Nehalem systems.

The interval simulation [76] technique is a recent tool for conducting simula-
tions including multi-core and multiprocessor systems. As previously mentioned,
this approach enables a higher level of abstraction compared to current practices of
detailed cycle-accurate simulations. Utilizing a mechanistic analytical model to ab-
stract core performance, interval simulation drives the timing of each particular core
without needing to keep detailed track of all individual instructions passing through a
core’s pipeline stages. The functional basis of the technique is keeping track of miss
events such as branch mispredicts, cache and TLB misses, and serialization instruc-

32

Chapter 3. Methodology

Figure 3.2: Sniper interval simulation model

tions among others to transpose the streaming of instructions through the pipeline
as intervals. Separate simulators for the branch predictor, memory hierarchy, cache
coherence and interconnection network help to determine the miss events and latency
which feeds back into the analytical model which uses them to calculate the timing for
each interval. Collaboration between the mechanistic analytical model and the miss
event simulators enables modeling the often complex and dependent performance of
threads concurrently executing on many core processors.

Fig. 3.2 shows how the interval simulator models the timing for the individual
cores in a multi core system. For each simulated core, the simulator maintains a win-
dow of instructions . This instruction window corresponds to the size, or number
of entries, of the reorder buffer of a superscalar out-of-order processor, used to find
miss events that are overlapped by long-latency load misses. The functional simula-
tor supplies instructions into this window through the tail of the window. The timing
simulation, or in other words, progress at the core-level is determined based upon the
instruction at the head of the window. For instance, in case of an I-cache miss, the
simulated core time is augmented by the miss latency penalty. In case of a branch
mispredict, the resolution time of the branch is added to the front-end pipeline depth
(e.g., pipeline flush cost) with is summed to the core simulated time. In other words,
a the simulator must model the penalty for executing the chain of dependent instruc-
tions which has led to the mispredicted branch plus the number of cycles needed to
flush and refill the pipeline front-end . In the case of a last-level cache miss, cache
coherence miss, or other long-latency load operation, the corresponding miss latency
penalty is added to the simulated core time. Additionally, the simulator searches the

33

Chapter 3. Methodology

instruction window for independent miss events (e.g., cache and branch misses) that
are overlapped by the long-latency load and other second-order effects. For serializ-
ing instructions, the window drain time is added to the simulated core time to ensure
proper accounting for the latency penalty. If none of the above cases appears, in-
structions are dispatched at the effective dispatch rate, that takes into consideration
inter-instruction dependencies and individual instruction execution latencies.

The Sniper simulator, and the interval core model as a whole is useful for system-
level studies requiring extra detail compared to typical one-IPC simulation models,
but where cycle-accurate simulators remain too slow to enable workloads of signifi-
cant sizes to be simulated. An additional benefit peculiar to the interval core model is
that it allows for the generation of CPI stacks showing the number of cycles lost due
to different characteristics of the system. This is helpful for understanding how the
cache hierarchy or branch predictor is affecting the total system performance and what
system components should be improved to maximize system efficiency. CPI stacks en-
ables researchers to use Sniper for application characterization and hardware/software
co-design. The Sniper simulator is free to use for academic research and maybe be
found online [77].

3.2.1 Sniper Extensions

In a similar manner to other cycle-accurate or interval simulators, Sniper pins hard-
ware threads to the simulated cores. We have chosen to use Sniper simulator because
of the two principle reasons. First, since all scheduling algorithms we propose in this
thesis perform scheduling on hardware threads, we had to introduce extensions to the
Sniper simulator in order to allow the movement of the hardware threads from one
core to the other. Due to the nature of the interval simulation [76] technique and sim-
ulator organization [75] this was a relatively straightforward task. The second main
reason for choosing Sniper was that it can be relatively easy to use for hardware/-
software co-design extensions, where some of the scheduling algorithms we propose
in this thesis require hardware-software communication. A detailed explanation of
the hardware extensions for each of the proposed scheduling algorithms is provided
throughout the following chapters.

34

Chapter 3. Methodology

Figure 3.3: Simulated Architecture

3.2.2 Simulated Architecture - Sniper configuration

We use Sniper simulator [75] since it allows us to perform timing simulations for
both multi-program workloads and multi-threaded, shared-memory applications with
multiple cores having different capabilities, at a high speed when compared to existing
simulators. This simulator is useful for system-level studies that require more detail
than the typical one-IPC models, but for which cycle-accurate simulators are too slow
to allow workloads of meaningful sizes to be simulated.

We configured the simulator to model an ACMP made up of one large core and
three small cores as shown on the Fig. 3.3. The differences between the core types
lie in the pipeline complexity (out-of-order for large, in-order for small). In order to
isolate the causes of potential performance differences, the clock frequency (2.6GHz),
issue width (4-wide), number of available thread contexts (one hardware context per
core), and cache sizes are the same for both core types. We assume a cache hierarchy
with separate and private 32 KB L1 instruction and data caches, private 256 KB L2
caches, and a shared 4 MB L3 last-level cache (LLC). All the caches employ a LRU
replacement policy and we assume the memory controllers are on-chip.

Table 3.4 shows detailed system configurations. Similar to the work in [12], we
utilize a conservative hardware-quantum of 1ms and a software-quantum of 4ms even
though it is typically upwards of this range [6]. All the differences in the configuration

35

Chapter 3. Methodology

Table 3.4: Asymmetric Chip Mmultprocessor System configurations for Sniper simu-
lator used in experiments

Small core 4-wide, 5-stage in-order, 2.66GHz

Large core 4-wide, 12-stage out-of-order, 128-entry ROB, 2.66GHz

IL1 caches private 32KB write-through, 4-cycle, 8-way

DL1 caches private 32KB write-through, 4-cycle, 8-way

L2 cache private unified 256KB write-back, 8-cycle, 8-way

L3 cache shared 4MB, write-back, 30 cycle, 16-way

Cache
coherence

MESI protocol, on-chip distributed directory, L2-to-L2
cache transfers allowed, 8K entries/bank, one bank per core

NoC 12.8 GB/s per direction and per connected chip pair

Memory 1048576 entries, 16-way DRAM, modeling all queues and
delays, latency 45 ns, controller bandwidth 7.6 GB/s

of the simulator for conducting a particular experiments are further described in the
relevant sections of the thesis.

36

4
Context Switch on the CMP

In this chapter we present the way we manage the context switch as well as the cost
that context switch of threads on the cores may have on the total execution time of the
application running on the shared last level cache memory of a Chip Multiprocessor.

4.1 Managing the Context Switches

The proposed scheduling techniques, described in the following chapters 5, 6 and 7,
does not facilitate hardware overheads to be able to store and restore the architecture
state in the cores. They utilize the x86 hardware context switching mechanism, called
Hardware Task Switching in the CPU manuals [78].

The Hardware Task Switching, like Operating System, uses a special data structure
called a Task State Segment (TSS) to store and restore the architectural state of the
CPU in and out the memory during a context switch. Before invoking it, our hardware
schedulers need first to pass two addresses to the CPU. The first one is the address
where to save the existing CPU state while the second is the address to load from the

37

Chapter 4. Context switch cost on the CMP

new CPU state. The Hardware Task Switching uses the long version of CALL and
JMP instructions to invoke a context switch after passing to the CPU addresses where
to store and load its old new architectural state respectively. The segments of the
addresses indicate the position of the a TSS Descriptor in the Global Descriptor Table
(GDT) while their offsets are ignored. The TSS descriptor specifies the base address
as well as the limit of the TSS, which are used to store and load the old and new CPU
state respectively, during the context switch. The CPU has a register called the Task
Register (TR). This register tells which TSS will receive the old CPU state. The TR is
consisting if two parts, one is visible and another invisible to the user. The visible part
can be read and changed by instructions whereas the invisible portion can not be read
by any instruction. The core maintains the invisible part of the TR. The core uses the
invisible portion to cache the base and limit values from the TSS descriptor. When the
Hardware Task Switching invokes an “LDTR” instruction on the core, which loads
the TR register, the CPU checks the GDT entry and performs two actions in parallel.
First, it loads the visible part of TR with the GDT entry. Second, it loads the private
part of the base and limit of the GDT entry. The core uses the private part of TR when
it saves the CPU state.

The Hardware Task Switching mechanism can be used to change all of the CPU’s
state except for the FPU/MMX and SSE state. There are a few options to store and
restore the FPU/MMX as well as the SSE state during the context switch. One option
is to save the data explicitly. The other option is that the CPU generates an exception
the first time it uses an FPU/MMX or SSE instruction. With the second choice, the
exception handlers would save the old FPU/MMX/SSE state and reload the new state.
We have used the second option since it may prevent this data from being changed
when it is not necessary.

When our scheduling techniques perform rescheduling after a given time quantum
expired, explained in detail in following chapters, they need to take special care in
two cases. To be precise, let as take an example of an ACMP system as described in
section 3.2.2. An ACMP system consists of one large (Out-of-Order) core and three
small identical (In-Order) cores. In the case that large core is in the kernel mode (such
as handling an interrupt) our scheduling techniques will wait until it returns to user
mode to mark rescheduling. While if the small core that is to have its thread swapped
with the large core is in the kernel mode, the scheduler will choose the next small

38

Chapter 4. Context switch cost on the CMP

Figure 4.1: Context switch cost including flushing cores pipeline and register file as
well as working set transfer (warming of the cache hierarchy) between two out-of-
order cores on the CMP with the shared and private last level cache for the SPEC2006
benchmark

core to switch threads with large core in an adequate way, depending on the particular
scheduling technique.

4.2 Context Switch Cost

Implementing dynamic scheduling requires the migration of workloads between dif-
ferent cores. This leads to overheads incurred by context switches. A context switch
overhead consists of three major components. First, a context switch incurs a cost
for storing and restoring the architecture state - register file (at most a few kilobytes).
Second, processor’s pipeline flushing, which takes the least time compared to all other
costs incurred by the context switch. Third is the migration of the working sets that
is the loading of the working-sets into the private caches of the destination cores. The
last one is the most important one since it is orders of magnitude larger than the other
two.

A previous study [11] has shown the total migration execution time overhead to be
less than 1.5% across different types of workloads, ranging form memory-intensive

39

Chapter 4. Context switch cost on the CMP

Figure 4.2: Context switch cost including flushing cores pipeline and register file
as well as working set transfer (warming of the cache hierarchy) between cores on
Intel(R) Core(TM) i7-4600U CMP[1]

to compute-intensive, for a 4 MB shared LLC using a 1ms hardware-quantum. We
have estimated the overhead caused by context switches occurring at every 1ms for
the SPEC2006 benchmark. To do so, we have configured the Sniper simulator to
simulate a system similar to Intel i7-4600U processor [1], simulationg two four issue
wide out-of-order cores. We configured a cache hierarchy with separate and private
32 KB L1 instruction and data caches, private 256 KB L2 caches, and with a shared
or a private 4 MB L3 last-level cache (LLC). The results on the Fig. 4.1 represent
the slowdown caused by switching contexts from one to the other core at every 1ms.
Fig. 4.2 represents context switch costs with different working set sizes ranging from
four up to one thousand two hundred KB in size on Intel i7-4600U core[1].

This relatively low overall overhead of the context switch comes as the effect of
the so called Smart Cache architecture that allows all cores to dynamically share ac-
cess to the last level cache. Smart Cache is a level 2 or level 3 caching method for
multiple-execution cores, introduced by Intel [79]. Smart Cache shares the actual
cache memory among all cores in the system. In comparison to a dedicated per-core
cache, the overall cache miss rate decreases in times where not all cores need equally
much of the cache space. Consequently, a single core can use the full level 2 cache

40

Chapter 4. Context switch cost on the CMP

or level 3 cache, if the other cores are inactive [80]. Furthermore, the shared cache
makes it faster to share memory among different execution cores [81].

In our simulations, we presume a fixed 1,000 cycle penalty [7],[12] for storing and
restoring architectural state of the core i.e. registrar file. We account for the warm-
ing up of the cache hierarchy needed after a context switch as well as for processors
pipeline flushing in our simulations.

41

5
HRRS: Hardware Round-Robin

Scheduler for Hardware Threads

In section 1.2 we have noted the importance and the impact scheduling for fairness
may have on the potential speedup that can be achieved from the parallelization of
multi-threaded applications and multiprocess workloads on single-ISA asymmetric
multi-cores.

In an asymmetric multi-core system, a scheduler using threads pinned to cores pro-
duces no speedup compared to a lighter symmetric multi-core system for most mul-
tithreaded benchmarks [12]. This behavior may be caused by barrier-synchronized
multithreaded workloads since the execution progress is limited by the slowest thread
which has little meaning in a symmetric system, but is significant for asymmetric sys-
tems since the thread pinned to the simplest core will be the weakest link that all other
threads will have to wait for at every barrier. Work-stealing workloads, in contrast,
allows for idle large cores to steal work that would normally be run on the small cores
so that the execution time is not as constrained. Also, when running workload con-

43

Chapter 5. HRRS

sisted of multiple applications on an asymmetric system the overall performance may
suffer if scheduler does not guarantee fairness [11]

Therefore, in asymmetric multi-core systems, guaranteeing fairness is fundamen-
tal for improving performance of multithreaded and multiapplication workloads. Fair-
ness, as defined by giving each software thread equal execution time on each core or
allowing each thread to make equal progress, enables all threads to reach the barriers
simultaneously, and has been sown to provide average performance improvements of
14% (and up to 25%) compared with a pinned scheduler [12] for the system configu-
ration we are using.

We propose a simple and efficient scheduling mechanism that remaps hardware
threads on physical cores at every hardware scheduling quantum, while offering an
easy hardware implementation in contrast to the previously proposed technique [12].
In the next two subsections we describe the proposed Hardware Round-Robin Schedul-
ing (HRRS) policy and discuss its hardware implementation.

5.1 HRRS Algorithm

Fig. 5.1 is used to illustrate the inner workings of the HRRS approach, we will as-
sume a system composed of an x86 ACMP hardware containing one large out-of-
order (OoO) core and three smaller and identical in-order cores. The operating system
is provided an abstracted homogeneous hardware view comprised of four identical
logical cores, which correlate to four identical hardware threads. The OS scheduler
maps threads to the logical cores which enables the OS scheduling policies and im-
plementation to be left unmodified. While the OS scheduler maps threads to the log-
ical cores at every software-quantum or other interrupts, the HRRS in turn maps the
threads running on the logical cores to the physical cores as shown in Fig. 5.2 at ev-
ery hardware-quantum. In essence, the HRRS can be viewed as mapping the logical
cores that the OS sees and schedules threads onto, to the physical cores of the under-
lying hardware which actually execute the threads. Furthermore, the HRRS algorithm
must produce a new scheduling scheme after every hardware-quantum of time passes
(as opposed to the software-quantum which invokes the OS scheduler). In order to
minimize the amount of overhead in implementing the scheduling policy, the HRRS
algorithm determines the next scheduling scheme to apply before the beginning of the

44

Chapter 5. HRRS

OPERATING SYSTEM
OS Scheduler

In-Order
Core 1

Threads

HW Scheduler

Out-of-Order
Core 0

In-Order
Core 2

In-Order
Core 3

Logical
Core 3

Logical
Core 2

Logical
Core 1

Logical
Core 0

Figure 5.1: HRRS scheduling - All logical cores (which correlate to hardware threads)
are the same while the large physical core is represented by Core 0 and the small
physical cores are shown as Cores 1,2 and 3

ALGORITHM 5.1: HRRS algoritham pseudo code

buffer: holds entries small core I Ds;
I Dlar ge: holds large core I D;
while at every scheduling quantum or when large core is in the idle state do

tmpI Dsmall = buffer.first;
switch contexts of tmpI Dsmall and I Dlar ge;
buffer.last(I Dlar ge);
I Dlar ge = tmpI Dsmall ;

end

next hardware-quantum.

The defining characteristic of the HRRS algorithm is that it evenly rotates threads
(scheduled onto the logical cores by the OS scheduler) running on the physical cores
after every hardware-quantum. The OS scheduler, on the other hand, is triggered at ev-
ery software-quantum which happens much less frequently than that of the hardware-
quantum. Additionally, the HRRS algorithm does not need to take into account whether
the OS scheduler has activated and swapped one of the currently executing threads on
a logical core for another thread from its ready queue. In such cases, the thread con-
text of the thread being swapped out must be saved and replaced by the context of the

45

Chapter 5. HRRS

new thread chosen by the OS to be executed all of which is performed by the triggered
OS scheduler routine. Consequentially, the HRRS scheduling policy guarantees that a
thread will not occupy a large physical core for more than one hardware-quantum un-
less it is the only runnable thread at the end of the hardware-quantum. Algorithm 5.1.
presents the pseudo code of the HRRS.

The Difference compared to the Fairness-aware Scheduler

There are two fundamental differences between the HRRS and Fairness-aware sched-
uler [12] algorithms. First, the difference between the HRRS and Fairness-aware
Scheduler algorithms is that HRRS maps logical cores (e.g. hardware threads) onto
the physical cores while Fairness-aware Scheduler schedules software threads onto the
physical cores on every hardware scheduling quantum. Second, in both approaches, a
thread running on one of the smaller physical cores is swapped with the thread running
on the large physical core after a given time quantum. However, while Fairness-aware
scheduling strives at achieving fairness by guaranteeing even progress using specific
heuristic for each software thread, it does not necessarily enforce swaps of threads
between large and small core every scheduling quantum but prefers to leave threads
to run on the same physical core. In contrast, the HRRS policy runs each logical core,
hardware thread, on each physical core type for a specified amount of time. After
every quantum, the HRRS triggers a swap between the thread running on the large
core with one executing on a small core that is chosen using a round-robin selection
algorithm.

5.1.1 Hardware Implementation

Hardware Round-Robin Scheduling leaves the operating system level scheduling un-
touched and it maintains a consistent view of the underlying hardware. The hardware
is able to provide the abstraction of a symmetric hardware to software while dynami-
cally rescheduling threads among the cores in an asymmetric multi-core system [82].
Both of these approaches (HRRS and Fairness approaches [12]) may also be imple-
mented at the OS level by extending the OS scheduler but the advantage of a hardware
approach, in addition to minimizing scheduling overheads, is that it provides a finer
level of granularity for the scheduling quanta and requires no changes to the OS code

46

Chapter 5. HRRS

Figure 5.2: An example of the HRRS scheduling logical cores on actual physical cores
at every hardware-scheduling quantum. At the beginning logical core 0 is running on
the large physical core while logical cores 2, 3 and 4 are running on small physical
cores. After a first hardware scheduling quantum, Logical core 1 will be moved to
large physical core and logical core 0 will be moved to a small physical core.

[11]. While OS scheduler typically performs rescheduling of the software threads
after every 4 ms on average [6], hardware implementation allows HRRS to perform
rescheduling of the hardware threads after every 1 ms.

HRRS has hardware additions which include two counters, one register and two
decoders to facilitate round-robin mechanism, as shown on the Fig. 5.3. An “active”
bit per hardware thread indicates weather the thread is running user code or not (i.e.
running kernel code or being idle). Register holds the ID of the logical core that
is currently executing on the large physical core. One counter is incremented after
every hardware scheduling quantum to point to the next logical core running on small
physical core to be swapped with logical core running on the large physical core in
the next scheduling quantum. The two decoders help determine weather logical cores
that are supposed to be swapped are currently executing user code or not. The other
counter keeps track of the hardware scheduling quantum. The size of these depends on

47

Chapter 5. HRRS

Figure 5.3: Hardware implementation layout example for HRRS scheduling policy on
the four core ACMP consisting of one large and three small cores (1 OoO + 3 InO),
where ’A’ is the active bit per hardware thread.

the number of the cores in the system e.g. for four core system we need 2-bit counter.

The complexity of the hardware implementation of the Fairness-aware scheduler
[12] compared to the HRRS is significant. The Fairness-aware scheduler relies on
the PIE [11] model-based scheduling technique that constantly monitors the CPI on
cores. Therefore, it requires additional counters, registers as well as logic circuits to
calculate features like last level cache misses of each core.

As oppose to other dynamic schedules [13], [14], the HRRS scheduling technique
does not need special hardware overheads to store and restore the architecture state
in the cores. It uses he x86 hardware context switching mechanism, called Hardware
Task Switching in the CPU manuals [78]. In order to use it, the HRRS needs to instruct
the CPU where to save the existing CPU state, and where to load the new one. This is
fully explained in section 4.1.

5.2 Evaluation

Here we evaluate the Hardware Round-Robin Scheduling (HRRS) approach and com-
pare it to the Linux OS scheduler and Fairness approach [12]. First, we describe the

48

Chapter 5. HRRS

bechmarks and the simulator configuration we have used for this study. Second, we
present potential ideal speedup gains of the HRRS scheduling policy. Finally, we
evaluate the performance and energy efficiency of the HRRS scheduler over the Fair-
ness and Linux OS scheduler on an ACMP when running multi-threaded applications
(running dependent threads) and multiple instances of the single-threaded applications
(running independent threads) on an ACMP system.

5.2.1 Simulated Architecture and Workloads

For conducting the simulation experiments we have used Sniper [75], a parallel, hard-
ware - validated, x86-64 multi-core simulator capable of running both multi-program
and multi-threaded applications, described in Section 3.2. Section 3.2.2 shows de-
tailed system configurations used for the experiments. Similar to the work in [12], we
utilize a conservative hardware-quantum of 1ms and a software-quantum of 4ms even
though it is typically upwards of this range.

We use the SPLASH-2 [83] and SPEC2006 [68] benchmarks in our experiments.
The SPLASH-2 benchmarks are designed to represent multi-threaded applications to
evaluate hardware architectures when running several thread contexts. The SPEC2006
benchmark is an industry-standardized, CPU-intensive benchmark suite, stressing a
system’s processor, memory subsystem, and compiler. We have utilized the SPEC2006
benchmarks to run multiple instances of traces from different phases of the single
threaded applications concurrently on the system. We run each benchmark on the four
simulated cores with each core capable of executing one hardware thread context at a
time. All simulated workloads are run from start to finish. Each thread or process of
the workload has a fixed amount of work to perform. We declare that the evaluation
finished once all threads/processes finished their preassigned work. In the case of hav-
ing several threads running at the same time, the threads that finish first are restarted
until the last one of initially started threads finishes its preassigned work, such that the
number of threads running at any given time through evaluation on the system remains
constant. Once the longest one of original threads/processes has been completed, the
simulation is ended.

We evaluate single multithreaded application workloads running an equal or greater
number of threads per application as the number of available hardware contexts, i.e.

49

Chapter 5. HRRS

Figure 5.4: Small core slowdown (expressed as IPC small / IPC large) compared to
the large cores when running SPEC2006 benchmark

maximum number of cores. When we run multiple instances of the single-threaded
application workloads, we run at least as many different trace instances of the same ap-
plication, as there are available hardware contexts, i.e. the maximum number of cores.
The indicated method is common when executing non-I/O-intensive applications [14].
For example, when we run one multi-threaded application on a system simulated with
four cores, we use the minimum of four threads for that application. The results shown
in the following sections are averaged for running a different number of threads, e.g.
4, 8 and 16 threads, per workload on the system.

5.2.2 Ideal Performance gains and Scalability

In an ACMP system cores do not provide a uniform computing capability for each
thread/process/application. While one application might exibit a very good perfor-
mance gains when executing in a more powerful core, the other might not because it
can not take advantage of the additional hardware resources available to it.

To illustrate this point, Fig. 5.4 shows the performance of the SPEC2006 [6]
applications on a small core normalized to their performance on a large core. The
large and small cores are representative of state of the art out-of-order and in-order

50

Chapter 5. HRRS

cores, respectively. While the absolute values are not relevant, their distribution shows
a significant variation among applications. Most of these applications can harness
around a 2x speedup on the large core, but there are those too, that are only able to
gain a modest 10 percent.

In order to calculate the ideal performance gains we have introduced two ma-
jor presumptions. First, the ideal context switch. That is, the flushing of the cores
pipeline and transfer of the register file as well as the working set migration (the ma-
jor component) are ideal, i.e. with zero overhead. Second, that there are four identical
independent threads running in the four core ACMP system (1 OoO + 3 InO).

Considering that the current practice in the Linux OS scheduler is that software
threads are pinned to the cores, e.g. when thread is assigned to a core it is rarely
reassigned to continue its execution on any other core in the system. It rather shares
resources of that core with other software threads assigned to the core. This is a
simple and reasonable way to manage load balancing since nowadays CMPs consist
of the cores of equal capabilities. However, this kind of scheduling would cause the
performance to be bound by the capabilities of the smallest core in an ACMP system.

On the other hand, Fair scheduler strives to provide fairness by guaranteeing equal
progress of all software thread, either in terms of time or executed instructions. There-
fore, it does not necessarily promote a thread from the small core to the large core
if that thread makes sufficient progress, compared to the others threads. The detail
overview and the model of the Fair scheduler is presented in Section 2.2.5.

Equation (5.1) represent the ideal analytical model of the execution time T of
all workloads on all cores for the HRRS scheduler. N represents the total num-
ber of cores and hardware threads, Q is the number of necessary scheduling quanta,
Workload(t ime) represents the workload per thread (equal per thread), L = I PClar ge

and S = I PCsmall .

T =
Workload(t ime)

L+ (N − 1) ∗ S
∗ N ∗Q (5.1)

Fig. 5.5 represents the ideal analytical comparison of the HRSS and Fairness
schedulers on an ACMP consisted of one large and three small cores for different
performance ratios between large and small cores. The maximum ideal speedup of

51

Chapter 5. HRRS

Figure 5.5: Ideal Speedup comparison of the HRRS over Fairness scheduler on an
ACMP systems consisted of 2 (1 OoO + 1 InO), 4 (1 OoO + 3 InO), 8 (1 OoO + 7
InO) and 16 (1 OoO + 15 InO) cores respectively.

the HRRS over Fairness scheduler is around 20 percent in case that thread exhibits
around 2x speedup when executing on the large compared to small core. When com-
pared with an ACMP system with the regular software scheduler, in the case that
thread has over 3x performance benefit when running on the large core, the HRRS
has significant performance gains, over 1.5x and up to 3x. It is important to note that
neither one of the SPEC2006 applications have not exhibited 3x performance gains
when running on large core compared to a small core, presented on the Fig. 5.4.

Although we have used an ACMP composed of one large and three small cores to
conduct our test, our scheduling technique can be easily applied on an ACMP with the
different ration of large and small cores, see Fig. 5.5. The following chapter 6 offers
more insight on scalability of our schedulers in many-core systems.

5.2.3 Performance Evaluation

We discuss the performance of the HRRS scheduling policy by examining it two sce-
narios and comparing it to the Fairness scheduler. First, when running independent
threads in an ACMP system. Second, when running dependent threads in an ACMP
system. In both cases the results are scaled to a Linux OS scheduler where the operat-

52

Chapter 5. HRRS

Figure 5.6: Speedup comparison of the HRRS and Fairness scheduler normalized to
Linux OS scheduler for the SPEC2006 benchmark suite running multiple instances of
traces collected from different phases of an application on four cores ACMP (1 OoO
+ 3 InO)

ing system has a notion of the underlying hardware. Under the Linux OS scheme, in
the case of a symmetric CMP, the operating system pins individual threads to each of
the cores in a round-robin fashion until all threads are assigned. The threads are then
selected to be executed in a round-robin fashion on the respective core that they are
pinned to (when there are more than one thread assigned per core). When using Linux
OS scheduler threads on an asymmetric CMP, the operating system does not necessar-
ily pin the threads to the cores, nor does it tend to swap the threads running on the large
core with those on the small core at every scheduling quantum until threads pinned to
the large core are all stalled or finished their execution. Rather, the OS scheduler tries
to ensure quality-of-service for the threads by ensuring that all threads pinned to the
core share cores resources equally. This reflects the current practice in contemporary
operating system schedulers, as exemplified in the Linux 2.6 kernel [6].

Fig. 5.6 shows the results when running independent threads on an ACMP sys-
tem. The HRRS policy has an average speedup of the 11.71 percent and 20.25 percent
over Fairness and the Linux OS scheduler respectively. When running independent
threads in the system we run multiple instances of the single-threaded applications

53

Chapter 5. HRRS

Figure 5.7: Speedup comparison of the ideal and simulation results of the HRRS over
Fairness scheduler for the SPEC2006 benchmark suite running four instances of traces
collected from different phases of an application on four cores ACMP (1 OoO + 3 InO)

(SPEC2006) on a four core ACMP system. This allows us to compare our simulation
results with the ideal performance gains. By looking at the results presented on Fig-
ures 5.4, 5.5 and 5.6 we can the compare the ideal and simulation achieved speedup of
the HRRS over Fairness scheduler on a four core ACMP consisted of the one large and
three small cores. Fig. 5.6 shows the comparison of the ideal and simulation achieved
speedup. The major difference between ideal and simulation results comes as result
of the context switch cost, since ideal model presumes ideal context switch cost for
each application while simulation accounts for it. This is especially evident with the
mfc, milc and lbm application, which are memory rather than execution bounded.

Fig. 5.8 shows the speedup of the HRRS scheme over the hardware implementa-
tion of the Fairness scheduler on four core system running multi-threaded application
workloads. The results are scaled to a Linux OS scheduler where the operating sys-
tem has a notion of the underlying hardware. The average speedups of HRRS over the
Fairnes and Linux OS scheduler when running the Splash2 workloads are 16.5 percent
and 37.7 percent respectively on a four core system.

A key element driving these performance benefits comes from the redistribution
of the workloads amongst the cores. Fig. 5.9 shows per benchmark LLC access

54

Chapter 5. HRRS

Figure 5.8: Speedup comparison of the HRRS and Fairness scheduler normalized to
Linux OS scheduler for the SPLASH-2 benchmark suite running on four cores (1 OoO
+ 3 InO)

Figure 5.9: The LLC cache accesses breakdown for the large and small cores of the
Linux OS, Fairness and HRRS scheduler for the SPLASH-2 benchmark running on
four cores ACMP (1 OoO + 3 InO)

55

Chapter 5. HRRS

distribution between large core and small cores, while the total number of the LLC
accesses grows up by only up to 1.5 percent for Fair and HRRS schedulers compared
to Linux OS scheduler. The HRRS scheme produces a higher proportion of LLC
accesses originating from the large core. Fundamentally, the large core can better
support the extra burden of LLC cache accesses since the large out-of-order instruction
window allows for a greater quantity of instructions to be processed concurrently,
which enables it to hide the additional latency caused by the extra cache accesses
and still, even after including overheads from the context swap, outperform the small
cores in thread execution time. This hit/miss ratio and considerable change in the total
number of LLC accesses between large and small cores are clearly noticeable with
fft, cholesky and raytrace benchmarks. Therefore these benchmarks have the highest
performance gains. This can be noticed on the Fig. 5.8.

Hardware vs. Software Implementation

Hardware Round-Robin Scheduling provides a consistent view of the underlying hard-
ware to the operating system, therefore introducing no changes to an existing operat-
ing system. The default Linux scheduling quantum is defined in the Linux kernel
as RR_TIMESLICE (include/linux/sched/rt.h), and its default value is set to 100 ms.
And a clock tick is typically 1 ms to 6 ms for the Linux kernel 2.6.8 and onwards (de-
fined in kernel/sched/fair.c by sysctl_sched_min_granularity and sysctl_sched_latency).
It can have a minimum quantum of 4 ms (a case rarely seen and still 4x the latency
of the hardware quantum) [12]. The hardware scheduling quantum we have used in
our experiments is 1 ms as is mentioned in the first paragraph of Sec. 5.2.1. Fig. 5.10
represents the speedup that a hardware implementation, with a scheduling quantum
of 1ms, has over a software implementation (baseline), with a scheduling quantum
of the 4ms, for the Fairness-aware and the HRRS scheduler. We can see that a hard-
ware implementation results in an average speedup of 6.98 percent over a software
implementation for the HRRS scheduler.

5.2.4 Energy Efficiency Analysis

We have used the commonly applied power-delay product (PDP) in order to evaluate
energy efficiency of the Fair and HRRS scheduling policies applied on an ACMP

56

Chapter 5. HRRS

Figure 5.10: Speedup of the hardware over the software implementation (baseline)
for the HRRS scheduler, where scheduling quanta are 1ms and 4ms for hardware and
software implementations respectively

system. Since average energy consumption of the Fair and HRRS scheduling units are
negligible compared to the whole CMP system, several million times less, we did not
consider them separately in this study.

Fig. 5.11 and Fig. 5.12 represent normalized energy efficiency (less is better) of
the Fairness scheduler and HRRS scheduler over Linux OS scheduler on an ACMP
when running dependent and independent threads in the system respectively. When
running independent threads in an ACMP system HRRS is on average 10.73 percent
and 6.56 percent more energy efficient than the Linux OS and Fairness schedulers
respectively. On the other hand, when running dependent threads in an ACMP system,
HRRS policy is 7.57 percent more energy efficient than the Fairness scheduling policy,
while consuming 5.71 percent more energy on average than the Linux OS scheduler.

5.3 Summary

We have presented the Hardware Round-Robin Scheduler (HRRS). This work is in-
fluenced by the rise of many core processors, particularly the asymmetric core multi-
processors (ACMPs) and their dependence on dynamic schedulers such as the com-

57

Chapter 5. HRRS

Figure 5.11: Energy efficiency comparison of the HRRS and Fairness scheduler nor-
malized to Linux OS scheduler for the SPEC2006 benchmark suite running four in-
stances of an application on four cores ACMP (1 OoO + 3 InO)

Figure 5.12: Energy efficiency comparison of the HRRS and Fairness scheduler nor-
malized to Linux OS scheduler for the SPLASH-2 benchmark suite running on four
cores ACMP (1 OoO + 3 InO)

58

Chapter 5. HRRS

modity Linux OS CPU scheduler in order to achieve fair and balanced performance
between active threads. Our initial objective was to achieve these performance bene-
fits from running parallel workloads on ACMPs without the need for substantial hard-
ware extensions, sampling, or runtime overheads. Incorporating minimal hardware
additions, our HRRS policy promotes a balanced distribution of execution time for
threads per core type. We have shown that HRRS provides greater opportunity for all
threads to share time running on the more efficient large core, selected via a round-
robin algorithm, which produces generous performance benefits even after including
scheduler and context swap overheads as well as latencies arising from the additional
cache accesses needed for loading the working data sets. By using the HRRS policy
on an ACMP, we got a total execution time speedup of 37.7 percent and 16.5 per-
cent respectively compared to the state-of-the-art Linux OS scheduler and Fairness
scheduler when running a multi-threaded application workloads (Splash2).

59

6
KUTHS: Kernel to User mode Transition

aware Scheduler for Hardware Threads

In section 1.2 we have commented the effects, and the consequences that bottle-
necks can have on the potential speedup reached through the parallelization of multi-
threaded applications on single-ISA asymmetric multi-cores.

The performance gain of parallel execution is in direct relation to the amount of
time spent in synchronization of the workload. The higher the concurrency throughout
the execution of the parallel workload the higher the performance. If the threads need
to wait for each other, the less work gets done concurrently, which reduces the possible
speedup gain. Programmers are trying hard to reduce bottlenecks that lead to thread
waiting, to achieve higher concurrency. Much effort is put into attempting to reduce
issues such as false sharing, thread synchronization, thread load imbalance. Some
of the earlier research on computer architecture focuses on this problem as well, e.g.,
transactional memory [57], primitives like test-and-test-and-set [84], lock elision [58],
speculative synchronization [60], etc. The main idea is to speed up the bottlenecks that

61

Chapter 6. KUTHS

cause thread waiting.
Our proposal, Kernel to User mode Transition aware Scheduler for Hardware

Threads (KUTHS), builds upon the previously proposed HRRS technique, described
in section 5. KUTHS extension consists of two parts. First, KUTHS utilizes ker-
nel to user code execution transitions to identify possible critical sections and make
a rescheduling decision. Second, KUTHS accelerates these bottlenecks by localiz-
ing and executing them on the large core. In the next two sections, we describe the
proposed KUTHS policy and discuss its hardware versus software implementation.

6.1 KUTHS Algorithm

The KUTHS approach builds upon the HRRS approach, described in section 5.1.
Therefore, we use the same ACMP system to present KUTHS technique. An ACMP
is composed of one large out-of-order core and three smaller and identical in-order
cores. The KUTHS approach presents an abstracted homogeneous hardware view
comprised of four identical logical cores to the operating system. The OS scheduler
maps software threads to the logical cores which enables the OS scheduling policies
and implementation to be left unmodified. In turn, the KUTHS remaps the software
threads running on logical cores to physical cores after each hardware-quantum of
time passes (as opposed to the software-quantum which invokes the OS scheduler).
In essence, KUTHS can be viewed as mapping the logical cores that the OS sees
and schedules software threads onto, to the physical cores of the underlying hardware
which actually execute the threads.

The defining characteristic of the KUTHS algorithm is its use of determining
whether a core made a recent transition from executing kernel code to user code (an
indication that an interrupt has occurred) to make scheduling decisions. Some of these
transitions activate the OS scheduler which will swap the currently executing thread on
a logical core for another thread in its ready queue. When this happens, the hardware
context of the thread being swapped out must be saved and replaced by the context
of the new thread chosen by the OS to be executed. It is important to note that these
transitions (the ones which activate the OS scheduler) are due to a thread reaching a
synchronization point in its code and having to wait on a lock (operating system futex)
or thread waiting on the Operating system routine (e.g. I/O) to finish. Therefore, by

62

Chapter 6. KUTHS

catching and utilizing the kernel-level to user-level execution transitions in the cores,
we are able to localize some but not all of the critical sections of a thread without
requiring any extensions to the ISA or complex profiling.

In order to determine these execution level transitions, the KUTHS monitors the
state of the cores’ context control registers (the lower two-bits of the code segment
descriptor that determine the current privilege level of the code executing) during the
hardware-quantum and when a transition is detected a “transition-flag” (which re-
quires reusing or adding one bit in hardware) is set. To select the scheduling scheme
to apply for the start of the next hardware-quantum, the KUTHS checks to see which
of the “transition-flags” belonging to the four cores are set. If none are set, the KUTHS
proceeds to schedule based on a round-robin selection scheme akin to the Hardware
Round-Robin Scheduler (i.e. using round-robin selection, it chooses one of the three
logic cores running on the small cores to swap with the logical core running on the
large core). If only the large core has its “transition-flag” set, then no swap is made. If
only one of the small cores has its “transition-flag” set, the logical core running on that
small physical core will be swapped with the logical core running on the large phys-
ical core at the start of the next hardware-quantum even if the large core also had its
“transition-flag” set. Lastly, if more than one of the small cores has its “transition-flag”
set, one of their corresponding logical cores will be chosen via round-robin selection
to be swapped with the logical core running on the large physical core at the start of
the next hardware-quantum. As a side-note, a core running system code at the moment
of determining the next scheduling scheme can not be selected to be swapped.

A thread running on one of the smaller physical cores is always swapped with
the thread running on the large physical core after each hardware-quantum for all
three approaches, the KUTHS, the HRRS and the Fairness-aware scheduling. The
fundamental difference between KUTHS and HRRS or Fairness-aware Scheduler al-
gorithms is the way in which the threads are selected to be mapped onto the physical
cores. The KUTHS scheduling tries to enhance scheduling benefits by discovering
and running the critical sections of code on the larger cores, n contrast to the HRRS
and the Fairness-aware approaches. The other difference between the KUTHS and
Fairness-aware Scheduler algorithms is that KUTHS maps logical cores (e.g. hard-
ware threads) onto the physical cores while Fairness-aware Scheduler schedules soft-
ware threads onto the physical cores on every hardware scheduling quantum.

63

Chapter 6. KUTHS

The difference between KUTHS to state-of-the-art in bottleneck acceleration found
in BIS [13] and UBA[14] is that the KUTHS does not require any ISA extensions that
have impacts on the re-usability of code. Conversely, the ease of the KUTHS imple-
mentation comes at the cost of two things. Firstly, the ease of the KUTHS implemen-
tation comes at the cost of not being able to catch all of the critical sections compared
to the BIS[13] and UBA[14] policies since it can only identify a transition from sys-
tem to user-level code and does not have the precise knowledge that the thread entered
into a critical section. Also, KUTHS may potentially trigger some thread swaps that
are not caused by the critical sections but by OS scheduling policy, thus substantially
entailing additional overheads compared with BIS and UBA approaches. Secondly,
when applied on single-threaded applications, KUTHS follows a typical HRRS policy
described in the previous chapter.

6.1.1 Hardware Implementation

From the perspective of the physical hardware, the KUTHS scheduling policy guar-
antees only two things. First, a thread will not occupy a large physical core for more
than one hardware-quantum unless it is the only runnable thread at the end of the
hardware-quantum or it is executing kernel code at the end of the hardware-quantum.
Second, if a thread reaches a critical section and must wait on a lock (operating system
futex), the KUTHS policy attempts to promote the thread, upon acquiring the lock, to
be scheduled on the large physical core to continue its execution. However, KUTHS
does not necessarily execute all the critical sections of a thread on a large core.

Unlike to BIS[13] and UBA[14], the KUTHS scheduling technique does not fa-
cilitate hardware overheads to be able to store and restore the architecture state in the
cores. It utilizes the x86 hardware context switching mechanism, called Hardware
Task Switching in the CPU manuals [78]. To use it KUTHS needs to tell the core
where to save the existing state, and where to load the new state. This is explained in
detail in section 4.1.

Like the HRRS scheduler hardware implementation, presented in section 5.1.1,
KUTHS also needs two counters, one register and two decoders to facilitate round-
robin mechanism. The size of these components depends on the number of the cores in
the system e.g. for a four core system we need a 2-bit counter. Besides those, KUTHS

64

Chapter 6. KUTHS

has hardware additions that include a “transition-bit” on every core and a separate unit
with a vector that holds all of the “transition-bits”. In contrast to the low additional
overhead needed by KUTHS, UBA requires the Lagging Thread Identification (LTI),
the Bottleneck Identification (BI) and the Acceleration Coordination (AC) [14] while
BIS requires a Bottleneck Table (BT) where each entry corresponds to a bottleneck, an
Acceleration Index Table (AIT) augmented to the each small core, and a Scheduling
Buffer (SB) added to each large core [13].

6.2 KUTHS Algorithm extension for Many-Core Sys-
tems

Having explained the essence of the KUTHS algorithm, it is important to note the
results in the Table 6.1 before applying it on a many core processor. Every context
switch introduces overhead for a workload migration from one core to another. The
main elements are: 1) a few thousand cycle penalty for storing and restoring the ar-
chitecture state (register file), at most a few kilobytes 2) the overhead due to the time
it takes to drain a core’s pipeline prior to migration, which is modeled in our simu-
lations 3) the migration overhead due to cache effects, which is accounted for in our
simulations. The last point is clearly the largest and most significant element. Results
in Table 6.1 present the average cost of cache overheads in cycles for the system with
shared and private last-level caches where workloads range from a few kilobytes to a
few thousand kilobytes of data. This significant difference in the workload migration
cost between shared and private LLC systems shows the KUTHS mechanism is suffer-
ing slowdowns for certain types of workloads when applied on a system with private
LLC. If each core in the system has a private LLC, the KUTHS mechanism can not
be adapted to overcome the drawbacks caused by the higher workload migration cost.
On the other hand if a few cores share a portion of the LLC KUTHS can be modified
so that it reschedules threads only among cores that share a portion of the LLC while
the OS scheduler keeps its property of keeping threads scheduled on the cores, or a
group of cores, where they started execution.

65

Chapter 6. KUTHS

Table 6.1: Cost of workload migration (in cycles) during context switch for workloads
ranging from a few kilobytes to a few thousand kilobytes

Shared LLC Private LLC
Average 42985 301248

Min. 3406 15246

Max. 278112 3073444

6.3 Evaluation

We now evaluate the KUTHS approach and compare it to Fairness-aware Scheduling
[12], Hardware Round-Robin Scheduler presented in the previous section, and UBA
scheduling [14].

6.3.1 Simulated Architecture and Workloads

To analyse the proposed scheduling technique, we use the SPLASH-2 benchmarks
[83]. The SPLASH-2 benchmarks are designed to represent multi-threaded applica-
tions to evaluate hardware architectures when running several thread contexts. In our
experiments, we run each benchmark on the four simulated cores with each core capa-
ble of executing one hardware thread context at a time. All applications are run from
start to finish. Each thread or process has a fixed amount of work to perform, and
we declare that the evaluation finished once all threads/processes finished their pre-
assigned work. For example, several threads start at the same time. The threads that
finish first, of initially started ones, are restarted as they finish its preassigned work.
Once the longest thread, among all, initially started threads, has been completed its
preassigned work for the first time, the simulation ends. Such that the number of
threads running at any one time, until the end of the simulation, in the system remains
constant. We evaluate single multi-threaded application workloads running an equal
or greater number of threads per application as the number of available hardware con-
texts, i.e., the maximum number of threads. This is common practice for running
non-I/O-intensive applications [14]. For example, when we run one multi-threaded
application on a system simulated with four cores, we use four or more threads for
that application.

66

Chapter 6. KUTHS

Figure 6.1: Speedup and Energy efficiency comparison of the KUTHS and the Fair
scheduler for the SPLASH-2 benchmark suite in a shared LLC four core system (1
large + 3 small)

We use Sniper [75] for conducting the simulation experiments in this thesis chap-
ter. Sniper is a parallel, hardware-validated, x86-64 multi-core simulator capable of
running both multi-program and multi-threaded applications. Section 3.2.2 shows
detailed system configurations of four core system consisted of one large and three
small cores, used for the experiments.

Here we also test the scalability of proposed scheduling technique on an ACMP
system configurations of 8, 16 or 32 cores. The 8/16/32 core configurations composed
of 2/4/8 groups of four cores (1 large + 3 small) configurations, where each group
of four cores share a 4MB region of the LLC. LLC regions are connected with the
ring network. We call these configurations the private LLC systems, By private we
mean that each group of four cores has a portion of the LLC assigned only for itself to
use hence there is no sharing between the groups (even though the four cores within
a group may share their portion of the LLC). Similar to the work in [12], we utilize
a conservative hardware-quantum of 1 ms whereas the software-quantum is typically
upwards of around the 4 ms range.

67

Chapter 6. KUTHS

Figure 6.2: Distribution of the total execution time of the SPLASH-2 benchmark ap-
plications

6.3.2 Performance and Energy Efficiency evaluation on a Shared
LLC System

Fig. 6.1 shows the speedup of the KUTHS over the Fairness-aware Scheduler (higher
is better). Depending on the application, the speedup is due to the acceleration of not
only the critical sections but also of the threads that were sleeping for too long while
waiting for critical sections and need to catch up. The benefits arise from several facts.
First, as Fig. 6.2 shows the time spent executing user and kernel code averages to 94.45
percent and 5.55 percent respectively. On average, 90.48 percent of the system calls in
the non-sequential (i.e. when more than one thread is running concurrently) sections
of the SPLASH-2 applications are caused by synchronization and the percentage of
threads continuing execution on the large core after exiting synchronization based sys-
tem calls is 32.18 percent and 64.22 percent for the Fairness-aware and the KUTHS
scheduler respectively as shown in Fig. 6.3. The KUTHS policy localizes more of
the synchronization sections onto the large core therefore optimizing a program’s ex-
ecution by minimizing the time spent on synchronization sections in the slower small
cores. Second, crucial communication and data sharing behavior between threads dur-
ing the entire parallel phase of the applications barnes, cholesky, fmm and radiosity

68

Chapter 6. KUTHS

Figure 6.3: Percentage of threads that continue execution on the large or small core
after synchronization based system calls in the parallel section of the application for
the Fairness-aware and the KUTHS scheduler respectively

is irregular [85]. Therefore the performance of these applications does not benefit as
much from the KUTHS scheduler compared to the Fairness scheduler.

Fig. 6.4 represents the speedup of the KUTHS and HRRS over the Linux OS
scheduler on the Splash2 benchmark suite. The average speedup of the KUTHS over
HRRS scheduler is 10.95 percent. Similar to the comparison to the Fairness-aware
scheduler the speedup is consequence of the acceleration of not only the critical sec-
tions but also of the threads that were sleeping for too long while waiting for critical
sections and need to catch up.

The dynamic energy efficiency (commonly used power delay product PDP) com-
parison of the KUTHS scheduler over Fairness scheduler on an ACMP with shared
LLC (less is better) is also shown on the Fig. 6.1. Note that we do not consider energy
spent in the hardware scheduler separately due to the fact that it is orders of mag-
nitude less compared to the energy spent in the cores or caches. Our results show
that KUTS is on average 9.4 percent more energy efficient than Fairness scheduler
on an ACMP with the shared LLC. Fig. 6.5 represents speedup and energy efficiency
comparison of the KUTHS and the Fairness scheduler while running two randomly
selected applications from the SPLASH-2 benchmark suite. Each application runs as

69

Chapter 6. KUTHS

Figure 6.4: Speedup comparison of the KUTHS and the HRRS scheduler for the
SPLASH-2 benchmark suite in a shared LLC four core system (1 large + 3 small)

many threads as there are physical cores in the system, therefore stressing the system
with the larger number of dependent and independent software threads. Our results
show that KUTHS still outperforms the Fairness scheduler by 8.7 percent while being
8.4 percent more energy efficient.

6.3.3 Hardware vs Software Implementation

KUTHS uses a similar approach as the Fairness-aware Scheduling method in that the
operating system level scheduling is untouched and it maintains a consistent view of
the underlying hardware. The hardware is able to provide the abstraction of a symmet-
ric hardware to software while dynamically rescheduling threads among the cores in
an asymmetric multi-core system [82]. Both of these approaches (KUTHS and Fair-
ness) may also be implemented at the OS level by extending the OS scheduler but the
advantage of a hardware approach is that it provides finer granularity of the scheduling
quanta and requires no changes to the OS code while minimizing scheduling overhead
[11].

The default Linux scheduling quantum is defined in the Linux kernel as RR_TIME-
SLICE (include/linux/sched/rt.h), and its default value is set to 100 ms. A clock tick

70

Chapter 6. KUTHS

Figure 6.5: Speedup and Energy efficiency comparison of the KUTHS and the Fair
scheduler running two applications from the SPLASH-2 benchmark suite in a shared
LLC four core system (1 large + 3 small)

is typically 1 ms to 6 ms for the Linux kernel 2.6.8 and onwards (defined in ker-
nel/sched/fair.c by sysctl_sched_min_granularity and sysctl_sched_latency). It can
have a minimum quantum of 4 ms (a case rarely seen and still 4x the latency of the
hardware quantum) [12]. The hardware scheduling quantum we have used in our ex-
periments is 1 ms which is mentioned in the first paragraph of the Sec. 6.3.1. Fig. 6.6
represents the speedup that a hardware implementation, with a scheduling quantum
of 1ms, has over a software implementation (baseline), with a scheduling quantum
of the 4ms, for the Fairness-aware and the KUTHS schedulers. We can see that a
hardware implementation results in an average speedup of 7 percent and 12.1 percent
over a software implementation for the Fairness-aware and the KUTHS schedulers
respectively.

Though a software implemented scheduler can directly provide information as to
whether each thread is coming back from a synchronization-related interrupt, we have
decided not to go in the direction of trying to capture all of the critical section of
threads execution. When schedulers were able to identify all or most of the critical
section, using online or offline profiling or ISA extensions, they experienced the prob-
lem of threads piling up and waiting in the queue on the large core and increased

71

Chapter 6. KUTHS

Figure 6.6: Speedup of the hardware over the software implementation (baseline) for
the Fairness-aware and the KUTHS scheduler, where scheduling quanta are 1ms and
4ms for hardware and software implementations respectively

number of unused small cores in the system [13], [14], [15]. This was especially no-
ticeable in many-core systems when running a large number of threads. Therefore they
had to incorporate additional software or hardware mechanisms in order to balance the
workload.

6.3.4 Performance Evaluation on Private LLC System

Fig. 6.7 shows the speedups of our proposal for 8/16/32 simulated cores with as many
simulated threads per application, relative to the ACMP configuration. Each group of
four simulated cores (1 large + 3 small) share a 4MB L3 cache. For simulated config-
urations of 8 (2 groups), 16 (4 groups) and 32 (8 groups) cores we get performance
improvements of 24, 30 and 34 percent respectively. On the other hand, BIS [13] pro-
posal with 52 small cores having 3 large cores gives average performance benefits of
42 percent, while UBA [14] outperforms it by 8 percent. If we compare it to KUTHS
32 cores (8 groups) configuration, BIS [13] outperforms it by 8 percent and UBA [14]
by 16 percent on average, with less large cores in the system. This comes as conse-
quence of KUTHS lightweight yet coarser grained approach which makes it unable
to identify all bottlenecks in the multithreaded applications and send them only to be

72

Chapter 6. KUTHS

Figure 6.7: Speedup comparison of the KUTHS and the Linux OS (ACMP) Scheduler
for the SPLASH-2 benchmark suite in the private last-level L3 cache 8/16/32 cores
system configurations where each group of one large and three small share a 4MB L3
cache

executed on the large cores.

6.4 Summary

We have presented the Kernel to User mode code Transition aware Hardware Schedul-
ing (KUTHS) method. Our work is heavily influenced by Fairness-aware Schedul-
ing as well as bottleneck identification techniques. We seek to provide performance
benefits from running parallel workloads on ACMPs without the need for substantial
hardware extensions, sampling, or runtime overheads. Incorporating minimal hard-
ware additions, our KUTHS policy promotes the execution of the critical sections of
code on the larger rather than smaller cores within an ACMP resulting in performance
gains of 11.1 percent and 30 percent (geometric mean) compared to the state-of-the-art
Fairness-aware Scheduler and Linux OS Scheduler respectively, while being slower by
8 percent compared to one of the most complex and sophisticated bottleneck identifi-
cation techniques running SPLASH-2 benchmarks.

Although the hardware implementation of the ACMP scheduler achieves signifi-

73

Chapter 6. KUTHS

cant performance benefits over other conventional approaches, there are still several
challenges that can enhance the previous proposal. Improvements in both the schedul-
ing design and implementation layout of the KUTHS mechanism could lead to effi-
ciency gains and power reduction. Therefore, we seek to incorporate a smarter critical-
ity predictor based on monitoring cores’ instructions per cycle, cache hit/miss ratios,
and thread activity. The following section presents the scheduler with some of these
improvements applied. These enhancements require additional hardware counters but
lets us to better identify and manage a significant amount of the critical sections of
the user code while maintaining hardware implementation feasibility. They also allow
us to make better scheduling decisions based on the characteristics of the user code
currently running.

74

7
TCS: Trait-aware Criticality Scheduler

for Hardware-Threads

The parallel execution of multi-threaded applications, as well as multiprocess work-
loads on single-ISA asymmetric multi-cores, offers a potential speedup gain. In sec-
tion 1.2 we have noted the importance and the impact that scheduling based on fair-
ness, criticality and a workload’s characteristics may have on the potential speedup.
These features, especially a workload’s characteristics, are relevant to asymmetric sys-
tems on account of workloads will perform differently on different core types based
on their characteristics. Consequently, in an asymmetric system, it may be beneficial
to correlate a workload’s execution behaviour with a particular core type to ascertain
dynamically the workload’s characteristics and enhance the scheduler strategy.

We propose the Trait-aware Criticality Scheduling (TCS) policy, which is an im-
provement upon the HRRS scheduling policy. While the HRRS scheduling already
tackles the problem of fairness, the TCS scheduling uses the short-term traits of the
hardware threads to enhance the decision making process during scheduling in a man-

75

Chapter 7. TCS

ner that is more in tune with a workload’s specific characteristics. Additionally, in
order to adapt the scheduling policy to tackle the software thread criticality, the TCS
scheduler uses the long-term traits of the software threads during the scheduling de-
cision making process. In the next sections we describe the proposed Trait-aware
Criticality Scheduling (TCS) policy and discuss its hardware implementation.

7.1 TCS Algorithm Basis

Since the basis of the TCS scheduler is the HRRS scheduling policy, that we presented
in chapter 5, we briefly describe it here again to help composting the two approaches.
To expalin the mechanics of the HRRS approach, Fig. 7.1 showes an x86 ACMP
system containing one large out-of-order (OoO) core and three smaller and identical
in-order cores. Four identical logical cores form the figure correlate to four identi-
cal hardware threads. The HRRS maps the threads running on the logical cores to
the physical cores after every hardware-quantum. This provides an abstracted homo-
geneous hardware view to the operating system. The OS scheduler maps software
threads to the logical cores, e.g. hardware threads. This allows the OS scheduling
policies and implementation to be left unchanged. The OS scheduler, being triggered
after every software-quantum, executes much less frequently than that the HRRS, bee-
ing triggered after every hardware-quantum. In essence, the HRRS can be viewed as
mapping the logical cores that the OS sees and schedules threads onto to the physical
cores of the underlying hardware which actually execute the threads.

It is important to note the defining characteristic of the HRRS algorithm. The
HRRS algorithm evenly rotates threads (scheduled onto the logical cores by the OS
scheduler) running on the physical cores after every hardware-quantum.

7.1.1 Differences to the HRRS Algorithm

While both approaches, TCS and HRRS, swap a thread running on one of the smaller
physical cores with the thread running on the large physical core after a given time
quantum, here are two fundamental differences between the two algorithms. The first
significant difference is in the way in which the threads are selected to be mapped
onto the physical cores. The HRRS scheduling runs each logical core and hardware

76

Chapter 7. TCS

OPERATING SYSTEM
OS Scheduler

In-Order
Core 1

Threads

HW Scheduler

Out-of-Order
Core 0

In-Order
Core 2

In-Order
Core 3

Logical
Core 3

Logical
Core 2

Logical
Core 1

Logical
Core 0

Figure 7.1: TCS scheduling - All logical cores (which correlate to hardware threads)
are the same while the large physical core is represented by Core 0 and the small
physical cores are shown as Cores 1,2 and 3

thread, on each physical core type for a specified amount of time, namely one hard-
ware quantum, in the round-robin order. In contrast, the TCS policy uses a short-term
progress counter to make its decision regarding which of the logical cores, hardware
threads, to map on which physical core type in the following hardware quantum. The
short-term progress characteristic of a thread is obtained by dividing the hardware
quantum interval by the number of committed instructions of a thread. After every
quantum, the TCS triggers a swap between the thread running on the large core with
one executing on a small core if the short-term progress counter of one of the small
cores has a higher value than the large core. In the case that the short-term counter of
more than one small core has a smaller value than the large core’s short-term counter,
the thread running on the small core with the highest value of the short-term counter
will be chosen to swap with the thread running on the large core.

The second difference between the schedulers is that the HRRS algorithm does not
need to take into account whether the OS scheduler has activated and swapped one of
the currently executing threads on a logical core for another thread from its ready
queue. In other words, if there are several threads pinned to an individual logical core,
the OS scheduler is responsible for swapping the executing thread with a ready thread
on a logical core, and this does not affect the HRRS method. In such cases, the thread

77

Chapter 7. TCS

context of the thread being swapped out must be saved and replaced by the context of
the new thread chosen by the OS to be executed which is all performed by the triggered
OS scheduler routine. The TCS scheduling policy, however, is notified every time a
software thread is not performing useful work (e.g. spinning or scheduled out by
the operating system). The following subsection explains our approach of identifying
these threads.

7.2 TCS approach of determining Critical Threads

To determine a thread’s criticality, we use a similar method used in work by Du Bois
et. al. [86]. The metric is based upon a thread’s idleness and inter-thread dependency.
For example, if a thread is busy waiting or spinning it is assumed that it is idle. Simi-
larly, if other threads are waiting for it, for instance for a synchronization event, then
it is denoted as having a more critical level of inter-thread dependency. A detailed
definition of how we identify running threads is found in Section 7.3.1.

Since it is challenging to recognize which are the most critical threads in parallel
workloads, we identify a thread as critical if the progress of the entire program is
susceptible to the execution time of that individual thread. This is exemplified best in
the case where several threads reach a barrier much before another thread and must
remain idle until the last thread advances to the same point. In this case, the thread
whose criticality level is highest can be either the longest running or longest waiting
thread.

In tackling this problem, the TCS scheduling policy is able to make use of the crit-
icality metric which takes into consideration each thread’s long-term characteristics
before performing a scheduling mapping at every hardware quantum. This criticality
metric depends both on the running time and the number of committed instructions
of running threads. Each running thread’s long-term characteristic is calculated by
dividing the time of an interval by the number of committed instructions of the thread
doing useful work during that period which is then added to each thread’s long-term
characteristic sum. In other words, this metric essentially weights time and work done,
increasing the level of importance for active threads which other threads may need to
wait upon.

Fig. 7.2 shows an example program with 5 threads. Thread t0 starts off on the large

78

Chapter 7. TCS

Figure 7.2: An example of the TCS scheduling threads on physical cores during every
hardware-scheduling quantum. At the beginning, thread 0 is running on the large
physical core while threads 2, 3 and 4 are running on the small physical cores. After
every hardware scheduling quantum, threads will be rescheduled based on their short-
term characteristics. Whenever a thread stalls or continues, rescheduling is performed
based on the long-term thread characteristics.

core while threads t1, t2, and t3 start execution on the smaller cores. After the first
hardware quantum (hw q0), the TCS uses the short-term characteristics of the threads

79

Chapter 7. TCS

and determines that thread t2 has executed the least amount of instructions during
the last hardware quantum and hence swaps it with thread t0 so that it can commence
executing on the larger core so that it may hopefully catch up. Thread t2 is furthermore
considered as the most critical short term thread during the next two hardware quanta
as well so the TCS does not swap it out of the large core. After hardware quantum q3, a
new thread t4 begins execution due to an OS software scheduling swap which triggers
the TCS long-term scheduling policy. Since the total criticality sum of the new thread
t4 is less that either t0, t1, or t2, all of which have been previously executing, the TCS
schedules t4 to begin executing on the large core at the start of hardware quantum 4.
The rest of the figure illustrates a similar process where at the end of each hardware
quantum, the TCS invokes either the short-term (i.e. at the end of hw q7, q8, and q9)
or long-term scheduling approaches (i.e. at the end of hw q5 and q6).

7.2.1 Differences to the other Criticality Schedulers

The fundamental differences between the TCS and the criticality stacks study [86] are
based on the manner in which the thread criticality metric is computed as well as how
rescheduling is triggered. In contrast to the TCS, the criticality stacks technique takes
into account the running time and the number of running threads. In other words,
the time of an interval is divided by the number of threads doing useful work during
that period, and this is added to each thread’s criticality sum. This metric essentially
weights time, opposed to the TCS metric which weights time and the work done.
While both techniques divide execution time into a number of intervals, the criticality
stacks approach begins a new interval whenever any thread changes state as a result
of synchronization behavior from active to inactive or vice versa, while TCS is based
on a fixed hardware quantum.

Unlike KUTSH approach, TCS does need OS library extensions to be made (pthread).
Because of it, the TCS policy is able to identify all critical sections marked by the
user. Bottleneck Identification and Scheduling (BIS) [13] tries to identify parallel
bottlenecks, and migrates threads executing these bottlenecks to a large core in a het-
erogeneous multicore. While they speed up bottlenecks that restrict parallel execution,
we rather discover the thread(s) essential to overall execution. A bottleneck could be
on the critical for the performance of one thread, but not for the overall performance

80

Chapter 7. TCS

of the application. Hence, accelerating bottlenecks does not inevitably enhance per-
formance, and could still needlessly speed up threads, reducing energy efficiency [86].

7.3 Hardware Implementation

Compared to other state-of-the-art criticality based scheduling methods, the amount
of overhead with our implementation is relatively similar and lightweight. In this
section, we first describe the manner of identifying running threads and then present
an example case of a possible hardware implementation of the TCS policy. At the end
of this section we elaborate on the manner in which context switches are managed.

7.3.1 Identification of the Running Threads

A thread identified as idle will typically be either spinning, that is to say running
in a waiting look for some reason such as checking the status of a synchronization
variable, or scheduled out of physical execution by the operating system. While the
latter is easily detected since the OS can communicate when it has scheduled threads
in or out of physical execution, to detect when a thread is spinning is non-trivial due
to the fact that the spinning thread is still executing instructions.

This may be solved both at the hardware and software level. Hardware approaches
typically use tables within processors to keep track of backward branches, the fre-
quency of which may help to identify a spinning loop, or repetitive operation such
as loading a condition variable. In order to improve accuracy of spinning identifica-
tion, additional conditions are checked alongside of the tables including architectural
state changes and load address modifications. Conversely, software based solutions
involve the insertion of extra instructions into the executable code which serve to de-
note when a thread is spinning. To avoid the need for developers to manually insert
such instructions, they are conventionally added directly into threading libraries such
as Pthreads.

Each approach has advantages as well as drawbacks. The software approach, by
using semantic information from the program, will never falsely identify spinning
loops and is able to determine the exact start and end of the loop. Relying on semantic
information, however, stipulates that non-instrumented user-level spinning will not

81

Chapter 7. TCS

be detectable. On the other hand, hardware solutions typically detect spinning loops
once a certain threshold and condition set has been reached which can have adverse
impacts on its efficiency. As a result, hardware approaches may also produce false
negatives (e.g., when the number of loop iterations is lower than the threshold) and
false positives (e.g., non-monitored architectural state modifications).

In our work we utilize a software based approach to identifying spinning due to its
efficacy and ease of implementation. We evaluate benchmarks that perform synchro-
nization using threading libraries (Pthreads and OpenMP) which we instrument to be
able to capture all events involving spinning including barriers, locks, and condition
variables. Our instrumentation allows us to notify the hardware that a thread has be-
come either active or inactive via a call-down when the application enters or exits a
spinning loop. Next we describe how based on these call-downs, the hardware is able
to dynamically calculate the criticality of a thread.

7.3.2 Hardware Component Description

We propose a small hardware component that keeps track of the number of commit-
ted instructions and time elapsed per hardware thread and calculates the criticality of
each thread. The hardware component, shown in the Fig. 7.3, consists of: two 64-
bit criticality counters per hardware thread (short and long term counters) marked as
STC and LTC on the figure, an “active” bit that indicates whether the thread is run-
ning or not, and a number of committed instructions counter (64-bits) per hardware
thread. In order to calculate the criticality as defined in the previous section, we need
to know which threads performe useful work during the hardware quanta. The active
flag of each thread is set or reset via the software calls either activating or deactivating
a thread. Besides this, the hardware component also has one global timer and four
per hardware thread timers. These timers are independent of a core’s frequency and
monitor absolute time. Global counter keeps track of the hardware quantum. Once the
timer reaches the quantity of time of a hardware quantum, it resets the committed in-
struction counters and per-hardware thread timers and signals the update of criticality
counters. Hardware thread timers are used to calculate the criticality metric.

Short and long term counters are updated every hardware quantum with the criti-
cality result of each thread (i.e., the absolute time of the hardware quantum divided by

82

Chapter 7. TCS

the number of committed instructions) being overwritten in its short term criticality
counter and added to its total long term criticality counter sum. This is followed by
resetting the quantum timer and committed instructions counter. When a software call
is received, it triggers a reset of the active bit of a particular thread, we add its crit-
icality result to a threads long term criticality counter before updating the hardware
state.

Although each software thread needs to be associated with a long term criticality
counter, we need to implement only one physical counter per hardware context even
though there may be more software threads and hardware threads. Since only running
software threads need to update their criticality counters, all that is needed in hardware
is one criticality counter, a quantum timer, and an active bit per hardware thread. When
a context switch occurs, the operating system will store the long term criticality state
associated with the swapped out thread and initialize the core’s long term criticality
state to be associated with the newly active thread. Therefore, our implementation
may work with many more software threads than physical cores or hardware threads.

7.3.3 Managing the Context Switches

The TCS scheduling method does not provide the hardware overheads with the abil-
ity to store and restore the architecture state in the cores, as opposed to some other
dynamic schedulers [13], [14]. It utilizes the x86 hardware context switching mech-
anism, called Hardware Task Switching in the CPU manuals [78]. The HRRS must
instruct the core where to store the existing CPU state, and where to load the new CPU
state. There is a detailed explanation of this in section 4.1.

7.4 Evaluation

In this section we evalute the TCS schedulin policy. We compare it to the state-of-the-
art policies in scheduling for fairness, workload characteristics and thread criticality.

83

Chapter 7. TCS

Figure 7.3: Hardware implementation layout example for TCS scheduling policy on
the four core ACMP consisting of one large and three small cores (1 OoO + 3 InO),
where “A” is the active bit per hardware thread and “CmInst” is the number of com-
mitted instructions in given time quantum per hardware thread.

7.4.1 Simulated Architecture and Workloads

We utilize the SPLASH-2 [83] and SPEC2006 [68] benchmarks in our tests. The
SPLASH-2 benchmarks are intended to embody multi-threaded applications to assess
hardware designs when running several thread contexts. The SPEC2006 benchmark
is an industry-standardized, CPU-intensive benchmark suite, stressing a system’s pro-
cessor, memory subsystem, and compiler. We have employed the SPEC2006 bench-
marks to run multiple instances of the various single threaded applications concur-
rently on the system. We run each workload on the four simulated cores with each
core able of executing one hardware thread context at a time.

The individual workload may consist of one or several processes or threads orig-
inating from one or more applications. Each thread or process has a fixed amount
of work to perform, and we declare that the evaluation finished once all threads/pro-
cesses finished their preassigned work. In the event of possessing several applications
or threads at the same time, the threads that finish earliest are restarted so that the

84

Chapter 7. TCS

number of threads running at any one time on the system remains constant. Once the
longest thread/application has been finished, the simulation ends. We evaluate single
multi-threaded application workloads running an equal number of threads per appli-
cation as the number of available hardware contexts, i.e., the maximum number of
threads. When we run workloads consisted of the single-threaded applications, we
run at least as many different applications as there are available hardware contexts, i.
e. max number of cores. This is common practice for running non-I/O-intensive ap-
plications [14]. For example, when we run one multi-threaded application on a system
simulated with four cores, we use four or more threads for that application.

For performing the simulation experiments we have used Sniper [75], a paral-
lel, hardware - validated, x86-64 multi-core simulator capable of running both multi-
program and multi-threaded applications, described in Section 3.2. We configured the
simulator to model an ACMP made up of one large core and three small cores respec-
tively. Section 3.2.2 shows detailed system configurations used for the experiments.
Similar to the work in [12], we utilize a conservative hardware-quantum of 1ms and a
software-quantum of 4ms even though it is typically upwards of this range.

7.4.2 Comparison to the Scheduling for Fairness

Fig. 7.4 illustrates performance (system throughput or weighted speedup) comparison
of the TCS and HRRS scheduler relative to the pinned scheduling method for ran-
dom workload mixes on a heterogeneous multi-core with one large and three small
cores. The workload mixes consist of four randomly selected applications from the
SPEC2006 benchmark suite. From the figure we can see that for some mixes of appli-
cations TCS underperforms compared to the pinned scheduler. Small (e.g., in-order)
cores provide adequate performance for compute-intensive workloads whose follow-
ing instructions in the dynamic instruction stream are for the most part independent
(i.e., high levels of inherent instruction level parallelism or ILP). On the other hand,
large (e.g., out-of-order) cores provide decent performance for workloads where the
ILP must be obtained dynamically, or the workload presents a substantial quantity
of memory level parallelism (MLP). Consequently, scheduling decisions on hetero-
geneous multi-cores can be significantly enhanced by taking into account how well a
small or large core can utilize the ILP and MLP properties of a workload. Since the

85

Chapter 7. TCS

Figure 7.4: Weighed speedup (system throughput) comparison of the TCS and HRRS
scheduler normalized to the pinned scheduler on an ACMP consisting of four cores (1
OoO + 3 InO) for the SPEC2006 benchmark.

TCS does not take into account the threads’ MLP, it will keep rescheduling threads on
every hardware quantum although threads might not have high enough MLP or ILP to
overcome the cost of the introduced context switches.

7.4.3 Comparison to the Scheduling for Workload Characteristics

Fig. 7.5 presents performance improvement (system throughput or weighted speedup)
over the pinned scheduler for random workload mixes on a heterogeneous multi-core
with one large and one small core. The workload mixes consist of two randomly
selected applications from the SPEC2006 benchmark suite. We have been running
hundred different randomly selected application mixes. For the most workloads the
TCS is outperforming the pinned scheduler, but in a few cases it may suffer up to
5 percent slowdown. This happens in cases when we have workload consisted of
two heavily memory bounded applications. Since TCS is not able to grasp weather
an application is memory bounded or not it will continue rescheduling applications
among large and small cores though in such a cases it may be better not to.

In Fig. 7.6 we compare TCS scheduling against random, memory-dominance (mem-
dom) scheduling, MLP ratio based scheduling, and the state-of-the-art PIE scheduling

86

Chapter 7. TCS

Figure 7.5: Weighed Speedup (system throughput) comparison of the TCS over the
pinned scheduler on an ACMP consisting of two cores (1 OoO + 1 InO) for the
SPEC2006 benchmark.

[11]. Memory-dominance scheduling refers to the conventional practice of always
scheduling memory-intensive workloads on the small cores. Our results shows that
TCS underperforms compared to the state-of-the-art scheduler for workload charac-
teristic (i.e. PIE) by only as much as 2.6 percent on average even for heterogeneous
multi-core with the one large and one small core. This comes as the consequence of
the fact that TCS metric is based on ILP and does not consider the thread’s MLP sepa-
rately. These results highlight the significance that MLP detection plays in optimizing
scheduling. Though, the PIE outperforms the TCS by 2.6 percent, the complexity of
the hardware implementation of the PIE scheduler over the TCS is significant since
PIE requires additional counters, registers as well as logic circuits to calculate features
like last level cache misses of each core.

7.4.4 Comparison to the Scheduling for Criticality

Fig. 7.7 shows performance (system throughput or weighted speedup) relative to pinned
scheduling for multi-thread workloads from the SPLASH2 benchmark suite on a het-
erogeneous multi-core with one large and one small core. We compare our TCS ap-
proach to the KUTHS and criticality stacks [86] (criticality) approaches. While the

87

Chapter 7. TCS

Figure 7.6: Comparing absolute average weighed speedup (system throughput) of the
different scheduling policies over the pinned scheduler on an ACMP consisting of two
cores (1 OoO + 1 InO)

KUTHS and the criticality stack techniques exhibit similar performance benefits, TCS
outperforms both aproaches by about 24 percent on average. While KUTHS acceler-
ates bottlenecks that limit parallel performance, the criticality stacks technique and
the TCS approach instead find the thread(s) which are critical to overall performance.
For example, a bottleneck could be on the critical path for one thread, but not for
others, consequently, speeding up bottlenecks do not significantly increase overall
performance. Though, the KUTHS technique is not able to identify every bottleneck
throughout the application execution, the ones it does identify it accelerates by exe-
cuting it on the large core. Thus, its underlying approach to scheduling for fairness
compensates for not being able to catch all bottlenecks and leads to similar perfor-
mance benefits as gained via the criticality stack technique. In contrast to the critical-
ity stacks and the KUTHS approachs, the TCS reschedules running threads applying
all three methods: scheduling for fairness, scheduling for criticality and scheduling
for workload characteristics. This results in significant performance benefits because
the threads are checked for rescheduling during every hardware quantum but are not
necessarily moved from a small to the large core therefore it does not introduce as
many unnecessary context switches as KUTHS which frequently schedules the slow-

88

Chapter 7. TCS

Figure 7.7: Weighed Speedup (system throughput) comparison of the KUTHS, criti-
cality and TCS schedulers normalized to the pinned scheduler on an ACMP consisting
of four cores (1 OoO + 3 InO) for the SPLASH2 benchmark.

est thread out from the large core after only one hardware quantum. The criticality
stack approach reschedules threads only when it receives a notification from software
that the thread has been scheduled in or out from the core. This leads to much less
frequent and unfair scheduling since a slower thread might end up on the small core
for a large period of time therefore reducing overall application performance.

7.5 Summary

Single-ISA asymmetric multi-cores are typically composed of small (e.g., in-order)
cores and large (e.g., out-of-order) cores. Employing various core types on an individ-
ual die has the potential to increase performance. However, the success of asymmetric
multi-cores is directly dependent on how well a scheduling policy maps workloads to
the best core type (large or small). Incorrect scheduling decisions can unnecessarily
degrade performance.

We have presented the Trait-aware Criticality Scheduling method of the hard-
ware threads on an ACMP. Our work is heavily influenced by scheduling for fairness,
scheduling for workload characteristics as well as bottleneck identification techniques.

89

Chapter 7. TCS

We have proposed a simple but effective scheduling mechanism using a thread crit-
icality metric. We have applied this metric, which uses the amount of instructions
completed per hardware quantum, to gain insight into short-term and long-term thread
criticality. Our Trait-aware Criticality Scheduler (TCS) uses both of these criticality
measures to produce a mapping of threads to cores which takes into consideration the
runtime performance characteristics of individual workloads. We seek to provide per-
formance benefits from running parallel and multi-application workloads on an ACMP
without the need for substantial hardware extensions, sampling, or runtime overheads.
Incorporating minimal hardware additions, our TCS policy promotes the execution of
the critical threads on the larger rather than smaller cores within an ACMP resulting
in performance gains of 11 percent and 24.4 percent (geometric mean) compared to
the state-of-the-art techniques in scheduling for fairness and scheduling for criticality
respectively, while being slower by only 2.6 percent compared to one of the state-of-
the-art techniques in scheduling for workload characteristics.

90

8
Conclusion and Future Work

Single-ISA asymmetric multi-cores are typically composed of small (e.g., in-order)
cores and large (e.g., out-of-order) cores. Using different core types on a single die
has the potential to improve performance. However, the success of asymmetric multi-
cores is directly dependent on how well a scheduling policy maps workloads to the
best core type (e.g. in-order or out-of-order). Incorrect scheduling decisions can un-
necessarily degrade performance.

In Chapter 5, we have presented the Hardware Round-Robin Scheduler (HRRS).
Our work is influenced by the rise of many core processors, particularly the asym-
metric core multi-processors (ACMPs) and their dependence on dynamic schedulers
such as the commodity Linux OS CPU scheduler in order to achieve fair and bal-
anced performance between active threads. Our initial objective was to achieve these
performance benefits from running mitiple single-threaded applications and parallel
multi-threaded workloads on ACMPs without the need for substantial hardware ex-
tensions, sampling, or runtime overheads. We discussed the possible hardware imple-
mentation of the HRRS scheduler where by incorporating minimal hardware additions

91

Chapter 8. Conclusion and Future Work

our HRRS policy promotes a balanced distribution of execution time for threads per
core type. We have shown that HRRS provides greater opportunity for all hardware
threads to share time running on the more efficient large core, selected via a round-
robin algorithm, which produces generous performance benefits even after including
scheduler and context swap overheads as well as latencies arising from the additional
cache accesses needed for loading the working data sets. By using the HRRS policy
on an ACMP, we got an average speed up of 17.2 percent and 11.71 percent, while
being on average 7.57 percent and 6.56 percent more energy efficient compared to the
Fairness scheduler when running a multi-threaded application workloads (Splash2)
and when running multiple instances of the single-threaded applications (SPEC2006)
respectively. This work was a foundation upon which we have built and tested our
proposed hardware scheduling designs in order to further improve the performance
and energy efficiency capabilities of ACMPs.

In Chapter 6, we presented the Kernel to User mode code Transition aware Hard-
ware Scheduling (KUTHS) method. Our work is heavily influenced by Fairness-aware
Scheduling as well as bottleneck identification techniques. We seek to provide perfor-
mance benefits from running parallel multi-threaded workloads on ACMPs without
the need for substantial hardware extensions, sampling, or runtime overheads. Incor-
porating minimal hardware additions, our KUTHS policy promotes the execution of
the critical sections of code on the larger rather than smaller cores within an ACMP
resulting in performance gains of 11.1 percent and 30 percent (geometric mean) com-
pared to the state-of-the-art Fairness-aware Scheduler and Linux OS Scheduler re-
spectively, while being slower by 8 percent compared to on of the most complex and
sophisticated bottleneck identification techniques running SPLASH-2 benchmarks.

In Chapter 7, we presented the Trait-aware Criticality Scheduling method of the
hardware threads on an ACMP. Our work is heavily influenced by scheduling for fair-
ness, scheduling for workload characteristics as well as bottleneck identification tech-
niques. We have proposed a simple but effective scheduling mechanism using a thread
criticality metric. We have applied this metric, which uses the amount of instructions
completed per hardware quantum, to gain insight into short-term and long-term thread
criticality. Our Trait-aware Criticality Scheduler (TCS) uses both of these criticality
measures to produce a mapping of threads to cores which takes into consideration the
runtime performance characteristics of individual workloads. We seek to provide per-

92

Chapter 8. Conclusion and Future Work

formance benefits from running parallel and multiapplication workloads on an ACMP
without the need for substantial hardware extensions, sampling, or runtime overheads.
Incorporating minimal hardware additions, our TCS policy promotes the execution of
the critical threadss on the larger rather than smaller cores within an ACMP resulting
in performance gains of 11 percent and 24.4 percent (geometric mean) compared to
the state-of-the-art techniques in scheculing for fairness and scheculing for criticality
respectively, while being slower by only 2.6 percent compared to on of the state-of-
the-art technique in scheduling for workload characteristics.

8.1 Future Work

When considering an LLC cache for many-core processors, an popular option gaining
traction in the industry is to distribute the cache into separate blocks, therefore appear-
ing as unified rather than being physically unified. This is a similar approach to that
taken by the IBM Power8 architecture [87] where each core has an 8MB low-latency
LLC cache and a high-speed cache-coherent ring is used to connect all of the cores.
Thus joined, the LLC cache blocks can be viewed as a shared 96MB cache with a
nonuniform latency. Access to the local 8MB LLC is speedy, but access to remote
LLC cache blocks will require additional cycles to traverse the ring. By comparison, a
large unified LLC cache would have a constant access time slower than the local cache
but faster than remote blocks. The IBM design keeps hot data in the CPU’s local LLC,
reducing the average LLC latency.

In a many-core processor with this kind of distributed LLC cache configuration, a
latency problem may arise due to frequent context switches among cores being con-
nected to a different LLC cache segments. Therefore, the TCS scheduling heuristic
many need to be adjusted to account for the added latencies of the LLC and moreover
can be tuned to allow for the scheduling of threads to be such as to take advantage
of the distribution of cache blocks. Perhaps it may become viable to not only swap
threads from large to small cores but also from small to small depending on which
LLC segments their data sets are located. Furthermore, it would be beneficial to im-
plement the TCS scheme on an FPGA in order to gauge the feasibility of the design
as well as raise the level of accuracy concerning the latency overheads.

93

9
Publication List

The content of this thesis led to following publications:
Journals

• N. Markovic, D. Nemirovsky, O. Unsal, M. Valero, and A. Cristal, Thread Lock
Section-aware Scheduling on Asymmetric Single-ISA Multi-Core, IEEE Com-
puter Architecture Letters, DOI:10.1109/LCA.2014.2357805, Volume pp., Is-
sue 99., pages 1-1, October 2014.

• N. Markovic, D. Nemirovsky, O. Unsal, M. Valero, and A. Cristal, Kernel-to-
User-Mode Transition-Aware Hardware Scheduling, IEEE Micro, Volume 35.,
Issue 4., pages 37-47, August 2015.

Conferences

• N. Markovic, D. Nemirovsky, V. Milutinovic, O. Unsal, M. Valero, and A.
Cristal, Hardware Round-Robin Scheduler for Single-ISA Asymmetric Multi-
core, Euro-Par 2015: Parallel Processing, Lecture Notes in Computer Science,
Volume 9233, pages 122-134, August 2015

95

Chapter 9. Publications

• N. Markovic, D. Nemirovsky, O. Unsal, M. Valero, and A. Cristal, TCS: Trait-
aware Criticality Scheduling for Hardware-Threads on Single-ISA Asymmetric
Chip Multiprocessor, The 21st International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), Under
review, March 2016.

Publications related but not included into this thesis:
Conferences

• N. Markovic, D. Nemirovsky, O. Unsal, M. Valero, and A. Cristal, Perfor-
mance and energy efficient hardware-based scheduler for Symmetric/Asymmet-
ric CMPs, The 27th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), October 2015.

Publications not related to this thesis:
Journals

• D. Nemirovsky, N. Markovic, O. Unsal, M. Valero, and A. Cristal, Reimagining
Heterogeneous Computing: a Functional Instruction Set Architecture (F-ISA)
Computing Model, IEEE Micro, Accepted for publication, 2015.

Workshops

• N. Markovic, D. Nemirovsky, O. Unsal, M. Valero, and A. Cristal. Object Ori-
ented Execution Model (OOM). The 2nd Workshop on New Directions in Com-
puter Architecture (NDCA-2), held in Conjunction with the 38th International
Symposium on Computer Architecture (ISCA-38), June 2011.

96

Bibliography

[1] Intel Corporation. Intel® core™ i7-4600u processor, 2013. [On-
line] Available: ark.intel.com/products/76616/

Intel-Core-i7-4600U-Processor-4M-Cache-up-to-3_

30-GHz. xiii, 26, 40

[2] P. Greenhalgh. big.little processing with arm cortex-a15 & cortex-a7, 2011.
[Online] Available: http://www.arm.com/files/downloads/

bigLITTLE_Final_Final.pdf. 2

[3] NVIDIA. Variable smp: A multi core cpu architecture for low power and high
performance, 2011. [Online] Available: http://www.nvidia.com. 2

[4] R. Kumar, and D. M. Tullsen, and P. Ranganathan, and N. P. Jouppi, and K.
I. Farkas. Single-isa heterogeneous multi-core architectures for multithreaded
workload performance. In Proc. 31st Annu. Int. Symp. Comput. Archit., page 64,
2004. 2, 8, 17

[5] R. Rodrigues, and A. Annamalai, and I. Koren, and S. Kundu, and O. Khan. Per-
formance per watt benefits of dynamic core morphing in asymmetric multicores.
In Proc. Int. Conf. Parallel Architectures Compilation Tech., pages 121–130,
2011. 2

[6] M. Jones. Inside the linux 2.6 completely fair scheduler, 2009. [On-
line] Available: http://www.ibm.com/developerworks/

library/l-completely-fair-scheduler/

l-completely-fair-scheduler-pdf.pdf. 2, 35, 47, 50,
53

97

ark.intel.com/products/76616/Intel-Core-i7-4600U-Processor-4M-Cache-up-to-3_30-GHz
ark.intel.com/products/76616/Intel-Core-i7-4600U-Processor-4M-Cache-up-to-3_30-GHz
ark.intel.com/products/76616/Intel-Core-i7-4600U-Processor-4M-Cache-up-to-3_30-GHz
http://www.arm.com /files/downloads/bigLITTLE_Final_Final.pdf
http://www.arm.com /files/downloads/bigLITTLE_Final_Final.pdf
http://www.nvidia.com
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/l-completely-fair-scheduler-pdf.pdf
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/l-completely-fair-scheduler-pdf.pdf
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/l-completely-fair-scheduler-pdf.pdf

Bibliography

[7] S. Li, and J. Ho Ahn, and R. D. Strong, and J. B. Brockman, and D. M. Tullsen,
and N. P. Jouppi. Quantifying the cost of context switch. In Proc. Workshop

Exp.Comput. Sci., pages 2–es, 2007. 3, 14, 41

[8] R. Netzer, and B. Miller. What are race conditions?: Some issues and formal-
izations. ACM Lett. Program. Lang. Syst., 1:74–88, 1992. 4

[9] M. Becchi, and Patrick Crowley. Dynamic thread assignment on heterogeneous
multiprocessor architectures. J. Instruction-Level Parallelism, 10:1–26, 2008. 5,
17

[10] D. Koufaty, and D. Reddy, and S. Hahn. Bias scheduling in heterogeneous multi-
core architectures. In Proc. 5th Eur. Conf. Comput. Syst., pages 125–138, 2010.
5, 17

[11] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer. Schedul-
ing heterogeneous multi-cores through performance impact estimation (pie). In
Proc. 39th Annu. Int. Symp. Comput. Archit., pages 213–224, 2012. 5, 8, 22, 39,
44, 47, 48, 70, 87

[12] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout. Fairness-
aware scheduling on single-isa heterogeneous multi-cores. In Proc. 22nd Int.

Conf. Parallel Archit. Compilation Tech., pages 177–187, 2013. 6, 9, 20, 35, 41,
43, 44, 46, 48, 49, 56, 66, 67, 71, 85

[13] J. Joao, and M. A. Suleman, and O. Mutlu, and Y. N. Patt. Bottleneck identifi-
cation and scheduling in multithreaded applications. In Proc. 17th Int. Conf. Ar-

chitectural Support Program Languages Operating Syst., pages 223–234, 2012.
7, 22, 48, 64, 65, 72, 80, 83

[14] J. Joao, and M. A. Suleman, and O. Mutlu, and Y. N. Patt. Utility-based accel-
eration of multithreaded applications on asymmetric cmps. In Proc. 40th Annu.

Int. Symp. Comput. Archit., pages 154–165, 2013. 7, 23, 48, 50, 64, 65, 66, 72,
83, 85

98

Bibliography BIBLIOGRAPHY

[15] S. Srinivasan, and L. Zhao, and R. Illikkal, and R. Iyer. Efficient interaction
between os and architecture in heterogeneous platforms. Operating Syst. Rev.,
45:62–72, 2011. 8, 17, 72

[16] A. Agarwal, J. Hennessy, and M. Horowitz. Cache performance of operating
system and multiprogramming workloads. ACM Trans. Comput. Syst., 6-4:393–
431, 1988. 14, 15

[17] J. C. Mogul and A. Borg. The effect of context switches on cache performance.
In Proc. Int. Conf. Architectural Support Program Languages Operating Syst.,
pages 75–84, 1991. 14

[18] G. E. Suh, E. Peserico, S. Devadas, and L. Rudolph. Job-speculative prefetching:
Eliminating page faults from context switches in time-sharing systems, 2001.
[Online] Available: http://csg.csail.mit.edu/pubs/memos/

Memo-442/memo-442.pdf. 14

[19] D. Chiou, S. Devadas, J. Jacobs, P. Jain, V. Lee, E. Peserico, P. Portante, L.
Rudolph, G. E. Suh, and D. Willenson. Scheduler-based prefetching for mul-
tilevel memories, 2001. [Online] Available: http://csg.csail.mit.
edu/pubs/memos/Memo-444/memo-444.pdf. 14

[20] P. Koka and M. H. Lipasti. Opportunities for cache friendly process schedul-
ing. In Proc. Workshop on Interaction between Operating System and Computer

Architecture, page 1, 2005. 14

[21] D. Tsafrir. The context-switch overhead inflicted by hardware interrupts (and
the enigma of do-nothing loops). In Proc. Workshop on Experimental Computer

Science, page 1, 2007. 14

[22] F. M. David, J. C. Carlyle, and R. H. Campbell. Context switch overheads for
linux on arm platforms. In Proc. Workshop on Experimental Computer Science,
page 1, 2007. 14

[23] G. E. Suh, S. Devadas, and L. Rudolph. Analytical cache models with applica-
tions to cache partitioning. In Proc. Int. Conf. on Supercomputing (ICS), pages
1–12, 2001. 15

99

http://csg.csail.mit.edu/pubs/memos/Memo-442/memo-442.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-442/memo-442.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-444/memo-444.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-444/memo-444.pdf

Bibliography

[24] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme for
memory-aware scheduling and partitioning. In Proc. Int. Conf. on High Perf.

Comp. Arch. (HPCA), pages 117–128, 2002. 15

[25] W. Hwu and T. M. Conte. The susceptibility of programs to context switching.
IEEE Transactions on Computers, 43-9:994–1003, 1994. 15

[26] F. Liu and Y. Solihin. Understanding the behavior and implications of context
switch misses. ACM Trans. Archit. Code Optim., 7-4:1–28, 2010. 15, 18

[27] H. Cui, and S. Sair. Extending data prefetching to cope with context switch
misses. In Proc. Int. Conf. on Comp. Design (ICCD), pages 260–267, 2009. 15

[28] D. Daly, and H. W. Cain. Cache restoration for highly partitioned virtualized
systems. In Proc. Int. Conf. on High Perf. Comp. Arch. (HPCA), pages 1–10,
2012. 16

[29] J. Zebchuk, H. W. Cain, V. Srinivasan, and A. Moshovos. Recap: a region-based
cure for the common cold cache. In Proc. Int. Conf. on High Perf. Comp. Arch.

(HPCA), pages 83–94, 2013. 16

[30] J. A. Brown, L. Porter, and D. M. Tullsen. Fast thread migration via cache
working set prediction. In Proc. Int. Conf. on High Perf. Comp. Arch. (HPCA),
pages 193–204, 2011. 16

[31] L. Miller. A heterogeneous multiprocessor design and the distributed scheduling
of its task group workload. In Proc. of the 9th Ann. Symp. on Comp. Arch., pages
283–290, 1982. 16

[32] E. Grochowski, and R. Ronen, and J. Shen, and H. Wang. Best of both latency
and throughput. In Proc. of the Int. Conf. on Computer Design (ICCD), pages
236–243, 2004. 17

[33] D. Moncrieff, and R. E. Overill, and S. Wilson. Heterogeneous computing ma-
chines and amdahl’s law. Parallel Computing, 22:407 – 413, 1996. 17

100

Bibliography BIBLIOGRAPHY

[34] D. Menasce and V. Almeida. Cost-performance analysis of heterogeneity in
supercomputer architectures. In Proc. of the 4th Int. Conf. on Supercomputing,
pages 169–177, 1990. 17

[35] R. Kumar, and K. I. Farkas, and N. P. Jouppi, and P. Ranganathan, and D. M.
Tullsen . Single-isa heterogeneous multi-core architectures: The potential for
processor power reduction. In Proc. 36nd Annu. IEEE/ACM Int. Symp. Microar-

chit., page 81, 2003. 17

[36] J. C. Saez, and M. Prieto, and A. Fedorova, and S. Blagodurov. A comprehensive
scheduler for asymmetric multicore systems. In Proc. 5th Eur. Conf. Comput.

Syst., pages 139–152, 2010. 17

[37] D. Shelepov, and J. C. Saez Alcaide, and S. Jeffery, and A. Fedorova, and N.
Perez, and Z. F. Huang, and S. Blagodurov, and V. Kumar. Hass: a scheduler
for heterogeneous multicore systems. ACM SIGOPS Operating Systems Review,
43:66–75, 2009. 17

[38] O. Khan, and S. Kundu. A self-adaptive scheduler for asymmetric multi-cores.
In Proc. of the 20th Symp. on Great lakes symposium on VLSI, pages 397–400,
2010. 18

[39] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. Jetty: Filtering snoops
for reduced energy consumption in smp servers. In Proc. Int. Conf. on High Perf.

Comp. Arch. (HPCA), pages 85–96, 2001. 18

[40] C. Saldanha, and M. Lipasti. Power efficient cache coherence. In Proc. Workshop

on Memory Performance Issues, page 1, 2001. 18

[41] J. Li, J. Martinez, and M. Huang. The thrifty barrier: Energy-aware synchroniza-
tion in shared-memory multiprocessors. In Proc. Int. Conf. on High Perf. Comp.

Arch. (HPCA), page 14, 2005. 18

[42] J. Chen, and L. K. John. Efficient program scheduling for heterogeneous multi-
core processors. In Proc. Annu. Design Automation Conf. (DAC), pages 927–
930, 2009. 18

101

Bibliography

[43] M. Annavaram, E. Grochowski, and J. Shen. Mitigating amdahl‘s law through
epi throttling. In Proc. of the 32nd Ann. Symp. on Comp. Arch., pages 298–309,
2005. 18

[44] J. A. Winter, and D. H. Albonesi, and C. A. Shoemaker. Scalable thread schedul-
ing and global power management for heterogeneous many-core architectures. In
Proc. Int. Conf. Parallel Archit. Compilation Tech. (PACT), pages 29–40, 2010.
18

[45] A. Bhattacharjee, and M. Martonosi. Thread criticality predictors for dynamic
performance, power, and resource management in chip multiprocessors. In Proc.

36th Ann. Intl. Symp. on Comp. Arch. (ISCA), pages 290–301, 2009. 18, 19, 23

[46] G. Contreras, and M. Martonosi. Characterizing and improving the performance
of intel threading building blocks. In Proc. IEEE Intl. Symp. on Workload Char-

acterization, pages 57–66, 2008. 19

[47] K. Singh, M. Bhadauria, and S. A. McKee. Cache performance of operating sys-
tem and multiprogramming workloads. ACM SIGARCH Comput. Archit. News,
37:46–55, 2009. 19

[48] S. Hsin-Ching, S. Bor-Yeh, Y. Wuu, and L. Jenq-Kuen. Migrating java threads
with fuzzy control on asymmetric multicore systems for better energy delay
product. In Proc. International Conference on Computing and Security (ICCD),
pages 1–12, 2011. 19

[49] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade. Decom-
posable and responsive power models for multicore processors using perfor-
mance counters. In Proc. 24th ACM International Conference on Supercom-

puting (ICS), pages 147–158, 2010. 19

[50] M. Y. Lim, A. Porterfield, and R. Fowler. “softpower: fine-grain power estima-
tions using performance counters. In Proc. 19th ACM International Symposium

on High Performance Distributed Computing (HPDC), pages 308–311, 2010. 19

102

Bibliography BIBLIOGRAPHY

[51] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang. Online cache modeling
for commodity multicore processors. ACM SIGOPS Oper. Syst. Rev., 44:19–29,
2010. 19

[52] C. Su, D. Li, D. Nikolopoulos, M. Grove, K. W. Cameron, and B. R. de Supin-
ski. Critical path-based thread placement for numa systems. In Proc. 2nd inter-

national workshop on Performance Modeling, Benchmarking and Simulation of

high performance computing systems (PMBS), pages 19–20, 2011. 19

[53] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A case for numa-
aware contention management on multicore systems. In Proc. USENIX Annual

Technical Conference (USENIXATC), pages 1–15, 2011. 19

[54] S. Blagodurov, S. Zhuravlev, and A. Fedorova. Contention-aware scheduling on
multicore systems. ACM Trans. Comput. Syst., 28:1–45, 2010. 19

[55] D. Zaparanuks, M. Jovic, and M. Hauswirth. Accuracy of performance counter
measurements. In Proc. International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 23–32, 2009. 19

[56] S. Eranian. What can performance counters do for memory subsystem analy-
sis? In Proc. ACM SIGPLAN workshop on Memory Systems Performance and

Correctness (MSPC), pages 26–30, 200. 19

[57] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for
lock-free data structures. In Proc. 20th Ann. Intl. Symp. on Comp. Arch. (ISCA),
pages 289–300, 1993. 22, 61

[58] R. Rajwar, and J. Goodman. Speculative lock elision: Enabling highly con-
current multithreaded execution. In Proc. 34nd Annu. IEEE/ACM Int. Symp.

Microarchit., pages 294–305, 2001. 22, 61

[59] R. Rajwar, and J. Goodman. Transactional lock-free execution of lock-based
programs. In Proc. 10th Int. Conf. Architectural Support Program Languages

Operating Syst., pages 5–17, 2002. 22

103

Bibliography

[60] J. F. Martinez, and J. Torrellas. Speculative synchronization: applying thread-
level speculation to explicitly parallel applications. In Proc. 10th Int. Conf. Ar-

chitectural Support Program Languages Operating Syst., pages 18–29, 2002. 22,
61

[61] M. Annavaram, and E. Grochowski, and J. Shen. Mitigating amdahl’s law
through epi throttling. In Proc. 32st Annu. Int. Symp. Comput. Archit., pages
298–309, 2005. 22

[62] T. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguade. Performance,
power efficiency and scalability of asymmetric cluster chip multiprocessors.
IEEE Comp. Arch. Letters, 5:14–17, 2006. 22

[63] T. Morad, A. Kolodny, and U. Weiser. Scheduling multiple multithreaded appli-
cations on asymmetric and symmetric chip multiprocessors. In Proc. 3rd Intl.

Symp. on Parallel Arch., Alg. and Prog. (PAAP), pages 65–72, 2010. 22, 23

[64] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating critical
section execution with asymmetric multi-core architectures. In Proc. 14th Int.

Conf. Architectural Support Program Languages Operating Syst., pages 253–
264, 2009. 22

[65] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt. Feedback-directed
pipeline parallelism. In Proc. 19th Int. Conf. Parallel Archit. Compilation Tech.

(PACT), pages 147–156, 2010. 22

[66] Q. Cai, J. Gonzalez, R. Rakvic, G. Magklis, P. Chaparro, and A. Gonzalez.
Meeting points: using thread criticality to adapt multicore hardware to paral-
lel regions. In Proc. Int. Conf. Parallel Archit. Compilation Tech. (PACT), pages
240–249, 2008. 23

[67] N. B. Lakshminarayana, J. Lee, and H. Kim. Age based scheduling for asymmet-
ric multiprocessors. In Proc. IInt. Conf. High Perform. Comput., Netw., Storage

Anal. (SC), page 25, 2009. 23

[68] J. Henning, Sun Microsystem. Spec cpu2006 benchmark descriptions. In Proc.

of of the ACM SIGARCH Computer Arch. News, pages 1–17, 2006. 26, 49, 84

104

Bibliography BIBLIOGRAPHY

[69] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin:building customized program analysis tools with
dynamic instrumentation. In Proc. ACM SIPLAN Conf. on Prog. Lang. Design

and Impl., pages 190–200, 2005. 26

[70] D. Bailey. Ffts in external or hierarchical memory. Journal of Supercomputing,
4:23–35, 1990. 30

[71] J. Singh, C. Holt, J. Hennessy, and A. Gupta. A parallel adaptive fast multipole
method. In Proc. Conf. on Supercomputing, pages 54–65, 1993. 30

[72] P. Hanmhan, D. Satzmarr, and L. Aupperle. A rapid hierarchical radiosity algo-
rithm. In Proc. 18th Ann. Conf. on Comp. Graph. and Iter. Tech. (SIGGRAPH),
pages 197–206, 1991. 31

[73] G. Blelloch, C. Leiserson, B. Maggs, C. Greg Plaxton, S. Smith, and M. Zagha .
A comparison of sorting algorithms for the connection machine cm-2. In Proc.

Symp. on Parallel Alg. and Arch., pages 3–16, 1991. 31

[74] J. Pal Singh, A. Gupta, and M. Levoy. Parallel visualization algorithms: Perfor-
mance and architectural implications. IEEE Computer, 27:45–55, 1994. 31

[75] T. E. Carlson, and W. Heirman, and L. Eeckhout. Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation. In Proc. Int.

Conf. High Perform. Comput., Netw., Storage Anal. (SC), pages 1–12, 2011. 32,
34, 35, 49, 67, 85

[76] D. Genbrugge, S. Eyerman and L. Eeckhout . Interval simulation: Raising the
level of abstraction in architectural simulation. In Proc. 16th Int. Symp. High

Perform. Comput. Arch., pages 1–12, 2010. 32, 34

[77] Sniper. The sniper multi-core simulator, 2015. [Online] Available: http:
//snipersim.org. 34

[78] Intel. Intel® 64 and ia-32 architectures developer’s manual,
2015. [Online] Available: http://www.intel.com/

content/www/us/en/architecture-and-technology/

105

http://snipersim.org
http://snipersim.org
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html

Bibliography

64-ia-32-architectures-software-developer-manual-325462.

html. 37, 48, 64, 83

[79] Intel Corporation. http://www.intel.com. 40

[80] Intel Corporation. Intel smart cache, 2012. [Online] Available:
https://software.intel.com/en-us/articles/

software-techniques-for-shared-cache-multi-core-systems/

?wapkw=smart+cache. 41

[81] Intel Corporation J. Doweck. Inside intel® core tm microarchitecture and smart
memory access, 2011. [Online] Available: web.archive.org/web/

20111229193036/http://software.intel.com/file/

18374/. 41

[82] NVIDIA. Tegra 3 (kal-el) quad-core mobile processor, 2011. [Online] Available:
http://www.nvidia.com/object/tegra-3-processor.

html. 46, 70

[83] S. Woo, and M. Ohara, and E. Torrie, and J. P. Singh, and A. Gupt. The splash-2
programs: Characterization and methodological considerations. In Proc. 22nd

Annu. Symp. Comput. Archit., pages 24–36, 1995. 49, 66, 84

[84] L. Rudolph and Z. Segall. Dynamic decentralized cache schemes for mimd par-
allel processors. In Proc. 20th Ann. Intl. Symp. on Comp. Arch. (ISCA), pages
340–347, 1984. 61

[85] N. Barrow-Williams, C. Fensch, and S.Moore. A communication characterisa-
tion of splash-2 and parsec. In Proc. IEEE Int. Symp. on WL. Char., pages 86–97,
2009. 69

[86] K. Du Bois, S. Eyerman, J. Sartor, and L. Eeckhout. Criticality stacks: Identify-
ing critical threads in parallel programs using synchronization behavior. In Proc.

40th Annu. Int. Symp. Comput. Archit., pages 511–522, 2013. 78, 80, 81, 87

[87] E. J. Fluhr, and et. al. Power8tm: A 12-core server-class processor in 22nm soi
with 7.6tbs off-chip bandwidth. In Proc. IEEE Int. Solid-State Circuits Conf.

Digest of Technical Papers (ISSCC), pages 96–97, 2014. 93

106

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com
https://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems/?wapkw=smart+cache
https://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems/?wapkw=smart+cache
https://software.intel.com/en-us/articles/software-techniques-for-shared-cache-multi-core-systems/?wapkw=smart+cache
web.archive.org/web/20111229193036/http://software.intel.com/file/18374/
web.archive.org/web/20111229193036/http://software.intel.com/file/18374/
web.archive.org/web/20111229193036/http://software.intel.com/file/18374/
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Scope of the Thesis
	1.1.1 Importance of Scheduling

	1.2 Key Challenges
	1.3 Contributions of Thesis
	1.3.1 Hardware Round-Robin Scheduling Algorithm
	1.3.2 Kernel to User mode Transition aware Hardware Scheduling Algorithm
	1.3.3 Trait-aware Criticality Scheduling Algorithm

	1.4 Thesis Organization

	2 State-of-the-Art and Background in Scheduling Policies on an ACMP
	2.1 Context Switching
	2.1.1 Performance Impact of Context Switching
	2.1.2 Analytical Models for characterizing Context Switches
	2.1.3 Managing Cache Misses caused by Context Switches

	2.2 Scheduling Policies
	2.2.1 First Studies on Scheduling Policies on an ACMP
	2.2.2 Scheduling based on Profiling and Sampling
	2.2.3 Scheduling focused on Power and Energy
	2.2.4 Scheduling based on Workload Characteristics
	2.2.5 Fairness-aware Scheduling
	2.2.6 Scheduling targeting Bottlenecks in Parallel Applications

	3 Methodology
	3.1 Benchmark Suites
	3.1.1 SPEC Benchmark Suites
	3.1.2 SPLASH2 Benchmark Suites

	3.2 Sniper Infrastructure
	3.2.1 Sniper Extensions
	3.2.2 Simulated Architecture - Sniper configuration

	4 Context Switch on the CMP
	4.1 Managing the Context Switches
	4.2 Context Switch Cost

	5 HRRS: Hardware Round-Robin Scheduler for Hardware Threads
	5.1 HRRS Algorithm
	5.1.1 Hardware Implementation

	5.2 Evaluation
	5.2.1 Simulated Architecture and Workloads
	5.2.2 Ideal Performance gains and Scalability
	5.2.3 Performance Evaluation
	5.2.4 Energy Efficiency Analysis

	5.3 Summary

	6 KUTHS: Kernel to User mode Transition aware Scheduler for Hardware Threads
	6.1 KUTHS Algorithm
	6.1.1 Hardware Implementation

	6.2 KUTHS Algorithm extension for Many-Core Systems
	6.3 Evaluation
	6.3.1 Simulated Architecture and Workloads
	6.3.2 Performance and Energy Efficiency evaluation on a Shared LLC System
	6.3.3 Hardware vs Software Implementation
	6.3.4 Performance Evaluation on Private LLC System

	6.4 Summary

	7 TCS: Trait-aware Criticality Scheduler for Hardware-Threads
	7.1 TCS Algorithm Basis
	7.1.1 Differences to the HRRS Algorithm

	7.2 TCS approach of determining Critical Threads
	7.2.1 Differences to the other Criticality Schedulers

	7.3 Hardware Implementation
	7.3.1 Identification of the Running Threads
	7.3.2 Hardware Component Description
	7.3.3 Managing the Context Switches

	7.4 Evaluation
	7.4.1 Simulated Architecture and Workloads
	7.4.2 Comparison to the Scheduling for Fairness
	7.4.3 Comparison to the Scheduling for Workload Characteristics
	7.4.4 Comparison to the Scheduling for Criticality

	7.5 Summary

	8 Conclusion and Future Work
	8.1 Future Work

	9 Publication List
	Bibliography

